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ABSTRACT

After a brief review of the relevant classical
theory and a presentation of the conﬁept of generalized
gradients, it is demonstrated that, in analogy with
the classical case, a locally lipschitz value function
satisfies a generalized version of the Hamilton-Jacobi
equation. A sufficiency condition for optimality is
developed and some examples illustrating various

aspects of the generalized theory are presented.
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INTRODUCTION

The basic problem in the Calculus of Variations is that
of finding a piecewise smooth curve y(x) which minimizes the

definite integral

a
f F(x,y(x),y'(x))dx

a
[¢]

and joins two fixed points (ao,bo) and (a,b). The integrand F
is classically at least once continuously differentiable. The
set of curves over which the minimum is sought is called the

Set of Admissible Curves.

Caratheodory EZ;PZOS,VOL 11} . took the approach of
considering problems which were equivalent, in some.sense, to
a nice type of problem. A 'Nice' problem was said to be one

'for which the integrand F* satisfies

* .
MIN F(x,y,q) = O
q

for all x,y. A problem with an integrand F is said to be
* .
Equivalent to a 'nice' problem with an integrand F if there

exists a smooth function R(x,y) with

*
F (x,y,9) = F(x,y,9) - R'"(x,y;1,q)

where R'(x,y;1,q) is the directional derivative of R in the

*
direction (l,q). The definite integrals of F and F along any



adﬁissible curve will differ by the value R(a,b) - R(ao’bo) and
hence we aré assured that a curve will solve the nice problem
(ie; will be optimal) if and onl& if it solves the equivalent
one.

It is found that a problem is equivélent to a "nice'
problem exactly where there exists a smooth solution to a certain

.partial differential equation called the Hamilton-Jacobi Equation

(H.-J.Eq.)
HGx,y,Ry (6,7)) + By (5,) = 0

where Rl and R2 are respectively the first partial derivatives of

R in the first and second variables. The Hamiltonian Function

H(a,b,p) is defined as H(a,b,p) = pqp— F(a,b,qp) where qp and
p are related implicitly by the relation

; .

SEF(asb’q)lq_ = P .

b

The Value Function, or Hamilton's Characteristic Function S

is given as a function of the end point (a,b):

a
S(a,b) = MIN fF(x,y(X),y'(x))dx

a
o
with the minimum being over admissible curves from (ao,bo) to

(a,b). Where the value function is defined and smooth, it

satisfies the Hamilton - Jacobi Equation. This indicates that



many problems are equivalent to 'nice' problems.

- There is a greater variety of necessary conditions for
optimality than of sufficiency .conditions, but for 'nice' problems
we have a particqlarly simple sufficiency condition at hand: " if .
F(x,y(x),y'(x)) = 0 almost everywhere along the curve y, then y is
1"

optimal. For problems equiﬁalent to a 'nice' problem, the

corresponding condition would require that

F(x,y(x),y'(x)) - R'(Gx,y(x);1,y'(x)) = 0.

~almost ~everywhere-alongy; with R being some smooth solution to
the H.-J.Eq. If the vélﬁe function $§ is smooth along the optimal
curve y then it turns out that y necéssari;y satisfies the above
rélation with R.= S. |

A ﬁajor-diffiéuity iﬁ applyiﬁérthis'tﬁéor§ is the requirement
of differentiability. In many interesting cases there is no
guarantee that the value function will be smooth (and it often is
not). The classical soap bubble problem, discussed in example III
of chapter IV, is such a case in which the value function actually
fails to be smooth. By employing the concept of-Géneralizéd
Gradients as defined‘for locally'lipschitz.functions, the'theory may
be studied using'functionsvwhich fail to be differeﬁtiable; Although
the generalized gradieﬁt has been defined for a larger class of functioné
(see [3]) we will only consider it for locally lipschitz functions here.

For a locally lipschitz function f the generalized gradient at

a point x, denoted 3f(x), is a compact, convex, non-empty set.



If f is a convex function 3f coincides with the subdifferential of f.
Accompanying the generalized gradient is the gemeralized directional
derivative, denoted £°(x,v;a,b). Like the standard directional
derivative f'(x,y;a,b), the generalized directional derivative is a
single valued mapping. |

Classical theory presumes the existence of several minima gnd
maxima which our generalized theory replacés with infima and suprema.

We use a Generalized Hamiltonian

H(x,y,p) = SUP ( pq - F(x,y,q) )
q

to accomodate a greater variety of integrands. This definition of
H, unlike that of the classical Hamiltonian' function, is not predicated.
on the existence of the Legendre transform. It is found that a

locally lipschitz solution R to a Generalized Hamilton -~ Jacobi Equation

(G.H.—J.Eg.)
MAX ( H(x,y,v) +u) = 0
(u,v)edR(x,y)

(where the 'MAX' exists automatically) establishes an equivalence

with a generalized type of 'nice' problem: those satisfying
INF F(x,y,q) = 0.

If the value function, as defined in classical theory, is
"locally lipschitz, it is found to satisfy the G.H.-J.Eq. For the
generalized theory, the value function is defined for all (a,b) as

- a
S(a,b) = INFJ FG,y(x),y' (x))dx .

a
o



If the infimum of the value function is not attained (no optimal
curve exists) then the value function may fail to satisfy the G.H.-J.Eq.,

but will satisfy the following Generalized Hamilton-Jacobi Inequality

(G.H.-J.Ineq.)

H(a,b,v) + u >0

for all (u,v) in 3S(a,b).

A éufficient condition for optimality is provided by the
solutions of the G.H.-J.Ineq. as follows: If R is a solution to
the G.H.-J.Ineq. on a region and y6>is a curve lying in this

region and satisfying

Py, (0,50 (0) - SR,y () = 0

almost everywhere, then yo is an optimal curve (provides the infimum

in the value function) .



CHAPTER 1 Preliminaries

By a curve we will mean a lipschitz function mapping an
interval [ao,a] of the real line R into the n-dimensional real
space Rn. We fix a point (ao,bo) in R X R and henceforth consider

nt+l

only curves y which satisfy y(ao) = bo. Given a set U in R we

say a curve y lies in U almost everywhere if (x,y(x)) is in U for

almost all x in [aé,a].
Let F': R X B® X " -~ R be a continuous function, -let U be

+1 +
a set ‘in R" l, and let (a,b) be a point in " 1.

Definition

The following problem is referred to as a basic problem: find

~a
INF f F(x,y(x),y' (x))dx

yeA(a;b) a,

where A(a,b) = {curves y lying in U almosﬁ everywhere with y(a) = b}.

It is implicit that y(ao)’= b0 and that y is lipschitz (hence y' exists
almost everywhere én [ao,a])'. Notice that it is assumed that a >a_.
For Bfevity, where ﬁomcqnfﬁsianjiéguits, F{X,&(x)}y?(x))"will'be
written as F(x,y,y').

The basic_problém is characterized by three things: the
function F; the sét U; and the point (a,b). The set U will be referred

to as the domain, the point (a,b) as the terminal point, and the

function F as simply the integrand. The set A(a,b) will be referred

to as the set of admissible curves to (a,b). Notice that the point

(a,b) must lie in the closure of the domain U, U.



