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ABSTRACT 

The solutions of weakly-formulated non-linear D i r i c h l e t problems 

are studied when the data of the problem are perturbed i n various ways. 

The data which undergo perturbations include the Lagrangian, the boundary 

condition, the basic domain, and the constraints, i f present. 

The main conclusion states that the s o l u t i o n of the D i r i c h l e t 

problem which minimizes the D i r i c h l e t i n t e g r a l v a r i e s continuously with 

the data so long as i t i s unique. Detailed hypotheses are formulated to 

insure the v a l i d i t y of t h i s conclusion for several large classes of problem. 

The hypotheses are not much stronger than the standard s u f f i c i e n t conditions 

for existence, i n the generalized Lusternik-Schnirelman theory of these 

problems. 
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INTRODUCTION 

The purpose of t h i s thesis i s to study the behaviour of the 

solutions to nonlinear d i f f e r e n t i a l boundary value problems of D i r i c h l e t 

type, when the data d e f i n i n g the problem are subjected to various 

perturbations. The basic r e s u l t we s h a l l obtain states that, under s u i t a b l e 

r e s t r i c t i o n s , the s o l u t i o n of such a problem changes continuously with the 

data as long as the s o l u t i o n i s unique. The conditions under which t h i s 

conclusion is. v a l i d are e s s e n t i a l l y that the usual s u f f i c i e n t conditions 

for existence i n the v a r i a t i o n a l theory of D i r i c h l e t problems should hold 

uniformly i n some sense as the given problem i s perturbed. 

The d i f f e r e n t i a l equations which appear i n the boundary value 

problems considered here are the Euler-Lagrange equations of m u l t i p l e -

i n t e g r a l ' D i r i c h l e t ' functionals defined on s u i t a b l e Sobolev spaces. We 

consider such problems i n t h e i r weak formulation, i n which a s o l u t i o n i s 

taken to be a d i s t r i b u t i o n which s a t i s f i e s the given boundary condition i n 

an appropriate generalized sense, and which i s a c r i t i c a l point of the 

D i r i c h l e t i n t e g r a l r e s t r i c t e d to such d i s t r i b u t i o n s . The n o n l i n e a r i t y 

of the Euler-Lagrange equation a r i s e s from the fac t that the integrand 

de f i n i n g the D i r i c h l e t f u n c t i o n a l need not be quadratic i n i t s arguments, 

but need only have a c e r t a i n convexity i n i t s dependence on the functions 

on which the fun c t i o n a l i s defined. For such problems, there are w e l l 

known ' r e g u l a r i t y ' theorems as s e r t i n g when a weak s o l u t i o n i s i n fac t a 

smooth function and hence i s , by a standard i n t e g r a t i o n by parts argument, 
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a c l a s s i c a l s o l u t i o n of the Euler-Lagrange equation. We s h a l l not be 

concerned with t h i s question, and we work e n t i r e l y with weak so l u t i o n s . 

The data defining such a problem appear to be of four kinds : 

( i ) The 'Lagrangian', or integrand, of the D i r i c h l e t f u n c t i o n a l ; 

( i i ) the ' D i r i c h l e t data', or boundary conditions; 

( i i i ) the 'domain', i . e . the set over which the independent 

v a r i a b l e s i n the d i f f e r e n t i a l equation are allowed to run; 

(iv) the c o n s t r a i n t s , i . e . the set i n which the dependent 

va r i a b l e s are required to l i e . 

In p r i n c i p l e we could formulate a global problem on sections of 

a subbundle of a smooth f i b r e bundle where the target subfibre represents 

(iv) and the base manifold represents ( i i i ) ; and we ought to vary ( i i i ) by 

p u l l i n g back along various embeddings in t o the base, vary (iv) by allowing 

the subbundle to vary, and vary ( i ) and ( i i ) at w i l l , a l l simultaneously. 

This amount of g e n e r a l i t y presents t e c h n i c a l obstacles which obscure the 

main phenomenon, and, i n addition, t r e a t i n g p a r t i c u l a r cases of the above 

allows us to dispense with some of the assumptions i n each case which are 

needed i n the general case. 

Thus we s h a l l take the following l e s s general approach. In 

Chapter 1, we formulate and prove a theorem i n the s e t t i n g of a f i x e d 

f i b r e bundle over a f i x e d base manifold, where data ( i ) and ( i i ) are 

allowed to vary. In Chapter 2 we suppress (iv) by considering sections 
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qf a t r i v i a l vector bundle, and we hold ( i ) f i x e d , but we allow ( i i ) and 

( i i i ) to vary. In Chapter 3 we f i x ( i ) and ( i i i ) and allow ( i i ) and (iv) 

to vary. A simple example of the s i t u a t i o n i n Chapter 1 i s the problem 

of minimal surfaces i n ordinary Euclidean space, under v a r i a t i o n of the 

boundary curve. The s i t u a t i o n of Chapter 2 i s i l l u s t r a t e d by the problem 

of domain-perturbations for nonlinear e l l i p t i c boundary problems on domains 

of R n . The s i t u a t i o n of Chapter 3 i s i l l u s t r a t e d i n the study of 

geodesies, or more general harmonic maps fin imbedded submanifolds of IR 

We conclude our discussion by s p e l l i n g out these examples i n a l i t t l e more 

d e t a i l i n Chapter 4 . I t should be noted that the s i g n i f i c a n c e of the 

uniqueness assumption i n our main r e s u l t i s i l l u s t r a t e d i n a l l these cases, 

by well-known phenomena of jumping^.of the minimizing s o l u t i o n when unique­

ness breaks down. 
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CHAPTER 1 

PARAMETRIZED NONLINEAR DIRICHLET PROBLEMS IN STANDARD FORM 

1.1 Notation 

Generally we s h a l l follow the notation of Pa l a i s [4]. For the 

reader's convenience we supply the following b r i e f l i s t : 

M compact C manifold of dimension n, possibly with nonempty 

boundary 9M ; 

u s t r i c t l y p o s i t i v e smooth measure on M ; 

00 

E ( t o t a l space of) C f i b r e bundle over M ; 

CO 

£ ( t o t a l space of) C vector bundle over M ; 

(Pv̂  product bundle M x IR ; 

k integer _ 0 ; 
k 

J (E) bundle of k-jets of sections of E ; 

C°°(E) set of a l l C°° -sections of E ; 

S(E) set of a l l sections of E ; 

p r e a l number _ 1 ; 
P 00 

L£(£) Banach space completion of ?C.(^) i n the Sobolev p'th power 

norm on der i v a t i v e s of order <_ k ; 
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I ? ( E ) (for pk > n) Banach manifold o f . a l l sections of E, each of 

which belongs to L^(£) for some open vector bundle neighbour­

hood £ i n E ; 

b,s elements of L £ ( E ) ; 

P 0 0 P 
L, (E), closed C submanifold of L f ( E ) co n s i s t i n g of the closure i n k b K 

L^(E) of the set of a l l sections s e L £ ( E ) which agree with 

b i n some neighbourhood (depending on the p a r t i c u l a r s) of 8M; 

[| || F i n s l e r structure on the tangent bundle T ( L £ ( E ) ) ; also,by 

abuse,induced structure on T * ( L ^ ( E ) ) ; 

6 F i n s l e r metric on L £ ( E ) induced by || || ; 

k-j e t extension map L £ ( E ) — y
 L Q ( J ^ ( E ) ) > 

FB(E,E') set of a l l fibr e - p r e s e r v i n g maps of E to E' ; 

CO 

F^ map of C (E) to S(E ) induced by composition with 

F e FB(E,E') ; 
til 

Lgn^(E) set of a l l k order Lagrangians on E, i . e . maps 
CO 

L : C (E) — > S ( i O of the form L = F*°J k
 f o r s o m e 

F e FB(J k(E) ,0^); F represents L . 

It should be noted that the norm i n ^ ( 5 ) depends on the volume 

element dy on M , but, by the.meaning of ' s t r i c t l y p o s i t i v e smooth 

measure', a l l choices of u are equivalent to Lebesgue measure i n a l l 

charts of M, so a l l induce equivalent norms i n L^(C), and equivalent 

F i n s l e r structures on L ^ ( E ) . 
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The F i n s l e r metric i s defined, t e c h n i c a l l y , only on the path 

components of l£(E). We set 6(s,s') = 2 whenever , s, s' belong to 

d i s t i n c t path components. 

The reader should also note that no.a p r i o r i smoothness assump­

tions are made on the maps F, hence on the Lagrangians L . Such 

assumptions w i l l be made below as they are needed. 

1.2 Formulation of the Problem 

We begin by assuming several pieces of data to be given and held 

f i x e d throughout the chapter : 

[la] A choice of M, y, and E ; 

[13] Choices of p > 1 and k _ 1 (pk > n i f E i s not a vector 

bundle); and a choice of || || 

6 on L. P(E); 

on T(L£(E)), with induced 

[1Y] A l o c a l l y compact Hausdorff space B ; 

[16] An element b e l£(E)> a map r -> b of B — > L, (E) , and a r k 

homeomorphism 
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6-bouncled sets to 6-bounded sets; 

[le] A map r i — > L of B — > Lgti, (E), such that each L extends 

to a C 1 map l£(E) — > LjflE^) . 

We think of B i n [ly] as a space of parameters r . Then 

[16] s p e c i f i e s an r-dependent family of D i r i c h l e t - t y p e boundary values on 

sections of E, and a C° global t r i v i a l i z a t i o n of the map ir : IE — > B, 

(r,s) H—> r, with the extra property that $ ^ i s smooth on each f i b r e 

{r} x (E^ . We s h a l l sometimes deviate from s t r i c t consistency, and 

i d e n t i f y the subset IE of L?(E) with the f i b r e {r} x IE , which i s a 
.-. r k r 
subset of E C B x l£(E). 

