SULLIVAN'S THEORY OF MINIMAL MODELS

by

ALAN JOSEPH DESCHNER
B.Sc., University of British Columbia, 1973

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the Department
of

MATHEMATICS

We accept this thesis as conforming to the

required standard

THE UNIVERSITY OF BRITISH COLUMBIA

April, 1976



In presenfing this thesis in partial fulfilment of the requirements for
an advanced degree at the hniversity of British Columbia, | agfée that
the Librarf shall make'it freely‘avéilable for reference and study,

t further agree that permission for extensive copying of this thesfs
for scholarly purposes may be granted by the Head of my Department or
by his representatives, It is understood that copying or publication
of this thesis for financial gain shall not be allowed without ﬁY

.written pemission,

»

Department of Mathematics

The University of British Columbia

2075 Wesbrook Place
Vancouver, Canada
V6T 1W5.

Date May )-l,1976




Supervisor: Dr. Roy R. Douglas

Abstract:

For a simplicial compléx K, the de Rham algebra E*(K) is
the differential graded algebra .(DGA) of Q-coefficient polynomial
_forms in thé barycentric coordinates of the simplices of K which agree
as differential forms on common faces. The associated de Rham'cohomology
algebra is isomorphic to.the simplicial cohomology of K with

Q—coéfficients by integration of forms over simplices.

Given a l-connected DGA, A, thg minimal model of A 1is a
DGA, - M, which is free as an algebra, has a differeqtial which decomposes
the generators, and which computes the cohomology of. A . Such minimal
modéls exist and are unique up to isomorphism.

The minimal model M(X) .of a l-connected simplicial complex
X 1is the minimal model of E*(X) . It depends only on the rational
homotopy type of X . For a fibration K(w,n) — E — Y, with E

and Y 1—éonnected, we have (under mild hypothesis)
%
M(E) = M(Y) 8 H (K(m,n);Q)

with a suitably defined differential. This is applied inductively to the
Postnikov decomposition of X to show that the free generators of M(X)
correspond to the generators of ﬂ*(X> 8 @ . The number of these
generators which are cocycles is the rank of the rational Hurewicz

homomorphism.
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Introduction

This thesis is a presentation of Dennis Sullivan's theory of
minimél models of rational homotopy type. Our purpose is to give a
comprehensive development of the-basic'theory in the simply connected
case as first outlined by Sullivan in [13]; and to prove Theorems A and
B of that paper. Further results in the theory and applications to
manifolds can be found in [1].

Chapter 1 develops %ational'de Rham theory for simplicial
complexes. The classical theory considers the differential graded algebra
(DGA) of smooth differential forms on a manifold; and shows that the
resulting cohomology agrees with simplicial theory. 'We achieve the
generalization to simplicial complexes and rational coefficients by using
rational coefficient polynomial forms defined on the various simplices in
the space, and requiring that they "patch together" along common faces.
The collection of such forms is a DGA whose cohomology algebra is
naturally isomorphic by integration to simpliciai cohomology with rational
coefficients. The proof of this equivalence, which occupies the major
part of the chapter? is essentially the same as that of the classical
de Rham theorem as presented by H. Whitnmey [15]. One advantage of using
differential forms rather than simplicial cochains is that the wedge
product of forms is graded commutative, whereas the cup product éf cochains
is not. This property is needed in Chapter 3.

In Chapter 2 we discuss Sullivan's minimal models from a purely
algebraic point of view. For a givén simply connected DGA we construct

its minimal model, a DGA which is free as a graded algebra, has a



decomposable differential, and whicﬁ coﬁputes the cbhomology of the
original DGA . The purpose of this chapter is to prove the existence
and uniqueness of the minimal model. To this end we must study induced
maps of minimal models, and this leads to a discussion of homotopy in Fhe
category of DGA's . The uniqueﬁess of the minimal model is essential
in Chapter'B.

Chapter 3, the main chayter in the thésis, relates the rational
homotopy theory of a space tovthe algebraic construction of Chapter 2.
fhe minimal model of a simply connectéd, gimplicial complex is defined to
be the minimal model of the rational de Rham algebra of the complex; it
depends only on the rational homotopy type of the space (Theorem 3.4).
The comstruction of the model parallels the Postnikoé decomposition of
the space in such a way that the algebra generators éf degree n correspond
to the generators of wn(X) 8 @, and the differentials of these generators
correspond to the rational k-invariants in the decomposition. The proof
is based on the Guy Hirsch method fof computing the cohomology of a
principal K(w,n)-fibration, which is essentially our Theorem 3.9 . This
method of attack was suggested by René Thom in the Cartan Seminar, 1954,
and our proof is a corrected version of that given by Dennis Sullivan
and Roy Douglas in the summer of 1975. Our treatment stopé short of the
completé result [13: Theorem C], ﬁhich states that the rational homotopy
type of a simply connected space is uniquely determined by its minimal
model. The main technique used for this result is the Hirsch method,

which we present in detail.



Chapter O Algebraic Preliminaries

In this chapter, we define the algebraic objects which will

be used in the remainder of the thesis.

0.1 Differential Graded Algebras and Cohomology: Let @ denote

the rational numbers. By a graded algebra, A , over § we mean a

Il

- . n . . .
graded @Q-vector space A & A together with an associative

n>0
. . . . : n_.m n+m

multiplication u : A ® A > A which is graded (u(A ®A )< A )
and graded commutative (a‘*b = (—l)nm b-a when a € A" and b e Am)
We also assume, unless otherwise stated, that A has an identity
element 1 € AO . The elements of A" are said to be homogeneous of
degree n (or dimension n) .

A differential graded algebra (or DGA) is a graded algebra,
A , together with a differential, d , of degree +1 , which is a
derivation. This means that for each n there is a vector space

L n n+l , . Y .
homomorphism d = dn A > A satisfying ded = 0 (differential)

and d(a-b) = d(a)-b + (—l)n a-d(b) for a ¢ AP (derivation).

If A is a DGA , let

Zn(A) = Ker{d : A" > An+l} = subspace of cocycles of A" ,
Bn(A) = Im{d : An_l +~An} = subspace of coboundaries of An .
* n * n
Z (A = & Z°@() |, B (A) = & B (A)

n>0 n>0 ‘

As d =0 , we have Bn(A)<= Zn(A) . Define the nth cohomology



space of A to be the quotient vector space Zn(A)/Bn(A) , which we
%
denote by Hn(A) . As d 1is a derivation, we see that Z (A)

i

. * Y,
is a subalgebra of A, and B (A) is an ideal in ZX(A) . Hence

* X %
H Q) = & Hn(A) = Zx(A)/B<(A) is a graded algebra (with identity
n>0

if A 1is), called the cohomology algebra of A .

We sayvthat the DGA , A, is connected if HO(A) =qQ,
and that A is simply connected if it is connected and Hl(A) =0
We wiil be mainly concerned with simply connected DGA's

If A and’ B are graded algebras, a function f : A~> B
is a homomorphism if it preserves all the algebraic structure; that

is, f(An)CZ B" , f(atb)

f(a) + £(b) , and £f(a*b) = f(a)-£(b)

We also assume that £(1) 1. If A and B are DGA's, we require

also that f commute with the differentials; deA = dBOf

If £ : A-> B 1is a DGA homomorphism, then £ induces a
map £ : H (A) >~ H (B) by the rule £ ([z]) = [£(z)] , where [z]
denotes th; cohomology class of the element =z € Z*(A) . Clearly
f* is a homomorphism of graded algebras. So we have categories

GA and DGA of graded and differential graded algebras, respectively,

and the cohomology functor

’L

H : DGA ~ GA .

0.2 Tensor Products and Free Algebras: If A and B are objects
in GA , we may form their tensor product A ® B which, as a graded

n , ,
vector space, is (A@B)n = & (Al ® B ;) , the tensor product on the
i=0



. right being the usual one for vector spaces. We define the

multiplication in A ® B by (a8b)-(a'®b') = (-1)™ (a-a') & (b-b')
when b e B® and a' € A" . One verifies that A ® B is a graded
algebra.

Note that A ® B is the coproduct of A and B in the
category GA . To see this, note that there are canonical "inclusions"
A—> ABB by at—>a®1l , and
B > A BB by bk 18b . Now given any diagram

with C , f , g arbitrary in GA.,

A ~_
~— £
~_

v \""\._)
A®8B ——h—— ——=> (C
A ) 7

//
8

there is a unique h : A® B ~ C in GA given by

h( ) a, ® bi) = Z f(ai)°g(bi) which makes the triangles commute.
i i

If A and B are DGA's , we can define a differential in
the graded algebra A @ B 'as follows: for ace A" and b e B, set
d(a®b) = d(a) 8 b + (—l)n a 8 d(b) , and extend by linearity. One
checks that this makes A ®8 B a DGA, which is the coproduct in the
category DGA . However, we will usually consider A® B as a

graded algebré, and define differentials different from the one above.



The free graded algebra 'An(x) §n a generator, x , of
degree n , is the polynomial algebra on x if n dis even, and the
exterior algebra on x if n is odd. That is, if n is even,
(An(x))k =0 if k # 0 (mod n)  and is the one dimensional vector
space spanned by Xa if k=oan . If n is odd, we add the
relation x2 = 0 (graded-commutativity) so (An(x))k =0 if k#0, n .

.}

A graded algebra A 1is free on a set of generators {xl, x2,..
if A is a tensor product of free algebras on each of the generators.

We write A = A (x. ,x
S no 1

2,...) if all the generators are of degree n .

If A 1is a graded algebra or a DGA , we will write A = Q
if A= and A" =0 for n>1; A is called the trivial DGA

(with identity).

0.3 Examples:

(a) If K dis a simplicial complex, the simplicial cohomology algebra

% . :
H (K;Q) of K with coefficients in Q is a graded algebra.

(b) If M is a smooth manifold, the collection E*(M) of smooth
differential forms on M is a differential graded algebra (over the
reals) with the wedge product as multiplication and the exterior
derivative as diffferential. De Rhamfs theorem states that the
cohémology of E*(M) is isomorphic to the ordinary simplicial
cohomology H*(M;R) of a smooth triangulation of M [see 15]. We

generalize this example in Chapter 1.

(c) The simplicial cochain complex CK(K;Q) of a simplicial complex
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K dis not a DGA ; the multiplication is not graded commutative, even
though it is on the cohomology level. This is why we use differential

forms instead of cochains.



Chapter 1. De Rham's Theorem for Simplicial Complexes

In this chapter, we extend the céncepts of de Rham cohomology
from a real theofy on smooth manifolas to a rational theory on simblic%al
complexes. We do this by considéring rational-coefficient polynomial
forms in each simplex that 'patch together" on common faces. We will
see that de Rham's theorem holds in this generalized setting.

We assume only é basic familiarity with differential forms,

eg. [12]. Our treatment follows that of H. Whitney [15].

1.1 The de Rham Algebra: We will work on an oriented simplicial

complex K . Recall that K is the union of oriented n-simplices
(n=0,1,...) , each of which is homeomorphic to the standard n-simplex
= Rn+l

n

n+1 l

: n
An = {(xo,...,xn) € R X >0 and .z x, = 1}

i=0
The xi's are the barycentric coordinates of An . Note that the
boundary BAn of the standard n-simplex is a union of (n~l1)-simplices,
n-1

and is a simplicial complex homeomorphic to the (n-1)-sphere S < g" .

In An we consider differential k-forms

w = z w, b (X yeee,x )dx, A ... A dx,
. o A §
0<i <...<i <n 1’ k 0 oo K
where Xy e X are the barycentric coordinates in .An and the
wi 5 are polynomials in ‘xo,.,.,xn with rational coefficients.



In fact, these forms are defined on the n-dimensional hyperplane
in Rn+l determined by An . On this hyperplane, we have the

relations

If K is an (oriented) simplicial complex, a differential
k-form ®w on K is a collection '{wc} , one for each simpléx o of
K, of @-polynomial k-forms in the barycentric coordinates of ©
(as above) which satisfy the following coherence condition:

If o 1is a simplex of K and T 1is a face of ¢ , then

wclt =w_

where the left hand side is the restriction of wc ‘to T 1in the

sense of differential forms. Let Ek(K) . denote the collection of all

such k-forms on K , and set

E* (K) = Ek(K) .

