THE INDEPENDENCE OF THE WHITEHEAD PROBLEM FROM ZFC

by
Richard J. Dean
B.Math, University of Waterloo, 1974
A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES Department of Mathematics We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA April, 1976
© Richard J. Dean

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Mathematics

The University of British Columbia
2075 Wesbrook Place
Vancouver, Canada
V6T lW5

Date April, 1976

Abstract

An abelian group G is called a W-group if $\operatorname{Ext}(G, Z)=0$. Whitehead's problem asks which groups are W-groups. Saharon Shelah proved that the answer to Whitehead's problem, for groups of cardinality ω_{1}, is independent of the axioms of Zermelo-Frankel set theory with the axiom of choice. This thesis gives a complete and detailed proof, based on Shelah's proof, of this independence result.

Table of Contents

Introduction page 1
Whitehead Groups and their Structure page 3
(G,Z)-Groups page 19
$\mathrm{V}=\mathrm{L}$ and W -groups page 30
Martin Axiom and W -groups page 37
The Independence Result page 49
Bibliography page 50
Appendix page 51

Acknowledgment

I would Iike to thank Dr. Andrew Adler for his time and guidance throughout the past year. I would also like to thank. Dr. Stan Page for reading this thesis. Lastly I would like to thank Ron Aiken for his help in translating German.

Introduction

The following result was proved by Saharon Shelah in (11).
"The Whitehead problem, for groups of cardinality ω_{1}, is independent of and consistent with ZFC." In this thesis we present a proof of this result based on Shelah's proof. Certain alterations had to be made, as well as a good deal of filling in of details. A description of some of the alterations is given in the appendix at the end of the thesis.

A Whitehead group, or simply a W-group, is an Abelian group for which $\operatorname{Ext}(G, Z)=0 . \quad(\operatorname{Ext}(G, Z)=0$ is a mapping property which will be explained in detail in this thesis.) The: Whitehead Problem asks:
"Are all W-groups of cardinality ω_{1} freely generated."

The axioms of ZFC, Zermelo-Frankel set theory with the axiom of choice, are the axioms on which all current mathematics can be built upon. We will show that within ZFC the Whitehead Problem cannot be solved. We will do this by showing that within one model of ZFC all W-groups are free, and within another model there exists non free W-groups.

Gödel exhibited a construction which produced a model of ZFC. His construction is referred to as $V=L$ and so $Z F C+V=L$ is consistent. Jensen showed that within such a model of ZFC, a combinatorial property called 'diamond' holds. We will define and use this property diamond to show that within a model of ZFC where $\mathrm{V}=\mathrm{L}$ holds, all W -groups are freely generated.

Martin and Soloway showed that MA (Martin Axiom) $+2^{\omega}>\omega_{1}$ is consistent with ZFC. We will define and use MA to show the existence of non free W-groups in a model of $Z F C$ in which $M A+2^{\omega}>\omega_{1}$ holds.

And so the situation is this. Let X be the following statement:
"All W-groups of cardinality ω_{1} are freely generated." Then:
(i) $\quad \mathrm{ZFC}+\mathrm{V}=\mathrm{L}$ implies X . and so $\mathrm{ZFC}+\mathrm{X}$ is consistent.
(ii) $\mathrm{ZFC}+\mathrm{MA}+2^{\omega}>\omega_{1}$ implies $\neg \mathrm{X}$ and so $\mathrm{ZFC}+\neg \mathrm{X}$ is consistent.

Thus X is consistent with and independent of ZFC.

Whitehead Groups and their Structure

In this section we will give some preliminary facts and definitions about Whitehead groups and ω_{1}-free groups. We will classify the ω_{1}-free groups of cardinality ω_{1} into three possibilities. In this thesis, by group we will always mean Abelian group.

Definition (1): Gis called a Whitehead group or W-group if for every epimorphism $h: H \rightarrow G$ such that the kernel of h is isomorphic to Z (the integers) there exists a homomorphism $g: G \rightarrow H$ such that $g h: G \rightarrow G$ is the identity map on G.

Definition (2): For a group A we say A is the direct sum of subgroups B and C of. A if:
(i) $B+C=A$ where $B+C$ is the set of all sums of the form $b+c$ where b is in: B and c is in C.
(ii) $B \cap C=O_{A}$ where O_{A} is the identity element of A. This is written as $A=B \oplus C$.

Lemma (1): The group H. as in the definition of a W-group is a direct sum of a copy of Z and a copy of G.

Proof: Let g and h be as in the definition of a W-group. Since gh is the identity map on G, g is $1-1$, so $G *=$ image $(g) \simeq G$. By definition kernel $(h) \simeq Z$. We show that $H=G * \oplus$ kernel (h). Clearly G^{*} and kernel (h) have only O_{H} in common, else gh could not be $1-1$. Now let h^{*} be h restricted to G^{*}. If
$x \in H$, then $x=h *^{-1} h(x)+\left(x-h *^{-1} h(x)\right)$ and clearly $h *^{-1} h(x) \in G^{*}$ and $x-h^{-1} h(x) \in$ kerne1 (h).

Some Preliminary Facts about W-groups
Definition (3): A group is called free if it is isomorphic to a direct sum of copies of Z.

Definition (4): A group is ω_{1}-free if every countable subgroup is free.

If G is a W-group then it is:
(i) Torsion free
(2) page 178
(ii) ω_{1}-free
(2) page 178

From now on G will be taken to be torsion free and of cardinality ω_{1}. So we can assume without loss of generality that the elements of G are all the ordinals $<\omega_{1}$ where ω_{1} is the first uncountable ordinal: $\omega_{1}=\left\{\alpha: \alpha<\omega_{1}\right\}=$ the set of all ordinals less than ω_{1}.

Definition (5): B is a pure subgroup of G. if. $B \cap z G=z B$ for all $z \in Z$, where $z G=\{g \in G: g=z x$ for some $x \in G\}$. Equivalently B is pure if for any $z \in Z, b \in B$, if the equation $z x=b$ is solvable in G then it is solvable in B.

Lemma (2): Let G be a torsion free group of cardinality ω_{1}. Then G can be well-ordered as $\left\{g_{\alpha}: \alpha<\omega_{1}\right\}$ in such a way that for any limit ordinal $\delta, G_{\delta}=\left\{g_{\alpha}: \alpha<\delta\right\}$ is a pure subgroup of G.

Proof: We define g_{α} by transfinite induction. The limit ordinals less than ω_{1} are precisely the ordinals of the form $\omega \beta$, where $0<\beta<\omega_{1}$. Suppose that for every $\beta<\gamma$, and every $\alpha<\omega \beta, g_{\alpha}$ has been defined, and $G_{\omega \beta}$ is a pure subgroup of G. We will show how to extend the definition so that $G_{\omega \gamma}$ is pure. There are two cases to consider.

Case (i): γ is a limit ordinal. Then of course g_{α} is already defined for every $\alpha<\omega \gamma$. Since for every $\beta<\gamma, G_{\omega \beta}$ is a pure subgroup of G, and $G_{\omega \gamma}=\bigcup_{\beta<\gamma} G_{\omega \beta}$, it is trivial to verify that $G_{\omega \gamma}$ is a pure subgroup of G.
Case (ii): γ is a successor. Take a fixed well-ordering of G in order type ω_{1}, with the first element in the ordering $\neq 0$. Let g be the first element of G with respect to this fixed order which is not a g_{α} for any $\alpha<\omega(\gamma-1)$. Let B be the subgroup of G generated by $G_{\omega(\gamma-1)}$ and g (where $G_{0}=\phi$). Since G is torsion free B has cardinality ω. So by (1), page 115 , B is contained in a countable pure subgroup of G, say $B *$. As $z g \notin G_{\omega(\gamma-1)}$ for any z in Z it is clear that $B * \backslash G_{\omega(\gamma-1)}$ has cardinality ω, and so it may be enumerated as $\left\{g_{\alpha}: \omega(\gamma-1) \leq \alpha<\omega \gamma\right\}$. Thus $G_{\omega \gamma}=B^{*}$ is a pure subgroup of G.

If G is a (torsion free) group of cardinality ω_{j}, instead of labelling the elements of G by the ordinals less than ω_{1}, it is notationally more convenient to assume the elements of G are the ordinals less than ω_{1}. Whenever such notation is used, it will be understood that for any limit ordinal $\delta, G_{\delta}=\{\alpha: \alpha<\delta\}$ is a pure subgroup of G. Lemma (2) shows this is a harmiess assumption. Call any such naming of G admissible.

Classification of ω_{1}-Free Groups of Cardinality ω_{1}
We will in this section classify ω_{1}-free groups of cardinality ω_{1} into three possibilities; called unimaginatively Possibility I, Possibility II, and Possibility III. First we need a remark and then some preliminary group theoretic and set theoretic definitions.

Remark (1): For torsion free groups the equation $z x=g$ can have at most one solution, for $z x=g=z y$ implies $z x=z y$ implies $x=y$. So if $z x=g$ is solvable in G, then the unique solution belongs to all pure subgroups containing g and thus the intersection of pure subgroups is again pure. This allows us to make the following definition.

Definition (6): Let $\langle L, G\rangle *$ be the smallest pure subgroup of Gwhich contains $L, L \subseteq G$.

Remark (2): If S is a pure subgroup of G, then $\langle L, S\rangle_{*}=\langle L, G\rangle \%$ by Remark (1). We write $\langle L\rangle_{*}=\langle L, G\rangle_{\%}$ if it is clear which group G we are referring to.

Definition (7): Let S be a subgroup of G, L a finite subset of G, and a an element of G. We'say $I(a, L, S, G)$ holds if $\langle S \cup L\rangle_{*}=\langle S\rangle_{*} \oplus\langle L\rangle_{*}$ but for no $b \in\left\langle S \cup L U\{a\}_{*}\right.$ is $\left\langle S \cup L \cup\{a\}_{*}=\langle S\rangle_{*} \oplus\langle L \cup\{b\}\rangle_{*}\right.$.

Definition (8): A subset C of ω_{1} is closed and unbounded if:
(i) For every non-empty subset S of C sup $S \in C \cup\left\{\omega_{1}\right\}$. This says that C is closed.
(ii) $\sup C=\omega_{1}$. This says that C is unbounded.

Definition (9): A subset A of ω_{l} is stationary if $C \cap A \neq \phi$ for every closed and unbounded subset of ω_{1}.

Definition (10): Let X be a subset of ω_{1}. Then X ịs cofinal in : ω_{1} if for all α in ω_{1}, there exists β in X such that $\alpha \leqq \beta$.

Remark (3): No countable set is cofinal with ω_{1}. (3) page 207.

We are now ready to define the three possibilities.
Definition (li): An ω_{1}-free group G of cardinality ω_{1} satisfies Possibility I if for any admissible naming of G there is some limit ordinal $\delta<\omega_{1}$, and there are elements of G, say $a_{n(\alpha)}^{\alpha}$ for all $\alpha<\omega_{1}$, (where $n(\alpha)$ is a finite ordinal) and subsets $L_{\alpha}=\left\{a_{\ell}^{\alpha}: 0 \leq \ell<n(\alpha)\right\}$. such that:
(A) $\left\{\mathrm{a}_{\ell}^{\alpha}+\mathrm{G}_{\delta}: \alpha<\omega_{1}, \quad \ell \leqq n(\alpha)\right\}$ is an independent family in G / G_{δ}.
(B) $\Pi\left(a_{n(\alpha)}^{\alpha}, L_{\alpha}, G_{\delta}, G\right)$ holds for all $\alpha<\omega_{1}$.

Remark (4): Since $\delta<\omega_{1}$, then G_{δ} is countable and so we can assume without loss of generality that $\delta=\omega$. Rename G_{δ} by $\{\alpha: 0 \leqq \alpha<\omega\}$ which can be done as. G_{δ} is countable. Now rename the rest of G using the technique of Lemma (2).

Definition (12): An ω_{1}-free group G of cardinality ω_{1} satisfies Possibility II if G does not satisfy Possibility I and there is a stationary subset of ω_{l}, say A, such that for any α in A there are elements of G; say $a_{\ell}^{\alpha}, \ell \leqq n(\alpha)$, (where $n(\alpha)$ is a finite ordinal), and subsets $L_{\alpha}=\left\{a_{\ell}^{\alpha}: 0 \leqq \ell<n(\alpha)\right\}$ such that:
(A) $\quad\left\{a_{\ell}^{\alpha}: 0 \leq \ell<n(\alpha)\right\}$ is an independent family in G / G_{α}.
(B) $\quad \Pi\left(a_{n(\alpha)}^{\alpha}, L_{\alpha}, G_{\alpha}, G\right)$ holds.

Definition (13): An ω_{1}-free group G of cardinality ω_{l} satisfies Possibility III if it doesn't satisfy Possibility I or Possibility II.

Lemma (3): The classification of a given group G to the three possibilities depends on G only up to isomorphism.

Proof: We must show that under any admissible naming of G, it will always satisfy the same possibility. There are three cases to consider. Case (i): Suppose G satisfies Possibility I. Let $h: G \rightarrow G^{*}$ be an isomorphism. Then G^{*} can be thought of as a renaming of the elements of. G and so by the definition of Possibility I, G^{*} satisfies Possibility I.

Case (ii): Suppose G satisfies Possibility II. First we show that if $h: G \rightarrow G^{\%}$ is an isomorphism, then the set C defined by $C=\left\{\delta: h \mid G_{\delta}\right.$ is an isomorphism from G_{δ} onto $\left.G_{\delta}^{*}\right\}$ is a closed and unbounded subset of ω_{1} where $h \mid G_{\delta}$ is the restriction of h to $G_{\delta} . G$ is closed since the union of a chain of isomorphisms is an isomorphism. Suppose C is bounded. Choose $\alpha<\omega_{1}$ such that α is an upper bound for C. For $n<\omega$ define α_{n} inductively as follows:

$$
\begin{aligned}
& \alpha_{0}=\alpha \\
& \alpha_{n}=\sup \left(\left\{h(\delta): \delta<\alpha_{n-1}\right\} \cup\left\{\beta: h(\beta)<\alpha_{n-1}\right\}\right)
\end{aligned}
$$

As $\alpha_{0}<\omega_{1}$, then $\alpha_{n}<\omega_{1}$ for all n. That is if we assume inductively that $\alpha_{n-1}<\omega_{1}$, then α_{n} is the sup of a countable set and since no countable set is cofinal with ω_{1}, then $\alpha_{n}<\omega_{1}$. Let $\alpha^{*}=\sup _{n<\omega} \alpha_{n}$. Since $\alpha_{n}<\omega_{1}$ for all $n<\omega$, then $\alpha *<\omega_{1}$. Let $\beta \in G$ such that $\beta<\alpha \%$, then $\beta<\alpha_{n}$ for some n, and so $h(\beta)<\alpha_{n+1}$ by the definition of a_{n+1}. Similarly if $\beta \in G^{*}$ such that. $\beta<\alpha^{*}$ then $\beta<\alpha_{n}$ for some n and so $\beta=h(\rho)$ where $\rho<\alpha_{n+1}$. Thus $h \mid G_{\alpha *}$ is an isomorphism and so $\alpha * \in C$. Thus α is not an upper bound for C and so C is unbounded.