For simplicity of presentation we will henceforth consider

only one-dimensional problems, that is; &

= Rl, wherein curves will
map R into R. |

Consider the family of basic problems determined by a fixed
integrand F, a fixed domain U, and a set of terminal points . We

will require that as a subset of R? Q be an open set and we will refer

"to Q as the set of termination for the family of problems.

Definition

For the family of problems &escfiﬁed above, we define -the.

value function S on Q as follows: for (a,b) in O

a
S(a,b) = INF f F(X,y,}")dx .
yveA(a,b) aO

'If the infimum is attained by some y in A(a,b), we say that

y is an optimal curve to (a,b) or y is optimal.in A(a,b). Furthermore,

if y is an admissible curve to (a,b) satisfying

f F(x,y,y')dx ‘< S(a,b) + §, ~ -(for §>0)

a
(o]

then we say that y is a 6-near optimal curve to (a,b). A sequence

of curves {y }w_ with each y_ a §_-near optimal curve to (a,b) with
. 'n'n=l n n

Gn + 0 as n > ® will be called a minimizing sequence. Notice that as

long as S(a,b) is finite, there must be a minimizing sequence in A(a,b).



Equivalent problems

*
Two integrands F and F are said to be equivalent on a set

(U say ) in R2 if there exists a function R which is continuously
differentiable on U and satisfies
*
VR(a,b)- (l’q) = F(a,b,Q) - F (a,b,q)
for all (a,b) in- U, and ali q in R. The symbol V represents the
usual vector gradient while the symbol * represents the usual inner
(scalar) product on Rz.
Consider the two basic problems
_ a
INF - J'F(x,y,y')dx.
yeA(a,b)J a
0
and

a %
INF J’ F (x,y,y")dx
yeA(a,b)

% .
with F and F equivalent on the domain U. Since

a ' a .
f -F(X’y’y')dx - f F (X,Y,Y')dx
‘a . a

-0 o)

a .
Jf VR(x,y (x)) = (1,y'(x))dx

a
o

R(a,b) - R(aosb.o) ’
a curve y in A(a,b) will be optimal or S-near optimal for one problem
if and bnly if it is 6ptimai'or'6—neaf optimal respectively for the

other. Accordingly, the two problems are said to be equivalent problems. -




A basic problem or its integrand F is called nice

( on the domain U ) if

MIN F(x,y,q) = 0

qelk
for all (x,y) in U. Notice that when a basic problem is nice, it
is sufficient (although not necessary) for y to be optimal in A(a,b)
to have F(x,y,y') = 0 for almost all x in [ao,a].

The concepts of equivalent problems and nice problems
were introduced by Caratheodory ( [2;§227 vol II] ). In their
classical setting it is assumed that both the integrand F and- the

function R are smooth. In chapter III we will alter the definitions

slightly, freeing us from these smoothness assumptions.

The Classical Hamilton-~Jacobi Equation

- Let F(x,y,q) be a twice continuously differentiable integrand
2
with-%qz F(g,y,q) > 0 for all q in R. The mapping from {(x,y)} X R

into {(x,y)} X R given by

3
(x,y,9) -~ (an:EF(X’y:Z)I.Z=q‘)

is one to one (although the range may be a proper subset of {(x,y)} X R)

The classical Hamiltonian function H is defined as
H(st:P) = p-° qO - F(X,Y,qo)
where 9, is determined implicitly by the relationship

3
—.-—FX, - .
34 ( y,q)lqzqo p
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The transformation Sf the system (x,y,q,F) into the system (x,y,p,H)
is known as a Legendre Transform [6,§7.1]. ©Notice thaf H(x,y,p) may
not be defined for all p in R. |

Assume that H is defined at the point (x,v,p) and consider
the following function in q: ¥(q) = pq - F(x,y¥,9). Since this
function is concave and the first derivative vanishes at 9,
(p - %EF(X,y,qo) =0), wé must have a max;mum occuring at q_.
Consequentiy we see that where H(x,y,p) is defined

H(x,y,p) = MAX.(pq - F(x,y,9) )

qel :

Furthermore, notice that the Hamiltonian will be defined exactly

where the maximum in the above expression exists.
Suppose that R establishes. an equivalence between F and a

%
nice integrand F on U, then

. _
for (x,y) in U and q in R. It follows that

*
MAX (-F (%,¥,9) )
q ' .
JR dR )
—_—— e 2 . _—
ng (5 3y @ F(x,y,9) )

R ' 3R
== + H —
o x., 5, 3y )

=0,

and so R satisfies the partial differential equation
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3 3 '
H( x > Y > §§R(X’Y) ) + E;R(X’Y) = 0

on U. This equation is called the Hamilton-Jacobi Equation (H.-J.Eq.).
Notice that conversely, if R satisfies the H.-J.Eq. on U then it

provides an equivalence between F and the nice integrand

* :
F (x,y,q) = F(X,Y,q) - VR(X,Y)',(l’q)
on U.
Caratheodory's lemma [7,theorem 5.1] asserts that if the

infimum of the value function is attained at every point‘of an open

set V and if it is continuously differentiable on V, then the

value function establishes an eduivalencg between F and a nice integrand
‘on V. Consequently, the value function will satisfy the H.-J.Eq. on

the open set V.
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The Non—-Classical Situation

For integrands which may not satisfy the classical assumption
of being twice contindously differentiable, we define the more
versatile generalized Hamiltonian

H(x,y,p) = SUP (pq - F(x,y,q) ) .

qeR
As a supremum of affine functions in p the generalized Hamiltonian

. i
will be convex in p, and may assume values of plus infinity. Unlike

the classicalAHamiltonian it may happen that the‘supre;;m is nof
attained by any q in k, or that if tﬁe supremum is attained it is
attained for more than one q. Whenever the‘assumptions that F is-
twice continuously differentiable and strictly conﬁex ih‘q are
valid, the classical Hamiltonian,.where.it is'defiﬁed, will equal
the generalized Hamiltonian. Without confusion, then "Hamiltonian"
will henceforth refer to the generalized Hamiltonian.

Consider the H.~J.Eq. in which the generalized Hamiltonian
is emplo&ed. NIf R is’'a continuously differentiable solution to this
equation, then setting F*(x,y,q) = F(x,y,q)bf VR(x,y)* (1,q) gives

*
INF F (x,¥,9)
q

-SUP [ VR(x,y)- (1,9) - F(x,y,q) ]
q

p) d
—_— —] — s , _.R R
axR(x,y) H( x , ¥ 3y (x,¥) )
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Unlike the situation in the classical case, we are not
assured here that the infimum is actually attained. 1In order to
extend the classical theory then, it seems natural to modify the

definition of nice problems or integrands as follows:

DEFINITION

A basic problem or its integrand F is said to be nice on U if

INF F(x,y,9) = O
q

for all.(x,y).ig u.

The classical theory demands not only that the integrand be
twice differentiable, but also that

(i) the value function be continuously differentiable and‘

(ii) optimal curves existv(ie: the infimuﬁ'defining the value

function is always attained )
(see [7,83] ).

These two constraints on the value function are distinct from
smoothness and convexity in q imposed on the integrand. As we see
in example III chapter IV, the assumptions on the integrand are
satisfied, however those on the value function are not. If the
integrénd need not be convex it is very easy to construct simple

examples in which optimal curves do not exist. Consider for example,

F(x,y,9) = (1 + q2)-_l .
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Using ''sawtooth shaped" curves we can get
a

F(x,y,y")dx
a

o
as close to zero as we wish, yet since F is strictly positive, mno
curve will provide fhe infimum value of zero.