@
k>0
We define a product A . and a differential d in

*
E (K) as follows:

L

If we Ek(K) and n € EK(K) , then wAn € Ek+ (K) and

+
dw € Ek l(K) are given on a simplex ¢ of K by



|
€
>
=

(wamn), =

@), =dw) ,

where A and d on the right are the usual wedge product and exterior
derivative on o :‘An (as a subset of the n-dimensional hyperplane

., n+1 ’ . . L.

in R ) . Clearly wAn and dw satisfy the coherence condition

of the last paragraph. All the usual properties of forms hold in

*
E (K)

@A N = (WA + (AT 5

(wAN)AB wA(NAB) ,

(qw)a n = q(uan) for qeQ,
WA T = (-1)k2 NnAW when w € Ek(K) , N € E'Q',(K) ,
d(de) =0 ,

MmAn)=den+(€DkwAdn when weEka)

Note that EO(K) consists of équivalence classes of Q-polynomials in
the barycentric coordinétes of the various simplices of K ; the
equivaience relation is the resuit of the fact that the éum of the
barycentric coordinates is identically 1 at every point of XK . The
constant polynomial 1 € EO(K) acts as the identity for the wedge
product in E*(K) . |

Hence E*(K) is a diffefential graded algebra over @ ,

called the rational de Rham algebra of K . The cohomology algebra



* *
H (E (K)) is called the de Rham cohomology algebra of K , and will
.

be denoted HDR

xX) .

If K and K' are simplicial complexes and f T K> K'
is a simblicial map (i.e., takes simplices to simplices linearly),

. then f induces a map of DGA's
* * * *
E(f) =f :E KXK"Y - E (K

by substitiution of barycentric coordinates. That is, if w € Ek(K') s

#
fc(w) € Ek(K) is given on a simplex o of K by

(F0) 0 = @, E@), xeo.

£(o)

One verifies that (g°f)* = f*Og* for £ : K~+K' and g : K' - K",
and that (identity on K)* is the identity omn E*(K) . So E* is a
contravariant functor from the category of simplicial complexes to
the category DGA .

Note that if w € Ek(K) and ¢ dis an R—simﬁlex of K,
2 < k , then (w)0 =0 . Hence if f : K+ K' w e Ek(K') and o0 is
a simplex of K ‘for whichA f(o) has dimension < k , then
(f*w)0 = (0 , even if. 0 has dimension > k .

If i ¢+ L —> K is the inglusion of a subcomplex L dinto

the simplicial complex K , then the induced map
* * %
i :E@® >C (L)

corresponds to restriction of the forms on K to L . We will show

* . -
(Proposition 1.9) that i is always an epimorphism. In other words,
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any form on the subcomplex L can be "extended" to a form on all of
K . We use this fact to define the relative de Rham algebra of K

' *
modulo L as the kernel of i .

1.2 Simplicial Cohomology: We wish to establish a relationship between

de Rham cohomology and simplicial cohomology. In this section we set
the notation of the latter. )

If K 1is an oriented simplicial complex, let C*(K;Q)
denote the chain complex of simplicial chains in K , with Q-coefficients.
So Cn(K;Q) is the vector space over @ with basis consisting of the
oriented n-simplices of K , -0 being identified with the opposite
orientation of o . There are boundary operators
3 Cn(K;Q) - Cn—l(K;Q) ;>and the homology of C*(K;Q) with respect
to 3 1is the'simplicial homology of K , denoted H,(K;Q) ; it is a
graded vector space over @ .

?imilarly, the simplicial cochain complex C*(K;Q) of K
is given by Cn(K;Q) = HomQ(Cn(K;Q),Q) , with coboundaryloperator
§ : Cn(K;Q) > Cn+l(K;Q) dual to 9 . If ¢ e Cn(K;Q) , we denote
the value of this homomorphism on a chain zle Cn(K;Q) by <c,z> e Q ;
( » » is a bilinear pairing of cochains and chains. To each oriented
n-simplex o of k , there corresponds a cochain . € Cn(K;Q)

whose value on a basis element (that is, an oriented n-simplex)

T € Cn(K;Q) is given by

<C0"T> =
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Every element of Cn(K;Q) can be written uniquely as a (possibly
infinite) linear combination of the cochains ¢y When there is no
confusion, we use 0o € Cn(K;Q) to denote the cochain cy s as well
as the chain o € Cn(K;Q). and tﬁe ﬁ—simplex c< K .

There is also a ﬁultiplication in C*(K;Q) given by the

cup product

vt 8 Ctk;Q) > K Q) ;

it ié associative, has an identity 1 € CO(K;Q) given by

<l, v> =1 € Q for every vertex v € K, ‘and with regpect to this
product, & is a derivation. .However C*(K;Q)‘ is not a DGA in our
sense, as the cup product fails to be graded commutative. On passage
to cohomoloéy, we obtain the simplicial cohomology of K , denoted
H*(K;Q) ; it is a graded algebra, as the cup product is graded

commutative on the cohomology level.
1.3 Definition: We define a map of graded vector spaces
% *

y : E(K) — C (X;Q) ,

called integration, as follows: ' if w € Ek(K) , Y(w) dis the

k-cochain whose value on a k-simplex, o , of K is
v, od = | o
o

This is a rational number as we are using polynomial forms with rational

coefficients. In fact, an easy computation shows that
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S
JG Xm/\...'/\ka—k! 5

where X.ses.s3X are the barycentric coordinates in the k-simplex

0’

0 (with the correct orientation).

k

As the integral is additive, ¢ is a‘morphism of graded
vector spaces. In fact, more is true:
1.4 Proposition: ¢ is a natural homomorphism of cochain complexes.

Proof: To show that V¥ is a cochain map, we verify the commutativity

of the following diagram:

By —— R
d S
k+1 Y

£+ gy > k)

For w € Ek(K) and o a (kt+l)-simplex of K , we have

<\p(w), 30> =J w
o0

'CIORD:

J dw.= <1P(d0)),0> ’
o .

where the third equality is just Stokes' Theorem. As this holds for
all such "o , 6Y(w) = Y(dw) , and the diagram commutes.

For naturality, if f : K —> K' is a simplicial map, we
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must establish the commutativity of the diagram

EX (k) > ¢ K;Q)

% : *

gy ——s M)

Suppose w € Ek(K') and o is a k-simplex of K . If £(o) is

a simplex of K' of dimension k , then

<f*¢(w),6> <w<w>, f*(c)> - <¢(w) - f(c)> B
= Jf(cr) o Jof*w i <¢(f7‘<w)"”>"

the + depending on whether £(o0) has the correct or opposite

orientation in K' . If £(o) has dimension < k , then

%*
£,(0) =0 ¢ Ck(K';Q) and (f m)0 =0, so

<f*1p(w),or> =0 = <¢(f*w),c>

% * ‘
Hence f ¢(w) = ¢(f w) , and the diagram commutes. Q.E.D.
As ¢ 1is a cochain map, it induces a map of graded‘vector

spaces,

* . * % .
Yoo HDR(K) > H (K;Q)

' %
We will see that ¢ is, in fact, a map of graded algebras, and, as

» ‘
is the case with C -forms on a manifold, we have
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1.5 de Rham's Theorem:

w* : H;R(—) > H*(—;Q) is a natural equivalence of functors
from the category of simplicial complexes to the category of graded
algebras.

Before proving de Rham's Theorem, we need some preliminary
results.

Recall that w € Ek(K) is closed if dw = 0 , and exact

if w = dn for some n € Ek—l(K) ; ﬁgR(K) is just the closed forms

modulo the exact forms on K .

1.6 Proposition (Poincafé Lemma) :

For k > 1 , every closed k-form on An is exact.

Proof: For k>n+ 1, Ek(An) = 0 and there is nothing to prove.

So suppose 1 <k <n, we Ek(An) , and dw =0 . We can assume
that X and dx0 do not appear in the.expression for .w (if they
do, rewrite Xy = 1 - Xy TeeeX dxO = - dx1 - e.. = dxn) . Let

2 be the largest integer (k < £ < n)  for which dx, appears in w .

L

Then we can write w =§& + Gf\dx2 , where ¢ and 6 _do not involve

' . ‘ . i 8 =)0 i
dxl, ,dxn (or Xy dxo) Write § 3 de » where the sum is
over all J F {(jl""’jk—l)ll f_jl < ... < jk—l < % - l}’ and
dx_ =dx, A ...pa dx, . Now O = dw = d& + d6 Adx_ , and
J k} 3 L
. 1 k-1
' n 30

J
de=z Y == dx, adx
3 X i

(o 3%, J
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“As any term in d&€ can have only one factor dxa for @ > 2 , and the

29 .
terms —— dx.adx_adx have two such factors when i > & + 1 ,
axi i J L -
Y : 38 :
we have . ces = 3 . o, &/J . By integrating 6._ with
ox X J
2+1 n : _

respect to’ X, , we can find rational polynomials XJ satisfying

A aA , .

I (-1)k 16 s 3 = 0 for a>4g2+1 . Set

9xX J 9x -

2 o

. 2-1 9

A=3 A dx. e E5Ya ) . Then ax =7 § —L ax,dx. +

J J n : . . 9x i J
J J i=1 i

Z J dx_ adx_. The second terms is just ) (-1)k'le dx aAdx_ =
ax 2 J J 2 J

J L J
Y SJ de,\ deL = eAdXZ . So
J

-1 23A ,
w=-dx=8&-) } =—= dx,Adx, , which does not involve
: : . o0X, i J

J i=1 i
dxg s dx£+l s eee s dxn . Repeating this process £ - k + 1 times
, k-1 e . .

yields n e E (An) for which w - dn does not involve dxk,...,dxn

But this leaves only dx dxk—l , and w -~ dn is a k-form, so

170
w = dn . : ‘Q.E.D.

1.7 Corollary:
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Proof: The Poincaré Lemma gives the result when k > 1 . EO(An)
consists of all rational polynomials in xl,.;.,xn . If we EO(An) and
dw = 0 , we have
1
' ow
0 do = i=1 9x. d i
W ’ ) 0, %
So Py 0 ,1<i<n, and hence w is constant. As B (E (An)) =0,
i -
we have
0 0,.-* -
= A = . .E.D.
B0 = 2°E @) 20 Q

We now look at the problem of extending fopms. Denote by

F.A the (n-1)-fdce of An given by x

1%n = 0 , and by BAn the

J
topological boundary of An as an (n-1)-dimensional simplicial

complex (with the induced orientations).

1.8 Lemma: If w e Ek(FjAn) , there is a form w € Ek(An) such that:

1
g

i) w|FjAn

[
o

ii) awF,A 0 whenever w|F.A aF. A
in . im "jn

Proof: Without loss of generality, assume w ¢ Ek(FnAn) (i.e., that

j=n) . Let € = {(xo,...,xn)'e An|xn # 1} be the complement of the

t
n b vertex. Let p : C > FnAn be the projection defined by

*0 *a-1
l-x *"""?1-x
il n

p(xo,.-a,xn) = ( , 0) € FnAn



* +1
Then p (w) is a k-form on C as a subset of R" , but is not

a polynomial form.. .In fact,'for 0 <i<n-~-1, we have

U

pT0e) = /() and P (dx) = 4G = dle,/(ox))

3 %1 1 x
ox. G I8y T T (kg +
0 i n n

i
1-x
n

R

. dxn)
J

. %
So for sufficiently large N , (l—-xn)N p (w) is a Q-polynomial form

on all of An , and we set

w= - p () e £ )

On FA ,dx =0 and (1-x ) =1, and
nn n n

p|F A+ FA = FA is the identity map. Hence
nn nn nn

w|F A =w . If w|F,A NF A =0, we have p (w)IC NnFA =0,
nn in nn . i™n

and hence E‘F,A =0 . _ Q.E.D.
) in _ .

1.9 Lemma: If w € Ek(aAn) , there is an w ¢ Ek(An) such that

w|aa = w .
. n

Proof: Let wj = mleAn € Ek(FjAn) - The coherence condition on w

. says that, for all 0 <i , j <n,
w |FA AFA =uw |FA nFA .
i'"i™n in j'"i™n in

We must find o € Ek(A ) so that EWF_A =w, , §=0,...,n.
_ o n i n j

By Lemma 1.8, we can find ab € Ek(An) 'so that
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Eb}FOAn = wo Suppose we have constructed 53 € Ek(An) , for some

j<n-1, so that w,|F,A =w, for all i< j . Set
- i in i -

1 — k 1
w =W - w,lF, A €E (Fj+1An) . Then w |F

41 Y541 T 9515410 j+1 nFEL =0

j+lAn

for i < j by the coherence condition. By Lemma 1.8, we can find

1

k —1 "
41 e € (An) so that wj+lle+lAn = 94
=1 ' . .
and wj+llFiAn =0 for i<
Set =0, +w0. £ Ek(A ) . Then w, .|F.A =w, for all
j+l h| j+1 n j+l' i i

i <j+ 1 and the induction continues. We eventually get

w = 5; £ Ek(An) with the desired property. . Q.E.D.

1.10 Proposition : If i : L<K is the inclusion of a subcomplex
. . . % * %
L in a simplicial complex K , them i : E (K) - E (L) 4dis an

epimorphism.

