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ABSTRACT

The solutions of weakly-formulated non-linear Dirichlet problems
are studied when the data of the problem are perturbed in various ways.
The data which undergo perturbations include the Lagrangian, the boundary

condition, the basic domain, and the constraints, if present.

The main conclusion states that the solution of the Dirichlet
problem which minimizes the Dirichlet integral varies continuously with
the data so long as it is unique. Detailed hypotheses are formulated to
" insure the validity of this conclusion for several large classes of problem.
The hypotheses are not much stronger than the standard sufficient conditions
for existence, in the generalized Lusternik-Schnirelman theory of these

problems.
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INTRODUCTION

The pﬁrpose of this thesis is to study the behaviour of the
" solutions to nonlinear differential boundary value problems of Dirichlet
tyfe, when the data defining the ﬁroblem are subjected to various
perturbations. The basic result we shall obtain states that, under suitable‘

restrictions, the solution of such a problem changes éontinuously with the

- -data as long as the solution is unique. The conditions under which this

conclusion is valid are essentially that the usual sufficient conditions
for existence in the variational theory of Dirichlet problems should hold

uniformly in some sense as the given problem is perturbed.

The differential equations which appear in the boundary value
problems considered here are the Euler-Lagrange equétions of multiple-
integral 'Diriéhlet' fdnctionals‘defined onvsuitable Sobolev sbaces. We
consider such problems in their weak formulation, in which a solution is
taken to be a distribution which satisfies the given boundary condition in
an appropriate generalized sense, and which is a critical point of the

+ Dirichlet integral restricted to such distributions. The nonlinearity
of the EulerfLagrange equation arises from the fact that the integrand
defining the Dirichlet functional need not be quadratic in its afguments,
but need only have a certain convexity in its depgndence on the functions
on which the functional is defined. For such problems, there are well.
known 'regularity' theorems asserting when a weak solution is in fact a

smooth function and hence is, by a standard integration by parts argument,



a classical solution of the Euler-Lagrange equation. We shall not be

concerned with this question, and we work entirely with weak solutions.

The data defining such a problem appear to be of four kinds
(L) The 'Lagrangian', or integrand, of the Dirichlet functional;
(ii) . the 'Dirichlet data', or boundary conditions;

(iii) the 'domain', i.e. the set over which the independent

" variables in the differential equation are allowed to run;

(iv) the constraints, i.e. the set in which the dependent

variables are required to lie.

In principle we éoﬁld formulate a global problem on sections of
a subbundle of a smooth fibre bundle where the tafget subfibre represents
(iv) and the base manifold represents (iii); and we ought to vary (iii) by
pulling back along various embeddings into fhe Base, vary (iv) by allowing
the subbundle to vary, and vary (i) and (ii) at will, all simultaneously.
This amount of generality presents technical obstacles which obscure the
‘main phenomenon, and, in addition, treating particular cases df the above
allows us to dispense with some of the assumptions in each case which are

needed in the general case.

Thus  we shall take the following less general approach. 1In
Chapter 1, we formulate and prove a theorem in the setting of a fixed
fibre bundle over a fixed base manifold, where data (i) and (ii) are

allowed to vary. In Chapter 2 we suppress (iv) by considering sections



of a trivial Vectdr bundle, and we hold (i) fixed,. but we allbw (ii) and
(iii) to vary. In Chapter 3 we fix (i) and (iii) and allow (ii) and (iv)
to vary. A simple example of the situationlin Chapter 1 1is the problem
of minimal,surfages in ordinary Euclidean space, under Qariatiqn of the |
boundary curve. The situation of Chapter 2 1is illustrated by the prpblem
of domain-perturbations for nonlinear elliptic boundary problems on'dbmains
of R® . The situation of Chapter 3 is illustrated_in the study of
geodesics, or more general harmonic maps,in imbedded submanifolds of IRQ .
We'conélude our discussion by spelling out these examples in a little more
detail in Chapter 4 . It should be noted that the significance of the
uniqueness assumption in our main reSulﬁ,is illustfated'in all theseycases,
by well-known phenomena of jumping:of the minimizing solution,when unique-

ness breaks down.



CHAPTER 1

PARAMETRIZED NONLINEAR DIRICHLET PROBLEMS IN STANDARD FORM

1.1 Notation

vGeherally we shall follow the notation of Palais [4]. For the

reader's convenience we supply the following brief list :

M

L

@

C(E)

S(E)

Lp(E)

product bundle M x R ;

compact ¢’ manifold of dimension n, possibly with nonempty

boundary 3M ;

strictly positive smooth measure on M ;

(total space of) ¢~ fibre bundle over M H

(total space of) Cé vector bundle over M ;
. A

integer > 0 ; .

bundle of k-jets of séctions of E ;

set_of all Cm -sections of E ;

set of all sections of E‘;

real number:z_l H

Banach space completion of ;cé(g) in the Sobolev --p'th Rpwef

norm on derivatives of order < k ;



Lﬁ(E)' (for pk > n) Banach manifold of all sections of E, each of
which belongs to Li(g) for some open vector bundle neighbour-
hood & in E ;

b,s  elements of Li(E) 3

LIE(E)b closed C°° ‘submanifold of Li(E) consisting of the closure in .
LE(E) .of the set of all sections s ¢ La(E)~ which agree with

b in some neighbourhood (depending on the particular s) of .BM;

»II II ‘Finsler étructure on the tangent bundle T(Li(E)); also,by

abuse,induced structure~dn‘ T*(Lﬁ(E)) 3

R Finsler metric on Lﬁ(E) "induced by || || ;

i Y onad o 1Ppy s TPK .
k-jet extension map Lk(E) —> LO(J (E)) ;
" FB(E,E") set of all fibre—preéerving maps of E to E' ;
F map of Cw(E) to S(E') induced by composition with

F ¢ FB(E,E') 3
: . - th o s
Lgnk(E) ‘ set of all k order Lagrangians on E, i.e. maps
L : Cw(E) S S(RM) of the form L = F*ojk for some

F ¢ FB(Jk(E),RM); F represents L .

It:shogld be noted that the norm in Li(g) depends on thevvolume
element dy on. M ,  but, by the meaning of 'strictly positive smooth
measure', all choices\of u o are equivalent to Lebesgué measure in all
chafts of M, so éll induce gquivalent norms in Li(g), and equivalent

Finsler structures on LE(E) .



The Finsler metric is defined, technically, only on the path

1

components of vLi(E). We set &(s,s') = 2 whenever .8, 8 belong to

.distinct path components.

The reader should also note that no a priori smoothness assump-
tions are made on the maps F, hence on the Lagrangians L . Such

assumptions will be made below as they are neéded.

1.2 Formulation of the Problem

We begin by assuming several pieces of data to be given and held '

fixed throughout the chapter :.

[1a] A choice of M, u, and E ;
[18] Choices of p >1 and k >1 (pk >n if E is not a vector
bundle); and a choice of || || on T(Li(E)),, with induced

§ on Li(E);

[1vy] - A locally compact Hausdorff space B ;
[16] An element b € Lﬁ(E), a map r+—> br of B — Li(E), and a
" homeomorphism

 : B x Li(E)b_ — E = {(r,s) treB, se Lllz(E)bir}

denoted by (r,t) — (r,¢r(t)), such that each ¢r is a Cl

) 1 - tPpy _ 1P .
diffeomorphism of [F = Lk(E)b onto .Er Lk(E)br which takes



§~bounded sets to S-bounded sets;

[1lel A map r+—> Lr of B — Lgnk(E), such that each Lr extends

1 P . 1
toa C map Lk(E) —> LOGRM) .

We think of B in [ly] as a space of parameters r . Then
[16] specifies.an r-dependent family of Dirichlet-type boundary values on
._ sections 6£ E, and a c® globalttrivializatioh of the map = :IE —> B,
(r,s) —— r, with the extra property that Q_l is smooth on each fibre
Ar} x Er .V'We éhall sometimes deviate from strict consistency, and
;dentify the subset Ef' of Li(E) with the fibre {r} x Er, which is a .

subset of E € B x sz(E).

Item [le] specifies an r-dependent family of Lagrangians Lr’
such that the integral

\

f(r,S)' = f Lrs du (r € B, s-e Lﬁ(E))
M : .

defines'a function f : B X Li(E) —> R whose partial-function fr = f(r,.)

. is Cl on LE(E)' for each r . The restriction g = f|IE "then has a Cl

partial—funétion gr'= frIE for each r ; and the critical locus of By
r .

namely

~
I

. { s ¢ Er : dgr(S) = ( } s

is a well defined closed subset of ‘Er., By the standard parametrized

Dirichlet prdblem.with data [la] - [lel, we mean the problem, to describe



the (disjoint) union
K = { (r,s) : reB, se¢ Kr }
of the critical loci of all_the g.s as a subset of [E &« B x Lﬁ(E) .

