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Abstract

A vector bundle & over a CW-complex X is said to be stably

trivial of type (n,k) if & @ ke = ne, where € denotes the trivial

line bundle. Let Vh Kk be the Stiefel manifold of orthonormal k-
b
frame in euclidian n-space R and let Nk be the real (n-k)-
. b
dimensional vector bundle over V whose fiber over a k—-frame x

n,k

is the subspace of rR" orthogonal to the span of the vectors in x .

The vector bundle is "weakly universal" for stably trivial

vector bundles of type (n,k), i.e. for any stably trivial vector bundle 3

of type (n,k), there is a map f: X — Vn not necessarily unique

sk’
%
up to homotopy, such that £ N =g
b

We study the following questions: (a) for which values of r is

the r-fold Whitney sum rng trivial, and (b) "~ what is the maximum

,k

number of linearly independent cross-sections of nn ke;;se
b

(0 <s <k -1) . Among the results obtained are: (1) 2nn 9 is
trivial iff n is even or n = 3; (2) 3nn 9 is trivial if n is
even; (3) «rn is not trivial if r is odd and < (n-2)/(n-k);

n,k
4 n k@ (k-1)e is not trivial if =n # 2,4,8 and 1 < k <n - 3;
bl

(5)

nﬁ,kﬁﬁ se admits exactly s linearly independent cross-sections
if n and k are odd; (6) nn’kﬁ(k-Z)e admits at most (k-1)
linearly independent sections if 2 <k <n - 3

These results are used to construct examples of stably free modules
and unimodular matrices over commutative noetherian rings.

The techniques used are those of homotopy theory, including

Postnikov systems, K-theory and, specially, Spin operations on vector



iii.

bundles. A chapter of the thesis is devoted to defining the Spin
operations formally as a type of K-theoretic characteristic classes
for a certain type of real vector bundles. Formulae to compute the

Spin operations on a Whitney sum of vector bundles are given.
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Introduction



A real vector bundle & over a CW-complex X 1is said to be stabiy
trivial of type (n,k), or, simply, of type (n,k) if & @ ke = ne
where € denotes a trivial line bundle. The object of this thesis is to
study such veétor bundles. |

For 1 <k <n-1, let Vn K denote the Stiefel manifold of ortho-

normal k-frames in euclidian n-space Rn, and let be the (n-k)-

nn,k
dimensional real vector bundle over Vn K whose fiber over a k-frame
>

. ‘ _ n
x = (xl,...,xk) consists of the vector space x = {u: u€ R and

uJ.xi,”i =1,...,k} . The vector bundle is stably trivial of

, nn,k
type (n,k) . In fact, for any vector bundle & of type (n,k) over

*

a CW-complex X, there is amap f: X — V such that & & £

n,k nn,k :

The map £ 1is not necessarily unique up to homotopy. Therefore, we say

that is "weakly universal" for vector bundles of type (m,k)

nn,k

It is clear that a general study of stably trivial vector bundles should

begin with a study of nn,k .

In this thesis, we have concentrated our attention on the following

questions.

(1) For whiéh values of r 1is the r-fold Whitney sum o
R b

trivial 7

(2) What is the maximum number of linearly independent cross-

sections of nnkGBss, for 0<s<k-127
b

Concerning the first question,a purely algebraic result of T.Y. Lam

implies that rn. . is trivial for r > k + k/(n-k) . 1In chapter III,
b

we prove the following: (i) 2n is trivial if and only if n is

n,2

even or n= 3 ; (ii) 2n is not trivial if n - k is odd and > 3 ;

n,k



(iii) 3n is trivial if n dis even. We also obtain some results

n,3
for large values of k (i.e. k > %n) . In particular, we prove:
(iv) o, is not trivial if r is odd and < (n-2)/(n-k) . There
b

is a gap of approximately k wunits between the "positive" result
deduced from the theorem of T.Y. Lam and our 'negative'" result (iv).

However, our result suggests that even and odd multiples of n may

n,k

behave in very different ways.
We study the second question in Chapter IV. Assume that
l1<s<k<n-3 if n isevenand 1 <s <k<mn-2 if k is

odd. If n # 2,4,8, we show that ® (k-1)e is not trivial.

nn,k

Moreover, if n is odd, we show that @ (k-1)e admits exactly

nn,k
k = 1 1linearly independent cross-sections except possibly if k is
even and smaller or equal to the Radon-Hurwitz number p(n-k-1)

Using elementary arguments, these results already imply very strong
results about the vector bundles nn’kv&)se . For instance, it follows

that @ (k-2)e never admits k linearly independent cross-

nn,k
sections. The complete solution of question (2) will require infor-
. . , . . n-1 n-k-1
mation lying outside the truncated projective space RP ~/RP C Vn K
s
and will therefore require further study.
In chapter V, we use the results of chapter III and IV to obtain

examples of modules with special properties. We construct a family of

commutative noetherian rings A = A(n,k), n=2,3,..., 1 <k<n-1,

P(n,k)
k-1

such that there is a finitely generated projective A-module P
with the following properties: (i) P @ Ak is free; (ii) P ® A
is not free (with some possible exceptions); (iii) P(n,2) & P(n,2)

is not free if n is odd and > 5 . The family of modules P(n,k)



generalizes an example of [Swan 1962]. Moreover, (iii) shows that a

theorem of T.Y. Lam (mentioned above) is best possible in some cases.
Finally, we use the modules P(n,k) to give examples of unimodular
matrices which are £-stable but not (£+1)-stable in the sense of
[Gabel-Geramita 1974], for various values of £ .

Our main technical result, to be found in chapter II of the thesis,
is concerned with Spin operations on vector bundles. A real f£-dimensional
vector bundle & over a finite CW complex X 1is said to have a Spin
reduction if the structure group of & can be taken to be the spinor
group Spin(£) . When this can be done in an essentially unique way,
we say that & has a unique Spin reduction. If & has a unique Spin
reduction, the so-called Spin representations of the spinor group can
be used to construct elements A(§) and, for £ even, Ai(E), in
KU(X) (by the o-construction). We view A(E) and Ai(g) as a kind
of characteristic class for the vector bundle & . These classes
are not necessarily trivial even if (a) & admits a non-zero section,
or (b) & is stably trivial. These properties are clearly an advantage
for the study of sectioning problems for stably trivial vector bundles.
In order to make efficient use of the Spin operations A(—) and AiC—),
we develop formulae relating A(El G)Ez) to A(gl) and A(gz) and
similarly for Ai(gléB Ez) . We also complete this program for the
real and quaternionic Spin operations AR(—) and AH(—) which take
values in KO-theory and KSp-theory respectively.

Another technical aspect of the thesis which we would like to
point out concerns the use of Postnikov systems to analyze maps having

certain symmetry properties. Let Y =X x ... x X, and let TO: Y —>Y



be the map permuting the t factors of Y according to a permutation

o € St . Suppose that we have a map f: Y — Z such that f()TU > f
for any o € St . Then the obstructions to lifting £ dinto the

Postnikov tower over 7Z must satisfy certain invariance properties
relatively to some St—actions. These observations (and, in one case,

the Spin operations) are essential in our evaluation of some k-invariants.
These symmetry properties play an important role in the study of the
vector bundles rnn’k .

Chapter I contains preliminary results.



Chapter 1

Preliminaries



§1. Stiefel manifolds and stably trivial vector bundles.

Let SO0(n) be the Lie group of all n X n real orthogonal matrices
with determinant +1 and BSO(n) the classifying space for principal
SO(n)-bundles. Fn denotes the universal n-dimensional real vector
bundle over BSO(n)

An orthogonal k-frame in R" can be thought of as a k X n matrix

x with real entries satisfying the equation xxt = Ik . Therefore, let

p: SO(n) — Vn K be the map forgetting the last n - k vectors of an

b

orthogonal matrix. The map p gives rise to the well-known identification

of Vn K @52 homogeneous space:
*

(1.1) SO(n-k) —— 50(n) —E— S0(n)/S0(n-k) = v

Consequently, we can consider the sequence

(1.2)  S0(a-k) —— S0(n) 2 v —d BSO(n-k) —=— BSO(n)
n,k

b

where any two consecutive maps form a fiber bundle, and the map j 1is

a classifying map for the principal SO(n-k)-bundle (1.1). Since the

n-k

vector bundle is isomorphic to the fiber bundle with fiber R

nn,k

associated to (1.1), we have that

*

243 T . Therefore, we can

nn,k n-k

prove the following theorem.

Theorem (1.3). Let £ be a real (n-k)-dimensional vector bundle over

a CW-complex X . Assume that & @ ke = ne . Then there is a map

f: X —“Q-Vn,k such that § & £

unique up to homotopy.

The map f 1is not necessarily

nn,k :




Proof. Since & dis stably trivial, it is orientable. Let

fo: X — BSO(n-k) be a classifying map for & . Since £ @ ke is

trivial, the composition Bie £ is null-homotopic, and since

0
. Bi
Vn K SN BSO (n~k) ——E—ﬁ-BSO(n) is a fibration, it follows that there

3
is a map f: X —» Vn Kk such that jof = f Moreover,
* r . f*'* ’ . f*

n-k J I‘n—k - nn,k

0
£ =f as desired.

The following example shows that the map f 1is not necessarily

unique. Let X =V < Sn—l and £ = noq = TSn_l . Assume that
b
%

n is even . Then & = £ for any map f£: Vn — V of

",1 ,1 n,l

odd degree. (In general, the non-uniqueness of f is measured by

the image of Py [X,80(n)] — [X,Vn D .=

sk

Definition (1.4). A stably trivial vector bundle & ‘over a CW-

complex X is said to be of type (n,k) if it satisfies the equation

£ @ ke = ne . We will refer to the situation described in theorem (1.3)

by saying that "Vn K is a weak classifying space for vector bundles
3

of type (n,k)" and that "n is a weakly universal vector bundle
JP n,k

of type (n,k)."

We now give some notation and state elementary properties of the

vector bundle n .
n,k

Assume that 1 < £ <k <n ~1. Let p: VoV be the

Jk n,£f

map forgetting the last k - £ vectors of a k-frame, and let

i: vn-K,k—K —_— Vn,k be the map transforming a (k-£)-frame in
Rn—ﬂ into a k-frame in R° by adding to it the last £ vectors of

. . 0
the standard basis of Rp, i.e., din matrix notation, 1i(x) = (3 I )
k

Throughout the thesis, we will use the letters p and i to refer

i P, .
to the above maps. The sequence Vn—ﬂ,k—ﬂ ——Q-Vn’k Vn,ﬂ is a



fibration.

% *
Proposition (1.5). i nn,k = nn—f,,k—ﬂ and p nn’£ = nn’kﬂi (k=LYe .

Proof. Omitted. W

Recall also that there are natural identifications Vn 1 = Sn“l
3
and Vn,n—l ¥ S0(n) . Moreover, nn,l is isomorphic to the tangent
A -
bundle tS" of the unit sphere s 1. n is a trivial line bundle.

n,n-1

§2. Cross-sections of n .
n,k

The following theorem is due to G.W. Whitehead.

Theorem (1.6). Let 2 <k <n - 2 . The vector bundle does

nn,k

not admit a non-zero cross-section unless (n,k) = (7,2) or (8,3)

The vector bundles and each admit exactly one linearly

7.2 8.3

independent cross-section.

Proof. See [Whitehead 1963]. M

= TSn—l admits

0Of course, if k = 1, the vector bundle n,q=
b

exactly p(n) - 1 1linearly independent sections, where p{(n) is the

Hurwitz-Radon number [Adams 1962].

§3. Triviality of large multiples of g
]

A finitely generated module P over a commutative ring R is

said to be stably free if there are integers n and k such that



P Q)Rk = R" . The following theorem is due to T.Y. Lam.

Theorem (1.7). Let R be a commutative ring and P be a non-zero

stably free R-module such that P &)Rk = R" . Then the r-fold direct

sum rP is free for r > k + k/(n-k)

Proof. We give an outline of the proof which can be found in [Lam, T.Y.,
1976].

Let 1 <k <n and assume that r > k + k/(n-k). Since
P &)Rk = Rn, there is a k x n matrix o with entries in R such

that a: R® —> Rk is an epimorphism and P 2 Ker {a: R® —> Rk} .

Let
") 0 . 0
Sr 0 . 0
(x' —
0 .0 o
- &r rn rk . .
Then tP = Ker {00 : R*~ —> R 7} . We will show that there is a

sequence of elementary row and column operations transforming o

, . or, , - ®Or,, . .

into a matrix (o ) such that rP = Ker(o ) is obviously free.
Write o = (M,V) where M dis a k x k matrix and V is a

k x (n-k) matrix. Using elementary row and column operations, one

Br | . .
can show that « is equivalent to the matrix

MV ‘e MV V O

0 0 . 0 T 1)k

(Try with r = 2! Use the fact that o has a right inverse a')

Now, by the Cayley-Hamilton theorem, the k x k matrix M satisfies

10.



its characteristic polynomial, which is monic of degree k . It follows
easily that there is a new sequence of elementary row and column operations

transforming the last matrix into the matrix

~and finally into a matrix

@r. ! 0 W 0
@y = |
0 0 I(r—l)k

where W is a ‘k x (k(n-k) + k) matrix. Let Q = Ker W . Then

Rk dQ = Rk(n—k)+k . Also, quite clearly, Ker (aer)' = R(r_k) (n-k) Q.
Since r > k + k/(n-k), (r-k)(n-k) > k . It follows that
£P 2 Ker(aer), = R(r—k) (n-k) ®Q = Rr(n—k) =

Corollary (1.8). Let & be a real vector bundle of type (n,k) over

a finite CW-complex X . Then the r-fold Whitney sum r§ is trivial

for r > k + k/(n=k) . In particular, the vector bundle rn Xk is
b

trivial for r > k + k/(n-k)

Proof. Let T(§) denote the set of continuous sections of & . T(&)
is a finitely generated module over the ring C(X) of continuous real-
valued functions on X . Since ¢ is of type (n,k), we have that
T @ C(X)k = c(x)" . By theorem (1.7), it follows that

rT (&) 2 T(rg) 4dis free. This, in turn, implies that r& dis trivial

[Swan 1962, cor. 4].m



Chapter II

Spin Operations on Vector Bundles

12.



