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A b s t r a c t 

In this thesis we study instabilities and mud channel removal during the primary cementing 
of an oil well. This process involves displacement of a sequence of non-Newtonian fluids along 
a narrow eccentric annulus. Previously, this has been modelled as a pseudo-steady process 
using a Hele-Shaw approximation. In such models, the stream function is governed by a steady 
elliptic problem and the fluids, (modelled via a concentration equation), simply advect along 
the annulus. It has been shown that for certain rheological and physical parameters, the 
displacement front will advances much faster on the wide side of the annulus than on the 
narrow side. In extreme cases the displacement front does not advance at all on the narrow side 
of the annulus and a static mud channel results as the finger advances up the wide side. In this 
thesis we consider whether the interface of a progressively advancing finger will remain stable 
to small perturbations. There is in fact experimental evidence that interfacial instabilities can 
occur in this situation. We find that the interface is in fact stable whenever there is a static 
mud channel on the narrow side of the annulus. Consequently, we also investigate how a mud 
channel might be removed by pulsation of the flow rate. Study of these two phenomena cannot 
be undertaken with the pseudo-steady framework. Therefore, we extend this model to flows 
that are fully transient. The transient model consists of a nonlinear evolution equation for the 
stream function. 
In chapter 3 we show that this transient model is in fact well-posed. In chapter 4 we study 
stability of multi-layer parallel flows, i.e. long fingers. If both fluids are yielded at the interface, 
instabilities may arise for different combinations of the 14 dimensionless parameters. These 
instabilities are related to a jump in tangential velocity at the interface and do not appear to 
have been identified before. In chapter 5 we investigate the case where a static mud channel 
develops on the narrow side of the annulus. Our stability theory predicts only linear stability. 
We therefore study the effects of a finite pulsation of the flow rates via numerical simulation. It 
seems that if we perturb the flow from the beginning of the displacement, the transient model 
fully captures the effects of the perturbation and the width of the mud channel is reduced. The 
pseudo-steady velocity model does not report any significant changes with respect to the results 
using a constant flow rate. If however, pulsation is applied after the mud channel has already 
formed, the removal of the mud channel will be unsuccessful. 
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Chapter 1 
I n t r o d u c t i o n 

The aim of this thesis it to study instabilities and mud channel removal during the primary 

cementing of an oil well. This process involves displacement of a sequence of non-Newtonian 

fluids along a narrow eccentric annulus. It has been shown that for certain rheological and 

physical parameters of the fluids, the displacement front will advance much faster on the wide 

side of the annulus than on the narrow side. In extreme cases the displacement front does not 

advance at all on the narrow side of the annulus and a static mud channel results as the finger 

advances up the wide side. We consider whether the interface of a progressively advancing 

finger will remain stable to small perturbations and also investigate how a mud channel might 

be removed by pulsation of the flow rate, which is sometimes used in the cementing industry. 

1.1 Primary cementing process description 

The primary cementing process proceeds as follows: After drilling the well to the desired depth, 

Figure 1.1a, the drillpipe is removed and a large steel casing is placed down to the bottom of the 

well, leaving a gap of « 2cm between the outside of the tube and the inside of the wellbore, i.e. 

an annulus. At this time, the drilling mud is still in the wellbore, Figure 1.1b. To remove the 

drilling mud, the cement is first pumped down the inside of the steel casing, Figure 1.1c, and 

emerges at the end where it then flows into the narrow annular gap between the casing and the 

well bore, displacing the drilling mud, Figure l.ld. The cement later hardens into an hydraulic 

seal, Figure l.le. Without the hydraulic seal, well productivity can be reduced significantly 

and fluids can also leak up to the surface, where they may become an environmental or safety 

hazard. The fluids used in cementing, (drilling muds, spacer fluids and cement slurries), are 
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Figure 1.1: Schematic of the primary cementing process: a) Drilling to desired depth, b) 
Placement of the steel casing, well bore still full of drilling mud. c) Cement is pumped down 
inside of the steel casing, d) Cement displaces drilling mud through the annular region, e) 
Cement hardens into hydraulic seal for zone isolation . 

generally characterised as viscoplastic shear-thinning fluids. In practice a sequence of fluids 

is pumped along an annulus (spacer fluids and cement slurries), each fluid displacing the one 

in front, and the annular geometry changes slowly in the axial direction. However, the fluid 

volumes pumped are relatively large and the essential dynamics of the displacement may be 

studied by considering what happens between any 2 fluids on an annular section of constant 

geometry. Note that Figure 1.1 presents an ideal case. Usually the angle of inclination of the 

well is different from zero. Centralizers are attached to the steel casing to prevent the casing 

from slumping to the lower side of the annulus. Even though they prevent the slumping, there 

are not always enough centralizers fitted and/or the stiffness of the centralizers is not designed 

well. Thus, the annulus nearly always is eccentric. Another problem is that a full removal of 

the drilling mud is not always achieved. A mud channel is frequently left along the narrow part 

of the annulus. This dehydrates during setting of the cement and the dried mud forms a porous 

conduit along the length of the well. Therefore, complete zonal isolation is not achieved. 
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1.2 Non-Newtonian Fluids 

As stated in the previous section, the fluids used in cementing are generally characterized as 

visco-plastic shear thinning fluids. In this section we give a short summary of the constitutive 

equations which characterize these fluids. For a more complete review see [7, 15, 37]. 

Let us assume shear flow of a liquid between two parallel plates which its velocity vector can 

be expressed as 

u = (7?/, 0,0) 

where 7 is the shear rate. In the case of a Newtonian fluid the stress distribution for shear flow 

is given in the following form: 

°~yx='ni crxz=ayz = 0 a x x - o y y = 0 o - y y - o z z = Q . (1.1) 

A fluid is called Newtonian if satisfies (1.1) and if rj does not vary with shear rate and is constant 

with respect to the time of shearing and the stress in the liquid falls to zero after shearing is 

stopped. Any liquid that does not satisfies any of these requirements is called non-Newtonian. 

We will concentrate in fluids for which the difference in the normal stresses is zero, i.e. inelastic 

fluids, and for which the shear viscosity depends on the shear rate but not explicitly on time. 

1.2.1 Time independent non-Newtonian fluids 

We can subdivide this type of fluids into 3 groups, 

• Shear thinning (or pseudo-plastic) fluids, for which the viscosity decreases with increasing 

shear rate. 

• Shear thickening (or dilatant) fluids, for which the viscosity increases with increasing 

shear rate. 

• Yield stress (or visco-plastic) fluids, for which a finite shear stress is required to initiate 

the flow. 
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These fluids are illustrated in Figure 1.2, and we now give some examples of the common fluid 

models. 

Shear Rate 

Figure 1.2: Schematic behaviour of shear stress vs. shear rate for time independent non-
Newtonian fluids. 

For many fluids, as the shear rate approaches zero or infinity the value of 77 approaches constant 

values, say 770 and T ^ , i.e. these are 2 Newtonian limits. Two models that contain this behaviour, 

are: 

(1.2) V-Voo 

Vo -Vco (1 + [Ki)m) 

which is called the Cross model, and 

V-Voo 1 (1.3) 
r?o -Voo (1 + (tf 7) 2)m / 2 

which is called the Carreau model. Here K and m are empirically fitted constant rheological 

parameters. 

If we assume 77 - C 770 and 77 > 7700, at leading order and by a simple redefinition of parameters, 

the Cross model reduces to 

77 = Kj' ,71-1 (1.4) 
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which is the well known power law model. If instead we assume that T] -C then again, by a 

redefinition of parameters, the Cross model reduces to 

r, = Voo + K i ^ 1 (1.5) 

which is called Sisko model. If n = 0 in Sisko's model and we redefine the parameters we obtain 

the Bingham model, 

ri = p + j (1.6) 

where p is called the plastic viscosity and ly is the yield stress. The Bingham model is the 

simplest model that describes visco-plastic behaviour. Other widely used visco-plastic models 

are: 

VT = v/7y"+ s/K^ (1.7) 

which is called the Casson model, and is given in terms of the shear stress, and finally 

r, = KT~l + ^ (1-8) 
7 

which is called the Herschel-Bulkley model. Note that if n = 1 and Ty = 0 we recover the 

Newtonian model, if n = 1 and iy / Owe recover the Bingham model, and if n < 1 and ry = 0 

we recover the power law model. The Herschel-Bulkley model will be the one used for the rest 

of the thesis. 

1.3 Literature Review 

1.3.1 Industrial background 

There is an extensive technical literature on primary cementing, see [21] for a review, as this is 

a large industrial business. Only a part of this literature will be reviewed in this section. Early 

development of cementing techniques dates back to 1911, we refer to the reader to [65], which 

gives a good review of the techniques used up to the 1980's. Next we will give a small overview 

of these techniques. 

In the 1940's a good amount of attention was given to the cementing process. Investigations 

on the effectiveness of water pre-flushes ahead of cement, pipe movement, well centered casing, 
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mud thinning prior to cementing and turbulent flows were carried out. In the 1960's mud 

displacements studies with cement slurries in turbulent flow proved to be very effective, this 

gave to rise to the development of the "scavenger slurry" which is a low density, highly dispersed 

cement slurry which is pumped before the tail slurry, i.e. the cement that is expected to provide -

casing support and a hydraulic seal. In the 1970's researchers started looking at how to get a 

good cementing job in deviated holes. Studies on the effects of centralizers and pipe movement 

were carried out. In the 1980's attention was given to the design of a mud-cement compatible 

spacer systems that were capable of transitioning to turbulence at reasonable pump rates. 

Since the late 60's analytical and experimental studies have been carried out in order to under

stand better when a good displacement takes place. For example, McLean et.al., [52], considered 

an analytical model which was later tested against experimental data. They considered the divi

sion of the annulus into sectors each one treated as an equivalent sector of a concentric annulus 

and assumed that the pressure gradient was identical in each sector, (effectively a crude early 

finite element method!). From this approach they found a critical value for the yield stress of 

the displacing fluid, in this case cement, for which the pressure gradient in each sector was large 

enough to initiate flow in all the annular region. This prediction seems to over estimate the 

actual experimental value of the yield stress of the cement. They claimed that this is due to 

the fact of neglecting the effect of interfacial shear stresses at the cement mud interface. Later, 

Clark & Carter, [13] studied the effect of interfacial stresses. They found that these effects can 

be very important in initiating mud flow and claimed that adverse buoyancy effects could be 

compensated by displacing the cement at higher rates. 

Another example of an early analytical model can be found in [9], where the authors ap

proximated the displacement zone as a narrow gap annulus between concentric cylinders, or 

equivalently the region between two parallel plates. Their model is 1-D pseudo-steady, i.e. they 

calculate the 1-D steady state solution for the velocity at fixed time. Through integration of 

the velocity along the interface and determining its position, they are able to find the volume of 

fluid displaced as a function of time. On the other hand, Courtier et.al., [14] actually considered 

the effect of eccentricity using the basic slot model, which consists in considering independent 
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rectangular slots of varying heights at different azimuthal positions. All the analytical models 

were tested against available experimental data. For the experimental results we refer to the 

reader to [11, 50, 69, 70, 93]. There have also been a large number of field-based case studies, 

which we do not review here. 

For a good displacement in the annular region to happen, almost all laboratory and field studies 

agree that: 

• The displacing fluid should be heavier than the displaced one for near vertical annulus. 

• The use of centralizers to reduce the eccentricity of the annulus because one of the main 

causes of mud channeling is the casing eccentricity. 

• Fluids with higher viscosity and yield stress are better able to displace fluids with lower 

viscosity and yield stress. 

Most industrial literature agrees that if turbulence is achieved in the annulus it's the best tool 

to remove the mud from the well. Unfortunately, this is not always attainable in the field. For 

example the flow rates required may exceed capacity of the pumps at the rig site. 

1.3.2 Displacement flow in different geometries 

We present a brief review of some of the work done in simulating, either analytically, numerically 

or in a lab setting, the displacement of one miscible fluid by another in different geometries. 

In 1993, Tehrani et.al., [78], presented experimental results on the displacement of one fluid by 

another in an eccentric annulus, using both Newtonian and non-Newtonian fluids. Their study 

shows that the interface between the the two fluids with similar rheologies but different densities 

is stable as long as the denser fluid lies below the interface. If the interface becomes close to 

vertical, a bad displacement and a long finger develops. In this case, small perturbations in the 

flow field may trigger gravity driven instabilities. Azimuthal instabilities also can occur. The 

intensity of these instabilities is related to density difference and flow rate. These interfacial 

instabilities are one of the main subjects of the thesis and will be investigated in chapter 4. 

These results lead to the work reported by Szabo & Hassager in [73]. The fluids they consider 
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are Newtonian, their simulations support earlier experimental findings. They solved the full 

3-D problem using a mixed Lagrangian-Eulerian method. They solve the equations of motion 

plus an equation for the moving grid to track the interface between the fluids. 

Some experimental work concerning the downward or upward vertical displacements of two 

miscible Newtonian fluids in a vertical pipe can be found in [5, 67]. Scoffoni et.al., [67] considered 

only the downward displacement of a heavier and more viscous fluid by a lighter and less viscous 

fluid. A long finger develops along the length of the pipe and at high rates the finger destabilizes 

showing either an axisymmetric pattern or an asymetric corkscrew mode. Baasubramaniam 

et.al., [5] considered the opposite case, i.e. the displacement of lighter and less viscous fluids 

by a heavier and more viscous fluids in downward or upward displacements. For the case of 

downward displacements they also observed interfacial instabilities. They found that a long 

finger develops along the length of the duct. It has been shown, [40] that the interface between 

the fluids is destabilized and thus fingering occurs when a more viscous fluid is displaced by 

a less viscous one. This is due to the advection of the initial flat interface by the nonuniform 

velocity profile within the pipe. For downward displacements they also observed interfacial 

instabilities. For the upward displacements the interface was stable although a "spike" formed 

at the tip of the finger. 

Eccentric Hele-Shaw model for annular displacements 

Bittleston et.al., [10], developed an eccentric Hele-Shaw model for the displacement of one fluid 

by another in an annular geometry, an oil well. The fluids considered satisfy the Herschel-

Bulkley model. Because the annulus geometry is long and thin they derive a 2-D model of the 

bulk fluid motions by averaging across the gap and scaling the Navier-Stokes equations with the 

annular gap width, keeping only leading order terms. The model consists of an elliptic partial 

differential equation for the stream function and an advection equation for the concentration 

field. In fact the concentration equation field will determine the position of the interface be

tween the fluids. In this thesis, we will extend this model to its transient version. In this way, 

we will be able to study interfacial instabilities when a long finger develops along the annulus. 
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A longer description of the model will be given in chapter 2. This model was further studied 

by Pelipenko & Frigaard in [57]. They showed that in fact the model is well-posed. Also, for , 

certain fluid properties, a steady state solution exists, i.e. an interface that advances steadily 

along the annulus at the mean pumping speed. These solutions can be found analytically for 

concentric annuli and annuli with small eccentricities via a perturbation method. Their ap

proach is also numerical, see [58]. They solve the system of equations using an augmented 

Lagrangian Algorithm, see [26, 30, 31]. This method fully describes unyielded regions of the 

flow if any. In [59], by the means of a lubrication approximation, Pelipenko & Frigaard deduce 

conditions, based on certain combinations of rheological and physical parameters, for when a 

good displacement takes place or not. They start from the assumption that a long finger has 

already developed along the annulus and assume pseudo-parallel flow away from the displace

ment front. By doing this they are able to predict the interface speed on both the wide and 

narrow side of the annulus and thus determine when the wide side interface moves faster or 

slower than that on the narrow side. This criterion defines whether or not a good displacement 

takes place, or whether the displacement front fingers along the well. 

1.3.3 Displacements in a Hele-Shaw cell 

It is well known that the motion of a Newtonian fluid between two fixed parallel plates which 

are sufficiently close together (Hele-Shaw cell) is 

u = -^-^-zld- z) and v = -^-^-z(d - z) (1.9) 
2pdx y 1 2pdy y ' K ' 

where z is the coordinate perpendicular to the plates and d is the thickness of the gap between 

the plates, see [8]. Averaging across the gap we get an expression for the gap-averaged velocity, 

given by: 

* = ~ v p (1-10) 

which is in fact the velocity field of a Newtonian fluid flowing through a porous medium of 

permeability k = yj. Thus, a direct analogy between the displacement flows in a Hele-Shaw 

cell and in a porous medium can be demonstrated. Note that (1-10) is Darcy's law for a 

Newtonian fluid, we are interested in non-Newtonian flows, thus a nonlinear version of Darcy's 
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law has to be derived. In this section we present various models used in the literature. 

Hele-Shaw displacements for Newtonian Fluids 

We commence by describing the classical study of Saffman & Taylor, [64], regarding these type 

of flows. They studied the displacement of a viscous fluid by another in a Hele-Shaw cell. They 

found that the stability of the interface depends on the direction of the motion of the fluids, 

i.e. if the less viscous fluid is displacing the more viscous one, the thinner fluid penetrates the 

thicker fluid in the form of a long fingers, regularly spaced along the planar front. These fingers' 

themselves may destabilize and form sub-fingers, and the whole process may repeat leading 

to fractal patterns of fingers. The displacement is ineffective and the interface is said to be 

unstable. This phenomenon has been termed "viscous fingering". If the more viscous fluid 

displaces the less viscous one, the interface will be stable. They also found that this is true 

whatever the density of the fluids is, provided that the velocity is large. Since then, several 

studies can be found in the literature concerning Hele-Shaw displacements and we review only 

some of them, for an extensive review of the subject up to the mid 80's we refer the reader 

to [40]. Although this field of work involves both immsicible and miscible displacements, we 

concentrate in the latter ones which are the type of flows considered in the thesis. 

In 1986 Tan & Homsy, [74] studied the linear stability of a miscible displacement in a porous 

medium for rectilinear flow. They assume that the fluids have the same densities and that the 

viscosity varies exponentially across the interface depending on the concentration of the fluid 

on top. Quasi-steady state approximation is considered because the dispersive concentration 

profile is time dependent. They showed that the linear displacement process is unstable for 

an unfavorable mobility ratio, i.e. viscosity of the displacing fluid is less than the viscosity 

of the displaced one. Thus the results are in agreement with the theory for immiscible fluids. 

Later, they performed numerical simulations, [75], to investigate the nonlinear effects of these 

instabilities. They found that once a finger becomes large enough the tip of the finger becomes 

unstable and splits. Lajeunesse et.al., [46, 47], considered the downward displacement of a fluid 

by a lighter and less viscous one on a vertical Hele-Shaw cell. It seems that for a mobility ration 
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greater than a critical value of 1.5, there exists a critical velocity for which the interface of the 

finger becomes unstable leading to a 3-D pattern involving regularly spaced fingers. 

Density driven unstable flows on Hele-Shaw cells have been also considered. Fernandez et.al., 

[25], studied density driven instabilities between miscible fluids in an horizontal Hele-Shaw cell, 

the fluids considered had equal viscosities and clearly, the heavier fluid was on top of the lighter 

fluid. They found that when the Rayleigh number, Ra, is small, the Rayleigh number being 

the ratio of convective and diffusive transport in the concentration (note that in the presence of 

net flow this number is just the Peclet number), diffusive effects are important and fingers with 

a wavelength i ? a _ 1 may appear. For the opposite case, Ra large, diffusive effects are negligible 

and a finger with a wavelength of the order of the gap width develops. Later, Goyal et.al., 

[36] conducted similar experiments with the difference that the fluids had different viscosities. 

They found that the instability is reduced if the viscosity is increased in either fluid. Another 

interesting finding was that the instability also depends on the thickness of the interface (diffuse 

layer). 

Hele-Shaw displacements for non-Newtonian fluids 

As stated before, in order to study these type of flows, we require a nonlinear version of Darcy's 

law, due to the fact that now the viscosity of the fluid is shear rate dependent. Barenblatt et.al. 

derived this relation for porous media flows, see [6]. They described the flow of a visco-plastic 

fluid through a porous medium by the following nonlinear Darcy's law with a limiting pressure 

gradient, 

s = -K1-^)^ | vp |>G' (i-n) 

« = 0 |Vp| < G (1.12) 

where G is the limiting pressure gradient defined as, 

G = CTyk'1'2 

with C being a dimensionless constant. In this 2-D system can be reduced to a single equation 

for the stream function if desired. Similar approaches to this type of nonlinear Darcy's law 
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can be found i n the l i terature, see for example [4, 16, 34, 44, 53]. Ac tua l l y , the mode l derived 

i n [10], wh ich is the model we follow and extend i n this thesis, uses a nonlinear Da rcy ' s law 

w i t h a l i m i t i n g pressure gradient as wel l . H a v i n g stated this, we review some of the work that 

has been done concerning non-Newtonian fluid displacements i n a Hele-Shaw cell or a porous 

med ium. 

W i l s o n , [84], considered the Saffman-Taylor problem for a power law f luid displaced by air. B y 

means of linear s tabi l i ty analysis he found that the growth rate of the ins tab i l i ty is 0 ( n - 1 / 2 ) , 

where n is the power law index. La t e r Aza iez & Singh, [4] considered miscible displacements 

of shear th inn ing fluids by a Newton ian fluid or vice versa. T h e i r approach is the same as 

the one reported by T a n & Homsy, [74] for Newton ian fluids, the quasi-steady-state approach. 

T h e y found that for the n N - N case, (meaning non-Newtonian-Newtonian displacement) , the 

displacement can be unstable even for favorable mobi l i ty rat io, this was expected due to the 

shear th inn ing behaviour of the f luid. For the N - n N case they found s imi lar results as for the 

N - N case. Studies i n wh ich bo th fluids are non-Newtonian are presented below. 

Pasca l s tudied the classical planar interfacial instabil i t ies i n porous media for immisc ib le visco-

plast ic fluids, [53, 54, 55]. He used the Muska t approach, i n which one assumes a long finger 

that extends ahead of the moving interface, i f the veloci ty of the fluid w i t h i n the finger is faster 

than the veloci ty of the fluid outside, the interface is unstable. B y doing this he showed that i n 

contrast w i t h what the theory of displacement flows i n a porous m e d i u m for N e w t o n i a n fluids 

says, even w i t h the presence of an unfavorable mobi l i ty ratio, i.e. less viscous f luid displacing 

more viscous fluid, a posit ive difference of y ie ld stresses w i l l a id the displacement. B y positive 

we mean that the displacing fluid should have a higher y ie ld stress than the displaced one for 

this to happen. H e also considered the effects of inc l ina t ion of the media , and showed that 

gravi ty forces tend to stabil ize the interface as long as the heavier f luid is under the l ighter 

one. In 1999 Coussot , [16], considered the Saffman-Taylor problem invo lv ing two y ie ld stress 

fluids. H e found the same characteristics of instabil i t ies as for Newton ian fluids except that the 

wavelength of m a x i m u m growth can be smal l even at vanishing velocities, i.e. ins tabi l i ty may 

occur even i n the absence of gravi ty effects, as soon as the y ie ld stress of the displaced f luid is 
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sufficiently large. Linder et al., [48], validated these results with their experimental work. 

1.3.4 Interfacial instabilities 

There have been a number of studies of stability of immiscible iso-density multi-layer Poiseuille 

flows, in the two classical geometries of a plane channel and pipe. Whereas we are interested 

in the multi-layer Hele-Shaw cell , the interfacial instability is similar in both flows, so we will 

review of some of the most relevant work done for this subject. Both analytical and numerical 

studies of these instabilities have taken place. Explanations of physical mechanisms that govern 

this type of instability have been given in [38]. 

The earliest theoretical investigations of instability due to viscosity stratification is probably 

the classical study of Yih [88]. He studied the stability of two superposed fluids of different 

viscosities in plane Couette and Poiseuille flows, using an asymptotic method based on long 

wavelengths. He found that for equal densities of the fluids the flow can be unstable at any 

Reynolds number, however small. Hooper and Boyd, [41], produced the first studies of such 

flows in the short wavelength limit, for a plane Couette flow in which each fluid occupies a half-

plane. Yiantsios and Higgins [87] consider a plane Poiseuille flow, in which 2 fluids flow together 

down a channel. They extend Yih's results [88] for small wave numbers (long wavelength) to 

large wave numbers, accounting for differences in density and fluid layer thickness ratios, as 

well as the effects of interfacial tension and gravity. They show that the flow is unstable for 

large wave-numbers and is linearly unstable to a shear mode instability. In 2003 Ern et.al., 

[23], reported that instability exists in a shear flow of two superposed miscible fluids with the 

presence of a continuous but steep variation of viscosity. They showed that Yih's results are 

valid even in the case of continuous changes in viscosity. Instabilities arise provided that the 

thickness of the interface is small and the Peclet number to be sufficiently large, i.e. close to 

the immisicible limit. Govindarajan, [35] found similar results using a different profile for the 

viscosity variation. 

For the case of multi-layer flows in porous media, Raghavan & Marsden, [62] showed, in the 

presence of density difference, if the heavier fluid was in top of the lighter one, the flow was 
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unstable for all viscosity ratios, if the case is reversed, the lighter on top of the heavier, they 

claim that the flow will be unstable only for large viscosity ratios (the more viscous on top 

of the less viscous). The isodensity case resulted stable for all wavelengths. Similar results 

were found by Gondret et al. in [33]. Although their problem is not the same as the one we 

consider in chapter 4, their results are fairly similar with the ones that we found in §4.5.1. 

Zeybek & Yortsos, [91], considered the parallel flow of two immiscible fluids in a Hele-Shaw 

cell with equal densities. Through a weakly nonlinear analysis they found that the frequencies 

of the disturbances of the flow are strictly real and when the mobility ratio is different from 

one this theory predicts the presence of dispersive waves. They showed analytically and later 

experimentally the presence of solitary waves at the interface of the fluids. After the waves 

or solitons leave the channel the interface remained flat. These results reaffirm that without 

buoyant forces, the interface will be linearly stable. Gondret et al., [32] first considered the 

parallel flow of a gas on top of a viscous fluid in a horizontal Hele-Shaw cell. They presented 

a Kelvin-Helmholtz-Darcy theory which consists of Euler equations for inviscid flow coupled 

to Darcy's law for the viscous flow. They found that linear stability is governed by inertia 

only. Later, Hinch & Plouraboue, [60, 39], compared Gondret's analysis by considering the full 

Navier-Stokes equations and got similar results. 

1.4 Overview 

As the brief account above indicates, unsteady displacements along an eccentric annular geome

try often occur. Under this situation a long finger develops due to the fact that the displacement 

front will advance much faster on the wide side of the annulus than on the narrow side. When 

this happens, the interface between the fluids is likely to become unstable. Despite the large 

number of theoretical, numerical and experimental studies, as shown in the previous section, 

the stability of multi-layer parallel flows in a vertical or near vertical eccentric Hele-Shaw cell, 

to the knowledge of the author, has not been studied. The work presented in this thesis focuses 

on extending to a transient version the Hele-Shaw model for displacement flows presented in 

[10] and to study the the stability problem just mentioned above. In addition, we investigate 
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how a mud channel might be removed by pulsation of the flow rate. 

The thesis is in 4 main parts, which we outline below. 

1. Extension of an existing Hele-Shaw type model to the transient regime, i.e. in which 

the velocity field satisfies a time dependent evolution problem. Fluid accelerations are 

considered, but not the nonlinear inertial terms. This is presented in chapter 2. 

2. In chapter 3 we address theoretical questions for our model, i.e. existence and uniqueness 

of a solution, and various results on the continuity of the solution with respect to changes 

in the model parameters. Thus, we show that our model is well-posed. We also prove 

that the transient model decays to the solution of a steady state problem, provided that 

the concentration doesn't change. 

3. Stability of multi-layer annular flows is addressed in chapter 4. Unsteady displacement 

fronts tend to elongate along the well on the wide side. Eventually, they become effectively 

multi-layer flows. We investigate if such flows are in fact stable. A wide range of analytical 

and numerical results on this problem are presented in chapter 4. 

4. One particular multi layer flow is when the mud is not removed by the displacement and 

remains stuck in channel along the narrow side of the annulus. We investigate removal of 

this layer by techniques such as pulsation of the flow. This work involves mostly numerical 

simulation. The results are to be found in chapter 5. 
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Chapter 2 
Model derivation 

In this chapter we give a physical derivation of transient model and justification for its usage. 

A brief outline of the chapter is as follows. 

In §2.1 we outline the pseudo-steady model of [10] for the bulk displacement flow and 

explain a number of phenomena for which that model is inadequate. This motivates 

derivation of the fully transient displacement model. 

In §2.2 we derive a reduced shear flow model from the Navier-Stokes equations and discuss 

a number of the modelling assumptions. 

In §2.3 we approximate the reduced shear flow model from §2.2 by a gap-averaged model. 

We show that this approximation is valid when the concentration field changes slowly. 

In §2.4 we finally derive the transient Hele-Shaw model from the gap-averaged reduced 

shear flow model in §2.3. This is the basic model that we study for the remainder of the 

thesis. 

In §2.5 we introduce a variant of the model in §2.4, in which the fluids are separated by an 

interface, as opposed to being represented by a concentration field. This variant is more 

convenient for studying interfacial stability. Since the concentration field is only advected, 

(as is the interface), the two models are very similar. Their equivalence is discussed. 
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2.1 The pseudo-steady model and some open questions 

In primary cementing the annular gap is comparatively narrow, compared to the other geometric 

length-scales. This is a large-scale, imprecise industrial process in which resolution on the scale 

of the annular gap is not always of interest. Therefore, the modelling approach that has been 

taken in the past is to average across the annular gap, leading to a two-dimensional Hele-Shaw 

type model. This basic approach to modelling the displacement is described in detail in [10] 

and analysed further in [57, 58, 59]. 

The pseudo-steady model of [10] relates to an entire annular wellbore, along which the geometry, 

may vary slowly. Here we will consider instead a single section of the well on which a constant 

geometry may be assumed. This is also the simplification considered in [57, 58, 59]. Assume 

therefore that fluid 1 (cement) displaces fluid 2 (drilling mud), along a uniform inclined annulus 

that is initially full of fluid 2. This situation has been modelled by the following elliptic problem: 

V-[Sa + f] = 0, (2.1) 

X(|V*8|) T V W s <=> \Ss\>jj, (2.2) 

| V * 5 | = 0 <=* \SS\<^, (2.3) 

where \&s is the stream function. The unwrapped narrow annular space is (0,0 € (0,1) x (0, Z), 

the annular gap half-width is H{<j>) = 1 + ecos7T0; e G [0,1) is the eccentricity, defined as 

A r / ( r 0 — ri), see Figure 2.1 . The vectorfield / and the rheological properties of the fluids may 

depend on time and space via the mean concentration of fluid 1, c(0, £,£). The function x is a 

positive increasing function of |V\ I / S | , arising from the viscous shear-thinning behaviour of the 

fluids, and Ty is the fluid yield stress. The concentration is simply advected: 

l[Hc} + -^[Hvsc] + ^-z[HWsc} = 0, (2.4) 

- W = H w s , -j; = -Hva. (2.5) 

17 



Chapter 2. Model derivation 

Figure 2.1: Geomet ry of the well 

T h e der ivat ion of (2.1), at fixed t, follows straightforwardly from the reduced shear flow model : 

0 = - ^ + — T a m d m + g 6 , (2.6) 

(2.7) 

dp d 

_ dp d 

where r 5 = (Ts^y,TS£y) depends on the veloci ty gradients (vSty,wS:y) at leading order, and 

(<?<£> 5£) represents the gravi ta t ional acceleration. These equations, plus the incompress ibi l i ty 

condi t ion , are essentially averaged w i t h respect to y, that is, the radial coordinate scaled relative 

to the distance from the centreline of the annulus, and cross-differentiated,-to give (2.1). 