0f course the problem as posed is too general, and in the next
section we shall puf conditions on the data, in particular on their
behéviour with respect to_the parameter r in B, which will enable us
to prove conclusions of a similar kind about- the sets Kr . However, an
importart restriction has already been built in, by the provision in [18]
that the disjoint union [E of the spaces Er of the r-dependent varia-
tional problems should come to us equippéd with thelstructure of a fibre

1

space over B, trivialized by o . We are thus able to form a

'partial-function' g on B, for each t 1in the model fibre IF ,

t
namely by

B () = (800 (r,0) = £.(0,()) .

Certain key technical considerations in what follows will be organized

around these functions 8

1.3 Formulation of Theorem T

Given a standard parametrized Dirichlet problem as defined in
§1.2, we shall study the subset‘of.each critical locus Kr on which the

function gr‘ takes its minimum value.



To be precise, we begin with a family F of subsets of

IF = Li(E)b which is deformation invariant. This means invariant under

ambient homotopy of IF, i.e., for any continuous map
.H : [0,1] >?lF — F

such that H(O}-) ié the identity oﬁ E? and for any T.e F, thg set
Hl(T) = { H(,t) : t T }

is also a member of the family F (cf. Browder [2 , Def(l.1)] ).
Given F, We.define a corresponding family F(r) of subsets of each Er,

by

F(r) = {,S C.Er : S = ¢r(T) for some T ¢ Fl} .

Then the F-minimax of g is defined to be the function me on B, where

for any r £ B,

mF(r) = inf | sup gr(s) 3
SeF(r) seS

and the mF—realizing subset of K over r is defined to be

KF(r)‘ = {(r,s) : s ¢ Kr and vgr(s) = mF(;) }..

More genefally, for any subset C < B, the mF—realizing subset of 'K

over C is.the disjoint union

KF(C_) = U Ke(r) -

reC
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Our aim is to give conditions on the data under which me will
be continuous on B, KF(r) will be nonempty for each r, and KF(C)

will be compact in [E for any compact subset 'C of B.

The. existence of a pbint.in KF(r) is the main assertion of £he
generalized Lusternik-Schnirelman .theofy developed by Palais [5, 6], and
Browder [1, 2, 3], where incidentally several examples of families F _
are given; In the following list of conditions on the data [la] - [1le],
the first states thé Staﬁdard hypotheses for existence in the Lusternik-
Schnirelman theory, and the others.mainly require that the‘existence
hypotheses hold uniformly, in various senses, with respecf fo the parameter
r . Note that éome conditions‘refer to the functions Br» ‘and.SOme‘to

the unrestricted  f or fr .

[1.1] For each r € B, the function g, * Er —> |R is bounded below

and satisfies condition (C) of Palais-Smale (i.e., any sequence
{si}e E_ for which gr(si) is bounded and Ildgr(si)ll

converges to zero contains a convergent subsequence ).
[1.2] For each R ¢ R and each compact subset C of B, the subset
KN {(r,s) :r e C and gr(s) <R }
is cémpact in E .

[1.3] For each r € B and each R ¢ R, there exists a neighbourhood

V of r in B such that the subset



[1.4]

[1.5]
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IF = {t € ﬁ : gt(r')‘j_R for some r' e V }
is bounded in IF .

For each r € B and each bounded subset T of [, there exists

a neighbourhood V of . r in B such that
§(9,.(E)s ¢ (E)) < e
for all r' eV and all t e T.

For each r ¢ B, each bounded subset S of LE(E), and each

e >.O, there exists a neighbourhood N of r in B such that

[1.6]

"Theorem I

data [la]

If(r,s) —:f(r',s)l_ < ¢
for all r' € N and all s e S .

For each r € B and each bounded subset S of Lg(E), there'

exists A € R such that

der(s)H < A

'for all s e 8 .

With these preparations done, we can state our result :

Suppose a standard parametrized Dirichlet problem is given by

- [le] satisfying conditions [1.1] - [1.6]. Let F be a
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deformation-invariant family of subsets of-a single path component.of &,
such that at least one element of F is compact and nonvoid. Then :

(a) The F-minimax function -mFl.of g is finite and continuous
on B ; .

(®) Tor each T B;,the mF—fealizing subset KF(r) of K
over r 1is not empty;

(¢) For each compéct subset C of B, the mF—réalizing subsét

'KF(C) of K over C '1is compact.

REMARK. 1In éase KF(r)‘ is a singleton  {sF(r)} for each r in
some open set N in B, so that sF'Iis a section of w : [E —> B over
N, it follbws_easily from (c) that st is cqntinﬁoﬁs. Thus the critical
point of &, which realizes a particular minimax value mF(r) varieé
continuously with r so long as it is unique. In the examples which we

have in mind, this is the conclusion of principal interest.

1.4 Proof gf_Theoremll.

We first pfove ponCluéion (b), by assembling several results in
Browder [2]. ,For'fixed r € B, let X denote the connected component of
Er which.coqtainsAallbthe sets in the family. F(r), andvlet h .depote
.;he restriction of gr to X . Then X _ié a connected submanifold of the
C06 Finsler manifold Er; and is complete in the induced metric. Hence
[2, Proposition 5.2, p.32] " there exists a quasigradient field for h on

X . The Cl function h is bounded below and satisfies condition (C) on
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X , on account of coﬁdition [1.1],and so by [2, Proposition(5.1), p.27],
and the. remarks following [2, Theorem 1, p.8 and Definition(Z.l),.p.18],
all tﬁe hypotheses of [2, Theorem 1] are satisfied,‘except for the finite-
ness of ﬁF(r). But this follows from the existénce of a compact nonvoid

element in F , and Browder's Theorem 1 applies to establish (b).-

To prove (a) and (c), we apply [7, Theorem 1.2] with our
quantities &, F, w, g, and K _in place of the quantities E, F, p,
‘f, D of that theorem. It requires that F be invarian; under homeomor-
phisms of F; but this is used in the proof ohly to insure that'the_
families F(r) are independent of the chpipe of trivialization Tl of p.
Since we have defined our F(r) by a fixed trivialization ¢—l of mw,
we do not need the homeomorphism-invariance of F to apply the cited
result. Its conclusions are precisely fhe conclusions (a)'and (¢) of
Theorem I; and one of its'two~hyp9theses is just condition [1;2];‘ The
other hypothesis, in our notation, becomes the following : for each
r e B and each R &R, there exists a neighbourhood V of r in B

such that the family of functions

{ g.t : t e WR,V }

is equicontinuous at r, where, as in [1.3] above,

-= . \ -. '
wR,V- {_t e F:g(r') <R for some r' eV } .

Thus the proof of Theorem I will be complete as soon as we have shown how

.to choose V so that this equicontinuity assertion holds. Here we shall
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use conditioﬁs [1.3] - [1.6].

Fix r e B and R e R. By [1.3], there is a neighbourhood V

of r in B such that T = WR v is bounded in € . By assumption in
N ) b I .

-[168], .¢r(T) is bounded in’ Er . By [1.4] with € = 1, there is a
neighbourhood N, -of r such that 6(¢r(t), ¢r,(t)) < 1. for all r' ¢ Nl .

" and all t e T.» Hence the set
— s - L '
51: = {.¢r'(t) : r' e Nl, teT }

is bounded in Li(E) along with - ¢r(T); and so also is
5, = { s € Lﬁ(E) : 8(s,s') <1 for some s' €S }'.

Given € > 0, we apply [1.5] and [1.6] with S = S2 to find a

neighbourhood N2 < N1 of r such that

ey €
o |£(r,s) - £(r',8)| < 2 (r' € Ny, .5 € 8,),
and a number A > 1 such that

[lae ()| < A& (s esy.

The we apply [1l.4] to find a neighbourhood N3 < N2 of r such that
808, (1), ¢4 (B)) < min { 1, ;—A}

for r' e N3, teT.
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o
§
i B

and any r' e N; . In view of the,

in different path compo-

Now ghoose any t e T = ER,V

convention adopted in §1.1, that points s, s'

nents of LE(E)' have §(s,s") 2, the last inequality implies, in

particular, that the pointsv s

a Cl' path vy in Lﬁ(E) with

¢r(t) and s' = ¢r,(t) can be joined by

1ength Y < min { 1, %K-} .

" Any point on such a path can be no further than 1 from either endpoint,
so lies in 52 . Accordingly we can‘apply the first, second and last of

the preceeding inequalities, to get -

lg (x') - g ()]

g0 (00 (©) = 2,4, (0))]

206 = £, + [£,6) - £,

. orl

< 5o [ Has gl v @] e
0

< %-+ A- (length ) < e .

