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i i 

ABSTRACT 

Aft e r a b r i e f review df the relevant c l a s s i c a l 

theory and a presentation of the concept of generalized 

gradients, i t i s demonstrated that, i n analogy with 

the c l a s s i c a l case, a l o c a l l y l i p s c h i t z value function 

s a t i s f i e s a generalized version of the Hamilton-Jacobi 

equation. A s u f f i c i e n c y condition f o r optimality i s 

developed and some examples i l l u s t r a t i n g various 

aspects of the generalized theory are presented. 
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INTRODUCTION 

The basic problem in the Calculus of Variations is that 

of finding a piecewise smooth curve y(x) which minimizes the 

definite integral 

j F(x,y(x),y'(x))dx 

and joins two fixed points (a ,b ) and (a,b). The integrand F 

is classically at least once continuously differentiable. The 

set of curves over which the minimum is sought is called the 

Set of Admissible Curves. 

Caratheodory ['2;P205,VOL III . took the approach of 

considering problems which were equivalent, in some sense, to 

a nice type of problem. A 'Nice' problem was said to be one 

for which the integrand F satisfies 

MIN F*x,y,q) = 0 

q 

for a l l x,y . A problem with an integrand F i s said to be 

Equivalent to a 'nice' problem with an integrand F i f there 

exists a smooth function R(x,y) with 

F*(x,y,q) = F(x,y,q) - R'(x,y;l,q) 

where R'(x,y;l,q) is the directional derivative of R in the 
A 

direction (l,q). The definite integrals of F and F along any 
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admissible curve w i l l d i f f e r by the value R(a,b) - R(a ,b ) and 
o o 

hence we are assured that a curve w i l l solve the nice problem 

( i e ; w i l l be optimal) i f and only i f i t solves the equivalent 

one. 

I t i s found that a problem i s equivalent to a 'nice' 

problem exactly where there e x i s t s a smooth s o l u t i o n to a c e r t a i n 

p a r t i a l d i f f e r e n t i a l equation c a l l e d the Hamilton-Jacobi Equation 

(H.-J.Eq.) 

H(x,y,R 2(x,y)) + R^x.y) = 0 

where and a r e r e s p e c t i v e l y the f i r s t p a r t i a l d e r i v a t i v e s of 

R i n the f i r s t and second v a r i a b l e s . The Hamiltonian Function 

H(a,b,p) i s defined as H(a,b,p) = P ^ - F(a,b,qp) where q^ and 

p are r e l a t e d i m p l i c i t l y by the r e l a t i o n 

—F(a,b,q) | = p . 
9q q=qp. ... 

The Value Function, or Hamilton's C h a r a c t e r i s t i c Function S 

i s given as a function of the end point (a,b): 

•a 
S(a,b) = MIN | F(x,y(x),y'(x))dx 

a 

with the minimum being over admissible curves from (a ,b ) to 
° o o 

(a,b). Where the value f u n c t i o n i s defined and smooth, i t 

s a t i s f i e s the Hamilton - Jacobi Equation. This i n d i c a t e s that 
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many problems are equivalent to 'n ice ' problems. 

There is a greater variety of necessary conditions for 

optimality than of sufficiency conditions, but for 'nice ' problems 

we have a part icular ly simple sufficiency condition at hand: " i f 

F(x,y(x) ,y'(x)) = 0 almost everywhere along the curve y, then y i s 

optimal. " For problems equivalent to a 'n ice ' problem, the 

corresponding condition would require that 

F(x,y(x) ,y ' (x)) - R ' ( x , y ( x ) ; l , y ' ( x ) ) = 0' 

almost everywhere-along with R being some smooth solution to 

the H.-J .Eq. If the value function S is smooth along the optimal 

curve y then i t turns out that y necessarily sat is f ies the above 

relat ion with R = S. 

A major d i f f i cu l ty in applying this theory is the requirement 

of d i f f e rent i ab i l i ty . In many interesting cases there i s no 

guarantee that the value function w i l l be smooth (and i t often is 

not). The c las s ica l soap bubble problem, discussed in example III 

of chapter IV, i s such a case in which the value function actually 

f a i l s to be smooth. By employing the concept of Generalized  

Gradients as defined for l oca l ly l ipschi tz functions, the"theory may 

be studied using functions which f a i l to be differentiable. Although 

the generalized gradient has been defined for a larger class of functions 

(see [3]) we w i l l only consider i t for loca l ly l ip schi tz functions here. 

For a loca l ly l ip sch i tz function f the generalized gradient at 

a point x, denoted 3f(x), i s a compact, convex, non-empty set. 
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If f i s a convex function df coincides with the s u b d i f f e r e n t i a l of f. 

Accompanying the generalized gradient i s the generalized d i r e c t i o n a l 

d e r i v a t i v e , denoted f°(x,y;a,b). L i k e the standard d i r e c t i o n a l 

d e r i v a t i v e f'(x,y;a,b), the generalized d i r e c t i o n a l d e r i v a t i v e i s a 

s i n g l e valued mapping. 

C l a s s i c a l theory presumes the existence of several minima and 

maxima which our generalized theory replaces with infima and suprema. 

We use a Generalized Hamiltonian 

H(x,y,p) = SUP ( pq - F(x,y,q) ) 

q 

to accomodate a greater v a r i e t y of integrands. This d e f i n i t i o n of 

H, u n l i k e that of the c l a s s i c a l Hamiltonian function, i s not predicated 

on the existence of the Legendre transform. I t i s found that a 

l o c a l l y l i p s c h i t z s o l u t i o n R to a Generalized Hamilton - Jacobi Equation 

(G.H.-J.Eq.) 

MAX ( H(x,y,v) + u ) = 0 
(u,v)e8R(x,y) 

(where the 'MAX' e x i s t s automatically) establishes an equivalence 

with a generalized type of 'nice' problem: those s a t i s f y i n g 

INF F(x,y,q) = 0 . 

If the value function, as defined i n c l a s s i c a l theory, i s 

l o c a l l y l i p s c h i t z , i t i s found to s a t i s f y the G.H.-J.Eq. For the 

generalized theory, the value function i s defined for a l l (a,b) as 

J 
a 

S(a,b) = INF | F(x,y(x),y'(x))dx 
a 
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If the infimum of the value function i s not attained (no optimal 

curve e x i s t s ) then the value function may f a i l to s a t i s f y the G.H.-J.Eq., 

but w i l l s a t i s f y the following Generalized Hamilton-Jacobi Inequality  

(G.H.-J.Ineq.) : 

H(a,b,v) + u ^ 0 

fo r a l l (u,v) i n 8 S(a,b). 

A s u f f i c i e n t c o n d i t i o n f o r op t i m a l i t y i s provided by the 

solutions of the G.H.-J.Ineq. as follows: I f R i s a s o l u t i o n to 

the G.H.-J.Ineq. on a region and i s a curve l y i n g i n t h i s 

region and s a t i s f y i n g 

F(x,y o(x),y^(x)) - |^R(x,y o(x)) = 0 

almost everywhere, then y^ i s an optimal curve (provides the infimum 

i n the value function) . 
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CHAPTER I Pr e l i m i n a r i e s 

By a curve we w i l l mean a l i p s c h i t z function mapping an 

i n t e r v a l [a ,a] of the r e a l l i n e 8. in t o the n-dimensional r e a l L o J 

space Rn. We f i x a point (a ,b ) i n 1 X 1 and henceforth consider 
o o 

only curves y which s a t i s f y y(a ) = b . Given a set U i n l n ̂  we 
o o 

say a curve y l i e s i n U almost everywhere i f (x,y(x)) i s i n U for 

almost a l l x i n Ta , a l . 
o J 

Let F : R X _.n X fcn -> R. be a continuous functi o n , l e t U be 
n+1 n+1 a set i n 1 , and l e t (a,b) be a point i n K. 

D e f i n i t i o n 

The following problem i s r e f e r r e d to as a basic problem: f i n d 

INF j F(x,y(x),y'(x))dx 
yeA(a,b ) J a Q 

where A(a,b) := {curves y l y i n g i n U almost everywhere with y(a) = b}. 

I t i s i m p l i c i t that y(a )•= b Q and that y i s l i p s c h i t z (hence y' e x i s t s 

almost everywhere on [a ,al) . Notice that i t i s assumed that a > a . 
o o 

For b r e v i t y , where no confusion r e s u l t s , F(x,y(x),y'(x)) w i l l be 

written as F(x,y,y'). 

