THE‘WEYL FUNCTIONAL CALCULUS

by

ROSS ERIC CRESSMAN

B.Sc. (Hon.), University_of Toronto, 1971
A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

in the Department

- of

Mathematics

We accept this thesis as conforming to the
required standard

THE UNIVERSITY OF BRITISH COLUMBIA

December, 1974



tn presenting this thesis in partial fulfilment of the requirements for
an advanced degree at the University of British Columbia, | agree that
the Library shall make it freely available for reference and study.

| further agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the Head of my Department or
by his representatives, |t is understood that copying or publication
of this thesis for financial gain shall not be allowed without my

written pemission,

Department of W

The University of British Columbia
Vancouver 8, Canada

Date %1,«/3 /77_5/

L rd




ABSTRACT

The Weyl functional calculus for a family of n self-adjoint oper-
ators acting on a Hilbert space provides a map from spaces of functions on R®
into the set of bounded operators. The calculus is not multiplicative under
point-wise multiplication of functions unless the self-adjoint operators
commute. However, if the operators happen to generate a_strongly continuous
unitary representation of a Lie group, we can hope to define a "skew product"

on the function spaces under which the calculus is multiplicative.

In part I, we show that, for expomnential groups, a natural skew
product exists by using the exponential map to pull the convolution on the
group back to the Lie algebra. Moreover, whenever a skew product is defined
in part I, it depends only on the underlying Lie group and not on the partic-
"ular representation. We then examine when the skew product of two functions
is again iﬁ the original function space. For compact Lie groups, the theory
becomes more complex. A skew product is constucted but by a rafher artificial

method. The explicit calculations for SU(2) demonstrates the difficulties.

In part II, a unique skew product is developed for the position and

- momentum operators of one dimensional quantum mechanics. The dynamics of
quantum mechanics on phase space can be formulated through this skew product
whenever the underlying Hamiltonian corresponds to a tempered distribution on
the plane. The resulting evolution operator on phase space is shown to be
equivalent to the difference of two "singular" integral operators obtained from
the usual configuraﬁion space formulation. The evolution and configuration
operators are then bounded with appropriate domains for the same set of

tempered distributions. The skew product on this set of distributions is



ii

used to define noncommutative Banach algebras and to determine the multipliers
on these spaces. For real, compactly supported distributions, it is shown
that the phase space formulation has a unique solution if and only if there

is a unique solution on configuration space. On the other hand, we observe
that the symmetries of the evolution operator seem to imply that the two
formulations of quantum mechanics are not equivalent for all real tempered

distributions.



INTRODUCTION

TABLE OF CONTENTS

PART I THE MULTIPLICATIVE STRUCTURE

3

”"ﬂfChapter
Chapter
Chépter

Chapter

One

Two

Three

Four

Preliminaries
Exponential Lie Groups
Compact Lie Groups

SU(2)

PART II THE EVOLUTION EQUATION

Chapter
Chapter
Chapter
Chapter

Chapter

BIBLIOGRAPHY

Five
Six
Seven
Eight

Nine

Preliminaries and'Géneraiizations

The Weyl.Corfespondence and Evolution Operator
Bounded Operators

Multipliers

Real Tempered Distributions

Page

16

22

- 33

36

42

49

55

66

14



ACKNOWLEDGEMENTS

I wish to express my appreciation to my supervisor, Dr. R.F.V.
‘Anderson, for his original suggestion of my thesis topic as well as for
his partiéipation in many stimulating discussions during the preparation

- of this thesis. I would also like to mention that the foundation of

s

the functional calculus used in the thesis was developed by Dr. Anderson

in his own research.

The financial support of the University of British Columbia

and the National Research Council of Canada 1is gratefully acknowledged.



INTRODUCTION

The uéual von Néumann functional calculus for a single self?adjoint
operator assigns, through the spectral resolution, an.oﬁerator to every Borel-
measurable complex—valuea function defined on the ;eal line. R. Anderson [1]
hgﬁggxtended_this to the Weyl functional calculus for certain families of

self-adjoint operators and functions on R%. An n-tuple of self-adjoint

operators Aﬁ=(A1,...,An) on a Hilbert space H is called a self-adjoint

n—-tuple if; when the operators are restricted to their common domain, any real
linear combination of them is essentially self-adjoint. For any self-adjoint

n-tuple A, the Weyl functional calculus T(A) maps various subspaces S of

functions on R into the set of bounded operators B(H) on the Hilbert space.

A multiplicative structure on S will mean a map SxS—>S given by'

(f£,8) > £ *g that satisfies T(A) £%g = T(A)ET(A)g. The function f£*g is

called the skew product of £ and g. This multiplicative structure for

special n-tuples plays an important role in phase space quantum mechanic¢s as
is explained later in the introduction. Our purpose 1s to define and study

the skew product for various self~adjoint n-tuples.

The thesis is divided into two parts. The first examines necessary
and sufficient conditions on the self-adjoint n-tuple for a skew product to
exist on various spaces of functions. The second studies an evolution equation

that arises naturally from the skew product for one of our special n-tuples.

In part I, we will always assume that the self-adjoint n-tuple A
comes from the set of generators of a strongly continuous unitary representa-
tion of a real, connected Lie group G. In fact, iA==(iA1,...,iAn) will be

a representation of the Lie algebra T of G.



If G is nilpotent, a continuous skew product has already been
developed in [2] for these n-tuples on the Schwartz class S(Rn). ‘Unfortun-
ately, this result cannot be extended to other groups for the space of
functions S(Rn). Hence, we consider the other three spaces of Fourié;_
transforms that are introduced in Chapter One (namely;. f(Ll(Rn)), F(Co(Rn)),

~and F(C:(Rn)) ). 1In Chapter Two, we show that for‘exponential groups there

<

is a unidue‘continuous skew.prodUCt on‘thesé spaces for the n—tuplevassociafed

\,to the left regular representation. vMoreovef, this skew product holds for any
strongly continuous unitary representation of the'exponential group. The |
example at the end of the chapter demonstrates that f} must be nilpotent in

order to expect a skew product on S(RM).

Iﬁ.Chapters Three and Four,.we attempt to carry the program of
Chapter Two over to compact groups. Again; there is a‘continuous skew product
on S==F(L1(Rn)) that holds for all our representapions.but it is no longer
uniqué. As the gxponential'map"is no longer a diffeomorphism, the existence
of a skew product for general compact groups on the Fourier transform of a
space of continuous functions seems particﬁlarly difficult:to establish.

However, with considerable effort, a skew product is produced for SU(2).

In part TI, we will be dealing primarily with the pair of self-.
adjoint operators (Q,cP) on LZ(R) that denote multiplication by x and
the differential operator —icé%- respectively. The constant c¢ 1s always g
positive number. With c thought of as Planck's constant and h in S@R",
T(Q,cP)h is nothiﬁg but the quantization procedure suggested by Weyl

[18 ; page 275] that interprets classical quantities on phase space 48 quantum

mechanical operators (henceforth called Weyl operators Ac(h)) on LZ(R).

A unique continuous skew product é is provided on the Schwartz class S(RZ)



in Chapter Six. If h is regarded as a fixed Hamiitonian, the evolution

equation on phase space f==i(11§ f - fg]n) is equivalent to the Schrodinger

df
dt

equation on configuration space as explained in [2].

However, most interesting Hamiltonians do not come from functions
in <S(R2). Fortunately, the above paragraph can be reasonably extended to
_define a Weyl operator AC on S(R) and an evolution operator Hc on .S(Rz)
for any h in the set of tempered distributions S'(Rz). The greater portion
of part II studies the equivalence of the resulting evolution equation
df - dé . ‘
EE”—HCf and the Weyl equation dt==iAc¢. In Chapter Six, our main theorem
shows that the evolution operator is equivalent to the difference of two

kernel operators on the plane. These kernel operators are intrinsically

reiated to the W¢y1 operator of the original distribution.

In Chapter Seven, Hcand Acare regarded as operators on LZ(RZ)
and LZ(R) féspectively. From this point of view, Hc is bounded with
domain S(Rz) if and only if Ac is bounded with domain S(R). As any bounded
operator on LZ(R) is an extension of a Weyl operator, the above set of .
distributions is quite a large subset of S'(Rz) and, in fact, includes

-L.Z(R-z) and F(Ll(Rz))."

The multiplicative structure on the Banach spaces LZ(RZ) and
F(Ll(Rz)) defined through the bounded Weyi operators of Chapter Seven pro-
duées two noncommutative Banach algebras. 1In Chapter Eight, we study the
multipliers on these spaces. ,The multipliers on LZ(RZ) simply correspond to
the distributions with bounded Weyl operators. Furthermore, a variation of
Wendel's Theorem [6], proves the multipliers on F(Ll(Rz)) come from the

Fourier transform of finite Radon measures.

In the last chapter, we return to the viewpoint of Chapter Seven to



study the relation between Hc and Ac for real tempered distributions.
Most Schrodinger operétors of a one dimensional particle are extensions of

these Weyl operators. One important result of Chapter Nine states that Hc

has dense domain if and only if Ac has dense domain. Moreover for distribu-
tions with compact support (or whose Fourier transform has compact support),

_the-evolution equation has a unique solution if and only if the Weyl equation

has a unique solution. In other words, the two equations are equivalent in
this case. Finally, the geometric intuition‘present in phase space is used

to suggest that they are not always equivalent.



PART I THE MULTIPLICATIVE STRUCTURE .

CHAPTER ONE

PRELIMINARIES

The functional andlysis notation used in this thesis 1is as in

K Yosida [19] unless otherwise specified. The following four spaces of

functions with the given topology will be considered throughout.

DEFINITION 1.1: Let F be the Fouwrien trhansform degined on rt (&™)

accornding Lo the foumula
P (g) = (2m) ™2 J ey ax for every feLt®RD).
' R

This operatorn induces a topology on the function spaces befow.

1. ral@®)y=(rt ;£ e LY ®™} 44 a Banach space with nowm ||FE]| = l£]l,1

2. F(Co(Rn)) ={Ff : f i1s a continuous function with compact support}.
CO(Rn)' haA_ the fopology of unifonm “éonumgence on compact subsets.

3. .F(C:(Rn)) ={Ff : £ 1s a C function with compact support}. The topoLogy
i induced from C°°(Rn) considered as the Locally convex Linear fopolo-
gieal space 05 X'ZQ/H’Z gunctions for distrnibutions on R" |

4. SR™) s the space of rapidly decreasing functions uu/th wsual topology.

The Fou‘/z,ée/L‘ManAéo/zm 45 a homeomorphism on ih@ space. [19 ; chapter vi].

DEFINITION 1.2: (The Weyl Fﬁﬁctioﬁal Calculus) Suppose A= (A;,...,A) 4ba
selg-adjoint n-tuple of operatorns on H. Let S be one of the fowr above
spaces. Let A be the Aum;ta/Ly operator associated to the essentially
self-adjoint operatonr —(&;lA1 o +EA) through Stone's Theorem. Then

T(A) : S—B(H) .is dedined by |



1.1)  T@)E=(n ™2 [ | FE(E) eI har  gon every fes,

R

whene the Aintegral on the night Ais the Bochner Anteghal [19 ; page 132].

For part I, let us assume that 1A= (iAl,...,iAn) is a set of
' "é}é;ﬁ;érators for a strongly continuous unitary representatioh U (hence_forth

.called a representation U) on a real, connected Lie group G. Without loss

of generality, G is simply connected because the representation can be lifted
to the universal covering group of G without affecting the generators.
Formula (1l.1) may be rewritten in terms of this representation. If exp
denotes ‘the exﬁonential map from the Lie algebra. T to G, then there is a

ig-A

basis for ‘T corresponding to A such that U(exp§) =e With this basis

(1.2) T(A)f = (Zﬂ)—n/2 f n’ Ff(Z) U(exp(-&)) d&.
. , R'=T

We will be particularly interested in the left régulai- representation
R.on G. This is constructed through left translation on the group. If u is

a left invariant Haar measure on G, let R(o) :LZ(G_,u) ——»LZ(G,u) by
’ -1 2. |
(1.3) (R@©@)Y) (p) =¥ (o "p) for YeL”(G,u) and o0,peG.

This defines a representation on G that is generated by n left invariant
vector fields (iAl,...,iAn) of skew-adjoint operators on LZ(G,u). For al_l
groups considered in this thesis, the skew préduct for the generators of any

representation on G, will depend only on the left regular representation.
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CHAPTER TWO

.EXPONENTIAL LIE GROUPS

DEFINITION 2.1: A Lie group G is cakled exponential if the exponential map

establishes an analytic diffeomorphism of T ontoe G,

cy e

Exponential groups haQe been exaﬁined by a number of authors
(eg. [4] and [13]). This class of Lie groups may be studied through their
Lie algebras as there is a purely algebraic criterion on thé Lie algebra to
determine if the group is exponential. In particular, all connected, simply‘
-connected nibotent Lie groups are exponential while all exponential groups

are solvable - each inclusion being proper.