Thus ‘{gt Ptoe By V} are equicontinuous at r as claimed, and the proof

of Theorem I ‘is complete .
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CHAPTER 2

DIRICHLET PROBLEMS WITH VARIABLE DOMAINS

2.1 Formulation gg_Theoreﬁ II

In this chapter we shall consider nonlinear Dirichlet prpblems in
which the candidates for solutions are real-valued functions on a bounded
domain '§ CI'Rn; agreeing on the boundary 232 with a preséribed function
a . Our inteteét.is in the Behaviour of the solution when both  and a
are perturbed. .The restriction to real valued functions is for convenience
:of notation only, and the reader will easily see how to modify our state-

ments to cover the case of vector-valued functions.

We start with a bounded open set Q? < Rp, with typical point

X ='(xl,...,xn) ~and with Lebesgue measure dw(x) = dxl.;.de . An

n-multi-index is an n-tuple o = (ul,,..,un)' of integers o, > 0, and we

1

. . ' P o s . .
will write |a| for the sum Z o s and D~ for the partial derivative
i . .

o, o
operator TTKB/Bxi) ' . TFor any integer k > 0, S will denote the total

number of a's having |a| <k, and u = (ua)|a|<k will denote a typical
Sk | Sk . .
point in R ~. Note that R is just the fibre of the k-~jet bundle
Jk(fRQ ) of the product bundle RQ =% xR ‘over Q° ’ 'whose sections we
o : o :

identify with the real valued functions on o° . More generally, for any

product Bundle leo over ° with fibre le we have a natural
o -
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identification of LEORQO) with LE(QO, Rl) and we shall uéevthis
Q
identification freely in the following.
. ' o .. ) Sk
Wwith n>1, k>1, and 0° fixed, let F : Q° xR  — R

-be a C2 function. (Thus F is the principal part of an elemenﬁ of

FB[Jde o),IR 0].) Suppose F satisfies the following conditions for a

Q Q
certain p > 2, certain constants C, C1 > 0, and a certain continuous
function € : R® —> R with €(0) =0 :
o ‘ Sk
- [2.1] For all x e & and all uvelR

IFGow)| < o [1+ YT qu|P ]
| o<k~ ®

' s
[2.2] For all x, x' € ©° and all u e R k',

|F(x,u) - F(x',u)| < €(x - X')[ 1+ ) vlud}p ] .

alfk
: : o Sk
[2.3] For all a, 'all xe , and all ueR s
|-—g§ xuw)| < ¢ [1+ ) Iuslp'l']
' |8|<k
'S

[2.4] For all o, all x, x' ¢9°, andall ueR ",

| < C(x - x')['l + ) IuB]Pfl

. ,"gi—(x’u) - _F_(X' ’u)
S Islfk

9
ou
o

. ’ - : S .
[2.5] For all a, 8, all x e °, and all u eR ku,


http://xe.fi
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) ‘
°F » p-2
——(x,u)| < C [ 1+ z lu |.
"™ 3 NE
. , s
[2.6]  For all x e @° and all u, veR K,
4 ézF | p-2; 12
NI I SR
4 —_

Conditions [2.1], [2.3], and {2.5] in particular imply that the integral
n(v) = f F(x, 3, (v)(x) du(x)
Q° . S

- is well defined for all v in the Sobolev space 'LE(QO, R), and that h°
is in fact a C2 function (c.f. Lemma 2.1 in §2.2 below). Here the
symbol jk(v) is being abused to denote the principal part of the k-jet of

the section of LiGR o) whose principal part is- v . We shall consider

Q

'restrictions' h = h® obtained by replacing q° in the above integral by

. . . E . .
various subdomains < @ .

To be precise; for all r in a suitable parameter space B, we
consiaer an open subdomain Qr < 9° whose closure is obtained as the
diffeomorphic image A(r)(M) of a fixed smooth manifold M . As T raﬁges
over B, A(r) 1is supposed to change continuously in the space-
Diffeo[M,Qo] of c¥ diffeomorphisms of M into: QO, equipped wi;h the
topology of uniform convergence of all derivatives. We. also suppose that
" a suitable bogndéry—function a_ is given for each r. Our result is the

following.
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Theorem ll
Fix a bounded open subset o° < Rp, an integer k > 1, and a
o _ %k - 2 | '
real number p > 2. Let F : @ xR —> R ‘be C and satisfy conditions

[2.1] - [2.6] given ébove.

Fix a locally compact Hausdorff space B and a compact
4n—dimenéiona1 C°° -manifold M with boundary. oM . Let r +—> a_ be
-‘continuous-from- B idinto Lﬁ(QO,R), and let r +> X(r) be continuous

from B into Diffeo[M,Qo] .
_ = _ : - 1P
For each r € B, set Qr ‘A(r)(M) and set Dr Lk(Qr,lR)ar ’

and let hr be the C2 ‘real valued function on. Dr defined by

‘h (v) = IQ F(x, j, (V) (x)) do(x) .

"
Then the following conclusions hold :

(a)  The function m : B —> R defined by

Cm(r) = inf 'hr(v)

veD
r

is finite and continuous on B ;

(b) For each 'r € B, the set
M(x) = {v’e Dr : dhr(v) f 0 and hr(v) = @(r)}

is not void;

(¢) For each compact subset C of B, the set
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© AFM(C) _ﬁg { (r, voA(r)) : r ¢ C and v e M(r) }

is a compact'subset of B x Li(RM).'

We shall deduce Theorem II from Theorem I‘ of §1.2, by construc-
_.ting a suitaBle standard parametrized problem. It should be noted that our .
cbnditions [2.;] - [2.6] can be weakened considerably by ekploiting the
Sbbolev ineqﬁalities (cf. Browder [1, pp 25-29]). The techniques for doing

‘this are well established and we shall not dwell further on the point.

Before carrying out the reduction to Theorem I, we shall

establish some properties of the functions hr .

- 2.2 Preliminary consequences of the assumptions

In the following we use the assumption that F satisfies [2.1]-

- [2.6].

- Lemma 2.0

For each 9 < 9° the map
F, o CCINRYD) — S®R.)
: Q Q

*

2
extends to a C map
*

. P,k .1
F, : LO(J (RQ)?’ > ;O(mg) .

Furthermore,‘the maps
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y . 1Pk — Pk, y o1
‘d(F*) : LO(J GRQ)) > L(LO<J GRQ), LO(RQ))
and
2 . b,k . 12,.p.k 1
take bounded sets into bounded sets. (The reader is warned that the symbol
L2 .above means symmetric biliﬁear maps and should not be confused with Lﬁ).

S

Finally for v, vy, and v, € Lg(Jk(RQ)),

2
dF) W () = F (v))
and
2 2
d (F*) (V) (Vl’VZ) - 6 FV(V].’VZ)

Proof : See Browder [1] .

For 0 < ° let HQ : Lg(Jk(RQ)) —> R be defined by

glv) = f< Fv(x) du(x)
f

Let b®: LPR) —> R be defined by h* = H'ej, .

Lemma 2.1(i)

For each Q < Qo . HQ : Lg(Jk(RQ)) —> R is a C2 function

such that :

(a) dH : Lg(Jk(RQ)) — Lg(Jk(RQ))* ~ takes bounded sets into
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bounded Sets.;
(b) dH is uniformly continuous on bounded sets of ‘Lg(JkﬂRQ)).

Proof : The fact that HQ is C2 follows immediately from lemma 2.0.

Part (b) follows from the boundedness 6f d2(F*) in lemma 2.0 together

with the mean value theorem.

Lemma 2.1(ii)

Q

For each Q < o° , h ;'Li(RQ) —> R 1is a C2 function such

" that

2

Q . .p I - , £ . P . 12,.7P
(a) dh” i Lp@®)) —> L (R )* and d°h : Ly (R)) —> L (Ly ®)),R)

takes bounded sets into bounded sets ;

- (b) dn?  is uniformly continuous on bounded subsets of LEORQ).
Proof : Since hQ = Hon and o 2 Lp(R ) —;b Lp(Jk(R )5 is a bounded
=root - k k Pk 0 Q ,

linear map the proof follows immediately from lemma 2.1(i).

Lemma 2.2
Forb Q ° and v,, v, ¢ Lp(R )
1’ "2 k@

[ wy) = a0 w1y - v,

> C 2 ’J |Davl(x) - Davz(x)lP dw(x)
la|=k ‘@

for some constant C .
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Proof : l From lemma 2.0 it follows that
an’ (v.) (v1,v.,)
vy) (vy5v,

2

= ' -—“———(X,J (V )(X))U (J (v )(x))u (G, v,)(x)) .
IQ O<|OL| lBI<k ou BUB k k1 k"2
So |
[dh(v)) = ah"(v,) 1w = v,)
[l b o |
= | ———————(x,J (vy) + t(J (v,) - i, (v )(X))J
Qo 0<|0L| !Blik Ju 3u8 k1 k. 2 »k 1 |
x [ua(jk(vl—vz)(k»ue(jk(vl—vz)(xi].dt dw(x)

and by [2.6]

1 - . 9.
> y f 0%, ) + £@* (v,=v)) ) |P 2|D°‘(v2—vl)(x)|2 dt du(x)

- Lz o] =k

> ¢ z f lDavl(x) - DOLVZ(X)|'p dx
|a|=k Q

for some constant c¢ .

