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ABSTRACT 

The Weyl f u n c t i o n a l calculus for a family of n s e l f - a d j o i n t oper

ators acting on a H i l b e r t space provides a map from spaces of functions on R n 

into the set of bounded operators. The calculus i s not m u l t i p l i c a t i v e under 

point-wise m u l t i p l i c a t i o n of functions unless the s e l f - a d j o i n t operators 

commute. However, i f the operators happen to generate a strongly continuous 

unitary representation of a L i e group, we can hope to define a "skew product" 

on the function spaces under which the calculus i s m u l t i p l i c a t i v e . 

In part I, we show that, f o r exponential groups, a natural skew 

product e x i s t s by using the exponential map to p u l l the convolution on the 

group back to the L i e algebra. Moreover, whenever a skew product i s defined 

i n part I, i t depends only on the underlying L i e group and not on the p a r t i c 

u l a r representation. We then examine when the skew product of two functions 

i s again i n the o r i g i n a l function space. For compact L i e groups, the theory 

becomes more complex. A skew product i s constucted but by a rather a r t i f i c i a l 

method. The e x p l i c i t c a l c u l a t i o n s f o r SU(2) demonstrates the d i f f i c u l t i e s . 

In part I I , a unique skew product i s developed for the p o s i t i o n and 

momentum operators of one dimensional quantum mechanics. The dynamics of 

quantum mechanics on phase space can be formulated through t h i s skew product 

whenever the underlying Hamiltonian corresponds to a tempered d i s t r i b u t i o n on 

the plane. The r e s u l t i n g evolution operator on phase space i s shown to be 

equivalent to the d i f f e r e n c e of two " s i n g u l a r " i n t e g r a l operators obtained from 

the usual configuration space formulation. The evolution and configuration 

operators are then bounded with appropriate domains for the same set of 

tempered d i s t r i b u t i o n s . The skew product on t h i s set of d i s t r i b u t i o n s i s 
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used to define noncommutative Banach algebras and to determine the m u l t i p l i e r s 

on these spaces. For r e a l , compactly supported d i s t r i b u t i o n s , i t i s shown 

that the phase space formulation has a unique s o l u t i o n i f and only i f there 

i s a unique s o l u t i o n on configuration space. On the other hand, we observe 

that the symmetries of the evolution operator seem to imply that the two 

formulations of quantum mechanics are not equivalent for a l l r e a l tempered 

d i s t r i b u t i o n s . 
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INTRODUCTION 

The usual von Neumann fu n c t i o n a l calculus for a s i n g l e s e l f - a d j o i n t 

operator assigns, through the s p e c t r a l r e s o l u t i o n , an operator to every Borel-

measurable complex-valued function defined on the r e a l l i n e . R. Anderson [1] 

has extended this to the Weyl f u n c t i o n a l calculus for c e r t a i n f a m i l i e s of 

s e l f - a d j o i n t operators and functions on R n. An n-tuple of s e l f - a d j o i n t 

operators A= (A^,...,A n) on a H i l b e r t space H i s c a l l e d a s e l f - a d j o i n t  

n-tuple i f ; when the operators are r e s t r i c t e d to t h e i r common domain, any r e a l 

l i n e a r combination pf them i s e s s e n t i a l l y s e l f - a d j o i n t . For any s e l f - a d j o i n t 

n-tuple A, the Weyl fu n c t i o n a l calculus T(A) maps various subspaces S of 

functions on R n into the set of bounded operators B(H) on the H i l b e r t space. 

A m u l t i p l i c a t i v e structure on S w i l l mean a map S x S -»• S given by 

(f,g) ->• f * g # that s a t i s f i e s T(A) f * g = T(A)f T(A)g. The function f * g i s 

c a l l e d the skew product of f and g. This m u l t i p l i c a t i v e structure for 

s p e c i a l n-tuples plays an important r o l e i n phase space quantum mechanics as 

i s explained l a t e r i n the introduction. Our purpose i s to define and study 

the skew product f o r various s e l f - a d j o i n t n-tuples. 

The thesis i s divided, into two parts. The f i r s t examines necessary 

and s u f f i c i e n t conditions on the s e l f - a d j o i n t n-tuple f o r a skew product to 

e x i s t on various spaces of functions. The second studies an evolution equation 

that a r i s e s n a t u r a l l y from the skew product for one of our s p e c i a l n-tuples. 

In part I, we w i l l always assume that the s e l f - a d j o i n t n-tuple A 

comes from the set of generators of a strongly continuous unitary representa

t i o n of a r e a l , connected L i e group G. In f a c t , i A = ( i A ^ , . . . , i A n ) w i l l be 

a representation of the L i e algebra T of G. 
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If G i s n i l p o t e n t , a continuous skew product has already been 

developed i n [2] for these n-tuples on the Schwartz class S(R n). Unfortun

ate l y , t h i s r e s u l t cannot be extended to other groups for the space of 

functions S(R n). Hence, we consider the other three spaces of Fourier 

transforms that are introduced i n Chapter One (namely; F ( L 1 ( R n ) ) , F ( C o ( R n ) ) , 
CO ^ 

and F(C Q(R )) ). In Chapter Two, we show that for exponential groups there 
— . . . . 

i s a unique continuous skew product on these spaces for the n-tuple associated 

to the l e f t regular representation. Moreover, t h i s skew product holds for any 

strongly continuous unitary representation of the exponential group. The 

example at the end of the chapter demonstrates that G must be nilpotent i n 

order to expect a skew product on S(R n). 

In Chapters Three and Four, we attempt to carry the program of 

Chapter Two oyer to compact groups. Again, there i s a continuous skew product 

on S =F(L^(R n)) that holds for a l l our representations but i t i s no longer 

unique. As the exponential map i s no longer a diffeomorphism, the existence 

of a skew product for general compact groups on the Fourier transform of a 

space of continuous functions seems p a r t i c u l a r l y d i f f i c u l t to e s t a b l i s h . 

However, with considerable e f f o r t , a skew product i s produced for 5U(2). 

In part I I , we w i l l be dealing p r i m a r i l y with the p a i r of s e l f -
2 

adjoint operators (Q,cP) on L (R) that denote m u l t i p l i c a t i o n by x and 

the d i f f e r e n t i a l operator ~ i c ^ " r e s p e c t i v e l y . The constant c i s always a 

p o s i t i v e number. With c thought of as Planck's constant and h i n S(R n), 

T(Q,cP)h i s nothing but the quantization procedure suggested by Weyl 

[18 ; page 275] that i n t e r p r e t s c l a s s i c a l q uantities on phase space as quantum 
2 

mechanical operators (henceforth c a l l e d Weyl operators A c(h) ) on L (R). 
2 A unique continuous skew product * i s provided on the Schwartz class 5(R ) 



i n Chapter Six. If h i s regarded as a f i x e d Hamiltonian, the evolution 

equation on phase space ^ ~ - = i ( h * f - f * h ) i s equivalent to the Schrodinger 

equation on configuration space as explained i n [2]. 

However, most i n t e r e s t i n g Hamiltonians dp not come from functions 
2 

i n S(R ). Fortunately, the above paragraph can be reasonably extended to 
2 

..define a Weyl operator A £ on S(R) and an evolution operator on S(R ) 
2 

for any h i n the set of tempered d i s t r i b u t i o n s S'(R ). The greater portion 

of part II studies the equivalence of the r e s u l t i n g evolution equation 

| ^ = H f and the Weyl equation ^ - = i A <f>. In Chapter Six, our main theorem 

shows that the evolution operator i s equivalent to the di f f e r e n c e of two 

kernel operators on the plane. These kernel operators are i n t r i n s i c a l l y 

r e l a t e d to the Weyl operator of the o r i g i n a l d i s t r i b u t i o n . 
2 2 In Chapter Seven, H and A are regarded as operators on L (R ) c c 

2 
and L (R) re s p e c t i v e l y . From t h i s point of view, H i s bounded with 

2 
domain S(R ) i f and only i f A i s bounded with domain S(R). As any bounded 

2 
operator on L (R) i s an extension of a Weyl operator, the above set of 

2 

d i s t r i b u t i o n s i s quite a large subset of S'(R ) and, i n f a c t , includes 

L 2 ( R 2 ) and FO^CR 2)). 
2 2 

The m u l t i p l i c a t i v e structure on the Banach spaces L (R ) and 
1 2 

F(L (R )) defined through the bounded Weyl operators of Chapter Seven pro

duces two noncommutative Banach algebras. In Chapter Eight, we study the 
2 2 

m u l t i p l i e r s on these spaces. The m u l t i p l i e r s on L (R ) simply correspond to 
the d i s t r i b u t i o n s with bounded Weyl operators. Furthermore, a v a r i a t i o n of 

1 2 

Wendel's Theorem [6], proves the m u l t i p l i e r s on F(L (R )) come from the 

Fourier transform of f i n i t e Radon measures. 

In the l a s t chapter, we return to the viewpoint of Chapter Seven to 
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study the r e l a t i o n between H and A for r e a l tempered d i s t r i b u t i o n s . 
c c 

Most Schrodinger operators of a one dimensional p a r t i c l e are extensions of 

these Weyl operators. One important r e s u l t of Chapter Nine states that H c 

has dense domain i f and only i f A has dense domain. Moreover for d i s t r i b u -
c 

tions with compact support (or whose Fourier transform has compact support), 

^he—evolution equation has a unique s o l u t i o n i f and only i f the Weyl equation 

has a unique s o l u t i o n . In other words, the two equations are equivalent i n 

t h i s case. F i n a l l y , the geometric i n t u i t i o n present i n phase space i s used 

to suggest that they are not always equivalent. 
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PART I THE MULTIPLICATIVE STRUCTURE 

CHAPTER ONE 

PRELIMINARIES 

The functional analysis notation used i n t h i s thesis i s as i n 

K. Yosida [19] unless otherwise s p e c i f i e d . The following four spaces of 

functions with the given topology w i l l be considered throughout. 

DEFINITION 1.1: Lzt F be thz TouhleA tha.ns{ohm dz{lnzd on L 1 ( R n ) 

accondlng to thz {onmula 

n e 1 5 ' X f ( x ) d x {OK ZVZAy f E L ^ R " ) . Ff (O = (2TT) N / 2 

This opeAaton Induces a topology on thz {unction spaces bzlow. 

1. T0}(^))'= {Ff : f e L 1 ( R n ) } li> a Banach spacz with nonm ||Ff || - ||f || 1 

2. F ( C Q ( R n ) ) ={Ff : f i s a continuous function with compact support}. 

C Q(R n) has tliz topology o{ unl{onm convzngzncz on compact subsets. 

3. F(C^(R n)) ={Ff : f i s a C° function with compact support}. Thz topology 

Is Induced. {nom C^(R n) consldzuzd as thz locally convex lineax. topolo

gical spacz o{ test {unctions {on. distributions on R n. 

4. S(R ) Is thz spacz o{ njxpldly dzcAzaslng {unctions with usual topology. 

Thz Tounlzn tnans{onm li a homzomonphlsm on this spacz [19 ; chapter VI]. 

DEFINITION 1.2: (The Weyl Functional Calculus) SuppoSZ A = (A ,...,An) Is a 

Szl{-adj'olnt n-tuplz o{ opzhatons on H. let S bz onz o{ thz {oun. abovz 

spaces. Let e - ± ^ * A bz thz unltaAy opznaton associated to thz esszntially 

szl{-adjolnt opznaton -(t^A^ + . . . + S nA n) through Stone's Theorem. Then 

T(A) : S—>B(H) .is dz{lnzd by 



(1.1) T(A)f=(27r) -n/2 Ff(£) e ~ i ? ' A d 5 &0K 2V2JUJ f e S, 

u)heAz the. Zntngtial on the. fvight AJ> tka. BochneA JLnX.ZQh.oJL [19 ; page 132]. 

For part I, l e t us assume that i A = (LA,,...,1A ) i s a set of 
I n 

generators for a strongly continuous unitary representation U (henceforth 

c a l l e d a representation U) on a r e a l , connected Lie group G. Without loss 

of generality, G i s simply connected because the representation can be l i f t e d 

to the u n i v e r s a l covering group of G without a f f e c t i n g the generators. 

Formula (1.1) may be rewritten i n terms of t h i s representation. If exp 

denotes the exponential map from the L i e algebra r to G, then there i s a 
i f • A 

basis for V corresponding to A such that U(exp?) =e . With t h i s basis 

(1.2) T(A)f=(2Tr) -n/2 
R n =r 

F f ( 0 U(exp ( - C ) ) dt. 

We w i l l be p a r t i c u l a r l y i n t e r e s t e d i n the l e f t regular representation 

R on G. This i s constructed through l e f t t r a n s l a t i o n on the group. If u i s 
2 2 

a l e f t invariant Haar measure on G, l e t R(a) : L ( G , u ) —>L (G,y) by 

(1.3) ( R ( aH ) (p) = ij; ( a _ 1 p ) for ^ e L 2 ( G , y ) and a,peG. 
This defines a representation on G that i s generated by n l e f t i nvariant 

2 

vector f i e l d s (iA^, , . .. ,iA^) of skew-adjoint operators on L (G,y). For a l l 

groups considered i n t h i s t h e s i s , the skew product for the generators of any 

representation on G, w i l l depend only on the l e f t regular representation. 

http://JLnX.ZQh.oJL


CHAPTER TWO 

EXPONENTIAL LIE GROUPS 

DEFINITION 2.1: A Lte. gn.oup G called exponential the exponential map 

ektahllAheb an analytic dl^eomonplvum o{, V onto G. 

Exponential groups have been examined by a number of authors 

(eg. [4] and [13]). This class of Lie groups may be studied through their 

Lie algebras as there is a purely algebraic criterion on the Lie algebra to 

determine i f the group is exponential. In particular, a l l connected, simply 

connected nilpotent Lie groups are exponential while a l l exponential groups 

are solvable - each inclusion being proper. 

The following lemma is needed to study the l e f t regular representa

tion on these groups. The result should be obvious for those familiar with 

the theory of Lie groups [5 ; page 364]. 

LEMMA 2.2: 1^ G ti an exponential Qiowp, the. measuAe tnduced on G by 

LebeAgue measwie on r thn.ou.gh the. exponential map t6 o& the. ^onm x(a)dy(a) 

mhzn.lL 1(a) U> a positive analytic function. 1^ G Jj> nllpotent, then E IA 

a constant. 

PROOF: Let us construct the l e f t invariant Haar measure u on G. The l e f t 

Invariant vector fields iA^,...,±A of the l e f t regular representation form 

a basis for the tangent space at each point of G. Define n 1-forms pn G by 

co (iA.) =6, . for l<k,j <n. These are clearly l e f t invariant and the form J K J - -

co = co"'" A . . . A to11 i s a l e f t invariant n-form that is non-degenerate at each 

point of G. 

By using exponential coordinates with respect to our chosen basis 

http://thn.ou.gh
http://mhzn.lL
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f o r G, cu can be pul l e d back to a non-degenerate n-form v on T. But the 

n-form dx^ A ... A dx^ corresponding to Lebesgue measure i s also non-degenerate 

and so v=A(x, ,...,x )dx, A . . . A dx where A : Rn—>-R i s non-zero. By the 1 n 1 n 

choice of coordinates A i s obviously a n a l y t i c and A ( 0 , . . . , 0 ) =1. Thus A i s 

a p o s i t i v e a n a l y t i c function. 

