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ABSTRACT
The-macrpscopic description of matter undergoing -a phése change
(the Stefan Problem) can be formulated as a set of éoupled, non-linear
partial differential equations. For the case of one space dimension, the

thesis develops three approximation methods to solve these equatioms. | -

(a) Asymptotic Expansions
 ﬁith the Green's fﬁnctions to suit the given boundary conditions,
‘the system can bé tranéformed into a set of integral equations}_For the
case where.the inifial phase grows without limit as T ; ) ,thé 1érge .T
expansioﬁsvfor the integrals aré calculated'and thé.large T'béhavioﬁr of the
dinterphase bouﬁdéry found. |

- (b) Perturbation Expansions

When the latent heat of fusiqh of a'matérialAis large relativev-
to the heat.éontent of that material;‘a'Uniférmly valid,pertpfbation
éxpansibﬁ in‘é parameter‘related'to the ratio of theée’heat5<is‘§oséible,
The first few terms of the‘expénsions for the tempergturé-distribution and
" the positibn‘of.the interphase'boundary.afe calgulétéd_and.found.to be in
good»agreement:with the.few:known'exéét:solﬁtions and numericaliy calculated
solufions,. | | | |

(¢) Numerical Technidues

_Rafher than use a traditional finite difference scheme,'onlybtime

is discretized and an analytic expression for an . approximate temperature
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is found for each time step. This method gives good results for the
temperatures over the time intervals required by the physics of the
"problem. Finaily, the method is applied to describe the freezing of

a shaliow lake.
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INTRODUCTION

There are a numbef of problems in heat conduction in which
matter, in-additioh to supporting fhermal diffusion, also undergoeé a
phase change. The broblem is usually treated macroscopically; no |
atfempt is made to detail the underlying moleculaf proéesses which govern
thevphase chaﬁge. Fprther, complications'due to mass motion (convection)
are also ignored;
| Within thesevrestrictions the system caﬁ then‘be characterized
by a temperaturg field and the boundary’between’the phases, _The
evolution Qf the temperature field is govefned by the heat equation while
the poéitionAof the interphase boundéry is determined by an energy
balance across this interfaée, The pdsitién of this free boundary ié -
not  known in édvanée but must be determinedAés part of the probleﬁ..
For ;hese'reasbns the étudy has beén known as the free boﬁndary problem
for the héat equation. |

f_fhe problemAfirstbarose over a ééntufy ago ié‘fhe WOrk.of.

K. Stefan. [1'] who st_ud.ie’d tlhe.thic-kening of polar ice. ' In faét', the
- free boundary problem was.originally known»as; and is still often called,
the Séefan problem{ 'The methods he usedeere ekteﬁded'to describevother
' phase change problems suéh_as the freezing of a .lake, the.recrfstallizaﬁion
of metals, §r the. evaporation and condeﬁsation'of.water. |

 Th§ frée boﬁndary problem has béen'étudied analytically in a
few importanf'special cases. It is inétructive td start Qith'£he‘-'

- general description of the problem and see what restrictions lead to

these special cases.
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i

In full generality the system can be modelled as follows

7

(a) ‘Let R be a three dimensional region with boundary
3R . R is considered to be a heat bath; it is a

source -of heat to R but is unaltered by R .

(b)‘ R contains a medium with temperature dependenﬁ con-
ductivity k() and enthalpy/unit volume HG&) . It
is this temperature dependence which charéétérizes thé
" presence of the two phases. In the absénce of such
‘transitions both phases are considered to have temperature

independent properties{

(c) The evolution of the. temperature ck within R is '

determined by the partial differential equation

24 _ 24

P

v-(bvd\= = = 5,

1

(0-1)

(d) If b) is the volume fraction of the initial phase, then
dH
(uv. [ } (W b )

“\?Cr + QL[ ) o (@7-)

i

where cp is the specific heat at constant pressure

L 1is the latent heat; assumed temperature independent.
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(e) There is a temperature interval in which the medium
bundergoes most of its phase change. Let the midpoint of
the interval be QM , the length € . Assume that

cp ana k' can be written (Figu\;e 1) | |
c‘,.-.'.'cr' + (cﬁ— cg) M (3, 8) o

| S (03)
b= ky & (kg by Az(anid’)‘

where’ Aﬁ is a phenomenqlogiéal function such that

for €-—> o
R, (&, &)— O4—Z)

where O ‘is the Heaviside function.

B | &

.
|
l

o
|
|
1
!
1

Figur.e 1: Temperature dependence of e
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Here {611 h[ } are the assumed temperature _independenf
. propert_ies of phase I in the absence of phase. II;
- analogously for {Cﬂ, l:n-_ } .
Since most of the phase change occurs in the interval . -
Q.&, — gf_ . . K 1 1 . S
(8- £, F,+ £ ) it follows that
Pyt & o - , o
J. 4,&(?,-' 1 « S (0. 4)
The volume fraction can then be assumed to have the fofm
W= -Ag(@u.'d’) . _ - (o-5)
The actual form is not important; it is required only that
W

?¢"”8(d’ gﬂ) for € -~ 0 so that (0. 4) holds for g-» ¢

It then follows from (O 2 O 3, 0. 5) that H can be written

in the form
H(®)= LA (6, 8.) + M, (&)

where ‘am u (4’) is continuons.
e~y 0 :

(£): Finally, the boundary conditions that will be considered ax_ce'
- (1) Dirichlet conditions; temperature specified on 2R
| b= &g, xe &
(d1) Neumann eonditions; heat flux specified on - QJR.

EVé-n= T, x¢ g
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Consider now the £—3 O 1limit of the preceding system. At

a fixed time t , let the surface SS(t) be defined by (Figure 2)

In the cases of interest, So divides R 1into two regions: R> for
47> @" arid R, for (t)c &H Enclose }_, £ So by'va cylindrig:’al
'pill box 'VE of linear dimension's. € . The position of thev pill box

will vary in time; for v the velocity of X ¢ 3\/E we have

Ve, Y 4 B 4y 5,

Figure ,2. The interphasé boundary
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Now for the enthalpy H ,

4 o v ww,as
. AV = f 4V n , (0,6’

vhere WV, =V-B for n - the outward normal. Ihtégrate (0.1) over v '

M gy
[ veveprav= [ 23 av.
€ : ‘ € S

‘Apply  the divergence ﬁheorem to th’e?left-hand side and (0.6) to the right

hand side to get

| (e22_wuv )ds= d ( wav
' , n Aty
WV : : , €
"M is bounded, hence j\i U av= O(€?) unifornly in t . The left
. hand side is (Y (e2) -
Now let &€-3 © . The sides of the pill box do not .conttibute
aé .bthere, ‘V,.,-—}O . Only _the'dis.cqntinuit‘ies of k and H
cbnt_r‘ibut‘e at X to give

| .L&"J‘ by ko ?__‘.?1’ : ;i_-_eL\/n - _(0.1).

?h — 260 =
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.at‘: | : ¢‘Z".‘t):’“ EH

where the plus or minus sign is téken if X..points into Ry or: R%- 
resPectively, “The sign cannot be determined a priori; that.is an
.additional input'ﬁo thé'pfoblem.'

- The next restriction is imﬁosed by symmetry. Assume translaﬁidn
invariahce of the system in two spécé diménsions;Aone‘spacé co-ordinate
survives and'the'interphase boundéry"é(t)' satisfies'd)(;(t),fifzr(5 .
Furthef, focus on one of the'phases; This can be done when the‘second B
phase is a heat'bath (its évqlution would be known and its contribution
to the first phasé at the interface assumed given).or fhe seﬁpnd phasé

is removed as soon as it is formed.

The equations'then reduce to

S Lt . 20

where at . xgz S
L bLsw), )= Py,
Ld,(stH).4) + H)= % eL 52
Here; H(t) can.be,considered a known heat input from the second phase.
Under these restriétiénS'there are two types of problems

(a) The semi-infinite bar
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- At t=o0 the first phase occupies the semi~infinite

interval O< X £ 60 ., The partial differential equation is satisfied

on S()< x< 060 - . An initial condition 4)(1.0)-——‘- (‘.\)‘, (xy . on
0< x < o is needed to render the problem well posed. We consider
the cases where 47, (x)—»r d’a o for Xe——sp 00 ; it follows

that\-'d)(‘f—.f)-—} d>,. ‘for bx-—} oo

No n-dimensionalize as follows:

.. X
X = — -
1 C=

e, 5 b—0, ';i‘-
=t 0= T TR

o hen, Tetrs
. en, letting
Pep

@.‘— , . : B} | ‘ . . - I. ‘
‘ - b‘-—%%étt ( ’ d), .

|t

where .Q is a reference _léngth and k=

. :;Z » and ¢ T v__, &, (rx). and suppressing bars, |

-‘bx-;.: d)'r 64)“.-0"' B o ' B ('0'9;"".
;-d>¢&cr7-.ﬂ=; "@"',‘ e osh)

5( ", é&(t),1j-+ H() ):_ .’!'-‘ %% - R - (0.8c)
é’(aiz_ & | (6.83)

| d>€i,oiz .47., '(ﬂ‘ : (0.8¢)

where E= Cv ﬁ"'»‘
' L

is the Stefan number.



For definiteness, assume @M .>> o and take the plus
. . _ : : do
sign in (0.8c). We restrict the study to the cases where g—- Yo
: T
these cases describe the melting of a slab.
For certain boundary conditions, closed solutioris can be

found after an appropriétev change of variables.

With the transformation Y= sl » (0.8a) becomes

2

where = —{o’ » while the boundary conditions transform

to

eCd, (1,1 + Ho )= s

$(1D= &y P v=0 .

l!

H= Y- ' |
- For 'Tt: a solution is
= A

%‘% = = const; hence g [2AT
and Lol g
f e
¢ Qﬂ - *
f e r—f dg

The temperature d1str1bution satisfies, in the_original co-ordinates,
the initial condition ‘
of

C  x>po
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and . A satisfies the transcendental equation

' A _
A= e(Jab.— & w5 ) . (0-9)
_ _ _ e > ox o

This is a Neumann solution [2] presented by Carslaw and Jaeger [3].
There is a minimal HO ‘required to sdﬁ@ort.melting i.e. for which
(0,9) has a real positive solution. We shall find this H0 in
Chapter I.

Another. simple solution arises from the transformation

Then (0.8a) becomes

Y= X— o
4’»'9*}. by — | ‘Z{» vy 4y>o0 f o o o (0.404)
‘ while the boundary 4c‘.ond.it_v:ion‘s tfénsform.to ’ D ‘_ ' .
‘P(O’T)z @M . &‘Lw.“r‘:z . .» _ | | o |  (oA0®
E ( 475 (;’ ) -@—.H )-;- i‘: - . ' (.o,iocJ.

_ For _H(t}: B" “assume = ‘l‘,‘\"' . Then_v-if 4’; (3)-‘;—“ Qﬂ e ko3
we get
— e

d""lb u &



ST |

(o0.11)

h . ' .lgl_!_';
where }&o—— 1'4—£§N .

This is a solution first found by Stefan [1].
- (b) The finite bar

For S(o)l= O we look at the problem complimentary to
- the semi-infinite bar; rather than examine the diminishing semi-infinite
phase, we treat the problem of a growing.-finite phase (which at 4=
is not present).

For S>> 0O the first phase occupies the interval

' 04,3;'4 s¢(Y at t = 0.. Here s may increase or decrease. In _bdth

cases the partial differential equation is satisfied on @< X< S() .-

. Non-dimensionalize as follows

7—-25'."0'- | -
IR IR L &2,

=it
A
I
=l
d-
‘e-
\

‘where = S() if s(s)>o0 , otherwise L ' is a reference léngth."

J’c""" &N

Letting ~—~——-— "’"‘P.-"ﬂ and suppressing bars, we get
‘ » . _ :
b= by - (04203,
e ( ploter, V4 H)= % de . S (042¢)

AT
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If o©(e)=0© 1o initial condition need be spécified. If o(e}> o
(hence o(od= 14 ) an initial condition is r'equired:

$(x, = 4)0(5:7 ccxet - (ond)

For the condition at x = 0 either the temperature
. B - o v
4>( _'1“' @c— (2 _ o (o.42¢)
is specified, or the heat flux
47» e Hee) | L (oA2f)
is specified.

For deflnlteness we choose the minus 31gn in (0 12c) Let
_the problem (0.12a-0.12e) be called 5'(a@ﬂ l!) and (0.12a-0.12d,

0.12f) be c_alled Ejr( o), H).
X . . x .
To get a closed solution, again let Y= :;: - to give
495‘,:_-. ‘?—Y'lPt~ 3 At 47" Dy <4 (0.434)
with the Boﬁhdary conditions

$U)= o K I | (043 1)
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~e (b,0.0)+ Hod)= o (o4%¢)

Cb(.o,‘ﬁ’—,—: @g[{} | ov d)g (0. %)= — Hsit\o—' ' (a,‘@'&d‘)‘

and if y(;.)___._ 41

For @gjﬂ.—: E‘lg-.: ‘const. , the problem gx- (o, ) has a solution of
| Neumann type: _ : |
. . .
1 FME)
jg © dx . ' A .
' . Py : ' ' (Or14a-§
>
J;" -~ -,-_-X_(ﬁg) a5
[ ~4

g

d_)w‘(@e-; 5)-"—'— @3.

' hegce.
| d‘;.tﬂ;-. J‘Z_)&(%)T . (0-A4c)
'Here : A(&g) is a paiametervwhich is the solution to the

transcendental equation

A 1 N 2. S o '
2 {0

[ e 4 . - (044d)

[ <4

EFg=re
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The boundary conditions at )€==crtt) in both (0.8) and
(0.12) are non-linear in < ; hence the free boundary problem as a
whole is non-linear. As in most non-linear problems it has been

profitable, not to search for more closed solutions, but to develop

effectlve approx1mat10n technlques. The prlnclpal results of th1s thesis

_are conclusions about ‘the effectlveness of these approximatlon methods.

Q) Asymptotic Methods

In many practical cases only the behav1our oF the free bound- .
ary crcc) is sought For example as a lake is freezing over, 1t is
usually more-important to know the thickness of the ice rather than the
temperature-distribution of thathice.: “m:m‘_v - |

'In particular, knoWledge of the initiali(i;ey()) response of '
o .to.the boundary conditions may -be sufficient._iSuch-small time.

expansions'haue‘been calculated for cr_ in systemﬂ(O.S) by Boley»[é],

' Landau [S] and Evans et al. f6]. In each case the authors transformed (0. 8).

into an 1ntegra1 equatlon for & . The free boundary was then expanded

in an asymptotlc power series in '

and the coefficients Cﬁé’ were found by matchingllike'p0wers'of JT
_Although it has not been done, the same approach will Work'for'system '

(0.12).
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There has been no direct attempt to find the T—> 0°
response of O to the boundary conditions. However, providing &3 oo

as .t-—»oo , ‘the work of Cannon and Denson-Hill [7] can be used in an

A. inversé problem where the large < behaviour of & 1is specified and -

the boundary condition which gives rise to this behaviour is estimated.