Item [le] s p e c i f i e s an r-dependent family of Lagrangians L^, 

such that the i n t e g r a l 

f ( r , s ) = L s dy (r e B, s e LJJ(E)) 
M r . 

defines a function f : B x L £ ( E ) — > IR whose p a r t i a l - f u n c t i o n = f ( r , . ) 

i s C 1 on L£(E) for each r . The r e s t r i c t i o n g = f | E then has a C 1 

p a r t i a l - f u n c t i o n g = f r | E for each r ; and the c r i t i c a l locus of g r , 
r 

namely 

K r = { S e E r : d ^ s ) = ° 

i s a w e l l defined closed subset of -. By the standard parametrized  

D i r i c h l e t problem with data [la] - [ l e ] , we mean the problem, to describe 
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the ( d i s j o i n t ) union 

K = | (r,s) : r e B, s £ K r j 
of the c r i t i c a l l o c i of a l l the g r» as a subset of IE a B x L^(E) . 

Of course the problem as posed i s too general, and i n the next 

section we s h a l l put conditions on the data, i n p a r t i c u l a r on t h e i r 

behaviour with respect to the parameter r i n B, which w i l l enable us 

to prove conclusions of a s i m i l a r kind about the sets K . However, an f r 

important r e s t r i c t i o n has already been b u i l t i n , by the p r o v i s i o n i n [16] 

that the d i s j o i n t union IE of the spaces E of the r-dependent v a r i a ­

t i o n a l problems should come to us equipped with the structure of a f i b r e 

space over B, t r i v i a l i z e d by $ ^ . We are thus able to form a 

' p a r t i a l - f u n c t i o n ' g^ on B, for each t i n the model f i b r e IF , 

namely by 

g t ( r ) = (go$)(r,t) = g r(()> r(t)) . 

Certain key t e c h n i c a l considerations i n what follows w i l l be organized 

around these functions g^ . 

1.3 Formulation of Theorem I 

Given a standard parametrized D i r i c h l e t problem as defined i n 

§1.2, we s h a l l study the subset of each c r i t i c a l locus K r on which the 

function g takes i t s minimum value, r 



To be precise, we begin with a family F of subsets of 

IF = L?(E), which i s deformation i n v a r i a n t . This means invar i a n t under 
K b 

ambient homotopy of IF , i . e . , f o r any continuous map 

H : [0,1] x (F — > IF 

such that H(0 , O i s the i d e n t i t y on IF, and for any T e F, the set 

H^T) = | H ( l , t ) : t e T 

i s also a member of the family F (cf. Browder [ 2 , D e f ( l . l ) ] ). 

Given F, we.define a corresponding family F(r) of subsets of each E r » 

by 

F(r) = j . S C E r : S = <|>r(T) for some T e F j 

Then the F-minimax of g i s defined to be the function m̂  on B, where 

for any r e B, 

m F(r) = i n f sup g (s) ; 
r SeF(r) seS 

and the m^-realizing subset of K over r i s defined to be 

Kp(r) = | ( r , s ) : s e K r and g r ( s ) = nip(r) j- . 

More generally, for any subset C Cl B, the n y - r e a l i z i n g subset of K 

over C i s the d i s j o i n t union 

K F(C) = U K (r) . 
reC 
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Our aim i s to give conditions on the data under which m^ w i l l 

be continuous on B, Kp(r) w i l l be nonempty for each r, and Kp(C) 

w i l l be compact i n IE for any compact subset C of B . 

The existence of a point i n Kp(r) i s the main assertion of the 

generalized Lusternik-Schnirelman theory developed by P a l a i s [5., 6], and 

Browder [1, 2, 3], where i n c i d e n t a l l y several examples of f a m i l i e s F 

are given. In the following l i s t of conditions on the data [la] - [ l e ] , 

the f i r s t states the standard hypotheses f o r existence i n the Lusternik-

Schnirelman theory, and the others mainly require that the existence 

hypotheses hold uniformly, i n various senses, with respect to the parameter 

r . Note that some conditions r e f e r to the functions g^, and some to 

the u n r e s t r i c t e d f or f 
r 

[1.1] For each r e B, the function g r : E^ —-> IR i s bounded below 

and s a t i s f i e s condition (C) of Palais-Smale ( i . e . , any sequence 

E r for which § r ( s _ ) x S bounded and ||dg r'(s^)|| 

converges to zero contains a convergent subsequence ). 

[1.2] For each R e IR and each compact subset C of B, the subset 

K H |(r , s ) : r e C and g r(s) <_R 

i s compact i n IE . 

[1.3] For each r e B and each R e IR, there e x i s t s a neighbourhood 

V of r i n B such that the subset 
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IF R v = j t E (F : g t ( r ' ) '<_ R for some r* e V j 

i s bounded i n IF . 

[1.4] For each r e B and each bounded subset T of (F, there e x i s t s 

a neighbourhood V of r i n B such that 

6 ( * r ( t ) , * r , ( t ) ) < e 

for a l l r' E V and a l l t e T . 

[1.5] For each r e B, each bounded subset S of L^(E), and each 

e > 0, there e x i s t s a neighbourhood N of r i n B such that 

| f ( r , s ) - f ( r ' , s ) | < e 

for a l l r' e N and a l l s E S . 

[1.6] For each r E B and each bounded subset S of L^(E), there 

e x i s t s A E IR such that 

| | d f r ( s ) | | <_ A 

for a l l s E S . 

With these preparations done, we can state our r e s u l t : 

Theorem I 

Suppose a standard parametrized D i r i c h l e t problem i s given by 

data [la] - [Is] s a t i s f y i n g conditions [1.1] - [1.6]. Let F be a 
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deformation-invariant family of subsets of a s i n g l e path component of IE, 

such that at l e a s t one element of F i s compact and nonvoid. Then : 

(a) The F-minimax function m^ . of g i s f i n i t e and continuous 

on B ; 

(b) For each r e B, the n y - r e a l i z i n g subset Kp(r) of K 

over r i s not empty; 

(c) For each compact subset C of B, the mp-realizing subset 

Kp(C) of K over C i s compact. 

REMARK. In case Kp(r) i s a singleton {sp(r)} f o r each r i n 

some open set N i n B, so that Sp i s a section of ir : IE — > B over 

N, i t follows e a s i l y from (c) that Sp i s continuous. Thus the c r i t i c a l 

point of which r e a l i z e s a p a r t i c u l a r minimax value mp(r) v a r i e s 

continuously with r so long as i t i s unique. In the examples which we 

have i n mind, t h i s i s the conclusion of p r i n c i p a l i n t e r e s t . 

1.4 Proof of Theorem I 

We f i r s t prove conclusion (b), by assembling several r e s u l t s i n 

Browder [2]. For f i x e d r e B, l e t X denote the connected component of 

IE which contains, a l l the sets i n the family F ( r ) , and l e t h denote 

the r e s t r i c t i o n of g to X . Then X i s a connected submanifold of the 
r 

CO 

C F i n s l e r manifold (E , and i s complete i n the induced metric. Hence 

[2, Proposition 5.2, p.32] there e x i s t s a quasigradient f i e l d for h on 

X . The function h i s bounded below and s a t i s f i e s condition (C) on 
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X , on account of condition [ l . l ] , a n d so by [2, Proposition(5.1), p.27], 

and the remarks following [2, Theorem 1, p.8 and D e f i n i t i o n ( 2 . 1 ) , p.18], 

a l l the hypotheses of [2, Theorem 1] are s a t i s f i e d , except for the f i n i t e -

ness of mp(r). But t h i s follows from the existence of a compact nonvoid 

element i n F , and Browder's Theorem 1 applies to e s t a b l i s h (b). 

To prove (a) and ( c ) , we apply [7, Theorem 1.2] with our 

quantities (E, (F, TT, g, and K i n place of the "quantities E, F, p, 

f, D of that theorem. I t requires that F be invariant under homeomor-

phisms of (F, but t h i s i s used i n the proof only to insure that the 

fa m i l i e s F(r) are independent of the choice of t r i v i a l i z a t i o n x of p. 

Since we have defined our F(r) by a f i x e d t r i v i a l i z a t i o n $ "*" of TT , 

we do not need the homeomorphism-invariance of F to apply the c i t e d 

r e s u l t . I t s conclusions are p r e c i s e l y the conclusions (a) and (c) of 

Theorem I; and one of i t s two hypotheses i s j u s t condition [1.2]. The 

other hypothesis, i n our notation, becomes the following : for each 

r E B and each R e IR, there e x i s t s a neighbourhood V of r i n B 

such that the family of functions 

Thus the proof of Theorem I w i l l be complete as soon as we have shown how 

to choose V so that t h i s equicontinuity a s s e r t i o n holds. Here we s h a l l 

i s equlcontinuous at r , where* as i n [1.3] above, 
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use conditions [1.3] - [1.6]. 