The following lemma is needed to study the left regular representa-
tion on these groups. The result should be obvious for those familiar with

the theory of Lie groups [5; page 364].

LEMMA 2.2: 1§ G 4 an exponential ghoup, the measure induced on G by
Lebesgue measure on T through the exponential map 48 o4 the gorm I(o)du(o)
where (o) A5 a positive anaiyuc'ﬁunctéon. 1§ G s nilpotent, then t A8

a constant.

PROOF: Let us construct the left invariant Haar measure u on G. The left
invariant vector fields iAl,...,iAn of the left regular representation form
a basis for the tangent space at each poiht of G. Define n l-forms on G by

wk(iA )=§ for l.fkgj <n. These are clearly left invariant and the form

3

Lu=uﬂ'A... Awn

kj

is a left invariant n-form that is non-degenerate at each

point of G.

By using exponential coordinates with respect to our chosen basis
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for G, w can be pulled back to a non-degenerate n-form v on T. But the
n-form dx1 Ao, Adxn corresponding to Lebesgue measure is also non-degenerate
and so v==A(x1,...,xn)dxlA... Adxn where A :R®—R is non-zero. By the

choice of coordinates A is obviously analytic and A(0,...,0) =1. Tﬁus A is

a positive analytic function.

o Define the measure u for £ sCZ(G) by

u(f) = J f (exp(x)) A(x) dx.
r

| It is easy to check u 1s a positive measure on G that is left invariant since
it corrésponds to the n—-form ‘;f The definition of u states that p induces
the measure A(x)dx onl ' Alternatively, Lebesgue measure induces the
measure £(o)du(o) on G where I(o) ='1/A(exp_lc). Therefore I has the

desired properties.

1f G is nilpotent, an appropriate basis for I may be chosen using

the Campbell-Baker-Hausdorff Theorem so that

exp {exp(gl,...,gn) exp(nl,...,nn)} = (El-+nl, E,*tn,ta polynomial in (El’”l)’

cees En-knn-+a polynomial in (&1,nl,...,£n_1,nn_l)).

With these coordinates, Lebesgue measure is clearly left invariant and this

insures that' I 1is a constant.

THEOREM 2.3: '16 A 45 the self-adjoint n-i_upﬂe assoclated to the Left
negulan representation of ayi éxpanentéwﬂ group G, then thmevu a unique
continious skaw product on s =rwt@®Y), s==F(co(Rn)) and S==F(C:(Rn)).
In fact, if T=R" has the basis com&pomﬂng to A, then F(f*g) =K

60& f,geS where

KE) = (27‘)—n/2 L,n F£ (exp T (exp (~n)expg))Fg (n) Z(e}g{%é;;é‘;xﬂ) dn.

\
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PROOF: We will determine the skew product on F(Ll(Rn)). Define a new

function on the group for any f eF(Ll(Rn)) as follows
TN -1
f(og) = Ff(exp “a)*I(o).

By formula (1.2), we have for every ¥ eLz(G,u)

Ca@n @ = en™? j o FE(E) R(exp(-E))¥ df

R

N J Ff (exp o) R(o™ 1w E(o)du(o)
G

= (ZTr)_n/2 J E(o) R(o_l)w du (o).
G

Since f ELl(G,u), the last integral is defined as a convolution on G. of an

Ll function and an L2 function.

Let f and g be two arbitrary functions in F(Ll(Rn)). Then

(TA)E T(A)g)v

(2my™™/2 f f(o) R(e™H { (2m) "™/ 2 fc'é<a> RS D)y du(s) } du (o)
G

(2m) ™ f J £(0) g(8) R T671yy du(s) du(o)
G ‘G , ,

Interchange the order pf integration (legitimate since these are

convolutions) and replace o by d_lc (recall: y is left invariant).

(2m)™" f £610) g(8) RGe™)
GxG

v du(o) du(s)

- (2my™™/2 [ { (2m) "2 f £ Y0) £(8) du(s) } R(o™ 1Yy du(o)
G G '



10

@™ [ @™ RgEe) Vi@ 3 RETHY @)
' G

where é- means the usual convolution on a group [6].

(2my /2 f o K(E) R(exp(-E))Y dE
'R

B A

where K 1s the function

K@ = (207™? g ¥ £ (expE) Trasry

= (2m)™/? jRn PE (exp ™ (exp (-n) expt) )P (n) LERLMISKPE) gy,

K 1s a function in Ll(Rn) because g'*f sLl(G,u) ‘and their norms
-n/2

satisfy the equality |IKHl= (2m) ||;éz:”l . This last equation‘also
shows that the skew product 1is continuous with respect to the induced topology
on F(Ll(Rn);' when f*g 1is set equal to }FlK. Furthermore, the continuity
of the skew product on F(Co(Rn)) and F(C:(Rn)) is a direct consequence of

the continuity of the convolution on G for CO(G) and C:(G).

The skew product for all these spaces is unique since T(A)f 1s
essentlally a convolution operator on L2(G,u) with kernel uniquely deter-

mined by f£.

From the proof, it is seen that the skew product for exponential
groups is really convolution on the group pulled back to the Lie algebra.
In order to generalize this method to other groups, it seems essential that
the exponential map is onto the group. In the next ehapter we look at another

case of surjective exponentials; namely, the compact groups.

The space S(Rn) is conspicﬁous by its absence in Theorem 2.3.
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We will see in part II that a skew product on S(Rn) should exisf to sfudy
the multiplicative structure further. For nillpotent Lie groups, this is |
1indeed the case (Cofollary 2.4). Unfortunately, even for the simplest
exponential group that is not nilpotent we have no skew product on the Schwartz

.class (Theorem 2.7).

' 'ME"(:)*RdOfLLARY 2.4: 1§ G 4is nilpotent in addition to the hypothesis of Theorem

2.3, then there 48 a unique continuous skew product on S =S@®R™) for the Left |

negulan representation.

PROOF: See [2; section 2].

Remark: In the spebial case of abelian groups, the skew product is exactly
what is expected - it is simply the point-wise product of functions
(that is £ *g(g) =£f(£)g(g)). The self-adjoint n-tuple 1s composed of

. operators whose commuting spectral families enable the von Neumann functional

calculus to be immediately extended.

The left regular representation plays such an important role

because of the following.

THEOREM 2.5: Let G be an exponential group. The skew product 05 Theorem 2.3

holds fon the Weyl caleulus of the generatons of any representation of G.

PROOF: If iA=(iA iAﬁ)__are'the generators of the representation U,

170
then there is a basis of T such that (1.2) holds. As in the proof of
Theorem 2.3, we have

T(AYE T(A)g = (2m) " I n o n F£(£) Fg(n) U(exp(~&)exp(-n)) dndg
R xR


http://The.on.em

12

]

(2m)”" f £(0) g(8) U@ 67Y) du(s)du(o)
GxG

(zn)—n/Z j
G

(2my~/2 f £670) g(o) du(s) U™ du(o)
’ G

.(27r)_‘n/2 j o F(E*g)(£) Ulexp(-£)) ds.
R

where f*g 1s given in Theorem 2.3.

The rest of this chapter calculates the skew product for one
_Specific exponential group in order to demonstrate that there 1s more to

this structure than is first apparent..

- EXAMPLE: Suppose G is the Lie group consisting of points on the plane
together with the multiplication (t,x)(s,y) = (t+s, x+ety). ‘Let us

calculate the. exponential map on G.

We must determine the differentiable one parameter subgroup
y :R—G given by v(s) = (a(s),B(s)) that satisfies the three conditions

1) v(0) = (0,0)  11) ¥'(0) = (£ ,x,)  1i1) y(s+&) =y()y(E).

When we find such a curve, then exp(to;xo) =v(1). Writing these conditions
_out in terms of o and B, we really have two differential equations whose

solutions are

e(Sto) -1 £ 1
a(s) =t°s and B(s) =-——-—————-t0 X where c =1 at t=0.
- e” -1
Therefore, exp(t,x) ='(t,————--t x).

The exponential obviously establishes an analytic diffeomorphism

between T =R2 and G. With the coordinate system on the Lie algebra. given
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by the basis ‘{(1,0) , (0,1)}, one can show the multiplication on T comes

from the bracket [(1,0), (0,1)]=(0,1).

The original coordinates on G are not exponential coordinates.
In order to find the skew product according to Theorem 2.3, the following

results are required.

g

LEMMA 2.6: Let G be the above group and Let T have the indicated basis.

Then a) exp_l(exp(t,x)exp(s,y)) = (t+s, t+s. {£ IA'Fet(g——L)y )
et+s—l t. s
) 1- ~S '
and b)) du(s,y) = Se dsdy 448 Haan measune in exponential coordinates.
~S
(that 45, A(s,y) =l~se where A Ais as in the proof of Lemma 2.2)

~ PROOF: a) On the one hand, by definition

et-1 es—i
~exp(t,x)exp(s,y) = (t,~—x)(s,— 7 y).

t S 4
_ e -1 t e -1
= (t+s, Y x+e ( s )y.).
On the other hand,
i t S - t ' S
t+s e -1 t, e -1 _ e -1 t,e -1
exp (t + S’et+s—1{ Toxte (73 )y 1) = (t+s,=—x+te ( s AR

b) To show 1f is left invariant, the equation below must be verified when

exponential coordinates are used in the integrals.

: -8 -s : :
f 2 £f{(t,x)(s,7)) 1-e dsdy = j, f(s,y) le dsdy for all feC (Rz).
R s R2 S ' o
By part a), we have
’ _Ts ) t_ S_ ‘ _=s .
J 2 f((t,x)(s,y)) 1-e dsdy = J f (t+s, tts (£ 1’x+et(g——lﬂy D) l—g-dsdy
R s R2 et+s_l t o s s
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s~t 1 t-s

t :
f , Eer 2 xr et Ehy ) B —dsay
] t ~t
R e -1

s-~t -]

‘Interchange t‘he order of integration and change the variable y to obtain

: s t-s '
e”-1 -t s-— l-e
J 9 f(s,y) e ot s ds dy
R e -1

’ s -s, s t
g f , E(s,y) &L &7 e (eme) 44y
. S -t, s t
R e (e"-e’)

= J 2 f(s,y) =—— ds dy.
R .

THEOREM 2.7: 14§ G 4s the above group and A is the self-adjoint n-tuple
associated to the Left negular representation with the indicated basis for T,

then $=S(R%) has no skew product.

PROOF: Assume that a skew product does exist. For f£f,g ¢ S(Rz), the function

F(f *g) has the following form according to Theorem 2.3 and Lemma -2.6.

F(f *g) (t,x)

: ' -5 t ' -t
- zif P (t-s,— 2 (&—"Lyre @) 1) Fals,y)
o 2m 2 t-s s t
R e -1 l-e

t-s l-e
s—-t t

ds dy .

-It is apparent that F(f *#g) 1s defined everywhere and is in fact a continuous

function .(since the factor (t—s)/(l—«=:s<—t

) is a polynorﬁially bounded analytic
function of s). As there is a skew product, ¥F(f *g) as defined above is

in SR?).

To obtain a contradiction, we have only to exhibit two functions
f and g in S(Rz) such that F(f *g) 41s not in S(Rz). .To this end, suppose
Ff=¢xp and Fg=axB (that is, Ff(u,v) =¢(u)yp(v) etc.) where $,¥,0,8 are

all non-negative functions in S(R) to be chosen below. With this decomposition
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S S

- -1 - ‘ -
F(f *g)(0,x) =711F f , FE(=s,~=— (& y+e x))Fg(s,y) —= dsdy
R e -1 l-e

= 51; [R ¢(-s)a(s): = { JR P(-y ~—2—x) B(y) dy} ds.

l--eS l—es

" Define Y and B so that they are non-negative functions in S(R) and satisfy

1) p(e) =1 for |y| <l and 11) B(y) =&’ for y<l.

Since s/(l-es_) <0 for all s, we have for any x<0

(1-sx/ (1~e®))

1 . .
F(f *#g)(0,x) > 5~ f 6 (=s)a(s) f 5 ayae
. ZTT R l—es (_1;SX( (l_es))
1 -1 _ .
= E;z'—:;——— f ¢p(~s)a(s) __':_?_g e—sx/(l—e ) as.
R 1-e

Now define ¢ and o so that they are non-negative, in S(R), and satisfy

111) ¢(-s)‘;—‘s/(1—és), for s>0  and.

iv) a(s) = —aés—{‘-s'/(l—es)}A for s>0.
Substituting these functions into our equation for F(f *g), we obtain

S
F(f *g) (0,%) ~sx/(1-e")

Iv

B

ds for any x<0

" -8 .2 d s
[o (297 g ls/@-eDn) e

i
£

. 1
I

{ex'/x—2e}4(/x2+2ex/x3—2/x3 } for x<0.

