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ABSTRACT 

The macroscopic d e s c r i p t i o n of matter undergoing a phase change 

(the S te fan Problem) can be fo rmula ted as a se t o f coup l ed , non- l i nea r 

p a r t i a l d i f f e r e n t i a l equa t i ons . For the case of one space d imens ion , the 

t h e s i s deve lops th ree approx imat ion methods to s o l v e these equa t i ons . ) 

(a) Asymptot i c Expansions 

With the Green 's f u n c t i o n s to s u i t the g i ven boundary c o n d i t i o n s , 

the system can be t ransformed i n t o a se t of i n t e g r a l equa t i ons . For the 

case where the i n i t i a l phase grows w i thou t l i m i t as x 0 0 , the l a r g e T 

expansions f o r the i n t e g r a l s are c a l c u l a t e d and the l a r g e x behav iour of the 

i n t e rphase boundary found. 

(b) P e r t u r b a t i o n Expansions 
1. 

When the l a t e n t heat of f u s i o n of a m a t e r i a l i s l a r g e r e l a t i v e 

to the heat content o f tha t m a t e r i a l , a u n i f o r m l y v a l i d p e r t u r b a t i o n 

expans ion i n a parameter r e l a t e d to the r a t i o of these heats i s p o s s i b l e . 

The f i r s t few terms of the expansions f o r the temperature d i s t r i b u t i o n and 

the p o s i t i o n of the i n t e rphase boundary are c a l c u l a t e d and found to be i n 

good agreement w i t h the .few:known exact s o l u t i o n s and n u m e r i c a l l y c a l c u l a t e d 

s o l u t i o n s . 

(c) Numer ica l Techniques 

Rather than use a t r a d i t i o n a l f i n i t e d i f f e r e n c e scheme, on l y t ime 

i s d i s c r e t i z e d and an a n a l y t i c e x p r e s s i o n f o r an . approximate temperature 
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i s found f or each time step. This method gives good r e s u l t s f o r the 

temperatures over the time i n t e r v a l s required by the physics of the 

problem. F i n a l l y , the method i s applied to describe the freezing of 

a shallow lake. 
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INTRODUCTION 

There are a number of problems in heat conduction in which 

matter, in addition to supporting thermal diffusion, also undergoes a 

phase change. The problem is usually treated macroscopically; no 

attempt is made to detail the underlying molecular processes which govern 

the phase change. Further, complications due to mass motion (convection) 

are also ignored. 

Within these restrictions the system can then be characterized 

by a temperature f i e l d and the boundary between the phases. The 

evolution of the temperature f i e l d i s governed by the heat equation while 

the position of the interphase boundary is determined by an energy 

balance across this interface. The position of this free boundary is 

not known in advance but must be determined as part of the problem.. 

For these reasons the study has been known as the free boundary problem 

for the heat equation. 

The problem f i r s t arose over a century ago i n the work of 

K. Stefan [1] who studied the thickening of polar ice. In fact, the 

free boundary problem was originally known as, and is s t i l l often called, 

the Stefan problem. The methods he used were extended to describe other 

phase change problems such as the freezing of a lake, the recrystallization 

of metals, or the evaporation and condensation of water. 

The free boundary problem has been studied analytically in a 

few important special cases. It i s instructive to start with the 

general description of the problem and see what restrictions lead to 

these special cases. 
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In f u l l generality the system can be modelled as follows 

JR . R is considered to be a heat bath; i t is a 

source of heat to R but i s unaltered by R . 

(b) R contains a medium with temperature dependent con

ductivity k(4>) and enthalpy/unit volume H(<j>) . It 

is this temperature dependence which characterizes the 

presence of the two phases. In the absence of such 

"transitions both phases, are considered to have temperature 

independent properties. 

(c) The evolution of the temperature ty within R i s > 

determined by the partial differential equation 

(d) If 6) is the volume fraction of the i n i t i a l phase, then 

(a) Let R be a three dimensional region with boundary 

(at) 

where c^ i s the specific heat at constant pressure 

L i s the latent heat; assumed temperature independent. 
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(e) There i s a temperature interval in which the medium 

undergoes most of i t s phase change. Let the midpoint of 

the interval be $ ^ , the length £ . Assume that 

Cp and k can be written (Figure 1) 

where Ag i s a phenomenological function such that 

for £ —» O 

where 0 is the Heaviside function. 

Figure 1: Temperature dependence of c 
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Here "f JT are the assumed temperature independent 

properties of phase I in the absence of phase II; 

analogously for £ k jE ) 

Since most of the phase change occurs in the interval 

•I $ M ~~ f ^ - f r ) i 1 : follows that 

1* 1 ( 0 - 4 ) 
f 1^ 

The volume fraction can then be assumed to have the form 

The actual form i s not important; i t is required only that 

-*$tb-'$tty for 6-^0 so that (0.4) holds for e-> O 

It then follows from (0.2, 0.3, 0.5) that H can be written 

in the form 

where ^ i f * ^ ) i s continuous. 

(f) Finally, the boundary conditions that w i l l be considered are 

(i) Dirichlet conditions; temperature specified on 2 R 

( i i ) Neumann conditions; heat flux specified on BR 



Consider now the t—O limit of the preceding system. At 

a fixed time t , let the surface SQ(t) be defined by (Figure 2) 

In the cases of interest, S q divides R into two regions: R y for 

'4* * ®H a n d f o r 4 " c $ H " E N C L O S E
 e b y a cylindrical 

p i l l box of linear dimensions e . The position of the p i l l box 

wil l vary in time; for v the velocity of y ^ w e have 

Figure 2. The interphase boundary 
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Now for the enthalpy H , 

where >/ = V-lr» for n the outward normal. Integrate (0.1) over V 

Apply the divergence theorem to the left-hand side and (0.6) to the right 

hand side to get 

H i s bounded, hence 1 U <JV- 0 ( t ? ) uniformly in t . The l e f t 

hand side i s O C £ Z ) 

Now l e t £—* O . The sides of the p i l l box do not contribute 

as there, —> O Only the discontinuities of k and H 

contribute at X 0 to give 
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where the plus or minus sign i s taken i f v_ points into or 

respectively. The sign cannot be determined a p r i o r i ; that i s an 

additional input to the problem. 

The next restriction i s imposed by symmetry. Assume translation 

inyariance of the system i n two space dimensions; one space co-ordinate 

survives and the interphase boundary s(t) satisfies . <j?C£Cfc' , ~t}^ Q 

Further, focus on one of the phases. This can be done when the second 

phase is a heat'bath (its evolution would be known and i t s contribution 

to the f i r s t phase at the interface assumed given) or the second phase 

i s removed as soon as i t i s formed. . , 

The equations then reduce to 4 . 

where at . x = 5 6 f ) 

Here, H(t) can be considered a known heat input from the second phase. 

Under these restrictions there are two types of problems 

(a) The semi-infinite bar 
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At +•= O the f i r s t phase occupies the semi-infinite 

interval O^ X. <. Co . The partial differential equation i s satisfied 

on S 0 M < yc<. Co . An i n i t i a l condition 4 K«,o) = on 

(>£ ic c t>" i s needed to render the problem well posed. We consider 

the cases where — > d?t> for "X — > t» ; i t follows 

that 4 > ^ % » ' t ^ - J > 4>0 for X — * t*> . 

Non-dimensionalize as follows: 

fe 
where _& is a reference length and o~7~ • Then, letting 

— ^ — - *^9-M and - — - j — — ifly >̂ C*} and suppressing bars, 

we get 

~ 4 > T <r ^ x ^ Oo . . to.M 

Co 6 i ) 

where £s= ____ is the Stefan number. 
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For d e f i n i t e n e s s , assume and take the plus 

sign i n (0.8c). We r e s t r i c t the study to the cases where ~r~ "> o > 

these cases describe the melting of a slab. 

For c e r t a i n boundary conditions, closed solutions can be 

found a f t e r an appropriate change of v a r i a b l e s . 

With the transformation M _ , (0.8a) becomes 

CO 

where f— - ^ c f a , while the boundary conditions transform 

For l - ^ — 7 = a s o l u t i o n i s 

J x - — A — const; hence & — / 2 X T 

and ©c? A-«* 

4 e~ "5
 *1 

The temperature d i s t r i b u t i o n s a t i s f i e s , i n the o r i g i n a l co-ordinates,, 

the i n i t i a l c o n d i t i o n 

0 Jt >o 
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and X satisfies the transcendental equation 

This i s a Neumann solution [2] presented by Carslaw and Jaeger [3]. 

There i s a minimal H q required to support melting i.e. for which 

( 0 . 9 ) has a real positive solution. We shall find this H q i n 

Chapter I. 

Another simple solution arises from the transformation 

v|_ <T » ' Then (0.8a) becomes 

while the boundary conditions transform to • 

city* 

For W l t ) = M 0 assume cn= | A 0 T . Then i f <j>„i.,)_» jg 

we get 

i 2- — M 
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where U_=r ^ l O , 1 l ) 

This i s a solution f i r s t found by Stefan [ 1 ] . 

(b) The f i n i t e bar 

For $C«»1» O we look at the problem complimentary to 

the semi-infinite bar; rather than examine the diminishing semi-infinite 

phase, we treat the problem of a growing f i n i t e phase (which at \— Q 

i s not present). 

For SC**} > O the f i r s t phase occupies the interval 

•0£.v>c at t = 0 . Here s may increase or decrease. In both 

cases the part i a l differential equation i s satisfied on "Sc <• • 

Non-dimensionalize as follows 

where Si<^ i f S t * 1 > o , otherwise is a reference length. 

Letting _f »"4?*Tr* a n c* s u P P r e s s i n § bars, we get 



If <T(o)— o no in i t ia l condition need be specified. If <J"C"1 > o 
(hence &{ft\= 1 ) an in i t ia l condition is required: 

4>(*.~w .o^**.* lowly 

For the condition at x = 0 either the temperature 

is specified, or the heat flux 

is specified. 

For definiteness we choose the minus sign in (0.12c). Let 

the problem (0.12a-0.12e) be called £>XC<*1«">, M ") and (0.12a-0.12d, 

0.12f) be called ^ ( ^ 1 , H " ) . 

To get a closed solution, again let to give 

with the boundary conditions 



and i f « r (.<=>}=-- ^ 

For ^Ul=s 'cffw-J-t- , the problem *>) has a s o l u t i o n of 

Neumann type: 

4Vl£**!>)« ^& 5 

hence 

Here i s a parameter which i s the s o l u t i o n to the 

transcendental equation 

e f ^ ^ e . ( C M * . ) ) 
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The boundary conditions at X=«r(x) in both (0.8) and 

(0.12) are non-linear in <J~ ; hence the free boundary problem as a 

whole i s non-linear. As in most nOh-linear problems i t has been 

profitable, not to search for more closed solutions, but to develop 

effective approximation techniques. The principal results of this thesis 

are conclusions about the effectiveness of these approximation methods. 

(1) Asymptotic Methods 

In many practical cases only the behaviour of the free bound

ary <3*(?ty is sought. For example, as a lake i s freezing over, i t i s 

usually more important to know the thickness of the ice rather than the 

temperature distribution of that ice. 

In particular, knowledge of the i n i t i a l CT—^O) response of' 

<y to the boundary conditions may be sufficient. Such small time 

expansions have been calculated for <y in system (0.8) by Boley [4], 

Landau [5] and Evans et a l . [6]. In each case the authors transformed (0.8) 

into an integral equation for CT . The free boundary was then expanded 

in an asymptotic power series in J~X 

and the coefficients CF^t were found by matching l i k e powers of Jx 
"X- • 

Although i t has not been done, the same approach w i l l work for system 

(0.12). 
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There has been no d i r e c t attempt to f i n d the X * — 0 0 

response of <T to the boundary c o n d i t i o n s . However, p r o v i d i n g cr—^oo 

as X—*r 00 , the work of Cannon and Denson-H i l l [7] can be used i n an 

i n ve r s e problem where the l a r g e x* behav iour o f a r i s s p e c i f i e d and 

the boundary c o n d i t i o n which g i ves r i s e to t h i s behaviour i s e s t ima ted . 

They show tha t f o r any C T C T Y > the temperature d i s t r i b u t i o n 

i n 

s a t i s f i e s 4**.— 4 V a n d t * i e f o l l o w i n g c o n d i t i o n s at x = <J" 

I t f o l l o w s tha t 

An asymptot i c expans ion f o r cr^ can be s u b s t i t u t e d and the behav iour o f 

*|y{«=>,-j") e s t ima ted . For example, i f <rv- | * X * f o r | * > « » j «»•> JL , an 

easy es t imate g i ves the bounds 

I t i s shown i n Chapter I t h a t , p r o v i d i n g tr~^oo as X — > « o , the 

l e a d i n g behav io r o f tr depends on l y on the boundary c o n d i t i o n s as 
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"X co and not the i n i t i a l c o n d i t i o n . Hence, es t imates l i k e 

(0.15) do not depend on the p a r t i c u l a r i n i t i a l c o n d i t i o n which Ay 

s a t i s f i e s . 