§1. The o-construction and Spin-reductions.

Let A denote the field of real numbers R, the field of complex
numbers C or the skew-field of quaternionic numbers H . Denote by
0(k,A) the Lie group of k x k matrices A with coefficients in A
which satisfy the equation AXt =1.

Let G be a compact Lie group and 06: G — 0(k,A), a matrix
representation of G . If q: E — X 1is a principal G-bundle over a
finite CW-complex X, we can define a k-dimensional A-vector bundle
8(E) over X in the following way. Using the right action of G on
E, define a right action of G on E x Ak by (e,\N)g = (ég, G(g)_;k)
(e€ E, 2 € Ak, g € G) . The total space of 6(E) 1is taken to be the
quotient space (E x Ak)/G and the projection map (E x Ak)/G — X
is defined by [e,A]u—+ q(e) . The isomorphism class of 6(E) . depends
only on the equivalence class of the representation 6 and on the iso-
morphism class of the principal G-bundle E .

Let KA(X) denote KO(X), K(X) = KU(X) or KSp(X) respectively.

The vector bundle ©6(E) defined abovevdetermines an element (also

denoted 6(E)) in KA(X) . This construction is referred to as the

a~construction and the element ©6(E) € KA(X) is denoted sometimes by
ocE(S)

For A =R, C or H, let RA(G) denote4the real representation
ring RO(G), the complex representation ring R(G) = RU(G) or the
quaternionic representation group RSp(G), respectively. The following
two properties of the a-construction will be used later.

(2.1). For fixed E, the function 6 > 6(E) defines by

linear extension a group homomorphism RA(G) — KA(X) . If

A =R or C, this homomorphism is also a ring homomorphism.

~13.



(2.2). The a~construction is natural in X and G (in a

suitable sense).

The reader is referred to [Bott 1969, p.52] for more detailed
statements.

Let p: Spin(£) — SO(£) be the standard real representation of
the £-dimensional spinor group. The map p: Spin(£) — SO(£) also

exhibits Spin(£) as double covering of SO(£)

Definition (2.3). A real £-dimensional vector bundle £ over a finite

’

CW-complex X 1is said to have a Spin reduction if there exist a

principal Spin (£)-bundle E over X. such that £ = p(E) . Moreover,

£ is said to have a unique Spin reduction if the principal Spin (£)-

bundle E is uniquely determined by & (up to isomorphism).

It is well known that a vector bundle & has a Spin reduction if
and only if the first two Stiefel-Whitney classes wl(g) and wz(g)
are zero.

Let f: X — BSO(L) be a classifying map for an orienﬁable vector
bundle & . Of course, £ has a Spin reduction if and only if the map

f admits a lifting f to the classifying space BSpin(£):

K(Zz,l) = BZ, — BSpin(f) — BSO(L)

2 -

Moreover, & has a unique Spin reduction if and only if the
lifting f is unique (up to homotopy).

Example (2.4). Let Eﬂ be a stably trivial vector bundle over a simply-

connected CW-complex X . Then £ has a unique Spin reduction.

14.



Proof: Since £ dis stably trivial, wl(g) and wz(g) are 0 .
Hencé £ has a Spin reduction, and there is a lifting f: X — BSpin(£)

of the classifying map £: X — BSO(L) of & . Since

[x, K(Zz,l)] = Hl(X;‘Zz) = 0, this lifting is unique in view of the

fibration

K(2,,1) — BSpin({) — BSO(L) . ®

Proposition (2.5). Let Ee and nm be real vector bundles over finite

CW-complexes X and Y respectively. Assume that & and n have

unique Spin reductions. Then the vector bundle & x n over X X Y has

a unique Spin reduction. If X =Y, the vector bundle & @ n also

has a unique Spin reduction.

Proof. Let b: SO(£) x SO(m) — SO(L+m) and b: Spin(£) x Spin(m) —

Spin(£4m) be the maps induced by the natural identification RK x R 2 R£+m
(see §3 for details). The following diagram is commutative (in the category

of groups):

22 x 22 — Spin(£) x Spin(m) —— SO(£) x SO(m)

! b b

Z

g T Spin(£+m) SO (£+m)

Applying the classifying space functor, we obtain again a commutative

diagram:

BZ, X BZ, — BSpin(£) x BSpin(m) — BSO(L) x BSO(m)

lu lBB le

BZ, _— BSpin(£+m) —————— BSO(£+m)



16.

The map u: BZ, x BZ, — BZ

9 9 2 is the multiplication and the two

horizontal sequences of maps are principal bundles. The map Bb is
a principal bundle map.

Let £ and g be classifying maps for & and n respectively.
Assuming that & and n have Spin reductions, there are liftings
f: X — BSpin(f) and g: Y — BSpin(m) of f and g respectively.
The map Bb o (fxg) is obviously a lifting of Bb o (fxg) . Since the
latter map classifies & x 1, we have shown that this vector bundle
has a Spin reduction.

Now assume that £ and n have unique Spin reductions, and let
F: X x Y —> BSpin(£+m) Be any lifting of Bbo (fxg) . Let
vy BSpin(i) X K(Zz,l) — BSpin(i) denote the action of K(Zz,l) on
the total space of the principal fibration K(Zz,l) —> BSpin(i) — BSO(i).
Then F = Ve (Bb o(fxg),a) for some map a: X x Y — K(szl) .  Now
[XxY, K(z,,1)] = B (&x¥5 2,) = BY(X; 2,) + B (%3 2)) = [X, R(Z,,1)] x

[y, K(Zz,l)] . Thus, if a, denotes the restriction of a to

X

XC X xY and a, denotes the restriction of a to YC X x Y, we

Y

have a = u o(aX X aY) . .Consequently, F = o (Bb o (Exg),a) =

Vl4m
Voim ° (Bb o (fxg),uo(axan)) z Bl_)(vz 0 (f,ax) x v o (g,aY)) . The last
~ 4is due to the fact that Bb is a principal bundle map. Since we

assume that & and n have unique Spin reductions, we must have

vy © (f,ax) = f and v, © (é,aY) 2 g . We deduce that F = Bbo (fXé)

This shows that £ x n has a unique Spin reduction.

The proof of the statement for £@® n if X =Y is similar.®



§2. Complex Spin operations.

In this section, the complex Spin representations are used to
define an operation on real vector bundles which admit a unique Spin
reduction. We first recall some facts about the representation ring
of the spinor groups.

Let CK be the Clifford algebra over RK (given its usual

negative definite quadratic form). There are natural inclusions

Sﬂ—l £

C R ¢ CK . The group Spin(£) can be taken as the subgroup of

the group of invertible elements of CK consisting of those of the

£-1
form ul...u2p (uie S ) . Let r = [£/2), T = R/4wZ and
' = Tx...xT . Consider the map Jp: T' — Spin(£) defined by:

] = 0 —-e_e ink 0 -
Jz(el,...,er) (COSgel ele231n281)...(cosger € 1%9r

(eii [0,47%) and {ei: i=1,...,£} = Standard basis of RK) . The

sin%er)

image of jZ is a maximal torus of Spin(£). Let oy T™f — ¢ be
the representation of T"  defined by ak(el,...,er) = exp(%iek)

(1<k<r) . The (complex) representation ring R(Tr) is isomorphic

' 1 -1
S0, O e

to the polynomial ring Z[al,... P2 O sy 1.

Let

l

Xi = i-th elementary symmet?ic function in al,...,ar
A;r = Z ail.. air
I
€ €
A;r = § al%.. urr
€ £
Bors1 = IEJ 0Lll"' 0er

19008 = 1} and

J = {(el,...,er); ey = 1 and €1-v-€, = -1} .

where I = {(el,...,er); e, = +1 and ¢

17.



[£/2]

Theorem (2.6). The inclusion of the maximal torus jK: T — Spin(£)

induces the following isomorphisms:

. ~ + -
R(Spin(2r)) = Z[Al,...,Ar_z, A2r’ Azr]
R(Spin(2r+1)) = Z{Al,...,kr_l, A2r+l]
Moreover, in R{(Spin(2r)),
+ .2 - .2
W07+ ()7 = A+ 2, + 20, ...
and in R(Spin(2r+l)),
(A )2 =X, + A + + A, + 1
2r+1 T r-1 Tt 1 :
Proof. See [Husemoller 1966]. W
h i A A, =t o+l d A 1led
The representations ops Bop = By oy 2D or4] 2re ca le
+ -
the Spin representations. Notice that dim Aér = 2" L and
, o ga _ of
dim A2r = dim A2r+l 2

Let & be a real £-dimensional vector bundle over a finite CW-
complex X . Assume that £ has a unique Spin reduction, i.e. & = p(E)
for some principal Spin(£)-bundle E over X - and E 1is unique up to

isomorphism. Define the following element(s) of KU(X):

A(E) = AK(E) if £ =1,2,3,...

+ +
AT(E) = 8p(E) if £ = 2,4,6,...

Definition (2.7). A(—) and AiC—) are called the (complex) Spin

operations. They are defined for any real vector bundle & over a

finite CW-complex X and such that £ has a unique Spin reduction,

and they take value in KU(X).
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Remark (2.8). The Spin operations have been previously used in various
context without being formally defined. For instance, see [Feder 1966].
In this thesis, we view the Spin operations as a type of KU-theoritic
characteristic classes defined for certain real vector bundles. To

our best knowledge, this point of view has not been taken before.

Example (2.9). Let £ = ne be the n-dimensional trivial vector bundle

over a simply-connected CW-complex X . Then A(§) = 2[n/2] . If n=2s

is even, then Ai(é) = 25_l .

Proof. The condition that X is simply connected insures that &
admits a unique Spin reduction. Clearly, £ = p(X x Spin(n)) and

k- oln/2]

+
A(X x Spin(n)) # X x C, Similarly for A7 (§) 4if n = 2s. W

Example (2.10). Let EE be a real vector bundle over X and let

%
f: Y — X be a continuous map. Assume that & and £ £ have unique
* 1
Spin reductions. Then 'Af (&) = £'A(§) and, if £ is even,
+ % !+ !
Af () = £°A7(§), where f£': KU(X) — KU(Y) is the homomorphism

induced by £ .
Proof. Naturality of the o-construction. M

Example (2.11). Let =n > 1 and let Yoq denote a generator of

n-1 +

R6(s®™) = 7z . Then at(rs??) = 2 ty, and AT (es?y = at(es?™

Proof. Since TSZn is stably trivial and S2n is simply connected,

2n . . . * 2n .
TS has a unique Spin reduction and A (1S™ ) are defined. The
principal Spin(2n)-bundle E: Spin(2n) —> Spin(2n+l) —> Spin(2n+1)/Spin(2n) = 52n
satisfies p(E) = TSZn . It is well known that on = Agn(E) - 2n—l are

generators of ﬁﬁ(szn) [Bott 1969, thm. III, p.75]. W
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Example (2.12). Let 1 <k <n -2 and let n = Nk be the vector
b
bundles over V described in I.1. Then A(n ) =T + 2[(n—k)/2]
n,k n,k n,k
where T is a torsion element of ﬁﬁ(v ) with order 2t and
n,k n,k

where t =%k -1 if n and k are even and t = [k/2] otherwise.

¥ (n-k)-1

+
-— 1 - = +
If n -k is even, A.(n) Yk + 2 where Yok generates

an infinite cyclic summand of ﬁﬁ(Vn k) .
b

Proof. Recall that Vn X is (n-k-1)-connected. Hence, for k < n - 2,
’

\Y is simply connected. Since 7 = is stably trivial, we deduce

n,k nn,k

that n has a unique Spin reduction. Let E be the principal Spin(n-k)-

bundle Spin(n-k) —> Spin(n) — Vn K We have p(E) = Ny e Gitler
and Lam {[Gitler and Lam 1970, pp.45-46] have shown that

— _ [ (n—k)/z] . . ~ .
Tn,k = An_k(E) 2 is a torsion element of KU(Vn,k) with

order as described above. If n - k 1is even, they have shown that

2%(n—k)—l

+ . .. .
Yook = An_k(E) - are the generators of an infinite cyclic

summand of ﬁﬁ(vn )y .M

N

§3. An equivalence of representations.

The result of this section is used to prove theorem (2.14) and
(2.25) below.

Let b: SO(Z) x SO(m) — SO(L+m) and b: Spin(£) x Spin(m) —
Spin(£+m) be the group homomorphisms induced by the natural identification

RE « RM = £+m

=)

For matrices A 'in SO() and B in SO(m), we have

b(A,B) = ( ) . TFor

(uie Sz_l( R = RE x.0 and vi€ Sm_lC R" 2 0 x Rm), we have

o >
oW O

ul...u2p€ Spin(£):.and vl...vzq( Spin(m)

) = Uje..U, V..oV

2071 Moreover, the homomorphism

2q



b is the lifting of b to the covering spaces, i.e. the following

diagram commutes:

Spin(£) x Spin(m) L, Spin (£+m)

} }

SO(2) x  SO(m) —2— SO(k+m) . .