They show that for any o(x) , the te'mper’ature distribution

&, (xTl= Z: Gt ;a_ (x-a)’

n=1§ -
satisfies 4711.—; ({)1. and the following conditions at x = O

ci?(d'.ﬂ-—- o — € CP,(a’, = S . .
It follows that
d“ 2n

ci)(p'-;“__ § ;_1‘1 | T < ‘

An asymptotic expansion for o~ can be substituted and the behaviour of

47(0_-:\ " estimated. For exarﬁple, if a-',.—.[»‘t‘for.“>q, oy41, an

 _easy estimate gives the bounds

2_a S > 2a-4

va

e < e dlemrc e | (s

It is_'sh0wr‘1 in Chapter I that, provid’ing o-ya0 as T—>a , the -

_ leadiﬁg bvehavior .Qf o~ depends only on the boundary conditions as
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T———) = ~ and not the initial condition. Hence, estimate‘s'.like‘
(0.15) do not’ depend on the particular initial condition which dePH
satisfies.‘ :

Cannon .and Denson-Hill used the above estimates to study the
monotone dependenc,e‘of the free boundary on the bcl)undary'c':onditi'ons,
and not priﬁxarily. to obtain an asymptotic expansion. Thus the_ir method.- is
of limited value iﬁ.calculating higher order terms in the expansion for
. . In par_ticﬁlar, the effect of an arbitrary initial cond‘it.ion ‘

cannot be calculated.

Chapter I develops a method for ca_lcul'ating to all orders the
large T ‘behaviour of o for both systems (0.8) and (0.12). Here the

initial coijxditions present no difficulty in the calculation.:
(a) The semi-infinite bar

For the system. (O.é) we follow.Boley [4] and extend the-
spac'e_dovmain to | bé x < O a_i: the 'cost'_c.Jf iﬁtroducing énother .unknovwn
| [ (P.f];—-— F.(‘I:l . The equations caﬁ then be solved 1n closed form‘
_o_n' this domain.  When the béund_ary cIvond‘itvions atl X =0 .afe"impo's'ed on

the solution a paii‘ of coupled integral equations for ¢ and F

result.
' The analysis breaks up into three separate cases according to
whether A-‘—‘- :—;t" approaches zero, goes like a constant, or

increases without bound as Tenco -

Firét, the asymptotic 'expansion'c')f_ the integral
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o —ﬁw . ) ‘
‘f (Hw) A o 4 (""6)
c (5-& w} : .
for - e0 must be calculated. . s

For M £ (O(4) the starting point is the work of Handlesman
and Lew [8] who use the Parseval theorem for Mellin transforms to

derive an asymptotic expansion of

ol Y
| feae T du

. for A*‘? O . In the case Aé O(") their method raises the
'second problem of calculatlng the analytlc continuation in =z of the

asymptotic expansion of o

u
_{ . FG5s ) du
o (12wt A%

for Te—snp oo . These expansions are carried out in the Appendix to

‘ Chapter I.

-

" For A>0O{1) the integral (0.16) can be exbanded by

standard steepest descent techniques.

It is then straightfofward to apply these expansion techni’q_ues_'

to__the integral equations of Boley. The main results are the following.
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[1] To support melting ( i >o) the heat flux H cannot

decrease faster than ”m’-n""' f‘i;""'(j%) y T- oo where
“.,7/ ?.“_'.

s
- [2] When H has the form M’r—'— f‘{«“'o ‘f}’é) T —>yeco then

A..;o . In particular, when H ~ §”4. “1 4-- Hegvoy é‘séi
Jorg

then o= O(‘_t‘—s) for s« 4 and ¢— O(‘n‘t) for. §=4 . The heat
flux contribution dominates the initial condition contribution to the

order calculated.

Na :
[3] When H is of the form H= f- 4 "(J’) T~y oo where

H > % then VA= O(4) . In the case where H = :‘_f,;. (L T) '

the initial condition dominates at the second order in the expansiom of _
the integral equatioms. It fol}ows that o — '”ot ' 9;5_24-,,- where

ro
Ko is the solution to (0.9) and Ag ~ can be expressed explicitly

in terms ofl H .ﬁuand [ 470(,)4, .

[4] When the heat flux satisfies H> O(Jii) , then AN~—2 bt

For the particular case H = O(‘["-) sy b Y~ '!i. it follows that

= O(‘thﬂ) . In general, when A is unbounded the inlitial condition
contribution is exponentially small relative to the heat flux vco'ntribution.
For this reason a perturbation procedure applied to the pai:tial differentiai
equation gives the same results és the analysis of the full integfal

equations.
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(b) The finite bar
For ohe énalysis of (0.12) wé fvollow Friedman [9] and
Sherman. [10] to generate an iotegrofdifferential equétion“for (o 28
The techniques developed in the stody_of the semi—ihfinite bar are used
to an‘alyz‘e the dependenco of CF' on the boundafy condition at the

fixed "[x-»O] ‘end.

Here the major integral to be expanded is

T a da . (J{Ef,fgt”
IOR—:% ax © 4{t-T Y T

| | 2
Nevertheless, the analysis still depends on the behaviour of A= "41.'.

]

'as Te>oo .
The problem gI (1,5) is analysed in the cases A< O(‘l-) R
: the problem E (1, g] when A > O .- The main results are the

follow1ng

[1] . Wlth 47(0‘():: ﬁ(’ﬂ —_ &Q'c ocved »it
follows that A‘—’7 o and the free boundary o has the leadlng

behav1_our & — ’-fs —L-
l—\f .

..[2]-1f @35"’.5@3 , then Az O(‘i] ,Van_d‘ a‘,_..- 2‘)0'['

:where Xo satisfies (0.1l4a)

31 1f _¢;(o,;)=_-ugm~—u8t‘”, Beve > ay—t

‘then Ay eo . The behaviour of o for this finite bar case is
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compared with the behaviour for the semi-infinite bar undergoing the

same heating, but at x =a. The free boundary o grows slower

in the finite bar case.

(2) Perturbation Methods

The first suggestion of a perturbation procedure appears in
a paper by Landau [5] who studied in a particular case the -3 o and
E~>y < limits of the semi-infinite bar. Sherman [11] did a-

" detailed analytic study of the E&-%co case but the results are not suited -
to numerical»_gfalc‘ulat_ion. A |
In Chapter II ‘we;;'t.udy the sc.c>>r.1d1'-.t;'.ons uilder which the problem '
BI(‘I,o) admits an expansion of the form - . '
&= é:o eFTW L, _ Z‘, efop . (0.17)
Even though these expansions are in fact asymptotic expansions ordered
with respect to the pa‘ramete.r € , the methods used ‘to deriveA them
are distinct from those of the previoﬁs "éection. To make that distinction,
the expansions (0.17) will. be called perturbation ekpansions. The main
results are the following.
- [l] When 4)La'-t'\ < O({) for '('-—§¢o , a per;;rbation
expansion for d) and Y.—.—.-;—_oﬂ' , carried out i.n the fixed. vboundary'
co-ordinates (4= g—, 1) will be uniform on o0<£yg 1 , Tyo -

In most physical problems two terms of the expansion give good results.

In the case that 47(0,1] is oscillatory the regular

procedure produces secular terms. These terms can be summed, however,

‘


http://will.be
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.

to produce a uniform expansion. The specific case

D lony= & 4+ psine
is_worked out.

Finally, even if g£. is not'Small, the perturbation

expansions. can serve as asymptotic expansions for T-—s oo -

[2] If 42(¢yt);2(}(1) for ’CZ—chxyA‘ the regular
perturbaﬁion expansion fails.;o.be uniformly valid.» In fact,iafter the
independent aﬁd dependent variables are réscaled, the first order.
syétem incorporatesvthe léading growth for o(T) but is ésvdifficult}

to solve as the original system.

[3] A regular perturbation expansion for €~Yoao also
',exiété. However, by a rescaling of the variables, the first ordgr
system can be shown to be of the same difficulty as the original.

.free boundary problem.

(3) Numerical Methods

There have been many types of numerical calculations for

the free-boundary problem.

'One'approach is to solve the general problem (0.1) where the
phase change occurs over a finite temperature interval. Although the

enthalpy and conductivity are then functions of temperature, the domain "
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- for the partial differential equation is fixed. Furthéf, the method
can be formulated in any number o.f dimensions; the two dimensional
case has been calculated by Hashemi.and Sliepcevich [12], the three

dimensional case by Meyer [13].

For the one dimensional case, when only the boundary o 1is
required, the integral formulation of the free boundary problem can
be used. Chuang and Szekeley [14] discretized the time in the integral

- . equations of Friedman and solved for O  at the discrete times. -

Finally, in one dimension, when both the temperature and the
boﬁndary are to be calculated, finite difference schemes are used.

A‘classic paper on this method is that of Douglas and Gallie [15].

In.Chapter ITTI we iﬁtroduce a semi-analytic approach.for the.
'éolution of the fiﬁite bar. Only the time is discretiéed.and‘the :
boundary ér épproximated.by a straight line in each time\s#eé. In
ieaéh"s'uch time interval the solution t§ system (0.12), sétisfyiﬁg all
the boundary cohditions.ex¢épt (0.12¢), is calculatéda  This solution,
which started at the Beéiﬁning'of.tﬁe- nth .timé‘step'is then.madel
‘to éatiéfy'the flux condition'(0.12c) at the end of the nth» step to
calculate the slope of‘<5' for thé (nfl)st step. |

This method was.first éuggested by G. W. Bluﬁéﬁ [16] wﬁd ﬁsed'
the theory of Lie Groups to show that such an analytic interpolative
 funcEioh is a similarity §Olution to ‘the inverse Stefah.problem with a
linear free boundary.‘ We derive the séﬁe’solufion by'a-simplified_

‘method which has the advantage of more directly including the case of
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inhomogeneous boundary conditions. The solution itself has two
possible series representations; which representatioﬁ is chosen depends

upon the boundary conditions being considered.

The cases where first the heat flux and then the temperature
is specified at "x = 0 are solved. These cases demonstrate where'

each representation of the analytic solution is more effective.

Finélly, the method is applied to the problem of a'shallow
lake which is freezing. We take advantagé of the disparity betﬁeen the
‘diffusivities of ice and water to reduce‘thé problem to an équivalen%
one phase problem with an effective latent heat and effective heat -
_source. The results of the numerical calculétion are compared with
tHeﬁdata for aAshallow lake in northern Michiéan and'are_inigood

agreement for both water temperature'and ice thickness.
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CHAPTER -I:. ASYMPTOTIC METHODS

The objective of this chapter is to détermine the large T
response of the boundary O to the initial temperature distribution
: and'the specified boundar& temperatures oxr fluxes. These boundary
temperaturés or fluxes are to be specified at x = g for the semi-

infinite'bar and at x = 0 for the finite bar.

The analysis is restricted to the cases for which (r;;,ac> as
i;_¢,¢() . It follows that the boundary conditions provide the |
leadiné contribution to the growth‘of'cf .while the initial‘condition
.cqﬁtribution enters only at highéf orders in the lérge T expansion

o . >
for o .
"The cases of thé semi-infinite and finife Bar are studied
separately. We begin with the semi—infinite'bar; the equatiohs are
_easief to analyse and give directionvto thefdiscussion'of the finite

bar.
_1. THE SEMIfINFINITE BAR

The system to study is (0.8). Specifically, choose the plus
sign in (0.8c) and take .@“>o . This situation describes the

- melting process.
Following Boley [4], extend the space domain of (0.8a) from.
(o, 00) to o, a>).This is donme at the cost of introducing another .

bunknown ﬁhich Boley chooses to be the flux at x =0
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3¢ ()= F(u
23 :

Then solve instead the problem

¢)rx.f'_:' : d"t 0L % £ o ' ‘ | o '(‘71“"
4:(; 0l 4>¢,un . . N (Ade)

The solution to- (1.1) can be written in terms of the functions

47“ , 4’v both of which satisfy .(l.la)vand 3
M" (0= 1 "‘.lf‘*w.ﬁs o 4&@@. 01;5 o
. x o B )
‘)de (o, V= o ?5;___4;5 lv-ﬂ‘#.o | . -.4?.‘;(.“‘ ‘_’,‘.::; 4)0 i ‘
This gives " | |

- 4{7,':' — 2]t ;ér_gq '(;%)ﬁ_

I 470(13 G’ (2, ©%, o) d);,"

- (‘l:_") — e E)
"~ where (;r (x.-t, X 1:\._ -3:: {? . | s .
St A

are the even and odd G'reen's functions for the half—piane. Flnally,.

from the Duhamel theorem [3] the so]utlon to (1.1) can be written



. . heat flux input Ho‘.’ then set: F(T):—-—— \4,
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b= [ Fo Lo S X (1-2)

Note that the conditions (0.8b) and (0.8¢c) have yet to be satisfied.

' It is the application of these conditions that determines the equations

for Of(‘t) .

- Before applying these boundary conditions we point out that

the bar may have had a heating history before melting commenced. It

L is thls hlstory that determines the temperature distribution at the

onset of melting i.e. (5) {xy of (1.1lc). Temporarily, le‘t» T= Q .

" 'mark the beglnnlng of th:Ls hlstory and 47 the temperature dlstrlbutlon

durlng this 1n1t1al 'phase.

Then, since there is no meltlng, the true space domaln is

‘(o, w\ and system (1.1) describes the physics exactlyv._ In this

case F(‘C) can be taken to be a k_nown flux. _ )If,‘ for ex.ample., the bar

- starts at a uniform zero temperature and is subjected to a constant

H_>o “and

b ]

. '470 (x')": o - in (1.1) to get from (1.2)

A

b= .2H°Ii:"ae.-,cc (S‘,;—*') N (X7 I

Meltlng w1ll then commence at a time T:" -such that 4)(01:“‘:_ @"

" which can be calculated [4] as
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2
()"

a9

L 3

With the onset of melting reinstated as T=0¢ and F no longer
~ known, system (1.1) is used -with
' n
d>o (x)= d’ '()C,T" )
Now, using (1.2), apply the conditions (0.8b) and (0.8c)

at x =< to get

it (C Fo T) __gfgl ’
-J'TI':L J< e 7F dT u'%’\

- (wﬂ -

. = + . I
+ ,{o NoXEa Gy (qt-\,r-,;,o) 45 = + 3{— H

To expedite thé'asymptotic analysis, make the transformation

1

T+u= 7=

in the first integrals of (1.3a) and (1.3b) to get



e
- - L
IF(z M= - ) e | e ¢omrix,adr

4 | e
_; ‘§N (%) CJ_A o (1.44)

: o £ w .
IF A, M= (% e L ‘Pc_’(i") Gy o), T, T,0) dx

@t E-wm) o aan
_where - :
. ‘ . oo __ Aed Tos )
| \ o L . F( ) a
I (s, ‘F) A} _ Io (“414)'— (‘l‘}“ «“

: 4T
This is a set of integral equations for F and o . Although only
the large T expansion for o~ is requvired, it will be necessary to
find the lérge T expansion for F in the process.

The asymptotic eXpansions of F and o fo'r- T~y oo are

calculated as follows:

(a) Assume an asymptotic series for F ’a'n'd"a‘-

F ~ ) B Ao “). S o (1.54)
k=0 o L | C o , |
o~ ) ' o, shtﬂ o (ASE)

where {An’} and {gk} are asyinptotic sequences for Ty and
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‘Fh. 'd‘bv ,l are coefficients yet to be det;ermined. For tﬁe types
.of heat fluxeés being .considered, it is suf_ficient to assume for F the _‘
asyinptotic expansion

r

F(v) ~ e 2_EaT

=0 (‘" 6)
-~ where r,-'foo and Y¥Y9o, a0 . In practicg it ié copvenient to

leave the asymptotic expansion for ¢~ wunspecified for the moment.