Gannon and Densbn-H i l l used the above es t imates to s tudy the 

monotone dependence of the f r ee boundary on the boundary c o n d i t i o n s , 

and not p r i m a r i l y to o b t a i n an asymptot i c expans ion . Thus t h e i r method- i s 

o f l i m i t e d va lue i n c a l c u l a t i n g h ighe r order terms i n the expans ion f o r 

CJ" • In p a r t i c u l a r , the e f f e c t of an a r b i t r a r y i n i t i a l c o n d i t i o n 

cannot be c a l c u l a t e d . 

Chapter I develops a method f o r c a l c u l a t i n g to a l l o rde rs the 

l a r g e "T behav iour o f cr f o r both systems (0.8) and ( 0 . 12 ) . Here the 

i n i t i a l c o n d i t i o n s present no d i f f i c u l t y i n the c a l c u l a t i o n . 

(a) The s e m i - i n f i n i t e bar 

For the system (0.8) we f o l l o w Boley [4] and extend the 

space domain to o& tc <. <c» a t the cos t o f i n t r o d u c i n g another unknown 

4** l<\-c1» F l T l • The equat ions can then be so l ved i n c l o s e d form 

on t h i s domain. When the boundary c o n d i t i o n s at x = cr a re imposed on 

the s o l u t i o n a p a i r of coupled i n t e g r a l equat ions f o r CT and F 

r e s u l t . 

The a n a l y s i s breaks up i n t o th ree separate cases a c co rd ing to 
A c r * 

whether f\— approaches z e r o , goes l i k e a cons t an t , or 

i n c r eases w i thout bound as T~ y r p • 
F i r s t , the asymptot ic expansion of the i n t e g r a l 
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for T—^r 0 0 must be calculated. - j 

For A - ^ O C ^ ) t^ i e starting point i s the work of Handlesman 

and Lew [8] who use the Parseval theorem for Mellin transforms to 

derive an asymptotic expansion of . , . 

ij T C * * } C du 
° 

for A—̂  O . I n the case their method raises the 

second problem of calculating the analytic continuation in z of the 

asymptotic expansion of , 

for T".—*r ao . These expansions are carried out in the Appendix to 

Chapter I. 

For A > O ( l ) the integral (0.16) can be expanded by 

standard steepest descent techniques. 

It i s then straightforward to apply these expansion techniques 

to the integral equations of Boley. The main results are the following. 



[1] To support melting ( > o ) the heat flux H cannot Ax 
decrease faster than pr -t-*» ("p.) , X~^r  0 0 where 

[2] When H has the form jffff * "^j^ , x 0 0 t h e n 

A - ^ o - I n particular, when H - fe 4- ^ + * ' M A > ^ > 1 

then <r = O C X 1 " 5 ) for S-c i and O0»»x") for. S - 1 • The heat 

flux contribution dominates the i n i t i a l condition contribution to the 

order calculated. 

[3] When H is of the form M= j=f 4- "^j^} , T , - > « » where 

H,> then A= Ô ") • I n t h e c a s e where H =. ~!= + * 

the i n i t i a l condition dominates at the second order in the expansion of 

the integral equations. It follows that <r, J T -f- -̂̂ -j.--- where 
A „ i s the solution to (0.9) and A p . can be expressed e x p l i c i t l y 

in terms of and j f d+ . . . 

[4] When the heat flux satisfies M > Ot^) , then A—?- 0 0 

For the particular case H = O C T * * ) > b >— - L i t follows that 

0"=r Ô -l****) • I n general, when A is unbounded the i n i t i a l condition 

contribution i s exponentially small relative to the heat flux contribution. 

For this reason a perturbation procedure applied to the partial differential 

equation gives the same results as the analysis of the f u l l integral 

equations. 
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(b) The f i n i t e bar 

For the ana l y s i s of (0.12) we follow Friedman [9] and 

Sherman [10] to generate an i n t e g r o - d i f f e r e n t i a l equation f o r CT 

The techniques developed i n the study of the s e m i - i n f i n i t e bar are used 

to analyze the dependence of CT on the boundary condition at the 

fix e d [x~0] end. 

Here the major i n t e g r a l to be expanded i s 

, 5 t 

Nevertheless, the ana l y s i s s t i l l depends on the behaviour of A"=" 

as *XT • *̂  oo • 

The problem %>T.W%°\ i s analysed i n the cases ^ 0 ( 1 " ) , 

the problem (ii**) when A > 0(^1 . The main r e s u l t s are the 

following. 

[1] With 4-to ,-c1= ~ $<ST""%V o ^ v ^ l 

follows that A--2̂ - o and the free boundary cf has the leading 

behaviour • ̂  j- • 
l - v . 

12] I f 5 g W - $ § J > t h e n A = 0(41 and <?^ JT\Jv 
where X̂ , s a t i s f i e s (0.14a) 

[3] I f _ 4>*C«vO«-Hs&;l ' A > - x 
then A*-**eo . The behaviour of a~ for t h i s f i n i t e bar case i s 
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compared with the behaviour for the semi-infinite bar undergoing the 

same heating, but at x = cr . The free boundary <j" grows slower 

in the f i n i t e bar case. 

(2) Perturbation Methods 

The f i r s t suggestion of a perturbation procedure appears in 

a paper by Landau [5] who studied in a particular case the £ — > o and 

co limits of the semi-inf inite bar. Sherman [11] did a 

detailed analytic study of the case but the results are not suited 

to numerical calculation. 

In Chapter II we study the conditions under which the problem 

(J- j-C* 5) admits an expansion of the form 

e f c T c w o - « S e^crv . ( a 17) 

Even though these expansions are in fact asymptotic expansions ordered 

with respect to the parameter £ , the methods used to derive them 

are distinct from those of the previous section. To make that distinction, 

the expansions (0.17) will.be called perturbation expansions. The main 

results are the following. 

[1] When x \ i~ Q ( i l f° r T " — ^ °° > a perturbation 

expansion for and Yz=.J^<s'*~ , carried out in the fixed boundary 

co-ordinates Cy=Jr"jT) w i l l be uniform on o ^ y ^ 1 , T > o 

In most physical problems two terms of the expansion give good results. 

In the case that 4>t.<'«x̂  ^ s oscillatory the regular 

procedure produces secular terms. These terms can be summed, however, 

http://will.be
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to produce a uniform expansion. The specific case 

<d> (~, =. 4- S'm .ax

i s worked out. 

Finally, even i f £ i s not small, the perturbation 

expansions can serve as asymptotic expansions for T — - • s > « « 

[2] If ^ f o T j ^ O f r O for X — t h e regular 
perturbation expansion f a i l s to be uniformly valid. In fact, after the 
independent and dependent variables are rescaled, the f i r s t order 
system incorporates the leading growth for <5~Cx7 but i s as d i f f i c u l t ' 
to solve as the original system. 

[3] A regular perturbation expansion for *Tct> also 
exists. However, by a rescaling of the variables, the f i r s t order 
system can be shown to be of the same d i f f i c u l t y as the original 
free boundary problem. 

(3) Numerical Methods 

There have been many types of numerical calculations for 
the free-boundary problem. 

One approach i s to solve the general problem (0.1) where the 

phase change occurs over a f i n i t e temperature interval. Although the 

enthalpy and conductivity are then functions of temperature, the domain 
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f o r the p a r t i a l d i f f e r e n t i a l equa t ion i s f i x e d . F u r t h e r , the method 

can be formula ted i n any number o f d imens ions ; the two d imens iona l 

case has been c a l c u l a t e d by Hashemi and S l i e p c e v i c h [12 ] , the th ree 

d imens iona l case by Meyer [13 ] . 

For the one d imens iona l c ase , when on l y the boundary c T i s 

r e q u i r e d , the i n t e g r a l f o r m u l a t i o n o f the f r e e boundary problem can 

be used . Chuang and Szeke ley [14] d i s c r e t i z e d the t ime i n the i n t e g r a l 

equat ions o f Friedman and so l ved f o r <T" a t the d i s c r e t e t imes . 

F i n a l l y , i n one d imens ion , when both the temperature and the 

boundary a re to be c a l c u l a t e d , f i n i t e d i f f e r e n c e schemes are used. 

A c l a s s i c paper on t h i s method i s tha t o f Douglas and G a l l i e [15 ] . 

In Chapter I I I we i n t r oduce a s em i-ana l y t i c approach f o r the 

s o l u t i o n o f the f i n i t e ba r . Only the t ime i s d i s c r e t i z e d and the 

boundary <r approximated by a s t r a i g h t l i n e i n each t ime s t e p . In 

each such t ime i n t e r v a l the s o l u t i o n to system ( 0 . 1 2 ) , s a t i s f y i n g a l l 

the boundary c o n d i t i o n s except ( 0 . 1 2 c ) , i s c a l c u l a t e d . Th i s s o l u t i o n , 
t i l 

which s t a r t e d at the beg inn ing of the n t ime step i s then made 
to s a t i s f y the f l u x c o n d i t i o n (0.12c) a t the end of the n ^ s tep to 

s t 
c a l c u l a t e the s lope of <T f o r the (n+1) s t e p . 

Th i s method was f i r s t suggested by G. W. Bluman [16] who used 

the theory o f L i e Groups to show tha t such an a n a l y t i c i n t e r p o l a t i v e 

f u n c t i o n i s a s i m i l a r i t y s o l u t i o n to the i n ve r s e S te fan problem w i t h a 

l i n e a r f r e e boundary. We de r i v e the same s o l u t i o n by a s i m p l i f i e d 

method which has the advantage of more d i r e c t l y i n c l u d i n g the case of 
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inhomogeneous boundary conditions. The s o l u t i o n i t s e l f has two 

possible s e r i e s representations; which representation i s chosen depends 

upon the boundary conditions being considered. 

The cases where f i r s t the heat f l u x and then the temperature 

i s s p e c i f i e d at " x = 0 are solved. These cases demonstrate where 

each representation of the a n a l y t i c s o l u t i o n i s more e f f e c t i v e . 

F i n a l l y , the method i s applied to the problem of a shallow 

lake which i s f r e e z i n g . We take advantage of the d i s p a r i t y between the 

' d i f f u s i v i t i e s of i c e and water to reduce the problem to an equivalent 

one phase problem with an e f f e c t i v e l a t e n t heat and e f f e c t i v e heat 

-source. The r e s u l t s of the numerical c a l c u l a t i o n are compared with 

the data for a shallow lake i n northern Michigan and are i n good 

agreement for both water temperature and i c e thickness. 
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CHAPTER I: ASYMPTOTIC METHODS 

The o b j e c t i v e of t h i s chapter i s to determine the l a r g e X" 

response o f the boundary c r to the i n i t i a l temperature d i s t r i b u t i o n 

and the s p e c i f i e d boundary temperatures o r f l u x e s . These boundary 

temperatures o r f l u x e s are to be s p e c i f i e d a t x = cr f o r the semi-

i n f i n i t e bar and at x = 0 f o r the f i n i t e b a r . 

The a n a l y s i s i s r e s t r i c t e d to the cases f o r which CF_2».«*D as 

V « o . I t f o l l o w s tha t the boundary c o n d i t i o n s p rov ide the 

l e a d i n g c o n t r i b u t i o n to the growth o f <r w h i l e the i n i t i a l c o n d i t i o n 

c o n t r i b u t i o n en te rs o n l y at h ighe r o rde rs i n the l a r g e X " expans ion 

f o r cr • 

The cases of the s e m i - i n f i n i t e and f i n i t e bar a re s t u d i e d 

s e p a r a t e l y . We beg in w i t h the s e m i - i n f i n i t e b a r ; the equat ions are 

e a s i e r to ana lyse and g ive d i r e c t i o n to the d i s c u s s i o n o f the f i n i t e 

b a r . 

1. THE SEMI-INFINITE BAR 

The system to study i s ( 0 . 8 ) . S p e c i f i c a l l y , choose the p l u s 

s i g n i n (0.8c) and take $ M > 0 • T h i s s i t u a t i o n d e s c r i b e s the 

m e l t i n g p r o c e s s . 

F o l l o w i n g Boley [ 4 ] , extend the space domain o f (0.8a) from 

(<5", cp) t o •i c't o c ) . T h i s i s done at the cos t o f i n t r o d u c i n g another 

unknown which Bo ley chooses to be the f l u x at x = 0 
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* £ O . T 1 — F ix) 

Then solve instead the problem 

4***.—.  o £- x • • .n-\+) 

The solution to (1.1) can be written in terms of the functions 

tyo* •% both of which satisfy (1.1a) a n d 

1*** o 3 J > I * « , T I=- o <fcl*v 

3ac % 

This gives 

± i r e . ± -*ct--̂ i •» 
where Gr U , T ; J - . f W - p i - J 

are the even and odd Green's functions for the half-plane. Finally, 

from the Duhamel theorem [3] the solution to (1.1) can be written 
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Note that the conditions (0.8b) and (0.8c) have yet to be satisfied. 