The basic problem i s characterized by three things: the 

function F; the set U; and the point (a,b). The set U w i l l be r e f e r r e d 

to as the domain, the point (a,b) as the terminal point, and the 

function F as simply the integrand. The set A(a,b) w i l l be r e f e r r e d 

to as the set of admissible curves to (a,b). Notice that the point 

(a,b) must l i e i n the closure of the domain U, U. 
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For s i m p l i c i t y of presentation we w i l l henceforth consider 

only one-dimensional problems, that i s ; R n = Ht"*", wherein curves w i l l 

map BL into R. 

Consider the family of basic problems determined by a f i x e d 

integrand F, a f i x e d domain U, and a set of terminal points ft. We 
2 

w i l l require that as a subset of R, ft be an open set and we w i l l r e f e r 

to ft as the set of termination for the family of problems. 

D e f i n i t i o n 

For the family of problems described above, we define the.. 

value function S on ft as follows: f o r (a,b) i n ft 

S(a,b) = INF f F(x,y,y')dx 
yeA(a,b) J a 

If the infimum i s a t t a i n e d by some y i n A(a,b), we say that 

y i s an optimal curve to (a,b) or y i s optimal i n A(a,b). Furthermore, 

i f y i s an admissible curve to (a,b) s a t i s f y i n g 

a 
F(x,y,y')dx <_ S(a,b) + 6, (for 6>0) 

a o 
then we say that y i s a 6-near optimal curve to (a,b). A sequence 

r l ° ° 

of curves {y 1 _, with each y a 6 -near optimal curve to (a,b) with n n-1 n n 

6 n 0 as n ->• 0 0 w i l l be c a l l e d a minimizing sequence. Notice that as 

long as S(a,b) i s f i n i t e , there must be a minimizing sequence i n A(a,b) 



Equivalent problems 

* 
Two integrands F and F are s a i d to be equivalent on a set 

2 
( U say ) i n 1 i f there e x i s t s a f u n c t i o n R which i s continuously 

d i f f e r e n t i a b l e on U and s a t i s f i e s 

VR(a,b) • (l,q) = F(a,b,q) - F*(a,b,q) 

for a l l (a,b) i n U, and a l l q i n R. The symbol V represents the 

usual vector gradient while the symbol • represents the usual inner 
2 

(scalar) product on R . 
Consider the two basic problems 

INF f F(x,y,y')dx 
yeA ( a , b ) J a 

and 

INF j F'(x,y,y')dx 
yeA(a,b)J a 

o 
* " 

with F and F equivalent on the domain U. Since 

a * 

j F(x,y,y»)dx - j 
a * 

F(x,y,y»)dx - | F (x,y,y')dx 
a o 

VR(x,y(x)) • (l, y ' ( x ) ) d x 
a 

= R(a,b) - R(a ,b ) , o o 

a curve y i n A(a,b) w i l l be optimal or 6-near optimal for one problem 

i f and only i f i t i s optimal or 6-near optimal r e s p e c t i v e l y f o r the ; 

other. Accordingly, the two problems are s a i d to be equivalent problems. 
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A basic problem or i t s integrand F i s called nice 

( on the domain U ) i f 

• MIN F(x,y,q) = 0 
qe l 

for a l l (x,y) in U. Notice that when a basic problem i s nice, i t 

is suff icient (although not necessary) for y to be optimal in A(a,b) 

to have F (x ,y ,y ' ) = 0 for almost a l l x in [a^.a]. 

The concepts of equivalent problems and nice problems 

were introduced by Caratheodory ( [2 ;§227 vol II] ). In their 

c la s s ica l setting i t is assumed that both the integrand F and the 

function R are smooth. In chapter III we w i l l alter the definitions 

s l i gh t ly , freeing us from these smoothness assumptions. 

The Class ica l Hamilton-Jacobi Equation 

Let F(x,y,q) be a twice continuously differentiable integrand 

a 2 

with Y~2 F(x>y>9) — 0 f ° r a H 9 i n The mapping from {(x,y)} X R 

into {(x,y)} X 1 given by 

is one to one (although the range may be a proper subset of {(x,y)} X I ) 

The c la s s i ca l Hamiltonian function H i s defined as 

H(x,y,p) = p • qQ - F(x,y,qQ) 

where q i s determined impl i c i t ly by the relationship 

a_ 
3'q 

F ( x , y , q ) L = q=qo 

P 
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The transformation df the system (x,y,q,F) into the system (x,y,p,H) 

is known as a Legendre Transform [6,§7.1], Notice that H(x,y,p) may 

not be defined for a l l p in IL. 

Assume that H is defined at the point (x,y,p) and consider 

the following function in q: fCq) = pq - F (x ,y ,q ) . Since this 

function is concave and the f i r s t derivative vanishes at q 
o 

g 
( p ——F(x,y,q ) = 0 ), we must have a maximum occuring at q . dq o o 
Consequently we see that where H(x,y,p) i s defined 

H(x,y,p) = MAX (pq - F(x,y,q) ) . 
qel 

Furthermore, notice that the Hamiltonian w i l l be defined exactly 

where the maximum in the above expression exists . 

Suppose that R establishes an equivalence between F and a 

nice integrand F on U, then 

R*(x,y,q) = F(x,y,q) - VR(x,y)- (l ,q) 

for (x,y) in U and q in IL. It follows that 

MAX (-F*(x,y,q) ) 
q 

= MAX ( | | + | | -q " F(x,y,q) ) 

0, 

and so R sat is f ies the part ia l d i f ferent ia l equation 
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H( x , y , f̂ R(x,y) ) + f̂ R(x,y) = 0 

on U. This equation i s c a l l e d the Hamilton-Jacobi Equation (H.-J.Eq.). 

Notice that conversely, i f R s a t i s f i e s the H.-J.Eq. on U then i t 

provides an equivalence between F and the n i c e integrand 

F*(x,y,q) = F(x,y,q) - VR(x,y)-. (l,q) 

on U. 

Caratheodory's lemma [7,theorem 5.1] asse r t s that i f the 

infimum of the value function i s attained at every point of an open 

set V and i f i t i s continuously d i f f e r e n t i a b l e on V, then the 

value function establishes an equivalence between F and a nice integrand 

on V. Consequently, the value function w i l l s a t i s f y the H.-J.Eq. on 

the open set V. 
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The Non-Classical Situation 

For integrands which may not satisfy the class ical assumption 

of being twice continuously di f ferentiable , we define the more 

versat i le generalized Hamiltonian 

H(x,y,p) = SUP (pq - F(x,y,q) ) . 
qeR 

As a supremum of affine functions in p the generalized Hamiltonian 

w i l l be convex in p, and may assume values of plus i n f i n i t y . Unlike 

the c las s ica l Hamiltonian i t may happen that the supremum is not 

attained by any q in R, or that i f the supremum is attained i t i s 

attained for more than one q. Whenever the assumptions that F i s 

twice continuously differentiable and s t r i c t l y convex in q are 

v a l i d , the c la s s ica l Hamiltonian, where i t is defined, w i l l equal 

the generalized Hamiltonian. Without confusion, then "Hamiltonian" 

w i l l henceforth refer to the generalized Hamiltonian. 

Consider the H.- J .Eq . in which the generalized Hamiltonian 

i s employed. If R is a continuously differentiable solution to this 

equation, then setting F (x,y,q) = F(x,y,q) - VR(x,y) • ( l ,q) gives 

INF F*(x,y,q) 
q 

= -SUP [ VR(x,y)- ( l ,q) - F(x,y,q) ] 
q 

= - ~ R ( x , y ) - H( x , y , -^RCx.y) ) 

= 0 . 
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Unlike the s i t u a t i o n i n the c l a s s i c a l case, we are not 

assured here that the infimum i s a c t u a l l y a t t a i n e d . In order to 

extend the c l a s s i c a l theory then, i t seems n a t u r a l to modify the 

d e f i n i t i o n of n i c e problems or integrands as follows: 

DEFINITION 

A basic problem or i t s integrand F i s s a i d to be n i c e on U if_ 

INF F(x,y,q) = 0 
q 

for a l l (x,y) jLn U. 

The c l a s s i c a l theory demands not only that the integrand be 

twice d i f f e r e n t i a b l e , but also that ' 

( i ) the value function be continuously d i f f e r e n t i a b l e and 

( i i ) optimal curves e x i s t ( i e : the infimum def i n i n g the value 

function i s always attained ) 

(see [7,§3] ). 