If the integrand need not be smooth, it is easy to construct
examples in which the value function is not smooth. The simple
integrand F(x;y,q) = tqk for example, yields the non-smooth value
function S(x,y) = IYI; Studies have been made of integrands which
may fail to be smooth but remain convex, or lipschitz (see [5] and the
references provided there). |

Although the value function frequently fails to be smooth, the
author knows of no case in which the value function is finite but not
locally lipschitz as long as the integrand rémains continuous. In
fact, if F is lipschitz and it happens that we can find a real K such
that for all (a,b) in a neighbourhood 7 , the optimal curVe'yab to (a,b)
satisfies |y'| < K, then the value function S will be assured of being

lipschitz in the neighbourhood. ‘The bound K’can be guaranteed by

growth conditions on the integrand.
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LEMMA I CONDITIONS FOR A LIPSCHITZ VALUE FUNCTION

Let © be a set of termination of the form

2
@=1{(x,y) e ® | x>¢ >0, and lao— x! + ]bn— yl <M<}

for fixed €,M in R, and let the domain U Qg_Rz. The value function

a
S(a,b) = INF . F(x,y,y"')dx
yeA(a,b) a,

will be lipschitz on Q if there exist positive constants kl and k

2

such that for all (x,y,q) ¢ R3 and (a,B,Y) € R3, F satisfies

(1) F(x,y,9) 2 1 and
kl+ ; I (OHBaY)Il

k| &y, D

(i1) F(xta,y*B8,q*y) < F(x,y,q) * exp

Condition (i) requires only that F be bounded below, since
the addition of a constant to the integrand merely adds a linear
term to the value function. Condition (ii) is a growth condition

which, for differentiable functions, assumes the form

ky
£'(x) < £(x)-
+
x|k,
o
Functions of the form f(x) = !x! for @>1 satisfy this condition
1
but functions with cusps pointing downward, such as f(x) = ]x|2

do not.
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Proof of Lemma 1

We begin by showing that S is bounded on Q. Assume, without
loss of generality, that (ao,bo) = (0,0). For (a,b) in Q we- consider

the straight line y € A(a,b) given by y(x) = bx/a.

a .
S(a,b) < Jﬁ F(x,bx/a,b/a)dx

0
ra
< | F(0,0,0) exp[ k] (x,bx/a,b/a)[]/kz ]dx
J o ' -
ra L :
< | F(0,0,0)+ exp[ k || at,M,M/e)]|/k, ]dx
J 0 -

< M- F(0,0,0)* exp| kl[ | (M',M,M/E)H/kz 1

Thus 'S haé an uppér bound and a lower bound as desired (?he lower
bound Being zero, since F is positive).

To show that S is lipschitz on 9, it is sufficient to show
that it is lipschitz separateiy in the variables x-and y. Let Yy
and Yy be S-near optimal curvés to (al,bl) e Q énd (al’bz) e Q,

respectively. Define the curve z ¢ A(al,bl) by
z(x) = y2(x) + (bl—bz)x/al .

Now,



17

a,
‘ S(al,bl)_i J~ F(x,z(x),z"(x))dx

0 .
._b -—
ra Fklll(o’b; 2x,b1ab2)||
< F(x,7,,y,) exp |- 1 1 dx
JO B l l (X9YZ’y'2)l n+k2
. ”alF( . K by-by_ by-bo. |
< X,¥5:¥5) " exp = | (o, ——Zx,~L2)[ || dx
Jo _2 1 1
. _
:Jf Gy, vy)e exe (I by-by| ¢ '1’1;%"—2' )] dx .
0 !

From elementary calculus, if X is bounded then HK & R suéh that

e,XI <1 +|kx]. Using this fact we see that

. a '
1 Y : . 3. -

<[s+ S(a;sb,) J-[1+ K|bl—b2| 1.

Rearranging and letting 6 - 0,

~

where K can be chosen independently of“ai,<5i,552j
Interchanging b, and b, in the above argument we get

1 2

S(a;sb,) - S(a;;b;) < K- [bl—b2 ,

and so S is lipschitz in the second variable.
To see that S is lipschitz in the first variable, we redefine

the curves v, and y, to be S§-near optimal curves to (al,bl) e Q and
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(az,Bl) e 2, respectively. Let u(x) = a.x/a. and define z ¢ A(al,bl)

2 I

as z(x) = yz(u(x)). We have,

%
S(a,,b;) < j F(x,z,z")dx
1'71 , 0

F(a u/a2 . yz(u) LN (u)/a Ydu

a5
N

a]_ 32 ’0’8.1 a?_y, )Il

k||«
: F(u,yz,yé% exp du

| A

S

k, * H(u,yz,.yé)ll

| A

—a2|/a1 )] du.

F(U,YZ,YQ}' eXP.[kl( lal-azl/a2 + Ial

? |-
N[

As before,the exponential term can be bounded by K|a -a and we get

9l

al al
. ' . + -

(alK + 1)
< + . + — . -
< [¢ S(ay,by) J- [1 " A lal azl ]
2
Rearranging and letting § - 0
S(aj»by) = Slayby) < K- laj-a,|

-~

with K independent of a , and b As before, by interchanging

1° 2 1

aland a2 we obtain

S(az,bl) - S(al,bl) < K- Ial—azl R
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and so S is also lipschitz in the first variable. This completes

the proof.
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Chapter II  GENERALIZED GRADIENTS

Let f£:R" - R" be a locally lipschitz function. .By
Rademacher's theorem, f is differentiable almost everywhere although
it need not be continuously differentiable anywhere. If V ié a
subset of Rn, coV will denote the convex hull of V in Rn.

Definition (see [3] )

The generalized gradient of a lipschitz function f at a

point X € Rn; 3f (x), is defined as follows:

LIM vE (-xn) g =

n->

N n o, L LIM
of (x) = co{%aR l A= nse ¥p 3.
(This definition has been extended to a larger class of functions -
see [3] ).

The following examples illustrate the generalized gradient

of two simple functions.

. Example Let f£(x) =|x|, then
f(x) = | {1} if x > 0,
{-1} if x <0,

[-1,1] if x = 0.

Example Let f(x) = xzsin(l/x). For x 7 0

' (x) = 2xsin(1l/x) - cos(l/x)f For x = 0, using basic princiﬁles,

we find £'(0) = b. The generalized gradient, however, is given by
of (x) = {£f'(x)} if x #.0, |

[ -1,1] if x = 0.



The generalized gradient 3f(x) is a closed, compabt, convex,
non-empty subset of R® (see [3] ). If L is a local.lipschitz constant
for f about x, then it is easy to see that for‘all A e 3f(x),
1Al < 1.

If £ is continuously differentiable at x then clearly
3f(x) = {VE(x)}. It may happen, as in the example f(x)=xzsin(l/x),
that VE(x) exists but 3f(x) # {Vf(x)}. 1In any case, we are always

assured of the following‘préperty:

Property 1

If Vf(x) exists, then V£ (x) e of (x).