Recall that for compact Lie groups G and H, there is a natural
isomorphism R(GxH) = R(G) ® R(H) induced by the tensor product of

representations.

Theorem (2.13). We have the following equalities in R(Spin(£) x Spin(m)):

*

£ £ : E*Ai y=ateat+aTea”
(a) or , even: ( ) = Lp 0 7 0

—%
.(b) for £ even and m odd: b (AK-I-m) =A£®Am;

%+ _
(c) for £,m odd: b (Aﬂ-i-m) = A£®Am .

Proof. We prove only (a). The proofs of (b) and (c) are similar. We

use the notation of §2. Assume that £ = 2r‘ and m = 2s and consider

2 +
the map c¢: ™ x T° —— 7°7°  induced by the natural isomorphism

r

rRY x Rs __Q_Rr+s

The following diagram commutes:

Tr o Ts C Tr+s

ljﬂxjm lj£+m

Spin(£) x Spin(m) b Spin(£L+m)

r+s

Identify R(T ) = Z[al,...,ar+s, s ’ar+s] =
- -1 -1 -1 ~
Z[al,. a0y g7 see 50 1 €>Z[ar+l,...,ar+s, @ 1o r+s] =
T

21.
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* b* + . A+
(JK x ] ) (A/e_'_m) c J/e_*_m (£+m)
_ * z ael o r+s
- ¢ -1 1 °°° “r+s
€1 Crts
€ € £ €
_ 1 r r+l r+s
_L z€=lal..ur]®[€ ze =lar+l°°ar+s]
1 r+l1' "' r+s
€ € € €
1 r r+l r+s
+ [ ) . a;... ar]®[€ ) s O yq e ar+s]
€1+-8p 410 " Crs

* x  + X — x -
(Gp 8 @ Gy 8y + Gy 8p) @ Gy 8

1]

(jz X jm)* (AZ@A-I:+A£®AI;) .

* —%
Since (jk X jm) is a monomorphism, we deduce that b (Az+m) =

+ + - - . . =% -
AZ ® Am + AI, ® Am as desired. Similarly for b (AI;Pm) . A

§4. Complex Spin operations and Whitney sums.

Recall that the extermal tensor product of compact vector bundles
induces a bilinear pairing ®: KU(X) ® KU(Y) — KU(XxY) . We prove

the following theorem.

Theorem (2.14). Let Ez and nm be vector bundles over finite CW-

complexes X .and Y respectively. Assume that § and n have unique

Spin reductions. The Spin operations satisfy the following equalities:

(a) for 4£,m even: At(F,Xn) = Ai(&) ® A+(n) + &) ® AT (n);

(b) for £ even and m odd: A(Exn) = A(E) @ A(n);

(c) for £,m odd: A (Exn) = A(E) ® A(n) -




Proof. The vector bundle £ x n has a unique Spin reduction by
proposition (2.5). Consequently, the Spin operations are defined on

€ xn. Let E be a principal Spin(£)-bundle over X such that

oy
2

p(E) and similarly for F over X with n = p(F) . Then

E x F is a principal Spin(£) x Spin(m)-bundle over X x Y . Let

o'l

: Spin(£) x Spin(m) —> Spin(£+m) be as in the previous section and
let b(ExF) denote the fiber bundle with fiber Spin(£+m) (considered
as Spin(£) x Spin(m) - space through b) associated to E x F . The
fiber bundle b(ExF) is a principal Spin(£+m)-bundle and

p(b(ExF)) = € x n .

Now, assume that £ and m are even. By naturality of the

" constructions involved, we have:

*

+ ~ + =
2 (gxn) = Ay, (B(EXF)) = (Ap, o b)(EXF)
~% .
= B 8y, )(EF)
Since the a-construction induces a ring homomorphism R(—) — KU(—),
we also have the following equalities:
+ + 3 -
AT(E) @ A (n) +A%(E) @A (n) =
a3E) @ atm) + a3@ @ a7 (@ =
£ m £
+ .t T S5 A
(Af_ & Am + AK e Am) (EXF)

‘ % & x4 3 -

By theorem (2.13), b Aﬂ-l-m = Af_ ® Am + Aﬂ ® Am . Consequently

% + . .t + T - L oL

b Al’,—l—m(ExF) = (Ai’, ® Am + AK ® Am) (ExF) . The equalities above then
+ + + 3 -

imply that A (Exn) = A" (§) @ A (n) + MY () ® A (n), as desired.

The proof of (b) and (c) is similar. ™

The following corollary is immediate.
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Corollary (2.15). Let EZ and nm be real vector bundles over a

finite CW-complex X . Assume that § and n have unique Spin

reductions. The Spin operations satisfy the following identities:

(a) for £,m even: A (ggn) = 27 @)at () + A;'(E)A—(n);

(b) for £ even, -m -odd: A(E®n) = A(E)A(N);

() for £,m odd: A (Z@n) = A(E)A(n) .m

§5. Real and quaternionic Spin operatiomns.

In this section, we define real and quaterﬂionic Spin operations,
i.e. Spin operations defined on reai vector bundles having a unique
Spin reduction and taking values in KO-theory and KSp-theory. Formulae
to compute these operations on Whitney sums of vector bundles are also
given. This seétion is included for the sake of completeness, since
the theoretical results obtained aré not used in the rest of this
thesis. However, the author hopes that example (2.27) will convince
the reader that they are of some value. We begin by recalling some
facts about real and quaternionic representation rings and real and
quaternionic K-theory. Most details are omitted. The reader who is
not familiar with the approach take; should consult [Adams 1967] and
[Atiyah 1969, §1.5].

Recall thatza real (resp.: quaternionic) representation of a
compact Lie group G can be regarded as a pair (V,j) where V 1is

L)

a complex representation and j: V—> V is a conjugate-linear G-map

such that jz =1 (resp.: 32 = -1). The map j 1is called a structure

map. Forgetting the structure maps induces the '"complexification"



homomorphisms:
c: RO(G) —> R(G)
c': RSp(G) —> R(G)

The homomorphisms ¢ and c¢' are monomorphisms [Adams 1969, 3.27].

There are also "realification" and 'quaternionification' homomorphisms:

r: R(G) —> RO(G)
q: R(G) — RSp(G)
and a “conjugation'" homomorphism:
t: R(G) — R(G)
[Adams 1969, §3.5 (i), (iv),(v)]. ‘The following identities are satisfied:

<

re = 2

1l
=
+
T

(2.16) cr

Let o = (V,j) and a' = (V',j') be real representations of G
(i.e. j2 = 1V and j'2 = 1V') . Lef also B = W,k) and B' = (W',k")
. be quaternionic representations of G (i.e. k2 = —1W and k'2 = -lw,)
Then (@j')% = ligy: and (k@K ') = “Log - Thus o ® o' = (VOV', j®j')

and B ® B' = (WOW', k®k') are real representations of G . Similarly,
a®B' = (VOW', j®') and B®a' = (WV', k® ') are quaterﬁionic
representa;ions of G . Therefore, we can define a multiplication in
RO(G) @ RSp(G) by setting ([al,[B])-([a'],[B']) =

([o®a'] + [F®B'], [®R'] + [BRx']) and extending linearly to

25.



RO(G) @ RSp(G) . The group RO(G) @ RSp(G) 1is endowed in this way of
a natural structure of Zz—graded ring. Moreover, we can give a

structure of Z,-graded ring to R(G) ® R(G) by defining

2

(u,v)(u',v'") = (uu' + vw', uv' +vu') for wu,u’',v,v' € R(G) . Then

the map
(2.17) ¢ =c®c': RO(G) ® RSp(G) — RU(G) @ RU(G)

is a natural monomorphisn of Zz—graded rings.

If G and H are compact Lie groups, let Lt G xH—G and

Tyt G x H—~> H be the projection maps. The reader will easily see

that o - and Ty can be used in the usual way to define an external

product:

(2.18) [RO(G) @ RSp(G)] ® [RO(H) @ RSp ()]

——— [RO(GxH) @ RSp(GxH) ]

A

where @ denotes the tensor product of Zz—graded rings. It should be
noticed that (2.18) is not an isomorphism.

In a very similar way, real and quaternionic vector bundles over
finite CW-complexes can be regarded as complex vector bundles with
structure maps. A real (Resp.: quaternionic) vector bundle over a
finite CW-complex X can be thought of as a pair (§,T) where ‘& is a
complex vector bundle over X and T: § — & is a conjugate-linear
‘bundle map such that T2 =1 (resp.: T2 = -1). One can proceed as
we did for group representations and define maps c: KO(X) — K(X),
c': KSp(X) — K(X), etc... . The identities (2.16) also hold. The
tensor product of vector bundles and structure maps induces a natural

structure of Zz—graded ring on KO(X) @ KSp(X) . If Y is an other

26.
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CW-complex, the exterior tensor product induces a bilinear pairing

(2.19) @ [KO(X) ® KSp(X)] ® [KO(Y) @ KSp(¥)]

—————> KO(XXY) + KSp(XxY)

Remark (2.20). The existence of this natural Zz—graded ring structure
on KO(X) ® KSp(X) was made obvious by the work of Atiyah, Bott,...
However, to our best knowledge, it was first used explicitly in
[sigrist and Suter 1972]. See also [Allard 1974].

Let q: E— X and 6: G — 0(k,A) (A =R or H) be as in §l.
The element ©8(E) obtained by the a-construction can be regarded as
an element of KO(X) ® KSp(X) wvia the naturai inclusion
KO(X) — KO(X) ® KSp(X) or KSp(X) —> KO(X) @ KSp(X) . The reader
will easiiy prove the following property of the a-construction (compare

(2.1))

(2.21) TFor fixed E, the o-construction 6 +— 8(E)
induces a homomorphism of Zz—graded ring

RO(G) @ RSp(G) —> KRO(X) @ KSp(X) .

We now describe the real and quaternionic Spin representations of
the group Spin(£). In view of the monomorphism (2.17), it suffices to
]

give their images under c¢ and ¢ respectively. Table (I) contains

this list.



Real Quaternionic

2(8) Spin representations Spin representations
0 S 203
v 2 £
1 AK ZAK
2 % b
3 ZAK AK
4 20, 85
£ £
5 ZAK AK
7 AK ZAK

TABLE I: Real and quaternionic Spin operations

The list of real Spin representations is taken from {[Bott 1969,
p.66]. Knowing the real Spin representations, one can deduce the list
of quaternionic Spin representations using elementary representation
theory. For example, it is a theorem that a self—conjuéate irreducible
complex representation is either real or quaternionic (i.e. in Im c
or in Im c¢'), but not both (see [Adams 1969, 3.56]). If £ = 4(8),
the irreducible complex representations Az are self-conjugate, but
not real (i.e. not in Bott's list). Hence they must be quaternionic

We are now ready to define real and quaternionic Spin operations.
Let EZ be a £-dimensional real vector bundle over a compact connected
CW complex X, and assume that EK has a unique Spin reduction, i.e.
£ = p(E) for some Spin(£)-bundle E over X and E 1is unique up to
isomorphism. Denote the real Spin representation(s) of Spin(£) by
¢£ if £ # 0(4) and by ¢z if £ = 0(4) . 1In the latter case define

also ¢£ = ¢Z + ¢£ . Define the following element(s) of KO(X):

28.
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n
=
o

-

Be(8) = 9,(B)  for L

AE(E) ¢;’E(E) for £

]
o~
"
0
-

Similarly, denote the quaternionic Spin representations of Spin(f)
+
by w[ if £ # 0(4) and by wz if £ = 0(4) . 1In the latter case

+ -—
also define wﬂ = wﬂ + wl . Define the following element(s) of KSp(X):

AH(E) wK(E) if £=1,2,...

+ + . 3
AH(E) wK(E) if £ = 4,8,...

+
Definition (2.22). ARC—) and Ai(—) are called the real Spin

+
operations and AH(—) and Aﬁ(~) are called the quaternionic Spin

operations. These operations are defined for any real vector bundle -

£ over a finite CW-complex X and such that & has a unique Spin

reduction, and they take values in KO(X) and KSp(X) respectively.

They can also be regarded as taking values in the Zz—graded ring

KO(X) @ KSp(X) wvia the natural inclusions KO(X) — KO(X) & KSp(X)

and KSp(X) —> KO(X) @ KSp(X)

Example (2.23). Let & = fe be a trivial £-dimensional vector bundle

L-=x)/2,

over a simply connected CW-complex X . Then AR(E) = 2 € KO(X)

with r = 0,-1,0,1,2,1,0,-1 for £
(£-2)/2

IH

0,1,...,7(8) respectively. If

and if £ £/2 .

1l

- x - + =
K = 0(8)’ AR(E) - 2 4(8)3 AR(g) - 2

11

Example (2.24). Recall that RO(S") = z if n = 0(4), RO(S"™) =z

2
if n = 1,2(8) and ﬁé(sn) = 0 otherwise. Let Bn denote a generator

+
of Eb(s“) if this group is not trivial. Then AR(TSH) =

tg -+ 2(=2)/2 ie L2 0¢8) and A;(Tsn) =8+ 22 if ooz oa(s).
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Hl

1(8), ag(ts™) =

and if n = 2(8), AR(TSn) = Bn + 2n/2 . The proof

- .+
In both cases, AR(TSn) = —AR(TSH) . If n
g+ 2(n-l)/2
n

of these facts is contained in [Atiyah, Bott and Shapiro 1963].

Theorem (2.25). Let X,Y, EZ and nm be as in theorem (2.14).