Fix r E B and R E (R. By [1.3], there i s a neighbourhood V 

of r i n B such that T = IF i s bounded i n (F . By assumption i n 
K,v 

[1<$], 4>r(T) i s bounded i n E r . By [1.4] with E = 1, there i s a 

neighbourhood N 1 of r such that <5(<j>r(t), <j>r,(t)) < 1 for a l l r' el 

and a l l t E T. Hence the set 

S 1 = | <j>r, (t) : r' E N 1, t E T } 

i s bounded i n L^(E) along with <J> (T) ; and so also i s 

s 2 = | s E L^(E) : 6(s,s') < 1 for some s' £ S 1 j 

Given E > 0, we apply [1.5] and [1.6] with S = S 2 to f i n d a 

neighbourhood N 2 d of r such that 

f ( r , s ) - f ( r ' . , s ) | < | (r' E N 2, s E S 2 ) , 

and a number A > 1 such that 

d f r ( s ) <_ A (s £ S 2) 

The we apply [1.4] to f i n d a neighbourhood O N 2 of r such that 

'• . 6 ( + r ( t ) , * r , ( t ) ) < min | 1, | £ | 

for r ' E N 3, t E T . 
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Now choose any t e T = (F R v arid any r' e . In view of the. 

convention adopted i n §1.1, that points s, s' i n d i f f e r e n t path compo­

nents of k£(E) have 6(s,s') = 2, the l a s t i n e q u a l i t y implies, i n 

p a r t i c u l a r , that the points s = <)>r(t) and s' = 4> rt(t) can be joined by 

a C 1 path y i n l£( E) with 

length y < min \ 1, 2A 

Any point on such a path can be no further than 1 from either endpoint, 

so l i e s i n • Accordingly we can apply the f i r s t , second and l a s t of 

the preceeding i n e q u a l i t i e s , to get 

|g t(r') - g t ( r ) | 

= | g r , ( * t . ( t ) ) - g r(4> r(t))| 

- |f r.(s*) - f r ( s ' ) l + |f r(a') - £ r(s)| 

< l + 

1 
||df ( Y ( u ) ) | | | | Y ' ( U ) | | du 

0 

<_ -| + A- (length Y) < e. 

Thus {g : t e F } are equicontinuous at r as claimed, and the proof t R,V 

of Theorem I i s complete . 



CHAPTER 2 

DIRICHLET PROBLEMS WITH VARIABLE DOMAINS 

2.1 Formulation of Theorem II 

In t h i s chapter we s h a l l consider nonlinear D i r i c h l e t problems i n 

which the candidates for solutions are real-valued functions on a bounded 

domain ft d IRn, agreeing on the boundary 8ft with a prescribed function 

a . Our i n t e r e s t i s i n the behaviour of the s o l u t i o n when both ft and a 

are perturbed. The r e s t r i c t i o n to r e a l valued functions i s for convenience 

of notation only, and the reader w i l l e a s i l y see how to modify our s t a t e ­

ments to cover the case of vector-valued functions. 

We s t a r t with a bounded open set ft° O IRn, with t y p i c a l point 

x = (x^,...,x n) and with Lebesgue measure dco(x) = dx^...dx^ • An 

n-multi-index i s an n-tuple a = (a^,...,a n) of integers ou _ 0, and we 

w i l l write |a| for the sum \ ou , and D a for the p a r t i a l d e r i v a t i v e 
i 

a. 
operator J Y O/Sx.) . For any integer k _ 0, s, w i l l denote the t o t a l 

number of a's having let < k, and u = (u ) i i , w i l l denote a t y p i c a l 
° 1 ' — ' a |a|<k 

s k s k point i n IR . Note that IR i s j u s t the f i b r e of the k - j e t bundle 

jk(IR ) of the product bundle IR = ft° x IR over ft° , whose sections we 
H o 

i d e n t i f y with the r e a l valued functions on ft° . More generally, for any 

a o i 
product bundle IR over ft with f i b r e IR we have a natural 

- ft° 
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P a p o & 
i d e n t i f i c a t i o n of Lf(fR ) with LMfi , IR ) and we s h a l l use t h i s 

k n° k 

i d e n t i f i c a t i o n f r e e l y i n the following. 

s. 
With n ^ 1, k >_ 1, and f i x e d , l e t F : Q° x IR — > IR 

2 
be a C function. (Thus F i s the p r i n c i p a l part of an element of 

k 

FB[J (IR ), IR ].) Suppose F s a t i s f i e s the following conditions for a 

c e r t a i n p >̂  2, c e r t a i n constants C, > 0, and a c e r t a i n continuous 

function <E : R U — > R with <C(0) = 0 : k 
[2.1] For a l l x e 0° and a l l u e IR , 

F(x,u) | < C 1 + • I | u J 1 

a <k 

a, 
[2.2] For a l l x, x' e and a l l u e IR , 

F(x,u) - F ( x ' , u ) | <_ (C(x - x') i+ i iu r 
|a|£k a 

o k [2.3] For a l l a, a l l x e . f i , and a l l u E IR , 

9F 
8u (x,u) < C 

|e|<k p 

o k [2.4] For a l l a, a l l x, x' e fi , and a l l u e (R , 

3 u ~ ( x ' u ) ~ 9 u ~ ( x ' u ) 

a a 
< (E(x - x') 

1 + , J l$l<k 

o k. [2.5] For a l l a, g, a l l x e-fi°, and a l l u e.'R , 

http://xe.fi
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8 2F 
8u a i i -

(x,u) < C 1 + I |u | P " 2 

[2.6] o k For a l l x e fi and a l l u, v e IR , 

|a|,|B|<k a 3 P |a|=k 
|P-2|„ |2 

Conditions [2.1], [2.3], and [2.5] i n p a r t i c u l a r imply that the i n t e g r a l 

h u(v) - F(x, j . ( v ) ( x ) ) dco(x) ,o k 

i s w e l l defined for a l l v i n the Sobolev space L^(fi°, IR), and that h° 
2 

i s i n f a c t a C function ( c f . Lemma 2.1 i n §2.2 below)'. Here the 
symbol J^Cv) i - s being abused to denote the p r i n c i p a l part of the k-jet of 

the section of L^((R ) whose p r i n c i p a l part i s v . We s h a l l consider 
k fi° 

' r e s t r i c t i o n s ' h = h^ obtained by replacing fi° i n the above i n t e g r a l by 

various subdomains fi C fi° . 

To be precise, for a l l r i n a s u i t a b l e parameter space B, we 

consider an open subdomain fi^ CT fi° whose closure i s obtained as the 

diffeomorphic image A(r)(M) of a f i x e d smooth manifold M . As r ranges 

over B, A(r) i s supposed to change continuously i n the space 

Diffeo[M,fi°] of Z9 diffeomorphisms of M into fi°, equipped with the 

topology of uniform convergence of a l l d e r i v a t i v e s . We also suppose that 

a s u i t a b l e boundary-function â _ i s given f o r each r . Our r e s u l t i s the 

following. 
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Theorem II 

F i x a bounded open subset ft° d (Rn, an integer k _ 1, and a 

o S k 2 r e a l number p _ 2. Let F : ft x (R — > IR be C and s a t i s f y conditions 

[2.1] - [2.6] given above. 

Fix a l o c a l l y compact Hausdorff space B and a compact 
0 0 

n-dimensional C manifold M with boundary 3M . Let r I—> a^ be 

continuous from B into L^(ft°,(R), and l e t r i — > A.(r) be continuous 

from B into Diffeo[M,ft°] . 
For each r e B, set ft = A(r)(M) and set D = L?(ft ,R) , r r K r a r 

2 and l e t h be the C r e a l valued function on D defined by r r 

h (v) = r F(x, j k ( v ) ( x ) ) da)(x) 
ft.. 

Then the following, conclusions hold : 

(a) The function m : B — > IR defined by 

m(r) = i n f h r(v) 
veD 

r 

i s f i n i t e and continuous on B ; 

(b) For each r e B, the set 

M(r) = e D : dh r(v) = 0 and h r(v) = m(r) 

i s not void; 

(c) For each compact subset C of B, the set 
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A*M(C) > , | (r> v°X(r)) : r e C and v e M(r) | 

i s a compact subset of B x L J^IR^) . 

We s h a l l deduce Theorem II from Theorem I of §1.2, by construc­

t i n g a s u i t a b l e standard parametrized problem. I t should be noted that our . 

conditions [2.1] - [2.6] can be weakened considerably by e x p l o i t i n g the 

Sobolev i n e q u a l i t i e s (cf. Browder [1, pp 25-29]). The techniques f o r doing 

t h i s are well established and we s h a l l not dwell further on the point. 

Before carrying out the reduction to Theorem I, we s h a l l 

e s t a b l i s h some properties of the functions h^ . 

2.2 Preliminary consequences of the assumptions 

In the following we use the assumption that F s a t i s f i e s [2.1]-

[2.6]. 

Lemma 2.0 

For each tt <Z tt° the map 

^2 
extends to a C map 

Furthermore, the maps 
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d(F A) : L P ( J k ( V J - > L ( L P ( J k ( V , L j ( V ) 

and 

d 2(F,). : L P ( J k ( V ) -> L 2 ( L P ( J k ( R f i ) ) , L J ( ^ , ) ) 

take bounded sets into bounded sets. (The reader i s warned that the symbol 
2 p Lg above means symmetric bilinear maps and should not be confused with L^) 

p k 
Finally for v, v^, and v 2 e L Q ( J > 

and 

d(F A)(v)(v 1) = 6F v( V ; L) 

d 2 ( F A ) ( v ) ( v l s v 2 ) = 6 2 F v ( v 1 9 v 2 ) . 

Proof : See Browder [1] 

For ft C Q° let H° : L^(Jk(IRfi)) —> IR be defined by 

Hfl(v) - F Av(x) du>(x) 

Let hn : Lj(R f l) —> R be defined by h^ = H f i°J k 

Lemma 2.l(i) 

For each fi <rT , Hfi : L*J(Jk(lRfi)) —> IR is a C 2 function 

such that 

(a) dH : L^(J k(IR n)) —> LP(J k(R ) ) * takes bounded sets into 
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bounded sets ; 

P k 

(b) dH i s uniformly continuous on bounded sets of L Q ( J " 

Q 2 
Proof : The fact that H i s C follows immediately from lemma 2.0. 