T h e pseudo-steady model above has been studied i n some deta i l . In a uni form inc l ined eccentric 

annulus, i t appears that the displacement is characterised by one of 3 different behaviours. 

a) If the interface between fluids advances steadily along the well at the same speed a l l 

a round the annulus, this leads to a good displacement. These steady states have been 

observed i n the simulations of [10]. For smal l eccentricities, ana ly t ica l expressions can be 

found that describe their shape, see [57]. T h e i r s tabi l i ty has been characterised i n [58]. 

b) If a steady state displacement is not found, then invar iably the interface remains unsteady 

and elongates into a progressively long finger. 
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c) An extreme version of the unsteady displacement occurs when the fluids on the narrow 

side do not move, which represents a static mud channel. This can also be observed in 

the simulations of [10]. 

The lubrication model in [59] can be used to predict which of the above states occurs for any 

given set of process parameters and its fair to say that the mechanisms by which the finger and 

mud channel form are quite well understood. 

2.1.1 Open problems and limitations 

The pseudo-steady model has a number of physical limitations and there are also aspects of the 

primary cementing process that are not accounted for in this model. 

1. Since the velocity field is governed by a steady Hele-Shaw model for which the inertial and 

acceleration terms in the Navier-Stokes equations have been neglected, it seems unlikely 

that any type of interfacial instability can manifest, apart from the type of "viscous 

fingering" that results from gradients in mobility ratio. The unsteady displacement finger 

that advances on the wide side of the annulus can be interpreted as this type of instability. 

As the finger grows progressively longer, we find essentially a multi layer flow along 

the length of the annulus. Since these multi-layer flows are stationary solutions of the 

full pseudo-steady model, it is unlikely that there can be any fingering type of frontal 

instability of these interfaces. 

In reality however, it is well known that many viscous-viscous interfaces in shear flows 

suffer from interfacial instabilities, see e.g. [42]. In the context of annular displacements, 

Tehrani et al. report observing interfacial instabilities in their experiments as the interface 

becomes progressively parallel to the annulus axis, [78]. 

We study the onset of interfacial instabilities in chapter 4. When the interface is unstable 

this is likely to lead to azirhuthal mixing of the fluids. In the context of primary cementing, 

this effect could conceivably be either good or bad for the process. If the displacing fluid 

considered is a cement slurry, then the risk inherent mixing is that the slurry becomes 

contaminated and does not later harden when the displacement stops. On the other hand, 
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if the displacing fluid is a spacer fluid, then azimuthal mixing may lead to a better actual 

displacement of the mud than if the two fluids had remained separated by a distinct 

interface. 

2. Although static mud channel formation is well understood, methods for removal of the 

mud channel are not well understood. One result of our study in chapter 4 will be to show 

that flows with an established static mud channel are linearly stable. Thus, interfacial 

instabilities do not appear to be a viable method for removal. We study this further in 

chapter §5. 

3. Pulsation techniques have been advocated at different times for primary cementing, 

e.g. [19], with different claimed benefits. The effect of pulsation on displacement flows is 

not at all understood. To pulse the flow rate is perfectly possible with the pseudo-steady 

model (2.1), via the boundary conditions. However, we shall see in chapter 5 that there 

is little effect with the pseudo-steady model. The effects are quite different when a fully 

transient model is considered. 

4. The effects of casing rotation and reciprocation on displacement are unknown. These are 

common practices in horizontal well cementing. We do not however study this problem, 

as it requires significant changes to the type of model that we present. 

Problems (l)-(3) require a transient model for the velocity field, since different timescales occur 

in the displacement. If the displacement flows are still relatively slow, so that Hele-Shaw type 

averaging retains validity, then retaining the acceleration terms in the Navier-Stokes equations 

leads to the simplest transient models. 

2.2 Modelling transient bulk flow cementing displacements 

As we can see in Figure 2.1, the geometry of the well can be modelled by an eccentric annulus, 

thus a cylindrical coordinate system (f ,#,£) is used to describe the well. From now on we will 

focus on only a uniform annulus. This will suffice to model a section of the well, for example, a 

10m long casing stand or a laboratory experiment. Thus, £ is the measured depth, but measured 
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upwards from the bottom of the annulus. The inclination angle of the annulus is denoted by 

fi. The inner and outer radius of the eccentric annulus are denoted by, fj and r0, respectively. 

fV is just the radius of the inner cylinder and f0 is the radius of the outer cylinder, see Figure 

2.1. We define the mean radius as f* = \(f0 + fj) and the mean half-gap width d = \{r0 — fj). 

To model annular cementing flows we adopt the same approach as in [10]. We will concentrate 

on the displacement of drilling mud by a cement slurry, thus we have only one concentration 

field. In outline, we start from the Navier-Stokes equations, written locally on each section 

of the annulus. We observe that the annular gap scale is typically much smaller than either 

the circumferential or axial length-scales. This leads us to differential scaling of velocities and 

lengths, as is characteristic of Hele-Shaw flow modelling. The Navier-Stokes equations and 

concentration equation for the model are: 

„(du „ A 19 . . . . 1 d „ d „ rgg dp , n „ . 

\dt J rdr r 06 d£ n r or 

Jdv . \ 1 a , . 2 . , 1 9 . 0 . ldp _ .... 
P ^ + u - V v ) = - - { r \ e f ) + - - r 6 6 + - , M - - f - ^ p ^ (2.9) 

Jdw „ „ \ l f l . . . , 1 9 . dp _ • 

0 = ^ du, 
rdry ' rd9 d£ 

where the gravitational vector is given by 

g? = gsm(3{€)cos6, gg = g sin f3(£) sin 9, g^ = gcosf3(£). 

| + + + = V . ( 6 ( c « ) V c ) (2.12) 

where c € [0,1]. 
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2 . 2 . 1 Non-Dimensionalisation 

The main aim of this section is to reduce the system (2.8)-(2.10) and (2.12) to the transient 

version of (2.6)-(2.7). We will average across the gap thickness using almost the same scaling 

arguments as in [10]. This is motivated by the fact that in a typical oil well we have the 

following situation, 

annular gap <C annular circumference <g; annular length-scale. 

Our goal is to derive a two-dimensional evolution model of the fluid motion, in azimuthal and 

axial directions. In contrast to [10] we will scale time with a viscous time scale and thus retain 

time derivatives terms at leading order but not the inertial terms. In the following sections we 

present geometry and velocity scales and the reduced systems of equations. 

Geometry and velocity scales 

Here we consider a single section of the well, of uniform geometry and length Z. We scale axial 

and azimuthal coordinates as: 

z = —, <P = -
irr* 7T 

A measure of the narrowness of the annulus, 5*, is given by: 

8* = ± 
f* 

The dimensionless eccentricity is given by: 
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Therefore the radial coordinate is scaled relative to the distance from the centreline of the 

annulus, 

The axial and azimuthal velocities are scaled with: 

U* = — A*' 

where Q* is the maximum flow rate and A* is the cross-sectional area of the annulus. The 

radial velocity is scaled with S*U*. 

We assume that the fluids can be described by the Herschel-Bulkley model, characterized by 

density, yield stress, consistency and power-law index. A characteristic scale for the rate of 

strain is: 

' r*5*ir 

using this we can define scales for the shear stress, viscosity and pressure: 

f* = max[ffc,y + kk(Y)nk], p.* = Z-, p* = ^f. 
k j* 0 

The dimensionless rheological parameters are defined by: 

and the fluid densities are scaled with 
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p*=max[pk]. 
k 

Up to here the scales used to reduce our system of equations are the same as in [10], the only 

difference between our scaling and theirs is the timescale we use: 

_ p*{5*vr*af 

p.* 

clearly this is a viscous timescale. 

2 . 2 . 2 Reduced shear flow equations 

After the non-dimensionalisation we have the following reduced system of equations, at leading 

order in 5*: 

0 = - 9 / (2-13) 
dy 

dv 1 dp d , . 
pm = -7ad4> + d-y

T^ + sT*' ( 2 1 4 ) 

dw dp d ge . 
pm = -i + d-yT^ + s%' (2A5) 

dy ra d<p <9£ 

where 

St* = ^ 
p*g* [r^*]2 

is the Stokes number which is usually <C 1. 

The boundary conditions at y = 0 and y = H are: 

u = v = w = 0, at y = H, (2.17) 

u = T(f>y = T^y =0, at y = 0, (2.18) 
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The leading order rate of strain is characterized by: 

7 (2.19) 

In regions where the fluids are yielded we have: 

T4m V(i) + 0(5*M riy ~ V(j) + 0(5*/V) (2.20) 

where 77 is an effective viscosity depending on the rate of strain and rheological parameters. 

We return to this reduced system of equations in §2.3, but first continue with the gap-averaged 

velocity and concentration fields. 

2.2.3 2D averaged velocity field 

The aim of our modelling exercise is to reduce to a 2D model system of equations, from the 

shear flow model (2.13)-(2.16). To eliminate u from (2.16), we average across the gap and use 

the no-slip conditions at the walls of the annulus. A simplifying assumption made is that the 

annulus is assumed sufficiently narrow that the velocity components are approximated to 0(5*) 

by a velocity field that can be assumed symmetric about the annular gap centreline, y = 0, 

i.e. curvature effects only manifest at 0(5*). This allows us to average over only half the annular 

gap. The result of the averaging is: 

(2.21) 

where 

vdy wdy. 

Equation (2.21) is satisfied using a stream function formulation: 
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2.2.4 Fluid concentration field 

The concentration of the displaced fluid is governed by (2.12). As our aim is to derive a 2D model 

for the large-scale motions of the fluids, we will want to work with quantities that are averaged 

across the annular gap. Thus, we proceed as in [10], by assuming that the concentration is 

uniform across the annular gap. This allows us to interchange the average of cu with the 

product of the the averages of c and u, in the convective terms. Such approximations are 

commonly made in hydraulic models, e.g. for the inertial terms, often including a prefactor to 

represent an assumed degree of correlation between the two averaged quantities. Here we have 

no a priori knowledge of whether the concentration and velocity fields are correlated and have 

taken the prefactor to be 1. 

With this assumption, we average across the gap, use the non-slip conditions at the walls and 

assume no flux of any fluid through the walls. The concentration satisfies: 

d 
(2.23) 

where the diffusivity has been scaled with a global diffusivity scale, D*, and the Peclet number 

is defined as: 
„ Trf*w* 
Pe = —. 

D* 

Typically, D* ~ 10" 10m2s"\ thus Pe » 1 and typically Pe ~ 1010 -1012. Denoting the scaled 

annular length by Z, we may expect a diffusive layer of intermediate concentrations, in the 

azimuthal and axial directions, of thickness ~ y/Z/Pe -C 1. Therefore we neglect molecular 

diffusion in our leading order model. Thus, the concentration field will satisfy: 

~[Hc} + ~{Hvc] + ^[HWc] = 0, (2.24) 

We shall assume that during the displacement, at the bottom of the well the concentration will 
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always be zero and at the top one, i.e. cement at the bottom and mud at the top. As well, 

natural boundary conditions at 0 = 0, 1 will be assumed. 

Note the only difference between (2.24) and (2.4) results from the different timescale used. We 

shall denote the ratio t*v/t*av where t*av = jff by e, i.e. 

._ p*5*2irr*aU* 
A* 

Formally e —> 0 as 5* —> 0. However, although t* = 0(S*2), the ratio t*/t*av is often 0(1). This 

is because 5* is small but not zero and -M^ is relatively large. In this thesis we shall consider 
P 'a 

both e —> 0, for which the concentration is fixed in time as the velocity evolves on the viscous 

timescale, and also e ~ 1. Since much of the complexity of the model is in the evolution of the 

velocity field, it can be helpful to isolate this evolution. Theoretical properties of the velocity 

problem (in the limit e —» 0) are studied in chapter 3. Later, in chapters 4 and 5 we consider 

the distinguished limit of e > 0 and S* —> 0. For this model, both velocity and concentration 

fields are fully transient and coupled. This allows us to study the transient phenomena cited 

before in §2.1. 

Apart from viscous and advective timescales, there may be timescales associated with the 

growth of any temporal instability or with pulsation of the flow. These may excite a response 

in either the velocity field or the concentration field. This is another motivation for retaining 

the time derivatives in both evolution equations 

Uniform concentration assumption 

The assumption of a uniform concentration across the annular gap is non-trivial. One way this 

might arise is via Taylor dispersion. In [85, 92] the authors showed that in the limit ePeG —• 0, 

where e is the inverse aspect ratio of the annulus and PeG is the Peclet number, (based on the 

gap width), diffusion effects dominate and a uniform or near uniform concentration field across 

the gap is achieved. For our problem, the Peclet numbers based on the gap width are in the 

range Pec ~ 108 — 1010 and the aspect ratio in a typical well can not justify ePec <S 1. 
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Therefore, we are certainly not in the Taylor dispersion regime. Indeed, from the perspective 

of having large Pec, we might expect to be in the almost immiscible regime. Here either 

the displacements are effective and the uniform concentration assumption is reasonable, or 

otherwise long fingers are likely to form, with thin miscible diffuse interfacial layers of thickness 

PeG

1^2. Although such fingers are observed in the lab setting, we believe this scenario to be 

unlikely in the well for a number of practical reasons. 

First, along the well one generally has centralisers fitted at regular intervals. These will disrupt 

and mix the flow across the gap. Second, even without centralisers, the existence of a long finger 

extending stably over 10's or 100's of meters is implausible. There are various instabilities that 

may occur. For example, fingering & frontal instabilities were studied in [46, 47] in the context 

of the downward miscible displacement of one fluid by a lighter and less viscous fluid, between 

parallel plates. If frontal instabilities don't occur and a finger develops, there have been many 

studies of interfacial instabilities in shear flows, see e.g. [5, 42, 67] for an overview. In general, 

such flows are not robustly stable to all wavelengths and rheology combinations. The situation is 

not apparently helped by having a thin diffuse interface layer over which fluid properties change. 

Recently in, [23] the authors studied miscible multilayer flows where the viscosity varies rapidly 

between two constant values. As the layer thickness decreased, they showed that interfacial 

instabilities arise in the same way as for the immiscible fluid limit (with no surface tension). 

Thirdly, for the cases that may be stable in an idealised mathematical or lab setting, we must 

recall that the annulus outer wall is perhaps rough with small scale unevenness, that the pump 

pulsations will naturally occur, and that there are also likely to be azimuthal secondary flows. 

It is almost impossible to judge the effects of all the above effects, and our assumption of an 

homogeneous concentration is really just a statement that our model is not designed to study 

small scale flow features on the gap scale. 
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2.3 Reduced shear flow models 

At this point we would like to proceed in the same way as in [10] and find a transient dis

placement Hele-Shaw type of model. Unfortunately, the model (2.13)-(2.16) does not lead to'a 

closure relation between the modified pressure gradient and the gap-averaged velocity. Thus, 

it is only a simpler 3D model of the flow. To circumvent this difficulty we develop an approx

imation to (2.14) & (2.15) in which the solution remains close to the solution of the transient 

model, i.e. the difference between the solutions of both models is O(e); and allows a closure 

relation between pressure gradients and the velocity. 

Our starting point for the model derivation is the unsteady leading order shear-flow model, 

(2.14) & (2.15), which we write as: 

put = G + ^ - r , (2.25) dy 

where u = (v, w) and 

G = (Gh GS) EE + g$, - | + g^j . (2.26) 

The system (2.25) is supplemented with the conditions (2.13) & (2.16) and 

(psin/3sin7T0 pcosjA 
(9*>9t)={ sf (2'27) 

As well as the system (2.25), which we shall refer to as the transient system, we shall consider 

the steady system, (2.6) & (2.7), which we write as: 

0 = Gs + — T S . (2.28) dy 

The subscript s is used to indicate that we are seeking a velocity field us = (vs,ws) that 

satisfies (2.28), where potentially GS ̂  G, (e.g. because the fluid concentration will be advected 

differently by us than by u). As with (2.25), the pressure and concentration are independent 

of y. In addition to (2.28) the incompressibility condition (2.16) is satisfied: 

~ dy + d<j> + 
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Finally, we consider the gap-averaged approximation to (2.25): . 

pua,t = Ga + ^ T A , (2.29) 

where again the subscript a denotes that we seek a velocity field ua = (va,wa), and that 

potentially Ga ̂  G; (2.29) is supplemented with the incompressibility condition: 

dua dva dwa 

The overbar indicates a gap-averaged quantity, e.g. ua = (va,wa): 

V a = H J0

 V a y ' W a = H j W a V' 

It is important to note that the time evolution in (2.25), (2.28) and (2.29) is distinctly different. 

Starting with the steady problem (2.28), note that given G3 at a point ((f), £), we are able to find 

a unique solution (vs,ws), (and could then integrate the incompressibility condition to find ua). 

All the time dependency in (vs,ws) must come from the vectorfield Gs, which is determined 

from (2.1), with appropriate boundary conditions, and the advection of the concentration field. 

When Gs and cs vary only slowly with time, (vs, ws) are (pseudo-)steady on the 0(1) timescale. 

Considering now (2.25), we see that this is simply the parabolic extension of the elliptic system 

(2.28). If G and c are time invariant, (v, w) will still evolve with time, i.e. (2.25) is an evolution 

problem for (v,w), regardless of G and c. Turning now to (2.29), we could interpret this as an 

integro-differential equation for (va,wa), but it is slightly unclear if, for specified Ga and ca, 

the evolution of (va,wa) is properly determined. Rather, given time derivatives of the averaged 

velocities (vatt,wa,t),
 w e c a n determine unique (va,wa), (i.e. this is the same problem as (2.28) 

at fixed t). It remains to determine whether (v,w) evolve in a manner consistent with these 

solutions. 

Apart from retention of the time derivative terms, the model and assumptions leading to (2.25) 

are identical with those in [10]. Inertial terms have been neglected under the asymptotic 

assumption, e <SC 1. We shall be interested in temporal changes in the annulus that occur over 

the slow timescale e_1. It will however be the gap-averaged system (2.29) that forms the basis 
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for the generalisation of (2.1), that we consider later in chapter 3. Since (2.29) is not derived 

directly, we should like to estimate how close the solutions of (2.25) and (2.29) are. We consider 

first the case n = 1, in which case the fluids are Bingham fluids. Later we discuss the case 

n < 1. 

2.3.1 Stability of u and u8, at (d>, £): 

For n = 1,'problems (2.25) and (2.28) are of a form considered by [20, 30]. Multiplying (2.28) 

by u.s and integrating with respect to y, we have: 

as(us, us) + js(us) = L(Gs-us) (2.31) 

where 

s(u,v) = KS / Uy-Vy dy, 
Jo 

(2.32) 

From this we can deduce that: 

Jo 

f" 
js(v) = TY,S / \vy\ dy, (2.33) 

Jo 
L{f) = [ fdy. (2.34) 

Jo 

\us\\m<—\\Gs\\L,, ' (2.35) 
KSTT 

from the Cauchy-Schwarz and Poincare inequalities, where | |M s | | i / i is the semi-norm: 

1/2 

Jo 
Mm = ( / N 2

 dy 

which is equivalent to the H1-norm. Using the methods in [20, 30] we may assert that there 

exists a unique solution us. Time-dependency enters us only through Gs and cs. We assume 

that us is differentiable with respect to each of the physical fluid properties, which depend on 

cs, and with respect to the components of Gs. Therefore, we may suppose that 

uStt = eb(et), (2.36) 

for some vector b. 

31 



Chapter 2. Model derivation 

Now we consider stability of (2.25). Multiplying (2.25) by (us — u) and integrating with respect 

to y we have: 

p ut- {us —u)dy > L(G.(us — u)) — a(u, us — u) 
Jo 

-j(Us)+j(u), (2.37) 

where a and j are defined analogously to as and jg, but with non-subscripted rheological 

constants. Combining (2.36) with (2.28), we have: 

puSft = Gs + Ts,y + epb. (2.38) 

Multiplying by (u — us) and integrating with respect to y gives the following inequality: 

fH 

p / uSit • {u - u3) dy > L(GS • (u - us)) - as(us, u - us) (2.39) 
Jo 

-js(u) + js(us) + epL(b • (u - us)). 

Summing the two inequalities we have 

o"57 / \ u s ~ u \ 2 & y < -a{us - u,us - u) + L((G - Gs) • {u - us)) z at J0 

+epL(b • (us - it)) + ^1 - -^j as(us, u - us) 

+ ( l - ^ ) [ ? - ( « ) ( 2 - 4 0 ) 

Using the Cauchy-Schwarz inequality we have: 

| ^ | | U s - « | | 2 a < - K \ \ u , - u \ \ 2

H i (2.41) 

+ (\\G-Gs\\L2 + ep\\b\\L2)\\us-u\\L2 

+ (\KS - K\ \\US\\HI + \TY,S -TY\H1/2^ \\US - u\\Hi. 

We may split the first term on the right hand side in two. From the Poincare inequality: 

\\us-u\\Hi>^\\us-u\\L2. 

Therefore either we have that: 

2H (\KS-K\ \TY,s-rY\\ / 0 4 0 x 

I K - < — \-^r\\G'\\» + gi/2 ) . ( 2 - 4 2 ) 
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or we have the decay equation: 

d K7T2 

p— \\us -u\\L2 < - ^ \ \ u s - u \ \ L 2 + (\\G-Gs\\L2+ep\\b\\L2), 

from which, for t € [0, T] 

\G-GsWv |« s-u||L2(t) < / 
Jo 

+ ep||b||L2 e-Xi(t-s) d g 

+||t t s-n||L 2(0)e-A l t, (2.43) 

with 

A r = m i n ^ ^ J . • f ^ 2 ) lin 
te[o,T] 

In either case, we note that locally 1\us — M|| jji is bounded by the difference in the data between 

steady and transient problems. 

2.3.2 Stability of ua and ua, at (tp, £): 

We proceed analogously to the above, with the variational form of (2.29) & (2.28). The latter 

we modify, to include the term us<t, i.e. 

pHus,t • (ua - its) > L(GS • (ua - us)) - as(us, ua - us) (2.44) 

-js(ua) +js(us) + epHb • (ua - us). 

pHua,t • (us - ua) > L(Ga • (us - un)) - aa(ua, us - ua) 

-ja(us)+ja(ua). (2.45) 

Summing these two inequalities, we have 
* 

2 ^ ^ l l M s - « o | | i i < - a a ( u s - u a , u s - u a ) + epHb-(us-ua) 

+L((GS - Ga) • (us - ua)) 

+ ^ l - ^ j a s ( u s , u a - U s ) 

+ ( l - ^ j [ j s ( u a ) - j s ( u s ) } . (2.46) 
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Chapter 2. Model derivation 

Again we split the decay term in half, and bound above using the Cauchy-Schwarz and Poincare 

inequalities. Either we have: 

^H\\GS\\L2 . .2H1'2 

\\Us-Ua\\Hi < \Ka-Ka\ h \TY,s ~ TY,a\ 
7TKsKa Ka 

+ \\Ga-Ga\\v> — , (2.47) 
7TK a 

or we have the decay equation: 

p d ,. KaTT2 . r 

from which, for t G [0, T] 

| | « 8 - « a | | L i ( t ) < f eH\b\e-x^-^ As 
Jo 

' + I K - « a l b ( 0 ) e - A 2 t , (2.48) 

with 
, . f HA7T2 \ 
A2 = mm i 0 }. 

t€[0,T] \2H2pj 

Again we see that ||u s — w||x,i remains uniformly bounded. Note that we cannot expect results 

on \ \us — ua\\L2, since the averaged problem leads only to an equation for evolution of the mean 

velocity. 

Summary and further comments 

Combining (2.43) & (2.48), we see that ||tt0 — u||Li(t) is bounded by differences in the data 

between the steady, transient and averaged problems. When these differences are uniformly 

0(e) over the slow timescale, we can certainly expect that | |« a — ,u||ii(t) = 0(e). Since we 

work with the gap-averaged velocity fields, this is the type of approximation result that is 

needed, i.e. the averages are close provided e is small. In words, this means that provided the 

flow has sufficient time for viscosity to act, before the fluid properties or other process features 

change locally, then it is valid to interchange the time derivative and averaging operators. This 

is valid in the sense that the averages of the velocity fields, taken across the gap, remain close. 

More generally, we consider boundary conditions on the annulus that vary only on the slow 

timescale e-1, on which timescale c also evolves. Decay of initial errors occurs on an 0(1) 
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timescale, after which the errors are simply due to the differences in G and the material prop

erties. These are governed by the evolution of the gap-averaged velocity fields, which takes 

place on the slow timescale. We should therefore expect \\ua — u\\Li(t) = O(e) on a timescale 

[0,T], where T~l ~ o(e), but T - 1 ~ e is unrealistic. 

The exact timescale will of course depend on the particular flow studied. For example, for a 

stable single fluid flow, one would expect \\ua — 

= O(e) on the slow timescale. If we 

wish to consider instability of a steady solution, we must expect that the model breaks down 

as soon as 0(1) differences in the data evolve, i.e. depending on the growth timescale for the 

instability. 

The arguments for n < 1 are more difficult, especially for two-dimensional flows. To circumvent 

this, we may note that the velocity u, governed by (2.25), decays to a vector in the direction of 

G on the 0(1) timescale, (i.e. the component orthogonal to G decays exponentially). Thus, we 

may consider a one-dimensional problem. For such a flow, we can proceed essentially as above. 

On summing the variational inequalities we use the bound: 

for C = C(n,H); (see Zeidler [90]). Thereafter, we may use Holder's inequality to bound 

2.4 Eccentric annular Hele-Shaw displacement transient model 

Finally, we are in a position to derive the gap-averaged transient model. We commence with a 

characterization of the fluid rheologies. 

2.4.1 Rheological assumptions 

The fluids are considered to be shear thinning generalised Newtonian fluids, and typically have 

a yield stress. After the Hele-Shaw scaling, the principal components of the rate of strain are 

i<t>y ~ vv a n d 7£y ~ wy Thus, 

\\u — v\\Hi terms and the Poincare inequality on W1,n+1(0,H) for the rest. 

7~[«2+«fl 1 / 2 . 
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Chapter 2. Model derivation 

The leading order shear stresses and rates of strain are related by a law of form: 

nj=r){i)iij, '• ij = 4>y,t,y, (2-49)' 

where 77 is referred to as the effective viscosity. When the fluid has a yield stress, 77(7) —> 00 as 

7 —> 0, and T{j becomes indeterminate. 

In [10, 57, 58, 59] it is assumed that the fluids are Herschel-Bulkley fluids: 

7 i j . T > T V , 7Vi — 
1 (2.50) 

7 = 0, T < 7 V , 

where «, n and T V are the consistency, power-law index and yield stress of the fluid, respectively, 

(which will depend on c). Since the fluids are shear-thinning, we consider 0 < n < 1. Here we 

modify the Herschel-Bulkley model slightly, and will replace (2.50) with 

7 . 
lij, T>Ty, 

(2.51) 
7 = 0, r < 7 v , 

where p^ is referred to as the high-shear viscosity. There are 2 motivations for this modification. 

First from the physical perspective, use of (2.50) implies an effective viscosity: 

*?(7) = I T ' 1 + —, 
7 

and therefore 77(7) —> 0 as 7 —• 00. This is unrealistic, since suspension viscosities commonly 

approach a Newtonian plateau for large 7 , i.e. the Herschel-Bulkley model is really intended to 

model low-shear behaviour. The second motivation is purely mathematical. Without the high-

shear viscosity we are later forced to work in subspaces of L1+n and Wl,1+n, rather than I? and 

H1. Although most of what we prove in the Hilbert space setting can be extended to L1+n and 

Wl'1+n, it is less convenient and involves additional analysis. From the numerical perspective 

this is anyway unnecessary, since numerically we end up working in finite dimensional subspaces, 

which lie in both {L1+n, W^1+n} and in {L2, H1}. 

In practice we shall suppose that p.^ is small, by which we mean that at typical shear rates, 
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(which are Os(l) due to the scaling), we expect 

Moo < KJ 

In this sense we may regard p^ as a small regularisation parameter. We emphasise however 

that this is not the common regularisation that is used frequently to avoid proper treatment of 

the yield stress. Here it is vital that the yield stress behaviour is retained, since occurrence of 

static fluid regions in the annulus is commonplace in cementing. 

Fluid concentration effects 

Finally, if we have intermediate fluid concentrations occurring in the annulus, it will be neces

sary to specify the physical and rheological properties of the mixture. We consider this purely 

as a problem of model closure. For simplicity we use linear interpolation of the physical prop

erties. Whilst this is certainly not realistic for all fluids combinations, there is no universally 

accepted closure. Nothing that follows in the model derivation or analysis depends explicitly 

on the closure law for the mixture, i.e. provided the closure is reasonably smooth and therefore 

measured mixture properties could be utilised later. The numerical simulation results evidently 

will depend on the mixture law adopted. 

TY(C) = T Y I 2 C + 7-^1(1 - c), K(C) = K2C + KI(1 - c), (2.52) 

n(c) = n2c + ni(l — c) p(c) = P2C + pi(l -c). (2.53) 

2.4.2 Hele-Shaw model derivation 

We first integrate (2.16) across the annular gap to eliminate u: 

which prompts definition of a stream function \I/(c/>, for the gap-averaged flow: 

(2.54) 
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Turning now to the system (2.29), we observe that the pressure and gravitational terms do not 

vary with y. Therefore, integrating twice with respect to y we have: 

Ua(y,<f>,£,t) = [Ga-pU, a,t] I y 

v(y) 
^ dy, 

where u = (v, w) and 

Ga 

dp psmBsinircf) dp pcosB 

"d~4> + St* '~"di St*~ 

(2.55) 

(2.56) 

Therefore ua is instantaneously parallel to Ga - pua,t- Writing s(y) = \ua\{y) and A = 

\Ga — pua,t\, at each fixed (<fi,£,t), the speed s is related to the modified pressure gradient A 

via the one-dimensional shear flow problem: 

A dy 
ds 
dy 

ds 
dy 

For generalised Newtonian fluids this problem is straightforwardly solved, either analytically, 

or numerically by simple quadrature. However, we are interested in the gap-averaged speed: 

= / s(y) dy = - / 
Jo Jo 

r-H j r-AH 

= JQ yi{y) dy = ^2j T^(T) d - r 
(2.57) 

where from (2.51), for r > ry, 

and 7 ( T ) is obtained by inverting this monotone function. We may observe straightforwardly 

that 7(r) is a strictly monotone C°° function of r > ry. If n < 1, then as T —> ry, 7(r) —> 0 

and the Herschel-Bulkley term dominates: 
i 1/n T — Ty * 1 

7 

As r —> oo, the high-shear viscous term dominates: 

T — TY 
7 

Mo 

In between these limits numerical inversion is needed to define J(T). If n = 1, then 

T — Ty 
7 : 

Poo & 
V r > r y . 
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The expression (2.57) defines the closure relationship between the gap-averaged flow rate | V * | 

and the modified pressure gradient A. Evidently, as A —> ry/H the range of the integral 

vanishes and | V * | 0. Since the integrand, TJ(T), is strictly positive, increasing faster 

than linear and is C°°, for r > ry/H we see that |V\&|(.<4) is also C°° and increases strictly 

monotonically, for A > ry/H. Inverting, this relation, we may write A = A(\W\). For 

| V * | > 0 we have that AdV^I) is strictly positive, (bounded strictly below by ry/H), and 

strictly monotone. It is convenient to separate the yield stress effects. Below, we shall write 

A ( | W | ) = x ( | V * | ) + I £ . 