Let ARG—) and AHC—) take values in the Zz—graded ring

KO(-) ® KSp(-) . Then A (Exn) (Ag(Exn) if £ +m = 0(4)) is

: +
equal to the expression given in Table (II), and AH(£Xn) (Aﬁ(gxn)

if £ +m = 0(4)) 1is equal to the expression given in Table (ITII).

The product o should be taken to be the external product & (2.19).

+

Proof. We give the proof of the theorem for Aﬁ(—) and 4£,m = 0(8).
The other cases are similar. Moreover, the proof is similar to that
of theorem (2.14). Consequently, let b, E, F and B(EXF) be as in
the proof of (2.14). By the naturality of the constructions involved,

hat A- S (b(EXF t By = Byt P

X = = X =

we have that A.(&xn) =y, (B(EXE)) = (Y, oD)(EXF) Vpam CEXED 5

* -
where b now stands for the group homomorphism induced by b on the
quaternionic representation rings. On the other hand, using (2.21),
we deduce that Ai(g) ® A+(n) + A;(E) @A _(n) = ¢i(E)-® ¢+(F) +

H R H "R £ m
bt - - + Lt F - .

‘”z(E) ® ¢m(F) (‘1’!, @ d)m + w/e ® q)m) (ExF) . (Given groups A and B
we will write a for (a,0)€ A x B and b for (0,b)e A x B if
there is no danger of comfusion).

We have the following equalities in RO(G) @ RSp(G),

G = Spin(£) x Spin(m) . Firstly, from the naturality of the homo-
’ % ¥ —% + ~% +
morphism c¢'", we have that c¢" b ¢E+m =b " w£+m =b (0,2A£+m)

Using theorem (2.13) and the Zz—graded ring structure given to
. —%
R(-) ® R(—), we have that b (0,24

+

_ L+ +
i) = (0:28,) ® (87,0) +

(O,ZAE)(E (A;,O) . Finally, since <c" is a homomorphism of ZZ—



(8)

m(8) g 1 2 3 4 5 6 7
A% (E)o 7 (n) . A% (8)5 A% (n)

R RGO FNGEIN bp(@etg(m | T a(@eng(m | ap (et g (Bodg ()
+2% (£) A, (n) +AE (€)o A ()
|8 @on () | 28, (E)ob (n) | 28, (E)ody (m) Be(®)ehg () | Bp(®)ebo(n) | A (oA (n) | A (E)ed () |ag (Do (n)
Bp(Eod (M | 28 (B)obp () | 267 (D)e8T (M) | dp(Dotg(n) | ay(®oty(m) | Ay(Eady(n) | £(85(@)08T (M) |2 (Dot ()
b (B)abp(n) | B ()ed () | Ap(E)ea, () 204 (£)oy () | By (D)eby(m) | A (et () | By (Edeby(m) |8 (E)ady ()
A5 (E)e s (n) By(E)e b ()

R RN GINOR PRGN by(@ety (| F T A @y ()| A (e (), (B)aty ()
+5%(€) Ap(n) +, (€)e b ()
D (Bebo(n) | B (B)eh () | A (E)en (0) Bp(E)ed () | B (E)ea () | 28,(E)ed (n) | 28 (E)on,(n) |A (Eod (n)
Be(®asg(m) | B (e () | x@T(EeaT(M) | Bu(Eeby(n) | By()eng(m) | 20 (D)ot (1) |2r (47 (©)en” (1) |20 (Dot ()
Dp(B)ebo(n) | A (D)ed () | A (E)edy (n) By(E)ed () | AL (©)eb () | B (D)en () | 28 (E)edy(n) |28, (oA (n)

TABLE II: Product formulae for Real Spin Operations

“T¢




(8)

m(8) 0 1 2 3 4 5 6 7
+ + *

85 (E)o 4 (n) Ao (E)o & ()

Mg (EYen () | Ap(E)edy () |Bp(E)ed, (n) D (Bed (n) | B ()b (n)  |B(E)ed (n)
+E (E)o () " +F (£)o 8y ()
B (E)od(m) | A(E)ed () | A (Bdeby(n) A (E)edy(n) | Ap(Ededy(n) | Bp(Edeby(n) | 28,(E)eby(n) |Bp(E)eby(n)
Ay (B)en () | A (B)eb () | a@F(E)ea’ (M) |8 (ot (1) | 28, (D)o, () | Ap(Ededy(n) | a(dT(&)ea(m) |B(E)oty(n)
B (©edy () | A (Bdabg(m) | A (E)on () |8 (Edeng(m) | A (E)eny(n) | A (®)eny(n) | B (®eny(n) |2, (E)en ()
a5 (E)e 8™ () B (E)e AT (n)

Dy (Bdob (n) | 20, (E)ed (n) |8, (EDed, (n) , Ay (B)ob (1) | A (E)ed () |8, (E)ed (n)
+12(£)5 4 (n) +A% (£)od (n)
bg(Eed () | AL(E)eA () | B (E)ebp () |B,(Eab () | Bp(Edody(n) | Ap(E)esy(n) | A (Eded () |8 (Edon (n)
bg(E)eng(m) | 28, (©)ea (M) | G (©)enln)) (8 (B)eb (M) | Bp(®)oty() | Bp(Bey(n) | QAT (@)oaT (M) |4y (B)e by ()
By (© et ()| 8y (e (1) | By (©)edg(n) |28 (Eody () | Ap(E)edy (W) | Lp(Eody() | Bp(Edeby(m B (B by ()

TABLE III: Product formulae for Quaternionic Spin Operations

A



graded ring, the last expression is equal to c"(wz ® di:l + wz Q ¢1;)
-%  + + + - -
" - Y + .
Thus we have shown that ¢''b IIJE_I‘m c (lpﬂ ® ¢m + ‘l’z ® ¢m) . Since
noo . . -% + _ + + T —
c is a monomorphism, we deduce that b wﬂ-l—m “’z Q qu + “’z ® ¢m
-% * _ x + e -, .
It follows that b wi’,—l-m(ExF) = (wz ® q>m + l])z ® ¢m) (ExF) . In view

of the last paragraph, this implies the result wanted, i.e.

AX(Exn) = A5(E) @ AT(n) + AF(E) ® AZ(n) .M
q n—H£ g HE" (W -

Corollary (2.26): Let X, gﬂ and nm be as in corollary (2.15).

Let AR(—) and AH(—) take values in the Zz—graded ring

KO(—) ® KSp(—) . Then AR(Een) (Ai(gen) if £+ m = 0(4)) is equal

Hi

+
to the expression given in Table (II) and AH(gen) (Aﬁ(gen) if

£ +m = 0(4)) is equal to the expression given in Table (III). The

product o should bé taken to be the Zz—graded product in

KO (X) @ KSp(X)

Proof. Obviocus. B

Example (2.27). Let Tn = TSn and let §8k be a real vector bundle
over 58k+l such that C8k Pec= T8k+l . Then §8k X T 8t is not
trivial over Sgk-'-l X 58[' :

Proof. The result is trivial if k = 0 . Therefore, we assume k > 0 .

Recall examples (2.23) and (2.24). By corollary (2.26), we have that:

) Bk+l, 4k _ bk _ - _
Bgrry = Lp(T ) -2 =0 (g +e) -2 = (:AR(C) + 8 (2))A,(e)
2%k (A 0y - 2%%1y 4 (8 () - 24671y gince RE(sEFLy = Z,, it
4k~ 1 ~ Lk-1
follows that AR(C) -2 =0 and AR(C) -2 = 88k+l’ or
+ 4k=1 - 4k-1 _ .
AR(C) -2 = 88k+l and AR(C) - 27 = 0 . Without loss of

generality,>assume the latter. Then, by theorem (2.25), we have that:

+,,.8k +, 8L - -, 82
A (T )=A()®A(T ) + A (@) @A () =

33.
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4k-1 40-1 4k-1 4e-1,

(B8k+1+2 )®(88£+2 ) + 2 ®(—88£+2 ) =
88k+1<8 882 + 24(k+£)—l . Applying Bott's periodicity theorem
82

. . ~ 8k
inductively, we have that 0 # 88k+l‘® 682 € KO(S" " x 8§
21’(?’_'-1{)—l # A;(csk X TBE) € K0(88k+l X S8£) . The result

) . There-

fore,

follows. W



Chapter III

Whitney Sums of Stably Trivial Vector Bundles.
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This chapter is concerned with the r-fold Whitney sums of the

vector bundle defined in Chapter I. The notation is that of

nn,k
that chapter unless otherwise indicated. Moreover, the truncated real

m—1

projective space RPp/RP is denoted by Pg . Sections 1 and 2

contain auxiliary results.

* m
§1. Sections of «a (tS).

. m, .
Proposition (3.1). Let n represent the generator of ﬂm+l(s ) = 22 .

Assume that m is even and m > 6 . Then

* m
(i) n (tS) is not trivial;

i if 0(4 * (8™ d : * (rs™ i
(i1) if m (4), n (T ) an (nm"nm+l) (tS)  admit

exactly one linearly independent section;

%
(iii) if m = 2(8) and m > 18, nm(TSm) admits at most

5 1linearly independent sectioms.

% _
Proof. (i) If n 8™ is trivial, there is a lifting N, of n

m m

as shown in the following diagram:

3 % Vm+l,m = S0 (m+1l)
m .- l
-7 P
Sm+l i Sm

Consequently, a(nm) = 0 where 3 1is the boundary homomorphism in

the exact homotopy sequence associated to the fibering SO(m+l)/SO(m) = g™
However, this is the case only if m = 3(4) ([Kervaire 1960, thm. 1].
.. mti m .
(ii1) Let a: S — S be a continuous map. The vector bundle
*
a (TSm) admits k .linearly independent sections if and only if there

is a lifting a of o as.shown in diagram (1).



¥ Vbl kel o e Pk
’/// l /’//, ¢
m+1’ Q m m+i - a m
S — S S —_—
(1) (2)

If 2k <m-1i -1, by cellular approximation, this is equivalent,

to having the homotopy commutative diagram (2), where c: Pz_k — g™

is the map collapsing the (m-1)-skeleton of PE_ to a point.

k

* m .
To prove that nm(TS ) admits one non-zero section for m even,

it suffices to consider the cofibration sequence

Sm—l 2 Sm—l Pm c Sm 2 gl
m—1 2
& _ : 4 *
\\T] Tn // 20n -
ATt m,
\\ : P
\Sm+l

Since 2onm is homotopically trivial, the map. n factors through
¢ as desired, and the result follows. Of course, that
) (18™ = 0", (1 (18™)  adni 1 '
(nm oM 1 (18) = oy (g (T ) admits at least one non-zeroc section
also follows.
A | e .
To prove that (nmo nm+l) (tS") does not admit 2 Ilinearly

independent sections if m = 0(4), consider the cofibration sequence

Sm—l A Pm—l ~ Sm—l v Sm—2 Pm c Sm TA , Pm—l
m-2 m-2 m-2
Inmtlonm
Sm.+2
The attaching map A: Sm_l — PE:; = Sm_zy Sm-l is homotopic to the
map nm_zv 2 Sm_l — Sm—Z‘ISm—l (consider the action . of the Steenrod

37.
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*
algebra on H (Pg_z; 22)). Consequently, the composition

: v * . . . -
(ZA) o (mno mm+l) ((an—2)°nnfnm+l) is not homotopically trivial,

and the map nﬁo n does not 1ift through ¢ . We deduce that

m+1

*
(nmo nm+l) (TSm) does not admit 2 1linearly independent sections

*
for m = 0(4). This implies that nm(TSm) does not admit 2 linearly

independent sections either.

(iii) (The following proof was'suggested by S. Gitler, thus avoiding

an unnecessary reference to the literature). Assume that m = 2(8)

and suppose that n;(TSm) admits 6 linearly independent sections.

Since we assume that m > 18, we deduce that there exists a factorization

ny of n through the map ¢ as in the following diagram:

- m m m+2
L™ A Pm—6 - 1)m—6 “n €
e m
/’/’ lc
m+l" " m w2
S ——> § e > S u_ e
™
m m+2 ,
Let X =P u- e . For 1= m-6,m-5,...,m, denote the generator
m-6 1
i " m+2
of H (X;Zz) = 22 by X - Denote also the generator of H (X;Zz) = 22
by y . By naturality, quxm =y . Since Sq3xm_3 =x we deduce that

3 :
SqZSq X _3~9Y . Using the Adem relation SqZSq3 + Sq4Sql + Sqlsq4 and

the fact that Hm+l(X;Zz) = 0, we have that Sq4xm_2 =y . Since

S 4 = we ded e‘th t S 4S 4x = H S 1 =0
QX = X 5 e uc a 98¢ x =V - owever, X _¢ =

and quxm_6 = 0, and using the Adem relation Sql*Sq4 + Sq7Sql + Sq6Sq2,

4

o b
we deduce that Sq Sq X 6

= 0, a contradiction. B

%
Remark (3.2). It has been shown that nm(TSm) admits exactly 5 linearly

2(8) [Hoo 1964]. The author does not know

independent sections if m

the corresponding result for m = 6(8).



§2, The block map.

Let 1 <k, <n, (i=1,2,...,t) and let N In, and K = Ik,
- i i i i

We define the map b: V

nl’kl X .. X Vn ’kt —_— VN,K by:
Al 0. 0
_ 0 0
b(Al,...,At) = o s
0 O At

where Ai is a k, x n, matrix such AiAz =1 We call the map b

i k, °
i

the block map and we will generally assume that the indices (ni’ki) are

clearly indicated by the context.