2 

Part (b) follows from the boundedness of d (F^) i n lemma 2.0 together 

with the mean value theorem. 
Lemma 2 . 1 ( i i ) 

o h : 'I_(Rfl) —> R i s a c 
2 function such For each 9, C 0, 

that 

(a) dh" : LP(R f i) -> L!X>* a n d d 2 h " : L k < V •> L 2(L£(R n),IR) 

takes bounded sets into bounded sets 

(b) dh i s uniformly continuous on bounded subsets of L^(IR^). 

Proof Since h^ = H^oj and j f e : .^(IR^) — > L P ( J k ( I R n ) ) i s a bounded 

l i n e a r map the proof follows immediately from lemma 2 . 1 ( i ) . 

Lemma 2.2 

[dh"(v x) - d h " ( v 2 ) ] ( V l -

> C Y D V ( x ) - D°v„(x) P du(x) 
i i , 1 £ 

for some constant C 
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Proof : From lemma 2.0 i t follows that 

dh ( v 3 ) ( v l s v 2 ) 

3 2F 
n'l lXl«l v - ^ ( X ' J k ( v 3 ) ( x ) ) U a ( V V « ) U B ^ k ( v 2 > W ) ft 0<_\ a I , I 8 | <k a 6 

So 

[dhV-̂  - dh^Cv^]^ - v 2 ) 

ft J0 

2 3 F 
0<J a | , I B | <k a 6 

u a ( j k ( v r v2 > ( x )H ( j k ( vr vz ) ( x ) ) 
dt dco(x) 

and by [2.6] 

f I f1 | D \ ( X ) + t(D°'(v 2-v 1)(x))| P 2 | D a ( v 2 - v 1 ) ( x ) | 2 dt du(x) 
ft I a I =k •'0 

| a | =k 
D v 1 ( x ) - D v 2 ( x ) K dx 

for some constant c 

Lemma 2.3 

For v r v 2 , a r * 2 E L P ( ( R ) with V ]_ E LJOR ') and 

C d h " ^ ) - d h ^ v ^ K v ^ ) > C ! I v l - v 2 ~ ( a l - a 2 ) I l ^ p 
Lk; 

a r a2 

for some constant C independent of ft 
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• \'.-\ 1 . . 

Proof : By lemma 2.2 we need only show that there ex i s t s a constant 

independent of ft such that 

I ' |D a(v -v ) ( x ) | P du)(x) 
| a | =k Jft 

> c <vl _ V " ( a l — a 2 y ' ' pj l a i " a
2 N p  

L k 

Now v, - v n - (a, - a„) e LP(IR ),. . Therefore there e x i s t s a constant 1 2 1 2 k 0 
independent of ft such that 

I | D a ( V ; L - v 2 ) ( x ) - D a ( a i - a 2 ) ( x ) | P do>(x) 

_ c ||v 1 - v 2 - ( a 1 - a 2 ) | | 

Now there ex i s t s a constant independent of ft such that 

• C. f _ f | D a ( V l - v 9 ) ( x ) - D a ( a 1 - a 9 ) ( x ) | P du>(x) 
1 1 |a|=k Jft . Z J 

I 
|a|=k 

| D a ( V ; L - v 2 ) ( x ) | P dw(x) + j | D a ( a i - a 2 ) ( x ) | P dco(x) 

,1 
| a | =k 

| D a ( V l - V 2 ) (x) | P da)(x) + || a i - a 2 | | P
p 

Therefore there ex i s t s a constant C independent of ft such that 

_ J D ^ v ^ v p C x ) ! 1 1 da)(x) + | |a1-a21 | P > Cl l v r v 2 _ ( a r a 2 ) 

|a|=k 1 ft 

and the r e s u l t follows 
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Lemma 2 .4 

Let {v^} D e a bounded sequence i n L^(IR^) such that 

v. e LP(IR ) with {a.] converging to a . Then i f dh^(v.) — > 0, i t 
x tc Si a.. x x 

i 
follows that fv.jj i s a convergent sequence i n L^ftR^) . 

Proof : Fix e > 0. Pick A so large that i , j > A implies that 

and 

a. - a. W* < S , , 
1 i j 1 1 p - 1 

L k 

[dh"( V ; L) - d h " ( v 2 ) ] ( V ; L - v 2 ) < 6 

for some <5̂ , 6 2 to be determined. By lemma 2 .3 

6 2 - C l a i - a

2 H P  

L k 

Since 

I v v W p - H v r v 2 l l P  

L k L k 

we get 

6. > C | v r v 2 | | a r a 2 i i p i a r a
2 n P  

L k 

Since {v^} i - s a bounded sequence there e x i s t s 6-̂  such that 

a l " a 2 ' ' p < 6 1 
L k 

implies that 
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i vr v

2N Tp 'ara2MLpj 
l a , - a „ I | P - C l I v , - v „ I | P 

I 1 2 " p 1 2 ' l n 

k k 

Ce 

It follows that 

c l | v _ - v 2 | | P p < ^ | + 6 2  

L k 

Setting 6 2 — ^ we get 

v. - v. < e 
1 i 3 T P 

i t 

Lemma 2.5 

the set 

Fix S C LMIR ) bounded and R e IR. Let h denote h . Then 
K o 6 

v e U o LP((R ) : h(v) < R weS k QO W 

is bounded i n L, (IR ) . 
k 

Proof Fix v e LP(tR ) . Suppose v = t + w with t e LP(IR ) . Then 
k o / w

 V V k fio 0 

h(v) = h(t + w) = h(w) + dh(w + ut) (t) du 

r l 
= h(w) + dh(w)(t) + [dh(w+ut) - dh(w)](t) du 

= h(w) + dh(w)(t) + 

By lemma 2.2 

f 1 1 
1 ^ [dh(w+ut) - dh(w)](ut) du 
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> h(w) + dh(w)(t) + C ^ 1,, I | P A — ut r du 
u 1 1 1 1 P 

0 < 
= h(w; + dh(w)(t) + - I I t l | p 

P II i i p 

L k 

Since S i s bounded, by lemma 2 . 1 ( i i ) 

sup I | dh(w) | | = A < «> , 
weS 

sup | h (w) | = B < °° 
weS 

Therefore 

h(w + t ) > - B - A t • + - t 
L P P L P 

k k 

for a l l w e S, where C > 0, p > 0 . I t follows immediately that 

h(w + t) < R with w e S implies that I ItlI i s bounded/ 
•1 1 1 1 p 

k 

Lemma 2.6 

Fix S C LP((R ) bounded and R e |R . For any 0, C l e t 
k Q° T = { w|fi : w e S 

i . e . T consists of the " r e s t r i c t i o n " of S to fi . Then there e x i s t s a 

constant B e IR, independent of the choice of fi such that 

V £ { V E w^T Ll%K : < R 

implies that ||v|| < B 
• L k 
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Proof : Pick v e LP(IR ) . Then v = w + t for t e L^(IR 0) n , and w 
k ^ f i ' O 

i s the r e s t r i c t i o n of some w, e Lp (IR ) to fi . Extend v to fi° by 

se t t i n g i t equal to on fi° - fi . C a l l the extension . Then 

h" (v x) = h"(v) + F°j, (w, ) do) 
Jfi°-fi k 1 

< R + | Q F c J k ( W ; L ) do) 

By lemma 2.1(H) there e x i s t s a constant c e IR such that 

(wn )du> o J k 1 < c 

for a l l ŵ  e S . Therefore 

h (v x) < R + c 

By lemma 2.5 there e x i s t s a constant A e IR with v, < A . Then i t 
J • 1 T p 

follows that 

V M £. A + sup I |w1 

L f w.eS k 1 
1 " p 

L k 

and the r e s u l t follows f o r 

B = A + sup I|wi|I 
w.eS L P 

1 k 
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Lemma 2.7 

For each ft , and w e L PQR f i), the r e s t r i c t i o n of h^ to 

LF(IR^) i s bounded below, k ft w 

Proof : In the course of v e r i f y i n g lemma 2.5 we derived the i n e q u a l i t y 

h(t + w) > - B - A l I t l I + - II11 I P 

- L P P L P 
k k 

for t e LP(IR ) n , and lemma 2.7 follows immediately from t h i s i n e q u a l i t y . 

We are now ready to proceed with the reduction from Theorem II 

to Theorem I . 

2.3 Construction of the Associated Standard Problem 

We construct the standard problem by defining the data [la] - [le] 

[la] M has already been determined. Let u be any s t r i c t l y p o s i t i v e 

smooth measure on M, and l e t E be the product bundle IR̂ . . 

[IB] p, k are already determined. Let || || be the standard norm 

on LJ^IE^), so that 6 ( s 1 , s 2 ) = | | s 1 - s 2 [ | . 
L k 

[ly] B has been determined. 

For each r e B the map X(r) : M —> fir C fi° induces a map 

X( r ) * : L P(fi r,IR) — > LP(M,IR) given by A(r)*(v) = v°X(r). R e c a l l that we 
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have a map B — > LP(ft°,IR) given by r > a . We define a map 

B —> LP(M,IR) by 

def 
r I—> b r E X ( r ) * ( a r ) 

[16] Let b = the zero section of L ^ O ^ ) > a n d t n e m a P r 1 — > b
r
 a s 

given above. Let $ : B x I ^ O r
m ) Q — > E b e defined by 

$(r,s) = (r,s+b r) so that <)>r(s) = s + b r . 

OO 

For each r e M, l e t a r e C (M,IR) be defined by 

a r(y)X(r)*u(y) = y(y) . 

[le] For s e L ^ O ^ ) and r e B , l e t 

L r s ( y ) = a r ( y ) F ( A ( r ) ( y ) , J k ( s o X ( r ) " 1 ) ( X ( r ) . ( y ) ) ) 

where we repeat that the symbol J^C') i S being abused to denote 

the p r i n c i p a l part of the k-jet of the section s ° X(r) e L^Ot^ ). 