It is the application of these conditions that determines the equations 

for O-fT) . 

Before applying these boundary conditions we point out that 

the bar may have had a heating history before melting commenced. It 

is this history that determines the temperature distribution at the 

onset of melting i .e . ( p ^ t x l of (1.1c). Temporarily, let X== 0 
A. 

mark the beginning of this history and <J7 the temperature distribution 

during this in i t ia l phase. 

. Then, since there is no melting, the true space domain is 

£ c , c » ^ and system describes the physics exactly. In this 

case F(x) can be taken to be a known flux. If, for example, the bar 

starts at a uniform zero temperature and is subjected to a constant 

heat flux input HQ , then set FCT} = — ^"o , > ° a n d 

4^ ix") '= O i n t o get from (1.2) 

Melting wil l then commence at a time T^j such that ^(".T^ra. $ ' 

which can be calculated [4] as 
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With the onset of melting reinstated as T==* o and F no longer 

known, -system (1.1) i s used with 

Now, using (1.2), apply the conditions (0.8b) and (0.8c) 

at x = «*" to get 

To expedite the asymptotic analysis, make the transformation 

i n the f i r s t integrals of (1.3a) and (1.3b) to get 
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where 

l F C < - , X , K l 

and A l r ^ — ^ ' 
4 T 

This i s a set of i n t e g r a l equations f o r F and cr . Although only 

the large X expansion for <T~ i s required, i t w i l l be necessary to 

f i n d the large X expansion f o r F i n the process. 

The asymptotic expansions of F and <T f o r X - ^ « w a r e 

calculated as follows: 

(a) Assume an asymptotic s e r i e s f o r F and <T" 

P —- H P f c Ai , M (1.**) 

where tAtf and are asymptotic sequences f o r X — a n ^ 

(TT %. it- I s c 

1 
- $ M ( x f e * 
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(2^ Ĉ tfc - a r e c o e f f i c i e n t s yet to be determined. For the types 

of heat fluxes being considered, i t i s s u f f i c i e n t to assume f o r F the 

asymptotic expansion 

where o° and V ^ - o , C L ^ O . In pr a c t i c e i t i s convenient to 

leave the asymptotic expansion f o r cf unspecified f o r the moment. 

(b) Substitute the expansions (1.5a,b) into (1.4a,b) and 

generate large X" asymptotic expansions f o r the i n t e g r a l s . 

(c) When the asymptotic sequences -̂ f̂c-T and L ̂ *«-"^ have 

been chosen c o r r e c t l y i t i s poss i b l e to match to determine the 

c o e f f i c i e n t s (T^ . i n p r a c t i c e , once the form (1.6) f o r F has 

been assumed, the corresponding asymptotic sequence f o r O " i s 

determined by the requirement that matching be po s s i b l e . 

Step (b) i s the most d i f f i c u l t . The behaviour of A as 

X"—>cw i s c r i t i c a l . The ana l y s i s d i v i d e s up, accordingly, into three 

separate cases: A^OCO A^OCO and A>OtiV 
as "T** ^ oo 

. In t h i s chapter, the Stefan number S i s a parameter that 

does not enter into the c a l c u l a t i o n s , so without l o s s of gen e r a l i t y , 

set £.— 1 i n C1.4b). 
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CASE 1: J W o for T " — ^ Oo 

To complete step (a) i t i s consistent to assume that V = 0 

in (1.6). 

In step (b) the f i r s t integral to be expanded is IPC^X^A^ . 

This i s a complicated calculation and i s done in Appendix I. For 

reference, the result i s 

4- U ^ , ^ F U ^ o A % 

The f i r s t sum i s called the asymptotic contribution and for T — ^ Q° > 

The second sum i s called the domain contribut ion and for . TT* ^ vo 

4- U x L- v. fe 4- L- I w. i r ^ i * 

Here, the ^ for which M 4- i i s called , 

and Q is the sequence I . If Q is empty the second sum 

in (1.7b) is absent. The M{c are unknown constants which 
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can be determined in the matching process to come. 

The next integral to consider i s , from (1.4a), 

where 

a 
6* 

For simplicity, consider the case where 4 ^ * 1 ^ 

|*>0 , X " "y ©° • This i s not an unusual condition; for example, i t 

is met by the i n i t i a l condition (1.2a) which arises when the melting 

state i s approached in a "natural" way as was described in the 

introduction to this chapter. The exponential in (1.9a) can be expanded 

to get 

i H t e n — f OC^) CVio) 

The assumption on the i n i t i a l condition i s not c r i t i c a l . For more 

general i n i t i a l conditions the method developed in step (a) of Appendix I 

can be applied to (1.9b) to generate the required expansion for T — • 
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F i n a l l y , u s i n g (1.10) i n (1.8) we have 

The l a s t i n t e g r a l to cons ide r i s from (1.4b) •» 

The methods j u s t desc r i bed y i e l d the expansion 

T < M T . M « . ^ J;4>-15^57.+ OH*) - evil) 

The r e s u l t s ( 1 . 7 ) , (1.11) and (1.12) can now be used to w r i t e 

the i n t e g r a l equat ions (1 .4a ,b ) i n an expanded fo rm. 

For (1.4a) we have 

.C*=C£.si>-K**i\ti,i) j- D l f j } air) 

- - tuft f I** J E £ + - W 4 5 + Oli.) 
w h i l e f o r (1.4b) we have 
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IT £ 
where from (1.6) I - — ^ } t - ^ c o • 

Examine f i r s t the l e a d i n g behav iour o f ( 1 . 13 ) . The l e a d i n g 

o rder on the R.H.S. i s 0C |̂) , on the L .H .S . the domain c o n t r i b u t i o n 

dominates. To match, s e t 

ST 

then from (1.7b) i t f o l l o w s tha t t>Ft$ ,"* , - ! ) — ^ ,4.") • S ince 

"IT > matching then-gives 

Next cons ide r the l e a d i n g o rder o f ( 1 . 14 ) . The asymptot i c 

c o n t r i b u t i o n dominates on the L .H .S . From (1.7a) and (1.15) t h i s 

c o n t r i b u t i o n i s A F-( . | ; ,T t «>)- ' s o tha t matching to f i r s t o rder 

g i ves 

o r , u s i n g (1.16) and A— 4T V 
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7 c - T W H VWi^ 4^ V > ^ / 

We have assumed that A-> o , hence 0 ^ ) . For 

11 - jrrr 4~ *> V.J» ) t h i s c o n d i t i o n i s f u l f i l l e d . This behaviour 

i s a turning point: f o r M < : melting cannot be supported as then 

~r- <. & , whereas for H> we have A ^ O t f ) . The minimal 
<%x ' — 

H described i n (0.9) i s thus JJ} % 
0 ft 

The matching has been c a r r i e d up to ^ ^ J ^ ̂  . The i n i t i a l 

c o n d i t i o n c o n t r i b u t i o n does not enter u n t i l and thus has not 

contributed to the leading order i n the expansion. 

It i s yet to be determined how Cf-^co . This behaviour can 

be found by matching the expansion at second order. On p h y s i c a l grounds, 

the heat f l u x must be the agent to drive <r to i n f i n i t y ; the i n i t i a l 

c o ndition c o n t r i b u t i o n cannot enter even at t h i s second order. This 

i s demonstrated i n two cases. ' 

(i ) 00 a l g e b r a i c a l l y 

Here the heat f l u x must be of the form 

1 H I + — T + 

where H^ > 0 and -^jCici. • F has a s i m i l a r expansion 

F, 
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Assume also that h^Sjvi^ , ftl^ > a , A0*> o . Then 

Now from (1.7a,b) 

So for (1.13), omitting already matched terms 

The R.H.S. i s of higher order. Matching to lowest order gives 

and 5- -

Note that for we have o<: > so from (1.17) <*"-jy <x» 

algebraically. 

Again from (1.7a,b) 

J X T V 



- 36 -

So f o r ( 1 . 1 4 ) , n o t i n g tha t & 4£.x~\,\ = o and o m i t t i n g already-

matched terms 

The f i r s t term on the L .H.S . i s o f h igher o r d e r . Us ing ( 1 . 1 8 ) , the 

other terms can be matched to get 

so tha t f i n a l l y , f o r (1.17) 

T 
M-SV4-

Note tha t the i n i t i a l c o n d i t i o n does not enter i n t o t h i s e x p r e s s i o n , 

( i i ) <r~vO-» l o g a r i t h m i c a l l y 

In t h i s case the. heat f l u x must decrease l i k e 

H - / i r e . 4 " , x- * 
F must have the same expans ion 

For (1.13) use 
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to get, omitting already matched terms 

The R.H.S. i s of higher order. Assume that 

A ^ A„ v — 7 + - - - 0.19* 
T 

and match coefficients to get the ratio 

In (1.14) use 

so that using (1.19) and omitting already matched terms 

X N/A* X* 

Ci.aoy 

_ x {*ZF* _ it! 1 4 . . .' - . • • 
The lowest order i s OCĵ ~Uvr^ ' Match coefficients and use (1.20) 

to get 

Therefore 2\kv— and f i n a l l y 

Again the i n i t i a l condition makes no contribution to this leading 

behaviour. 
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CASE I I A=OCO f o r X — V o o 

Th i s case a r i s e s f o r a heat f l u x o f the form 

where H Q > . Set A= A,,-*- Ag.1^ where A t f i s a p o s i t i v e 

constant and Ag,t<-1̂ yO f o r T—=J 

To complete s tep (a) i t i s aga in c o n s i s t e n t to se t V = o 

i n ( 1 . 6 ) . 

For s tep (6) the f i r s t i n t e g r a l to be expanded i s I F (j'V.T, A") 

Th i s c a l c u l a t i o n i s done i n Appendix I and the r e s u l t i s 

I F C r , x , A ) - - C t l > t > P C n x , t » * 0 A " (A 1*7 

where 

C F^ 
T -PCJH+I-*^.) X r C i w + i - , r

J » i H ^ ^ r , A.,") 

• 4 - ? i> -«- £ W • 0 i 1 ^ 
Here Q i s as de f i ned i n (1.7b) o r Appendix I,XTCA.V*,-fc) i s the 

con f luen t hypogeometric f u n c t i o n o f the second k i n d , and 

* - r " t n t » . A _°" r- |g-

The next i n t e g r a l s are the i n i t i a l va lue c o n t r i b u t i o n s i n 

( 1 . 4 a , b ) . To f i r s t o r d e r , these i n t e g r a l s have the same expansions as 

g i ven by (1.11) and (1 .12 ) . 
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With the r e s u l t s ( 1 . 1 1 ) , (1.12) and (1.21) the i n t e g r a l 

equat ions (1 .4a ,b ) can now be w r i t t e n i n expanded fo rm. For t h i s 

c a l c u l a t i o n i t i s p o s s i b l e to choose a heat f l u x such tha t the i n i t i a l 

c o n d i t i o n s c o n t r i b u t e at the second o r d e r . Such a f l u x s a t i s f i e s 

A p ** 

Assume tha t Ag,'-'^=,+ and put J^==. J" . Then 

(1.4a) has the expansion 

-ft *• 

w h i l e f o r (1.4b) 

^ r t i ) IT C l , 4, O + 3%. v 4 

F i r s t , matching to O C ) g i ves 

F p t ^ C t i . A > - f „ t v** . t i n * ) 

f v T j r C i . l , A . )= " fe) e*V C t ^ ) 

Nex t , matching to and us ing Ckc = j . 
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H o € A * P. V> \, A „ J 

o 

( 1 2 ^ ) 

F q can now be e l i m i n a t e d between (1 .24a,b) to de r i v e a t r anscenden ta l 

equa t ion f o r A*, ^ 

Compare t h i s r e s u l t w i t h ( 0 . 9 ) . With the A o f (0.9) i t f o l l o w s tha t 

« X 

'•ef1 l, and tha t equat ion (0.9) can be r e w r i t t e n as 

However, w i t h the Kummer t r a n s f o r m a t i o n ^CA«Kl"l= 1 T*(i4a-*»> 1~*?> > 

t h i s equa t ion can be t ransformed i n t o ( 1 .26 ) . Thus, to f i r s t o r d e r , 

the asymptot i c behav iour o f A w i t h H — ' -pr agrees w i t h the exact 

, = ^ = . T h i s i s to be expected on p h y s i c a l grounds 

and i s a check on the v a l i d i t y o f the expans ion t echn ique . 

U s i n g , say ( 1 .24a ) , F q can be e l i m i n a t e d from (1 .25a,b) 

and the s o l u t i o n f o r found 
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where 

Note that i t was possible to eliminate M 
o 

Finally, the expansion for «r" is 

Here the in i t ia l conditions enter at second order. 
CASE III A-> o o for T _ j y o » 

This case arises for a heat flux satisfying 

For definiteness, choose a flux of the form 

H — V 4 0 x 1 ' T — > ° -* 

t»>— . Then to complete step (a) it wil l be necessary to choose 

V> o- in (1.6). 