Obviotisly, F(f *g) (O\,x)l does not belong to S(R). Therefore, there is o

skew product on S(Rz).
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CHAPTER THREE

COMPACT LIE GROUPS

] .
If G is a compact group, the technique of Theorem 2.3 must be.

altered because‘the exponential map is not a diffeomorphism. Fortunately,
the theory of Riemannian geometry is applicable and supplies the necessary

e

facts concerning the exponential in place of Lemma 2.2.

LEMMA 3.1: Let G be a compact g/wuﬁ with n démamional’, Lie algebra.
a) The set C of singular po;;m 04 the exponential map {5 a closed set
in RY with measure zenro,
b) There 48 an open, /Lere,Kg compact neighborhood E of OeT such that
1) exp 45 a d,éﬁﬁeomonph/(/.sm 05 E onto expE
i1) E 48 the l’.ahgut connected nedighborhood wuth this property
111) exp(.r)—G whe/uz E 4is the closure of E.
c) With w the Left invariant n~60/zm on G and A(x) degdined through the
exponen,tiwﬂ as in the proog of .Lemma 2.2,

1) ‘Haa)L measwie 48 given by
f ¢ (o) du(o) = J ¢ (expE) A(E) dE  for all continuous ¢ on G
G ' 'E

11) When £ 4s a continuous function on R with support where exp 48 a
difdeomonphism (s0 exp © s defined)
j o £(€)dg = J f('exp";'l‘c:r) |A(exp IG)l du(o).
R exp (supp )
PROOF: a) Since C={feT |exp:T—G is not a local diffeomorphism at £},
it is clearly a closed set. If the exponential is composed with an analytic'

coordinate chart, C is locally the set of points where the determinant of

an analytic map is zero. The calculation of the determinant is an analytic
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operation so, locally, C is‘the set of zeroes of an analytic real-valued map.

if this analytic map vanished identically on any non-empty open set
in T, then exp would be'singularAeverywhere'by extending the chart‘to an
analytic atlas. But exp 1s not always singular,.hegce, C is the set of
zerées of a not identically zero-aqalytic_functipn. It is an easy exefcise

.;to--show that such a set has measure zero.

b) This is the part in which the Riemannian metric‘plays a leadiﬂg,role.

The details of'its construction and éertain theorems concerning Riemannian
manifolds will not be proved because the Riemannian structure of our groups

is overall of secondary importance. For a rigorous presentation pf the theory,

the reader is referred to [9] - especially chapters IV and VIII.

For our purposes, the most.imﬁortant aspect of the metric is thaﬁ
the one parameter subgroups obtailned from the equnential map are the geodesics
of the manifcld that pass through the identit? e of G. Since G 1s compact,
it is a complete Riemannian manifdld. As such, any point in G can.be joined

to e by a geodesic that minimizes arclength [9 ;chépter 1V, page 172].

Define the set E of the theorem as follows

E = {geT : the curve yn(t)==exp(tn) minimizes arclength from e to

exp(n) for all n in some neighborhood of £}.

Then E is an open, relatively compact neighborhood of e=0 in T and
exp : E—expE is a diffeomorphism onto an open set of G. In addition, G is

the disjoint union of expE and exp(E~E). See [9; chapter VIII, page 100].

¢) Thé fight side of the equation in i) is a left invariant positive measiite
‘because A(%) 1is positive on the connected set E and the measure of the

boundary of E is zero. It should be noted that A(g) 1is not always positive
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on the entire Lie algebra.

The second statement is simply the construction of the Haar measure
from the left invariant n~form w as in Lemma 2.2. The absolute value appears
on the integration factor because the ekponential'map neéd not be orientatién
preserving at all points where it is a local diffeomorphism.

With the above result, a skew productvmay be developed for general

compact groups.

THEOREM 3.2: T4 A 4s the self-adfoint n-tuple associated to the Left regularn
nepresentation of a compact ghoup G, then there is a continuous shew product

on s=r@l@Y). ‘ ‘ .

PROOF: With C and E as in Lemma 3.1, assume that F£ ECO(Rn'?C) (that is, -
Ff is a continuous function on R® with compact suppoft outside C) and define

a function on‘the group analogous to that in Theorem 2.3 by the formula

f(o) = ) {Fi(g; } for oeG
expf =0 '
£ € supp (Ff) )
where A is taken from the previous lemma. For fixed oeG, f(o) 1is a finite
sum of finite numbers. The numbers are finite since A(§) #0 for & esupp Ff.
If the number of terms were not finite, there would be a sequence En with a
limit point EO in supp Ff such that exp5n==c and thus exp would be

singular. at a'point outside C€. This yields a contradiction.

It is easy to see that f is actually a continuous function on the

group. Furthermore,

H%llf[ [£0) | du(o)
- G
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| RPECE) |
. : = -du (o)
JG expg==c |A(E) ]
£ € supp Ff
- jG expg =g ' A (g)
¢ ¢ supp Ff

, J |F£(£)] d& by Lemma 3.1 c¢) 1i)
L e . - Rn

el -

With this definition of f, the Weyl calculus has the form (see Theorem 2.3)

T(a)E () = (2m) /2 f £(0) R(6™ D)% du(o) for all eL’(G,u)
G

and  T(A)f T(A)g (¥) = <2n>"“f g ££(0) R(e™ )Y du(o)

G

where f,ge _F(CO(Rn ~C)).

The convolutibn present in the last integral may be pulled back to a function

on R" as follows

-n/2

(2m) A(E) ;;é%(expi) for EeE

(3.1) K(£) =
: 0 if £ ¢E.

It is obvious that K satisfies the relation for the product of operators; thus,

(m) /2 f L K(E) Rlexp(-£))¥ dE = T(AE T(A)g ().

R .

~

Let us examine this new function more closely. Since g;f is a
continuous function on G, therefore K is continuous on E. Moreovér,

Ke Ll (Rn) and, in fact, there is an estimate for its norm given below.

2 ~ ~ ~ ~
2™ flxfl = 2 5211, < el NEN < Heelly lFell,.
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The definition £ *g==FrlK provides a multipliéative structure
by giving a map F(CO(Rn-C)).x F(CO(an~C)) —_ F(Ll(Rp)) that 1s contin-
ﬁous, by means of the norm inequality, when F(CO<R#-C)) has the felative
topology induced from F(Ll(Rn)), As C has measure zero, F(CO(Rn-»C)) is
dense in‘ F(Ll(Rn)). Therefore, there is a ﬁnique continuous extension of

_the above map that yields a continuous skew product on F(Ll(Rn)).

e .

The analogue of Theorem 2.5 is proved using the Peter-Weyl Theorem.

- THEOREM 3.3: Llet G be a compact giwdp. The shew product of Theorem 3.2 holds

gorn the Weyl calewlus corresponding Lo any nep)uys entation of G.

PROOF: First suppose that V : 0-—V(g) 1s a subrepresentation of the left

regulaf representation. Then there is a projection operator PV on - L2(G,u)

such that V(o) = R(o) PV. Let AV denote the generators of the representa-

.tion correspohding to a fixed basis of ' T'. For f in F(Ll(Rn)), V is

related to R by

Ta)E ) = @n ™2 JRH FE(E) V(exp(-5))¥ dE  for yePy(L’(E,m)

= m ™2 J o FE(E) R(exp(-E))Pyy dE
R :

1l

TAE (W) since va = 9.

From this equation, it is clear that the skew product for the left regular

representation is valid for any of its subrepresentations.

Now suppose that W : 0 —W(o) 41is an irreducible representation.
By the Peter-Weyl Theorem [6 ; page 24], W is equivalent to an irreducible
'subrepresentatipn V of the left regular representation. Heﬁce, there 1is a

linear isometry B between the uhderlying Hilbert spaces such that the
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equality W(o) = B_lV(o)B is true. If H is the Hilbert space for W, then

1]

TANE () (ZTr)—n/zJ FE(E) W(exp(-£))y d& for all yef
. . Rn ‘ .

(2my ™2 f L FEE) BTN (exp (-6))By de
R

(2m) ™™/ Bfl{ j o FE(E) V(exp(-£))By de }
X |

P e

BTh ()6 (8.

Writing out the product of two such operators, a trivial cancellation shows

that the skew product remains valid for irreducible representations.

‘Any representation for a compact group is the direct sum_of irreduc-
ible representations. As the skew proddct holds for all the summands, it
will also hold for the direct sum.

Remark: The skew product of Theorem 3.2 is clearly not unique. A specific
set. E was chosen in the proof that behaved nicely under the exponential map.

There are certainly other sets that would do equally as well.

Since the function K given by (3.1) is usually discontinuous at
the boundary of E, our skew product'Will not suffice for the other three
function spaces introduced in Chapter One. However, 1t is interesting to
question the existence of some multiplicative structure on these spaces.
The difficulties encountered in Chapter Four for the group SU(2) discour-

ages us from looking at the géneral case.



22
CHAPTER FOUR
SU(2).

Let G be the real, simﬁly connected Lie group SU(2) of 2x2
unitary matrices of determiﬁant one. Since G 1is the two-fold universal
covering group of the rotation group S0(3), any skew product defined through

G will, a priori, establish a skew produét for $S0(3).

The Lie algebra T is the set of 2x2 skew-hermitian matrices of

trace zero. Choose the following matrices as our basis for T.

tlad) (28] (28]

As aiwaYs, we need some facts about the exponential map before producing a

skew product.

 LEMMA 4.1: a) Uith the above basis, exp : T —G s given by

sin|£l
|£.

sinlg

; (Ey1+Ey)

cos|g| + g1

exp(al,£2;€3) =
sinl] sin|g]

IR cos|t| - --|—€—l—,e:li'
where €] = @i+g§+g§ﬂj2 and §Eﬁﬁl=1 at || =o.
b).The exponential is peﬁiodic 05 period 2w azqng anQ Line through the
ornigin. Fon‘any non-negative integen n,.zhe set {& : am<|g| < (atl)m}
panametenizeé'ihe.gnoup G and exp 45 a diﬁﬁéOmonphiAm on the interior of
any of these sets. The set E of Lemma 3.1 is of the above form with n=0.

¢) 1§ o denotes group composition on one of these parameterizations, then

cos|n~1'0€l = cos|n|cos|&| + sin|n|sin]&]| Inl}g] y

d) With the notation of Lemma 3.1, A(E) =‘(sin2]€l)/(|£|)2.
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PROOF: a) and b) are easy exercises using the exponential of a matrix.

¢) This is an immediate consequence of matrix mutiplication and the fact that

cosIEI =-% trace(expf).

d) A slight modification of the Weyl Integration Formulasusing the roots of

G produces this integrating factor. For a more constructive proof, we refer

... “fhe reader to [12; page 220].

THEOREM 4.2: For G=SU(2) , there 45 a skew product on the space 05

functions S = F.(CO(R_?’) ).

PROOF: We have only to consider the left regular representation of G due

to Theorem 3.3.

Let D(w,21) be the set {& : ﬂ'§l€| 52v} in 3-space. By Lemma
4.1, D(m,2r) may be used as a coordinate system for G under the exponential
map. The inner‘and outer boundaries of this set correspond to the matrices

- -1 and I of the group respectively.

" Define a function on the group for all £ eF(CO(RB)), with respect

to the above coordinates, by

e Ff
f£(&) = Z-_ Egégf] for m< |E| <2m
expa = §
-1 E -Ff(g_+2nﬂ£) !E_+2nng iz
sinzlil n=- IE! !EI

by the periodicity of the exponential (Lemma 4.1). We set f equal to 0 at

the boundary of D(N,ZH).

Following Theorem 3.2, the skew product of f,g eF(CO(R3)) should

be provided through the functioni'K defined on the next page.
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K(E) = (2n 3/2 sin g! J
Ig' D(m,2m)

~ 1 -
f(n "0&) g(n) du(n)

for £ in the interior of D(m,2r). Of course, we do not as yet know if K
is defined point-wise because the singular set of the exponential was not

avoided as it was in Theorem 3.2. Let us rewrite K in order to examine the

last integral more closely. First, for f eF(CO(RB)) , define

e

f'(£)=7—l-§ J o OFE(E+ ZnTr“5) |g+2“"5| ‘“for all £ eD(m,2m).
lg n=-—oo

With this notation, K becomes

.1) K@) = (2m) /2 iiE—J—J— J F i tor) g <
1g]* Iper,2m : sin“|n "o k|

by changing Haar measure into Lebesgue measure,

It should be evident why D(m,27) was chosen for our parameter-
ization instéad of the set E as in Lemma 3.1. On D(m,27), f' and g'

In_1'0€|2

) , 2
are uniformly continuous and the expressions [£| and are

never 2zero.