These two c o n s t r a i n t s on the value f u n c t i o n are d i s t i n c t from 

smoothness and convexity i n q imposed on the integrand. As we see 

i n example I I I chapter IV, the assumptions on the integrand are 

s a t i s f i e d , however those on the value function are not. If the 

integrand need not be convex i t i s very easy to construct simple 

examples i n which optimal curves do not e x i s t . Consider f o r example, 

F(x,y,q) = (1 + q 2 ) " 1 . 
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U s i n g "sawtooth shaped" c u r v e s we can g e t 

j F(x,y,y')dx 
J a o 

as c l o s e to z e r o as we w i s h , y e t s i n c e F i s s t r i c t l y p o s i t i v e , no 

c u r v e w i l l p r o v i d e t h e infimum v a l u e o f z e r o . 

I f the i n t e g r a n d need n o t be smooth, i t i s easy t o c o n s t r u c t 

examples i n which the v a l u e f u n c t i o n i s n o t smooth. The s i m p l e 

i n t e g r a n d F ( x , y , q ) = |q| f o r example, y i e l d s t h e non-smooth v a l u e 

f u n c t i o n S (x,y) = |yj . S t u d i e s have been made of i n t e g r a n d s which 

may f a i l t o be smooth but r emain convex, o r l i p s c h i t z (see [5] and the 

r e f e r e n c e s p r o v i d e d t h e r e ) . 

A l t h o u g h the v a l u e f u n c t i o n f r e q u e n t l y f a i l s t o be smooth, the 

a u t h o r knows of no c a s e i n which the v a l u e f u n c t i o n i s f i n i t e b u t n o t 

l o c a l l y l i p s c h i t z as l o n g as the i n t e g r a n d remains c o n t i n u o u s . In 

f a c t , i f F i s l i p s c h i t z and i t happens t h a t we can f i n d a r e a l K such 

t h a t f o r a l l (a,b) i n a neighbourhood 17 , t h e o p t i m a l c u r v e y , t o (a,b) 
ab 

s a t i s f i e s |y'| <K, t h e n t h e v a l u e f u n c t i o n S w i l l be a s s u r e d of b e i n g 

l i p s c h i t z i n the n e i g h b o u r h o o d . The bound K can be g u a r a n t e e d by 

growth c o n d i t i o n s on the i n t e g r a n d . 
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LEMMA I CONDITIONS FOR A LIPSCHITZ VALUE FUNCTION 

Let Q, be a set of termination of the form 

n = { ( x , y ) e x > e > 0, and | a p - x| + |b - y < M < 0 0 } 

for fixed e,M i n R, and l e t the domain U be R . The value function 

S(a,b) = INF I F ( x , y , y ' ) d x 
yeA(a,b) / a 

J o 
w i l l be l i p s c h i t z on Q i f there e x i s t p o s i t i v e constants and 

3 3 such that for a l l (x,y,q) e R and (a,8,Y) e R , F s a t i s f i e s 

( i ) F(x,y,q) _> 1 and 

( i i ) F(x+cx,y+g,q+Y) 1 F(x,y,q) • exp 
! I (a ,e,Y)| I 

(k2+|I(x,y,q)|j) 

Condition ( i ) requires only that F be bounded below, since 

the addition of a constant to the integrand merely adds a l i n e a r 

term to the value function. Condition ( i i ) i s a growth condition 

which, for d i f f e r e n t i a b l e functions, assumes the form 

k. 
f ' ( x ) < f ( x ) -

x +k. 

Functions of the form f(x) = jxj for a >1 s a t i s f y t h i s condition 
1 

but functions with cusps pointing downward, such as f(x) = |x| 2 

do not. 



16 

Proof of Lemma 1 

We begin by showing that S i s bounded on ft. Assume, without 

loss of generality, that (a o > b Q ) = (0,0). For (a,b) in ft we-consider 

the straight l ine y e A(a,b) given by y(x) = bx/a. 

S(a,b) <_ f F(x,bx/a,b/a)dx 
J 0 

<j F(0,0,0)- ex P [ kx| | (x,bx/a,b/a)|| /k2 ]dx 

< J F(0,0,0)- exp[ ^1 | (M,M,M/e)| |/k2 ]dx 

< M- F ( 0 , 0 , 0 ) « exp[ kJ | (M,M,M/e)|| /k2 ] 

< °° • 

Thus S has an upper bound and a lower bound as desired (the lower 

bound being zero, since F is pos i t ive) . 

To show that S i s l ip sch i tz on ft, i t is sufficient to show 

that i t is l ipschi tz separately in the variables x and y. Let y^ 

and y^ be 6-near optimal curves to (a^,b^) e ft and (a^ b^) e ft, 

respectively. Define the curve z e A(a^,b^) by 

z(x) = Y 2(x) + (b 1 ~b 2 )x/a 1 . 

Now, 
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S(a 1 ,b 1 ) < J 1 F ( x , z ( x ) , z , ( x ) ) d x 

k.| | ( 0 , ^ X ) b i - b 2 , 
.1 ai &i 

J%(x,y 2 ,y 2 

j 1 F ( x , y 2 , y 2 ) -

) • exp 

exp 

) • exp 

I I (x , y 2 , y ' 2 ) l| -Hk2 

b1 w ^ - ^ i r * ) ! 

a i 

dx 

dx 

dx . 

From elementary calculus, i f x i s bounded then 3K e & such that 

e l x l £ 1 + [Kx|. Using this fact we see that 

S (a 1 ,b 1 ) < J 1 F ( x , y 2 , y 2 ) d x . [ 1 + 'Ki b ^ l ] 

< [ 6 + S (a l 5 b 2 ) ] • [ 1 + K | b 1 - b 2 | ] 

Rearranging and le t t ing 6 0, 

S (a l 5 b ) - S(a 1 ,b 2 ) < K- |b1-l>21 

where K can be chosen independently of a^, b^, b^-

Interchanging b^ and b 2 in the above argument we get 

S (a l S b 2 ) - S(a 1 ,b 1 ) < K- |b 1 ~b 2 | , 

and so S is l ip sch i tz in the second variable. 

To see that S i s l ip sch i tz in the f i r s t variable, we redefine 

the curves y^ and y 2 to be 6-near optimal curves to (a^,b^) E ft and 
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(a ^ j b ^ ) e ft, r e s p e c t i v e l y . L e t u(x) = a^x/a^ and d e f i n e z e ACa^b^) 

as z ( x ) = y^CuCx)). We have, 

S ( a 1 , b 1 ) < j 1 F ( x , z , z ' ) d x 

2 J 0 / a 2 ' y 2^ u- ) ' a 2 y 2 ^ u ^ a i ^ d u 

* exp 
k I I ( - a-1^2 ( ^ 2 U , o , ± i l i 2 y ' )|| u , 0 , 

a 2 a j du 
k 9 + | | ( u , y 2 , y 2 ) | | 

a l f a ? 

2 J 0 F ( u , y 2 ' y 2 ) " e x p f k l ' ( I a l " a 2 l / a2 + I a i - a
2 f / a l >3 

du. 

As before, the exponential term can be bounded by K.|a^-a,J and we get 

S ( a 1 , b 1 ) < J 1 F ( x , y 2 , y 2 ) d x . [ 1 + K ^ - a^J ] 

(a.K + 1) 
[ 6 + S ( a 2 , b 1 ) ] • [ 1 + — ± • |a r a

2 l i 

Rearranging and l e t t i n g 6 -> OJ 

S ( a 1 , b 1 ) - Sia^b^ < K-

w i t h K independent of a^, a 2 > and b^. As b e f o r e , by interc h a n g i n g 

a^and a 2 we o b t a i n 

S ( a 2 , b 1 ) - S ( a 1 , b 1 ) < K- la^-a^ , 
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and so S i s also l i p s c h i t z i n the f i r s t v a r i a b l e . This completes 

the proof. 
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Chapter I I GENERALIZED GRADIENTS 

Let f:R n ->• R n be a l o c a l l y l i p s c h i t z function. By 

Rademacher's theorem, f i s d i f f e r e n t i a b l e almost everywhere although 

i t need not be continuously d i f f e r e n t i a b l e anywhere. If V i s a 

subset of BLn, coV w i l l denote the convex h u l l of V i n H n. 