Lemma 2.3

For Vs v2, aj, a, € L GR ), with vy, € Lp(m ) a and

P
V2 € Lk-('RQ)aZ y’
thﬂ(vl) = b (v,) ] (v;-v,) 3,c[l|vl—v2-(al—a2>||9p —'L|<al—a2>llpp'
) 4 ) Lk } Lk

for some constant C .independent of Q .



- 24 -
fo .
Proof : By lemma 2.2 we need only show ‘that there exists a constant c
independent of @ such that

| lz [* D% (v =v,) () [P dw(x)
al=k ‘o |

> e [y v = @y = apllP] - Hlay - a,l17,
. Lk Lk

S e ta P .
.Now MRS (al az) € Lk(R )0 : Therefore there ¢x1sts a constant c¢
independent of © such that

|alzk fg 0% (vy=vp) @) = D (agap) (0|7 dux)

> c llvl Vo T (al - aZ)I!zp .
' k

- Now there exists a constant Cl ‘independent of & such that :

_Cl [ _Iz

f D% (v,v,) (x) = D™(ay-a,) () | du(x)
-k ‘o |

[ A

[ ¥ J 0% (vy=v,) ) [P dux) + f [0%(ag-2,) ) [P dw(x)
|a|=k Q _ 2 Q

| A

| IZk.JQ D% (vy=vy) ) [P du(x) + []a; - a2||Pp .
u=. o -

Therefore there exists a constant -C independent of  such that

) f D% (v;=v,) ) |P dw(x) + |]ay-a,||P_ > ¢||vq=v,-(a;-a) ||P_,

~ and the result follows.
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Lemma 2.4
Let '{vi} be a bounded sequence in LﬁORQ) ‘such that
P . ; o . Q .
v; € Lk((RQ)ai with {ai} gonyerg;ng to a . Then if dh (vi) > 0, it
follows that fvi} is a convergent. sequence in Li(RQ)

Proof : Fix € > 0. Pick A so large that i, j > A implies that

lag - o112, < 8 s
jt'p — 1
Ly

and

[th(vl}‘— av) vy - v,) < 8,

for some Gi, 62 to be determined. By lemma 2.3

62 LAY I lvl_vz_ (al_az) | Ipp - I Ial_azl lpp
‘ L : L
4 k
Since
L R [ P [ R [P
. L . L :
k k
we get
5 2 ¢ [ Iyl = Hagayll, ) = gyl I?
> C V.-V - a.-a - a,-a
2 -7 1 72 P 172 P 71 72 P
| Ly Ly L

Sihce.'{vi}' is a bounded sequence there exists 61 “such that

[lay - 5l
1 2| Lp

implies that
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. P P Ce
[e{11vval ], = Vaymagll [ = Hayay 17, = clivywyl 17| <%
Pk ' k k k
It follows that
_ P Ce
CI.IVI VZIILP < 2 +'62 *
k
; = Ce
Setting 62 = 2 we get
vy = vl o < e
1 J P
Lemma 2.5
— | _ o
Fix S C Li@RQ) bounded and R € R. Let h denote h . Then
the set
' ' U 1P .
{ v € w2s Lk(lRQo)W : h(v) <R
is bounded in LPGR ).
k o
: . Q
Proof : Fix v ¢ LP(R ) . Suppose v =+t +w with t € Lp(R ) . Then
—_— k™ 607w k™ 0070
. -1 |
h(v) = h(t+w) = .h(w)‘-.l"J dh(w + ut)(t) du
) . 0

R(w) + dh(w) (£) + [ [dh(whut) - dh(W)](E) du

0

1
[dh(w+ut) - dh(w)](ut) du

il

2=

h(w) + dh(w) (t) +jf
. . _ 0

- By lemma 2.2
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vty

Lo
v

> h(w) + dh(w)(t) + Cf. %WIutllpp-dg
. o o

2 C P .
b + dh() (8) + ||t||L£_ .

Since S  is bounded, by lemma 2,l(ii) ‘

sup ||dh(w)||'-= A .< © -
weS :
sup |h(w)| = B < = .
"weSs

Therefore

hw+t) > -B-Allt]] _+Z||e]]P
. P P LP
k k
for all we S, where C >0, p >0 . It follows immediately that

3h(ﬁ +t) <R with we S implies that - J|t1| is bounded:
' L

1%
k
Lemma 2.6
Fi# S < LiORQd) 5ounded and R efR . For any @ ;Z o°  let
‘T vf { WIQ it weSs }
i.e. T consists of the "reétriction"' of S to 9 . Then there exists a

constant B ¢ R, independent of the choice of Q such that

v e {.v € w%é Li(mg)w : hQ(v) <R }

implies that ||v|] <B.
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p ' o P .
Proof : Pick v e Lk(IRQ)w . Then v=w+t for t ¢ LkGRQ)O,’ and w
is the restriction of some Wy € LiGR 0) to Q . Extend v to Q° by

. : Q
setting it equal to wy; on Qq - £ . Call the extension vy - Then
Q° Q |
h™ (v,) = h(v) + Foi, (w,) dw
1 0 k"1
Q2 -Q-
< R+ \ J o Fojk(wl) dw
'
By lemma 2.1(ii) there exists a constant ¢ € R such that
l J o Fojk(wl)dw < K
'Q
for all Wi € S . Thefefore
a°
h (vl) < R+ec
By lemma 2.5 there exists a constant A € R with Ilvlll P < A . Then it

Ly
follows that

Hvll . < A+sup ||w]]
: Lﬁ wy €S 1 LE

and the result follows for

B = A+ sup I[w || .
wleS 1 Lﬁ
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;gmma 2.7

For each © , and w e LﬁORQ), the restriction of h' to

P o -
LkaRQ)w }s bounded below.

Proof : In the coursé of verifying lemma 2.5 we derived the inequality

hee +w) > -5 alle]| + S el
' L ‘ L
Kk K

for t ¢ Li(mg)o , and lemma 2.7 follows immediately from this inequality;

We are now ready to proceed with the reduction from Theorem II

A-to Theorem I .

2.3. Construction of the Associated Standard Problem
We construct the standard problem by defining the data [la] - [le].

[1la] M has already been determined. Let U be anj strictly positive

smooth measure on M, and let E be the product bundle RM .

[18] P, k are already determined. Let ]l [| beé the standard norm
P _' - -
on Lk(RM), so that G(Sl,sz) = Ilsl szll p
L
- k
{1y] @ B has been determined.

For each r ¢ B the map . A(r) : M —> Qr c @° induces a map

A(r)* ¢ Li(ﬂr,m) —> Li(M,R) given by A(r)*(v) = voX(r). Recall that we
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t

have a map‘ B —> LE(QO,R) given by «r > a. . We define a map

B —> Li(M,m) by

def

r —> b_ = A(r)*(a))

. ) _ ' P B
[18] Let b = the zgro section of Lk(RM), and the map r —> br ‘as

given above. Let & : B X LEORM)O —> [E be defined by

@‘r,s) = (r,s+br) so that ¢r(s) =35 + br .

For each r e M, let a_ € Cw(M,R) be defined by

ar(y)l(r)*w(y) = uw(y

[1e] For s ¢ Lﬁ(RM) and r ¢.B, let
Ls(y) = o (DFAE (3),3, (oA () ™) G (x) (1))

where we repeat that the symbol jk(-) is being abused to denote

the principal part of the k-jet of the section spk(r)_l £ LEGRQ‘).
r

Assuming for the moment that the standard parametrized problem
with the above data satisfies the hypotheses of Theorem I, we indicate

. how Theorem II follows.

From the definition of Lr it follows that for s € Lﬁ(RM) that

f Ls(y) du(y) = J Lo (seh () ™) (v) du)
M 0 .

r



- 31 -

so that .gr(t) = hr(ték(r)_l). Now in Theorem I . let
= [ . P
F = { {s} : s« LkGRM)O } .
Then o

mF(r) = inf gr(t) = inf hr(v) = ﬁ(r)

tsEr veDr

So va(r) = m(r) and hence m(r) is finite and continuous on B . Also,

]

M(r) { v € Dr.: dhi(v) =0 and. hr(v) = m(r) }

{ v € Dr : dgr(VpA(r) =0 and gr(ték(r)) = mF(r)}.