Thus, x(|V*|) represents the part of the modified pressure gradient surplus to that required to 

overcome the yield stress locally. We may rewrite (2.57) as: 

W " WT^jHfl <2'58> 

Although we have focused on the relation between | V * | and A, (equivalently x), we note 

that via the constitutive law and the limits on the integration in (2.57) & (2.58), we have the 

following parametric dependency of these functions. 

| W | = I W K x j t f . T Y . K . n . / Z o o ) , x = x(\W\;H,Ty,K,n,p,00). 

Returning to (2.55), we average across the half-gap, y £ [0, if], to give: 

*. = [Ga-puaA±[ j" -faiyty, (2.59) 

from which we see that ua is also instantaneously parallel to the vector [G — pua,t]' 

<9# / <92# dp d2V dp dz'd<t>) \pd£dt e<i>+94" pd4>dt d$+9i 

| W | A 

For | V * | > 0, replacing A with x + ry/H, this implies that 

<92* dp psmfSsmiTcj) _ (x(|V$|) + ry/H\ <9# 

(2.60) 

d£dt d<p St* \ | V * | J di 
_pd2V dp pcos/3 _ [x(\V*\) + TY/H\dV 

d(f>dt d^ St* V J d(f> 
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Cross-differentiating to eliminate the pressure, we finally arrive at: 

Yx(|v*|) + 7 Y / f f 
V • [pV*t] - - v • 

/here 

LV iv*| 
v * + f (2.61) 

/ . scos/3 . , sin/5"sin7Tc/>\ ,„ „ „ x f=(p( -c )^^)-V^j- (2-62) 

If | V*| = 0, we may still cross-differentiate to eliminate the pressure, except that the right-hand 

side of this system is indeterminate. We may write: 

V-[pV*t] = -V-[S + f], (2.63). 

where 

S = ( x ( | V ^ |

7 Y / g ) V* o |S|>,y/2f, (2.64) 

|V*|=0 \S\<TY/H. (2.65) 

We note also that: 

d24> dp pcosB d2^ dp p sin B sin nq 

depot <9£ St" ' ^<9£(% <9c/> S i * 
(2.66) 

Equation (2.63) is the classical formulation of the evolution problem for (effectively giving 

the gap-averaged velocity in the annulus). We shall consider this in a more rigorous setting 

below in §3.1. 

For some intuition, observe that if n = 1, we consider a constant concentration, zero yield stress 

and assume that the annulus is concentric, then (2.63) is simply: 

pA^t = -3(K + Moo)A#, 

with suitable boundary conditions and initial condition. 

2.4.3 Boundary conditions 

Equation (2.63) is supplemented with the following boundary conditions: 

•*((U,t)=0. (2.67) 
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tf(U,t) = Q(*), (2-68) 

on the wide (</> = 0) and narrow (0 = 1) sides of the annulus, respectively. Here Q(t) = Os(l) 

represents the total flow rate through the annulus, appropriately scaled. 

Conditions at the ends of the annulus are harder to specify, and depend largely on the situation 

that we are modelling. In general we shall suppose that large variations in the fluid concentration 

occur away from the ends, i.e. we are interested in displacement phenomena away from the ends. 

If we consider our constant geometry section to be a section of the well, then appropriate are: 

d$> • S5 = O^^(0 ,O,i)=O. (2.69) 

a* 
55 = 0^— (<f,,Z,t)=0. (2.70) 

Alternatively, if we model a lab-scale pilot experiment, we may impose e.g. the uniform inflow 

condition 

*(&0,*) = Q(i), (2.71) 

in place of (2.69), retaining the outflow condition (2.70). Finally, if we consider Z » 1 so 

that the flow close to the ends of the annulus is far from any concentration variations, we may 

calculate appropriate one-dimensional flows at the ends, which correspond to stream functions: 

*m(0) at z = 0, and * 0 ut( < A) at z = Z, respectively. We might then impose 

*(>,(),*) = * in(0,t), (2.72)' 

tt^.Z.i) = *„*(>,*), (2.73) 

in place of (2.69) k (2.70). The Dirichlet conditions (2.72) k (2.73) are easiest to handle 

analytically, and we assume this below unless otherwise stated. 

The system (2.63) with boundary conditions (2.67), (2.68), (2.72), (2.73), and equation (2.24)for 

the concentration will be the main object of study of the thesis. In the next chapter we will 

establish theoretical results that relate to the well-posedness of this model. In chapter 5 we solve 

this model numerically to study static mud channel removal. Chapter 4 addresses interfacial 

stability. For this study a fluid concentration is not as easy to work with as is an interface. 

Therefore, a variant of the model is derived below. 
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2.5 Interface tracking model derivation 

Later in chapter 4 we consider a version of model (2.63)-(2.65) in which the fluid is separated 

cleanly by an interface into two fluids of different constant physical properties. Below we derive 

this model. 

Derivation and jump conditions at the interface 

From §2.4.2 we have, 

V-[pW t] = - V •[£ + /] (2.74) 

Let us assume for the moment that * e C1(il). Now, let us multiply (2.74) by a test function 

v such that, 

v : R2 x [0, oo) -> R 

is smooth and with compact support on fl. 

After multiplying (2.74) by v and integrating by parts, we have 

0 = / ( P V*i + S + f)- Vvdfl = - / V • (pVtf* + S + f)vdfl (2.75) 
Jo. JQ 

We derived this equality assuming that * £ C1(fi), but note that (2.75) has meaning even if 

is only bounded. 

Suppose now that ^ is smooth on either side of a smooth curve C dividing fl into Qi and fl2, 

where £l\ is that part of fl on the left of the curve which has only fluid 1 on it and 02 that part 

on the right of the curve with fluid 2 on it. Suppose that ^ is a solution of (2.74), as we will 

prove in chapter 3, and assuming that its first derivatives are uniformly continuous in fl\ and 

42 



Chapter 2. Model derivation 

fl2 we can choose a test function v with compact support in fii, thus (2.75) becomes, 

0 = / (pWt + Si + fi) • Vvdfl = - / V • (pVtf* + Si + fi)vdfl, (2.76) 
JUi Jili 

where the subscript 1 means that we are considering the properties of fluid 1 only. Because fli 

is full of fluid 1 then V • fi = 0, thus 

PiA$t =-V • Si in fii. (2.77) 

Likewise, 

p2At>t = - V • S2 mfl2 (2.78) 

Now let us select a test function v with compact support in fl, but which does not necessarily 

vanish along the curve C. Then, using (2.75) we have 

0= / (pV*t + S +/) • Vvdfl = - f (piVtft + Si + /1 ) • Vudfii 
Jn Jni 

+ [ (p2V*t + S2 + /2) • \7vdfl2. (2.79) 
Jih 

Now, since v has compact support within fl, we have 

0 = / (piW t + Si + fi) • Vvdfl! = - / (piA*t + V • (Si + fi))vdflx 

Jn Jni 

+ f {(piWt + Si + fJ-n^vdl. 
Jc 

= [ {(pi^t + Si + fi)-ni}vdl (2.80) 
Jc 

because of (2.77) and ni denotes the outward normal to C from fli to f22. 

Similarly we have 

0 = / (p2V*t + S2 + f2) • Vudft2 = - / (p2A*t + V • (S2 + /2))i;dr2x 
7n Jfi2 

+ / [(p2Wt + S 2 + /2) • n2}vdl 
Jc 

= / [(p2V*t + S 2 + /2) • nzjvdi (2.81) 
Jc 

Adding (2.80) and (2.81) we have 
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(pfcVtft + Sk + fk) • n\\ = 0, (2.82) 

along C. 

Thus, our interface model can be written as follow, 

p f eA* t + V-S f c = 0, (^Oefifc, fc = l,2, (2.83) 

where the index k is used to denote the fluid. Equation (2.83) is supplemented with the following 

boundary conditions: 

tf(fU,t)=0. (2.84) 

*(l,^t)=Q(t), (2.85) 

on the wide (0 = 0) and narrow (0 = 1) sides of the annulus, respectively. Here Q(t) represents 

the total flow rate through the annulus, appropriately scaled. For much of this section we shall 

assume an infinitely long annulus, with suitable conditions on \& as £ —> ±oo. The two fluid 

domains, fifc, fc = 1,2, are separated by an interface, i.e. the smooth curve C, that we represent 

as the following level set: 

F(0 ,£,i)=O. (2.86) 

The function F(<p, £, t) satisfies a gap-averaged kinematic equation: 

HdF d*dF WdF 
7 a r r - ^ a 0 + 7 3 0 5 ? = 0 ' ( 2 - 8 7 ) 

where H(<f>) is the half-gap width and e denotes the ratio of viscous to convective timescales. 

At the interface the following two jump/continuity conditions are satisfied, 

pfccos/3 pfesin/3sin71-0 , c 

*|2 = 0, (2.88) 

VF| 2 = 0. (2.89) 

The first of these is simply continuity of whereas (2.89) gives the jump in normal derivative 

of*. 
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Equivalence with concentration model 

For simple and suitably smooth interface configurations, the kinematic condition for the inter

face can be related to the concentration equation, as follows. Let us assume that for each £ and 

t we can define 

<!> = {<l>M(Z,t):c(<l>M,Z,t) = 0.5} 

Assume that the region where the concentration field changes smoothly from 1 to zero is O(Sd), 

see Figure 2.2, where 5d is the diffusive layer thickness, which is of Oil/Pe1/2). We know from 

[85, 92] that if we consider the limit Pe —» oo we approach the immiscible limit of our model, 

and we can consider our domain to be separated cleanly by an interface into two domains which 

contain fluids of different constant physical properties, see Figure 2.2. Thus we can define our 

interface as 

0.5 

0 

J± • 1 • 

Figure 2.2: Example of concentration field at fixed £ and t. 

Note that if we assume that the fluids are separated cleanly by t), we have that c(<f>, £, t) = 1 

for 4> G [0, <S>i{(,,t)) and V therefore 
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Jo. 

and 

ail ^ w = y 0 -^r^m-^ (2-91) 

at <{> = 0 M , 

(2.92) 

Subtracting (2.90) and (2.92) we have 
r<t>M 

/ \ e d0+ — / ^ ^ = - — ^ + — + 0 ^ at^ = 0 M . 2.93) 

Similarly, we can get 

Integrating (2.24) with respect to <j> from 0 to C/>M, taking the limit Sd —> 0, i.e. the immiscible 

limit, and substituting (2.93), (2.94) and (2.95), we get 

H dfa <9# a* dfa n ± , ,„ 
- ^ + ̂ 7 + 7 ^ : ^ F = 0 at = 2.96 e OT oi o<p oi 

Therefore a natural choice for F(<j>, £, i) defined in (2.86) will be, 

F{fai,t) = (j)-fa{i,t). 
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Qualitative results 

Mathematical validation of our model is presented in this chapter. We prove that the evolution 

equation (2.63) is well-posed. For the Herschel-Bulkley model, regularised by the high-shear 

viscosity discussed in §2.4.1, we can work in a Hilbert space setting. This provides a considerable 

simplification to the analysis. 

Now, we present an outline of the chapter. 

i) In §3.1, first we present some preliminary results on the behavior of x d ^ * ! ) a n d * 

which will be needed for the existence and uniqueness proof. Secondly, we define the 

variational problem associated with the system (2.63), we also define the subgradient 

of the corresponding functional for the minimization problem (3.26). Finally, we follow 

closely the results found in [24] (section 9.6). The section referenced introduces the 

theory of certain nonlinear semigroups, generated by convex functions; theory also known 

as gradient flows. Using these results we prove that a solution for (2.63) uniquely exists 

and that: 

*GC([0,oo);fr1(fi))> * t €Loo([0,co);ir1("))-

ii) In §3.2 we consider the flow of a fluid with a fixed set of physical and rheological properties 

along the annulus, i.e. these may depend on (0, £) and a fixed concentration field, i.e. e —+ 

0. We assume that one of the fluid properties undergoes a continuous change everywhere 

in the annulus, for example from a density field p\ to a density field P2, while the other 

properties remain unchanged. We present various results on continuity of our solution 

with respect to the rheological and physical properties of the problem. The results for 
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the transient model are summarized below, 

1. Let p\ —> P2, then for t G [0,T] 

| | p i - P2||i«»T + | | V ( * i - * 2)||L*(0) > ^ 2 | | V ( * i - tt2)||£9 (3.1) 

2. If 7 y i —> 7 y 2 , we have 

liny - r 2 y | | L 2T+ ||V(*i - *2)||L*(0) > C 2||V(*i - * 2 ) H L 2 (3-2) 

3. Finally if K\ —»/c2 we get 

I K - « 2 l U a r + | | v ( * i - * 2 ) H L * ( O ) > c2||v(*i - * 2)||| 2 (3.3) 

where the constants do not depend on the solutions or the rheological parameter that 

varies, i.e. we have continuity with respect to the initial data and physical parameters. 

iii) In §3.3 we derive a number of qualitative results for the steady and unsteady problems. 

These results do have a physical interpretation, which we give, but also serve as a useful 

test in verifying that our numerical procedure is correct. We show that the total energy 

dissipation rate in the annulus increases with any of the yield stress, consistency or high 

shear viscosity. Also we present the decay rate of the solution for the transient model to 

the solution of the steady model, taking into account that we have a fixed concentration 

field, i.e. e —* 0, 

||V(* - * S ) | | L 2 < ||V(* - *s)\\i?Q)e-Kt 

where 
1C 

K = for C<1. 
Pmin 

3.1 Existence & uniqueness of * 

Here we shall prove existence of a solution *(0,£, t). We are concerned primarily with the 

evolution of <I> in t. According to (2.24) the concentration c evolves slowly on the timescale e_1. 

Consequently we will regard c as fixed in time, (i.e. formally we consider the limit e —• 0), saving 
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for future work the analysis of the fully coupled system. Thus, our focus is on establishing that 

we have a well defined evolution problem for 

The annular flow domain is fi = (0,1) x (0, Z). We state first some physically motivated 

assumptions, that we will assume throughout. 

A l The concentration c(</>, £) £ L°°(fl), and is bounded by 0 and 1. The physical properties 

of the fluid are all smooth functions of c; p^, K, p and n are strictly positive, ry is 

semi-positive. All are bounded above and in particular n < 1, (shear thinning fluids). 

A2 The flow rate through the annulus, Q(t), and the various pressure gradients in the annulus 

are bounded. With Al above, this implies that (S + pV*t) e [L°°(ft)}2, since we have 

that 

0 , , dp pcos/3 dp psin/Jsmmft 
S + pV* t = ( _ _ _ ^ _ , _ _ ) (3.4) 

A3 The annulus eccentricity e satisfies 0 < e < 1, which implies that 1 + e > H(4>) > 1 — e > 0. 

Since we often consider a displacement between 2 fluids, with intermediate concentrations con

fined to the interior, at times we shall also assume the following. 

A4 As £ —> 0 and £ —> Z, the physical properties of the fluid, TY, p^, K, p and n all approach 

constant values. 

3.1.1 Preliminary results 

We commence with a number of preliminary results. 

Proper t ies of %(|V*|) 

Propos i t ion 1 For |V*| > 0 we have that x(|V*|) is C°°, strictly positive and strictly 

monotone; x(|V*|) -> 0 as |V*| -» 0. 

Proof 

This follows from the properties of A(|V*|). See the discussion in §2.4.2. 
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Proposition 2 The function x(|V*|) is bounded below by XN(\^^\), XB(|V\I>|) andxHB{\^^\), 

defined implicitly for |V\IJ| > 0 as follows: 

| V * | = Z?*L, ( 3 - 5 ) ' 
3Moo 

g 3 X / j ( X B + 1 . 5 7 y / f f ) 

3/ioo ( X B + r y / F ) 2 
|V*| = J ; . A B ^ ' / _ T / , / . (3-6) 

V * = 7 — " T O N - 7 _ f , m 2 U g j 3 +
 ~ T T ^ ' m = l / n 

(3 .7 ) 

P r o o f 

These results follow from (2 .58) and the definition of 7(1"). We prove only ( 3 . 6 ) , 

the others following in analogous fashion. We bound T ( 7 ) below for r > ry, by 

neglecting the term KJN, i.e. 

T — Ty 
T{J) > Pool + ry < . 

Poo 

Inserting into ( 2 .58 ) : 

|V¥| < I [ X H + T Y T(T - ry) dr = ^ i ^ . 

Therefore, V|V\P| > 0 we have 
XKXB + 1 . 5 7 y / g ) X 2 ( X + l - 5 7 y / g ) 

( X B + T y / F ) 2 - ( X + T Y W ' 

and consequently X B < X , from the monotonicity of this function. The bound with 

XN comes from neglecting the yield stress terms as well as the term K 7

N . The bound 

using XHB comes from neglecting only the terms Pool- D 

Remarks: 

1. The above inequalities are sharp for |V^| > 0 . 

2. The asymptotic behaviour as |V*| —> 00 is of most interest. For XHB, following [57], we 

have XHB ~ |V*| n , whereas evidently XN ~ |V*| and X B ~ I V\I/|. 
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Figure 3.1: The function x( |V*| , i f ,ry ,K,MOO") 

with parameters ry = n = 1, e = 0.55 and K = p^ = 1/2. 

3. It is also relatively straightforward to provide an upper bound for x- For example, writing 

r(7) < 2 max{/ioo7, «7 n } + TV, 

implies that j(r) > 7m ("?"), where 

7m (T) = min • T — Ty 
2/ioo 

r — r y 

2K 

l / n " 

Therefore, defining XM implicitly via 

| V * | = 
•TY/H]2L 

XMH+TY 
Tjmir) dr, 

[XM + r / " j J ? y 

leads to x(|V*|) < XM( |V* | ) . Further, we can see that at large r, 

T — ry 
7m (r) 

2/Joo 

that 
g 3 X 2

M (XM + 1.5TY/H) 6 / ^ * 1 

With the lower bounds in the above proposition, this demonstrates that x(|V*|) is linear 

in the limit |V*| —> oo. 
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Behav iour of ||*|| 

L e m m a 1 Provided that assumptions Al, A2 & A3 hold, then the solution * of (2.63), satis

fying boundary conditions (2.67)-(2.70), lies in the space 

Proof 

Multiplying (2.63) by * and integrating over ft, using the divergence theorem: 

/ pVtf • V t f t d n = / *[pV* t + S ] - i / d s - / V * - S - * V - f dfi, 
Jn Jen Jsi (3.8) 

where u denotes the outward normal to Vt. Using (3.4), we have 

/ *[pV*t + S] v ds = / * ( - ^ + ^ , ^ - ^ ) . i / d s 

Jdii Jan V o<P ) 

< \\Vp-(9<t>,9s)\\L~(dn) I 1*1 ds 
JdQ 

< C o | | V p - ( 5 ^ f l € ) | | i o o ( 8 n ) | | * | | f f j -

(3.9) 

The first bound follows from assumptions Al & A2, using the Holder inequality. 

The last line follows from, 

fL <9* 

/ ffidn > / |* i n |d0+ / |* o«t |d0 

/ ffidfi > / |*(U,i) |d£ + / |*(0,£,i)|d£ 

=» 2 / |V*|dft > / |*|ds 
JO, Jdfl 

From proposition 2 we have that 

X(|V*|) > ^ | V * | . (3.10) 
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Combining all this: , 

A ^ J | V * | 2 d f t < Co||Vp-^,5€)||icc (8n)||*||i/i + | |V-f| | L 2 | |* | | L a 

-- 3 ig F{^}ll*llia- is f{^}ll^J. 

where 

1*1 HI = 7 
JQ 

IV*I 2 dfl 
1/2 

Since * = 0 along c/> = 0, the seminorm ||*||#i is equivalent to | | * | | f f i , and evidently 

11*| 11,2 < | | * | | / f i . Therefore, we can find constants C\ > 0 and C 2 > 0, for which 

d 
di 

; j J | V * | 2 d f t < Ci | |* | | H i - C 2 | | * | | ^ i . (3.12) 

Integrating (3.12) with respect to i, we can find C3 > 0 for which 

C3\\n%i(t) < inf{f} | |* | |^( t ) 

JQ Z t=o Jo 

We see that the integrand becomes negative if 

l * I M * ) > 
Ci 
c2 

and consequently ||*||#i(i) is bounded for all t > 0. • 

I(u) and dl[u] 

We denote by Vj the subspace of Hl(Q) containing functions that satisfy boundary conditions 

(2.67), (2.68), (2.72) and (2.73). The space Vj is non-empty, since for example ** G Vj, where 

,T,* ,T, IJ. *\ P0Ut(<P) - P , ,Tt. ,x ^ P~ Pin{4>) / n i m 

* = #in(</>,i) — —- + yout(4>,t)- j— TTT, (3.13) 
PoutW ~ Pin(<P) PoutW) - Pin{<P) 

and Pin(<f>) & Pout(4>)y a r e the density at the inflow and outflow, £ = 0, Z, respectively. Note 

that the boundary streamfunctions, & *out, must both satisfy 

* i n(l,i) = * o u i(l,i) = Q(i), 

53 



Chapter 3. Qualitative results 

*i„(0,t) = *out(0 )t) = 0. 

We also denote by V/o the subspace of i / 1 (fi) containing functions that are zero at dfl and 

equipped with the L2(fl) inner product. Note that Vip is a Hilbert space and in fact Vj^ = 

HQ(Q), but for notation we work with Vifi. 

Obviously Vj is an affine space, i.e. 

Vi = V + VIfi, 

for any £ Vf. For <J>* G V/ and u € V̂ o we consider the following functional, I(u): 

I[u] := { hlu] + h[u] u € Vi,o, (3-14) 

where 

with 

Ik[u] = f Lk(Vu) dfi, k = 1, 2, (3.15) 

i l ( V u ) = 21 ^ ^ d s + V^'+^-f , (3.16) 

L2(V«) .= -^|V** +Vu|. (3.17) 

Except where stated, we shall regard ** as fixed. Later, where we make comparisons between 

solutions, we shall explicitly denote the dependence on The subdifferential of I, di, is 

defined as follows: 

8I[u] := {v e H0\n) : I[w] > I[u] + {v, w - u) V w G V/,0}, (3.18) 

where (•, •) is the inner product in L2(tt). 

Proposition 3 The functional I(u) is strictly convex, proper and lower semi-continuous; dl[u] 

is monotone. 

Proof 
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For convexity we may follow the same steps as in [57], (proposition 2). Note that 

L(Vu) = Li(Vu) + L2(X7u) is convex. Therefore, (see [17]: theorem 3.1, p. 66 

and theorem 3.4, p. 74), L(Vw) is weakly lower semi-continuous. The lower semi-

continuity follows from the weak lower semi-continuity. Lastly, since I[u] is convex, 

proper and lower semi-continuous, monotonicity of dl[u] follows from [24], (theorem 

1, p. 524). • 

3.1.2 Definition of 9 J I , £ 2 [ M ] and dI2,L2[u] 

We now consider characterization 1 of dl[v]ij2. We consider u,w € H$(Cl). The functional 

h[u] is Gateaux-differentiable. Consequently, 91^2[u] = I[ L2[u], and we find that 

/ i M > h[u] - Jn(w - u ) V • ( > j ^ J ( v * * + V«) + f ) dil 
(3.19) 

for u G V]:o, \/w G Vjfl-

If u G Vifi, then dl2,L2M *s characterized by: 

(ry (V** + VM) 
' \~H |V#* + Vu| 

(see [1]), which is set-valued for |V** + Vu| = 0. Thus 

(3.20) 

We now combine these 2 terms. 

Propos i t ion 4 Let I[u] = Ii[u] + I2[u], with h[u] Gateaux-differentiable and dli[u] single 

valued. Then if v\ G dKi[u] 

v = v\ + v2 G d(h[u] + I2[u\) & v2 G dl2[u). 

Proof 

JThe sub script L 2 means we are working with the L 2 norm, and the first index implies e.g. I\. 
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=>: Because v\ G dli[u) and h[u] is Gateaux-differentiable, we have 

/ 1 M - / 1 H > (tu-u,-ui), Vtu e F/,0, (3.21) 

i.e. because <9ii[u] is single valued. We know that v\ + v2 G d(h[u] + / 2 M ) , thus 

h[w] - h[u] + h[w) - h\u] >{w-u,v1+ v2) G VIfl. (3.22) 

Adding (3.21) and (3.22) we get: 

h[w] - I2[u] >{w- u,v2) Vwe V7,0. (3.23) 

Therefore, v2 G dl2[u). 

<=: By assumption dl\{u] is single valued and v\ G dl\[u}. Therefore, because 

v2 G dl2[u], (3.22) and (3.23) are satisfied. Hence vx + v2 G <9(/i[u] + I2[u\). • 

Thus, it follows that for fixed u G V>,0, Vw G VIfi: 

I[w] > I[u] - f{w- u)V • (S[u] + f) dO, (3.24) 
Jn 

i.e. v G dlhi[u] 4 « E —V • (S[u] + f). 

We may now consider the steady problem for \&, which may be written as: 

V • (S + f) == 0, (3.25) 

with boundary conditions (2.67), (2.68), (2.72) and (2.73). 

3.1 .3 S t e a d y state p r o b l e m 

' T h e o r e m 1 [Steady state problem] There exists a unique solution * s G Vj to (3.25), where 

ij) = \j>* _|_ U g ) a n d U s is foe minimiser of: 

inf I[v}. (3.26) 
vevt]0 

Proof 

This is essentially the same result as in [57] except that, due to adoption of (2.51), 

we are now in the Hilbert space setting. • 
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3.1.4 Transient problem 

To prove existence and uniqueness of the transient model we need to define the following 

operator. Let p satisfy the assumptions A1-A3, and consider the elliptic problem 

E[z] = -v, 

where 

E\z] = V • [pVz], in ft, z = 0on<9ft. • (3.27) 

Because pmin < p(c) < pmax, E is an strictly elliptic operator with bounded coefficients, thus 

for v G i7_1(ft), this problem has a unique solution z € H^(ft), (see [29], Th. 8.3 and Corollary 

8.7 pg. 171), and we define E~l : if-1(ft) H-> HQ(£1) as this solution, i.e. £ _ 1[?J] = z, i.e. if 

p = constant, then i? - 1 = A - 1 . 

Note that because V-(S[u]+f) is the characterization of dlip.[u], this means that V-(S[u] + f) C 

L 2 ( f t ) , which is compactly embedded in iJ_ 1(ft). 

From (3.24) we can write: 

/(u;-u)V-'(S[u]+f)dn = [ (w-^EE^V-(S[u} + f) dft, 
JQ JQ 

= / (to - u)V • [pV(.E_1V • (S[u] + f))] dft, 
JQ 

integrating by parts we have: 

f(w- u)V • (S[u] + f) dft = - / V(io - u)pV(E-1V • (S[u] + f)) dft, 
JQ JQ 

because of the definition of E~l. 
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We may note that since 0 < pmin < P < Pmax-, the associated seminorm defined by the inner 

product, < x,x > 

(v,w)vpQ= / pVv-Vwdfl, V u , w e V i o , 
Jn 

is equivalent to || • because of the zero boundary conditions. Note that this is just a 

weighted seminorm in HQ(Q) which we shall denote || • ||v"po-

Therefore the subdifferential of I[u] with VPio seminorm and inner product is defined as: 

dlrrx [it] := {v G V : I[w] > I[u]+ <v,w - u>Vw EVIQ}. 

With characterization: 

I[w] > I[u] + f pV(w - M ) V ( £ - 1 V • (S[u] + f)) df2, 
Jn 

i.e. v G dlfy [u] => v £ E-lV • (S[u] + f). 

P ropos i t ion 5 If u e D ( d l i 2 ) then u G D(dlvpfi)-

Proof 

Suppose it G D ( d l i 2 ) ; which implies that 3w G dlj?[u]. Thus 

I[ty] > I[u] - (w- u)v dtt \fw G V>)0 

Jn 

=» /[to] > 7[u] - f ( w - ^EE^v dfl Vio G V/,0 

Jo 

=*• J[io] > J[u] + / pV(w - u)V(E_1i;) dQ Vu; G VIFI 

Jn 

Because of the definition of the operator E[z] we have, 

I[w] > I[u] + / pV(w - u)Vz dtt Vto G Vifl. 
Jn 
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Therefore z G dIvPi0[u] and because v G dl^[u] we can characterize z by, z G 

E^V • (S[u] + f). By definition, u G D(dl), provided that dl[u] ^ 0. Because 

3z G dlvp0[u] this implies that u G D(dlvpfi)- • 

3.1.5 Existence of a solution 

We are now in a position to demonstrate existence of a solution. Consider the differential 

equation: 
u'(t) + A[u(t)] 3 0 t > 0, 

(3.28) 
u(0) = uo, 

where uo G H is given and if is a Hilbert space. 4̂ = 5/ is the subgradient of I, which may be 

nonlinear and perhaps multi-valued. Our result follows from the application of the following 

result. 

Theorem 2 For each UQ G D(dl) there exists a unique function 

u G C([0, co); H) with u' € L°°(0,oo;H), 

such that, 

1. u(Q) = u0, 

2. u(t) e D(dl) for each t > 0, anal 

3. -u'(t) G di for a.e. t > 0. 

Proof 

For a proof see [24] pages 529-533. • 

Remember that we have two characterizations of di one with the norm || • | |^2 and one with 

the seminorm || • ||y 0 . We showed that dILi\u] ^ 0. Then, by Proposition 5 we have that if 

u0 G D(dIL2) then u0 G D(dIVf):0)-
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Therefore, applying Theorem 2 to this initial condition, we have that there exists a unique 

function 

such that, 

1. u(0) = u0, 

2. u(t) e D(dIvPt0) for each t > 0, and 

3. -u'(t) £ dIVp,0 for a.e. t > 0. 

This implies that -u'(t) £ E~lV • (S[u] + f), thus 

Therefore (2.63) has a unique solution u £ C([0, oo); V/.o) and, (see earlier comments), Vr,o is 

3.2 Continuity 

3.2.1 Preliminary results 

We commence with some qualitative results for the derivative of \ with respect to some rheo

logical properties. 

Behaviour of J ,̂ 

Proposition 6 For a fixed gap-averaged speed, |V*|, and given £ {TY,I,TY,2\, then 

u £ C([0, oo); Vjfi) with u' £ L°°(0, oo; V7,0) 

-u'(t) £ E - 1 ? • (S[u] + f) -E[u'(t)] € V • (S[u] + f). 

(3.29). 