The lipschitz property of f provides a very useful form

of continuity for the generalized gradient:

Property 2

The generalized gradient is upper semi-continuous

(U.S.C.), that is; if {xn}n=l converges to x, and An e‘af(xn)

- for 1 < n <=, then any limit point A to {Xn}zzl satisfies X e 3f(x).

Notice that {An}:zl is assured of having at least one limit
point since for large n, An lies within the (compact) sphere of

radius L where L is a local lipschitz constant for f about x.



22

Definition (See [3] )

The generalized directional derivative of a lipschitz function

. n ., _ . . n o A
f at a point x ¢ B in a (non-zero) direction v & R £%(x.y), is

given by
£°(x;v) = LIM SUP [(f(x+h*+sv) - f(x+h) )/& ].
h~-»0
§+0

Like the usual one sided directional derivative, denoted f' (x;v)
when it exists, the generalized directional derivative is a map-
. n n . e s o

ping from B X R to R. Notice that from the definition of £

we have the following:

Property 3

f' (x3v) < fo(x;v) for all x,v in B",

Example Let f(x) = —lx[, and consider fO(O;v). Notice that
|6vl > |h| - |h+8v| and so |v| >1LIM sUP (-|h+&v]|+|n|)/s.

h >0

§ + 0
If we let h=-8v then the reverse inequality is established and we
conclude that fo(O;v) = {v]. This is in contrast to the classical
situation, in which £'(0;v) = -|v]|.

An equivalent, and often more convenient, definition of the

generalized directional derivative is given by

fo(x;v) =MAX { A+ v] X e 3f(x) }
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( see [3] ). The maximum is attained at an extreme point in 3f(x),

and since all extreme points are of the form LIM Vf(xn)‘for some
’ n-re :

sequence {xn} converging to x, the following property holds:

Property 4
fo(x;v) = v « LIM VEf(x_) for some sequence {x }w=1 converging
oo n : n'n=1
to x
Suppose now that f'(xiv) exists.  Then

MAX {A-v]iedf(x)}

= fo(x;V)

|v

£'(x;v)
= —f' (x;-v)

-£° (_:{;—i)

| v

= -MAX { -A-v|X € 3f(x) }
= MIN { r-v|A & 3E(x) } -

and we have the following property:

Property 5
£'(x3v) €:{rv|2 € 3F(x)}

=[-£2(xv) , £2(x;v)]

n
Let E be any set of zero measure. Define afE on R as

n, .. .
3fE(x) = co{AeR | A5 LIM Vf(xn),xﬁ+ X as n-w, and X ¢ E I,

n->oo .

and define the function fg on B" X R" as
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f;(x;v ) = LiM+SgP {[E(x+h+6v)—f(x+h)]:/6 | x+h,x+h+&v ¢ E}.

5+ 0

As is demonstrated in [3] , the following equalities hold:

Property 6
BfE(x) ; f (x) ,
£2Gsv) = £205v)
and so also

f;(x;v) = MAX {A-v|X e 3£ (x)} .

The generalized gradient and directional derivative extend
the concept of the subdifferential of a convex function. If f is a
convex function then
(i) the generalized gradient is identical to thé sub~-
differential |
(11) £2(x3v) = £'(x;v)

- (iii) £(x) = {o} if and only if VE(x) exists and o = VE(x).

Several'results eﬁplbying the subdifferential have beeniexteﬁded
by the use §f the geﬁeralized gradient (fo; an example and a brief
discussion see [4,introduction] ).

We will have occasion to consider the generalized gradient
of a function ‘at an end point of the interval on which it is defined.
In this situation the generalized gradient will be determined by
limits of sequences restricted to the interval of definition of'the

function. 1If f£:[0,1] > R is lipschitz,
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3f (1) = co{ala.=LIMAVf(xn),xn+l; x € [0,1]} .

-0
This corresponds to éxtending f symmetrically about 1, and so the
properties given in this chapter will hold, with the appropriafe
restrictions. Notice that the "one-sided" generalized gradient
described here will be a subset of the "standard" generalized

gradient, if the latter exists.
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CHAPTER IIT THE GENERALIZED HAMILTON-JACOBI EQUATION

Recall Caratheodory's definition of equivalent problems; we

will generalize the concept as follows:

DEFINITION

One problem, or its integrand F, is said to be equivalent to

* 2
another (with jits integrand F ) on a set U € R™ if there exists a

locally lipschitz function R with its generalized gradient defined

on U and satisfying
* o
F (a,b,q) = F(a,b,q) - R (a,b;1,q)
for each (a,b) € U and q ¢ R.

* .
If in the above definition F 1is a nice integrand we have, for

(a,b) in U and (u,v) restricted to d%R(a,b), that

INF [F(a,b,q) - R°(a,b;1,q)]
q

- SUP [ MAX  (u,v) - (1,q9) - F(a3b’q) ]
q (u,v) :

- MAX { SUP [vq - F(a,b,q)] + u }
(u,v) q

- MAX [ H(a,b,v) + u ]
(u,v)

=0 .
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DEFINITION

The relation

MAX [ H(a,b,v) +u ] = 0 (a,b) ¢ U
(u,v)eoR(a,b)
will be referred to as the generalized Hamilton-Jacobi equation

(G.H.-J.Eq.) for R on the region U E_Rz.

Because the generalized gradient BR is a compact set and the
Hamiltonian is convex in the third variable.(hence continuous on
open sets, Ewhere it is finite), the use of a maximum, as oppoéed
to a supremum, is justified in the abéve definition. Since H may
assume values of 'é however, the G.H.—J.Eq.'implicitly requires that
H(a,b,v) be finite for all (u,v) in 5R(a,b).

Notice that in analogy with the classical case, a locally
lipschitz function R will satisfy the G.H.—J.Eq.‘on U if and only if
- it establishes an equivalence between.the problem and a nice problem
on U.

*
If F , given by
* o
F (a,b,q) = F(a,b,q) - R (a,b3;1,q)
is known only to be positive, then we find that R satisfies

MAX [ H(a,b,v) +u] < O,
(u,v)edR(a,b)

which will be referred to as the generalized Hamilton-Jacobi inequality

for R (G.H.~J.Ineq.) . A locally lipschitz function will establish
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an equivalence with a positive integrand on U if and only if it
satisfies the G.H.-J.Ineq. on U.

The following is the central result.

THEOREM I NECESSARY CONDITIONS

a) Let

X
S(x,y) = SUP ./~ F(i,?(i),?'(i) )dx

JeA(x,y) | ag

where A(x,y) = { curves to (x,y) which lie in the domain U almost

everywhere }. If

(i) S is defined on a neighbourhood n C U of a point (a,b),

(ii) 'S is locally lipschitz in n , and

(iii) F(x,y,q) is continuous in all three variables,

then
F(a,b’q) - So(aab;lsq) ,i 0

for all (u,v) e 3S(a,b) and q € R.

b) If, in addition, Y, is an optimal curve to (a,b) then
o
F(asb:qo) - S (a9b;lsqo) =0

for some q, € ayo(a).
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-Part (a) of the theorem states that interior to where S is
defined and locally lipschitz the problem will be equivalent to one
with a positivé integrand. As we have seen, this is the same as
saying that where S is defined and locally lipschitz, it will satisfy
the G.H.~-J.Ineq. The value function is thus seen to be closely
linked to the Hamiltonian function by the G.H.-J.Ineq. Similarly,
part (b) of the theorem assures us that under stronger hypotheses
S will be a solution to the G.H.~J.Eq. This relationship between
the value function and the Hamiltonian funétion is futher considered,
in its classigal‘éetting in [7,chapter 9]. Notice that Y, need ho£
be defined outside the interval, [ao,a], hence ayo(a) reéuires thg

interpretation discussed at the end of Chapter II.