Now we show that $C \cap A$, where A is the stationary set required by the definition of Possibility II, is a stationary set, and then G^{*} will satisfy Possibility II using $C \cap A$ as the required stationary set. $C \cap A$ is stationary because any closed and unbounded set is stationary. That is if C_{1} and". C_{2} are closed and unbounded sets then $C_{1} \cap C_{2} \neq \phi$, for let $\left\{\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right\}$ be an increasing sequence of ordinals such that for n even $\xi_{n} \in C_{1}$ and for n odd $\xi_{n} \in C_{2}$. Then $\psi=\sup \left\{\xi_{1}, \xi_{3}, \xi_{5}, \ldots\right\}=\sup \left\{\xi_{2}, \xi_{4}, \xi_{6}, \ldots\right\}$ and ψ is in both C_{1} and C_{2} since C_{1} and C_{2} are closed. Actually $C_{1} \cap C_{2}$ is closed and unbounded. Clearly $C_{1} \cap C_{2}$ is closed as. C_{1} and. C_{2} are closed. If $C_{1} \cap C_{2}$ was bounded, by say $\alpha<\omega_{1}$, then define a sequence $\left\{\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right\}$ as before with $\xi_{1}=\alpha$ to get a contradiction. Thus $C \cap C *$, for any closed unbounded set C^{*}, is closed and unbounded. Thus. $(\mathrm{C} \cap \mathrm{A}) \cap \mathrm{C}^{*}=\mathrm{A} \cap(\mathrm{C} \cap \mathrm{C} *) \neq \phi$. Thus $\mathrm{C} \cap \mathrm{A}$ is stationary and so G^{*} satisfies Possibility II.

Case (iii): By definition Possibility III holds if and only if neither Possibility I nor Possibility II holds.

The classification into the three possibilities depends on. G only up to isomorphism.

By the definition of the three possibilities, an ω_{1}-free group G can satisfy only one, and so the three possibilities form a partition. The following lemma shows that each possibility is satisfied by a particular ω_{1}-free group.

Leman (4): Each Possibility is satisfied by some ω_{1}-free group.

Proof: Again there are three cases to consider.
Case (i): We will construct an ω_{1}-free group satisfying Possibility I. First we define a set C of increasing sequences of natural numbers of length ω such that the cardinality of C is ω_{1}, and if. η and τ are in $C, \eta \neq \tau$, then η and τ have at most finitely many natural numbers in common; that is $\eta \cap \tau$ is finite. To show that such a set C exists wive an example. Consider the following diagram:

The sequences are defined by taking possible paths. For example:

$$
\begin{aligned}
& \{1,2,4,8, \ldots\} \\
& \{1,2,4,9, \ldots\} \\
& \ddots \\
& \{1,2,5,10, \ldots\} \\
& \text { etc. }
\end{aligned}
$$

By the $n^{\text {th }}$ row of the diagram 2^{n} sequences or paths are defined, and in the limit there are $2^{\omega} \geqq \omega_{1}$ sequences. Choose any ω_{1} sequences. The intersection of any two is finite for they can agree only up to the point where their corresponding paths separate.

Let G be generated by:
(i) x_{k} for $k<\omega$
(ii) $\quad x_{\tau}^{m}=\sum_{k=m}^{\infty}\left(\frac{k!}{m!}\right) x_{\tau(k)}$ for $m<\omega$ and $\tau \in C$

Using the notation of the definition of Possibility I and $C=\left\{\tau(\alpha): \alpha<\omega_{1}\right\}$ let:
(i) G_{δ} be the group freely generated by the $x_{k}{ }^{\prime} s$.
(ii) $n(\alpha)=0$, and so $L_{\alpha}=\phi$.
(iii) $a_{0}^{\alpha}=x_{\tau(\alpha)}^{m}$ for $\alpha<\omega_{l}$ and m fixed.

We must show that G satisfies conditions (A) and (B) in the definition of Possibility I. That is:
(A) $\left\{a_{0}^{\alpha}+G_{\delta}: \alpha<\omega_{1}\right\}$ is an independent family in G / G_{δ}.
(B) $\Pi\left(a_{0}^{\alpha}, \phi, G_{\delta}, G\right)$ holds for all $\alpha<\omega_{1}$.
(A) follows from the finite intersection property of the elements
of C. That is if $z_{1} x_{\tau\left(\alpha_{1}\right)}^{m}+\ldots+z_{n} x_{\tau\left(\alpha_{n}\right)}^{m}=g$ where $z_{i} \in Z, \quad z_{i} \neq 0$, $\tau\left(\alpha_{i}\right) \in C$, and $g \in G_{\delta}$, then $z_{1} x_{\tau\left(\alpha_{1}\right)}^{m}+\ldots+z_{n} x_{\tau\left(\alpha_{n}\right)}^{m}$ is a finite linear combination of the x_{k} 's that generate G_{δ}. As the $x_{\tau\left(\alpha_{i}\right)}^{m}$'s are infinite linear combinations of the x_{k} 's, then $z_{1} x_{\tau\left(\alpha_{1}\right)}^{m}+\ldots+z_{n} x_{\tau\left(\alpha_{n}\right)}^{m}$ must be an infinite linear combination of the x_{k} 's since for $i \neq j$ $x_{\tau\left(\alpha_{i}\right)}^{m}$ and $x_{\tau\left(\alpha_{j}\right)}^{m}$ agree at only finitely many $x_{k}^{\prime} s$ for $\tau\left(\alpha_{i}\right) \cap \tau\left(\alpha_{j}\right)$ is finite. This is a contradiction and so (A) holds.

Now we show condition (B) holds. As $L_{\alpha}=\phi$, then $\left\langle G_{\delta} \cup L_{\alpha}\right\rangle_{*}=\left\langle G_{\delta}\right\rangle_{*} \oplus\left\langle L_{\alpha}\right\rangle_{*}$. Choose any $a_{0}^{\alpha}=x_{\tau(\alpha)}^{m}$. Then $(m+1) x_{\tau(\alpha)}^{m+1}=x_{\tau(\alpha)}^{m}-x_{\tau(\alpha)(m)}^{m}$ and so by definition of purity $x_{\tau(\alpha)}^{m+1} \in<G_{\delta} \cup\left\{x_{\tau(\alpha)}^{\mathrm{m}}\right\}_{*}$. Similarly $x_{\tau(\alpha)}^{k} \in\left\langle G_{\delta} \cup\left\{x_{\tau(\alpha)}^{\mathrm{m}}\right\}_{*}\right.$ for all $k \geq m+1$. Using the finite intersection property for elements
of C it is clear that no other elements of G will be thrown into $\left\langle G_{\delta} U\left\{x_{\tau(\alpha)}^{\mathrm{m}}\right\}\right\rangle_{*}$. So if for some $\dot{x} \boldsymbol{\epsilon}\left\langle G_{\delta} U \cdot\left\{x_{\tau(\alpha)}^{\mathrm{m}}\right\}\right\rangle_{*},\left\langle G_{\delta} U\left\{x_{\tau(\alpha)}^{\mathrm{m}}\right\}\right\rangle_{*}=$ $\left\langle G_{\delta}\right\rangle_{*} \oplus\langle x\rangle_{*}$, then we can assume that $\langle x\rangle_{*}=\langle x\rangle=$ the group generated by x for some $x=\sum_{i=1}^{\eta} z_{i} y_{i}$ where $z_{i} \in Z$ and each y_{i} is some x_{k} or $x_{\tau(\alpha)}^{k}$. Clearly x will cause only finitely many of the $x_{\tau(\alpha)}^{k} s$ to be in $\left\langle G_{\delta}\right\rangle_{*} \oplus\langle\mathrm{x}\rangle_{*}$ and so this is impossible. Therefore $\Pi\left(x_{\tau(\alpha)}^{m}, \phi, G_{\delta}, G\right)=\prod\left(a_{0}^{\alpha}, L_{\alpha}, G_{\delta}, G\right)$ holds for all $\alpha<\omega_{1}$ and so condition (B) is satisfied.

Now we show that G is w_{1}-free. It is sufficient to show that for any $g_{1}, \ldots, g_{n} \in G$, the pure subgroup generated by g_{1}, \ldots, g_{n} is free on a finite number of generators, (4) page 25. Without loss of generality g_{1}, \ldots, g_{n} are independent and so $\left\langle\left\{g_{1}, \ldots, g_{n}\right\}\right\rangle_{*}$ has rank, n (1) page 116 . So let b_{1}, \ldots, b_{n} generate $\left\langle\left\{g_{1}, \ldots, g_{n}\right\}\right\rangle$, that is $\left\langle\left\{\dot{g}_{1}, \ldots, g_{n}\right\}_{*}=\left\langle\left\{b_{1}, \ldots, b_{n}\right\}\right\rangle\right.$. We do an induction on the number of generators. For $n=1$ clearly $\left\langle\left\{b_{1}\right\}>\right.$ is free since. G is torsion free. Assume any pure subgroup on $n-1$ generators is free and let $\left\langle\left\{g_{1}, \ldots g_{n}\right\}_{*}\right.$ be generated by b_{1}, \ldots, b_{n}. If $\left\langle\left\{b_{1}, \ldots, b_{n}\right\}\right\rangle$ is not freely generated by b_{1}, \ldots, b_{n}, then for some $z_{i} \in Z$, not all zero, $\sum_{i=1}^{\eta} z_{i} b_{i}=0 \Rightarrow \sum_{i=1}^{\eta} z_{i} b_{i}=-z_{n} b_{n} \Rightarrow$ $b_{n} \epsilon\left\langle\left\{b_{1}, \ldots, b_{n-1}\right\}\right\rangle_{*}$. Thus : the pure subgroup generated by g_{1}, \ldots, g_{n} has rank less than n, a contradiction. So b_{1}, \ldots, b_{n} freely generates $\left\langle\left\{g_{1}, \ldots, g_{n}\right\}>\right.$ and by the induction hypothesis any pure subgroup generated by a finite subset of G is free. Thus G is ω_{1}-free.

Now let G^{*} be any admissible naming of the elements of G. Choose $\delta<\omega_{1}$ such that x_{n} is in G_{δ}^{*} for all $n<\omega$. As $\left\{x_{\tau(\alpha)}^{m}: \alpha<\omega_{1}\right\}$ is uncountable and G_{δ} is countable, we can find uncountably many $x_{\tau(\alpha)}^{m}$'s such that $x_{\tau(\alpha)}^{k} \notin G_{\delta}$ for $k<\omega$. let $\left\{x_{T(\beta)}^{m}: \beta<\omega_{1}\right\}$ be such a set. By letting:
(i) $G_{\delta}=G_{\delta}$
(ii) $n(\beta)=0$, and so $L_{\beta}=\phi$
(iii) $a_{0}^{\beta}=x_{\tau(\beta)}^{m}$ for $\beta<\omega_{1}$
it follows that G^{*} satisfies Possibility I in exactly the same way as G. was shown to satisfy Possibility I.

Case (ii): We will construct a group satisfying Possibility II. For this example, the stationary set A required by the definition for Possibility II will be the set of all limit ordinals. First we show that this set. $A=\left\{\delta<\omega_{1}: \delta\right.$ is a limit ordinal\} is stationary. This follows from the observation that any closed and unbounded set. C contains a limit ordinal. That is if. $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right\}$ is any countably infinite subset of C where $\alpha_{i}<\alpha_{i+1}$, then $\sup _{i<\omega} \alpha_{i}=\alpha$ is a limit ordinal for if not then α has a predessor $\alpha-1$ which would be an upper bound to the sequence.

Now for δ a limit ordinal, let ${ }^{\tau} \delta$ be a sequence of ordinals of length ω such that $\sup _{n<\omega} \tau_{\delta}(n)=\delta$ where $\tau_{\delta}(n)$ is the n 'th ordinal of the sequence τ_{δ}. Let G be generated by:
(i) x_{α} for $\alpha<\omega_{1}$
(ii) $\quad x_{\delta}^{m}=\sum_{k=m}^{\infty}\left(\frac{k!}{m!}\right) x_{\tau_{\delta}}(k)$ for $m<\omega, \quad \delta<\omega_{1}$, and δ a limit ordinal

Using the notation of the definition of Possibility II let:
(i) $\quad x_{\alpha} \in G_{\delta}, x_{\delta}^{m} \notin G_{\delta}$, for $\alpha<\delta, m<\omega$, and δ a limit ordinal
(ii) $n(\delta)=0$, and so $L_{\delta}=\phi$
(iii) $a_{0}^{\delta}=x_{\delta}^{m}, m$ fixed

Since $x_{\delta}^{m} \notin G_{\delta}$, then $\left\{x_{\delta}^{m}+G_{\delta}\right\}$ is an independent family in G/G \mathcal{S} and so condition (A) in the definition of Possibility II holds. $\pi\left(x_{\delta}^{m}, L_{\delta}, G_{\delta}, G\right)$ holds using the same arguement as used for Possibility I , and so condition (B) is satisfied. The ω_{1}-freeness of G is again similar to Possibility I.

Lastly we must show that G doesn't satisfy Possibility I. It is sufficient to show that a given admissible naming of G does not satisfy it. Let G_{δ} be generated by:
(i) x_{α} for $\alpha<\delta$
(ii) $\mathrm{x}_{\beta}^{\mathrm{m}}$ for $\beta<\delta, \mathrm{m}<\omega, \beta$ a limit ordinal

Now define the ${ }^{\tau}{ }_{\delta}$'s to be increasing sequences for all limit ordinals $\delta<\omega_{1}$. Then $\Pi\left(x_{\delta}^{m}, \phi, G_{\delta}, G\right)$ holds for any $m<\omega \ldots$ The "II" condition cannot hold for any other $x_{\beta}^{m} \cdot \operatorname{s}, \beta \neq \delta$, since for $\beta<\delta, x_{\beta}^{m}$ is in G_{δ}, and for $\beta>\delta,\left\langle G_{\delta} \cup\left\{x_{\beta}^{m}\right\}\right\rangle_{*}=G_{\delta} \oplus\left\langle x_{\beta}^{k}\right\rangle$, where k is the largest element of the increasing sequence τ_{β} less than δ. As the $\mathrm{x}_{\beta}^{\mathrm{m}}$'s are the only possibilities for creating the " π " condition, we can conclude that it is satisfied at only countably many places for each G_{δ}. Thus Possibility I cannot hold and so G satisfies Possibility II.