^ - i - - - - - ' Define the measure u for f eC Q(G) by 

u ( f ) = f (exp(x)) A(x) dx. 
r 

I t i s easy to check u Is a p o s i t i v e measure on G that i s l e f t i n v a r i a n t since 

i t corresponds to the n-form c u . The d e f i n i t i o n of u states that u induces 

the measure A(x)dx on T. A l t e r n a t i v e l y , Lebesgue measure induces the 

measure E ( a ) d u ( a ) on G where E ( a ) = 1/A(exp " ^ a ) . Therefore E has the 

desired properties. 

If *G i s ni l p o t e n t , an appropriate basis for F may be chosen using 

the Campbell-Baker-Hausdorff Theorem so that 

exp 1{exp(C 1,... ,C n) exp(n 1,...,n )} = C^ + r^, £ 2 + n 2 + a polynomial i n ( t ^ . r ^ ) , 

5 N

 + 1 n
 + a polynomial i n (Sp.n^, . . . »? n_i> n

n_i' ) • 

With these coordinates, Lebesgue measure i s c l e a r l y l e f t i n v a r i a n t and t h i s 

insures that E i s a constant. 

THEOREM 2.3: T<J A <u> the. beJL{-adjoint n~tuple. associated to the. le.it  

tie.gu.laA. tizpttesentatlon o& an exponential, gioup G,the.n theAt lb a unique, 

continuous Akeio pioduct on S = F ( L 1 ( R n ) ) , S=F ( c (R n)) and S = F(C°°(R n)). 
O 0 

In {act, l{ r = R n hoi, the. basis cotftzsponding to A, then F ( f * g) = K 

{on. f, g e s wheAz 

K ( Q - ( 2 T T ) _ n / 2 f F f ( e x p - 1 ( e x p ( - r 1 ) e x P 5 ) ) F g ( T i ) L ^ ( ~ ^ 1 ^ . 
J p j i L{ exp a,; 

http://le.it
http://tie.gu.laA


PROOF: We w i l l determine the skew product on F ( L 1 ( R N ) ) . Define a new 

function on the group for any f E F ( L 1 ( R 1 1 ) ) as follows 

f(a) = Ff(exp ""a)-11(a). 

By formula (1.2), we have for every I | I E L (G,y) 

(T(A)f) (ty) = (2ir) -n/2 
R' n F f ( 0 R(exp(-5 ) ) i J ; de; 

= (2ir) 
-n/2 Ff(exp 1a) R(a  1)ty E(a)dy(a) 

= (2TT) -n/2 f ( a ) R(tr )̂  du(a), 

Since f eL 1(G,y), the l a s t i n t e g r a l i s defined as a convolution on G. of an 

1 2 L function and an L function. 

Let f and g be two a r b i t r a r y functions i n F ( L 1 ( R n ) ) . Then 

(T(A)f T(A)g)ty 

= (2TT) 
-n/2 f(a) R(a  X) 4 ( 2 7 r ) ~ n / 2 

G 
g(d) R ( 5 1 ) 4 » dy(<5) V dy(a) 

= (2TT) 
-n 

G J 
f(a) g ( 6 ) R(a 16 ^ dy(6) dy(a) 

Interchange the order of i n t e g r a t i o n (legitimate since these are 

convolutions) and replace a by 6 ( r e c a l l : y i s l e f t i nvariant) 

= (2TT) 
-n f ( 5 1a) g(6) R(a ^ty du(a) du(6) 

GxG 

- (2ir) 
-n/2 

(2TT) 
-n/2 f (fi

 1a) g ( 6 ) dy(6) I R(a dy(a) 
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{ (2ir) n / 2 i * f ( o ) 1/Z'a) } R(o I ) ^ Z(a)du(cr) 
G G 

where * means the usual convolution on a group [6] 
G* 

K(£) R(exp ( - 5 ) ) * de: 
R n 

where K i s the function 

K ( 0 = ( 2 , ) - n / 2 ggfCexpe:) 

- ( 2 . ) " n / 2 
R n Ff (exp- 1(exp ( - n)expe:))Fg ( n ) ^ f ^ p 5 1 ^ 

K i s a function i n L"*"(Rn) because g * f e (G,y) and t h e i r norms 

s a t i s f y the equality ||K|| = (2T T ) ~ 11 g * f j| ̂  . This l a s t equation also 

shows that the skew product i s continuous with respect to the induced topology 

on F(L (R n)) when f * g i s set equal to F K. Furthermore, the continuity 

of the skew product on F ( C Q ( R n ) ) and F(C™(R n)) i s a d i r e c t consequence of 
00 

the c o n t i n u i t y of the convolution on G for C
Q ( G ) and C o(G). 

The skew product for a l l these spaces i s unique since T(A)f i s 

2 

e s s e n t i a l l y a convolution operator on L (G,y) with kernel uniquely deter

mined by f. 

From the proof, i t i s seen that the skew product for exponential 

groups i s r e a l l y convolution on the group p u l l e d back to the L i e algebra. 

In order to generalize t h i s method to other groups, i t seems e s s e n t i a l that 

the exponential map i s onto the group. In the next chapter we look at another 

case of s u r j e c t i v e exponentials; namely, the compact groups. 

The space 5(R n) i s conspicuous by i t s absence i n Theorem 2.3. 
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We w i l l see i n part II that a skew product on S(R n) should e x i s t to study 

the m u l t i p l i c a t i v e structure further. For nil p o t e n t L i e groups, t h i s i s 

indeed the case (Corollary 2.4). Unfortunately, even for the simplest 

exponential group that i s not irilpotent we have no skew product on the Schwartz 

cla s s (Theorem 2.7). 

' ' C O R O L L A R Y 2.4: IjJ G is nilpotent In addition to the hypothesis o{ The.on.em 

2..3, then theJte Is a unique, continuous skew product on s=S(R n) {on. the le{t 

n.egulan nepnesentation. 

PROOF: See [2 ; section 2]. 

Remark: In the s p e c i a l case of abelian groups, the skew product i s exactly 

what i s expected - i t i s simply the point-wise product of functions 

(that i s f *g(£) =f(£)g(£)). The s e l f - a d j o i n t n-tuple i s composed of 

operators whose commuting s p e c t r a l f a m i l i e s enable the von Neumann f u n c t i o n a l 

calculus to be immediately extended. 

The l e f t regular representation plays such an important r o l e 

because of the following. 

THEOREM 2.5: let G be an exponential gnoup. The skew pnoduct o{ Theonem 2.3 

holds {on the Weyl calculus o{ the geneXatons o{ any hepnesenta.tlon o{ G. 

PROOF: If iA = (iA , . . . , i A n ) . . are'the generators of the representation U, 

then there i s a basis of T such that (1.2) holds. As i n the proof of 

Theorem 2.3, we have 

T(A)f T(A)g = (2ir) n Ff(C) Fg(n) U(exp(-5)exp(-n)) dndt; 
R nxR n 

http://The.on.em
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(2,rn f(a) g(6) U(cr 16 1 ) dy(6)dy(a) 
GxG 

( 2 T T ) - n / 2 

( 2 7 r ) - n / 2 

( 2 T T ) - n / 2 f(6 Xa) ~g(a) dy(<5) U(a 1 ) dy(a) 

R n 

F ( f * g ) a ) U ( e x p ( - t : ) ) d£. 

where f * g i s given i n Theorem 2.3. 

The r e s t of t h i s chapter c a l c u l a t e s the skew product for one 

s p e c i f i c exponential group i n order to demonstrate that there i s more to 

th i s structure than i s f i r s t apparent. 

EXAMPLE: Suppose G i s the L i e group c o n s i s t i n g of points on the plane 

together with the m u l t i p l i c a t i o n (t,x)(s,y) = (t + s, x + e~y) . Let us 

cal c u l a t e the* exponential map on G. 

We must determine the d i f f e r e n t i a b l e one parameter subgroup 

Y : R —>• G given by y ( s ) = (<x(s),B(s)) that s a t i s f i e s the three conditions 

i ) Y ( 0 ) = (0,0) i i ) Y ' ( 0 ) = ( t Q , x o ) i i i ) Y ( s + t ) = Y ( s ) Y ( t ) . 

When we f i n d such a curve, then e x p ( t Q , x o ) =Y(1)? Writing these conditions 

out i n terms of a and 3 , we r e a l l y have two d i f f e r e n t i a l equations whose 

solutions are 

(st ) , t , e o X e~"*x a(s) = t s and g(s) = — — — x where — 7 — = 1 at t=0. o t o t o 

e — 1 
Therefore, exp(t,x) = ( t , — - — x ) . 

The exponential obviously establishes an a n a l y t i c diffeomorphism 
2 between T=R and G. With the coordinate system on the L i e algebra given 
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by the basis {(1,0) , (0,1)}, one can show the m u l t i p l i c a t i o n on T comes 

from the bracket [(1,0) , (0,1)] = (0,1). 

The o r i g i n a l coordinates on G are not exponential coordinates. 

In order to f i n d the skew product according to Theorem 2.3, the following 

r e s u l t s are required. 

LEMMA 2.6: let G be the above gfioup and let Y have the Indicated baA-u. 

t s 
Then a) exp (exp (t,x)exp (s,y) ) = (t + s y~~^—i~—x + e t ( e

 s )y } ) 
e -1 

l - e ~ S 

and b) dy(s,y) = — — ds dy ti, Uaah. meaMiAe In exponential coofidlnateA. 
1- ~ s 

(that IA, A(s,y) = — ~ wheAe A ti> a-t, In the ph-oofa oi lemma 2.2) 

PROOF: a) On the one hand, by d e f i n i t i o n 

e ' - l e S - l exp(t,x)exp(s,y) = ( t , — — x ) ( s , — — y ) 
9 

. , e -1 , t ,e -l s s = (t + s,——-x+ e ( — — ) y ) . 

On the other hand, 

e x p ( t + s > _ ^ _ { e ^ l x + e t ( e ^ l ) y } ) = ( t + s > e ^ l x + e t ( e ^ l ) y } > 

e -1 

b) To show y i s l e f t i n v a r i a n t , the equation below must be v e r i f i e d when 

exponential coordinates are used i n the i n t e g r a l s . 

-s 
_ f ((t,x)(s,y)) i - ^ - d s d y 

R^ 3 

By part a), we have 

1 - ~ S 

f ( ( t , x ) ( s , y ) ) ^ f - d s d y = 
^R 

-s 
. , f(s,y) i - ^ - d s d y for a l l f eC (R 2), 
R Z 3 

t s —s 
f ( t + s , - - ^ — { — — x+e (~7T-)y } ) — dsdy 

R e ' -1 
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f ( s s { e ^ x + e t ( e T ^ l ) y } ) k £ L d a d y 

R e -1 

Interchange the order of i n t e g r a t i o n and change the v a r i a b l e y to obtain 
s 1 i t-s 

r / \ e -1 - t s-t 1-e , , 
, f ( B . y ) — e - — - ds dy 

R e -1 

s . ^ -s , s tN ct \ e ~1 -t e (e -e ) , , 
n 2 f ( s - y ) V e -t, s t T d s d y 

R e (e -e ) 

l - e _ s 

, f (s,y) — — ds dy. 
R 2 3 

THEOREM 2.7: li G <t6 .trie above gn.oup and A -ci -trie i>eJLi-ad joint n-tuple. 

oAAociated to the, le.it n.e.guloji n.epn.eJ>entation with the. Indicated ba&iA ion. r , 
2 

then S=5(R ) f ioi no ifeew pnodact. 

2 

PROOF: Assume that a skew product does e x i s t . For f,g e 5(R ), the function 

F(f *g) has the following form according to Theorem 2.3 and Lemma 2.6. 

F ( f * g ) ( t , x ) 

- £ f 2 F f ( t - s ) - ^ { V i y + e - S ( 4 : i x ) }) Fg(s,y) ^ ds dy . 
J R e -1 1-e 

It i s apparent that F ( f *g) i s defined everywhere and i s i n f a c t a continuous 
s—t 

f unction (since the factor (t-s)/(1-e ) i s a polynomially bounded a n a l y t i c 

function of s ) . As there i s a skew product, F ( f *g) as defined above i s 

i n S(R 2). 
To obtain a contr a d i c t i o n , we have only to ex h i b i t two functions 

7 2 f and g i n S(R ) such that F ( f *g) i s not i n S(R ). To t h i s end, suppose 

Ff = Qxty and F g = a * 8 (that i s , Ff(u,v) = <f>(u)iKv) etc.) where $,ip,a,.B are 

a l l non-negative functions i n 5(R) to be chosen below. With t h i s decomposition 

http://le.it
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F( f *g)(0,x) = 2TT 
F f (_ s >_=s__ (^ll y + e

 s
x ) ) F g ( s , y ) — ^ dsdy 

R e " S - l S l - e S 

_1_ 
2TT 

<K-s)a(s) 
R 1-e"" 

<K-y ^ r x ) B(y) dy \ ds. 
R l - e S 

Define ty and B so that they are non-negative functions i n S ( R ) and s a t i s f y 

i ) T^-(y) = 1 for | y | < l and i i ) B ( y ) E e y for y < l . 

Since s / ( l - e ) <0 for a l l s, we have f or any x<0 

F(f *g)(0,x) > y - <j)(-s)a(s) 
R 

-s 
1-e' 

( l - s x / ( l - e s ) ) 

( - l - s x / ( l - e S ) ) 

y 
e dy ds 

1 -1 e -e 
2TT 

<K-s)a(s) — — e s x / ( 1 e } ds. 
R l - e S 

Now define § and a so that they are non-negative, i n S ( R ) , and s a t i s f y 

i i i ) <f>(-s) = - s / ( l - e s ) for s>0 and 

iv) <x(s) E - - ^ - { - s / ( l - e S ) } for s > 0. 

Substituting these functions into our equation for F(f * g ) , we obtain 

-oo . t i v 

F ( f * g ) ( 0 , x ) >~ ( ^ 7 ) 2 (-•^••{-s/d-e-8)}) e ~ S x / ( 1 _ e ' ds for any x<0 
' o 1-e 

1 r 2 sx , 
- r -s e ds 
4 Jl 

= T { e X/x - 2e X/x 2 + 2e X/x 3 - 2/x3 } for x < 0. 

Obviously, F ( f *g)(0,x) does not belong to S ( R ) . Therefore, there i s no 

skew product on S ( R ) 
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CHAPTER THREE 

COMPACT LIE GROUPS 

0 

If G i s a compact group, .the technique of Theorem 2.3 must be 

al t e r e d because the exponential map i s not a diffeomorphism. Fortunately, 

the theory of Riemannian geometry i s applicable and supplies the necessary 
jv» -
f a c t s concerning the exponential i n place of Lemma 2.2. 