Our proof consists of three steps concerning the propéfties of K.
After these are pefformed, it will only remain to "round off the edges"
of K at the boundary of our coordinate system. Tﬁe steps are:
Step 1. K(g) exists for each £ -in the interior of D(m,2m).
Step 2. K(&) is continuous ‘at each of these points.
Step 3. K(£) can be extended to a continuous function on ﬁ(n,Zn) that

is constant on each boundary.

Step 1. Fix £ so that <|£1 <27. Then, for some constant c, depending on

nlog)?
c|k(g)| < sup|f'(n)] sup|g' ()] J 7, -1 dn
_ n n D(r,21) sin®|n" " o £]
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where c 1s greater than zero and the sup 1s taken over D(m,2m).

The problem in showing the integrand in the last integral is

summable is that the denominator is sometimes zero. In fact,

{n: !n_lﬂogl e {m,2m}}

{n:ntog=2+1}

{n : sinzln_log| =0}

il

1]

{E s €0 (—I)}.

Since neither of these points are on the boundary of D(w,2m) , we can choose

balls M and N around £ and & 0 (~I) respectively, whose closures stay

g€ g€
away ffom the boundary. Let us split up the integral for the estimate of K

‘into an integral over ME , over Ng , and over the remainder. The Haar
measure giVes a bound for the first and second integral; namely,
-1 2 " -1 .2 2 '
In ~ okl _ In"" o] [nl%  du(n)
' 2 1. 40T 2 -1 >
ME sin“|n ~o£| My sin In " o&| sin|n]|
-1 2
<
=4 jM Ln _Ogl du(n)

2
£ sin”|n I oEI

where ln]z/sinzln| is bounded by c, on Mg

dn

=°J
1 Eflthg

A

cl°volume(D(n,2ﬂ)).

evolume (D(w,2m)). -

2

Likewise, the integral over Ng is bounded by ¢

The integral over the remainder is also bounded since the integrand
is a uniformly continuous function on this set. Thgrefore, formula (4.1)

does produce a candidate for the skew product.
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Step 2. This is essentially a refinement of the argument used in step 1.
~ As sin2|§|/|£|2 is continuous near a fixed point £ between m and 21, we
need dnly show the integral in (4.1) is continuous. To this end, suppose

that El is close to & but is not' *I. The difference of the,integrals is

: N
- [n ot |
f o) g (n)-—L-——~—-L—~ — 27 (7 og e (n) gt dn
it D(m,2m) ln og| sin”|n ogll
In"tog, |
< f lg" (M| {£' (0 0‘)-—L-——-*L~ —f'"(n OE ) = *—QL-—' dn.
D(m,2m) sin |n o£| sin ln ogll

The last integral will again be split up as in step 1 in order to obtain an
estimate. Instead of writing the expression inside theblong absolute value-
signs of the last integral each time, it will be denoted by & whenever

it is used. Let us first calculate a bound over  M_.

&
Intog]? | |”_l°‘51|2 |
[ lg' () ||0]dn < sup|f' ()| suplg'(n)lJ 1t g dn
ME n n. Mg sin |n oEJ sin In o£1|

IA

c3-{volume(£_loMg) + volume(glloMg)}

if El is close enough to &. This inequality results by changing to Haar
measure and then back agaln as we did in the calculation on page 25. The

n|2/sinzln1

constant c, is a bound for the expression 'sup[f' ‘suplg'|*

when n 1is restricted to lie 1in Mg'

Suppose >0 1is given. Choose ME so that volume(E-loME)'<a/8c3.

Then there is a 61>O such that IE—Ell <61 = volume(giloME) <0L/6c3 and §

1s less than half the radius of Mg' With this restriction for &, we have

1

JM &' () ]]@ldn < ey fa/Bey +albey) < af3.

‘Likewise, choose- NE and then 62 such that 62 is less than half the
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the distance from £ to-the boundary of NEO(—I) and .Ig—gll <62 =

‘ J et ()] laldn < o/3.
Ng

We have only tb estimate the integral over the remainder. Define

a function u : {D(w,2mw) ~(MngNg)} x{gl : |g—glw 5minimgm(61,62)} — ¢ , by

L

u(n,g,) = f'(n—lOEl)'

ntog, [2/s1n? |n"or, |

where ¢ deﬁqtes the complex numberé. This function is uniformly continuous

-1
since n "0 remains away from +I on this set.

Therefore, there is a § <minimum(61,62) such that lg—gll <§ =
|u(n,£i)-—u(n,£)| < a/3sup|g'| for all n where u is -defined. Putting all
this together, we conclude that IE—EII <§ dimplies

J lg' (Mgl n < a.
D(m,2m) °

This completes step 2.

Step 3. It will only be proved here that K(£) can be extended continuously
to a constant on the sphere |£|=27r. The analogous proof for the other

boundary is left to the reader.

We must show that for a given a>0 there is a §6>0 such that
2n -8 < lgj] < 27 for j=1,2 implies IK(gl)-—K(EZ)I < a. The demonstration

of this fact rests heavily on the following statement:

Given a>0 there exists &, >68,>0 such that 2m-§, < |g] < 2r =

1 2 2
(4.2) 2
J sin IEL

2
__S_j;ll_lil___ dn < O

dn + j : - !
D(ﬂ,n+61) sinzln 10&] D(2ﬂ‘51,2") sin2|n 105}

The notation D(a,b) means the set {E : a‘ﬁlgl <b}. The proof of (4.2) will
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be postponed until the end of the theorem for fear of losing the‘flow of
step 3 if given at this time. Let us continue aséumiﬁg (4.2).
3/2 ’ '
By formula (4.1), (Zn) IK(gl)-K(Ez)I is bounded by

z-sin2|£2| v
dn.

-1 In_lo€1 2-s1n2|gl| -1 ' ln-loaz
L 1

£'(n To&,) : —£'(n “og,)

1 2 2, -1 o2 2
_lgl *sin ]n o&l] lgz

J lg' (n) |
D(mw,27)

'sin2|n—1052|

L

This integral will be split up again and the expfession inside the'long

absolute value signs will be denoted by 0.

Suppose a>0 1is given. Notice that In—105|2/!€|2 < 4 for our

parameterization. Choose 61.>62 >0 so that the integral in (4.2) is

bounded by «/8-sup|f'|+sup|g'|. Then, if 21=8, <[£j| <2m for j=l;2

lg" (0| [2)dn < af2.

f et (] [2]dn +
2m)

D(w,ﬂ+61) D(Zn—&l,

Let us estimate the integral over the remainder. As in step 2,

introduce a function u : D(ﬂ+61,2ﬂ—61) XD(Zn—Gz,Zﬂ) ~—+-¢ through

[n"tog|* sinle]
|£ 2-sin2|n—lo£|

a(m,E) = £' (n toE)

_This.function is uniformly continuous on its domain and, in fact, satisfies
the following statement since the second variable is restricted to lie in a
neighbourhood of the identity matrix I in G. Given >0 there 1s a positive

§,<8 such that lu(n,El) - u(n,gz)l < a whenever 2ﬂ—63 <|€j| <2n for all

3

n where u is defined. Thus, for small enough §, we have

2

lg" (M ]]Qfdn < a/2..

JD(1r+<5 2w—61)

1’
This completes step 3.

' The dbove three steps prove that X(§) is a uniformly continuous
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function on D(m,2n) that is constant on each boundary. In order to exhibit
a skew product of F(CO(Rs)) , let us change. K 1into a continuous function

with compact support in.'R3 while retaining the mqltiplicative property.
Define B8: R—R by the formula

-t
™

_3m

t-7

for w/2<t<5n/2

0 otherwise.

B(t) is a continuous_function with.compact support, maximum value of 1
attained at t=31/2, and decreases linearly to zero at t=n/2 and t=5m/2.

In addition, it satisfies the equation

z B([t-+2nn[) =1 for every t.

n=-oo

Finally, the stage is set to introduce the skew product of the

two functiong f,g eF(CO(R3)) by means of

2nmg

[+ . 2
F(fE*g)(E) = ) e(lgl)-—lz’a+ K,(&;+2mr5)' for all E.
_ |g| ]El lE

n=-

Then F(f *g) sCO(Rs) and has support in D(w/2,51/2). Going back to the
constuction of the function f on page 23, we can see immediately that this
definition yields a skew product. Moreover, the skew product is a linear

map that is continuous with respect to the topology of F(CO(RB)).

Proof of (4.2): It will only be shown that the integral near 2m in (4.2)

may be made small uniformly for £ near 2m. The method described easily

extends to the other integral and together they imply (4.2).

If 61 is a small positive number to be restricted later (al&ays

assume that it is less than n/2 ), then the integral is estimated as follows:



30

sin'2 El dn

JD(21r.—61,21r) sin2 | n-loF, l

_J sin’le] dn |
' D(Zﬂ—c‘il,Z'n) l-{coslnlcoslgl+sin|n|sin]£l(n'5/|n|!EI)}Z

by Lemma 4.1

Change to polar coordinates with £ along the positive z-axis and le]|=r

R % T T 1 2 r . 9
J [ j : SRat 5 P sin ¢ d¢dpd8

0 21r—610 1-{cospcosr + sinpsinrcos¢}

Let v(¢) = cospcosr + sinpsinrcos¢

2% cos (p+r) _ 2 2
= 21 f f p sin r dvdp
Zn—él cos(p-r) sinpsinr (1-v7)
2m 2 )
= msinr P 1 g 1 + cos(p-r) 1 - cos(ptr)
sinp 1 - cos(p-r) 1 + cos(p+r)
2w~61

The proof depends on an estimate of this integral.

Since 51<7r/2 and £ is taken sﬁch that 217—61 < IEI < 2m, the

function sinr is negative and so is w(p) below

1 + cos(p-r) 1 - cos(p+r)
1 -~ cos(p-r) 1 + cos(p+r)

w(p) = L log{ } 2m-68,< p < 2m.

In fact, we claim that w increases from -« 1in the iﬁte'rval r<p<2m.

It suffices to show. that the derivative of w 1is non-negative in this interval.
Only a sketch of this resuﬁlt‘ will be p'rAc;v'i'd‘éd here. The verification of each
step is J.eft to the reader. If we set x(p) = (sinzp /cosp) g%’-, theh

x(2m) -"=O and dx/dp = {sinp sinrsin 2 }/{sinz(p—r)sinz(p+r)} which is

less than zero in our interval. Thus x(p) is positive in the interval

and so is dw/dp .

We are now ready to estimate the integral at the top ‘of the page.

It-is split into an integral for 2m -8, < p < —l—(Zvr +r) and then for
2 .

1
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l-(21r+r) < p < 27 . The second integral is bounded by the expression
2 - v

» _ l+cos(g£:£) l-cos(2ﬂ+3r)
3. 2T4r . 1 : 2 2
4n7sinx (2m- 2 ) 2m+r log 2n-r 2nm+3r
‘ sin(~??—) 1-cos( 7 ) 1+cos(~—§——)

since w 1s increasing on this interval. Write the last part of thié

“expression as log(t) . We have the following limits.

S

1m -SRI -
27 sin(Q%—

1lim log(t) = log9.
2T

Therefore, 1f o>0 1is fixed, there is a 62~<51 such that 2n-—62 < |£[ < 27

~implies that

J ' sin2 El '
dn < a/2 .
D(gE%lEJ,ZN) sinzln logl
To "estimate the integral over the first interval, expand the
functions 1 -cos(p-r) and 1-cos(p+r) about p=r and p+r=41 respec-—
tively by means of Taylor's Formula. The expansion up to second Qrder

provides the following approximations if 61 is small enoﬁgh.
2 2
1-cos(p-xr) > (p~-r)“/4 and 1 -cos(ptr) < (pt+r—4m)

As these are the only factors in the integral that paﬁse problems over this

‘interval, there is a constant c¢ such that

2, l' melg|l
sin”|g]| dn sin|g f 2 {4(p+|g|—4n)}
= c log dp
J1)(2:n-<sl,2—11;—l§’) sin’|n Lot | sin(%“—}ﬂ) 2m-6, o-|&

Again, there is a limit for this integral as below

4(p+|E[-4m)
p-|&

dp = 0.