Case (iii): Let G be the free group on ω_{1} generators. It is sufficient to show that G does not satisfy Possibility I or II for some admissible naming of G. Let G be generated by the elements $\alpha_{\beta}, \beta<\omega_{1}$. Let $G_{\omega \xi}$ be the group generated by α_{β}, $\beta \leqq \xi$, for ξ not a limit ordinal. That is $G_{\omega \xi}={ }_{\beta}^{\oplus} \underset{\underline{2}}{\underline{2}} G^{\beta}$, where G^{β} is the subgroup of G generated by the element α_{β}. Let $G_{\omega \xi}$ be the group generated by $\alpha_{\beta}, \beta<\xi$, for ξ a limit ordinal. That is $G_{\omega \xi}={ }_{\beta<\Theta_{\xi}} G^{\beta}$, where G^{β} is the subgroup of G, generated by the element α^{β}. Clearly this is an admissible naming of G. Claim that $\Pi\left(a, L, G_{\delta} ; G\right)$ does not hold for any limit ordinal δ, where L is a finite subset of G and a is an element of G. So suppose for some L and a that $\pi\left(a, L, G_{\delta}, G\right)$ holds. If we can show that only finitely many elements are in the group W where $W=\left\langle G_{\delta} \cup L \cup\{a\}\right\rangle_{*} /\left\langle\left\langle G_{\delta} \cup L\right\rangle_{*} \cup\{a\}\right\rangle$, then by the result on page $24\left(G_{5} / G_{4}\right.$ is infinite if " Π " holds) since $W=G_{5} / G_{4}$, "II" must fail. If $L=\left\{a_{1}, \ldots a_{n}\right\}$ and if $a=a_{0}$, then each $a_{i}={ }_{j}^{\sum_{i}^{i}}{ }_{1}^{Z_{j}} \alpha_{j}$, where $z_{j} \in Z$, and α_{j} is the generator of $G^{\alpha} j$. Then the only new elements in W will be linear combinations of the α_{j} 's which make up the a_{i} 's. Clearly there are only finitely many of these in W. Thus the " Π " condition fails in G under this admissible naming, and so Possibility I or II cannot hold. Also G is ω_{1}-free since any subgroup of a free group is free, (1) page 74. Thus G must satisfy Possibịity III.

Lemma (5): Let G be ω_{1}-free. Then Possibility III is equivalent to G being the direct sum of countable groups.

Proof: Suppose G is the direct sum of countable groups and G is
 is ω_{1}-free, each G^{α} is free, so each G^{α} is isomorphic to a countable direct sum of copies of Z. Thus G is isomorphic to a direct sum of ω_{1} copies of Z and so G is free on ω_{l} generators. By Lemma (4) case (iii), G satisfies Possibility III.

Now suppose G satisfies Possibility III. First we show that if C is a closed and unbounded subset of ω_{1}, then $C^{*}=\{\delta: \delta \in C$ and δ is a limit ordinal\} is also closed and unbounded. $C *$ is closed since C is closed and the sup of a sequence of limit ordinals is a limit ordinal. C\% is unbounded since C is unbounded and the sup of an infinite increasing sequence of ordinals of C is a limit ordinal of C. Thus C* is closed and unbounded and contains only limit ordinals.

Since Possibility I and Possibility II fails, we can find a closed unbounded set. C such that if $\delta \in C$, there does not exist $a \in G$ and L, a finite subset of G, such that., $\Pi(a, L, G, G)$ holds. That is, if for every closed and unbounded set such a δ exists, then by taking the set of these δ 's we get a stationary set which satisfies condition (B) of Possibility II. By taking. L* \subseteq L such that L^{*} is a maximal independent family in L, then condition (A) of Possibility II would be satisfied using the L^{*} 's in place of the L's . Since Possibility I fails, then Possibility II would
hold for G, a contradiction. Therefore such a C exists.
From previous remarks. in this proof we can assume that C contains only limit ordinals. Since sup $C=\omega_{1}$, then the cardinality of C is ω_{1} since no countable set is cofinal with ω_{1}. So let $C=\left\{\delta_{\alpha}: \alpha<\omega_{1}\right\}$ where each δ_{α} is a limit ordinal and $\alpha<\beta \Rightarrow \delta_{\alpha}<\delta_{\beta}$. Now we rename G as follows:

$$
\text { Rename }\left\{\beta: \delta_{\alpha} \leqq \beta<\delta_{\alpha+1}\right\} \text { as }\{\beta: \omega \alpha \leqq \beta<\omega(\alpha+1)\} .
$$

Now we can assume that $C=\left\{\omega \alpha: \alpha<\omega_{1}\right\}$, and it'is clear that we still have an admissible naming of G.

Now we do an induction to show that $\left.G_{\omega \alpha+\omega}=G_{\omega \alpha} \oplus<b_{1}, b_{2}, \ldots\right\rangle_{*}$ for some $b_{i}{ }^{\prime} s$ in $G_{\omega \alpha+\omega} \backslash G_{\omega \alpha}$. Suppose $b_{1}, \ldots b_{n}$ have been choosen. Let $G_{\omega \alpha}^{n}=G_{\omega \alpha} \oplus\left\langle b_{1}, \ldots b_{n}\right\rangle_{\%}$. Now let $L=\left\{b_{1}, \ldots b_{n}\right\}$ and let $a=\inf \left\{\delta: \delta \in G_{\omega \alpha+\omega} \backslash G_{\omega \alpha}^{n}\right\}$. As $\omega \alpha$ is in C, then $\Pi\left(a, L, G{ }_{\omega \alpha}, G\right)$ fails and so there must exist $b_{n+1} \in\left\langle G_{\omega \alpha} \cup L \cup\{a\}\right\rangle_{*}$ such that $\left\langle G_{\omega \alpha} \cup L \cup\{a\}_{*}=G_{\omega \alpha} \oplus\left\langle L \cup\left\{b_{n+1}\right\}\right\rangle_{*}=G_{\omega \alpha} \oplus\left\langle b_{1}, \ldots, b_{n}, b_{n+1}\right\rangle_{*}\right.$. Since clearly $\bigcup_{\mathrm{n}} \mathrm{G}_{\omega \alpha}^{\mathrm{n}}=\mathrm{G}_{\omega \alpha+\omega}$ we get that $\left.\mathrm{G}_{\omega \alpha+\omega}=\mathrm{G}_{\omega \alpha} \oplus<\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots\right\rangle_{\text {* }}$. Let $H_{\omega \alpha}=\left\langle\dot{b}_{1}, b_{2}, \ldots\right\rangle_{*}$. Then $\dot{G}_{\omega \alpha+\omega}=G_{\omega \alpha} \oplus H_{\omega \alpha}$. Thus $G=G_{\omega 1}{ }^{\oplus}<\alpha<\omega_{1} H^{H}$ and so G is the direct sum of countable groups.

(G,Z)-Groups

In this section we will define (G, Z)-groups and prove some lemmas about them necessary for the consistency resuilt.

Definition (14): A (G,Z)-group is a group H. with underlying set $G \times Z=\{(a, b): a \in G, b \in Z\}$ such that:
(i) $(a, b)+(0, c)=(a, b+c)$,
(ii) The map $h: H \rightarrow G$ defined by $h(a, b)=a$ is a group homomorphism. For a given G_{i}, H_{i} will denote a $\left(G_{i}, Z\right)$-group, and the corresponding homomorphism will be denoted by h_{i}.

Lemma (6): Let G_{1} be a countable subgroup of G_{2} where G_{2} is ω_{1}-free and the cardinality of G_{2} is at most: ω_{1}. Let: H_{1} be a. (G_{1}, Z)-group. Then H_{1} can be extended to a $\left(G_{2}, z\right)$-group. Proof: First note that G_{1} is freely generated since it is countable and G_{2} is ω_{1}-free. Thus from the result noted before, G_{1} is a W-group since freely generated groups are W-groups. The result will be proved by transfinite indection. To simplify the induction we will deal with two special cases first. Let $<a+G_{1}>$ be the subgroup of G_{2} / G_{1} generated by the element $a+G_{1}$, where a is in G_{2}. Let $G_{a}=\left\langle\{a\} \cup G_{1}\right\rangle$ be the subgroup of G_{2} generated by $\left\{\{a\} \cup G_{1}\right\}$. Case (i): <a $+G_{1}>$ is isomorphic to Z.

Case (ii): <a $+G_{1}>$ is cyclic of prime order.
We will show that in cases (i) and (ii) H_{1} can be extended to a ($\left.\mathrm{G}_{\mathrm{a}}, \mathrm{Z}\right)$-group.

Proof of case (i): Suppose $\left\langle a+G_{1}>\right.$ is isomorphic to Z. Then every $b \in G$ a has a unque representation as $z a+c$ where $z \in Z$ and $c \in G_{1}$. Now define for b_{1}, b_{2} in G_{a} and k_{1}, k_{2} in Z, the following:

$$
\begin{aligned}
& \left(b_{1}, k_{1}\right)+\left(b_{2}, k_{2}\right) \\
= & \left(z_{1} a+c_{1}, k_{1}\right)+\left(z_{2} a+c_{2}, k_{2}\right) \\
& \operatorname{def}_{=}\left(\left(z_{1}+z_{2}\right) a+c_{3}, k_{3}\right)
\end{aligned}
$$

where $\left(c_{1}, k_{1}\right)+\left(c_{2}, k_{2}\right)=\left(c_{3}, k_{3}\right)$ in H_{1}. It is easy to check that this natural extension of H_{1}. forms a group. Call this group H_{a}.

Then $(b, k)+(0, m)=(z a+c, k)+(0, m)$

$$
=(\mathrm{za}+\mathrm{c}, \mathrm{k}+\mathrm{m})
$$

$$
=(b, k+m) \quad, \text { since in } H_{1}(c, k)+(0, m)=(c, k+m)
$$

Also the mapping $h_{a}: H_{a} \rightarrow G_{1}$ defined by $h_{a}(b, k)=b$ is clearly a homomorphism, and so H_{a} is a (G_{a}, Z)-group.

Proof of case (ii): Suppose $<a+G_{1}>$ is cyclic of prime order p. Since $h_{1}: H_{1} \rightarrow G_{1}$ has kernel isomorphic to Z and G_{1} is a W-group, then there exists $g_{1}: G_{1} \rightarrow H_{1}$ such that $: h_{1} g_{1}=1_{G_{1}}$. Let $g_{1}(c)=(c, m(c))$ for $c \in G_{1}$. Every $b \in G_{a}$ has a unique representation as $z a+c$ where $0 \leqq z<p, \quad c \in G_{1}$. Now for b_{1}, b_{2} in G and k_{1}, k_{2} in Z define:

$$
\begin{aligned}
& \quad\left(b_{1}, k_{1}\right)+\left(b_{2}, k_{2}\right) \\
& =\left(z_{1} a+c_{1}, k_{1}\right)+\left(z_{2} a+c_{2}, k_{2}\right) \\
& \\
& =\left(\left(z_{1}+z_{2}\right) a+c_{1}+c_{2}, k_{1}+k_{2}-m\left(c_{1}\right)-m\left(c_{2}\right)+m\left(c_{1}+c_{2}\right)\right. \\
& \left.\quad+f\left(z_{1}+z_{2}\right)\right)
\end{aligned}
$$

where $0 \leqq Z_{1}, z_{2}<p$, and $f(n)=0$ when $n<p$ and $f(n)=M \in Z$ otherwise; where M is an arbitrary constant which once choserl
remains the same for all such defined sums. We will show that this set, call it H_{a}, forms a (G_{a}, Z)-group under this defined operation. To show H_{a} is a group, the only non trivial thing to show the existence of inverses. Let $(b, k)=(z a+c, k)$ be in H_{a} and $-c$ be the inverse of c in $G_{1} \cdot$ Then:

$$
\begin{aligned}
& (z a+c, k)+((p-z) a-c,-k-M) \\
= & ((z+(p-z)) a+c-c, k-k-M-m(c)-m(c)+m(c-c) \\
& \quad+f(z+(p-z))) \\
= & (p a,-M+f(p)) \\
= & (0,-M+M) \\
= & (0,0)
\end{aligned}
$$

This the inverse of (b, k) is $((p-z) a-c,-k-M)$, and so H_{a} is a group. Now let $(b, k)=(z a+c, k)$ and $(0, t)$ be in H_{a}. Then:

$$
\begin{aligned}
& (b, k)+(0, t) \\
= & (b, k+t-m(c)-m(0)+m(c)+f(z)) \\
= & (b, k+t) \quad, \quad \text { as } z<p .
\end{aligned}
$$

Also the mapping $h_{a}: H_{a} \rightarrow G_{l}$, defined by $h_{a}(b, k)=b$ is a homorphism, so H_{a} is a (G_{a}, Z)-group.

Since G_{2} is ω_{1}-free and G_{1} is countable, then $G a$ is countable and so it is freely generated. Thus $G a$ is a W-group.

Now we do the induction. First we find a sequence of elements of G_{2}, say $A=\left\{a_{\delta}: \delta<\sigma, \sigma\right.$ an ordinal\}, such that $G_{1} \cup A$ generates G_{2}, and such that if $J_{\delta}=\left\langle G_{1} \cup\left\{a_{\rho}: \rho<\delta\right\}\right\rangle$ for all $\delta<\sigma$, then $<a_{\delta}+J_{\delta}>$ is infinite cyclic or cyclic of prime order. The sequence A is defined as follows:

Assume a_{β} has been defined for $a l l \quad \beta<\delta$. Let. $b=\inf \left\{\alpha: \alpha \cdot \in G_{2} \backslash J_{\delta}\right\}$. If $<\mathrm{b}+\mathrm{J}_{\delta}>$ is infinite cyclic or cyclic of:prime order, let $\mathrm{a}_{\delta}=\mathrm{b}$. If not, then $\left\langle b+J_{\delta}>\right.$ is cyclic of non prime order, say of order np where p is prime. Then let $a_{\delta}=n b$. So $<a_{\delta}+J_{\delta}>$ has prime order p. It is clear that card $(A) \leqq \omega_{1}$, since $G_{1} \cup A$ generates $\cdot G_{2}$ and $\operatorname{card}\left(G_{2}\right) \leq \omega_{1}$.