D e f i n i t i o n (see [3] ) 

The generalized gradient of a l i p s c h i t z function f at a 

point x e B.n,' 8 f (x) , i s defined as follows: 

3 f ( x ) = co{Xel n| X = L I M Vf(x ) , x' = L ™ x }. 
1 n-*o° n n-**> n 

(This d e f i n i t i o n has been extended to a l a r g e r c l a s s of functions -

see [3] ). 

The f o l l o w i n g examples i l l u s t r a t e the generalized gradient 

of two simple f u n c t i o n s . 

Example Let f( x ) = | x | , then 

3f ( x ) = | {1} i f x > 0, 

{-1} i f x < 0, 

[-1,1] i f x = 0. 

2 

Example Let f ( x ) = x s i n ( l / x ) . For x f 0 

f'(x) = 2xsin(l/x) - c o s ( l / x ) . For x = 0, using basic p r i n c i p l e s , 

we f i n d f'(0) = 0. The generalized gradient, however, i s given by 
3 f ( x ) = {f'(x)} i f x f 0, 

[ -1,1] i f x = 0. 
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The generalized gradient 3f(x) i s a closed, compact, convex, 

non-empty subset of R n (see [3] ). If L is a loca l l ip sch i tz constant 

for f about x, then i t is easy to see that for a l l A e 3f(x), 

If f i s continuously differentiable at x then clearly 

2 
9f(x) = (Vf(x)}. It may happen, as in the example f(x)=x s in ( l / x ) , 

that Vf(x) exists but 3f(x) f (Vf(x)}. In any case, we are always 

assured of the following property: 

Property 1 

If Vf(x) exists , then Vf(x) e 3f(x). 

The l ip sch i tz property of f provides a very useful form 

of continuity for the generalized gradient: 

Property 2 

The generalized gradient is upper semi-continuous 
oo 

(U.S.C.) , that i s ; i f {x } converges to x, and A e 3f(x ) n n - l a — n n 
oo 

for 1 < n <°°, then any l imi t point A to {A } , sat isf ies A £ 3f ( x ) . _ £ c — n n=_ 

Notice that {A } i s assured of having at least one l imi t n n - l & 

point since for large n, A_̂  l i e s within the (compact) sphere of 

radius L where L is a local l ipschi tz constant for f about x. 
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D e f i n i t i o n (See [3] ) 

The generalized d i r e c t i o n a l d e r i v a t i v e of a l i p s c h i t z function  

f at a point x e R n i n a (non-zero) d i r e c t i o n v e I n
5 f°(x;v), i s 

given by 

f°(x;v) = LIM SUP [(f(x+h+6v) - f(x+h) )/6 ]. 
h + 0 
5 + 0 

Like the usual one sided d i r e c t i o n a l d e r i v a t i v e , denoted f'(x;v) 

when i t e x i s t s , the generalized d i r e c t i o n a l d e r i v a t i v e i s a map­

ping from R n X _.n to H. Notice that from the d e f i n i t i o n of f° 

we have the following: 

Property 3 

f' (x;v) <_ f°(x;v) for a l l x,v i n l n . 

Example Let f(x) = -|x|, and consider f°(0;v). Notice that 

| <5v| _> |h| - |h+6v| and so |v| _> LIM SUP (-| h+6v |+| h| ) / 6. 
h -»• 0 
6 + 0 

If we l e t h =-6v then the reverse i n e q u a l i t y i s established and we 

conclude that f°(0;v) = |v|. This i s i n contrast to the c l a s s i c a l 

s i t u a t i o n , i n which f'(0;v) = — jv} . 

An equivalent, and often more convenient, d e f i n i t i o n of the 

generalized d i r e c t i o n a l d e r i v a t i v e i s given by 

f°(x;v) = MAX { A- v| X z 9f(x) } 
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( see [3] ). The maximum i s attained at an extreme point i n 3f ( x ) , 

and since a l l extreme points are of the form LIM Vf(x ) f o r some 

sequence ix^} converging to x, the fo l l o w i n g property holds: 

Property 4 

f°(x;v) = v • LIM Vf(x ) f o r some sequence {x } , converging n a n n - i n-x» 
to x. 

Suppose now that f'(x;v) e x i s t s . Then 

MAX {X«v|\e3f(x)} 

= f°(x;v) 

> f*(x;v) 

= -f'(x;-v) 

> -f°(x;-v) 

= -MAX { -A*V|A E 9 F ( 2 i ) > 

= MIN { X-v|X e 3f(x) } 

and we have the following property: 

Property 5 

f*(x;v) e:{X-v|X e 3f(x)} 

= [-f°(x;-v) , f°(x;v)] . 

Let E be any set of zero measure. Define 3f on 5i n as 
E 

Bf^Cx) = co{XEttlrXiF; LIM Vf(x ),x -> x as n-**>, and x / E }, E n n n n-*» 

and define the function f° on Rn X S.n as 
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f ° ( x ; v ) = LIM SUP 
h 0 
6 + 0 

{ [f (x+h+6v)-f (x+h)] ,/6 | x+h,x+h+6v i E}. 

As i s demonstrated in [3] , the following equalities hold: 

Property 6 

3f (x) 

f ° ( x ; v ) 

and so also 

The generalized gradient and direct ional derivative extend 

the concept of the subdifferential of a convex function. If f i s a 

convex function then 

(i) the generalized gradient is ident ical to the sub-

d i f ferent ia l 

Several results employing the subdifferential have been extended 

by the use of the generalized gradient (for an example and a br ief 

discussion see [4 , introduction] )• 

We w i l l have occasion to consider the generalized gradient 

of a function at an end point of the interval on which i t is defined. 

In this s ituation the generalized gradient w i l l be determined by 

l imits of sequences restr icted to the interval of def init ion of the 

function. If f : [ 0 , l ] -»- 51 is l i p s c h i t z , 

( i i ) f ° ( x ; v ) = f ' (x ;v) 

( i i i ) f(x) = {a} i f and only i f Vf(x) exists and a = Vf(x). 
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3 f ( l ) = co{a|a=LIM Vf(x ),x x e [0,1]} . 
n n n 

n-*» 

This corresponds to extending f symmetrically about 1, and so the 

properties given i n t h i s chapter w i l l hold, with the appropriate 

r e s t r i c t i o n s . Notice that the "one-sided" generalized gradient 

described here w i l l be a subset of the "standard" generalized 

gradient, i f the l a t t e r e x i s t s . 
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CHAPTER I I I THE GENERALIZED HAMILTON-JACOBI EQUATION 

R e c a l l Caratheodory's d e f i n i t i o n of equivalent problems; we 

w i l l generalize the concept as follows: 

DEFINITION 

One problem, or i t s integrand F, i s sa i d to be equivalent to 
* 2 another (with i t s integrand F ) on a set U e R i f there e x i s t s a 

l o c a l l y l i p s c h i t z f u n c t i o n R with i t s generalized gradient defined 

on U and s a t i s f y i n g 

F (a,b,q) = F(a,b,q) - R°(a,b;l,q) 

for each (a,b) e U and q e R. 

* 
If i n the above d e f i n i t i o n F i s a n i c e integrand we have, f o r 

(a,b) i n U and (u,v) r e s t r i c t e d to 3R(a,b), that 
INF [F(a,b,q) - R°(a,b;l,q)] 
q 

= - SUP [ MAX (u,v) • (l,q) - F(a,b,q) ] 
q (u,v) 

= - MAX { SUP [vq - F(a,b,q)] + u } 
(u,v) q 

= -..MAX [ H(a,b,v) + u ] 
(u,v) 

= 0 . 
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DEFINITION 

The relat ion 

MAX [ H(a,b,v) + u ] = 0 (a,b) e U 
(u ,v)e8R ( a ,b ) 

w i l l be referred to as the generalized Hamilton-Jacobi equation 

2 
(G.H.-J.Eq.) for R on the region U e H . 

Because the generalized gradient 8R i s a compact set and the 

Hamiltonian is convex in the third variable (hence continuous on 

open sets, |where i t i s f i n i t e ) , the use of a maximum, as opposed 

to a supremum, i s jus t i f i ed in the above def in i t ion . Since H may 

assume values of °° however, the G.H.-J .Eq. impl i c i t ly requires that 

H(a,b,v) be f i n i t e for a l l (u,v) in 3R ( a ,b ) . 