— & — —
Proof: Recall that, for w € Ek(K) , 1 (w) = w|L . So, given

> Ek(L) , we must find w € Ek(K) for which EWL w . Let K"

denote the n-skeleton of K . Note that Ek(Kk—l)

i

0 . We define

w inductively over the relative skeleta. Set B]L

Wy

k=1 .= '

wi{K =0, and  wjo =0 for any k-simplex ¢ of K - L . This
defines coherently on L v Kk . Suppoée we have defined w on
L u K" for some n >k, If o dis an (ntl)-simplex of K - L ,

then 30 < K© , and Lemma 1.9 allows us to extend w from 30 to
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+1 I~
6 . Doing this for every simplex of Kn - L defines w on
LV Kn+l . So, by induction, we can define w on all of K so that
oL =.w . Q.E.D.

1.11 The Relative de Rham Algebra:

If i : L =»K 1is the inclusion of a subcomplex, we

define

EX(R,L) = Rer{i® : EN(K) —>> EN(L)}

qw e Ek(K){ wIL = 0}

Then EN(K,L) = 150 Ek(K,L) is a DGA (without identity, unless

L =0 ‘called the relative de Rham algebra of K modulo L . If
f: (K,L) — (K',L") 1is a simplicial map of pairs (i.e., L& K ,

L'<K', and f(L)< L')., then f induces a map of DGA's

£ B ®L,L) — ENR,L)

*
in the obvious way. Thus € is a contravariant functor from the
* *
category of simplicial pairs to the category DGA, and E (K,0) = E (K)
By Proposition 1.10, there is a short exact sequence of DGA's
L% .*
* J * i *
0 —> & K,L)— E (K) —>> E (L) —>»> 0
i j | U , .
where L —> K —> (K,L) are the simplicial inclusions. So passing

to cohomology, we have a long exact sequence
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% *

n N n i
. > HDR(K,L) > HDR(K)

n n+l
> HDR(L) > HDR,(K’L> —_

, : %
where 'H;P(K,L) denotes the cohomology algebra of E (K,L) .

Another consequence of Proposition 1.10 is:

1.12 Proposition: Let K be a simplicial complex and I a directed

~

set. If {La :a eI} is a direct system of subcomplexes of K

(under inclusion) whose union is K , then there are natural isomor-

phisms
% -~ % '
E (K) = 1lim E (La) of DGA's,
<I—'
B * lim H. (L) of graded algeb
and DR(K) = lim DR(La of graded algebras.

e

‘Proof: It is clear that '{E*(La) : o € I} is an inverse system of
ﬁGA's in which all the maps are epimorphisms, and that the first

isomorphisﬁ holds. D. W. Kahn [4; Theorem 1.1] has showﬁ that for
such systems of DGA's, cohomology commutes with inverse limits, so

the second isomorphism holds. ' | Q.E.D.

1.13 A Right Inverse for Integration: We now begin the proof of

, o .
de Rham's Theorem by constructing a right inverse ¢ : Cx(K;Q) —> E (K)

to the integration map ¢ . :

‘If T and T' are simplices of K , write T < t' if

T idis a face of 1 Define the star of the simplex T to be



- 21 -

st(T) =U{ <t | <),
where _<T'> denotes the open simplex
<T'> = {(tO,...,tn) € T'Iti >0, 1i=20,...,n}

Then St(t) is an open subset of K . Also,

St(T) ==/] {St(v)|v' is‘a vertex of T}

Let o = [po,...;pn] be an oriented n-simplex of K ,
where po,;.'.,pn are the vertices, and let .XO""’X# be the
barycentric coordinates with respect to pO,...,ﬁn gonsidered as
functions (G—forms? on all of K . So X, = 1 at Pi , and X, =0
on K - St(pi) . Consider 0 as a cochain in Cn(K;Q) as in 1.2,

and'define an n-form ¢(o) € En(K) by

(1) ¢(o) = n! .z (-1 X, ddi ol ?;i_ ...Adxn s

"\ S
where the symbol over dxi indicates that it is omitted.
Sublemmai: ¢(o) = 0 on K - St(o)

Proof: "If T is a simplex of K - St(o) , there is an i for which
' Py is not a vertex of T . So X, =0 and dxi =0 on T . But

every term in (1) has either ‘xi or dxi as a factor, and hence

$(a)|t =0 . ' A | Q.E.D.

We wish to extend the definition of ¢ linearly over

* .
C (K;@) . Every eleément of Cn(K;Q) has the form Z ¢, 9y >
. v .
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where Cy €qQ, Ga is an n-simplex, and the sum is over all
n-simplices of K . The problem is that an infinite number of the <,
may be non-zero, and we cannot add an infinite number of differential

forms. However if T is any simplex of K ,

{ty= st(o,) iff o < T,

~

and hence
$(o )|t # 0 diff o, < T

As T has only a finite number of faces, all but a finite number of

the forms ¢(Gu) are zeroon T . So we can define

(2) () ¢

Qa

[0

7 =L g #0s)

keeping in mind that the sum on the right is finite on any simplex of

K . BSo we have a linear map of graded vector spaces

* *
¢ C K@ — E(K) .

1.14 Proposition:

(a) ¢ dis a homomorphism of cochain complexes.
%

(b) ¢ o ¢ is the identity on C (K;Q)

(¢) ¢ preserves identity elements.

Proof: For part (a), we must show

[}
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a4 = 66 : c*(®;Q) — EV)

It suffices to show this on an arbitrary oriented n-simplex ¢ of K.

Let '{pu} be the vertices of K, and o = [po,...,pn]

o AN

d(o) = na! } (-1)" dx, Adx.A... dx, ...Adx
. i 0 i n
i=0 :
n
= n! A e = ! e .
n! z dxo,\ /\dxn’ (n+1) dXOA Adxn
i=0
% * i
Now &g = ) [pa, po,...,pn] where )  indicates that the sum is
o o

over all o for which [pu, pO,...,pn] is an (n+1y_simplex of K .

$(80) - _ y* B i N\
3 DT - g {XadXOA e AdR ..ZO(—l) x; dxa/\dxo Ave-dx, ... A.dxn}
l=
If Py> po,...,pn are not the vertices of a simplex and =
is any simplex, there is a j € {a, 0,...,n} so that xj = 0 and
dx, = 0 on T . Hence

J

X, dxo/\...,\dxn=0 and
N . ‘
X, dxa,\don...dxi... /\dxn =0 (i=0,...,n) on T

v , - -
As this is true for every T din K , z in (3) can be replaced by
o

n
z . Also z dxa =0 on K, so Z dx, = - z dx
a#0,...,0- o j=0 J a#0,...,n @

So (3) becomes
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o ; n AN
$(30) ) i
Aot = X dx A...oadx Yo(-)x, ) dx, Adx A -..-dx ... Adx
(n+1)! 040, ...,n a 0 nooLZg i 320 b 0 i
o i S
= Y X, dXO/\"'Aan"'_Z (-1) X dxi/\dXOA"'dxi"'Aan
a#0,...,mn . i=0
n
= 2 X, deA...Adxn-}- z X, deA...Adxn
a#0,...,0 i=0
<
= (zxa) dxg A-eeAdE] = dxpA e pdR
‘as z X, = 1 . Hence d¢(o) = ¢(80)
o
For part (b), we must show that y¢(0) = o £for every
n-simplex o of K . This means that, for any oriented n—siﬁplex
Ty
| . Jl if 1 =0

If t© # o, then TN St(o) = ﬁA, so that ¢(o)|t = 0 , and the result

follows. If o = [?O,...,pn] , then the relations

1 )
x, =1 and dx, = 0
i=0 " i=0 "

are valid on o . So we have

$(0) _ T i v N
TS %, dxl,\.../\dxn+ z (-1 X (- z dxj),\dxl,\...dx

=1 j=1 i A

n

n
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i+l AN

1

0 i=1

n .
xodxl/\.../\dxn+ Z X qxl'\'”/\dx

i=1 n

n
(izoxi) dxl Ao A dxn = dxl\'\ ce e A dxn

-« |

5 |-
|

= ! = n!
9 (o) n! J dxlA cee A dxn n!
g o

n
xdxlA...Adxn+..Z (-1 X dxi,\dxl/\...dx...

.

A dx

= 1 . This proves (b);

. : .
For part (c), recall that the identity element of C (K;Q)

3

is 1= Py € CO(K;Q) . But ¢(pu) = x, » 80
Q

$(1) = ¢( } p)