Proof 

Now A = x(|V*|) + ry/if is given implicitly by: 
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Because |V*| is fixed the derivative with respect to any parameter q is: 

-2 A1 fAH . / X J A'H2j(AH) 1 fAH ,i. . 
0 = / ^(r)dr + f >- + r7'(r) dr, 

' fAH A 1 M# 4' fAH J 1 /-A.H 

_ / r 2 _ , ( r ) d T + _ y T y ( T ) < J r , (3.30) 

where the ' denotes differentiation with respect to q. Thus, 

— fAHr7'(r) dr , 
A' = A[ ^ / V ' . (3.31) 

Jry 

Differentiating the constitutive law with respect to ry 

r(j) = Pool + Kjn + Ty, 

at fixed r, we find: 

<97 1 
dry Poo + KUJ ,n—1 ' 

note that this is true for every r £ (ry,AH]. Differentiating the constitutive law 

with respect to r we have: 

fry _ 1 
dr poo + Knin~l' 

Let 

/ ( 7 ) = Moo + Knjn~1, 

then 

A' < — (3.32) 
ry 

x' + ̂  < - + 4 (3-33) 
H Ty H 

(3.32) holds because r(7) > ry. Therefore 

X'<— '•• • (3-34) ry 
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Proposition 7 For a fixed gap-averaged speed, | V * | , and given K* e [KI,K2]> then 

OK K tl K 

Proof 

Differentiating the constitutive law with respect to K, 

r(j) = Pool + K-yn+ Ty, 

at fixed r, we find:. 

? j = 1! <n , 
8K POO + Knjn 1 

note that this is true for every r e (ry,AH]. Recall that, 

dj 1 

Or poo + rcn-y™-1' 

As in Proposition 6, let 

f(j) = Moo + Kn'yn \ 

and note that 

Thus, 

T->r. 
K 

A' < — (3.36) 
K 

^x' < - + ^f •• (3-37) K HK 
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Proposition 8 For a fixed gap-averaged speed, | V * | , and given p^ € [p oo,iiMoo,2]j then 

d x < + (3.38) 
dpoo Moo Hp, 

Proof 

Differentiating the constitutive law with respect to n, 

T(i) = Pool + Kjn+ TY, 

at fixed T , we find: 

_ * L '= 2 < o, 
dpoo Moo + ^"7™ 1 

note that this is true for every r 6 (ry, AH]. The proof follows in an analogous way 

as in Proposition (7), 

A' < — (3.39) 
Moo 

^ x ' < J L + WL- •• (3-4°) 
Moo Moo 

Proposition 9 Let € H 2 , then 

(\A\ + \B\f-p(\A\p-2(A, A-B) + \B\P~2(B, B - A)) > C\A - B\2 (3.41) 

forC < 1 and 1 < p < 2. 

Proof 

From now on we will denote a = |A|, 6 = \B\, c = \A — B\. Because we have an 

inner product we can write: 

(A, A - B) = \a\\c\ cos a, 
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where a is the angle between A and A — B. In a similar way we have: 

(B,B - A) = \b\\c\ cos 8, 

(A,B) = \a\\b\ C 0 S 7 , 

where 8 is the angle between B and A — B and 7 the angle between A and B. 

Figure 3.2: a) 7 > TT/2, b) 8 < TT/4, 7 < TT/2, C) 8 > TT/4, 7 < TT/2. 

Case a) 7 > TT/2, Figure 3.2a. 

Clearly (A, A - B) > 0, (B, B - A) > 0, then 

\A - B\2 = (A, A - B) + (B, B - A), 

and because (A, A — B) > 0 and (B, B — A) > 0 we have: 

(A,A-B) = \A\P-2(A,A-B)\A\2-P <\A\P-2(A,A-B){\A\ + \B\)2-P 

(3.42) 

(B,B-A) = \B\P-2(B,B-A)\B\2-P<\B\P-2(B,B-A)(\A\ + \B\)2-P 

(3.43) 

adding (3.43) and (3.43) we have the result with C = 1. 
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Case b) B < TT/4, 7 < TT/2, Figure 3.2b. 

For this case, clearly (see Figure 3.3) 

Figure 3.3: 3 < TT/4, 7 < TT/2 

b>a+d=a+ cosac > a + —, 

where a = rr — a. 

Thus, 

(|i4| + |B|)2-P(|i4|P-2(i4, A — B) + \B\P~2(B, B - A)) 
\A-B\ 

= (a + 6)2-p(ap-1 cos a + cos /?) 

> (a + 6)2-p(6p"1 cos /? - a p _ 1 cos /3) 

= (a + &)2"p(& - a)(p - l )^ - 2 cos /3 for b e [a, 6] 

= (a2-p + (2 - p)61-p&)(& - a)(p - l )^ - 2 cos/3 

•> (2-p)62-p(6-a)(p-l)6p-2cos/3 
(fr-a)(2-p)(p-l) 

2 
> JVc, 

where TY = 1/4(2 - p)(p - 1) < 1. 

Case c) /3 > TT/4, 7 < TT/2, Figure 3.2c. 
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For this case we express cos (3 as: 

cos j3 = COS(6J — 7) 

= cos a COS 7 + sin a sin 7 

~ cos a — ^72 cos2 7 + sin 0:7 

~ cos a + sin 57 

because 7 is small. 

Then, 

(|i4| + \B\)2'P(\A\P-2(A, A - B ) + \B\P~2{B, B - A)) 

\A-B\* 

(a + 6)2-p(&p-1 cos/3 - a?"11 cos a|) 

> 

c 
(a + b ) 2 - P / V ( b P - 1

7 + ( y 1 - a?-1)! cosa|; 

> -
c 

sin 7 
c 

Nb sin a 
b 

N > 
~ 2 

where ./V = 1/2. • 

Proposition 10 Let *2 <£ ̂ (O), 6e too solutions for (2.63)-(2.65) for concentration 

fields c\ and c2 respectively, then 

j ( ^ j ^ f (V*i) - ^ | p ( V * 2 ) ) • V (*i " *2) d n * C||V(*i - * 2 ) | | £ 2 ( n ) , (3.44) 

/or a constant C which does not depend on $ior \&2. 

Proof 
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Now, assume that exists f i + C fi such that 

V * i • V ( * i - * 2 ) > 0 and V * 2 • V ( * 2 - * i ) > 0 in f l + 

then, using Proposition 2 we have 

Therefore, 

x ( i y * i | ) v _ + x ( | v * 2 i ) v ^ _ ^ ^ c | v ( ^ _ ^ 2 ) | 2 _ ( 3 4 5 ) 

| V W i | | V W 2 | 

Without loss of generality assume that V * i • V ( * i —*2) < 0 in some region £l~ c fi, 

and just for notation let us write x i = x ( |V* i | ) and x 2 = x ( | V * 2 | ) thus, 

X l

 r V * i • V ( * i - * 2 ) + 7=̂ 7-7 Vtf 2 • V ( * 2 - * i ) = 
. | v * i | 1 v , 1 | v * 2 | 

+ ^ ^ . ( i v ^ r v f r i • v ( * i - * 2 ) + i v * 2 r v * 2 • v ( * 2 - *i)) 

+ | V * 2 | - e V * 2 - V ( * 2 - * i ) ) f J X 2 1 X l 

2 | V * 2 | 1 _ £ : 2 | V * i | ! - £ 

1 X2 
2 |V* 2 

l - e 
| v * i | - £ v * i • v ( * i - * 2 ) + | v * 2 r e v * 2 • V ( * 2 - *i)) 

I V ^ I - V * ! • V(*! - *2)) (Iĵ pj -\^^) (3-46) 

for 0 < e < 1. 

Now we shall prove that 

. j v ^ ( 3 - 4 7 ) 

is an increasing monotone function. Let us take the derivative of (3.47) with respect 

to IV*|, thus what we will have to prove is 

x'-(l-e)T^T7 >0. v ' V * 
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Using the fact that \ l s linear as |*| —> oo (see remarks after Proposition 2) and 

that, 

X ~ ^ | V * | , 

we have that in the limit |*| —> co, 

, 6/Joo 
X " 

because x £ C°° with respect to |V*|. Therefore, 

X' - (1 - e ) ^ ~ ^ ( 1 - (1 - e)) > 0 (3.48) 

Now, using Proposition 2 and (3.7) we can find that in the limit |*| —> 0 

| V * | ~ C 7 X

m + 1 , 

thus, 

x ~ C | W | 1 / ( m + 1 ) 

c L—iv^i 1 /^" 1 " 1 ) - 1 , 

then 

X ~m + V 

X ' - (1 - e)-£- ~ CIV*! 1 /^ 1 ) - 1 (—!—• - (1 - e) 

which is greater than zero if 

(3.49) 

£ > 1 - 1 

m+ 1" 

For values of a < |V*| < 6, we have, 

Kmin — X ~ Kmax 

Bruin — X ~ B m a x , 

because x £ C°° with respect to |V*| and we are in a closed interval, thus 

x ' - ( l - e ) p ^ y >Bmin-(l-e)Kmax, • (3.50) 
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which is greater than zero if 

e>l-—. 
Ivmax 

Therefore, 
X 

|V#|i-e 

is an increasing monotone function for some range of e sufficiently close to 1. 

Using the assumption that V * R V ( * i - * 2 ) < 0 in 0~, we have that | V * 2 | > | V * i | 

in Or, then we have 

X L

 R V * i • V ( * i - * 2 ) + T ^ - T V * , • V ( * 2 - * i ) > 
|V*i | 1 v 1 " |V* 2 | 
X ( X l + (|V*i|- EV*i • V ( * ! - tt2) 2 V lV^ i l 1 " 6 |V*2|1 

+ i v * 2 r £ v * 2 - v ( * 2 - * i ) ) 

Using (3.5) in Proposition 2 and Proposition 9 we have, 

1 / Xl , X2 

(3.51) 

2 V i v ^ i i 1 - ^ • IV*!!! 1- 6 
v * i r £ v * i - v ( * i - * 2 ) 

+ | V * 2 | - £ V * 2 • V ( * 2 - *!)) > c { | | ^ ± | | | | p | V ( * i - * 2)| 2 (3.52) 

Therefore, the result (3.44) holds. • 

3.2.2 Continuity with respect to rheological and physical properties 

Consider the flow of a fluid with a fixed set of physical and rheological properties along the 

annulus, i.e. these may depend on (</>,£). Also, we are interested in the limit e —> 0, therefore 

the concentration is fixed in time. Suppose that one of the fluid properties varies continuously, 

for example from a density field p\ to a density field p2, while the other properties remain 

unchanged. We would like that our solution * i also varies continuously to *2, * i being the 

solution for p\ and * 2 the solution for p2. We present below a number of such continuity 

results of the solution with respect to the rhelogical parameters p, ry, K and p^ and the initial 

conditions. For the rest of this section we will assume that the boundary function \I>* is Lipchitz 

continuous with respect to the rheological parameters. 
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3.2.3 Steady State 

Density continuity 

Note that for this case the only density dependence comes from the boundary function (3.13), 

The function x depends on all the rheological parameters, which we will fix for this case, 

but density. The variational formulation of the steady state problem is: 

J ^ ^ | ^ ^ ^ p ( V * * + Vu)) •V(u-w)+^(|V**+V7j|-|V**+Vu|)+f-V(u-u) dfl > 0. 

(3.53) 

Let v = wi, meaning that ui is the solution of our problem for p(a) and we denote the solution 

for p(c2) u = ui, then: 

Jn ( * j w 2 f ( W 2 ) ) ' V ( U 1 " U 2 ) + V * 2 + V M l 1 _ 1 V * 2 , ) + f 2 ' V ( M 1 ~ U 2 ) d Q ~ °" ( 3 ' M ) 

Now, let v = U2 and u = u\, then: 

Jn ( X [ W ! | l ) ( W l ) ) ' V ( " 2 ~ " W l ) + + V w 2 l"IV*i | ) +fi • V ( « 2 - «i) dft > 0. (3.55) 

Note that, 

/^(|v*5 + v«i|)dn < /"^(|v*5 -v*n + |v*i|)dn (3.56), 

[ TF( |V*I + Vu2|)dft < / ^ ( | V ^ - V * t l + |V*2|)dft. (3.57) 
Jfi -n Jn n 

Substituting (3.56) and (3.56) into (3.54) and (3.55) respectively and adding the resulting 

variatonial inequalities, we get: 

+ 2 / ^(|V*5 - WJ|) + (f2 - fi) • V(ui - ua) dfl > 0. (3.58) 
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Now, le.t us keep every functional in terms of V*fe and V * j ^ , for k = 1,2. Thus, we have 

/a(î <^>-w(^»)V(--»2)d^ /fl(Ŵ ">-2î fH-v(''-,")d0 
+ (X|v*2ll)(V^2) ~ X l v 7 1 l ' ) ( W l ) ) • V ( * 2 ~ ** } d Q - ( 3 ' 5 9 ) 

Similarly, 

/ (f2 - fj) • V (m - ua) df i = / (f2 - fi) • V (*i - ¥ 2 ) dfl + [ (f2 - fO • - *I) dft 
Jn Jn Jn 

(3.60) 

Let us consider the following functional: 

1 /.|V**+Vi;| x ( s i/2) ds s1/2 

This functional is convex, lower semi-continuous, Gateaux differentiable and 

v ' | V * * + V u | v ' 

Using Proposition 5.4 in [22] we have: 

where 

Therefore, 

F ( « i ) - F ( u 2 ) >' (F'(u2), *i - *2) 

F(u2)-F(ui) > ( F ' ( « i ) , * 2 - * i ) 

(F'( U l), * 2 - * ! ) = jf ( ^ y f f v * ) • V ( * 2 - *i) df i . 

/n(wv*'-wS-v*-*!,d^0' ( 3 6 1 ) 
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T h u s from (3.58) we have 

/ (f 2 - f i ) • V ( * i - * 2 ) d f i + / (f 2 - f i ) • V ( t t $ - tfj) dfl + f 2 ^ | V ( * ^ - dfl 
Jn Jn Jn n 

+ / X 1 ^ ( W 2 ) " l ^ ( W l ) ) - V ( ^ ~ * t ) d f t -

Jn\ | V * i 
x ( | V * i | ) W i _ x ( | V ^ 2 l ) W 2 | . y ^ . ^ ) d o > Q . (3.62) 

U s i n g Cauchy-Schwarz inequality, A l & A 4 , the L i p c h i t z cont inui ty of * * w i t h respect to p, 

the facts that 
•vf lV7 \T/h 

and # i , # 2 € - f f 1 ^ ) . (3-62) becomes 

- P2\\LI > JQ
 v * i - * | v f f V * 2 ' ' V ( U l " U 2 ) d " - °- ( 3 ' 6 3 ) 

Therefore, using the result i n P ropos i t i on 10, we have 

| | P I - P 2 | | L * > C | | V ( * i - * 2 ) | l i a . (3.64) 

Yield stress continuity 

A s stated i n section §2.4.2 we know that x = x(l v"*|; H, Ty, K, n, Moo), thus we w i l l denote 

Xfc( |Vt f | ) = x ( | V * | ; f f , 7 Y f c , K , n , / i o o ) for* = 1,2. 

W i t h o u t loss of generality, assume Ty\ > Ty2, doing Taylor expansion for x i ( | V * | ) around 7y2 

and neglecting 0((TYI — TYI)2), we have: 

x ( | V * i | , r y i ) = x ( | V * i | , r y 2 ) + ^ ; x ( | V * i | , r y ) ( 7 y i - r y 2 ) . (3.65) 

L e t t i n g v = u\ and u = u2 i n (3.53) we have: 

/ (* 2 , ( jX*, 2 | )
 V ^ a ) • V ( m - ua) + ^ ( | V M ^ + 7m | - | V * 2 | ) + f • V ( m - ua) dfl > 0. (3.66) 

Jn V |vw 2 | / w 
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U s i n g the tr iangle inequality, the right hand side of (3.66) is less t han or equal to 

jf ( ^ ^ | ^ ^ p V ^ 2 ^ • V ( W l - u 2 ) - f - ^ ( | V * a - V * t H - | V * i | - | V * 2 | ) + f - V ( u i - u 2 ) d f l . (3.67) 

N o w let v = U2 and u = u\ i n (3.53)and use the tr iangle inequal i ty as i n (3.67), thus 

(^^p V*l) • V ( u 2 - U l ) + ^ ( | V * 5 - V * I | - r - | V * 2 | - | V * l | ) + f - V ( U 2 - « l ) dfl > 0. 

(3.68) 

A d d i n g (3.67) and (3.68) we get: 

+ / ( ^ 2 - T V l ) ( | W i | _ | W 2 | ) d n 

Jn ti 

+ [ ^ ^ ^ ( I V ^ i - V ^ I ) dfl>0. (3.69) 
Jn H 

U s i n g Cauchy-Schwarz inequal i ty and the fact that ry £ L°°(fl), the L i p c h i t z cont inui ty of * * 

w i t h respect to r y and the fact that \T/ € H1^), we can find upper bounds for the second and 

the t h i r d integrals on the left-hand side of (3.69). 

t (ZV2_ZiVi)(|V¥ 1 | _ | V g , 2 | ) dci < / " i T y a - T y i U V ^ i - V ^ l d n 
Jn H Jn 

< ||TYI - T y 2 | | L 2 | | * i - * 2 | | f f i 

< C||TVI - 7 v 2 | | i ~ ' (3-70) 

f ( T 2 2 ± Z n l | v * i - V * 5 | dn < C f | 7 y 2 - T y i | ( | T y 2 + T y 1 | ) dVl 
Jn H Jn 

< ||TVI - T y 2 | | i 2 | | T y i + r y 2 | | L 2 

< C||7V1 - 7V2 | |£a < C||7Vl ~ 7 V 2 | | i ~ . (3-71) 

Subs t i tu t ing (3.65) into the first integral of the left-hand side of (3.69) we have: 
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l i m - mlk2| |*i - *2|liji + C | | 7v i - m | | i 2 

> [ ( M i n , - • - *,) df! > 0. (3.72) 
Jn V |vwi | | V W 2 | / 

The last inequality on (3.72) holds because now x( |V* | ) has the same physical parameters and 

we can use (3.61). 

We can bound 

from above by: 

^ ( i W 2 | )

( v * 2 ) - 4 £ ^ ( v ^ 
| V * 9 | V * i | 

| V * I - * 5 | d f i + f I m - m l 
Jn dry 

|V( i t i -u 2 ) | dft. 

Using the result in Proposition 6, we get 

/ 
Jn 

m , i - m l dry ;i - m l x( | v* i | ) + - |V(wi -u 2)| dft | V ( U 1 - U 2 ) | d f t<C / |7V,i 
Jn 

< C [ | 7 Y , i - 7 y , 2 | x ( | V * i | ) | V ( u i - U 2 ) | dft + C / I -TV.I -7y ) 2 | |V(u i -«2) | dft 
Jn Jn 

< C f | m - 7y , 2 |x( |V*i | ) |V(*i - * 2 ) | dft + C f |ry,i - TV, 2 |X( |V*I|) |V(*I - dft 
Jn Jn 

+ C /" K , ! - r y , 2 | |V (* i -* 2 )| dft + C / | 7 y , i - 7 y , 2 | | V ( * I - ^ ) | d n (3.73) 
Jn Jn 
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Using Holder's inequality and the fact that Ty^,min < 7Y,fc < 7Y,fc,max for k = 1 , 2 , recall that 

the rheological properties approach a constant value as £ —• 0 and £ —* Z, we have 

/ i T V . l - T V . a l x d V ^ l D I V ^ - ^ l d f i < | | 7 V , l - 7 Y , 2 | | L = o | | X ( | V * l | ) | | L 2 | | V ( * l - * 2 ) | | L a 
7 f i 

< C | | 7 y , i - 7 Y , 2 | | L » ( 3 . 7 4 ) 

because *fc e i 7 1 ( f t ) and x is a C°° function of |V*|. Similarly, 

/ \TY,I - 7y , 2 | x ( |V*i | ) |V(* i - dft < ||TV,I - ry,2|||oo||x(|V*i|)||L2 < C\\TY+ - 7y , 2 | | £oo . 
J n 

( 3 . 7 5 ) 

because the Lipchitz continuity of **.. 

Now, see that 

|V*J - *5| dft / 
Jn 

» ( l ' « . l ) ( m _ 2 a ^ l i ( v , 1 , 
|V* 2 | v ' |V*i | 

V* 2 | { 2 ) | V * i | 

< C | | 7 V i - T y 2 | | L i » < C | | 7 y i - 7 y 2 | | L ~ . ( 3 . 7 6 ) 

, ^ M X 2 ( | V * 2 | ) / V 7 , T , , X2(lV*i|) / V 7 , T , ,, ^ 

Assume that I ITVI — 7V2||L°° < i C l then 

|TVI - ry2||L°° > | | m - m i l l 0 

Using this fact and combining ( 3 . 7 0 ) , ( 3 . 7 1 ) , ( 3 . 7 4 ) , ( 3 . 7 5 ) and ( 3 . 7 6 ) we have: 

l i m - T Y a l l i c c > jf ( X 2 ^ 2 l ) ( V * 2 ) - ^ ^ p ( V * ! ) ) • V(*i - *2) dft > 0 , 

using Proposition 1 0 we have the continuity result, 

U m - T r e l l i o o > C||V(*i - *2)||12. ( 3 . 7 7 ) 
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Consistency and High-shear viscosity continuity 

The results on continuity for consistency and high-shear viscosity can be derived basically in the 

same way as the one for yield stress continuity, thus we omit the proof and state the following 

results, 

- « 2 | | i o o > C7||V(*i - * 2 ) | | i a , • (3-78) 

HAW - MOO,2||L~ > c | | v ( * i - * 2 ) | | £ a , (3.79) 

3.2.4 Continuity for Evolution equation 

To prove continuity with respect to the physical parameters for the transient model will use 

the same techniques and results from §3.2.3. 

Density continuity 

The variational inequality for the evolution model is: 

+ I ̂ -(|V#* + Vu| - |V#* + VM|) + f -V(v-u) dft>0. 
Jn H 

(3.80) 

Following the same technique as in §3.2.3, we let v = u\, u = u2 in (3.80), then letting v = u2 

and u = u\ and adding the resulting variational inequalities we have: 

J p 2V*2t • V(ui - u2) dfi - J piV*it • V(wi - u2) dfl 

+ l(w< »̂-i#(v*'»)V(«'--»df! 

+ / 2^(|V*| - W?|) + (f2 - fi) • V(«i - ua) > 0. 
Jn H 

(3.81) 

We already have a bound for the third integral in (3.81), the first and second integrals in (3.81) 

can be rewritten as: 
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dft 

[ p2V*2t • V(ui - u2) dfl- f pi W u • V(«i - u2) dfl 
Jn Jn 

= / P2(V*2t - V*u) • V(ui - u2) dft + / (p2 - pi)V*u • V(ui - u2) 
Jn Jn 

= I (P2 - Pi)V*u • V(*i - *2) dfl- I p 2(V* u - V*2t) • - tf2) dfl 
Jn Jn 

+ f(P2- P i )W u • V(*^ - *J) dft - / p 2(V* l t - V* 2 t) • - *I) dft 
J Q Jn 

- / (P2 - Pi)V*« • V(* x - *2) dft - I f p 2^|V(*! - * 2)| 2 dft 
J O

 z Jn ot 

+ f (P2 - Pi)Vtfit • V(tf$ - *I) dft - / p2(V*n - V* 2 t) • V(V2 - *I) dft (3.82) 
J S 2 Jn 

Combining (3.62) and (3.82) we have: 

^(p2 - Pi)V* l t • V(*i - *2) dft - i j f p 2^|V(*i - * 2)| 2 dft 

+ / (f2 - fi) • V(*i - tt2) dft + / 2^(.|V*5 - V*I|) dft 
Jn Jn w 

+ y (p2 - p i ) w u • v(*^ - * D dft - y p2(v*it - w 2 i ) • v(*^ - * j ) dft > 

=> / (P2 - Pi)V*« • V(*i - *2) dft + / (f2 - fi) • V(*i - *2) dft 
Jn J n 

+ / 2^(|V*^ - WJ|) dft + / (ps - pi)V* l t • V(*5 - *I) dft 
Jn Jn 

- y p 2 ( V * i t - V * 2 0 - V ( ^ - * t ) d f t > X ^ | | V ( * i - * 2 ) | | | 2 

(3.83) 

Because of condition, A.l p(c) e jL°°(ft). Having this in mind, the fact that <= ^(fl), 

ifr'k(t) e L°°(0, oo, if1^)) for fc = 1,2, the Lipschitz continuity of ** with respect to the 
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physical parameters and using Holder's inequality, we have: ' 

/ (p2 - Pl)V*U • V(*l - *2) dfl < | |p l -p2 | | i«» | |V(* l -*2)||£2 | |V* l t | |L2 
Jn 

< C\\pi - P2\\L°° 

[(P2 - Pi)Wit • v(*5 - *i) dn < lbi-P2||i<»||v*iT||L2 

< C\\pi -P2III0C 

• / (P2 - Pl)V(*l,t - *2,t) • V(*5 - *l) dfi < - P2|lioo||V(*l, t -
Jn 

< C\\P! -P2WI00 

[ ( f 2 - f i) • v (* i - * 2 ) dn < c u p ! - p 2 | | i - l i v ( * i - * 2 ) l l i 2 

Jn 
< C | |p i — p 2 | | £ o o 

• /2^( |v*5-v*i | )dn < c||pi -P2 IU00 
Jn -« 

Combining all this we have, 

11 Pi " P 2 I U - > *^ | |V(* i - * 2 ) l ! | 2 (3.84) 

Using GronwalPs inequality in (3.84), we have the continuity result: 

| |p i-P2 | |L-T + | | V ( * 1 - * 2 ) | | i 2 ( 0 ) > ^ | | V ( * 1 - * 2 ) | l i 2 (3.85)-

Yield stress continuity 

Using the variational inequality as above, for two different yield stress fields, ryt\, Ty,2, we have 

/ p(W 2 t - Vtfit) • V(tf 1 - tf2) dil + [ p(V*2t - W u ) • V(*J - *3) dCl 
Jn Jn 

+ .11*1 - ry2||L2 > Cjf (^^W) - ̂ p ( V * i ) ) • V ( ? 1 - *2) d<7 > 0, 
(3.86) 

using the result in (3.77). Using the fact that ** is Lipschitz continuous with respect to TV 

and that *'(£) e H1, we can find an upper bound for the second integral in (3.86), thus 
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( p(V*2t - V*u) • V(*i - * 2 ) d f i + / p(V*2t - V*it) • V(*J - dO 

- " i l 1 1 ^ * 1 ~ * 2 ) i ' 2 l 2 + c l l r l y ~T2yll i2 (3-87) 

Combining the results in (3.77) and (3.87), we have the following differential inequality: 

l iny - T2YI\L2 > C^||V(tfi - * 2 ) | | | 2 (3.88) 

Using Gronwall's inequality in (3.88), we have the continuity result: 

l iny - r 2y|| L 2T + | |V(*i - *2)||x,»(0) > C||V(*i - *2)\\h (3-89) 

Consistency and High-shear viscosity continuity 

As in §3.2.3 the results on continuity for consistency and high-shear viscosity can be derived 

basically in the same way as the one for yield stress continuity, thus we omit the proof and we 

just state the results, 

- K2\\L2T+ ||V(*i - #2)|M0) > C||V(*i - * 2 ) | | £ 2 (3.90) 

||MOO,I-^OO,2||L2T + ||V(*I-*2)||L2(0)> C | | V ( * i - ^ H ^ . (3.91) 

3.3 Qualitative behaviour of solutions 

Here we derive, purely formally, a number of qualitative results for the steady and unsteady 

problems. These results do have a physical interpretation, which we give, but also serve as a 

useful test in verifying that our numerical procedure is correct. First we discuss the functions 

and *out, and how these are computed for a given flow. 
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3.3.1 End conditions and test concentrations 

The fluid concentration c manifests only in the physical properties p(c), ry(c), re(c), n(c) & 

Moo(c), via specified closure laws. We restrict our consideration to concentration fields c that 

become constant in some subdomains of fi, close to the ends £ = 0, Z, i.e. c —> 1 as £ —* 0 and 

c —• 0 as £ —> Z. This is physically sensible, when we study displacements that happen in the 

interior of fl. It follows that the physical properties p(c), ry(c), re(c) & n(c), are each constant 

in some neighbourhood of the ends. We denote these constant properties as follows: 

Pin = TY,in = 7V(1), « i n = K ( 1 ) , " in = " ( 1 ) , Moo.tn = M o o ( l ) 

Pout=P(0), lY,out = T V ( 0 ) , K o u t = K ( 0 ) , n o „ t = n ( 0 ) , Moo.out = Moo(0) . 

The end condition ^in(<f),t) is the stream function that corresponds instantaneously to the 

steady parallel flow of a fluid with properties (pin,TY,in, Kim "in j Moo.in), through an infinitely 

long annulus, at flow rate Q(t). To compute such a steady parallel flow, we observe that * and 

all flow variables are independent of £. Therefore, we have that 

^(S,+ /,) = <>, 

and since is a constant, this implies that 5^ is independent of 0. Now, if \I> is independent 

of £, we have that: 
<9\I> 

Ŝ  = (x + Ty/tf)sgn{—}, 

so that the axial speed is of one sign and that A = x + TY/H is independent of <f>. We may 

recall that A was the absolute value of the modified pressure gradient. We now substitute from 

§2.4.2 the closure laws |V*| = |V*|(̂ 4; H, ry, re, n, / ioo) , and therefore write: 

f1 <9\I>- f1 

Q = %n(l)= _ ^ d 0 = / | V * | ( i 4 ; f f , 7 y i i n , K i f l ) n i n , / i o o , i n ) d .̂ (3.92)' 
Jo Cl(p Jo 

The above is a nonlinear equation for A , which has a unique solution since we have seen that 

|V*| increases with A , when the yield stress is exceeded. We denote by A = Ain the solution 

of (3.92), and now define \I>jn as follows: 

r<t> Q\$ • r<t> 
*in(</>) = / -^rr(i(t>= |V*|(A i n ;H .Ty . in, Ki n ,n i n , /xoo.in) d0. (3-93) 

Jo ci<p Jo 
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Similarly, *Out(0, t) is the stream function that corresponds instantaneously to the steady paral

lel flow through an infinitely long annulus of a fluid with properties (Pout,TY,out, Kout, nout, Moo,out), 

at flow rate Q ( t ) . We then define * O U i in exactly the same way as we have * j n , but using the 

rheological properties (ry)0Ut, K o u t , nout, Poo,out) • 

3.3.2 Steady state problem 

In the classical setting, we characterise the steady problem as the solution * s G Vj of 

0 = V-(S + f). (3.94). 

As discussed previously, this may be formulated more precisely as * s = ** + us, where us G VQ 

is the solution of the following minimisation: 

inf I[v], (3.95) 
v€V0 

where I[u] is defined in (3.14). Note that if we choose ** = then evidently us = 0. Equally, 

from our consideration of the subgradient of I[u], we have that Vw G Vb: 
I[w] - I[ua] > - J(w - us)V • [S[u,] + f) dft. 

Multiplying (3.94) by \&s, integrating over ft, and using the divergence theorem: 

0 = f * s S[uJ-«/ds+ / * S V - f - [ x ( | V * s | ) + 7 y / f r ] | V * s | dft, 
J a n J n 

(3.96) 

from which we see that 

I(uB) = - f L 4 ( | V * S | ) dft + / VsS{us} • v ds (3.97) 
J n J a n 

where 
i r\™s\* X ( s 1 / 2 ) 

L 4 ( | V * S | ) 
1 r i v v s r v f s ^ l 

X(|V*S|) |V* S | - - JO ^ T T j ^ d s > 0. (3.98) 

The function in (3.98) increases monotonically with |V*s| and is strictly positive for |V*s| > 0. 

