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Abstract 

An abelian group G i s c a l l e d a W-group i f Ext(G.Z) = 0. 

Whitehead's problem asks which groups are W-groups. Saharon Shelah 

proved that the answer to Whitehead's problem, for groups of 

c a r d i n a l i t y w 1 , i s independent of the axioms of Zermelo-Frankel 

set theory with the axiom of choice. This thesis gives a complete 

and d e t a i l e d proof, based on Shelah's proof, of t h i s independence 

r e s u l t . 
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Introduction 

The following r e s u l t was proved by Saharon Shelah i n (11). 

"The Whitehead problem, for groups of c a r d i n a l i t y IOJ , i s independent 

of•and consistent with ZFC." In t h i s thesis we present a proof of. 

t h i s r e s u l t based on Shelah's proof. Certain a l t e r a t i o n s had to be 

made, as well as a good deal of f i l l i n g i n of d e t a i l s . A d e s c r i p t i o n 

of some of the a l t e r a t i o n s i s given i n the appendix at the end of 

the t h e s i s . 

A Whitehead group, or simply a W-group, i s an Abelian group 

for which Ext(G,Z) = 0. (Ext(G,Z) = 0 i s a mapping property which 

w i l l be explained i n d e t a i l i n t h i s thesis.) The Whitehead Problem 

asks: 

"Are a l l W-groups of c a r d i n a l i t y câ  f r e e l y generated." 

The axioms of ZFC, Zermelo-Frankel set theory with the axiom of 

choice-, are the axioms on which a l l current mathematics can be b u i l t 

upon. We w i l l show that within ZFC the Whitehead Problem cannot 

be solved.. We w i l l do t h i s by showing that within one model of ZFC 

a l l W-groups are f r e e , and within another model there e x i s t s non free 

W-groups. 

Godel exhibited a construction which produced a model of ZFC. 

His construction i s r e f e r r e d to as V = L and so ZFC + V = L i s 

consistent. Jensen showed that w i t h i n such a model of ZFC, a 

combinatorial property c a l l e d 'diamond' holds. We w i l l define 

and use t h i s property diamond to show that within a modsl of ZFC 

where V = L holds, a l l W-groups are f r e e l y generated. 
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M a r t i n and Soloway showed that MA (Martin Axiom) + 2 U > ooj-

i s c o n s i s t e n t w i t h .ZFC. We w i l l d e f ine and use MA to show the 

exis t e n c e of non f r e e W-groups in. a model of ZFC i n which MA + 2 W > u)]/ 

h o l d s . . . 

And so the s i t u a t i o n i s t h i s . Let X be the f o l l o w i n g statement: 

" A l l W-groups of c a r d i n a l i t y u>1 are f r e e l y generated." Then: 

( i ) ZFC + V = L i m p l i e s X and so ZFC + X i s c o n s i s t e n t . 

( i i ) ZFC + MA + 2 W > a)1 i m p l i e s - i X and so ZFC + - i X i s 

c o n s i s t e n t . 

Thus X i s c o n s i s t e n t w i t h and independent of ZFC. 
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Whitehead Groups and t h e i r Structure 

In t h i s section we w i l l give some preliminary facts and d e f i n i t i o n s •.. 

about Whitehead groups and w.-free groups. We w i l l c l a s s i f y the oi^-free 

groups of c a r d i n a l i t y 0)^ into three p o s s i b i l i t i e s . In this thesis^ by 

group we w i l l always mean Abelian group. 

D e f i n i t i o n (1): G i s c a l l e d a Whitehead group or W-group i f for 

every epimorphism h:H ->''G such that the. kernel of h i s . isomorphic . 

to Z (the integers) there e x i s t s a homomorphism g:G ->• H such : 

that gh:G ->• G i s the i d e n t i t y map on G. 

D e f i n i t i o n (2): For. a group A. we say A i s the d i r e c t sum 

of subgroups B and C of A i f : 

(i) B + C = A where B + C i s the set of a l l sums of 

the form b + c where b i s in: B and c i s i n C. 

( i i ) B C\ C = 0. where' 0, i s the i d e n t i t y element of A. . A A J 

This i s written as A = B © C. 

Lemma (1): The group H. as i n the d e f i n i t i o n of a W-group i s 

a d i r e c t sum of a copy of Z and a copy of G. 

Proof: Let g and h be as i n the d e f i n i t i o n of' a W-group. Since 

gh i s the i d e n t i t y map on G, g i s 1-1, so G* = image(g) - G. . 

By d e f i n i t i o n kernel(h) - Z. We show that H = G * © kernel(h)• 

C l e a r l y G* and kernel(h) have only 0 i n common, else gh 

could not be 1-1. Now l e t h* be h r e s t r i c t e d to G*.. If 
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x e H , t h e n x = h* ^ ( x ) + (x - , h * ^ h ( x ) ) ' and c l e a r l y h* 1h(x)£ G* 

and x - h* ^h(x)£ k e r n e l ( h ) . 

Some P r e l i m i n a r y F a c t s about W-groups ' 

D e f i n i t i o n ( 3 ) : A group i s c a l l e d f r e e i f i t i s i s o m o r p h i c t o 

a d i r e c t sum o f c o p i e s o f Z. 

D e f i n i t i o n (4) : A group i s u ^ - f r e e i f e v e r y c o u n t a b l e subgroup 

i s f r e e . 

I f G i s a W-group the n i t i s : 

( i ) T o r s i o n f r e e 

( i i ) co^-free 

From now on G w i l l be t a k e n t o be t o r s i o n f r e e and of c a r d i n a l i t y 

u>\. So we can assume w i t h o u t l o s s o f g e n e r a l i t y t h a t the elements 

of G a r e a l l t h e o r d i n a l s <. ipi where t o j i s t h e f i r s t u n c o u n t a b l e 

o r d i n a l : c o j = { a : a < t o } } = t h e s e t of a l l o r d i n a l s l e s s t h a n u ^ . 

D e f i n i t i o n (5.) : B i s a. pure subgroup of G . i f B fl zG = zB 

f o r a l l z € Z , where zG = {g£G:g = zx f o r some x€TG}. E q u i v a l e n t ! y 

B i s pur e i f f o r any z £ Z , b £ B , i f the e q u a t i o n z x = b i s 

s o l v a b l e i n G the n i t i s s o l v a b l e i n B. 

(2) page 178 

(2) page 178 
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Lemma (2): Let G be a t o r s i o n free group of c a r d i n a l i t y 

co_'. Then G can be well-ordered as ^ a : a ^ ^ n s u c ^ a w a Y 

that f o r any l i m i t o r d i n a l 5, = { § a
: a < <$} i s a pure subgroup 

of G. 

Proof: We define g. by t r a n s f i n i t e induction. The l i m i t ordinals • : "a 
l e s s than co]_ are p r e c i s e l y the ordinals of the form co$, where 

0 < 0 < co],. Suppose that for every $ < y, and every a. < tog, g^ 

has been defined, and -G i s a pure subgroup of G. We w i l l show 

how. to extend.the d e f i n i t i o n so that G i s pure. There are two 
coy . 

cases to consider. 

Case ( i ) : Y i s a l i m i t o r d i n a l . Then of course g^ i s already 

defined for every a < COY • Since for every 3 < Y» G i s a pure 
cop , 

subgroup of G, and G = U :G „ , i t i s t r i v i a l to v e r i f y that 
. ^ 0<Y

 w f 3 

G i s a pure subgroup of G. 
COY 

Case ( i i ) : Y i s a successor. Take a f i x e d well-ordering of G i n 

order type CO], with the. f i r s t element' i n the ordering ^ 0. Let 

g be the f i r s t element of G with respect to t h i s f i x e d order 

which i s not a g^ for any a < CO(Y -1) • Let B be the subgroup 

of G generated by a n c ^ ^ (where G^ = (j>) . Since G i s 

torsi o n free B has c a r d i n a l i t y co. So by (1), page 115, B i s 

contained i n a countable pure subgroup of G, say B*. As zg frG . 
T OJ(Y~1) 

for any z i n Z i t i s c l e a r that B*\G .. has c a r d i n a l i t y co, 
CO(Y-I) 

and so i t may be enumerated as {g :CO(Y-1) < a < COY). Thus G .= B* 
a — COY 

i s a pure subgroup of G. 



If G i s a (torsion free) group of c a r d i n a l i t y i o l s instead 

of l a b e l l i n g the elements of G by the ordinals • l e s s than co l 5 

i t i s n o t a t i o n a l l y more convenient to assume the elements of G 

are the ordinals less than . Whenever such notation i s used, 

i t w i l l be understood that f o r any l i m i t o r d i n a l 6, G^ .= {a:a < <5} -

i s a pure subgroup of G. Lemma (2) shows th i s i s . a harmless 

assumption. C a l l any such naming of G admissible. 

C l a s s i f i c a t i o n .of a^-Free Groups of C a r d i n a l i t y l O ] . 

We w i l l i n th i s section c l a s s i f y a^-free groups of c a r d i n a l i t y 

oo j into three p o s s i b i l i t i e s , c a l l e d unimaginatively P o s s i b i l i t y I, 

P o s s i b i l i t y I I , and P o s s i b i l i t y I I I . F i r s t we need a remark and 

then some preliminary group t h e o r e t i c and set theoretic- d e f i n i t i o n s . 

Remark ( 1 ) : For torsi o n free groups the equation zx = g can 

have at most one so l u t i o n , f o r zx = g = zy implies zx = zy Implies 

x = y. So i f zx = g i s solvable i n G, then the unique s o l u t i o n 

belongs to a l l pure subgroups containing g and thus the i n t e r s e c t i o n 

of pure subgroups i s again pure. This allows us to make the .following 

d e f i n i t i o n . . 

D e f i n i t i o n (6): Let <L,G>^ be the smallest pure subgroup of 

Gwhich. contains L, L<=LG. 



Remark (2) : If S i s a pure subgroup of G, then <L,S>jV = <L,G>.V 

by. Remark (1). We write <L>>V = <L,G>y. i f i t is. clear which group 

G we are r e f e r r i n g to. 

D e f i n i t i o n (7): Let S be a subgroup of G, L a f i n i t e 

subset of G, and a an element of G. We say H(a,L,S,G) holds 

i f <SUL> 4 = < S > A ® <L>jV but for no b £ < S U L U { a } > A i s . 

<SLVL'f{a}> J k = <S>A ©<Ll/{b}>.,c 

• D e f i n i t i o n (8) : A subset C of LOJ Is closed and unbounded 

i f : 

( i ) ' For every non-empty subset S of C sup S £ C L / { t o i } . 

This says that C i s closed. 

( i i ) sup C = a)].. This says that C i s unbounded. 

D e f i n i t i o n (9) : .A subset A of -u )_ i s stationary i f C f i A ^ <j) 

for every closed and unbounded subset of t o _ - . 

• D e f i n i t i o n (10) : Let X be a subset of t o _ . Then X i s 

co f i n a l i n i o _ i f for a l l a i n to there ex i s t s g i n X such 

that a <_ 3 . 

Remark (3) : No countable set. i s c o f i n a l with t o _ . . (3) page 207.. 



We are now ready to define the three p o s s i b i l i t i e s . 

D e f i n i t i o n ( l l ) : An toj-free group G of c a r d i n a l i t y •. CO] 

s a t i s f i e s P o s s i b i l i t y I i f for any admissible naming of G 

there i s some l i m i t o r d i n a l 6 < to']., and there are elements of G, 
ct 

say a
n ( a ) ^ o r a l l . a < ai 1, (where n(ct) i s a f i n i t e ordinal) 

and subsets L^' = ^ a i : ® 4 '̂ < n ( a ) } such that: 

(A) {a^ + G^:a < coi, I j^nta)} i s an independent family 

i n G/G, . 
o 

(B) n ( a a . . ,L ,G.,G) holds f o r a l l a < u, . 
n(ct) a o 1 

Remark (4) : Since 6 < then G^ i s countable and so. we can 

assume without loss of generality that 6 = co' . Rename G. by 
o 

{ct:0 £. ct < co} which can be done as G. i s countable. Now rename' 
o 

the rest of G using .the technique of Lemma (2). 