To begin step (b), examine the role of the in i t ia l condition 
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i n t e g r a l s i n ( 1 . 4 a , b ) . In (1.4a) we cons ide r 

The f i r s t term a r i s i n g from G + i s 

L a p l a c e ' s method then g i ves the es t imate 

As i n Case I and I I cons ide r those 4^ f o r which 4^,0) ^ O C ^ ) 

I* y c? , X — - j . < X > • Then 

and s i n ce <T > A f o r X — i t f o l l o w s tha t T, 4^ i s 

e x p o n e n t i a l l y s m a l l f o r T~=y p « 

The second term a r i s i n g from G + i s 

1 e -

Here the boundedness o f 4̂ , and the Lap lace method y i e l d the es t imate 

where 
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Together w i t h (1.27) t h i s es t imate i m p l i e s tha t X4^ ^ ^ ^ X A ^ ' 

S i m i l a r l y , i n (1.4'b) , f o r 

we have tha t Xcf^ ^ O Cŷ ~ ) ' 

The l e a d i n g term to be matched i n (1.4a) i s $ w ^ • 

The i n i t i a l c o n d i t i o n c o n t r i b u t i o n i s t he r e fo r e e x p o n e n t i a l l y s m a l l 

r e l a t i v e to t h i s l e a d i n g o rder and so does not p a r t i c i p a t e . i n any order 

o f the match ing . The same comments app ly to (1 .4b ) . 

Combine s teps (b) and (c) to ana l yze the f i n a l i n t e g r a l 

With V^ e> T ^ o r XT—^ O C T , assume tha t 

Ac,x**' • Then F c o n t r i b u t e s to the exponen t i a l i n the in tegrand 

of IF to get 

where ^CtO = * (z~tzY^~ A .̂ " 

I f f has an i n t e r i o r maximum at then I F s C I C ' "XZ J 

so to match the exponen t i a l on the R.H.S. of (1 .4a,b) we r e q u i r e 
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" f t V ^ l s 3 • U s i n 8 -f'l**»fll=0 i t follows that U M = 

and -£ ( U H ) so that -f-C^tt) is indeed an interior maximum. 

The Laplace method can be used to expand (1.28). When the 

expansions are used in (1.4a.,b) and matching carried out to first order 

the leading behaviour of cr is found to be 

^ ^ — T
b * * \\,ud) 

For the case b = 0 the result reduces to (0.11). Again, the 

asymptotic behaviour of CT for H—» H 0 , oo corresponds 

to the exact solution for H = H 

o 

Higher order terms cart be calculated in a straightforward 

manner. However, a faster procedure to generate an asymptotic . 

expansion for <T is to use the partial differential equation (0.10) 

directly. 
Take, for example, the case 

\Xl where 

Vl^ lt : )—V o f ° r =̂  ©° . Then rewrite (0.10), introducing the 

art i f ic ia l parameter \ , as follows 

J/r-
where =- j j ^ . • Now expand in powers of A 
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* X Ar- XT* + 

I f Kfc,^ " Cr*6=) A N D — "•CT^) for T — , then with 

A 1 2 3 1 the s e r i e s (1.29) are asymptotic expansions for the s o l u t i o n s . 

The f i r s t order system has the governing equation 

For t h i s equation an a r b i t r a r y i n i t i a l c ondition cannot be s p e c i f i e d . 

But by the previous d i s c u s s i o n the i n i t i a l c o n d i t i o n makes only an 

exponentially small c o n t r i b u t i o n to the expansion for ^A. • Consider, 

for example, the case where U & - » o a l g e b r a i c a l l y . Then a simple . 

c a l c u l a t i o n gives f o r p. ( a f t e r s e t t i n g \=*-\ ) 

Ji=- + i i * . U „ $ H JW„ 

+ exponentially 

small terms . 

This i s an asymptotic s e r i e s f o r X—^oo • to f i r s t order i t agrees 

with r e s u l t (1.28a) obtained through the rigorous expansion of the 

i n t e g r a l equations. 
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2. THE FINITE BAR 

For the f i n i t e bar, the large TT response of the boundary 

<jr(x") to a heat source at x = 0 i s examined. Here, as opposed to 

the d i r e c t heating case of the s e m i - i n f i n i t e bar, the heat source i s 

remote from the free boundary and must d i f f u s e through the material 

before a f f e c t i n g the phase t r a n s i t i o n process. As a r e s u l t , the 

boundary cr responds d i f f e r e n t l y to the same heating applied i n these 

two d i f f e r e n t s i t u a t i o n s . 

The relevant system to study i s (0.12). S p e c i f i c a l l y c h o o s e 

the minus sign i n (0.12c) and take H = 0 . For the analysis an i n t e g r a l 

equation f o r cr must f i r s t be formulated. 

Consider f i r s t the problem as defined i n the 

Introduction. Following Friedman [9 ] , suppose that <*"(*cj * form 

a s o l u t i o n to the problem. Then the Green's i d e n t i t y 

can be integrated over the domain o < X- <• *»"trl ,: o<. £<• T < C T - £ 

to get, upon l e t t i n g o 

Now set )£=<"'Cxi to get an i n t e g r o - d i f f e r e n t i a l equation f o r <rCxl : 
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For -^0,01"1 a similar analysis gives 

r1 + — 

of-

As in the semi-inf i n i t e bar, the behaviour of A = ^ . j - for 

X"̂ =?-oo> breaks the analysis up into three distinct cases. > 

Case I t \ < o l O 

For this case analyse the system fJjOf, «»1 where 

for "H^>o, V> c . As in the semi-inf inite bar, in order to carry 

out the matching, the integrals in (1.30) must f i r s t be expanded. 

The f i r s t integral to consider i s 

\ ^ Cr ( c r t x j . x ^ t x l . x l d T . 

In what follows l e t 
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Cx.x \ » 4 ( X - T 1 

The f i r s t term of Xtf" » 

is straightforward; since — 0 ( A ) uniformly on o ^ X - ^ X * the 

exponential can be expanded to get > 

The m*"*1 term of this expansion i s ( O C A ! * * } • 

For the second term 

4-

the argument of the exponential has a singularity at X"_ -XT 

Consider the transformation 

then U ^ o for T - * o and for X — ^ x . If this transformation 

i s applied to ~Xxr the analysis in case I of Appendix I can be used. 

The result i s 
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0 0 

In the nomenclature of Appendix I, the f i r s t sum i s the domain 

con t r i b u t i o n . Here T*<r Cx,"̂ ) i s the a n a l y t i c continuation i n £ °f 

The second sum i s the asymptotic c o n t r i b u t i o n . Here, f o r X — . X (.X 

the inverse transformation of ( 1 . 3 3 ) , the function 
l 

S ^ U , - ) ) 1 

has the expansion 

f o r r . f O S ' , The and l~ are yet to be determined. *»» X, h i H i 

The m = 0 term of the domain c o n t r i b u t i o n cancels the m = 0 term 

of (1 .32)- , so consider the next o r d e r — t h e m = 0 . term of the asymptotic 

c o n t r i b u t i o n . -For 5*"(Xw)assume the expansion 

o 0 & (X" w1 ^ X — T + . . . u—>• 0 0 

ta-



Then expand (1.33) about X— X and substitute in the above expression 

to get 

The leading behaviour-of i s then 

so that the asymptotic contribution to (1.34) has the leading 

behaviour 

o • • 

i 
1 

The results (1.32) and (1.34) can then be combined to give 

T - <J<T 

The second integral to expand is 

This i s in a form covered by Appendix I , and to f i r s t order the result i s 
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The last integral is 

Here, since the domain of integration is finite and A—^ o , the 

exponentials in can be expanded to get 

Now assume that cr,- J*X<*" , <*.-̂ -0 » T-*y <» , and collect the 

results (1.35), (1.36) and (1.37) 

~ ̂  v u r n 
where 

For 0^y a , (1.35') dominates (1.37'). We expect this 

result. In the phase transition process the in i t ia l heat contained 

within the bar contributes to the latent heat of fusion to cause <y 

to grow. But then no finite in i t ia l amount of heat could provide the 

infinite amount of heat required to cause O-^oo . 

Matching the powers in (1.35') and (1.36*) implies that 
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Ct=- '•» s o °-y° f° r 4. . This i s also an intuitively clear 

result; i f ̂  i s not integrable for X-̂ -cw , then cy~--̂- oo . Finally, 

matching the coefficients gives gâ —̂3̂  so that 

V I . -

CASE II A- Q(0 

For the system this case arises when 1x1 ^ I X " ) 

where <J?£ is a constant and o for X ^ C ° . Then A—- A^,4-Ap, lTl 

where A j z . - ^ o for X—<v> • 

As has just been shown i n Case I, the i n i t i a l configuration 

does not affect the leading behaviour of <r for X—Y«» . In particular, 

the solution to B-xCljo) approaches the solution to ^>j-l"t °1 

providing <£^lx) is the same for both problems. For the same reason, 

the solution to approaches the exact solution (0.14), so i t 

follows that 

& 2. Jh0T ^ T — o o 

where A,«> satisfies the transcendental equation 

J -e-
a. 

C A S E I I I A > 'oiA ) 

For this last case examine 8j£ with a heat flux 

satisfying 
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where U-0 > o i s a constant and ' 8 4 ^ — ^ 0 for X—"froe» . 

The i n t e g r a l s i n (1.31) must be expanded f o r X — * * » 

Consider f i r s t the i n t e g r a l 

In the notation of Case I, f o r the f i r s t term I f<r we have Tf^*—OCA.) 

for c ^ v ^ T " • Define the transformation 

then j[ f o r T - ^ o and u - ^ o f o r X - ^ - X . Since ©° , 

only the u - ^ o behaviour of the transformation i s needed. A simple 
o 

c a l c u l a t i o n gives 

Therefore, the f i r s t term has the leading behaviour 

The second term i s exponentially small r e l a t i v e to the f i r s t 

so that 

Use the change of v a r i a b l e - ~ ~ X rj-«. t*-J t o transform 
t—x x 

the second i n t e g r a l 1 ^ 1 x 1 = - / M R m C^t<Hic\x-, * / c l <Tc t o ^ i v e 
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to get for t"J»*' the leading behaviour 

A 

It is easy to show that the last integral 
r l _ ' •"" I f l i^ l x W J <$?(>-) CV C<y£x),T', la-jo) J x - has the leading behaviour 

i — A r 

so that I ^ W = 0(4 ) l 8 4 & C T l 

Assume that IWp is of lower order than 14-^ • Then, 

matching (1.39) and (1.40) gives 

This is a transcendental expression in A and cannot be simplified 

further. However, i t follows that h— *> (lr»x") so that ~p ^ & 
A 

and X4> I s indeed of higher order. 

Finally, this result for the heating of the finite bar can be 

compared with the results for the same, but direct, heating of the 

semi-infinite bar. From case III of the semi-inf inite bar, c?~— Q (x/) » 

so that A= Olx1 as X__^-c»o f whereas for the remote heating 
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of the f i n i t e bar we have j u s t shown that A— o C l^t} 

SUMMARY 

The behaviour of crCcI for X—^<*» has been c a l c u l a t e d f o r 

a v a r i e t y of boundary conditions. Although, i n most cases, only the 

leading behaviour has been c a l c u l a t e d i t i s c l e a r that the determination 

of the higher orders i s straightforward. Further, the asymptotic forms 

f o r the boundary conditions were chosen f o r demonstration purposes 

only; the methods presented i n t h i s chapter do not depend upon the 

forms chosen. 
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CHAPTER II : PERTURBATION METHODS 

The free boundary problem encompasses two distinct physical 

mechanisms: 

(a) Heat transfer through diffusion. This mechanism is 

represented in the equation which is valid 

throughout the material 

(b) Phase transition. This i s represented by the flux 

condition at x = a r c - t ^ 

Here £.= j i s the non-dimensional Stefan number which specifies 

the coupling between these two physical modes. 

For the £—*f-o case, the problem &j R O» C ' ) i s examined. 

In this case i t is possible to calculate a perturbation expansion of 

the form 

C *. ___ tr* - • • 

The arguments of 1 have deliberately been l e f t unspecified. In 

fact, the original co-ordinates ( X , T ) are. not suitable to generate the 

expansions. 

Problems of uniform validity of the expansions for o ^ x ^ t o 

arise only in the particular case t X — ^ c for f__^.«w> . In this 



- 57 -

s i t u a t i o n , however, uniform v a l i d i t y does hold i f and only i f i s 

bounded f o r X—> i » . When the approximation i s uniform there are the 

following a d d i t i o n a l features: 

(a) In ( 0 . 1 2 ) l e t K~ H^XW^tUJJ \ Then by 

r e s c a l i n g the temperature 

• • 

the system remains inv a r i a n t except that now l$g|<<£ 1 , I<4*,-!̂ -4.. 

and i n ( 0 . 1 2 c ) there i s a new expansion parameter 

For many p h y s i c a l problems £,H«, i s small; f o r example, i f i c e i s being 

melted by water at 10°C we have e M 0 ~ „ 1-4.This s c a l i n g argument then 

' guarantees that f or £ tta small, even i f the expansion i s c a r r i e d out 

i n the o r i g i n a l non-dimensional co-ordinates, only a few terms of the 

expansions ( 2 . 1 ) are needed to give good r e s u l t s . 