Notice that in analogy with the c la s s ica l case, a l oca l ly 

l ipschi tz function R w i l l satisfy the G.H.-J .Eq. on U i f and only i f 

i t establishes an equivalence between the problem and a nice problem 

on U. 

* 

If F , given by 

F*(a,b,q) = F(a,b,q) - R ° ( a , b ; l , q ) 

i s known only to be posit ive, then we find that R sat is f ies 

MAX [ H(a,b,v) + u ] <_ 0 , 
(u ,v)e9R ( a ,b ) 

which w i l l be referred to as the generalized Hamilton-Jacobi inequality  

for R (G.H.-J.Ineq.) . A loca l ly l ip sch i tz function w i l l establish 
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an equivalence with a p o s i t i v e integrand on U i f and only i f i t 

s a t i s f i e s the G.H.-J.Ineq. on U. 

The following i s the c e n t r a l r e s u l t . 

THEOREM I NECESSARY CONDITIONS 

a) Let 

S(x,y) = SUP | F(x,y(x),y'(x) )dx 
yeA(x.y) J aQ 

where A(x,y) = { curves to (x,y) which l i e i n the domain U almost  

everywhere }. If_ 

( i ) S i s defined on a neighbourhood >7 C U of a point (a,b), 

( i i ) S i s l o c a l l y l i p s c h i t z i n j] , and 

( i i i ) F(x,y,q) i s continuous i n a l l three v a r i a b l e s , 

then 

F(a,b,q) - S°(a,b;l,q) > 0 

f o r a l l (u,v) e 9S(a,b) and q E R. 

b) I f , i n ad d i t i o n , i s an optimal curve to (a,b) then 

F(a,b,q o) - S°(a,b;l,q o) = 0 

for some q^ e 9y^(a). 
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Part (a) of the theorem states that inter ior to where S is 

defined and loca l ly l i p s c h i t z the problem w i l l be equivalent to one 

with a positive integrand. As we have seen, this i s the same as 

saying that where S i s defined and loca l ly l i p s c h i t z , i t w i l l satisfy 

the G.H.-J . Ineq. The value function is thus seen to be closely 

linked to the Hamiltonian function by the G.H.-J . Ineq. S imilar ly , 

part (b) of the theorem assures us that under stronger hypotheses 

S w i l l be a solution to the G . H . - J . E q . This relationship between 

the value function and the Hamiltonian function is futher considered, 

i n i t s c l a s s i c a l setting in [7,chapter 9] . Notice that y Q need not 

be defined outside the interval , [a Q ,a] , hence 9yQ(a) requires the 

interpretation discussed at the end of Chapter II . 

Proof of Theorem I 

In addition to the hypotheses of the theorem, assume that 

VS(a,b) exists . For q e 1 le t y q (x) = b + (x - a)q be the l i n e 

through (a,b) with slope q. Select e > 0 small enough that 

a < a - e and the l ine segment {(x,y (x)) I xe[a-e,a+e] } l i e s 
o q 

within TJ . Let x^ and x 2
 l i e i n [a-e,a+e] with x^ < x 2 and le t 

y^(x) be a 6-near optimal curve from ( a
0>b o) to (x^,y^(x^)). 

Define 9&M e A ( x 2 > y q ( x 2 ) ) as 

y 6 (x) = y g (x) i f ± x < X ; L , 

y (x) i f x 1 < x < x 2 . 
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As a function of x, S(x,y q(x)) i s local l y l i p s c h i t z on [x^,x2] 

and so -^S(x,y q(x)) exists almost everywhere on [x^,x^] .. Now, 

I X ' [ F(x,y q,y;) - ^ S ( x , y q ( x ) ) ] dx 
x l 

j ^ F (x ,y f i ,y ' )dx - j 1 F ( x ,y f i , y ' )dx - f  2 ^S(x,y q(x))dx 
J ao J ao J X l 

> S(x 2,y (x 2)) - [S(x l Sy ( X ; L)) + 6] 

S(x 2,y q(x 2) - S(x 1^y q(x 1)) 

Since we may independently choose 6 a r b i t r a r i l y small and since the 

interval [x^,x 2] C[a-e,a+e] is arbitrary, we see that for almost 

a l l x in [a-e,a+e] , -j-S(x,y (x)) exists and 
Q X C[ 

F(x,y q(x),q) - -^S(x,y q(x)) _> 0. 

Let E = {xe[a-e,a+e] | -^S(x,y q(x)) does not exist, or 

F(x,y q(x),q) - ̂ S(x,y q(x)) < 0 } , then E has zero measure. 
oo 

select a sequence {x } , i n [a-e,a+e] with x a as n -> °° 
n n=l n 

oo and {x} - n E = ^, then recalling that F i s continuous, n n=l 
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LIMSUP [ F(x n ,y (x ),q) " ^ ( ^ . Y ( x n » ] 
n -»• 0 0 

= F(a,b,q) - LIMINF (x .y ( x n ) ) 
ri -> °° 

> 0 

Denote the generalized gradient of S(x,y^(x)) as a function in x alone, 

as 3 S(x,y (x)), (not to be confused with 3S(x,y(x)) ). x q 

Now, 

3 S (a,y (a)) . = co { a | a = LIM (x Q,y (X q)) , with 

x 4 E and x a as n °° } , n ' n 

and as we have seen, for each a: 

F(a,b,q) - a > 0 . 

Taking the convex h u l l of the a's preserves this property, that i s ; 

V a e 3 S „ ( a , y (a)), F(a,b,q) - a > 0. By property 6 of chapter II. 
x E q 

V a e 3 S(a,y (a)), F(a,b,q) - a j> 0. In part icular , S(a,y (a)) 
X C[ Q X 

l i e s in 9 S(a,y (a)) (property 1 of chapter II) and also, x 

y-S(a,y (a)) = VS (a,b) • ( l ,q) , so: dx q 

F(a,b,q) - VS(a,b)- (l ,q) _> 0 . (Equation 1) 

We now drop the assuption that VS(a,b) exists . Let 

(u ,vQ) e 3S(a,b) be such that S ° ( a , b ; l , q ) = ( u
0 , v

0 ) •(l><l) 
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and such that there is a sequence ^ a
n ' ^ n ^ n - i converging to (a,b) 

with (u ,v ) = LIM VS(a,b). Existence of (u ,v ) is assured by ° ° o o 
property 4 of chapter II. For n large enough that (a ,b ) lies 

n n 
interior to 77 we have 

F(an,bn,q) - VS(an,bn) • (l,q) > 0 , 

and so, taking the limit as n •+ °°, 

F(a,b,q) - S°(a,b;l,q) •_> 0 , 

as stated in (a) of the theorem. 

Part II We proceed to show that the minimum value is zero and 

that i t is always attained if an optimal curve exists. Let Y q be 

an optimal curve to (a,b) and select x^ > a so that (x^,yo(x^)) 

is interior to the neighbourhood 77 , and such that; 

(i) y Q ( x i ^ exists, and 

(ii) | ^ I F(x,yo,y^)dx = F (x^,yQ(x^),y^(x^)) at x = x± 

J ao 

Note that (i) and (ii) hold almost everywhere along y . Now 
o 

s V ^ y ^ ) ; ! ^ ) ) 

LTMSUP [ S(x + h + X , y (x.) •+ h + Xy'( X l)) /, . 1 1 o 1 2 o 1 (h^.h^HO 

- s(X;L+ h1 , y Q(x 1) + h2) ] /x 
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> LIMSUP [ S(x + X,y (x ) + Xy'(x )) - S(x ,y (x ) ) ] / X 
X + 0 

= LIMSUP [ S(X;L+ ^ ,y o (x 1 ) + ^ (*,_)) " S( X l + A,y o (x 1 + X)) 
X + 0 

+ S(X;L+ ^,y o(x 1+ X)) - S (x 1 , y o (x 1 ) ) ] / X 

Let M be the l ip schi tz constant for S in a neighbourhood of 

(a,b). Since YQ(:x-1
+ = yQ^xi^ + ^ o ^ l ^ + o(-X^> f o r s m a 1 1 X 

we have: 

S ° ( x 1 , y o ( x 1 ) ; l , y ; ( x 1 ) ) 

>. LIMSUP [ o(X)-M + S(x + X,y (x + X)) - S (x ,y (x.. )) ] / X 
A 4- 0 

h | F (x ,y 0 ,y ; ) )dx (at x = x L ) . 
a 

o 

Since y i s a neighbourhood of (x^,yQ(x^)), part (a) of the theorem 

holds here, that i s : 