D e f i n i t i o n (12): An toj-free group G of c a r d i n a l i t y cô  

s a t i s f i e s P o s s i b i l i t y II i f G does not s a t i s f y P o s s i b i l i t y I 

and there i s a stationary subset of co l 5 say A, such that for 
ct 

any a i n A there are elements of G,. say a , £ <_ n(a), (where 
Ct n(a) i s a f i n i t e o r d i n a l ) , and subsets L = {a..:0-<_ i < n(ct) } such a Jc — 

that: 
Ct 

(A) ^ a £ : 0 4 ^ < n(ct)} i s an independent family i n G / G
a 

(B) n(a°'/ \ ,L ,G ,G> holds. 
n(ct) a a 

D e f i n i t i o n 

P o s s i b i l i t y I I I 

(13): 

i f i t 

An co^-free group G of c a r d i n a l i t y coj s a t i s f i e s 

doesn't s a t i s f y P o s s i b i l i t y . I or P o s s i b i l i t y I I . 
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Lemma (3): The c l a s s i f i c a t i o n of a given group G to the^ three 

p o s s i b i l i t i e s depends on G only up to.isomorphism. 

Proof: We must show that under any admissible naming of . G, i t w i l l 

always s a t i s f y the same p o s s i b i l i t y . There are three cases to consider. 

Case (i) : Suppose G s a t i s f i e s . P o s s i b i l i t y I. Let h:G -> G*. be an 

isomorphism. Then •G* can be thought of as a renaming of the elements 

of G and so by the d e f i n i t i o n of P o s s i b i l i t y I, G* s a t i s f i e s 

P o s s i b i l i t y I. 

(Case ( i i ) : Suppose G s a t i s f i e s P o s s i b i l i t y I I . F i r s t we show that 

i f h:G G*" i s an isomorphism, then the set C defined by C = {6:h|Gr 

o 

i s an isomorphism from G^ onto G*} i s a closed.and unbounded subset 

of ui where hlG. i s the r e s t r i c t i o n of h to G.. G i s closed 
o o 

since the union of a chain of isomorphisms i s an isomorphism. Suppose 

C i s bounded. Choose a < c o _ such that a i s an upper bound for C. 

For n < c a define a i n d u c t i v e l y as follows: 
n 

ag = a 

a = sup ({h(6):6 <a }'{J (3:h(3) < a . ' } ) n n-1 . n-1 
As ag < ui], then < coj for a l l n. That i s i f we assume i n d u c t i v e l y 

that a , < can , then a i s the sup of a countable set and since n-1 1 n 
no countable set i s c o f i n a l with coi , then a < co-i . Let a * = sup a . 

1 n 1 n<& n 
Since a < coi for a l l n < co, then a* < coi . Let 3 £ G such that 

3 < ct,-c, then. 3 < for some n, and so h(3) < a
n +-^ the. d e f i n i t i o n 

of a t 1 - . S i m i l a r l y i f 3 £ G * such that 3 < OL* then 3 < a for n+1 n 
some n and so 3 = h(p) where p < a ,. . Thus h G . i s an isomorphism 

n+1 1 a* ' 

and so a*€C. Thus a i s not an upper bound f o r C and so C i s 
unbounded. . 
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Now we show that C C\ A, where A i s the stationary set required 

by the d e f i n i t i o n ' of P o s s i b i l i t y I I , i s a stationary set, and then 

G* w i l l s a t i s f y P o s s i b i l i t y II using C fl A as the required stationary 

set. CD A i s stationary because any closed and unbounded set is. 

stationary. That i s i f ' C^ and : are closed and unbounded sets 

then H C^ f cj>, for l e t {£^, £J2, ?3 v • • } he an increasing sequence 

of ordinals such that for n even E € C, and for n odd E 6C„ . 
n 1 n 2 

Then tj) = sup. {£]_., f^,^., .. } = sup {E2> ?4 > ?6> • • • } A N ^ X/J i s i n both 

C^ and C^ since C^ and C^ are closed. A c t u a l l y C^O C^ i s 

closed and unbounded. C l e a r l y D C^ i s closed as C^ and. .Ĉ  

are closed. If C^H C^ was bounded, by say a < coj., then define 

a sequence {£J j.,£2> 53> • • • } as before x<rith £j = a to get a c o n t r a d i c t i o n . 

Thus C /I.C*, for any closed unbounded set C*, i s closed and unbounded. 

Thus (C 11 A) D C* = A f) (C n C*) ^ <j> . Thus C.-fl A i s stationary 

and so G* s a t i s f i e s P o s s i b i l i t y I I . 

Case ( i i i ) : By. d e f i n i t i o n P o s s i b i l i t y III holds i f and'only i f 

neither P o s s i b i l i t y I nor P o s s i b i l i t y II holds'. 

The c l a s s i f i c a t i o n into : the three p o s s i b i l i t i e s depends on. G 

only up to isomorphism. 

By the d e f i n i t i o n of the three p o s s i b i l i t i e s , an tu^-free group 

G can s a t i s f y only'one, . and so the three p o s s i b i l i t i e s form a 

p a r t i t i o n . The following lemma shows that each p o s s i b i l i t y ' i s s a t i s f i e d 

by a p a r t i c u l a r coi-free. group. 
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Lemma (4): • Each P o s s i b i l i t y i s s a t i s f i e d by some co._-free 

group. 

Proof: Again there are three cases to consider. 

Case ( i ) : We w i l l c o n struct an co_-fr.ee group s a t i s f y i n g P o s s i b i l i t y I. 

F i r s t we de f i n e a set C of i n c r e a s i n g sequences of n a t u r a l numbers 

of length co such that the c a r d i n a l i t y of C i s co_, and i f " n and. 

T are i n C, .n ̂  T, then n and T have at most f i n i t e l y many 

n a t u r a l numbers i n common; that i s n / i x i s f i n i t e . To show that 

such a set C e x i s t s we give an example. Consider the f o l l o w i n g 

diagram: 

The sequences are defined by ta k i n g p o s s i b l e paths. For example: . 

{1,2,4,8,...} 

(1,2,4,9 } 

{1,2,5,10,...} 

e t c . 

By the n ^ 1 row of the diagram 2 n sequences or paths are defined, 

and i n the l i m i t there are 2 W >_ co j sequences. Choose any . co _ sequences. 

The i n t e r s e c t i o n of any two i s f i n i t e f o r they can agree only up to 

the p o i n t where t h e i r corresponding paths separate. 

http://co_-fr.ee
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Let G be generated by: 

(i) x, for k < 10 

m 0 0 k! (i i ) x '= , 1 (—r')x , for m < oo and xeC 
T k=m m. x(k) 

Using the notation of the definition of Possibility I and 

C = {.x(ct):ot < a)].} let:. 

(i) Ĝ  be the group freely, generated by the x^' s-

(i i ) . n(ct) = 0, and so L = <j>. 
a /. . . \ • ct m . • (ixx) an = x . . tor a < ton. and m fixed. . x(ct) 1 . 

We must show that G satisfies conditions (A) and (B) in the 

definition.of Possibility I. That i s : 
Ct (A) {a n + G.:'ct < OJI } is an independent family in G/G. . o • . . o 

.(B) n(ao,cj),G ,G) holds for a l l a < ooL . 

(A) follows from the f i n i t e intersection property of the elements 

of C. That is i f . z.x1". . +...+ z x™ ' . = g where z,£Z. z. ± 0, 
1 i ( a i ) n x(ct ) i i 1 n 

x. (a.)£C, and g £ G / , then z,x, .+...+ z x , , is a f i n i t e l 6 l x ( a i ) n x ( a ) . 
. n 

linear combination of the x, 's that generate G„ . As the x . 's 
k 6 • x(a_^) 

are i n f i n i t e linear combinations of the x, 's , then z,x m. . +...+ z x™. . 
k 1 x(cti) n T(ct n) 

must be an i n f i n i t e linear combination of the x, 's since for i .̂ j 

x™, . and x™. . agree at only f i n i t e l y many x ' s for x(ct..) C\ x(ct ') x ( a j x (a ) k I J 
is f i n i t e . This is a contradiction and so (A) holds. 

Now we show condition (B) holds. As L = <L then 
a 

<Gr U L >.=' <G > © <L > . Choose any a n = x™, . . Then 
6 ct * . 6 * . a * . J u x(a) 

/ , i s m+1 m m , . , r . . . (m + l)x , s = x / N - x . w . and so by definition of purity x(ct) x(ct) x(a)(m) J 

xm+\ G<G, U {x™, }>, . Similarly x k . . £<G r U { x
m . }>, for a l l x(ct) 6 x(a) * J x(a) 6 x(a) * 

k ^ m + 1. Using the f i n i t e intersection property for elements 
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of C i t i s c l e a r that no other elements of G w i l l , be thrown i n t o 

<G.V ( x m . }> . . So i f f o r some x e <G. V • { x
m , }> , , <G U {x™, . }> , = 6 x(a) 6 x(a) * ' 6 x(a) *. 

<Ĝ >5,. ©• < x > , v ' then we can assume that <x>5,{ = <x> = the group generated 

by x f o r some x = .2 , z.y. where z.e.Z and each y. i s some 
i = l i i l J i k k t or x . . . C l e a r l y x w i l l cause only f i n i t e l y many of the x > . k x(a.) . t(a) 

to be i n <^g>,'- ® <x>A ;and so t h i s i s impossible. Therefore 

n(x , \ A, G.,G) = n(a 0,L ,G.,G) holds f o r a l l a < ui and so c o n d i t i o n x (cO o :. a o x 

(B) i s s a t i s f i e d . 

Now we show that G i s oj_-free. I t i s s u f f i c i e n t to show that 

f o r any g g' £G , the pure subgroup generated by g.,...,g i n . I n 
i s f r e e on a f i n i t e number of generators, (4) page 25. Without l o s s 

of g e n e r a l i t y g ,...,g are independent and so <{g.,,...,g }>, I n 1 n x 

has rank, n (1) page 116. So l e t b b generate <{g,,.••,g }>, , 
1 n 1 n :< 

that i s < ' * * • ' § n ^ > A = < { h ^ , . . . ,b^}> . We do an i n d u c t i o n on the 

number of generators. For n = 1 c l e a r l y . <{b^}> i s f r e e s i n c e G 

i s t o r s i o n f r e e . Assume any pure subgroup on n - 1 generators i s 

fr e e and l e t <{g. , . . ..g }>, be generated by b. b . I f 
I n * I n 

<{b-1,...,b }> i s not f r e e l y generated, by b,,...,b , then f o r I n I n 
some z.e Z, not a l l zero, .? • z.b. = 0 => z.b. = -z b =̂  • 

i i = l l l i = l l i n n 
b £ < { b b . ,}>, . Thus " the pure subgroup generated by g,,...,g n 1 n-1 x  r ° I n 
has rank l e s s than n, a c o n t r a d i c t i o n . So b,,...,b f r e e l y 

1 n 

generates <^S-^ > • • • J § n^ > and by the i n d u c t i o n hypothesis any pure 

subgroup generated by a f i n i t e subset of G i s f r e e . Thus G i s 

to . - f r e e . 
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Now let G* be any admissible naming of the elements of G. 

Choose 6 <'ID, such that x is in G* for a l l n < co . As 1 n 6 
{x m, . :a < co i } is uncountable and G„ is countable, we can find x (a) 1 6 
uncountably many x™. . 's such that . G • for k < co . let 

x (a) T (a) ' 6 
{x™^^:3 < c o . } be such a set. By letting: 

( i i ) n(3) = 0, and so L = <j> 
3 

/•••\3 m _ 
( i n ) a.0 = x

T ( g ) f o r 3 < c o . 

i t follows that G* satisfies Possibility I in exactly the same 

way as G was shown to satisfy Possibility I. 