Qa Q

I
o~
-
~~~
o

Q
Nt
1l
Q 1
»
Il
[

and ¢ preserves identities.

1.15 Corollary: b E (K) —> C (X;Q)

4 : * % L% :
an v HDR(K) > H (K;Q)
are both epimorphisms.

Proof: ¢ o ¢ = id , so Y is epimorphic, and

*

* * * * .
P od =(po¢) =(id) =4id , so V¥ is epimorphic.
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1.16 Proof of de Rham's Theorem:

We must show that wh . H;R(K) —_ H*(K;Q) is a natural
isomorphisﬁ of graded algebras. By Corollary 1.15, w* is an
epimorphism; and naturality follows from Proposition 1.4. We leave
the prdbf that w* is an algebra homomorphism till last, and prove
the isomorphism part by induction on the dimension of the complex K .

~

If K 1is O-dimensional, we have

'

& _ E:’v ~ * . _ % .
H ) = B/ 26 =1 &) ,

and clearly w* is an isomofphism.

’ Suppose inductively that w* is an isomorﬁhism (of graded
vector spéces) for all complexes of dimension less than n , and
suppose K has dimension n . As V¥ 1is an epimorphism, we have

a short exact sequence of cochain complexes

% P %
0 —> Ker(Y)=>L (K) >> C (K;Q) —> 0

This induces a long exact sequence in cohomology

*

. > Hk(Ker Py — HER(K) i__>> Hk(K;Q) — Hk+l(Ker P) —>

P . ¥
So Y is an isomorphism if and only if Hc(Ker ¥) = 0 . The proof

relies on the following:

Lemma: Suppose w € Ek(An) s 1 <k<n, de =0, and ¢Y(w) = 0, and

e Ek—l(aAn) , dn = mIBAn , and Y(n) 0 . Then tﬁere is an

n k“1(An) for which E}aAﬁ =n, dn

net

w , and w(;b =0 .
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k-
Proof: By Lemma 1.9, we can find n' € E l(An) so that
n'[BAn =1n . Then d(w-dn') = 0 , so the Poincaré Lemma gives
b ¢ Ek_l(An) so that d6 = w - dn' . We have

d(g{aAn) = wIBAn - d(n'lBAn) =dn-dn=0.

If k=1, 'S}BAn is a closed O-form, and hence is

o

constant: 6 BAn =c,c€eQ. Set n=1n"+6-ce¢ EO(An) » Then
dn =dn' +d6 = w ,
nfaa = n'los_ + 6las - c=nm'[aa_=n,
and Y(n) = w(ﬁ]aAn) =9(n) =0, as desir;d.
So suppose k > 2 . By the induction hypothesis:

~
%*

k-1
Yoo HDR (aAn)

k=1,
> H (aAnaQ) s

and Hk_l(@An;Q) =0 if k#n. Sodif k#n, 6loa e Ek"l(aAn)
is exact.

If k =n , we have
17 ) 2w ean ;Q) = Hom_(H_ . (34 3;Q), Q)
DR “"'n n’ Q n-1"""n’*"’

by the universal coefficient theorem, and this composite isomorphism

S] 1 : —
takes | |3An] to the homomorphism given by [z] > <(¢(6|8An), z:>
(

for [z] € Hn_l(aAn;Q) . Now Hn_l(aAn;Q) is a 1-dimensional vector

space generated by .[aAn] (here, 9 1is the boundary operator in
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ce(d_s@). Bue {welas ), 3 N = sve), An>

<1p(d6), An>
<w(w), An> - <xp(dn'); An>

1
1
N
<
Py
3
A
Qo
[
~N
]
o

it

as Y(w) =0 and Y(n) =0 . So [GIBAn] maps to the zero

. . _ n-1
homomorphism, and hence [GIBAH] 0 ¢ HDR (BAn)

/

So, for k > 2 , 6|8An is exact, and we have X € Ek_z(aAn)

such that dx = GlaAn . Again by Lemma 1.9, we can find

k-2

A" e E (An) so that A'IBAn = A . Set ﬁ-= n' +6 ~dx'e Ek_l

@)

Then dn = dn' + d6 = w ,

I

njaa_=n'[aA_ +6[3a - d(A'|en )
n - n ' n

n+6[3s -dr=n,
.

and  $(n) = y(n[dA ) = ¥(n) =0 .

This cdmpleteg the proéf of the Lemma.

We now show that H*(Ker(w }.E*(K) —> C*(K;Q))) =0
for K an n-dimensional complex. Suppose w € Ek(K) is such that
de = 0 and Y(w) = 0 . We must find n ¢ Ek—l(K) for which dn = w

and Y(n) =0 .

If k=0, dow = 0 dimplies that w is constant on each path
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component of K ; and yY(w) =0 gives w =0 on K . So

1 (ker v) = 0 .

So suppose k > 1 . Then mIKn_l € Ek(Kn—l) is such that
d(w|Kn-l) = 0 and ¢(9|Kn_l) = 0 , where Kn_l- is the (n—l)—skeletoﬁ

. ' ® -
of K . By the induction hypothesis, V¢ : HDR(Kn l)

* % n-1 % n-1 ,
and hence H (Ker(y : E (K 7) —> C (X ;Q))) = 0 . So there is

an n' € Ek-l(Kn—l) for which

It

X -
e,

Yy(n') =0 and dn' = w Kn“l )

Then, working one n-simplex at a time, the Lemma allows us to extend
n' to n e Ek—l(K) in such a way that ¢(n) =0 and dn = w . Henhce,

H (Ker ¢) = 0 , and

% % - %
Voo Hp (K) = HO(KQ)
for n-~dimensional K . This concludes the inductioﬁ stép, and shows
that w* is an isomorphism of graded vector spaces for all finite
dimensional,complekes. |

If K 1is infinite dimensional, we have a map of inverse

- systems of graded vector spaces:

* 0 * 1 * n
HDR(K) < HDR(K) < ve. < . HDR(K) <

A4

H (K3Q) <— B (K530) <— ... <—H (K%Q) <— ...
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ES

DR(K) . Also

. * ~
By Proposition 1.12, 1lim HDR(Kn) = H

<

BhK;0) = HN(K™;Q) when m>n+1, so limH (K3Q) = H (K:Q) .

<— .
n . . . . . . .
As each K is a finite dimensional complex, the vertical maps in
the diagram are isomorphisms, and hence the induced map on the inverse

’

limits is an isomorphism. So

* *

v LK) 2 (K5Q) .

' % 3 %
Note that this also shows ¢ .: H’(K;Q) —_ HDR(K) is an
. % * -1 ‘ -
isomorphism, and that .¢ .= (y.) .
We conclude the proof of de Rham's theorem by showing that
*

: *
V¥  preserves products. We define a product, A , in C (K;Q) as

%
follows: for Cis Cy € c (X;q) ,

cp A Sy = V(0(e) A 0(cy))

where A on the right is the'pfoduct in E*(K) . This product is
graded and graded—commutative, but is not associative (as ¢ o #.id)
Whitney [14] has shown that‘é'graded product, A , on C*(K;Q) |
induceé the cup product on’ H*(K;Q) provided it satisfies the

following properties:

(i) if ¢ and o are k- and .Q-simplices, resp., considered as
1 2

cochains, and if 1T is a (k+2)-simplex, <ol/\ Ty s T> #0
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implies 9 < T and 02'< T,

(i1) if c, € C°(K;Q)  and c. € C (K:Q) ,

1 2

k
6(cl A c2) = Gcl-A c, + (-1) Cl‘A 6c2

(iii) 1 Ac=c=c Al forall c ¢ Cx(K;Q)

We verify these properties for the product, A , defined

above. Clearly, ¢(o;) A $(0)) =0 on K - (St(0) N 5t(0,))

So if 0 # o, A0, T} = ¢(0 YA ¢(0,) , we must have
. 1 2 T 1 2

<'t> < St(cl)11 St(cz) , and hence 9 < T and 62 < T . This

proves (i). Property (ii) follows immediately from the facts that
*
d 1is a derivation on E‘(K) » and ¥ and ¢ are chain maps.

Property (iii) follows from Proposition 1.14(c):

1A =900 Ad@)) = vdAd()) = ¥(9(c)) = c .

%
So A induces the cup product in H (K;Q) . That is, if

c, and c are cocycles,

2
[ejdviley] = Loy A eyl

x ' ) .
To see that is multiplicative, take any closed forms.

*
wpo, v, € E (K) , and set c; = w(wi) , 1=1, 2 . Then

. ‘
¢ ([Ci]) = [wi] , 1 =1, 2 , and we have

* . * % *
VT A T0yD) = 876 ey D A 07 (Ley 1)
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[

(T8 A Sl

[¢(¢(cl) A ¢(c2))]

= [cl A c2]

[clJV[c?_]

* R
RO PRV PN
This completes the proof of de Rham's Theorem.
TIf L is a éubcomplex of K , then clearly
* *
¥(E (K,L)) = ¢ (K,L;Q) ,
and we have
. * * ~ | :'cH
1.17 Corollary: ¢ : HDR(K,L) = H (K,L;Q) 4is a natural equivalence

of functors from the category of simplicial pairs to the category of

graded algebras.

Proof: WNaturality is clear. We have a map of short exact sequences

% . ES *
0 —> E (K,L) == E (K) —>> € (L)

b

0 —> c*(K,L;Q) > C*(K;Q) —>> C*(L;Q) —> 0

> 0

which induces a map of long exact cohomology sequences
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n+l nt+l
> HDR (X) > HDR (L) >

n n n+l,
> HDR(K) > HDR(L) > HDR (X,L)

Il
112
K3
fi2

C— BN R;Q) — HB(L3Q) — BN, L;0) — BNk — BM R L) —

The result follows by the 5-lemma. Q.E.D.
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Chapter 2 The Minimal Model

In this chapter, we describe an algebraic construction on
simply-connected DGA's which is, in some sense, minimal. This will
be applied in Chapter 3 to the de Rham algebra E*(K) of a simply-
connected éimplicial complex K , and we shall see that the construction
paraliels the Postnikov‘decomposigion of K .

We first need some definitions.

[e o]

2.1 Definition: If A = égo A" is a gréded algebra, set A+ = 5

An

@8‘

1
. . + o+
Define D(A) to be the image of A ® A  under multiplication. D(A)
is clearly an ideal of A , called the ideal of decomposables; it
consists of all sums of non-trivial products in A .
If A 1is a DGA, we say that A has a decomposable
differential if the image of the differential is contained in the

ideal of decomposables; BK(A)CZ D(A) .

2.2 Minimal Algebras: A DGA, M, is called a minimal élgebra if

it satisfies the following four properties:

(i) M 1is free as a graded algebra,
(1i) M has a decomposable differential,
A 0 1

(iii) M =@ , M =0,

(iv) M has cohomology of finite type; i.e., for each n ,

n . e . .
H (M) is a finite dimensional vector space.

Note that properties (ii) - (iv) imply
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(v) for each n , Mp is avfinite dimensional vector space.
Let M denote the full subcategory of DGA consisting of all minimal
algebras and all DGA maps between them. By an abuse of notation, we

write M e M for "M is an object of M ."

Let Mn be the free algebra on the (free) generators of
M "of degree < n ; this is a subalgebra of M (as a graded algebra),
' k _ ok - 1 . L
and Mn.= M for k<n. As M =0 and the differential is

decomposable, we have d(Mn)CZ Mn , so that Mn is a sub-DGA of

M , and Mn e M . Moreover,

d(Mk)C: Mk+l for k <n .
n n-1 -

If £ : M+ N is a map in M , the fact that f 1is an
algebra map gives f(Mn)C: Nn , so that
f = f]M : M —> N
n n n n
is also a map in M .

So, to each M € M there is associated a canonical sequence

of sub-DGA's,

Q=M<M c...cM = . P LJ M =M
2 n n
n
so that Mn e M and has no generators of degree > n . We also have

1

= ' n+
MOEM @./\n(xl""’xk) as a graded algebra, and d(xi) eM -

2.3 Minimal Models: 1In the remainder of this chapter, all DGA's
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considered are assumed to have cohomology of finite type.
Suppose A 1is a simply connected DGA; recall that this
means 'HO(A) = Q and Hl(A) =0. A DGA M = M(A) is called a

minimal model for A if

(i) M e M
(ii) there is a DGAmap p : M —> A .which induces an
. > * * N
isomorphism on cohomology; © : H (M) = H (A) .

Note that many such maps p may exist.

2.4 Examples:

(a) If Me M ; it is its own minimal model,ias the 'identity map
satisfies condition (ii) of the definition.

(b) Suppose A 1is a simply connected DGA and that H*(A) is a free
algebra. Then _H*(A) with zero differential is a minimal model for
A . Clearly the zero differential is decomposaﬁle, f{e) H*(A) e M .

To verify condition (ii), pick cocycles in A in 'such a

Z1s Zgsee-
*
way that [zl] , [z2], ... generate H (A) freely, and define
* *
p: H (A) — A by p([zi]) =z . Then p is a DGA map, and p
*
is the identity on H (A)

The main result of this chapter is:

2.5 Theorem: Every simply connected DGA (with cohomology of finite

type) has a minimal model which is unique up to isomorphism.

Proof (Existence): Let A be a simply connected DGA. We construct

a minimal model M .for A inductively as follows:
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Set ‘Ml=az (i.e., M(1)=Q and Mrl‘=0 for n > 1)

HO(A) = ZO(A)<: A0 , we can define Pyt Ml —> A which maps

: Hn(Ml) — #%A) is an

As Q@

%
Mg identically onto ZO(A) . Then ‘pl

isomorphism for n = 0, 1 and a monomorphism for =n = 2 .

e M and »p + M —
n

Suppose we have constructed Mn_ -1 n-1

1

in such a way that’ Mh-l has no algebra generators of degree > n ,

3 ) :
and that p;_l : Hk(Mn_l) ——>‘Hk(A) is an isomorphism for k <n -1
and a monomorphism for k = n . We have a short exact sequence
*
0 — KRy >l By s orere L) —> 0
n-1 OKeriP -1 ’
n L ,