Let $K_{0}=H_{1}$, a $\left(J_{0}, Z\right)$-group. We will define K_{β} to be a $\left(J_{\beta}, Z\right)$-group for all $\beta \leqq \sigma$.
(a) β is not a limit ordinal: Since β is not a limit ordinal, it has a predessor: So we can suppose a $\left(J_{\beta-1}, Z\right)$-group; $K_{\beta-1} ;$ has been defined. Then by construction of the sequence. $A,<a_{\beta-1}+J_{\beta-1}>$ is infinite cyclic, or is cyclic of prime order. If it is infinite cyclic then case (i) can be applied directly to $K_{\beta-1}$ to show it can be extended to a $\left(J_{\beta}, Z\right)$-group K_{β}. If it is cyclic of prime order, then as $J_{\beta-1}$ is countable, it is freely generated and so it is a W-group. Then there exists $g_{\beta-1}: J_{\beta-1} \rightarrow K_{\beta-1}$ such that $h_{\beta-1} g_{\beta-1}=I_{J_{\beta-1}}$ where as usual $h_{\beta-1}: K_{\beta-1} \rightarrow J_{\beta-1}$ and $h(a, b)=a$. Thus we can apply case (ii) using $g_{\beta-1}$ as the required map, and so extend $K_{\beta-1}$ to a $\left(J_{\beta}, Z\right)$-group K_{β}.
(b) B is a limit ordinal: Define $K_{\beta}=\bigcup_{\delta<\beta} \dot{K}_{\delta}$. It is easy to check that K_{β} is a $\left(J_{\beta}, Z\right)$-group.

So inductively we can define a ($\mathrm{J}_{\sigma}, \mathrm{Z}$) - group. Call it H_{2}. As. the set $G_{1} \cup A$ generates G_{2}, then $J_{\sigma}=G_{2}$, and so H_{2} is a (G_{2}, Z)-group and the lemma is proved.

Lemma(7): Let H_{1} be a ($\left.G_{1}, Z\right)$-group. Let h_{1} and g_{1} be homomorphisms, $h_{1}: H_{l} \rightarrow G_{1}$ and $h_{1}(a, b)=a, g_{1}: G_{1} \rightarrow H_{1}$, such that $h_{1} g_{1}=l_{G_{1}}$. Let G_{2} be ω_{1}-free and $\operatorname{card}\left(G_{2}\right) \leqq \omega_{1} \cdot$ Suppose $\Pi\left(a, A, G_{1}, G_{2},\right)$ holds. Then H_{1} can be extended to a $\left(G_{2}, Z\right)$-group H_{2} such that for no homomorphism $g_{2}: G_{2} \rightarrow H_{2}$ does $\because h_{2} g_{2}=l_{G_{2}}$ where g_{2} extends g_{1} and as usual $h_{2}(a, b)=a$. Proof: Let:
(i) $A=\left\{a_{1}, \ldots, a_{m}\right\}$
(ii) $\quad G_{3}=\left\langle G_{1} \cup A\right\rangle_{*}=\left\langle G_{1}\right\rangle_{*} \oplus\langle A\rangle_{*}$
(iii) $G_{4}=\left\langle G_{3} \cup\{a\}\right\rangle$
(iv) $G_{5}=\left\langle G_{1} \cup A \cup\{a\}\right\rangle_{*}$

Let H_{4} be a $\left(G_{4}, Z\right)$-group. Consider the homorphisms $g: G_{4} \rightarrow H_{4}$ that extend g_{1} and such that $h_{4} g=1_{G_{4}} \cdot$ Any such g is uniquely determined by where g maps a_{1}, \ldots, a_{m} and a. That is if $b \in G_{4}$, then $b=c+z a$ where $c \in G_{3}$ and $z \in Z$. So $b=d+x+z a$ where $d \epsilon\left\langle G_{1}\right\rangle_{*}$ and $x \in\langle A\rangle_{*} \cdot x \in\langle A\rangle_{*}$ implies $n x$ is a linear combination of the a_{i} 's for $i=1, \ldots, m$. Thus the $g\left(a_{i}\right)$'s determine $g(n x)=n g(\dot{x})$, and so they determine $g(x)$ since there is a unique solution to $\mathrm{ng}(\mathrm{x})=\mathrm{y}$. As $\mathrm{d} \epsilon\left\langle\mathrm{G}_{1}\right\rangle ;$, $\mathrm{g}(\mathrm{d})$ is already determined by g_{I}. Let $a_{0}=a$. As $h_{4} g=1_{G_{4}}$ and $h_{4}(b, z)=b$, then $g\left(a_{i}\right) \in\left\{\left(a_{i}, z\right): z \in Z\right\}$. for $i=0, \ldots, m$. So each $g\left(a_{i}\right)$ can be defined in only countably many ways and since there are only finitely many a_{i} 's, there can be only countably many such $g^{\prime} \mathrm{s}$: Call them $\left\{\mathrm{g}^{\mathrm{n}}: \mathrm{n}<\omega\right\}=R$. Now we will show that G_{5} / G_{4} must be infinite. Then we will make some observations about the structure of G_{5} / G_{4} and classify it into two possibilities.
G_{5} / G_{4} is infinite: Since $G_{5}=\left\langle G_{1} \cup A \cup\{a\}_{*} \neq\left\langle G_{1}\right\rangle_{*} \oplus\left\langle A \cup\{a\}_{,}\right.\right.$, then there exists $x \in\left\langle G_{1} \cup A \cup\{a\}_{*}, x \notin\left\langle G_{1}\right\rangle_{*} \oplus\left\langle A \cup\{a\}_{*}\right.\right.$ such that $\mathrm{nx}=\mathrm{g}+\mathrm{c}+\mathrm{ka}$ where for some $\mathrm{n} \neq 1, \mathrm{~g} \in\left\langle\mathrm{G}_{\mathrm{l}}\right\rangle *, \mathrm{c} \in\langle\mathrm{A}\rangle \%$, and $k \neq 0$. Let n be the smallest positive integer for which there is such a g, k, and c. Then the greatest common divisor of n and k is l, for if not then say m divides n and k. Then $m\left(\left(\frac{n}{m}\right) x-\left(\frac{k}{m}\right) a\right)=g+c$, and since $\left\langle G_{1} \cup A\right\rangle_{*}=\left\langle G_{1}\right\rangle_{*} \oplus\langle A\rangle_{*}$, then there exists $g_{1} \epsilon\left\langle G_{1}\right\rangle_{*}$ and $c_{1} \in\langle A\rangle_{*}$ such that $\left(\frac{n}{m}\right) x-\left(\frac{k}{m}\right) a=g_{1}+c_{1}$, and so $\left(\frac{\mathrm{n}}{\mathrm{m}}\right) \mathrm{x}=\mathrm{g}_{1}+\mathrm{c}_{1}+\left(\frac{\mathrm{k}}{\mathrm{m}}\right) \mathrm{a}$, contradicting the minimality of n . Thus there exists integers w and z, such that $n w+k z=1$. Now consider wa +zx :

$$
\begin{aligned}
& n x=g+c+k a, \\
& \text { so. wg + wc = wnx - wka , } \\
& \text { and so wg + wc + k(wa }+\mathrm{zx})=\mathrm{wnx}-\mathrm{wka}+\mathrm{kwa}+\mathrm{kzx} \\
& =w n x+k z x \\
& =(w n+k z) x \\
& =\mathrm{x}
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
-z g-z c+n(w a+z x) & =-z n x+z k a+n w a+n x z \\
& =(z k+n w) a \\
& =a
\end{aligned}
$$

So if x was the only new element in $\left\langle G_{1} \cup A \cup\{a\}\right\rangle_{*}$, then $\left\langle G_{1} \cup A \cup\{a\}_{*}=\left\langle G_{1}\right\rangle_{*} \oplus<A \quad\{w a+z x\}_{*}\right.$, a contra diction to $\Pi\left(a, A, G_{1}, G_{2}\right)$, since wa $+2 x$ is in $\left\langle G_{1} \cup A \cup\{a\}\right\rangle_{*}$. So there must be a y such that $m y=g+c+s a+t x$, or $m y=g_{1}+c_{1}+u(w a+z x)$ for some $u \quad Z$. Using the same method we can find an element b in $\left\langle G_{1} \cup A \cup\{a\}_{*}\right.$, such that y and $w a+z x$ are in $\left\langle G_{1}\right\rangle_{*} \oplus\left\langle A \cup\{b\}_{*}:\right.$

Since this process can be repeated for any finite number of such elements, it follows that there must be infinitely many of them else we get a contradiction to the II condition. Thus G_{5} / G_{4} is a countably infinite torsion group.

Definition (15): A group G is divisible if for every x in G and every integer n, there exists elements in G that satisfy the equation $n y=x$.

From Kaplansky (5), we have the following two results:
(a) Any abelian group G has a unique largest divisible subgroup M, and $G=M \oplus N$ where N has no divisible subgroups. (5) page 9. (b) Any divisible group is a direct sum of groups, each isomorphic to the additive group of rationals Q, or to $Z\left(p^{\infty}\right)$, the group of all $p^{\text {th }}$ roots of unity for various primes p. (5) page 10.

As G_{5} / G_{4} is a torsion group it cannot have a subgroup isomorphic to Q. So if G_{5} / G_{4} has a non trivial divisible subgroup, then by Kaplansky's two results, G_{5} / G_{4} contains a copy of $Z\left(p^{\infty}\right)$ for some prime p and the copy of $Z\left(p^{\infty}\right)$ is a direct summand of the group.

So suppose G_{5} / G_{4} has no non trivial divisible subgroups.
Definition (16): A group G is reduced if it has no non trivial divisible subgroups.

From Kaplansky we have the following result:
(c) If G is a reduced group which is not torsion free, then G has a finite cyclic summand. (5) page 21.

Since G_{5} / G_{4} is a reduced torsion group, then by (c) G has a finite cyclic summand. Now apply (c) to the other summand. Repeated
application of (c) to the infinite remaining summand of G_{5} / G_{4} shows that G_{5} / G_{4} contains an infinite direct sum of finite cyclic groups. From each of these choose an element of prime order. Thus we can assume that there exists infinitely many distinct elements, say a_{n} for $n<\omega$, such that $p_{n} a_{n} \in G_{4}$ where each p_{n} is prime.

Now we can say that one of the following possibilities occurs in G_{5} / G_{4} :
(I) G_{5} / G_{4} contains infinitely many elements of prime order. or (II) G_{5} / G_{4} contains a copy of $Z\left(p^{\infty}\right)$ for some p.

Let (I) hold in G_{5} / G_{4}. Let a_{n}, $n<\omega$, be the elements of prime order. That is the element $a_{n}+G_{4}$ has order p_{n} in G_{5} / G_{4}. Let $G_{n}^{\%}$ be generated by $G_{4} \cup\left\{a_{0}, \ldots, a_{n-1}\right\}$. We will inductively define a $\left(G_{n+1}^{*}, Z\right)$-group H_{n+1}^{*}. using Lemma (6) so that H_{n+1}^{*} extends H_{n}^{*}. First use Lemma (6) to extend H_{l} to a $\left(G_{4}, Z\right)$-group which we will call H_{0}^{*}. Clearly this can be done as G_{4} and G_{1} meet all the conditions of Lemma (6). That is $\therefore G_{1}$ is a countable subgroup of G_{4}, and G_{4} is ω_{1}-free as it is a subgroup of the ω_{1}-free group G_{2}. Also H_{1} is given to be a $\left(G_{1}, Z\right)$-group. Thus H_{0}^{*} exists. Assume inductively $\mathrm{H}_{\mathrm{n}}^{*}$ is defined, $\mathrm{G}_{\mathrm{n}}^{*}$ and $\mathrm{G}_{\mathrm{n}+1}^{*}$ satisfy the conditions of Lemma (6) using H_{n}^{*} as the required $\left(G_{n}^{*}, Z\right)$-group. So by Lemma (6) H_{n}^{*} can be extended to a $\left(G_{n+1}^{*}, Z\right)$ group, H_{n+1}^{*}. As $a_{n}+G_{4}$ has order $p_{n}, a_{n}+G_{n}^{*}$ has order P_{n}. Let M_{n} be the constant used in Lemma (6) to extend H_{n}^{*} to H_{n+1}^{*}. Inductively we define H_{ω}^{*}. Again apply Lemma (6) to extend H_{ω}^{*} to a $\left(G_{5}, Z\right)$-group, say H_{5}, which extends all the H_{n}^{*} 's.

If $g_{5}: G_{5} \rightarrow H_{5}$ is a homomorphism extending g_{1} such that $h_{5} g_{5}=1_{G_{5}}$, then for some n, g_{5} extends g^{n}; that is $\left.g\right|_{H}{ }_{0}^{*}=g^{n}$ where $g^{n} \in R$ as defined earlier in the proof. Now we will show using $\left.g_{5}\right|_{H_{n}} ^{*}=g_{n}^{*}$ as the required map in extending H_{n}^{*} to H_{n+1}^{*}, (see Lemma (6), case (ii)), that constants M_{n} can be chosen such that $\left.\mathrm{g}_{5}\right|_{\mathrm{H}} ^{\mathrm{n}}$, has no extension to $\mathrm{G}_{\mathrm{n}+1}^{*}$ for each $\mathrm{n}<\omega$. This will show that g_{n}^{*} and thus g^{n} has no extension to G_{5} and so such a g_{5} does not exist.

As $a_{n}+G_{4}$ is of order p_{n}, then let $\cdot p_{n} a_{n}=b_{n} \in G_{4}$. Let $g^{n}\left(b_{n}\right)=\left(b_{n}, k_{n}\right)$ and $g_{n}^{*}\left(a_{n}\right)=\left(a_{n}, c_{n}\right)$. Since b_{n} is in G_{4} and g_{n}^{*} extends g^{n} we have $g^{n}\left(b_{n}\right)=g_{n}^{*}\left(b_{n}\right)$ and so:

$$
\begin{aligned}
g^{n}\left(b_{n}\right) & =\left(b_{n}, k_{n}\right) & & \text { by definition } \\
& =g_{n}^{*}\left(b_{n}\right) & & \text { as } b_{n} \in G_{4} \\
& =g_{n}^{*}\left(p_{n} a_{n}\right) & & \text { as } p_{n} a_{n}=b_{n} \\
& =p_{n} g_{n}^{*}\left(a_{n}\right) & & \text { as } g_{n}^{*} \text { is a homomorphism } \\
& =p_{n}\left(a_{n}, c_{n}\right) & & \text { by definition } \\
& =\left(b_{n}, p_{n} c_{n}+M_{n}\right) & & \text { by definition of " }+\prime \prime \text { in } H_{n+1}^{*} \text { as }
\end{aligned}
$$

So in H_{n+1}^{*} :

$$
\begin{aligned}
p_{n}\left(a_{n} c_{n}\right) & =\left(a_{n}, c_{n}\right)+\ldots \ldots+\left(a_{n}, c_{n}\right) \\
& =\left(a_{n}+a_{n}, c_{n}+c_{n}+f(1+1)\right)+\left(a_{n}, c_{n}\right)+\ldots \ldots+\left(a_{n}, c_{n}\right) \\
& =\left(2 a_{n}, 2 c_{n}\right)+\left(a_{n}, c_{n}\right)+\ldots \ldots+\left(a_{n}, c_{n}\right) \\
& =\ldots \ldots \ldots \\
& =\left(\left(p_{n}-1\right) a_{n},\left(p_{n}-1\right) c_{n}\right)+\left(a_{n}, c_{n}\right) \\
& =\left(p_{n} a_{n}, p_{n} c_{n}+f\left(p_{n}\right)\right) \\
& =\left(b_{n}, p_{n} c_{n}+M_{n}\right)
\end{aligned}
$$

Recall that the constant M_{n} as chosen in Lemma (6) case (ii) was arbitrary. By the calculation on the previous page we have that $k_{n}=p_{n} c_{n}+M_{n}$ and so $k_{n} \equiv M_{n}\left(\bmod p_{n}\right)$. By choosing $M_{n}=k_{n}+1$, this is impossible, and so g_{n}^{*} cannot be extended to G_{n+1}^{*} and so g^{n} cannot be extended to G_{n+1}^{*} and so g^{n} cannot be extended to G_{5}.