Case ( i i ) : We w i l l construct a group satisfying Possibility II. 

For this example, the stationary set A required by the definition 

for Possibility II w i l l be the" set of a l l limit ordinals. First 

we show that this set A = {6 < co_:6 is a limit ordinal} is stationary. 

This follows from the observation that any closed and unbounded set C 

contains a limit ordinal. That is i f . {a.,a2,a3,... } is any countably 

in f i n i t e subset of C where a. < a.,, , then sup a. = a is a limit 
1 1+1 1<GJ 1 

ordinal for i f not then a has a predessor a - 1 which would be an 

upper bound to the sequence. 
Now for 6 a"limit ordinal, let x _ be a sequence of ordinals 

o 

of length co such that sup x „ (n) = 6 where x.(n) is the n'th 
n<co o o 

ordinal of the sequence x. . Let G be generated by: 
6 

(i) x for a < co-. 

a -1 
m 0 0 k \ 

( i i ) x = .1 (—r)x ' . for m < to , 6 < co n , and 6 
6 k=m m. x J(k) . 1 a limit ordinal 
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Using the notation of the definition of Possibility II l e t : 

(i) x £ G. , X j i G . , for ct < 6 , m < cu , and 6 a 

limit ordinal 

( i i ) n(<5) = 0 , and so L = <J> 
.o . . . 

/ • • • \
 &

 m . 

( m ) ag = x^ , m fixed 
Since x™£G_ , then {x™ + G.} is an independent family in o o o o 

G/G and so condition (A) in the definition of Possibility II 6 
holds. n(x.,L-,G.,G) .holds using the same arguement as used for 

o o o ' 
Possibility I , and so condition (B) is satisfied. The oj^-freeness 

of G is again similar to Possibility I. 

Lastly we must show that G doesn't satisfy Possibility I. 

It is sufficient to show that a given admissible naming of G does 

not.satisfy i t . Let 'G_ be generated by: 
o 

(i) x for a < 5 
ct ' 

(i i ) x̂ . . for $ < 6 , m < co , 3 a limit ordinal 
3 

Now define the x 1s to be increasing sequences for a l l limit ordinals 

S <•(!>! . Then It(x™,<j>p ,G) holds for any m < w .. The "II" condition 

cannot hold for any other x™' 's , 3 / <5 , since for 3 < 6 , x™ is 
3 - 3 

m Ic in Gr , and for 3 > 5 , <G,U {xn}>. = Gr ® <x>, where k is o o p o 3 " 
the largest element of the increasing sequence x less' than 6 . 

' 3 
As the x™ 's are the only p o s s i b i l i t i e s for creating the " n " 

condition, we can conclude that i t is satisfied at only countably 

many places for each G. . Thus Possibility I cannot hold and so 
o 

G satisfies Possibility II." 



Case ( i i i ) : Let G be the free group on cu_ generators. I t i s 

s u f f i c i e n t to show that G does not s a t i s f y P o s s i b i l i t y I or II 

fo r some admissible naming of G. Let' G be.generated by the 

elements a , 3 < co i . Let G be the group generated by a , 
3 cot; 3 

3 <_ £, for L not a l i m i t o r d i n a l . That i s G _ = „ffî Ĝ  , where 
— CJcj S<(' 

G^ i s the subgroup of G generated by the element a. . Let G _ 
. 3 w5 

be the group generated by a , 3 < for 5 a l i m i t o r d i n a l . 
P 

3 3 
That i s G = »©_G , where G i s the subgroup of G generated 

3 • 

by the element a . C l e a r l y t h i s i s an admissible naming of G. 

Claim that n(a,L,G^,G ) does not hold f or any l i m i t o r d i n a l 5, 

where L i s a f i n i t e subset of G and a i s an element of. G. So 

suppose for some L and a that II(a,L,Gr,G) holds. If we can 
o 

show that only f i n i t e l y many element's are i n the group W where 

W •= <G. U L U {a}>./<<GpU L> U {a}>, then by the r e s u l t on 

page 24 CG57G^ i s i n f i n i t e i f "n" holds)' since W ='G /G^ , 

"11" must f a i l . If L = {a, ,.. . .a } and i f a = a , then each 
I n o 

m. 

a. =.E-,z.a. , where z.CZ, and a. i s the generator of G J . 

Then the only new elements i n .W w i l l be l i n e a r combinations of 

the a ' s which make up the a / s . C l e a r l y there are only f i n i t e l y 

many of. these i n W. Thus the "II" condition f a i l s i n G under 

t h i s admissible naming, and so P o s s i b i l i t y I or II cannot hold. 

Also G i s io_-free since any subgroup of a free group i s free, 

(1) page 74. Thus G must s a t i s f y P o s s i b i l i t y I I I . 
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Lemma (5) : Let G be ooi-free. Then P o s s i b i l i t y I II • i s 

equivalent to G being the d i r e c t sum of countable groups. 

Proof: Suppose G i s the d i r e c t sum of countable groups and G i s 
ct ct o)i-free. Then G = $ VG where each G i s countable. Since G a<co1 

ct ct i s to T - f r e e , each G i s free,, so each G i s isomorphic to a 

countable d i r e c t sum of copies of Z. Thus G i s isomorphic to a 

d i r e c t sum of U[- copies of Z and so G i s free on tô  generators. 

By Lemma ( 4 ) case ( i i i ) , G s a t i s f i e s P o s s i b i l i t y III.. 

Now suppose G s a t i s f i e s P o s s i b i l i t y I I I . F i r s t we show that 

i f C i s a, closed and unbounded subset of OJ1 , then C* = {6:6 €C and 

6 i s a l i m i t ordinal} i s also closed and unbounded. C*. i s closed 

since C i s closed and the sup of a sequence of l i m i t ordinals i s a 

l i m i t o r d i n a l . C* i s unbounded since C i s unbounded and the sup 

of an i n f i n i t e increasing sequence of ordinals of C i s a l i m i t 

o r d i n a l of C. Thus C* i s closed and unbounded and contains only 

l i m i t o r d i n a l s . . < 

Since P o s s i b i l i t y I and P o s s i b i l i t y II f a i l s , we can f i n d 

a closed unbounded set C .such that i f 6 £ C , there does not. e x i s t 

a £ G and L, a f i n i t e subset of G, such that n(a,L,G.,G) holds. 
6 

That i s , i f for every closed and unbounded set such a 6 e x i s t s , 

then by taking the set of these 6's we get a stationary set which 

s a t i s f i e s condition (B) of P o s s i b i l i t y I I . By taking L * £ L such 

that L* i s a maximal independent family i n L, then condition (A) 

of P o s s i b i l i t y II would be s a t i s f i e d using the L*'s i n place of 

the L's . Since P o s s i b i l i t y I f a i l s , then P o s s i b i l i t y II would 
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hold for G, a contradiction. Therefore such a C exists. 

From previous remarks, in this proof we can assume that C contains 

only limit ordinals. Since sup C = OJ. , then the cardinality of C 

is coi since no countable set is cofinal with OJ, . So let C = {6 :a < aii } 

where each 5 is a limit ordinal and a < 3 ̂ 6 < 6„ . Now we 
a a 6 

rename G as follows: 

Rename {3:6 <.' 6 < 6 as (3:toa < 3< w(a +1)}. a — ci+1 — 
Now we can assume that C = {toa:a < to.-}, and i t is clear that we s t i l l 

have an admissible naming of G. 

Now we do an induction to show that G , = G ffi <b, ,'b„, . . . >. 
coa+oj ua . 1 2 * 

for some b.'s in G . ̂ G . Suppose b,, . . .b have been choosen. i wa+co a>a r r I n 
Let G n = G ® <b -,...b >., . Now let L = {b,,...b } and let 

I n " . 1 n 
a = inf '{6:6 6 G , — G n } . As to a is in C, then n(a,L,G ,G) 

toa+co tea toa 
f a i l s and so there must exist b ,.€ <G U L U {a}>, such that 

n+1 toot , * 
<G U L V {a}>, = G ® < L U {b ,,}>,= G © <bn,...,b ,b ,,>, . wa x ooa n+1 >c toa 1 n n+1. * 
Since clearly U G n =. G , we get that. G , = G ® <b,,b0,...>, . 

n toa toa+to , toa+to toa 1 2 5C 

Let H = <b, ,b o 5 ...>_. . Then G , =G <B H . Thus wa 1 1 > toa+w coa toa 
G = G • ffi H and so G is the direct sum of countable groups, (o l_<a<cj1 toa ' 



19 

(G,Z)-Groups 

In t h i s s e c t i o n we w i l l define (G,Z)-groups and prove some lemmas 

about them necessary for the consistency r e s u l t . 

D e f i n i t i o n (14): A (G,Z)-group i s a group H 

set G x Z = {(a,b):a£G, b £ Z } such that: 

(i ) (a,b) + (0,c) = (a,b+c) , 

( i i ) The map h:H ->- G defined by h(a,b) = a 

For a given G/ , H w i l l denote.a (G^,Z)-group, 

homomorphism w i l l be denoted by h_̂  . 

Lemma (6): Let G^ be a countable subgroup of G^ where G^ 

i s w i-free and the c a r d i n a l i t y of G„ i s at most W i . Let H be 
2 1 

a (G^,Z)-group. Then can be extended to a (G^,Z)-group. 

Proof: F i r s t note that Ĝ  i s f r e e l y generated since i t i s countable 

and G^ i s wi-free. Thus from the r e s u l t noted before, G . i s a 

W-group since f r e e l y generated groups are W-groups. The r e s u l t w i l l 

be proved by t r a n s f i n i t e indection. To si m p l i f y the induction we w i l l , 

deal with two s p e c i a l cases f i r s t . Let <a + Ĝ > be the subgroup of 

G2^ G1 8 e n e r a t e c * by the element a + G , where a i s i n G^. Let 
G = <{a} U G > be the subgroup of G generated by {{a} U G }. a. j. z. x 

Case ( i ) : <a + Ĝ > i s isomorphic to Z. 

Case ( i i ) : <a + .G > i s c y c l i c of prime order. 

We w i l l show that i n cases ( i ) and ( i i ) H can be extended 

to a (G^,Z)-group. 

with underlying 

i s a group homomorphism. 

and the corresponding 
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Proof of case ( i ) : Suppose <a + Ĝ > i s isomorphic to Z. Then every 

b £ G has a unique representation as za + c where z e Z and c € G, . a 1 

Now define.for b , b„ i n G and k , k i n Z , the following: 1 z • a 1 / 
(bl,k1) + (b 2,k 2) 

= (z a + c .k^ + ( z 2 a H-'c ,k 2) 

d i f ( ( Z l + z 2 ) a + c 3 , k 3 ) 

where (c^,k^) + ( c 2 , k 2 ) = (c^.k )' i n . I t i s easy to check that 

t h i s natural extension of H, forms a group. C a l l t h i s group H . 
1 a 

Then (b,k) + (0,m) = (za + c,k) + (0,m) 

.= (za + c,k + m) 

' = (b,k + m) , since i n (c,k) + (0,m) = (c,k + m). 

Also the mapping h :H -> G defined by h (b,k) = b i s c l e a r l y a 

homomorphism, and so H i s a (G ,Z)-group. 
a a 

Proof of case ( i i ) : Suppose <a + Ĝ > i s c y c l i c of prime order p. 