LEMMA 3.1: Let G be a compact gnoup with n dimensional Lie algebra. 

a) The set C o{ singular points o{ the. exponential map Is a closed set 

In R n with measuAe zero. 

b) TheAe Is an open, nelatlvely compact neJ.ghbon.hood E o{ 0 e r such that 

i ) exp li, a dl{{eomorphlsm o{ E onto expE 

i i ) E -is the longest connected nelghbonhood with this pnopenty 

i i i ) exp(&) =G wheAe E is the closune o{ E. 

c) With w the le{t tnvanlant n-{orm on G and A(x) defined thnough the 

exponential as In the proo{ o{ Lemma 2.2, 

i ) Haan measure is given by 

<Ka) 'du(a) = 
G 

<J>(exp£) A(£) d? {on all continuous § on G 
E 

i i ) When f Is a continuous {unction on R n with suppont wheAe exp is a 

dl{{eomonphlsm (so exp 1 is de{lned) 

n no dc = 
R n 

-1 1  
f ( e x p a ) |A(exp _ 1a)| d y ( a ) 

exp(supp f ) 

PROOF: a) Since C = {£ e T | exp :T—*G i s not a l o c a l d i f f eomorphism at £ } , 

i t i s c l e a r l y a closed set. I f the exponential i s composed with an a n a l y t i c 

coordinate chart, C i s l o c a l l y the set of points where the determinant of 

an a n a l y t i c map i s zero. The c a l c u l a t i o n of the determinant i s an a n a l y t i c 

http://neJ.ghbon.hood
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operation so, l o c a l l y , C i s the set of zeroes of an a n a l y t i c real-valued map. 

If t h i s a n a l y t i c map vanished i d e n t i c a l l y on any non-empty open set 

i n T, then exp would be singular everywhere by extending the chart to an 

a n a l y t i c a t l a s . But exp i s not always singular, hence, C i s the set of 

zeroes of a not i d e n t i c a l l y zero a n a l y t i c function. I t i s an easy exercise 

-to--show that such a set has measure zero. 

b) This i s the part i n which the Riemannian metric plays a leading r o l e . 

The d e t a i l s of i t s construction and c e r t a i n theorems concerning Riemannian 

manifolds w i l l not be proved because the Riemannian structure of our groups 

i s o v e r a l l of secondary importance. For a rigorous presentation of the theory, 

the reader i s referred to [9] - e s p e c i a l l y chapters IV and VIII. 

For our purposes, the most important aspect of the metric i s that 

the one parameter subgroups obtained from the exponential map are the geodesies 

of the manifold that pass through the i d e n t i t y e of G. Since G i s compact, 

i t i s a complete Riemannian manifold. As such, any point i n G can be joined 

to e by a geodesic that minimizes arclength [9 ; chapter IV, page 172]. 

Define the set E of the theorem as follows 

E = {t~er : the curve Y^Ct) =exp(tn) minimizes arclength from e to 

exp(n) for a l l n i n some neighborhood of £} . 

Then E i s an open, r e l a t i v e l y compact neighborhood of e = 0 i n V and 

exp : E—>-expE i s a d i f feomorphism onto an open set of G. In addition, G i s 

the d i s j o i n t union of expE and e x p ( E ~ E ) . See [9 ; chapter VIII, page 100]. 

c) The' t i g h t side of the equation i n i ) i s a l e f t i n v a r i a n t p o s i t i v e measure 

because A(£) i s p o s i t i v e on the connected set E and the measure of the 

boundary of E i s zero. I t should be noted that A ( C ) i s not always p o s i t i v e 
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on the enti r e L i e algebra. 

The second statement i s simply the construction of the Haar measure 

from the l e f t i n v a r i a n t n-form co as i n Lemma 2.2. The absolute value appears 

on the i n t e g r a t i o n factor because the exponential map need not be o r i e n t a t i o n 

preserving at a l l points where i t i s a l o c a l diffeomorphism. 

With the above r e s u l t , a skew product may be developed for general 

compact groups. 

T H E O R E M 3.2: Itf A U> the 4ell--adjoint n-tuple. aaociated to the le{t neaulaA. 

n.eph.uentation oi a compact gscoup G, then thexe it> a continuous Akeiv pfiodact 

on S = F ( L 1 ( R n ) ) . , • • 

PROOF: With C and E as i n Lemma 3.1, assume that Ff £ C Q ( R n •• C) (that i s , 

Ff i s a continuous function on R n with compact support outside C) and define 

a function on the group analogous to that i n Theorem 2.3 by the formula 

f(a) = i f̂ffffr} for 0 e G 
exp? = a 

£ esupp(Ff) 

where A i s taken from the previous lemma. For fi x e d a e G , f(o) i s a f i n i t e 

sum of f i n i t e numbers, The numbers are f i n i t e since A(£) ^0 f o r £ esupp Ff . 

If the number of terms were not f i n i t e , there would be a sequence £ n with a 

l i m i t point £Q i n supp Ff such that expt~n = a and thus exp would be 

singular at a point outside C. This y i e l d s a co n t r a d i c t i o n . 

I t i s easy to see that f i s a c t u a l l y a continuous function on the 

group. Furthermore, 

1^! = I f Ca) I du(a) G 
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expg = o" 
£ £ supp Ff 

Ff ( g ) dy(a) 

G expg = cr 
E, E supp Ff 

Ff ( g ) 
A(£) dy(a) 

Ff(£)| dg by Lemma 3.1 c) 11) 

= l l F f l l , 

With t h i s d e f i n i t i o n of f, the Weyl calculus has the form (see Theorem 2.3) 

T(A)f (i|0= (2TT) n / 2 f(o) R(a du(a) for a l l ^ e L 2 ( G , y ) 

and T(A)f T (A) g Op)' = (2ir) -n g * f (a) R(a hi> dy(a) 

where f , g e F ( C Q ( R n - C)). 

The convolution present i n the l a s t i n t e g r a l may be pu l l e d back to a function 

on R n as follows 

(3.1) K(g) = 
(2TT) n / 2 A(g) i * f ( e x p £ ) for g e E 

0 i f g ^ E . 

It i s obvious that K s a t i s f i e s the r e l a t i o n for the product of operators; thus, 

(2TT) 
-n/2 K(g) R(exp ( - 0 ) 1 » dg = T(A)f T(A)g (<J0 

R 

Let us examine t h i s new function more c l o s e l y . Since g * f i s a 

continuous function on G, therefore K i s continuous on E. Moreover, 

K£L^"(R n) and, i n f a c t , there i s an estimate f or i t s norm given below. 

( 2 l r ) n / 2 HKI^- U g g f H ^ IIS f| -L H f H ^ H F f H J l F g l ^ . 
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The d e f i n i t i o n f * g = F provides a m u l t i p l i c a t i v e structure 

by giving a map F ( C 0 ( R n ~ C ) ) x F ( C Q ( R N ~ C ) ) >- FQ^CR 1 1)) that i s contin

uous, by means of the norm i n e q u a l i t y , when F ( C Q ( R N ~ C ) ) has the r e l a t i v e 

topology induced from FCL^CR 1 1)). AS C has measure zero, F(CQ(R n~C)) i s 

dense i n F(L (R ) ) . Theref ore, there i s a unique continuous extension of 

the above map that y i e l d s a continuous skew product on F(L"*"(R n)). 

The analogue of Theorem 2.5 i s proved using the Peter-Weyl Theorem. 

THEOREM 3.3: Let G be. a compact gfioup. The, &keu) product oi The.oA.em 3.2 hold* 

ion, the. We,gZ cat.ciUuA conAeApondlng to any n.e,pn.ej>e,ntatlon oi G. 

PROOF: F i r s t suppose that V : a—*-V(a) i s a subrepresentation of the l e f t 
2 

regular representation. Then there i s a p r o j e c t i o n operator P^ on L (G,u) 

such that V(a) = R(a) P . Let A^ denote the generators of the representa-
• I n 

t i o n corresponding to a fi x e d basis of T. For f i n F(L (R ) ) , V i s 

rel a t e d to R by 

T ( A y ) f (ty) = (2TT) n / 2 j 

( 2 T T ) " n / 2 

J 

Ff(£) V(exp ( - O ) i f i d£ for ty z P,,(L 2(G,y)) 
R n V 

F f ( 0 R(exp(-t:))P ty d£ 
R n V 

= T(A)f (ty) since ?^ty = ty. 

From t h i s equation, i t i s clear that the skew product f o r the l e f t regular 

representation i s v a l i d for any of i t s subrepresentations. 

Now suppose that W : a—*-W(a) i s an i r r e d u c i b l e representation. 

By the Peter-Weyl Theorem [6 ; page 24], W i s equivalent to an i r r e d u c i b l e 

subrepresentation V of the l e f t regular representation. Hence, there i s a 

l i n e a r isometry B between the underlying H i l b e r t spaces such that the 

http://The.oA.em
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equality W(cr) = B 1V(a)B i s true. I f H i s the H i l b e r t space for W, then 

K A ^ f ( I , ) = ( 2 i r ) n / 2 

( 2 , ) " n / 2 

Ff(g) W(exp(-g))ip dg for a l l ^ e rf 
R n 

„ Ff(g) B 1V(exp(-g))B^ dg 
R n 

= ( 2 T 7 ) " n / 2 B _ 1 - Ff(g) V(exp(-g))B^ dg 
R 

= B ~ 1 ( T ( A v ) f ) (B*). 

Writing out the product of two such operators, a t r i v i a l c a n c e l l a t i o n shows 

that the skew product remains v a l i d f o r i r r e d u c i b l e representations. 

Any representation for a compact group i s the d i r e c t sum of irreduc

i b l e representations. As the skew product holds for a l l the summands, i t 

w i l l also hold f o r the d i r e c t sum. 

Remark: The skew product of Theorem 3.2 i s c l e a r l y not unique. A s p e c i f i c 

set E was chosen i n the proof that behaved n i c e l y under the exponential map. 

There are c e r t a i n l y other sets that would do equally as w e l l . 

Since the function K given by (3.1) i s usu a l l y discontinuous at 

the boundary of E, our skew product w i l l not s u f f i c e for the other three 

function spaces introduced i n Chapter One. However, i t i s i n t e r e s t i n g to 

question the existence of some m u l t i p l i c a t i v e structure on these spaces. 

The d i f f i c u l t i e s encountered i n Chapter Four f o r the group SU(2) discour

ages us from looking at the general case. 
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CHAPTER FOUR 

SU (21 

Let G be the r e a l , simply connected L i e group 5U(2) of 2x2 

unitary matrices of determinant one. Since G i s the two-fold u n i v e r s a l 

covering group of the r o t a t i o n group SO(3), any skew product defined through 

G w i l l , a p r i o r i , e s t a b l i s h a skew product for S0(3). 

The L i e algebra Y i s the set of 2x2 skew-hermitian matrices of 

trace zero. Choose the following matrices as our basis for Y. 

i 0 ' 0 i I r o i 
0 9 i 0 J • -i o J 

As always, we need some fa c t s about the exponential map before producing a 

skew product. 

LEMMA 4.1: a) With the above basis, exp : r — > G is given by 

s i n |.£ 
exp(£ 1,£ 2,? 3) = 

c o 8 | ? | + 1 ± f t f 5 1 i 

^ - L ( ? 2 i - 5 3 ) 

whexe | ? | = ^ + K 2
2 + K \ ) 1 1 2 and ^ ^ = 1 at |?|=0. 

b) The exponential. Is periodic o{ period 2TT along any tine through the 

origin. Vor any non-negative Integer n, the set {£ : nir < |g| < (n+l)iT} 

parameterizes the group G and exp Is a dl{{eomorphism on the Interior o{ 

any o{ these sets. The set E o{ lemma 3.1 is o{ the above {orm with n=0. 

c) J{ o denotes group composition on one o{ these parameterlzations> then 

cos | n "̂ o £ = cos n | cos | £ | + s i n | n | s i n | £ | T^V^ 

d) With the notation o{ lemma 3.1, A(g) = ( s i n 15 |)/ (15 |) ' 
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PROOF: a) and b) are easy exercises using the exponential of a matrix. 

c) This i s an immediate consequence of matrix m u t i p l i c a t i o n and the fact that 

cos |?| = y trace(exp£)• 

d) A s l i g h t modification of the Weyl Integration Formula using the roots of 

G produces t h i s i n t e g r a t i n g f a c t o r . For a more constructive proof, we r e f e r 

'the reader to [12 ; page 220]. 

THEOREM 4.2: Ton G = SU(2) , theAe. <U a Akew product on the, Apace. o& 

3 
lunctxonA s = F ( c Q ( R ) ) . 

PROOF: We have only to consider the l e f t regular representation of. G due 

to Theorem 3.3. 

Let D ( I T , 2 I T ) be the set {£ : IT < | g \ < 2TT> i n 3-space. By Lemma 

4.1, D(TT,2TT) may be used as a coordinate system for G under the exponential 

map. The inner and outer boundaries of t h i s set correspond to the matrices 

- I and I of the group r e s p e c t i v e l y . 

3 

Define a function on the group for a l l f G F ( C Q ( R ) ) , with respect 

to the above coordinates, by 

expa .= £ 

I F f a + 2 f ^ ) 
s i n £ n=-°° 1 

2nrr£ 2 

by the p e r i o d i c i t y of the exponential (Lemma 4.1). We set f equal to 0 at 

the boundary of D(iT,2Tr). 

3 

Following Theorem 3.2, the skew product of f , g e F ( C 0 ( R )) should 

be provided through the function K defined on the next page. 
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Ul2 
f ( n 1 o g ) g ( n ) d y ( n ) 

' D ( T T , 2 T T ) 

for £ i n the i n t e r i o r of D ( T T , 2 T T ) . Of course, we do not as yet know i f K 

i s defined point-wise because the singular set of the exponential was not 

avoided as i t was i n Theorem 3.2. Let us rewrite K i n order to examine the 
3 

l a s t i n t e g r a l more c l o s e l y . F i r s t , for f E F ( C Q ( R ) ) , define 

CO 

f'(?) = - ^ I Ff(?+^f) 
r 2 L ^ £ E, n=-°° 1 1 

2 
for a l l K e D ( T T , 2T V ) . 

With t h i s notation, K becomes 

(4.1) k"(5) = ( 2 u ) - 3 / 2 s l n |g< f. f ^ o C ) g ' ( n ) — ^ - - ^ L 
| C | D (IT , 2TT) s i n | n o £ 

by changing Haar measure into Lebesgue measure. 

It should be evident why D ( T r,2ir) was chosen for our parameter

i z a t i o n instead of the set E as i n Lemma 3.1. On D ( T T , 2T T ) , f and g' 
2 —1 2 

are uniformly continuous and the expressions j£| and |n o £ | are 

never zero. 

Our proof consists of three steps concerning the properties of K. 

Af t e r these are performed, i t w i l l only remain to "round o f f the edges" 

of K at the boundary of our coordinate system. The steps are: 

Step 1. K(£) e x i s t s f or each £ i n the i n t e r i o r of D ( T T , 2 T T ) . 

Step 2. K(£) i s continuous at each of these points. 

Step 3. K(g) can be extended to a continuous function on D ( T T,2T T ) that 

i s constant on each boundary. 

Step 1. F i x g so that TT < |g| < 2TT. Then, for some constant c , depending on 

c|K(0 I < sup|f' (TI) I sup|g' (n) 
- n n 

-1 _,2 
n 0 ? l - d n 2 -1 

D( T T , 2TT) s i n n o £ 
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where c i s greater than zero and the sup i s taken over D(Tf,2Tr). 