(b) ‘Substitute the expansions (‘l.Sa,b.) into (l;4a,b)»and

- generate large T asymptotic expansions for the integrals.‘

(e) ﬁhen the asympt‘otic sequences { Ah} and {Bb-i havél
been chosen correctly it is possibié to. matc_:h'tp determine the
coefficients ";,, Ce : In practiée, once the fdrgi (1.65 for F haé:
.been assumed_? thé,corresponding asymptotic sequénce for o is

determined by the requirement that matching be possible.

Step (b) is_the most difficult. The behaviour of A as
' Ywa 00 is critical. The analysis divides up, accordingly, into three

separate cases: AAC O(ﬂ, A= 0(41 _ai;d A>OQ) as quoo .

. In this chapter, the Stefan number £ is a parameter that
does not enter into the calculations, so without loss of generality,

set E‘:j_v in (1.4b).
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CASE 1: R0 for T—s oo

‘ To complete step (a) ‘it is consistent to assume that W =
in (1.6). |

In..step (b) the first integral to be expanded is IF(';t,A) .
TH:’LS is.a complicated calculation and is done in Appendix I. : For

-reference, the result is
. me f—-—l ,

I'F(r‘t A) ~ ):: "'("m"’) AF(”’Y ) A

M=o o

vo " . 4.7

E 1) oE . ™
i (v, me) A

L P

The first sum is called the asymptotic contribution and for T—»0° "

R 4—#1 1)~ (ek)
AF(rt ™) — E 0" 5 ): ( n-te o) O
' (1. 7a)

‘The second sum is called the domain contfib_ution and for. ‘[’-—A,oo R

. N 1 . ‘ ‘
OF (T, ms) — {: — B m+l C v w=t) : ‘
. ' 3¢ QG Trﬂ- C " » ) . S (1:1b)
. E —m-3 qu_,‘ | t -2, H@
+ |t\‘t’ -——ml 4 ( ;’1. .
’ . ﬂbe, h?,m )
Here, the g ’ for which . fi: lz+ 1 | is called | q—b.
and Q is the sequence. {ﬂb}-j ) . If Q is empty the second sgm

in | (1.7b)- is absent. The Mk' are unknown constants which
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can be determined in the matching process to come,

The next integral to consider is, from (1.4a),

. L - |
I6 (v, M= _e’(%)v’f ¢, (xH (}+(am,1:;;,'ow dx

= ¥ = ((?1'(“) 1 &y ¢
where . - | ;,‘ | |
I,4,m= fo GV S o | (4.90)
' ' . v : |
S 70 Rt W, O 15)

For simplicity, consider the case where Qh}é OC e_vx ),
pY0 5 Xe—ayoo . This is not-an‘ unusual c»ondition; for example, it |
is met by the initial condition (1.2a) which arises when the melting
.stafg-is approéched in a "natural" wayvés was described in the

intrqduct'ion to this chapter. The exponential in (1.9a) can be expanded

to get

L, d)(r1~—— rfi’(-)dp + O(~ . (Ate)

The assumption on the initial condition is not critical. For more
~general initial conditions the method developed in step (a) of Appendix I

':can be applied to (1.9b) to generate the requifed expansion for T-s 00 .

[ - . . G e e e = -
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Finally, using (1.10) in (1.8) we have

I1dp = %fb .G 4x & Oty . (1.14)

~. - The lastvintegral to consider is from (1.4b)

‘IYPLCV A)- (2 ( ) J( 47 ) (: (Fr(tﬂ't x oﬁ d):

The methods just described yield the expansion .

T, (=L [ b sz + Oh) f ()

1

The reSultS‘(1.7), (1.11) and (1.12)'can now be used to write
the integral equations (l.4a,b) -in an expénded'form.

vFor_(l.4a) we have '

ferz v 10— /\'bFP T,2) 4+ O‘.ﬁr)]’ Ay
: . | A |

RPN ’\”t‘(-ém:( ﬂ+0(m)}

1; 9 '
= - 2, (D) e ne00] - 4 I b Otz

-while for (1.4b) we have
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{oF(Lx ) — APE(L,T,2) + O %q,) } 0,14\ |

Ry Ty T & AL TEL) AR L, YA

(____) L { “(t) }{14- A+ 0(’3)} A4 Ji"fo 479(53471' 4 O(:‘E’)

Fo )
where from (1.6) F— ".E;‘, vy T—2>co e
 Examine first the leading behaviour of (1.13). The leading
6rder on the R.H.S. is O( ) , on the L.H.S. the domain éontribution

dominates. To match, _ set

| A - .
—~ : ' : (1.15)
then from (1.7b) it follows that PF(,, ,1)—' 5(1,, " Since

LSRR ES TT » matching then. gives

F == = - . S :

Next consider the leading order of (1.14). The asymptotic

contribution dominateé on the’L.H.‘S. From (1.7a) and (1.15) this .

contribution is BF(L,7,0)~ J——E-' . so that matching to first order
’ ~gives _ o .
' |
£ (4= LA
(_1_;;) == (G- k@) (K)
A 9 : .
2

—

or, using (1.16) and = at ,.'
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do _ & I
e = (h- 5 ) + (7).

o do
We have assumed that B—>o , hence 3;,40(}5) For

.2 -
H-= = A o (%t) this condition is fulfilled. This behaviour

vt v

is a turnin oint: for < ——= melting cannot be supported as then
: 8 P Jee ‘ g | | PP

‘—‘:4::- Ve, , whereas for H > .iéﬁ ‘we have A2OW). The minimal

we . @
H described ‘in (0.9) is thus = .
o . , Ju

The matching has been carried ﬁp ‘to 0(3!—;) . . The initial
condition contribution does not enter until O(‘%} and thus has not.

contributed to the leading order in the expansion.

It is yet to be. detefmined how -z 00 . This behaviour can
be found by 'matching fhé expa;nsion, ét_ second order. On physical grounds,
the heat flux must be the agent to drive ¢ to infinity; the initial
con'di'ti.on confribution cann91£ enter even at this second ordef. This

is demonstrated in two cases. ' ' _ S

(1) —roo algebraically

"Here the heat flux must be of the form

where H; > 0 and %_454'1 . F has a similar expansion

r- -, Kk,
44 LA
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ko )
Assume also that Aﬂ;ﬁ—;"" » m_ >0 , A_>o . Then

"o
o~ afi,ti-%

CRND
Now from (1.7a,b)
‘ﬁF(}tﬂ | Ef. (A F, -
9 ))""Jt— 1\7,‘4-.%-; g(j_.5,1|'.")4....
AF (2 x o) —~ E:;}-,,
TE Vet =
‘So for (1.13), omitting already matched -terms
1 o .o a% pyot
2 ~s. 4 e A TL-5)4 - -
Ts g(‘e ..s) 1,) ‘!’ +T!“.}j&‘%’ © z
= . %(E){A‘?4—--; : '
“The R.H.S. is of higher order. Matching to lowest order gives-
e _ . ‘ .
T 2 e ' o (1:18)

Note that for %:'4 S;j we have e¢< ’_'_;:‘4%_ » so from (1.17) & —yp oo

algebraically.
Agaiﬁ from (1.7a,b)

- OF (J{,,T’ 1) '-" Ft g‘.«%—i/%,) + ——é‘ g(ﬂf(,—'%‘) 4+ -
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So for (1.14), noting that 3(%»’—%):’0 and omitting already

matched t erms

F oo e 1 NG
s B(-¢, 1)+ - "' + JT\“_,TS"E!';‘,

{ ya “l'
= U-my(DY — () fmee - -

[ -4

- The first term on the L.H.S. is of higher order. Using (1.18), the

other terms can be matched to get
H,

Mooy y B

so -that finally, for (1.17)
o ~ D , &2
T (-s) 4 Em A
B4-5,4 ' ‘

Note that the initial condition does ‘not enter. into this expression.

- (ii) o'—s 00 logarithmically _

‘vIn this case ._the,_ heat flux must decrease like
- Py M . .
Ty Y T
F must hav_e-‘the same expan'sion .
] F~ %4‘ -_E."""' L}
For (1.13) use

PG Zedy g ler,

AF ‘%,‘T‘1) — _‘E';,__l. cee.

JT
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to get, omitting already matched terms

O T T T
A v

= -—,_@”ﬁ}%—l—_m- .

The R.H.S. is of higher order. ' Assume that -

o 2 : '
A K o (1.19)

T

and match coefficients to get the ratio

2Jh. Tw . (A20)
In (1. 14) use o ' SR ‘
F Int s |
pF (4,7, 1)~ = .
L |
AF(;\t o) ~ E"”{."""
so that using (1.19) and omlttlng already matched terms
Flr, .. R PMWIE
e {11— }_*_:'}4_ L
= T..,c' 7 T T .

The lowest order is O(.JE \pf).. - Match coeffici‘ent's and use (1.20)
to get - -
- Fo=—Hy
Therefore 2IE,= -9~ and finally
| Bve :
o~ 2 |nt . T—> 00
Toe : .

:Again the initial condition makes no conﬁribution to this leéding

behaviour.
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casE 11 A=0() for T—> oo

This case arises for a heat flux of the form

o Ly |
H= E‘}"Arf)‘ T—> oo

'where H > Ft? . Set A=A -lrl\g,lﬂ where Ry is a positive

constant and Agtd_y0 for T-—y co

- To complete step (a) it is again consistent to set _\_)» =
in (1.6).
For step (6) the first integral to be expanded is IF(_V,I, A

- . This calculation is done in. Appendix I and the result is

_ -1 ' : I 7 B
_ I (t‘,‘[, A) ~ AEO -‘—;:! DF(V,t’_m.;_f) ‘AR- . (,‘%2_1‘)
"where
. 3 o Fﬁf U '
DE(Y, T, Mms1) ~ E&" "{‘.—’,[_'()n4 -3 ) U(_m&l—- i"‘“"—"" [N )
F. v  Me
Q
lnttghh___j‘ +E9h&: Tees . (i?Aa—)_
&kia B23m T : : .

Here Q is as defined in (1.7b) or Appendlx I U‘.‘l b, 1) is the
‘confluent hypogeometric function of the second _klnd, and -

v | " m -—Av‘: r =
Gpe (1= (A-u) w ,e - _ E 9}«,‘&.“ .

The next integrals are the initial value contributions in

(l.4a,b). To first order, these integrals have the same expansions as

given by (1.11) and (1.12),
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With the results (1.11), (l 12) and (1. 21) the integral
‘ equations (l 4a ,b) can now be written in expanded form For thl_s
calculation it is possible to choose a heat flux such that the initial

conditions contribute at the second order. Such a flux satisfies

l\g, =

Assume that A_g,~ J—"’E'*l"" and put &1 J;tp‘,(’i) 4% | ‘Then

(1.4a) has 'the expansion

Ermusae 9. T
Al!» ,'f?. 2 2 2 & .'_.1' 4 - - - (’\’12)
E{ﬁ FEIU(3.4,404 34

w. b A ' ' >
SR M Aoad - U B € Bsoo

while for (1.4b)

ﬁ\

[ gt Mo
R. r'( )U(L) £ | 0) —" 90,0 T ' "

“(MPWU( .;.A,u-!- j+o-- (2%

0

u-—;)(‘%)?ef"{u SRS P @ﬁ-.-.”

First, matching to O(J'i) gives

. Ao N
L L2, (41— =2Y) (1 244)
| U(, ,/ AJ) (. J;.,)e/ . | (

' : . r ‘ .
Next, matching to O(_f) and using G, = 1
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Mo— 3T A% F U (2,2, A0

o e _ (4,750»)
. Jt? o - < o .
Ho - — A F:o U (}I 2 Ao )
e i e 2 (4.25v)

o

Ao 22 Ae
= J;". c (_1"' F“o) "i’ + &1:.

F_~ can nov be eliminated between (1.24a,b) to derive a transcendental
equation for- A »
U(‘;’,s %,‘ A")

g - (1.26)
i,—JA, ' o

Compare this result with (0.9). With the A of (0.9) it follows that‘

Rg= 3 and that equation (0.9) can be rewritten as . .

@
T(1,%,4.)

o W JRo— A, +

_ ' ; _ b : y
However, with the Kummer transformation»U(“-l'ﬂ = :15._ U(i}a-—'b, 2-%,2),
_ thi'sn equafion <<;_an be traﬁsformed into (1.26)‘_. Thus, to first order,
tl:le a'sylhpté'ti';: behavioﬁr of N .withVH ~:~%—f’ agrées with the exact
.,-sovlutioﬁ'w’ith »“= \7—1’% . Th‘is is fo be exp‘ectéd_ on physical grounds -
and is a ‘check on the validity of th_e expansion 'techniique'.

Using, say (1.24a), F can be eliminatéd-fromA_(l.-2§a,b)‘

and the solution for A; found
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A 2%,
Gl F, A, W)
where
. | . Jw Ao (2 5,80 U(a,g, AS)
G A, W)= 5 e - = ’
(%1 v "V(u 5,40) T 4, 4,4)

~—.

e
4+ 2 + A—- = ‘
&“ (' J—A‘o) _} -
Note that it was possible to elimiﬁate MO .

Finally, the expansion for o 1is
O
0' —~ 2 ,l .._E'

Here the initial conditions enter at second order.

4 - -

CASE 111 A—s e0 for T-—yoo
This ca.se _arises for a heaﬁ.fluﬁt satisfying
HS O(E) 1o .
For definiteness, choose a flux.of the form
H,-- Hotb 'c__v,oo
b)—-—';_. . . Then to compiete.step (a) 'it..wil]'. be necessary to choose

Vy o, in (1.6).

To begin step (b), examine the role of the initial condition
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integrals in (1.4a,b). In (1.4a) we consider

AL ¥ _ _
Id = e (%) [ 4.6 omr,5.0 47

The first term arising from G+ is

' —Z

' (s—2)
Iié"’:——- -—&—- I & (xy e =T Az
—ArA- u)

= ) I (o’a) e da

Laplace's method then gives the estimate
P g

L A
I, & —~ 2 (%) b& & () T—yoo R

.

| L,
‘)C.
As in case I and II con51der those 4’ for whlch C&? (Jt) O(e P ) »
» p)o ,)(,.__?m . Then

, 2 JEPP. S | ..
L4 <2(D) 0 )Y b

and since & > A for T—yoo it follows that T & is
‘exponentially small for T—s oo

Thé second term arising from G+ 1s
el (X%
I, .{70 = = Io 4;(3.) e 4% 4x “
Here the boundedness of &p and the Laplace method yield the estimate '
I, < L
14 < Ben, O(f)

where
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"d{,“,‘,—’—’ Sup {i‘k’(’"l l ové)%C(cv}

Together with (1.27) this estimate implies that < -
oge with ( ) this estima mplie at Inﬁ’o-.. O(J_t_;
Similarly, in (1.4b), for

o

T (t,A)= e C"—E) > L s Ne (6‘(11,1;‘;','. S &z
we have that ']'47 O(_ )

. o
The'leadingv'term to be matched in (l.4a) is &ne: C‘%)’i'
The initial condition contribution is therefore exponentially small
relatiye to this leading.order and so d-ogs not participate in any order
of the matching. The same comments apbly to (1.4b).
Combine steps (b) and (c) -to analyée the final integral

IF(rx, N |
Loves :
. With F- f; e Ts"- for T—sos , assume that

A~ Ao-t“' . Then F contributes to the exponential in the integrand
of IF to get
.5v

IF(r-c A) — E I St

.,(uu) € du (1.28)

oA

where f(u)= "(l—lu — A_uw

£u) TS
O(e <°

wip

If f has an interior maximum at U, " then JE =

),

so to match the exponential on the R.H.S. of (1.4a,b) we require
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| , |
$opt= Ao . Using § (uy)=0 it follows that Ug= o

o . v
"and :" (U,,) £ O so that }(u“) is. indeed an interior maximum.