Proposition 11 The function in (3.98) increases monotonically with |V*s| and is strictly 

positive for |V*g| > 0. 
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Proof 

Taking the derivative of I/4(|V*S|) with respect to |V* S | , we have: 

L 4 = x'(|v*s|)|v*a| >0, 

with a minimum when |V* S | = 0. 

Therefore L4(|V*S|) is an increasing function and is strictly positive for |V* S | > 0. 

• 

Comparison results 

We consider a displacement between fluids 1 and 2. The fluid properties are specified smooth 

functions of the concentration: p(c), Ty(c), K(C), n(c) & Moo(c), for c G [0,1]. These functions 

interpolate between fluid 1 properties, at c = 1, and fluid 2 properties at c = 0. For example 

suppose that for tile same two base fluids we have two different fluid concentration fields, say 

ci and c2. These may for example correspond to different stages during a displacement. The 

two corresponding steady solutions are denoted ^s,i and *s,2-

We assume that the flow rate Q is identical for both flows under consideration and that the 

end boundary conditions on * are computed in accordance with the procedure described in 

§3.3.1. Since the end conditions are dependent only on the (constant) geometry and on the 

rheological properties of the two base fluids, it follows that the same conditions, and tyout, 

are attained by and ^s,2 at each end of the annulus. Therefore, in homogenizing the 

boundary conditions, we may take the same ** for each concentration field, ci and c2. The 

consequence is that if Vs,i = * * + 115,1 and if ^s,2 = ** + uS,2, then ua>i is in the test space 

for «s i 2 , and vice versa. 

Lemma 2 Under assumptions AI-A4, I[u8,i,ci\ < I[uS,2,C2\ for any of the following situa

tions: 

1. ry(ci) < ry(c2) a.e. (<£,£) G fl. 
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2. K(CI) < K(C2) a.e. (fag G ft. 

3- Moo(ci) < Moo(c2) a.e. (fag) G ft. 

In each case above, it is assumed that all other physical properties remain equal between the two 

fluids. 

Proof 

The proof rests simply on the monotonicity of x(|V*|) +Ty/H with respect to any 

of the above. For example, let us assume that if ry (c\) < Ty(c2) then 

[X(|V*|) + TY/H](CI) < [x(|V*|) + TY/H](C2). 

Then we have: 

I[usA,ci] = inf I[v,5i] < inf I[v,c2] = I[usfi,c2\. 
veVo veVo 

This result then follows, provided that x(|V*|)+ry/i? is monotone in the directions 

indicated, for fixed IV*! 

Now A = x(|V*|) + ry/H is given implicitly by: 
1 fAH 

• ' V * ' = ~A* J ^ ( R ) 

At fixed |V*| we differentiate with respect to any parameter q: 
-2A' fAH . . . . A'H2j(AH) 1 <~AH 

° = " 7 5 - ^ 7 ( r ) d r + 1^-L + - J ^ r7'(r)dr, 

^ / r 2 - 7 ( r ) d r + ^ / r 7 (r) dr, 

where the ' denotes differentiation with respect to q. The first integrand is positive, 

and therefore 
rAH 

sgn(A') = -sgn ^ r7'(r) dr^ . 

Differentiating the constitutive law, at fixed r, we find: 

dj 1 <o, 
dry Moo + « n 7

n _ 1 
<o, 

di 7 n <o, 
dn Moo + nnjn~l 

<o, 
di 7 < 0. 

dpoo Moo + «;n 7
n _ 1 

< 0. 
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Consequently, A increases with any of these parameters. • 

Remark: It follows that, for increasing yield stress, consistency or high-shear viscosity, the 

functional 

- / L 4(|V* 5 |)dO+ / *sS[u8] •»/ds 
Jn Jon 

increases. When the ends of the annulus consist of regions of constant physical properties, the 

end contributions to the above boundary integral are negligible, since = 0, and this integral 

simplifies to the drop in the modified pressure, along 0=1, say Ap, where 

Ap= [L S ^ i d t = [L-^ + pcos[3dt = p(0)-p(L)+ fL pcosPdZ 
Jo Jo °^ Jo 

Therefore we have that: 

- /L 4(|V*s|,ci)dfi + gAp(c 1)<- / L 4 ( |W s | , c 2 ) dfi + QAp(c2), Jn Jn 

under the conditions above. 

The above functional may be interpreted physically as the total energy dissipation rate in the 

annulus. Therefore Lemma 2 states that the dissipation rate increases with any of the yield 

stress, consistency or high shear viscosity. This is of course physically intuitive. 

3 . 3 . 3 Transient problem 

The main purpose of this section is to show that the solution of the transient model (2.63) 

goes to the solution of the pseudo-steady model (2.1) as t —> oo. First we treat the problem 

analytically, showing that in fact — *s||x,2(n) decays as t —> oo. Afterwards, we compute 

numerically the solution for both systems and present the behaviour of ||* — \ & S | | L 2 ( O , ) - For 

simplicity we assume that the displacement in the annulus is steady and that the concentration 

field does not undergo any temporal changes, i.e. we have a fixed concentration field. 
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Analytical Results 

For the rest of this section we assume that \&* = for the transient model. Thus, first we 

multiply (2.1) by (* — \T/S) and integrate by parts to get 

note that because = * s then (* - *s) e H^(fl). 

Now we multiply (2.63) by (\&a — \&) and integrate by parts, thus 

+ Jn 
[ ^ ( | V * f l | - |V*|) + f • V ( * s - *) dft > 0. 

(3.100) 

Using the fact that 

x(|Vtt* + V"l) 
IV** + Vu| (|V** + V«|) 

is the Gateaux derivative of 

We can use Proposition 5.4 in [22] and have the following result: 

F ( * ) - F ( * s ) > <F '(* s ) ,*-tf s > 

where 

dfi. 
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Thus, 

( F , ( * B ) - f " ( * ) , * « - * > <0, 

because of Proposition 10. 

Therefore, adding (3.99) & (3.100) we have 

/ pV^t • V(* s - tf) dfi - C||V(* - * s)| | | 2 > 0. 
Jn 

Because ^f- = 0, actually (3.101) states that 

-c||v(* - 9s)\\h > P~T|/n - * ) l 2 dn. 

Therefore, using GronwalPs inequality we have 

||V(*-* s)|| £ a<||V(*-* s)|| i 2(0)e- K t ' (3.103) 

where 

Pmin 

Numerical Results 

Here and for all the numerical results in the rest of the' thesis we consider the case when p ^ = 0. 

This is simpler to work with than p ^ > 0. As stated in §2.4, when Moo = 0 we are no longer 

in a Hilbert space setting, instead the steady model has a solution which lives in the Banach 

space W 1 , 1 + n ( Q ) . The solution of the transient model (2.63), is in if1(fi) for finite time. 

On the other hand, recall that numerically we work in finite dimensional subspaces of iJ1(Jl) 

-in the case of the FEM we consider basis functions in H^^fl). In chapter 4 we use a Chebyshev 

spectral method, as an outline (in chapter 4 we fully explain the method), we express our 
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solution as the sum of the first n Chebyshev polynomials which are C°° functions. Thus, 

both methods use finite dimensional subspaces of iif 1(f2), which is compactly embedded in 

W1,1+n(Q.). We solve the system (2.63) using an augmented lagrangian algorithm, [26, 31], 

which fully describes the unyielded regions of the flow, if any. For a full description of the 

algorithm we refer to chapter 6. For space discretisation we use a finite element method with 

triangular elements and linear basis functions. For time discretisation we use the implicit 

Backward Euler method which comes out naturally from the augmented lagrangian formulation. 

As an example of the decay property of the transient solution, we compute the evolution of 

\I/(< ,̂£,£) from an initial condition, 

#(0, f, 0) = sin(7T(/>) sin(£7r). 

Figure 3.4 a) shows the decay of ||* — * s | | L 2 ( Q ) as time evolves. The rheological and physical 

parameters for the problem are: TV,I = 1, K\ = 2, p\ = 1, mi = 2, ryp = 1, «2 = 1, Pi = 1, 

m 2 = 1, e = 0.4 and [3 = 0. Figure 3.4 b) shows the fixed concentration field, remember that we 

are interested in the changes of the velocity field on the fast timescale. Rheological parameters 

are interpolated as in (2.53). Figure 3.5 shows the contours of the stream function \f/ for times 

t = 1, 5, 10 and the contours of the steady state solution Clearly this simulation agrees 

with the theoretical results stated in (3.103). 
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Chapter 4 
S t a b i l i t y o f m u l t i l a y e r flows 

As explained in chapter 1, for certain parameter combinations the annular displacement is 

ineffective. The displacement front advances faster on the wide side than on the narrow side 

and consequently develops a long finger. At long times, this flow will resemble a parallel multi

layer flow, along the length of the annulus. It is of practical interest to understand if such 

flows are stable or unstable and that is the aim of this chapter. We use classical methods of 

hydrodynamic theory to analyze the linear stability of a parallel'multi-layer base flow. 

(i) In §4.1 we present the steady parallel multi-layer solutions that we consider as the base 

flows for our stability study. We.identify 4 different types of base flow: 

— Both fluids are yielded at the interface. 

— Both fluids are yielded at the interface but a small static channel forms in the narrow 

part of the annulus. 

— Fluid in the narrow part of the annulus is completely static. 

— Fluid in the wide part of the annulus is unyielded at the interface. 

These base solutions are governed by 9 dimensionless parameters. For the case where the 

narrow side is completely unyielded, we find an analytical expression to determine the 

minimum value of the interface position such that fluid 2 will be static and unyielded 

whenever the interface position is greater than this value. 

(ii) In §4.2 we give the general linear stability problem, which is derived by considering a 

perturbation about the base state. The base state and perturbation are solutions of the 
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interface tracking model, described in §2.5. The general stability problem will depend on 

14 dimensionless parameters. 

(iii) In §4.3 we present stability results for the parallel flow of a single fluid along the annulus. 

We show that the flow is always linearly stable. 

(iv) In §4.4 we use the method of normal modes and derive the eigenvalue problem that governs 

stability of the general case of a parallel flow of 2 fluids. We consider the 4 types of base 

flow identified in §4.1. We show that linear instabilities can arise only if both fluids are 

yielded at the interface. 

(v) In full generality, the eigenvalue problem derived in §4.4, is governed by 14 dimensionless 

parameters. This makes any analytical understanding difficult. Therefore, in §4.5 we 

consider the simplified case of a concentric annulus, firstly for 2 Newtonian fluids and 

secondly for 2 power law fluids. This greatly reduces the parametric dependency and we 

are able to derive analytical expressions for the eigenvalues. This has use both in giving 

insight and as a test problem for our numerical code. 

•(vi) In §4.6 we analyze the full problem numerically. First we describe the method used, 

afterwards we present stability results for yield stress fluids. As expected, if the annulus 

is concentric, the results are comparable to the ones for Newtonian and power law fluids in 

an concentric annulus. In general it appears that introducing eccentricity has destabilizing 

effects. 

(vii) From our numerical results in the previous sections, we observed that all significant 

changes occur for long wavelengths. Thus in §4.7 we study the long wavelength asymptot-

ics of the stability problem. For long wavelengths it is possible to derive a semi-analytical 

expression for the eigenvalues. We also present an industrial application and make some 

comparisons with the results found in [59]. We find that interfacial instabilities are pre

dicted to occur only in the parameter space where the model in [59] predicts an unsteady 

displacement, i.e. a long finger on the wide side. 
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(viii) Finally, in §4.8 we investigate the effects of a spatial developing instability for a single 

fluid and two fluids along the annulus. It appears that any non trivial spatial perturba

tion admits spatially growing instabilities for the single fluid problem. For the two fluid 

problem we give a condition for instability in terms of two eigenvalue problems. We have 

not analyzed this problem further and will be considered as future work. 

In section §2.4.2, and for the qualitative results in the previous chapter, we have considered 

the limit e —> 0 in which the convective timescale is much longer than the viscous timescale. 

Here we wish to study the effects of transient coupling between the interface and velocity field. 

Therefore, we shall not assume e C l . 

4.1 Parallel multi-layer flows 

We study the stability of steady multi-layer flows, that arise as one fluid fingers past another 

during an annular displacement at unit flow rate. These basic flows are parallel to the £-axis, 

hence * = *(</>). We assume that the annulus is occupied by two fluids: fluid 1 occupying 

<j> S [0,fa) and fluid 2 occupying <j> e {faA\- The interface is denoted <j> = fa. We denote 

the rheological parameters of fluid k as rky, rrik & Kk for k = 1,2 . Our solutions are steady 

parallel solutions of (2.83). Hence Sk = (Sk,4>,Sk^) = (5^,0), and (2.83) implies that: 

^ 5 M = 0, (4.1) 

for the basic flow. By definition we have: 

_ dp pk cos (3 , . 
Sh*--Tz--sr-> (4-2) 

and with (2.89), this implies that the axial pressure gradient is continuous at the interface: 
|2 

= 0. dp 
~d~z 

Therefore the fluid layers are acted on by a constant pressure gradient, modified by an axial 

static pressure that is different in each section due to the density jump. Since Sk^ is independent 

of <j> and £, (by definition, we look for solutions independent of £), following [59] we may write: 

SW = A, S2,(p = A - b , (4.3) 
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where b is the buoyancy parameter, given by: 

, P2~ Pi 
b = — cos 8. 

St* H 

(4.4) 

Note that typically, in a cementing scenario where fingering occurs, 6 is negative: the heavier 

cement channels past the more viscous drilling mud that is left behind on the narrow side. The 

constant A represents the modified pressure gradient in the axial direction, within fluid 1, and 

must be found as part of the base solution. In order to find A we use (2.85), with Q = 1 (for a 

fixed unit flow rate), 

d4> i = * 
r<t>i d$> r1 

( 1 ) = / d<p + 
Jo d<t> fc=i 4 

dfa (4.5) 
fc=2. 

where, assuming the fluids are Herschel-Bulkley fluids, 

= sgn(A) { 

fc=i 

0, 

H mi+2 

/c1
11(mi+2) 

\A\ ~ TIX/H)MI+1 

\A\ < T1IY/H, 

TI,Y/H 
\A\ + (4.6) 

5* 
sgn(A - b) { 

fc=2 

Hm2+2{\A-b\ - 7 i £ ) " i 2 + i 

K^{m2 + 2)\A-b\i 

mi + 

\A\ > ny/H, 

\A-b\< T2,Y/H, 

T2,Y/H-

\A - b\ > T2,Y/H. 

(4.7) 

see [59]. Equation (4.5) is a nonlinear equation for A . It is straightforward to show that-

the integrals on the right-hand side increase strictly monotonically with A and that (4.5) has 

a unique solution A = A(fa), depending only on the interface position, on b, and on the 

rheological parameters of the two fluids. Given each A(fa), we can construct * from (4.6) & 

(4.7), by integrating with respect to cj> from <f> = 0. 

We shall denote the basic solution, constructed as above, by ^k,o, (or simply *o if only a single 

fluid is considered). In general tykflifi) is continuous in </>, with a jump in the first derivative 

(hence the axial velocity) at fa. We present some characteristic basic flows below. 

93 



Chapter 4. Stability of multi layer flows 

From (4.6) k (4.7) we can see that the basic flow depends on 9 parameters, rytk, «fc, mis, f° r 

k = 1, 2, b, e and </>j. The buoyancy itself depends on 4 parameters, pk, St* and /?. Although 

these do not appear in the base flow description, these parameters will appear individually in 

the stability problem that we derive later. In addition, this stability problem will contain a 

wavenumber and the time scale ratio e. Thus, in total our stability problem has a 14 parameter 

dependencies and this is the main difficulty of extracting useful information from the results. 

For simplicity we will consider the buoyancy as one parameter, and for the rest of the thesis we 

fix the Stokes number as St* = 0.1. 

Figure 4.1 shows the base parallel flow of two generalised Newtonian fluids with rheological 

parameters, Ty,\ = 2, «i = 2, m\ = 2, ry,2 = 1, « 2 = 1, wi2 = 1, 6 = —9.5, the eccentricity is 

0.4 and the position of the interface, denoted as fa, is at <f> = 0.5. The inclination of the well 

is j3 = 7T/10. AS we can see, both fluids are fully yielded, the pressure gradient and buoyancy 

forces are large enough to over come both Ty\ and Ty2- The stream function is continuous and 

a discontinuity on the axial velocity is observed at the interface. 

Figure 4.2 shows the basic parallel flow of a couple of fluids with rheological parameters, ry,i = 

0.5, Ki = 1, mi = 2, Ty,2 = 0.6, K2 = 1, m,2 = 1, b = —9.5, the eccentricity is 0.5 and fa = 0.5. 

The inclination of the well is (3 = TT/10. The pressure gradient and buoyancy forces are not 

sufficiently large to fully over come Ty2 along the narrow part of the annulus and a small mud 

channel forms. 

Figure 4.3 shows a worst case scenario. Here the rheological parameters are, TY,I = 1, «i = 1, 

mi = 2, T Y j 2 = 10, K2 = 1, m2 = 1, b = —28.5, the eccentricity is 0.8 and fa = 0.5. The 

inclination of the well is (3 = TT/10. Again, we increase the eccentricity of the annulus to 0.8. 

and clearly the pressure gradient and buoyancy forces are not large enough to overcome TY2 

and fluid 2 if completely static. 

Figure 4.4 is of purely mathematical interest, to our knowledge no experimental work has 

reported a case like this. The rheological parameters are,Ty:i = 7, K\ = 7, mi = 2, Ty,2 = 0.2, 

K.2 = 1, m2 = 1, 6 = 0,the eccentricity is 0.2 and fa = 0.5. For this case we have a fully vertical 
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annulus. Note that if we increase the eccentricity, the region where fluid 1 is flowing gets wider 

and the plug zone will break. 

Figure 4.1: Multilayer base flow, both fluids yielded at the interface. Rhelogical and physical 
parameters are: Ty,i = 2, « i = 2, p\ = 2, m\ = 2, T y i 2 = 1, «2 =T, pi = 1, m 2 = 1, e = 0.4, 
4>i = 0.5 and /3 = TT'/IO. 

I1 

Figure 4.2: Multilayer base flow, both fluids yielded at the interface, mud channel in the narrow-
side of the annulus. Rhelogical and physical parameters are: ryti = 0.5, K\ = 1, p\ = 2, m i = 2, 
7Y I 2 = 0.6, «2 = 1, P2 = 1, m 2 = 1, e = 0.5, ^ = 0.5 and [3 = TT/10. 
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Figure 4.3: Multilayer base flow, fluid 2 unyielded at the interface. Rhelogical and physical 
parameters are: iy,i = 1, «I = 1, p \ = 4, mi = 2, ry,2 — 10, K 2 = 1, P2 — 1, m2 = 1, e = 0.8, 
& = 0.5 and B = TT/10. 

Figure 4.4: Multilayer base flow, fluid 1 unyielded at the interface. Rhelogical and physical 
parameters are: Tyti = 7, K\ = 7, p\ = 1, m\ = 2, T y ) 2 = 0.2, K2 = 1, p2 = 1, m2 = 1, e = 0.2, 
<?!>i = 0.5 and /3 = o'. 
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4.1.1 Static mud channels 

For certain combinations of dimensionless parameters, it is possible for one of the fluids to be 

stationary, as we can see in Fig. 4.3. Physically, this occurs when the modified pressure gradient 

A , (or A — b in fluid 2), is not large enough to overcome the yield stress of the fluid. Since 

the modified pressure gradient is constant in each fluid layer and since H(<f)) decreases, yield 

stress fluids become static at the largest values of <§> in each layer, i.e. where the gap is smallest. 

It is therefore possible to have flows for which the fluid 1 layer or the fluid 2 layer is either 

partly or fully static. From an industrial perspective the flows within this category that have 

most interest are those in which fluid 2 is static, either partly or fully, i.e. there is a static mud 

channel. 

Let us consider a basic multi-layer flow of two fluids with specified physical properties, computed 

as described above, and how the type of flow may vary for different choices of fa. Since the 

minimal annular gap is at <f> = 1, where H = 1 — e, there can only be a static "mud" channel 

in fluid 2 if there is a static layer as fa —+ 1. The condition for this to happen is that: 

\A(fa = l ) - b \ < ^ - e . (4.8) 

Suppose that (4.8) is satisfied. We now ask what is the maximal azimuthal width of static mud 

channel that can exist. If the mud is static, then 

<9* f<Pi 
1 = /o 

dfa (4.9) 
fc=i io d<t>\ 

i.e. all the unit flow rate must flow through fluid 1, <f> G (0,fa\. Evidently as fa —> 0, if the 

mud remains static, then A(fa) —> oo since the unit flow rate is forced through an increasingly 

narrow azimuthal gap. It follows that for some fa, there will be a solution to 

^ - h \ = wty (4-10) 

which defines the smallest interface position for which the mud layer remains fully static. We 

denote this interface position by fa = fa,min, and the maximal azimuthal width of mud channel 

is therefore 1 - fa min- Let us now explore the parametric dependency of (4.8) and (4.10). 
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First, suppose (4.8) holds, so that there is a static layer. For fa > fa,min, the pressure gradient 

A(fa) is determined implicitly by (4.9). Evidently, sgn(A) = 1 and for AH > r̂ y we can 

rewrite (4.6) as 

d* 
k=l 

n,Y\MI \n,Y 

( A H _ \ m i + 1 (AH 
+ 

1 
\Ti,Y mi + 1 

„ , ,'AH\ mi + 2 
Jl,Y J 

(4.11) 

which at each <f> depends only on e, mi, Ajr\y and B\ = T\y/«i- Therefore, we see that (4.9) 

implies 
A(fa) 

T\,Y 
/(e,Bi,mi). 

Consequently, dividing (4.10) by r^y, we have 

H(fa^min) f(e,Bi,mi) 
n,Y 

T2,Y 

i.e. depends on (e,B\, mi, At, Ay), where 

Ah = ^ Av 
T"2,y 

(4.12) 

(4.13) 
T\,Y n,Y 

are the buoyancy ratio and yield stress ratio, respectively. The condition that (4.8) holds is 

now: 
Ay > (1 - e) /(e,Bi,mi) 

n,y 
(4.14) 

i.e. we have static mud channels if and only if the yield stress ratio exceeds a critical value that 

is dependent on (e,Bi,mi, A(,). 

Figures 4.5-4.9 show the effects of eccentricity on the magnitude of <&,min- As expected, if we 

increase the eccentricity of the annulus a mud channel will be left during the displacement in the 

narrow side of it. Rheological parameters play an important role as well, clearly if ry;2 > ry,i, 

i.e. Ay > 1, the pressure gradient necessary to overcome the yield stress of both fluids at the 

interface will not suffice to overcome the yield stress of fluid 2 in the narrow side of the annulus. 

Having as a result a decrease of the domain where fa^m = 1- The same phenomena will occur 

if either n2 > «i and p2 > Pi-
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Figure 4.5: Contour plot of < ,̂mm> eccentricity vs. yield stress of fluid one, buoyancy parameter 
equal zero. Rhelogical and physical parameters are: KI = 0.5, p\ = 1, m\ = 1, Typ = 0.5, 
K 2 = 0.4, p2 = 1, rn2 = 1 and 3 = 0. The zero level curve corresponds,to the equality of, 
condition (4.14), i.e. < )̂mjn = 1, the rest of the level curves correspond to different values of 
&,min when condition (4.14) is fulfilled. 

6 <1 • ' 
Av-(1-e)|l(e,B],m])-ABl=0 Av-(l-e)|l{e,BI1mI)-Aj>0 
No static tayer Static layer 

0.2 0.4 0.6 

Figure 4.6: Contour plot of 4>i,min, eccentricity vs. yield stress of fluid one, buoyancy parameter 
negative. Rhelogical and physical parameters are: K\ = 0.5, p\ = 1.1, m\ = 1, ry^ = 0.5, 
K2 = 0.4, p2 = 1, m,2 = 1 and 8 = 0. The zero level curve corresponds to the equality of 
condition (4.14), i.e. i^min = 1, the rest of the level curves correspond to different values of 
r^.min when condition (4.14) is fulfilled. 
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Figure 4.7: Contour plot of <foimm, eccentricity vs. yield stress of fluid one, buoyancy parameter 
positive. Rhelogical and physical parameters are: KI = 0.5, p\ = 1, m\ = 1, ry^ = 0.5, K2 = 0.4, 
P2 = 1.1, m2 = 1 and 8 = 0. The zero level curve corresponds to the equality of condition 
(4.14), i.e. <?!>iimin = 1, the rest of the level curves correspond to different values of <pi}min when 
condition (4.14) is fulfilled. 

Figure 4.8: Contour plot of 4>i<min, eccentricity vs. yield stress of fluid one, equal consistency. 
Rhelogical and physical parameters are: «i = 0.5, p\ = 1, m\ = 1, TY,2 = 0.5, « 2 = 0.5, p2 = 1, 
m 2 — 1 and 8 = 0. The zero level curve corresponds to the equality of condition (4.14), i.e. 
Si m i n = 1 the rest of the level curves correspond to different values of ^ ^ m i n 

when condition 
(4'.14) is fulfilled. 
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Figure 4.9: Contour plot of falTnin, eccentricity vs. yield stress of fluid one, consistency of fluid 
1 less than consistency of fluid 2. Rhelogical and physical parameters are: K\ = 0.3, p\ = 1, 
mi = 1, Ty-,2 = 0.5, K2 = 0.4, p2 = 1, m2 = 1 and [3 = 0. The zero level curve corresponds 
to the equality of condition (4.14), i.e. fa,mm = 1, the rest of the level curves correspond to 
different values of fa}min when condition (4.14) is fulfilled. 

4.1.2 Summary of results 

Solutions of a basic flow consists of solving a 1-D nonlinear equation, followd by integration 

of an algebraic relation to find \&. This computations depend on 9 different parameters, rygt, 

Kfe, rrik, for k = 1, 2, b, e and fa A case of industrial interest is when a static layer forms 

(see §4.1.1). Such flows occur only for interfaces fa > fa,mm, and for certain combinations of 

parameters. We have shown that fatmm depends only on 6 parameters, ry ,̂ for k = 1, 2, «i, 

mi, b and e. Therefore, provided that fa > fa,nun the flows depend only on a reduced subset of 

the dimensionless parameters. 

4.2 Stability of parallel multi-layer flows 

For the rest of this chapter we will work with the interface tracking model, defined in §2.5. We 

consider the stability of any of the parallel multi-layer flows in §4.1. We denote the transient 
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interface by, F = <p — fa(£,t) = 0. Our system of equations can be written as: 

V • [Sfc + pfcV*fc,t] = 0, mflk, (4.15) 

~d!T ~dqV~dJ = ' ^4> = fa(gt) (4.16) 

*i(0,^,t) = 0, • (4.17) 

*2(U,t) = 1, (4-18), 

%lfc= 2 = 0, at <£ = <&(£,£), (4.19) 

(Sfc + PfeV*fc,t) • n|JL2 = -6(l,tan/3sin7r<fo) • n, at <£ = <&(£,*), 

(4.20) 

We consider linear perturbation of these flows, assume normal mode expansions and transform 

to an eigenvalue problem, in the usual way. We denote the base flow solution from §4.1, by 

*fc — ^kfl(4>) & Sfc = (Sfci(̂ o,0), with interface position fa = fap, and recall that Sk,<j>,o is 

constant in each domain. For <5 < 1 we assume the expansions: 

*fc = ^k,o + 5^k,i+S2^>k,2 + - , 

Sfc = (£fc,,/,,o,0) + JSfcj + <52Sfc)2 + ... 

fa = fa,o + Sh + ..., 

substitute into (4.15-4.20) and expand in powers of 5. 

V* f c = (*fc,o,* + ̂ M , * + -.^fc,U + -) (4-21) 

|V*| = [(*fc,o,* + <J*M,* + -) 2 + (***,U + -) 2]' 

~ I*fc,o,*l+^gn(*fc,o,̂ *fc,i,̂ +0(̂ ). (4.22) 

When the fluid is yielded we find: 

Sfc,i = [xfc(|*fc,o,*l)^,i,*. (Xfc(l**,o,*|) + ! W 1 ) T | ^ M T ] ) (4-23) 

but otherwise Sfc is indeterminate: 

We see that the stability problem depends on 14 dimensionless parameters. First of all the base 

flows depend on the following 9 dimensionless parameters: T y ^ , Kk, mjt, for fc = 1, 2, b, e and 
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<f>i. Now the buoyancy parameter b is defined in terms of the two densities, pk, the inclination 

[3 and the Stokes number,, St. The densities and the inclination appear individually in.the 

above stability problem and therefore the full stability problem depends on 12 dimensionless 

parameters. Additionally, rather than solving the initial value problem above, we will take a 

normal mode expansion of the linear perturbation. This will introduce a 13th dimensionless 

parameter, the wavenumber in the axial direction. Finally, in the kinematic equation for the 

interface motion appears a 14th parameter e. Since this general situation is difficult to analyse, 

we start with some of the simplified scenarios. First we consider the stability of a single fluid 

along the annulus. 

4.3 Single fluid problem 

We commence with the flow of a single fluid along the annulus, and assume that the base flow 

of the single fluid is everywhere yielded, although the arguments following will also apply if 

the base flow is unyielded in a static layer on the narrow side of the annulus. The parameter 

dependence reduces greatly for this problem, now we only have 5 parameters to take into 

account: ry, K, m, e and the wavenumber a. The linear stability equation for the single fluid 

is: 

p(A*!)t = V • x'(l*o,*|)*i,*, 
X(l*0,*|) + T7 

(4.24) 

with boundary conditions: 

*x(0) = 0 = *i(l). 

We suppose a normal mode solution for * i : 

tf i ~ /(</>)ei(c*-st). 

Substituting \I>i into (4.24) we have: 

isp(D2 - a2)} = D[DfX'(\*0M ~ a-
2X(f*0,*|)+ jy 

(4.25) 
/ 
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where D = Multiplying (4.25) by /*, the complex conjugate of / , and integrating (by 

parts) with respect to <j>, we obtain: 

is[Jx+a2h] = J2 + a2I2, (4.26) 

where 

-fi = /% l / l 2 d* (4-27) 

k _ / V * ( l * ¥ V * d * (4.28, 
JO l*O,0| 

Ji = / p|£/|2d</, (4.29) 
Jo 

h = I \ D f \ 2

X ' ^ (4-30) 
Jo 

all of which are real positive definite. If we suppose that the normal mode is temporal, i.e. a > 0, 

then clearly s = is/ is imaginary and the growth rate s/ < 0, so that the flow is linearly 

stable. Therefore, temporal instability can only occur for the multi-fluid problem, i.e. due to 

the presence of an interface and the jump conditions found there. 

In Figure 4.10 we show the spectrum of problem (4.25) with rheological parameters, Ty,\ = 1, 

K\ = 1, mi = 1, pi = 0.5, on the left-hand-side and p\ = 1, on the right-hand-side. We show 

our results in the following order, first we plot the spectrum as a —> 0, from (4.25) we may 

simply derive the analytical bound for S j , the upper and lower analytical bounds are defined 

by: 

— maxx' < Si < —minx', (4-31) 

The argument of x' is |*o,<̂ |(̂ ) a n d the max and niin are taken over <f> £ [0,1]. It has been 

shown that x' > 0, thus it is clear that the imaginary part of the temporal normal mode is 

always negative for a small . 