Proof of Theorem I

In addition to the hypothesés of the theoreﬁ, assume that
VS(a,b) exists. TFor q € R let yq(x) =b + (x - a)q be the line
through (a,b) with slope gq. Select € > O small enough that
a_ < a=¢ and the line segmentv-{(x,yq(x)) l xe[a—e,§+e] } lies
within 7. Let x; and x, lie in [a-e,a+e] with x; < x, and let
ys(x) be a S-near optimél curve from (ao,bo) to (xi,yq(xl)).

Define ?6(x) € A(xz,yq(xz)) as

5,00 = | ygx)  ifa <x<x

| A
o]

yq(x) if X <X
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As a function of x, S(x,yq(x)) is locally lipschitz on [xl,xz]

d . ,
agd S0 de(x?yq(x)) exists almost everywhere on [xl,xz] . Now,

"2 [ F(x,y_5¥)) ;'Q—Stx y (%)) Jdx
’q’q_ dx ,q

*1
X ' X X
2 A ~ 1 2 d
J F(X,quy(%)dx - f F(X,Ya,y"s)dx —f ES(X,Yq(X))dX
o :

a a X
o) 1

|v

_S($z,yq(x2)) - [S(xl,yq(xl)) + 8]

- S0y y (xy) = SGxy ¥ (xp))

= =8 .

Since we may independently choose § arbitrarily small and since the
interval .[xl,xz]C:[a—e,a+e] is arbitrary, we see that for almost

all x in [a-e,ate] , g;s(x,yq(x)) exists and
PGy, (0,0 - SsGy ) > 0
,Yq >4 dx Xayqx - M

Let E = {xe[a-e,ate] l-%;s(x,yq(x)) does not exist, or
F(x,yq(x),q) - %;S(x,yq(x)) < 0}, then E has zero measure.

. 0
select a sequence {xn}n_ in [a-e,ate] with x >a as no>e

1

and {xn}:_lrW E = §, then recalling that F is continuous,:
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d
LIMSUP [ Flx .y (x),q4) = 80,y (x)) ]

n > «°

d
F(a,b,q) - L§M£Nz EeclC I SACIO)

| v
o

Denote the generalized gradient of S(x,yé(x)) as a function in x alone,
as BgS(x,yq(x)), (not to be confused with BS(x,y(x)) ).

Now,

d .
BXSE(a,yq(a)) - co {al a=1IM de(xn,yq(xn)) » with

n->®

-

x ¢.E and x - a as n >« } ,
n n
and as we have seen, for each a:

F(a,b,q) — o > 0 .

Taking the convex hull of the a's preserves this property, that is;

Vace BXSE(a,yq(a)), F(a,b,q) - a > 0. By property 6 of chapter II,
. d

Vace BXS(a,yq(a)), F(a,b,q) - o > 0. In part}cular, E;S(a,yq(a))

lies in axs(a,yq(a)) (property 1 of chapter II) and also,

TSy (a) = ¥s@a,b)* (L,a), so:

F(a,b,q) - VS(a,b)* (L,q) > 0 . (Equation 1)

We now drop the assuption that VS(a,b) exists. Let

(uo,vo) £ 3S(a,b) be such that So(a,b;l,q) = (uo,vo)-(l,q)
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(o]
and such that there is a sequence {an,bn}n_ converging to (a,b)

1

with (u_,v_) = LIM VS(a,b). Existence of (u ,v ) is assured by
0’0’ g o’ o
property 4 of chapter II. For n large enmough that (an,bn) lies

interior to n we have
F(an,bn’q‘)' - Vs(ansbn) * (l’q) _>_ 0 s
and so, taking the limit as n =+ «,
' o
F(a,b,q) - S (a,b;l,q) > 0,

as stated in (a) of the theorem.

Parc II We proceed to show that the minimum value is zero and
that it is always attained if an optimal curve exists. Let Y, be

an optimal curve to (a,b) and select’ x; > a so that (xl,yo(xl))

1

is.interior to the neighbourhood 1 , and such that;
. 12 .
(1) yo(xl) §x1sts, and

X .
P _d_ ) \J - . f =
(1) dx_/.a F(x,5,,5))dx = F(x,y, (x)),y) (%)) at x = x .
[s)

Note that (i) and (ii) hold almost everywhere along Yo Now

5% (xp 57, (%x1)31,57) ()

= ' + + 3 + ' :
(hLI:SI)JEO [S(xl hl A s yo(xl) h2+ Ayo(xl))
1’
A+0
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> LIMSUP [ S(xp* A,y (%)) + Ayl (%)) = S(xp,y (x)) ]/ 4
AV 0 :

+ ' - + +
LiMEUg [ Sy Ay (%) *+ Ay (x)) = S(xp* Ay (xp+ V)

tos(xgt ALy (gt ) - S(xpLy (%)) 1/

Let M be the lipschitz constant for S in a neighbourhood of.
. . + A - + 1 +
(a,b). Since yo(x1 A) yo(xl) Ayo(xl) o(A), for small X

we have:

So(xl,yo(xl);l,yg(xl))

LiMiUg [ 0O)-M + SCxy* Ay Gegt A)) = S(xy,y (x0) 1/

|v

X
d__ A\l =
o J. F(x,yo,yo))dx (at x xl)

a
(o]

Since 7 is a neighbourhood of .(xl,yo(xl)), part (a) of the theorem

holds here,'that is:
' _ o . '
F(xysy ()53 (x)) = 8% Gy ()51, (x))
is non-negative. Since

' X
d
) - t . =
F(Xl,yo(xl),yo(xl)) ™ J. F(x,yo,yo)dx (at x xl)
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we combine this with the previous inequality to get:
o
F(§l7yo(x1),yg(§l)) - S (xl’yo(*l)FlﬁYQ(xl)) = 0. (Equation 2)

(>4
Now select a sequence {xn}n_ with the following properties:

1
for each n > 1 ;
PR [ . )
(i) yo(xn) exists ,
X
3 —_ e ' ke = ' ' N =
(11) ax ) F(X,y ,y.)d% Fx,y (x),y (x))  at x=x ,
» o .

(idii) (xn,yo(xn)) lies,interior tonp ,

(iv) x >a as n > o, and finally,

' ® - ’ ‘
) {yo(xn)}n=l converges (to q say) .

Conditions (i) and (ii) are satisfied almost everywhere along Yo
as mentioned earlier, so conditions (i) through (iv) are easily met.
Since'yo is lipschitz, yé is bounded and any sequence satisfying
(i) through (iv) will have a sub-sequence satisfying (v) as well.

-] . o
For such a sequence {x } _, let {(un,vn)}n=l be a sequence

satisfying (un,vn) € as(xn,yo(xn)) and
o . ' = ’ . '
S (Xn,yo(Xn),l,Yo'(Xn)) (un’vn) (1,}’0(Xn))

for each n > 1.
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For each X "Equation 2" above will hold ‘and we may rewrite it in

the form:
F(xn,yo(xn),yg(xn))' - ,(un,vn)' (l,yé(Xh)) = 0.