The Laplace method can be used to expand (1.28). ‘When the
expansions are used in (l.4a,b) and matching carried out .to first order

the leading behaviour of ¢ is found to be

O — Tb&i ' (_&'Zﬁd,)
» Us+v)(44 F,,) . x
For the case b = 0 the result reduces to (0.11). Again, the
asymptotic behaviour of o for M- Ho » T—y oo corfesponds '
to the exact solution for H = Ho . '
»Highef order terms car be calculated in a straightforward
manner. However, a faster pfoceduré to generate an asymptotic .
expansion for @ is to use the partial differential equation (0.10).
directly.
Take, for example, the -case “(‘t):—. “‘,-I- 'H-P_[t] ~ where
'“é‘t,;_} o for T-—> 02 . Then rewrite (0.10) ,: int‘roducing. the

artificialvparameter A , as follows :
47‘,,4'"}‘47.’: )\Cﬁ’t
Fle, v)= (‘f” ' .4;‘,.'11.-.-.0
Byer + o AH =

where = 2‘1’_’_ .. Now expand in powers of A\
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A= T N+

}t:.‘l,‘l—)“pi"'" . (4‘15)

If l‘h':: o (}‘b’ and Tb{l::' (-4 (Tb) for T—>o0e s then with
A=1  the series (1.29) are asymptotic expansions for the solutions.

The first order system has the governing equation

T T,
— 4 Pa — = 0
4% 24

For this equation an arbitrary initial condition cannot be specified.
But by the previous discussion thé initial condition makes oply_an
exponen‘t’ially smali contribution to the ekpansion for }; . Consider,"
for ékample, the case where “g-—?t‘r‘algebraic.al.ly. Then a simpie o
cglculaf:ion gives for pe (after ‘setting A=1) |

b S Me W B. due

- - -

+ exponentially

small terms . '

This is an asymptotic series for T—s oo ; to first order it agrees
with result (1.28a) obtained through the rigorous expansion of the

integral equations.



- 46 -

2, THE FINITE BAR

For the finite bar, the larvge T resﬁonse of the bouﬁdary
0'(':')_ ‘to a heat soufce at x =0 1is éxémined. Here, as opposed to
the d'ire'ctt heéting’-case of the s'e.ami—irifinite bar, the heat source is
.remote from the free boundér_:y -and .mus't dj.ffuse thr;ough_ the matérial
befofe affecting the phase transition prdCeés. As a result, the
boundary o . responds diff_érently to the samé heatving applied in th.ese :

two different situationms.

The relevant system to study is (0.12)._ Specifically, choose
the minus sign in’ (0.12¢) and take H =0 . For the analysis an integral

" equation for o must first be formulated.

Consider first the problem B4 (4,e) as defined in the
Introduction. Following Friedman [9], suppose that 4lx v) ” o (1) * form
a soiution_ to the pfoblem. Then the Green's identity '

‘can be: in.t‘egrated over the domain p«< X < ox) -, o< €< "'i':‘< ~—€
t§ get, upon leﬁting 89'0 :
4’(1.1\-; I' =Y — _
' - © 470(’" G’ cx’t“‘ ,’,o) J;
L, ‘ T - _ _
- - _— ‘ do ~—
+ L g Gy 3756,V ~ ) T2 GO s TVAT

Now set X=-<(¥) to get an integro-differential equation for o (¥) :
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‘fdr.
. &

b

G—-(G'(‘t"’t; (VT AT = '
R W30
o Fam Gi. (ov0),¢; 0, TV 4T

. LR - |
+ [ 4.6 & oy X,0) d%
. For- -&B(*i,vd a similar -analysis gives

j-c do v o ‘
2 ";—’f G (o’(ﬂ v T35 910, T) df——-
<

- (A.31)
-f H;l‘c! (f (a(ﬂ T;0,T) dt

+ I d’,(il ¢ (o), X, 0) dX |
' As in the semi-infinite bar, the behaviour of A— " for

T o0 breaks the ana1y51s up into three distinct cases. ' o
Case I _A< o(1)

For this -caée analyse the system gi({‘ o) where
-'for_: 1?,7 ©, V>0 . As in the -semi—infinité bar,.in order to carry
out the matching, the integrals in (1.30) ﬁust first be expanded.

- The first integral to consider is

Trcm [ 32 65 (o, at
()= ot & (w7, s 7 4T

o

In what follows let
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] | . .
+ - (o2 5(X)
.ﬁblo— (v Ti= 4(t-<) *

The first term of T ,

47

| T -
: \I o = _!_- ,__l_—- é_‘-,:

is straightforward; since Oy uniformly on ©( X<

exponential can be expanded to 'get

t T

‘The mth term of this expansion is O(I\ ) .

For the 's_econd- term -

‘the argument of the exponential has a singularity at T—

Cdnsider the transformation'
- (TT)I= (Q4+u) A U-I- e ) R
then W~»¢o for v?—%o and “‘-—§°°"fo‘r ’t——y_'c .

is avpplied to

" The result is

. * h
! H)] S “%(T)--df

1:‘ the

(1.33)

If this transformation

T o the analysis in case I of Appendix I can be used. -
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I,'d',—' L E ("1") Dd’(‘c,»m-tl) (1.%4)

Q'Jt—l'- m=o m'

P __.AUJ»;,';) ' e . 20%,, -1)
e T L e

In the nomenclature of Appendix I, the first sum is the domain

contribution. Here I)J(t.:t) is the analytic continuation in E  of

v’r'___,’c_l;g'._b?—-i'
LJ’%’:%‘ = (37) ac .

T

The second sum is the asymptotic contribution. Here, for T 5". (t,«)
the inverse transformation of (1.33), the function
b
- ) JS (1.‘1‘ (S (Tu,) S
»g (u.)g J(Av : . | X i [
s . : o
| | (T"‘ 55 Lt u)) o '

has the expansion

. S
Zlu],_, E‘,g,t"“ | _.u—-ﬁzb,é"

for R 4‘oo . The Et'mand l"m are yet .to be c?etermlned.
The' m = 0 term of the domain contribution cancels the m = 0 term
of (1.32), so consider the next o_rdér——thé m'= 0  term of the asymptotic
contribution. -For S (t’.,) assume the expansion
: : o

+ a(r) -
SJ(‘(‘uﬂ,-J T»—---———‘;TJ—--- u—yeo.
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Then expand (1.33) about F¥=-F and substitute in the above expression

to get

.
Catey= 4+ 0C3)

“The -lkeading behaviour -of fi;t is then

- _ 4o _z _ |
gtlﬂ?ﬂ»gﬁ ;“CT)IJ , U

T

¢o that the asymptotic contribution to (1.34) has the leading ‘

behaviour

-

o7

i

The results (1.32) and.(1.34)'éan then be combined to give

o | do | | -

.The second integral to expand is

T B
]: 1= j = —
: @;(f » @glt_l (:'.--i (0'(’”,1; .

,T) 4T
o e
- et [T (2

e Vidn _BVltu ) A,

‘_This'is in a form,covered'by Appendix I, and to'first order the result is
v

T — W Gy TEee (4.36)
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The last integral is

. I .
T4, tu= Le&,(»;l(;‘(o,w",c;,i'ﬂ iz .

Here, since the domain of integration is finite and A~Y o , the

exponentials in (¢ can be expanded to get
I&ﬂr——* f 4’(’1{[4— (=57, 0]
- (237, 0¢1] }

)@I &lx)» A% 4 O( ) | (4.3;7)

‘Now assume that o~ p‘( » avyo » T—y oo , and collect the

-

results (1 35), (l 36) and (1.37)

2a~1 _ : '

. , o : ' _ .
T §5~ ‘&’.,1? O @3eh)
r—- ' R V (‘o’;/‘"

. where F — - — ’

‘ V E"" f‘, 47,(11‘}» A; .

For oy o'., (1.35') dominates (1.37'). We expect this

result. In the phase transition process the initial heat containéd
within the bar contribu‘t;’és to the latent 'heat of fusion to causé a
to grow. But then no finite initial amount of heat could provide the

infinite amount of heat required to cause Oy oo .

" Matching the pbwers-in (1.35') and (1.36') implies that
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Q= !:27\! , s0 avyo for V< A . This is also an intuitively clear

res'ult; if @8 is not integrable for Tyeos , then o"..s,.oa Finally,

‘matching the coefficients glves ga:.-./?'v; so that

2V, -V
.0’ p— bousramead T/ ‘. o
. v _ (A.38)

CASEII A= D)

"For the system g (4,2) this case arises when &B(t)” &64— ég(TT
where &s is a constant and &g—;o for T__?oo . Then A~ f\\‘,-ﬁ-Agn\ .

where Ag-%o for T—>00 -

| As has just been shown in Case I,‘ thé initial conf_igurafion ;
doés‘ not affect the leading behaviour of o for‘ 1.'.%«, . .In particula'r_,
ti’le solution tko .31(1’0) .approaches __the soiutio'n to Er log o)
'providing ?g(_t) is the same.for both 'problems.v For the same reason, -
the solution to ZI_ (;’,c) approaches‘ the exact solution (0.14), so it
follows that |

O’,..., 2 A"t 3 T—r e

‘ -whére A_. satisfies the transcendental equation

o - [ 2
@B—:: "LA‘., C,Ao L.é“o%dx .

.CASE I AS>S old)

For this last case examine B!I (4,) with a heat flux

satisfying
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Efﬂrg (1~ — o4 Hpttl

where E&D)-o is a constant and "\Hg‘——?o for T—yoeo .
The integrals in (1.31) must be expanded for T—y oo

Consider first the integral

: d
IO’ {ti= '

T S
jo..r’" P Cr(d’(.ﬂ ;T o) THAT |

In the notation of Case I, for the first term I.a” we have ‘{;.—; O(A\"

for ceFeT .- Define the transformation
- o 1 \2
then ¥->4 for T30 and W-yo for T-5T . Since A~>oo
~only the m—)o behaviour of the transformation is needed. A simple
‘ calculation gives

(ﬁz = + O
at 7/ A

The_refor‘e',‘ the first _tér{m'has the '1eading' behaviour’

T
-I"*;f— w el iz a1+ 0G0

_ The second term I 0’_ is exponentlally'sméll relative to the first

so that B » ‘ :
Tow= 4+ O(L) . N (T 3)

‘Use the change of variable ._'E[]-g. «} to transform -

+ A!’-

the second int‘egral I;as(ﬂ_—;_.[ “gﬁ) Ce (6,55 0T} 4T to give
. . 4 A :
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A

A | T __a R v
T o - 4 ()7 f & . Aw
4 W) < o(‘ﬁ&u}"

to get for Tsyoo the leading ‘behaviour

_.f« o | |
Iu () — u (W) | (4. 40)
t\ - : v

It is easy to show that the’ last 1ntegral o
I& (tl= I d’(p) G, (a(t) ‘t,)u. o] cl‘x. has‘ the leading behaviour

T e 'Lﬁ? f d sy a%
so ‘that I‘gy‘ (t)-_‘—‘- O(”’f) IHS (‘C)
ASSume that IHs is of lower order than I& Then;' '

'matchlng (l 39) and (1. 40) gives
»Aen;xu(ﬂ) L Teyes o

" This is e transcendental expression in A end cannot be. simplified
further. However, it follows that A= o(‘ht) so that %_.? Fo)
- and LH 1is indeed of higher order.

Finaily, this result for the heating of the finite bar can be
compared with the results for the same, ‘but direct, heating of the
semi-infinite bar. From case III of the semiQinfinite bar, = 0Otx) >

so that A= Oy as T—=00 _‘“whereas for the remote heating
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of the finite bar we have just shown that A= o(lmT) .
SUMMARY -

The behaviour of‘CfCt1 for iﬁJacﬂ has been calculated for
a vafiety of boundary cénditions. Although, in most cases, only the
leading behaviour has been calculated it is clear that the determination
" of the higher orders is straightforwérd.b Further, the.asymptotic forms
for the boundary conditions were chosen for demoﬁstration ﬁurposes
only; the methoés presented in this chaptér do not dgpendAupon the

forms chosen.
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CHAPTER II: PERTURBATION METHODS

The free boundary problem encompasses two distinct physical

mechanisms:

(a) Heat transfer through diffusion. This mechanism is
represented in the equation &m: &{E which is wvalid

" throughout the material

(b) Phase transition. This is represented by the flux

condition at x = &Cx¥)

s

—eLld om0+ B]=
- Here €= cl_gﬂ is the non-dimensional Stefan number which specifies

the éodpling_ between these two physical modes.
For the £-3 o0 case, the pr,obble.m.v g; {(4,°) is examined. .

In this case it is possible ‘to calculate a perturbatioh expansion of .

the form ® : ,
' o s T ' o - ' .
b= 1. & T - (248)
.M H_ ' ‘ A . o
. |
ctw= L. "o | o @Am

. ' . S
The arguments of T have deliberately been left unspecified. In
fact, the original co-ordinates (x,T) arée not suitable to grenerat'e the

expansions.

Problems of uniform validity of the expansions for DLTL bO

arise only in the particular case O—% o= for T—ypoe . In this.
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situation, however, uniform validity does hold if and only if @3 is
bounded for T-»eos . When the approximatioh is uniform there are the
follow1ng addltlonal featur

’..(a)‘ In (0.12) let M va{gj@ﬁ ‘,%‘8;“«»} . Then by

‘rescallng the temperature

@’"‘7’ Hafi’
the system remains invariant except that now .a&gﬁé 1, lé"l <4

and >in'(0.12c) there is a new expansion parameter

E— M, .
v’For many phys1cal problems e, is small; for example, if lce is being
melted by Water at 10°C we have EM = _§4_This scallng argument then
»‘ guarantees that for £|‘1 small, even if the expansion is carried out
in the original non-dimensional "co—-ordinates,?only a fey terms iof the
expansions‘(Z.l) are needed to give good resuvlts.v

g ®) The exoan51ons >(2 J) are asymptotlc for T’—-}oo .
. Thus exren 1f A 2 is not small the perturbatlon method is a- dlrect way
to gene'rate'a large' ’C expans:.on. o

For the g-yeo case the semi~ 1nf1n1te bar 1s. examined. .Itl
' is shown that a uniform expansion in powers of .t!': “ig possible, but .
that the equations to deternline .the _fir:st order system are as.difficult

" to solve as the original problem.
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‘1. THE CASE. E—3oO

Consider"th’e.p‘roblenvx -gI (‘l,&) where 0'—%00 _ for T—-——)m
FS_e,t H=o0 in (0.12c). | |
It is easy .to show that a ﬁerturbation expan's_ion.bof the form
: .(2.1) in the original co-ordinates will not work. Indeed, from (0.12c)
do, | |

it follows that. 52 =0 'so that o= 5le)= 1 - Thg boundary

-condition at x = & cah now be expanded:
 (a) From d(o€)=0 we have
0= T U4 e{7T194+05,T, 10} + Ol:%*)
b) F - = == t S :
( ) From' - L&t‘(o',t’ < Ve get _
e i‘_’.'" O(fz  -|'-—4° 1 (?). S
Note that, since oy 00 , these are already non—'uniform.e'xpansions.
~ Consider, in particular, the case where

- Pleti= '&g(ﬂ-—} W = const. T—poe

.The O0(1) systenis is, for TC—a oo

' o o
Tl‘l-'- Tt =.0.