Choose ZysecesZg E Z (A) so that {E([zi])}i=l forms a basis for
*
Coker(pn_l) We also have an exact sequence
%
. P
* n+l n-1 n+l
0 > Ker(pn—l) > H (Mn—l) > H a)
Choose wW.,3,...,w € Zn+l(M ) so that '{[w ]}m is a-basis for
1’ >“m n-1 i‘ i=1
Ker(p* ) Clearly w, € Mn+l i s decomposable. As
n~-1 i n-1
® _ n+l n+l
pn_l([wi]) =0¢e¢H (A) , we must have pn—l(wi) € BA (A) , and we
5 n _
can choose ViseeesV € A so that d(vi) = pn—l(wi)
Define a DGA, Mn , to be
Mn,= Mn—l 8‘/\n(xl""’xl’ yl,...,ym)
- as a graded algebra, and extend the differential in Mn—l to Mn by
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setting d(l ® xi) =0 and d4(1 ® yi) =W, 8 1 (and requiring d
to be a derivation). The choice of W, shows that Mn e M.

: —_— .
Extend pn—l to pn Mn A by setting

pn(l 8 xi) =z, and Pn(l.a yi) = v, Then

= = = 3 . 1
dpn(l ® yi) d(vi) pn_l(wi) pn(dyi) , SO pn is a map of DGA's.

By the choice of the zi's and wi's s, it is now clear that

*

G Hk(Mn) > Hk(A) is an isomorphism for k < n and a

monomorphism for k =n + 1 . This completes the induction step,

and setting M = lim Mn , P = 1lim pn completes the constructidn. Q.E.D.
—_— s ‘

To prove the uniqueness part of Theorem 2.5, we need some

~

other results about the category M .

.
2.6 Theorem: Suppose f : M> N dis amap in M and f : Hk(M) —> Hk(N)
is an isomorphism for k < m and a monomorphism for k = m + 1 . Then

f +M —> N is an isomorphism.
m m m

Proof: For m =1, the theorem is clear, as Ml = Q = Nl and f(1) =1 .

| Assume inductively thaF fn—l : Mn—l = Nn—l , for some
n <m . It follows that
£ 2™ = )
n-1 ° ( n—l) 2 (Nn—l)
d f B* =
an ' n~-1 . (Mn-l> = B (Nn_l) 4

Moreover, as M € M , we have
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n+l n+1 n+l
= [ el
Z (Mn_l) Z (Mn) Z (M)
n+1 n+1 n+1l
and B (Mn—l) B (Mn) B (M) ,

and the same is true for N .

n+l

We first show that £ : Bn+l(M) = B (N) . The

commutative diagram

B = szi
fl ~ fn-jl
Bn+l(N) —_— Nn;}l )

n+l(

shows that fIB M) is monic. To see that it is also epic, choose

any w € Bn+l(N) . As

n+l _ ntl n+l _ ntl
weB T(N) =B N)= 2z (N) =2 N__)

+
and frl 1 is an isomorphism, we can find (a unique) x ¢ 7" l(Mn l)
_ o _

l(M l)C: Zn+l(M) , SO

; _ ' _ n+
for which f(x) = fn—l(x) f w . Now Z -

1

%
consider [x] € Hn+l(M) ; we have £ ([x]) = [f(x)] = [w] =0 ¢ Hn+ (N)
. * o, . . , . ' n+l
But f is monic in dimension n + 1, so [x] =0, and x € B (M)
n+l

Hence f(B M) = Bn+l(N) , and f : Bn+1(M) = anl(N) , as desired.

[{H]

We now show that f : Zn(M) Zn(N) . From the commutative

square
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n n

B (Mn—l) B (M)
- .n o.n

B (Nn—l) B (N)

we get that £ : Bn(M) = Bn(N) . We have a map of short exact sequences,

0 > B (M) - 7" (M) >> H" (M) > 0
%
{ { s
0 > B (N) >z (W) >> HT(N) —> .0 ,

so the 5-lemma gives the result £ : Zn(M) = Zn(N).

We have another map of short exact sequences

0 SEAT >t —3s B > 0
flé fl ‘ flé
0 >z (W) > N >> Bn+l(N) > 0 ,
. ' n. n
and, again by the 5-lemma, f : M =N
Define an algebra map 'g : Nn —> Mn as follows: select a

set {yi} that generate Nn freely and set g(yi) = f_l(yi) . Then
clearly fn o g 1is the identity on Nn , and fn is an epimorphism.
But Mn and Nn are free algebras with the same number of free

generators of each degree, so that, for all k > 0,
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Hence fn t M =N .. Q.E.D.

' . 3 % "%
2.7 Corollary: If f :M—> N dis amap in M and £ : H (M) — H (N)

is an isomorphism, then f : M —> N is an isomorphism.

Proof: Theorem 2.6 shows that f : M" 2 N© for all m , and hence

f:M=N. ‘ , Q.E.D.
To study the problem of induced maps between minimal models,

we must first develop the notion of homotopy for DGA's

2.8 Definitions: Define I to be the DGA freely generated by t in
degree 0 and dt (the differential of t) in degree 1 . So
IO = Q{t] , all rational coefficient polynomials in ¢t , Il = Qt]

consists of all products p(t)dt , where p(t) ¢ I0 , and " =0

for n > 2 . For p(t) e I0 we have
d(p(t)) = p'(t)dt ,
where p'(t) is the ordinary derivative of p(t) . Note that

. -
I =E (0,1 ,

the de Rham algebra of the unit interval. 1In fact, the role played by
I in DGA homotopies is analogous to that played by [0,1] in topological
homotopies. Note also that, as the indefinite integral of a polynomial

: 3
is again a polynomial, we have Ht(I) =Q .



- 42 -

Let A be a DGA, and consider A ® I to be a DGA as

described in section 0.2. A typical element

x c (A® I)n = (An 3] IO) G)(An_l 8 Il) has the form

k 2
x= ] a 0p(t)+ 1 by 8 q (t)de ,
i=1 j=1
' n Ln=1 0
where a, € A, bj €A and pi(t) , qj(t) e I = Qt] . For

such an element x we have

k k

dG) = I d(ap) @p (t) + -1V ] a 8 pl(t)de
i=1 - i=1 =
L '
+ jzl d(b,) ® g, (t)de .

For each a € QA, define a DGA map e, * A® I —> A by insisting that

( ea(a 8 1) a , for all ae A,

0 € Qc A0

I

ea(l 8 t)

ea(l ® dt) = 0 .

\

So, for the-typical element x above, we have
k
e, (x) = .Z py(@)a, ,
i=1
Clearly e, is a DGA map. We are especially concerned with the cases

o =0 and a = 1.

By the Kunneth formula, we have
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x % * %
H (A8 I) H (A) ® H (I) = H (a)

*
We wish to know that e, is an isomorphism which is independent of

the choice of o .

2.9 Lemma: Every element of Hn(A ® I) has a representation as

[2 ® 1] for a uniqge [a] € Hn(A) .

Proof: We first show that every element x € (A ® I)n can be written
in the form
k

x = Loagen®ram,

where a; € A" , pi(t) e Q[t] , and vy £ (A ® I)n_l . For suppose

x has a term of the form b ® q(t)dt , where b € An_l and

q(t) € Q[t] . Choose an indefinite integral r(t) € Q[t] for the

polynomial q(t) ; so r'(t) = q(t) . Then

db 8 £(t)) = d(b) B r(t) + (-1 b 8 q(t)dt ,
>so that

b ® q(t)dt = (-1 db) 8 r(t) + DT db 8 r(t)) ,

and the result follows.

Now, for [x] € Hn(A 8 I) , we can write

»
1
N ~R

a; ® pi(t) + d(y)

i=1

as above, where
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2
p.(0) = I ¢t eqlt]
m=0
As d(x) = 0 , we have
k ' 0 k
0=dG). = I d(ap) 0p () + (-7 1 a; 8pi(e)de .
i=1 i=1

v

As the first sum is in An+l 4] IO‘ and the second in A" e Il , each

sum is zero, and in particular

k k g 1
— 1 —_
0= .z ay ® pi(t)dt = .Z a; 8 () m Cin t )dt
i=l i=1 =1
2 k -1
= Y m+ () c, -a,) 8¢t -dt
m=1 =1 ™ 1

So, as the powers of t are independent, we must have

z c, *a, =0 for 1 <m< .
. im 1 - =

Hence x

I
it D1
)
@
~~
~1
(9]
ct
g
Nt
+
jal
~~
«
N’

i

(1 c.

‘a.) 8 1+ d(y)
i=1 101

a® 1+ d(y)
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k
where a = 2 c..*a, . Also,

o
it

d(x) = d(a® 1l) =d(a) 8 1,
n
so that a € Z (A) , and

[x] = [a® 1] ¢ (A 8 I) ,

as desired.

To show uniqueness, suppose,
[281] =[b® 1],

so that (a-b) 8 1 ¢ Bn(A ® I) . By the first result of this proof,

we can find a; € An_l and pi(t) € IO (1<i<k) such that

k
d<'2 a, 8 p, ()

(a-b) 8 1 =
i=1
k n-1 k
= 3 d(a,) @ p,(t) + (-1) Y a, ®pl(t)dt .
i=1 | 1
As before we have
k- n 0
(i) (a=b) ® 1= ) d(a,) ®p.(t) e A" ® I
i=1 *t *
k
(ii) 0o = 3 a, ® pi(t)dt e A" 1 g1t
i=1 -
X m
Again writing pi(t) = ) Cin t  for Cim € Q@ , equation (ii)
: m=0

becomes
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k 2 n-1 L k -1
0=1 a 0(} me, £ =] m(] c ra)orc .
i=1 Y omp=1 R T
o |
Hence § c, ra, =0 for 1 <m< & , and (i) becomes
. im i - =
i=1
k L o
(a-b) 81 = ] d(a) 8 (] c _t)
. i im
i=1 m=0
P oact :
= d( c. *a.) 8 t
m=0 i=1 T
k
= d('Z c;pca) 81 .
i=1
n ' n
So a-beB(A), and [a] = [b] € H (&) . Q.E.D.
2.10 Proposition: For all o, B e @,
:'c_:‘: * ’ *
ea—eB.H(A@I) > H (A)
% *
is an isomorphism of graded algebras. In particular, ey = &1 is an
isomorphism,
Proof: This follows easily from Lemma 2.9, as
. .
ea([a ® 1]) = [a] for any o € Q . - Q.E.D.

2.11 DGA Homotopy: Suppose £, g : A—> B are maps in DGA . We

say that f is homotopic to g , written f —~ g , if there is a

DGA-map F : A —> B 8 I such that ey ° F=f and e ° F=g,;
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that is, the following diagram commutes:

B
/E///T Iéo
F
A——— > B8 1

o
=

The question arises whether DGA~homotopy is an equivalence
relation. It is clearly reflexive, as F(a) = f(a) 8 1 defines a
homotopy from £ to itself. For symmetry, define a DGA map

r : B® I —>B®1 by requiring

r(b®1) =b®1 for all b e B,
r(l®t) =18 (1-t) ,
r(l ® dt) = 1 8 (-dt) .
Then eo °or = el ‘and e °r = ey, soif F: A= B® I is a

homotopy from f to g , then roF 1is a homotopy from g to £
I do noﬁ know if the homotopy relation is tramsitive in general, but
Sullivén [1] has shown that it is, when thé domain DGA is in M .
His proof useé our Theorem 2.13, but ﬁe omit the details, as we will
not use the result.

" The justificafion for the name '"homotopy" is that, as in the

. case of topological homotopies, we have:



- 48 -

2.12 Proposition: If f ~g : A —> B are homotopic maps in DGA )

then
% * % %
f =g :H (A — H (B) .

Proof: Suppose F : A—> B ® I is a homotopy from f to g .

‘Passing to cohomology, Proposition 2.10 implies

: %

f* B * % F* % B . % - ) ED
o= (eOOF) =ey ° = e F = (elo ) =g . Q.E. .

The reason we introduce DGA homotopies is to study induced

maps between minimal models. We have the following liféing theorem:

2.13 Theorem: Suppose P : A—> C and f : M — C are maps in
' * %* % —
DGA, M e M, and p : H (A) — H (C) is an isomorphism. Then there

is a DGAmap g : M —> A such that f =~ p-g , so that the diagram

M
4
f
2\
A—>C
o]

commutes up to homotopy. Furthermore, if ¢ is an epimorphism, we can

choose g so that f =p o g .

14

Proof: Assume inductively that we have constructed - 8y_1 ° M —> A

and a homotopy Fn—l : Mn—l —> C 8.1. from fan—l to p We

I
will extend these maps to Mn one free n-dimensional algebra generator

L ‘ ' n
at a time. So assume M_n has only one such generator m e M ,
n

so that Mn =-Mn_l 8 /\n(m) as algebras.
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n+1
As d(m) € Mn—l , we have

eoF_q(dm) = £(dm) = d(s(m)) ¢ B™ ()

% X *
But e, : H’(C ® I) = H (C) is an isomorphism, so

0

1

F_ (dm) € B (C 8 1) . Choose h' e (C 8 I)™ for which

d(h') = Fn—l(dm) , and set ¢ = eé(h') - f(m) ¢ c® . Then

d{(c) = e Fn_l(dm) - f(dm) = 0 as = f|Mn_l , so that

0 eOFn-l

c € Zn(C) . Setting h=h'-c®1l¢e (C® I)n , one verifies that

d(h) = F__ (am) ,

eo(h) = £(m)

0

L. * * % % *
By Proposition 2.12, £ =p o 8,-1" H (Mn—l) — H (C) ,

n+1 *

so ¢ (g, (WD) = £ (ldn]) = [a(E@)] = 0 in E) . 4s o

is an isomorphism, gn_l(dm) £ Bn+l(A) , and we can find a e A" such

that d{(a) = gn_l(dm) . Now

d(p(a)) = p(da) = Dgé_l(dm) =
= ean_l(dm)>= el(dh) =
= dle,(m) ,
so p(a) - el(h) € Zn(C) . As p* is an isomorphism; we can find

b e Zn(A) such that
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P ((b]) = [p(a) - e, (W] € H'(C)

Extend g to g ¢ M —> A Dby setting
n-1 n n

gn(m) =a-b>b;
this is well defined as Mn is free. Now we have

d(g (m)) = d(a) = g _,(dm) = g (dm) ,

so g is a map of DGA's.

Observe that pgn(m) - el(h) € Zn(C) , as
d(eg (m) - e, (h)) = pg _,(dm) - e, (dh) =

= ean_l(dm) - el(Fn—l(dm)) =0 .

But then we have

log (@) - e ()] = [p(a) - p(b) - e ()] =

0 ¢ HY(C)
by the choice of b . Hence, we can find x ¢ Cn_l such that
d(x) = pg_(m) - e (W)
Extend Fn— to F : Mn —> C B® I by setting

1 n

Fn(m) = h + d(x'e t)
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Then d(Fn(m)? d(h) = Fn_l(dm) = Fn(dm) , SO Fn is a DGA map.

Also

gOFn(m) eo(»'h) +dey(x 8 £)) = £(m) ,

1]