Second, the pictures in the middle of Figure 4.10 show the maximum of the imaginary part of 

the eigenvalues for varying wave number a. 
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Figure 4.10: Spectrum of the temporal normal mode with lower and upper bounds as in (4.31) 
& (4.32), figures on the leftrhand-side show a fluid with rheological parameters: left-hand-side, 
7 y ( 1 = 1, K\ = 1; p\ = 0.5, mi = 1, e = 0.4 and 8 = 0 on the right-hand-side we only change p\ 
to 1. 
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Finally, we show the spectrum as a —> oo. Here from (4.25) we can derive: 

max(x + TY/H) < min(X + Ty/H) 

min|^| - 1 - max|*'0| ' [ ' ' 

as we know, X + TY/H has been defined as the absolute value of the modified pressure gradient, 

thus a positive quantity. 

4.4 Two-fluid eigenvalue problems 

We have seen above that any single fluid parallel flow is linearly stable to spatially periodic 

temporal perturbations. We ask therefore, whether the presence of an interface between two 

parallel streams can linearly destabilise this flow. The linearised equation for is 

V • [Sfc,i + AbVtyfc,i„i] = 0, inftfc, (4.33) 

with Sfc,! defined by (4.23) when yielded. The kinematic equation and boundary conditions 

are: 

—h + #fc,u + ̂ kfldh = 0, at <p = <&,o (4.34) 

*i,i(<U,t) = 0, (4.35) 

* 2 , i ( U , i ) = 0, (4.36) 

The jump conditions (4.19) k. (4.20) are linearised, first about the basic flow and secondly onto 

the basic flow interface position. Thus, at 0(6), condition (4.19) becomes 

(*fc,i + /i*fc,o,*)|fcI2 = 0, at 0 = ̂ ,o, (4.37) 

and we note that it is the derivative of this quantity with respect to £ that appears in (4.34), i.e. it 

is irrelevant which fluid is considered for the kinematic condition. Expanding (Sfc + Pk^^k,t) n, 

about (j) = 4>ifi w e have: 

[Sfc + PfcV*fc,t] • n ~ Sk,o,(j> + Sh^Sk,o,4> + 5Sk,i,(i, 

+Pfc[*fc,o,tft + Sh^kfiMt + s^k,i,4>t\ at <j> = fop 

(I,tan/3sin7r0j) • n ~ 1 — Sh^ tan 8sinnfafi 
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Noting that Sk,o,<t> 1 S independent of <f> and ^k,o independent of t, at 0(5), condition (4.20) 

becomes 

(S'fc,!,̂  + Pfc*fc,i,̂ i)lfc=i = Wig tan/3sin 71-^0, at <f> = 4>ifi, 

(4.38) 

We consider first the case where both fluids are yielded and mobile throughout the annulus and 

subsequently those cases when a fluid layer contains static regions. 

Mobile fluids 

In this case Sk,i is defined by (4.23) and the stability problem, consisting of (4.33-4.38), is posed 

on the entire fluid domain. We assume a normal mode solution: 

i,fc 

and substitute into (4.33)-(4.38) to give: 
T\,Y 

£ [ X 2 ( l * w l ) I ? / 2 ] - a 2 

isPl(D2 -c?)h 

isp2{D2 - o?)f2 

0, 

0, 

and at 
H 

sh0 + a(fk + */c,o,0̂ o) = 0, 

(fto*o,M + /fc)li = °> 

[(Xk(\Vo,k,<j>\)-ispk)Dfk]\lJl = iabho tan (3 sin ir<f>ifi 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

In general, it is necessary to solve the eigenvalue problem (4.39)-(4.45) computationally. We 

discuss results for this in §4.6. 
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We note that for temporal stability we may consider a^O, since if a = 0 then (4.43) implies 

that either s = 0 (in which case /fc = 0 and the perturbation is trivial), or instead ho = 0. 

For = 0, following the procedure in §4.3, we may multiply by /£, integrate across each fluid 

layer, sum the resulting expressions and show that s = isj with sj < 0. The interfacial terms 

cancel by virtue of (4.44) & (4.45), which simplify considerably. 

Static mud channel problems: 4>i > 4>i,min 

In this case fluid 2, on the narrow side, is completely unyielded and hence static. Therefore, 

for (f> > fa we have 

32,0 < 
H(4>iY 

By choosing 5 sufficiently small we may ensure that 

T2.Y |S2,o + 5S2,i| < 
H(faY 

so that that fluid 2 remains unyielded. In this case, the interface does not deform under a linear 

perturbation and we have again a single fluid problem: 

D[xi(|*i,o,*IWi]-a2 
xi ( l*wl) + ! ^ r i 

fi, = isPl{Dz-al)h 
l*i,o,*l 

> 6 ( 0 , ^ , 0 ) (4.46) 

/i(0) = 0, ' (4.47) 

/i(&,o) ' = 0, (4.48) 

As in §4.3, we can multiply through by / j \ integrate over (0 ,^,0) , and establish that these 

flows are linearly stable to temporal perturbations, but unstable to any non-trivial spatial 

perturbation. 

Partly static fluids 

In this case we first suppose that fluid 1 is fully yielded and fluid 2 is part yielded and part 

unyielded. We discuss afterwards the other possibilities. Therefore, we have a yield surface at 

say 4>2,Y where 

<t>2,Y = 02,y,O + &/>2,Y,l(£, *)> 
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with fayfi the yield surface of fluid 2 in the base multi-layer flow and 5fayt\(£>,t) is the linear 

perturbation of the yield surface. Note that fa < fay < 1 and fa < fa,min-

As 4> —> fatY fluid 2 becomes unyielded across the annular gap and static, i.e. 

1X7*21-* 0 as <j>-^fatY.. 

Expanding each component to 0(5) and linearising onto fayfl, we have that: 

* 2 , u + <A2,y,i(^i)*2,o,^ = 0, at <f> = fayfi, (4.49) 

* 2 , u = °' at (A = </>2,y,o. (4.50) 

Equation (4.50) leads to the boundary condition, / 2 = 0 at <j> = fayfl, for the normal mode. 

This condition is the same as (4.42). Equation (4.49) simply describes evolution of the yield 

surface once the stream function perturbation is known. As in other linear stability analyses 

of yield stress fluids, [27, 28], the yield surface perturbation plays an essentially passive role, 

in that the same boundary conditions are satisfied with or without the yield surface. On the 

other hand, its worth noting that the yield stress affects the stability problem; via the basic 

flow and (here) via definition of the yielded region. 

Our eigenvalue problem is identical to (4.39)-(4.45), but replacing (4.40) & (4.42) with : 

T2,y 
^2 | ^ 2 0 4> \) —— 

£>[X2(l*wl)Dh\ - o? ^ r ^ - l / 2 , = isp2(D'-a*)h l*2,0,*l 

4> G (fafi, fayo) (4.51) 

Hfayfi) = 0, (4.52) 

i.e. only the domain of the fluid 2 problem is changed. 

The other situation to consider is that in which fluid 1 is partly unyielded. Since H(fa) decreases, 

the criterion |Si| < T \ y / H will be met in some layer <p G (<Ai,y,o, fa) for the basic flow. It follows 

that |Si | < Tiy/H at the interface, for the base flow, and hence that for sufficiently small 5 
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the interface does not yield under the perturbation. The stability problem in fluid 1 becomes: 

i V111M/1 n^,i) -t-

U[xi(|*W|)I>/i]-a2 
Xi(l*i,o,*l) + • R 

h , = ispi{D2-o?)h l*i,o,*l 
0€(O,0i,y,O) (4.53) 

with boundary conditions (4.41) and 

/I(0I,Y,O) = O. (4-54) 

For fluid 2, we have either (4.40) or (4.51), depending on whether the base flow of fluid 2 is 

fully or partially yielded. In either case, fc{4>i) = 0, since the interface is not deformed, and 

either (4.42) or (4.52) is satisfied at <f> = 1 or <j> = <j>2,Yfi, respectively. 

Neither of these cases is of any interest. For both, we may follow §4.3, multiply the fluid k 

equation by /£, integrate across the domains and establish that the flows are linearly stable. 

Summary 

To summarise, the only base flows that may be temporally unstable are: (i) two fully yielded 

fluid layers; (ii) fluid 1 fully yielded and fluid 2 partly yielded (i.e. a static channel on the narrow 

side, wholly contained within fluid 2). Stability of the other base flows essentially reduces to 

the stability of one or more independent single fluid layers. 

4.5 Analytical simplifications 

Analytical progress is possible only in limited cases. One of these cases is when the annulus is 

concentric and consequently the base velocity is constant in each fluid layer. The simplest case 

is when there is no yield stress. 

4.5.1 Newtonian fluids in a concentric annulus 

For two Newtonian fluids in a concentric annulus (H(<p) = 1), we find: 
. 6 «i b 

1 + (1-</>i,o)~— 0»,OQ— 
*o^ = • % * W = * t ' V ' (4"55) 

4>i,0 + (1 - <Pi,0)— <Pi,0 + (1 - <Pi,0) — 
K2 K-2 

110 



Chapter 4. Stability of multi layer flows 

The two fluid layers are mobile and in fluid k, Xk and |V\I/| are related linearly by: Xk 

3/«fc|V*|. Therefore, (4.39) & (4.40) become 

( 3 M - V i s ) C D 2 - a 2 ) / i 

(3«2 - ip2s)(D2 - o?)h 

0, 

0, 

<f> e (0,fa,o) 

<i> e (fa,o, 1) 

We note that if (ink — ipks) = 0, then sj < 0 and these modes are stable. Therefore, for 

instability we may assume that (3«fc — ipks) ^ 0, and interestingly observe that the eigenvalue 

s does not appear in the field equations, but only the jump conditions. This degeneracy is 

peculiar to the Newtonian case. The solutions that satisfy (4.41) & (4.42) are: 

fi{fa) =Ai sinha0, f2(fa) = A 2sinha(0-1), (4.56) 

for constants A\ & A2. We may assume that ho ^ 0, write A\ = hrjCit ^42 = hoC2 for constants 

Ci & C2, and divide (4.43)-(4.45) by hQ. From (4.43) & (4.44) we find 1 

Ci 

C2 = 

1 

sinh a fa o 
1 + 

a e fafi + (l-fafi) 

sinha(̂ i,o - 1) 

« l 

«2 
6 

«2 3/t2 

0i,O 

a e fafi + (1 - & , o ) 
«2 

Finally, substituting into (4.45), we find the following quadratic relation for s: 

i tan B sin nfa o 
3/t2 

•cotha^n 
ac 

1 + 

0i,O + (1 - fa,o) 

• cotha(fafi — 1) 

K2 

b 

K l • Pi 
Z S — 

K 2 3 K 2 

K l 

« 2 3K 2 

02,0 

a £ 0i,O + (1 - 0i,O) 
K2 

1 — is P2_ 
3 « 2 

(4.57) 
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Figure 4.12: Maximum imaginary part of s vs. a . Rheological and physical parameters are: 

« i = 1) Pi = 1) P2 = 1 e = 0.0, <fii = 0-5 and (3 = 0. 
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Figure 4.14: Maximum imaginary part of s vs. a. Rheological and physical parameters are: 
K l = l,e = 0.0, fa = 0.55 and f3 = 0. a) px = 1, P2 = 0.75. b) pi = 1, p2 = 1.25. 
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Figures 4.11 and 4.12 show the maximum imaginary part of s as a function of the wave length 

a. As we can see, buoyancy is a key parameter for instability to arise. In the absence of 

any density difference, it appears that viscosity differences are not strong enough to drive an 

unstable behaviour. Thus, it seems that we need the velocity difference at the interface to be 

sufficiently large for instabilities to appear. Note the difference between the results found by 

Raghavan & Marsden, [62], and ours. They showed that for a horizontal multi-layer parallel 

flow in a porous media in the presence of density difference, if the heavier fluid was in top of 

the lighter one, the flow was unstable for all viscosity ratios, if the case is reversed, the lighter 

on top of the heavier, they claim that the flow will be unstable only for large viscosity ratios 

(the more viscous on top of the less viscous). For the vertical parallel flow, buoyant forces play 

a key role in defining the jump in the tangential velocity. 

Figures 4.13 and 4.14 show the effect of the interface position on the stability of the flow. 

Clearly, effects of this position are not of great importance, for a concentric flow. 

Figure 4.15 shows the effect of inclination of the annulus. As expected, in the presence of 
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buoyancy, the flow may be unstable if the heavier fluid is on top of the lighter one, i.e. p\ > p2. 

If we have positive buoyancy, i.e. p\ < p2, then the inclination has stabilizing effects. 

Another case for analytical progress is when there is no yield stress but the power law index n 

is less than one. Again we will assume that the annulus is concentric and that the base velocity 

is constant in each fluid layer. 

4.5.2 Power-Law fluids in a concentric annulus 

Because the base velocity is constant in each fluid layer, we find: 

\A\mi \A — b\m2 

where A is the modified pressure gradient defined in (2.57) and b is the buoyancy. We can find 

A{4>i) from: 

I A\mi 14 — h\m2 

In general (4.58) has to be solved numerically. The two fluid layers are mobile and in fluid k, 

from the definition of Xk, a n d having no yield stress we see that: 

Xi{\*o,*,i\) = \A\ X2(|tto,*l2|) = \A - b\. (4.59) 

Using (4.59) we can find an explicit expression for x'k m terms of A , 

, , . T ., <1(mi + 2) .. K2™2(m2 + 2) 

and 
Xi(l*o,*,il) = «r(mi + 2) X2(|*0A2l) = < 2(^ 2 + 2) 

|*o,*,i| l^l"11-1 l*0A2l \A-b\^-i • y • > 
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Substituting (4.60) & (4.61), into (4.39) & (4.40), we get 

DVi_q2 /^*>-wry\ = 0, ,e(0,,(0) (4,2) 

V 1 21+)-Mmi-w 

D h-a — m = 0, 0G(<Pi,o,l) (4-63) 

with boundary and jump conditions: 

/i(0) = 0 (4.64) 

/2(1) = 0 (4.65) 

(4.66) 
• L * • , / K

m i (m 1 + 2) \ /K 2

n 2 (m 2 + 2) \ 

(4.67) 

and the kinematic condition 

— + H / l + o s g n ( + a ( / i + /iosgn(A) j T O l' ' , 0 , ) = 0 at 0 = &,0 (4.68) 

Solving (4.62) & (4.63) with (4.64) & (4.65) respectively we have: 

/1(0) = Ci/iosinhAir\ /2(0) = C2/i0sinhA2(</>-l), (4.69) 

for constants C\ & C 2 and 

A2 = ^ f ^ ( m i + ^ - t l ^ - V t S 

A 2 = a 2 / / t 2 " 2 ( ^ 2 + 2 ) - i ] A - 6 r - y 2 S 
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Assuming that ho ̂  0, and using (4.68) we can find an expression for C\, 

C l = _ 1 (s sg*(A)\A\mi' 
s i n h A i ^ j \ae KMI ( m i +2))' 

In a similar way, using the first jump condition, (4.66), and the definition of C\, we can find an 

expression for C2, 

C2 = -r 
s sgn(A-b)\A-b\m* 

sinhA20j \ae K2
n2{m2 + 2) 

Using the definitions of C\ & C2 and (4.67) we find a non-linear equation for s, 

iabho tan 8 sin IT fa o 
«7 l l (mi+2) 

m i l ^ l ™ ! - 1 

K 2
n a ( m 2 + 2) 

m2 
A|m2-1 

• pis 

P2S 

Ai 
tanh Ai<; 

A2 

tanh A2<j 

s sgn(A)\A\* 
ae KMI(MI + 2) 
s_ _ sgn(A- b)\A -b\m* 

c7e~ K%2{m2 + 2) 

(4.70) 

10 20 30 40 50 40 

(a) (b) 

Figure 4.16: Maximum imaginary part of s vs. a. Rheological and physical parameters are: 
KI = 1.5, K2 = 1, e = 0.0 and 8 = 0, mi = 1.5, m2 = 2. a) fa = 0.5. b) fa = 0.6. For b < 0, 
p\ = 1 and p2 = 0.75, for b = 0, p\ = 1 and p2 = 1 and for b > 0, p\ = 1 and p2 = 1-25. 
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0.4r 
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11 , , , , , 
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Figure 4.17: Maximum imaginary part of s vs. a. Rheological and physical parameters are: 
K\ = 1.5, K2 = 1, e = 0.0, fa = 0.5 and (3 = TT/8, mi = 1.5, m2 = 2. For b < 0, p\ = 1 and 
P2 = 0.75, for b = 0, p\ = 1 and p2 = 1 and for 6 > 0, pi = 1 and p2 = 1.25. 

Figure 4.16 shows the maximum imaginary part of the spectrum as a function of the wave 

number a. We have considered two interface positions, as in the Newtonian case, fa does not 

play an important role in the stability of the flow. For Newtonian fluids, we observed that if 

fluid 1 was more viscous than fluid 2, but fluid 2 heavier than fluid 1, i.e. buoyancy effects 

dominating viscous effects, the flow was unstable. We have the same phenomena for power 

law fluids and as for the Newtonian case, it seems that in the absence of density difference the 

viscous effects are not strong enough to drive an unstable behaviour. 

Finally, Figure 4.17 shows the destabilizing effects of inclination if heavier fluid 1 is on top of 

lighter fluid 2. Even if fluid 1 is more viscous and with lower power law index than fluid 2, stable 

cases from previous figures, instability arises. In this type of flow, buoyancy and inclination are 

the key factors for unstable behaviour. . 

Now we can proceed with the investigation of the full problem, i.e. yield stress fluids in an' 

inclined eccentric annulus. 
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4.6 Numerical Results 

In this section we present numerical results for the eigenvalue problem, 

D [ x i ( l * w I W i ] - « 2 

£[x2(l*2,o>l)Af2]-a2 

isPl(D2 - a 2 ) h 

isp2(D' - c O / 2 

0, 

0, 

and at Pi,Q-

H 
sh0 + a(fk + ^k,o,4,ho) = 0, 

(Ao*o,M + Jfc)li = 0, 
k=2 

[(Xk(\^o,k,<t>\) ~ ispk)Dfk] k = l = iabh0 tan j3sinirfa,0 

(4.71) 

(4.72) 

(4.73) 

(4.74) 

(4.75) 

(4.76) 

(4.77) 

4.6.1 Numerical Method 

In this section we give an outline of the method used to solve system (4.15)-(4.20). We use 

a spectral method, which is a global method that uses the fully discretized stability operator 

that later on can be supplied to a matrix eigenvalue solver which gives us the spectrum. We 

have chosen to use Chebyshev expansions to discretize our problem. The use of Chebyshev 
o 

polynomials, especially in bounded domains, have been very effective and accurate for the 

discretization of initial and boundary value problems, see [66]. 

Chevyshev polynomials 

Chebyshev polynomials may be defined in several ways, e.g. 
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• In terms of trigonometric functions: 

Tn{y) = cos(n arccos(j/)). 

• As solutions of the following Sturm-Liouville problem, 

( v^Ar . ( y ) ) + - ^=r B ( y ) -o . 
dy Vv " dy-"""J 

• As a recurrence relation, 

T0(y) = l, Ti(y) = y, ... ,Tn+1(y) = 2yTn(y) - Tn_i(«). 

For numerical reasons, we will use the trigonometric representation which is the most practical. 

The method is summarized as follows: 

• Approximate /i(y) and J2{y) using a Chebyshev expansion, 
N 

fk(y) = J2anTn{y), 

and evaluate the Chebyshev polynomials at the extrema of the iV-th Chebyshev polyno

mial, given as 

yj = cos ^ 

which are known as the Gauss-Lobatto points. Note that y € [—1,1] and that <j> e [0,1] so 

we use the following change of variables so we can work with the Gauss-Lobatto points, 

. ... Oil) 
2 

-(-fa + <Pv)y + (4>i + 4>Y) 

for 0 6 [0,(pi], 

for (p G (<pi,l], 

where 4>i is the position of the interface between the two fluids and <py is the position of 

the yield surface, if any. Observe that if fluid 2 is completely yielded, then <py = 1. 

After discretizing in this way, we have as a final result the following eigenvalue problem 

in discrete form, 

Aa = cBa. 
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We chose to implement the boundary, jump and kinematic conditions on the first, last 

and next-to last row for fi(<fi) matrices and on the first, second and last row for f2{4>) 

matrices. In the case of boundary conditions, we implement them only on the first and 

last row of B. These same rows in matrix A are chosen to be a complex multiple of the 

corresponding rows in B. In this .way, the resulting spurious modes associated with the 

boundary conditions can be mapped to an arbitrary location in the complex plane. 

Code validation 

>l 1 1 1 1 1 -0.21 1 ' ' 1 1 

"0 10 20 30 40 50 0 10 20 30 40 50 
a a 

(a) (b) 

Figure 4.18: Maximum imaginary part of s vs. a. Inclined annulus. Rheological and physical 
parameters are: «i = 1.5, K2 = 1, m\ = 1, m2 — 1, b = —1 and 3 = 0. a) Exact solution, b) 
Numerical solution. 

We validate our code with-the exact value of the maximum imaginary part of the spectrum, for 

2 Newtonian fluids, which is given by (4.57). The absolute value of the error values at each a is 

presented in Table 4.1 and the numerical and analytical values are compared in Figure (4.18). 

Following, we present our numerical results for the full problem. 
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a maxsj exact maxsj numerical Error 

0.001 -1.327407374138356E-8 -2.151373954828488E-8 8.239665806901317E-9 

0.501 -3.284347465794034E-3 -3.284348381546957E-3 9.157529227109273E-10 

1.001 -1.256769763479928E-2 -1.256769663542340E-2 9.993758789267337E-10 

1.501 -2.638888993138258E-2 -2.638889188681512E-2 1.955432531175472E-9 

2.001 -4.280735057269110E-2 -4.280735611097798E-2 5.538286877715404E-9 

2.501 -5.993596650918038E-2 -5.993596650695535E-2 2.225025719226892E-12 

3.001 -7.634083070570413E-2 -7.634083068837617E-2 1.732795851250302E-11 

3.501 -9.117814039039307E-2 -9.117814032189228E-2 6.850078837494777E-11 

4.001 -1.041107832784735E-1 -1.041107832084426E-1 7.003088386969836E-11 

4.501 -1.151352471298047E-1 -1.151352470885577E-1 4.124704744423724E-11 

6 -1.387140792107665E-1 -1.387140792299231E-1 1.915664848972654E-11 

8 3-1.560598543973128E-1 -1.560598543900940E-1 7.218753372839615E-12 

10 -1.653734816055713E-1 -1.653734815152703E-1 9.030104441976050E-11 

12 -1.708225692269705E-1 -1.708225692174500E-1 9.520467747492489E-12 

14 3-1.742498623405992E-1 -1.742498624152761E-1 7.467687579421067E-11 

16 -1.765335018738152E-1 -1.765335016295237E-1 2.442915036926507E-10 

18 -1.781267104457814E-1 -1.781267104777813E-1 3.199993048319527E-11 

20 -1.792802857595362E-1 -1.792802855209202E-1 2.386159325684645E-10 

22 -1.801413773516178E-1 -1.801413771880445E-1 1.635732937987910E-10 

25 -1.810736771505876E-1 -1.810736770116384E-1 1.389492687575711E-10 

28 -1.817271639851303E-1 -1.817271639827821E-1 2.348121697082206E-12 

31 -1.822025801255159E-1 -1.822025804615425E-1 3.360265676821683E-10 

34 -1.825590619823075E-1 -1.825590618802357E-1 1.020717121935633E-10 

37 -1.828331366144432E-1 -1.828331366346426E-1 2.019936995445448E-11 

40 -1.830483364567075E-1 -1.830483481665764E-1 1.170986885234981E-8. 

Table 4.1: Code validation. Absolute value of the error between analytical and numerical 
results. 
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4.6.2 Yield stress fluids 

Figure 4.19 shows the effects of yield stress and interface position on the flow in a concentric 

annulus. As expected, because both fluids are yielded at the interface, yield stress does not 

appear to have a large influence on the stability of the flow, and nor does interface position. 

Only viscous and buoyant forces govern the unstable behaviour. The results are very similar to 

those of the Newtonian fluids in Figures (4.11)-(4.14). 

Figure 4.20a) shows similar behaviour as for Newtonian fluids, compare with Figure (4.15). As 

above, both fluids are yielded at the interface. Figure 4.20b) shows the effects of inclination of 

the annulus. As in the Newtonian case, if the heavier fluidl is on top of the lighter fluid 2 the 

flow will be unstable. 

(a) (b) 

Figure 4.19: Maximum imaginary part of s vs. a. Rheological and physical parameters are: 
KI = 1.5, K2 = 1, e = 0.0 and 8 = 0, mi = 1, mi = 1, ry^ = 0.9 and Tyti = 0.7. a) fa = 0.5. b) 
fa = 0.6. For b < 0, p\ = 1 and p2 = 0.75, for b = 0, p\ = 1 and pi = 1 and for b > 0, p\ = 1 
and p2 = 1.25. 
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(a) (b) ; 

Figure 4.20: Maximum imaginary part of s vs. a. Rheological and physical parameters are: a) 
K\ = 1.5, re2 = 1, e = 0.0, fa = 0.5 and 8 = 0', mi = 1, m2 = 1, ryj = 0.7 and ry]2 = 0.9. 
b) «i = 1.5, K2 = 1, e = 0.0, & = 0.5, /? = ir/8, mi = 1, m2 = 1, ry,i = 0.7 and ryi2'= 0.9., 
mi = 2, m2 = 1.5. For b < 0, p\ = 1 and p2 = 0.75, for 6 = 0, p\ = 1 and p2 = 1 and for b > 0, 
pi = 1 and p2 = 1.25. 

Following this line of reasoning, if we have a concentric annulus and both fluids are yielded at 

the interface, changes in power law index will lead us to qualitatively similar results as for power 

law fluids, as examined in §4.5. Next we will study the effects of eccentricity in the stability of 

the flow. 

Figure 4.21 shows the effects of eccentricity on the flow. As we can see, eccentricity has desta

bilizing effects if 6 < 0 and stabilizing effects if b > 0. This may be explained as follow. We are 

considering flows for which both fluids are yielded at the interface. Now, when we increase the 

eccentricity, we need a higher pressure gradient to overcome the yield stress of fluid 2, note that 

we assume that fluid 2 is on the narrow side of the annulus. If fluid 2 is less viscous but heavier 

than fluid 1, the velocity difference between both fluids will decrease due to the fact that the 

heavier fluid is flowing in the narrow part. Having the opposite situation, the less viscous and 

lighter fluid in the narrow side, the velocity difference will increase and instabilities will arise. 
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0.15r 0.5. 

(c) (d) 

Figure 4.21: Maximum imaginary part of s vs. a. Different positions of the interface between 
the fluids. Rheological and physical parameters are: K\ = 1.5, K 2 = 1, e = 0.0 and 3 — 0, 
mi = 1, m2 = 1, 7y , i = 0.9 and 7 y i 2 = 0.7. a) e = 0.2. b) e = 0.4. c) e = 0.6. d) e = 0.8. For 

6 < 0, pi = 1 and p2 = 0.75, for b = 0, pi = 1 and p2 = 1 and for b > 0, pi = 1 and p2 = 1.25. 
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-6 

.§i 1 1 1 
-0.5 0 0.5 1 I 

i 

(a) 

1| r- , , , 1 2.5, 

(b) (c) 

Figure 4.22: Spectrum and eigenfunctions for system (4.39)-(4.40), a = 0.5. Rheological and 
physical parameters are: «i = 1.5, K2 = 1, mi = 1, m 2 = 1, -Ty,\ = 0.9, 7y,2 = 0.7, negative 
buoyancy, e = 0.4 and 8 = 0. a) Spectrum of the eigenvalue problem, b) Eigenfunctions of the 
interfacial mode, solid"line shows the real part of f\ and f2, dashed line shows the imaginary 
part of fi and f2 and dashed thick line shows the magnitude of fi and f2. c) Eigenfunctions of 
an interior mode, solid line shows the real part of fi and f2, dashed line shows the imaginary 
part of fi and f2 and dashed thick line shows the magnitude of fi and f2. 
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Lastly in Figure 4.22a) we show the spectrum of the problem with rheological and physical 

parameters K\ = 1.5, K2 = 1, mi = 1, m2 = 1, Tyti = 0.9, ry^ = 0.7, negative buoyancy, 

e = 0.4 and 8 = 0 for wave length a = 0.5. Clearly, we have only one unstable mode, the 

interfacial one. We proved in §4.3 that the problem of a single fluid is always stable, thus if we 

are away from the interface all the modes are negative. In Figures 4.22 b) and c) we show the 

eigenfunctions for the interfacial mode and an interior mode respectively, note the big jump at 

the interface for the interfacial eigenfunction this may be due to the large difference in the base 

velocities when instability is present. 

Another interesting point that it is worth to mention is that all significant changes occur for 

long wave lengths. This is also in agreement with our model derivation. Recall that our model 

neglects all the behaviour at 0(6*), thus a » 1 will fall into this regime and our model loses 

validity. Therefore we will concentrate in the limit a —> 0 by studying the long wave length 

asymptotic behaviour of our problem. 

4.7 Long wavelength asymptotics 

First, we consider the flow of two Newtonian fluids in a vertical or near vertical concentric 

annulus. 

4.7.1 Newtonian fluids 

We are interested in the behaviour of the solution of (4.57) for small a, and we have seen that 

s —> 0 as a —> 0. Thus we assume that, 

s ~ as\ + a2S2 + ••• 

Let us use the series expansion for coth(aj) around zero, substitute all these into (4.57) and 

collect first order terms, then 
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0(1) problem 

kfi - —(<i>i,0 - 1) ) Sl + e ( *0,1,* — (<t>ifi - 1) - *0,2,tf<fo,0 ) = 0 
K2 I \ K2 

Thus, 

e ^*o,i,* (̂l " &,o) + *o,2,*&,o) 
S l = v r. Kl \ '- (4-78) 

4>i,0 H (1 - <Pi,o) ) 
«2 / 

which is a real value. To determine the sign of Si in general is hard, since (4.78) depends on 6 

parameters, «i, n2, pi, P2, St* and 4>i$- Now, we continue to the 0(a) problem. 

O(a) problem 

Collecting 0(a) terms, we have the following equation for s2, 

% \ • 2 ( P2 1 Pi 1 
e\<pifl-l 4>iflJ \3K2 e(cj>ifi -1) 3/t2e<fo,0 

\3K2<Pi,0 . 3«2 (<pi,0 - 1) 

4- «~—tanpsin7r</>jo, 
6K2 

Therefore, 

P2 , 
S2 = ISi I Si I 0iO 

1 \3K 2 ~ ^,0)^,0 tan/?sin7r ,̂o 

*i,o + £(l-&,o) ' ( 7 9 ) 

Clearly, s2 is pure imaginary and in the presence of negative buoyancy, i.e. fluid 1 heavier and 

in top of fluid 2, and some inclination, i.e. 8 ̂  0 the flow may be unstable. On the other hand, 
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if we consider a vertical parallel flow, then the stability curves will be determined by the sign 

of s\. For example, let us assume for the moment that si > 0, thus 

Substituting (4.78) and after some algebra, we have 

e<pifl (— — (Vox* - *o,2,*) + (*o,2,̂  - ^.l,*)) > 0, (4.80) 
\Pl «2 / 

the inequality is reversed if s\ < 0. 