21
1lim J 2 log
61+O 2n—61




0f course in this last limit, the £ was restricted to have absolute value

between 27-8 and 2w .

1

Combining all these estimates, we have shown statement (4.2).
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PART IIL THE EVOLUTION EQUATION

CHAPTER FIVE

PRELIMINARiES AND GENERALIZATIONS

The self-adjoint pair considered in this part is provided through

i

a representatioﬁ of the Heisenberg group. The Heisenberg group G(l)l is the

subgroup of unitary operators on LZ(R) that have the form
Ulp,t)¢ (x) = eip(x)¢(x+t) for every ¢ eLz(R)

where p(x) 1s a real-valued pblynomial of degree at most 1. Under the
usual broduct_fqr operators, G(1) becqmes a nilpotent Lie groﬁp. The gener-
ators of tﬁis self-representation afe.the operators (icI, 1Q, icP) where

¢ 1s a positive constant, I is the identity operator; and the other two
operators are- as in ;he introduction. The only non~vanisﬁing bracket of this

basis for the Lie algebra is
[1Q , 1cP] = -icI.

The skeﬁ-product g of Chapter Six evolves from the above nilpotent group

and the given representation.

As explained in the introduction, the Weyl functional calcuius
épblied to the pair (Q,cP) interprets classical quantities on phase space
as Hamiltonlans on LZ(R). However, quantum mechanics may also be formulated
on phase space. This aspect has been studied by a number of authors; notably,
J. E. Moyal in his 1949 paper [11l] and also J. Jordan and E. Sudarshan [81.
The evolution equations that>éppear>in these papers and the one that is

developed here do not seem to be the same because the methods of formulation
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vary widely. The equivalence of these formulations is revealed most

succinetly in [16].

Before studying the evolution equation, it must be emphasized that
most of the results of the ensuing four chapters immediately géneralize to

the phase space formulation of a system with n degrees of freedom. In this

-¢asé, the operators (iI, iQy, 1Py,..., 1Q_, iPr‘l) form a basis for the
nilpotent Lie algebfa where Qj and in are the obvious self-adjoint

operators acting on the jth variable of functions in L2(Rn). The brackets

for this system are of the form
iQ, ,1iP,} = -11 .
[1Q , 1P,] -

The skew product and evolution equation can be readily defined by comparison
with the Heisenberg group. The generalizations of the theorems are left to
the interested reader. Reference [10] provides different aspects of this

theory.

In passing, it wouid be negligenf not to mention_that the important
result (Theorem 6.5) can be generalized in yet another direction. Let G(m)
be ﬁhe group siﬁilar to G(1l) except the polynomial is of degree at most m.
The Lie algebra of G(m) has basis (icI, 1Qs+ -y 1Q, icP) where Qj is.
multiplication on LZ(R) " by xj. A skew product g exists for the self-

adjoint (m+l)-tuple (Ql""’Qm’CP) on the space S(Rmfl)‘ [2 ; page 430].

The generalization states that there is a unitary operator on LZ(Rm+l) that
~is a homeomorphism of S(Rm+l) and satisfies for f,g eS(Rm+l)
ﬁ(f’*Ualg)(x X_,y) = (2nc)_l/2 Uf(z,x x ,y) gx x ,2z) dz
. c l,"" m’ . R 3 2""’ m, l""’ m’ .

In other words, the skew product 1s equivalent to the point-wise multiplication



-0f functions except in the first and last variables. The author has
performed the explicit calculation of this unitary operator for m<4 and

firmly believes the equation is true for every‘ G(m) .

Of course, with these two generalizations, one could form direct
sums of the Lie algebras considered on the last page and so obtain deeper
'»‘ﬁ%galedge of the skew product on many nilpotent Lie groups. This program

will not be carried out here.

35
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' CHAPTER SIX

THE WEYI, CORRESPONDENCE AND EVOLUTION EQUATION

The following operators “will be used.throughout. It sh'ould‘ be

noted that the first three operators all extend to unitary operators on -LZ(RZ).

- ~DEFINITION 6.1: Let S' (RZ) have the strong dual topology induced by the

bounded subsets of S(Rz) . The operatons below are homeomorphisms of
S(Rz) and S'(R?‘) ] Suppobe that £ befongs to S(Rz) .

. , 1 (izx,) -,
1. (Partial Fowrien Trans§orm) sz(xl’XZ) = /ﬁ‘JR e 2 f(xl,z) dz .

B 48 depined simifanly.

2. (Twisting Operator) s £(x;,x,) = /& f(xl—%cxz,xl+—2-cx2) .

S;lf(kl,xz) =1/V/c f((xl+x2)/2,(x2—xl)/c) .

4. (Rotation and Dilation) e may be negative for this operatohr.

ch(xl’XZ) = f(cx2/2,—-cxl/2) .

The Weyl operator has a particularly simpie form in terms of

these def inibtions .

PROPOSITION 6.2: I{ h ES(RZ) » T(Q,cP)h A8 the bounded integhal operaton

on LZ(R) with kernel  1/V2me sc"leh. That 45,

“(T(Q,cP)h)u (x) = 1/V2nc J Sc_leh(y,x) u(y) dy for all ueLz(R).
R

BROOF: See [1; page 264].



37

Tﬁe skew product of Corollary 2.4 for the self-adjoint triple‘
(cI,Q,cP) can be restricted to é unique continuous skew product g on S(Rz).
Let h[f] or h(xl,xz)[f(xl,xz)] denote the action of a tempered distribu-
tion h on a function f eS(Rz) . Through duality, g is extended tb a

separately continuous map

i . g . S'(RZ) xS(Rz) — S'(Rz) given by

h*flg] = h[f*g] for heS'(RY)  and  f,geSERY) .

Let us collect these facts.

PROPOSITION 6.3: a) The skew product goﬁ (c1,Q,cP) on ‘S(RB) P

~3/2 -X,Y
- F(f *g)(xo,xl,xz) = (2m) / j 3Ff(xo—yo+[y1X2 le2],xl—yl,x2—y2)Fg(y)dy on
- R 2 '
L B -2 i(tutsv) ' '
f *g(xo,xl,xz) = (27) 4 € f(xo,xl+sx0/2,x2+u)g(xo,xl—tx0/2,x2+v)
o RO | | dudvdsdt
where f£,g eS(RB) .

| b) 14 %: 45 defined by fc(xl’XZ) = f(c,xl,xz) gon £ eS(RB) , then

T(cI,Q,cP)f = T(Q,cP)fC . Thus, the shew product gorn f£,g eS(Rz) AA

(6.1) £*g(x;,%,)

= ('21r)_2 ei(tu+sv)f(x +sc/2,x.,+u)g(x. ~tc/2,x,+v) dudvdsdt
R4 : 1 2 1 2
L .
, R , v

T4 complex conjugation is denoted by ~— , then f kg = E:—f_ .
c) For h.eS’(Rz) and f eS(Rz)) define

(6:2) hxExy,x,) = = (vc"x(x.l,x?_)h)[Fr(xl,;_cz)f] :
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Then h*f 45 a C” function with polynomially bounded derivatives of all
ondens that satisfies for geS(R?)

h*flg] = hif *gl  (duality).

h*(f*g) = (h'g f)'gg (associativity) .

d) By the Last statement of b) and duality, the evolution equation of the

anoductéon'exténdjs to % = Hcf whese.

P

It

(6.4) H_£(x) = -(V 1(h[Fr()E] - Tt @AFTGOTI} for heS' (®RY), feS®Y)

= 2Vt GOR[Fr (0 f] -  TGORIFTGOE]) |

Notice that the dependence of H, on the distribution is suppressed since

h 48 negarded as a fixed Hamiltonian.

PROOF: See [2 ; section 3].

We are almdst ready to express (6.4) in the form of an equivalent
singular kernel operator on the plane. But first, a similar result must be

proved for the test functions S(Rz).

LEMMA 6.4: Tf heSR?), LZet H' S@®%) — Sr?) be the operaton

Sc_lFZHc Ii‘z—lsc defined through the homeomo&ph,(/smé at the beginning of the

chapter. Wniting this in integral form, we obtain for f£eS®R?)

Hgf(gl,xz) = i//2ﬂcj {glezp(y,gz) £(x,y) - %;lFéh(xl,Y) f(y,xz)} dy .

R .
PROOF: We will show only one half of the formula; namely, that

iU(h.*U_lf)(x ,%x.) = i/V27¢ Uh(y,x,) f(x,,y) dy where U = S—lF .
c rU2r R 2 1 c 2
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The proof of this is strictly a cdmputation. We Have

A * Y =
ih’cf(yl’y2) i/ 2w f

R2 VéTgyl’YZ)h(zl’ZZ) Fr(yl,yz)f(zl,zz) dzldz2 by (6.1)

1]

i/2n fRz(FiVCT(yl,yz)h)(zl,zz) (FQT(yl,yz)f)(zl,zz) dzld22

2 1(2z,y./c).. - ~1(y,2,)
5y JRZ e 172 th(y1+c22/2, 221/c) e 292 Féf(yl+zl’22) dzldz2

_L [ iy,(2z5/e-2,) SR )
= Jsze 2 771 2 Uh(yl+zl+czz/2,yl zl+czz/2)

Uf(Y1+Zl-CZZ/23yl+zl+czz/2)} dzldz2

Let ug ='zl4-czz/2 and u, = zl-c22/2

A
mC

i(2y,u,/c) Y
fRz e 272 Uh(y1+ul,yl u2) Uf(yl+u2,yl+ul) dulduz.

' -1
* 5 i
Therefore, ?é(ih(:U f)(xl,xz) is equal to

1x,y,) [ 1@y u,/e) P
e 272 j 5 © 272 Uh(ul,xl—uz) f(xl+u2,ul) dglduzdy2

i/ﬂc/iFJ
R‘ R

= 1//27% J Uh(ul,xl+cx2/2) f(xl—cx2/2,u1) du

R 1

Thus, 1U(hgu“lf)(xl,x2) - 1/V/7me J Un(s,x,) £(x;,s) ds .

R

THEOREM 6.5: I4 h gS'(Rg) , Zat Hé : S(Rz):~+ S'(Rz)' be the operator

'SglFZHCFZ—lSC . Then, for £,ge S(Rz) we have the equivalent fornmulas
%;f(xl,xz) = i//EFEA{%;leh(-,xé)[f(xl,-)] - %;1F2h(xl,-)[f(-,x2)]} ‘01

H f[g] = 1/v2mc Sgleh(yl,iz)[ fRf(z,yl)g(z,yz)dz - JRf(yz,Z)g(yl,Z)dz 1.
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PROOF: Define a jointly continuous map o : S(R") xS(R") —> S(R") by

(6.5 £ og(xl,xz) = JR f(z,xz) g(xl,z) dz .
The proof follows iﬁmediately from the duality relation (6.3) and the

commutativity of the diagram below by Lemma 6.4,

] *
oo S®%) x SR?) ——S—s 3RY)
-1 -1 -1
Sc Fé Sc Fé Sc Fé

-S(Rz) x S(Rz) _11L2EE~2_* S(Rz)

The similarity between the qugntum mechanical operator of
Propositibﬁ 6.2 and the operator in Theorem 6.5 suggests a naturai extension
of the Weyl quantization procedure to tempefed distributions. With this
extension, Theorem 6.5 1s interpreted as a separation of variables for
the evolution equation. Indeed, Wéyl opefators corresponding to the originalv

tempered distribution h act on each variable separately (see Theorem 6.7).

MAIN DEFINITION 6.6: (The Weyl Correspondence) Suppose h is a tempered

distnibution on the plane. Define a map A (h) : S(R) — S'(R) by

(Ac (b)) ($) [w] = 1/V/2mc Sgquh[d)le] .15011. $,p e S(R) on equivalently
(6.6) L “ '
(&, (0)$) (=) =1//Zme 5. E,h(-, ) [8()] .

' A, A5 a continuous Linear operatonr called the Weyl operator comresponding

to the Hamiltonian h. 1§ the distrnibution 4is clear grom the context, the

dependence o4 A, on h A5 often suppnressed.
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Suppose that Bj : Xj-—+Yj , J=1,2 are two linear operators with
domains D(Bj) and that Xj’Yj are complex function spaces. Let the

1

ations of functions of the form fIsz ,fj eD(Bj) and defined as follows:

tensor product B, 8 B2 be the operator with domain ali finite linear combin-

n n
B, ® B,| ) o £ xf =a ) (B,f Yx®B.f, ) a ef.
"1 2[k=l k"1, 2k] koo, 1L N2 k

Also, define the complex conjugate operator ﬁi by gif==(Bl?) for E.eU(Bl).