elF#(m) el(h) + d(el(x'® t))

el(h) + .d(x)

i

e, (h) + pg (m) - e (h) = pg_(m)

So Fn is the desired homotopy from f|Mn to p e &, and the
induction continues. Note that the only information;ébout m that
we used is that it is a free generator and dm ¢ Mn—l-' So if there

are several n-dimensional generators in Mn » the above construction

can be applied one generator at a time to yield &, and Fn on Mn

with the desired properties. This proves the first part of the theorem.

Now suppose p is an epimorphism, and assume inductively

that we have constructed 8,1 ° Mn—l —> A so that p o 8.1 " f]Mn-l .
As before, assume that m ¢ ME is the only free generator of degree
n . Now, as above, dm € szi and gn_l(dm) € Bn+l(A) .- Choose

a e A" 4such that d(a) = gn_l(dﬁ) . Then
d(p(a)) = pg__;(dm) = £(dm) = d(f(m))., so p(a) - £f(m) e z™(C)

%
As p is an isomorphism, we can find b € Zn(A) such that

* - n
P ([b]) = [p(a) - £(m)] € H (C)
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Hence p(b) - p(a) + £(m) € Bn(C) , and we can find x € Cn—l

such that d(x) = p(b) - p(a) + £(m) . As p 1is an epimorphism, we
n-1

can choose c € A such that p(c) = x .

Now -extend 8,-1 _to N Mn —> A by defining

gn(m) =a->b+ d(c) .

~

Then d(gn(m)) = d(a) = gn_l(dm)»= gn(dm) » SO 8 is a DGA map.

Also,
pg (m) = p(a) = p(b) + dlp(c))
=p(a) - () +d(x) = £(m) ,
and p o g, = f Mn as desired. i Q.E.D.

We are now in a position to prove the uniqueness part of
Theorem 2.5. However, we will prove a slightly stronger result which

- will be needed in Chapter 3.

2.14 Theorem: Suppose f : A —> C is a map of simply connected DGA's
* % x
such that f : H (A) —> H (C) 1is an isomorphism. If M and N

are minimal models for A and C , respectively, then M =N .

Proof: Suppose p : M —> A and A : N —> C induce isomorphisms
on cohomology. Theorem 2.13 gives amap g : M —> N such that the

following diagram commutes up to homotopy:
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M———> A
|
I
I
I

8

N
So f o p =Xvo g, and Proposition 2.12 implies that

* % %* X ~ % . *
£lop = Xoeg :H (M — H(C) .

% * x i .
But £ ,p and A are isomorphisms, so

e ETM 2T .

Now Corollary 2.7 implies that g : M = N . Q.E.D.

2.15 Remarks: Thrqughbut this chapter we have considered only DGA's

with cohomology of finite type. If we drop this requirement, and

condition (iv) in the definition of a_minimal algebra, the results of

this chapter remain valid. We included the finiteness condition to

streamline some of the proofs, and Because one rarely encounters a

DGA (or topological space) whose cohomology doesn't have finite type.
For a generalization of this theory to the non-simply

connected case, see [1].
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Chapter 3 The Minimal Model in Rational Homotopy Theory

In this chapter, we discuss the relationship between the
"algebraic construction of Chapter 2. and the rational homotopy theory

of a topolbgical space.

3.1 Definitions: By a space we mean a topological space, and maps
between spaces are assumedbto4b§ Eontinuous; For a séace X, we‘let
.H*(X;G) denote thé singular cohomology algebra of X with coefficients
in the abelian group G . If X is a simplicial coﬁplex, we make
free use of.the natural isomorphism betﬁeen singular and simplicial
cohomology, denoting both by H*(X;G) 5 it will be clear from context
which theory we are using;

Let £ : X+ Y be a map of simply connected spaces. We say
that f is a rational homotopy equivalence if one (and hence all)

of the following conditions hold:

(i) £, : H*(X;Q) > H*(Y;Q) is an isomorphism;

(ii) f* : H*(Y;Q) —;—9 H*(X;Q) is an isomorphism;
(iii) (f#®l) 21 (X) ® @ —> 7, (Y) 8 @ is an isomorphism. The
equivalence of these conditions follows from the mod-C Whitehead
theorem [11; Theorem 9.6.22]. Note that if f is a rational homotopy
equivalence, we are not guaranteed the existence of.a.map g: Y >X
for which g>'c = tf*)—l-.

Two simply connected sbaces, X and Y , are said to have
the same rational homotopy type if there is a third simply connected

space, Z , and rational homotopy equivalences f : Z —> X and
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g ¢ Z—>Y . Rational homotopy type induces an equivalence relation
on simply connected spaces; reflexivity and symmetry are clear, and
transitivity is a pullback argument. Spaces of the same (weak)

" homotopy type clearly have the same rational homotopy type.

3.2 Geometric Realization: We now outline a procedure, due to Milnor,

which.allows us to replace a space with a simplicial complex that
contains the samé homotopy-theotretic information. The details can be
_found in {31, [5]1, [6], and [7].

If X is a topological space, let S(X) be the graded set
of all singular simplices in X ; that is, Sn(X) c?nsists of all
continuous maps 0o : An + X . S(X) becomes a semi—simplicial éomplex
of definihg the face and degeneracy operators in the obvious way
(see {6]).

From S(X) we can build a topological space IS(X)| , called
ﬁhe geometric realization of S(X) , as follows: to each 0 e S(X) we

associate an njcell
lo] = {0} x &,
n

where  {0} is the set with one element. Then .|S(X)| is obtained
from the,disjoint union of all such cells by identifying {6|FiAn} X An—l
with {o} x F,A , 0<i<n. We givve |S(X)| the identification
topology: a subset W C:IS(X)| is open iff ‘W N |O‘ is open in ‘lc|

for every o & S(X) . One verifies that |S(X)| is a CW-complex

with one open n-cell
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<o> = {0} x int(An)
for each non-degenerate' simplex o ¢ Sn(X) . Also, for n > 2 , the
nth barycentric subdivision of .IS(X)l , defined in the obvious way,

is a simplicial complex.

' We now define the natural projection

~

Wy S| — x .

If y ¢ IS(X)] , we have y e <o> = {0} x int(An) for some unique

c An +~ X, v = (o,t) for some ¢t € int(An) . Define

0 () = o(o) .

It is clear that Wy is a continuous surjection. Also, if A< X 1is

a subspace, iS(A)[ < IS(X)I as a subcomplex, and ‘wX(IS(A)l) = A .

The most important fact about w 1is that
W)y 7 (IS — 7 (X

~ .

is an isomorphism for all n , so that w, is a weak homotopy

X
equivalence. Hence, if X has the homotopy type of a CW-complex the
Whitehead theorem implies that Wy is a homotopy equivalence.

The above construction can be made functorial.” If f : X —> Y

is a map, we define a map

[S(E)Y] : [Sx)| — S|

as follows: for an arbitrary point (o,t) ¢ |S(X)| , where ¢ : An +~ X
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and t € int(An) , we set

|S(£)| (o,t) = (fou, t)

One verifies that IS(—)I is a functor from the category of topological
spaces to itself, and that w is a natural transformation from
|S(-)] to the identity functor.

~

3.3 The Minimal Model: Let K be a simply connected simplicial

. ! "‘ .
complex with rational cohomology of finite type. Then E (K) , the
de Rham algebra of K , is a simply connected DGA, and by Theorem 2.5

-we can build its minimal model

M(K) = M(E (K)) .

M(K) will be called the minimal model of X .

If X 1is a simply connected épace (with rational qohomdlogy
of fiﬁite type), we may triangulate the geomefric realization |S(X)|
of .8(X) to obtain a siﬁplicial complex'IS(X)I' . We define the

minimal model, M(X), of X to be the minimal model of |S(X)|' :

M) = ME ([S@|' ..

ﬁote that if K 1is a simplicial complex, we have two
definitionslof its minimalvmodel, namely M(E*(K)) and M(E*(|S(K)|'))
The fact that these DGA's are isomorphic follows from the proof of the
next theorem. The proof will alsé show that M(X) doesn't depend on

the way we triangulate |S(X)]| .
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3.4 Theorem: Simply connected spaces of the same rational homotopy

type have isomorphic minimal models.

Proof: Suppose X and Y have the same rational homotopy type. Then
there is a space Z and rational homotopy equiﬁalences f:Z2—X
-and g : Z —> Y . Triangulate the geometric realizations of these

spaces to get a commutative diagram:

CIs®] s L |
1S <— 8@ | ———— [S(V)] -
wX wz l'wY
£ g )
X < Z > Y .

As the vertical maps are weak homotopy equivalences, we have that
[S(f)l and 1S(g)| are rational homotopy equivalences.

By the simplicial approximation theorem (subdividiﬁg _
IS(Z)I' if necessary) we can find simplicial maps ¢ : |S(Z)|' ——>'|S(X)|'
and Y : IS(Z)I' — |S(Y)]' which-are also rational hoﬁotopy

' %
equivalences. Now applying the de Rham functor E , we obtain

DGA-maps
' * * 1 * ]
¢ E (S| ) — E(S@|)
% * 1 * ' t
and o E(SM ) — E(S@) )

which induce isomorphisms on cohomology. Hence, by Theorem 2.14 we

have

M(X) = M(Z) = M(Y) . o Q.E.D.
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3.5 Examgles:

(a) Let s " denote the n-sphere. If n is odd, n > 3, the
rational cohomology of s is free, so by Example 2.4(b) the minimal

model is

M(Sn) Aﬁ(x)', n odd
with zero differential. If n 1is even, we must kill the cocycle x2

in degree 2n , so Co

n
A 2n-1

A@)8h, (y) , n even

with the differential given by d(x81) = 0 , d(18y) = x° ® 1 .
(b) Let cp™ denote complex projective n-space. The rational
cohomology of cP™ is a truncated polynomial algebra on a single
generatbr of-degree 2 , truncated a height n+ 1 . The minimal model
is |
M(CP™) = A (x) 8 A, .. (¥) ,
RS 20 2n+l

with differential d(x®1) =0 , d(18y) = xn+1 & 1 . In both of these

examples it can be shown directly that the given model is the only
minimal algebra witﬁ the correct cohomology algebra.

(c) Let 'm Ee a finitely generated abelian group, and n > 2 an
integer. An Eilenberg-MacLane space of type (m,n) is a space

K(m,n) for which

™ (K(m,m)), =
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Any two Eilenberg-MacLane spaces of type (ﬂ,n) have the same weak
homotopy type; furthermore we may choose K(m,n) to be a simplicial
complex. The rational cohomology of K(w,n) is the free algebra on

% generators of degree n , where 2 is the rank of = . Hence

.
H (K(m,n);Q)

]

M(K(m,n))

An(xl""“’xz) » & = rank(m) ,
with zero differential.

Notice that, in all these examples, the number of free
generators of degree n in M(X) is exactly the rank of wn(x)
The proof of this result in the general case occupies the remainder of

the thesis. We first discuss the two main tools to be used: spectral

sequences and the Postnikov decomposition.

3.6 Spectral Sequences: In this section we describe the two spectral

sequences used in this chapter. The first is the Serre spectral sequence
of a fibration, and the second is a special case of the spectral sequence
of a filtered DGA. Details can be found in [11l; Chapter 9].

All fibrations considered are orientable (see [11; Section 9.2]).

i

Let F > E > B be an orientable fibration over a connected

CW-complex B, A< B a subcomplex,.and G an abelian group. The

Serre spectral sequence of this fibration is giVen by

Eg’q = 1P (8,4;8%(F;0))
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ok

oo

and the differential on the Er—level has bidegree (r,l-r) . E

is the bigraded module associated with a decreasing filtration of

G) , where E = p_l(A) . Letting 8" denote the n-skeleton

*
H (E,E A

A’

[}

of B and setting En pfl(AJJBn) , the filtration is given by:

n n n
PH (E,E,36) = Ker{H' (E,E,;G) —> H (EP_I,EA;G)} .

. .
We have : Yo lHn(E,EA;G) =0,

0. n o.on
FH (E,EA;G) = H (E,EA;G)

+
and 229 = PP (e B ;0) /P TP TUE, B, 50)

* ;