' e, “ lE : ‘ o ) :
T. (0.1,"),.. > T(1-t1==o -
The_ initial: condition need not be considered as it does not contribute

to the leading behaviour of t‘he solution as T-»0>, Now for large . -
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. 1t follows that
T - TU-x) |

This expansion can be used in (2.2) to give

5 g,
. 4T e °
| Therefore o, = O(t) . But we . have shown in Chapter I, case II of

the finite bar that o OQ(J/T) - The non-uniformity of the

" expansion is then apparent.

To avoid the non-uniformities presented by the ekpansions of
the boundary conditions at x = o , use instead the fixed boundary

‘ representation (0.13) to generate the perturbation expansion. :

2

With y— o - S .
= a3o=44cR . B ¢ %))

: sj'stem (0.13) can be rewritten as

475.,-47- e[lﬁf&’—‘jar@] .04'441

e B pmo e
'4”.‘7.0’-*_ &, (47 Lo |

together with the flux condition

- S5= a0 (@

AT

- The analysis breaks up_intov‘three- cases according to whether &g /_O C%) ®

Bo= OU) 5 o By OU) a3 Troe .
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CASEI P, OU)
Expand 4> as follows

W).t)é )

= .

e v :
£ T (4,T)
" and rather than o~ , expand R

- T e ~
R"ﬂ"‘""_ E_: £ [Zblt3 .

To analyse the systems generated by -substituting these expansions into

(2.4) the following results are needed.

‘Let & satisfy the diffusion equation with non——homogeneous

term . Sls,0)
| 479*1."" 471"‘ ‘5(:!,1:5 | .0'4..“,‘4_11
wit;_h t-:hcla.. bour;dary vconditions_. | B
“’("-"-’r-'_'!égtﬂ” 4(4,01= o
o &(,,v’z‘t’(j) . : ‘
‘Then :47 caﬁ be’ wgitt;en. |
4 4,“ . d’g\_, + &s |
Vherg 47“._ | arises solely frovm the.j initial c’onditipn, _Cg’gvv from the

-~ boundary condition, and - from the source term. See Appendix II.
| y A , _



- 61 -

2
_r )
One can show that d)u (y,7)= O(e “r) . Since we

examine only the large time behaviour of the solutions this term can be .

-ignored. Further, assume that for Vb‘ﬁ‘oa and }Abfm‘

- Swﬂﬂ [: s LT Ve
ke

The Bromwich contour 1ntegrals in Appendix II can then be expanded for

large T to give

pGo- e T W @S

_‘,. ‘j(‘—’j)(z-«’) Z —qf r'(\’ s} s WV, +1) T;_‘, -
6t (v, ) $sn Wy, 4 O(t , )

d) (49,0)— Z{f S,mG(s zw%—*f SumG (3, a)da} Ve

k=o ) |
+ s E {f 5 (1) G(-s.ﬂau—f S m G, (1,-,)4%} . — (‘25\»')7
: 1)
D0 ZRERID ey QW)
Plp) sshnorpy ' :

where _G’,(‘j":ﬂ.—z 9y 4-2) .
| . 2 2 ,
itnm Catsmn- L 020

Spec1f1ca11y, to ensure that G"_s,oo and yet & __,o >

ehoose © 4.VO< 4 . The flrst order problem is then
- o P ' . _

T’(o,t)z &g(‘t‘ T"(i,t)z' o Tptﬂ,")z 4’,[1) -
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For v'(_'_a,‘oo the leading behaviour is then, from (2.5a)

< ’-vo
T (y9,v1 ~ Y. (4-43 ¢

{263
v
So from (2.4a) we have -‘;—?,_. “'f‘;c © , hence
A |
B (v~ '(:;‘T . ' | (7Y

‘ *
This completes the first order calculation . The second order can now be

calculated as

! o
O(el T‘j‘,“" T‘ Py 22_"1"_ . Jao

T g;-{.’r" |
—~ "If"( (”V") 2\/’}17 Yo .

i o
T (v"t]: Ti(‘ﬂ,‘t]: T4Lj,01= -

.

* .
The 0(1) system can be written in the original co-ordinates as

1. - (3) ,,, To= T, 0
This is precisely the equation one would write down to describe diffusion
- in a bar with one end stretching at a rate ‘i’f{’:— . An element at x would
then experience a velocity Vi(x)= %}‘%‘-—:, giving rise to the convection
terms in (A). Further. the factor g% multiolving TJ:X: accounts for

the change of thermal conductivity of the bar due to the redistribution

of matter caused by the stretching.
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From (2._5b) the leading behaviour is then

T(g,ﬂ,ﬂl’f{ (L4l v gy - 3 bsYe 1 7

i3 t—-v, . (2'8.’
So from (2.4a) we have, providing v x L *,
IZ (t} ~ :Ié {v L 14 Yo } Tu-—a\lov (2.9)
1_-
1-2v, }
Clearly 217_-9([2‘_') and T‘_—_-‘,(T") for ‘l.'—-% Lo
. For k),o the general problem is
oe*" ,_ -
Ty [:{ZR‘T — 9 dt Tuj } '
b e e

~.

‘ L",’t)z’ Th-‘v" (_“‘T‘: T-h-‘l' (‘j.o,zo

A tr1v1al 1nduct10n on this system, u31ng (2 Sb) repeatedly, demonstrates
k+1
that R ~o(2h) and T (T )

it is easy_to show that :

as 'l'ka.oo In fact,

-

* - ' '
If v, = ".L then (2.4a) can be integrated to give

Rytx) — — "'11’,' nc
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Thus, even if € is not small, but still 0(1), and the expansions
| &) . | ‘

&= 7 eFre and R= 2" ¢ E’k' break down as perturbation
koo ) ) » K=o .
expansions, they are, for € fixed, asymptotic expansions for T 0o

Finally, note that R 1is the largest term in the expansion
for R . Thus from (2.3) and (2.7) the leading behaviour of o can be

calculated as

. This_agrees vith the aéymptotic result (l.38)-with £ { .

To determine its accuracy, the ﬁértﬁfbation solution can be
coﬁpared with a numerical calculation. Since, when .or 5isvunboﬁnded,
: asyinptotic _agréement as T~—>°° has already been shown, it is

sufficient to coﬁpare the solutibné in a bounded case.  For this case,

-moreover, the numerical scheme is most accurate and comparison most

significant.

' The system (2.10) can be used to generate such a perturbation
solution. Take for simplicity

o

o : ‘_‘ ¥t
T' YC‘J:T,:’"’ € . Sin ‘1(‘[——3)'

for !Tl’e hr, h=0,1. .., . This satisfies the 0(1) equation
and can be used to generate higher order terms. A simple calculation

gives for the next order
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. 4 — Q—'K%C - 5'”!—‘1‘3 }
T 4= e  {ycosqu-9)- Gapzv
2,
S 4 4 ' an Sin Yy
T e lwesvag- T

To second order, therefore, the solution for the temperature is

< i !
b = T4 e 4+ 0™ (2-44)
This solution satisfies the ‘boundary conditions

® (e, )= ﬁ'y‘lt' in

, = e g SnY '47(_1,1:1-—-—'
dly,e01= g ’ SinYy  sinfivy

= YA-9) 4 g{ ——= __ 2
: : v M+ e Siny . 9-&1!—-{ } + O(e )

and has the correspondi_hg free boundary

= (1« 2ef 4+ 2:7R 4 Ot )" (2.42)
' | whe.r_e' ‘. _2_6::' ‘}{’ (i'_‘ ;Yr") . _ ) S
2,”)(-1 'Cosf&f'___t_)

Ry= 2, (- & = Sinvsy 21

'."4?.-(!—’(’/ )(1— Ys'an‘! S
The numerical schemé, as -outlined in Chapter ITI, can now be

used with the given boundary vconditio’ns.' The computed temperature
Aand free boundary can then. be compared with the perturbation results

(2.11) and (2.12) respectively.



- 66 -

Choosé bt = l . ‘The calculation is Ithen carried out up to
T= 3 | at-which time the boundary d‘ has essentially stopped growing.
For £=.4 ‘only theb O(s) correction is needed to achieve t&o
-figure accuracy fér both the temperature and the free boundary. For
= G two figure ~accdr~acy is maint‘a-inéd when the ) (7;7")‘

contribution is added. . See Tables: Ia, and Ib.

CASE IL @y (z1= OWU)

. ' —, ‘ :
For the case '@5(1\,-.3{/04-1?,12 __:,; s ¥ 7O and
- oo ', the results of case I can be applied wif:h \)"___: o .

From (2 6) and (2 8) : = ‘
~ V3 3 | . (23Y)
&= { -9+ Ol )} o :
+ E{W“w»,w O _"1;} * o(a)

vhile from (2 7) and (2.9) v
{‘E + OL‘c 1)} 4 s{-*_. + Ol ’y‘)}

‘*"O(ﬁ}s_ E (2.14) .

" For -’E—-)o-:- . these expansions can be compared w1th the exact
solution (0 14) with @ "{’ . First, using (0.14d), expand
A{Y) in powers of £ - »

: X(“I’,)-__-. . NP o
- ;11; T+ O(e?) (215)
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and note from (0.14b) that ¥ (T)= X{W)T . Now, since R~%©° ,
it follows from (2.3) that F~g¢gBR  for T—yoo Therefore,

from (2.14) and (2.15) wé have
T~ Tl | T—yoo

Next, substitute (2.15) into (0.14a) and expand

| X | | ‘ | |
&, (Eiy)= W (U-4) 4 "%- ty-4) + Q(s’\ < (@2146)

Comparing (2.13) and (2.16) we have

. . It is clear that these resuit,s- are ‘also valid for sdlutions_
to BI (e, 0) 'Wil;h the same. boundary condition. Thus,.- fof both cases,
the timer-independent-con't-ribution to (2.13) ahd (2.14) can be summéd -
and »the'pert‘urbation exp‘ansién written as |

b= £, (Wi5)+ Wiy, L

. | o o A7)

ole) _ :

= 2T AT 5 e Wi o

.whére W, W—%r 0 for 1;.._5(» and O'vv(O) takes on the values 0
or 1. .

Providing &glti 1s bounded and approaches a constant as

T-—>o00 , . we have just shown that the perturbation solution has the -
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correct asymptotic behaviour. However, it can happen that @g Tt}

is bounded but that féiem &g €Y does not exist. For these
T 00

oscillatory boundary conditions the regular perturbation method breaks

down.

Consider, for example, the simplest case

@, (w1 = 1{1,4, e sin 2T o (248)

[}

Here take W >0 and ﬂ&nlé 1;’ . If the expansion procedure as
: ' 4R .
outlined in Case I were used the terms 2@117 -and  u4 %; 4?"

in (2.4) would generate-secular.terms of the form <T" sihﬂt,‘ " afﬂt, h=1,2

Therefore, the perturbation expansion would not be uniformly valid for

T—y oo

To remedy the ﬁroblem, -the expansions (2.17) for r and d>
‘can be used. Here, d’w (‘Wo;ﬁ) and A(_‘lf‘_) are essumed to be derived
frdm the time independent part of ‘ [Pg(f) - in (2.18). The important
fea.ture is that even 'thoug’h 47 and A depend on £ 'y they are .given

by (0 14) ‘and thus can be calculated prior to the perturbatlon expans1on.

Put % /\(71’,) Then for either problem EI (1,0’) or

_gI (0,;} ‘ , substitute (2.17) in (0.13) to give
W, + A g W, _.‘{J(OH 21} W,
= 8{‘2wwf ﬂdtw -3 J‘ dyﬂ,cj.i

with the boundary conditions
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Wie, ti= s sinnt W4, tl=0

and, if @(o]sﬁ , the initial condition
/W(“ﬁpc):: (370(‘:5‘)5— @N ("fo;.’) . . ' (2.495)
. Finally, the flux condition becomes simply
Wyt 5o : - (249)

'

Now proceed as in case I and assume the expansions

W(y,v1= E : ;gk Wkw,-c)

=

Weoi= ) e W .
' k=o -

We show that the secular terms are no longer present. In particular,

we derive a large T expansion for W, and show that it is bounded

0
for 't'._._> oo -
The Q(i) system is
b b + ‘Jkow; — {0’(0) £ Q‘kpf} W;.—:_ a
. . N ' (220
Wie,si= poinflt W4 ,5)=o0 )

The behaviours of gx('ﬁ,b‘ ~ . and gj_-.(o,cﬂ. for T—y oo are



=70 -
the same but the case o{(o)= O is simpler to anélyse. For this
reason, choose o&f{ol=0 in (2.20). Then no initial condition need be
specified and the solution can be found first by taking the ‘Mellin

transform of (2,20):

e

wge’k"’ xa‘ﬁ‘l‘_}.; A 2)&,?1}7;0

2 CH h= o
' where Wy, p1= L W nde . ()

- The solution is
Wy, = t»e'" 4 ﬂ f‘m gin (% g») ,aw g,)

'Where, with - M(a,b,#&) the confl_uent hypergeometric function,

A“S ) H( nﬂ‘z,'i’t 1)2“11) ' M_U’ﬁ’) i‘ 1'.j )
p!""’ ’7—")—) H(%’_PJ_‘}_" ) v— ?ﬁtﬂ"ﬂ’, 7/1';;’ ‘ . L I

.To get the éolufion tb .(2.2'0) s invert (2.21..)
“&’( = 4 -
4,71= ! T Fpr €3, 1) JP - (@2

vhere . & is a Bromwich contour in the strip -4 < @cp(-’i . The

-left limit of the strip is dictated by the right most pole of

NeY sin ® b . The right limit arises from the convergence
2 . ;
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requirements at y = 0 as follows. For Re b= b5, ', using

Stirling's approximation for’ P(b‘) we have

o ~ . L :
| M (o) "’g;nv{g,g___ O (1™ ) - (2.23)

for Hm,,l_._s, ©o . Because of the oscillations of 'Ehﬁa_ along

A convergence of (2.21) for y = 0 then holds for A‘D( —ﬁ,i

Providing the integral (2.22) continues to converge, the
contour A -can be displaced to the right to derive a large T expansion

for W . 'To show this convergence, start with the estimates [17]

| M3-pr 4, x) f,% |
, ~ €T
T .
, . {1 ﬁ-—-breo . ) . . 43
MU-p 2 ) _ cE sinfapn LS S (2.2
. ' : Ji | J";; v : I .
so that e o P
Atg,pp . SrPrrol-9) 2-p

sSinfapx, e ., ai’?f—’f’”a%

| Hence with 45= arg p ,
- &
—tjiawlkp SISy .
(Ats,pi= O e =) (2.2%)
for 'Imk]‘-s,w along any Bromwich contour. Finally, using’ (2.23).,
(2.25) and that is%n%ﬂ_yf'i for ﬂImM.._?oo . the integrand of (2.22)j

damps like .
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| _ . .
1TV Yy, = OUH ¥ ‘jm)

for ﬂ]mg;_l‘-?,._bo along ?e% &, . For Y >a this estimate
allows the contour A to be shifted to the right and the contribution

at lIm_P.l-,—_oo to be ignored.