(b) The expansions ( 2 . 1 ) are asymptotic f o r X — > o o . 

Thus even i f c r i s i s not small, the perturbation method i s a d i r e c t way 

to generate a large X expansion. 

For the £_^e>o case the s e m i - i n f i n i t e bar i s examined. I t 
t 

i s shown that a uniform expansion i n powers of £ i s p o s s i b l e , but 

that the equations to determine the f i r s t order system are as d i f f i c u l t 

to solve as the o r i g i n a l problem. 



1. THE CASE £ 

Consider the problem & c(' l ,«>} where <r_^-©o for T ; — V * 3 0 

Set H = o in (0.12c). 

It i s easy to show that a perturbation expansion of the form 

(2.1) in the original co-ordinates w i l l not work. Indeed, from (0.12c) 

i t follows that — =• o so that o^ix^ cfl^)— \ • T n e boundary 

condition at x - <r can now be expanded: 

(a) From (̂.̂ "O^ c we have 

(b) From — t ^ t ^ - c ) — we get 

Note that, since <jr_^.©» , these are already non-uniform expansions. 

Consider, in particular, the case where 

The 0(1) systems i s , for T—yoo 

The i n i t i a l condition need not be considered as i t does not contribute 

to the leading behaviour of the solution as T-^©^ . Now for large -r; 



i t follows that 

This expansion can be used in (2.2) to give 

Therefore Cf%-= Ol"C) • But we have shown in Chapter I, case II of 

the f i n i t e bar that cr— O C / T ; ) • The non-uniformity of the 

expansion is then apparent. 

To avoid the non-uniformities presented by the expansions of 

the boundary conditions at x = cr , use instead the fixed boundary 

representation (0.13) to generate the perturbation expansion. . 

system CO.13) can be rewritten as 

together with the flux condition 

The analysis breaks up into three cases according to whether ^-Ofa'J « 

^ O O V - o r ^ > G ^ , as T - * c ~ . 
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CASE I Q{0 

Expand as follows 

and rather than cf , expand R 

To analyse the systems generated by substituting these expansions into 

(2.4) the following results are needed. 

• Let <j» satisfy the diffusion equation with non-homogeneous 

term £f«*,T) 

* * n ~ S i ts , 
with the boundary conditions 

Then ^ can be written 

Where 4^c arises solely from the i n i t i a l condition, 4 ^ from the 

boundary condition, and ^ from the source term. See Appendix I I . 
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One can show that (j? L*it%}~ £HC ) • Since we 

examine only the large time behaviour of the solutions this term can be 

ignored. Further, assume that for T*** a n c * l*b> i ^ < ? ° 

The Bromwich contour integrals in Appendix II can then be expanded for 

large X to give 

*7T sr. n v ^ n T -t-CH* ) 

where C^I%*1== 

Specifically, to ensure that CTL-^-co and yet —>c» > 

choose ° ̂ •yf
ef< ± • The f i r s t order problem i s then 
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For XT—$»- oo the leading behaviour is then, from (2.5a) 

ley 

So from (2.4a) we have ~ X ° , hence 

This completes the first order calculation . The second order can now be 

calculated as 

* 
The 0(1) system can be written in the original co-ordinates as 

This is precisely the equation one would write down to describe diffusion 

in a bar with one end stretching at a rate . An element at x would 

then experience a velocity " I T C J I V S . ^ , giving rise to the convection 

„ . ^ accounts for 
the change of thermal conductivity of the bar due to the redistribution 

of matter caused by the stretching. 
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From (2.5b) the leading behaviour is then 

So from (2.4a) we have, providing -V 

T 

• * 

Clearly and T*=^(T~) for T — V 0 0 

For k -̂ o the general problem is 

A tr iv ia l induction on this system, using (2.5b) repeatedly, demonstrates 

that E . ^ = c ( P ) e ^ and T ^ <> (.T ) as T oo . In fact, 

i t is easy to show that 

T t = O C x - ' k v - ) 

"x, then (2.4a) can be integrated to give 
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Thus, even i f e is not small, but s t i l l 0 ( 1 ) , and the expansions 

break down as perturbation 4>~ 21 £ * - T C b > and 71 e* 

expansions, they are, for £ fixed, asymptotic expansions for <*> -

Finally, note that R q is the largest term in the expansion 

for R . Thus from (2.3) and (2.7) the leading behaviour of of can be 

calculated as 

This agrees with the asymptotic result (1.38) with £=- \ 

To determine its accuracy, the perturbation solution can be 

compared with a numerical calculation. Since, when <r is .unbounded., 

asymptotic agreement as " I T — h a s already been shown, i t is 

sufficient to compare the solutions in a bounded case. For this case, 

moreover, the numerical scheme is most accurate and comparison most 

significant. 

The system (2.10) can be used to generate such a perturbation 

solution. Take for simplicity 

for J 7 T | % taTT, Y\= o, \ - - , . This satisfies the 0(1) equation 

and can be used to generate higher order terms. A simple calculation 

gives for the next order 



- 65 -

. 1 

To second order, therefore, the solution for the temperature i s 

This solution satisfies the 'boundary conditions 

and has the corresponding free boundary 

where A C i - eT^ % ) 

The numerical scheme, as outlined in Chapter III, can now be 

used with the given boundary conditions. The computed temperature 

and free boundary can then be compared with the perturbation results 

( 2 . 1 1 ) and ( 2 . 1 2 ) respectively. 
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Choose "g = 1 . The calculation i s then carried out up to 

£ at which time the boundary <$~ has essentially stopped growing. 

For £ — only the O(c) correction i s needed to achieve two 

•figure accuracy for both the temperature and the free boundary. For 

two figure accuracy i s maintained when the Q 

contribution i s added. .See Tables l a , and Ib. 

CASE II J X t i ^ OCil 

For the case •$^lx\J}¥„+'%-C'+.-. Y± y o » and 

X—^- o& » the results of case I can be applied with V = o 

From (2.6) and (2.8) 

? ! 

while from (2.7) and (2.9) ' 

For X—>©e» these expansions can be compared with the exact 

solution CO. 14) with <f?ft=. T-J'̂  . F i r s t , using (0.14d), expand 

A f H i ) in powers of £. 

(215} 
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and note from CO.14b) that lT)=^ • Now, since R—> 0 0 , 

i t follows from (2.3) that f / - c P for X—*©o . Therefore, 

from (2.14) and (2.15) we have 

r i x l — t I a l T l , x — yoo ^ 

Next, substitute (2.15) into (0.14a) and expand 

4^1^-.^ ^ C 4 - ^ ) + + Q U M % 

Comparing (2.13) and (2.16) we have 

It is clear that these results are also valid for solutions 

to £-yl.o,o) with the same boundary condition. Thus, for both cases, 

the time-independent contribution to (2.13) and (2.14) can be summed 

and the perturbation expansion written as 

where "V , W —> 0 for X — a n d <T(0) takes on the values 0 

or 1 . 

Providing (j^txl i s bounded and approaches a constant as 

-r; ^ co > we have just shown that the perturbation solution has the 
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correct asymptotic behaviour. However, i t can happen that C x i 

is bounded but that $>fglx\ does not exist. For these 

oscillatory boundary conditions the regular perturbation method breaks 

down. 

Consider, for example, the simplest case 

f ^ l T l - 1 ^ 4 . \LS\*JIT > ( 2 , 1 0 ) 

Here, take ^ 5 < 3 > 0 and 8 . If the expansion procedure as 

outlined in case I were used, the terms 2.2-4^ and *j <£\^ 

in (2.4) would generate secular terms of the form T ^ i t i A t , <io£JTT tv -̂l *l 

Therefore, the perturbation expansion would not be uniformly valid for 

XT—> 00. ' ~ 

To remedy the problem, the expansions (2.17) for r and 4* 

can be used. Here, 4*» i 9 ) a n d AC*^) are assumed to be derived 

from the time independent part of IPoix'S *-n (2.18); The important 

feature is that even though and \ depend on £ , they are given 

by (0.14) and thus can be calculated prior to the perturbation expansion. 

Put A 0 - A T n e n f o r either problem & TGt,«0 o r 

% i& t>"\ > substitute (2.17) in (0.13) to give 

with the boundary conditions 
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and, i f c F - i c I — J . >. the i n i t i a l c ondition 

F i n a l l y , the f l u x condition becomes simply 

Now proceed as i n case I and assume the expansions 

E L ^ W f c l T - l „ 

We show that the secular terms are no longer present. In p a r t i c u l a r , 

we derive a large X * expansion f o r WQ and show that i t i s bounded 

fo r X—-> oo 

The 0(1) system i s 

The behaviours of f^-C^, o* and %j-\oto\ f o r X — > c*» are 
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the same but the case <jr£<e>l= O is simpler to analyse. For this 

reason,' choose o t v l s o in (2.20). Then no i n i t i a l condition need be 

specified and the solution can be found first by taking the 'Mellin 

transform of (2*20): 

fco 

where 

The solution is 

where, with M(a,b,-Z) the confluent hypergeometric function, 

To get the solution to (2.20), invert (2.21) 

where A is a Bromwich contour in the strip —A^ <. . The 

left limit of the strip is dictated by the right most pole of 

f*C$ft $'tt\J£ j , • The right limit arises from the convergence 



requirements at y = 0 as follows. For §>= £ > c , using 

S t i r l ing ' s approximation for' ^ * C | > 1 we have 

for f X e m p j — > • Because of the osci l lat ions of X ^ along 

A- , convergence of (2.21) for y = 0 then holds for ^ 

Providing the integral (2.22) continues to converge, the 

contour can be displaced to the right to derive a large X expansion 

f o r 1^" . To -show this convergence, start with the estimates [17] 

•ft* 

_ l t % / I H ^ 6 " C2-24-) 

/if 
so that 

Hence with = arg p , 

for !Xfr»»j,|—along any Bromwich contour. F i n a l l y , using"(2.23), 

(2.25) and that t̂ ^̂ .|->̂  for f 3Vnf>8-*<*' , the integrand of (2.22) 

damps l ike -
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for (I»«|> j - sy-eo a l o n g J > = . For &j > O this estimate 

allows the contour fc. to be shifted to the right and the contribution 

at l l c^p\— oo to be ignored. 

From (2.19b),  <M%^^it^ , s o that 

and from (2.22) we have, therefore 

Displace the contour £ to the right to pick up poles at p = 1 , and 

on the set 

The set i s a positive, s t r i c t l y increasing divergent sequence. 

Further, for a l l n, O C * 5 T „ } [17]. Since X 0 ~ O Cf) 
even c ^ , , i s large, and the asymptotic estimates (2.24) can be 

used. Hence we have -J _ »• Tf ' and 
2 * ' 
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where 

for a Bromwich contour, in the strip <1 f ^ | » < *̂H+J. ' F R O M 

the previous estimates it is easy to see that O C T " ) 
and 

so (2.26) is an asymptotic expansion for T—y co . i t is not , 

convergent. as (xl l -»«» for X fixed, N—>co . 

Note that for. T - V > ° , WQ is bounded and is 0(E.) 

uniformly. Thus, in the expansion for r 

r= X^T-+ eW^4-

2 

the term C^g is 0 ( £ ) and is uniformly smaller than the first 

order term. The expansion for <y follows simply from (2.3). 

The expansion (2.26) for WQ holds as well for the problem 

g Ctj* 7! * t n * s case, however, it is worthwhile to compare the 

perturbation solution with a numerical calculation to determine the 

accuracy for X. moderate. 
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Put CTlc4= in (2.20); then an i n i t i a l condition i s 

required. For simplicity, choose 

So that from (2.19a), ^ ^ > e J » o . The problem (2.20) can then be 

solved by an integral transform in y [18]. The solution i s 

where for ^ H ^ 

C+M*. f ( 4 4 - v v . J l ^ 

7-

F°r A«, small and <;< <sto , the following approximations 

are valid: 
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and °̂ fr,'~ ~\~ ' These approximations can be used in 

(2,28) to give 

5. t o r ^Tr<4) 

This representation is valid away from y = 0 and can be summed to 

Hence, from (2.19b), -g^ —- |* —^—- , so that 

Finally, from (2.17) 

The solution for the free boundary cr of f>^£4,©) with 

boundary condition (2.18) and i n i t i a l condition (2.27) can now be 

calculated numerically and compared with (2.24). Rather than f i x £ 

and solve the transcendental equation (0.14b) for A- , choose 
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\ o and calculate the corresponding £ . For A^=--i we get 

£=.-W34 • Then with the correction term WQ in (2.2a) two figure 

accuracy i s achieved over the range O ^ T - ^ -io • See .Table I I . 

CASE III > a ^ 

For this case, the regular perturbation procedure w i l l not 

yield a uniformly valid series. Attempts at multi-scale expansions 

w i l l also f a i l . A set of scale transformations can verify these 

statements. 