Since ĥ '.Ĥ .-*- G^ has kernel isomorphic to Z and G^ i s a W-group, 

then there e x i s t s g :G -> H such that 'h g = 1 . Let g (c) = (c,m(c)) 
1 i 1 1 1 Gi I 

for c £ G ^ . Every b £ G^ has a unique, representation as za + c 
where 0 <_ z < p , c £ G ' . Now for b, , b„ i n G and k, , k- i n Z 

~~• 1 1 2 a 1 . 2 
define: 

(bl,k1) + (b 2,k 2) 

def 
( z x a + c ^ k ^ + ( z 2 a +c ,k 2) 

^ ' ( ( z ^ + z 2>a + c^ + c
2'^i + k2 ~ m ^ c p - m(c 2) + m(c^ + c 2) 

. + f ( z l + z 2 ) ) 

wiere 0 <.-z •, z < p , and f (n) = 0 when n < p and f (h) ,=. M€Z 

otherwise; where M i s an a r b i t r a r y constant which once chosen 



remains the same for a l l such defined sums. We w i l l show that t h i s set, 

c a l l i t H , forms a (G ,Z)-group under t h i s defined operation. To a a 
show H i s a group, the only non t r i v i a l thing to show the existence 

of inverses. Let (b,k) = (za + c,k) be i n H and - c be the 
a 

inverse of c i n • G . ; Then: 

(za + c,k) + ((p - z)a - c, -k - M) 

= ((z + (p - z))a + c - c,k - k - M - m(c) - m(c) + m(c - c) 

+ f ( z + (p - z))) 

= (pa, -M + f(p)) 

= (0, -M + M) 

= (0,0) 

This the inverse of (b,k) i s ((p - z)a - c, -k - M) , and so H i s 
3-

a group. Now l e t (b,k) = (za + c,k) and (0,t) be i n H,. Then: 
a 

' (b,k) + (0,t) 

= (b,k + t - m(c) - m(0) + m(c) + f(z>) 

= (b,k + t) , as z < p . 

Also the mapping h :H G, , defined by h (b,k) = b i s a homomorphism, 
a a 1 a 

so H i s a (G ,Z)-group. a a 

Since G^ i s .coj-free and G^ i s countable, then G^ i s countable 

and so i t i s f r e e l y generated. Thus G i s a W-group. 
a 

Now we do the-induction. F i r s t we f i n d a sequence of elements, of 

G^ , say A = {a^:6 < a,a an ordinal}, such that G^U A generates 

G„., and such that i f J . = <G, U {a : p < 6}> for a l l 6 < a, then 2 o 1 p 

<a^ + J^> i s i n f i n i t e c y c l i c or c y c l i c of prime order. The sequence 

A i s defined as follows: 
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Assume a„ has been defined for a l l g < 6. Let b = inf{a:a£ G.\ J.} 
g 2 6 

If <b + J > i s i n f i n i t e c y c l i c or c y c l i c of:prime order, l e t a. = b. 
o , • . • • o 

If not, then <b + J > i s c y c l i c of non prime order, say of order np 
o 

where p i s prime. Then l e t a. = nb. So ' <a '+ J > has prime order p. 
6 6 6 

It i s clear that card (A) < oj; , since G^V A generates G^ and 

cardCG^) <_ o)_ . 
Let = , a (J^,Z)-group. We w i l l define to be a 

(J,Z)-group for a l l g <_ a. 
3 • • . ~ 

(a) .3 i s not a l i m i t o r d i n a l : Since 3 i s not a l i m i t o r d i n a l , i t 

has a predessor. So we can suppose a (J 1,Z)-group, K , has been 
g-1 ii- L 

defined. Then by construction of the sequence A, <a . + J > i s 
.3-1 3-1 

i n f i n i t e c y c l i c , or i s c y c l i c of prime order. I f i t i s i n f i n i t e 

c y c l i c then case ( i ) can be applied d i r e c t l y to K to show i t 
g-1 

can be extended to a (J^,Z)-group K . If i t i s c y c l i c of prime 

order, then as ^ s countable, i t i s f r e e l y generated and so 

i t i s a W-group. Then there e x i s t s g :J K such that 
p-1 3-1 g-1 

h g _ l § 3 _ l = * j where as usual h ^ i K ^ r> J ^ _ 1 and h(a,b) .= a. 
g-1 

Thus we can apply case ( i i ) using g as the required map, and so 
•p-1 

extend K to a (J,Z)-group K . 

(b) 3 i s a l i m i t o r d i n a l : Define K. •==IVr>Kr . I t i s easy to check • g 6<g 6 
that K i s a (J,Z)-group. 

3 R 

So i n d u c t i v e l y we can define a (J^,Z)-group. C a l l i t H . As. 

the set Gj f A generates G^ , then = G^ , and so i s a 

(Gn,Z)-group and the lemma i s proved. 
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Lemma(7): Let be a (G^,Z)-group. Let h^ and g^ be 

homomorphisms, n i : H ^ G-[ a n < ^ h (a,b) = a, g^:G H-̂ ' , such that 

h g = 1 

1 1 G-L . Let G^ be toi-free and card(G2) 4 to1 . Suppose 

n(a,A,G^,G2,) holds. Then can be extended to a (G2>Z)-group 

such that for no homomorphism g N:G -> H„ does :h g = 1 where g-
2 2 Z *.Z Z z 

extends g^ and as usual h^Ca.b) = a. 
Proof: Let: (i) ' A = {a, ,...,a } 

1 m 
( i i ) G 3 = <G 1 U A>?v = <G 1> A 0 <A>5V 

( i l l ) G. = <G„ U {a}> 4 3 
(iv) G 5 = <G U A U {a}>i< 

mo 
v Let H. be a (G.,Z)-group. Consider the homorphisms g:G. -> H, 4 4 4 4 

that extend g and such that h g = 1 . Any such g i s uniquely 1 4 
determined by where g maps a.,...,a and a. That i s i f b€ G. , ' 

1 m . 4 
then b = c + za where c £ G^ and z £ Z . So b = d + x + za where 

d £ < G^ >,' {
 a n c ^ x £ < ^ > * ' x e <^- >* implies nx i s a l i n e a r combination 

of the a^'s for i = ,l,...,m. Thus the g(a_^)'s determine g(nx) = ng(x) , 

and so they determine g(x) since there i s a unique so l u t i o n to 

ng(x) = y. As d'£<G^> A , g(d) i s already determined by g^ . Let 

a n = a. As h g •= 1 and h. (b,z) = b, then g(a.)£{(a.,z):z£Z} U 4 G^ 4 - l l 
for i = 0,...,m. So each g(a^) can be defined i n only countably 

many ways and since there are only f i n i t e l y many a-^' s » there can 

be. only countably many such . g's.. C a l l them {g n:n < io) = R. 

Now we w i l l show that Gr/G, must be i n f i n i t e . Then we w i l l 
5 4 ' 

make some observations about the structure of G^/G^ a n < ^ c l a s s i f y i t 

into two p o s s i b i l i t i e s . 
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G5'/G4 i s i n f i n i t e : Since G 5 = <G U A U {a}>^ $ < G
1

> . V ® < A u {a}>A-. , 

then there e x i s t s x£ <G^ A V {a}>5V , ;x^<G >A © <A U {a}>^ such 

that nx = g + c + ka where for some n ^ 1, g £ < G ^ > A , c 6 <A>4 , 

and k ̂  0. Let n be the smallest p o s i t i v e integer for .which there 

i s such a g, k, and c. Then the greatest common d i v i s o r of n and 

k i s 1, for i f not then say m divides n and k. Then 

• m((—)x - (—)a) = g + e, and since <G. f A>. = <G > u ® <A>J , then m m 1 * 1 * . * ' 
there e x i s t s g ,6 <G >. and c,€ <A> . such that (—)'x - (—)a = g, + c • , • 1 . 1 * 1 * m m' 61 1 ' 
and so (—)x = g + c, + (—)a, contradicting the minimality of n. m l l m • 

Thus there e x i s t s integers w and z, such that nw + kz = I. Now 

consider wa + zx: 

nx = g + c + ka , 

so wg + wc = wnx - wka , 

and so wg + wc + k(wa + zx) = wnx -wka + kwa +kzx 

= wnx 4- kzx 

' = (wn + kz)x 

= . x 

Similarly:' 

-zg - zc + n(wa + zx) = -znx + zka + nwa + nxz 

= (zk + nw)a 

= a 

So i f x was the only new element i n <G^ C A L/ {a}>.,. , then 

<G\^U A U (a}> A = <G1>,,{ © <A {wa +zx}> A , a contra d i c t i o n to 

II (a,A,G^ ,0 s) , since wa + zx i s i n <G^U A U {a}>A • So there 

must be a y such.that my = g + c + sa + tx, or my = g^ + c^ + u(wa + zx) 

for some u Z. Using the same method we can fi n d an element b i n 

<G U A U {a}>^ such that y and wa + zx are i n ® <A (/. {b}>^ . 



Since t h i s process can be repeated for any f i n i t e number of such 

elements, i t follows that there must be i n f i n i t e l y many of them else 

we get a con t r a d i c t i o n to the II condition. Thus .Gr/G. i s a 
• b 4 

countably i n f i n i t e t o r s i o n group. 

D e f i n i t i o n (15): A group G i s d i v i s i b l e i f for every x i n 

G and every integer n, there e x i s t s elements i n G that s a t i s f y 

the equation ny = x. 

From Kaplansky (5), we have the following two r e s u l t s : 

(a) Any abelian group G has a unique largest d i v i s i b l e subgroup M, 

and G = M ® N where N has no d i v i s i b l e subgroups. (5) page 9. 

(b) Any d i v i s i b l e group i s a d i r e c t sum of groups, each isomorphic 

oo 
to the .additive group of r a t i o n a l s Q, or to Z(p ), the group of 

a l l p ^ roots of unity f o r various primes p. (5) page 10. 

As G^/G^ i s a to r s i o n group i t cannot have a subgroup isomorphic 

to Q. So i f G^/G^ has a non t r i v i a l d i v i s i b l e subgroup, then by 

Kaplansky s two r e s u l t s , G^/G^ contains a copy of Z(p ) for some 
CO 

prime p and the copy of Z(p ) i s a d i r e c t summand of the group. 
So suppose G^/G^ has no non t r i v i a l d i v i s i b l e subgroups. 

D e f i n i t i o n (16): A group G i s reduced i f i t has no non t r i v i a l 

d i v i s i b l e subgroups. 

From Kaplansky we have the following result". 

(c) I f G i s a reduced group which i s not torsion free, then G 

has. a f i n i t e c y c l i c summand. (5) page 21. 

Since G^/G^ i s a reduced t o r s i o n group, then by (c) G has 

a f i n i t e c y c l i c summand. Now apply (c) to the other summand. Repeated 



a p p l i c a t i o n of (c) to the i n f i n i t e remaining summand of Ĝ /Ĝ . shows 

that G^/G^ contains an i n f i n i t e d i r e c t sum of f i n i t e c y c l i c groups. 