F ( x 1 , y o ( x 1 ) , y ' ( x 1 ) ) - S ° ,y Q (x^ ;1 ,y ' (x^ ) 

is non-negative. Since 

d 
F ( x 1 , y o ( x 1 ) > y ; ( x 1 ) ) d x 

x 
F(x ,y o , y * )dx (at x = x ) 
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we combine this with the previous inequality to get: 

F ( x 1 , y o ( x 1 ) , y ' ( x 1 ) ) - S ° ( x r y Q (x .^ ; l ,y^ (x^) = 0 . (Equation 2) 

oo 

Now select a sequence {x } , with the following properties: 
n n=l 

for each n _> 1 ; 

(i) y ' (x ) exists , o n 

^ j l F ( S ' y ° ' y ; ) 

dx = F(x ,y Q (x) ,y ' (x)) at x = x n , 

( i i i ) (x ,y (x )) l i e s inter ior to n , n o n ' 

(iv) x a as n -* °°, and f i n a l l y , n 

oo . 
(v) (y'(x )} . converges (to q say) o n n=l o 

Conditions (i) and ( i i ) are sat is f ied almost everywhere along y^ , 

as mentioned ear l ie r , so conditions (i) through (iv) are easily met. 

Since yQ i s l i p sch i t z , y' i s bounded and any sequence satisfying 

(i) through (iv) w i l l have a sub-sequence satisfying (v) as wel l . 

For such a sequence {x } let {(u ,v ) } ° ° , be a sequence 
n n=l n n n=l 

satisfying (u ,v ) E 9S (X ,y (x )) and n n n o n 

for each n > 1. 
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For each "Equation 2" above w i l l hold and we may rewrite i t in 

the form: 

F ( x n , y 0 ( x n ) j y ; ( x n ) ) - ( u n , v n ) . ( l , y ; ( x n ) ) = 0. 

Since S is l ip sch i tz {(u ,v ) } ° ° has a convergent sub-sequence and 
n . n n=l 

i t s l imi t ( u
0 » v

0 ) l i e s in 3S(a,b) (property 2 of chapter II) . 

S imi lar i ly q^ , the l imi t of ^ y o ( x
n ^ n - i H e s I n 9 y Q ( a ) ' Taking 

the l imi t as n 0 0 in the above equation we get 

F(a,b,q Q ) - ( U O , V q ) • ( l ,q Q ) = 0 . 

Now 

F(a ,b,q ) - MAX [(u,v) • ( l ,q )] 
° (u,v)e3S(a,b) 

= F(a ,b ,q o ) - S ° ( a , b ; l , q o ) 

< F(a ,b,q d ) - (u Q ,v o ) • ( l ,q Q ) 

.- 0, 

and i n consideration of (a) in the theorem, 

F(a,b,q Q ) - S ° ( a , b ; l , q o ) = 0 

completing the proof. 
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Notice that "equation 2" i n the proof of theorem I provides 

a g e n e r a l i z a t i o n to Caratheodory 1s fundamental lemma ( [ 7 , § 5 . 1 ] ) : 

under the hypotheses of the theorem, i f y i s optimal and y' i s continuous 

at a point x with (x,y(x)) within n , then conditions ( i ) and ( i i ) 

at the beginning of part II of the proof hold, and so according to 

"equation 2" ; 

MIN [F(x,y(x),q) - S°(x,y(x);l,q)] 
q 

= F(x,y(x),y'(x)) - S°(x,y(x),y'(x)) 

= 0 . 

I f S i s continuously d i f f e r e n t i a b l e as i s assumed by Caratheodory's 

lemma, then S° coincides with the c l a s s i c a l d i r e c t i o n a l d e r i v a t i v e . 

Although the value function w i l l not be the only s o l u t i o n to 

the G.H.-J.Ineq., any s o l u t i o n can be used to e s t a b l i s h a lower 

bound on the value f u n c t i o n , as we see i n the following lemma. 

LEMMA II LOWER BOUNDS ON THE VALUE FUNCTION 

Let F(x,y,q) be an integrand y i e l d i n g the Hamiltonian 

H(x,y,p). Let R(x,y) be a l o c a l l y l i p s c h i t z function defined on an  

open region ft and s a t i s f y i n g the generalized Hamilton-Jacobi  

i n e q u a l i t y 

H(a,b,X 2) + X x 1 0 ( W e 8R(a>b) 

at each (a,b) i n ft . 
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If z i s any l i p s c h i t z curve j o i n i n g ^a^'^j} e ^ a n c * 

(a^jb^) £ ft with a^ < a^ and (x,z(x)) i n ft f o r almost a l l 

x e [a^,a ], i t follows that 

/ z F(x,z(x),z' (x))dx >_ R(a 2,b 2) - R(a 1,b 1) 
a l 

Proof of lemma II 

For almost a l l x e [ a ^ j a 2 ] z ' ( x ) e x i s t s , the G.H.-J.Ineq. 

holds at (x,z(x)), and 4~"R(x,z(x)) e x i s t s . The equivalent integrand 
dx 

* o , F (x,y,q) = F(x,y,q) - R (x,y;l.q) i s p o s i t i v e on ft, and so by 

property 3, cnapter I I : 

F(x,z(x),z* (x)) - ^ R ( x , z ( x ) ) 0 

/ 
for almost a l l x e [a^,a 2] . Integrating, we get the desired r e s u l t : 

L F(x,z(x),z'(x))dx - R(a 2,b 2) + R(a^,b^) > 0 
S l 

Under the hypotheses of lemma I I , l e t the'point (a ,b ) l i e 
o o 

i n the closure of ft; ft . Assume also that we can define R(a ,b ) 
o o 

as: 

R(a ,b ) = LIM' R(a,b) 
° ° (a,b)->(a o,b o) 
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where LIM' ind i c a t e s the l i m i t with (a,b) r e s t r i c t e d to ft . 

If we l e t ft coincide with the domain of the problem; that i s , f o r 

(a,b) i n ft l e t 

A(a,b) = {curves y | y(a)=b and y l i e s i n ft almost everywhere} , 

then we have 

f a 
INF j F(x,y,y')dx _> R(a,b) - R(a o,b Q) . 

yeA(a.b)J a Q ° ° 

We see then, that the value f u n c t i o n i s the l a r g e s t (majorizing) 

l o c a l l y l i p s c h i t z s o l u t i o n to the G.H.-J.Ineq. which can be extended 

continuously by s e t t i n g S ( a o , b Q ) = 0 . Often however, the following 

question i s of more p r a c t i c a l i n t e r e s t : 'given a l o c a l l y l i p s c h i t z 

function R (which we suspect of being the value f u n c t i o n ) , under 

what conditions are we assured that i t i s i n f a c t the value function?'. 

A set of s u f f i c i e n t conditions i s provided by lemma III below. 

LEMMA I I I SUFFICIENT CONDITIONS FOR THE VALUE FUNCTION 
2 

Let ft e 1 • be a set of termination and l e t U , the 

domain of the problem, coincide with ft . If the integrand F i s 

continuous then a function R defined on ft U {(a ,b )} which i s o o 

l o c a l l y l i p s c h i t z on ft w i l l be the value function f o r the problem i f  

and only i f , f o r (a,b) r e s t r i c t e d to ft: 
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( i ) R s a t i s f i e s the G.H.-J.Ineq. on ft , 

( i i ) R(a ,b ) = LIM R(a,b) = 0 , and 
° ° (a,b)-(a o,b o) 

( i i i ) V (a,b,) eft 3 {y } . C A(a,b) such t h a t : 
n n=l 

J o 
LIM I F ( x , y ^ , y ^ ) d x = R(a,b) 
n - H » 

P r o o f o f lemma I I I 

N o t i c e t h a t s i n c e U = ft, (a ,b ) must l i e i n the c l o s u r e o f ft 
o o 

o t h e r w i s e A(a,b) = $ f o r a l l ( a , b ) . 

F o r n e c e s s i t y ; ( i ) f o l l o w s from p a r t (a) o f theorem I , w h i l e 

( i i ) and ( i i i ) a r e consequences o f the d e f i n i t i o n o f t h e v a l u e f u n c t i o n . 