This will lead us to 2 cases, 

1.) Case 1, 

thus 

(*o,2,* " *o,i,*) > 0, 

b 

< (4.81) 
«2 P2 

2.) Case 2, 

thus 

(*0,2,* - *0,1,*) < 0, 

K l - «2 > jj 

^ > (4.82) 
«2 P2 

If S i > 0, the cases are analogous with the inequalities reversed. 

From these expressions we can see that it is quite difficult to determine the sign of si in a general 

way, the 5 parameter dependency makes the analysis very difficult. In spite of this difficulty, we 
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can infer that the jump in the base velocity is the principal physical cause for the interface to 

be unstable, i.e. if the jump is sufficiently large, instabilities arise. This translates as follows, 

the jump in the base flow is governed by viscosity difference, buoyancy and interface position̂  

thus, both viscosity and density ratio play a decisive role in the instability of the flow. It is 

worth to mention that this phenomena is not comparable to Kelvin-Helmholtz instabilities, see 

e.g. [18]. This classical instability involves two inviscid fluids one in top of the other, here only 

inertia, which we have neglected, governs the instability. In [33] the authors describe what they 

call Kelvin-Helmholtz-Darcy instability. They consider parallel flow in a horizontal Hele-Shaw 

cell, one of the fluids is a gas, the other is a liquid. They report that the instability is only 

governed by inertia and that the viscous effects govern the wave velocity and the growth rate 

only. Our problem concerns the parallel flow of two viscous fluids in a vertical Hele-Shaw cell 

and even though the nonlinear inertial terms are absent, instabilities arise and are governed by 

density and viscosity differences. The only possible comparison between the Kelvin-Helmholtz 

instability and the Kelvin-Helmholtz-Darcy instability with the one found in the previous work 

is that without difference in velocity the flow is neutrally stable. When we move to the problem 

of a near vertical Hele-Shaw cell, we see that the viscosity ratio no longer plays an important 

role on the stability of the flow if the heavier fluid is on top of the lighter one, b < 0 case. This 

behaviour is seen in (4.79). If b < 0 the last term of the right hand side of (4.79) will be always 

positive. 

Numerical example 

Figure 4.23 shows the contours of the imaginary part of s2 with respect to p2 and /t2. We have 

fixed K\ = 1, pi = 1, e = 0.0, fa = 0.5 and [3 = 0. This is in full agreement with our analytic 

results. One thing is worth to mention is that when we have the isodensity case, i.e. b = 0, the 

flow will be always stable. This is easily seen, if = 0 and for example, (*o,2,</> — *o,i,4>) > 0, 

from (4.55) we have, 

« 2 
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and for instability to arise, from Case 1 we have, 

2 ! < £ = 1. 
K2 Pi 

Therefore the flow will always be stable. 

\ \\ 
• \ 

c 
c 

\ 
o 

\ \ V ^ " / 

V? 
• / 
/ / / / \\'8 / 

\ / 

Figure 4.23: Contour plot of s2. Rheological and physical parameters are: K\ = 1, p\ = 1, 
e = 0.0, fa = 0.5 and 8 = 0. 

4.7.2 Yie ld stress fluids 

Now, let us consider the asymptotic behaviour of the full problem when a —> 0. Assume that, 

/fe ~ fk,o+afk,i + o?fk,i + -

s ~ as i + a s2 + ... 

h ~ + och\ + a2h2 + 

substituting this expansion into (4.39)-(4.45) and collecting the first order terms we have: 
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0(1) problem 

and at 6 = 

D(x'kDfkfl) = 0 (4.83) 

/fc,o = 0 0 = 0,1 (4.84) 

H 
—jsiho + (fkfl + ^kfirfho) = 0 

(/fc,o + *fc,o>o)li = 0 

x'kDfkfilt = 0. 

.(4.85) 

(4.86) 

(4.87) 

Solving (4.83) we have: 

where 

/!,O(0) = 
Jo Xi 

/2,O(0) = /2,O(0i)+ / ^d4> 
J<t>t Xi 

C\ 

/2,o(0i) = / —r d0 + ^o*fe,o>l2-

Applying the boundary condition at 0 = 1, we can find an expression for Ci, 

(4.88) 

(4.89) 

Ci 
/i(0O + /2(l) 

where 
1 [<>> 1 

L(0) = / - d 0 J2(0) = / - ^ 0 . 
JO Xl J(pi A 2 

(4.90) 

(4.91) 
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From (4.85) we get 

clearly, si G R. 

0(a) problem 

D(X'kDfk,i) = PkisiD2fkfi 

fk,i = 0 0,1 

(4.93) 

(4.94) 

and at 4> = fa 

U 

— (s2ho + sihi) + (fk,i+Vk,o,<l>hi) = 0 (4-95) 

(/jt,i + **,o,^i)li = 0 (4-96) 

(x'kDfk,i-isiPkDfk,o)\i = ibfro tan/?sin71-^0• (4.97) 

Integrating (4.93) once, we have: 

x'kDfk,i-PkisiDfkfi = C2,k. .(4.98) 

using (4.97) we get, 

C2,2 = C2,i + ibho tan dsinn fao 

Integrating (4.98) and using (4.96) we can find the solutions to (4.93), 
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/2,i(0) = h M - h i M l k M + j + i s i K ^ ) d ^ (4'10°) 

where C\ is defined in (4.90). 

Using the boundary condition at 4> = 1 we can find an expression for C 2 , i 

C 2 , i = i j / J . \ i T t -\ \ -C\isi T ) , \ , T m -t6feotan^sxn7r0i,o r , v (4.101) 
h(<t>i) + h(l) hWi) + h(l) Ii{4>i) +12{±) 

where I\ & I2 are defined in (4.91) and 

Using the kinematic condition (4.95), (4.99), (4.90) and (4.101) we have an expression for s 2, 

g(&,0) . , + . . . , Ji(^)/2(1) , ,„ A , T , Jx{fa)I2{l) - J2{l)h{4>i) , . 
--—s2 = , 6 t a n / W f r o f i W + f a ( 1 ) + M l A * w ( / l ( ^ ) + I2(l))2 ' ( 4 ' 1 0 3 ) 

clearly, s 2 = s2,/. 

Note the first term of the right hand side of (4.103), as in previous cases, if b < 0, i.e. heavier 

fluid 1 is on top of lighter fluid 2, the buoyancy has destabilizing effects. Turning to the 

second term of the fight hand side of (4.103), we see that again, the jump in the velocity plays 

an important role in the stability of the flow. But things get more complicated, note that 

to determine the sign of s2, we have to investigate the effects of 11 parameters on (4.103). 

Fortunately, from §4.6.2 we know that the position of the interface does not play an important 

role on the stability of the flow. We also proved that eccentricity has destabilizing effects on 
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the flow as well as inclination. Therefore we will concentrate in investigating the effects of the 

8 rheological and physical parameters on the stability of the flow when we are in the case of a 

mildly eccentric vertical annulus. 

Figure 4.24 shows the level curves of the maximum imaginary part of s2 for rheological para

meters, pi = 1, pi = 1, m\ = 1, m2 = 1, Ty}\ = 1, Tyt2 = 1. The neutral stability level curve, 

Ki = K2 implies that if fci > k2, i.e. the displacing fluid is less viscous than the displaced one, 

the flow will be stable. 

In Figure 4.25 a) and Figure 4.25 b) we have decreased and increased, respectively, the buoyancy 

parameter. When the displacing fluid, fluid 1, is denser than the displaced fluid, fluid 2, fluid 

2 is pushed up the annulus by buoyancy. This increases the jump in the velocity and a wider 

unstable region develops. Increasing the buoyancy parameter has the opposite effect, now the 

displaced fluid is denser than the displacing one and the jump in the velocity decreases, resulting 

in a thinner unstable region. 

Figure 4.26 shows the effects of the difference in power law index. Figure 4.26 a), m\ = 1.2 and 

m2 = l, can be explained as follows, fluid 1 now is more shear-thinning than fluid 2, resulting 

in a shift of the level curve for n\ = K 2 to the stable region. The opposite effect happens when 

mi = 1 and m2 = 1.2, Figure 4.26 b). Now the level curve for K\ = K 2 has been shifted to the 

unstable region, clear effect of fluid 2 being more shear-thinning than fluid 1. 

Figure 4.27 shows the effects of yield stress on the stability of the flow, for Figure 4.27 a) fluid 1 

has a higher yield stress than fluid 2, TY,I = 1.5 and 7 y i 2 = 1. Because of this, a higher pressure 

gradient is required to overcome 7 ^ 1 for both fluids to be yielded at the interface. This could 

be seen as fluid 1 being "more viscous", thus the level curve K\ = K 2 is shifted to the unstable 

region. If now 7 y ) 2 = 1-5 and Tyt\ = 1, Figure 4.27 b), we see that fluid 2 is "more viscous" and 

the level curve «i-= K 2 is shifted to the stable region. 

To the knowledge of the author, this is a phenomena never reported in the literature. For this 

kind of flow, even in the absence of inertia, the flow can be unstable. All rheological parameters 
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play a role on the s tabi l i ty of the flow, something not seen i n Newton ian and power law fluids. 

For y ie ld stress fluids, even wi thout the presence of buoyant forces the flow can be unstable. 

Fo l lowing the results found i n [59] we can make some comparison of our contour plots and 

unstable regions for the cases when the displacement is unstable. 

F igu re 4.24: Contour plot of s2, « i vs. K2. Rheological and physical parameters are: p\ = 1, 
m i = 1, m 2 = 1, 7 V , i = 1, 7v ,2 = 1, P2 = 1, e = 0.2, fc = 0.5 and (3 = 0. 

3| 
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Figure 4.25: Contour plot of s2, «i vs. K2. Rheological and physical parameters are: mi = 1, 
77i2 = 1, TY,I = 1, Ty,2 = 1, e = 0.2, fa = 0.5 and 8 = 0. a)pi = 1.1 and p2 = 1. b)pi = 1 and 

P2 = l . l 

K1 

(a) (b) 

Figure 4.26: Contour plot of s2, KI VS. K2. Rheological and physical parameters are: p\ = 1, 
TYi = 1, ryi2 = 1, p2 = 1.1, e = 0.2, fa = 0.5 and /3 = 0. a) mi = 1.2 and m 2 = 1. b) mi = 1 

and m2 = 1.2, 
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2.5 

1.5 
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(a) (b) 

Figure 4.27: Contour plot of s2, KI VS. n2, buoyancy parameter equal zero. Rheological and 
physical parameters are: K\ = 1, p\ = 1, K2 = 1, p2 = 1, e = 0.2, fa = 0.5 and 8 = 0. a) 
7y ;i = 1.5 and Ty,2 = 1. b) Ty,i = 1 and 7y}2 = 1.5. 

4.7.3 Industrial application 

In this section we make some comparisons with the results found in [59]. In [59] the authors use 

a lubrication model to predict, for a given set of parameters, whether a good displacement takes 

place or not. If they have an unsteady displacement, i.e. the interface front moves faster in 

the wide part than in the narrow part, a long finger develops along the annulus. This situation 

is when our assumption of parallel flow is likely to occur. Furthermore, they investigate when 

a viscous fingering instability will occur during the displacement. They showed that viscous 

fingering happens only in the unsteady displacement regime. 

Figure 4.28 (from [59]), shows when a unsteady displacement will occur, U meaning unsteady 

displacement but no viscous fingering, F meaning unsteady displacement and viscous fingering, 

S meaning neither unsteady nor viscous fingering. Rheological and physical parameters are, 

ry i = 1.0, KI = 1.0, mi = 1, 77i2 = 2, b = —0.5, 8 = 0. It is clear from this picture that as the 

authors increase e, 7V,2 and n2, i.e. viscosity of fluid 2 increasing, an increase of the domain of 
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unsteadiness and ins tabi l i ty is observed. 

In F igu re 4.29 we show the level curves of the m a x i m u m imaginary part of s2 as a funct ion fo 

TY,2 and e. W e have the same fixed rheological parameters as i n F igure 4.28 w i t h fa = 0.5 and 

8 = 0. W e capture the same behavior as i n F igure 4.28, as fluid 2 becomes more viscous, the 

unstable doma in increases. Surprisingly, our unstable domain occurs on ly as a subset of the 

unsteady and fingering domain i n F igure 4.28. T h i s means that i f a long finger develops du r ing 

the displacement, for certain parameter ranges the paral lel flow may be unstable. Therefore, 

apart from having an unsteady displacement, m i x i n g may occur at the interface of the finger 

due to the ins tabi l i ty that we s tudy here. It is not clear why there is apparent ly no interfacial 

ins tab i l i ty for parameter regimes for wh ich the annular displacement would be steady. No te 

that for such parameters, a base paral lel flow is a perfectly well-defined solut ion of the two fluid 

problem. 
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Chapter 4. Stability of multi layer flows 

Figure 4.28: Example unsteady displacement and local instability/viscous fingering regimes: 
effects of changing ry,2 and e for different K2- (a) K,2 = 0.5; (b) K2 = 1; (c) K2 = 1.5. Fixed 
parameters are: Ty,i = 1.0, K\ = 1.0, mi = 1, m.2 = 2, 6 = -0.5, /3 = 0. F, local fingering 
instability ; U, unsteady, but no local instability; S, neither unsteady. From Pelipenko & 
Frigaard (2004). 
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Figure 4.29: Maximum imaginary part of s vs. a. Rheological and physical parameters are: 
KI = 1, 7V,i = 1, mi = 1, 7 7 i 2 = 2, 6 = —0.5, '= 0.5 and (3 = 0. a) K2 = 0.5. b) n2 = 1. c) 

K2 = 1.5. 

4.8 Spatial stability problem 

Finally, we present a collection of results concerning linear spatial instabilities. Although in

complete, the results look interesting and potentially of practical value. 
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4.8.1 Single fluid spatial instability 

Let us consider, for the single fluid problem, a spatially developing instability: s > 0 and 

a = aij + ia/. In this case, (4.25) constitutes an eigenvalue problem for a2 & C. We find: 

-(a2)R = a2j-a2

R 

(a 2 ) / = lajaji 

Solving for aR h a/, we have: 

ai = ± 

aR = ± 

It appears that any non-trivial complex eigenvalue a2 and eigenfunction / must admit spatially 

growing instabilities. 

4.8.2 Two fluids spatial instability 

In an analogous way as in the previous section, let us assume that: s > 0 and a = aR + ia/. 

We assume small s and study the asymptotic behavior of the problem. Thus, let 

/fc 
a 

h 

substituting this expansion into (4.39)-(4.45) and collecting the first order terms we have: 

s2 Jxh + hh 
s2I2 +12 

s[Jih - J2/i] 
s2I2 + I2 

= Ci >0 

= c2 

(4.104) 

(4.105) 

ICx + y/C'f + C2 

2 - (4.106) 

(4.107) 

~ //c,0 + s//c,l + S 2 / / c ,2 + - - -

i i 2 

~ ao + sa\ + s a2... 

~ ho + sh\ + s2h2 + 
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0(1) problem 

D(x'kDfkfi) - aoA,o = 0, 

A,o = 0 at 0 = 0,1, 

ao(/fc,o + *fc,o,4>M = 0, 

(/fc,o + **,o,*'>o)li = 0, 

Xfc-D/fc.olf = iao/iotan/^sinyT^o. (4.108) 

System (4.108) has solutions of the form, 

fkfi{4>) = fkfi,P{4>) + fkfi,h(4>), 

where 

Therefore, 

D(x'kDfkfi,P) = 0 

/fc,o,p = 0 at 0 = 0,1, 

/fe,o,p = -*fe,o,0^o-

/l,0,p = -/l0*2,0, 1 

/2(0) 

'/2(0i)' 

(4.109) 

(4.110) 

where 
1 Z"1 1 

= / " 7 ^ J2(0) = / v Jo Xi J<t> X 2 

d0. 
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Now, fko,h is a n eigen-function of 

D(x'kDfkfi,h) = <4fk,o,h, 

with OQ being the eigen-value. Therefore, from Sturm-Liouville theory, oft is real and less than 

zero. Thus, , 

ctR = 0 and aj 0. 

Our solution, fk,o{4>) = fkfi,p{4>) + /fe,o,/i(<^) has to satisfy the second jump condition, then 

ho f*W7S + *i,o,*7^) + X2Df2,o,h ~ x'iDflfi,h = -aih0t&nf3sm7r4>i, (4.111) 

equation (4.111) defines ho. 

Therefore, condition for instability is that A = — a2- is an eigen-value of both: 

D(x[Df)=\f 

/(O) = = o 

D(X2Df) = A/ 

fifo) = /(l) = 0. 

For 2 Newtonian fluids at a fixed viscosity ratio, we can easily show that there are interfacial 

positions, fa, for which A satisfies both problems. It is unclear whether in general this occurs 

and we have not analyzed much further. 

144 



Chapter 5 
S t a t i c m u d c h a n n e l s 

As stated in Chapter 4, for certain combinations of dimensionless parameters, it is possible for 

one of the fluids to be stationary on the narrow side of the annulus. Physically, this occurs 

when the modified pressure gradient is not large enough to overcome the yield stress of the 

fluid. From an industrial perspective the flows within this category that have most interest 

are those in which fluid 2 is static, either partly or fully, i.e. there is a static mud channel. 

Since the stability studies only predict linear stability of the flow, we ask whether a nonlinear 

perturbation could shift the mud channel. We study the displacement via numerical simulation. 

We will solve numerically the full system, 

V-[pV* t ] = - V - [ S + f] , (5.1) 

where 

(5.2) 

| V * | = 0 <S> | S | < 7 y / i ? . (5.3) 

tt((U,t) = o. (5.4) 

*(1 ,t,t) = Q(t) (5.5) 

*(0 ,O , t ) = * i „ f > , t ) , (5.6) 

*(4>,Z,t) =*mt(<t>,t), (5.7) 

(5.8) 
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Chapter 5. Static mud channels 

Whereas for the stability studies, we have Q(t) = 1, here we consider varying flow rate, such as 

would •be possible with pressure pulsing. For the velocity field we use an augmented Lagrangian 

algorithm, [26, 31], which fully describes the unyielded regions of the flow, the method is outlined 

in §5.1. We will work in a finite element approximation setting for the velocity field, with bilinear 

basis functions and square elements, for an summary of the finite element method see §5.3. The 

concentration equation is fully discretized using a conservative finite volume approximation at 

the middle point of each element and solved using a Flux Corrected Transport scheme, see §5.4. 

The FCT scheme is used to minimize both numerical dispersion and diffusion. Finally in §5.5 

we investigate the effect of pulsing the flow rate on the displacement fronts. 

5.1 Augmented Lagrangian Method 

The augmented Lagrangian method, although it accurately predicts unyielded regions in the 

flow of a visco-plastic fluid, is not widely used for simulating this kind of flow. Instead a 

regularised version of the constitutive laws of the fluid is used. This consists of considering, 

at the point of singularity, (i.e. shear rate equal zero),that the fluid has instead a very large 

Newtonian viscosity. For some recent work where the augmented Lagrangian algorithm has 

been successfully implemented we refer the reader to [80, 81, 82]. This section mainly gives an 

outline of the augmented Lagrangian algorithm, we will follow closely [26, 31]. 

5.1.1 Principles of the method 

For the purpose of this thesis we will limit ourselves to a finite dimensional problem, i.e. since 

in any case we eventually discretise and solve a finite dimensional problem. 

Augmented Lagrangian 

As an example, let A be a symmetric, positive definite N x N matrix and suppose that b G R . 

We associate the following quadratic functional to these parameters 

J(y)=l-{Av,v)-{b,v) (5.9) 
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where in (5.9), (•, •) is the canonical Euclidian inner product in R^. Let T be a linear mapping 

from RN into R M . Now, consider the minimisation problem 

J(u) < J(v) W e KerT (5.10) 

u e KerT. (5.11) 

Because of the properties of A it is clear that (5.10) has a unique solution, but the constraint 

(5.11) may make the solution difficult to compute. 

Introducing a Lagrange multiplier p to (5.10), in order to get an unconstrained problem, we 

have 

min {J(v) + (p,Tv)} (5-12) 

v e R N 

Now the problem is unconstrained but the Lagrange multiplier p appears as an extra unknown. 

This can be obtained through the solution of a saddle-point problem. 

Thus, we define 

L(v,q) = J(v) + (q,Tv) (5.13) 

recall that (u, p) will be a saddle-point of L if 

L(u,q)<L(u,p)<L(v,p) Vv€R,N,qeRM (5.14) 

thus we have 

min max L(v, q) = max min L(v, q) = L(u, p) 
veRNqeR.M

 qeR.MveRN 

(5.15) 

It can be shown that L admits at least one saddle-point (u,p) on RN x R M , where u is the 

solution of (5.10) and is common to all the saddle-points of L on R w x R M . 

We define the augmented Lagrangian Lr , for r > 0, by 

Lr(v,q) = J(v) + (q,Tv) + ^\Tv\2 = L(v,q) + ^\Tv\2 (5.16) 
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and note that a saddle-point of L(v,q) for which u G Ker T, will also be a saddle-point of 

Lr(v,q). However, (5.16) may be better conditioned to solve numerically. 

5.1.2 A L G 2 

In [26, 31] the authors describe an algorithm for finding the saddle-points of an augmented 

Lagrangian functional L r , they call it ALG2. 

Let us consider the minimization problem 

mm{F(Tv) + G(v)} (5.17) 

v G V 

as our generalized minimization problem, where 

• V and H are Hilbert spaces. 

• T : V ^ H . 

• where F and G are convex, proper, and lower semi-continuous (l.s.c) on H and V, respectively. 

It is know that (5.17) and 

min {F(q) + G(v)} - (5.18) 

(v,q)€W 

with 

W = {(viq)€VxH,Tv-q = 0}. 

are equivalent problems. 

Introducing the variable q, linked to v through the linear equality equation Tv = q we can 

reformulate (5.18) as a saddle-point problem. 

We will in fact take the spaces V and H to be V = Vp and H = L2(il) x L2(ft) with their 

respective inner products and associated norms. We define, for v £ Vpfl, q € H and p G H the 

Lagrangian functional 

L(v,q,p)=F(q) + G(v) + (p,Tv-q) 
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and then for r > 0, the augmented Lagrangian functional is defined as 

L{v,q,p)r = L(v,q,p) + r-\\Tv-q\\2. (5.19) 

The iterative method A L G 2 that we use below is in fact a method for calculating the saddle-

points (u,p,X) of (5.19). 

A L G 2 

. (p^A1) €H xH arbitrarily specified; (5.20) 

with (pn _ 1, A") known, determine succesively un,pn,Xn+1 by 

G(v)-G(un) + (Xn,T{v-un)) 

+r(Bun -pn~l,T(v - V)) > 0 Vv G Vp, (5.21) 

un G Vp 

F{q) - F{pn) - (An, q-pn) + r(pn - Tu11, q-pn))>0 (5.22) 

Va G H x H, and pn G H x H. 

yn+l =>n + pn(Tun _ pny (5.23) 

5.1.3 Convergence of A L G 2 

Results on convergence of A L G 2 are presented below, we just give a summary of what condi

tions T, F and G have to satisfy and state the convergence result. For a full description of the 

proof we refer to the reader to [26]. 
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Conditions for T, F and G 

(i) T should be injective and the image of T should be closed in H. 

(ii) 
lim ^ = 0 0 (5.24) 

\Q\->°° \q\ 

(iii) Because G is convex, proper and l.s.c and using (i) and (ii) we have that (5.17) admits a 

unique solution u. 

(iv) Let us assume that F = FQ + F\, where Fi is convex, proper and l.s.c. on H, and Fo 

is convex, single valued, Gateaux differentiable on H, and uniformly convex over the 

bounded subsets of H in the following sense: 

For any M > 0, there exists a continuous function 6M '• [0, 2M] —> R, strictly increasing, 

with SQ = 0, such that for all p, q £ H, \p\ < M , \q\ < M , we have: 

(Fo,(q)-F0

,(p),q-p)>5M(\q-p\). (5.25) 

Now we are in a position to state the main result for convergence of the algorithm. 

Theorem 3 We assume that Lr admits a saddle-point (u,p,X) onVpxHxH. Under the 

assumption on T, F, G (i)-(iv) and if pn satisfies 

0<Pn=P< (^Y^)r, (5-26) 

we have for ALG2 the following convergence results 

un —> u strongly in V, (5.27) 

pn —> p strongly in H, (5.28) 
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Xn+l _ Xn _^ 0 strongiy i n H i (5 29) 

A" is bounded in H. (5.30) 

Proof 

For a proof see [26]. • 

5.2 Application of A L G 2 to the displacement problem. 
5.2.1 S t e a d y m o d e l 

Let us take 

T(u) = Vu, 

G(u) = 0, 

F(q) - F0(q) + Fi(q), 

where 

, /1 f\VV+q\* , 1/2) \ 
F0(q) = J UJ ^T-te + q-ndn, q € H x H, 

Fi(q) = I ^ | W * + g|dft, qeHxH. (5.31) 

Let us stop for a moment to make a couple of remarks. 

We have homogenized the boundary conditions with \I>* defined in (3.13). 

Recall that if ./HQO / Owe are in a Hilbert space setting, for the limit pm —> 0 we would have 

to work in the Banach spaces W1'1*1'™^) for $ and (L1'1+1/m(J7) x L^l+l/m{9)) for q. The 
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augmented Lagrangian algorithm requires the solution space to be a Hilbert space. Nevertheless, 

once we have discretized our variational problem using a finite-dimensional numerical method 

(Finite Element Method for example), the approximate solution space Vp^ is a finite dimensional 

Hilbert space. The subscript h denotes the mesh scale and although the technical difficulty 

remains in the limit h —* 0, in practice we compute the approximate solution with a small finite 

h. Thus it is safe to assume that our finite dimensional solution space to be VPth C JY1(f2) and 

similarly we can take q G H. 

Outline of A L G 2 for a finite dimensional setting 

For a given constant r > 0 and using the definitions in (5.31) our augmented Lagrangian 

functional is, 

Lr(v,q,n)=F(q)+ f fi • (Vv - q)dft + J / |Vv - q\2dfl. (5.32) 
Jn 1 Jn 

Therefore, if (u,p, A), where u e Vb,p and u is defined as * = + u, is a saddle point of L r , 

Vr > 0, then + u is a solution to (3.25). 

Now we are in a position to apply A L G 2 to our problem. Each step of the algorithm consists 

of finding un, pn, Xn+1 by solving sequentially: 

/ A"-V(u-u") + (rVw"-p"-1)-V(7j-u")dft > 0, (5-33) 
Jn 

Vv G Vb,p, un e Vo,p 

F(q)-F(pn)+ f \ n • (q- pn) + r(pn — Vwn) • (q - pn)dfl > 0, (5.34) 
Jn 

Vq e H, pn e.H 

Xn+1 = \ n + P n ( V u n - p n ) , pn > 0. (5.35) 

Minimizing equation (5.33) with respect to v is equivalent to solving the following Poisson 
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equation, 

rAun = rV • pn~l - V • A n , (5 .36) 

where the right hand side is known from the previous step. The second step consists of mini

mizing equation (5 .34) with respect to q in order to obtain pn. This second step is the critical 

one and shows the advantage of this method. For the case of visco-plastic fluids, in this step 

we will fully describe the yielded and unyielded regions. In minimizing (5 .34) with respect to 

q in a discrete setting, we may locally minimize the integrand of Lr(un, q, A " ) with respect to 

q G Hh x Hh where Hh denotes the restriction of if to a particular discrete element, thus 

pn = mi{-Jo ^ L 7 - i d s + g - f + ^ | V * * + q | + - | q | 2 - ( A " + r V U " ) - q } , (5 .37) 

equivalently we have, 
1 /.|v**+g| 2 / 1/2̂  

p n =
 lqi{2 j ^^ds+^ |V**+g |+ - |V**+q | 2 - (A"+rV(r+«") - / ) - (V**+ g ) } . 

(5 .38) 

Clearly, this expression will achieve its minimum when 

(V** + q) || ( A n + rV(** + un) - f). 

Therefore, letting 

( V * * + p " ) = 0 ( A " + rV(** + u")-/), (5 .39) 

x = |A n +rV(**+u")-/ | (5 .40) 

we have to find the minimizer of 
1 r(0x)2

 Y ( S J / 2 ) T V r o 

M { 0 ) = 2jo ^ 7 ^ d s + + 2 ( 0 X ? - 0 X - ^ 5 - 4 1 ) 

If x < ry/H then 9 = 0 minimizes M(9), thus the fluid will be unyielded. If x > ry/H we 

solve numerically for 9 the following equation, 

X(9x) + ^ F + r 0 x - x = 0, • ( 5 . 4 2 ) ' 
/ H 

which has a unique solution and therefore here the fluid is yielded in this iteration. Finally we 

update A using ( 5 . 3 5 ) . 

153 



Chapter 5. Static mud channels 

5.2.2 Transient model 

The derivation of the augmented Lagrangian algorithm for the transient case is basically the 

same as the one for the steady model. The main difference is with the augmented Lagrangian 

functional defined as, 

Lr(vn+\qn+\n) = F(qn+1) + f pi • ( W * + 1 - q n + 1 ) d f 2 + J / |Vi> n + 1 - q" + 1 | 2 df2 

Jn * Jn 
(5.43) 

where the super index vn+1 means v(tn+l) where tn+1 =tn + At. 

Thus the transient version of A L G 2 will be, 

jT \ n

k

+ l • V(vn+1 - un

k

+l) + ((r +• £)Vu£+1 - -LVttf - pn

kt\) • V(«" + 1 - x)dQ > ' 0, 

Vvn+1 G Vo,p, un

k

+1 e V0,p (5.44) 

F(qn+1) - F(p£ + 1 ) + f \n+l • (qn+1 - pn

k

+1) + r(p£ + 1 - qn+1) • (qn+1 - pJJ+ 1)dfi > 0, 
Jn 

V q " + 1 G H, pl+1 G H (5:45) 

KX\=K+1+P^K+1-Pl+l), Pk > o. 

(5.46) 

the subscript k is just the step of A L G 2 . We will update A n + 1 using (5.46) and the minimiza

tion problem (5.45) corresponds to finding the roots of (5.42). 

The only difference is in minimizing (5.44), which is equivalent to solve for each time step the 

following Poisson problem, 

(r + ^ ) A < + 1 = r V - p n - 1 - V - A " - ^ V ^ . (5.47) 

We solve (5.36) & (5-47) using a finite element method. In the following section we give a brief 

•outline of the method, which closely follows [43]. 
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5.3 Finite Element discretization 

In §5.2 we stated that the minimization problem (5.33) is equivalent to solve the Poisson problem 

(5.36), thus the variational problem for (5.36) is, 

Find u £ Vb,p such that a(u,v) = b(y) V v £ Vo,p (5.48) 

where 

a(u, v) = / Vu • Vudfi, 
• Jn 

b(v) = [ fvdtl, 
Jn 

with / being the right hand side of (5.36). 

The finite element discretization consists in replacing VQIP by a finite dimensional subspace Vh, 

i.e. instead of solving (5.48), we solve 

Find uh £ Vh such that a(uh,v) = b(v) Vv£Vh, (5.49) 

this approach is also known as the Galerkin method and the finite-dimensional subspace V/j is 

called an ansatz space. 