Now suppose (II) holds. That is G_{5} / G_{4} contains a copy of $Z\left(p^{\infty}\right)$ for some p. Then from the structure of $Z\left(p^{\infty}\right)$ there are elements, say a_{n} for $n<\omega$, such that:
(a) $\mathrm{pa}_{0}=\mathrm{b}_{0} \in \mathrm{G}_{4}$
(b) $p a_{n}-a_{n-1}=b_{n} \in G_{4}$

That is a_{0} is a $p^{\text {th }}$ root of unity and a_{n} is the $\left(p^{n}\right)^{\text {th }}$ root of unity such that $\left(p a_{n}-a_{n-1}\right) \equiv 0\left(\bmod G_{4}\right)$. Again let G_{n}^{*} be generated by $G_{4} \cup\left\{a_{0}, \ldots, a_{n-1}\right\}$ and let H_{n}^{*} be a $\left(G_{n}^{*}, Z\right)$-group constructed inductively as before using the constants M_{n}. We will again show that by proper choice of the M_{n} 's, that $g^{n} \in R$ has no extension to G_{n+1}^{*} and thus no extension to G_{5}. As before let $g_{n}^{*}\left(a_{n}\right)=\left(a_{n}, c_{n}\right)$ and $g^{n}\left(b_{n}\right)=g_{n}^{*}\left(b_{n}\right)=\left(b_{n}, k_{n}\right)$. Then:

$$
\begin{aligned}
g^{n}\left(b_{0}\right) & =\left(b_{0}, k_{0}\right) \\
& =g_{n}^{*}\left(b_{0}\right) \\
& =p g_{n}^{*}\left(a_{0}\right) \\
& =p\left(a_{0}, c_{0}\right) \\
& =\left(b_{0}, p c_{0}+M_{0}\right)
\end{aligned}
$$

And so $k_{0}=p c_{0}+M_{0}$ or $k_{0} \equiv M_{0}(\bmod p)$.
Also:

$$
\begin{aligned}
g^{n}\left(b_{n}\right) & =\left(b_{n}, k_{n}\right) \\
& =g_{n}^{*}\left(b_{n}\right)
\end{aligned}
$$

by definition
as $b_{n} \in G_{4}$

$$
\begin{array}{ll}
=g_{n}^{*}\left(p a_{n}-a_{n-1}\right) & \text { by (b) } \\
=p g_{n}^{*}\left(a_{n}\right)-g_{n}^{*}\left(a_{n-1}\right) & \text { as } g_{n}^{*} \text { is a homomorphism } \\
=p\left(a_{n}, c_{n}\right)-\left(a_{n-1}, c_{n-1}\right) & \text { by definition } \\
=\left(b_{n}+a_{n-1}, p c_{n}+M_{n}\right)-\left(a_{n-1}, c_{n-1}\right) & \text { "+" in } H_{n+1}^{*} \\
=\left(b_{n}, p c_{n}+M_{n}-c_{n-1}\right) &
\end{array}
$$

And so $k_{n}=p c_{n}+M_{n}-c_{n-1}$ or $k_{n}+c_{n-1} \equiv M_{n}(\bmod p)$.
Thus we have: (1) $k_{0} \equiv M_{0}(\bmod p)$
(2) $\mathrm{k}_{\mathrm{n}}+\mathrm{c}_{\mathrm{n}-1} \equiv M_{\mathrm{n}}(\bmod \mathrm{p})$

Keeping in mind the M_{n} 's were chosen arbitrarily we can do the following. For (1) choose $M_{0}=k_{0}+1$ and for (2) choose $M_{n}=k_{n}+c_{n-1}+1$. Clearly in both cases no such k^{\prime} s exist. Thus $\mathrm{g}_{\mathrm{n}}^{*}$, and so g^{n}, cannot be extended to G_{5}.

Finally use Lemma (6) to extend H_{5} to a $\left(G_{2}, Z\right)$-group, say H_{2}. Let g_{2} be any homomorphism $g_{2}: G_{2} \rightarrow H_{2}$ such that $h_{2} g_{2}=1_{G_{2}}$ and g_{2} extends g_{1}. Then g_{2} extends some $g^{n} \in R$. We have just shown that g^{n} cannot be extended to g_{n+1}^{*} such that $h_{n+1}^{*} g_{n+1}^{*}=1_{G_{n+1}}^{*}$. As H_{2} extends H_{n+1}^{*} it follows that g^{n} cannot be extended to g_{2}. Thus g_{2} does not exist. Therefore H_{2} satisfies the requirements of the lemma.

$V=\mathrm{L}$ and W -groups

In this section we will show that under the assumption $V=L$, groups satisfying Possibility I or Possibility II are not W-groups.

Lemma (8): If G satisfies Possibility I or II then G can be named so that for any limit ordinal δ, there exists an element a^{δ}. and a finite subset L_{δ} such that $\Pi\left(a^{\delta}, L_{\delta}, G_{\delta}, G_{\delta+\omega}\right)$ holds.

Proof: There are two cases to prove.
Case (i): Let G satisfy Possibility I. Thus G is named such that for any limit ordinal $\delta<\omega_{1}, G_{\delta}$ is a pure subgroup and for some limit ordinal β, G_{β} is the particular pure subgroup required by conditions (A) and (B) in the definition of Possibility I. That is:
(A) $\quad\left\{a_{\ell}^{\alpha}+G_{\beta}: \alpha<\omega_{1}, \ell \leqq n(\alpha)\right\}$ is an independent family in G / G_{β}.
(B) $\quad\left(a_{n(\alpha)}^{\ell}, L_{\alpha}, G_{\beta} G\right)$ holds for all $\alpha<\omega_{1}$ where $L_{\alpha}=\left\{a_{\ell}^{\alpha}: \ell<n(\alpha)\right\}$. Let $\Phi=\left\{\delta: \delta\right.$ is a limit ordinal, $\delta<\omega_{1}$, and G_{δ} does not satisfy conditions (A) and (B) \}. That is there do not exist suitable $a_{\ell}^{\alpha,} s$, $\alpha<\omega_{1}$, such that G_{δ} could replace G_{β} in the above. We claim that Φ is bounded in ω_{1}. If. Φ is unbounded then $\operatorname{card}(\Phi)=\omega_{1}$, say $\Phi=\left\{\delta_{\alpha}: \alpha<\omega_{1}\right\}$ where $\delta_{\alpha_{1}}<\delta_{\alpha_{2}}$ if $\alpha_{1}<\alpha_{2}$. Rename G so that. $\left\{\theta: \delta_{\alpha} \leq \theta^{\circ}<\delta_{\alpha+1}\right\}$ becomes $\left\{\theta: \omega_{\alpha} \leqq \theta<\omega(\alpha+1)\right\}$. This renames G so that under the new ordering, if δ is a limit ordinal, then G_{δ} cannot satisfy conditions (A) and (B). As G must satisfy Possibility I under any naming that is admissible, by the definition of Possibility I, this is a contradiction. Thus Φ is bounded, by
say $\rho<\omega_{1}$ where ρ is a limit ordinal. Now rename G so that G_{ρ} becomes G_{ω} and $\{\theta: \rho+\omega \alpha \leqq \theta<\rho+\omega(\alpha+1)\}$ becomes $\{\theta: \omega+\omega \alpha \leqq \theta<\omega+\omega(\alpha+1)\}$. Under this admissable naming if δ is a limit ordinal then G_{δ} will satisfy conditions (A) and (B) for some $a_{\ell}^{\alpha \prime} s, \alpha<\omega_{1}$.

Now consider G_{ω}. As G_{ω} satisfies conditions (A) and (B), then there exists a and L such that $\Pi\left(a, L, G_{\omega}, G\right)$ holds. Choose a limit ordinal $\delta<\omega_{1}$ so that $\left\langle G_{\omega} \cup L \cup\{a\}\right\rangle_{*} \subseteq G_{\delta}$. Thus $\pi\left(a, L, G_{\omega}, G\right)$ holds. Now rename G so that $\{\theta: \omega \leq \theta<\delta\}$ becomes $\{\theta: \omega \leqq \theta<\omega+\omega\}$ and $\{\theta: \delta+\omega \alpha \leqq \theta<\delta+\omega(\alpha+1)\}$ becomes $\{\theta: \omega+\omega+\omega \alpha \leqq \theta<\omega+\omega+\omega(\alpha+1)\}$ for $\alpha<\omega_{1}$. Under this naming $\Pi\left(a, L, G_{\omega}, G_{\omega+\omega}\right)$ holds. Now we do the induction step. Suppose G has been named so that for all $\delta<\beta$ there exists a^{δ} and L_{δ} such that $\Pi\left(a^{\delta}, L_{\delta}, G_{\omega \delta}, G_{\omega \delta+\omega}\right)$ holds. \because Since $G_{\omega \beta}$ satisfies conditions (A) and (B), then there exists a and L such that $\Pi\left(a, L, G_{\omega \beta}, G\right)$ holds. As before choose a limit ordinal $\rho<\omega_{1}$ such that $<G_{\omega \beta}$ i $L\{a\}^{*} G_{\rho}$ and so (a,L,G${ }_{\omega \beta}, G_{\rho}$) holds. Rename G so that $G_{\omega \beta}$ remains unchanged, $\{\theta: \omega \beta \leq \theta<\rho\}$ becomes $\{\theta: \omega \beta \leq \theta<\omega \beta+\omega\}$, and $\{\theta: \rho+\omega \alpha \leqq \theta<\rho+\omega(\alpha+1)\}$ becomes $\{\theta: \omega \beta+\omega+\omega \alpha \leqq \theta<\omega \beta+\omega+\omega(\alpha+1)\}$. Thus $I I\left(a, L, G_{\omega \beta}, G_{\omega \beta+\omega}\right)$ holds.

Thus we can assume G can be named so that $\Pi\left(a^{\delta}, L_{\delta}, G_{\delta}, G_{\delta+\omega}\right)$ holds for any limit ordinal $\delta<\omega_{1}$ and suitable a^{δ} 's and L_{δ}^{\prime} s.

Case (ii): Let G satisfy Possibility II. The proof is almost the same. Let A be the required stationary set in the definition of Possibility II. Let $A=\left\{\delta_{\alpha}: \alpha<\omega_{1}\right\}$, and of course the δ_{α} 's are limit ordinals with $\delta_{\alpha_{1}}<\delta_{\alpha_{2}}$ if $\alpha_{1}<\alpha_{2}$. From condition (B) in the definition of Possibility II, there exists a and L such that
$\cdot I\left(a, L, G_{\delta_{0}}, G\right)$ holds. Choose δ_{β} so that $\left\langle G_{\delta_{0}} U L \cup\{a\}\right\rangle_{*} \subseteq G_{\delta_{\beta}}$. Rename G so that $G_{\delta_{0}}$ becomes G_{ω}, and $\left\{\theta: \delta_{0} \leqq \theta<\delta_{\beta}\right\}$ becomes. $\{\theta: \omega \leqq \theta<\omega+\omega\}$, and. $\left\{\theta: \delta_{\beta}+\omega \alpha \leqq \theta<\delta_{\dot{\beta}}+\omega(\alpha+1)\right\}$ becomes $\quad\{\theta: \omega+\omega+\omega \alpha \leqq \theta<\omega+\omega+\omega(\alpha+1)\}$ for all $\alpha<\omega_{1}$. Then $\pi\left(a, L, G_{\omega}, G_{\omega+\omega}\right)$ holds. The induction step is the same as case (i) except that the limit ordinals will always be chosen from the δ_{α} 's of A.

Definition (17): An infinite cardinal K is regular if no set of cardinality less than K is cofinal in K.

As noted in Remark (3), no countable set is cofinal in ω_{1}, and so ω_{1} is regular.

Definition (18): Let K be an infinite cardinal number and let A be a subset of K. If there is a sequence $S_{\alpha}, \alpha A$, such that S_{α} is a subset of α, and for each subset X of K the set $\left\{\alpha: \mathrm{X} \cap \alpha=\mathrm{S}_{\alpha}\right\}$ is stationary in K , then we say $\rangle_{\mathrm{K}}(\mathrm{A})$ holds.

From Jensen (6) page 293, we get the following result:
"Assume $V=L$ and let K be a regular infinite cardinal. Then
$\diamond_{\mathrm{K}}(\mathrm{A})$ holds for every stationary subset A of $K . "$ So this result holds when K is the regular cardinal ω_{1}.

Now consider a group G of cardinality ω_{1}. Let A be a stationary set of limit ordinals. As shown before the restriction of any stationary set to its limit ordinals is again stationaty, so there are many such A's. Consider the set $G x Z=\{(\alpha, z): \alpha \in G, z \in Z\}$.

Name the elements of $G \times Z$ as follows:
(a). Name $J_{1}=\{(\alpha, z): \alpha<\omega\}$ as $\{\beta: \beta<\omega\}$ which is easily done as J_{1} is countable.
(b) Suppose $\{(\alpha, z): \alpha<\omega \delta\}$ has been named as $\{\dot{\beta}: \beta<\omega \delta\}$, then name the elements of $J_{\delta+1}=\{(\alpha, z): \omega \delta \leqq \alpha<\omega(\delta+1)\}$ as $\{\beta: \omega \delta \leqq \beta<\omega(\delta+1)\}$ which is easily done as $\mathrm{J}_{\delta+1}$ is countable.