Adopting the above notation, we have a reformulation of Theorem 6.5.

THEOREM 6.7: H! {4 the unique extension of 1i{I @ A (h) - AC(E) ® I} toa

continuous Linear operatonr from S.(R?') to S’ (Rz) .

PROOF: 1t is easy to check the following important equality of distributions.

O e
th(xl,xz) = SC

(6:7) : SC th(xz,xl).

Since the linear span of S(R) xS(R) is dense in S(Rz) ,, we have
‘only to verify the two operators in the theorem are equal for functions of

the form ¢xy for ¢,PeS(R).

il

]

16 (xp) (A, (D) (xy) = 4/VZme STVE,B(+,x)) [6(-)0(xp)] by (6.7)

by (6.6)

1{¢xA_(R)Y.- Ac(ﬁﬁxw}(xl,xz)

I

1({1ea () - AC(E) 8 I} ¢xi)(xq5x%,)
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CHAPTER SEVEN

BOUNDED OPERATORS

One method of solving the evolution equation of (6.4) is to regard
HC and Ac as operators on L2(R25 and L2(R) respectively, with domains
D@ =6eS® : A el’®)) and D) ={£eS®Y : Hferi®D).
" In partiﬁulara if Hc is a bounded operator with D(Hc)==S(R2) , then the
usual power series expansion of the exponential provides a group Qf operators

ei(tHc) that immediately solves the evolution equation.

If wve adopt this point of view, Theorem 6.5 establishes a unitary

equivalence between HC and Hé when D(Hé) ={f eS(Rz) : Héf eLz(Rz)};

Although Hé remains an extension of 1{I ® Ac(h) r'AC(E) ® I} which is

now defined on linear combinations of functions in D(Ac(h))><D(AC(E)),
we have no guyarantee that Hé is contained in the closure of this operator.
Indeed, a priori, Hc could be densely defined while- Ac' is not (or vice

versa).

The relation between HC and AC is studied in this chapter and
again in Chapter Nine. Here, the case of bounded operators is examined.

As a start, we have the following.

THEOREM 7.1: H s bounded with D(Hc) =S(R2) Af and only Aif A, AA

bounded with D(Ac) =S(R) .

PROOF: It clearly suffices to_prove the statement for Hé in place of Hc.

Assume Ac(h) is bounded by b and D(Aé(h))==S(R) . Then, for

2'is the Lz-norm.

all ¢,9 eS®), [a_(W¢Lw1] < b [loll, [[vll, where

By (6.7), |a (Melwl] = [a m)[¥xe1] < b [lvil, llell,. Thus A (h) is
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bounded by b and. U(AC(E))=S(R) .

N
For feS(R"), define two families of functions in S(R) by -

£, (2) =£(x,,2) and £2)(2)=£(z,x,) . Theorems 6.5 and 6.7 yield
(xl) 1 2 _ .

G ) = LW )6y - 1, @12 )

hus, we have the following estimate for the norm:

]1/2 Jl/Z

Inell,

PA

2 = < (x,) 2
URZI(Ac(h)f(Xl)_) (x2)| dx,dxy +UR2[(AC(h)f 2 )(xl)l dx,dx,

1/2 1/2
2 2 2 2
URb I f(xl) 1 dle +URb I £ () 115 dxz] by hypothesis

IA

_ 5 1/2
2b URZ | £(x,%,) | ‘dxldsz

2 |I£]], .
vH>ence, Hé i%s bounded by 2b and D(H(':)=S(R2).

To prove the converse, assume that Hc': is bounded and D(Hc':) =S(R2) .
Let Y eS(R) be arbitrary and choose ¢O,p0 e S(R) such that f(bopo% 0.

Consider the two inequalities
»i) lH(':(d)OXUJ) [poxe]| <b HDOHZ ||6||2 for all 8eS(R) (b is a bound of H(':)

1) 8. ) Ipgxe]| = [A (M)wI8]-f¢ 0, =" A& (MG, [oy]-[v8]| by Theorem 6.7.

Thus, VIAC(h)IP.[e]Ij ﬁ)o%;;l{b lleg 1o lle 11, + 8 )3, log - fvol)

< b’ ||e||2 for some constant b' by Cauchy-Schwarz.

As Y was arbitrary, the domain of Ac is all of S(R) . By the same

argument, AC(H) has the same domain. We have only to show that Ac is
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bounded to complete the proof. , o

If AC were not.bounded, there would be a sequence ¢n eS(R) such

that HAC(h)¢n|IZ—+*m but | “¢n||ﬁ 1. For this sequence,
”He(¢lx¢n)!l2 = ”¢lec(h)¢n.— AC(E.)¢lx¢nH2

e > oy 1 lla e Il = l1a_ @5 e I

——> ® as n—> o,

" This provides a contradiction and so Ac 1s bounded.

Remark on the.proofr If the operator norm is denoted by

kp ,.vehe
sufficiency part of the proof insures tbat HHclgp <2 HACILP . Ho&ever,
there is ﬁo such estimate in the other direction. In faet, when - Ac=i[,
the evolution operator 1s the zero operator.

Since h can be thought of as the Hamiltonian of the system, we are
pafticularly interested in real tempered distributions (that 1s, h[f] is
ireal for all real-valued test functions). In this case, the last result may

be strengthened to obtain Proposition 7.3 and Theorem 7.4.

DEFINITION 7.2: Let K be a Linearn operator on a Hilbert space H.

1. K 4is 60ma££y skew-adfoint (Ahmehe/unétéan) L6 (Ku,v) =-(u,Rv) for all
u,v e D(X) . v ‘

2. K 45 shew-symmetric {f D(K) 4s denmse and K s formally Aheweadjo&'ni.

3. K is essentially skew-adjoint if the closwre of K is skew-adjoint.

4. K is skew-adjoint if K is skew-symmetrnic and R(K+I)=H. (R means

- the nange of an operaton)

Fon these definitions without the adfective '"shew', see [19 ; chapter XI].
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PROPOSITION 7.3: Let h be a real tempered distrnibution on the plane.

Then H_ and 1A, are formally skew-adjoint. T§ either one is densely

dedined, it is skew-symmetric.

PROOF: Let us show Hé is formally skew-adjoint. The unitary equivalence

then implies that Hc 1s formally skew-adjoint.

S e

(Héf,g)

' o ' ; .
ij Hcf(xl,xz) g(xl,xz) dxldx2 for all f,g ED(HC)

Hf[g]

.i_/‘/é_n—c SC_leh(xl,xz)[ JRf(z,xl)g(z,xz)dz - fRf(xz,z)?g(xl,z)dz ]

Use (6.7) and the fact h 1is real

2mc g(kl,Z)gkxz,z)dz ]]

-1 _ o ‘
[ Schzh(xz,xl)[ JRg(z,xz)f(z,xl)dz - JR

~ H g[f]

T (f’Hég) .

By a similar argument and formula (6.7), iAc is formally skew-adjoint.

The last statement in the theorem is true by definition.

THEOREM 7.4: H_ 45 a bounded essentially shew-adjoint operator with domain
D(H) =S(R”) if and only if 1A s a bounded essentially shew-adjoint
operaton with “D(A,) =S(R) . ’

PROOF: One uses the fact that a bounded skew-symmetric operator with dense
domain is essentially skew-adjoint (its closure is defined on the whole .
Hilbert space). The theorem is then a direct consequence of Theorem 7.1

and Proposition 7.3.
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As yet, we only know that the Weyl operators .of functions in
the Schwartz class on phase space are bounded operators on LZ(R).

The remainder of this chapter is intended to remove this gap.

PROPOSITION 7.5: For any bounded (respectively, bounded self-adfoint)

operatorn A defined on all of L2 (R) , there 48 a unique tempered distrni-

7 “bution (respectively, real. tempered distribution) whose Weyl operator

aghees with A on SQR) .

S(R) : SR) — S'R) is-

a continuous operator. By the Schwartz Kernel Theorem [17 ;page 5311, there

PROOF: If A : LZ(R) —> L2(R) is bounded, then A

is a unique bh' sS'(Rz) that satisfies
A¢ [yl = h'[oxy] for every ¢,w eSR) .

Introduce the tempered distribution h as

h = /35 (TR ) Th' = /ome E s h' .
i c. "2 72 ¢

Trivially, by Definition 6.6, Ac(h)¢ = Ad, for every ¢eS(R).

If, in addition, A 1is self-adjoint, then the inner product
equality shows that h'(xl,xz) = h'(xz,xl) . The converse of (6,7) implies

that h 1is real.

The preceeding proposition asserts that there are many tempered
distributions that have a corresponding bounded Weyl operator, but it does
not give any indication of the distributions in this set. Theorem 7.6

rectifies the situation. .
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 THEOREM 7.6: The Weyl operatons of the following distributions are continuous
Léneaﬁ operatorns on LZ(R)' with domain S(R) and bound specified below. -
a) 1§ h befongs to L2(R2) » AL i3 actually a Hdbe/ut—Scthd,t operaton

on L2(®) with kernel 1/V2mc Sc-lF h. Therefore, HACIL)p < 1/V2me - ||h||2 .

2
b) 1§ h 48 a finite Radon measure [17 ; chapter 21] with fotal variation

s then Al < @/e)(V27m) Inl|y . Tn particutar, this is true for

Ll-ﬁunctéows. v ‘ v
¢) 1§ h 44 such a déstribution, 40 is FV h with HAC(FVch)ILp = 2/c HACILP. |
PROOF a) An obvious extension of Proposition 6.2.

2 . -1 _ _
b) For feS(R"), it is easy to check Sc th[f] = th[Scf] h[FZScf] ..

Since h is a finite Radon measure, we have

|AC¢[\1)]| = |1/V2mc S;leh[szw]l for all ¢,y eS(R)
. = 1/V2me |n[F,s_ ¢xy]]
< ]./VZWC I|hHlsup{|F28C¢><1p‘(xl,x2)I : (xl,-xz) eR2} .
But sup |FZSC¢>X11)(;<1,X2)| = sup /gj.ei(x22)¢(xl—(:§z)w(xl+ci'z-)dz
xl,x2 e R xl,x2 eR R

IA

sup /EJ (2/c)|¢(xl-z)[|1p(xl+z)|dz

xleR R

A

2/Vc ”¢||2Hw||2 by Cauchy—Schwarz.

By these two inequalities, IACdS[lp]l < (1/c) (V2]7) ||h||1”¢]|2Hq;”2

Hence, D(A)) =S(R) and ”ACILP .E (1/e) (V27) ||hH1.

c) Let us first demonstrate (7.1) given below. Let 60 be the Dirac

distribution in S'(R?) (that is, 6, [£1=£(0) ). By formula (6.2), one

calculates that 27r60 éf(x) = Fch(x) for each f eS(R?‘) . Through the
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assoéiativity in (6.3), FVC. (fgg) = (Fch) :g for all f,g gS(RZ) .

The extension through duality yilelds
(7.1)  FV (h*f) = FYh *f where feSR®), heS'RY) .

‘Part ¢) will now be shown. Let U==S;lF2, By Theorems 6.5 and 6.7,

---4f$*7";,,;;Aé<Fvch)w U{(FvcmgU’l(cbxw)} when ¢,¥ € S(R)

UFvc{th“l(q)xxp)} by (7.1)

, 1 |

UFV_ U {gxa_(h)¥] .

Since U and F are unitary operators while HVEf|!2= (2/c) Hf||2,
| oxa (FV_n)w[l, = (2/c) [loxa m)v|], .

Therefore, D(A_(FV h)) = S® and A GV = /) [la,m -

Sections a) and b) of the above theorem were previously known,
though in a different setting. They were communicated to the author in

the form of an unpublished paper by R. Anderson.



CHAPTER EIGHT

MULTIPLIERS

The bounded Weyl operators of Chapter Seven form an algebra under
- operator products. Through’the Weyl.correspondence, a multiplicative

structure is established for the set of distributions with bounded Weyl

e

operators. 'Certain subspaces S of distributions will be invariant under
this multiplication and will, perhaps, form noncommutative Banach algebras

with respect to some norm.

Folloﬁing M. Rieffel. [15], if S 1is a Banach space and z is a
continuous skew product on S, thenthose bounded operators M on S that
satisfy M(f :g) = Mf zg for all elements in S ‘are called multipliers
on S. Theorem 8.1 demonstrates that the multipliers on the Banach spaces

we have been considering must be tempered distributions.

THEOREM 8.1: " a) ALL continuous Lénea/i operatorns M : S(Rz) — ! (R2)
that satisdy M(fog) = (Mf.) og forn all 6uncr/éom in vS(RZ) are of the
fom Mf = hof dor dome h eS' (R2) and convernsely.

b) ALL continuous Linean ope)uxtofu& M : S(Rz) — S'(Rz) that satisfy

M(f gg) = (Mf) z'g for all functions in S(Rz) aie of the forwm Mf =. h*f '

gor some h eS'(RZ) and conversely.