Assume, for def initeness, that ^ , ^ 1 ^^0X^ > sf y ^ T — ^ t * * 

Make the following transformations: 

£ 4? 

Hence T - a . £ , x and ~~7Z-=• & • Finally, put 

Then <*r — £x and *~ yx~ *~ ̂  . The system (0.13) 

becomes 

^ « * ^ ± 

and - ? M U , l W * 

Now we can write <Ĵ  f-s.1=r t 4- 3£p. l where for some 



k > 0 > f ^ lx\ £ 0CV*"*) . It follows that 

$ 

Assume a regular expansion of the form 

I T , 

12=0 

The f i r s t order system i s therefore (dropping the bars) 

and — T 

Thus the f i r s t order system incorporates the leading growth behaviour. 

Any multiscale expansion procedure would have t h i s system as i t s f i r s t 

order problem. But t h i s system i s as d i f f i c u l t to solve as the o r i g i n a l 

one; hence a perturbation expansion i s not us e f u l here. 

2 . THE CASE g_y ©o 

Consider the s e m i - i n f i n i t e bar. F i r s t note i n the s p e c i a l 
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c"<r 

case (0.10) and (0.11) that admits a regular perturbation 

expansion m powers of £. 

Hence, we do not expect the expansion in the general case to be of a 

singular nature. 

Let &-*r £• in (0.10), to give the system 

Examine the melting case where ^ ><? • T n e n > t o support melting, 

Het) > o 

Now assume a regular expansion for 4* a n d <y • 

Then the 0(1) system is 

The flux condition at y = 0 no longer contains < J * e x p l i c i t l y . The 

dependence can be made explicit, however, by using (2.31) at y = 0 

to get 
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' O 

This system i s no simpler than the original one, hence again a 

perturbation expansion i s not useful. Similar comments hold for the 

f i n i t e bar. 

SUMMARY • 

For the one-dimensional free boundary problem we have shown, 

for a selected set of boundary conditions, when a feasible perturbation 

expansion i s possible. For other situations, eg. H ^ 0 in (0.12c), , 
or the flux rather than the temperature specified at x = 0 in (0.12b), 
the approach i s the same and the details can be worked out. 

Finally, for the case f£—^.Q , the expansion techniques of 

this chapter can be applied to an n-dimensional free-boundary problem 

providing the system i s rotationally invariant in n-dimensions. Then 

the equations are, with H(r)~. 0 . 

With the change of variables «4 = *— the equations become 
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where and CF l&\=^ 4- • This problem has the same 

structure as those already studied and a s i m i l a r a n a l y s i s can be c a r r i e d 

out. 



CHAPTER I I I : NUMERICAL METHODS 

The ob j e c t i v e of any numerical c a l c u l a t i o n f o r the free 

boundary problem i s f i r s t to locate the boundary CFXXl at time X and 

then to represent the s o l u t i o n <fyte-tx} at that time. For the method 

presented i n t h i s chapter we accomplish t h i s objective by the following 

steps . ( S e e Figure 3 ) 

(a) Given the requirement to solve the problem oh [0,T] , 

choose a p a r t i t i o n X̂T̂ .̂-- ̂ T̂  where T , = Q and X̂  = RY* . 
Let 

(b) P i c k an R-parameter family of C lc>^«,fl,) curves 

~ • Then represent cr cm C«,»*TP J by , 

where < X H i s the c h a r a c t e r i s t i c function with support on I and a^ 

th. th i s the value of the i parameter i n the j i n t e r v a l . The method 

fo r determining these values i s yet to be s p e c i f i e d . Let 

(c) For each I c a l c u l a t e a s o l u t i o n efy* %Lx,t X — X ^ / ) T O 

the heat equation on the domain 
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Subject to the c o n d i t i o n s 

This task i s a p a r t i c u l a r example of the s o - c a l l e d i n v e r s e Stefan 

problem. The s o l u t i o n *pn i s the a n a l y t i c i n t e r p o l a t i o n f u n c t i o n to 

be used on the i n t e r v a l I . Note t h a t the f u n c t i o n has been de f i n e d 
n 

on the i n t e r v a l t«',T w — ~J ; thus f o r numerical purposes, <g?n 

need be c a l c u l a t e d only f o r small times. 

-(d) Determine the parameters '"CJ i by r e q u i r i n g 
At*) 

t h a t CT be c t o / P J . Here, use the r e s u l t s of (c) together w i t h 

the f l u x c o n d i t i o n at x = <5* to determine these v a l u e s . (More d e r a i l s 

l a t e r . ) 

To demonstrate the method we do numerical c a l c u l a t i o n s f o r 

both £.j-C4,o-l and %>^- <o~\ 

1. HEAT FLUX SPECIFIED AT x = 0 ' 

The d i f f i c u l t step i n t h i s scheme i s step (c) s i n c e , i n ge n e r a l , 

no a n a l y t i c s o l u t i o n s to the i n v e r s e problem have been found. However, 

such i n t e r p o l a t i n g s o l u t i o n s can be c a l c u l a t e d f o r a s p e c i a l three 

parameter f a m i l y of curves. To f i n d these s p e c i a l s o l u t i o n s i t i s 

convenient to use the f i x e d boundary r e p r e s e n t a t i o n (0.13) and then so l v e 



the system subject to a l l the boundary conditions except (0.13c). 

Even though the domain i s rectangular, the equation cannot be solved 

by i n t e g r a l transforms i n y or X " because the c o e f f i c i e n t of " i f ^ 

i s a function of both y and T . To eliminate t h i s d e r i v a t i v e put 

^ -XTe**' * •'•nen t n e equation becomes 

where J^cr 1 " . The d e r i v a t i v e can be eliminated by s e t t i n g 

%V — — — cj , so that W—— ~ ti"2- PCX'S where F i s an a r b i t r a r y 

function. The c o e f f i c i e n t of V then becomes 

F i r s t set - p . . The T-dependence can then be eliminated 

provided 

D i f f e r e n t i a t e t h i s expression with respect to T* to get ' Y ~ ~ Q 

Integrating three times, we have then 

J . 

The transformation of the dependent v a r i a b l e can now be written 
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where "VT s a t i s f i e s 

For the numerical c a l c u l a t i o n we choose a l i n e a r boundary cr— c*+ h>x , 

which i s contained i n the three parameter f a m i l y j u s t d e r i v e d . For 

t h i s case i t f o l l o w s from (3.1) that Cg— O and the equation f o r "IT 

reduces t o 

In .the k*"*1 time step I T then s a t i s f i e s the boundary c o n d i t i o n s 

v ci,x)^ o 

where 

Here a^ i s determined by c o n t i n u i t y 
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and b^ i s determined by matching the fl u x condition at " £ " ^ - 1 ' 

Since Ĵ> has already been ca l c u l a t e d from the previous step and does 

not involve b^ , the equation i s as e x p l i c i t as i t appears. 

Now, omit reference to the time step. Return to (3.3) and 

put 

Then (3.3) becomes simply = • This can be solved by a 

Fourier transform i n y . With (ps-XyiT, h=. 1- 2 • - - a n d 

-\T /^ireoSV,,^ we have 

which has the s o l u t i o n 

Vhere ^ I c , ^ £ $ ^ 1 < ^ * V H . j . « ^ ^ ^ 

and X H H O - ..//GCPI e V j t ^ F I J F / i^i) 
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The i n i t i a l value integral (3.7) can be approximated by the 

simple quadrature 

where O e - O * * , h = £ Z £ and $ f e = ^ 0 { J . This is a 

simplified Filon quadrature which was found to be adequate for the 

present calculations. For N = 10 the quadrature was accurate to four 

significant figures over the range O ^ V > h ^ 2 5 * 

As for the boundary integral (3.8), note that the calculated 

solution i s to be used only for small time increments, hence small 

Since tT has already been approximated by a linear function in these 

time steps, there i s no significant added error in linearizing the 

boundary condition at x = 0 as well. Hence, represent G(£0 by the 

linear approximation 

The integration can then be carried out to give 

Finally, the solution to (3.3) has the expansion 

So from (3.2) the interpolating function (J* can be written in the 

original co-ordinates as 
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This expression can be d i f f e r e n t i a t e d term by term to f i n d 4 ^ £ x l 

as r e q u i r e d i n (3.5). 
.fie 

With the above r e p r e s e n t a t i o n f o r the (p , the method can 

be checked against a Neumann s o l u t i o n s i m i l a r to (0.14) 

where H=. f ~ and X s a t i s f i e s the tr a n s c e n d e n t a l equation 

I n i t i a l i z e time at T = 1 and choose A— -ST and H = 1 . 
o 

Then £ = .6420 and 4^ i s a s o l u t i o n of the f r e e boundary problem w i t h 

the heat f l u x 

and the i n i t i a l c o n d i t i o n 

* -V 
3C 

The corresponding f r e e boundary i s 
J . 

<rtxl= 0+ f ) *~ . 
For the numerical c a l c u l a t i o n equal time steps are chosen 
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and the temperature i s computed at f i x e d y = i n t e r v a l s . I n t h i s 

c o -ordinate the exact s o l u t i o n i s time independent and comparison w i t h 

the exact s o l u t i o n i s e a s i e r . See Table I I I . 

With a step s i z e of AX = .1 the c a l c u l a t e d temperature was 

accurate to w i t h i n 1% except near x = 0 . The e r r o r i s l a r g e s t at 
i 

t h i s boundary because the F o u r i e r s e r i e s r e p r e s e n t a t i o n f o r the tem

perature converges most s l o w l y . The e r r o r i n the f r e e boundary &~ i s 

l a r g e r ; i t grows as .03X. 

2. TEMPERATURE SPECIFIED AT x = 0 

For t h i s case, t o determine the i n t e r p o l a t i n g f u n c t i o n we 

must again s o l v e (3.3) f o r V . The boundary c o n d i t i o n s (3.4) are the 

same except that at y = 0 

. V * U . - r i - ^ C T ^ x ^ l ) c r t t T i A - P M T I % 

H e r e a f t e r , omit reference to the time step. S o l v i n g the equation by 

F o u r i e r transforming i n y. leads to a s i n e s e r i e s r e p r e s e n t a t i o n f o r 

£ . Th i s s e r i e s , however, i s not s u i t a b l e f o r numerical c a l c u l a t i o n . 

At x = 0 i t does not converge to J^(o^-c') and converges o n l y very 

s l o w l y f o r x near zero. F u r t h e r , the s e r i e s r e p r e s e n t a t i o n f o r 4*^ 

at x = a + bx does not converge at a l l . 

These problems can be e l i m i n a t e d when (3.3) i s solved i n s t e a d 

by a Laplace transform i n the v a r i a b l e 
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A-lot-9- feu) 

The s o l u t i o n can then be w r i t t e n 

where and X^>v are defined i n Appendix I I . Here i d e n t i f y 

$p l t f> of the appendix w i t h P ( r ) . 

Consider f i r s t the boundary terra "^g v • Expand the integrand of (II.3) 

= r r -Sv t * f e * . o _ _ / p T 

and use 

r L . J P<40e e 

t o get the r e p r e s e n t a t i o n 

(3 ^) 
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As i n the previous problem the boundary condition at x = 0 can be 

l i n e a r i z e d . Here, using the approximation 

u e 

.leads to the problem of evaluating i n t e g r a l s of the form 

1 3 

f o r a = 0, 1 ; b = - — ,•-- . ' Rather than evaluate the i n t e g r a l s 

d i r e c t l y , use the i d e n t i t y 

A power se r i e s representation for "^J can then be used when 

\ j£ 5* . For A- •* 5" .. a one term asymptotic expansion f o r 

J^^if. oo gives an accurate r e s u l t . ( See [17]. ) 

For the i n i t i a l value term a s i m i l a r c a l c u l a t i o n y i e l d s the 

representation 
4 

^ j ^ ^ - — . L_ j IM04 

t y(i- ! i)ie 4 r 4_ c j 
1 4 e J 

i & . 4 - e ~~ J j 



To c a l c u l a t e » i n t e g r a l s of the type 

must to evaluated. For a l a r g e range of £ the F i l o n quadrature 

g i v e s good r e s u l t s . Here h = , and (pC^0 . 

The expansions and (3-1c>) together give an 

expansion f o r I T . The expansion f o r can then be found 

from C ? . 2 ) •:. 

With t h i s method of r e p r e s e n t a t i o n the numerical c a l c u l a t i o n 

was checked against two exact s o l u t i o n s . See Tables IVa, and IVb. 

(a) A Stefan s o l u t i o n w i t h <. 0 • 

Acr 
(b) A Neumann s o l u t i o n w i t h —.—* > o 

In (0.14) i n i t i a l i z e time at T = r and take the p a r t i c u l a r case 
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The c a l c u l a t i o n was done w i t h ..step .sizes £ > T .b.e.t.w.e„en 

.1 and .5 . Then w i t h at most two terms i n the s e r i e s (3.9) and 

(3.10) the accuracy f o r the temperature was .5% w h i l e f o r the f r e e 

boundary <T* an even higher accuracy of .1% was achieved. 