C o n s i d e r now the s u f f i c i e n c y o f the c o n d i t i o n s . Lemma I I and 

c o n d i t i o n s ( i ) and ( i i ) p r o v i d e t h a t : 

INF / F ( x , y , y ' ) d x _> R(a,b) - R(a ,b ) 
yeA(a,b) / aQ ° ° 

= R(a,b) , 

w h i l e - c o n d i t i o n ( i i i ) p r o v i d e s the r e v e r s e i n e q u a l i t y . T h i s c o m p l e t e s 

t h e p r o o f . i 
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Very often the ba s i c problem i s posed, not to f i n d the minimum 

i t s e l f , but rather, to obtain the optimal curve(s) which provide the 

minimum. Having imbedded the problem i n a family of problems, the 

theory i n v o l v i n g the solutions f o r the e n t i r e family should help 

solve the o r i g i n a l basic problem. In theorem II below we f i n d p o i n t -

wise s u f f i c i e n c y conditions f o r opt i m a l i t y i n a basic problem. 

THEOREM I I SUFFICIENCY CONDITIONS FOR OPTIMALITY 

Let R(x,y) be a l o c a l l y l i p s c h i t z s o l u t i o n to the generalized 
2 

Hamilton-Jacobi i n e q u a l i t y on a open set f! C I . If V q i s a 

l i p s c h i t z curve to (a,b) l y i n g i n ft almost everywhere and i f 

almost everywhere f or x e [a ,aj , then y i s an optimal curve 

for the basic problem: f i n d 

F ( x , y o ( x ) , y ' ( x ) ) - -^R(x,y o(x)) = 0 

INF 
yeA(a,b) 

with 

A(a,b) = {curves y y(a)=b and y l i e s i n ft almost everywhere} . 
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Notice that ft i s both the set of termination and the domain of 

the problem. In practice i t may be desired to find a solution over 

a domain U which properly includes the open set ft. In this case, 

under the hypothesis of theorem II, the curve y may be considered a 
o 

local solution. More precisely, i f y^ l i e s entirely within ft , then 

i s a strong loca l solution to the basic problem, and i f the domain U 

coincides with ft, then y^ is a global solution (see [7,§2.1]). 
Since theorem II does not require that R be the value function 

but only a solution to the G.H.-J .Ineq. , solving a basic problem need 

not involve solving an entire family of problems. 

Proof of theorem II 

Integrating 

o 

we get: 

F(x,y ,y')dx - R(a,b) + R(a ,b ) = 0 . o o o o 

From Lemma II , for a l l y in A(a,b), 

F(x,y,y ' )dx -R(a,b) + R(a o ,bQ) >_ 0 , 

and so y is optimal in A(a,b), completing the proof. 
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Notice that since R s a t i s f i e s the G.H.-J.Ineq., 

F( x , y o ( x ) , y ' ( x ) ) - R°(x,y o(x);1,y'(x)) > 0 

wherever y' e x i s t s and (x,y o ( x ) ) e ft. Since 

^ R ( x , y o ( x ) ) < R°(x,y o(x);l,y' (x)) 

where y^(x) e x i s t s , we have 

0 = F ( x , y o ( x ) , y I ( x ) ) . - ^ R ( x , y Q ( x ) ) 

>_ F(x , y o ( x ) , y ' (x)) - R° (x,y Q (x) ; 1 ,y' (x) ) 

> 0, 

and so 

^ R ( x , y o ( x ) ) = R°(x,y o(x);l,y'(x)) 

i n ft wherever y' e x i s t s , 
o 
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CHAPTER IV EXAMPLES 

The generalized gradient of the value function can be considered 

as a closed compact convex region in the x-y plane. If i t i s 

rotated 9 0 ° clockwise about the or ig in (that i s , {(x,y)} {(-^y,x)} ) 

then the G.H.-J .Eq. can be expressed by saying that 3S(a,b) w i l l l i e 

above the graph of y = H(a,b,x) and w i l l touch the graph at one or 

more points. 

EXAMPLE I 

Let the integrand F be the following: 

F(x,y,q) q 2 - l i f |q| _> 1 , 

0 i f |q| < 1 . 

Let the set of termination be ft = {(x,y) | x > 0 }, and the domain 

2 

be 1 . Let (a o ,bQ) = (0,0) then for each (a,b) e ft the set of 

admissible curves i s A(a,b) = {l ipschitz curves from (0,0) to (a,b) } . 

For each (a,b) in ft consider the straight l ine curve y(x) = bx/a, 

which l i e s in A(a,b) . These satisfy the necessary condition of the 

Euler-Lagrange d i f ferent ia l inclusion for optimality - see [4,theorem 2.4] 

Define R, a l ip sch i tz function on ft as: 

R(a,b) = f F(x,bx/a,b/a)dx 
J 0 

(b 2 - a 2 ) /a i f lb/a| > 1 , 

i f |b/a| <_ 1 



44 

The Hamiltonian for the integrand F is : 

H(a,b,p) = SUP 
q 

p q - q + 1 i f | q | _ > l » 

pq i f Iq l < 1 

p /4 + 1 i f |p| _> 2 , 

|p| i f |p| < 2 . 

H(a,b,p) i s independent of (a,b) e ft, and a sketch of H as a function 

of p is given in figure I below. 

The generalized gradient of R(a,b) i s given by: 

3R(a,b) = | {(-(a2+ b 2 ) / a 2 , 2b/a )} i f |b/a| > 1 , 

{(0,0)} i f |b/a| < 1 , 

{(-X,X) \ 0 < X < 2 } i f b/a = 1 

{(-X,-X) | 0 £ X < 2 } i f b/a = -1 

This is represented in figure II below. 

Notice that when 3R(a,b) is rotated clockwise i t always l i e s on 

the graph of H(a,b,x) for any (a,b) in ft, and so R satisf ies the 

G.H.-J .Eq. on ft. We can now veri fy each of the hypotheses of theorem II 

(i) y(x) = bx/a l i e s i n ft almost everywhere, 

( i i ) F (x ,y ,y ' ) = •— R ^ . y ^ ' ) , 

( i i i ) R is l ipschi tz on ft, and 

(iv) R satisf ies the G.H.-J.Ineq. on ft; 

hence each of the curves of the form y(x) = bx/a are optimal curves to 

(a,b), and R coincides with the value function. These curves, however, 
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DIAGRAM II 3S(a,b) for Some Values of a/b, Example I 
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are not unique optimal s o l u t i o n s since, f o r 0 < b / a < l , i t i s easy to 

construct others such as y(x) = MIN{x,b}. 

EXAMPLE II 

2 2 

Consider the integrand F(x,y,q) - q - y . From c l a s s i c a l 

theory we f i n d that optimal curves, i f they e x i s t , should be of the 

form y(x) = "k*.sin(x), k e IL (see [7, §2.3] ). A l l such extremals 

pass through the point (TT,0) which i s a conjugate point (again, see 

[7,§3.6] ). Let ft, the set of termination, be given by: 

ft = {( X,k-sin'x) | 0 < x < 2TT, x f IT, |k| < 1 } . 

Notice that ft i s open and disconnected. Let the domain be ft and l e t 

(a ,b ) = (0,0) then the set of admissible curves to (a,b) e ft w i l l be: o o 

A(a,b) = { l i p s c h i t z curves from (0,0) to (a,b) l y i n g i n ft a.e.} 

For each (a,b) i n ft there i s a unique y e A(a,b) of the form k * s i n x: 

y , (x) = k , s i n x with k , = b / s i n a. Define R on ft as: ab ab ab 

R(a,b) = J F ( x , y a b , y ; b ) d x 
J 0 
,2 

= b cot a . 

Let R(0,0) ~ 0; then R i s continuous on ft U {(0,0) > and R i s seen 

to be l i p s c h i t z on ft,with 

||VR(a,b)|| = | | ( - b 2 / s i n 2 a , 2bcot a)| | 

< 5 . 
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The Hamiltonian for the problem is found to be 

H(a,b,p) = p2/4 + b 2 

and i t easily seen that R satisf ies the G.H.-J .Eq. on ft. By construction 

^ R ( x , y a b ( x ) , y ^ b ( x ) ) = F ( x , y a b (x) ,y ^ (x) ) so by corollary II y a b i s 

optimal in A(a,b) and hence R is the value function on ft. 