The problem i n showing the integrand i n the l a s t i n t e g r a l i s 

summable i s that the denominator i s sometimes zero. In f a c t , 

{n : s i n 2 | n _ 1 o £ | = 0} = f n : | r f 1 o ? | E { f r , 2T T } } 

= { n : r f 1 o £ =±1} 

= ( t , C o (-1)}. 

Since neither of these points are on the boundary of D(-rr,2Tr) , we can choose 

b a l l s and around £ and £ o .(-I) r e s p e c t i v e l y , whose closures stay 

away from the boundary. Let us s p l i t up the i n t e g r a l f o r the estimate of K 

into an i n t e g r a l over M , over N , and over the remainder. The Haar 

measure gives a bound for the f i r s t and second i n t e g r a l ; namely, 

dn = 
-1 - 2 

n o £ 
M s i n 2 | n ^ o £ 

n 1 o z\2 |n| 2 dy(n) 

s i n 2 | n o £ | s i n 2 | n 

K- C l 
-1 _|2 

n 0 5 1 - dy(n) 
E, s i n n o E, 

2 2 
where |n| / s i n |n| i s bounded by c^ on M£ 

C l r o M 

< c^ • volume (D (IT , 2TT) ) . 

Likewise, the i n t e g r a l over i s bounded by c^'volume(D(ir, 2 I T ) ) . 

The i n t e g r a l over the remainder i s also bounded since the integrand 

i s a uniformly continuous function on t h i s set. Therefore, formula (4.1) 

does produce a candidate f o r the skew product. 
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Step 2. This is essentially a refinement of the argument used in step 1. 
2 2 

As sin | g | / | g | is continuous near a fixed point g between ir and 2TT , we 

need only show the integral in (4.1) is continuous. To this end, suppose 

that g^ is close to g but is not ±1. The difference of the integrals is 
-1 ,i2 I -1 r |2 In o? 1| 

D(TT,2TT) sin^ l n ^ o g | sin 2 | n "*"o£.jJ 
f ' ( n 1 o £ ) g f (n) — — f ' ( n ^e ^ g ' C n ) dn 

D (TT , 2TT ) 
Is1Cn) 

i o I -1 _ 2 
r f / - 1 r\ n O g j . , , -1 . 1 
f ' ( n og) — ^ — f (n o g ^ ) — 2 — - j -

sin |n og| sin |n og^| 

d n. 

The last integral w i l l again be s p l i t up as in step 1 in order to obtain an 

estimate. Instead of writing the expression inside the long absolute value 

signs of the last integral each time, i t w i l l be denoted by fi whenever 

i t i s used. Let us f i r s t calculate a bound over M . 

M, 
|g' (n) | |n|dr, < su P|f•(n) | suplg' ( n) In ogj 

-1 r 12 In og 1| 

sin 2 | n *̂og| sin 2 | n "*"oĝ | 
dn 

< c3*{volume(g ôM̂ .) + volume (g-^oM^) } 

i f g^ is close enough to g. This inequality results by changing to Haar 

measure and then back again as we did in the calculation on page 25. The 
2 2 

constant c^ Is a bound for the expression sup|f'|•sup|g' | •|n | /sin |n| 

when n is restricted to l i e in M̂ . 

.-1 Suppose a>0 is given. Choose M so that volume(g oM̂ ) <a/8c^. 

Then there is a &^>0 such that |g-g.J < 6̂  =*> volume(g^oM) < ct/6c3 and 6̂ . 

is less than half the radius of M̂ . With this restriction for g, we have 

g'(n)||fi|dn < c„-{a/8c~+ a/6c,} < a/3. 

Likewise, choose N and then 6^ such that 6 2 is less than half the 
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the distance from £ to-the boundary of N^o(-I) and |S _£-jJ < ^2 ^ 

|g' (n)I|n|dn < a / 3 . 

We have only to estimate the i n t e g r a l over the remainder. Define 

a function u : {D (TT , 2TT) - (M U N) } x {E,± : | \ < minimum^, 6 £) } — ( f , by 

u ( n , c : 1 ) = f' ( r i ~ 1 o t : 1 ) ' | n ~ 1 o t ; 1 | 2 / s i n 2 | n ~ 1 o c : 1 | 

where (f denotes the complex numbers. This function i s uniformly continuous 

since n remains away from ±1 on t h i s set. 

Therefore, there i s a 6 < minimum (<5̂ , 5 2) such that |£-£^| < 6 => 

|u(n,£^) - u(n»£) I < a/3sup|g'| f o r a l l n where u i s defined. Putting a l l 

t h i s together, we conclude that | | <5 implies 

|g'(n)I|n| n < a. 

D(T T , 2 T T ) 

This completes step 2. 

Step 3. I t w i l l only be proved here that K(£) can be extended continuously 

to a constant on the sphere | £ | =2TT. The analogous proof f o r the other 

boundary i s l e f t to the reader. 

We must show that f o r a given a>0 there i s a 6>0 such that 

2TT-<5 < |£ I < 27T for j = l , 2 implies | K ( £ 1 ) - K ( ? 2 ) | < a. The demonstration 

of t h i s f a c t rests heavily on the following statement: 

Given a>0 there e x i s t s 5^ > 6.2 > 0 such that 2TT - $2 < | 5 | < 2TT 

s i n 2 ] KI dn + [ sin 2l-g. 
2i -1 _ i „/„ „ „ s . '21 -1 dn '< ot. 

JD(ir ,T r+6 1) s i n | n oC | ' P ( 2 I T - 6 1 , 2TT) s i n |n o?| 

The notation D(a,b) means the set {£ : a< |£| <b}. The proof of (4.2) w i l l 
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be postponed u n t i l the end of the theorem for fear of l o s i n g the flow of 

step 3 i f given at t h i s time. Let us continue assuming (4.2). 

By formula (4.1), (2T T) 3 / / 2 | K ( ? ) - K ( ? 2 ) | i s bounded by 

|g'(n) 
D(TT,2TT) 

, |n ^og. | Z« sin^g.. | |n  1oK?\ 2' s i n 2 I? 
1 i _ 2 .2 -1 _ 2 12 , 2 -1 £ 1 «sin n ot:i £ [ «sin n og. 

dn. 

This i n t e g r a l w i l l be s p l i t up again and the expression i n s i d e the long 

absolute value signs w i l l be denoted by 0. 

— 1 2 2 

Suppose a>0 i s given. Notice that |n og| /|g| < 4 for our 

parameterization. Choose 6 ^ > > 0 so that the i n t e g r a l i n (4.2) i s 

bounded by a/8• sup | f' | • sup | g' | . Then, i f 2TT-6„ < | g . | < 2TT for j=l,2 

| g ' ( n)||0 | d n + f |g '(n) | |0|dn < a/2. 
J D(TT,TT+6 1) j D ^ T T - S ^ T T ) 

Let* us estimate the i n t e g r a l over the remainder. As i n step 2, 

introduce a function u : D ( T T + 6 1 , 2 H - S ^ ) X D(2TT-6 2,2TT) > (f through 

• , r N , w r - l ... |n 1og | 2* sin^ J g I u(n,g) = f ' ( n og) — 2 — L — 2 — • 

|g| • s i n " |n ogI 

This function i s uniformly continuous on i t s domain and, i n f a c t , s a t i s f i e s 

the following statement since the second v a r i a b l e i s r e s t r i c t e d to l i e i n a 

neighbourhood of the i d e n t i t y matrix I i n G. Given a>0 there i s a p o s i t i v e 

6^ < 5 2 such that ^(n.g-^) - u ( n , £ 2 ) | < a whenever 2TT—5^ < |g..| < 2TT for a l l 

n where u i s defined, Thus, for small enough 6 , we have 

Is* Cn) 1 10.1 dn < a/2. 

D(TT+5 1,2ir-6 1) ' 

This completes step 3. 
The above three steps prove that K(g) i s a uniformly continuous 
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function on D(TT,2TT) that i s constant on each boundary. In order to exhibit 

V 
3 

a skew product of F(C n(R )) , l e t us change K into a continuous function 
3 

with compact support i n R while r e t a i n i n g the m u l t i p l i c a t i v e property. 

Define 3 '• R—*R by the formula 

3TT 3(t) = \ 
1 - i 

IT 
t 2 

for TT/2 < t <_ 5TT/2 

0 otherwise. 

3(t) i s a continuous function with compact support, maximum value of 1 

attained at t=3-rr/2 , and decreases l i n e a r l y to zero at t= T r/2 and t=5Tr/2 

In addition, i t s a t i s f i e s the equation 

00 

I 3 ( 11 + 2niT |) = 1 for every t . 
n = - o o 

F i n a l l y , the stage i s set to introduce the skew product of the 
3 

two functions f ,g eF(Cg(R' )) by means of 

2 
F ( f *B)(0 = I B d S l ) - ^ K(C + 2-j|4) f o r a l l Z. 

3 
Then F(f * g ) e C Q(R ) and has support i n D (TT/2, 5TT/2) . Going back to the 

constuction of the function f on page 23, we can see immediately that t h i s 

d e f i n i t i o n y i e l d s a skew product. Moreover, the skew product i s a l i n e a r 
3 

map that i s continuous with respect to the topology of F(C Q(R )) . 

Proof of (4.2): I t w i l l only be shown that the i n t e g r a l near 2TT i n (4.2) 

may be made small uniformly for £ near 2IT . The method described e a s i l y 

extends to the other i n t e g r a l and together they imply (4.2). 

If 6̂^ i s a small p o s i t i v e number to be r e s t r i c t e d l a t e r (always 

assume that i t i s l e s s than TT/2 ) , then the i n t e g r a l i s estimated as follows 
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s i n 2 1 5 

D ( 2 i r r 6 l t 2 i r ) s i n 2 | r f •'p? ; 
dn 

2 s i n |g| dn by Lemma 4.1 
-D (2 i r-5 1 ,2 i r ) 1 - {cos | n | cos | £ | + s i n | n | s i n | £ | (n?ll \ n | | 5 | ) } 2 

Change to polar coordinates with £ along the p o s i t i v e z-axis and | c|=r 

2 
p s i n <j> d<()dpdG 

•2TT •2lT riT . 2 s i n r 
• . 0 • 2ir-6 J 

2 
0 1 - {cos p cos r + s i n p s i n r cos <J> } 

Let = cos p cos r + s i n p s i n r cos ty 

= 2ir 
r2ir fcos(p+r) 2 . 2 , . -p s i n r , , K — dvdp 

J 2 , - f i J cos(p-r) s i n p s i n r (1-v ) 

= TTsinr 
2TT 

2TT-6, 

p1 , I 1 + cos(p-r) 1 - cos(p+r) 
s i n p 8 ( 1 - cos(p-r) 1 + cos(p+r) dp 

The proof depends on an estimate of t h i s i n t e g r a l . 

Since 5^<TT/2 and £ i s taken such that 2ir - 6^ < | £ | < 2tr , the 

function s i n r i s negative and so i s w(p) below 

w ( p ) = _1_ l o J 1 + cos ( p-r) 1 - cos(p+r) 
s i n p °l 1 - cos ( p-r) 1 + cos (p+r) 2TT - 61< p < 2TT 

In f a c t , we claim that w increases from -°° i n the i n t e r v a l r < p < 2TT . 

I t s u f f i c e s to show that the d e r i v a t i v e of w i s non-negative i n t h i s i n t e r v a l . 

Only a sketch of t h i s r e s u l t w i l l be provided here. The v e r i f i c a t i o n of each 

step i s l e f t to the reader. If we set x(p) = ( s i n 2 p /cos p ) ~ > then 
dp 

9 2 

x(2ir)=0 and dx/dp = {sin p s i n r s i n 2p }/{sin ( p - r ) s i n (p+r)} which i s 

l e s s than zero i n our i n t e r v a l . Thus x(p) i s p o s i t i v e i n the i n t e r v a l 

and so i s dw/dp . 
We are now ready to estimate the i n t e g r a l at the top of the page. 

I t i s s p l i t into an i n t e g r a l f o r 2ir - 8^ < p < — (2-rr+r) and then for 



-jj^tr+r) < p < 2 ir . The second i n t e g r a l i s bounded by the expression 

, 3 . , 0 2 T r + r v 4TT sxn r (2TT 2 — ) 
s i n ( -y-) 

log 
,, / 2 T r - r N , / 2 T f+3r N 

( l + C O S ( —7T- ) l - C O S ( ^ ) 

1 , 2 T r - r N .2Tr+3r N l - c o s ( — 2 — ) l + c o s ( — 2 ^ — ) 

since w i s increasing on t h i s i n t e r v a l . Write the l a s t part of t h i s 

expression as l o g ( t ) . We have the following l i m i t s . 
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,. s i n r , lim K~~T~ = 2 „ . ,2-rr+r. r->2ir s i n ( — 2 ~ - ) 

l i m l o g ( t ) = log 9 
r+2Tr 

Therefore, i f a>0 i s fi x e d , there i s a ^ 2 ^1 s u c " 1 that 2 1 T -62 < |g| < 2TT 

implies that 

9 I I + I F I
 Son 2 |f 1 dn < a / 2 . 

D(2-2±i£J,2,r) sin 2 | n " V | 

To 'estimate the i n t e g r a l over the f i r s t i n t e r v a l , expand the 

functions l-cos(p-r) and l-cos(p+r) about p=r and p+r=4Tr respec

t i v e l y by means of Taylor's Formula. The expansion up to second order 

provides the following approximations i f <5̂  i s small enough. 

2 2 l-cos(p-r) > (p-r) /4 and l-cos(p-tr) < (p+r-4i0 

As these are the only factors i n the Integral that cause problems over t h i s 

i n t e r v a l , there i s a constant c such that 

2 

s i n g dn s i n £ 

—J I — < C — J — 

D(2T T-6 1, 2 j I^^I ) s i n 2 |n  1oZ,\ s i n ( 2-rr-r 

2TT+ £ 
f 2 

^ I) J 2TT-6. 
2 ' v l 

Again, there i s a l i m i t f o r t h i s i n t e g r a l as below 

r2ir 

l o g ( ^ P + l j | - ^ dp 

l i m 
6^0 j 2 T T - 6 1 

2 l o g 4(p+|g|-4TQ 
P-HT dp = 0 . 
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Of course i n th i s l a s t l i m i t , the E, was r e s t r i c t e d to have absolute value 

between 2TT-5^ and 2ir . 

Combining a l l these estimates, we have shown statement (4.2). 
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PART II THE EVOLUTION EQUATION 

CHAPTER FIVE 

PRELIMINARIES AND GENERALIZATIONS 

The s e l f - a d j o i n t p a i r considered i n t h i s part i s provided through 

a representation of the Heisenberg group. The Heisenberg group G(l) i s the 
2 

subgroup of unitary operators on L (R) that have the form 

U(p,t)<j> (x) = e±v(-K\(x+t) f o r every <f>eL2(R) 

where p(x) i s a real-valued polynomial of degree at most 1. Under the 

usual product for operators, G(l) becomes a nilpotent L i e group. The gener

ators of t h i s s e l f - r e p r e s e n t a t i o n are the operators ( i d , iQ, icP) where 

c i s a p o s i t i v e constant, I i s the i d e n t i t y operator, and the other two 

operators are as i n the introduction. The only non-vanishing bracket of t h i s 

basis f o r the L i e algebra i s 

[iQ , icP] = - i d . 

The skew product * of Chapter Six evolves from the above n i l p o t e n t group 

and the given representation. 