' 3. DESCRIPTION OF A FREEZING LAKE 

The numerical technique can be a p p l i e d to a s p e c i a l two 

phase problem - the f r e e z i n g of a shallow i a k e . ( F i g . 4 ) A -lake 

i s considered shallow when during the p e r i o d of f r e e z i n g the e f f e c t 

of the l a k e bottom must be taken i n t o account. 

Let  r\l> be the p e r i o d i n which f r e e z i n g takes p l a c e . 

Then there are two p o s s i b i l i t i e s : . • 

(a) I f SCT) O > c l e a r l y the bottom must be in c l u d e d i n 

the d e s c r i p t i o n . For the l a k e we study, t h i s i s not 

the case. 

(b) Even i f •SCT )̂-— H the heat f l u x from the bottom of the 

l a k e may a f f e c t , through d i f f u s i o n , the water temperature 

near the top of the l a k e . 
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Figure 4 Cross-section o f a. shallow lake 
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Consider the second e f f e c t . In the l i m i t ^CT^)^ - H 

the water phase can be approximated by the fi x e d boundary problem 

a t 
K w • — -7-7 £)< X < H 

with the boundary conditions 

where 1*̂ 6* i s the d i f f u s i v i t y and i s the conductivity 

of water. The phys i c a l heat fluxes are approximated by t h e i r time 

averages over the fr e e z i n g period. Let t~ = T T " =• <£ctr»£T-

The s o l u t i o n can be wr i t t e n as 

where a ^ 

^ - { ( 7 ) L i t 6
 + 0 ••.V̂ "* 

The e f f e c t of the bottom w i l l become s i g n i f i c a n t f o r a depth H 

such that 

k 1 • 

This w i l l hold only i f i t holds f o r the fe= terms i n the sums 

for 4 V . r and 4. . F o r " 7 ^ - £ t 

follows that 
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s i r • « • * ~ ^ 

which can be r e w r i t t e n as 

For a given l a k e t h i s equation can be solved f o r C 

and the c r i t i c a l H determined. I f the l a k e i s shallower than t h i s 

H, i t can be considered a "shallow" l a k e . 

We apply the numerical method to an a n a l y t i c model of 

Seneca Lake i n northern Michigan [.19] . For t h i s l a k e , \. 

so from (3.11), C~*fl-Ŝ  which i m p l i e s a c r i t i c a l depth of 10 meters. 

Seneca Lake i s 2 meters deep and so can be considered shallow. • 

To set up the model, f i r s t non-dimensionalize w i t h 

the water parameters 

M £r f°r both water and i c e 
* T * _ ^SZ. M. •• temperatures. 

For the i c e , the equations are 

6* 
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When t h e d a t a for Seneca Lake was accumulated the i c e was covered by 

20 cm. o f snow. As a r e s u l t the temperature $g at the top of the 

ic e remained c o n s t a n t throughout the free z i n g period. . 

Since e r i ^ ) - = - -ji , no i n i t i a l c ondition need be s p e c i f i e d f o r 

the i c e . ; . --• 

For the water the equations are: 

= >T ***** 

For Seneca Lake the stored summer heat provided a heat f l u x 

M K t x | ~ i So ^ i / ^ m ^ - c e e ' T h i s f l u x overshadows the ever--A 
m . Tit 

£ 
present geothermal gradient- of Jo /cwO-— ^e.<» * 
An i n i t i a l c ondition i s required for the water 

F i n a l l y , the f l u x condition at the interphase boundary CT ( .x1 i s 
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fey; 

1 ^ 
6 £ w 

where # j 

A two-phase . c a l c u l a t i o n where both the water and i c e 

temperatures are c a l c u l a t e d n u m e r i c a l l y leads to d i f f i c u l t i e s . 

With JA"^ - -J. i n (3.12) the i c e temperature propagates almost ten 

times f a s t e r than the water temperatures and so makes the c a l c u l a t i o n 

awkward. 

This d i f f i c u l t y can be turned to an advantage, however, f o r 

the i c e e q u i l l i b r a t e s ten times f a s t e r as w e l l . Thus, i t i s a good 

approximation to represent the i c e - s o l u t i o n by a p e r t u r b a t i o n -series 

i n and match i t to the numerical s o l u t i o n f o r the water at 

every time step. This r e s u l t s i n an equivalent one phase problem 

f o r the water w i t h a modified l a t e n t heat and e x t r a heating terms. 

Assume a p e r t u r b a t i o n expansion f o r (3.12) 

% - + • • • 
to get 

CT* * 

Therefore 

This expression can be used i n (3.13) to give the f l u x c o n d i t i o n 

§ <5$<r ~f <4TW 



- 99 -

where 

i s the e f f e c t i v e l a t e n t heat and 

i s the added heat source. This f l u x condition can now be used i n the 

numerical s o l u t i o n for the water temperature. 

temperature above the i c e , the f a s t e r the lake freezes over. 

* To generate higher orders i n K' , note that the expressions are 
to be used i n conjunction with a l i n e a r boundary f o r a given time 
step. Thus i n the perturbation c a l c u l a t i o n there i s no s i g n i f i c a n t 
added error i n s e t t i n g 

For the f r e e z i n g case , T J , <C O , hence Lj^ ^- A 

and O f o r small . Both of these e f f e c t s enter 

the f l u x condition so as to make more negative as 

«T* becomes more negative. In p h y s i c a l terms, the lower the 

c& T 
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APPLICATION TO SENECA LAKE [ l 9 l 

On December 2nd, after 25 days of alternate freezing and 

thawing, a permanent ice cover of approximately 15 cm. formed on 

Seneca Lake. The numerical calculation was i n i t i a l i z e d to this 

day. As the ice grew during the month of December, the temperature 

of the water near the bottom rose from 1°C (Dec. 2) to near 4°C 
(Dec 26). At 4°C, water is most dense so that any further heating 

from the bottom cf the lake results in convection rather than an 

increase in water temperature. This convection i s beyond the scope of 

the model; hence the calculation was terminated on December 26th. 

Further aspects of the calculation are the following: 

(a) The heat flux at the bottom was determined by s o i l 

temperature profiles beneath the lake. In the period* 

Dec 2 - 2 6 the total heat released to the water was 

303 cal/cm^ to give an average heat flux of 
-4 2 

1.45 x 10 cal/cm -sec. In dimensionless units, 

(b) Despite the large fluctuations in air temperature, 

a 20 cm. snow cover kept the temperature at the top of 

the ice very nearly a constant -1°C. In dimensionless 

units "T^cS — , 

(c) The calculation was started when the ice was 15cm. thick 

or in dimensionless units CTtol ̂  - 1 2 5T 
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At this time the water temperature was linear in the 

depth; for the calculation, the in i t ia l temperature 

was taken to be 

~r w 1 9 , ~ ) ^ . 0 4 g . c• 2 5 - tj) , 

(d) For the temperatures entering the calculation, the 

O f̂O term in Lj* represented less than a 1% 

correction and so was dropped. 

In Fig. 5 the numerical calculation is compared with the 

experimental obervations. 

At depths of 50 cm. and 150 cm. the difference between the 

calculated temperature and the observed temperature was within 20% 

of the observed temperature. Only this rough agreement can be expected 

because the instantaneous heat flux was not available and a heat flupc 

averaged over the freezing period was used. 

Finally, Bilello reported that by Dec. 26 the ice was 

20-25 cm. thick. The calculated value of 22 cm. is within this range. 
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APPENDIX I ' 

fo r r ~ J - s | - T ^ «*» 

The function FtT? i s assumed to be l o c a l l y 

i htegrable on (of o»7 and to have an asymptotic expansion of the 

form 

P ( T I ~ TL F ^ T ' * * d . l ) 

fo r T - ^ o o , 
% 

CASE 1 A * ° C ° f o r T - > < * > ; . . 

The expansion i s c a r r i e d out i n ,two steps. 

Ca) F i r s t expand the i n t e g r a l f o r f i x e d T , A *r o 

where \ Q(. ( f O | i s an asymptotic sequence f o r A — > o 

Cb) Then expand the I f ^ f.«yT - l f o r X — V Oo 

where 'CH-. lT l l i i s a n asymptotic sequence f o r X—> «** , 

Step Ca) 

With X f i x e d at t h i s step, put -4"(*«):=.—• „ P C 1 
( 1 4 - * *•*.•'/ 

I t i s then required to c a l c u l a t e the expansion of the Laplace transform 



- 1 0 3 -

w ( 1 . 2 ) 

f o r s m all A . We i n d i c a t e how the work of Handlesman and Lew [17] 

can be used to complete t h i s step. 

Brealc up 4*- at i*= x* a n ^ put 

-fuo 9U—*)-4- ^ 9 t « - 0 

Then H 4. \.-%~\ — f U.^'* (W"J Jt4 defines a f u n c t i o n 

a n a l y t i c f o r Rt ^Jr y (X- f o r some o <• ex. ̂  4. . 

Even i n the case' 0.= , the ' • m ^ "fj Cit3 e x i s t s 

l-e- M 4* t^-^ does not have a pole at — \ 

Now f o r u oa , " T l * * V has the asymptotic 

expansion 

* H = c 

where l-T} fe-*". ^ ( M (1.3) 

and frw + V" » n o t e t n a t no i s an i n t e g e r , 

I t f o l l o w s that ti£%ttJ= Xj. ^ttO<*** 

d e f i n e s a f u n c t i o n a n a l y t i c f o r <. S0 

which can be a n a l y t i c a l l y continued to a meromorphic f u n c t i o n 

w i t h simple poles at x.= $ and residues 0%^ . 
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Define HJ = H ^ l * } 4- ' H + ^ t O . 

I f G. S e , then the i n t e g r a l representations of -̂f̂  and 

are defined on the common v e r t i c a l s t r i p S for which 

The M e l l i n transform 

then e x i s t s i n t h i s s t r i p S and 

so that Ĥ ,4/ . i s the a n a l y t i c continuation of 

If • S^.'C <v , so that 5 i s empty , the function 

s t i l l plays the r o l e of the M e l l i n transform. Hereafter, the 

d i s t i n c t i o n between H^-y and M f i s suppressed and the notation 

H-f i s used.. . 

With t h i s d e f i n i t i o n of the M e l l i n transform, the Parseval 

theorem f o r M e l l i n transforms i s v a l i d : 

JF ^ ) 9 t a v a t i = / A HI fri H 9 r i - * 3 ^ . : . . 

Choose . 5 1 M U e 7 ; then P.Ct-V) A and 

the Bromwich contour A i s to be taken i n the s t r i p \ < ^ 

The contour A can then be displaced to the r i g h t to pick up the 

poles of H-f CxT and P {4-%} ', since no i s an integer 

these poles are simple. This gives an asymptotic expansion f o r 

(1.4) 
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where the and S m are given by (1.3). Even i n the l i m i t 

0L—> dL the r e s u l t i s v a l i d . 

The f i r s t sum of (1.4), which depends only on the asymptotic 

behavior of •£ w i l l be c a l l e d the ASYMPTOTIC c o n t r i b u t i o n : the second 

sum w i l l be c a l l e d the DOMAIN c o n t r i b u t i o n . 

F i n a l l y , using the d e f i n i t i o n o the r e s u l t s 

(1.3) and (1.4) can be c o l l e c t e d to give 

«»^«, **** 
(I.5a) 

where A F C r , x , t*»1— *— I r txl (I.5b) 

and ^ F ^ x , ^ 1 i s the a n a l y t i c c o n t i n u a t i o n i n 

of 
X-1 

(I.5c) 

This completes step ( a ) . 
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Step (b) 

The asymptotic expansion of AP (_*"",T, ̂  ~) f o r T~—*f 0 0 

f o l l o w s simply by s u b s t i t u t i n g (1.1) i n t o (I.5b) 

(1.6) 

The expansion of PP ( r , x t t w + i*} f o r X—>PO 

i s more d i f f i c u l t . For convenience, transform the i n t e g r a l 

(I.5c) to the i n t e r v a l (0,1) w i t h the t r a n s f o r m a t i o n 1*4̂  ' *"**" 

This i n t e g r a l i s of the general form 

I 

J(xi= i 3U0 F ( x t*i a t « (1.8) 

where <j has a convergent power s e r i e s expansion f o r | u l < ±_ 

0a 

. - 1 ^ 1 . (1.9) 

Now the M e l l i n transform of ty •> 

u 3 it*i an 



i s a meromorphic function with poles at - £ = — te. > 

fesi o , 1, 1 • • - • Tn f a c t , use the s e r i e s representation 

(1.9) i n the transform; since the expansion i s absolutely convergent, 

i n t e g r a t i o n and summation can be interchanged to get 

M 9 L V U E T (i.io) 

Define 

then, by s u b s t i t u t i n g (1.9) into (1.8) we have 

JCxl= H 9 f c M F C T , fe+i) ( i . i 2 ) 

while from (I.11) we get 

7 r l T MKT, tvO J= T Fui # ( t . 1 3 ) 

Now use the expansion (1.1). I f there i s a ^ such that 

J^-s 4 X denote i t by ; then from (1.13) 

MFU, M i ) . T ^ _ ! _ 



-.108 -

with the understanding that i f there i s no such the term 

p —FR1 ^ i s absent. Here Hg^ i s an i n t e g r a t i o n constant. 

