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Abstract_

‘An abelian groupv‘é is called a W-group if Ext(G,Z) = 0.
Whi;ehead's probleﬁ asks which groups are W—gfoﬁps. Saharon Shelahl»
proved that the dnswer to. Whitehead's préblem, for.gfoups of
'cardiﬁality @1 s is'indépendent éf‘the axioms of_ Zermelo—Frankel‘
set theory with the gkiom of choice. This thesis giQeé a complete
and detailed préqf, basgd on Shelah's-proof, of this independence

result.
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Introduction:

The fdlléwing'reéult wésvproved'by Saharon Shelah'in (1L).

"The Whitehead problem, for groups of cardinality wi , is.independent
of and consiétent with ZFC.”“In this thesis we'présenf a“proof ofj

- this result based on Shelah's proof. Certain élteratigns had to be .
made, as well as a good deél'of filling in of details.:A desgriptién

of sﬁme of the alterations is given in the appendix.at the end of

the thesis.

A Whitehead group, _or‘simply a W-group, is an Abelian group |
for which Ext(G,Z) =.O. (Ext(G,2) = 0 is a mapping property which -
will be explained iﬁ detaii_in this thesis.) The Whitehead Problem
aéks::

"Are all W-groups of éardinality w; freely generated."

The axioms of ZFC, Zermelo-Frankel set theory with the axiém Qf
choice, are the~axioms on which all current mathematics can be built
upon. -We will show that within ZFC the Whitehead.Problem cannot
belsolved, We will do this by showing that within.oné model of ZFC
all 'W—groups are free, and'within.another model thefe exists non free
W—groups.-

| Godel exhibited a construction which produced a model of ZFC.
His construction ié referred to as V = L and so ZFC + V=1L 1is
coﬁsistent.' Jensen showed that within such a model of ZFC,».a
combinatofial property called 'diamond' holds. We ﬁill define
‘and use this broperty diamona to show that withiﬁ:é ﬁodel of ZFC

where V =L holds, vall w—gfoups are freely generated.



Martin:and Soloway sﬁoWed that .MA (Martin Axiom)i+ 2% w7y
is consistent with .ZFC; We‘will define and use ﬁA to‘show'the
existence of non free  W-groups in a model of ZFC .in which MA + 2% > Wy
holds. |

And so thefsituatioﬁ‘is this. Let X be the fqlloﬁing statement:
"All W-groups of cardinality W) épe ffeely generated." Then:

(i) ‘1ZFC +VV = 1, ‘implies X  and so ZFC + X is coﬁsistent.

(ii) ZFC + MA.f.Zm > Wy implies -~ X and so _ZFC + = X -is'

.gonsistéﬁg. | | | |

Thus X 1is consistent with and independent of ZFC.



Whitehead Groups. and their Structure:

In this sectibn we will give.some preliﬁinary'facts and ‘definitions
about Whitehead groupévand wlffrée groups. We Qill'élassify the wl—freé
g:dupé of cardinélity.ml into three possibilifieég In this thesis;, By
.group.we wili aiways mean Abelian'group. |

Definition (1): Gis called a Whitehead group or WQgroup if for

every epimorphism - h:H G such that the kernel of 'h is isomorphic
~ to - Z (the integers) there exists a homomorphism 'g:G »~ H such -

that gh:G > G 1is the identity.map on G.

- Definition (2): TFor a group A we say A 1is the direct sum

éf subgfoUps B and C of A if:
(i) B+ C = A_' whére B+ C isvthé set of all sums of

tﬁe form b4+_c where b d1s in: B and ¢ 1is in C.

(i1) BN C = oA where 0 |

‘1s the identity element of 'A.
This is written as A = B® C.

A

Lemma (1): lThe'group H. as iﬁ the definiﬁion of a W—group_is_
‘a direct sum of a copy of Z aﬁd'a‘copy of G. |
Proof: Let g and h be as in the definition of a W—grou?; Sincé
gh' is the'idenﬁity map 6n G, g 1is l—i; >sq G* =.image(g) ; G.

By definition kérﬁel(h) 2 7. We show that H = G*& kernel(h).

Clearly G* andlkernel(h) have only OH in common;' else - gh -

" could not be 1-1.  Now let h* be h restricted to G*. If



xé]i,‘ then x = h*_lh(x) + (x —Ah*_lh(x))' and cleafly"h*_lh(x)é G*

and X - h*—lh(x)é'kernel(h).

Some Preliminary Facts about W-groups

* Definition (3): A group is called free if it is isomorphic to

a direct sum of copies of Z.

Definition (4): A group is wl—frée if every countable subgroup

is free.

If G is a W-group then it is:
(1) Torsion free : (2) pagé 178

(ii) wi~free = . (2) page 178

" From now on G will be taken to be torsion free and of cardinality
wi. So we can assume without loss of generality that the elements
of G are all thelordinals <.w; where wj; is the first uncountable

ordinal: w; = {a:a < w;} = the set of all ordinals less than Wy .