From (2.19b), .‘%}"Q_—."&;’m;ﬂ , so that

W= “’(»a ) dT

[ -4

and from (2.22) we have, therefore

. l g,
B‘V
W (= —— ’)Jf ,( B"" (ivt’} AP

Displace the contour A to the right to pick up poles at p =1 , and

on the set.

{203,310 T

The set Mlo is a positive, strlctly 1ncreasing divergent sequence.

Further, for all n, ol ¢y == O(‘i‘o [17]. Since R O(E) ,
~even = of, " is large, and the asymptotic estimates (2.24) can be
, , v z 2
. n .
used.AvHence we have Ay ~ LT and

2,
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| Ao | |
W, 0= — pA € * { M(5 2,5 + ML,3,2Y)
M) ) s B - (2.16)
———— “f : ) .
+ 2L 005" s e )+ Buled)
eI _ _
where . . E
—-p 3@"
| 4 LA . d

for AN a Brom'wigh contour, in the strip olpy < &E’( dﬂ-lr_:l . From

. —da‘)
. the previous estimates it is easy to see that BN = O(T and
so (2.26) is an asymptotic expansion for T—y o> . It is not .

convergent.as E'N (x}>vo for T fixed, N—y 00 |,

Note that for Tosyes , W,

uniformly. Thus, in the expansion for r

is bounded and is O0(g)

| g~ AOT—G- £Wo—‘-'—' : B

the term gW. 1is 0(52) and is uniformly smaller than the first

0

order term. The expansion for o follows simply from. (2.3).

_The_ expansion (2.26) for Wb holds as well for the problem

‘ I,?.' (1,0) .+ In this case, however, it is worthwhile to compare the
x .
erturbation solution with a numerical calculation to determine the
P

accuracy for T moderate.



- 74 -

Put Clol— 4  in (2.20); then an initial condition is

required. For simplicity, choose
&, (43= Cé’w("-li,s 473 . ~ o (2.27)

) [ =4
So that from (2.19a), W (‘J,v}zo . The problem (2.20) can then be
/ . . i .

solved by an integral transform in y [18]. The solution is

o ColtY B (4 IR S
Wiy T (228)

where for dh £ HA .

-, Dhope | ¢ = _
Cpnlt)= Rl 1422, T) i LT AT
(+apx) L ( _ s

32
- — &
Et\l%‘,_ e .M({‘__o{",%,”y
Hh. 2
— 2 2
Mo = 2 [ e e ara |
" For Ao small and ‘542}}? &« ot , the foilowing approximations

are valid:

' Sin (LT , ,
C (‘t,:_—. — ) e ¥
Cn e <, * O { i )
En(21= Sin3odn

e+ OUL)

"~

A . !

N, ~ Y2 No ;3 N = f P
X P9 c o



&?‘ W‘).
and - °£6i- ;3; . These approximations can be used in
o

(2.28) to give

o Nl .

. oo .
-~ 2 o Swyr YT
W ¥, 8) — - gim (T J :

£

o .
This répresentation is valid-away from y = 0 and.can be summed to

B

1‘5’ (.&j,—t“ -~ &‘ ‘;T;fir (.ﬂ_,j)
L PO

Hence, from (2.19b), e fa , so that
. & -l

" T I Ay G wsnr,)
| T aa,

Finally, from (2.17)

_ | YTV
stal= (14 22T + Iér{%r cos TS + OLH )‘%A‘ (2.29)

<

The solution for the free boundary o of gﬁ-ﬂ,o) with
boundary condition (2.18) and initial condltlon (2.27) can now be’
calculated numerlcally and compared with (2.24). Rather.than fix g€

and solve the transoendental equation (0.14b) for ?Ep , choose
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and calculate the corresponding £ For ko:z-:i wve get
in (2.2a) two figure

R,
W 0
. See Table II.

Then with the correction term

6‘::."034 .
accuracy is achieved over the range 0L T< 4G

Fexr > O4)
For this case, the regular perturbation procedure will not

CASE I1II
Attempts at multi-scale expaﬁsions

yield a uniformly valid series.
will also fail. A set of scale transformations can verify these

statements. ‘
Assume, for definiteness, that @ ) ’X}{TV o
- e T ~ ev 2 \/),O’T"?

Make the following transformations:

TV=¢etTv .
— _LE
4< v ) -
- and :i—t"_—-_ £ Finally, pqt

The syétem (0.13)

. ér - , ,
Then ag= 4p ad 2= F 2
AF
0“;&41

becomes
®

=1 = ~L

dieTl= £ £, (g~ T)

§("9 A= € 4,t9)
Av

amd —F U= 520 0
. ' ' v :
Now we can write &g itlz’%‘? A &g tc} where for some

— 7 w2t 5
9= T =9 g Ay
®(4,TI=0
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%0, &p () < O(t""s) . It follc;ws that

S
I —_V L Jv-$
e, (svF)=. T 4+ OlevT ),
Assume a regular expansion of the form
- b .
, K= 2;: £ .r&;[q,1:)

¥ ) g”z (T
b=o

The first order system is therefore (dropping_the bars)

de,

< - ')_v;, o . ar o

93

. o v ~ |

T"‘,‘j’oiz’. o
© .‘ &ro i
énd'- - T:’ L’i.'c):.'. ;:; | .

Thus the first order system incorporates the leading growth behaviour.
Any multiscale expansion procedure would have this .system as its first
order problem. But this system is as difficult to solve as the original

. one; hence a perturbation expansion is not useful here,

2. THE CASE £-3 oo

Consider the semi-infinite bar. First note in.the special
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case (0.10) and (0.11) that It admits a regular perturbation
-1 )

expansion in powers of &

& 0
= U-'"6-!—O¢e ).

Hence, we do not expect the expansion in the general case to be of a

singular nature.

Let £-—¥ ‘%‘ ' in (0.10), to give the system
do
€= &~ o &y
¥ dad'
$o0o= &, byt 4+ Hoo= ¢ 53 (2.30)

47(‘1’0‘: 'éo(ﬂ’) 4“"')-"}‘: O .

Examine the melting case where - §H>o . -Then, to support melting,

Ho>o .
Now assume a regular expansion for & and o
o
e __ &
=1 £°7T _ 3
ot o L s o

kR=o
Then the O0(l) system is

A do, o
T‘ﬁ‘)""’ Te - a2 9 y>o | (2.%1)

T, vv= &y Tolee,01=0
T‘, (‘j,a): C&",(‘j) -

The flux condition at y = O no longer contains @ explicitly. The
dependence can be made explicit, however, by using (2.31) at y =

to get
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P e

| | do.
e Vo lo®1= G2

-This .system is ne simpler than the original one, hence again a
perturbation expansion is not useful. Similar comments hold for the

finite bar.
SUMMARY

For the bne—dimensional free boundary broblem we have shown,
for a»selgcted set of boundary cohditions, when a feasible perturbatién
‘expansion is possible. For other situafions, eg. H# 0 in (0.12c), ,
‘or the flux rather than the teﬁperature specified aﬁ x =0 in (O.le),

the approach is the same and the details can be worked out.’

Finally, for the case g£-—3 ,» the expansion techniqﬁes of ’
this chapter can be applied to an n—diménsional.free—boundary'problem
providing the system is rotationally invariant in n-dimensions. Then

the‘equations are, with H(@T)= 0 .

n ' ,
b, + = &= p_ 0cveo

&(c,t)= . } _ do
) éH C e d7r (drt)~ e
& (5 01= &, ()

. L'sd .
With the change of variables 4= 2; the equations become
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| "
:&‘944— ﬂ&‘ﬁ’zg"ﬁ? T T Y ii’@

&, x)= &m + ¢ 47 (4 ﬂ_, 5?—

é@“j,vbzz ‘d?,(‘ﬂ)

o ' a2 ' ‘ A
where E= ';;‘f and O (o)== :ﬂ_ . This problem has the same
structure as those already studied and a similar analysis can be carried

out.
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.= ¢

CHAPTER III: NUMERICAL METHODS

The objective of any numerical calculation for the free
boundary problem is first to locate the boundary & (¥} at time T and
‘then to represent the solution d?(x,t) at that time. For the method
presented in this chapter we accomplish this objective by the following
steps , (.See Figure 3 )

(a) Given the requirer‘nent to solve the problem on [0,T] ,
choose a partition T <Tys-- €Ty, where T.=0 and Ty,="TY .
Let I = [Cp,, Thl.

n .
(b) Pick.an R-parameter family of C (e, o) . curves
: . Then represent g [e "'P]‘ by N L
o(a,, - a,; T) ' oon T .
S o4 . '
T h N 4 )
o',(N): _ [ X,,_,o'(a'-'- ag i T Ty )
- where X,, is the characte:r."istic function with sﬁpport on In and ai
. ' .th . th "
-is the value of the 1 parameter in the j interval. The method
for determining these values i.s"yet to be specified. Let
S ()= o’Lﬂér .- a;-, t’thﬂ)"
(c) For each I~ calculate a solution c(? (x,T-Tg,) to

the heat equation on the domain

| '?h""" (("aT) ' Te L. x €CO,0h(V) } |



- 82 -

o(tl

valid
here

Figuré 3. A'Numérical Scheme for the Stefan Problem
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Subject to the conditions
n o w '
d’x (o, T-Tp )= Hglxd & (o ey T-%, _}=o0

Y i'(.:v~E o
{x,cl= Y ~ |
& 3 4 | {5 Tos Tpo) o<k < Cp lo)

This task is a particular example.of the so-called iﬁve;se Stefan
problem. - The solution ébn Vis thé analytic interpolation function to
be ﬁsed_on the interval In . Note.that the function has been defined
on the interval E‘ﬁ‘K“A~TEh.,:E ‘; thus for numerical pﬁrposes, 4pn

need be caiculated only for small times.

o _ w1 ®
S «{d) -Determine -the parameters {0)‘ }j=| by requiring '
O R ery- - ‘
that " be € [e,7F. Here, use the results of (c) together with
the flux condition at x =¢ to determine these values. (More details
. 1atér.)
To demonstrate the method we do numerical calculations for

ot Bplayel  mni Byr(t,)
1. HEAT FLUX SPECIFIED AT x = 0

' ihe difficult.step in this scheme is step (¢) since , in general ,
" no analytic solutions to the iﬁverse.pfoblem have Seeﬁ found. However,
such interpolafing solutions can be‘calcuiated.for-a special three
parameﬁer fémily of curves. To find theée special solutions it is

convenient to use the fixed boundary representation (0.13) and then solve
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the system subject to all the bbundary conditions except (0.13c).
Even though the domain is rectangular, the equation cannot be solved
by integral transforms in y. or € because the coefficient of. d?“i

is a function of both y and T . To eliminate this derivative put

.w *
&= ve - rlfhen the equatllon becomes
, ‘ . &
{‘U’.,"_'U't} 4+ Uy {1"‘-)4' dr‘ﬁ},

' ) . 2
+ 'v'l{w.,.,.-. Wy § 5 GWy + Wy J= 0

-wvhere b= —‘iq"" . The derivative 'V.j‘ can be. eliminated by setting
) _ ) A : :

v : L R i
W.,= — 34 SO that W= — - ;,‘2- 4+ Fexr) where F is an arbitrary
function. The coefficient of \» ‘then becomnes

[4v¥_ 582 g™ {47206 .

. . ;’ ) ]
~ First set = % = . The <T-dependence can then .be eliminated -
provided
on . - ’ o o ) .
YE_ L8 pem comee. R I

Differentiate this expression with respect to T to get y—qg -

Integrating three times, we have then
o= (at?g brayc) .

The transformation of the dependent variable can now be written



d?== J& & , - B {3.2)

| El .
Vylotl== He(D o (@)= g3 U TI=0

‘ ' LN
Viy,o)= dly) g1 ™ .

For the numerical calculation we choose a linear boundary o= at+ bt ;
which is contained in the three parameter family just derived. For
this case it follows from (3.1) that Co= O  and the equation for U

reduces to

1

'\f,’_,::—. 2 UL, (%,5")
In thé kth_ time step ¥ then satisfies ﬁhé boundary'conditionsv
AL, H 3 |
. o e | v ,
vV (4,t)l= O B _ (34

| | (o)
e 1+ k-t T 9 R
gty (‘j,o]-’-’- a';:(o) d) (’OL ted, Tk-.~T§2~2) e 4 = @O ﬁfﬂ?

‘wheré
fb(t‘z e 4 bh (¢- Tk-‘l ) . b/

Here ay -is determined by continuity
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ak‘:" Jk (.T&~1¥: O’k“’i (T&_,&)

and bk is detérmined by matching the flux condition at Tk—-l H

1 |
l’k-‘— - ed, (op_ (tes?, T - £3.5)

-1 :
Since @ has already been calculated from the previous step and does

not involve bk , the equation is as explicit as it appears.

Now, omit reference to the time step. Return to (3.3) and

put .
_ [" gt _ ¥
=), s2c) T atar )

 Then (3.3) becomes simply Ugey= 'U'P_ .. This can be solved by a

Fogrier t'ransform in y . With \’h:-. (n-,fi)‘lf', h= 1,2, - and
oo 4 , :
’\fh..—:_[’ V cosVe Y dy fve havg
4 Vv, = G
~ which has the solution

(L 'U'h (0) 4 Ih (EL‘) . . v | (;,b

Where' vhlo)z L @o“j1 C"Q"’h‘j ca;,, " 75
B » '—‘,1.( o ) ‘ _ ’ -
and Ty (p)= Ig Gl g " " E_‘ AF . (3.8)
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The initial value integral (3.7) can be approximated by the

simple quadrature

p-1 b _ _
Vi, to} ~ ) { Qk L coSVp (3, + 1) 4>

X < 4 )
— 4]
4 &M;;__.__.&h jo N eosd,, (i +20) dn
vhere Xg= (k-—‘)'h, h- pe—1 and @h: ®¢ (‘)Lk). . This is a

simplified Filon quadrature which was found to be adequate for the
present calculations. For N = 10 the quadrature was accurate to four

significant f_igurés over the range O£V, € 25

As for the boundary'integrél (3.8), note that the calculated
solution is to be used only for small time increments, hence small fa
Since o has alréady been approximated by a linear funétion in thesel
time steps, there is no significan; added error in linearizing the

boundary condition at x = 0 as well. Hence, represent G() by the

linear approximation

- Clpel— Celod o
Gpl~ Gl 4+ T g Lo 0L P

The integration can then be carried out to give .

o ol p, Vol G- G ; LI

Finally, the solution to (3.3) has the expansion

Vly,pl= 21 V() cosvViy .
, . ey :

So from (3.2) the interpolating function 47 can be written in the

original co-ordinates as
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3 3%
etbyg M&Hbﬂ} aa“'( &%bt)

This expression can be differentiated term by term to find @Q&(CQ‘I§

as required in (3.5).
) . bk
With the above representation for the L% , the method can
be checked against a Neumann solution similar to (0.14)

7.

@(u.-j)-—“fe t 4

v‘h’

where j:;‘[z;;; and A satlzfles the transcendental equatlon‘
EH_ =Ae2 .