The map p : Hn(B,A;G) — Hn(E,EA;G) can be factored as
n, Q0 0

E
2

HES

H™(B,A;G) —>> E0° F F“H“(E,EA;G)¢=—» Hn(E,EA;G) . Also,

if A=9¢ , it Hn(E;G) —> Hn(F;G) can be factored as

>> Eg’n >—> Eg’n = 1 (F;6)

B (E;G) = FOH™(E;6)

These factorizations can be used to derive the Serre exact sequence:
if B is n-connected and F is m-connected, there is an exact

sequence

% %
. — 1i@;6) = utE;0) =

+ -
> 130 < 10 —>. .. —u"™ (0

where T 1is the transgression.
Now let A be a DGA, and set A =AM (x ,...,x ) , n> 2.
n n 1 L -
Suppose that the graded algebra C = A ® An is equipped with a

differential in such a way that d(a®l) = d(a) 8 1 for a e A and
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a(ex) e A" g 1 . We define a decreasing filtration on C by

Pk - o ale Ai'q :
qzp
We have
0 = Fk“LlckC chkc .= FOCk = ck .

Also, this filtration is preserved by the multiplication and differential

in C :

P

+
e - Flc « PP

! -+
aFPc) = rPlc = FP¢

Hence there is a convergent E_ -spectral sequence given by

1

+ +
Ei,q = 5P q(FpC/Fp 1c)

b

which converges to some filtration of H (C) . As d(FpC)CZ FP lC , wWe

have

+ ~
Eli,q = pPPTa/pPTI P 2 4P g Ag .

2

, ) N
In the general case, the elements of Ei’q = uP q(FPC/FP+1C) have the

form f{c + FP lC] where c € FPC and dc ¢ Fp+lC. The differential

We wish to compute the E.—-level of this spectral sequence.

4« g9 — gPtha

1 ¢ By 1 is then given by

dl([c + Fp+lC]) = [de + Fp+2C]
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Hence, for a ®8 b ¢ AP @ g = Ei’q , dl(a8b) is just the sum of terms

~of d(a®b) that are in Ap+l 8 Ag ; that is
dl(a@b) = d(a) 8 b .
Therefore, P2 q = Hp(A) 9 Ag .

2

3.7 The Postnikov Decomposition:‘ If X is any-pointed space, we

denote the space of paths to the base . point by PX , and the space of

looﬁs at the base point by QX . “Recall that PX is contractable, and

that there is the standard path fibration PX—> X with fibre OX .
Let X be a simply’éonnected space. The Postnikov

decomposition of X is a tower of spaces and maps:

with the following properties:

(1) pof = fn—l ;
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(idi) “k(xﬂ) =0 for k>n ;
(;11) (fn)# : ﬂk(X) —> ﬂk(Xn) is an isomorphism for k < n ;
(iv) P is a principal fibration with fibre K(ﬂn(X),n)

In fact, there is a pullback diagram:

K(m_(X),n) ——— QK(ﬂn(X),nﬂ)

n
X ————> PR(n_(X),n+l)
n . . n
l Pullback
P
X
n

k .
I > K(ﬂn(X),n+l)

where the right column is the path fibration. The above properties

determine the spaces Xn up to weak homotopy type. As X2 is a

K(WZ(X),Z) , We may assume that 'Xn has the homotopy type of a

Cl-c — . The :
complex (see [8]) The map _kn _ Xn—l
th

the n = k-invariant of X and is determined up to hombtopy.

— K(ﬂn(X),n+1) is called

Details of the construction of the Postnikov decomposition
can be found in [9; Chapter 13].
| Thé Postnikov decomposition of X allows us to focus
‘attention on one homotopy group at a fime. We now study the principal
fibrations P, in the decomposition and show that the minimal model
of the total.space Xn is just the tensor product of the minimal
models of the base Xn—l .and the fibre K(ﬂn(X),n) with a suitable

differential.
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3.8 The Main Construction: Let p : E—> Y be a fibration with
fibre XK(m,n) , where Y 1is a simply connected simplicial complex,

E has the homotopy type of a simply connected CW-complex, = is a

finitely generated abelian group, and n > 2 . For each subcomplex
B<Y , let EB = p—l(B) . 'Then the map p|EB‘: EB —> B is also
an orientable fibration with fibre K(w,n) . We denote the m-skeleton

of Y by e , and set Em =.p_lKYm) =E _ - Note that, for each
L Y

vertex y e Y , Ey is an Eilenberg-Maclane space of type (m,n)

As in 3.2, let |S(E)l be the geometric realization of
S(E) ; this is a Cw—;omplex which is trianguléble, and éhe evaluation
map w @ ]S(E) —>> E 1is a homotopy equivalence. For any.subcomplex
B<Y we have EB<: E , and hence IS(EB)| is'a subcomplex of

|S(E) | . Now barycentrically subdivide |S(E)| twice to get a

simplicial complex. Let £ : K > Y be a simplicial approximation

to the composite

w P
> Y ,

Neay

>> E

i

where K 1is a further subdivision of |S(E)| . For a subcomplex

- B<Y , let KB denote |S(Eﬁ)| with this subdivision; clearly KB

is a simplicial subcomplex of X , and f[KB is a simplicial
approximation to the composite
w P

|S(Ep) | >> g > B .

Also, if B = Ve , we let Km = KB . So, for each subcomplex B < Y

and vertex y e€.B ,.we have a diagram



EL‘>E
0 P lu

KC—&KBf > B

> B

)

where the maps in the bottom row are simplicial, and the vertical maps
are homotopy equivalences. -

Choose a minimal model M(Y) for Y and a DGA map

’

o+ M(Y) —> E (Y)

which induces an isomorphism on cohomology. Notice that, as Ky is

a K(m,n) for any vertex y e Y , we have

x - % ~
HDR(Ky) = H (Kys‘Q) = An(xl’ see ’XQ,) ’
the free algebra on generators Xis oo Xy in degree n , where & is
the rank of 7« . Hence An(xl,...,xg) is the minimal model of K
*
i A A .o . im i i
We write n for n(xl, ’XR) Our aim is to equip £ (Y) ® An

with a differential in such a way that its minimal model is M(Y) 8 An

with a suitable differential, and so that there is a DGA map
* . * -
A E(Y) e An —> E (K)

inducing an isomorphism on cohomology. It will follow that

M(K) = M(Y) ® Arl .
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Lemma: For any vertex y € Y , the inclusion i : Ky —_— Kl induces

* -
an isomorphism i H;R(Kl) = H;R(Ky)

Proof: Consider the Serre spectral sequence with rational coefficients

for the fibration Ey = El .pr> Yl . This is given by

09 = (vt s0)

4 .
and converges to Hc(El;Q) . As Hp(Yl) =0 for p >2 and

* . _
H (Ey;Q) = An , we have that

Eg’q =0 for p>2 or ¢ £ 0 (modn) .

Hence all the differentials in the spectral sequence, are zero, and

EZ’q 2 Eg’q Also, on the p + q = n diagonal, the only non-zero

e

enﬁry is Eg’n . So the edge homomorphism i o Hn(El;Q) > Hn(Ey;Q)
can be factored as
n 0. n ~ 0,n . O,n . .n
H(E;3@Q = FH(E;3Q) = ES 2E° *H (Ey;Q) ,
, . _
and hence i is an isomorphism in dimension n . The result follows

from the natural equivalence of simplicial and de Rham cohomology,

and the commutative diagram

K <<—— K

where ww -is a homotopy equivalence. Q.E.D.
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It follows from this ﬁemma that HBR(Kl) is an f-dimensional

vector space. For 1. <1 <& , choose closed forms o, ¢ En(Kl)

whose cohomology classes form a basis for B (K

DR ) Then{ for any

1

vertex y ¢ Y , the collection {[wi|Ky]}i 1 is a free set of

generators for the algebra H* (K ) = An . By Proposition 1.10, we
can extend W, to a form w e EV (K) . Then dgi is a closed form
on K which is zero on Kl . We consider dB; as an element of
nl—l(K K ) '

'ng@é: [d5£]>e Im{f" : (Y ¥y — H L,k 0}

Proof: Consider the Serre spectral sequence for the fibration
D . 0 o
E > E > Y relative to Y . It is given by

’

R R e SCILIDE

and converges to H"(E,EO,Q) . As Eg’q =0 for p=0 or q# 0
(mod n) , we see that all the differentials terminating at the (n+1,0)

n+l,0 ~ _n+l1,0

position are zero, and hence E2 = Eoo . Now the edge

* + )
homomorphism p : Hn+l(Y,Y0;Q) —— ®" l(E,E ,Q) factors as

+ + +

T 2 0 s g0 L T e g g S w e p )

* + +
and hence Im(pc) = Fn 1 n l(E EO,Q) . But on the p+q=n+1
diagonal, the only non-zero entries are E:+l’0 nd En 1 . Hence

* n+1l n+l
Im(p ) = F (E, EO’Q)
2 n+l
= (EQEoiQ)

Ker{H (E,EO;Q) —> Hn+l(E1,EO;Q)}
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Passing to the homotopy equivalent maps I(.y —> K £—> Y, we

have

C % n+1 0 n+l o pntl . ntl
Im{f : Ho» (Y,Y.) > Hpp (K,KO)} = Ker{HDR (K,KO) > Hpo (Kl,KO)} .

Now the map on the right is induced by the restriction to Kl of the

- ' ‘ - % '
forms on K, and as dmiIKl = 0, we have [dwi] e Im(f ) . Q.E.D.
' + nt
- Hence we can find cohomology classes c; € HgRl(Y,YO) = HBRl(Y)
such that f*(c ) = [d; ] din Hn;l(K K.) Note that c¢. is the |
i i DR VM i :
transgression of [wile] in the Serre spectral sequence for

f
Ky —> K —> Y, and this is the case for any vertex y e Y .

x % %
As p : H (MY)) — HDR(Y) is an isomorphism, we can find

i

%
m, € Zn+l(M(Y)) such that p ([mi])
n+1

c., 1l<i< g ., Set
i A

wi = p(mi) e E (Y), so that [wi] c; Considering wi as an
# - +

element of En+l(Y,Y0), we have that [fc(wi)] = [dwi] in H" l(K,KO) .
Hence there are forms n; € En(K,KO), 1 <i1i< 2, such that

* -

£ = + ) {

‘ (wi) dwi dni Also, as n; 1s zero on KO we have that
(wy + ni)lKo = wiIKO .
Now define a differential in the algebra Eh(Y) 2] An by setting

d(g ® 1) =d() 8 1 for £ ¢ E*(Y) ,
d(l @ x;) =y, o1 1<ic<a,

% g .
and extending to all of EQ(Y) 8 An by requiring that d be a linear

derivation. Similarly, define a differential in M(Y) © An by setting
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d(a ® 1) =d@a) 81 for a e M(Y) ,
d(18x.,) =m 81 |, 1<1i<4g.
i i - =
As p(mi) = wi’ the algebra map
%*
p 81 : M(Y) ® An —> E (Y) ® An

is a map of DGA's . We'will_later show that p 8 1 induces an isomorphism
on cohomology.

Define a map
% %* .
A E(@) e An —> E (K)
by setting
* *
AME 1) = £ (&) for £ e E (Y)
A(l@xi)=wi+n. » l<ic<,

1

and extending so as to be an algebra map. We have

* *
da(g 8 1) = df (8) = £ (dg) = A(dE © 1) = Ad(£ ® 1) ,
- % '
and dr(l Xi) = dwi + dni = f (wi) = A(wi ® 1) = xd(1 @ xi) ,
so A 1is a map of DGA's . TFor each subcomplex B< Y, the map X

restricts to a DGA map

: £ — B
Ag (B) ® An > (KB)

by setting d(1 @ Xi) = (wi|B) ® 1 in E%(B) ® An’ and
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= o -+ . Poeet -
ABﬂl ® Xi) (wi ni)IKB Then, for subcomplexes ? C< Y, there

is a commutative diagram of DGA maps

* AC‘ %

E (C) ® An > E (KC)
-* -*
e 9 iy

% : N *

E’ (B) §9 Aﬁ | }\B > E (KB)

induced by

The main technical result of the chapter is:

3.9 Theorem: The induced map
A* * E* A *
: H (E (V) 8. L) T Hpp (K)
is an isomorphism.

Proof: We show thatAAB is an isomorphism for every finite dimensional
-subcomplex B < Y ; this we do by induction on the dimension of B .

If yeY is a vertex, we have
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1
=

% ,
E (y) © An =Q 8 An 0

. . .
with zero differential, and ~Ay is just the map An —> E (Ky) that
, ' - : L
+ = ; i
takes X, to (wi ni)le wile‘ But {[wilK ]}._ is a system gf
* : * '
free generators for HDR(Ky) = An, and hence A is an 1somorphlsm.‘
If B is ény o-dimensional subcomplex, then K kj K » and
' yeB
Ky N Kz = (¢ for distinct vertices y and z of B . Hence there is

a direct product decomposition

e

*
E(xy)

TTE(K) :

yeB

We also have
%
Emoen = (J] £ en = Il(E(y)@A),
: yeB . ) yeB
and AB is just the direct product of the maps Ay « As cohomology

% . * .
commutes with direct products and Each_ky is an isomorphism, A is an

B
iSomorphism.
- ”c . .
Now assume that AB is an isomorphism for all subcomplexes
B<Y with dim(B) <m - 1, for some m >1 . Let B be any m~dimensional

subcomplex of Y, and let C denote the collection of subcomplexes C

- %
such that B" 1«C1C < B and AC is an isomorphism. By the induction

hypothesis, Bm-l e C, so C is non-empty. We show that Zorn's Lemma
applies. |

Suppose ‘{C :a e J} is a chain in C with Cacz CB * when
o 5_8 in " J ; L/ C ; then KC = {Jlﬂ: .’:For each a < B,

we have a commutatlve dlagram



*
E (Ca) 8 An

where the vertical maps are ihduced by inclusion. So the collection