Assuming for the moment that the standard parametrized problem 

with the above data s a t i s f i e s the hypotheses of Theorem I, we i n d i c a t e 

how Theorem II follows. 

From the d e f i n i t i o n of L f i t follows that for s e L^OR^) that 

L s(y) dy(y) = 
M 

L ° ( S o A ( r ) 1 ) ( v ) du(x) 
ft r 
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so that g r ( t ) = h ^ ( t o X ( r ) . Now i n Theorem I l e t 

F = { {8.} : s e L £ ( V o } 

Then 

m F(r) = i n f g ( t ) = i n f h (v) .= m(r) 
teE veD r r 

So mp(r) = m(r) and hence m(r) i s f i n i t e and continuous on B . Also, 

M(r) = \ v e D r : dh r(v) = 0 and h r(v) = m(r) 

•" = | v e D r : d g r ( v o X ( r ) = 0 and g r(t°A(r)> = mp(r)| 

Therefore v e M(r) i f f v o A ( r ) e K^(r) from which i t follows that M(r) 

i s not void. 

F i n a l l y A*M(C) = |(r,v°A(r)) : r e C and v e M(r)j and from the 

above disc u s s i o n i t follows that A*M(C) = Kp(C) and from Theorem I i t 

follows that A*M(C) i s compact. 

Therefore i n order to prove Theorem II we need only v e r i f y 

conditions [1.1] - [1.6] for the standard problem j u s t constructed. 



2 . 4 Verification of Conditions [ 1 . 1 ] - [ 1 . 6 ] 

We shall carry out the verifications in the order 1 , 4 , 3 , 5 , 6 , 2 

Verification of [ 1 . 1 ] : 

N _1 
Fix r e B and t e L^OR^' . Then g r(t) = h r(t°X(r) ) and 

r 
by lemma 2 . 6 g r i s bounded below. 

Now assume that x S a bounded sequence with ||dg r(t^)|| ->- 0 

fir - I I I - 1 It follows that ||dh ( t ^ A C r ) ) | | 0 . By lemma 2 . 4 {t^oACr) } i s a 
Cauchy sequence. Hence {t^} 1 S a Cauchy sequence. 

Verification of [ 1 . 4 ] : 

Since <j>r(s) = s + b , 

6(<|>r(s), cf)r, (s)) = | |s + b r - s + br,| | 
\ 

= I lb - b ,1 I 
II r . r I I p . 

Lk 

= I f |Da(a oA(r))(y) - D a(a ,<>A(r'))(y)| P dy 

< I f |Da(a P A(r))(y) - D a(a o A ( r ' ) ) ( y ) | P dy 

+ i 
a 

> a ( a °A(r'))(y) - D a(a , °A (r')) (y) | P dy 
M 

It follows from the continuity of the functions r I—> and r I—> A(r) 
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that the above terms can be made a r b i t r a r i l y small f o r r' i n some 

neighbourhood V"r of r . 

V e r i f i c a t i o n of [1.3] : 

Fix r e B and R e IR . Let W be a neighbourhood of r such 

that the set {a , : r' e W} i s bounded i n LP(R. ). Now g ( r 1 ) < R 
r K. QO t — 

" r ' -1 implies that h ( (t+b^, ) <>X(r') ) <_ R . From lemma 2.6 i t follows that 

there e x i s t s a B £ IR such that 

| |(t + b r , ) o X ( r ' ) " 1 | | < B 

Then 

I t o X C r ' ) " 1 ! 

But since the sections b ,oX(r') are j u s t the r e s t r i c t i o n s of the a ,'s 

to the various ft r' s i t follows that 

sup ||b ,oX(r') 
r'eV r 

-1 

and that there exists an A e (R with 

U t o X C r T 1 ! ! p < A 

for a l l t e F t R,W and a l l r' e W . 

From the continuity of the map 
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r* 1—> X(r') 

i t i s e a s i l y seen that there e x i s t s a neighbourhood V C W of r and a 

constant A^ e IR such that 

| I t o X C r ' ) " 1 ! | < A and r ' e V 
\ 

implies that I I t l I < A.. . From t h i s i t follows that IF,, T I i s bounded. r 1 1 1 1 p 1 R,V 
Hi 

V e r i f i c a t i o n of [1.5] 

For s e L^flR^ l e t s r e L^CR^ ) denote s°X(r) 1 . For 

y e M, l e t x r = X ( r ) ( y ) . Then for r , r' e B 

f ( r , s ) - f(r»,s) = 
M 

[L s - L ,s] dp r r 

Ls dco -r Ls , du r 

F ( x r , j k ( s r ) ( x r ) ) du>(xr) - F(x ,,j k(s r,).(x r,)) du(x r,) 
•"ft,-' 

Let 3 : ft^ —> be given by 

= X(r')°X(r) -1 

Then x^, = 3(x r) and we rewrite the above as 



F ( x r , j k ( s r ) (x r)) dco(xr) 

(A) 

(B) 

(C) 

F(f3(xr) , j k ( s r , ) (3(x r)))d(3*0)) (x r) 

du(x r) [F ( x r , j k ( s r ) ( x r ) ) - F( x r , j k ( s r , ) ( 3 ( x r ) ) ) j 

F ( x r > j k ( s r , ) ( 3 ( x r ) ) ) - F(3(x r),j k(s r,)(3(x r))) 

F(3(x ),j,(s ,)(6(x ))) d[w-e*a>] (x ) 
Jo.. r 

dco(xr) 

We shall deal with each of the above terms separately. 

(A) x r •—> (x r,j k(s r,)(3(x r))) i s a section in L P(J k(lR^ )) . 

In fact i t is just 

3*(j k(s r,)) . 

Furthermore, for s e S C L̂ OR̂ ) bounded and s^, s^, as defined above 

there exists a neighbourhood of r such that 

3*(j, (s ,)) - s < e Jk r' r 1 1 p 
L0 

for a l l s e S and r' e V r . Now (A) is the same as 

H ( j k ( s r ) ) - H r ( 3 * ( j k ( s r , ) ) ) 

ftr 

And from the boundedness of dH which follows from lemma 2.1 (i) we get 
a bound on (A) which can be made arbi t r a r i l y small. 
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(B) By condition [2.2] (B) i s bounded by 

<C(x-3(xr))| 1 + I | u a ( j k ( s r , ) ) ( 3 ( x r ) ) dco 

Now for any E > 0 there e x i s t s a neighbourhood W of r such that f o r 

r' c W , 

sup |(C(xr - 3(x r)) | < e . 
x efi„ r r 

(Recall that 3 depends on r ' ) . Therefore (B) i s bounded by 

1 + I h a ( 3 k ( s r , ) ( 3 ( x r ) ) | p da) 

Since s r , i s derived from s e S a bounded set, there e x i s t s a constant 

A e IR such that 

1 + I I V V V ) ^ ) ) ! 1 

fir
 v a 

dco < A 

for a l l s e S. I t follows that (B) can be made a r b i t r a r i l y small. 

(C) From the cont i n u i t y of the map r I—> X(r) i t i s e a s i l y 

seen that the di f f e r e n c e of the measure to - 3*w can be made uniformly 

small over fir by r e s t r i c t i n g r ' to l i e i n a su i t a b l e neighbourhood of 

r . I t follows that (C) can be made a r b i t r a r i l y small. 

V e r i f i c a t i o n of [1.6] : 

Let S C L^OE^) be bounded. Then the set { s o X ( r ) " 1 : s e S } 
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i s bounded i n ^ * ^ o w 

d f r ( s ) ( t ) = dH f i'.(J k(soA(r) 1 ) o J k ( t o X ( r ) 

From lemma 2.1(ii) i t follows t h a t 

sup | | d H n ' ( j k ( s o X ( r ) _ 1 ) ) | | < » ,. 
seS 

and since 1^0^) — > L P(J k((R f i )) given by t l — > J k ( t ° A ( r ) _ 1 ) i s bounded 

i t follows that 

sup ||df ( s ) | | < 
seS 

V e r i f i c a t i o n of [1.2] : 

Fix R E IR and C C B compact. Let {(r^,s^)} be a sequence 

with 

{ ( r i , s i ) } C K fl | ( r ' , s ) : r ' e C and g r,(s) <R J . 

We need to show that {(r^,s^)} has a convergent subsequence. 

Since C i s compact we can assume that {r__} i s a convergent 

sequence and we assume that ^r__} converges to r E B . From conditions 

[1.3] and [1.4] i t follows that {s^} i s bounded. In order to proceed we 

need the following proposition whose proof w i l l be found below. 

Lemma 2.8 

Fix S CT L k(R^) bounded and E > 0. Then for each r e B there 
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e x i s t s a neighbourhood V of r such that ||dg (s) - dg , (s)| | < e 
, j , r r 

for a l l r' £ V and s E S1 . 

From t h i s i t follows that since converges to r , {s^} 

i s bounded, and dg (s.) = 0, that dg r(s.) converges to zero. From 
i 

ar -1 

th i s i t follows that dh (s^°A(r) ) converges to zero. F i n a l l y from 

lemma 2.4 we get that {s^°A(r) }̂ i s a convergent sequence and therefore 

{s^} i s a convergent sequence. 

Proof of Lemma 2.8 : 

We w i l l employ the same notation as i n the v e r i f i c a t i o n of [1.5]. 