Therefore v.s M(r) iff wvoA(r) ¢ KF(r) from which it follows that M(r)

is not void.

Finally A*M(C) = {(r,V°X(r))~= reCandve M(r)} and from the

above discussion it follows that A*M(C) = KF(C) and from Theorem I it

follows that A*M(C) is compact.

Therefore in order to prove Theorem II we need only verify

conditions [1.1] - [1.6] for the standard problem just constructed.
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2.4 Verification of Conditions [1.1] - [1.6]

We shall carry out the verifications in the order 1, 4, 3, 5, 6, 2.

Verification of [1.1]

: Q
o p o T -1 ‘
Fix r e B and t ¢ Lk(IRM)br . Then gr(t) h “(teA(r) 7) and

_’by lemma 2.6 g, is bounded below.

Now assume that ‘{ti}  is a bounded sequence with ]ldgr(ti)|| -+ 0.

: _ o i . )
. It follows that | | dh r(tiol(r) 1)]] + 0 . By lemma 2.4 {tiox(r) l} is a

Cauchy sequence. Hence .{ti} is a Cauchy sequence.

Verification of [1.4]

Since ¢r(s) =s+b_,

5,(8), 4 ()) = [|s+b = +b]|
= Hbr_br'H
. P
Ly

- JM 2% (@A () ) = D n @ NP ay

A

) JM 22,2 @) ) = D a AN
o ” :

+y J 0% (a_ Az () —'Du(arLOA(r'))(y)|p du .
o M ' '

It follows from the continuity of the fUnctionsz r —> a. “and 1 > A(r)
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that the above terms can be made arbitrarily small for r in some

neighbourhood V. of r .

Verification of [1.3] :

Fix reB and ReR . Let W bea neighbourhood of r such
" that the set {a_, : r' ¢ W} is bounded in LPGR ). Now g (r') <R
T k™ qo t -

Q_, : ‘ '
. implies that h r ((t+br,)ok(r') l) <R . From lemma 2.6 it follows that

there eXists_a BeR such that

e +b0aaD™ ] o< B
T

Then

e ™| < B+ oo™,

Lk. . Ly

. v s -1 . o '
But since the sections br,pk(r') are just the restrictions of the a_,'s

to the various Qr,'s it follows that

sup [b_orx) | <=

r'eV Li
and that there exists an A ¢ R with

[leaxen™ ], < 4
Ly

. ’ : ' '
for a}l, t e FR,W and all r' e W.

From the continuity of the map
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rl ’__>.>‘(rl).

it is-easily seen that there exists a neighbourhood V € W of r and a

constant Al ¢ R such that

[Itol(r')_1|| <A and r' eV

P

implies that |[|t]] p <Ay - From this it follows that Fp , is bounded.
. ! 2

Verification of [1.5] :

P o) -1
.- Lk(lRQ ) denote ‘s_k(r) . For

i P
~ For S.E LkGRM) let s §

vy £ M, let x = A(x)(y). Then for r, r' € B

|f(r,s) - f(r',s)l = ‘ IM [Lrs'— Lr,s] du l

= _ Ls_ dw - j Ls_, dw
JQ - r Q.1 r

r o r
[Q

Let B : Q. —> Qr, be given by

Flx, i (s,) (x) dw<xr>,-_J FOx,0sdp (5,00 (6,00 dox,e)

r Q'

r
g = A@Ham™.

Then 'Xr' = B(xr) and we rewrite the above as
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‘ f CF(xadp(s) (x)) du(x,)
f

- fg

F(B(x,) 35 (5_1) (B(x,)))d (B%w) (x,) ‘

r
(A) < [~ {F(Xr,jk(sr)(xr)) - F(xr,jk(sr.)(B(xf)))]dw(xr) ’
Q. : - o
(B .+ f~-[F(xr,jk(sr.)(B(Xr))) - F(B(xr),jk(sr')(B(X¥)))]dw(xr) l
| y A |
(©) + | f F(B(x,) 53, (s.0) (B(x))) dlw-B*w] (x.) l,.
Qp .

We shall deal with each of the above terms separately.

) x> (i (s 0 (BGx))) -is'a section in Lg(JkORQr)) i

In fact it is just
% (4 '
B*(3 (s 1)) -

Furthermore, for s € § C Li(RM), bounded.and- S, S, as defined above
there exists a neighbourhood Vr of r . such that
e s o) = s ] < e

P
LQ

for all s e€ S and r' e Vr . Now (A) is the same as

Qr o Sy
H (Jk(Sr)) -’ (B*(jk(sr:)))

Q.. S
- And from the boundedness of dH T which follows from lemma 2.1(i) we get

~ a bound on (A) which can be made arbitrarily small.
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' (B) By cpndition‘Lé.Z] "~ (B) is bounded by
| JQ IC(x—B(xr))l[l + glud(jk(sr.))(ﬁ(xr))lp dw .
T _ . ,

Now for any ¢ > O thére exists a neighbourhood W of r _sugh that for

r' e W,

sup |€(x. - B(x ] < €.
x _eQ '
T T

(Recall that B8 depends on r'). Therefore (B) is bounded by

€ J [ 1+ ) IuOL(J'k(Sr.)(B(xr))|p ) dw .
Q, o » _

Since S is derived from s € § a bounded set, there exists 4 constant

A € IR such that

f [ 1+ ] Ju Gy (s, (BGx))|P ] do < A
Q o

r
for all s e S. It follows that (B) can be made arbitrarily small.
© Frdmvthe céntinuity of the map r +—> A(x) it is easily
seen that the difference of the measure w® - B*w can be made uniformly

 small over Qr»_by restricting r' to lie in a suitable neighbourhood of

r . It follows that (C) can be made arbitrarily small.

Verification of [1.6]

Lét s C Li(RM) be bounded. Then the set { SOA(r)_l : s eS8}
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is bounded in Lﬁ(IRSZ ) . Now
B o ot

: L B
df () (1) = dH' (3 (oA () TYog, (Eer () T).
From lemma 2.l(ii) it follows that

sup ||dHQ'(jk(soA(r)_l))l| < o .
seS

P y . 1P,k . . -1, . '
.and since LkGBM) > LO(J (Rgr)) given by t +—> Jk(tOA(r) ) is bounded

it follows that

sup lldfr(s)ll < e,
seS :

Verification of [1.2]

Fix ReR and C C B compact. Let '{(ri,si)} be a sequence
with

» '{(ri,si)} C KN {(r',s) : r' € C and gr,(s) <R } .
‘We need to show that ‘{(ri,si)} has a convergent subsequence.

Since C 1is compact we can assume that '{ri} is a conVergent_
sequence and we assume that ’{ri} converges to r ¢ B . From conditions
[1.3] and [1.4] it follows that '{si}' is bounded. 1In order to proceed we

need the following proposition whose proof will be found beléw.

- Lemma 2.8

Fix § < Lﬁ(RM) bounded and € > 0. Then for each r ¢ B there
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exists a'neigthUthod v Ff r such that [|dgr(s) - dgr,(S)|| <e

for all r' ¢V and s e §.

From this it follows that since '{ri} converges to r, '{si}

is bounded, and dg_ (s.,) = 0, that dg_(s,) converges to zero. From
r, 1 r'oi

Q _ : .
this it follows that dh r(siqk(r) l) converges to zero. Finally from
lemma 2.4 we get that ‘{siOA(r)ﬁl} is a convergent sequence and therefore

{si} is a convergent sequence.

Proof of Lemma 2.8

We will employ the same notation as in the verification of [1.5].

. - ' ' 5 -1
That is for s, t € Li(RM), we let s.» t e'Li(RQr) denote seoA(r) ,

cox(r)-l, and for r, r' ¢ B we let B : Qr —_ Qr' be given by
v N v |
_ ] - . .
g = A(r YoAr(xr) ~, apd for _xr > Qr we let X 1 B(xr} . Now
dg v (s8) () = [ SF, J (vt ) (x v) dw(x |)
T o Jk(sr,)(xr,) k*r T r

while

dgr(S)(t) = [Q (tr)(xr) dw(xr) .