From each of these choose an element of prime order. Thus we can 

assume that there e x i s t s i n f i n i t e l y many d i s t i n c t elements, say a^ 

for n < co, such that p a € G, where each p i s prime. . n n 4 n 

Now we can say that one of the following p o s s i b i l i t i e s occurs 

i n G./G.: 
D 4 

(I) Gj_/G^ contains i n f i n i t e l y many elements of prime order. 
CO 

or (II) 'G /G^ contains a copy of Z(p ) for some p. 

l e t (I) hold i n Gr/G. . Let a , n < co, be the elements of 
5 4 n . 

prime order. That i s the element a + G, has order p i n Gn/G, . 
n 4 n 5 4 

' * . 
Let G be generated by G. U { a , , a We w i l l i n d u c t i v e l y n ^ 4 O n - 1 

ft ft ' * 
define a (G ,Z)-group H , using Lemma (6) so that H ' 

n+1 n+1. n+1 
* • 

extends . F i r s t use Lemma (6) to extend to a (G^,Z)-group 
ft 

which we w i l l c a l l . C l e a r l y t h i s can be done as G^ and G^ 

meet a l l the conditions of Lemma (6). That i s G^ i s a countable 

subgroup of G^ , and' G^ i s c o j-free as i t i s a subgroup of the 

c o i-free group G^ . Also i s given to be a (G^,Z)-group. Thus 
• * >v * .ft 
H„ e x i s t s . Assume in d u c t i v e l y H i s defined. G and G ,, 
0 n n n+1 

ft 
s a t i s f y the conditions of Lemma. (6) using as the required 
ft ft ft 

(G n,Z)-group. So by Lemma (6) can be extended to a (G^ +^,Z)~ 
ft . f t group, H . As a. + G. has order p , a + G has order p • n+1 n 4 n' n n n 

ft - ft Let M be the constant used i n Lemma (6) to extend H to H ,, . n n n+1 
ft. ft 

Inductively we define H . Again apply Lemma'(6) to extend H 
CO CO 

to a (G,_,Z)-group, say . H,. , which extends a l l the H
n ' s -
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If g :G,. H •' i s a homomprphism extending g^ such that 

h.gr = l r then for some n, g extends g n ; that i s g| T/ c = g n 

5 -> 0 
where g n £ R as defined e a r l i e r i n the proof.. Now we w i l l show 

i t . * ' ft . •'< using g 5 l H * = § n as the required map i n extending to H + _ > 
n 

(see Lemma (6), case ( i i ) ), that constants M can be chosen 
•n 

i ft such that g r - L * has no extension to G for each n < to. This 5 ii n+1 n • * n w i l l show that g^ and thus g has no extension to G^ and so 

such a gj. does not e x i s t . 

As a + G. i s of order p , then l e t p a = b 6 G, . Let n 4 n n n n 4 
n ft 

g (b ) = (b ,k ) and g (a ) = (a ,c ). Since b i s i n G, and n n n n n n n n 4 
ft xi n g extends g we have g (b ) = g (b ) and so: n n n n 

g n(b ) = (b ,k ) by d e f i n i t i o n • n ' n n 
= g X(b ) as b € G. n n . n 4 

ft 
= g (p a ) as p a -= b n n n .n n n 

ft ft 
= P g (a ) as g i s a homomorphism n n n n 1 

= p (a ,c ) by d e f i n i t i o n n n n 
= (b ,p c + M ) by d e f i n i t i o n of "+" i n H" as n n n n n+1 

as defined i n Lemma (6), case ( i i ) . 

So i n H ,,: n+1 
p (a c ) = (a ,c ) +.....+(a ,c ) (p times) n n n n n. n n n 

= (a + a ,c + c + f ( l + 1)) + (a ,c ) + + (a ,c ) 
n n n n n n n n 

= (2a ,2c ) + (a ,c ) + + (a ,c ) 
n n n n n n 

= ( ( P n - . D a n , ( P n - D O + (an,cn) 

= ( V n ' P n C n + f ( P n } 0 . 

= (b ,p c + M ) n n n n 
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R e c a l l that the constant M as chosen i n Lemma (6) case ( i i ) 
n 

was a r b i t r a r y . By the c a l c u l a t i o n on the previous page we have that 

k = p c + M and so k E M (mod p ). By choosing M = k + 1 , n n n n n n n n n 
t h i s i s impossible,- and so g cannot be extended to G and so 

n n+1 
n • & n g cannot be extended to G ,, and so g cannot be extended to Gn n+1 - 5 

Now suppose (II) holds. That i s G^/G^ contains a copy of 
0 0 / . C O 

Z(p ) for some p. Then from the structure of Z(p ) there are 

elements, say a for n < OJ, such that: n 
(a) p a Q - b Q € G 4 

(b) pa - a = b 6 G '• 
n n-1 n 4 

That i s an i s a p t b root of unity and a i s the ( p n ) ^ root of 0 n 
* 

unity such that (pa - a ,) = 0(mod G,). Again l e t G be generated 
n n - i 4 n • 

* * 
by G. U {a ,...,a }. and l e t H be a (G ,Z)-group constructed 4 0 n-1 n n . 
in d u c t i v e l y as before using the constants M . We w i l l again show 

n 
that by proper choice of the M

n ' s » that g n £ R has no extension to 
* * 

G

n + l a n d thus no extension to G . As before l e t g (a_) = (a ,c ) 
n n 

and g n ( b n ) ="g*(b n) = (b n,k n)-- Then-: 

= -

= pg^(a 0) , 

=: p ( a o ' c o ) 

= ( b o> p c o + V 

And so k = pc Q-+ M Q or k Q = MQ(mod p). 

Also: 
g n(b ) = (b ,k ) • by d e f i n i t i o n n n n 

= g\bn) ^ b n £ G 4 
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= V p a n " Vl> b y ( b ) 

ft ft ft 
= P8 ( a ) ~ S (a -j) as g i s a homomorphism n n n n n-1 
= p(a ,c ) - (a ,c ) by d e f i n i t i o n n n n-1 n-1 . 
= (b + a ,pc. .+ M ) - (a . ,c .) n n-1. n n n-1' n-1 "+" i n H 

n+1 
= (b.,pc + M . - c ) "+" i n using fact n n n. n-1 n+1 

ft 
that a , H n-1 n 

And so k = pc + M - c , or k + c , = M (mod p). n n n n-1 n n-1 n 
Thus we have: (1) k^ = M^mod p) 

(2) k + c = M (mod p) n n-1 n 
Keeping i n mind the M^'s were chosen a r b i t r a r i l y we can do the 

following. For (1) choose M,. = kn + 1 and for (2) choose M = k + c , + 
D O n n n-1 

ft n 

C l e a r l y In both cases no such k's e x i s t . Thus g^ , and so g , 

cannot be extended to . 

F i n a l l y use Lemma (6) to extend H,. to a (G^,Z)-group, say 

Let g„ be any. homomorphism g~:G ->- H such that h g — 1' and 
I. , 2 2 2 2 2 G2 

g 2 extends g^ . Then g 2 extends some g n 6 R. We have just shown 
n * * ft that g cannot be extended to g ,, such that h •, ,e = 1 * 

n+1 n+1. n+1 G
n+1 

* n -
As extends ^ n + ^ l t : follows that g cannot be extended to §2 ' 

Thus g 2 does not exist . . Therefore H 2 s a t i s f i e s the requirements 

of the lemma. 
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V = L and W-groups 

In t h i s section we w i l l show that under the assumption V = L, 

groups s a t i s f y i n g P o s s i b i l i t y I or P o s s i b i l i t y II are. not W-groups. 

Lemma ( 8 ) : If G s a t i s f i e s P o s s i b i l i t y I or II then G can 

6 

be named so that for any l i m i t o r d i n a l 6, there e x i s t s an element a ' 

and a f i n i t e subset L. such that II(a ,L r, G.,G_, ) holds. 
o 0 0 0+0) 

Proof: There are two cases to prove. 

Case ( i ) : Let G s a t i s f y P o s s i b i l i t y I. Thus G i s named such 

that for any l i m i t o r d i n a l 6 < ui'-i , G i s a pure subgroup and for 
o 

some l i m i t • o r d i n a l g, G i s the p a r t i c u l a r pure subgroup required 
p 

by conditions (A) and (B) i n the d e f i n i t i o n of P o s s i b i l i t y I.. 

That i s : 
(A) {a + G :ct < a} , I 4 n(ct)} i s an independent family i n G/G . . 

Jo p p 

(B) (a , . ,L',GJG) holds for a l l a < wi where L = {a„:£ < n(ct)}. 

Let $ = {6:6 i s a l i m i t o r d i n a l , 6 < , and G-- does not s a t i s f y 

conditions (A) and (B)}. That i s there do not exist s u i t a b l e a£' s> 
a < cu 1 , such that G^ could replace G^ i n the above. We claim 
that $ i s bounded i n oon . If. $ i s unbounded then card($)= 10j , 
say $ = {6 :a < aii } where 6 < 6 i f a-i < a? . Rename G so ct 1 • cti ' 012 • 

that. {6:6 <e'<6 ,.} becomes {9:CJ < 0 < oj(ct+l)}. This renames G 
err : ct+1 a — 

so that- under the new ordering, i f 6 i s a l i m i t o r d i n a l , then G R 

0 

cannot s a t i s f y conditions (A) and ( B ) . As G must s a t i s f y 

P o s s i b i l i t y I under any naming that i s admissible, by the d e f i n i t i o n 

of P o s s i b i l i t y I, t h i s i s a c o n t r a d i c t i o n . Thus $ i s bounded, by 
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say p < oi. where p is a limit ordinal. Now rename G so that 

G . becomes G and {8:p+toa <_ 9 < p+co(a+l)} . becomes {8:co+coa <_ 6 < co+co(a+l)}. 
p. co — 

Under this admissable naming i f 6 is a limit ordinal then Ĝ  w i l l 

satisfy conditions (A) and (B) for some a ' s, a < oy_ . 

Now consider G . As G satisfies conditions (A) and (B), 
CO CO 

then there exists a and L such that II(a,L,G ,G) holds. Choose a 
co 

limit ordinal 6 < coi so that <G U L U {a}> £ Gr . Thus II(a,L,G ,G) 
x (0 * 0 CO 

holds. Now rename G so that {9:<o <̂  9 < 6} becomes {9 :co <_ 6 < co+co} 

and {9:6+coa. <= 9 < 6+co(a+l)} becomes {9:co+co+coa 4 9 < co+co+co (a+1) } for 

a < coi . Under this naming n(a,L,G ,G , ) holds. Now we do the 
x CO CO+CO 

induction step. Suppose G has been named so that for a l l 6 < g 
6 6 there exists a and L. such that II(a ,L„,G .„,G „, ) holds.: Since 

o 6 coo coo+co 

G satisfies conditions (A) and (B), then there exists a and L 
cop 

such that II(a,L,G n,G) holds. As before choose a limit ordinal p < coi 
cop 

such that <G L {a}>. G and so (a.L.G „,G ) holds. Rename 
cog * p cog p 

G so that G remains unchanged, {9: cog ̂ 9 < p} becomes {9:cog <_ 8 < cog+co}, 
cog ' , — 

and {9:p+coa <; 9 < p+to(a+l)} becomes {8 : to g+co+coa ^ 8 < cog+co+co (a+1) }. 

Thus n(a,L,G „,G n, ) holds. 
cog cog+co 

6 
Thus we can assume G can be named so that II (a ,Lr)G.,G ) holds 

o 6 o+co 
6 

for any limit ordinal 6 < coi and suitable a 's and L.'s. 
o • 

Case ( i i ) : Let G satisfy Possibility II. The proof is almost the 

same. Let A be the required stationary set in the definition of 

Possibility II. : Let A = {6 : a < coi }, and of course the 6 's are 
a 1 a 

limit ordinals with 6 < 6 i f a i < a ? . From condition ( B ) in 
a \ a 2 

the definition of Possibility II, there exists a and L such that 



•n(a-,L,G. ,G) holds. Choose 6„ so that <G„ u L U {a}>, £ G t . 6 0 6 60. » 6g 
Rename G so that G._ becomes G , and {0:6n < 9 < 6„} becomes. 

6 0 • co u — B 
{0:to 4 6<(o+u)}_, and. {0:6' +uia < 0 < 6^+co(a+l)} becomes {0:to+co+toa < 6 < oo+co+oo (a+l) } 

for a l l a < oil . Then II(a,L,G ,G ) holds. .The induction step i s 
CO co+co 

the same as. case (i) except.that the l i m i t ordinals w i l l always be 

chosen from the 6 Vs .of A. 
a 

D e f i n i t i o n (17) : An i n f i n i t e c a r d i n a l K i s regular i f no set 

of c a r d i n a l i t y l e s s than K i s c o f i n a l i n K. 

As. noted i n Remark (3), no countable set i s c o f i n a l i n coi , 

and so cô  i s regular. 