That i s for s, t e L^ClE^), we l e t s r , t r £ 1^0^ ) denote s ° A ( r ) _ 1 , 

t°A(r) \ and f o r r , r' E B we l e t 3 : fir — > & , be given by 

3 = A(r')°A(r) _ 1, and f o r x r £ Q.^ we l e t x r, = 3(x r) . Now 

d g r , ( s ) ( t ) = 

while 

d g r ( s ) ( t ) = 

n
 5 \ ( s ,)(x ,) W ) ( V > d u , (V> 
n r t

 J k r' r' 

6 F j , (s )(x ) j k ( t r ) ( x r > d a ) ( x r > ftr
 J k v x' v r' 

In order to compare d g r , ( s ) ( t ) and d g r ( s ) ( t ) we need to 

employ the coordinate system on J (R ) • In coordinates 
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So 

d g r , ( s ) ( t ) 

= 7 I — ( x , , j , ( s ,)(x , ) ) o U ( j . (t ,)(x ,) dw(x ,) L L 3u r' k v
 r ' r ' a J k v r ' r' r' a •'ft.,.? a 

= I ^ - ( 6 ( x r ) , J k ( s r , ) ( 6 ( x r ) ) ) o u a ( J k ( t r , ) ( 3 ( x r ) ) d(B*co)(x r) 

dg ( s ) ( t ) - dg , ( s ) ( t ) 

(A) 

(B) + 

9F (x . j , ( s ) (x )) 
n du v r ' J k v r ' v r' 
ftr a 

u a ( j k ( t r ) ( x r ) ) - u a ( j k ( t r , ) ( 3 ( x r ) ) ) dto(x r) 

| f ( x r , j k ( s r ) ( x r ) ) - l f ( x r , J k ( s r , ) ( B ( x r ) ) ) 
a a 

x " a ( J k ( t r . ) ( e ( x r ) ) dco(xr) 

(C) + 

(D) + 

r 
L 
a J ftr*-

V 
• 

I 
a * ftr 

9F ^ - ( x r , j k ( s r , ) ( 3 ( x r ) ) ) - g J r ( 3 ( x r ) f J k ( 8 r , ) ( B ( x r ) ) ) 

x u a ( J k ( t r i ) ( B ( x r ) ) dco(xr) 

|f-(B(x r) , j k ( s r , ) (3(x r))) - u a ( j k ( t r , ) (3(x r)) d[co-3*co] (x r) 

As before we deal with each of these terms separately. 

Now (A) i s the same as 

ft. 

dH r ( j k ( s r ) ) ( j k ( t r ) - 3 * j k ( t r , ) ) 

where 



- 40 -

S * j k ( t r , ) ( x r ) = j k ( t r,)(3 ( x r ) ) 

I t i s e a s i l y seen that f o r any 6 > 0 there e x i s t s a neighbourhood W 

of r such that 

I I J i " Ct ) - 3*3% (t ,) I I < 6 1 1 J k v r J k v r " 1 1 p 
0 

for t , t , derived from t with I Itl I =1. From the boundedness of r r T P 
He 

• ftr 

dH which follows from lemma 2.1 i t follows that (A) can be made 

a r b i t r a r i l y small. 

(B) This term i s the same as 

d H % ; J k ( s r ) ) - d H % B * J k ( s r , ) ) * * j k ( t r . ) . 

ftr 

From the uniform continuity of dH , the boundedness of 6*j, (t , ) , 
K. 10 

J k ( s r ) , and 3*j k(s' r,) and the fac t that I | i k ( s
r ) ~ 3*J k(s r,)|| can 

L0 

be made a r b i t r a r i l y small i t follows that (B) can be made a r b i t r a r i l y 

small. 

(C) I t i s e a s i l y seen that f o r 6 > 0 there e x i s t s a neighborhood 

W of r such that 

|B(x r) - x r| = lACOoAO:)" 1^) - x r| < 6 

for a l l x e ft and a l l r ' E W . From condition [2.4] i t follows that r r L ' 
(C) i s dominated by 
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ni J 

a J f t T 

(CC3(xr)-xr) 1 +:I |u ga kCs r,)C3(x r))) lP-1 u aa k ( t r,) (3Cx r)) dio 

It follows from Holder's inequality and the above remark that (C) can be 
made arbitrarily small. 

(D) It follows from the fact that co - 3*to can be made uniformly 
small that (D) can be made arbitrarily small. 

T h i s completes the verification of conditions [1.1] - [1.6], and 
hence Theorem II is proved. 
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CHAPTER 3 

DIRICHLET PROBLEMS WITH VARIABLE HOLONOMIC CONSTRAINTS 

3.1 Formulation of Theorem I I I 

In t h i s chapter we s h a l l consider a parametrized version of the 

D i r i c h l e t problem described by Pa l a i s [4, pp 104-105, p 109]. The s o l u t i o n 

candidates are vector valued functions on a manifold M, Whose values are 

constrained to l i e i n a given submanifold W C IR , as well as to agree 

with those of a given function a on 8M, i n case 3M i s not empty. We 

s h a l l study the s o l u t i o n when both W and a are permitted to vary. 

OO 

To be precise, we begin with a compact C manifold M, with 
th 

p o s i t i v e smooth measure y and possibly with boundary, and a k order 

Lagrangian L e Lgn^CO » where £ i s the product vector bundle IR̂  f o r 

some £ _ 2. We suppose that L s a t i s f i e s the following conditions : 

[3.1] For some p with pk > n, L extends to a C.̂  map : 

f£(£) —> LJO )̂ s o t h a t t h e i n t e g r a l 

h(v) = Lv dy 
M 

defines a real-valued function on L P(£) . 

[3.2] For any a ± , &2 e L P ( ^ ) and any v ± e a » v
2 e Ll_^0a^ » 

[dh( V ; L)-dh(v 2)] ( V ; L-v 2) > c| | ( v 1 - v 2 ) - ( a 1 - a 2 ) | | P
p - | [ ( a ^ ) | | P

p 

L k L k 
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for some constant c . 

[3.3] The map dh : LP(£;) — > L^CO* takes bounded sets to bounded 

sets. 

Next, l e t W be a closed C submanifold of (R 

with 8W = 0 . For each r i n a parameter space B, the varied 

constraint manifold W w i l l be obtained by acting on W with a d i f f e o -
Z 

morphism A(r) of the ambient Euclidean space IR . Also, f i x i n g a 

boundary-value function b on M with values i n W, we obtain indepen­

dently - varied boundary functions a^ by f i r s t composing b with another 
Z 

diffeomorphism V(r) of IR which c a r r i e s W onto W, then composing 

the r e s u l t with A(r) . Notations l i k e f ( r ) ^ b w i l l be used for such a 

composite function, and by abuse, b may denote a section of the t r i v i a l 

bundle Ŵ  and ^ ( r ) ^ the induced section. 
We s h a l l require the maps A and V to be continuous from B 

% 00 Z into the space Diffeo(lR ) of a l l C diffeomorphisms of IR onto i t s e l f , 

with the topology of uniform convergence of each d e r i v a t i v e on each compact 

set. Our r e s u l t i s the following. 

Theorem I I I 

CO 

Let M be a compact C manifold of dimension n, possibly with 
Z 

boundary, and with a s t r i c t l y p o s i t i v e smooth measure u . With £ = IR̂ . , 

Z >_ 2, l e t L e Lgn^C?) s a t i s f y conditions [3.1] - [3.3] for some p . 

with pk > n , and set 
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h(v) = Lv du for v e L?(C) 
M fc 

00 I 

Let W be a closed C submanifold of IR without boundary, 

(W compact i f 3M = 0). Let E =.W and b e L P(E). Let B be a 
locally compact Hausdorff space and let 

. o o 
T : B —> Diffeo((R ) and A : B —> Diffeo(lR ) 

be continuous maps such that, for each r e B, ¥(r)(W) = W and A(r)(W) 
oo a 

i s a closed C submanifold of IR 
def 

Set W(r) = A(r)(W). Then E(r) = W(r) i s a C°° subbundle 
of IR̂  . Let a r = A ( r ) ^ ( r ) A b , and D = L£(E(r)) . Let h r denote 

r 
the restriction of the function h to D 

r 
Let F be a deformation-invariant family of subsets of a single 

path component of L^(E)^ , such that F contains at least one compact 
non-void element. For each r e B, set 

V ( x ) = | V C D_ : V = A(r)^(r)^(T), some T e F j- . 

Then the following conclusions hold : 

(a) The function m : B —> R defined by 

m(r) = inf sup h (v) 
Vefl(r) veV r 

i s f i n i t e and continuous on B 

(b) For each r e B, the set 



- 45 -

'M(r) = • j ( r , v) : v'e D r, dh r(v) = 0, and h r(v) = m(r)| 

i s not empty. 

(c) For each compact subset C C B, the set 

M(C) = j ( r , v) : r e C and (r, v) e M ( r ) | 

i s a compact subset of B x L P ( E ) 

Theorem III w i l l be„deduced from Theorem I of §1.3 by 

constructing a s u i t a b l e standard problem. 

3.2 Construction of the Standard Problem 

[la] Let M, u as given i n §3.1, and E = Ŵ  . 

[lg] p, k as determined i n §3.1. Since W i s a submanifold of (R , 

the i n c l u s i o n W — > IR induces an i n c l u s i o n ^ ( ^ ) — > L£(IR^), 

We give LJ^W^) the induced F i n s l e r structure || ||, and the 

corresponding F i n s l e r metric. 

[ly] B as given i n §3.1 . 

[16] b as given i n §3.1 with b^ = Y(r)*b and <j> equal to the 

r e s t r i c t i o n of Viv)* to L^CE^ . 