§F. i
jo(s.)(x.) "k
r k' r r _

In order to compare dg_,(s)(t) and dg'(s)(t) we need to
. T r

employ the coordinate system on JkGR o).. In coordinates
Q



- 39 -
dgr.(s)(t) SR ' g,,;:_-.;'
=) f. .EE“{X ; (s_) (x_))eu (G, () (x_,) dw(x_,)
Lo, aud r"Jk ' Fpr a Jk r! r! Xt

OF S , ‘
- ] JQ RN ICCERENCHERUCR R ICE e

r
So
g (s) (1) - dg_4(s) (D)]
@ :.»g-fﬂ §§;<xr,jk<sr)<xr>>[ua<jk<tr>(xr)>—ua<jk<tr.>(e(xr)>>] dw<xr>[
T L .
o (e, . oF , .
(® + g IQ [Eﬁg(xr’Jk(Sr)(xr))" 5;;(Xr13k(sr.)(8(xr)))J
. . r . .
x v (3, (E ) (B(x)) dulx,)
© + \Z J [g§g<xr,jk<sr.><s<xr>>> - (8 )iy (s .)<s<xr)>>]
- a "yt 0 o . r _
x uu(jk(tr.)(B(Xf)) Qw(xr)'
Co ] JQ %§;<B<Xr>’jk<srv>(B<Xr>>>'uu<jk<Fr?><8<Xr>> d[w—B*w](xr)l

r

As before we deal with each of these terms separately.

Now (A) 1is the same as

Q .
dH (3 (s,)) Gy (£ = B*3, (£1))

where



- 40 -

B3, (£, G = (e 0 (BG)

It,is'easily seen that for any 6H> 0 there exists a neighbourhood' W

of r such that

3,6 - B8R e 0] <o
0

for 'tr, tor derived from t with ||tl| P = 1. From the boundedness of

o .
dH ¥ which follows from lemma 2.1 - it follows that (A) can be made

arbitrarily émall.A
(B) This term is:the same as
fp 2y
. _ "4 *i
dH (Jk(sr)) dH “ (B Jk(sr|?)]8 Jk(tr') ..
From the uniform continuity of dH ~, the boundedness of S*jk(tr')’

p
Lo

be madé arbitrarily small it follows that (B) can be made arbitrarily

‘jk(sr), and B*jkgsr,) and the fact that Iljk(sr) - B*jk(sr.)|| " can

‘small.

(C) It is easily seen that for § > 0 there exists a neighﬁorhood

W of r such that
8 - x| = PGEDA@ e - x| < 6

for all X, € Qr ~and all r' € W . From condition [2.4] it follows that

(C): is dominated by
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‘ , v ,1:‘ . ‘;v.‘;‘ n) v Sl
| O | (s (8 p-1) . . |
HQ [ecer)-x,) [1 L g3y, G| ]ua(vjk(tr,.)(s(xr)) o .

- ;

It follows from Holder's inequality and the above remark that (C) can be

‘made arbitrarily small.

(D) It follows from the fact that w — B*w can be made uniformly

small that (D) cén be made arbitrarily small.

"This completes the verification of conditions [1.1] - [1.6], and

- hence Theorem II is proved.
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'CHAPTER 3

""DIRICHLET PROBLEMS WITH VARIABLE HOLONOMIC CONSTRAINTS

" 3.1 Formulation of Theorem III

In this chapter we éhall considér.a parametrized version of the’
Diricﬂlet problem described By Palais [4; pp 104-105, p 109]. The solution
'candidates are vector valued functions on a manifold <. M, whose value$ are
constrained to lie in a given submanifold W & Rg, as well as to agree
with those of a‘given function a on oM, in case' 9M is not empty. We

-shall study the solution when_both_ W and a are permittéd to vary.

To be precise, we begin with a compact C°° manifold M, with
positive smooth measure u and possibiy with boundary, and a »kth order
Lagrangian L ¢ Lgnk(g), where £ 1is the product‘veCtor bundle 'Rﬁ for

some 2 3_2. We suppose that L satisfies the following conditions

[3.1] For some p with pk > n, L extends to a Cl map @

LE(S) —> Lé(RM) so that the integral
h(v) = J Lv du
M
defines a Cl real-valued function on Li(g) .

- | P p i}
[3.2] For -any a;s a, € Lk(g) and any. vy € Lk(g)al’ vy € Lﬁ(;)az s

[dh(vl)—dh(vz)](vl—vz) Z.CII(Vl'Vz)'(al'az)||Pp - ||(al—a2)||pp
| L Ly
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for some constant c¢ .
[3.3] The map dh : Lﬁ(g) — Li(g)* takes -bounded sets to bounded

sets.,

Next, let W  Be a closed 'Cm suEmanifold of Rl
‘with oW =9 . For each r in évﬁarameter space B,  the varied
constraint manifold .Wr will be obtained by acting'on. W with a diffeo- . .
morphiém A(r) of the ambient Euclidean space Rl . Also; fixing a
boundary-valﬁe function b on M with values in W, we obtain indepen--
e dently - varied boundary functions a. by first éomposing b with another
.diffeomorphism Y(r) of _R& which carries W onto W, then composing
the result with A(r)_. Notations like W(r)*b will be used for»sﬁch a
composite function, and by abuse; b may denote a section of the trivial

bundle WM and Y¥(r),b the induced sectioﬁ.

We shall require the maps A and VY to be continuous from B
into the space DiffeoORg) of all C°° diffeomorphisms of IR2~ onto itself,
with the topology of uniform convergence of each derivative on each compact

set. Our result is the following.

Theorem III

Let M be a compact ¢” manifold of dimension n, possibly with
boundary, and with a strictly positive smooth measure u . With & = R; ’

% >2, let L e.Lgnk(g) satisfy conditions [3.1] - [3.31 for some p .

with pk > n , and set
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h(v) = J Lv du for v e Lﬁ(g) )
M

L
Let W be a closed Cw submanifold of- R without boundary,
(W cdmpact if 9M = ¢5; Let E =.WM and b ¢ Li(ﬂ). let- B be'a
locally compact Hausdorff space and let

Y : B —> Diffeo(Rz) and jA': B —> DiffeoQRl)

be continuous maps such that, for each r ¢ B, Y(r)(W) =W and CA(r) (W)
is a closed Cm> submanifbld bf RZ .

def : -
Set W(r) = A(r)(W). Then E(r) = W(r)M is a C subbundle

of mﬁ . Let a_ = A(r)*W(r)*b., and Dr = Lﬁ(E(r))a . Let hr denote
: r

- 1 .
the restriction of the € function h to D. .

Let F bea defqrmation—invériant family of subsets of a single
path component of Lllz(E)b , such that F. contains at least one compact

non-void element. For each T e.B,' set
D(f) = { vV C Dr : Vo= M), ¥(r), (T), some TefF } "
Then Fhe following-gdnclusions hold :
(a) Thé‘function m: B—>R defiﬁed by

m(r) = dinf sup hr(v)
' Vel(xr) veV

is finite and continuous on B .

(b) For each r ¢ B, the set
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M(x) = {(r, v) v'e‘Dr, dhr(v) = 0, and hr(v) = m(r)} |

is not empty.

(c) For each compact subset C < B, the set

M(C) = {(r, v) :reC and (xr, v) e M(r)}

is a compact subset of B x Lﬁ(E) .

Theorem III - will be_deduced from Theorem I of §1.3 by

constructing a suitable standard problem.

3.2 Construction of the Standard Problem

[1o]

[18]

[1v]

[1s]

[1e]

Let M, u as given in §3.1, and E = WM .

P, k as determined in §3.1. Since W -is a submanifold of mz,

. , S 2 . . P — 1P ¥
the inclusion W —> R 1pduces an inclusion Lk(wM) > LkORM).
We give Li(wM) the induced Finsler structure [] ll, and the

corresponding Finsler metric.
B as given in §3.1 .

b as given in §3.1 with br = y(r)4b and ¢ equal to the-

restriction of y(r), to Lllz(E)'b .

Lr = LoA(r), .
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We deduce Theorem III frpm.thefapplicgtion 6f Thebrem I to the
staﬂdard parametrizéd‘ptééiem dete;éigéavgy the data [la] - [le] . The
passage from Theorem III‘ to Théorém I 1is more direct than the passage
from Theorem II to Theorem I because we deal here with a fixed domain

which enables us to construct a parametrized standard problem more closely

related to the original problem. In fact since

D(x) = .{V c Db :Vs= A(x) ¥ (r), (T), some T e F}‘?
and |
o - {s = LE(E)br : 5 = ¥(r),(T), some T e -F}
and
8.(s) = h_(A(x),(s))

it follows that

m(r) = inf sup hr(v)
Vel(x)  veV
= inf ‘sup gr(s) = mF(r)
SeF(r) seS

and (a) of Theorem III follows from (a) of Theorem I .
Also we have

L M(r) = {(r, v) v e Dr’ dhr(v) = 0 and hr(v) = m(r)} “

= {(r, A(r)*s). : s g Li(E)br, dgr(s) =0 and .gr(s)'= mF(r)}

which is non-empty by (b) of Theorem I. Finally,
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M(C) = { (r, v) @ f e C and (r, V) e M(r) }

= { (r, A(r),s) : ¢ eC, s e Li(-E)br’ dg (s) =0

and g.(s) = mg(r) } -‘
which is comapct when € ‘is compact by (c) of Theorem I .