D e f i n i t i o n (18): Let K be an i n f i n i t e c a r d i n a l number and l e t 

A be a subset of K. IE there i s a sequence , a A, such that 

S i s a subset of a, and for each subset X of K the set a 
{a:X fi a = S } i s stationary i n K, then we say <X 7(A) holds. 

ct - K 
From Jensen (6) page 293> we get the following r e s u l t : 

"Assume V = L and l e t K be a regular i n f i n i t e cardinal.- Then 

O t r(A) holds for every stationary subset A of K." K 
So t h i s r e s u l t holds when K i s the regular c a r d i n a l co1 . 

Now consider a group G of c a r d i n a l i t y co1 . Let A be a 

stationary set .of • l i m i t o r d i n a l s . As shown before the r e s t r i c t i o n of 

any stationary set to i t s l i m i t ordinals i s again stationaty, so there 

are many such A's. Consider the set G x Z = {(a,z):a £ G,z€Z}. 
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Name the elements of G x Z as follows: 

.(a) Name = {(a,z):a < co} as (3 :3 < co} which i s e a s i l y 

done as i s countable. 

(b) Suppose {(a,z):a < co6} has been named as (3 :3 < co6}, 

then, name the elements of J r , , = {(a,z):to6 <_ a < co(5+l)} 
o+l — 

as {3:w6 < 3 < co(6+1) } which i s e a s i l y done as J r i l is. — o+l 

countable. 

So by t h i s inductive naming process the elements of G x Z are the 

ordinals {a:a < coi } and each G • x Z has been named as the ordinals 
o 

{a:a < 6} for a l l l i m i t ordinals less than co_ . Let H be such a 

naming of the elements of G x Z, and so the set A i s stationary, i n 

H = co. = {ot:a < co.}. Assume V = L and apply Jensen's r e s u l t to H 

and A. Thus 0 T 1(A) holds. Let g:G G x Z be a function such rl 
that g(a) = (a,z^) where the z

a ' s are i n Z. Then g can be 

viewed as a set of ordered p a i r s , say L = {(a,z ) :a < COT and z eZ}, 
a a 

and so g can be viewed as a.subset of H, say Y, where 66 Y i f 

and only i f 6 i s the name i n H of some (a,z ) i n L. By Jensen's 
a 

r e s u l t there e x i s t S , for a£ A, such that S S a and for any 
a a • 

X £. H, the set {a:X fi or- S_̂ } i s stationary. In p a r t i c u l a r , 
ft 

A = {a:Y ft a 1 S stationary. Since a i s a l i m i t o r d i n a l and 

: a = ( 3 : 3 < a} = {(6,z) : 6 < a , z € Z} = { (6,z) : 6 € G , z €Z} = G x Z 
a a 

and Y = { 3 £ H : 3 = (6,z r) for &€G }, then for a e A\ Y 0 a = S = 
o a a 

( 3 6 H: 3 = (6,z.) f o r i e G } . Thus Y fi a = S = g L can be viewed as o a a 1G a 

'* a function S :G ->• G x Z. Let S = g f o r a l l a £ A . As g was . a a. ct a a 

a r b i t r a r y , then for aiy function g:G ->- G. x Z where g(a). has shape 
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(ct,z),the set '{<5 < u>i:g = g '= S } i s stationary and since g i s a 
Lr 0 0 
6 ft* 

function so i s g.:G. x Z a function. So l e t A = { 6 € A : S . = g„ 
;0 o o o o 

i s a function.from G r into G. x Z}. Thus we can make the following 
6 6' 

statement: . • 

(J) " I f V = L, there are functions g :Gr -> G r x Z, 6 £ A'°" £ A, 
6 6 

such that f o r any function g:G -> G x Z where g(a) = (a,z), 

the set {5 < toj_:g | = g } i s stationary. 
G 6 6 

Theorem. (1) : Assume V = L.. Then i f G s a t i s f i e s P o s s i b i l i t y I 

or P o s s i b i l i t y I I , then G i s not a W-grbup. 

Proof: Suppose G s a t i s f i e s P o s s i b i l i t y I or I I . • By Lemma (8) 

G can be named so that for any l i m i t o r d i n a l ' 6 < coj , there e x i s t s 
6 6 a and L. such that II(a ,L.,G.,G.., ) holds. Let A. be the 6 6 6 6+0) 

stationary set cons i s t i n g of a l l l i m i t o r d i n a l s . Thus by Jensen, 

since V = L, we can assume (J) as above. Let . H. = G ' x Z, and 
6 6 

ft ft 
so f o r 5 ^ A , g i s a function from G. into H r and g(a) = (a,z) 

o o 6 
• * * • ' • 

Let K be the set of these functions, K = { g . : 5 £ A }. 
o 

We w i l l now construct a (G,Z)-group, H , such that there does 
u l . . 

not e x i s t a map g:G -> H .. such that hg = 1„ and as usual h(a,z) = a. 
oil G ' 

If we can construct such a H , then G cannot be a W-group. We 

do the construction by t r a n s f i n i t e induction. Define a (G ,Z)-group, 
0) 

H , a r b i t r a r i l y . Suppose we have defined a (G ,Z)-group, H 
oi • o>a • oia 

for a l l a < 5, such that H extends H „ for a l l 3 < a. 
oia 0)3 



35 

Define H' as follows: 
coo 

Case ( i ) : Suppose 6 i s not a l i m i t o r d i n a l , so we can assume 

H , „ 1 N i s well defined. As before l e t H = G x Z and h:H -> G co(6-i) 
with h(a,z) = a. 

(a) If c o ( 6 - l ) ^ A or i f .to (6-1) 6 A and the corresponding 

function g / r 1 N i n K i s not a homomorphism such that co (6-1) 
hg , . = 1 , then extend H to H co(6-l; G 1 N co(6-l) co6 co (6-1; 
a r b i t r a r i l y using Lemma (6).. 

•k-k 
(b) If co(6-l)£A and the corresponding function 

, g , . i n K i s a homomorphism such that hg . „ ,. = 1_ 
co(6 1) w ( 6 - 1 }  

t h e n . ' g c o ( 6 - l ) ' a " ' Lco(6-l) ' G<o(6-l) ' a n d Gco6 
s a t i s f y the conditions of Lemma (7). That i s : 

(i) G . „ 1 X i s a countable subgroup of the cor-free 
co(6-l) 

group" 6 u f i , and i s a ( G ^ ^ ,Z)-group. 

( i i ) i K a ^ 6 " 1 - * ,L 1 N,G ..,G J holds by Lemma. (8) 
to(6-l) co(6-l) co6 

as stated i n the beginning of the proof.. 

( i i i ) g s :G, ..,.->- H . i s a homomorphism 
co (6-1) to(6-l)- co(6-l) 

such that hg ••. . = 1 • 
t 0 ( < 5 _ 1 ) G(o(6-l) 

So we can apply Lemma (7) to extend- H .. '. to H „ 
co(6-l) co6 

so that §u(,5__) cannot be extended to a homomorphism 

gco6:Gco6 * \& S U C h t h a t H^6 = XG , • 
co6 

Case ( i i ) : Suppose 6 i s a l i m i t o r d i n a l . Define H . = I J H , 
: — coo , toa ' a<6 

and as before H .. i s a (G .,Z)-group extending H for a l l co6 co6 • coa 
a < 6. 



Let H be the (G,Z)-group constructed by this induction. 

Suppose g:G -> H i s a homomorphism such that hg = 1_ . Then 
ui\ G . • • 

. . ft 

A = {6:g - g.} i s stationary by ( J ) . In p a r t i c u l a r A i s 
u . ' 0 

6 ft . . . 
non empty, say 6 i s i n . A . Thus by the construction of H , 

0)1 
g„ cannot be extended to a homomorphism g„, :G. ->• H., ; such 
0 0+OJ , 0+0) 0+0) 

that hg., = 1^ . Thus g. cannot be extended to g such that o+o) G., o 6+0) 

hg = 1̂ , , and so g i s not an extension of g. , contradiction. 

Thus no such g ex i s t s and so G i s not a W-group. 
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Martin ; Axiom and W-groups 

In this section we w i l l show that under the assumption of the 

Martin Axiom and 2 W > oi] ,. any group satisfying Possibility II 

is a W-group. 

Definition (19) : .Let P be a poset (partially ordered set), 

and let a,b£P. We say a and b are contradictory i f they. have, 

no common upper bound in the poset P. 

Definition (20): Let P be a poset and let D be a subset of P. 

We say that D is a dense subset of P' i f for any a in P there-

is a b in D such that a < b. 

Definition (21) : Let A be a cardinal number.. Let MA be 
. A 

the following assertion: 

"Let P be any poset of cardinality A. Suppose in P there is 

no subset of OĴ  pairwise contradictory elements. Also suppose 
{D :ct < A} are dense subsets of P. Then there exists a subset a 
B of P such that BHD ^ <j>. for a l l a < A, and such that any. 

two.members of B have a common upper bound in B." 

Such a set B is called a generic subset of P (with respect to 

the D 's). MA (Martin Axiom) says that MA, holds for any A < 2 U. 
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Theorem (2) : Assume the Martin Axiom and 2 W >. t6_ . If G 

has c a r d i n a l i t y u)_ , i s oj.-free, and does not s a t i s f y P o s s i b i l i t y I. 

then G i s a W-group. 

Proof: Suppose- G s a t i s f i e s P o s s i b i l i t y I I I . By Lemma (5) G i s 

the d i r e c t sum of countable groups. As . G i s u^-free then each summand 

free, and so G i s free. Thus G i s a W-group. So we can assume 

G s a t i s f i e s P o s s i b i l i t y I I . 

Let H be a group whose set of elements i s G x Z, and l e t 

h:H -> G be defined by. h(a,b.) = a. Now we define a poset P. The 

elements of P are homomorphisms g from f i n i t e l y generated pure 

subgroups. •I of. G into H such that hg = 1 . If g^ and &2 

belong to P, write, g^ <. g^ i f g^ extends- g^ . We w i l l now 

show that the c a r d i n a l i t y of P i s u)_ . 

F i r s t we compute the number of f i n i t e l y generated pure subgroups 

of. . G. As each subgroup i s countable and G i s t h e i r union, there 

must be at le a s t OJ_ . d i f f e r e n t f i n i t e l y generated pure subgroups. 

There cannot be more than co_ f i n i t e l y generated pure subgroups 

of G since there are only co_ f i n i t e subsets of G. Now each 

of these pure subgroups i s f r e e l y generated by a f i n i t e set as G 

i s oj_-free. For a given pure subgroup I, with generators b , ... ,b , 

the homomorphisms of I into H are uniquely determined by the 

images of the generators. If g:I ->- H i s i n P, then for each 

generator b_̂  ,g(b )£{ (b ,z) : z £ Z) . Thus there are only countably 

many choices f o r the image of each b_̂  , and since there are only 

f i n i t e l y many b ''s,-' there are only countably many d i s t i n c t mappings 
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Since the number of f i n i t e l y generated pure subgroups i s uii. , then 

the c a r d i n a l i t y of P i s ooi . 

We now define subsets D of P for a < •u>.y as follows: 

= {g£.P:a i s i n the domain of g}. ' • . 

We now show: 

(a) Each D , a < u>i , i s dense i n P. a 
, (b) There do not ex i s t OJn pairwise contradictory elements of P 

Proof of (a) : Let a< ui^ and l e t g be i n P where 

Then I i s pure and f r e e l y generated by say a^,...,a . We must 

show that there e x i s t s g i n such that g' <_ g. If a"6Dom g^ 

(domain of g^) , then g^eD^ and g T 4 g T , so we can l e t g = g. 

So suppose now a<^Dom g^ and consider I = <a^,. . ..,an>a>A . If 

I i s a free group generated by a^,...,a^,a^ +^ then define g as 

follows: 

(i) Let g(a ±) = g (a±) for i = l , . . . , n . 

( i i ) Let g ( a n + 1 ) = (a ^z.) for any z Z. 