Proposition (3.3). Let b: Vn K X ... X Vn K — VN,K be the block
. 1’1 £t
map. Then b n =10 X ¢es X7
—_— N,K nl,kl nt,kt

Proof. Omitted. B

Proposition (3.4). Assume that for some io, 1 i_io <t, we have
k, < X (n,—ki) . Then the restriction of the block map b to the
o T A
0 .

subproduct Vn k. Xl X v Kk x % xV X ... XV

s n, _;.K. _ n, ,k. I'l,k

1’1 i 1 1, 1 1O+l 1O+l t’t
is homotopically trivial.
Proof. For the sake of technical clearness, we give the proof for
t = 2 . The reader will see immediately the modifications necessary for
the general case. For t = 2, assume that iO =1 . We have to prove
that the map V k. Vn 0k 4k defined by A —— (g g 8) is

11051 122512 ky
homotopically trivial. Since n, - k, > k the map

2 2 -1

39.



(A,8) —

(0 < s < 1) defines a homotopy between the above map and the constant
map. B

We will only use the map b in cases where the indices (ni,ki)
are all equal, 1i.e. (ni’ki) = (n,k) i=1,...,t . The following two

propositions are related to this case. For a space X and a permutation

o€ St’ we denote by To: Xx ... xX— X x ,,., xX the map which
permutes the t factors of X x ... x-X according to the permutation
o .

Proposition (3.5). (Symmetry property of b) . Consider the block map

b: V X V. — V . Assume that either k is even, or

x...
n,k n,k tn,tk

n 1is even and k and t are odd. Then b °T6 = b for any permutation

c € St
. . L i
Proof. There is an obvious map To' th,tk ——+‘th,tk permuting the
elements of the tk-frames in th tk in such a way that the following
3
diagram (strictly) commutes:
Vo ox v P Ly
n,k e n,k tn,tk
o o}
b
Vn,k x x Vn,k tn, tk

If k 1is even, Té is a "row operation of even order" [James 1958].
In this case, it is known that Té is homotopic to the identity map

on th tk [Ibidem]. The proposition for k even follows immediately.
b .
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If n dis even and k and t are odd, Té is also a row operation,
but possibly of odd order. However, under these assumptions, tn is

even and tk 1is odd, and all row operations on V are homotopic

tn, tk
to the identity map [Ibidem, cor. 1.2]. The proposition follows easily

in this case also. W

Remark (3.6). Let f£f: Xt =X x ... x X — Y be a based point preserving

map such that fo T0 = f for all o € S Of course, St acts on

-
* *

HXx ... x X; 22) (on the right) via the homomorphisms TO . Let

* % % * %
v€H (Y;Zz) . Then T0 f (y) = (fo Tc) (y) = f (y) for all o € St

* *
Thus, the class f (y) € H (X x ... x X; 22) is fixed under the St—
action.
*
Now assume that Y dis highly connected. If H (f;ZZ) is the zero

homomorphism, the map £ 1lifts to the first stage of the Postnikov

system of Y:

Suppose that ¢ € HJ(El;ZZ) is a k-invariant defined by a relation

.. . e _
SqJ 1y = 0 for some vy € Hl+l(Y;Zz) . Then, the set {f ¢}, where f
runs through all the possible liftings of f, determines an element I
. . i 311
in the quotient group H (X x ... x X; 22)/Sq H (X x ... x X3 22)

Using the naturality of the Steenrod operations, we have that

. a_i PR
T0 SqJ 1Hl(X X ... X X3 22) = SqJ * T0 Hl(X X ... X X3 22) for any
o€ St . Consequently, SqJ_l Hl(X X ... X X; ZZ) is an St—invariant
subgroup of B (X x ... x X; 22)’ and S_  acts naturally on

B(X % ... x X; Zz)/SqJ-l H'(X x ... x X; Z,) . We wish to point out
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that ¥ is fixed under this St—action. Indeed, if X x ... X X —> El
. is a lifting of £, then fo To is also a lifting of £ = fo Tc’ up

- % %%
to homotopy. Since (f o To) () = ch (9), this implies that the set

_% :
{f (¢)} is invariant under the action of St on HJ(X.X .. X X3 22)
and that ¥ is fixed under the action of St on

B x ... x X zz)/SqJ'1 H (X % ... x X; Z,)

The reader is asked to notice that these remarks generalize to
k-invariants ¢ defined by more complicated relations and to k-invariants
in higher stages of the Postnikov system for Y, even though the details
are more complicated as usual.

In §83,4, we will apply these considerations to the map

b: V

X Vn,k —_— th,tk with n,k and t satisfying the

X ..
n,k

conditions of proposition (3.5). M
Let 1 <k <n . Recall [Steenrod-Epstein 1962] that the cohomology

%
ring H (V is a commutative associative algebra over Z2 with

n,k>%2)

generators X .3 X in dimension n-k,...,n-1 respectively, and

n-k’>""’ n-1

relations x, = x,. for n -k < i < %¥(n-1) and x? =0 for
i 2i - - i

L(n < _ ] . . s
5(n-1) <1 <n 1 Moreover, the natural inclusion i Vn—Z,k—Z — Vn,k

x. for
J

*
n-k<j<n-4£-1 and 1 Xy = 0 for n~£<j<n-1. The

*
induces the cohomology homomorphism defined by i (xj)

natural projection p: Vn K — Vn 2 induces the homomorphism defined
b >
*
by p (xj) = %y for n-£<%j<n-1.

Proposition (3.7). Assume that 1 < k < (t-1)n/t . Then the block map

b: V XV — V induces the zero homomorphism in reduced

X .
n,k n,k tn,tk

cohomology with Zz—coefficients.

Proof. Let B: SO(n) x ... x S0(n) — SO(tn) be the map defined by



(A, 0 ... 0 )
B(A,,- .,At)_.= 0 s
..... 0
0 0 At )
and let u: SO(n) x ... X SO(n) — ‘S0(n) be the multiplication map
u(Al,...,At) = Al...At . Let 1i: SO(n) — SO(tn) denote the natural
inclusion. It is well known that io.p = B . Consequently, the

following diagram is homotopy commutative:

S0(n)
u li
S0(n) X ... x S0(n) —2— $0(tn)
PX...Xp D
| . }
Vn,k Xoeee X Vn,k th,tk

Since k < (t-1)n/t , it follows that tn - tk > n and that the map
%
pei dinduces the trivial homomorphism (pe i) in reduced cohomology

% ) %
with Zz—coefficients. Thus (ueiop) = (boe(p X ... X p))’ =

£ %
(p x ... X p) ob is also the zero homomorphism. Since (p x ... X p)

is a monomorphism, the proposition follows.

§3. The vector bundle nn’z & nn,zv .

In this section we prove the following theorem.

Theorem (3.8). Let n > 4 . The vector bundle @ n

over V

Th,2 % Mg

is trivial if and only if n is even.

The following corollaries are almost immediate.

*
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Corollary (3.9). Let & be an even dimensional real vector bundle over

a finite CW-complex such that £ @ 2e¢ 1is trivial. Then EDE is

trivial.

Proof. The vector bundle is "weakly universal" for such &£

nn,2
(cf. chapter I). B

Corollary (3.10). If n - k > 3 is odd, then nn k(ﬁ nn K is not
s b1
trivial over V .
n,k

\Y . We have

Proof. Consider the inclusion map 1i: Vn—k+2,2 — 0,k

%
that i (nn,k & nn,k) = nn—k+2,2 57] nn—k+2,2 The latter vector bundle

@ n is not trivial.

is not trivial by Theorem (3.8). Thus n 0.k
’

n,k

Proof of Theorem (3.8).

For n > 4, let d: Vn,2 — Vn,2 X Vn,2 be the diagonal map,

and b: Vn the block map. By (3.3), we have

*Vn,2 77 Von,s

* * :
Hence, d b (nZn,A) & nn,2 & nn,Z . The

32
b* =
= X .
(M2n,4) = Mp,2 * Moo
first step of the proof will be to study the map bed . If n is

even, we show that boed 1ifts arbitrarily high into the (modified)

Postnikov tower over Consequently, boed 1is homotopically

V2n,4 )

trivial, and the theorem follows for this case. If n is odd, we
find that boe d cannot be lifted past the first stage of the Postnikov

tower over V .
2n,4

%
We deduce that n @ n 2 (bed) n is not trivial by an
n,2 n,2

2n,4
argument involving proposition (3.1).

Let Ki denote the Eilenberg-Maclam space K(i,Zz) and let l

- be the fundamental class. 1 will denote the cohomology transgression.

It follows that bed is not homotopically trivial.

b,



Let
(3.11) O VO T N

: i e 2 1 2n,4
be the (modified) Postnikov tower over V2n 4 ‘(*).

Case n even.

The following is a list of all k-invariants in dimension < 2n - 3

occurring in the Postnikov tower over V2n 4> D = 0(2):
b
. . r3 * z
(0) k-invariants in H (VZn,4’ 2)
*on-4 ? *on-3
. %
(1) k-invariants in H (El; ZZ)
(1) . -
¢2n—4 : 5q Xon-4 0
2 _
Yopog P 8 Xy 4 =0
*
(i) k~-invariants H (Ei; Z2) i>2
). o1 (i-1) _
¢2n—4 : Sq” ¢ =0 .

Due to proposition (3.7), the map b admits a lifting b1 to the
first stage of (3.11). Proposition (3.5) applies to b . Consequently,

*
we can apply remark (3.6) to the class bl w2n—3 . Since
2 _2n-5 . *
SEH T TV, 5 XV 98 by ¥on3

of the 1lifting b of b . Thus, by remark (3.6),

i
2n-3 .
class of H (Vn,2 X Vn,2’

22) =0, does not depend on the choice

%
by ¥pp3 1sa

Z invariant under the action of S

2) 2

*
(') We will use the Postnikov towers associated with the path-loop
fibrations.
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% .
This implies that bl l,bzn_3 = a( 1 @1L+1® XX ) +

*n-2%n- -2 n-1

B(xn_2 ®x ,+ xn_1-® Xn—2) for some o,B € Z, . Hence
* * _ 2n~3
db ¥, . =0 H (V, 5 2

i=2n-4 and for i > 2n - 2, we deduce that bed 1lifts

Z Since Hl(V Z.,) =0 for

n,2> %2

arbitrarily high in the Postnikov tower (3.11). Therefore bod is

*
homotopically trivial. It follows that nn,2 @ nn,Z 2 (bod) Non,4

is trivial.

Case n odd.

The following is a list of all k-invariants in dimension < 2n - 2

occurring in the Postnikov tower over V2n 4’ n = 1(2):

%
(0) k~invariants in H (VZn,A; 22)

Xon-4 > *2n-3

%
(1) k-invariants in H (El; Zz)
L, gl _
¢2n—4 ' 5q Xon-4 0
Y : S X + S 1 =0
2n-3 ° T Ton-4 q‘_x2n—3

%
(i) k-invariants in H (Ei; ZZ) i>2

(1) 1 (1i-1) _
®on-4 P ST pny T

0.
As in the case for n even, we obtain a lifting bl of b to
the first stage of the Postnikov tower (3.11). Again, we study

%
bl w2n—3 using remark (3.6). 1In this case, however, we have that



2-_2n-5 1 2n-4
q H (Vn,Z * Vn,2’ ZZ) t 5S¢ H (Vn,2 8 Vn,2’

subgroup of Hzn_B(V x V generated by

n,2  'n,2’
L%
. Consequently, the set {bl wZn—B}’ where

T =75 Z is the

9)

22)

X (12] Xn—

+ x D x
n n-2 n

2 -1

b runs through all the possible liftings of b to 'El, determines

1
an element I in Hzn_B(V Zz)/T, and, by remark (3.6), I

X V ;
n,2 n,2’
is invariant under the induced action of S, . After examining the

2
action of S on the group Hzn_S(V x V s 2.)/1 it is easy to
2 n,2 n,2’> 72 ?

see that I = a x 2®x

- -1 + B(Xn—ZXn—l ‘® 1+1Q® Xn—an—l) + 1 for

some 0o,B € Z, . Proposition (3.4) implies immediately that the

2
‘s b
composition V v V x V

1, 5 . ,
n,2 n,2 Vn,z n,?2 V2n,4 is homotopically

trivial. It is then a routine matter to check that we must have

* %
i bl wZn—B = 0 for any lifting b of b . This implies that B =0 .

1

It is more difficult to determine o . We postpone the proof of the

following claim to the end of the proof of theorem (3.8).

Claim (3.12): o # 0 .

Assuming that we have proved this claim, we continue the proof.

: *
Thus, I = X 9 (024 X 1 + 1, i.e., b1 w2n—3 =X _, ® X 1 Or

3
b

1 wZn—B =X 1 8>xn_2 depending on the choice of the lifting bl of
b It follows that d b. ¥ =x x . #0€m™3w .z
' 1 "2n-3 n-2"n-1 n,2> "2
. 2 _2n-5 . 1 _2n-4 . _
Since Sq” H (Vn,2’ 22) + Sq" H (Vn,Z’ ZZ) = 0, we deduce that

%
£ ¥y 3= X 0% g for any lifting f of the map deb to the
first stage of the Postnikov tower (3.11).