Definition (5): B -is a pure subgroup of G.if BN 2G = zB
for all z€ Z, where 2zG = {gEG:g.=. z"x for some x€&G}. EQuivalent:ly
B is pure if for any zE€2Z, b€ B, if the equation =zx = b is

solvable in G then it is solvable in B.



Lemma (2); Let G:_be a:tofsion freé group of cardinéliﬁy
w;. Then G lcah be-Well—orderéd,as {ga:a><_w1}. in such a way
phatAfor any limit ordinal §, 'Gé = fgé:d < 8§} -is a pure subgroup
of - G,
_Prqof: We define gd by transfinite induction..vThe limit ordinals‘
less than w1y are‘precisely the ordinals of thé form 'wB;. where:,'
0 < B <uwp. Suppose'fhat for every 8’< Y, andvevery u,f wB, 8,

_has been defined, and,’Gw is a pure subgroup of - G. We will show

‘ B
" how to extend the definition so that G@Y 1s pure. -There are two
cases to consider.

" Case (i): Yy is a limit ordinal. ' Then of course 'ga is already

defined for every o < wy. ‘Since for every B < vy, .G "is a pure

wph .
subgrduﬁ of G, and G = (J -G , 1t is trivial to verify that
. . o wy: B<y wh S o
Gwy is a pure subgroup of G.
‘Case (ii): vy  is a successor. Take a.fixed well—ordering of G 1in

order type wj, with the first element‘in,the ordering # 0. Let
g be the first element of G with respect to this fixed order .
which is not a ga. for any o < w(y-1). Let B be the subgroup
of G enératea by G ,. '
& 7 Tuy-1)

torsion free B has cardinality w. So by (l), page 115, B is

and g (where 'GO = ¢). Since G 1is

contained in a countable pure sﬁbgroup of G, say B¥%. As' zgetGw(Y_l)

has cardinality w,

(v-1)

and so it may be ‘enumerated as { tw(y-1) < a < wy}., Thus G = B -
o : 8y = : wy

for any z in 7 it is clear that B*‘\Gw’

is a pure sﬁbgroup'of G.



If G‘ is a (tpfsibn free) group of cardinality Qi, iﬁstead ‘
of lébelling the élements_of‘ G 'by the'ordinals-lesé than  w1;
it is notationélly'more’chvenient‘to assume the elementé_of G
gig the ordinals lesé'than- wp . Whenever ;uch no£ation'is used,

it will be understood that for any limit ordinal ¢, G, = {a:a < §}

8
is a pﬁre subgroup‘of. G. Lemma (2) shows this is a harmless

assumption. Call any such naming of G admissible.

Classification .of 'w1—Frée. Groups of. Cardinality w3

Wé will in this section qlassify wi-free groups of cardiﬁality
wy into ghree possibilities, called unimaginaéively Poséibility I,
Possibility iI,. and Possibility III. First we need a rgmark and

then some preliminary group theoretic and set theoretic definitions.

.Remark (1): for torsion freelgroups'the equation ZX = g can

 have at most one solﬁﬁion,_'for ZX = g = 2y jimplies zZx = zy_implies'
X = y; So if =zx = g is solvable in G. ‘then‘thé unique'sdlﬁtion
vbelongs'to all pﬁre Subgroups containing g and thus the iﬁtefsection

' of_pure-éubgroups is agéin pure. This.allows.us to maké the,fol}owing

~definition.

© Definition (6): Let <L,G>, be the smallest pure subgroup of

~ Gwhich contains L, LEG.-



Remark (2): If § is a pure subgroup of G, then <L,S> = <L,G>

by Remark (1). We write <L>, = <L,G>, if it is. clear which group

G we are referring to.

.Definition'(7):' Let S be a subgroup of G, L 'a finite.

" subset of G, and a ‘an element of G. We say M(a,L,S,G) holds

if <SUL>, = -<S>*’69 <L>, but for no bE<SUL U{a}>* is -

%

<S UL'U{a}‘>* = <S>7 @'<Lu{b}'>.*

‘Definition (8): A subset C of "wy 1s closed and~uﬁbodnded

if: - ' ' ’ ., . K -
(i)' For every non-empty subset S of C sup SECU{uwl}.
This says that C is closed.

(i1) 'sup C = wy. This says that C is unbounded.

»Definition (9): A subset A of ‘wy; 1is stationary if CNA # ¢

for every closed and unbounded subset of W7

. Definition (10): Let X be a subset of wy. Then X is
cofinal in " w; if for all o -in wy, there exists B8 in X such

that o < B8 .

Remark (3): No countable set_is cofinal‘with wy. -(3) page 207.



We are now ready to define the three poséibilities.