As explained i n the introduction, the Weyl f u n c t i o n a l calculus 

applied to the p a i r (Q,cP) i n t e r p r e t s c l a s s i c a l q u antities on phase space 
2 

as Hamiltonians on L (R). However, quantum mechanics may also be formulated 

on phase space. This aspect has been studied by a number of authors; notably, 

J . E. Moyal i n h i s 1949 paper [11] and also J . Jordan and E. Sudarshan [8]. 

The evolution equations that appear i n these papers and the one that i s 

developed here do not seem to be the same because the methods of formulation 
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vary widely. The equivalence of these formulations i s revealed most 

s u c c i n c t l y i n [16]. 

Before studying the evolution equation, i t must be emphasized that 

most of the r e s u l t s of the ensuing four chapters immediately generalize to 

the phase space formulation of a system with n degrees of freedom. In t h i s 

-ca'se, the operators ( i l , iQ^, i P ^ , . . . , iQ n» i ^ n ) form a basis for the 

n i l p o t e n t L i e algebra where and iP.^ are the obvious s e l f - a d j o i n t 
th 2 ri operators acting on the j v a r i a b l e of functions i n L (R ). The brackets 

for t h i s system are of the form 

[iQj , i P j ] = - i l . 

The skew product and evolution equation can be r e a d i l y defined by comparison 

with the Heisenberg group. The generalizations of the theorems are l e f t to 

the inter e s t e d reader. Reference [10] provides d i f f e r e n t aspects of t h i s 

theory. 

In passing, i t would be negligent not to mention that the important 

r e s u l t (Theorem 6.5) can be generalized i n yet another d i r e c t i o n . Let G(m) 

be the group s i m i l a r to G(l) except the polynomial i s of degree at most m. 

The L i e algebra of G(m) has basis ( i d , iQ^,..., iQ^, icP) where i s 

m u l t i p l i c a t i o n on L 2(R) by x^. A skew product * e x i s t s f or the s e l f -

adjoint (m+l)-tuple (Q ,;... .Q^cP) on the space S ( R m + 1 ) [2 ; page 430]. 

The generalization states that there i s a unitary operator on L2(Rm+"'") that 

i s a homeomorphism of 5(Rm+''") and s a t i s f i e s for f , g e S ( R m + ^ ) 

U(f *U > 1g)(x 1,...,x m,y) = (2rrc) 1 / 2 Uf(z y) g(x 1,...,x m,z) dz 
R 

In other words, the skew product i s equivalent to the point-wise m u l t i p l i c a t i o n 



of functions except i n the f i r s t and l a s t v a r i a b l e s . The author has 

performed the e x p l i c i t c a l c u l a t i o n of t h i s unitary operator for m < 4 and 

f i r m l y believes the equation i s true f o r every G(m) . 

Of course, with these two generalizations, one could form d i r e c t 

sums of the L i e algebras considered on the l a s t page and so obtain deeper 

knowledge of the skew product on many ni l p o t e n t L i e groups. This program 

w i l l not be c a r r i e d out here. 
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CHAPTER SIX 

THE W E Y L C O R R E S P O N D E N C E AND E V O L U T I O N E Q U A T I O N 

The following operators w i l l be used throughout. I t should be 
2 2 

noted that the f i r s t three operators a l l extend to unitary operators on L (R ) 

• D E F I N I T I O N 6.1: Let 5'(R 2) have the strong dual topology induced by the 

bounded subsets o{ S(R ) . The operators below axe homeomorpltisms o{ 

S ( R 2 ) and S'(R 2) . Suppose that f belongs to S(R 2) . 

1 f (izx ) 
7. (Vartial Vourler Transform) F f(x.,,x 2) = . e v 2' fCx-^z) dz . R 

F^ Is defined similarly. 

2. (Twisting Operator) S c f ( x 1 5 x 2 ) = /c f ( x 1 - ^ c x ^ x ^ +-|cx2) . 

S ~ 1 f ( x 1 , x 2 ) = l / ^ c f ( ( x 1 + x 2 ) / 2 , ( x 2 - x 1 ) / c ) . 

3. (Translation) x ( x ; L , x 2 ) f (y1,'y2) = f ( x + y 1 , x 2 + y 2 ) . 

4. (Rotation and dilation) c may be negative {or this opexaton.. 

V f ( x r x 2 ) = f (cx 2 / 2,-cx 1 / 2 ) . 

The Weyl operator has a p a r t i c u l a r l y simple form i n terms of 

these d e f i n i t i o n s . 

P R O P O S I T I O N 6.2: l{ h e S ( R 2 ) , T(Q,cP)h Is the bounded Integral operator 

on L ( R ) with kernel l//2irc s F.h . That Is, 
c 2 

(T(Q,cP)h)u (x) = l/Z^irc 

MOPE: See [1 ; page 264]. 

S - 1 F h(y,x) u(y) dy f o r a l l u e L 2 ( R ) , 
R c 
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The skew product of Coro l l a r y 2.4 f o r the s e l f - a d j o i n t t r i p l e 
2 (d,Q,cP) can be r e s t r i c t e d to a unique continuous skew product * on S(R ) c 

Let h[f] or h ( x ^ , x 2 ) [ f ( x ^ , x 2 ) ] denote the ac t i o n of a tempered d i s t r i b u -
2 

t i o n h on a function f eS(R ) . Through d u a l i t y , * i s extended to a 
c 

separately continuous map 

* : S'(R 2)x5(R 2) >-S'(R2) given by 
c 

h * f [g] = h[f * g] for heS'(R 2) and f , g e 5 ( R 2 ) . 

Let us c o l l e c t these f a c t s . 

3 
PROPOSITION 6.3: a) The Akeu) pnoduct {on (cI,Q,cP) on S(R ) Xi 

-3/2 F ( f * g ) ( x ( ) , x 1 , x 2 ) = (2TT) 

f * g ( x 0 , x 1 , x 2 ) = (2TT) 

3 F f ( x 0 - y 0 + 

R 

i(tu+sv) 

y l x 2 " X l y 2 > x 1 - y 1 , x 2 - y 2 ) Fg(y) dy OK 

f(x 0,x 1+sx 0/2,x 2+u)g(x 0,x 1-tx 0/2,x 2+v) 
dudvdsdt 

whene f ,g eS(R ) . 
3 

b) J{ f AJ> defined by f (x 1,x 2) = f ( c , x 1 , x 2 ) {on f eS(R ) , then 
2 

T(cl,Q,cP)f = T(Q,cP)f . Thai, the tkew pnoduct {on f,ge5(R ) AJ> 

(6.1) f * g ( x r x 2 ) 
- C2ir)' 

R 
e 1 < t u + s v > f ( x +sc/2,x 2+u)g(x -tc/2,x2-Hv) dudvdsdt 

_1_ 
2TT R 2 ^ Vc T ( x i » x 2 ) f ^ y l ' y 2 ^ ( F T ( x i ' x 2 ) g ^ y i ' y 2 ^ d y i d y 2 " 

J{ complex conjugation ti> denoted by , then f * g = g * f 

c) Ton h e 5 ' ( R 2 ) and f eS(R 2), define 

(6.2) h * f ( X ; L , x 2 ) = ~ (V T ( x 1 , x 2 ) h ) [ F x ( x 1 , x 2 ) f ] 
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Then h * f is a C {unction with. polynomially bounded derivatives o{ alt 
c 

2 
orders that AatU{ies {on g e S ( R ) 

(6.3) 
h * ftg] = h[f *g] (duality) 

h * ( f *g) = ( h * f ) * g (asAociativtty) 

d) By the last statement o{ b) and duality, the evolution equation o{ the 
. . i - 1 • — 

introduction extends to — = H f where 
dt c 

(6.4) H
c

f W A ^ { V T(x)h[Pt(x)f] - V C T ( X ) F [ F T ( X ) T ] } ^ h e S ' ( R ) , f e S ( R ^ ) 

= ~ { V c x ( x ) h [ F T ( x ) f ] - V_ C T(x)h[Fx(x)f]} . 

Notice that the dependence o{ u.^ on the dlstribtition is AuppreSAed Aince 

h is regarded as a {ixed Hamtltontan. 

PROOF: See [2 ; section 3]. 

We are almost ready to express (6.4) i n the form of an equivalent 

singular kernel operator on the plane. But f i r s t , a s i m i l a r r e s u l t must be 
2 

proved f o r the test functions S(R ) . 

LEMMA 6.4: 1{ h e S ( R 2 ) , let H' : 5(R 2) -> S(R 2) be the operator 

S ' ^ H ^ F " ' 1 ^ de{ined through the homeomonphisms at the beginning o{ the 

2 
chapter. Writing tills in integral {orm, we obtain, {or f eS(R ) 

H (;f(x 1,x 2) = i/y^rc" { S c
1 F 2 h ( y , x 2 ) f ^ . y ) - S ^ h ^ y ) f ( y , x 2 ) } dy 

PROOF: We w i l l show only one h a l f of the formula; namely, that 

i U ( h * U 1f)(x 1,x„) = if/lire c 1 z Uh(y,x ) f ( x ,y) dy where U = S 1 F 
R C ~ 
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The proof of t h i s i s s t r i c t l y a computation. We have 

i h * f ( y r y 2 ) = 1/2TT 
R 2

 V c T - y l ' y 2 ^ h ^ z l , Z 2 ^ F x ^ i ' y 2 ' ) f ( ' Z 1 ' Z 2 ' ) d z i d z 2 b y 

1/2TT j ( F 1 V c T ( y 1 , y 2 ) h ) ( z 1 , z 2 ) ( F 2 x ( y ^ ^ f ) ( z ^ d Z j d z ^ 

_ i _ 2 
2ir c J R" 

i ± ( 2 z l y 2 / c ) F 9 h ( y 1 + c z ? / 2 ) - 2 z 1 / c ) e 1 ( y 2 z 2 } F 2 f ( y 1 + z 1 > z £ dz-jdz. 

i_ 
TT 2 { e ± y 2 ( 2 z l / c z2 )Uh(y 1+z 1+cz 2/2,y 1-z 1+cz 2/2) 

Uf(y 1+z 1-cz 2/2,y 1+z 1+cz 2/2)} d z 1 d z 2 

Let u^ = z^ + cz 2/2 and u 2 = z^-cz^/2 

A. 
TTC R 

2 e i ( 2 y 2 u 2 / c ) U h ( y 1 + u 1 , y 1 - u 2 ) Uf(y 1+u 2,y 1+u 1) d u ^ 

Therefore, F_ (ih *U f)(x,,x„) i s equal to J. c l z 

i / T r c v ^ r r 
f e i ( x 2 y 2

) 

R 
; i ( 2 y 2 u 2 / c ) u h ( u 1 , x 1 - u 2 ) f ( x ^ + i ^ . u ^ d u ^ u ^ y . 

i / / 2 7 T Uh(u^,x^+cx 2/2) f(x^-cx 2/2,u^) du^ 

Thus, iU(h * U _ 1 f ) ( x i s x 2 ) = i//2rrc 
R 

Uh(s,x 2) f(x^,s) ds 

THEOREM 6.5: IQ h e 5 ' (R2) , Itt H' : S(R 2) -->• S' (R2) bd thu opUuvtoH. 

—1 —1 2 
Sc F 2 H c F 2 Sc ' ^ e n ' f » g e 5 ( R ) we. naue. £he tqiuvalzYit {onmiilas 

H c'f( X ; L,x 2) - 1//2TTC { S ^ " 1 F 2 h ( - , x 2 ) [ f ( x 1 , - ) ] - S c
X F 2 h ( X ; L , - ) [ f ( ' , x 2 ) ] } -1. OK. 

H*f[g] = i / v ^ r c S c
1 F 2 h ( y 1 , y 2 ) [ | f ( z . y ^ g C z . y ^ d z -

R 
f ( y 2 , z ) g ( y 1 , z ) d z ] 



40 

PROOF: Define a j o i n t l y continuous map o : S(R 2) *S(R 2) —»- S(R 2) by 

(6.5) f o g(x 1,x 2) 
R 

f ( z , x 2 ) g(x ] L,z) dz 

The proof follows immediately from the d u a l i t y r e l a t i o n (6.3) and the 

commutativity of the diagram below by Lemma 6.4, 

S(R 2) x S(R 2) 
A 
C 

c 2 c 2 c 2 

S(R 2) x S ( R 2 ) 1 / / 2 ^ ° > S(R 2) 

The s i m i l a r i t y between the quantum mechanical operator of 

Proposition 6.2 and the operator i n Theorem 6.5 suggests a natural extension 

of the Weyl quantization procedure to tempered d i s t r i b u t i o n s . With t h i s 

extension, Theorem 6.5 i s interpreted as a separation of v a r i a b l e s f o r 

the evolution equation. Indeed, Weyl operators corresponding to the o r i g i n a l 

tempered d i s t r i b u t i o n h act on each v a r i a b l e separately (see Theorem 6.7). 

MAIN DEFINITION 6.6: (The Weyl Correspondence) Suppose h is a tempered 

distribution on the plane. Ve{i.ne a map A (h) : S(R) —»• S'(R) by 

,-1 
(6.6) I 

(A (h)) (<jj) [ip] = 1//2TTC S F„h[<j>xijj] {or cf>,ipeS(R) or equ-Lvalently 
C C i. , . 

(A (hH)(x) =l//27c s'h9h(-,x)tK-)] . c c z 

A c is a continuous Linear operator called the Weyl operator corresponding 

to the Hamiltonian h . J{ the distribution is clear {rom the context, the 

dependence o{ A c on h is o{ten suppressed. 
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Suppose that B.. : X..—>-Y_. ,j=l,2 are two l i n e a r operators with 

domains ^ ( ^ j ) and that ^ - j ' ^ j a r e complex function spaces. Let the 

tensor product, B^ 8 B 2 be the operator with domain a l l f i n i t e l i n e a r combin

ations of functions of the form f,xf_ f. E P ( B . ) and defined as follows: 
1 2 j J 

B l 8 B2 
n 

k=l k k 
n 

= ak <Vi > x ( B 2 f 2> °k e (f 
k=l k k 

Also, define the complex conjugate operator B^ by B^f = (B^f) f o r f et?(B^) 

Adopting the above notation, we have a reformulation of Theorem 6.5. 

THEOREM 6.7: H)_ is the unique extension o{ i { l 8 A £ (h) - A^Ch) 8 1} to a 

2 9 

continuous linear, operator, {rom S(R ) to S' (R") . 

PROOF: I t i s easy to check the following important equality of d i s t r i b u t i o n s . 

(6.7) S c
1'F 2h(x 1,x 2) = S c

1 F 2 h ( x 2 , x 1 ) . 

2 

Since the l i n e a r span of 5(R) x S ( R ) i s dense i n S ( R ) , we have 

only to v e r i f y the two operators i n the theorem are equal f o r functions of 

the form cpxuV f o r <J>,^ES(R) . 