Now, recall that the Stiefel manifold V can be obtained by

n,2
n-1
n-2 °
. oh=1 2n-3 SZn—3

- (§) :
n,?2 Pn_2 ) e and we have a map ¢ Vn,2 —

attaching a (2n-3)-cell to the truncated projective space P

Thus, 'V
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collapsing Pz:l

9 to a point. By cellular approximation, we have that
#, [SZn—B Vv ] — [V \ 1 ié an isomor Hism Therefor the

¢ ’ 2n’4 . ngz, 2n94 P ) © ore:
map boed factors through the space S2n—3 as follows.

bod X

Vn,2 V2n,4
C\ /g‘
SZn—3

Using our previous considerations about the map boed, it is easy

s?3 Lk to the

to deduce that the map g admits a lifting gt 1

first stage of the Postnikov tower (3.11), and that

* - -
g, Y #0 H2n 3(S2n 3; Z,) for any lifting chosen. Comparing
1 "2n-3 27

SZn-4 sy and the Postnikov tower

the Postnikov tower over
2n,4

(3.11), one can deduce easily that the map g is homotopic to the

2n-3 n SZn—4 i

composition S V2n 4 where mn represents the
b
generator of ﬂzn_3(82n_4) . Summing up these considerations, we now
* % *
have that bed = ienoeoc . Therefore, nn,Z 4] nn,2 = c n i (nZn,4)
. & = 2n-4 , . % * 2n-4
Since i n2n,4 & 18 , this means that nn,2 132) nn,2 c n (TS )
We wish to deduce that n ®n is not trivial. We suppose
» n,2 n,2

that - n, Z'G)Hn 2 is trivial and we will get a contradiction. Let
b b

an_4 denote the universal vector bundle over BSO(2n-4) and let

t: SZn—4 —> BSO(2n-4) be a classifying map for TSzn—4 . Consider

the following diagram:

SZn—4 A Pn—l v c SZn—B IA ZPn-l
n-2 n,2 n-2
b
N /,
_ ’
SZn 4 ,’/ h
Je v
K

BSO(2n-4)
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" The horizontal sequence of maps is a cofibration sequence. If

n @ n is trivial, then the composition tone ¢ must be
- n,2 n,2
homotopically trivial. Therefore, there is a map h: ZPE:; — BSO(2n-4)

such that hoZA = ton . First let n = 3(8) . Notice that, the map

h factors through BSO(n) ¢ BSO(2n-4) for dimensional reasons. It
2n-4

2n—4) 2n—4)

admits at least n - 4 sections. But n = 3(8) and n > 4, so that

* K. \ % %
follows that the vector bundle n (1S ) 2 nt (T = (ZA) h (T

2n - 4 = 2(8) and n - 4 2,7 . Thus we have obtained a contradiction
with proposition (3.1)iii. This proves the theorem for n = 3(8)
For n = 1,5 or 7 (8), first recall that the Stiefel manifolds are

stably parallelizable. It follows by a standard argument that the

attaching map A: S2%% — P™L of the top cell &3 of v

n-2 n,2

must be stably homotopically trivial. Hence the composition

- - - 1
S2n 3= ZSzn 4 RN ZPE_; £ 5 5" must be stably homotopically trivial

also (c': ZPE:; — S"  denotes the map collapsing the bottom cell of
ZPE:; to a point). By the Freudenthal suspension theorem, this implies

that the composition ¢' o (ZA) must be homotopically trivial itself.

- < 1 _ '

Considering the cofibration st 1 1 ZPE_; —E—+-Sn, we deduce that
IA factors through j': g™l ZPE:% Since n > 5,

sp™ 1 Bso(2n-4)] = [2P™7L, Bsol (2 ROGP™L) . Using this fact

n-2> n-2’ n-2

together with Bott's computation of Wi(BSO) and the cofibration
- — s 1 —
st l.—§+ s 1 -1 ZPE_%, one sees that
n-1

Im{j'#: [ZPn_z, BSO(2n-4)] — [Sn_l, BSO(2n-4)]} = 0 . Thus, the

composition h e IA must be homotopically trivial. Since

2n-4

* 2n-4 * % *
18 ) & (ZA) h (FZh—4)’ we obtain that n (TS ) is a trivial

n (
vector bundle. This is a contradiction with proposition (3.1)i. This

proves the theorem for n = 1,5 or 7 (8) .
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This concludes the proof of theorem (3.8), assuming claim (3.12).

Proof of Claim (3.12).

Let us make the supposition that a = 0 . Recall that n is odd.

Then there is a lifting bl of b to the first stage of the Postnikov

*
tower (3.11) such that bl ¢2n—3 = (0 . Consider the inclusion

n-1

. v — st - v — oo .
K Pn—2 — Vn,2 and let b bo (jxj) . Then bl bl o (jxj) is
*
a lifting of b' to El . Our hypothesis implies that bi wZn—B =0 .
. o1l () 1o* (1) _
Moreover, since Sq ¢2n—4 = 0, we must have that 8§q (bl ¢2n—4) =0.
. . . . 1* (l) = ] . . . '
This implies that bl ¢2n—4 0 . Thus, bl admits a lifting b2 to

* . (2)

E Again, we must have bé (¢2n—4) = 0 by the same argument as above.

9
In this way, the map b' 1lifts arbitrarily high in the Postnikov tower.

(3.11). Therefore, under the hypotheses that o = 0, we have that
b' = % |,

We now obtain a contradiction by showing that, in fact, b' # * .

1 - -
Specifically, we prove that (b')’: ﬁﬁ(Vzn 4) — ﬁﬁ(PE_; x PE_%) is
3

not the zero homomorphism. Let £ denote the restriction of to

nn,2
n-1

P . Recall that the composition Pn-1 -y £, Sn_l is homotopic
n-2 n-2 n,2
to the map c: Pn_l — Sn_l collapsing Sn-_.2 C Pz:l

-2 2 to a point. We

can compute A(E) (see chapter II) as follows:
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AE) = AG(n )

%
i A(nn 2) (by naturality of A)

bl

@y )aE) @@ = 1)

j*(A-I-(nn '29 e)) (corollary (2.15))

@ sy st

) = nn,éﬂa €)

x % -
ip (A+(TSn l)) (by naturality of A+)

C*(Yn_l) + 2%(n—3) (by example (2.11))

L (n—
= vy 270
~ . n-1, .
where v denotes the generator of KU(Pn—Z) = 22 and the last equality
' e n-1 ~  T— .

comes from the fact that ¢’ : KU(S ) —— KU(Pn—Z) . Now, consider

G n-3 _ v .
Yon-4 = A (n2n,4) -2 € KU(V2 ’4) We have:

3

! I _ n-

— + v* _ n-3

= 4D (n2n,4) 2

= stexe) - 2

= A(8) ® A(E) - o3 (by theorem (2.14))

(v + 22@73)) g (y 4 2Oy _ 3

= v@®vy (since n > 5)

Since the exterior tensor product induces a monomorphism

®: KU(X) ® KU(X) —> KU(XxX) [Atiyah 1962], we deduce that

n-1

— | I
0O#v®v=">D» n_2)

1
(Y2n—4

and this concludes the proof of the claim (3.12).

) € KU(PE:% x P Therefore, b' £ '*

This completes the proof of theorem (3.8).H
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§4. The vector bundle ® n

r111,3 ® nn,3 n,3

We prove the following theorem.

Theorem (3.13). Let n > 4 be even. Then the vector bundle

n, 3 (53] N3 (3] n 5 over Vn 3 is trivial.

3 3 b 5

The following corollary is immediate.

Corollary (3.14). Let £ be an odd dimensional vector bundle over a

finite CW complex. Assume that & @ 3¢ idis trivial. Then £ @D E @ ¢

is trivial. m

Proof of theorem (3.13).

Let d: Vn,3 ——»-Vn’3 X Vn,3 X Vn,3 be the diagonal map and let

n,3 x Vn,3 x Vn,3 V3n,9

%
(bod) (n3n 9) = 3nn 3 We will show that bed = * by lifting this

b: V be the block map. We have that

map arbitrarily highly in the Postnikov tower over V3n 9 This
b
implies of course that 3nn 3 is trivial. We have to separate the
b

proof in two parts according to the cases n = 0(4) and n = 2(4)

Case n = 0(4)

Since is trivial, we can assume that n > 8 . We first

4,3

prove that 3nn 3 D ¢ is trivial.
b

We can construct a non-zero section of 3nn 3 as follows. Let
bl
(xl,xz,x3) be a 3-frame in R" .and let p: Vn 3 — Sn_1 be the
b

natural projection map, p(xl,xz,x3) =% . Then
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) = {u: u € R® and [u,xi] =0, i=1,2,3} and

(n
(xl ’Xz ’X3)

n,3

% _ .
P (TSn l)( X .%.) = {u: u € R" and [u,xl] = 0} . There is an
*10%20%3
. * n-1
obvious vector bundle map P: p (1S ) — 1

n,3 defined by

P(u) =u ~ [u,xz]x2 - [u,x3]x3 . Since n = 0(4), we can find 3

n-1

linearly independent sections of 18 . Then we define

81’52,83

a section s of 3nn by setting
3

3
S(Xl?XZ’XB) = (P(Si(xl))’ P(SZ(Xl))’ P(SB(Xl))) .- It is easy to

check that s(x

l,x2,x3) # 0 for all (xl’XZ’XS) € Vn,3 .

Since’ 3nn 3 admits a non-zero section, there is a (3n-10)-
b

dimensional vector bundle & over V such that 3n =2 r® ¢ .
n,3 n,3

%
3 = 1
We have that ¢ @ 3e = 3nn,3 @ 2¢ nn,3 ®p (Znn,z) where
t.
P Vn,3 —> Vn,2 .

is trivial by theorem (3.8) and 2(n-2) > 3 . Thus ¢ @ 3e is trivial

The last vector bundle is trivial since 2nn 2
b

and by theorem (1.3), there is a map f: Vn,3 — V3n-7,3 such that
*
f n3n_7’3 2 ¢ . Therefore, we have that
In ,@ec =76@ 2 = f*(n @ 2e) = (p"o f)*(T33n~8) where
n93 31‘1‘7,3
p": V3n—7 3 S3n_8 is the projection map. We claim that p"e f = * |,

Indeed, by cellular approximation, we have the following commutative

diagram where the vertical maps are isomorphisms.

P" _
# SBn 8

] ——— [Vn,3

By the proof of proposition (3.1)ii, one sees easily that the
arrow forming the bottom side of the square is the zero homomorphism.

It follows that the arrow at the top of the square is also the zero



homomorphism. This implies that p"e f = p(f) = * as claimed. Since

#

* _
we have shown that 3nn 3 @c = (p'o f) (TS3n 8), we obtain that

(3.14) 3nn,3 D e is trivial.

We will use this result later. We now proceed to show that the

map bod is homotopically trivial. Let

(3.15) cos Ei e E2 — El —> V3n,9

be the Postnikov tower over Following are 1lists of the k-

V3n,9 °

invariants occurring in this tower in dimension < 3n - 6 .

For n = 0(8):

L%
(0) k-invariant in H (V3n,9; ZZ)
*3n-9
%
(1) k-invariant in H (El; 22)
2,1 _
93p-7 * 59 X3 9 =0
%
(2) k-invariant in H (E2; ZZ)
2
' . =
Y3p-6 ° 54 93,7 =0
For n = 4(8):
0 k » . 3 * z
(0) -invariant in H (V3n,9’ 2)

%3n-9
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%
(1) k-invariants in H (El; 22)
2,1 _
¢3n—7 F8q %*3n-9 0
4 : _
Y3p6 ° 59 X3.9=0

%
(2) k-invariants in H (EZ; ZZ)

2
| . =
lP3n-6 ) 5q ¢3n—7

: *
By proposition (3.7), H (bj;Z,) = 0 . Hence there exists a

lifting bl of b to El . We now study the composition bl° d .

. 3n-7 _ * _
Since H (v 22) = 0, (bl.Od) 0. For n = 4(8),

n,3’ P3p-7 =

%
we also want to evaluate (blo d) In this case,

w3n—6 '

(Vn,3 X Vn,3 X Vn,3; ZZ) = 0 . Hence the class (b1° d)

is independent of the choice of the lifting bl . Notice that

4 3n-10 *
Sq¢ H ¥3n-6

proposition (3.5) applies to the map b . Therefore, by remark (3.6),

3n-6
(Vn,3 % Vn,3 8 Vn,3’

by the SB—action. It is easy to check any such element is pulled back

* : *
trivially by d . Thus (bed)

%
bl w3n—6 must be an element of H Z vflxed

9)

an-6 =0 if n = 4(8) . This shows
* -
that H (bl od; Zz) =0 for n =0 or 4(8) . Consequently, there is

a lifting g: V — E of the composition b,e d .
n,3 2 1

*
Claim (3.16). g %) =0 .

Let us assume that we have proved this claim. Then bl° d and,

hence, bod, 1lift to E, . However, E is already (3n-5)-connected.

3 3
Since dim Vn 3= 3n - 6, we deduce that boed = * ., This completes

the proof of the theorem for n = 0(4), assuming (3.16).
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Proof of claim (3.16).

* 3n-6
] . . . .
Suppose that 0 # g w3n—6 € H (Vn,3’ 22) . We will obtain a
contradiction.
Let
(3.17) —> E! — ,.. — E! — E! — V

i 2 1 3n,8

be a (modified) Postnikov tower over V The following is a list

3n,8 °

of the k-invariants occurring in that tower in dimension < 3n - 6 .

%
(0) k-invariants in H (V;

3n,8; 22)
*on-8 *  %3n-7
*
(1) k-invariants in H'(El;Zz)
=(1) . o1 _
038 59 X3, =0
Ugp7 ¢ 84 %5 =0
2
K3p-6 ° 5q X3n-7 © 0
%
(2) k-invariants in H (EZ;ZZ)
-(2) | 1) _
O30 ¢ S 93,75 =0
- 3 (1) 2
A . =
Y3n ° S 93,75 T SaT ¥y, 5, =0

(i) k-invariants in H (Ei;Zz) i>3

_ (1) 1 -(i-1) _

0328 ¢ S 95, ¢ = 0.