Let Q — £<9-gj.} _ Then from (1.10), (1.12) 

and (1.14) we get the f i n a l form ^ 

T « I _ T- % M

9 v» + n % ̂ * + C 9 F C 

where i f no r~ i s an integer then G$. i s empty and the second sum 
*-

i s absent. 

This r e s u l t can now be applied to (1.7) with the 

i d e n t i f i c a t i o n 

1 4 - " / u 
so that 

where g ^ w-j ^ H l x l P f j u l i s the Beta function. 

The a of (1.9) can be read o f f from the expansion 

te=t> 
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to give f i n a l l y 

6 , . . F ^ 1 Id-") *• n rr 1) 
The expressions (1.6) and (1.15) are the r e q u i r e d expansions 

to complete step (b). 

These expansions can now be used i n (I.5a) to complete case 1. 

CASE 2 A - O C 1 ) . f o r X—><*> 

W r i t e A~- A„4- ApCxI where A*, i s a p o s i t i v e 

constant and Ap, (xi— -> o f o r X—>- oo • 

As i n case 1. the expansion i s c a r r i e d out i n two steps: 

S t e P Q > 

With X f i x e d , put 4lMl= C | - ^ - ^ r - F C l T T l ) * 

I t i s then r e q u i r e d to c a l c u l a t e the expansion of the Laplace transform 

f o r Ap.—> © . As i n case 1, H 4^ and H-f 

be d e f i n e d . 

< X can 
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Then, because -§r i f e x p o n e n t i a l l y decreasing f o r U ^ 

fy\ i s e n t i r e and M - f - H T l + i s a n a l y t i c f o r 

^ 5. • The contour fe> i n the P a r s e v a l theorem can 

then be s h i f t e d to the r i g h t . There i s no asymptotic c o n t r i b u t i o n ; 

the r e s u l t i s simply 

L f t A ^ l ~ H H | • ( I 1 7 ) 

t*»l 

Note that the same r e s u l t could have been obtained simply by 

expanding the exp o n e n t i a l i n (1.16). F i n a l l y , from the d e f i n i t i o n 

of -f. and (1.17) i t f o l l o w s t h a t 

rx» I** 

i F l r . T . J O - II t>FCr , x , ^ 1 ) ( I 1 8 a ) 

where f>P K T , » » • 1 , = j ^ ^ — ^ . T ^ ^ " ) e, (I-18b) 

Step (b) 

The expansion of Pf= (rf TT, t*vf-0 f o r T—^-«*> 
i s c a l c u l a t e d as i n case 1, step (b). 

Here, a f t e r transforming the i n t e g r a l (I.18b) to the 

i n t e r v a l C<», i } we get 
* * ' . ' . 

so that 
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where i s the second confluent hypergeometric f u n c t i o n . 

The c a l c u l a t i o n of the power s e r i e s expansion 

9 * L a i - C S^,,*, u t e 

i s s t r a i g h t forward, but t e d i o u s . To the order which the matching 

of the i n t e g r a l equations i s c a r r i e d out, we need o n l y that v= d. 

F i n a l l y , the r e s u l t analogous to (1.15) i s 

This completes step (b). 
When (1.19) i s s u b s t i t u t e d i n t o (1.18a) case 2 i s completed. 
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APPENDIX I I 

The s o l u t i o n to the system 

can be found by using the Laplace transform. The s o l u t i o n has 

three co n t r i b u t i o n s : 

(a) The i n i t i a l value term which s a t i s f i e s 

Transform i n X" and in v e r t to give 

where 

and P i s a Bromwich contour f or which |> > c? * 

(b) The source term which s a t i s f i e s . _ ' . 

<H - ,X j = 4>(*,Xl*=o 

Then with £ jT 5 t«j ,x> & <1 X i t follows 

that 
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(c) The boundary term which s a t i s f i e s 

w i t h $ ^ t p ) - J " ^ g l x l e rftr the s o l u t i o n i s 

^ v ^ . x » % i r . J r $ l P ) — — — ^ d p ( I I 3 ) 

With the s o l u t i o n given i n i n t e g r a l form by ( I I . 1 , I I . 2 , 

II. 3 ) both the l a r g e X and sm a l l X expansions f o r 

can be found. 



- 114 -

TABLE I.a P e r t u r b a t i o n S o l u t i o n to a Stefan Problem 
w i t h boundary c o n d i t i o n s __ 

<J>(0,T) •» e~ T s i n ( l ) 
, . . s i n ( x ) " s i n ( / 2 x) , 

•Kx.O) = sin (1-x) + E [ ^ T J J - S I N ( ;/2 ) J 

' e » .1 
Comparison w i t h a numerical s o l u t i o n ; temperatures compared 
at f i x e d y=x/a i n t e r v a l s 

P e r t u r b a t i o n Soln. Numerical Soln. 
Free Boundary 

x=.25 1.0219 1.0218 

Temperature 

.0864 .0811 y=.22 

.3349 .3294 y=.55 

•4816 .4779 y=.7.7 

Pree Boundary 

| x=.50 1.0386 1.0384 
Temperature 

.1337 .1254 y=.22 

.2608 .2579 y=.55 

.4256 .4248 y=.77 

Free Boundary 

x=.75 1.0514 1.0513 
Temperature 

.1041 .0990 y=.22 

.2491 .2487 y=.55 

.3315 .3318 y=.77 
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TABLE I.a 

(CONTINUED) 

P e r t u r b a t i o n S o l n . N u m e r i c a l S o l n . 

F ree Boundary 

T = 1 . 0 1 . 0 6 1 3 1 . 0 6 1 3 

• 

Temperature 

• 

. 0 8 1 1 . 0 7 7 9 y = . 2 2 

• 

. 1 9 4 0 . 1 9 4 5 y= . 5 5 

• 

. 2 5 8 I . 2 5 9 0 y = . 7 7 • 

F r e e Boundary 

T = 2 . 0 1 . 0 8 3 0 1 . 0 8 3 2 

Temperature 

. 0 2 9 8 . 0 2 8 5 y= . 2 2 

. 0 7 1 4 . 0 7 1 3 
y = . 5 5 

. 0 9 5 0 . 0 9 5 2 y = . 7 7 

F r e e Boundary 

x = 3 . 0 1 . 0 9 0 7 1 . 0 9 I . O 

Temperature 

. 0 1 7 1 . 0 1 6 1 y= . 2 2 

. 0 2 7 6 . 0 2 7 7 y= . 5 5 

. 0 3 6 7 . 0 3 6 9 y = . 7 7 
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TABLE I.b Perturbation Solution to a Stefan Problem 

with boundary conditions _. 

<J>(0,T) - e ~ T s i n ( l ) 
, * r . j /1 \ i r sin(x) sin ( / 2 x) , 
• <x,0> = s i n ( l - x ) + e[ ~[^5J - s l n ( h ) ] 

e « .5 

Comparison with a numerical s o l u t i o n ; temperatures compared 
at f i x e d y=x/a i n t e r v a l s 

P e r t u r b a t i o n Soln. Numerical Soln. 
Free Boundary 

*=.25 1.0883 1.0914 

Temperature 
.1574 .1496 y=.22 

.3967 .3927 y=.55 

.5390 .5376 y=.77 

Free Boundary 
t 

x=. 5 1.1581 1.1617 
t 

Temperature 

t 

.1301 ,1227 y=.22 

.3203 .3131 y=.55 

.4286 .4253 y=.77 
Free Boundary 

x=.75 1.2129 1.2165 

- • - • .1059 .1004 y=.22 - • 

.2563 .2505 y=.55 

- • 

.3387 .3357 y=.77 
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TABLE I.b 

(CONTINUED) 

P e r t u r b a t i o n Soln. Numerical Soln. 

> 

Free Boundary 

> T = l . 1.2559 1.2596 > 

Temperature 

> 

.0852 .0815 y=.22 

.2038 .1998 y=.55 

.2667 • .2646 y=.T7 
Free Boundary 

i 
T= 2 . 1.3523 1.3562 

i 

'. 

Temperature 
i 

'. .0336 .0321 y=.22 '. 

.0784 .0774 y=.55 

'. 

.1006 .0996 y=.77 

'. 

Free Boundary 

x=3. 1.3869 1.3915 
Temperature 

.0133 .0132 y=. 22 

.0308 .0311 y=.55 

.0392 .0392 y=.77 
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TABLE I I Perturbation Solution to a Stefan Problem 

with boundary conditions 

<K0,T) - 1. + .25 sin ( T ) 

<Xx,0) = 1. - ••erf(/OT2)_x) 

erfOTxTT) ) i 
e =» .1034 X = .1 

Comparison with numerical s o l u t i o n f o r O ( T ) 

Time 
X 

Free Boundary 
O(TT) 

P e r t u r b a t i o n Soln. 

Free Boundary 
O(-B) 

Numerical Soln. 

1.0 1.1060 1.0995 

• 2.0 1.2132 1.2035 

3.0 1.3042 1.3000 

4.0 1.3726 1.3777 

5.0 1.4270 1.4375 1 

6.0 1.4839 1.4912 

7.0 1.5532 1.5523 

8.0 1.6304 1.6242 

9.0 1.7020 1.6991 

10.0 1.7588 1.7656 
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TABLE I I I Numerical S o l u t i o n to a Stefan Problem w i t h 

Boundary Conditions 

< o , t ) = - - 1 * ( x , o ) = s1 e - ' 2 ; 7 4 at 
X - /l +. T X 

I n t e r p o l a t i n g temperature found by FOURIER TRANSFORMATION 

Time Step .1 

Number of terms i n F o u r i e r 
Representation 4 

Number of nodes i n F i l n n 
Quadrature 10 

Temperature compared w i t h exact s o l u t i o n at f i x e d y=x/o i n t e r v a l s 

Numerical Soln. Exact Soln. 
Free Boundary 

x=.5 1.239 1.225 

Temperature 

.178 .182 y=.22 

.483 .485 y=.55, 

.697 .701 y=.77 
Free Boundary 

x=1.0 1.438 1.414 
Temperature 

.178 .182 y=.22 

.483 .485 y=.55 

.697 .701 y=. 77 

Free Boundary 

x=1.5 1.613 1.581 

.178 .182 y=.22 

.482 .485 y=.55 

.696 .701 . y=.77 
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TABLE IVa Numerical S o l u t i o n to a Stefan Problem w i t h 

Boundary Conditions 
• ( 0 , T ) . - . 1 . - e T - 1 

<Kx,0) - 1.- e * - 1 1 

I n t e r p o l a t i n g temperature found by LAPLACE TRASFORM 

Time step .25 

Number of terms i n 
Laplace Representation 2 
Number of nodes i n 
F i l o n Quadrature 10 

Temperature compared w i t h exact s o l u t i o n at f i x e d y=x/c i n t e r v a l s 

Numerical Soln . Exact S o l n . 

Free Boundary 

x=.25 .7500 ,7500 

Temperature 

.1554 .1476 y=.22 

.2905 .2835 y=.55, 

.3623 .3588 y=.77 
Free Boundary 

x=.50 .4958 .5000 

Temperature 

.1016 .1052 y=.22 

.2502 .2425 y=.55 

. 3279 .3222 y=,77 

Free Boundary 

•c=.75 .2506 .2500 
Temperature 

.0517 .0540 y=.22 

.1223 .1297 y=.55 

.1636 .1767 y=.77 
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TABLE IVb Numerical Solution to a Stefan Problem with 
Boundary Conditions 

• <xf0) - j f e ~ ^ / 4 d 5 1 - C 2/A 
*(0 , x ) = / e .« 

Interpolating Temperature found by LAPLACE TRANSFORM 

Time Step .5 

Number of Terms i n 
Laplace Representation 2 

Number of Nodes i n 
F i l o n Quadrature 10 

Time 
X 

Free Boundary 
o(x) 

Numerical Soln. 

Free Boundary O(T) 
Exact Soln. 

1.0 1.0958 1.0954 

2.0 1.1829 1.1832 

3.0 1.2647 1.2649 

4.0 1.3418 I . 3 4 I 6 

5.0 1.4150 1.4142 

6.0 1.4848 1.4832 

i 7.0 
i 
l 

1.5516 1.5492 

8.0 1.6157 1.6125 

9.0 1.6775 1.6733 
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WATER 
TEMPERATURE 

5 h OBSERVATION 

CALCULATION 
150 cm 
Depth 

12 15 18 21 24 (DAIS) 

F i g u r e 5 C a l c u l a t e d and Observed Temperature P r o f i l e s f o r 
Seneca Lake; December -2 to December 26 
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