H^(^x^)( X ; L,x 2) = i//2^c {S~ 1F 2h(-,x 2)[<()(x 1)^(-)] - S c" 1F 2h(x 1 , - ) [< f»(')^(x 2)]} 

= l <|>(x 1)(A c(h.)t|»)(x 2) - i / v ^ c S c
1F 2h(.,x 1)t()>(-)^(x 2)] by (6.7) 

i{<f>xA (h)*.- A (h)<j>x^}(x ,x„) by (6.6) c c I I 

i ( { I % A (h) - A (h) 8 I } ()»xl|,)(x1,x2) 
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CHAPTER SEVEN 

BOUNDED OPERATORS 

One method of solving the evolution equation of (6.4) i s to regard 
2 2 2 

H c and A^ as operators on L (R ) and L (R) r e s p e c t i v e l y , with domains 
0 ( A ) = {* eS(R) : A<j>eL2(R)'} and P<H) = {f e 5(R 2) : H^f e L 2 ( R 2 ) } . 

2 
In p a r t i c u l a r , i f H c i s a bounded operator with P(H C) =S(R ) , then the 
usual power serie s expansion of the exponential provides a group of operators 
i f t H ) 

e c that immediately solves the evolution equation. 

If we adopt t h i s point of view, Theorem 6.5 establishes a unitary 

equivalence between H and H' when P(H') ={f E S ( R 2 ) : H'f e L 2 ( R 2 ) } . 
c c c c 

Although H' remains an extension of 1{I ® A (h) - A (h) 8 1} which i s c c c 
now defined on l i n e a r combinations of functions i n £>(A (h)) xP(A (h)) , 

c c 

we have no guarantee that i s contained i n the closure of t h i s operator. 

Indeed, a p r i o r i , H could be densely defined while A c i s not (or v i c e 

versa). 

The r e l a t i o n between H and A i s studied i n t h i s chapter and • c c 

again i n Chapter Nine. Here, the case of bounded operators i s examined. 

As a s t a r t , we have the following. 

2 
THEOREM 7.1: H c lj> bounded with t?(H ) =5(R ) l{ and only l{ A^ li> 
bounded with V(A ) =S(R) . 

c 

PROOF: It c l e a r l y s u f f i c e s to prove the statement for H^ i n place of H c 

Assume 'A (h) i s bounded by b and V(A^(h)) =S(R) . Then, for 
2 

a l l < M e $ ( R ) , |Ac(h)cf)[^] | <b||<j>||2 ||T|»|| where ||-|| i s the L -norm. 

By (6.7), |Ac(hH[<Jj] | = |Ac(h)[^x<l>] | <b||i|)|| 2 ||«|»||2. Thus A„ (h) i s 
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bounded by b and V(A (h))=S(R) . 

For f eS(R*") , define two fa m i l i e s of functions i n S(R) by 
fx ) 

f ^ x j ( z ) = f ( x 1 , z ) and fK 2' (z) = f (z ,x 2) . Theorems 6 . 5 and 6 . 7 y i e l d 

H c f ( x l ' x 2 ) = i ( A c ( h ) f ( x 1 ) ) ( x 2 ) " i ( A c ( h ) f ( x 2 ) ) ( x 1 ) 

Thus, we have the following estimate f o r the norm: 

l l H ; f h 2 < 

1/2 

U 2 | (A c (h)f ( x 2 ) ) ( x 1 ) | 2d X ; Ldx 2 

1/2 

U R K ^ l ^ ) m + \ j / " f ( X 2 ) | l 2 d x 2 

1/2 
by hypothesis 

= 2b 
R 

2 | f ( x 1 , x 2 ) | dx 1dx 2 

1/2 

= 2b f 2 ' 

Hence, H^ i"s bounded by 2b and P(H^) =S(R/') . 

2 To prove the converse, assume that H' i s bounded and P(H') = S ( R ) . c c 

Let I J J ES(R) be a r b i t r a r y and choose <J > Q , P Q £ S ( R ) such that o P 0 ^ ^ ' 

Consider the two i n e q u a l i t i e s 

i ) |H^((fr 0x^)[ P ( )xe]| < b ||P 0|| 2 ||91| 2 for a l l 6 eS(R) ( b i s a bound of H^) 

i i ) |-H^(4>0xiJ>)[p0xe]| = |Ac(h)*[e]'/<fr0p0 - • A c ( h ' ) * 0 [ p 0 ] - / * 8 | by Theorem 6 . 7 . 

Thus, |Ac(hMe]|< a j|p0||2||e||2+ |Ac(h)<(,0tp0]-/*e|} 

< b' ||e||2 for some constant b' by Cauchy-Schwarz. 

As ty was a r b i t r a r y , the domain of A c i s a l l of S(R) . By the same 

argument, A (h) has the same domain. We have only to show that A i s c c 
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bounded to complete the proof. • 

If A were not bounded, there would be a sequence d> eS(R) such c n 

that ||Ac(h)<j>n || ̂ —• °° but ||<f>n|| = l . For t h i s sequence, 

l|H^C*1xd>Ti) || 2 = ||<^xA c(h)* n - ^ ) \ ^ J \ 2 

> ll* 1lM|A c(h)* n|| - ||Ac(h)i1|||Un|| 

>• °° as n >• 0 0 . 

This provides a con t r a d i c t i o n and so A^ i s bounded. 

Remark on the proof: I f the operator norm i s denoted by II * l Dp » *-*ie 

s u f f i c i e n c y part of the proof insures that 11*̂ 1̂  1 ̂  l l ^ l ^ p • However, 

there i s no such estimate i n the other d i r e c t i o n . In f a c t , when A =1 , 
c 

the evolution operator i s the zero operator. 

Since h can be thought of as the Hamiltonian of the system, we are 

p a r t i c u l a r l y interested i n r e a l tempered d i s t r i b u t i o n s (that i s , h [f] i s 

r e a l f o r a l l real-valued test f u n c t i o n s ) . In t h i s case, the l a s t r e s u l t may 

be strengthened to obtain Proposition 7.3 and Theorem 7.4. 

DEFINITION 7.2: Let K be. a. tineoJt operator on a Hilbert space. H . 

7. K Is {ormally skew-adjoint (skew-henmttian) l{ (Ku,v) =-(u,Kv) {on. oXl 

u,v zV(X) • 

2. K Is j>kew-symmetrlc l{ t?'(K) Is dense, and K is {ormally skew-adjoint. 

3. K Is essentially skew-adjoint l{ the closure o{ K Is skew-adjoint. 

4. K Is skew-ad joint l{ K Is skew-symmetnlc and R ( K ± I ) = H . ( R means 

the range o{ an operator) 

Vor these de{lnltions without the adjective "skew", see [19 ; chapter XI]. 
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PROPOSITION 7.3: Lzt h bz a nzal tzmpzrzd distribution on thz planz. 

Thzn H~c and ±A^ anz {onmatty 6km-adjoint. 1{ zithzn. onz iA dznizly 

dz{inzd, tt is Akzw-hymmztxiz. 

PROOF: Let us show i s formally skew-adjoint. The unitary equivalence 

then implies that H i s formally skew-adjoint. 
c 

(H'f.g) - J 2 H j f ( X ; L , x 2 ) g ( x l f x 2 ) dx xdx 2 for a l l f,geP(H^) 
R 

= H j f [ g ] 

= i//2^c S 1F.h(x 1,x„)[ c / 1 I 
f(z,x-)g(z,x„)dz - f ( x ? , z ) g ( x , , z ) d z ] 

R JR 

Use (6.7) and the f a c t h i s r e a l 

Slk S c l F 2 h ( x 2 ' x l ) [ g(z,x_)f(z,x )dz -
R 

g(x 1,z)f(x„,z)dz ] 
R } 

Hlgtf] 

= - (f.H^g) . 

By a s i m i l a r argument and formula (6.7), i s formally skew-adjoint. 

The l a s t statement i n the theorem i s true by d e f i n i t i o n . 

THEOREM 7.4: H^ ti, a boundzd zAAZntiaXLy skew-adjoint opzhaloh. with domain 

2 

P(H c) =S(R ) i{ and only i{ i A c is a boundzd zi>i>zntialZy Akzw-adjoint 

opznaton. with ~V(h ) = S(R) . 

PROOF: One uses the fac t that a bounded skew-symmetric operator with dense 

domain i s e s s e n t i a l l y skew-adjoint ( i t s closure i s defined on the whole 

H i l b e r t space). The theorem i s then a d i r e c t consequence of Theorem 7.1 

and Proposition 7.3. 
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As yet, we only know that the Weyl operators of functions i n 
2 

the Schwartz class on phase space are bounded operators on L ( R ) . 

The remainder of t h i s chapter i s intended to remove t h i s gap. 

P R O P O S I T I O N 7.5: for any bounded (respectively, bounded A, eZ{-adjoint) 

operator A defined on all o{ L ( R ) , there is a unique tempered distri

bution (respectively, real- tempered distribution) whose Weyl operator 

agrees with A on S ( R ) . 

P R O O F : I f A : L 2 ( R ) —> L 2 ( R ) i s bounded, then A S ( R ) : S ( R ) — 5' ( R ) i s 

a continuous operator. By the Schwartz Kernel Theorem [17 ; page 531], there 
2 

i s a unique h 1 eS'(R ) that s a t i s f i e s 

A<j>[ijj] = h1 [tyxty] f o r every cj),iJ;eS(R) . 

Introduce the tempered d i s t r i b u t i o n h as 

h = /2ifc ( S 1 h ' = v^rTc F „ 1 S h' . 

c z Z c 

T r i v i a l l y , by D e f i n i t i o n 6.6, A (h)<|> = Ac|> , for every <j> e S ( R ) . 

I f , i n addition, A i s s e l f - a d j o i n t , then the inner product equality shows that h'(x^,X2) = h'(x2>x^) . The converse of (6.7) implies 

that h i s r e a l . 

The preceeding propo s i t i o n asserts that there are many tempered 

d i s t r i b u t i o n s that have a corresponding bounded Weyl operator, but i t does 

not give any i n d i c a t i o n of the d i s t r i b u t i o n s i n t h i s set. Theorem 7.6 

r e c t i f i e s the s i t u a t i o n . 
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THEOREM 7 . 6 : The Weyl operators o{ the {allowing distributions are continuous 

linear operators on L (R) with domain S(R) and bound specl{ied below. 

2 2 

a) l{ h belongs to L (R ) , A c is actually a Hilbert-Schmidt operator. 

on L (R) with kernel 1 / / 2 T T C F 2 h . Therefore, II A J ^ < H/llTc ||h||2. 

b) 1{ h is a {inite Radon measure [ 1 7 ; chapter 2 1 ] with total variation 

HhJ^, then H A J ^ < ( 1 / C ) ( / 2 7 T T ) Uhl^. In particular, this is true {or 

l?'-{unctions. 

c) 1{ h is, such a distribution, so is FV ch with ||A c(FV ch) |̂  = 2/c | | A C | [ 3 P . 

PROOF: a) An obvious extension of Proposition 6 . 2 . 

b) For f eS(R 2) , i t i s easy to check s ' ^ h f f ] = F 2 h [ S c f ] = h f F ^ f ] . 

Since h i s a f i n i t e Radon measure, we have 
I A $[ty]\ = -|l / / 2 i f c S~1F0h[<f>x^] | f o r a l l <j>,^eS(R) c c t. 

= 1 / / 2 7 G " |h[F2Sc<f>xt(,] | 

< l//2~rrc ||h|| 1sup{|F 2S c<J.x^(x 1,x 2)| : ( x ^ x ^ e R }. 

But sup |F2 Sc (j)X<() (x ^ - . X j , ) | = sup 

x^,x 2 e R x l ' x 2 e R 

i(x„z) , cz, . , ,cz, , e 2 'tyix^-j ^ ^ ( x ^ - J d z 
R 

sup 
x^ e R 

Vc" (2/c) |<))(x -z) | |i|)(x.+z) |dz 
R 

< 2//c ||<r||2l|if'||2 b y Cauchy-Schwarz. 

By these two i n e q u a l i t i e s , | A <|>[ij>]| < ( l / c ) (/l/rr) ||h|| || <)> || 2 || if) || 2.. 

Hence, P(A c)=S(R) and || A C 1̂  < ( l / c ) ( / 2 A r r ) ||h|| ± . 

c) Let us f i r s t demonstrate ( 7 . 1 ) given below. Let 6̂  be the Dirac 

d i s t r i b u t i o n i n 5 ' ( R 2 ) (that i s , 6 Q [ f ] = f ( 0 ) ) . By formula ( 6 . 2 ) , one 

cal c u l a t e s that 2TT<5„ * f ( x ) = FV f(x) f o r each f e5(R 2) . Through the 
0 c c 



a s s o c i a t i v i t y i n (6 .3 ) , FV (f * g) = ( F V c f ) * g for a l l f,geS(R 2) . 

The extension through d u a l i t y y i e l d s 

(7.1) FV £ (h * f) = FV h * f where f e S ( R 2 ) , heS'(R 2). 

Part c) w i l l now be shown. Let U = S ^F 2 . By Theorems 6.5 and 6.7, 

~^lTxA c(FV chH = U{(FV ch) £ t f 1 (<f>xi|,) } when <j>,<lieS(R) 

= UFVc {h * U _ 1 } by (7.1) 

= U F V c U - 1 { ( J ) x A c ( h ) t } . 

Since U and F are unitary operators while 11 11 2 = l l ^ l ^ ' 

||<J)xAc(FVch)^||2= (2/c) ||+xAc(h)ip||2. ' 

Therefore, V(A (FV h)) = S (R) and ||A (FV h) |l _ = (2/c) ||A (h) |l . 
c c " c c 'bp " c 'op 

Sections a) and b) of the above theorem were previously known, 

though i n a d i f f e r e n t s e t t i n g . They were communicated to the author i n 

the form of an unpublished paper by R. Anderson. 
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CHAPTER EIGHT 

MULTIPLIERS 

The bounded Weyl operators of Chapter Seven form an algebra under 

operator products. Through the Weyl correspondence, a m u l t i p l i c a t i v e 

structure i s established for the set of d i s t r i b u t i o n s with bounded Weyl 

operators. Certain subspaces S of d i s t r i b u t i o n s w i l l be i n v a r i a n t under 

t h i s m u l t i p l i c a t i o n and w i l l , perhaps, form noncommutative Banach algebras 

with respect to some norm. 

Following M. R i e f f e l [15], i f S i s a Banach space and * i s a 

continuous skew product on S, then those bounded operators M on S that 

s a t i s f y M(f *g) = Mf * g for a l l elements i n S are c a l l e d m u l t i p l i e r s 

on S. Theorem 8.1 demonstrates that the m u l t i p l i e r s on the Banach spaces 

we have been^considering must be tempered d i s t r i b u t i o n s . 

2 2 
THEOREM 8.1: a) Alt continuous lincan. opeAalpns M : 5(R ) — • 5' (R ) 

2 
that satls{y M(f og) = (Mf) og {on. all {unctions in S(R ) an.e. o{ the. 

2 
{onm Mf = hof {on. some heS'(R ) and conversely. 

2 2 
b) Alt continuous linejxn. operatons M : S(R ) —*• S' (R ) that satis {y 

2 M(f *g) = (Mf) * g {on. alt {unctions in S(R ) are. o{ the. {onm Mf = h * f c c c 
2 

{on. some. heS'(R ) and conversely. 