Initialize time at T = 1 and choose A= -5 and Ho =1,

Then & = .6420 and 4?N is a solution of the free boundary pioblem with

the heat flux

Pl

Hg tti= (A+7)

and the initial condition

4 3
&, (x1= fx e 145 | oexga

The corresponding free boundary is

L
cx= (s )t

For the numerical calculation equal time steps are chosen-
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: . . ° x ., ' .
and the temperature is computed at fixed y = - intervals. In this
co-ordinate the exact solution is time independent and comparison with

the exact solution is easier. See Table IIT.

With a step size of AT = .1 the calculated temperature was
accurate to within 17 except near x = 0 . The error is largest at
) 1
this boundary because the Fourier series representation for the tem-

perature converges most slowly. The error in the free boundary g is

larger; it grows as .03%T.

' 2. . TEMPERATURE SPECIFIED AT x = 0

For this case; to determine the interpolating function we
must again solve (3.3) for VW . The boundary conditions (3.4) are the

same except that at y =0

_vvbl".‘ﬂr- C:Ps(t'—u--rb_ﬂ)-o’k_(ﬂ%‘z- Ve (t)
" Hereafter, omit reference'fo the ;ime.step. Solving thé equation by
Fourier tfansforming in y. leadé to a sine series representation for

4# . This series, however, is not suitable for numerical calculation.
At k = 0 it does not converge to §{o,¥) and converges only very

slowly for x near zero. Further, the series representation for ék_

at x = a + b7¥T does not converge at all,

These problems can be eliminated when (3.3) is solved instéad

by a Laplace transform in the variable



T
aflas by

b=

The solution can then be written

where Uu and 'U-@v are defined in Appendix TI. He'rbe identify -

@sit\ of the appendix with P(x) .

Consider first the boundary term VE;V . Expand the integrand of (11.3)

ginh s (1-9) g (im‘gy — [P (24 7;-'
Y | )
Sinh Jp - Z { © - 6 | . }

and use

0 b
! P(ﬂ e dp

mn

= 0 ¥ pu-gr & e

— (3 4Y" '-—-—(‘lkf‘ﬁ)ze

2¥+y e FpE pé
VY, = - { e Awe BEi P(-L)
8v de
" o QJF‘ o i+ ¢ ise
_wersy o _meszogle
_ 2Ty O Tap j e ¥ pL—F ) Ac}
2 ’b,o o r——-———e’% c : i+ L& °
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As in the previous problem the boundary condition at- x = 0 can be

linearized. Here, using the approximation

o 4e

Jeads to the problem of evaluating integrals of the form

. oo
: , S b )N
o —A €
. - %
Leor= § ¢fueer ¢ " ae
. 13 e ’ .
for a=0,1;b=- 55 Rather than evaluate the integrals

directly, use the identity
T, )= CU+a) Ulisa, 24asb,2)
4A.,powér-k éerieS' represéntétion for Lvs can then be used when

)é 5 . For A > S . a one term asybmptotic expansion for

A-y» 0o gives anvaccurat'e result. ( See [17].)

' - For the initial value term a similar calculation 'yieldé the

representation

Ve L Lew G
[oenlc S, [y
149(9 %,{& ‘:*Tz_f.ﬁ) | ;(%41&42—41”‘}
+ e AW
{e(ﬂi%%.;& (1;;249) }d%’
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To calculate UIC -, integrals of the type

— é(%+ ay”
I" I & iz : A:{Q— 6;;70

must to evaluated. For a large range of @ the Filon quadrature

pa—1

| SO _ _.eu Fgeal
I~ Z_ 47 [ .._e(%‘lr?'b% )& . Z’: d_?ﬂ:ﬁ_.‘ﬁi‘[ 4. &
_ K=o . :

- gives good results. Here h- A M :l'k: R and ¢tz d)(?k,)

The éxpansions (3.9) and (3.10) together give an
expansion for W . The expansidn for 47 can then be found

from (3_2) .

&%-.

- With this method of representation the numerical calculation

. was -checked against two exact solutions. See Tables IVa, and IVb.

(a) A Stefgn solution With j: <o -
" +T—
Ttl= {7

- . do :
(b) A Neumann solution with :‘—; > o.

In (0.14) initialize time at T= 4 and take the particular case

t
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The calculation was .done with .step.sizes AT between
-+l and .5 . Then with at most two terms in the series (3.9) and
(3.10) the accuracy for the temperature was .5% while for the free

boundary ¢ an even higher accuracy of .1% was achieved.

"3. DESCRIPTION OF A FREEZING LAKE

‘ The numerical tgchnique can‘bé applied to a sbecial two
‘phase ‘problem - the freezing of a ~shaliov; Take. ?(*};“i-g. 4 ) A‘-l‘évk-.e
is considered shallow when during‘the'périod of freeéing.the effect_
of the lake bottom must be taken into éccount, |

.Let FT; be the period in‘Which freezing takes place.

Then ihere are two possibilities:..

(a) If '5(1:,),.0 s clearly't_he bottom .niust b-e included in_:'_
the deséription. Fof the lake we study, fhis is not |
the case.. |

(b) Even if s(ﬂ;)~a(1_ the heat flux from fhe bottom of the

’lakebmay affect, through diffusion, the water temperature

near the top of the lake.
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- Figure 4 Cross-section of a shallow lake
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Consider the second effect.- In the limit $CT Y~

the water phase can be approximated by the fixed boundary problem

&, ‘
My ——— = ?éy’ o< x< b
2x2 3t

with the boundary conditions

- ky, 3&w(H'fL_ Hrop

where WKy 1is the diffusivity and e, is the conductivity

of water. The physical heat fluxes are approximated by.their time
, Heop. ,
averages over the freezing period. Let R = -ﬁ—" = ctoh;w,
LN ¥°2 8

The solution can be writteﬁ as'
b= {u, (432 ) 4 Phrar cﬁu,ﬂ’k o

. = ‘b ot L‘)‘ ‘t’] 4~ dz‘op ‘t’)
where v : S,
| e & {(2&41)H+x] {2cs8 %}

T 4e-EY
e e, [ ey
b:—'o ’ - :

4%

Vi-T

P
&tltk=~ ?F’

The.effect of the bottom will beé_oﬁe significant 'fo‘r a dépth H
Poch ther kLl M’gww I ac?f._,., (1, 7§

2%
This will hold only if it holds for the le—  terms in ‘the sums
‘ u? it
482, T

for 471.‘:? and @g“ . For =

follows that |
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which can bé rewritten as
e %. ' | : ' (Z 411
1- 2(3z) M1, 2,1~ K A

For a given lake this equation can be solved for é
and the critical H determined. If thé lake is shallower than this
H, it can be considered a "shallow" lake.
. We apﬁly the nuﬁerical,method fo an analytic model of .
Seneca Lake in northern Michigan [19] . For this léke, g~- 1!
so from (3.11), e—~,1_§' which iﬁplies a_criticél depth of 10 metefs.
Seneca Lake is 2 meters deép and so can be considered shallow. S
To set up the ﬁodel, first non-dimensionalize with

~ the water parameteré

9!—' g;ﬂ

Y=  T= Wt o=y
_ - for both water and ice .
T — f:i” ' temperatures.

éu: .

For the ice, the equations are

‘z .
?“TI"‘ ?_Tr coLycld o B t2s
Iyz b ox 9 B Sl G

.,T.I (o’,T'\z o (’5.1'?,3
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When the data for Seneca Lake was accumulated the ice was covered by

20 cm. of snow. As a result the temperature &g at the top of the

ice remained constant throughout the freezing period. .

Since: @ileoy— 4 , no initial condition need be specified for

+
the ice.

For the water the equations are:

BQ_:TW - aLPW

— = L <

| TM ﬁ@', T?-”— o

27, H
—P{o,ti= Hglvy —— = |
2y i E ® ey P 'JG[T1 i

For Seneca Lake the stored summer heat provided a heat flux

Hg tx} ,,__f,lgo"'-‘s col/eal Sec This flux overshadows the ever-

6

present geothermal gradient of (o = e /t’/*‘“a’—-cec. -

An initial condition is required for the water

Twily, o= T4, ocyca .

Finally, the flux condition at the intérphase boundary @ (T)

do 27, ' ‘
S vy Tk . 2%, . o
AT x 2y (o e -~ Vow ‘;‘:’fu (o,TY 5 ' o (3.43)

is
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£3. T

¥

where Py ~:... (EE—') E‘w

%w ;'13 g

A two-phase calculation where both the water and ice
temperatures are calculated numerically leads to difficulties.

With :gg:& -4 in (3.12) the iée temperature propagateslalmost ten
times faster than the water temperatures and so makes the calculation
. awkward. -

This difficulty can be turned to an advantage, however, for
the ice equillibrates ten times faster as well. Thus, it is a good
approximation to represent the icé«solutioﬁ by -a perturbatioen-series
in . k" '.and match iﬁ to the numerical solutién for the water at
evefy time step. This results-in.an equivalent one phase problem
for the water with a modified latent heat and extfa heéting terms.

Assume a pertqrbation expan;ion for (3.12)

'T;,‘z ‘7104, pT1+ .« ..
S 4 x

to get

s 'r "’" 4 o .
_ 4L ()¢LPL .f'
‘Therefore ‘
b'l‘r Tg. 2 '. .
(o= TE - v 3T 4T 4 0ud

ThlS expression can be uséd. in (3.13) to give the flux condition
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h ' .
where = A4 Z BTy 4 OWp?)
is the effective latent héat and
| Te |
M“= 'E‘I{i—:} - _grpg% O(@?? —%

is the added heat source. This flux condition can now be used in the
numerical solution for the water temperature.

For the freezing case, TB < O , hence LP <A

and ”‘w <O for small fu .  Both of these effects enter
I - do . :

the flux condition so as to make o more negative as

‘T,B becomes more negative. In physical terms, the lower the

temperature above the ice, the faster the lake freezes over.

* To generate higher orders in }*+ , note that the expressions are
to be used in conjunction with a linear boundary for a given time
step. Thus in the perturbation calculation there is no significant
added error in setting

d¥s | o!’z"r's e
=  4Axk =e F 27';»



- 100 -

APPLICATION TO SENECA LAKE [191]

On December 2nd, after 25 days of alternate freezing and
thawing, a permanent ice cover of approximately 15 cm. formed on
Seneca Lake. The numerical calculation was initialized to this
day. As the ice grew during the month of December, the temperaturé

of the water near the bottom rose from 1°C (Dec.,Z) to near 49C

o .
(Dec 26). At 4°C, water is most dense so that any further heating
from the bottom cf the lake results in convection rather than an
increase in water temperature. This convection is beyond the scope of

the model; hence the calculation was terminated on December 26th.

Further éspects of the calculation are the following:

(a) The heat flux at the bottom was determined by soil
temperature profiles beneath the iake. In the period’
bec 2 - 26 the total heat released to the water was
303 cal/cxﬂ2 to give an average heat flux of
1.45 x l'O-4 cal/cmzfsec. In dimensionless units,
Jg= . o135

(b) Despite the large fluctuations in air temﬁerature,

a 20 cm. snow cover kept the température at the top of
the ice very nearly a coﬁstant -1%. In'dimensioniess

>4

units . = —. 018
(¢) The calculation was started when the ice was 15cm. thick

or in dimensionless units ol = .- 425
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At Ehis time the water temperature was linear in the
depth; for the calculation, the initial\temperature
was taken to be »
Twils,c)d=. o1 (-a25-4)
(d) For the temperatures entering the ealculation, the

C{p) term in ﬁ.;, represented less than a 1%

correction and so was dropped.

In Fig. 5 the numerical calculation is eompared with the
experimental obervations. _
At depths of 50 cm. and 150 cm. the difference beﬁween the
ealculated'temperature and the observed temperature was within 20%
of the observed temperature. Only this rough agreement can be expected ‘

because the instantaneous heat flux was not available and a heat fluyx

averaged over the freezing period was used.

- Finally, Bilello reported that by Dec. 26 the ice was

20-25 cm. thick. The calculated value of 22 cm. is within this range.
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APPENDIX I
MRS C Sy
: e
E . f " r — S e—— F A
xpansion of XIF {r,T A} o(ﬂ+w)r _ f(""“‘g_g,.,) w

'for r= -%‘%: 3 -T_:yco

The function F(T) is assumed to be locally
integrable on (o' o) and to have an asymptotic expansion of the
fo'r"m‘ _ _ .

. _‘rg- ‘ .

Fo- - v % (T.1)

o G-o _
- for T—Y oo, V‘%‘m
‘ 9

CASE 1 Acol®d . T—oo

"The expansion is car,ried out in .two steps.
(a) First expand the 1ntegral for fixed ‘t’ A"70

IF (v, e, A) ~ Z IF (o) Gp(A)
where {Gk(;\)} 1s an asymptotlc sequence for A-*) o,

(b) Then expand the IF (r o  for ‘t_y oo

IF (n1) ~ T IE ‘,(ﬂ H, )
p~o
where {HPL‘G} is ‘an asymptotlc sequence for 1:-—9 oo .

Step (a)
| ~With T fixed at this step, put {(u) ——— P(T‘u ) .

It is then required to calculate the expansion of the Laplace transform
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LS (AY= f fe da (1.2)
fo.r smal'l A . Ve indicate how the work of Handlesman an_d.Lew [117]

..'can be used to complete this step.
| Break up - f— at = 47 - and put
- Star= f1w) B-w) + 4&0 O tu-1)
‘5’ {w) 4 ‘f (u1 .

" Then . H{i [:&] = _‘; u*"—h.a Jdu defines a function
V an_alyti»c' for ¥ 3 vy o for some ©O < a4 .
Even in the case @= 4 , the lim M { 22 ‘exists .
‘ . - >4 .
re, M {. =3 . ~-does not have a pole at F=1
Now for Wo=xpa , ¥ (u) has the a‘sympto_tic :
. expahsion ‘ A o » s : ’ o

4(u1~ ): € o

I e aa" | T
~ where. [ —-k-r () . (1.3)
o ‘:ZZ T G Fer

. and gh = tm4r - ; note that no Sm is an integer.

It follows that. ‘ H}z 2Rd= Jj w -,}(u) Ju
defines a function analytic for Rez < S,
which can be analytically continued to a meromorphic fungtion

with simple poles at = ¢ - and residues Cgy, -
v ”m
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pefine 1 5T3l= M, TI+ HE D
If @< §, , then the integral representations of H‘fi, and H{l
are defined on the common vertical strip S for which
e ?e. 3.< S . The Mellin trapsform

: e 41 v
HfCz3= fow Sty dea

then exists in this strip S and
M fTl= ME[2] , 28 ,

so‘that.lH,'f . is the analytic continuation of Mf .

If." S;.,C o , so that S is empty , the' funétion H,‘f’ -

still plays the role of the Meliin transform. ‘He'reafter, thé- |

distinction between HD’;’ and Hf is sﬁpptessed and the notation

H‘flb is us‘edf: B L | _ | .
. With this def_inition of theA Mellin tran.sfort.n,' bt_:hev-PQarsev.al_ ‘

‘theorem for Mellin transforms is valid:

’ . _ i v
S an= L [ MBI Ma-2T 4y
. Choose . 9(s)= e:'A“ ; then Hg n-11= ria-2) I\% : ‘and

the Brorﬁwich contour A is to be taken in the strip  a< e < 1
. The contour & can then be displaced to the fight to pick up the
poles of M4 (3D and  ['{(4-3) ; since no Sm "is an integer

these poles are simple. This gives an asymptotic exp’énsion for _(‘[,’)_) :

LSCAY ~ 2 POU=S )RS, L Mfeen] EA)

(I».l;)
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where the Cm and S,,, are given by (I.3). Even in the limit

&— 4 the result is valid.