Before proceeding with the verifications we. prove a few lemmas
about the map r > A(f)* . A standard assumption will be the continuity

ofithe map r > A(r)

" Lemma 3.1

Fix S < Lﬁ(i) bounded and € > 0 . Then there exists a neigh-

bourhood V of r such that
||A(r')*s - A(r)*s|| < e
. P
' k
for each r' ¢V and s ¢ S .
‘Proof : The proof follows easily from Palais [4, Lemma 9.9, p.31].
Lemma 3.2

If S ¢ 'LE(&) is bounded then A(r), (S) is bounded.

‘Proof : . This also follows from the above cited lemma 9.9.
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e i‘v,v;;_i;—nzif R

Lemma 3.3
Fix re B and ‘S C Li(g)' bounded. Then there exists a

- neighbourhood V of r such that U A(r')*(S) is bounded in Lﬁ(&) .
. r'ev '

Proof :- This follows from lemmas 3.1 and 3.2.

Lemma 3.4

Fix reB and S C LE(&) bounded. Then

inf [|d(A(x) ) (s)|] > 0.
seS

Proof. : By lemma,3.2, A(r)(S) ‘is bounded. Now
laa@ )| = [JdamPamoe ™.

Therefore we need only proﬁe that for S C Li(&) bounded, and reB

that sup |[d(A(r),)(s)|] <= . Now for s e S and teLl(8) ,
seS ' ' v

d(AM(r) ) (s)(B) (%) = [GA(t)°S(X)](t(X)) >

by Palais [4, Theorem 11.3, p-41]. Again by [4, Lemma 9.9, p.31], it

follows that for [It][ = 1,
Ly '

p

[JGsa@es) ]| < A < =
. Lk

for some A ¢ R, indepéndent of s ¢ S . This implies that

sup |[d(M@) )G || < = .
seS
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3.3 Verification'gﬁ‘conditionsi[l;l]'4*[1;6]'

It follows by the same techniques as employed in Chapter 2 that
‘condition [3.2] dimplies that h : LE(@) —> R is bounded below and
., satisfies condition (C), and that for S C Li(i) bounded and R ¢ R ,

the set
' {'s e’Li(&)a : aeS and h(é).g_R }
is bounded in Lﬁ(g)

Verification of [1.1]

Since gr = hoA(x), » 8, ~1is bounded below for each r, and by
the above remarks combined with iemma 3.2 it follows that for b e Li(E),

and R € R , the set
selP@E, : g (s) <R
k*'b. r —

is bounded in LE(E) and hence bounded in the Finsler metric on. Lﬁ(E)

(Uhlenbeck [8]).

Thereforetin order to show that 8, satisfies‘condition.tC) we
need only show that if '{si} is a bounaed sequence in LII:(E)b .(and hence
bounded in Li(g)b ), such that dgr(si).——> 0, thenv.{si} is cohvergent.
_Now | |

dg_(s;) = dh(A(r),(s))ed(A(r),) (s;)

If dg (s;) — 0 it follows from lemma 3.4 that dh(A(r)*(si))'——> 0,

that '{A(r)*si} -is convergent and therefore so is '{si} .
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Verification of [1.2]

Fix C © B compact and" Re®R . Let {(ri, si)} be a sequence
in K N {(r, 8) : r e C and gr(s) f_Rl}'. Since B 1is compact we can
assume that '{ri} converges to r € B . From lemma 3.3 it follows that

the set '{br'} is bounded in Li(g) .
i .

Now g, (s) < R implies that h(A(ri)*(s)) E_R , where
. i o : .

A(ri)*(s) € Li(g)b . From condition [3.2] it follows that the set

r..
1

C{A(r),(s)} is bounded in Ly (¢) .

‘In order td proceed with the verification of [1.2]- we need the

following extension of the construction in Palais [4, pp 112-114].

Fix r € B. Then A(r)(W) is a closed Coo submanifold of Rg,

"For each w e W let 'qr(W) "denote the orthogonal projection of Rl = ﬂRi

N . 0
onto TWW . Then q dis a C map of W into the vector space
: ¢

2
L(R", Rl), and since W is a closed C~ submanifold of Rz, it extends

2

-

toa C map of R' into the vector space LR, Rl). If we define

Qr(x, v) = (x, qr(v)), Qr' is a C_  fibre bundle morphism of £ = Bﬁ

into L(g, &) .
As in [4, theorem 19.14], we define a map
Py p P " | ST .
Lk(E) > L(Lk(g), Lk(g)) denoted by s t—> Ps, and given by

PL(E)(x) = Q" (s(x)) (t(x)) .
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. : r
In the above construction the map PS was constructed by

appealing to a general extension theorem. We wish to show that these maps

]

t

. . . r
can be constructed for r in some neighbourhood of r such that PS

r

s if r' 1is close to r . More precisely we have the

is "close" to P

following.

Lemma 3.5

Fix re€B and S C Li(g) bounded. There exists & > 0 and a
. . ) 1 . :
.method of defining the extensions of the . qr such that for each

) 1
€ > 0 there exists a neighbourhood V of r with llP; - PZ ||_< e for

all r' eV, ‘and all s with distance (s, Li(E(r)))< 8§ .

Proof : Let N be an arbitrarily large compact subset of W to be
determined. .For r € B define the projection qr : AM(xr)(N) — L(Rz, Rz),
as described above. For each point z e A(r)(N) extend q? a finite
distance along the normal directions to CA(r)(N) at z in R by making '
.it constant. Now for r' "close".to"r define qr' : A(r')Y(N) > L(Rz, Rg)
as above and extend it (shrinking N slightly if necéséary).by making it

constant along the normal directions determined by A(r)(N). The following

diagram should clarify this argument.

_ Extend élong the
eJ/’ ‘normals

L 1— A" )
YOIONN | L7




T SO

Cr

i E'I{fp- -
§ '
e
a

éﬂ

T02us o

. . . _ . . ] .
It is then easily verified.that the.maps 'Pr have the required property.

A This completes theAproof of lemma 3.5.

We resume the verification of [1.2]. First, dgr (Si) =0
. i,

~implies that

T,
1 ——
dh(A(ri)#(si))°PA(ri)*(si) = 0

Lgt -ti = A(r)*(si) . VThen
dh(ti)(ti - tj)

: ) r, ' r
- dh(ti)[(Ptl)(ti - tj)} + dh(ti)[(l - Ptf)(ti - tj)}

i i

Now -{t,} is bounded in ;ﬁ(a);' and distance(t,, Lﬁ(A<r)(Er))br — 0.

Therefore, there exists a sequence 4{ui} in Llli(A(r)(Er))b such that
, T

||ﬁ. - t,]| _—> 0. Consider the difference
i il p

Ly
’ Ty r
|i(I - Pti)(ti - tj) - (I - Pui)(gi f uj)lle
‘ k
r i ) .
< Ha@-p Gy —up =y -ul] o
. . k

r., . .
1 r r ’
Flleg e g mupl] e - p 00y -]

i i i Li .

Now [4, Theorem 19.14, p-112] combined with lemma 3.5 above implies that the
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poiy S

Pl b
above terms converge to zero. By [4, Theorem 19.15, p.113].
o R
- P )(u, - u; — 0
e By )G ?J)llLﬁ’T
for a subsequence of.f{ui}’which we assume is '{ui} , and it follows that .

.
' - PO, -t — 0.
K¢ Pti)(tl. tJ>lILE —

It follows that the difference

. o r,
fan(e) (kg - ) - dh(ey) (Ptz)(ti - tj)}‘

; -t = - Prry
tends to zero. Now. t; tj ti,j + (bi bj) for .ti,j € Lk(E)Q .

Therefore

ey - tj)J

1

+ R

dh(ti)[(P

‘ ' . ‘ r, B
= dh(ti) [(Pti) (ti,j)] + dh(ti) [(Pti) (bi - bj') |

| .
= dh(ti)[(Pti)(bi - bj)]_.

.Since b, - b.]]

—> 0 we get finally that |dn(t,)(t; - e — 0.
L .
v ,

By [3.2] we c¢an conclude that -{ti} is a Cauchy sequence. Therefore

"{si} is a Cauchy sequence, and Condition [1.2] is verified.

We complete the verifications in the order [1.4], {1.3], [1.5],

and [1.6].



- 54 -

Verification of [1.4]

Let .T cC Lﬁ(E) be bounded. Then T 1is intrinsically bounded
and by Uhlenbeck [8], T 1is contained in a finite number of vector bundle

neighbourhoods Li(&i) . Suppose that t ¢ Lﬁ(&i) . Then

W(r)*(t) € Li(ni) where ny is the vector bundle neighbourhood in E

obtained by composing the'map Ei —> E with the map Y¥(r) : E—> E .