PROOF: b) This follows immediately from a) by l e t t i n g MT = UMU 1 where 

U i s the usual operator S "hi^ and using the commutative diagram i n 

Theorem 6.5. The converse statement i s j u s t (6.3). 

a) If Mf = h o f , the equality (h o f) og .= h o (f o g) i s quickly v e r i f i e d 

by formula (6.5). 
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Conversely, assume that M(f og) = (Mf) o g . The Schwartz Kernel 

Theorem states that there i s an LeS'(R^) such that 

Mf[k] = L[kxf] f o r f , k e S ( R ) 

= L ( x 1 , x 2 , z 1 , z 2 ) [ k ( x 1 , x 2 ) f ( z , z 2 ) ] 

Since M permutes with the m u l t i p l i c a t i v e structure, 

L ( x 1 , x 2 , z 1 , z 2 ) [ k ( x 1 , x 2 ) 
R 

f(y»z 2)g(z 1»y)dy ] 

= M ( f o g ) [ k ] for f,g,keS(R z) by (6.5) 

= (Mf) o g[k] 

= M f ( x 1 9 x 2 ) [ g(y,x 1)k(y,x 2)dy ] 

L ( x ^ , x 2 , z ^ , z 2 ) [ 
R 

g(y,x 1)k(y,x 2)dy f ( z 1 > z 2 ) ] 

Into the above expression, substitute the functions f = ctxg , g = px8 , and 

k = <f>xip with the assumption that a, 3,p , 6, < j > a l l belong to S(R) . Then 

L ( x 1 , x 2 , z 1 , z 2 ) [(()'(x 1)ij)(x 2)p(z 1)e(z 2) jaB ] 

= L ( x 1 , x 2 , z ; ] ,z 2) [6(x 1)4)(x 2)a(z ] L)6(z 2) /pcj) ] or by extension, 

L(x 1,x 2,z 1,z 2)[<Kx 1 ) p(z 1)q(x 2,z 2) juQ ] 

=• L ( x 1 , x 2 . z 1 , z 2 ) [ 6 ( x 1 ) a ( z 1 ) q ( x 2 , z 2 ) /pcj) ] for qe5(R ) . 

In order to obtain the d i s t r i b u t i o n h , f i x an element q^ eS(R") 

and define D(q Q) : S(R ) <p by 

D(q Q) [p] = L ( x 1 , x 9 , z 1 , z 2 ) [ p ( x 1 , z 1 ) q 0 ( x 2 , z 2 ) ] f o r p e S ( R ) 

Then ^(QQ ) i - s a tempered d i s t r i b u t i o n that s a t i s f i e s , f o r a l l test functions 

on R, the equality ( J a 9)D(q Q) [<f>xp] = (/R*)D(qQ) [6x a] . 
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Suppose that ^CQQ) ^ s n o t t n e zero d i s t r i b u t i o n , then choose 

test functions ^Q ^O s u c ^ t n a t D ( l g ) [<(>QXPQ] ^ 0. We see immediately 

that (JPQ<)>Q/D(q^) [^^xp^]) D(q^) i s a p o s i t i v e tempered d i s t r i b u t i o n and 

hence a Radon measure. This measure m s a t i s f i e s 

a(y)9(y)dy = 
JR J R 

2 J ( x 1 ) a ( x 2 ) dm(x 1,x 2) . 

Therefore, m i s the measure that assigns each point on the l i n e x ^ = x 2 

unit mass ( i n standard notation, m = 6 ( x ^ - x 2 ) ). 

Set h(q Q) =D(q Q) [<j)0xpo]/Jpo(j)o for q Q as i n the l a s t paragraph. 

If D(q^) =0 , set Mqg) = 0. I t i s obvious that h does not depend on 

the p a r t i c u l a r choice of test functions on R and that, i n f a c t , h i s a 

tempered d i s t r i b u t i o n i t s e l f . This i s a d i r e c t consequence of the equation 

L ( x 1 , x 2 , z 1 , z 2 ) [ p ( x 1 , z 1 ) q ( x 2 , z 2 ) ] = h(q) J p(y,y)dy 

Perhaps we should change notation from h(q) to h[q] . 

Now choose a function p such that p(y>y)dy = l . From the 
R 

l a s t equation, we have L(x^,x 2, z^, z,,) = h ( x 2 , z 2 ) 6 ( x ^ - z^) . Thus 

Mf[k] = L ( x 1 , x 2 , z 1 , z 2 ) [ k ( x 1 , x 2 ) f ( z 1 , z 2 ) ] 

h ( x 2 , z 2 ) [ k ( y , x 2 ) f ( y , z 2 ) d y ] 

= h o f [k] where h(a,b)=h(b,a) . 

This completes the c h a r a c t e r i z a t i o n of the operators M 
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2 2 If f and g belong to L (R ) , then f *g i s defined as the 

unique tempered d i s t r i b u t i o n of Proposition 7.5 whose Weyl operator corres

ponds to the bounded operator A (f)A (g) . Due to the r e l a t i o n between 

2 2 2 L (R ) and Hilbert-Schmidt operators on L (R) (Theorem 7.6 a ) ) , f * g i s c 
2 2 2 i n L (R ) and the skew product Is continous with respect to the L -norm. 

- _ i _ 2 
Any m u l t i p l i e r M on t h i s space i s c l e a r l y i n S'(R ) because 

2 

M r e s t r i c t e d to 5(R ) s a t i s f i e s the hypothesis of Theorem 8.1 b). 

If the operator f —y H^f i s replaced by f —>• h * f i n Theorem 7.1, the 

m u l t i p l i e r s are seen to correspond to bounded Weyl operators. Recording 

t h i s , we have: 

THEOREM 8.2: The multipliers on ( L 2 ( R 2 ) , *) are o{ the {Ohm Mf = h * f 
2 

{oh. some tempered distribution h whose Weyl operator, -is bounded on L (R) 
with domain S(R) and conversely. 

1 2 
The skew product on F(L (R )) may be defined as at the top of the 

page because Theorem 7.6 confirms that these d i s t r i b u t i o n s have bounded Weyl 

operators. However, i t i s not e n t i r e l y obvious that the skew product i s 

1 2 

again i n F(L (R )) and Is continous. Lemma 8.3 d e t a i l s a more constructive 

method of obtaining the skew product. With a l i t t l e more e f f o r t than needed 

i n Theorem 8.2, the m u l t i p l i e r s on t h i s space are characterized i n Theorem 8.4. 

1 2 
L E M M A 8.3: There -is a continous skew product on the Banach space F ( L (R ) ) 

1 2 
that has norm Induced {rom L (R ) . 

l 2 
PROOF: Take f,g i n F ( L (R ) ) . By comparison to formula (6.1), l e t 

f * g ( x r x 2 ) 
R 2 

f(x 1+cy 2/2,x 2-cy 1/2)e i ( x l ' x 2 ) ' ( y l ' y 2 ) F g ( y 1 , y 2 ) d y ]dy. 



1 2 As f i s a uniformly continous, bounded function and Fg eL (R ) , the 

expression for f *g c e r t a i n l y produces an everywhere defined, continous 
2 function. In addition, t h i s d e f i n i t i o n extends the skew product f o r S(R ) . 

Also, formula (7.1) may be rewritten for our s i t u a t i o n i n the 

form; FV, (f * g) = ( F V , f ) * g for a l l f,g i n F ( L 1 ( R 2 ) ) . Thus, 

" " ' l f C ^ ' C F L 1 ) = l l F ( f * S ) H i » H F V f c g ) l l l . = ! l ( F V c f ) c 8 " l 

1 
2TT R 2 

2FV c f ( X ]+ cy?_/ 2, x 2- c y 2 ) e 1 ( X 1 ' X 2 } ' ( y l ' y 2 } Fg ( Y ] ,y 2) d y ; Ldy 2 

R 
dx^dx2 

< „- FV f ^ ||Fg||^ by Fubini's Theorem 

2TT H f I' (FL 1) 'I 8 II (FL 1) ' 

1 2 
Therefore, f * g e F(L (R )) and the skew product i s continuous. 

THEOREM 8.4: The multipliers on ( F ( L 1 ( R 2 ) ) , *) are o{ the {onm Mf = h * f 

{on. some, tempered tiistribution h whose Fourier trans {onm is a {inite 

Radon measure and conversely. 

1 2 • 
PROOF: Suppose that Mf = (Fm) * f for a l l functions i n F(L (R )) where 

m i s a f i n i t e Radon measure with v a r i a t i o n m . An easy modification 

of the argument i n Lemma 8.3 shows that HFCFm^f)!^ < ||m|| |[ f | j 

In addition, (Fm * f ) * g = Fm * (f '* g) f o r a l l f,g e F ( L 1 ( R 2 ) ) since a l l 

these d i s t r i b u t i o n s correspond to bounded Weyl operators by Theorem 7.6. 

1 2 
On the other hand, suppose that M Is a m u l t i p l i e r on F(L (R )) . 

2 2 Theorem 8.1 implies there i s an heS'(R ) such that, for f,geS(R ) j 

i ) Mf = h * f and 
c 

i i ) . || F Cbi * g) J j 1 < b IJFgl^ for some constant b 
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Comparing the skew product given i n Lemma 8.3 to the usual convolution on 
oo 2 the plane, l e t us choose a sequence a e C„(R ) such that a —> 2TT6„ n 0 n 0 

2 
i n S'(R ) and ||a 1̂ =2̂  (see [19 ; page 157]). The Fourier transform 

2 
sequence has the l i m i t F a R —»- 1 i n S'(R ) and by an argument s i m i l a r 

2 
to the usual convolution, Fa i s an approximate i d e n t i t y f or S(R ). 

2 
(that -is, Fa * g —*- g i n S(R ) as n —*- ~ ). 

Using t h i s approximate i d e n t i t y , we have 

F V h [ f * g ] = lim FV h[Fa * (f * g) ] for f,geS(R 2) c c c n c c 
n-Ko 

= l i m (FV h * F a ) [f *g] by the d u a l i t y i n (6.3). c c n c 

But ||FV ch*Fa n|| 1 = j|FV c(h*Fa n)|| 1. by (7.1) 

< b ||F(Fa n)||^ by property i i ) of h 

= 2irb f or a l l n . 

Thus, | F V h [ f * g ] | < 2 7 T b || f ̂  S Noo w h e r e l l k I L =sup{|k(x)| : x e R 2 } . 

This l a s t statement insures that there i s a f i n i t e Radon measure 
? 

m that s a t i s f i e s FV ch[f *g] = m[f * g] for a l l f,geS(R ) . By ass o c i a 
t i v i t y , (FV h) * f [ g ] = m * f [ g ] and so (FV h) * f = m * f . I t i s easy to 

c c c c c c 

see by (6.2) that FV^h = m. Hence, Mf = (Fm1) * f for some f i n i t e 

Radon measure m' . 

The reader f a m i l i a r with harmonic analysis w i l l notice the 

connection of t h i s theorem and proof with Wendel's Theorem [6 ; page 376]. 



55 

CHAPTER NINE 

REAL TEMPERED DISTRIBUTIONS 

In t h i s chapter, we w i l l examine further the equivalence of the 

evolution and Weyl operators. Only r e a l tempered d i s t r i b u t i o n s h w i l l be 

considered. By Proposition 7.3, H and iA are formally skew-adjoint 

on t h e i r respective domains. As i n Chapter Seven, these operators are 

regarded as acting on H i l b e r t space. However, H c and i A ^ are no longer 

required to be bounded. The cases when the two operators have skew-adjoint 

extensions w i l l be of p a r t i c u l a r i n t e r e s t as a means o f . s o l v i n g the 

evolution and Weyl equations. 

F i r s t , l e t us demonstrate that most Schrodinger operators 

associated to a p a r t i c l e moving i n one dimension are extensions of Weyl 

operators. The r e s u l t i s the analogue of Proposition 7.5. 

PROPOSITION 9.1: Tor any symmetric operator A whose domain includes 5(R) , 

there -is a'unique leal tempered d i s t r i b u t i o n such that A agrees with the 

corresponding Weyl operator on a l t o{ S(R) . 

PROOF: For <peS(R) with ||<j>||? < 1, define a map T^ : S(R) -> (f by 

T± (ip) = (Acp.ip) . If <p i s f i x e d i n S(R) , then {T ( ip)} i s bounded i n $ 

since 

sup{|T 0J))|} = sup{| (Acf . ,^ ) |} = sup{|(<|>,Ai|))|} < 11Asp 

where the sup i s taken over the above cp with norm at most one. 

By the uniform boundedness theorem [19 ; page 68], T^ (ip) goes to 

zero uniformly i n cp as ip —*- 0 i n 5(R) . In p a r t i c u l a r , i f B i s any 
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bounded set i n S(R) , then sup { | T Op) | : i|i E B , cp e S (R) , ||<p||2 < D i s 

f i n i t e . 

Thus, for any a>0 , there e x i s t s a 6>0 such that ||<p||2< ^ ^ 

p_(<p) = sup{ I Acj> [ ip ] I : ip e B} < ct . 
JD 

Since the family of semi-norms p w define the strong dual topology on S(R) , 

the map <p —>-Acp i s continuous from S(R) to S'(R) . 

We now continue as i n the proof of Proposition 7.5 to obtain 

the associated r e a l tempered d i s t r i b u t i o n h . 

Proposition 7.3 can be improved to show the domains of the 

evolution and Weyl operators are c l o s e l y r e l a t e d . As we are now dealing 

with unbounded operators, the proof of the following theorem i s much more 

d e l i c a t e than that i n Theorem 7.1. 

The r e s u l t i s not true for general tempered d i s t r i b u t i o n s . 

-1 2 For example, when F^h = u ^ X u 2 where u^ belongs to L (R) but u 2 

does not, then V(k (h)) i s a l l of S(R) while V(k (h)) i s not dense 
2 2 2 i n L (R) and ^ ( H

c ) i ' s n o t dense i n L (R ) . Of course, h i s not 

a r e a l tempered d i s t r i b u t i o n . 

T H E O R E M 9.2: Let h be a real tempered distribution. H C is densely 

defined i{ and only i{ k^ is densely defined. In other, words, H C is 

skew-symmetric. i{ and only i{ ±k^ is skew-symmetric. 

PROOF: As always, i t s u f f i c e s to prove the statement with H ^ i n place 

of H . 
c 

Assume f i r s t that A i s densely defined. Since h i s r e a l , 
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Theorem 6.7 states that H^cpx^) = t^xA^ - A^x^) for a l l cfi,ip e T7(A ) . 

Therefore, the domain of H' includes a l l f i n i t e l i n e a r combinations of 
c 

functions i n P(A ) x£>(A ) . As V(A ) i s dense i n L (R) , P(H') w i l l c c c c 
2 2 

be dense i n L (R ) . 

Now assume that H/ i s densely defined. Let fy^ e5(R) and 

• j f ( H ' ) be a r b i t r a r y . I t w i l l be shown that the domain of A includes 
0 c J c 

R 
f Q ( y , x ) <f>Q(y) dy . 