’{AC :a e J} is a map between inverse systems of DGA's . By
o )

Proposition 1.12 we have isomorphisms

13

% * *
Lin (£(c) @ A) Lim E(C)| 6 A = E(C) 8 A,
a o

: * * .

and “lim E (K, ) = E (K) ;
C C
< o
and the induced map on:the limits corresponds under these isoﬁorphisms
to -AC : £ (c) 8 An —> L (KC) - Again by 1.12, cohomology commutes with
. * ‘ e

inverse limits, and as each AC- is an isomorphism, AC is also an
isomorphism. Hence C ¢ C .

- We have shown that every chain in C has an upper bound and

hence, by Zorn's Lemma, there is a maximal element C e C . If C = B,
this completes the induction step.  So suppose C # B . Then there is an
m-simplex o < B such that Cng = 60,. Let D =Cvo ; we show that

D e C, contradicting. the maximality of C .
. . ) ‘
The differential in E=(D) 3] An restricts to a differential

%* C
in & (D,C) ® An, and ‘we define a map of DGA's
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*x *
A' : E (D,C) ® An —> E (KD,KC)

by requiring that the following diagram be commutative (with exact rows);

E3 * %
0 > £ (D,C) ® An —> E (D) ® An —>> E (C) ® An > 0
1
A AD AC 1)
E* ) . E* E* 0
—_— ———— >d
0 > E (KK, > E () >> (K,
This diagram induces a map of long exact cohomology sequences, and AC is
*
an isomorphism as C ¢ C . So, by the 5-lemma, to show that A is an

D.

%
isomorphism it suffices to show that (A') is an isomorphism.
Similarly for the paif (0,30), there is a DGA-map A" in the

following commutative diagram (with exact rows);

* * *
0 > E (0,00) @ A —> E (0) 8 A —>> E (30) © A > 0
‘ n n ) n
1] ’
A XO ABO (2)
E*(K_,K. ) £ — EY k. 0
0 > (Kc’ 3G > (Ko) : >> (Kao) > .

Also, the inclusions hl : (¢9,%6) — (D,C) and hz : (KG, KBO) —> (KD,KC)

induce maps on the relative de Rham algebras, and we have the following

commutative square:
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*

E'(D,C) & A ol E (0,9 A
>
(D, N (0,30) & A
>\| . )\H
h*‘
* 2 %
E (KD’KC) > (Ko’ Kao)
* % * * .
Clearly hl : £ (0,0) — € (0,30) 1is an isomorphism, and hence hl 81

is also an isomorphism., By [11l; Lemma 9.2.2], the inclusion (EG,E —

80)

% *’
induces an isomorphism H (ED,EC) =z H (EG’EBG) on integral cohomology,

and hence h; in diagram (3) induces an isomorphism on de Rham cohomology.

% . .
So to prove that (A'") is an isomorphism, it suffices to show that
" * . .
(" is an isomorphism.

Diagram (2) induces a map of long exact cohomology sequences and,
%

%
again by the 5-lemma, (A") is an isomorphism if both Ao and Aao

are

isomorphisms. As :30 is an (m - 1)-dimensional subcom.plex,v_k80 is an

isomorphism by the. induction hypothesis. So we need only show that A:
is an isomorphism. Let vy be a vertex of 0, and denote the inclusions
Ey jl P y—™go¢ énd j2 : Ky B KO .‘ Then there is a commutative
diagram:

K
£* j,el %
() ® A . > E(y) 8 A

* *
E (Ko) —> [ (Ky)

As ¢ 1is contractible, j2 is a homotopy equivalence, and is an

"k
I

(3

(E,E()

(4)
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) ' *
isomorphism on cohomology. Also Ay is an isomorphism by the induction
*
hypothesis. So to show that -Ac is an isomorphism, it suffices to show
%
that jl 8 1 induces an isomorphism on cohomology.

’ Tk
As in section 3.6, there are filtrations on the DGA's E (o) .8 An

and Ex(y) 8 An and the associated spectral sequences are given by

P,q = P q
E, HDR(O) oA,
oPsq = P q
E2 HDR(y)’G An

) X % * *
These spectral sequences converge to H (E (o) 8 An) and H (E (y) @ An) ,
oo % * *
respectively. Now jl 81 :E (o) 8 An —> E (y) 6 An preserves
filtrations, and hence induces a morphism of spectral sequences E —> E .

On the Ez—level, this morphism is just

* .
: . P A9 s 4P q
i 81 : Hp(o) 8 A, Ho(v) 8 A,

which is clearly an isomorphism as ¢ is contractible. So, by the

comparison spectral sequence theorem,'
* * . % % * %
(jl 8 1) : H (E (¢) 8 An)'__>.H (E (y) 6 An)

is an isomorphism, as desired.
3 ) * 3
Retracing our steps, we have shown that 'AD is an isomorphism
and hence D e C, contradicting the maximality of Ce C . Hence

%
C=3B, and A

B is an isomorphism, as desired. This concludes the

induction .step, and gives the result for all finite dimensional subcomplexes
of Y. As Y = l~} Y, the same inverse limit argument -as in the
m>0
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*

DR(K) is an

X % %
induction step shows that A : H (E (Y) © An) —> H

isomorphism. : . : : Q.E.D.
3.10° Proposition: The induced map .
* x S * %
(p ®1) : H M) © An) —> H (E (Y) © An)

is an isomorphism.

Proof. Again using the results of 3.6, there are filtrations on the DGA's
*

M(Y) ® An and E (Y) ® An » - and the associated spectral sequences are

given by:

]

BT = w ) e ad

Psd _ P (uy q
E Hp () @ A% .

A T KK
These spectral sequences converge to H (M(Y) © An) and H (E (Y).® An),
" respectively. As p 8 1 preserves filtrations, it induces a morphism

of spectral sequences E - F..WhiCh’ on the E2—level,<is given by

. :
. gP q9_, 4P q
P81l H(M(Y) B A —> H(Y) 8 A} .

% %
As o is an isomorphism, so is p ® 1 . Hence, by the comparison

. . % .
spectral sequence theorem, (p ® 1) is an isomorphism. ) Q.E.D.

Still in the notation of 3.8, we have:

3.11 Corollary: Suppose M(Y) has no algebra generators of degree h + 1

Then M(Y) ® An with the above diffe:ential is the minimal model of E .
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. : :
Proof: By definition, M(E) = M(E (K)) . Now the differential in

M(Y) ® An is decomposable because

0

N n+l
d(l e Xi) = m, 8 1eM (Y) ® An

b

N .
and the elements of Mn l(Y)_ are decomposable by hypothesis. Hence

M(Y) ® An is a minimal algebra. By Theorem 3.9 and Proposition 3.10,

the composite
%
Ao (p ®&1) : M(Y) ® An —> E (K)

is a DGA map whiéh induces an iéomorphism on cohomolbgy{ and the result

follows. ; Q.E.D.
We now ébme to the main theorem of the thesis. The notation

for the Postnikov decomposition is described in section 3.7 .

3.12 Theorem: Let X be a simply connected space and Xn the nth

space in its Postnikov decomposition. Then
Mn(X) ='M(Xn)_= M(Xn_l) 2] An(xl, ceey xz)

with a éuitably defined differential, where & = rank (ﬂn(X)) . Hence the
number 9f free generators of_deg;ee n in M(X) is the rank of nn(X)

Proof: First,‘becauselthe map fn X > Xn induces an isomorphism on

homotopy groups thfough degree n and an epimor;hism'in degree n + 1,

the same is true on homology by the Whitehead Theoreﬁ (see [11; Theorem 7.5.9.])

Hence, by the universal coefficient theorem, fn induces an isomorphism on

rational cohomology through degree n and a monomorphism in degree n + 1 .
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Now we geometrically realize X and Xn and simplicially approximate
fn’ obtaining a homotopy equivalent simplicial map, which we also denote
% ' %
: —_> . : — LI —
fn X Xn Let p : M®X) E(X) and »p M(Xn) > E (Xn) be.
minimal models for X' and Xn . By Theorem 2.13, there is a DGA map,

g : M(Xn) —> M(X). such that the following diagram commutes up to

DGA-homotopy:

P’ *
M(Xn) > E (Xn)
s =) f,

o) - X
M(X) —_ £ X

X * £ X k .
As p and (p") are isomorphisms, g : H (M(Xn))_--—-> H (M(X)) is an

isomorphism for k < n and a monomorphism for k =n + 1
~

Theorem 2.6, M (X) =M (X ) .
n n n

. Hence by

We now prove the theorem by inducation on n . For n = 2,

X2 = K(WZ(X),Z), and by Example 3.5(c) we have

M(Xz) AZ(xl’ Py x2) . "% = rank (nz(X))

Hgnce MZ(X) 2 MZ(XZ) ='M(X2) as desired.

Assume inductively that Mn—l(x) =) M(Xn_l) for some n > 3 .

Let Y denote a triangulation of the geometric realization of Xn—l .

Pull back the fibration P ¢ Xn —_—> Xn-l over the evaluation map

w: Y —_>>'Xn—l to get a fibration p : E—> Y with fibre K(ﬂn(X),n) .

As w 1is a homotopy equivalence, E has the same homotopy type as Xn



- 80 -

and p is equivalent to P, in the homotopy category. We can now apply

the construction in section 3.8 . As

MD B ) EM 0,

there are no generators of degree n + 1 in M(Y), so Corollary 3.11 yields

M(Xn) 2 M(E)
S UY) B8 A (x5 -nns x,)
= M(Xﬁ—l) @IAn(xl, cens xQ) s
where & = rank(ﬂn(X)) . This also shows that M(Xn) has no generators

above degree n, so
M@ =M (X)) = MX)

This proves the theorem. Q.E.D.
We prove one last result about the minimal model. Recall that
the Hurewicz homomorphism is a natural transformation from homotopy to

.homology:
hn : ﬂn(X) —_> Hn(X)

If X is (n - 1)-connected, n > 2, then hk is an isomorphism for
k <n and an epimorphism for k=n + 1 .
As the minimal model contains information about both homotopy

and (co)-homology, it is reasonable to expect information about the rational

Hurewicz homomorphism

Ve
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hn 8 1 : wn(x) 8 Q — Hn(x‘) 8 Q= Hn(X;Q)

Roughly speaking, the rank of hn 8 1 is the number of d-closed algebra
generdtors of degree n in M(X) . As there are many ways to choose a

system of generators, the precise statement is:

3.13 Tﬁeoreﬁ: Let X be a simply connected space with cohomolog& of
finite type, and n > 2 an infegér. Then the‘rank of hn 8 1 is the
vector space dimension of Zn(Mn(X))/Zn(Mn_l(X))

Proof: Consider the Postnikov decomposition of X as described in
section 3.7 . Let g : F —> X be the homotopy—theorefic fibre.of
fn~l : X — Xn—

have that F is (n - l)-connected and 8y ° ﬂn(F)'*—> nn(X) is an

1 From the associated exact sequence in homotopy we
isomorphism. Therefore the Hurewicz homomorphism h : wn(F) — Hn(F)
is an isomorphism. By the naturality of the Hurewicz homomorphism, we

have a commutative diagram

where the bottom row-is a portion of the Serre exact sequence for the

homotopy fibration F — X — Xn—l . Hence we have

#m(hn) = Im(g,) = Ker(fn_l)*
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As tensoring with @ is exact,

R

Im(hn ® 1) Im(hn) Q= Ker(fnil)* 9 Q

{1

Rer{(f ), : H (@ —> H (X 5@} .

So rank(hﬁQ 1)

dimQHn(X;Q) - dimQHn(Xn_l;Q)

B T RS . D,
dlmQH (X;9Q) d%mQH X _139

as rational homology and cohomology have the same (finite) dimension.

Now Hn(X;Q) = Hn(M(X)), and by Theorem 3.12,

n . ~ o1 ~ D
HU(X 5@ = H QX ) =H (M (X)) .

}

As the differential in M(X) is decomposable, we have

n n
BRQN0) = BT(L (D)

Z" (M(X))

n
2" (u_ (%)

: ' . n | ... .on
Hence rank(hn Q 1) dim Z (Mh(X)) - dim 2 (Mn_l(X))

dim z°(M_())/2"(M__ () . Q.E.D. -

3.14 Remarks: We conclude by.noting some further resﬁlts concerning the
minimal model. |

By Theorem 3.12, we can idehtify the free generators of M(X)
- with the generators of ﬂ*(X) ® Q . The rational Whitehead products are
then given by the quadratic terms in the differential. TFor example, if

" d(x) = a -+ b for free generators x, a, b in M(X), then x is the
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Whitehead product of a and b wunder the above identification, The

precise statements can be found in [1]. The proof of this relationship

uses thg universality of the Whitehead product on the wedge of two spheres.
We have shown how the minimal model can be built from the Postnikov

decomposition. There is also a construction associating a rational Postnikov

tower to each minimal algebra. Applying this construction to M(X) yields

the Postnikov decémposition of  X - "tensored with Q ". This can be used

to show that isomorphism types of minimal algebras correspond bijectively

with rational homotopy types of spaces. Again, further details may be

found in [1].
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