Since S is lipschitz {(un,vn)}:_l has a convergent sub-sequence and
its limit (uo,vo) lies in 93S{(a,b) (property 2 of chapter II).

. . . ‘ . . [} L n . .
Similarily qg > the limit of {yo(xn)}n=l lies in Byo(a). Taking

the limit as n + « in the above equation we get
F(aab’qo) - (uQ,VO) * (l:qo) = 0.
Now

F(a,b,q ) - - MAX [(u,v) * (1,q)]
°© (u,v)edS(a,b)

o
F(a,b,q ) - S5 (a,b;1,q))

| A

F(a,byay) = (u,v.)* (1,a.)

=0

and in consideration of (a) in the theorem,

]
o

F(a,b,qy) - 8°(a,bsl,q))

completing the proof.
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Notice that "équation 2" in the.proof of theorem I provides
a generalization to Caratheodory's fundamental lemma ([7,85.1]) :
under the hypotheses of the theorem, if y is oétimal and-y; is contiﬁuoﬁs
at a point x with (x,y(x)) within 7, then éshdi;ions“(i) and {iij-
at the beginning of part II of the proof hold, and so according to
”équation 2"

MIN [F(x,y(x),q) = 8°(x,y(x)31,)]
q

F(x,y (x),y" (x)) = 8°(x,7(x),y" (x))

= O .

If S is continuously differéntiable as is assumed by Caratheodory's
lemma, then SO coincides with the classiéal directional derivative.

Although the value function will not be the only solution toi
the G.H.-J.Ineq., any solution can be used to esfablish a lower

bound on the value function, as we see in the following lemma.

LEMMA II = LOWER BOUNDS ON THE VALUE FUNCTION

Let F(x,y,9) be an integrand yielding the Hamiltonian

H(x,y,p). Let R(x,y) be a locally liﬁschitz function defined on an

open region § and satisfying the generalized Hamilton-Jacobi

inequality

H(a,b,kz) + Xl < 0 (A ) € 9R(a,b)

1’A2

at each (a,b) in § .
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If 2z dis any lipschitz curve joining (al,bl) e @ and

(az,bz) e Q with a; < a, and (x,z(x)) in @ for almost all

X E [al,éz], it follows that

a
./. 2 F(x,z(x),z'(x))dx > R(aZ’bZ) - R(al,bl)
a
1

Proof of lemma II

For almost all x € [al,az] z' (x) exists, the G.H.~J.Ineq.
holds at (x,z(x)), and %;R(x,z(x)) exists. The equivalent integrand
*
F (x,7,4) = F(x,7,9) - R°(x,y;1.q) is positive on @, and so by

property 3, cnapter 11i:
: d -
F(x,z(x),2' (x)) - 7ROz2(x)) > 0

for almost all x ¢ [al,az] . Integrating, we get the desired result:

2

- a !
-2
f F(x,z(x),z'(x))dx - R(aZ’bZ) + R(al’bl) > 0.
Under the hypotheses of lemma IT, let the'point-(ao,bo) iie
in the closure of 9;'5 . Assume also that we can define R(ao,bo)

as:

R(ao,bo) = LIM' R(a,b)
(a,b)>(a ;b )
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where LIM' indicates the limit with (a,b) restricted to £ .
If we let Q coincide with the domain of the problem; that is, for

(a,b) in © let
A(a,b) = {curves y I y(a)=b and y lies in Q almost everywherel} ,

then we have

F(X,Y,Y')dx _>_ R(a’b) - R(aO’bO) .

We see then, that the value function is the largest (majorizing)
locally lipschitz solution to the G.H.-J.Ineq. which can be extended
continuously by setting S(ao,bo) = 0 . Often however, the following
question is of more practical interest: 'given a locally lipschitz
function R (which we suséect of being the vélﬁe function), under
what conditions are we assured that it is in fact the value function?'.

A set of sufficient conditions is provided by lemma III below.

LEMMA III SUFFICIENT CONDITIONS FOR THE VALUE FUNCTION

Let @ € 12- be a set of termination and let U , the

domain of the problem, coincide with & . If the integrand F is

continuous then a function R defined on & LJ{(ao,bo)} which is

locally lipschitz on Q will be the value function for the problem if

and only if, for (a,b) restricted to Q:
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(i) R satisfies the G.H.-J.Ineq. on § ,
(ii) R(ao,bo) = LIM R(a,b) = 0, and
(a’b)+(ao’bo) :

(iii) V (a,b,) € @ Hﬁ{yﬁ}n=l C A(a,b) such that:

a : .
LIM F(x,yn,yg)dx = R{(a,b).
no a ‘ _

Proof of lemma III

Notiée that since U = Q, (ao,bo) must lie in the.closure of Q
otherwise A(a,b) = ¢ for all (a,b).
For necessity; (i) follows from paFt (a) of theorem I, while
(ii) and (iii) are consequences of the définition of the value function.
Consider now the sufficiency of the conditions. Lemma II énd
conditions (i) and (ii) provide that:
a

INF F(x,y,y')dx > R(a,b) - R(ao,bo)

yeA(a,b) | a,

= R(a,b) ,

while condition (iii) provides the reverse inequality. This completes

the proof. j
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Very often the basic problem is posed, not to find the minimum
itself, but rather, to obtain the optimal curye(s) which provide the
minimum. Having imbeddea the ﬁroblem in a fémily of problems, the
theory involving the solutions for the entire family should help
solve the original basic problem. In theorem II below we find point-

wise sufficiency conditions for optimality in a basic problem.

THEOREM II SUFFICIENCY CONDITIONS FOR OPTIMALITY

Let R(x,y) be a locally lipschitz solution to the generalized

Hamilton-Jacobi inequality on a open set Q'C:Rz. If y is a

— o

lipschitz curve to (a,b) lying in Q almost everywhere and if

Py, (0,9 (0) - SR,y () = 0

almost everywhere for x ¢ [ao,aj ,» then Yo is an optimal curve

for the basic problem: find

a
"INF . F(x,y,y")dx

yeA(a,b) a,

with

A(a,b) = {curves y | y(a)>=b and y lies in Q almost everywhere}l
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Notice that £ is both the set of termination and.the domain of -
the problem. In practice it may be desired to find a solution over
a domain U which properly inéludes the épen set 2. In this case,
under the hypothesis of theorem I1I, the curve yo may be considered a
local solution. More precisely, if Yo lies entirely within @ , then yo

is a strong local solution to the basic problem, and if the domain U

coincides with , then Y, is a global solution (see [7,82.1]).
Since theorem II does not require that R be the value function,
but only a solution .to the G.H.~J.Ineq., solving a basic problem need

not involve solving an entire family'of problems.