‘ ‘Definition.(Il):b An' Ql—free group G . of cardinality.'wl

satisfies POssibility‘I if for any admissible naming of G
there is some limit ordinal 5 < w1, and there aré eléments'of' G,
»séy ag(u) jfor élI. a.< wl,‘-(whgre n(a) is a finite ordinél)\»
and subsets La'=‘{éz%0 ;:2 < n(a)} such tbét:

KA) {az + Gdza <'Ql,' [} ;{ﬁ(a)} is an indeﬁeﬁdent‘family

in G/G,. .
(B) - 1¢(

a .. . . . ‘ ».
A < )
an(a)’La’Gd’G) ‘ho}ds for ;ll o ‘ Wy :

Remark (4): Since 8 < w;, then G is countable and so. we can

$

assume without loss of generality that & = w . Rename Gé' by

{a:0 ;:a‘< w} which can be done as G, is countable. Now rename

 the rest of G using.the techniquebof Lemma (2).

Definition (12): ‘An wi-free group G of‘cardinality Wy
satisfies Possibiiity II if ‘G does not satisfy Possibility I

and there is a stationary subset of w;, say A, such that for

fin

any o in A there are elements of G. say a 2 h(u),: (where

=

n(o) is a finipe ordinal), and subsets La = fau:O-; < n(a)} -such

that:
(A) {az:O <2 < n(a)} dis an independent fahily in G/Ga

o I
(B) H(an(a)’La’Ga’G) ‘holds.

- Définitiqn_(lB)! An w)-free group G of cardinality w; satisfies

Possibility'III. if it doesn't satisfy Possibility I or Pbssibility II. .



Lemma (35: TheAclassification of a given group G to the three
poSsiBilities deéends on G only‘up to.isomorphism.
Prooff We must show tﬁaf undér any‘admissible ﬁaming-qf"G,l'it will
always satisfy the‘éamé possibilityf There are threekcasés tQ consider.
Case (i): Suppése G satisfies Possibility I. Let h:G %‘G*; be an
'~iéomorphism. "Then -G* can be thought of as é renaming of the eleménts»
‘of G and so by the definition of Possibility I;' G* ‘satiSfies
Poésibilityvl.
,fGasej(ii): 'SUppbsg‘ G 'satisfies Possibility II. First we shéw that
if h:G'+ G*i.isvan isomorphism; then thé>éet CY.Aéfined by € = {d:h|G6‘
isban isomorphism from GS onto G¥} is a cldsed,énd Unbouﬁded subset

S

of w; where hIGG is the restriction of h to G G 1is closed

5
since the union of a chain of isomorphisms is an isomorphism. Suppose
C is bounded. Choose o < w; such that o is an upper bound for C.

For n < o define an. inductively as follows:

G =0

It

o
n

sup ({h(8):6 <a__ 3 U{8:n(8) <}

As oy < wy, then a < owy for all n. That is if we assume inductively

that 'an—l < wy, then o is the sup of a -countable set and since

no countable set is cofinal with wy, then a_ < . Let u*'='s2 o
, . n n

Since a < w for all n < w, then a* < w;. Let BE&G such that

B < a*, then B8 < a for some n, and so h(B) < a by the definition

n+l

of - Similarly if BEG* such that B < o’ then B‘< a for

o S
n+l n

some n and so. B = h(p)- wheré p < 4 41 Thus hIGa* is an istorphism _

“and so a*&C. Thus B is not an upper-bound for ¢ and so. C 1is

unbounded.
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Now we Showbthat CN A, where .A is the stationary set required
 by4the definition of >Possibility II1, is'a stationary set, and then
G*  will satisfy"POSSibility'II using C N A as the required stationary

set:. CN A is stationary'because any closed-and unbounded set is

~and” C2

stationary. That dis if " C are closed and unbdunded_séts

1
then C1 N CZ'# ¢, for let '{El}£2,£3,q.;} be'an_increasing sequence
:of ordinals such that.for n even gne Cl‘ and for n odd glecz'.

"Then ¢ = sup {£1,£3,E5,..} = sup {E2,£4,£6,.;.} and ¢ - is in both

Cl' and C2 since'.Cl and C2 are closed. Actually C

closed and unbounded. Clearly c1 N c2

was bounded, by say o < w;, then define

8! CZ is

and .C

1

is closed as C

1 2

are closed. If .Cl/’vCZ'
’ a sequence {gl,€2,€3,m..} as before witﬁ gy = a. to get a coﬁtradiction;
Thqs C‘n,C*, for'aﬁy closed unbounded'set C*, is'ciosed and unbounded..
Thus. (CN A)N C*=AN(CNCY #¢ . Thus CA A is stationary

and so G¥* _satisfieé Possibiiit& II. |

Case (iii?: By definition Possibility III holds if.énd,only if

' neitﬁerv Possibility”l nor Péssibility II. holds.