In a similar fashion, i f we let 

ft = {(x,ksin x) | 0 < x < 2u, X f ir, j k| < m} , 

and 

A (a,b) - { l ipschi tz curves from (0,0) to (a,b) within ft a.e. }, m m 

then on ft , y , w i l l be optimal in A (a,b). For a > T T , any l ip sch i tz m ab m 

curve from (0,0) to (a,b) which passes through (IT,0) must l i e within 

ft almost everywhere for some m, hence our curves y , are optimal m ab 

over a l l l ip sch i tz curves y(x) with y(0) = 0, y('ir) = 0, and y(a) = b. 

Notice that i f the point (TT,0) was included i n the sets ft or ft , 
m 

then our curves y could no longer be optimal for a > TT by Jacobi's 
ab 

necessary condition (see [7^3.6] ) 

EXAMPLE III 

Consider the smooth integrand 

F(x,y,q) = y ( l + q V / 2 . 

Let the set of termination be ft = {(x,y)| x > 0, y > 0}, let the 
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domain coincide with ft, and le t (a Q ,b o ) - (0,1) then the set of admissible 

curves to (a,b) e ft i s given by 

A(a,b) = {lipschitz curves from (0,1) to (a,b) lying within ft a.e.}. 

This is a very old and often cited problem from the c la s s ica l 

theory of the calculus of variat ions . It corresponds to minimizing 

the area of revolution of a posit ive function. Physical ly, the 

problem seeks the shape of a soap bubble spanning two concentric 

hoops. Experience indicates that as the two hoops are moved away 

from one another the bubble eventually breaks. We w i l l see that 

this happens, not because of a i r currents or insufficient soap or 

any other accident but because eventually, l oca l ly optimal curves 

for the problem f a i l to exist , making the soap f i lm unstable. 

Of particular interest i s the fact that the value function 

f a i l s to be differentiable despite the fact that the integrand sat is f ies 

the c lass ical requirements of being twice continuously differentiable 

and convex. In regions where there are no optimal curves we w i l l 

be able to establish the value function, while with the same tools, 

in regions which have optimal curves we w i l l find them and the 

value function. Where strong loca l solutions are found, a well 

defined locale within which they are optimal i s also found. 

The solutions to the Euler-Lagrange equation ( 2,§273 ) are 

X—C 
of the form y(x) = d-cosh(-j-) . To each point (a,b) e ft there are 

at most two curves of this form in A(a,b) (see diagram III below). 

x—c 
The ensemble of curves of the form y(x) = d*cosh(——) with y(x) e A(a,b) 
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for some (a,b) e ft forms an envelope c u r v e , ' E ' , as in diagram I I I . 

If we truncate each of the curves of the ensemble at the point where 

i t touches the envelope (see [7,§A3.13]), there remains exactly one 

member of the ensemble lying in A(a,b) for each (a,b) e ft lying 

above the envelope ' E ' . The constants c and d are smooth functions 

of the coordinates (a,b) above ' E ' ; 

y a b ( x ) - d ( a , b ) . c o s h ( ^ ^ . ) 

Define the loca l ly l ip sch i tz function on the region above the 

envelope ' E ' as follows: 

R l ( a , b ) = • F ( x >y a b >y ' a b > d x 

2.\ da + d*sinh(—-—) -b + d«s inh(—) ] , d d 

with c - c(a,b) and d - d(a,b). 

The Hamiltonian for the problem is given by: 

H(x,y,q) = SUP [ pq - F(x,y,q) ] 

q 

" ( y 2 - P 2 ) 5 i f y 1 0 and |p| _> y 

+ 0 0 otherwise . 

The gradient of R^ is found to be 

V R ; L(a,b) = ( d , i j - S l . (b 2 -d 2 )^ ) , 
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(again with c = c(a,b) and d = d(a,b) ) which satisf ies the 

G.H.-J.Eq. on the region where is defined. 

The hypotheses of the lemma III are sat is f ied on the region above 

the curve ' E ' , and so the curves y ^ a r e optimal in 

A'(a,b) E { y e A(a,b) | y l i e s above ' E ' almost everywhere } . 

For the or iginal problem however, we are assured only that the y 
ab 

are strong local solutions. In search of the value function we w i l l 

require a function defined on a l l of ft . 
CO 

For each (a,b) E ft consider the sequence of curves {y } _.. 
n n-1 

defined as follows: 

2 
y n(x) = l-nx i f 0 < x < (n-l) /n 

1/n i f (n - l ) /n 2 <_ x < a- (nb- l ) /n 2 

2 
b-n(a-x) i f a-(nb-l)/n < x < a . 

For suff iciently large n, y^ i s ah element of A(a,b) and we find that 

LIM I F(x,y ,y')dx = (b2+ l)/2 I „ n n n-*» 

2 
Set R2(a,b) equal to this value, (b + l)/2, for each (a,b) in ft. 

As computation ver i f i e s ([1]) R^ = R^ along a curve 'G ' which l i e s 

above ' E ' (see diagram III ) . Above the curve ' G ' we have R̂ < R^, 

while between 'G' and *E ' we have R̂ > R,,. Notice that R 2 is smooth 

and VR 2(a,b) = (0,b) on ft, hence R 2 sat is f ies the G.H.-J .Eq. 

Notice however, that since R „ ( a ,b ) f 0, R„ cannot be the value 
2 o o 2 
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function. By combining and R,, we w i l l attempt to s a t i s f y a l l the 

hypotheses of lemma III . Define R on ft as follows: 

R(a,b) = MIN {R ,R } on the region above ' E ' 

R 2 elsewhere on ft . 

The function R i s l ip sch i tz on ft, but f a i l s to be differentiable along 

the curve ' G ' . The generalized gradient of R is as follows: 

3R(a,b) = |{VR (a,b)} i f (a,b) is above 'G* 

{VR2(a,b)} i f (a,b) is below 'G' 

Jco{VR 1(a,b),VR 2(a,b)} i f (a,b) is on ' G * . 

Since; (i) R sat is f ies the G.H.-J .Eq. on ft,' ( i i ) R(0,1) = 0, and ( i i i ) 

R is constructed from curves or l imits of sequences of curves in A(a,b) , 

we conclude by lemma III that R is the value function. 

We have seen that to the right of ' E ' , that is for large 

hoop separation, no f i lm of minimal surface area exists , hence no 

bubble is expected to be observed. The minimum i s obtained as the 

l imit of a sequence which, loosely speaking, tends toward a s i tuation 

in which each of the hoops has a f lat film within i t s circumference. 

This is known as the Goldsmidt solution and i t provides the minimal 

surface area in the parametrized form of the problem. 

Between the curves ' G ' and ' E ' the catenaries defining 

exist , but are not optimal. In c las s ica l theory they are cal led 

strong loca l solutions. It can easi ly be seen that they are optimal 

in the smaller set of admissible functions: 
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A'(a,b) = { y £ A(a,b) | y l i e s above ' E ' } . 

We would expect that soap bubbles may exist for (a,b) between ' E ' 

and ' G ' , but that they would not be stable except under suff ic ient ly 

small perturbations. 

EXAMPLE IV 

= P-|y|+ Consider the problem with the integrand F(x,y,q) = e 

domain U = { (x,y) e 1 | x > 0 } and set of termination ft = U. 

Let the i n i t i a l point (a ,b ) be the or ig in . The integrand i s 
o o 

neither convex nor smooth, so the c la s s ica l Hamiltonian is not defined 

anywhere. The generalized Hamiltonian, however, is defined as follows: 

H(x,y,q) -e 
- y i f p = 0 

otherwise 

For a point (a,b) £ ft let {y } n be the sequence of 
n n=l 

admissible curves to (a,b) given by 

y n(x) = nx 
f- n n - l for 0 < x < - z — • a 

— — 2 n 

/ -. \ . b _ n—1 ( n - l ) « b -nx for ——«a < x < a a zn — — 

we find that: 

LIM / F(x,y y' 
J o n n 

)dx 

Let R(a,b) = 0 for a l l (a,b) in ftU{(0,0)}, then R sat is f ies the 

- I b l 
G.H.-J.Ineq. on ft since H(a,b,0) < 0. Since R sat is f ies 
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a l l the hypotheses of lemma III , R is the value function on Q. 

Notice however, that R f a i l s to satisfy the G.H-J.Eq. Since 

existence of optimal curves would guarantee that R satisf ies the G.H.- J .Eq . 

(by theorem I part (b)) we must conclude that no optimal curves exist . 
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