The first sum of (I 4), whlch depends only on the asymptotlc
" behavior of . -f 'w111 be called t_he ASYMPTOTIC contribution: the second

sum will be called the DOMAIN contribution.

Finally, using the definition of “}(u‘) , the results

(1. 3) and (I.4) Lan be collected to give

IF(5T,A) Z_“ rA-m-r) A (r,T,m) AT
+ Eo -y DF("‘C met) A" (1.5a)
' ' (—1) h-—r“. '(.@1' o
where AF(r, T, m)= E: T b F tx) (I.5b)
and PF (‘r,—[. 1) , | is the enalytic cqntinuatibn in
*  of _
. oo :l -1 o ' ( 5¢)
F Adus o : : I.5¢c

This completes step | @a).
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_ Step (b)
The asymptotic ex’pansion of AF (_r,‘[:‘m} “for TY—¥ oo

follows simply by substituting (1.1) into (I.5b)

—k-ry Vg4 k) (T
- AF(r,x m')~ E‘") F [: ( k o a) T (G4 &) .
’ e F oo, Olny R !

(I._6)

The expahsion of DF (r,‘t‘m+1) . for “t._)voo

is more difficult. For. convenience, transform the integral -

. s
(I.5c) to the interval (0,1) with the transformation gge >

~2-1 3. - 1.7
PE(nT,2)= [ (A-u 2-1 (x.7)

“w F.(tu) du

This integrél.is' of the general form

v _ ‘ . o :
| ..T(T]éz J ._ 3(..1') F(‘Cu‘\ da - (1.8)

where 3 -has a convergent power series expansion for ful< 1

3

9(“"‘ Z———- s e .o (1.9)

Now the Mellin fransform of g ,
3

MyTa]= i u%f?l:ﬂ.(u')du

[ =4
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is a meromorphic function with poles at T=—Fk N
k= o 4, 2 - -- ~«In fact, use the series representation-

(I.9) in the transform; since the expansion is absolutely convergent,

integration and summation can be interchanged to get

: o e
M, 2)= PR (1.10)
5 . tilk |
Define
. Y ogaa o
: ‘HF('I.%]z fo 1V Fltu) du (t.11)
then, by substitutiﬂg (I.9) into (I.8) we have
J(xi= E 9.,:, M?(‘(, k+1) . .(1.1'2) o
v‘dh.i.le-vfrom (I.11) we get
o eed e
. ""f{t | Hp(t’~kﬂ~)_}: T F@ 1.13) -

Now use the expansion (I.1). If there is a q such that
r.— E+ 1 ‘denote it by 1‘3 ; then from (I.13)

1—-
- F,
MF (T es1) . ) _,f%r '
. ' 1*ab Ti k""‘a,&l
+ f lrv M,

1 - _r
ke .tkf:l + Tkl

(1.14)
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with the understand:ng that if there is no such flk: the term-
tor o '
3, gEe2 1q‘absent Herg kik— is an 1ntegrat10n constant.
Let G={9,F . Then from (I.10),(I.12)

and (I.14) we get the final form

- e
Fa o Y M, v, B+ lne ek m E 9, Hi
e@° T : q.eQ T k-o -[241

where if no rg; is an integer then (. is empty and the second sum

+

is absent.

This result can now be applied to (I.7) with the
identification |
o ' =3-1 3-4

9“14—* 9}&‘4).’ u—u) (PR
“so that » K '

Mg, [1- r‘l‘j = B2, r2)
vhere B {1 )= * () I () " is the Beta function..
! (24 )

The of (1.9) cah be read off from the expansion
f%b o

myq (V= w” ) (rﬁm 2) “L
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to give finally -

Y ‘
DE (r, % ms1)~ L Ta Blmsd-ry , ©-m-1)
i B QE,Q‘ E A
- m 2 e
4+ lnt ):: (— "i'—é-i_:t"
ﬂhea.kbm ’
Me

r-m?-
+ [: ( )?“fila.lsj

The expressions (I.6) and (I_.lS) are the required expansions
to complete step (b).

These expansions can now be used in (I.Sa) to complete case 1.

CASE 2. A=00 . for T—> 0o

Write A~ A+ A[z.lt] where . Ao is a positive

-constant and Ag, (t\——‘z o for T—>o00 »

As in case 1. the expansion is carried out in two steps:

Step (a) _ L heu _
_ - . e Tw
Wich T fixed, put —ﬂ.n,_ F ) .

3w w)” Tta

It is then requlred to calculate the expansion of the Laplace transform

Lf CAL)= fo frae % B (1.16)

for Ap -3 o . As in case 1, M {1 and H-f.)_ can

be defined.
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Tl;ien, because ‘f if exponentlaily decreasing for W —» to-
M{,_ is enﬁire and M-}-— H*f + M, s analytic for
& 3 > 4 | , . The contour p . in the Parseval theorem can

then be shifted to the right. There is no asymptotic contributiqh;

the result is simply

. ’ﬁ ’
LfTAg) ~ g Bf Temst] (.;f) e (1.17)

Note that the same résult could have been obtained simply .by
expanding the exponential in (1.165. Finally, from the definition

‘of § and (I.17) it follows that

If(ny, A~ L DF(” ) (:.\,?) @

oo uth . A‘,uA-._—. . '
o(u-u)“ v uu)ﬁ’/ du _‘4-_.(1.18b)

where  PE(r,T,ms1)=

| Steg (bl) g

| A The expansion Of D‘:“(P‘L’ miet) - >_for; '[-—yoo

is calculated as in case 1, step (b). | A |
Here, after transforming the integral (I. 18b) to the

interval - (‘_’,4) we get

r—m '
o 9::.(““2 ("‘ “) 'V
so that

Mg:, (-7 = f’(v:nf'i.—— ) U (mast-v, h‘41’r’ A”).
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where U‘_““ﬁ %‘} is the\secon.d conflueﬁt hypergéometric functipn.
The calculatlon of the power series expansion -
9 = E ‘.:hm e u®

is straight forward, but tedious. To the order which ;:he matching

of the integral equatiorlls is carried out, we need only that 9’29: 4

Finally, ‘the result analogous to (1.15) is

. | - F | | |
DF(D"‘C,M}1)~.E .‘i l"(m41 1)U(m+4-ra’m*tl_r’ A

9 £6° T
v [
+ It [ Yon e 4 E 99“ e T peq
‘Lkﬁa,hihf‘ Iui- Thk+4

This completes step (b).

" When (I.19) is substituted into (I.18a) case 2 is completed.



=112 =~
APPENDIX II
The solution to the system
c{?‘ﬁf" & = S('j,’c’) .04*14,1 170
4"6,13\: ég(‘@‘ ‘?(‘(,T"’-O
dly,01= Fuyr |
can be found by using the Laplace transform. The solution has

three contributions:

(a) The initial value term which satisfies

®yy— dy=0

$lo,xl= ¢l4,zl=0o
&t‘],o)#z é,(‘j) .

_ Transform in- T and invert to giye
. . ) l ' . A ’ . W - .
| where ’ : :

o Sirch&‘j Sink fp “-1+ Sivhlpy + .5’.-'*'"&(.%—*))
 Jp Swh/p o '
and' I' is a Bromwich contour for which Rep > o

C"‘"g 1'%“'_‘

(b) The source term which satisfies _ L
®,., - &, = Sty,xy o0cy<a
&le,x1= H(4,x1=0 ' '
Then with S(s, b= X Sty vre av - | it follows

that

) o _ (11.2)
AR | A .fr- Sz 1 Grlp,9,2) o4} o
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(c) The boundary term which satisfies

Ryy— &= O - ocy<d

¢loTi= Zgia1  $l1,T)=0

&lyo)=o v e

with Ti& (p)= /‘0@8(‘1 e dc ‘the solution is

b L ( F,, Swhfpl-) ey
gy(‘j.‘[‘l swe fr‘ &lpl- Sinhdp e A‘, r (I1.3)

" With the solution given in integral‘forfn by (I1.1, 1I.2,

- II.3) both ‘the large T and small T , expansions for-

can be found.
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$(0,7) = e " sin(l)

'sin(x)L _

| ..¢(X,Q) = Sin(lfx) + €f EEETIT

e .

Perturbation Solution to a Stefan Problem
with boundary conditions

b e A e it .

.

sin(¥2 x) ]
sin( v2 )

Comparison with a numerical solution; temperatures compared

at fixed y=x/o

intervals

Perturbation Soln, Numerical Soln.
Pree Boundary
T=.25 1.0219 1.0218 N
Temperature
.0864 .0811 =22
| 3349 .3294 y=.55
«4816 4779 y=.77
Free Boundary
v=,50 1,0386 1.0384
‘ Temperature
1337 .1254 ¥=022
«2608 «2579 =.55
4256 4248 | Y=.77
Pree Boundéry
f =75 11,0514 1,0513,
| Temperature
«1041 .0990 y=.22
.2491 .2487 =255
«3315 «3318 .y=.77
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TABLE I.a

(CONTINUED)

Perturbation Soln, Numerical Soln.
| Free Boundary
v=1.0 1.0613 1.0613
Temperature
.0811 0779 y=.22
1940 .1945 y=.55
«2581 ;2590 | y=.77
Free Boundary ”
©=2.0 11,0830 11,0832 ,
Temperature
.0298 .0285 =422
0714 0713 y=.55
0950 0952 =TT
. Free Boundary |
| ©=3.0 1.0907 | 1.0910
' Temperature
0171 | ,0161 ¥=.22
-0276 .0277 y=.55
.0367 .0369 =77
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- TABLE I.b Perturbation Solution to a Stefan Problem
‘with boundary conditions

| . ¢(0,1) = e-T‘sin(l)

sin(x) » sih(?@ #)

sin(1) N sin( V2 ).]

$(x,0) = sin(1-x) + €[
, e =.5 '
* Comparison with a numerical solution; temperatures compared

- ‘at fixed y=x/o0 intervals

Perturbation Soln. Numerical Soln,.

—— Free Boundary

1=.25|  1,0883 ~ 1.0914
Temperature |

A574 L1496 .22

3967 Ce3927 | y;.ss

5390 | 5316 | y=am7

Free Boundary

~

v=.5 11,1581 B - 1.1617
- | Temperature '
.1301 b 227 | oy=.22
3203 L3131 | y=.55
.4286 . C L4253 | y=T1

Free Boundary

©=.75 . 1.2129 1.2165
.1059 | | - .1004 y=.22

.2563 Sl L2505 | y=ess

.3387 : .3357 . y=o 77
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TABLE I.b

(CONTINUED)

Perturbation Soln, Numerical'Soln}
Free Boundaiy
=1, 1,2559 1.2596
| Temperature
. ,0852 | .0815 y=.22
2038 .1998 ¥=.55
.266T - .2646 y=.%17
_ Free Boundary
=2, 1.3523 1.3562
| Tempefature
. .0336 .0321 y=.22
.0784 ";.0774" 'y;;ss
.1006 ©.0996 y=. 1T
-‘Freé Boundar& |
v=3. 1.3869 11,3015
| Tempefature
,0133 .0132 y=.22
.0308 L0311 y=+55
.0392 =77

,0392
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TABLE II Perturbation Solution to a Stefan Problem
with boundary conditions -

@(O,Tj'; i. + é2$ sin(T)

' S er e (VOD) X))
Cerf(Y(A/2) ) T

S e= 103 =1 ‘

40x,0) = 1. -

Comparison with numerical solution for o(t)

Free Boundary | Free Bounda.‘fy
Time 16 ' o(<)
T " | Perturbation Soln, | ‘Numerical Soln,
1.0 1.1060 1,0995
2,0 | 7 1.2132 11,2035
3.0 1,3042 |  1.3000
4.0 L 13726 | 1.3777
5,0 1,4270 1.4375
6.0 . 1.4839 ] 1.4912
7,0 | 1.5532 11,5523
9,0 1.7020 | - 1.6991
10,0 1.7588 1.7656
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TABLE III Numerical Solution to a Stefan Problem w1th
Boundary Condltlons

1 A - ¢(x 0) = 17--£J/4
l + T x

Interpolatlna temperature found by FOURIEKR T&ANSFORMATION

-4, (0,7) = a |
'Tlme Step . W1

Number of terms in Fourier
Representation 4

Number of nodes in Filon
Quadrature ‘ 10 .

Temperature compared with exact solution at fixed y=x/¢ intervals

Numerical Soln. Exact Soln,

— . Free Boundary

v=.5 1.239 o I 1.225
Temperature
178 o .182 ] yee22
.483 B s | y=ss,
<697 B 1 S.701 | y=aTT

Free Boundary

w=1.0 | 1,438 | | 1.414

v - Temperature
178 0 82 | y=.22
483 485 . - ¥=.55
697 o 1 L7017 | y=.TT

Free Boundary

=1.5|  1.613 | 1,581
«178 ' T .182 : y=.22
g482 ) . ) o ’ 0485 . }"—'—‘-55

.696 | . 701 1 y=.T7T




. - 120 -
TABLE IVa Numerical Solution to a Stefan Problem with
Boundary Conditions

$(0,1) = 1.- et
. $(x,0) = l.—'ex-l : »

Interpolating temperature found by LAPLACE TRASFORM
| | ATime step | .25

Number of terms in
Laplace Representation 2

Number of nodes in
‘Filon Quadrature 10

Temperature compared with exact solution at fixed y=x/0 intervals

‘Numerical Soln, Exact Soln,

e .~ Free Boundary

w=.25 | .7500 7500
Tempergtﬁre
1554 aat6 | y=.22
.2905 - 1 2835 ] y=.55
.3623 " 1 .3588 - | y=17

Pree Boundary

=50 |  .4958 | y 5000

Temperature
.1016 S 1052 1 y=.22
«2502 3 | . 2425 ~ y=055
3279 | - ;3222 o y=lT7

Free Boundary

t:—'. 75 | .2506 ) . . 02500
Temperature
L0517 | .0540 o  y=.22
1223 . .1297 | | y=.55
.1636 01767 y=.T7
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TABLE IVb Numerical Solution to a Stefan Problem with
’ Boundary Conditions s

’ - ' 1 -g?-/l; X B .1' ~£2/4 dl
: ¢(fo)_“ 6 e _idE ¢(x,0)-— £ e '_.E
Interpolating Temperature found by LAPLACE TRANSFORM

Time Step ‘ .5

Number of Terms in
Laplace Representation 2

Number of Nodes in

Filon Quadrature 10
mas Free Boundary . Free Boundary
fme 1 o(w) 0 a(w)
v Numerical Soln. Exact Soln.
1.0 1.0958 . | . 1.0954
2.0 . 1.1829 11,1832
3.0 | 1.2647  1.2649
4,0 13418 11,3416
5.0 o 1.4150 - . . 1,4142
6.0 | 1.4848 © 1.4832
! " ' _
| 8.0 | 11,6157 © 1.6125
9.0 - 1.6775 | 1.6733
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VATER
TEMPERATURE
(°¢)
' 5 o P ' OBSERVATION | _ -
_ CALCULATION
. "+ 150 cm
4 " Depth
3
2
';i 50 cm
. Depth
A : i Y S { 7 A ' L - i 1 S
3 6 9 - 12 - 15 . 18 21 . - 24 (DATS)

Figure 5 Calculated and Observed Temperature Profiles for
Seneca Lake; December 2 to December 26
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