Proof of theorem II

Integrating

F(x,y >y') = SRG,y (x)) = 0
70’70 dx 7o

we get:
a
| - + -

. F(X,YO,YO)dX R(a,b) R(ao’bo) 0.
o

From Lemma II, for all y in A(a,b),

a
F(Xay,}’"?)dx -R(a,b) + R(ao’bo) kd 0,

a
o

and so Y, is optimal in A(a,b), completing the proof.
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Notice that since R satisfies the G.H.-J.Ineq.,

Flx,y,(057 60 = %Gy (03Ly () > 0

wherever y; exists and (x,yo(x)) £ Q. Since

SRy () < By, (31,5 ()

where yé(x) exists, we have

0 = F(xy (0,y[(). - %R(x,yo(x))
2 PGy 0,y ®) - ROGx,y, (0)31,5] (x))
> o,
and so
g—;R(x,yo(g)) = Ro(x,yo(X);’i,y;(X))

|

in ! wherever yo exists.
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CHAPTER TV EXAMPLES

The generalized gradient of the value function can be considered
as a closed compact éonvex region in the x-y plane. If it is
rotated 90° clockwise about the origin (that is, {,y)} > {(~y,x)} )
then the G.H.-J.Eq. can be expressed by saying that 3S(a,b) will lie
above the graph of y = H(a,b,x) and will touch the graph at one or

more points.

EXAMPLE I

Let the integrand F be the following:

F(x,y,q) = | q>-1 if laf 21,

A
’_I .

0 if |q] <

Let the set of termination be § = {(x,j) l # >0 }, and the domain

be Rz. Let (ao,bo) = (0,0) tﬁen for each (a,b) € Q the set of

admissible curves is A(a,b) = {lipschitz curves from (0,0) to (a,b) }

For each (a,b) in 9 consider the straight line curve y(x) = bx/a,

which 1ies in A(a,b). These satisfy the netessary condition of the
Euler-Lagrange differential inclusion fér optimality - see [4,theorem 2.4].
Define R, a lipschﬁtz fuﬁction on Q as:

a
R(a,b) = [ F(x,bx/a,b/a)dx
' 0

\%
=

2= a%y/a  if |b/a| >

A
=

o if |b/al <
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The Hamiltonian for the integrand F is:

H(a,b,p) = SUP Pq - q2+ 1 if ]q]_z 1, .
q
pq if |q] <1

p2/4 + 1 if lp| > 2,

Ip] if [p| <2 .

H(a,b,p) is indepéndent of (a,b) € Q, and a sketch of H as a function
of p is - given in figure I below.

The generalized gradient of R(a,b) is_given by:

dR(a,b) = {(f(a2+ bz)/g2 > 2b/a )} if |b/a| > 1,
{(0,0)} if |b/a] <1,
{20 [ 0<a<2} if b/a =1
{(=2,-2) | 0< Ailz } if b/a = -1

This is represented in figure II below.
Notice that when 3R(a,b) is rotated clockwise it always lies on
the graph of H(a,b,x) for any (a,b) in Q, and so R satisfies the

G.H.-J.Eq. on . We can now verify each of the hypotheses of theorem II

(1) y(x) = bx/a lies in Q almost éverywhere,
. d

(i11)  F,y,y') = 57 R(x,y,¥"),

(iii) R is lipschitz on £, and

{(iv) R satisfies the G.H.-J.Ineq. on Q;

hence each of the curves of the form y(x) = bx/a are optimal curves to

(a,b), and R coincides with the value function. These curves, however,
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10 -9 6 -7 -8 -5 -4 -3 =2 -1 |01 2 '3 4

DIAGRAM I - The Hamiltonian for Example I

N w o N

la/b] <1

1 T -} 1 ) 14 T T
-16 -l4 =12 -10 -9 -8 ~7 -6 -5 -4 =3 =2
a/b ==1—"

a/b ==3/2 — o
a/b =—'2 \E‘ :
a/b ="'5/2 \):‘ -

a/b =—3 “..b..' °

a/b =—7/27}.- -

DIAGRAM II 9S(a,b) for Some Values of a/b, Example I



46

are not unique optimal solutions since, for 0% b/a<fL, it is easy to

construct others such as y(x) = MIN{x,b}.

EXAMPLE TI

Consider the integrand F(x,y,q) = q2— y2. From classical
theory.we find that optimal curves, if they exist, should be of the
form y(x) = ]gasin(x), k e R (see [7,82.3] ). - All such extremals
pass thfough the point (m,0) which is a conjugate point (again, see

[7,83.6] ). Let Q, the .set of termination, be given by:
Q= {(x,kesin'x) | 0 <x < 2%, x #:7, |k| <1} .

Notice that Q is open and disconnected. Let the domain be § and let

(ao,bo) = (0,0) then the set of admissible curves to (a,b) & Q will be:
A(a,b) = {lipschitz curves from (0,0) to (a,b) lying in @ a.e.} .

For each (a,b) in Q there is a unique y eAA(a,b) of the form kesin x:

yab(x) = kab31n x with ka —_b/s;n a. Define R on Q as:

b

1 a . .
0

b2cot a

Let R(0,0) = 0; then R is continuous on € U {(0,0) } and R is seen

to be lipschitz on Q,with

||vR(a,b)|| = ||(-b%/sina , 2bcot a)l|

< 5.
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The Hamiltonian for the problem is found to be

H(a,b,p) = p2/4 + b2

and it easily seen that R satisfies the G.H.-J.Eq. on 2. By construction
_d_ 1] = [} .
dxR(x,yab(x),yab(x)) F(x,yab(x),yab(x)) so by corollary II yab is
optimal in A(a,b) and hence R is the value function on Q.

In a similar fashion, if we let
Qm = {(x,ksin x) | 0 < x < 27, x'# m, lgl <m} ,
and
Am(a,b) = { lipschitz curves from-(q,O) to (a,b) within Qm a.e. },

then on Qm , yab will be optimal in Am(a,b). For a > m, any lipschitz
curve from (0,0) to (a,b) which—;éééeélth;o;é; é%,O) must lie within
Qm almost everywhere for some m, hence our curves yag are optimal
over. all lipschitz curves y(x) with y(0) = 0, y{wv) = 0, and y(a) = b.
Notice.that if tﬁe point (7,0) was included in the sets Q or Qm,

then our curves yab could no longer be optimal for a > 7 by Jacobi's

necessary conditioh (see [7,3.6] )
EXAMPLE IiI

Consider the sﬁooth integrand
1/2.

F(x,y,q9) = y(1 + qz)

Let the set of termination be § = {(x,y)l x> 0, y > 0}, let the
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domain coincide with £, and let (ao,bo) = (0,1) then the set of admissible

curves to (a,b) € Q is given by .
A(a,b) = {lipschitz curves from (0,1) to (a,b) lying within £ a.e.}.

This is a very old and often cited pfoblem from the classical
theory of the calculus of variations. It corresponds to minimizing
the area of revolution of a positive function. Physically, the |
problem seeks the shape of a soap bubble spanning two concentric
hoops. Experience indicatesvthat'as'the two hoops are moved away
from one another the bubble eventually breaks. We will see that
this happens, not because of air currents or insufficient soap or
any other accident but because eventually, locally optimal curves
for the problem fail to exist, making the socap film unstable.

0f particular interest is the fact thét the value function
fails to be differentiable despite the faét that the iﬁtegrand satisfies
the claséical requirements of beiﬁgitwice continuousl; differen&iable
and convex. In regions where there are no optimal curves we will
be able to establish the value function, while with the same tools,
in regions which have optimal curves we will find them and the
value function. Where strong local éolutions are found, a well
defined locale Witﬁin which they are optimal is also found.