As the a £ » 1 = l>--«»n+l, generate the free group I , then this 
, it 

mapping of the generators can be extended to a homomorphism g:I -> H. 
is 

C l e a r l y g extends ĝ . and a £ Dom g = I •. Thus g £ D ^ and ^ g. 
•k 

It remains to show that I i s f r e e l y generated'by a,,...,a ,a 
1 n n+1 

for some a
n + ^ • Since a ^ I , - then a i s independent of {a^,....,a } 

i< 
since I i s pure. So I contains at le a s t n+1 independent elements 

* • ' 

If x £ I "^1, then mx £ <a. ,-..'.. ,a ,a> for some m, and so x i s 
i n 
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no t independent of {a-̂  a ,a} . Thus I contains exactly n+1 
• * . 

independent elements, and so I i s a free group on n+1 generators. 

Let I be f r e e l y generated by ^_'""*'b
n4._ * A s shown before, for 

any f i n i t e number of elements i n <a,,...,a ,a>, and not i n <a,,...,a ,a 
I n " 1 n 

there e x i s t s an element, say a ., , such that the f i n i t e set of 
n+1 

elements i s i n <an,...,a ,a >. (see G../G, i s i n f i n i t e , page 24). 
1 n n+1 5 4 

Let B be the set of elements of {b^ , ... . ,b n +^} i n <a^ , . . . ,a^,a>i( 

and not i n <a •, . . . ,a ,a> . Then for some a , , , B — <a, , . . . , a •> , 
1 n n+i 1 n+1 

and so { b 1 , . . . , b 1 1 } f = < a 1 , . . . , a J > . Since I = <b,,...,b >, 
1 n+1 1 n+1 1 n+1 

then I = <a,,,..,a , > and the r e s u l t i s proved. 
. 1 n+1 . 

Proof of (b) : Suppose there ex i s t s a set of CJ_ pairwise contradictory 

elements of P, say {gr:<5 < c o i } . We w i l l derive a contradiction. 
• o . 

6 6 Let the domain of g. be f r e e l y generated by a.,...,a ,.... where o 1 n(.o; 

n(6) i s a f i n i t e p o s i t i v e integer. We can replace W = (g^ : <5 < w _ } 

by any subset of W of the same c a r d i n a l i t y without loss of 

generality. As each n(6) i s f i n i t e and card(W) = co_ , then 

some n(6) must occur co_ times. So we can assume n(5) = n, 

for some fi x e d n, for a l l the g 's. That i s without loss of 
o 

6 (5 generality the domain of g r i s generated by ,{a1,...,a } for every • o 1 n 
g. i n W. Let K = {a,,...,a } be a maximal set of elements of', o 1 m 

G which f r e e l y generate a pure subgroup and {a , . . . ,a^} S.Dom g^ 

for co_ 6's. Note that K can be empty. For i f any uncountable family 

of the Dom (g.)'s has a t r i v i a l i n t e r s e c t i o n , then K i s empty, 
6 

else K i s non empty. So again without loss of generality we can 
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assume a,,...,a g.Dom g. tor a l l 6 < u>i . Let a, = a, a = a 1 m 6 1 1 1 m m 
For any 6 we can extend {a,,...,a } to an n-element generating 

• . 1 m . . 
set for Dom g. . Thus we can assume Dom g i s generated by o o 
{a.,...,a ,a ,...,a } for,each g, i n W. 

1 m. m+1 n o 
Now consider Dom g. . Dom g. i s f r e e l y generated by n elements. 

o o 
As any homomorphism g . from Dom g. i s uniquely determined by where 

6 

the generators are mapped and g(a) = (a,z) for any generator a, 

there can be only countably many d i f f e r e n t homomorphisms from Dom • g 

into H. So i f there were only countably many d i f f e r e n t domains of. 

the g 's, there would only be countably many g 's, a contradiction. 
6 o 

Thus there are ix>i d i f f e r e n t domains on which the gg' s a r e defined. 
Choose one g' on each domain. So without loss of generality we 

• ° 
can assume Dom g £ Dom g f o r S ̂  a. In other words, i n the 

o a , o 6 ' ' set l a , , .'. . ,a ,a , . . . ,a }, m < n. 1 m n+1 n 
Again without loss of generality we w i l l take a subset of the g P's 

o 
of c a r d i n a l i t y ; this -time such that the set {{a^,...,a }. U 

6 
{a^:m < I n', & < coi}} i s independent i n G. Dom g^ i s generated 
by {a,,...,a ,a^,.,...,a^} which i s an independent set i n G. 

1 m m+1 n 
Assume for a < 3 < coi we have chosen g 's such that the set 

1 a 
{fa^,. . . ,a^} U {a":m < I i . n, ct <3}} i s an independent set i n G. 

Now consider < U Dom g ' >', . From the remaining g„'s, toss out ct<3 a x o 
any g „ such that (< ̂ „Dom g <a, ,...,a >) fi Dom g^ i s non empty. 
/ 66 a<3 . a * 1 m 6 5 J 

We claim that only countably many g^'s w i l l be tossed out. This w i l l 

follow from the fac t that < U Dom g >. <a, a > = D i s countable. 
ot<3 a * 1 m 

If some element i n D, say b. was i n uncountably many Dom g ' s 
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then as b i s not an element of <a, a >, i t i s independent of 
1 m 

the pure subgroup <a , ...,a >,' and so we would get a contradiction 

to the maximality of the pure subgroup <ar,...,a > . That i s 
1 m 

<a^, . . . ,a j b ^ would be a pure subgroup of order m + 1 contained 

i n the domain of coi of the g ' s. So for any element b £ D , we 

toss out only countably many &^Sm Since D i s countable we toss 

out only countably many g.'s and so there are uncountably many 
o 

g 's l e f t . Choose one and c a l l i t g . We claim that the elements • o 3 
{{a^,...,a } U {a":m < £ n, a <. 3.}} are independent i n G. This 

i s e a s i l y seen. We need only check that no l i n e a r combination of the 
3 3 ' 

elements of {a a } i s a l i n e a r combination of the elements of m+1 n 
•{•{a,,...,a } U (a :m < £ <_ n, a < 3}}- Any l i n e a r combination of the 

1 m x. — • 
elements of (a^,, a^} i s i n Dom g„ <a, , . . . ,a > and any l i n e a r 

m+1 n 3 1 m • 
combination of. the elements of'- {{a,,...,a } U (a :m < £ < n, a <' $}} 

1 m £ 
i s i n < i < 3 D 0 m So.* ' B y c h o i c e o f Sg ' (Dom'g -^<a1,...,am>) f) 
< o f < g D o i n ^ a * * i S e m P ^ y a n d s o t h e s e t ^ a i ' " * * ' a

m ^ ̂  ^ a £ : m K 1 = n ' a < 

i s independent. So in d u c t i v e l y we can choose coi of the g 's i n 
• o 

such a way that V = {{a. ,. . . ,a } U {a„ :m < £ <_ n, 6 < coi }}• i s an 
i m £ — 1 

independent set i n G. 

Since P o s s i b i l i t y I f a i l s , there i s an admissible naming of 

the elements of G such that there does not e x i s t G. so that 
o 

conditions (A) and (B) of the d e f i n i t i o n of P o s s i b i l i t y I hold. 

So assume G has such a naming. Also make sure G contains a.,...,a 
co 1 m 

This i s e a s i l y done. Then there i s an uncountable subset of V 

independent over G/G . If an element g £ G i s a f i n i t e l i n e a r 
CO CO 
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combination of elements of V, then for any a^ i n the representation 
6 6 of g, toss out .a a . Since G i s countable and i f g £ G •.m+1 n co co 

can be represented as a l i n e a r combination of elements of V, then 
6 6 

that representation i s unique,' only countably many subsets. ( a
m + 1 > • • • > a

n^ 

w i l l be tossed out of V. Let V be the remaining elements of V. 
ft ft 5 

C l e a r l y V i s uncountable. Now l e t J be the set of a l l a ,,'s i n 
m+i 

ft ft 5 
V , say J = {'a

 + 1 = <S < ooi). Then: 
ft 

(A) J i s an independent family i n G/G 
co • 

'(B) <G >, = G 
c o * . c o • 6 6 Since P o s s i b i l i t y I f a i l s , then there must e x i s t b, i n <G U {a ,,'}>* 1 co m+1 * 5 6 

such that <G^U { a
m + 1 ^ f t = G

w

 9 < { b
1 ^ > f t f o r a 1 1 b 

ut countably many 
6's. So <G U {a6

J_.}>. = <G. U ( b f } > + = G & <{b?}>. for {b?:6 < O H } . 
co m+1. * co 1 '< co 1 x 1 1 6-, .r , , , * * . . , . 6 

m+2 Now l e t L_'= lb.}, f o r 6 < coi and J be the set of a l l a , „'s 6 1 1 n 
corresponding to the b.'s. So J = {a,„:6<coi}. Then: 

1 m+2 x 

ft ft 
(A) J i s an independent family i n G/G 

. w 

•(B) <G 0/ L->. = G © <L > for 6 < cox . 
co 6 * , co 6 * 1 

6 Again since P o s s i b i l i t y I f a i l s there must exi s t b„ i n <G \J L. U 2 co 6 
t^oKv such that <G U L U fa?- _:}>"•= G 9 ,<L. U {b!?}>, for m+2 5t co 6 m+2 « co ' 6 2 * . 

6 uncountably many.of the a , 's. Continuing this f i n i t e process we m+Z 
6 6 6 * 6 get that <G (J {a M l . . . , a }>, = G © <b,,...,b >, for uncountably co m+1 n « co 1 n-m * J-

many 6's. Choose such a 6,say a, and l e t a ( l ) = a. Note that 

<G \J {a™ ,aa}>. = <G U Dom g >, . Also note that b" . . . ,b a 

. co m+1 n * co ct <c 1 n-m 
are elements of < a a ;a a ,c c. , .>, for some 

I ' m ' m+1' ' n 1 k(ct) * 
c™, . . ., c" , N i n G . This i s because b? £ <G U {bf, ...,b? , } U {a0-, . }> , 1 k(a) . co . l co 1 l - l m+i * 
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Now we can repeat t h i s process for any G and choose a(a) 
wa 

d i f f e r e n t each time since we are choosing from an uncountable set 

of which only countably many have been chosen before. In f a c t we 

could choose o(a) > a(g) for a l l g < a since the a(g)'s are not 

c o f i n a l in-our uncountable set. Thus we can define a s t r i c t l y increasing 

sequence of or d i n a l s a(a), a < u i , such that <G U Dom g . .> = 
'cua. 0(a) . o(a) . a(a) , ,, a(a) ,a(a), G © <b. , . . . ,b '> . where {b, , . . . ,b ' } <~ <a. , . . . ,a , wa 1 .'. ' n-m * 1 .' ' n-m 1'- ' m a(a) a (a) a (a) a (a) , a (a) . a (a) . ' _ . a ,. ,...,a ,c. c, ; ;>. and c. ,...,c, ; ( € G . Note m+1 ' ' n ' 1 ' ' k(a) * 1 ' ' k(a) wa 

v , r o"(a) o(a) that by choosing k ( a ) A we can assume that l a , , . . . , a ,a ,...,a . • », 1 m m+1 n 
a(a) a(a) minimally 

c, ,...,c, - v} i s an independent set i n G. To sim p l i f y notation 
1 k(a) 

assume a(a) = a. . 

At t h i s point we must make the observation that the set of 

ordinals C = {6:6 < w_ and w6 = 6} i s a closed and unbounded 

subset of OJ_ . . 

C i s unbounded: By (7), page 108, ordinals of the form 

w. , for any 3, are i n C. That i s w = w(wW ). Thus i f C 

was bounded above by say a, a.< w_ , then choose 3 such that 
w3

 J ' 3 

a < 3 < co_ . Then co ^ 3 and so w > a.. As w i s i n C 

we get a contr a d i c t i o n . 

(b) C i s closed: Let 3 y be a countable sequence of members of C. 