The projection ma 2V, o === i
proj P P 3n,9 i V3n,8 induces a map between

the Postnikov towers. ,Let.pi: Ei~__+ Ei denote the maps induced.



%

A routine computation shows that P, Now, notice

ht = !
¥30-6 = Y306 -
that Pyo 8 is a lifting of the composition poebod, and that under

*
our hypothesis, (pzo g) w3n—6 # 0 . By cellular approximation, we

3n-5

can consider pebod: V — V as mapping into P3n—8 . Since

n,3 3n,8
3n~-5 . . 3n-8 3n-5
3n-8 O v Py

% -
see that the condition (pzo g2) w3n—6 # 0 implies that the map

3n - 8 = 0(4), we have P Then, it is easy to

pe bied factors as shown in the following diagram-

bed
Vh,3 V30,9
I I
3n-6 2 3n-8 i
3n,8
3n-5
P3n-8

where c¢: V — S3n"6

n,3 is the degree 1 map.

8 x 2 % % * %
) =e (n)i(ng o) = (bed)p (n

% % -
We deduce that c (nz) (TS3n

b

last vector bundle is trivial. Therefore, under the hypothesis that

* kDR 3n-8
g wén—6 # 0, we deduce that ¢ (n”) (1S ) 1is trivial. Is is easy

8

* -
to see that this implies that (n2) (TS3n ) admits more than 1 section

(cf. proof of theorem (3.8), case n = 3(8)). However, this is a
contradiction with proposition (3.1)ii. Hence we must deduce that

%
g wén—6 = 0 . This completes the proof of claim (3.16).

This completes the proof of theorem (3.13) for the case n = 0(4)

3n,8
%
Z2 (bo d) (n3n 9 ®ec) = 3n 3 ® e . We have already shown (3.14) that the

)
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Case n = 2(4).

In this case it is easy to prove that the map bo d: Vn —> V
is homotopically trivial.

Again, let

(3.18) . E, — ... E, B —> V3 4

be the Postnikov tower over The k-invariants occurring in

Van,o

dimensions < 3n - 6 are as follows:

For n = 2(8):

*
(0) k-invariants in H (Vn,3; Zz)
*3n-9 >  ¥3p-7
*
(1) k-invariants in H (El; 22)
. 4 2 .. _
.an_6 : Sq x3n—9 + Sq X3n—7 =0 .
For n = 6(8):
0 k I3 . 3 *
(0) k-invariants in H (Vn,3’ Z2)

X30-9 *  *3p-7

%
(1) k-invariants in H (El; ZZ)

) 4 _
Vg ° 59 X3, =0

By proposition (3.7), the map b admits a lifting bl to El .

* %
We will show that d bl w3n—6 = 0 . The theorem follows.
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Notice that the map b satisfies the conditions of proposition (3.5).

Consequently, we can apply remark (3.6). If n = 2(8), let

4. 3n-10 _ 2 3n-8, .
qH (Vn,3 x Vn,3 x Vn,3’ ZZ) + 5S¢ H (Vn,3 % Vn,3 % Vn,3’

"
The set {bl w3n—6}’ where b

I=-:5 Z

9)

1 Tuns through all the possible liftings

gon-6 X V xV )/1 . As

of b, determines an element I
n,3 n,3 n,3

explained in remark (3.6); I must be fixed under the S3—action. Let

a=x_ . ® X o ® X _3 + X 3 1%/ PN ® X 1 + X o ® X o (] X o and

b = ® X 1 @1+ X _o¥. 1 ® x ®1 . It is easy to compute

n-3
that I is the subgroup of H3n—6(V x V x V. _;
. n,3 n,3 n,3’

Xn—ZXn—3

z generated by

2)
the elements in the orbits of a and b wunder the S.-action. One

3
] 3n-6 ]
computes quickly that the only elements of H (Vn,3 X Vn,3 X Vn,3f

fixed under the S3—act;on are [0] and [xn_2 2 X _o ] Xn—2] . It

. * %
follows that d bl an—6 = 0 as desired.

Z,)/1

If n = 6(8), the same argument applies, but the computations are

easier. This concludes the proof of the case n = 2(4) . B

§5. 0dd multiples of

LN

The folloWing theorem is meaningful only if k is approximately

equal to or larger than 2n/3 .

Theorem (3.18). The vector bundle (25+l)nn Kk is not trivial if
' ’

2s + 1 < (n+8)/(n-k), where § = 6(n,k) is equal to O if n and

k are even, 1 if n and k are odd, and -2 otherwise.




Before proving theorem (3.12), we establish the following lemma.

Proposition (3.13). Let gﬂ be a stably trivial real vector bundle

over a finijte CW-complex X . Assume that & has a unique Spin

, + £-1
reduction. Then A (E@PE) = 2 in KU(X)

22292' Let us assume that £ = 2r + 1 1is odd. The proof for £ even
is similar. We use the notation of chapter II. Let E be a principal
Spin(£)-bundle over X such that ¢ = g(E) . Applying (2.15), we have
that Ai(g ® &) =A(E)A(E) . Hence the element Ai(E ® &) € KUX) is
represented by the vector bundle AE(E) Q)AK(E) . Using the property
(2.1) of the a-construction, we have that AK(E)¢® AE(E) = (AK',AK)(E) .
+ A, + 1 (theorem (2;6)), we deduce

r_1+... 1

that Ai(é’-; ® &) 1is represented by the vector bundle

Since AE . AK = Xr + A

Ar(g) + Ar_l(g) + ... + Al(g) + e . It is well known that Ai(g) is
stably trivial for any stably trivial vector bundle & . Thus,

.\ .
AT(E @ £) is represented in KU(X) by a stably trivial vector bundle.

The proposition follows.

Proof of theorem (3.18).

We give the proof for n and k even. The other cases are
treated'similarly. To show that (2s+l)nn Kk is not trivial, it is
, .

sufficient to show that A+((28+l)nn k) ¢ Z = Im{KU(*) —> KU(Vn )}
3

k

s

(see example (2.9)). Using successively (2.15), (3.13) and (2.12),
+ L+

we have: A ((25+l)nn’k) = A (2s n

- 2s(n—k)—l A 2s(n—k)—l . + 9
n,k

k)A+(nn’k) + A (2s nn’k)A_(nn’k)
(s+%) (n-k)-1

b

(n_,) =

n,k Since the

order of = is 2
n,k

if s(n-k) -1 <%k -1, i.e. (2s+l) < k/(n-k) . B

Ly
zk l, we deduce that (23+l)nn K is not trivial
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Remark (3.26)(1). The proof of theorem (3.18) actually gives somewhat

stronger information. Let 0 < j <k -1 . There is an embedding
n-k-+j n-1 ~ ‘ .
Pn—k — Pn—k d Vn,k . The element Tn,k € KU(Vn,k) restricts to

the generator of the torsion subgroup of ﬁﬁ(Pg:§+J) [Gitler and

Lam 1970]. Using the naturality of the Spin operations, it is easy

n—k+j

to see that the vector bundle (2s+l)nn K is not trivial over Pn—k
: b

if j is sufficiently large. For instance, if n - k = j + 1 = 0(2),

this is the case if j > 2s(n-k) - 1 .

(ii) It is interesting to notice that if rnn K is trivial, one can
3

deduce that (r+l)nn Kk is also trivial as long as r 2 n/(n-k) . The
b

results of theorem (3.18) are exactly in the complementary range.

Thus, theorem (3.18) gives rise to the intriguing possibility that even

and odd multiples of behave in very different ways.

nn,k

(iii) Slightly better results can be obtained by the use of real and
quaternionic. Spin operations (§II-5). For instance one can show that

7n65,56 is not trivial in this way.
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Chapter IV

Cross-sections of 1 @ (k-1)e .
n,k
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§1. Sectioning of n_ O (k-1)e .

Theorem (4.1). If n,k are odd and 1 <k <n -2, or if n is
odd, k is even and min(p(n~k-1)+1l, ¥(n-1)) <k < n - 3, then

the vector bundle ® (k-1l)e admits exactly k - 1 linearly

nn,k

independent sections. If n 1is even and 1 < k < p(n), then

ok ® (k-1)e admits exactly p(n) - 1 linearly independent sections.

Remark (4.2). The following facts are elementary consequences of

(1.5). () 1f Nk ® (k-1l)e admits at most r 1.i. sections, then
N o1 @ (k-2)e admits at most r 1.i. sections also. (B) Let
l<s'<s<k-1. If nnkese admits at most s +d 1.i.

sections, then nn’kGD s'e admits at most s' +d 1.i. sections.
(c) 1f nn’kﬁase admits at most r 1l.i. sections, then
nn+£,k+£$ se admits at most r 1l.i. sections also. Using these
facts, the reader will easily convince himself that theorem (4.1)
gives extensive information about the sectioning problem for
nn’kQ se, 1 i-s <k -1, and that, in many cases, the results
are best possible.

We must prove the following well known lemma before giving the

proof of theorem (4.1).

Lemma (4.3). Let Y,Z be CW-complexes and f: Z — Y a continuous

map. Assume that we have cohomology classes i € Hl(Y;Zz) and

i.,. ; S |
z; €4 (Z’ZZ) for 2a +1 < i < 2b and that Sq s (j)yi+j and

j _ (1 . . . o , * _
Sq z; (j)zi+j for j < min(2i,2b) i . Then, if f Y z,

0 0

%
for some 2a + 1 <i. < 2b, we have that f£ v; < %y for all

i
i, 2a+1<1i<2b.

0
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Proof. Use the Steenrod operations Sql and qu inductively. ®

Proof of theorem (4.1).

If n is even and k < p(n), then the projection map

n-1 . . . .
Py: Vn Kk — S admits a cross-section, i.e. there is a map
b
-1
s: ST — v such that

n.k plo s = Id o . Then we have that

S -1
* n-1 - n-1 ~ * _ .
pl(TS ) nn,k ® (k-1)e and 1S £ g (nn Kk @ (k-1)e) . Since

b

TSn—l admits exactly p(n) - 1 1.i. sections, we deduce that

Nk ® (k-1)e admits exactly p(n) - 1 1l.i. sections also. This

proves the last assertion of the theorem.

To prove the other cases of the theorem, let us suppose that

Nk ® (k-1)e admits k 1.i. sections. Then, there is a (n-k-1)-
b .
dimensional vector bundle g over Vn K such that
b
z ® ke & n ® (k-1)e . The sum 7 @ (k+l)e = n ® ke is trivial.
n,k n,k
.3 . . .
Therefore, by theorem (1.3) there is a continuous map f Vn,k — Vn,k+l
* = . . n-1
such that £ (nn,k+l) 2 ¢ . Moreover, if p: Vn,k+l — S is the
natural projection,
f
Vn’k Vn,k+1
pef lp
Sn—l
' *  n-1 * % -] %*
then we have that (pe f) (tS ) £ fp 1S = f (n D ke) =
n,k+1
N,k ® (k-1l)e .
N n-1
Now, let us assume that n and k are odd. Let Y1 € KU(S )
and T € ﬁﬁ(v ) be as in example 2.11 and 2.12 respectively.
n,k n,k

Recall that we can choose Yoo1 such that Yn—l = A+(TSn_l) - 2(n—3)/2

’



- 2(n—k)/2 . Using corollary 2.15 and the

) =

and Tn,k

= A(nn’k)
. 1
naturality of the Spin operations, we have that (pe f) (¥
* % - - -
2T P (sPhyy - 2 (07372 ,(n=3)/2

o (k=3)/2

n-1
- A+(nn L © (k-1)e) -

Aln ) - 2(11_-3)/2 = Z(k-B)/2 T . On the othér hand,
n,k n,k

! _ oo (k-1)/2 .
we have that p (yn_l) = 2 Tn,k+l (by computing as above, for

o (k=3)/2

!
instance). Therefore, we must have Tn’k =f'p (Yn—l) =

Z(k_l)/2 T kbl However, this is impossible because the order of
Tk is 2(k—l)/2 . This is a contradiction, and we must deduce
that Nk ® (k-1)e admits only (k-1) 1.i. sections for n and

k odd, as stated.

!
If n is odd and k is even, we find that (pe f)'(Yn_l) =

(k-2)/2 . .. on-1
2 Tn’k by the same computation as above. Let j: Pn—k — Vn,k
. . . ~ o on-1y L
be the usual embedding. Since j’(rt ) generates KU(P 2 7.t

n,k n- 2
and t = (k-1)/2 [Gitler and Lam 1970], we deduce that

"
(pofo i) (v ) # 0 . Therefore, the map pe fo j is not homo-
J n-1 J

topically trivial. By the Hopf classification theorem, we deduce

that pefoej 1is homotopic to the map collapsing Pz:i C PE:i to
*
a point. Therefore, (pefoe j) X1 = X, where x;, 1is as in
_ % %
§III-2. Since p X 1= X,_1> Ve deduce that (fo j) X o1 = %1 ¢
%
Using lemma (4.3), it follows that (fe j) X, =X, for n-k<i<n-~-1.
-k-1

. L(r— _ n =
Firstly, assume that %(n-1) <k <n 3 . Then Sq X -1 X —9k=2
) % . . n-k-1,6 n-1 _ K _
in H (Vn,k+l’ 22) Since H (Pn—k’ 22) =0, (foij) (Xn~k—l) =0 .
Therefore (fe ')* x =S n_k_l(f o')*(x ) =0 However

© J 2n-2k-2 ~ °4 3 k- - lowever,

n-k<2n-2k-2<n-1, and this is a contradiction with our
previous statement. Secondly, assume that p(n-k-1) <k -1 . We can
also assume that k < %¥(n-1) in view of the previous case. Since the

(n-1)-skeleton of Vn is n-1

kel Pn—k—l’ we can homotope the map fe j
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n-1 n-1
1 Let q: Pn—k—l — Pn—k be the map
n-1

n-k-1

I L n-1
so that f°'J(Pn—k) C Pn—k—

collapsing the bottom cell of P to a point. Then, of course,

*
(gofoij) X 15X 1 again. Therefore, by applying lemma (4.3),
btain that (qefei) :H (™Y z.) — w (™ L; 2.) 1is an iso-

we obta a gefolj): 0k’ %o -k’ 29 an iso

morphism. By the universal coefficient theorem, we deduce that

n-1,
n-k’

n-1,

*
Z) — H (Pn_k,

x %
(qofoj) H (P Z) 1is an isomorphism. It follows,
by Whitehead's theorem, that qo fe j is a homotopy equivalence, i.e.

we have the following homotopy commutative diagram:

n-1 f j n-1 q n-1
Pn—k Pn—k—l Pn—k
Id
Therefore, PE:i—l is co-reducible. However, this is impossible by

[Adams 1962, Theorem 1.2]. This contradiction implies the theorem
in this case.