PROOF: b) This follows immediately from a) by létting M' = UMU—l where
U 1s the usual operator %:lFé and using the commutative diagram in
Theorem 6.5. The converse statement is just (6.3).

a) If Mf = hof, the equality (hof)og = ho (fog) is quickly verified

by formula (6.5).

49
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Conversely, assume that M(fog) = (Mf) og. The Schwartz Kernel

. Theorem states that there is an L eS'»(R4) such that

Mf[k] = L[kxf]  for £,k eS(R?)

L(xl,xz,zl,zz)[k(xl,xz}f(zl,zz)]-

Sinc_e M permutes with the multiplicative structure,

B

L_(Xl’XZ’zl’ZZ)[k(xl’XZ)jR f(y,zz)g(zl,y)dy ]_ _

M(fog)[k] for £,g,keS®R?) by (6.5)

(M£) o glk]

= Mf(xl,xz)[ J g(Y,xl)k(y,xz)dy ]
R

= L(xl,xz,zl,zz)[ jR g(y,xl)k(y,XQ)dy f(zl,zz)]-

Into the above expression, substitute the functions £ =axB, g=px8, and

k=¢xy with the assumption that o,B8,0,8,¢,% all belong to S(R) . Then
L(xl;xz,zi,zz)[¢(xl)w(x2)p(zl)8(zz) fas 1
= L(xl,xz,zl,zz)[e(xl)w(xz)a(zl)B(zz) qu) 1 or by extension,
L(xl,xz,zl,zz)[¢(Xl)p(zl)q(x2,z2) fau ]
= L(xl.,xz.zl,zz)[e(xl)a(zl)q(xz,zz) fp¢ ] for ¢ eS(RZ) .-

. ) 2
In order to obtain the distribution h, fix an element q4 eS(RY)

and define D(q ) : S(R”) — ¢ by
D(ag) [p] = L(x),xp,2y,2,) [p(x;52, )9 (k2,01 for peS®D) :

Then D(qO) is a tempered distribution that satisfies, for all test functions

“on R, the equality (fa8)D(qy)[¢x0] = (fo$)D(ay)[0xa] .



Suppose that D(qo) is not the zero distribution, then choose

test functions ¢O’OO

that (fp6¢0/D(d0)[¢OXDO])vD(qO) is a positive tempered distribution and

such that D(qo)[¢OXpO] # 0. Ve see immediately

hence a Radon measure. This measure m satisfies

f a(y)e(y)dy = f 2 e(xl)a(xz) dm(x;,%,) .
R _

R

R

 Therefore, m is the measure that assigns each point on the line x,=x

172

unit mass (in standard notation, m==6(x1-x2) ).
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Set h(qo) =D(q0)[¢oxp0]/fpo¢o for 9y as in the last paragraph.

If D(q0)==0 , set h(q0)==0. It is obvious that. h does not depend on
the particular choice of test functions on R and that, in fact, h is a
tempered distribution itself. This is a direct consequence of the equation

L(xl,xz,zl,zz)[p(xl,zl)q(xz,zz)]‘= h(q) JR p(y,y)dy .

Perhaps we sHould change notation from h(d) to hlq].

Now choose a function p such that J p(y,y)dy=1. From the
R

last equation, we have L(xl,xz,z = h(xz,zz)é(xl-—zl) . Thus

1°%9)
METK] = L(xp2%p,21,25) [k(x) %)) E(2,2))]

= h(XZ’zz)[ jR k(}’,Xz)f(Y,ZZ)dY ]

ho f[k] where fl(a,b) =h(b,a). .

1

This completes the characterization of the operators M.
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If £ and g belong to L2(R2) , then f ég‘_is defined as the
uniqué tempered distribution of Proposition 7.5 whose Weylloperator corres-
.ponds to the bounded operator Ac(f)Ac(g) . Due to the relation between
L2(R2) and Hilbert-Schmidt operators on LZ(R) (Theorem 7.6 a)), f.gg 1is

in’ L2(R2), and the skew product 1s continous with respect to the L2—norm.

- =7 Any multiplier M on this space is clearly in S' (") because

M restricted to S(Rz) satisfies the hypothesis of Theorem 8.1 b).
If the operator f — Hcf is replaééd by f — h.gf in Theorem 7.1, the
multipliers are seen to correspond to bounded Weyl operators. Recording

this, we have:

THEOREM 8.2: The multiplierns on (L2(R2_) ,g) are of the form Mf=hé<f_
for some tempered distribution h whose Weyl operaton 48 bounded on LZ(R)

with domain S(R) and conversely.

The skew prdduct oni F(Ll(Rz)) may be defined as at the top of the
page because Theorem 7.6 confirms that these distributions have bounded Weyl
operators. Howevér, it 1s not entirely obvious thét the skew product is
again in F(Ll(Rz)) and 1s continous. Lemma.8.3 details a more constrﬁctive
method of ébtaining the skew product. With a little more effort than néeded'

in‘Theorem 8.2, the multipliers on this space are characterized in Theorem 8.4.

LEMMA 8.3: There 45 a continous skew product on the Banach space F(Ll(Rz))

that has nomm induced grom 1.ER?) .

PROOF: Take f,g in F(Ll(Rz)) . By comparison to formula (6.1), let

4G ,%,) " (7157 gy
1°72 1’72 Fg(yl,yz) dyldyz.

. Ll
X = = - 9
f cg(xl’XZ) 27Jsz(xlﬂ-cyz/Z,xz cyl/h)e
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As f is a uniformly continous, bounded function and Fg eLl(Rz) , the
expression for f ég certainly produces an everywheré defined, continous

function. In additioﬁ, this definition extends the skew product for S(Rz) .

Also, formula (7.1) may be rewritten for our situation in the
form; FV_(f *g) = (FV_f) ¥g for all f,g in FLt®?) . Thus,

T e xell gy = lFEE I = P Exe)ll; = GV 6 sl

1 e oL (7157 ) |
ZTTJRZ‘JRZFVCf(x1+Cy2/2’X2, cy1/2)e 1727 V172 Fg(yl,yz)dyldy2 dxldx2

1A

2‘1‘ ”FVC f“l ”Fng by Fubini's Theorem

-1
2—1} ”fH(FLl) ”gll(FLl)'

Therefore, f ’cf g s:F(Ll (RZ)) ‘and the skew product is continuous. -

THEOREM 8.4: The multiplierns on (F(Ll(Rz)) ,:) a)né, of the form Mf =h§f
gor some fempered distrnibution h whose Fowrlern thansform is a finite

Radon measure and convernsely.

E{_C_)_Q_E'_: Suppose that Mf = (Fm) c*f for all functions in F(Ll_(Rz)') where
m is a finite Radon measure with variation. ||mH . An easy modification
of the argument in Lemm'a‘ 8.3 shows that ”F(Fm’éf)”l < Hm” ”f”l .

In addition, (Fmé‘f) (?:*g = Fmé (f‘zg) for all f£,g eF(Ll(Rz)) since all

these distributions correspond to bounded Weyl operators by Theorem 7.6.

On the other hand, suppose that M is a mﬁltiplier on F(Ll(Rz)) .

Theorém 8.1 implies there is an heS'(Rz) such that, for f,ge S(Rz) ;

i) Mf=hé<f and

i) ”F(hgg)Hl <b HFng for some constant b.



Comparing the skew product given in Lemma 8.3 to the usual convolution on
tﬁe plane, let us chéose a sequence a ECO(;(RZ) such that a; —> 21r60'

in §' (Rz) ahd ”an||l=21r (see [19 ; page 157]). The F.ourier transform
sequence has the limit Fan ~—~+~1 4in §' (Rz) and by an argument simiiar |
th) the usual convolution, Fan is an approximate identity for S(RZ)_

(that is, Fanég — g din S(Rz) as n — « ),

Using this approximate identity, we have

. - 2
% (f * -
1im FVCh[Fanc(fcg)] for f,geS(R7)

n-r«

.
FVch[f * g]

= * * i ,
lim (FVCh x Fan) [f * g] by the duality in (6.3).

n-rc

It

But ”FVc_thanHl |7V, (than)Hl. by (7.1)

lF(hxFa) ||

<b HF(Fan)Hi by property ii) of h

= 2rmb for all n.

Thus, !FVch_[fgg]] < 21b Hfzgllm where “k”Oo = sup{|k(x)]| : stz}'.

This last statement insures that there is a finite Radon measure
m that satisfies FVch[fgg] = mff zg] for all f£,g eS(Rz) . By associa-
* 1 =m* ' #f = q*
tivity, (FVch) x flgl m f{g] and so (FVch) * £ mcf . It is easy to
see by (6.2) that FVCh =m. Hence, Mf = (Fm') if for some finite

Radon measure m' .

The reader familiar with harmonic analysis will notice the

connection of this theorem and proof with Wendel's Theorem [6 ; page 376].

54
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CHAPTER NINE

REAL TEMPERED DISTRIRBUTIONS

In this chapter, we will examine further the équivalence ofbthe
evolution and Weyl operators. Only real tempered distributions h will be
Fggﬁidered.'.By Proposition 7.3, Hc and iAc. are formally skew-adjoint

A;n theif respective domalns. As in Chapter Seven, these operators are
fegafded as acting on HilbertAspace.. However, Hc and iACV are no longer
feduired to be bpounded. . The cases when the two bﬁerators have skew-adjoint

extensions will be of particular interest as a means of solving the

evolution and Weyl equations.

First, let us demonstrate that most Schrodinger operators
associated to a particle moving in one dimension are extensions of Weyl

operators. The result is tﬁe analogue of Proposition 7.5.

PROPOSITION 9.1: For any symmetriic operator A whose domain includes S(R) ,
there 48 a unique real iempe/ned distribution such that A aghees with the

conresponding Weyl operator on all of S(R) .

N\

PROOF: For ¢eS(R) with [|¢]|, < 1, define a map T¢

T¢(w) = (Ad,9) . If ¢ is fixed in S(R), then {T¢(w)} is bounded in (

: SR) — ¢ by

“since

supl|T, (1) |} = sup{| (Ag, ) [} = sup{ | (6,49) |} < lavll,

where the sup 1is taken over the above ¢ with norm at most one.

By the uniform boundedness theorem [19 ; page 68], T¢(w) goes to

zero uniformly in ¢ as ¢y—+0 in S(R) . 1In particular, if B is any
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bounded set in S(R) , then sﬁp{|T¢(w)l : yeB, ¢ eSRR), ||¢||2 <1} is

finite.

Thus, for any a>0, there éxists a 6>0 such that ”¢I|2< § =
pg(¢) = sup{|A¢[ V1| : veB} <a.

_Since the family of semi-norms Py define the strong dual topology on S(R) ,

the map ¢ —A¢ is continuous from S(R) to S'(R).

We nbw continue as in the proof of Proposition 7.5 to obtain

the associated real tempered distribution h.

Proposition 7.3 can be improved to show the domains of the
‘evolution and Weyl operators are closelj related. As we are now dealing
with unbounded operators, the proof of the following theorem is much more

delicate than that in Theorem 7.1.

The result is not true for general tempered distributions.

. ' -1 _ ' 2 .
For example, when Sc th = uyxu, where uy belongs to L (R)‘ but u,
does not, then D(Ac(h)) is all of S(R) while D(Ac(ﬁ)) is not dense
in LZ(R) and D(HC) 1s not dense in L2(R2) . Of course, h i1s not

a real tempered distribution.

THEOREM 9.2: Let h be a xeal tempered distribution. H A5 densely
defined if and only if A, 4s densely defined. In other words, H_ 44

shew-symmetric if and only if 1A 48 shew-symmetric.

PROOF: As always, it suffices to prove the statement with _Hé in place

of H .
c

Assume first that AC is densely defined. Since h is real,
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Theorem 6.7 states that Hé(&kw) = i(EkAcw - K;Ekw) 'for all ¢,y eD(Ac).
Therefore, the domain df Hé includes all finite linear combinations of
functions in D(A) xD(A) . As D(A) is dense in L(R), D(H)) will

be dense in LZ(RZ).