Then f or each element of the sequence 3 = 'tog . Let a =. lim 3 
V V V 

Then: 

. a = lim 3 = lim wg = w(lim g ) = wa '. • • • v v v 
Thus a i s i n C and so C i s closed. 
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For every a < co_ , k(a) is. f i n i t e and so some k(a) , ' say k(a) = 

occurs uncountably many times. Let A be th i s set under the natural 

ordering of o r d i n a l s . A = {a:k(a) = t} = {a:k(d.) = t, 6 < co-. , and ' 
o o 

a. < a • i f and only i f 6 i < 6o}. Now rename G so that G . = G 
oi 02 . • coo • coa^ 

Thus at every o r d i n a l a our set { c c , . G has t elements. 
1 k(oi) — coa 

Now l e t JQ = C = { 6 : 6 < co_ and co6 •= 6}.. i s closed and 

unbounded and hence stationary. Since k(a) = t for a l l a < co_ (, 

then k(a) = t for a l l 6 i n . Note also that f o r 1 < i <. t, 
6 6 c < co6 as. c € G . Now we can apply a r e s u l t of Fodor to, define 
I p too J 

a sequence of stationary sets 2 . . .• 2 J such that for a l l 
6 

6 € J ^ , c ^ = C £ for some fi x e d c^ . We proceed as follows.. 

D e f i n i t i o n (22): A function f : J -> A , where J and A are 

sets of ordi n a l s , i s c a l l e d regressive i f f.(a) < a for a l l a £JV{0} 

and f (0) = 0 i f 0 £ J. 

Fodbr's r e s u l t (8), page 141, says that for a regular c a r d i n a l 

A > co, and J a stationary subset of A, there exists for each. 
k 

defined regressive function f on J a stationaty subset J of J 
•k 

such that f(a) = 3 for a l l a i n J , and some fi x e d 3 i n A.. 

Now consider = C, a stationary set, and to_ , a regular 
6 

c a r d i n a l . As noted for 1 < t < t, c < 'u>6 and so for 6 £ , 
6 

c.̂  < 6 as 6 = co6. Thus we can define a regressive function r :^Q ~* u i 
6 6 

by f ( 6 ) = c^ since c^ < 6 for a l l 6 £ . By Fodor's result' 

there e x i s t s , a stationary subset of J , such that f ( 6 ) = c^ 
for a l l 6 i n . Now repeat t h i s f o r by defining f : J ^ ->- co_ 
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6 by f ( 6 ) = < 6. This w i l l produce a —• ""̂1 s u c n that i s 

stationary and f (6) = c^ for a l l 6 i n . By repeating t h i s 

t times we can define a nest of stationary sets J ^ J ^ < ~ ... — Jj-
6 

such that for a l l 6 € , Jl = 1,. . . , t , c^ = c^ for some fixed 
6 c . In p a r t i c u l a r for 6 €. J , c = c for a l l I = l , . . . , t . 

Ay t ' il/ XJ 

6 6 
That i s the set {c^,. . . >c

t}' = {c^,...,c t} for a l l 6 € J ^ . 

We w i l l , now make one more observation. If A and B are pure 
* 

subgroups of G and i f A © B i s a pure subgroup then for A and 
* A A 

B , pure subgroups of A and B r e s p e c t i v e l y , A © B i s pure 
ft ft ft 

i n G. This i s e a s i l y v e r i f i e d . Let nx = a + b where a i s 
ft ft ft 

i n A. and b i s in' B . As A © B i s pure then x = a + b 

for some a i n A and b i n B. Then: 
ft ft 

nx = a .+ b = na +. nb , 
ft ft 

so na = a and nb = b , 
* - A A A 

so a £ A and b £• B as A and B are pure, 

so x £ A" © B" , 
. A A 

so A © B is, pure i n G. 

6 6 Now consider the pure subgroups < a a ,a ,c,,...,c >, 1 m m+1 n 1 t 
where 6 i s i n . We can extend g^ to this domain. C a l l these 

6 
new homomorphisms g . By the above observation <a^,...,a^,c , . . . ,ct>. 

6 6 6 © <b,,...,b , >, = B i s pure and contained i n Dom g since each 1' . n-m * 1 6 

6 6 6 b. i s an element of Dom g . By construction each a ,. i s an 
1 m+i ' 

6 6 element of B and so Dom g i s contained i n B. Thus Dom g = B. 
6 6 5 So Dom g i s f r e e l y generated by {a.,....a , a , a , } where 

1 m+t m+t+1 n+t 
.{â  , .. . > a

m + t ;} f r e e l y generates <a^ , . . . , a^, c^ , . . . , c >̂  and. 
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{ V t + l ' - ' V t } f r e e l y generates • <bJ,...,b̂ _m>A . 
6 

Since g (a^-) £ { (a , z) : z €• Z} f o r SL = 1 , ...,m+t , there are 
6 

only countably many d i f f e r e n t images of the g (a )'s, and ,so must 
6 

appear uncountably many times. So we can assume that g (a ) i s fi x e d 

for SL = l,...,m+t where 6 i s i n J , an uncountable subset 

of J . 
t 
Now choose a , 3 £ J t such that a < 3 and so the generators ct ct of g £G . Then Dom g i s a pure subgroup of G „ Also top top. . 

< ^ , , , , . • . , a 3 , > i s pure and equal to . < b 3 , b ^ > , . As m+t+1 . n+t ^ H m+1 . n * 
3 3 G . © <b b >.• i s pure then by the observation on the l a s t top m+1 n 

page Dom g a $ <- a
m+t+l' '' ''am+t> = < D o m ^ ̂  D o m 8 ^ i s pure i n G. 

F i n a l l y we have the extension needed to produce the contradiction. 

<Dom g™ U Dom g3> i s f r e e l y generated by »•••' a
m + t' a^+ t+l''''' an+t' 

am+t+l'-'-' an+t } a n d g " ^ ) = g 3 U A ) . for = l , . . . > m 4 - t . Thus 
a 3 ct 3 g:<Dom g U Dom g > -> H defined by g(a + b) = g (a) + g (b) where 

> -pi a • " U / • T N 3 . ' „ . r: oi , 3 
a t Dom g , b fc Dom g i s a common extension of g and g 

ct 3 Now g and g are themselves extensions of some g " and g A 0 

r e s p e c t i v e l y i n our o r i g i n a l set assumed to be pairwise contradictory. 

So g i s a common extension of some g^and g. and g £ P since 
A . 0 

a - 3 • 
<Dom g [J Dom g > i s a f i n i t e l y generated pure subgroup. This 
contradicts our o r i g i n a l assumption that g. and g. have no 

A o 

upper bound i n P. Thus there doesn't e x i s t any subset of to_ 

pairwise contradictory elements of P. 
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We can now complete the proof of Theorem- ( 2 ) . Since under our 

assumptions, co_ < .2^° , by Martin's Axiom there e x i s t s a (generic) 

subset B- of P such that B fl D = (j) for a l l a < coi , and such 
a T - l 

that any two members of B have a common upper bound i n B. . Let 
* IJ * g = g. Since B i s generic i t i s easy to v e r i f y that g i s B 

a function from G to H. Since each g6 B i s a homomorphism, so 

i s g . Since hg i s the i d e n t i t y map on the domain of g, we 
ft ft have. hg = 1 . Thus there e x i s t s a homomorphism g :G •->- H such 

. C J 

ft 
that hg = 1 , and so G is. a W-group. 
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The Independence Result 

Theorem (3) : The statement: "Every W-group of c a r d i n a l i t y u>n i s free " 

i s independent of ZFC (Zermelo-Frankel set theory plus the axiom of 

choice). 

Proof: Since W-groups are oii-free, then by Theorem (1) i f 

V = L, any W-group must s a t i s f y P o s s i b i l i t y I I I . By Lemma (5) 

G = © G where each G i s countable. As G i s co-i-free, each a<oii a a 

G i s free and so G i s free. Thus ZFC + V = L implies that 

every . W-group of c a r d i n a l i t y oil i s free. But by Godel (8) , 

ZFC + V = L i s consistent i f ZFC i s consistent. 

By Martin and Solovay (10), ZFC + MA + 2^° > coi i s consistent 

i f ZFC i s . But by Theorem (2) , i n the presence of MA + 2^° > , 

any group s a t i s f y i n g P o s s i b i l i t y II i s a W-group. By Lemma (4) 

there are groups s a t i s f y i n g P o s s i b i l i t y I I . So i t i s consistent 

with ZFC to assume that there are W-groups of' c a r d i n a l i t y cô  

which are not free. 

Thus the statement: "Every W-group of c a r d i n a l i t y u>i i s free " 

i s independent of ZFC. 
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Appendix 

We w i l l describe the s i g n i f i c a n t a l t e r a t i o n s that we have made 

to Shelah's paper (11). The d e f i n i t i o n of P o s s i b i l i t y I was changed 

from the existence of a G. , under some admissible ordering, which 
o , 

s a t i s f i e s conditions (A) and (B), to the existence of a G. , 
• o 

under every admissible ordering, which s a t i s f i e s conditions (A) and 

(B). Under the o r i g i n a l d e f i n i t i o n there appeared to be no way of 

c l a s s i f y i n g , up to isomorphism, o)_-free groups into the three 

p o s s i b i l i t i e s . This al t e r e d d e f i n i t i o n of P o s s i b i l i t y I allowed 

us to si m p l i f y some of the proofs. In p a r t i c u l a r we were able to 

come up with a lemma (Lemma (8)) which allowed.us to deal with both 

P o s s i b i l i t y I. and II i n a uniform way v i a Theorem (1). Shelah 

had used a complicated group theoretic argument i n dealing with 

P o s s i b i l i t y I. Thus our set theoretic Lemma (8) eliminated the more 

d i f f i c u l t group theoretic theorem of Shelah's, (see (11) 3.3). 

Shelah used a rather complicated combinatorial argument, 

(see (11) 3.1(2) and 3.1(3)), to show every P o s s i b i l i t y I I I group 

i s a d i r e c t sum of countable groups. Our Lemma (5) gives a simpler 

and more d i r e c t proof of t h i s f a c t witout using the complicated 

combinatorial technique of (11) 3.1(2). 

In the proof of Theorem (2), the method indicated by, Shelah 
6 6 for producing the elements c ,...,c .. . appeared to be in c o r r e c t . 1 k. (, o) 

So a completely different.arguement had to be used, see pages 41-44. 
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In general the set theoretic and group theoretic d e t a i l s were 

f i l l e d i n to the point where someone with only a l i m i t e d knowledge 

of set theory and group theory could read the thesi s . This involved 

much work i n places for Shelah assumed a knowledge of group theory 

at a l e v e l of Fuch's books (1) and (2). In many cases only the broad 

o u t l i n e of an argument was given, and so there had to be a s i g n i f i c a n t 

f i l l i n g i n of d e t a i l . As an example, i n Lemma (7) G^/G^ has to 

be shown to be i n f i n i t e and then i t has to be shown that t h i s implies 
/ C O 

e i t h e r G^IG^ contains a copy of Z(p ) or i t contains i n f i n i t e l y 

many elements of prime order, see pages 24-26. Another example was 

working out a l l the d e t a i l s i n showing that the examples i n Lemma (4) 

ac t u a l l y s a t i s f y ' t h e respective p o s s i b i l i t i e s , see pages 11-16. The. 

main d i f f i c u l t i e s with the set theory, other than redefining P o s s i b i l i t y I 

and the subsequent c l a s s i f i c a t i o n into the three p o s s i b i l i t i e s , was 

in showing how the r e s u l t s of Jensen (6) and Fodor (8) applied.to 

our problem. So again here there had to be su b s t a n t i a l f i l l i n g i n 

of d e t a i l , see pages 32-34 and 44-46. Also" we had to show that G 

could be well-ordered such that for a l l l i m i t ordinals 6, G„ i s 
o 

pure, see Lemma (2) on page 5. 