For every \p e S (R) , we have 

iA 
R 

f Q ( y , x ) <()0(y) dy 

,-1, = 1//2TTC S F . h ( X l , x _ ) [ 
C 2. X L R 

f Q ( y , x 1 ) <j>0(y) dy ^(x 2> ] 

= H'f0f<j>0x,j,] + i / / 2 ^ c S c
1 F 2 h ( x 1 , x 2 ) [ j 

An easy c a l c u l a t i o n gives the d i s t r i b u t i o n a l e q u a l i t y : 

f 0(x 2,y)i|»(y)* 0(x 1)dy] « J S ^ M x ^ ) [ f Q ( x 2 > y ) ^ -( X ]) ]t|) (y)dy 

f Q ( x 2 , y ) <Ky) dy <(.0(x1) ] 

S c
1 F 2 h ( x 1 , x 2 ) t 

The expression F 2h(x^,x 2) [f ^ (x2,y)cf>g (x^) ] i s c l e a r l y i n S(R) as a 
2 

function of y . Let the L -norm of t h i s function be bounded by b . Then 

m 
• 

iA 
c 

f 0 ( y , x ) ( f ) 0 (y)dy < !|H;f 0|| 2||* 0|| 2IMI 2 + b / ^ c ||*||2 

= b' ||^||2 for some constant b' . 

Thus, the domain of A contains a l l such functions. 
c 

2 
Suppose that the functions of t h i s form are not dense i n L (R), 

There e x i s t s some test function <j)̂  eS(R) and a p o s i t i v e number a such 



that, f o r a l l f eP(H') , 
c 

i ) || * Q || 2 = 1 and i l ) 
R 
f(y,x)<j) (y)dy 

Hence, a < 
R 

f (y,x)<j>0(y)dy - tyQ (x) dx 

<j>0(x) > a 

R 
{f(y,x) - 4>0(y)<!>0(x)}<f>0(y)dy dx by i ) 

2 2 
<f>0l| |f(y,x) - (j>0(y)<()0(x) | dydx by Cauchy-Schwarz 

= P - V * 0 H 2 2 . 
2 2 

This cannot happen because P(H^) I s dense i n L (R ) . Therefore, A c 

densely defined. 

If . h i s r e a l , the proof of Theorem 7.1 can be adapted to show 

that H i s bounded on a dense set i f and only i f iA i s bounded on a c J c 

dense set. Since a skew-symmetric operator bounded on a dense set i s 

nece s s a r i l y bounded on i t s e n t i r e domain, an immediate consequence of 

Theorem 9.2 i s the following simpler version of Theorem 7.4. 

COROLLARY 9.3: ti, a bounded essentiaJULy skew-adjoint opoAatofi i{ 

and only l{ i A c ti, also. 

The next two r e s u l t s demonstrate that, f o r c e r t a i n d i s t r i b u t i o n s 

the evolution operator i s indeed equivalent to the Weyl operator. The 

condition on the d i s t r i b u t i o n h that produces the Hamiltonian of the 

system i s seen to be p h y s i c a l l y s i g n i f i c a n t . 
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PROPOSITION 9.4: Let h = h^+Fh^ be a real tempered distribution where 

h.^ and h 2 are (not necessarily real) distributions with compact support. 

Then a) V(R ) = S(R 2) and V(k ) = 5(R) c c 
and b) H/ ii> in the closure o{ i { l 8 A £ - A c ® 1} as operators. 

PROOF: The proposition w i l l follow from formula (7.1) and the proof of 

-the "statement for h having compact support but perhaps not r e a l . 

a) By the l o c a l structure of compactly supported d i s t r i b u t i o n s [17 ; page 256], 

there i s a p o s i t i v e integer k and an r such that 

h[f ] < b sup{ |D mf (y) | : 0<|m|<k, |y|<r} for a l l f i n S(R 2) 

where b i s some constant depending on h and the notation m= (m^,m2) , 

|m| = m^+m2 i s the usual multiindex notation for d e r i v a t i v e s . Therefore, 

| h * f ( x 1 , x 2 ) | = | i h ( y i , y 2 ) [ e - 1 ( x r X 2 ) - ( - 2 V C ' 2 V C ) F f 2 ( x 2 - y 2 ) j 2 ( y 1 - x 1 ) 

< b' sup 
D(V) f"1 '*2> ' ('2Yl/C'2Yl/C)

 Ff (2
 ( X 2 " y 2 > / c . 2 . ( 7 ^ ) / c ) } 

where D™^ means the d e r i v a t i v e with respect to the y va r i a b l e s and the 

sup Is taken over the same set as i n the l o c a l structure of h . The f i r s t 

l i n e i n the expansion of h * f i s j u s t (6.2) with the various operators 

removed. 

The derivatives with respect to y w i l l produce polynomials i n x 

mu l t i p l i e d by derivatives of Ff evaluated at a translated point. Because 

Ff e S ( R ) , |h * f (x) | w i l l d ecrease fa s t e r than any polynomial as |x| — 
2 2 2 In f a c t , as f approaches 0 i n S(R~) , h * f w i l l approach 0 i n L (R ). 

— — 2 The same argument applied to h * f demonstrates that ^(H-c) =S(R ) . 

A s l i g h t v a r i a t i o n of Theorem 9.2 implies P(A (h)) =fl(A c(h)) =S(R) . 
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b) Let f be an a r b i t r a r y element i n the domain of . Since the domains 

of A c(h) and A
c ( b ) are a l l of S(R) , there i s a sequence f i n 

= 2 
V(l 0 A c(h) T A c(h) 0 I) that converges to f i n the topology of S(R ) . 

2 2 
This being the case, we know that H^f n converges to H/f i n L (R ) by the 

proof of a). As H/f n = i { l 0 A c(h) - A c(h) 0 I}f , section b) i s shown. 

Remark: I t should be pointed out at t h i s time that there i s a product r u l e 

for the d e r i v a t i v e of the skew product. The ru l e i s (compare, [19 ; page 156]) 

• !x\?f + hSfx\ f o r f ̂ ( R 2 ) , h s S ' C R 2 ) , i = l , 2 . 
3 3 1 

2 2 

With t h i s d e r i v a t i o n , one can show that H c : 5(R ) —> S(R ) i s a continuous 

map when h has compact support. 

T H E O R E M 9.5: . let h = h 1 + F h 2 + h 3 be a real tempered distribution where. 

h^ and h 2 have, compact support and corresponds to a bounded Weyl 

operator with domain S ( R ) . Then 

a) H c is essentially skew-adjoint i{ and only i{ i A ^ is essentially 

skew-adjoint. 

b) The closure o{ i A c generates a strongly continuous unitary group V(t) 
2 Id) on L ( R ) that solves the Weyl equation = iA <f> i{ and only i{ the ' 

C l t c 
closure o{ H generates a strongly continuous unitary group w(t) on 

2 2 d f L ( R ) that solves the evolution equation ™ = H o f . Moreover, w(t) is 

the closure o{ F 2

1 s c ( v(t) 0 v(t ) ) s c
xF 2 

PROOF: Proposition 9.4 remains v a l i d with the ad d i t i o n of the d i s t r i b u t i o n 

that has an associated bounded Weyl operator with domain 5(R) . 

a) Suppose i A ^ i s e s s e n t i a l l y skew-adjoint. Obviously, iA i s also 



61 

e s s e n t i a l l y skew-adjoint. By using the r e s o l u t i o n of the i d e n t i t y f o r the 

operators i A c and iA , » Ju. Berezanskii [3 ; VI §4 of the English t r a n s l a t i o n ] 

proves that t h i s separation of va r i a b l e s produces an e s s e n t i a l l y skew-adjoint 

operator I 8 i A c + i A c 8 I . This proof i s not reproduced here as many 

new concepts would have to be introduced. Since H' i s an extension of t h i s 
c 

tensor product operator, i t i s e s s e n t i a l l y skew-adjoint. 

For further r e s u l t s along t h i s l i n e that apply to tempered d i s t r i 

butions which are not r e a l , the reader i s encouraged to see [7] or [14]. 

For the converse, assume i s e s s e n t i a l l y skew-adjoint while 

iA ^ i s not. By the theory of defi c i e n c y i n d i c e s , one of the subspaces 

- 1 2 
R(LA ±1) = {ueL (R) : ( ( i A ±I)<J>,u)=0 for a l l <J>eP(iA)} 

i s n o n - t r i v i a l . Without loss of gener a l i t y , assume that u^ i s a non-zero 

element i n R(iA +1) . Let <|>,ipeP(iA ) be a r b i t r a r y . Then • c c 

( ( I T +21)<j)xtp,u0xu0) = ( { I x ( l A c + I ) + ( IA C + I) x D H . y V 

= (cf,,u0)((iAc+I)<j,,u0) + (u 0,(iA c+lH)(,f,,u 0) 

« 0 . 

Since H' i s i n the closure of I 8 iA + iA 8 1 , u„x u. i s i n the set c c c 0 0 
_L 

R(H' +21) . This contradicts the e s s e n t i a l skew-adiointness of H . c c 

b) I f h i s a d i s t r i b u t i o n as i n the statement of the theorem, then, by 

Stone's Theorem, the closures of the two operators generate stongly contin

uous unitary groups f o r the same set of d i s t r i b u t i o n s . Only the r e l a t i o n 

between W(t) and V(t) i s i n doubt. 

Let W'(t) be the closure of the operator V ( t ) 8 V ( t ) defined 
2 2 on L (R ) . W'(t) i s a strongly continuous unitary group with domain a l l 
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2 2 of L (R ) . The generator of W (t) i s an extension of the tensor product 

i { I 8 A - A 8 1} because c c 

l l m ^ L m ^ ^ ± . l i m v ( t ) ^ v ( t ) t - w f o r a l l ^ e t 7 ( A ) 

t-K) C t-K) 11 C 

= l i m ^ ^ H ~ ^ x V C t H + <|> x (V(t)i|< -ip) 

t - 0 t 

= llm m&zA x l i m V ( t ) ^ + • x l i m v(t)»-» 
t-»-o t->o t+o c 

= iA ()> x \p + (j, x iA I|J . 

Thus, the closure of IV generates W (t) . The unitary equivalence 

established i n Theorem 6.5 implies the closure of generates 

F ^ S W' ( t ) S " 1 F . Z C C 2. 

So f a r , we have seen only those r e s u l t s that support the equivalence 

of H c and i A £ . These l a s t few pages are an attempt to j u s t i f y the study 

of the evolution equation on i t s own. The geometry of the plane i s used to 

point out how the equivalence may break down. No s p e c i f i c counterexample 

i s provided and, indeed, our e f f o r t to produce one has been unsuccessful 

to t h i s time. 

The unpublished paper of R. Anderson r e f e r r e d to on page 48 must 

be acknowledged at t h i s moment. In i t , the evolution operator of a r e a l , 

compactly supported d i s t r i b u t i o n was shown to have dense domain (compare 

to Proposition 9.4 a)) and, i n the case of odd d i s t r i b u t i o n s , to have a 

skew-adjoint extension (Theorem 9.7 a ) ) . The statement of Lemma 9.6 on 

the next page i s reproduced almost verbatim from the paper. 
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L E M M A 9.6: J{ a skew-symmetric operator K is unltarlly equivalent to -K, 

then K has a skew-adjoint extant,ion. 

-L J_ 

P R O O F : I t s u f f i c e s to prove that dim{R(K + I) } = dim{R(K-I) } by the 

theory of def i c i e n c y indices [19 ; page 349]. Let UKU = -K be the 
2 2 

assumed unitary equivalence. Then, with f ^ an a r b i t r a r y element of L ( R ) , 

( ( K - I ) g , U _ 1 f 0 ) = ( U ( K - I ) g , f 0 ) f o r a l l gefl(K) 

= ( ( U K U - 1 - I ) U g , f 0 ) 

= ( ( - K - I ) U g , f Q ) 

= -((K + I)Ug,f 0) . 

Therefore, U _ 1 f 0 belongs to R(K-I) 1~, i f and only i f f Q i s i n RCK + I)" 1". 

As U i s unitary, the r e s u l t i s proved. 

T H E O R E M 9.7: Assume, that H C is densely defined and that any o{ the 

following conditions are true {on. the neat tempered distribution h . 

Then H lias a skew-adjoint extension. c J 

2 

a) h iA odd (that is, h(x 1,x 2) [f ( x ^ x ^ ] = - M x ^ x ^ [f (-x^-x^ ] , f eS(R ) ) 

b) M.h = -h where M . AJ, a rotation in the plane through an angle 6 . 

c) h ts re{lexive in any line through the origin, for example, h is 

re{lexive in the x^-axls i{ h ( x 1 , x 2 ) = h(x 1,-x 0) . 

P R O O F : a) This follows from section b) with the angle of r o t a t i o n TT radians. 

b) By Lemma 9.6, i t s u f f i c e s to f i n d a unitary operator that e f f e c t s the 

equivalence of H to - H . To t h i s end, l e t Uf(y) = f ( M . y ) . Then, f o r 
C C 0 

a l l f eP(H cU) , we have by (6.4) 



U "H Uf (X) = H Uf (M Qx) c c -6 

= 2 ^ { V C T ( M _ e x ) h [ F T ( M _ e x ) U f ] - V _ C T ( M _ e x ) h [ F T ( M _ Q x ) U f ] } . 

To write t h i s as an evolution operator, use the r e l a t i o n s below that permute 

the operators i n the l a s t expression and are r e a d i l y checked. 

i ) T ( M „x)Uf = Ur(x)f i i ) UFf = FUf 

i i i ) h[Uf] = if-Sitf] i v ) U"V h = V U - 1 h 
±c ±c 

v) U " " 1 T ( M Q x ) h = T ( x ) U _ 1 h . 

Thus, U - 1H Uf(x) = ^ { V T ( x ) U _ 1 h [ F T ( x ) f ] - V x(x)U _ 1h[Fx(x)f]} . 
C ZTT C —C 

Since U - 1 h = -h , we have if "Si Uf = -H f . 
c c 

c) The same method as above i s used but with Uf(y) = f(y) where y i s the 

r e f l e c t i o n of y i n the given l i n e through the o r i g i n . Again the operators 

are permuted'after c a l c u l a t i n g the various r e l a t i o n s . These r e l a t i o n s are 

b a s i c a l l y the same as i ) to v) except that UV ch(x) = V^UhC-x) = V_ cUh(x) 
and UV h = V TJh . Combining these, we obtain -c c 

U _ 1H Uf(x) = ,f {V T(x)Uh[Fx(x)f] - V x(x)Uh[Fx(x)f]} 
C ZTT - C C 

= -H f since Uh = h . c 

Remark 1: The o r i g i n appears to play a c e n t r a l r o l e i n the theorem. 

This i s rather misleading because the symmetries about the o r i g i n are 

considered due to computational convenience as opposed to any i n t r i n s i c 

property associated to t h i s point. Any other point would do equally as 

w e l l since the evolution operators corresponding to h and x(x^)h are 

u n i t a r i l y equivalent under Uf (x) = f ( x + x n ) . 
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Remark 2: The purpose of the theorem i s to suggest cases i n which the two 

operators H and iA are not equivalent. Of course, they w i l l not be c c 
equivalent when one has a skew-adjoint extension but the other does not. 

From section c) of the proof, we are struck by the fact that both terms 

h * f and h * f i n the evolution operator are needed to insure a skew-c c 
adjoint extension. However, the Weyl operator i s defined through only 

the f i r s t term and so there i s no immediate reason why iA should have 
c 

a skew-adjoint extension. 

Therefore, i t i s p l a u s i b l e that the phase space formulation of 

quantum mechanics i s not equivalent to the usual theory on configuration 

space. At the very l e a s t , the symmetries of phase space contribute to 

the study of the evolution equation and, u l t i m a t e l y , of the Weyl equation. 
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