So by this inductive naming process the elements of $G \times z$ are the ordinals $\left\{\alpha: \alpha<\omega_{1}\right\}$ and each $G_{\delta} \times Z$ has been named as the ordinals $\{\alpha: \alpha<\delta\}$ for all limit ordinals less than ω_{1}. Let H be such a naming of the elements of $G \times Z$, and so the set A is stationary in $H=\omega_{1}=\left\{\alpha: \alpha<\omega_{1}\right\}$. Assume $V=L$ and apply Jensen's result to H and A. Thus $\nabla_{H}(A)$ holds. Let $g: G \rightarrow G \times Z$ be a function such that $g(\alpha)=\left(\alpha, z_{\alpha}\right)$ where the z_{α} 's are in Z. Then g can be viewed as a set of ordered pairs, say $L=\left\{\left(\alpha, z_{\alpha}\right): \alpha<\omega_{1}\right.$ and $\left.z_{\alpha} \in Z\right\}$, and so g can be viewed as a subset of H, say Y, where $\delta \in Y$ if and only if δ is the name in H of some $\left(\alpha_{\alpha}, z_{\alpha}\right)$ in L. By Jensen's result there exist S_{α}, for $\alpha \in A$, such that $S_{\alpha} \subseteq \alpha$ and for any $X \subseteq H$, the set $\left\{\alpha: X \cap \alpha=S_{\alpha}\right\}$ is stationary. In particular, $A^{*}=\left\{\alpha: Y \cap \alpha=S_{\alpha}\right\} \quad$ is stationary. Since α is a limit ordinal and $\alpha=\{\beta: \beta<\alpha\}=\{(\delta, z): \delta<\alpha, z \in Z\}=\left\{(\delta, z): \delta \in G_{\alpha}, z \in Z\right\}=G_{\alpha} \times Z$ and $Y=\left\{\beta \in H: \beta=\left(\delta, z_{\delta}\right)\right.$ for $\left.\delta \in G_{\alpha}\right\}$, then for $\alpha \in A^{*}, Y \cap \alpha=S_{\alpha}=$ $\left\{\beta \in H: \beta=\left(\delta, z_{\delta}\right)\right.$ for $\left.\delta \in G_{\alpha}\right\}$. Thus $Y \cap \alpha=S_{\alpha}=\left.g\right|_{G_{\alpha}}$ can be viewed as a function $S_{\alpha}: G_{\alpha} \rightarrow G_{\alpha} \times Z$. Let $S_{\alpha}=g_{\alpha}$ for all $\alpha \in A^{*}$. As g was. arbitrary, then for any function $g: G \rightarrow \dot{G} \times Z$ where $g(\alpha)$ has shape
(α, z), the set $\left\{\delta<\omega_{l}:\left.g\right|_{G}=g_{\delta}=S_{\delta}\right\}$ is stationary and since g is a function so is $g_{\delta}: G_{\delta} \rightarrow G_{\delta}^{\delta} \times Z$ a function. So let $A{ }^{* *}=\left\{\delta \in A: S_{\delta}=g_{\delta}\right.$ is a function from G_{δ}. into $\left.G_{\delta} \times Z\right\}$. Thus we can make the following statement:
(J) "If $V=L$, there are functions $g: G_{\delta} \rightarrow G_{\delta} \times Z, \delta \in A^{* \%} \subseteq A$, such that for any function $g: G \rightarrow G \times Z$ where $g(\alpha)=(\alpha, z)$, the set $\left\{\delta<\mu_{1}:\left.g\right|_{G_{\delta}}=g_{\delta}\right\}$ is stationary."

Theorem (1): Assume $V=$ L. Then if G satisfies Possibility I or Possibility II, then G is not a W-group.

Proof: Suppose G sarisfies Possibility I or II. By Lemma (8) G can be named so that for any limit ordinal $\delta<\omega_{l}$, there exists a^{δ} and L_{δ} such that $\Pi\left(a^{\delta}, L_{\delta}, G_{\delta}, G_{\delta+\omega}\right)$ holds. Let A be the stationary set consisting of all limit ordinals. Thus by Jensen, since $V=L$, we can assume (J) as above. Let. $H_{\delta}=G_{\delta} \times Z$, and so for $\delta \boldsymbol{\epsilon}^{*}{ }^{* *}, g_{\delta}$ is a function from G_{δ} into H_{δ} and $g(\alpha)=(\alpha, z)$. Let K be the set of these functions, $K=\left\{g_{\delta}: \delta \in A^{* *}\right\}$.

We will now construct a (G, Z)-group, $H_{\omega_{1}}$, such that there does not exist a map $g: G \rightarrow H_{\omega_{I}}$ such that $h g=I_{G}$ and as usual $h(\alpha, z)=\alpha$. If we can construct such a $H_{\omega_{1}}$, then G cannot be a W-group. We do the construction by transfinite induction. Define a $\left(G_{\omega}, Z\right)$-group, H_{ω}, arbitrarily. Suppose we have defined a $\left.{ }_{(G}^{\omega}, Z\right)$-group, $H_{\omega \alpha}$ for all $\alpha<\delta$, such that $H_{\omega \alpha}$ extends $H_{\omega \beta}$ for all $\beta<\alpha$.

Define $\mathrm{H}_{\omega \delta}$ as follows:
Case (i): Suppose δ is not a limit ordinal, so we can assume $H_{w(\delta-1)}$. is well defined. As before let $H=G \times Z$ and $h: H \rightarrow G$ with $h(\alpha, z)=\alpha$.
(a). If $\omega(\delta-1) \notin A^{* *}$ or if $\omega(\delta-1) \in A^{* *}$ and the corresponding function $g_{\omega(\delta-1)}$ in K is not a homomorphism such that $\lg _{\omega(\delta-1)}=I_{G_{\omega(\delta-1)}}$, then extend $H_{\omega(\delta-1)}$ to $H_{\omega \delta}$ arbitrarily using Lemma (6).
(b) If. $\omega(\delta-1) \in A^{* *}$ and the corresponding function
$\mathrm{g}_{\omega(\delta-1)}$ in K is a homomorphism such that $\operatorname{hg}_{\omega(\delta-1)}=1_{G_{\omega(\delta-1)}}$, then $g_{\omega(\delta-1)}, a^{\omega(\delta-1)}, L_{\omega(\delta-1)}, G_{\omega(\delta-1)}, \quad$ and $G_{\omega \delta}$ satisfy the conditions of Lemma (7). That is:
(i) $G_{\omega(\delta-1)}$ is a countable subgroup of the ω_{1}-free group $G_{\omega \delta}$, and $H_{\omega(\delta-1)}$ is a $\left(G_{\omega(\delta-1)}, Z\right)$-group. (ii) $\pi\left(\mathrm{a}^{\omega(\delta-1)}, \mathrm{L}_{\omega(\delta-1)}, \mathrm{G}_{\omega(\delta-1)}, \mathrm{G}_{\omega \delta}\right)$ holds by Lemma. (8) as stated in the beginning of the proof.
(iii) $: g_{\omega(\delta-1)}: G_{\omega(\delta-1)} \rightarrow H_{\omega(\delta-1)}$ is a homomorphism such that $\lg _{\omega(\delta-1)}=1_{G_{\omega(\delta-1)}}$.
So we can apply Lemma (7) to extend. $H_{\omega(\delta-1)}$ to ${ }_{\omega}^{H}$ so that $g_{\omega(\delta-1)}$ cannot be extended to a homomorphism $\mathrm{g}_{\omega \delta}: \mathrm{G}_{\omega \delta} \rightarrow \mathrm{H}_{\omega \delta}$ such that $\quad \mathrm{hg}_{\omega \delta}=I_{G_{\omega \delta}}$.
Case (ii): Suppose δ is a limit ordinal. Define $H_{\omega \delta}=\bigcup_{\alpha<\delta}^{H} H_{\omega \alpha}$, and as before $H_{\omega \delta}$ is a $\left(G_{\omega \delta}, Z\right)$-group extending $H_{\omega \alpha}$ for all $\alpha<\delta$.

Let $H_{\omega_{1}}$ be the (G, Z)-group constructed by this induction. Suppose $g: G \rightarrow H_{\omega_{1}}$ is a homomorphism such that $h g=I_{G}$. Then $A^{*}=\left\{\delta:\left.g\right|_{G_{\delta}}=g_{\delta}\right\}$ is stationary by (J). In particular A^{*} is non empty, say δ is in A^{*}. Thus by the construction of $H_{\omega_{1}}$, g_{δ} cannot be extended to a homomorphism $g_{\delta+\omega}: G_{\delta+\omega} \rightarrow H_{\delta+\omega}$ such that $\operatorname{hg}_{\delta+\omega}=I_{G_{\delta+\omega}}$. Thus g_{δ} cannot be extended to g such that $h g=I_{G}$, and so g is not an extension of g_{δ}, contradiction. Thus no such g exists and so G is not a W-group.

Martin Axiom and W-groups

In this section we will show that under the assumption of the Martin Axiom and $2^{\omega}>\omega_{1}$, any group satisfying Possibility II. is a W-group.

Definition (19): Let P be a poset (partially ordered set), and let $a, b \in P$. We say a and b are contradictory if they have no common upper bound in the poset P.

Definition (20): Let P be a poset and let D be a subset of P. We say that D is a dense subset of P if for any a in P there is a b in D such that $a \leq b$.

Definition (21): Let λ be a cardinal number. Let $M A_{\lambda}$ be the following assertion:
"Let P be any poset of cardinality λ. Suppose in P there is no subset of w_{1} pairwise contradictory elements. Also suppose $\left\{D_{\alpha}: \alpha<\lambda\right\}$ are dense subsets of P. Then there exists a subset B of P. such that $B \cap D \neq \phi$ for all $\alpha<\lambda$, and such that any two members of B have a common upper bound in $B . "$

Such a set B is called a generic subset of P (with respect to the $D_{\alpha}{ }^{\prime} s$). MA (Martin Axiom) says that $M A{ }_{\lambda}$ holds for any $\lambda<2^{\omega}$.

Theorem (2): Assume the Martin Axiom and $2^{\omega}>\omega_{1}$. If G has cardinality ω_{l}, is ω_{1}-free, and does not satisfy Possibility I. then G is a W-group.

Proof: Suppose G satisfies Possibility III. By Lemma (5) G is the direct sum of countable groups. As G is ω_{1}-free then each summand is free, and so G is free. Thus G is a W-group. So we can assume G satisfies Possibility II.

Let H be a group whose set of elements is $G \times Z$, and let $h: H \rightarrow G$ be defined by. $h(a, b)=a$. Now we define a poset P. The elements of P are homomorphisms g from finitely generated pure subgroups. I of. G into H such that $h g=I_{I}$. If g_{1} and g_{2} belong to P, write $g_{1} \leqq g_{2}$ if g_{2} extends g_{1}. We will now show that the cardinality of P is ω_{1}.

First we compute the number of finitely generated pure subgroups of. G. As each subgroup is countable and G is their union; there must be at least ω_{1} different finitely generated pure subgroups. There cannot be more than ω_{1} finitely generated pure subgroups of G since there are only ω_{l} finite subsets of G. Now each of these pure subgroups is freely generated by a finite set as G is ω_{1}-free. For a given pure subgroup I, with generators b_{1}, \ldots, b_{n}, the homomorphisms of I into H are uniquely determined by the images of the generators. If $g: I \rightarrow H$ is in P, then for each generator $b_{i}, g\left(b_{i}\right) \in\left\{\left(b_{i}, z\right): z \in Z\right\}$. Thus there are only countably many choices for the image of each b_{i}, and since there are only finitely many $b_{i} ' s$, there are only countably many distinct mappings
of the b_{i} 's. Thus there are only countably many g 's for each I. Since the number of finitely generated pure subgroups is ω_{1}, then the cardinality of P is ω_{1}.

```
We now define subsets \(D_{\alpha}\) of \(P\) for \(\alpha<\omega_{1}\) as follows:
```

$$
D_{\alpha}=\{g \in P: \alpha \text { is in the domain of } g\}
$$

We now show:
(a) Each $D_{\alpha}, \alpha<\omega_{1}$, is dense in P.
(b) There do not exist ω_{1} pairwise contradictory elements of P .

Proof of (a): Lét $\alpha<\omega_{1}$ and let g_{I} be in P where $g_{I}: I \rightarrow H$. Then I is pure and freely generated by say a_{1}, \ldots, a_{n}. We must show that there exists g in D_{α} such that $g_{I} \leqq g$. If $\alpha \in \operatorname{Dom} g_{I}$ (domain of g_{I}), then $g_{I} \in D_{\alpha}$ and $g_{I} \leqq g_{I}$, so we can let $g=g_{I}$. So suppose now $\alpha \notin \operatorname{Dom} g_{I}$ and consider $I^{*}=\left\langle a_{1}, \ldots, a_{n}, \alpha_{*}\right.$. If I^{*} is a free group generated by $a_{1}, \ldots, a_{n}, a_{n+1}$ then define g as follows:
(i) Let $g\left(a_{i}\right)=g_{I}\left(a_{i}\right)$ for $i=1, \ldots, n$.
(ii) Let $g\left(a_{n+1}\right)=\left(a_{n+1}, z\right)$ for any $z \quad z$.

As the $a_{i}, \quad i=1, \ldots, n+1$, generate the free group I^{*}, then this mapping of the generators can be extended to a homomorphism $g: I^{*} \rightarrow \mathrm{H}$. Clearly g extends g_{I} and $\alpha \in \operatorname{Dom} g=I^{*}$. Thus $g \in D_{\alpha}$ and $g_{I} \leqq g$. It remains to show that I^{*} is freely generated"by $a_{1}, \ldots, a_{n}, a_{n+1}$ for some a_{n+1}. Since $\alpha \notin I$, then α is independent of $\left\{a_{1}, \ldots, a_{n}\right\}$ since I is pure. So I^{*} contains at least $n+1$ independent elements. If $x \in I^{*} \mathcal{N}$, then $m x \in\left\langle a_{1}, \ldots, a_{n}, \alpha>\right.$ for some m, and so x is
not independent of $\left\{a_{1}, \ldots, a_{n}, \alpha\right\}$. Thus I^{*} contains exactly $n+1$ independent elements, and so I^{*} is a free group on $\mathrm{n}+1$ generators. Let I^{*} be freely generated by b_{1}, \ldots, b_{n+1}. As shown before, for any finite number of elements in $\left\langle a_{1}, \ldots, a_{n}, \alpha\right\rangle \%$ and not in $\left\langle a_{1}, \ldots, a_{n}, \alpha\right\rangle$, there exists an element, say a_{n+1}, such that the finite set of elements is in $\left\langle a_{1} ; \ldots, a_{n}, a_{n+1}\right\rangle$. (see G_{5} / G_{4} is infinite, page 24).

Let B be the set of elements of $\left\{b_{1}, \ldots, b_{n+1}\right\}$ in $\left\langle a_{1}, \ldots, a_{n}, \alpha\right\rangle_{*}$ and not in $<a_{1}, \ldots, a_{n}, \alpha>$. Then for some $a_{n+1}, B \subseteq<a_{1}, \ldots, a_{n+1}>$, and so $\left\{b_{1}, \ldots, b_{n+1}\right\} \subseteq\left\langle a_{1}{ }^{\prime}, \ldots, a_{n+1}\right\rangle$. Since $I^{*}=\left\langle b_{1}, \ldots, b_{n+1}\right\rangle$, then $I^{*}=\left\langle a_{1}, \ldots, a_{n+1}\right\rangle$ and the result is proved.