This induces a map LE(Ei) e Lﬁ(ni) and by lemma 3.1 there exists a

neighbourhood V of r such that

vt - v, e < e
. . % E % Li(ni)

.- for all r' e V and t e T N Li(gi) . Since [[ II on E is an

admissable Finsler structure (Uhlenmbeck [8]) the result follows.

Verification of [1.3] :

Fix *t € B and R e R . .Then gt(r') < R implies that.
h(A(r')*o¢r,(t)) < R . By the remarks before the verification of [1.1]
.together with lemma 3.2 there exists a neighbourhood V1 of r such that

the_seﬁ
{%mwzhuqu%mw>iR}

is bounded in- Lﬁ(g) - By the argument used in the verification of [1.4],

we can find a neighbourhood V CI'Vl such that [1.3] holds.
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We have
[£(x, s) - £(r', s)]
= |h(A(r),(s)) - h(A(x"), (s))]

Now combining [3.3] with lemma 3.1 and the mean value theorem the result

follows.

Verification of [1.6] :

This follows from [3.3] combined with the proof of lemma 3.4.

This completes the verifications, and hence Theorem III is

proved.
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| CHAPTER 4

" 'EXAMPLES

In this example we have a fixed domain and varying boundary

conditions. The functions are vector ORB) valued.

Let M ClR2 be a compact ¢” two dimensional submanifold of

Rz,' and B be a locally compact topological space.

Let F ¢ FB[Jl(Ri), RM] be given by .

j 3 - 1 32
’ ux ) -, 2 (ux') .

: F(xi, u z
i i,3 i

Let the map B —> Li(Rﬁ) given by r > br be continuous, and let
. ¢ L2( 3) ——5 L2( 3) be given by ¢ (s)’= s +b_ . Then it is easily
r 1 IRM 0 1 RM br ' r T

seen that the standard problem determined by Lr’ ¢ s ‘br satisfies

T
v[l.l] - [1.6]. Now if the set F of Chapter 1 is the set of singletons

in Li(Rﬁ)O s 1t follows that for each r we are considering minimum

values of the function 8, -

If br 'is a smooth section, so that its principal part carries

BMi to a smooth curve Fr in R3 then a section belonging to. Li(Ri)br

defines a (generalized) surface in RB whose boundary is Tr . It is
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- well known, inthis case, that a section which minimizes our Dirichlet
integral 8, corresponds to a surface of ‘minimum area spanning F .
Moreover, the value of gr' agrees w1th the surface area just in this

case: . Hence Theorem I applies to give conclusions

(a) There is at least one (generalized) minimal surface for
each r ,

(b) the minimum surface area varies continuously with. r, and

(c) 4if for each r in a neighbourhood V C B the miﬁimiéing
section s. is .unique, then the map V —> Li(Ri) given by r F—> s, is

continuous.

4.2 Perturbation gﬁ_theLOperator

Let M be a smooth submanifold of R" with boundary oM and

Lebesgue measure ¢4 . Let B = [0, ©), Let o :MxRXB—>R be C2

in its second and third arguments and be denoted by
(xl, u, r) FH—— a(xl, u, r) .
et F_ ¢ FB[Jl( ) .P ] - be given b
r IRM.,I!M‘ g y

FG, u, ),=%[z (w )%+ aGx, u, r)] :

X. S .
1 1 1

. 5 .
Let Lr € LgnkGRM) beArepresented by Fr . Let B —> LlQRM) given by

T F—é’br_ be continuous. Let r : L GRM) — L GRM)b be given by
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¢r(s) = g + br . Assume that o satisfies the following conditions :
. : 9
1) Jalx, u, D)< 'C(r)[ L ot

(1) Jalx, u, ) - alx, u, T < € (r - r'>{ 1+ [ul? ] .

(iii) %% (x, u, r) < C(r)[ 1+ |u| ]
2
(iv) 0 5_'3—%-(x, u, r) < C(r)
. ou
where C  and C1 are continuous functions of r, with Cl(O) =0 .

It is then easily verified that the standard problem determined by 'Lr, b

.r’

¢r satisfies conditions [1.1] - [1.6].

The Euler-Lagrange operator associated with Lr is

_ z u 1 3a (r, x u) -
5 TXLX, 2 du (. I :
i i%i .

‘0f course if a(r, X u) = Y(r)u2 for vy : [0, ©) —> R continuous
we have the parametrized linear Euler Lagrange equation
-Ju +y(r)u = 0.

X.X,
1 1

In any case Theorem I applies again as in 4.1,
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4.3 'Domain Perturbations
We shall employ the notation of Chapter 2. Fix o c R® gnd

.let F ¢ FB[Jl(R ), R ] by given by
Qo Q0

Pty uyuy ) = T (a0 + atey, W
i i i :

where o : QO xR —> R 1is 02 and satisfies the conditions :

(i) Iu(xi, u)| < C[ 1+ |u|2 ]

(ii) Ia(xi, u) - a(xi, u)|‘ < Ci(xi‘— xi)[ 1+ |u|2 ]

(._iii) ’—g% (x;, W < c[ 1+ |y ]
(iv) o ) - 22 (!, w) <‘c 14+ |u] |
iv Sa Xye U 3a X5, U =< u
Bza <‘
€] 0 = — (x;, u) < C
du :

n

where C 1is a constant and Cl a continuous function on R with

Cl(O) =0.

| Let L ¢ LgnltRQo)~ be fepresented by F.; Then it is. clear tha£

F satisfies - [2.1] - [2.6] of Chapter 2. with P = 2 . Let LGRn) :be‘

the set of linear isomorphisms of ®" over R . Then for each r ¢ L@®R™) the
_'restriction of r to the closure of a smooth subdomain 5-(: QO is a
diffeomorphism of { into rR® . If lﬁ' is étrictiy contained iﬁ Qo s .

there exists a neighbourhood V of the identity in LGRn) such that
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r(ﬁ)-CI ° for reV. Let B = V, M= ﬁvandl Ar) = rlﬁ‘- It is clear
that A is continuous from B into Diffeo(ﬁ}an). Let rb+—> br be a

continuous map of B —> LﬁGRQo).

It is easily shown that the above problem satisfies the conditions .

of Chapter 2 and that Theorem II applies to it.

4.4 Perturbation of Geodesics

This is an example of the type of problem treated in Chapter 3.

Let M= [0, 1]. Let  W C RQ be a closed 'q dimensional subma-

2

nifold of R . Let F ¢ FB[Jl(Ré), RM] be given by

F(X, ujs u;]{) = %: (ui)z.

It is easily verified that F satisfies the cbnditions of Chapfer 4. The .
critical points of the'map constructed with F correspond to geodesics on

W in the Riemannian. structure induced on W by the inclusion of W into
rY . |
Via thé map A:B—> Diffeo(Rq) defined in Chapter 4 we indﬁcé
- a continuous change in the Riemannian structure of W . The map

%1 B —> DiffeoGRq) varies the endpoints of the geodesics.

Fix a path component of Li(WM)b . By Palais [4, Thm. 13.14, p.54],

. this is the same as picking a homotopy class of continuous maps M —> W, .
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‘which we denote by »H . Fix T € 3éland assume that for each r Iin some
neighbourhood vV C B, thé minimizing geodesic assured by Theorem III(b)
is unique,vsay V. . Then we have shown that v, Varies continuously with
r , where variations of r in- V correspond to variations of the
Riemannian structure on W and of the eﬁd points of fhe geodesics,

corresponding to br(O) and br(l) .

It is possible to change the above examplé to the case where
1 P g
M =S . In this case we must assume that W is compact. We can also

increase the dimension of M and let F represent "powers" of the.Laplace-

Betrami operator on W . For details see Palais [4, p.127].



- 62 -
* REFERENCES

F.E. Browder, "Existence theorems for nonlinear partial differential

equations," Proc : Symp Pure Math 16, A.M.S., Providence, R.I., 1970,

1-60.

, "Functional Analysis and Related Fields'", F.E. Browder

ed., Springef; New York, Heidelberg, Berlin, 1970, 1-58.

,- "Infinite dimensional manifolds and non-linear elliptic

eigenvalue problems'", Annals of Math 82 (1965), 459-477.

R.S. Palais,' "Foundations of Global Nonlinear Analysis", Benjamin,

New York, 1968.

. _"Lusternik4S¢hnirelman_theOry>on Banach manifolds", .

Topology 5 (1966) 115-132.

, "Critical point theory and the minimax principle', Proc :

Symp Pure Math 15, A.M.S. Providence, R.I., 1970, 185-212.

R.C. Riddell, '"Nonlinear eigenvalue problems and spherical fibrations

of Banach spaces", " J. Functional Analysis, to appear.

K. Uhlenbeck, '"Bounded sets and Finsler structures for manifolds of

maps", J. Diff Geom. 7 (1972), 588-595.