This completes the proof of (4.1). 1

§2, Non-triviality of Nk @ (k-1)e .

Theorem (4.4). If n is odd and 2 <k <n - 2, or if n # 4,8 is

even and 2 < k <n - 3, then ® (k-1)e 1is not trivial.

rln,k

Proof. Under the projection map V — V the vector bundle

n,k+e n,k’

® (k-1)e pulls back to ® (k+f-1)e . Therefore, it is

"Lk M, k+e

sufficient to prove theorem (4.4) for large values of k . If n is

odd, n ® (n-3)e 1is not trivial by theorem (4.1). We deduce

n,n-2
that Nk D (k-De is not trivial for 1 < k <n - 2 in this case.
b
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For n even, n # 4,8 nn,kGB (k-1)e is not trivial for k < p(n) by
theorem (4.1) also.

The only case remaining is n even and p(n) <k <n -3 . Assume
this. By the remark at the beginning of the proof, we can also assume

that k 4is odd. By theorem (1.3), if N, k<9 (k-1)e = (n=1)e, we have

b

%
' : h th = .
a map f Vn,k _—»-Vn—l,k—l such t aF f nn—l,k—l nn,k Let
- * ,
i: Vn—l,k—l — Vn,k be the inclusion map. Then (iof) (nn,k) = nn,k .
t \Y
Vn’k ) ‘ : D—l,k—l
iof li
Vn,k
Since T = A(n ) - 2(n—k—l)/2’ by naturality of the Spin operations,
n,k n,k
we have that (i Of)!(T ) =1 . Because k <n -3 Pn_k+2 is the
n,k n,k - i n-k
(n-k+2)-skeleton of V . Let j: Pn_k_2 — V denote the inclusion
n,k n-k n,k
n—-k+2 n-k+2 .. . n-k-2
map and g: Pn—k — Pn—k the rgstrlctlon of ief to Pn—k .

1
Using [Gitler and Lam 1970] again, we have that j'(Tn k) is the
3

- 1
generator of ﬁﬁ(PE_t+2) = 22 . It follows easily that g is an

isomorphism. After studying the homotopy commutative diagram

n-k+2 g n-k+2

Pn-k ' Pn—k
Je le

Sn—k+2 Sn—k+2

first in KU-theory, and then in Zz—cohomology, one deduces that

* . . . n-k . ~ 40—k -
H (g,Zz) must be an isomorphism. Since H (Vn,k’ZZ) = H (Vn—l,k—l) = ZZ’
it follows that Hn_k(io £ 22) and Hn_k(f; 22) are isomorphisms. Now
let L Pn_l — V and j": Pn-2 — V be the usual inclusions

et J Ak n,k 3 Faok n-1,k-1 :



Let N be a very large power of 2 . Recall from [James 1959, thm. 2.5],

- . . N N _n-2
that there is a map h: Z Vn—l,k—l —> I Pn—k such that the
' N_n-2
- F
ZNPn 2 7,2 Pn—k
n-k .
N, Nl
Z‘Jll P | Ih
N N
Nn-12Z%34' N L f N
L Pk L VK 2 V01,k-1
. . N-u . . . . N n_2
composition h o (X j") is homotopic to the identity map on I Pn-k .
. N+n-k , N ) . . Ntn-k, _ : :
Since H (z Vn—l,k—l’ ZZ) = 22, H (h’ZZ) must be an isomorphism.
. . o2 n-1 . . _ N s
Let iqe Pn—k — Pn—k be the inclusion and F = hoZ (fo j'oe Jl)
N+n-k , . . .
H (F;Zz) is an isomorphism. By lemma (4.3) it follows that

*
H (F;ZZ) is an isomorphism also. Using the universal coefficients

theorem and Whitehead's theorem, we deduce that F is a homotopy

equivalence
N. N .t
Nn-2 31 N1 BEEID O yi
F: TP — ¥ P > L P
n-k n-k n-k
, . . . N_n-1 . .

Because N is large, this implies that I Pn—k is reducible. However,
since N is also a power of 2, ZNPn_l = PN-I-n_l [Atiyah 1961].

n-k N4n-k

Therefore, we must have k f_p(N+n) . But this is a contradiction with
our hypothesis. Thus, we have proven the theorem for n even and
p(n) <k <mn-3.

'This completes the proof of theorem (4.4). M
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Chapter V

Examples of Stably Free Modules and Unimodular Matrices.
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In this chapter, we use the results of chapter III and IV to

construct examples of stably free modules and of unimodular matrices

over commutative noetherian rings.

§1. Stably free modules.

For a compact Hausdorff space X and a real vector bundle &
over X, recall that C(X) denotes the ring of real valued continuous
functions on X and T(X) denotes the C(X)-module of continuous
sections of & . The basic properties of the functor T(—) are well
explained in [Swan 1962]. The most important one is given .in the

following theorem.

Theorem (5.1). (Swan). The correspondence & — T(£) defines a

bijection between the set of isomorphism classes of real vector bundles

over X and the set of isomorphism classes of finitely generated

projective C(X)-modules.
Proof. [Swan 1962].®

over V to

We now wish to use the vector bundle n
n,k n,k

)

construct examples of stably free modules. However, the ring C(Vn K
b

is generally too 1argé to be algebraically interesting. Therefore,
following [Swan 1962; example 1], we proceed as follows.

Denote the points of R by column vectors and let
{ei; i=1,...,n} be the standard basis. Recall that the manifold
Vn,k consists of the k x n matrices x = (xij) with real entries

: . s t .o . .
satisfying the equation xx = Ik . The trivial n-dimensional vector
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n

bundle € = ne over Vn K consists of the pairs (x,u) where
bl
: n k n s
x € Vn K and u€ R . Let u be the subbundle of ¢ consisting
9
of the pairs (x,u) where u 1is a linear combination of the vectors
in the k-frame x, di.e. u = xtk for some A € Rk . The k column
vectors of the matrix xt define a trivialization of uk . Let
£: €' — ¢" be the vector bundle map defined by f(x,u) = (x,xtx u)
k

Then, Im f = u and Ker f = nn,k .

The sections si: X —> (x,ei), i=1,...,n, form a basis of

the free C(Vn )-module F(en) . Relatively to the basis {si}g the

»k

c(v )-module homomorphism T (f): F(en) — P(en) is represented by

n,k

. t .
the matrix x x where x = (Xij) now stands for the matrix of

coordinate functions on Vn K °
b

For 1 <k <n -1, define the ring A = A(n,k) to be the quotient

of the polynomial ring on nk unknown R[Xll""’xln’x21""’x2n""’an]

by the ideal generated by the polygomlals z xizsz - aij’ 1<i<j<k
(Gij is the Kronecker symbol). Notice that A(n,k) is a commutative

noetherian ring with unit. Moreover, A(n,k) C C(Vn ) . Let F be

sk

the free A(n,k)-module over the set {sit i=1,...,n} . There is an

obvious isomorphism F GM C(Vn k) = P(en) . Assume that Ak is given
k

its standard basis, and let h: F — Ak and h': AW —> F be the
module homomorphisms corresponding to the matrices x = (Xi') and x©

respectively. Since hh' is represented by the matrix th, hh' = Ik .

Let g = h'h: F—> F . The homomorphism g is represented by the

. t : ~ R
matrix x x . Thus Ker g Qm C(Vn,k) = F(nn ) . Obviously,

yk
Ker g > Ker h . Since h = (hh')h = h(h'h) = hg, Ker h ) Ker g,

i.e. Ker g = Ker h . Therefore, we have an exact sequence

O0—>Ker g — F — Ak —> 0 . Hence Ker g 1is a projective module
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k:n

and ker g ® A A", Let P = P(n,k) = Ker g . Notice that

P ® F/Im h' . These results are included in the following theorem.

Theorem (5.2). Let 1 <k <n -1 and let R be the field of real

numbers. Let A = A(n,k) be the quotient ring of the polynomial ring

in nk variables R[X X, ] by the ideal

ll""’Xln’XZl""’XZH""’ K

generated by the polynomials 12{ xiﬂxj!, - Gij’ 1<1i<j<k. Let

P = P(n,k) be the A(n,k)-module with generators ;s i=1,...,n

and relations I xijsj’ i=1,...,k . Then:
h|

i) P& Ak is free of rank nj;

(ii) If n is odd and 1 <k <n - 2, then PEBAk—l is not

free; if k is also odd, then P & Ak—l does not contain

a free submodule of rank > k - 1;

(iii) If n # 2,4,8 is even and 1 <k <n -3, then P @ Ak_l

is not free.

Proof. (i) was proven above. To prove (ii), notice that

: k-1 _
) = (P ®A C(Vn,k)) @ C(Vn k) = F(nn,k @ (k-1)e).

b

® o1 e CCv,
The vector bundle nn,k @ (k-1)e is not trivial by theorem (4.4).
Therefore, by theorem (5.1), I‘(nn’k @ (k-1)e) is not free. It follows
that P GB«Ak_l is not free. If k is odd, Theorem (4.1) implies that
the vector bundle nn,k @ (k-1)e does not contain a trivial subbundle
of dimension > k - 1 . Therefore, F(nn,k ® (k-1)e) does not contain
free submodule of rank > k - 1 . Hence P @ Ak_l does not contain a

free submodule of rank > k - 1 either. (iii) is proved in a

similar way. W
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Remark (5.3). For k =1, theorem (5.2) was proven in [Swan 1962].

Theorem (5.4). Let A = A(n,k) and P = P(n,k) be as in theorem (5.2).

Then: -

(1) Let 2 <k<n=-3. If n-k is odd then the module

P@P is not free;

(ii) Let &6 be as in theorem (3ﬂ18) and let r be odd. Then

the module rP =P @® ... ® P 1is not free if r < (nt+d)/(n-k).

Proof. Same as for theorem (5.2), using corollary (3.10) and theorem

(3.18) instead. ®

Remark (5.6). If n >5 is odd and k = 2, theorem (5.4) shows that
T.Y; Lam's theorem (1.7) is best possible; For large values of k,
notice that theorem (5.4) states that rP is not trivial if r is odd
and r < k/(n-k) approximately. Thus, there is a gap of approximately
k units between the '"positive result" (theorem (1.7)) and the

"negative result" (theorem (5.4)).

§2. Unimodular matrices.

Let R be a commutative ring with unit. Recall that a k X n
matrix o with entries in R is said to be unimodular if the map

n . . e .
a: RN — Rk 'is an onto mapping. The following definition is adapted

from [Gabel~Geramita 1974, def. 2.1].

Definition (5.7). Let & be a k x n wunimodular matrix over R and

let 1 <£ <n . Wesay that o is f-stable if there exists a




In—ﬂ}

£ x (n-£) matrix <y with entries in R such that the matrix o [ v

is also unimodular.

The following theorem relates unimodular matrices to stably free

modules. It is adapted from [Gabel-Geramita 1974, thm. 2.3].

Theorem (5.8). Let R be a commutative ring with unit and let o be

a k x n unimodular matrix over R . Assume that o 1is £{-stable.

Then:

(1) Ker a = R'e' ® Q, for some projective R-module Q .

(2) If 1<4& <k, then Ker a® REL - r-t .

(3) If £ >k, then Ker a is free.

Proof. See [Gabel-Geramita 1974, p. 101]. W

We apply theorem (5.8) to prove the following theorem.

Theorem (5.9). Let A = A(n,k) be as in theorem (5.2). Assume that
n # 2,4,8, and that 0 <'s <k <n -3 if n is even and

0<s<k<n-2 if n is odd. Let a(n,k,s) be the k x (nts)

matrix ((xij),OS) where OS denotes the k x s O0O-matrix. Then the

matrix o(n,k,s) is £-stable if and only if 1 < £ <s .

Proof. The matrix a(n,k,s) is obviously £-stable for 1 < £ < s .
Notice that Ker a(n,k,s) = P(n,k) & AS . By theorem (5.2), this
module is not free for 0 <s <k -1 . Hence a(n,k,s) is not £-
stable for £ > k by theorem (5.8)(3). Therefore, assume that

1 <€ <k and suppose that a(n,k,s) is £~-stable. Then



Ker a(n,k,s) &)Ak—2 is free by theorem (5.8)(2). By theorem (5.2),

it follows that

k -s <k-4£, i.e., £ < s . This concludes the

proof of the theorem. B
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