Now assume that Hé is densely defined. Let ¢O ¢ S(R) and

j £y (y5%) ¢5(y) dy .
R
For every Yy eS(R) , we‘have

iAC[‘jR £ 00 4 0) dy | 191

»i/VEEE S;leh(xl,xz)[ JR Ea(ysxy) ¢g(y) dy v(x,) ]

An easy calculation gives the distributional equality:

Sgleh(xl,xz)[JRfO(xz,y)w(&)¢o(xl)dyJ==f Sgleh(lexz)[fo(xz’Y)¢o(X1)]w(Y)dy'

R

-1
. The expression Sc th(xl,xz)[fo(xz,y)¢o(xl)] is clearly in S(R) as a

function of y. Let the Lz—norm of this function be bounded by b. Then

A

182 1, o 1, w1l + b//3m Ilell,

1a, [ ijo<y,x>¢0<y)dy Joo |

b' ”wl[z for some constant b'.

Thug, the domain of AC contains all such functions.

Suppose that the functions of this form are not dense in LZ(R).

- There exists some test function ¢O eS(R) and a positive number o such
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that,vfor all f sD(Hé),

1) flogll,=1 and 11) || f E(y, 100y Ay = 6,6 |7 > o

R
' 2
Hence, a < J J £(y, %)y (y)dy ~ ¢O(X) dx
R! /R
: o 2
e = fR JR{f(y,X) - ¢0(y)¢o(x)}¢0(y)dy’ dx by 1)

A

'J ”¢0l|2f If(y,x) - ¢O(Y)¢O(x)|2dydx by Cauchy-Schwarz
R R .

- 2
£ = %0515

This cannot happen because D(Hé) is dense in L2(R2) . Therefore, AC is

densely defined.

If +h is real, the proof of Theorem 7.1 can be adapted to show-
that HC is bounded on a dense set if and only if iA-C is bounded on a
dense set. Since a skew-symmetric operator bounded on a dense set is -
necessarily bounded on its entire domain, an immediate consequence of

Theorem 9.2 is the following simpler version of Theorem 7.4.

COROLLARY 9.3: H_ 44 a bounded essentially shew-adjoint operaton L

and onby if 1A s also.

The next two results demonstrate that, for certain distributions,
the evolution operator is indeed equivalent to the Weyl operator. The
condition on the distribution h that produces the Hamiltonian of the

system is seen to be physically significant.
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be a real temperned distrnibution where

1 2

hy and h, are (not nece/s»sa/u'ly rneal) distnibutions with compact support.

Then &) D(H) = S®?  and D(A) = S®

PROPOSITION 9.4: 1let h = h, +Fh

and  b) H! {4 dn the closwre of i{I @ A, - A_8 I} as operators.

PROOF: The proposition will follow from formula (7.1) and the proof of

-thé statement for h having compact support but perhaps not real.

a) By the local structure of compactly supported distributions [17 ; page 2561,

there is a positive integer k and an r such that
h{f] < b sup{|Dmf(y)| : 0< Im! <k, |y| _<_r} for all f in S(Rz)

where b 1s some constant depending on h and the notation m= (ml,mz) ,

Im! = m1+m2' 1s the usual multiindex notation for derivatives. Thérefdre,
1 ' -1(x,,%,)°(-2y. /c,2y,/c) 2(%,-y,) 2(y,-%) |
* = | = v \
Ihcf(xl,xz)l lzﬂh(yl,yz)[e l 2 2 1 Ff 2727, i 1 ]|

. . C

< b' sup

08 {00 N e ooy e, 200, 100 |

where Dr(ny) means the derivative with respect to the y variables and the
sup 1is taken over the same set as in the local structure of h. The first
.line in the expansion of h:f is just (6.2) with the various operators

removed.

The der'ivatives with respect to y will produce polynomials in. X
multiplied by derivatives of Ff evaluated at a translated point. Because
Ff eS(Rz) s !h:f(x)| will decrease faster than any polynomial as |xl —>
In fact, és f approaches 0 in S(Rz) , héf will apprbach 0 in L2(R2).
The same argument applied to Hz—f_ demonstrates that D(HC) =S(R2) .

A élight variation of Theorerﬂ 9.2 implies T)(Ac(h)) =D(AC(1_1-)) =S(R) .
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b) Let f be an arbitrary element in the domain of vHé.. Since the domains
of Aé(h) and AC(E) are all of S(R), there is a sequence fn in
D(1 ® Ac(h) - Ac(ﬁ) 8 I) that'converges to f in the topology of S(Rz).

This being the case, we know that Hc':fn éonverges to Héf in L2(R2) by the

proof of a). As Héfn = 1{I 8 Ac(h) - AC(E) (3] I}fn , section b) is shown.

Remark: It should be pointed out at this time that there is a product rule

for the derivative of the skew product. The rule is (compare, [19 ; page 156])

9 ah af “ 2 ' ol .
Z % f) = 21« % 25 =
an(hcf) axj cf + hcza ; for £eS(R7), heS'RY), i=1,2.

With this derivation, one can show that HC : S(Rz) - S(Rz) is a continuous

map when h has compact support.

THEOREM 9.5:, Let h = hy +Fh,+h, be a real tempered. distrnibution where

hy and h, have compact support and h

operaton with domain S(R) . Then

3 conrnesponds to a bounded Weyl
a) H_ 45 essentially shew-adjoint if and only if 1A, i3 essentially
skew-adfoint. | |
b) The closure of 1A, generates a strhongly continuous unitary ghoup V(t)
on LZ(R) that so0lves ¢he Weyl equation %%-= 1A ¢ Lﬁ and only L§ the
chAune of H_ genenateévd_éthongﬂg continuows unitary group W(t) on
L2(R2) that solves the evolution equation %% = H f. Moreover, W(t) 44
-1 :

the closune of F SC(V(t) 8 V(t))S;lF

2 2°

PROOF: Proposition 9.4 remains valid with the addition of the distribution

that has an associated bounded Weyl operator with domain S(R) .

a) Suppose iAC 1s essentially skew-adjoint. Obviously, EK; is also
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essentially skew-adjoint. By using the resoiution of the identity for the:
operators iAC and IK; , Ju. Bérezanskii [3;VI §4 of the English translatiop]
broves that this separation of variables produces an essentially skew-adjoint
opérator I8 iAC + IK; ® I . This proof is not reproduced here as'many

new concepts would have to be introduced. Since Hé is an extension of this

- tensor product operator, it is essentially skew-adjoint.

For further results along this line that‘apply to tempered distri-

butions which are not real, the reader is encouraged to see [7] or [14].
For the converse, assume _Hc is essentially skew-adjoint while

iAc is not. By the theory of deficiency indices, one of the subspaces

. N |
R(:LA.c +1) =z {u ELZ(R) : ((iAC:tI)¢,u)==0 for all ¢ eD(iAc)}

0-

is non-trivial. Without loss of generality, assume that u is a non-zero
N .
element in R(iAC-+I) . Let ¢,y eD(iAc) be arbitrary. Then

((H! +2D)éxp,u xuy) = ({Ix (HA_+I) + (TK}‘f) X T}§xy,upxu)

= (Brug) (1A +Dp,u0) + (uy, (A +T)6) (h,up)

=0 .

Since Hé is in the closure of I ® iAC + EK; 8 I , ux is in the set

0o
R(Hé-+21)i'. This con;radicts the essential skew-adjointness of Hc.
b)‘If h 1is a distribution as in the‘sﬁatement of the ;heorem, then, by
Stone's Theorém, the closures of the two operators generafe stongiy contin-
uous unitary groups for the same set of distributions. vOnly the relation

between W(t) and V(t) dis in doubt.

Let W'(t) be the closure of the operator V(t) @V(t) defined

on L2(R2) . W!'(t) is a strongly continuous unitary group with domain all
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of L2(R2) . The generator of W'(t) is an extension of the tensor product

i{I®A - A ® I} because
_ c c

L PO @Y - by gy TEEXVE -

for all ¢,PeD(A)
>0 t t+0 t €

1 (T =8) X V()Y + §x (V(E)Y - )
£>0 t .

= lim Vio-9 lim V(t)¥ + ¢ x lim !££¥#:4£
£+0 £+0 £+0

= TA oY + ¢ x1A Y.

Thus, the clqsure of Hé generates W'(t) . The unitary equivalence
established in Theorem 6.5 implies the closure of HC genierates
F—l

1
! 5
5 S W'(t)S F

9 -
So.far, we have seen only those results that support the equivélence
of Hc and iAc. These last few pages are an attempt té justify the study
of the evolution equation on its own. The geometry of the plane is used to
point out how the equivalence ﬁay break down. No spegific counterexample

1s provided. and, indeed, our effort to produce one has beén unsuccessful

to this time.

Thé unpublished paper of R. Anderson réferred to on page 48 must
be acknowledged at this moment. In.it, the evolution operator of a real,
.compaétly supported distribution was shown to have dense domain (compare
.to Proposition 9.4 a)) and, in the.case of odd distributions, to have a
skew-adjoint extensioﬁ (Theorem 9.7 a)). The statement of Lemma 9.6 on

the next page is reproduced almost verbatim from the paper.
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LEMMA 9.6: 1§ a skew-symmetric operator K 48 unitarily equivalent to -K,

then X has a skew-adfoint extension.

. L L
PROOF: It suffices to prove that dim{R(K+1) } = dim{R(X-1I)} by the

theory of deficiency indices [19 ; page 349]. Let UKU_l = -K be the

assumed unitary equivalence. Then, with £ an arbitrary element of LZ(RZ),

0

ﬂz;—:—‘—

]

((K—I)g,u'lfo) WE-T)g,fy) for all geD(K)

(Uru™ - 1)Ug, £)

((-K-T)Ug, £ )

~((R+1)Ug,£) .

- L .
Therefore, U lfO belongs to R(X-I) . if and only if £

As U 1s unitary, the result 1s proved.

0 is in R(K+I)'L.

THEOREM 9.7: Assume that H_ is densely defined and that any of the

following conditions are thue gor the real /tempé/w,d distrnibution h.

Then H, has a Akew?adjoxln/t extenmsion. ‘

a) h {8 odd (that &8, hxpx)[EGe,x,)] = =h(xp,x) [Eloxy,=x,)] , £eS®D)) .
b) Meh = -h where Me 48 a notation An the plfane through an angle 9.

c) h 4s neflexive in any Line through the ‘ofuigin. For exampfe, h Ais

heflexive An the xl—axié L4 h(xl,xz) = h(xl’_XZ)'

PROOF: a) This follows from section b) with the angle of rotation m radians.

b) By Lemma 9.6, it sqffices to find a unitary operator that effects the
~ equivalence of Hc to —HC . To this end, let Uf(y) = f(Mey) . Then, for

all £eD(HDU), wve have by (6.4)
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-1
U HCUf(X)

Hch(M_ex)

VT Qg hIFT(_gx)UE] - V__t(M_x)h[Fr (4_x)UE1} .

- To write this as an evolution operator, use the relations below that permute

the operators in the last expression and are readily.checked.
i i
i) T(M_ex)Uf = Ut(x)f 1i) UFf = FUf

111) h[Uf] = U Th(E] ) v, h=v, v

v) U"lr(M_ex)h = 1(x)U Th.

Thus, U“IHCUf(x) é%{VéT(X)U—lh[FT(x)f] —_V_cr(x)U'lh[FT(x)f]}.

Since U_lh = ~h , we have U_}Hch = —Hcf.

c¢) The same method as above is used butlwith Uf(y) = £(y) where § is the
reflection of y in the given line through the origin. Again the operators
are permuted ‘after calculating the various relations. These relations are
basically the same as i) to v) except that UVCh(x) = VcUh(—x) = V_CUh(X)

| and UV_Ch = VCUh . Combining these, we obtain

U—lHCUf(x)

é%{V_CT(X)Uh[FT(X)f} - VCT(X)Uh[FT(X)f]}’F

= -Hcf since Uh=h.

Remark 1: fhe origin appears to play a central role in the theorem.
This 1is réthef misleading because the symmetries about the origin are
conéidered due to computationél convenience as opposed to any intrinsic
property associated to this polnt. Any other point would do equally as
well since the evolution operators corresponding to h and T(xo)h are

~unitarily equivalent under Uf(x) = f(x-%xo).



Remark 2: The purpose of the‘theorem is to suggest cases in which the two
operators Hc and iAC are not gquivalent. of course, they will not be
equivalent when one has a skew-adjoint extensioﬁ but the other doesinot.
From section c¢) of the proof, we are struck by the fact that both terms
»}1§f and ?;z?- in the evolution operator are needed to insure a skew-
Mgdjointlextension. However, the Weyl operator is defined through only

~the first term and so there is no immediate reason why iAc should have

a skew-adjoint extension. : - N

Therefore, it is plausible that the phase space formulation of
quantum mechanics is not equivalent to the usual theory on configuration
space. At the very least, the symmetries of phase space contribute to

the study of the evolution equafion and, ultimately, of the Weyl equation.
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