[le] L r = LoA(r)* . . 
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We deduce Theorem III from the application of Theorem I to the 
standard parametrized problem determined by the data [la] - [le] . The 
passage from Theorem III to Theorem I i s more direct than the passage 
from Theorem II to Theorem I because we deal here with a fixed domain 
which enables us to construct a parametrized standard problem more closely 
related to the original problem. In fact since 

fl(r) = iV C ti : V = A(r)*¥(r)*(T), some T e f f , 

and 

and 

F(r) = -JS C L£(E)fe : S = ¥(r)*(T), some T e ¥} , 
r 

g r(s) = h r(A(r) A(s)) 

i t follows that 

m(r) = inf sup h (v) 
VeP(r) veV r 

= inf sup g^(s) = mF(r) 
SeF(r) seS 

and (a) of Theorem III follows from (a) of Theorem I 

Also we have 

M(r) = | ( r , v) : v e Dr, dh r(v) = 0 and h r(v) = m(r) 

= j(r, A(r) As) : s e ijJCE^ , dg r(s) = 0 and g r(s) = m F(r)| 

which is non-empty by (b) of Theorem I. Finally, 
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M(C) 
= | (r, v) : r e C and (r , v) e.M(r) j 

= { (r, A(r)„s) : r e C . s e l£(E) b , dg r(s) = 0 
V r 

and g r(s) = rtip(r) 

which i s comapct when C i s compact by (c) of Theorem I . 

Before proceeding with the v e r i f i c a t i o n s we prove a few lemmas 

about the map r l—> A ( r ) A . A standard assumption w i l l be the continuity 

of the map r I—> A(r) . 

Lemma 3.1 

Fix S C L. P(0 bounded and e > 0 . Then there e x i s t s a neigh-

bourhood V of r such that 

| | A ( r ' ) A s - A(r)*s|| < e 
Lk 

for each r' e V and s e S . 

Proof : The proof follows e a s i l y from P a l a i s [4, Lemma 9.9, p.31]. 

Lemma 3.2 

If S C L P(£) i s bounded then A(r).(S) i s bounded. 
K. 

Proof : . This also follows from the above c i t e d lemma 9.9. 

http://reC.se
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Lemma 3.3 

Fix r e B and S C L^CO bounded. Then there e x i s t s a 

neighbourhood V of r such that U A(r').(S) i s bounded i n L?(£) 

Proof : This follows from lemmas 3.1 and 3.2. 

Lemma 3.4 

Fix r e B and S C 1^(5) bounded. Then 

i n f | | d ( A ( r ) ^ ) ( s ) | | > 0 . 
seS 

Proof : By lemma 3.2, A(r)(S) i s bounded. Now 

|| d ( A ( r ) ^ ) ( s ) [ | = | | d ( A ( r ) ; 1 ) ( A ( r ) ^ ) ( s ) | I " 1 . 

Therefore we need only prove that f o r S C ^ ( 5 ) bounded, and r e B 

that sup | |d(A(r) A) (s) | | < °° . Now for s E S and t E , 
S E S 

d ( A ( r ) J ( s ) ( t ) ( x ) = [6A(r)°s(x)](t(x)) , 

by P a l a i s [4, Theorem 11.3, p.41]. Again by [4, Lemma 9.9, p.31], i t 

follows that f o r [|t|| = 1, 

| | (6A(r)°s) At| | < A < co 

for some A e (R, independent of s E S . This implies that 

sup j | d ( A ( r ) * ) ( s ) | | < 
S E S 
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3.3 V e r i f i c a t i o n of conditions [1.1] - [1.6] 

It follows by the same techniques as employed i n Chapter 2 that 

condition [3.2] implies that h : L^CO —> IR i s bounded below and 

s a t i s f i e s condition (C), and that f o r S C L
k ( 5 ) bounded and R -e IR , 

the set 

| s e L P ( 5 ) a : a e S and h(s) <_R 

i s bounded i n 1^(5) • 

V e r i f i c a t i o n of [1.1] : 

Since g = h o A ( r ) . , g i s bounded below for each r , and by r * r 

the above remarks combined with lemma 3.2 i t follows that for b e L P ( E ) , 

and R c (R , the set 

| s e L P ( E ) B : g_.Cs) < R 

i s bounded i n a n d hence bounded i n the F i n s l e r metric on LJ^E) 

(Uhlenbeck [8]). 

Therefore i n order to show that g__ s a t i s f i e s condition (C) we 

need only show that i f {s^} i s a bounded sequence i n L P ( E ) B (and hence 

bounded i n L £ ( £ ) , ) , such that dg (s.) — > 0, then {s.} i s convergent. 

Now 

dg r(s.) = d h ( A ( r ) s , ( s i ) ) o d ( A ( r ) A ) ( s . ) . 

If d g ( s ) — > 0 i t follows from lemma 3.4 that d h ( A ( r ) + (s.)) — > 0, 

that {ACr^s^} i s convergent and therefore so i s {s^} . 

http://g_.Cs
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V e r i f i c a t i o n of [1.2] : 

Fix C C B compact and1 R E IR . Let {(r^, s^} be a sequence 

i n K O {(r, s) : r e C and g r ( s ) £ R } . Since B i s compact we can 

assume that {r^} converges to r e B . From lemma 3.3 i t follows that 

the set {b } i s bounded i n Lf(£) . r. k x 

Now g (s) <_ R implies that h ( A ( r i ) ^ (s)) <_ R , where 
i 

A (r.),(s) E L?(E,)^ • From condition [3.2] i t follows that the set l * k b r. 

{ A ( r i ) A ( s ) } i s bounded i n 1 ^ ( 0 • 

In order to proceed with the v e r i f i c a t i o n of [1.2] we need the 

following extension of the construction i n Palai s [4, pp 112-114]. 

co £ 

F i x r E B . Then A(r)(W) i s a closed C submanifold of IR . 
r £ £ For each w E W l e t q (w) denote the orthogonal p r o j e c t i o n of IR = HRw 

CO 

onto TW . Then q i s a C map of W into the vector space 
W i 

a z °° a 
L(IR , (R ), and since W i s a closed C submanifold of IR , i t extends 

co % z a 
to a C map of IR into the vector space L((R , tR ). I f we define 
r r r 0 0 £ Q (x, v) = (x, q (v ) ) , Q i s a C f i b r e bundle morphism of £ = IR̂  

into L (5 , O • 

As i n [4, theorem 19.14], we define a map 

LJJa) — > L ( L P ( 5 ) , L P (C) ) denoted by s I > p£. and given by 

Pg(t)(x) = Q r ( s ( x ) ) ( t ( x ) ) . 
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In the above construction the map P g was constructed by 

appealing to a general extension theorem. We wish to show that these maps 
r' 

can be constructed for r' i n some neighbourhood of r such that P g 

i s " close" to P__ i f r' i s close to r . More p r e c i s e l y we have the 

following. 

Lemma 3.5 

Fix r e B and S C ^ £ ( 0 bounded. There exists 6 > 0 and a 

method of d e f i n i n g the extensions of the such that for each 
r r 1 

e > 0 there e x i s t s a neighbourhood V of r with ||P - P || < e for s s 
a l l r ' e V, and a l l s with distance(s, L P ( E ( r ) ) ) < 6 . 

k 

Proof : Let N be an a r b i t r a r i l y large compact subset of W to be 
r a a 

determined. For r e B define the p r o j e c t i o n q : A(r) (N) — > L((R , (R ), 

as described above. For each point z e A(r)(N) extend q a f i n i t e 

distance along the normal d i r e c t i o n s to A(r)(N) at z i n (R by making 

i t constant. Now for r* "close" to r define q r : A(r')(N) -> LQR1, IR̂ ) 

as above and extend i t (shrinking N s l i g h t l y i f necessary) by making i t 

constant along the normal d i r e c t i o n s determined by A(r)(N). The following 

diagram should c l a r i f y t h i s argument. 

A(r) CN) 

--Extend along the 
*J normals 

A(r')(N) 



It i s then e a s i l y v e r i f i e d ' t h a t the,maps P have the required property. 

This completes the proof of lemma 3 . 5 . 

We resume the v e r i f i c a t i o n of [ 1 . 2 ] . F i r s t , dg (s^) = 0 
i • 

implies that 

r . 
l d h ( A ( r . ) J s . ) ) o P = 0 

i * I 

Let t. = A(r).(s.) . Then 

d M t . M t . - t.) 

= dh(t.) r ( P ^ ) ( t . " t.) + dh(t.) (I - P ^ C t . - t.)} 

Now {t ±} i s bounded i n 1^(5), and d i s t a n c e ^ , L P ( A ( r ) ( E r ) ) f e — > 0 

Therefore, there exists a sequence {u.̂ } i n L P (A(r) (E.J )^ such that 

I|u. - t . I I — > 0 . Consider the di f f e r e n c e l i _ _ i i p 

Lk 

| | ( I - P ^ ) ( t . - t.) - ( I - P u M u . - u . ) | | 
X 1 Li. 

k 

< Md-P^^-u.) - ( t . - u . ) ) | | 

r . 
x r + IKpt; - < ) ^ i - V " T P + l | ( p t . - C ^ i - V - N p 

He 1 1 He 

Now [4 , Theorem 1 9 . 1 4 , p.112] combined with lemma 3 . 5 above implies that the 
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i. • 

above terms converge to zero. By [4, Theorem 19.15, p.113]. 

1 V 

f o r a subsequence of {u^} which we assume i s {u^} , and i t follows that 

(I - P ^ M t . - t.) || — > 0 . 
t. i J 1 ' P 

1 L k 

It follows that the diffe r e n c e 

d h ( t . ) ( t . - t.) - dh(t.) x x 2 i 

tends to zero. Now t. - t. = t. . + (b. - b.) for t. . e Lf 

Therefore 

dh(t.) (P i ) ( t . - t.) , 

dh(t.) + dh(t.) , (P*)(b. - b.), 
t v 1

 3 J 

dh(t.) 
l ( P t J ) ( b i - Vj 

Since | \b± - b.|| — > 0 we get f i n a l l y that | d h ( t i ) ( t i - t . ) | — > 0 
L k 

By [3.2] we can conclude that {t.} i s a Cauchy sequence. Therefore 

{s^} i s a Cauchy sequence, and Condition [1.2] i s v e r i f i e d . 