As an example, let us take to be a partition of our domain ft into closed triangles K with 

the following properties 

"1- V = U K e T h K , 

2. For K, K' £Th, K ^ K' and interior^) f| interior '̂) = 0. 

3. If K ^ K' but K f| K' = 0, then K f) K'is either a point or a common edge of K and K'. 

Let us define h as 

h = max{diam(/Y)|/Y e Th}, 

K is called an element of the partition and the vertices of the triangle are called the nodes. We 

call this a linear finite element approximation of our problem if 14 is defined as follows, 

Vh = {u £ C(U)\ u\K £ P\{K) \/K £ Th, u = 0 on dfl,} 
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where P\ (K) is the set of polynomials of first degree (in 2 variables), i.e. pG P\{K) & p(x,y) = 

a + Bx + 7y V (x,'y) G K and for a, 3, 7 G R. 

Now, let us consider the local interpolation problem 

p(oj) = iij for i = 1, 2, 3 (5.50) 

where p G Pi(K) and ai, a2, 0 3 are the vertices of K, thus 

p(x, y) = ui<pi(x, y) + u2if2(x, y) + U3ip3(x, y), 

where 

tpi(aj) = 5ij, 

has a unique solution, see [43] and that U\K can be composed continuously, i.e. if px G P\{K) 

is the unique solution of (5.50) then 

u(x) = PK{X) for x G K G Tn. 

Stability and convergence results for the finite element method for linear triangular elements 

can be found in [43]. Here we just state the result. 

If the weak solution u of (5.36) has weak derivatives of second order, then 

\\u - Uh\\i < Ch, 

where C depends on u but not on ft. 

We use this type of linear elements with linear basis functions ^ for solving numerically system 

(2.63) in §3.3.3. For the purposes of this chapter, we choose to work with quadrilateral elements 

and bilinear basis functions. All results stated above can be extended to this type of finite 

element discretization, (see [43] chap. 3 for reference). 

5.4 Flux Corrected Transport Algorithm 

Now we turn our to attention to equation (5.8). Note that this concentration equation is 

coupled with system (5.1)-(5.7) via the stream function. Thus we will solve the full coupled 
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system (5.1)-(5.8), using the augemented Lagrangian method in a finite element setting for the 

stream function and a Flux Corrected Transport (FCT) algorithm in a finite volume setting for 

the concentration. We describe the FCT method below. 

For a full description of the algorithm we refer to the reader to [89]. Here we just give an outline 

of the method applied to our particular problem. 

It is well know that high order schemes present numerical dispersion near discontinuities and 

regions of high gradients, which translates into the growth of unphysical oscillations in the 

conserved quantity, (here c). In contrast, low order schemes do not suffer from this disper

sion, but numerical diffusion is introduced in to the solution. Flux limiting methods, such as 

Flux-limiters and FCT have developed over the years to minimize both numerical dispersion 

and diffusion. We will concentrate on FCT schemes which limit the flux by minimizing the 

overshoots and undershoots in the higher order numerical solution. The discretization will be 

made using a finite volume method which is well known to be conservative. The main reason 

that we use quadrilateral elements with bilinear basis functions for the stream function is that 

we will calculate the concentration field at the middle of each element, thus the calculation of 

numerical fluxes across the boundary of each element is easier to obtain than with triangular 

elements. 

Let us write equation (5.8) in the following form, 

ldC df dg , . 
e dt dq> dt, 

where 

c = He, 

f = vHc = -> 
9 = wHc = 

Calculating the numerical transport fluxes across each element and using a forward Euler scheme 
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for time we have: 

/~m+l /-m At , „ n j - , n s At, n n . (5.52) 

where F and G are the discrete numerical fluxes. Note that (5.52) is a second order approx

imation in space for C, thus numerical dispersion will be introduced in the solution, thus we 

use a FCT scheme to minimize this effect. 

First we calculate FL

 r . and GL

 1 using a low order scheme in the following way, 

and 

G 

Vni .CJ 1 , HVN, . >0 

I V7! x .CS.!,- i f V " ! . <0 

w . j . i C j 1 , - i f i y p . ^ j ^ o 

r . . c ^ i if w ™ , < o . 

Now we compute the low order time advanced solution, 

A*-£ F 1 , .) — x 7 ( C f . , i — GL. 0-
?.— ± . 1 ' \ 7.1-1 -4 *).? — ~ AC 

Then we compute F^f i . and G f f. i using a high order scheme in the following way 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

(5.57) 

We compute the antidiffusive fluxes, to minimize the diffusion introduced by using a low order 

scheme, 

tun = K+h+Gi^-

(5.58) 

(5.59) 

We limit this antidiffusive fluxes to minimize the dispersion effect that the high order approxi

mation has on the solution, 

A1. 

(5.60) 

(5.61) 
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and finally we apply the limited antidiffusive fluxes to the get the final solution, 

- ( (5.62) 

The only thing that remains unclear is how the corrections Li+i j and Lt.j+i will be chosen to 

limit C^f1 so that it does not exceed a maxim value Cj"?x nor a minimum value CJfn. This 

will be achieved in the following way. 

First we define the following quantities, 

1. We compute the sum of all antidiffusive fluxes into the grid point (i, j) (the centre of our 

element), 

P± = max(0,^_i j) - mm(0,Ai+ij) + max(0, ) - max(0,^.+ i ) . 

2. We compute the sum of all antidiffusive fluxes away from the grid point (i,j), 

FT. = max(0, A i + l .) - min(0, A^x-) + max(0, A i j + i ) - max(0, Aid_i). 

3. Define 

4. Define 

s-rmax _ m a v ( r < n rm rm rm rm \ 

i,j — m m V ° i , j ' ° i - l j > 

(qnox _ C5)A0AC, 

= (C<° - C™")A0A£. 

5. Define 
min(l,Q+/P+) if/ft >0 

0 ifP+=0 

min(l,Q-./F--)_ if P". > 0 

0 

(5.63) 

(5.64) 
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6. Finally, the corrections become 

min(i?+.+ 1,i? i j) 

min(JR+.,i?- j+1) 

nan(Rt+1j,Rid) 
min(i?+.,i?-+lj.) 

if A-, 

if A - , 

i f V * J < 0 

(5.65) 

(5.66) 

Now, we are in the position to solve the system of equations (5.1)-(5.7) numerically and inves

tigate the effects of pulsation of the flow rate in the displacement flow. 

5 . 5 Numerical simulations for the annular displacement with 
pulsating flow rate 

In this section we are interested in the behaviour of the displacement flow in the presence of a 

pulsating flow rate, thus (5.5) becomes 

Thus we will solve system (5.1)-(5.7) with (5.67) instead of (5.5), using the augmented La

grangian algorithm in a finite element setting for the velocity field and for the concentration 

we will use the FCT scheme described in the previous section. 

5.5.1 Validation 

To benchmark our code we follow the approach in [58]. For small eccentricities and certain 

combinations of the physical parameters, it is possible to find an analytical solution that de

scribes the shape of a steadily advancing displacement front, see [58]. In [58] it is shown that 

the c = 0.5 level set, viewed in a moving frame of reference, converges to the steady profile. 

Here we have performed similar benchmarking computations and final similar results. Figure 

5.1 shows an example of these computations. We solve the steady model for the velocity, so 

that the only time dependence is through the concentration equation, i.e. 5P = 0 in (5.67). The 

following physical and rheological parameters are used, K\ = 0.5, K2 = 0.4, m\ = 1, m2 = 1.2, 

px = i ) p2 = 0.9, 7V,i = 1, 7V,i = 0.9, 7Y , ! = 0.7 e = 0.0 and 3 = 0. Results are consistent 

#(!,£, t) = 1 + dpsincot, (5.67) 
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with the ones found in [58]. The validity of our code for the transient velocity field is shown 

in §3.3.3. Assuming fixed concentration we have seen the decay of the transient velocity to the 

steady state, at constant flow rate (5P = 0). 

0.8 

0.6 

0.4 

0.2 

N 0 

-0.2 

-0.4 

-0.6 

-0.8 

Figure 5.1: Convergence of computational solution to stable steady state displacement: a) 
Successive contours of c(</>, z, t) = 0.5 at times t = 0, 0.2, 0.4, ... 6. b) Analytical solution for 
the steady displacement, c) Convergence of the wide and narrow side interface positions to the 
steady state. Rheological and physical parameters: «i = 0.5, K2 = 0.4, m\ = 1, m2 = 1.2, 
P l = l ; P 2 = 0.9, 7y , i = 1, ry,i = 0.9, TY,I = 0.7 e = 0.0 and (3 = 0. 

5.5.2 Pulsation effects 

Pulsation at the beginning of the displacement 

In Figure 5.2 we show the initial condition for all the following displacements. One third of 

the eccentric Hele-Shaw cell is full of displacing fluid, cement, the remaining two thirds is full 

of the displaced fluid, mud. We will always begin with a flat interface, perpendicular to the £ 

axis between the fluids. For the rest of the section we will fix the rheological and some physical 

parameters to: K\ = 0.5, K2 = 0.4, mi = 1, m2 = 1.2, p\ = 1, p2 = 0.9, Ty,i = 1, ryti = 0.9, 

7y,i = 0.7, (3 = 0. We will study the effects of eccentricity, the amplitude and phase of the 

pulsation and e on the displacement fronts.-
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•y 1.5 
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Figure 5.2: Initial condition for the displacements. 

In Figure 5.3 we show the unsteady displacement of cement displacing mud. The eccentricity 

is e = 0.3. As we can see from the velocity field plots, both fluids are fully yielded along the 

annulus. We show times T/4, T/2, 3T/4 and T, where T is the period of the pulsation. For 

the steady state velocity model is defined as T = 2-K/U), for the transient velocity model is 

defined as T = 2TT./U)€. Recall that velocity changes happen on a fast time scale. Thus, in order 

to make a comparison of our models, we will work with the pulsation on the same time scale 

as the concentration. Figure 5.4 shows the effects of the pulsation in the steady model, we 

increase the amplitude to 5P = 0.1. No major effects can be seen on the displacement front and 

velocity fields, as expected, both fluids are fully mobile along the annulus. In Figures 5.5 - 5.7 

we investigate the effects of the pulsation in the transient model. Also we are interested in the 

results of varying e, recall that e is the ration between the advective and the viscous time scales. 

For Figure 5.5 we set e = 0.1 and u> = 10, note that if e —* 0, we recover the pseudo-steady 

model, this is consistent with our findings where we can see that the effects of the pulsation 

on the displacement front is minimal as in previous figures. If e ~ 0(1), viscous and advective 

time scales have the same order, thus the perturbation is picked up by the transient behaviour 

of the velocity as shown in Figure 5.6. Figures 5.7 - 5.9 show the reversed case, i.e. where 

viscous effects happen in a slow time scale, e = 10. In Figure 5.7 shows the case when the 
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perturbation of the flow rate is fast, UJ = 10. Because we show the displacement front over the 

full period of the pulsation, time is not large enough for viscous effects to take place. When 

ui = 1, Figure 5.8, time is large enough to see viscous effects and the unsteady displacement 

takes place. Figure 5.9 shows the effects of a perturbation of the flow rate over a long time, we 

see clearly the viscous effects had taken place and a very long finger has developed along the 

annulus. Note that for Figures 5.8 & 5.9 we solved the problem in a moving frame of reference, 

the finger grows so long that we were unable to consider a domain large enough to capture the 

full finger. 

For Figures 5.10 - 5.12 we increase the eccentricity to 0.5. As shown in [58], as eccentricity 

increases we attain displacements that burrow slowly up the narrow side of the annlus, i.e. 

although the interface is propagating along the annulus, in the far field the velocity field is 

unyielded in the narrow side. In Figure 5.10 we got the same results as the ones found in [58], 

this was expected as we solve the steady-state velocity model. Figure 5.11 shows the effects 

pulsation has on the steady state model. We fix the amplitude of the pulsation, Sp = 0.1. As 

above, we cannot see major changes in the displacement front but an interesting phenomena 

is the decrease of the unyielded regions on the far field, as is clearly seen in the velocity field 

plots. On the other hand, Figure 5.12 shows that the transient model actually captures the 

effects of the pulsation. When we reach the maximum point on the pulsation, Figures 5.12 

a)-b) both fluids are fully yielded, even in the far field, as we decrease the intensity of the flow 

rate stagnant zones appear until we reach the minimum point of the pulsation and both fluids 

are unyielded on the narrow part of the annulus for the far field. When the intensity of the 

flow increases again we fully remove the stagnant zones. One interesting phenomena is that 

in contrast to the steady state model, the velocity field of the transient model does not show 

the same burrowing motion. In Figures 5.10 and 5.11 it is clear that in the vicinity of the 

interface the displacing fluid is forced to the narrow side and the displaced fluid is forced away 

from the narrow side. For the transient model this burrowing motion is expanded along the 

annulus- not only near the interface. This will lead us to investigate the effects of the pulsation 

technique and transient effects of the velocity field in the removal of a mud channel. Figure 
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5.13 shows the predicted mud channel width using the steady model without pulsing the flow 

rate. Figures 5.14 and 5.14 show the width of the mud channel with pulsation amplitudes 

8P = 0.1 and 5P = 0.2 respectively. As in the previous cases there is no clear evidence of a 

change in the displacement. Figures 5.16 and 5.17 show the effects of a pulsating flow rate on 

the transient model with amplitudes, Sp = 0.1 and 5P = 0.2 respectively. Clearly the effects of 

the pulsation are fully captured by the transient velocity field, as above we have a burrowing 

motion expanding along the annlus, i.e. even though we have a mud channel in the narrow side 

of the annulus the far field velocity is clearly yielded outside this region. As we increase the 

magnitude of the pulsation, this motion expands further to the narrow side of the annulus, and 

therefore a decrease of the width of the mud channel is achieved. 
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4> <f $ ' • 

(e) (f) (g) (h) 

Figure 5.3: Displacement flow in eccentric annulus, interface propagation. Unsteady displace
ment. Steady state velocity model. Period T = 2TX/U), U = 10 and Sp = 0. Interface position 
and velocity field for times: a)-b) T/4. c)-d) T/2. e)-f) 3T/4. g)-h) T. Physical and rheological 
parameters: K\ = 0.5, K2 = 0.4, m\ = 1, m2 = 1.2, p\ = 1, p2 = 0.9, Ty,i = 1, 7 y , i = 0.9, 
Ty,i = 0.7 e = 0.3, /3 = 0. 
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Figure 5.4: Displacement flow in eccentric annulus, interface propagation. Unsteady displace
ment. Steady state velocity model. Period T = 2n/uj, OJ = 10 and Sp = 0.1. Interface position 
and velocity field for times: a)-b) T/4. c)-d) T/2. e)-f) 3T/4. g)-h) T. Physical and rheological 
parameters: K\ = 0.5, K2 = 0.4, mi = 1, m2 = 1.2, p\ = 1, p2 — 0.9, Ty,\ — 1, ry,! = 0.9, 
7 y i = 0.7 e = 0.3, /3 = 0. 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 5.5: Displacement flow in eccentric annulus, interface propagation. Unsteady displace
ment. Transient velocity model. Period T = 27T/W, UJ = 10, 5V = 0.1 and e = 0.1. Interface 
position and velocity field for times: a)-b) T/4. c)-d) T/2. e)-f) 3T/4. g)-h) T. Physical and 
rheological parameters: KI = 0.5, « 2 = 0.4, mi = 1, m2 = 1.2, p\ = I, p2 — 0.9, Ty,i = 1, 
TY,I = 0.9, 7y , i = 0.7 e = 0.3, /3 = 0. 
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(a) (b) (c) (d) 

(e) . (f) (g) (h) 

Figure 5.6: Displacement flow in eccentric annulus, interface propagation. Unsteady displace
ment. Transient velocity model. Period T = 2-n/uie, u> = 10, 5P = 0.1 and e = 1. Interface 
position and velocity field for times: a)-b) T/4. c)-d) T/2. e)-f) 3T/4. g)-h) T. Physical and 
rheological parameters: K\ = 0.5, K2 = 0.4, mi = 1, m2 = 1.2, p\ = 1, p2 = 0.9, ry^ = 1, 
ry,i = 0.9, Ty,i = 0.7 e = 0.3, 8 = 0. 
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Figure 5.7: Displacement flow in eccentric annulus, interface propagation. Unsteady displace
ment. Transient velocity model. Period T = 2n/uje, UJ = 10, Sp = 0.1 and e = 10. Interface 
position and velocity field for times: a)-b) T/4. c)-d) T/2. e)-f) 3T/4. g)-h) T. Physical and 
rheological parameters: K\ = 0.5, K2 = 0.4, mi = 1, m2 = 1.2, p\ = 1, p2 = 0.9, Tyt\ = 1, 
TY,I = 0.9, TY,I = 0.7 e = 0.3, /3 = 0. 
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Figure 5.8: Displacement flow in eccentric annulus, interface propagation. Unsteady displace
ment. Transient velocity model. Period T = 2n/u>e, OJ = 1, Sp = 0.1 and e = 10. Interface 
position and velocity field for times: a)-b) T/4. c)-d) T/2. e)-f) 3T/4. g)-h) T. Physical and 
rheological parameters: K\ = 0.5, K% = 0.4, m\ = 1, m2 = 1.2, p\ = 1, p2 = 0.9, Ty,i = 1, 
TYI = 0.9, TYi = 0.7 e = 0.3, 8 = 0. 
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Figure 5.9: Displacement flow in eccentric annulus, interface propagation. Unsteady displace
ment. Transient velocity model. Period T = 27r/we, UJ = 0.1, 5p = 0.1 and e = 10. Interface 
position and velocity field for times: a)-b) T/4. Physical and rheological parameters: K\ = 0.5, 
K 2 = 0.4, mi = 1, m2 = 1.2, P l = 1, p2 = 0.9, TyA = 1, TY,I = 0.9, 7y , i = 0.7 e = 0.3, /5 = 0. 
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Figure 5.10: Displacement flow in eccentric annulus, interface propagation. Unsteady displace
ment. Steady state velocity model. Period T = 2-ir/uj, UJ = 10 and 5P = 0. Interface position 
and velocity field for times: a)-b) T/4. c)-d) T/2. e)-f) 3T/4. g)-h) T. Physical and rheological 
parameters: K\ = 0.5, K 2 = 0.4, mi = 1, m2 = 1.2, p\ = 1, p2 = 0.9, Ty,i = 1, TY,I = 0.9, 
ryA = 0.7 e = 0.5, (3 = 0. 
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Figure 5.11: Displacement flow in eccentric annulus, interface propagation. Unsteady displace
ment. Steady state velocity model. Period T = 2TT/UJ, U> = 10 and 5p = 0.1. Interface position 
and velocity field for times: a)-b) T/4. c)-d) T/2. e)-f) 3T/4. g)-h) T. Physical and rheological 
parameters: K\ = 0.5, K2 = 0.4, mi = 1, m2 — 1.2, p\ = I, p2 = 0.9, ry,\ = 1, Ty , i = 0.9, 
7 y i = 0.7 e = 0.5, 8 = 0. 
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Figure 5.12: Displacement flow in eccentric annulus, interface propagation. Unsteady displace
ment. Transient velocity model. Period T = 2ir/ue, OJ = 10, 5p = 0.1 and e = 0.6. Interface 
position and velocity field for times: a)-b) T/4. c)-d) T/2. e)-f) 3T/4. g)-h) T. Physical and 
rheological parameters: KI = 0.5, «2 = 0.4, mi = 1, TO2 = 1.2, p\ = 1, p2 = 0.9, ry,i = 1, 
TY,I = 0.9, ry,! = 0.7 e = 0.5, (3 = 0. 
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Figure 5.13: Displacement flow in eccentric annulus, interface propagation. Mud channel for
mation. Steady state velocity model. Period T = 2TT/U, to = 10 and Sp = 0. Interface position 
and velocity field for times: a)-b) T/4. c)-d) T/2. e)-f) 3T/4. g)-h) T. Physical and rheological 
parameters: K.\ = 0.5, K2 = 0.4, mi = 1, m2 = 1.2, p\ = 1, p2 = 0.9, Ty,i = 1, ry,i = 0.9, 
TY,I = 0.7 e = 0.8, /3 = 0. 
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Figure 5.14: Displacement flow in eccentric annulus, interface propagation. Mud channel for
mation. Steady state velocity model. Period T = 2n/u, u = 10 and 6P = 0.1. Interface position 
and velocity field for times: a)-b) T/4. c)-d) T/2. e)-f) 3T/4. g)-h) T. Physical and rheological 
parameters: «i = 0.5, K 2 = 0.4, mi = 1, m2 = 1.2, p\ = 1, p 2 = 0.9, Ty,i = 1, Ty,i = 0.9, 
7 v , i = 0.7 e = 0.8, /3 = 0. 
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Figure 5.15: Displacement flow in eccentric annulus, interface propagation. Mud channel for
mation. Steady state velocity model. Period T = 2-rr/uj, LO = 10 and 5p = 0.2. Interface position 
and velocity field for times: a)-b) T/4. c)-d) T/2. e)-f) 3T/4. g)-h) T. Physical and rheological 
parameters: K\ = 0.5, KI = 0.4, m\ = 1, mi = 1.2, p\ = 1, pi = 0.9, Ty,i = 1, Ty,i = 0.9, 
ry,! = 0.7 e = 0.8, /3 = 0. 
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Figure 5.16: Displacement flow in eccentric annulus, interface propagation. Mud channel for
mation. Transient velocity model. Period T = 2ir/coe, u> = 10, 5P = 0.1 and e = 0.6. Interface 
position and velocity field for times: a)-b) T/4. c)-d) T/2. e)-f) 3T/4. g)-h) T. Physical and 
rheological parameters: K,\ = 0.5, K 2 = 0.4, mi = 1, m2 = 1.2, pi = 1, p2 = 0.9, TY,I = 1, 
7y, i = 0.9, 7y, i =0.7 e = 0.8, 8 = 0. 
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Figure 5.17: Displacement flow in eccentric annulus, interface propagation. Mud channel for
mation. Transient velocity model. Period T = 2-jr/coe, co = 10, Sp = 0.2 and e = 0.6. Interface 
position and velocity field for times: a)-b) T/4. c)-d) T/2. e)-f) 3T/4. g)-h) T. Physical and 
rheological parameters: K\ = 0.5, KI = 0.4, m\ = 1, rri2 = 1-2, pi = 1, P2 = 0.9, 7v , i = 1, 
TY,I = 0.9, 7Y,i = 0.7 e = 0.8, /3 = 0. 
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Pulsation after mud channel forms 

Now we turn our attention to the worst case scenario, when a mud channel forms in the narrow 

part of the annulus. We tried to simulate the case in which the mud channel has already formed 

and the flow may be described as a parallel flow in a Hele-Shaw cell with the fluid on the narrow 

side static. We use the same rheological and physical parameter as the previous section, here the 

interface between the fluids is placed at <f> = 0.8. Figure 5.18 shows the effects of the pulsation 

on the steady state velocity model with an amplitude of Sp = 0.2. This model predicts that 

the mud channel will remain static. In Figure 5.19 we show the effects the pulsation has on 

the transient model with an amplitude of 5P = 0.2. Clearly as we go over the full period of 

the pulsation the mud channel slowly begins to yield until it is fully moving, then goes back 

to the static mud channel after the pulsation period is over. Thus in each pulsation the mud 

channel will yield, move up the narrow side for a short period of.time and stop again. Another 

interesting behaviour is that it seems that the flow is stable, no growing instabilities were to 

be seen at the interface. Actually, the interface remained unperturbed for all time and thus 

the removal of the mud channel was unsuccessful. One of the reasons we can think of has to 

be with the choice of the concentration model to simulate this problem. Perhaps an interface 

tracking model is a better choice for this type of problems. Actually, we tried to solve the 

interface tracking model using a conformal mapping technique. Due to our transformation, we 

lost control over the hyperbolic problem defining the interface, allowing us to use only a low 

order method to solve the problem. We think that the numerical diffusion was to large and 

no effects of the perturbed flow rate could be seen. An adaptive technique could be a better 

approach to attack this problem. We cannot therefore be completely sure if pulsation of the 

flow rate, after the mud channel has already formed, helps its removal. Until we extend our 

approach to an adaptive technique we cannot derive any firm conclusion. This remains as future 

work and will not be investigated in this thesis. 

As a conclusion to the chapter, the transient model (5.1)-(5.7) with (5.67) instead of (5.5) 

fully captures the perturbations of the velocity field. This may lead to a reduction of the mud 

channel telling us that pulsation of the flow rate at the beginning of the displacement may be 
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used as a tool to prevent or remove the mud channels along the annulus. 
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Figure 5.18: Displacement flow in eccentric annulus, interface propagation. Mud channel. 
Steady state velocity model. Period T = 2-ir/cj, ui = 10 and 5P = 0.2. Interface position and 
velocity field for times: a)-b) T/4. c)-d) T/2. e)-f) 3T/4. g)-h) T. Physical and rheological 
parameters: n\ = 0.5, K 2 = 0.4, mi = 1, m2 = 1.2, pi = 1, p2 = 0.9, Ty,i — 1, r^i = 0.9, 

= 0.7 e = 0.8, 8 = 0. 

181 



Chapter 5. Static mud channels 

(a) (b) (c) (d) 

(e) ' (f) (g) (h) 

Figure 5.19: Displacement flow in eccentric annulus, interface propagation. Mud channel. 
Transient velocity model. Period T = 2jr/ue, u = 10, 5P = 0.2 and e = 0.6. Interface position 
and velocity field for times: a)-b) T/4. c)-d) T/2. e)-f) 3T/4. g)-h) T. Physical and rheological 
parameters: « i = 0.5, n2 = 0.4, mi = 1, m2 = 1.2, p\ = 1, p2 = 0.9, ry,\ = 1, 7y,i = 0.9, 
Tyti = 0.7 e = 0.8, 3 = 0. 
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Chapter 6 
Summary and conclusions 

This thesis is concerned with modelling and analysis of various transient effects in primary 

cementing of an oil well. This process involves the displacement of one shear-thinning yield 

stress fluid by another along a narrow eccentric annular duct. 

6.1 Main contributions of the thesis 

The contributions of this thesis fall into 4 categories: 

• We developed a transient version of the model found in [10] and demonstrated its validity 

for small e. 

• The nonlinear evolution equation for the velocity field (stream function) is a third order 

partial differential equation, in 2 spatial dimensions and in time. We proved that there 

exists a unique solution to this equation and that the solution changes continuously with 

the data, i.e. well-posedness. These results are detailed and are summarised in chapter 3. 

• In the case that a long finger develops along the annulus during displacement, we were 

able to analyse the linear stability of the limiting parallel multi-layer flows. Specific results 

are summarised below in §6.2. 

• In the case that a mud channel develops in the narrow side of the annulus, we demon

strated that by perturbing the flow rate, via pulsation, the width of the mud channel can 

be decreased. It is necessary to pulse the flow rate during displacement, rather than after 

the mud channel has already formed. Further results are summarised below in §6.3 
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6.2 Interfacial instabilities 

When a long finger develops we find essentially a multi-layer parallel flow along the length 

of the annulus. In chapter 4 we studied the linear stability of these flows for the case when 

both fluids are yielded at the interface. This stability problem depends on 14 dimensionless 

parameters in its full generality and hence very difficult to study analytically. Thus, we first 

consider two simpler cases, parallel flow of two Newtonian fluids and parallel flow of two power 

law fluids, both in a vertical Hele-Shaw cell with constant height, i.e. a concentric annulus. For 

both cases we found that buoyancy plays a major role in causing instability. In the absence of 

density difference it seems that the flow is linearly stable. Inclination of the Hele-Shaw cell has 

destabilizing effects, if the heavier fluid is on top of the lighter, fluid, the flow may be unstable. 

Again, in the absence of buoyant forces, viscous effects and inclination are not strong enough 

to drive an instability. 

The stability problem for yield stress fluids has to be solved via computation. Here we solve 

the full problem, i.e. the parallel flow of two yield stress fluids in a vertical or near vertical 

eccentric Hele-Shaw cell. We consider the case when both fluids are yielded at the interface. 

If the eccentricity is equal to zero, i.e. a concentric annulus, we find analogous results to the 

Newtonian and power law fluid cases: buoyancy is the key parameter for instability. Although 

buoyancy forces are the primary reason for instability to arise, viscosity differences play a 

secondary role in the instability. For example, for certain values of density and viscosity if 

Pi > pi and K\ > K2 the flow may be stable, but if p\ > pi and n\ < K2 the flow may be 

linearly unstable. This shows that even though density differences drive the unstable behaviour, 

viscosity differences have stabilizing or destabilizing effects. This phenomenon is in contrast 

with the work of Gondret & Rabaud, [33]. They showed that in a horizontal Hele-Shaw cell, 

viscosity differences only determine the wave velocity of the growing instability. 

An interesting phenomena that is worth to mention is the inclusion of eccentricity in to the 

stability problem. Eccentricity can have stabilizing or destabilizing effects. For example, in the 

case of a concentric annulus we show that for a certain range of values of density and viscosity 
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if pi < p2 and'/ti > K 2 , the flow was linearly unstable for all wave lengths. If we increase 

the eccentricity, the flow will be linearly stable for long wave lengths. In contrast, if the more 

viscous fluid is also heavier, the flow was linearly stable for all wave lengths for the concentric 

annulus. If we now increase the eccentricity the flow will become linearly unstable for long wave 

lengths. From such results we inferred that all significant changes seem to happen for long wave 

lengths. Thus we considered the long wave length asymptotic behaviour of our problem. 

We presented several stability maps in §4.7 . As expected for the concentric annulus, in the 

absence of buoyancy the flow will be linearly stable. When eccentricity is different from zero, 

all the rheological parameters as well as buoyancy affect the instability regions. Thus, even 

without the presence of buoyancy forces and inertia, the flow may be unstable. We do not 

believe that these instabilities have been identified before. 

In [59] the authors use a lubrication model to predict whether a good displacement takes place 

or not. Surprisingly, our unstable domain occurs only as a subset of the unsteady displacement 

domain predicted by [59]. This means that if a long finger develops during the displacement, for 

certain parameter ranges the parallel flow may be unstable. Therefore, in unsteady displace

ments this suggests that mixing may occur at the interface of the finger due to the instability 

that we study here. It is not clear why there is apparently no interfacial instability for parame

ter regimes for which the annular displacement would be steady. Note that for such parameters, 

a base parallel flow is a perfectly well-defined solution of the two fluid problem. 

6.3 Mud channel removal 

In chapter 5 we studied the effects of a pulsatile flow rate for the removal of a mud channel. 

This is via numerical simulation. In chapter 4 we showed that if one of the fluids is unyielded 

at the interface the flow will be linearly stable. 

We investigated the effects that pulsation has on the mud channel by first using the steady state 

velocity model. If we begin the pulsation after the mud channel already formed, this model 

predicts that the mud will remain static. On the other hand, if we use our transient model, 

185 



Chapter 6. Summary and conclusions 

it predicts that as we go over one period of the pulsation, the mud channel slowly begins to 

yield until the mud is fully mobile and goes back to be static after the period is over. Thus, in 

each pulsation, the mud channel will yield, moves up the narrow side of the annulus for a short 

period of time and then stop again. If instead we pulsate the flow rate from the beginning of 

the displacement, the transient model predicts that a reduction of the mud channel width takes 

place. The steady state velocity model with a pulsatile flow rate shows no mayor changes with 

respect to the steady state velocity model with constant flow rate. Therefore, the transient 

model is necessary to fully capture the effects of the perturbation of the flow rate. 
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