Proof of (b): Suppose there exists a set of ω_{l} pairwise contradictory elements of P, say $\left\{g_{f}: \delta<\omega_{l}\right\}$. We will derive a contradiction. Let the domain of g_{δ} be freely generated by $a_{1}^{\delta}, \ldots, a_{n(\delta)}^{\delta}$ where $\mathrm{n}(\delta)$ is a finite positive integer. We can replace $\mathrm{W}=\left\{\mathrm{g}_{\delta}: \delta<\omega_{1}\right\}$ by any subset of W of the same cardinality without loss of generality. As each $n(\delta)$ is finite and $\operatorname{card}(W)=\omega_{1}$, then some $n(\delta)$ must occur ω_{1} times. So we can assume $n(\delta)=n$, for some fixed n, for all the g_{δ} 's. That is without loss of generality the domain of g_{δ} is generated by $\left\{a_{1}^{\delta}, \ldots, a_{n}^{\delta}\right\}$ for every g_{δ} in W. Let $K=\left\{a_{1}, \ldots, a_{m}\right\}$ be a maximal set of elements of G which freely generate a pure subgroup and $\left\{a_{1}, \ldots, a_{m}\right\} \subseteq \operatorname{Dom} \dot{g}_{\delta}$ for $\omega_{1} \delta^{\prime} s$. Note that K can be empty. For if any uncountable family of the Dom $\left(\mathrm{g}_{\delta}\right)$'s has a trivial intersection, then K is empty, else K is non empty. So again without loss of generality we can
assume $a_{1}, \ldots, a_{m} \in \operatorname{Dom} g_{\delta}$ for all $\delta<\omega_{1}$. Let $a_{1}=a_{1}^{\delta}, \ldots, a_{m}=a_{m}^{\delta}$. For any δ we can extend $\left\{a_{1}, \ldots, a_{m}\right\}$ to an n-element generating set for $\operatorname{Dom} g_{\delta}$. Thus we can assume Dom g_{δ} is generated by $\left\{a_{1}, \ldots, a_{m}, a_{m+1}^{\delta}, \ldots, a_{n}^{\delta}\right\}$ for each g_{δ} in W.

Now consider Dom g_{δ}. Dom g_{δ} is freely generated by n elements. As any homomorphism g from Dom g_{δ} is uniquely determined by where the generators are mapped and $g(a)=(a, z)$ for any generator a, there can be only countably many different homomorphisms from Dom g_{δ} into H. So if there were only countably many different domains of the g_{δ} 's, there would only be countably many g_{δ}^{\prime} 's, a contradiction. Thus there are ω_{1} different domains on which the g_{δ} 's are defined. Choose one g_{δ} on each domain. So without loss of generality we can assume Dom $g_{\delta} \neq \operatorname{Dom} g_{\alpha}$ for $\delta \neq \alpha$. In other words; in the set $\left\{a_{1}, \ldots, a_{m}, a_{n+1}^{\delta}, \ldots, a_{n}^{\delta}\right\}, m<n$.

Again without loss of generality we will take a subset of the g_{δ} 's of cardinality ω_{1}; this time such that the set $\left\{\left\{a_{1}, \ldots, a_{m}\right\} U\right.$ $\left.\left\{a_{\ell}^{\delta}: m<\ell \leqq n ; \delta<\omega_{1}\right\}\right\}$ is independent in G. Dom g_{0} is generated by $\left\{a_{1}, \ldots, a_{m}, a_{m+1}^{0}, \ldots, a_{n}^{0}\right\}$ which is an independent set in G. Assume for $\alpha<\beta<\omega_{1}$ we have chosen $g_{\alpha}{ }^{\prime}$'s such that the set $\left\{\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right\} \cup\left\{\mathrm{a}_{\ell}^{\alpha}: \mathrm{m}<\ell \leq \mathrm{n}, \alpha<\beta\right\}\right\}$ is an independent set in G. Now consider $\left.<\bigcup_{\alpha<\beta} \operatorname{Dom} g_{\alpha}\right\rangle_{*}$. From the remaining g_{δ} 's, toss out any g_{δ} such that $\left.\left(<\cup_{\alpha<\beta} \operatorname{Dom} g_{\alpha}\right\rangle_{\gamma}><a_{1}, \ldots, a_{m}>\right) \cap \operatorname{Dom} g_{\delta}$ is non empty. We claim that only countably many g_{δ} 's will be tossed out. This will follow from the fact that $\left.\left\langle\bigcup_{\alpha<\beta} \operatorname{Dom} g_{\alpha}\right\rangle *<a_{1}, \ldots, a_{m}\right\rangle=D$ is countable. If some element in D, say b, was in uncountably many Dom g_{δ} 's
then as b is not an element of <a $, \ldots, a_{m}>$, it is independent of the pure subgroup $<a_{1}, \ldots, a_{m}>$, and so we would get a contradiction to the maximality of the pure subgroup $\left\langle a_{1}, \ldots, a_{m}>\right.$. That is $\left\langle a_{1}, \ldots, a_{m}, b\right\rangle_{*}$ would be a pure subgroup of order $m+1$ contained in the domain of ω_{l} of the $g_{\delta} ' s$. So for any element $b \in D$, we toss out only countably many g_{δ} 's. Since D is countable we toss out only countably many g_{δ} 's and so there are uncountably many g_{δ} 's. left. Choose one and call it g_{β}. We claim that the elements $\left\{\left\{a_{1}, \ldots, a_{m}\right\} \cup\left\{a_{\ell}^{\alpha}: m<\ell \leq n, \alpha \leq \beta\right\}\right\}$ are independent in G. This is easily seen. We need only check that no linear combination of the elements of $\left\{a_{m+1}^{\beta}, \ldots, a_{n}^{\beta}\right\}$ is a linear combination of the elements of $\left\{\left\{a_{1}, \ldots, a_{m}\right\} \cup\left\{a_{\ell}^{\alpha}: m<\ell \leqq n, \alpha<\beta\right\}\right\}$. Any linear combination of the elements of $\left\{a_{m+1}^{\beta}, \ldots, a_{n}^{\beta}\right\}$ is in Dom $\left.g_{\beta}-<a_{1}, \ldots, a_{m}\right\rangle$ and any linear combination of the elements of $:\left\{\left\{a_{1}, \ldots, a_{m}\right\} \cup\left\{a_{\ell}^{\alpha}: m<\ell \leq n, \alpha<\beta\right\}\right\}$ is in $<\bigcup_{\alpha<\beta} \operatorname{Dom} g_{\alpha}>_{*}$. By choice of $g_{\beta}, \quad\left(\operatorname{Dom} g_{\beta} \backslash<a_{1}, \ldots, a_{m}>\right) \cap$ $<\bigcup_{\alpha<\beta} \operatorname{Dom} \mathrm{g}_{\alpha}>\%$ is empty and so the set $\left\{\left\{a_{1}, \ldots, a_{m}\right\} \cup\left\{a_{\ell}^{\alpha}: m<\ell \leqq n, \alpha<\beta\right\}\right\}$ is independent. So inductively we can choose ω_{1} of the g_{δ} 's in such a way that $V=\left\{\left\{a_{1}, \ldots, a_{m}\right\} \cup\left\{a_{\ell}^{\delta}: m<\ell \leqq n, \delta<\omega_{1}\right\}\right\}$ is an independent set in G.

Since Possibility I fails, there is an admissible naming of the elements of G such that there does not exist G_{δ}. so that conditions (A) and (B) of the definition of Possibility I hold. So assume G has such a naming. Also make sure $G{ }_{\omega}$, contains a_{1}, \ldots, a_{m}. This is easily done. Then there is an uncountable subset of V independent over G / G_{ω}. If an element $g \in G_{\omega}$ is a finite linear
combination of elements of V, then for any a_{i}^{δ} in the representation of g, toss out $a_{m+1}^{\delta}, \ldots, a_{n}^{\delta}$. Since G_{ω} is countable and if $g \in G \omega$ can be represented as a linear combination of elements of V, then that representation is unique; only countably many subsets $\left\{a_{m+1}^{\delta}, \ldots, a_{n}^{\delta}\right\}$ will be tossed out of V. Let V^{*} be the remaining elements of V. Clearly V^{*} is uncountable. Now let J^{*} be the set of all $\mathrm{a}_{\mathrm{m}+1}^{\delta}$'s in V^{*}, say $J^{*}=\left\{a_{\mathrm{m}+1}^{\delta}: \delta<\omega_{1}\right\}$. Then:
(A) J^{*} is an independent family in G / G_{ω}.
(B) $\left.<G_{\omega}\right\rangle_{\dot{x}}=G_{\omega}$.

Since Possibility I fails, then there must exist b_{1}^{δ} in $\left\langle G_{\omega} U\left\{a_{m+1}^{\delta}\right\}_{*}\right.$ such chat $\left\langle G_{\omega} \cup\left\{a_{m+1}^{\delta}\right\}_{*}\right\rangle_{*}=G_{\omega} \Theta\left\langle\left\{b_{1}^{\delta}\right\}\right\rangle_{*}$ for all but countably many δ^{\prime} s. So $\left\langle G_{\omega} \cup\left\{a_{m+1}^{\delta}\right\}_{*}=\left\langle G_{\omega} \cup\left\{b_{1}^{\delta}\right\}_{*}=G_{\omega} \oplus\left\langle\left\{b_{1}^{\delta}\right\}_{*}\right.\right.\right.$ for $\left\{b_{1}^{\delta}: \delta\left\langle\omega_{1}\right\}\right.$. Now let $L_{\delta}=\left\{b_{1}^{\delta}\right\}$. for $\delta<\omega_{1}$ and $J^{* *}$ be the set of all a_{m+2}^{δ} 's corresponding to the $b_{1}^{\delta,}$. So $J^{* *}=\left\{a_{m+2}^{\delta}: \delta<\omega_{1}\right\}$. Then:
(A) $\mathrm{J}^{* *}$ is an independent family in G / G_{ω}.
(B) $\left\langle G_{\omega} \cup L_{\delta}\right\rangle_{*}=G_{\omega} \oplus\left\langle L_{\delta}\right\rangle_{*}$ for $\delta<\omega_{1}$.

Again since Possibility I fails there must exist b_{2}^{δ} in $<G_{\omega} U L_{\delta} U$ $\left.\left\{a_{m+2}^{\delta}\right\}\right\rangle_{*}$ such that $\left\langle G_{\omega} \cup L_{\delta} \cup\left\{a_{m+2}^{\delta}\right\}\right\rangle_{*}=G_{\omega} \oplus\left\langle L_{\delta} \cup\left\{b_{2}^{\delta}\right\}\right\rangle_{*}$ for uncountably many of the a_{m+2}^{δ} 's. Continuing this finite process we get that $\left\langle G_{\omega} \cup\left\{a_{m+1}^{\delta}, \ldots, a_{n}^{\delta}\right\}\right\rangle_{*}=G_{\omega} \oplus\left\langle b_{1}^{\delta}, \ldots, b_{n-m}^{\delta}\right\rangle_{*}$ for uncountably many δ 's. Choose such a δ,say α, and let $\sigma(1)=\alpha$. Note that $\left.{ }^{<G} \cup\left\{a_{m+1}^{\alpha}, \ldots, a_{n}^{\alpha}\right\}\right\rangle_{*}=<G_{\omega} \cup$ Dom $\left.g_{\alpha}\right\rangle_{*}$. Also note that $b_{1}^{\alpha}, \ldots, b_{n-m}^{\alpha}$ are elements of $\left.<a_{1}, \ldots, a_{m}, a_{m+1}^{\alpha}, \ldots, a_{n}^{\alpha}, c_{1}^{\alpha}, \ldots, c_{k(\alpha)}^{\alpha}\right\rangle_{*}$ for some $c_{1}^{\alpha}, \ldots, c_{k(\alpha)}^{\alpha}$ in G_{ω}. This is because $b_{i}^{\alpha} \in\left\langle G_{\omega} \cup\left\{b_{1}^{\alpha}, \ldots, b_{i-1}^{\alpha}\right\} \cup\left\{a_{m+i}^{\alpha}\right\}\right\rangle{ }_{*} \cdot$

Now we can repeat this process for any $G_{\omega \alpha}$ and choose $\sigma(\alpha)$ different each time since we are choosing from an uncountable set of which only countably many have been chosen before. In fact we could choose $\sigma(\alpha)>\sigma(\beta)$ for all $\beta<\alpha$ since the $\sigma(\beta)$'s are not cofinal in our uncountable set. Thus we can define a strictly increasing sequence of ordinals $\sigma(\alpha), \alpha<\omega_{1}$, such that ${ }^{\langle G} U \alpha$ Dom $\left.g_{\sigma(\alpha)}\right\rangle=$ $G_{\omega \alpha} \oplus\left\langle b_{1}^{\sigma(\alpha)}, \ldots, b_{n-m}^{\sigma(\alpha)}\right\rangle_{*}$ where $\left\{b_{1}^{\sigma(\alpha)}, \ldots, b_{n-m}^{\sigma(\alpha)}\right\} \subseteq<a_{1}, \ldots, a_{m}$, $a_{m+1}^{\sigma(\alpha)}, \ldots, a_{n}^{\sigma(\alpha)}, c_{1}^{\sigma(\alpha)}, \ldots, c_{k(\alpha)}^{\sigma(\alpha)}>_{*} \quad$ and $\quad c_{1}^{\sigma(\alpha)}, \ldots, c_{k(\alpha)}^{\sigma(\alpha)} \in G_{\omega \alpha}$. Note
 $\left.c_{1}^{\sigma(\alpha)}, \ldots, c_{k(\alpha)}^{\sigma(\alpha)}\right\}$ is an independent set in G. To simplify notation assume $\sigma(\alpha)=\alpha$.

At this point we must make the observation that the set of ordinals $C=\left\{\delta: \delta<\omega_{1}\right.$ and $\left.\omega \delta=\delta\right\}$ is a closed and unbounded subset of ω_{1}.
(a) C is unbounded: By (7), page 108, ordinals of the form $\omega^{\omega^{\beta}}$, for any B, are in C. That is $\omega^{\omega^{\beta}}=\omega\left(\omega^{\omega^{\beta}}\right)$. Thus if C was bounded above by say $\alpha, \alpha<\omega_{1}$, then choose β such that $\alpha<\beta<\omega_{1}$. Then $\omega^{\omega^{\beta}} \geqq \beta$ and so $\omega^{\omega^{\beta}}>\alpha$. As $\omega^{\omega^{\beta}}$ is in C we get a contradiction.
(b) C is closed: Let β_{ν} be a countable sequence of members of C. Then for each element of the sequence $\beta_{\nu}=\omega \beta_{\nu}$. Let $\alpha=\lim \beta_{\nu}$. Then:

$$
\alpha=\lim \beta_{v}=\lim \omega \beta_{\nu}=\omega\left(\lim \beta_{\nu}\right)=\omega \alpha .
$$

Thus α is in C and so C is closed.