We complete the v e r i f i c a t i o n s i n the order [1.4], [1.3], [1.5], 

and [1.6] 
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V e r i f i c a t i o n of [1.4] : 

Let T C L^CE) be bounded. Then T i s i n t r i n s i c a l l y bounded 

and by Uhlenbeck [8], T i s contained i n a f i n i t e number of vector bundle 

neighbourhoods ^ \ ^ ± ) • Suppose that t E • Then 

£ Lf(n.) where n. i s the vector bundle neighbourhood i n E 

obtained by composing the map ^ — > E with the map ^ ( r ) : E — > E . 

This induces a map L P ( S . ) —> L P(n.) and by lemma 3.1 there e x i s t s a 
K. X . KL X 

neighbourhood V of r such that 

||v(r)^t - n r ' ) * t | | < e 
L k ( V 

for a l l r' E V and t e T n l £ ( 5 . ) • Since || || on E i s an 
K. X 

admissable F i n s l e r structure (Uhlenbeck [8]) the r e s u l t follows. 

V e r i f i c a t i o n of [1.3] : 

Fix -r E B and R e IR . Then g t ( r ' ) <_R implies that. 

h(A(r' )A°<f>r, (t)) <_R . By the remarks before the v e r i f i c a t i o n of [1.1] 

together with lemma 3.2 there e x i s t s a neighbourhood V., of r such that 

the set 

| (t) : hOKr'.^o^. (t)) < R 

i s bounded i n l^CO • By the argument used i n the v e r i f i c a t i o n of [1.4], 

we can f i n d a neighbourhood V C V 1 such that [1.3] holds. 
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V e r i f i c a t i o n of [1.5] : 

We have 

| f ( r , s) - f ( r T , s ) | 

= | h ( A ( r ) A ( s ) ) - h(A(r«)*(s))| 

Now combining [3.3] with lemma 3.1 and the mean value theorem the r e s u l t 

follows. 

V e r i f i c a t i o n of [1.6] : 

This follows from [3.3] combined with the proof of lemma 3.4. 

This completes the v e r i f i c a t i o n s , and hence Theorem III i s 

proved. 
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•'! CHAPTER 4 

EXAMPLES 

4.1 Perturbation of Minimal Surfaces 

In t h i s example we have a fi x e d domain and varying boundary 
3 

conditions. The functions are vector (E ) valued. 

2 oo 
Let M C (R be a compact C two dimensional submanifold of 

2 
IR , and B be a l o c a l l y compact t o p o l o g i c a l space. 

Let F e FB[J1(IR^), R l be given by 

i » 3 

2 3 

Let the map B — > L^(R^) given by r I—> b^ be continuous, and l e t 

<j>r : I ^ ( K ^ ) 0 — > L l ^ \ b e given by (J»r(s) = s + b r . Then i t i s e a s i l y 
r 

seen that the standard problem determined by L^, <J>r, b^ s a t i s f i e s 
[1.1] - [1.6]. Now i f the set F of Chapter 1 i s the set of singletons 

2 3 
i n L]_("*jpo * ^ t f ° l - i O W S t n a t for each r we are considering minimum 
values of the function g 

& r 

I f b r i s a smooth section, so that i t s p r i n c i p a l part c a r r i e s 
3 2 3 3M to a smooth curve i n IR then a section belonging to L^((R^)b r 

3 
defines a (generalized) surface i n IR whose boundary i s T . I t i s 



- 57 -

w e l l known, i n t h i s case, that a section which minimizes our D i r i c h l e t 

i n t e g r a l g__ corresponds to a surface, of minimum area spanning . 

Moreover, the value of g__ agrees with the surface area j u s t i n t h i s 

case; . Hence Theorem I applies to give conclusions : 

(a) There i s at l e a s t one (generalized) minimal surface for 

each r , 

(b) the minimum surface area v a r i e s continuously with r , and 

(c) i f for each r i n a neighbourhood V C B the minimizing 
2 3 

section s__ i s unique, then the map V — > L^(IR^) given by r I—> s^ i s 

continuous. 

4.2 Perturbation of the Operator 

Let M be a smooth submanifold of (Rn with boundary 8M and 
2 

Lebesgue measure . u . Let B = [0, °°). Let a : M x (R x B — > IR be C 

i n i t s second and t h i r d arguments and be denoted by 

(x 1, u, r) I > a ( x X , u, r) 

Let e F B t J 1 ^ ) . , IR^ be given by 

F r ( x \ u, ii ) = Y 

l 
2 

I (u ) + a(x, u, r) 
i i 

2 

Let L r e Lgn^OR^) be represented by F__ . Let B —> f ^ O ^ given by 
2 2 

r I—> b r be continuous. Let <|>r : L

1( | R

M)o — > L l^ I RM^ br b e S i v e n b v 
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s + b^ . Assume that a s a t i s f i e s the following conditions 

(i ) | a ( x , u, r) I < C(r) 1 + u 

( i i ) |a(x, u, r) - a(x, u, r ' ) | <_ (^(r - r') 1 + u 

( i i i ) 3a 
3u (x, u, r) 

3 a 

< C(r) ( l + |u|' 

(iv) 0 < • • 2 - f (x, u, r) < C(r) 
3u Z 

where C and are continuous functions of r , with C^(0) = 0 

It i s then e a s i l y v e r i f i e d that the standard problem determined by ' L , b r , 

<f>r s a t i s f i e s conditions [1.1] - [1.6]. 

The Euler-Lagrange operator associated with L i s 

r 1 3a , N ~ L u + r r r , x., u . x.x. 2 3u l l i i 

Of course i f a(r, x̂ ,̂ u) = y ( r ) u for y : [0, °°) — > IR continuous 

we have the parametrized l i n e a r Euler Lagrange equation 

" I \ x + Y(r)u = 0 . 
i i 

In any case Theorem I applies again as i n 4.1. 
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4.3 Domain Perturbations 

We s h a l l employ the notation of Chapter 2 . F i x ft° C IRn and 

l e t F e FB[ J X((R ) , IR ] by given by 

Q° ft° 
i v 2 F(x , u, u ) = _ (u ) + a(x , u) 

x. 

where a : ft° x (R — > (R i s C 2 and s a t i s f i e s the conditions 

( i ) |a(x ±_ u)| < C 1 + |u| 

( i i ) \a(x±, u) - a(x[, u)| < C 1 ( x ± - x^) 

( i i i ) ( X i, u)| < C[ 1 + |u| 

1 + |u 

(iv) 3u~ ( x i ' 
f -

(x|, u) <_ C 1 + |u| 
> 

a 2 

(v) 0 < (x., u) < C 
3u 

where C i s a constant and C^ a continuous function on IR with 

C^O) = 0 . 

Let L e Lgn_ (IR ) be represented by F . Then i t i s c l e a r that 
1 OP 

F s a t i s f i e s [2.1] - [2.6] of Chapter 2- with p = 2 . Let L(IRn) be 

the set of l i n e a r isomorphisms of (Rn over IR . Then for each r e L((Rn) the 

r e s t r i c t i o n of r to the closure of a smooth subdomain Q, C f2° i s a 

diffeomorphism of Q i n t o IRn . If ft i s s t r i c t l y contained i n ft° , 
there e x i s t s a neighbourhood V of the i d e n t i t y i n L((R ) such that 
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r(ft) C fi° for r e V . Let B = V, M = fi and A(r) = r | - . I t i s clear 

that X i s continuous from B into Dif f eo(fi, IRn) . Let r l — > t>r be a 

continuous map of B — > L^CR^) . 

I t i s e a s i l y shown that the above problem s a t i s f i e s the conditions 

of Chapter 2 and that Theorem II applies to i t . 

4.4 Perturbation of Geodesies 

This i s an example of the type of problem treated i n Chapter 3. 

£ 
Let M = [0, 1]. Let W C IR be a closed q dimensional subma-

o 1 £ n i f o l d of (R . Let F e FB[J (IR^) , (R^ be given by 

F(x, u j , uh = I (uh2 . 
3 

I t i s e a s i l y v e r i f i e d that F s a t i s f i e s the conditions of Chapter 4.. The 

c r i t i c a l points of the map constructed with F correspond to geodesies on 

W i n the Riemannian structure induced on W by the i n c l u s i o n of W into 

IRq . 

Via the map A : B — > DiffeoflR^) defined i n Chapter 4 we induce 

a continuous change i n the Riemannian structure of W . The map 

$ : B -—> DiffeoOR*') varies the endpoints of the geodesies. 

2 

F i x a path component of ^ ( W ^ b . By Pal a i s [4, Thm. 13.14, p.54], 

t h i s i s the same as picking a homotopy class of continuous maps M -—> W, 
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which we denote by H . F i x r e B and assume that for each r i n some 

neighbourhood V C B, the minimizing geodesic assured by Theorem 111(b) 

i s unique, say . Then we have shown that v r varies continuously with 

r , where v a r i a t i o n s of r i n V correspond to v a r i a t i o n s of the 

Riemannian structure on W and of the end points of the geodesies, 

corresponding to b r(0) and b ^ ( l ) . 

It i s possible to change the above example to the case where 

M = S"̂  . In t h i s case we must assume that W i s compact. We can also 

increase the dimension of M and l e t F represent "powers" of the Laplace-

Betrami operator on W . For d e t a i l s see P a l a i s [4, p.127]. 
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