The solutions to the Euler-Lagrange equation ( 2,8273 ) are

. X-C
of the form y(x) = d-cosh( 3 ) . To each point (a,b) € Q there are
at most two curves of this form in A(a,b) (see diagram III below).

The ensemble of curves of the form y(x) = d°cosh(§§s) with y(x) € A(a,b)
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for some (a,b) € © forms an envelope curve,'E', as in diagram IIT.
If we truncate each of the curves of the ensemble at the point where
it touches the envelope (sée [7,§A3.13]), there remains exactly one
member of the ensemble lying in A(a,b) for each (a,b) € © 1lying
above the envelope 'E'. The constants ¢ and d are smooth .functions

of the coordinates <(a,b) above 'E';

_ . x-c(a,b)
Yab(x) - d(a,b) COShG—E?zTET*Q

Define the locally lipschitz functioﬁ R. on the region above the

1

\

envelope 'E' as follows:

i

.-_'Za . .
. \

3[ da + d-sinhGiégo ‘b + d-sinh(%) 1,

with ¢ = c¢(a,b) and d = d(a,b).

The Hamiltonian for the problem is given by:

SUP [ pq - F(x,y,q) ]
q

H(x,y,q9)

2 2.3 . -
~(y°- p) if y>0 and |p| >y,

+ o otherwise .

The gfadient of Rl is found to be

fa-c|

c 2 2.3
a-c (b -d”) ) H

VR, (a,b) = (4,
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(again with ¢ = ¢(a,b) and d = d(a,b) ) which satisfies the
G.H.-J.Eq. on the region where Rl is defined.
The hypotheses of the lemma III are satisfied on the region above

the curve 'E', and so the curves are optimal in

yab

A'(a,b) = { y € A(a,b) | y lies above 'E' almost everywhere }

For the original problem however, we are assured only that the Yab
are strong local solutions. In search of the value function we will
require a function defined on all of @ . |

For each (a,b) € @ consider the sequence of curves {yn}:=1

defined as follows:

vy, (x) =| 1-nx Cif 0 <x < (n-1) /n?
1/n if  (n-1)/n” < x < a-(ab-1)/n?

b-n(a-x) if a—(nb—l)/nz_i x <a.
For sufficiently large n, Y, is an element of A(a,b) and we find that

a
LIM F(x,y ,y')dx = (b2+ 1)/2
n’’n )
n->® 0

Set Rz(a,b) equal to this value, (b2+ 1)/2, for each (a,b) in Q.

As computation verifies ([1]) Rl = R2 along a curve 'G' which lies
above 'E' (see diagram III). Above the curve 'G' we have Rl< R2,
while between 'G' and 'E' we have Rl> R2. Notice that R2 is smooth

2 satisfies the G.H.-J.Eq.

Notice however, that since'_Rz(ao,bo) # 0, R, cannot be the value

and VRz(a,b) = (0,b) on §, hence R

2



1.97
1.8]
1.7
1.67
1.57

\
e ] ~~ -~
e ~
~ -~
— //
a— l
1 2 y s 6 7 '8 9 1.0 1.1 1.2 1.3 1.4 1.5
DIAGRAM ITI Extremal Curves for Example III
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function. By combining Rl and R2 we will attempt to satisfy all the

hypotheses of lemma III. Define R on & as follows:

R(a,b) = | MIN {Rl’RZ} on the region above 'E'

R2 elsewhere on & .

The function R is lipschitz on £, but fails to be differentiable along

the curve 'G'. The generalized gradient of R is as follows:
9R(a,b) = {VRl(a,b)} if (a,b) is above 'G'
{VRz(a,b)} if (a,b) is below 'G'

co{VRl(a,b),VRz(a,b)} if (a,b) is on 'G' .

Since; (i) R satisfies the G.H.-J.Eq. on &, (ii) R(0,1) = 0, and (iii)
R is constructed from curves or limits of sequences of curves in A(a,b),

we conclude by lemma III that R is the value function.

We have seen that to the right of 'E', that is for large
hoop separation, no film of minimal surface area exists, hence no
bubble is expected to be observed. The minimum is obtained as the
limit of a sequence which, loosely speaking, tends toward a situation
in which each of the hoops has a flat film within its circumference.

This is known as the Goldsmidt solution and it provides the minimal

surface area in the parametrized form of the problem.

Between the curves 'G' and 'E' the catenaries defining Rl
exist, but are not optimal. In classical theory they are called
strong local solutions. It can easily be seen that they are optimal

in the smaller set of admissible functions:
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A'(a,b) = { y € A(a,b) I y lies above 'E' } .

We would expeét that soap bubbles may exist for (a,b) between 'E'
and 'G', but that they would not be stable except under sufficiently

small perturbations.

EXAMPLE IV

| Consider the problem with the integrand F(x;y,q)'= e_ly|+ e_lql,
domain U = { (x,y) e R I x > 0} and set of termination § = U.
Let the initial point (ao,bo) be fhe origin. bThe integrand is

neither convex nor smooth, so the classical Hamiltonian is not '~ defined

anywhere. The generalized Hamiitonian, however, is defined as follows:

H(x,y,q) = -e—lyl if p=0

o otherwise .

be the sequence of

For a point (a,b) € Q let {yn}n=l

admissible curves to (a,b) given by .

) n-1
Yn(X) = |z X for 0 < x < 5o a
(n—})-b - E"nx' for g%il-a < x<a.

we find that:

. .
LIM F(x,y ,y")dx = 0.
> ./iO -oonon

Let R(a,b) = 0 for all (a,b) in QU{(0,0)}, then R satisfies the

G.H.~J.Ineq. on £ since H(a;b,O) = —e_lbl_i 0. Since R satisfies
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all the hypotheses of lemma IIL, R is the value function on Q.
Notice however, that R fails to satisfy the G.H-J.Eq. Since
existence of optimal curves would guarantee that R satisfies the G.H.-J.Eq.

(by theorem I part (b)) we must conclude that no optimal curves exist.



1)

2)

3)

4)

5)

6)

7)

8)

55

REFERENCES

G.A.Bliss, ‘'Lectures on the Calculus of Variations',

Chicago I1l., University of Chicago Press, 1946.

C.Caratheodory, 'Calculus of Variations and Partial Differential
Equations of the lst Order', (1937), translated by R.B.Dean,
Holden-Day Inc., San Franciso Ca., 1967.

Frank H. Clarke, 'Generalized Gradients and Applications’',

Trans. Amer. Math. Soc. 205 (1975) pp247-262.

Frank H. Clarke, 'Euler Lagrange Differential Inclusion’,

J.Differential Equations Vol. 19 (1975) pp80-90.

I.M.Gel'Fand and S.V.Fomin, "Calculus of Variations',
translated by R.A.Silverman, Englewood Cliffs N.J.,
Prentice-Hall 1963. '

H.Goldstein, 'Classical Mechanics', Addison Wesley,

Reading Mass.,1950.

Hans Sagan, 'Introduction to the Calculus of Variatioms',

N.Y.,McGraw-Hill 1969.

D.R.Snow, 'A Sufficiency Téchnique in the Calculus of Variations
| .
Using Caratheodory's Equivalent Problems Approach', J. of Math.
Analysis and Applications Vol. 51 (1975) ppl29-140.