For every $\alpha<\omega_{1}, k(\alpha)$ is finite and so some $k(\alpha)$, say $k(\alpha)=t$, occurs uncountably many times. Let A be this set under the natural ordering of ordinals. $A=\{\alpha: k(\alpha)=t\}=\left\{\alpha_{\delta}: k\left(\alpha_{\delta}\right)=t, \delta<\omega_{1}\right.$, and $\alpha_{\delta_{1}}<\alpha_{\delta_{2}}$ if and only if $\left.\delta_{1}<\delta_{2}\right\}$. Now rename G so that $G_{\omega \delta}=G_{\omega \alpha_{\delta}}$. Thus at every ordinal α our set $\left\{c_{1}^{\alpha}, \ldots, c_{k(\alpha)}^{\alpha}\right\} \subseteq G_{\omega \alpha}$ has t elements.

Now let $\mathrm{J}_{0}=\mathrm{C}=\left\{\delta: \delta<\omega_{1}\right.$ and $\left.\omega \delta=\delta\right\}$. J_{0} is closed and unbounded and hence stationary. Since $k(\alpha)=t$ for all $\alpha<\omega_{1}$, then $k(\alpha)=t$ for all δ in J_{0}. Note also that for $1 \leqq \ell \leqq t$, $c_{\ell}^{\delta}<\omega \delta$ as $c_{\rho}^{\delta} \in G_{\omega \delta}$. Now we can apply a result of Fodor to define a sequence of stationary sets $J_{0} \supseteq J_{1} \supseteq \cdots \supseteq J_{t}$ such that for all $\delta \in J_{\ell}, c_{\ell}^{\delta}=c_{\ell}$ for some fixed c_{ℓ}. We proceed as follows.

Definition (22): A function $f: J \rightarrow \Lambda$, where J and Λ are sets of ordinals, is called regressive if $f(\alpha)<\alpha$ for all $\alpha \in J \backslash\{0\}$ and $f(0)=0$ if $0 \in J$.

Fodor's result (8), page 141 , says that for a regular cardinal $\lambda>\omega$, and J a stationary subset of λ, there exists for each defined regressive function f on J a stationaty subset J^{*} of J such that $f(\alpha)=\beta$ for all α in J^{*}, and some fixed β in λ. Now consider $J_{0}=C$, a stationary set, and ω_{1}, a regular cardinal. As noted for $l \leqq \ell \leqq t, \quad c_{\ell}^{\delta}<\omega \delta$ and so for $\delta \in J_{0}$, $c_{\ell}^{\delta}<\delta$ as $\delta=\omega \delta$. Thus we can define a regressive function $f: J_{0} \rightarrow \omega_{1}$ by $f(\delta)=c_{1}^{\delta}$ since $c_{1}^{\delta}<\delta$ for all $\delta \in J_{0}$. By Fodor's result there exists J_{1}, a stationary subset of J, such that $f(\delta)=c_{1}$ for all δ in J_{1}. Now repeat this for J_{1} by defining $f: J_{1} \rightarrow \omega_{1}$
by $f(\delta)=c_{2}^{\delta}<\delta$. This will produce a $J_{2} \subseteq J_{1}$ such that J_{2} is stationary and $f(\delta)=c_{2}$ for all δ in J_{2}. By repeating this t times we can define a nest of stationary sets $J_{t} \subseteq J_{t-1} \subseteq \ldots \subseteq J_{0}$ such that for all $\delta \in J_{\ell}, \ell=1, \ldots, t, \quad c_{\ell}^{\delta}=\dot{c}_{\ell}$ for some fixed c_{ℓ}. In particular for $\delta \in J_{t}, c_{\ell}^{\delta}=c_{\ell}$ for all $\ell=1, \ldots, t$. That is the set $\left\{c_{1}^{\delta}, \ldots, c_{t}^{\delta}\right\}=\left\{c_{1}, \ldots, c_{t}\right\}$ for all $\delta \in J_{t}$.

We will now make one more observation. If A and B are pure subgroups of G and if $A \oplus B$ is a pure subgroup then for A^{*} and B^{*}, pure subgroups of A and B respectively, $A^{*} \oplus B^{*}$ is pure in G. This is easily verified. Let $n x=a^{*}+b^{*}$ where a^{*} is in A^{*} and b^{*} is in B^{*}. As $A \oplus B$ is pure then $x=a+b$ for some a in A and b in B. Then:

$$
\begin{aligned}
& n x=a^{*}+b^{*}=n a+n b, \\
& \text { so } n a=a^{*} \text { and } n b=b^{*} \\
& \text { so } a \in A^{*} \text { and } b \in B^{*} \text { as } A^{*} \text { and } B^{*} \text { are pure, } \\
& \text { so } x \in A^{*} \oplus B^{*}, \\
& \text { so } A^{*} \oplus B^{*} \text { is pure in } G .
\end{aligned}
$$

Now consider the pure subgroups $<a_{1}, \ldots, a_{m}, a_{m+1}^{\delta}, \ldots, a_{n}^{\delta}, c_{1}, \ldots, c_{t}>$; where δ is in J_{t}. We can extend g_{δ} to this domain. Call these new homomorphisms g^{δ}. By the above observation $<a_{1}, \ldots, a_{m}, c_{1}, \ldots, c_{t}>_{*}$ $\left.\oplus<b_{1}^{\delta}, \ldots, b_{n-m}^{\delta}\right\rangle_{*}=B$ is pure and contained in Dom g^{δ} since each b_{i}^{δ} is an element of $\operatorname{Dom} g^{\delta}$. By construction each a_{m+i}^{δ} is an element of B and so Dom g^{δ} is contained in B. Thus Dom $g^{\delta}=B$. So. Dom g^{δ} is freely generated by $\left\{a_{1}, \ldots, a_{m+t} a_{m+t+1}^{\delta}, \ldots, a_{n+t}^{\delta}\right\}$ where $\left\{a_{1}, \ldots, a_{m+t}\right\}$ freely generates $<a_{1}, \ldots, a_{m}, c_{1}, \ldots, c_{t}>$ and
$\left\{a_{m+t+1}^{\delta}, \ldots, a_{n+t}^{\delta}\right\} \quad$ freely generates $\left\langle b_{1}^{\delta}, \ldots, b_{n-m}^{\delta}\right\rangle *$.
Since $g^{\delta}\left(a_{\ell}\right) \in\left\{\left(a_{\ell}, z\right): z \in z\right\}$ for $\ell=1, \ldots, m+t$, there are only countably many different images of the $g^{\delta}\left(a_{\ell}\right)$ ' s, and so must appear uncountably many times. So we can assume that $g^{\delta}\left(a_{l}\right)$ is fixed for $\ell=1, \ldots, m+t$ where δ is in J_{t}^{*}, an uncountable subset of J_{t}.

Now choose $\alpha, \beta \in J_{t}^{*}$ such that $\alpha<\beta$ and so the generators of $g^{\alpha} \in G_{\omega \beta}$. Then Dom g^{α} is a pure subgroup of $G_{\omega \beta}$. Also $<a_{m+t+1}^{\beta}, \ldots, a_{n+t}^{\beta}>$ is pure and equal to $\left.<b_{m+1}^{\beta}, \ldots, b_{n}^{\beta}\right\rangle_{*} \cdot A s$ $G_{\omega \beta} \oplus\left\langle b_{m+1}^{\beta}, \ldots, b_{n}^{\beta}\right\rangle$ is pure then by the observation on the last page $\operatorname{Dom} g^{\alpha} \oplus\left\langle a_{m+t+1}^{\beta}, \ldots, a_{m+t}^{\beta}\right\rangle=\left\langle\operatorname{Dom} g^{\alpha} \cup \operatorname{Dom} g^{\beta}\right\rangle$ is pure in G.

Finally we have the extension needed to produce the contradiction. $<$ Dom $g^{\alpha} \cup$ Dom $g^{\beta}>$ is freely generated by $\left\{a_{1}, \ldots, a_{m+t}, a_{m+t+1}^{\alpha}, \ldots, a_{n+t}^{\alpha}\right.$, $\left.a_{m+t+1}^{\beta}, \ldots, a_{n+t}^{\beta}\right\}$ and $g^{\alpha}\left(a_{\ell}\right)=g^{\beta}\left(a_{\ell}\right)$ for $\ell=1, \ldots, m+t$. Thus $g:<\operatorname{Dom} g^{\alpha} \cup$ Dom $g^{\beta}>\rightarrow H$ defined by $g(a+b)=g^{\alpha}(a)+g^{\beta}(b)$ where $a \in \operatorname{Dom} g^{\alpha} ; b \in \operatorname{Dom} g^{\beta}$ is a common extension of g^{α} and g^{β}. Now g^{α} and g^{β} are themselves extensions of some g_{λ} and g_{δ} respectively in our original set assumed to be pairwise contradictory. So g is a common extension of some g_{λ} and \ddot{g}_{δ} and $g \in P$ since <Dom $\mathrm{g}^{\alpha} \cup$ Dom g^{β} > is a finitely generated pure subgroup. This contradicts our original assumption that g_{λ} and g_{δ} have no upper bound in P. Thus there doesn't exist any subset of ω_{1} pairwise contradictory elements of P.

We can now complete the proof of Theorem: (2). Since under our assumptions, $\omega_{1}<2^{\omega_{0}}$, by Martin's Axiom there exists a (generic) subset B of P such that $B \cap D_{\alpha}=\phi$ for all $\alpha<\omega_{1}$, and such that any two members of B have a common upper bound in B.: Let $g^{*}=U_{B} g$. Since B is generic it is easy to verify that g^{*}. is a function from G to H. Since each $g \in B$ is a homomorphism, so is g^{*}. Since hg is the identity map on the domain of g, we have $\mathrm{hg}^{*}=I_{\mathrm{G}}$. Thus there exists a homomorphism $\mathrm{g}^{*}: \mathrm{G} \rightarrow \mathrm{H}$ such that $\mathrm{hg}^{*}=1_{G}$, and so G is. a W-group.

Theorem (3): The statement: "Every W-group of cardinality ω_{1} is free" is independent of ZFC (Zermelo-Frankel set theory plus the axiom of choice).

Proof: Since W-groups are ω_{1}-free, then by Theorem (1) if $\mathrm{V}=\mathrm{L}$, any W -group must satisfy Possibility III. By Lemma (5) $G=\underset{\alpha<\omega_{1}}{\oplus} G$ where each $G \quad$ is countable. As G is ω_{1}-free, each G_{α} is free and so G is free. Thus $Z F C+V=L$ implies that every. W-group of cardinality ω_{1} is free. But by Gödel (8), $\mathrm{ZFC}+\mathrm{V}=\mathrm{L}$ is consistent if ZFC is consistent.

By Martin and Solovay (10), ZFC $+\mathrm{MA}+2^{\omega} 0>\omega_{i}$ is consistent
if $Z F C$ is. But by Theorem: (2), in the presence of $M A+2^{\omega_{0}}>\omega_{1}$,
any group satisfying Possibility II is a W-group. By Lemma (4)
there are groups satisfying Possibility II. So it is consistent with ZFC to assume that there are W-groups of cardinality ω_{1} which are not free.

Thus the statement: "Every W-group of cardinality ω_{1} is free" is independent of ZFC.

Bibliography

1. L. Fuchs, Infinite Abelian Groups, Vol.I, Academic Press, N.Y. and London, 1970.
2. L. Fuchs, Infinite Abelian Groups, Vol.II, Academic Press, N.Y. and London, 1973.
3. Pinter, Set Theory, Addison-Wesley Publishing Company, Lotndon, 1971.
4. Jon Barwise, Back and Forth Thru Infinitary Logic, in Studies in Model Theory, M.A.A., 1973,pp. 5-34.
5. I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954.
6. R. B. Jensen, The Fine Structure of the Constructible Hierarchy, Annals of Mathematical Logic (1972), Vol.4, pp.229-303.
7. J. Monk, Introduction to Set Theory, McGraw-Hill Book Company, Toronto, 1969.
8. G. Fodor, Eine Bemerdeeng zur Theorie der Regressiven Funktionen, Acta. Sci. Math. (1956), Vo1.17, pp. 139-142.
9. K. Gödel, The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis with the Axioms of Set Theory, Princeton University Press, Princeton N.J., 1940.
10. D. M. Martin, R. M. Solovay, Internal Cohen Extensions, Annals of Mathematical Logic (1970), Vol.2, 143-178.
11. S. Shelah, Infinite Abelian Groups, Whitehead Problem, and Some Constructions, Israel J. Math.(1974), Vol.18, pp. 243-256.

Appendix

We will describe the significant alterations that we have made to Shelah's paper (11). The definition of Possibility I was changed from the existence of a G_{δ}, under some admissible ordering, which satisfies conditions (A) and (B), to the existence of a G_{δ}, under every admissible ordering, which satisfies conditions (A) and (B). Under the original definition there appeared to be no way of classifying, up to isomorphism; ω_{1}-free groups into the three possibilities. This altered definition of Possịility I allowed us to simplify some of the proofs. In particular we were able to come up with a lemma (Lemma (8)) which allowed us to deal with both Possibility I and II in a uniform way via Theorem (1). Shelah had used a complicated group theoretic argument in dealing with Possibility. I. Thus our set theoretic Lemma (8) eliminated the more difficult group theoretic theorem of Shelah's, (see (11) 3.3).

Shelah used a rather complicated combinatorial argument,
(see (11) 3.1(2) and 3.1(3)), to show every Possibility III group is a direct sum of countable groups. Our Lemma (5) gives a simpler and more direct proof of this fact witout using the complicated combinatorial technique of (11) 3.1(2).

In the proof of Theorem (2), the method indicated by; Shelah for producing the elements $c_{1}^{\delta}, \ldots, c_{k(\delta)}^{\delta}$ appeared to be incorrect. So a completely different arguement had to be used; see pages 41-44.

In general the set theoretic and group theoretic details were filled in to the point where someone with only a limited knowledge of set theory and group theory could read the thesis. This involved much work in places for Shelah assumed a knowledge of group theory at a level of Fuch's books (1) and (2). In many cases only the broad outline of an argument was given, and so there had to be a significant filling in of detail. As an example, in Lemma (7) G_{5} / G_{4} has to be shown to be infinite and then it has to be shown that this implies either G_{5} / G_{4} contains a copy of $Z\left(p^{\infty}\right)$ or it contains infinitely many elements of prime order, see pages $24-26$. Another example was working out all the details in showing that the examples in Lemma (4) actually satisfy the respective possibilities, see pages 11-16. The main difficulties with the set theory, other than redefining Possibility I and the subsequent classification into the three possibilities, was in showing how the results of Jensen (6) and Fodor (8) applied to our problem. So again here there had to be substantial filling in of detail, see pages $32-34$ and $44-46$. Also we had to show that G could be well-ordered such that for all limit ordinals δ, G_{δ} is pure, see Lemma (2) on page 5.