' The claésificafion intq'the three possibilities depends on,.G

only up tovisomorphism._

By the definition of the three possibilities, an  wi-free group
G can satisfy only one, and so the three possibilities form a
. partition. The following léﬁma'shows that each possibility is satisfied

-'by a particular w;-free group.
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Lémﬁa.KA): .Each Possibility is satisfied by soﬁe wi-free
group. |
Proof: Again there ére three cases to cbnsider;
'FCasé (i): Awé»will gdnstruct an wl—frée grouﬁvsatisfyiﬁg Poséibility I,
Fifét we define'a set C of increasing sequences of natural.numbefs
- of léngth w. such ‘that the cérdinality of C 1is >w1;> and if -'n and
T are in. C, n# 1, then n and <t ‘have af most finitely many
natural numbefs in coﬁmon; that is n N1t is finite. To.éhoﬁ that
such a set C - exists Wé give an example. Consider the fqllOWing

diagram:

2///////”,,/” ‘\\\\\\\\\\\\
N - \
| \ /'

13. 14

| N
8 -9 10 1 5.

\
ol

Thé‘sequences are defined by taking poséiblebpaths. -For example:
{1,2,4,8, ...} | | |
"{-';,2.4,9....}
{1,2,5,10,¢.;}
By the’ nth - TOow éf ﬁhe diégram 2n. sequences or péthé are defined,
andﬂin the limit there ére 2Y 2 w) sequences. lChéose any wj sequences.

The intersection of any two is finite for they can agree only up to

the point where their corresponding paths separate.


http://co_-fr.ee

"G Dbe gene

Let
(1) x
. m _
(}1) x_ =

Using the notation o
= {1(a):a <wy;} 1

() ¢

(ii).

. o
(iii) ag = x

We must show that G
definition.of Possi

(A)
(B)

{30+G To

8"
H(a%:¢’G6s

n(a) =

rated by:

for k < w
@ k'
5 ,
Em (m,) (k) for m <.w and
f the definition .of Possibility I
et:.

be the grbup freely generated by the

, and so L = ¢;
o
m : :
for a < wyp and m fixed.
t(a) .
satisfies conditions (A) . and ‘(B
bility I. That is:
< w;} 1is an independent family in
G) holds for all a < w1,

T€C

and

X

)

(G/G

1

k

12

S.

"in the

"(A) follows from the finite intersection prbperty of the elements

of C. 'That is if.
I(ai)é c,
~ linear combination o
are infinite linear
must be an infinite

Xm
T(ai)

" is finite.

m
X

T(qj)

This is

and

Now we show con

<96(J La>%l
- omtl m
(m + 1)x (.) = xT(u)

€< G U {xm (a;>

<,G(S>* &

m+l
T(a)

k>m+ 1.

and ge&G_ .,

agree at only finitely many

m

zZ. X ' + ..+'
171 (ap) z

nxT(a ) = g where
ey .
+...+ z x
n 1 (o
G, .
8

then

S then

f the xk's

z x"
1"t (o)

that generate

n)
As

x, 's

combinations of the K

b

x: 's

linear combination of the i

x 's-

k
‘holds.

= ¢,

a contradiction and so

a)

dition (B) holds. As 1, " th

i : Lo
<La>* . Choose any ag = x

m
(o)

_ m
1 (a) (m)

Similarly x

%

T (o)

z, €7,
i

the

foﬁ

en

Then

z X"
1"t (ay)

since for

z, # 0,

i

is a finite

km 's
T(a,
( 1)

..+ m

zZ X
T
n (an)

14 ]

‘T(aj) f) T(aj)

and so by definition of purity
é.<G v > for
{x (a; , for all

"Using the finite intersection property for elements
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of C 4t is clear that no other elements of G will be thrown into

,‘ <G U o{x" }

<G Ve } . So if for some x€<G, U {X
(o) | sV ey T.(0)
<G>, B <x>o, then we can assume that ‘<x>* = <x> = the group generated
by x for some. x = .2 z.y. where z.€7Z and each 'y.- is some’
: : i=l "i7i ' i i
Xk or X?(u) Clearly x will cause oniy finttely many of the - Xr(a)'s

to be in <G6>* & <x>, :and ‘so this is impossible. Therefore

%
m. - : o : ' : L. R

n(xr(a)’¢’ GG’G) = E(aO’La’Gé’G) holds for.all o < w; and so condition

- (B) 1is satisfied.

Now we show that G is wi—free. It is sufficient to show that

for any gl,.;;,ghé'G , the pure subgroup generated by’ gl,L..,gn

is free on a finite number of generators (4) page 25 Without loss
of generality gy »---»8 ~are independent and so .<{gl,...,gﬁ}>*

has rank, n (1) page 116. So let b ’bh generate <{gl;...,gn}>* R

l’

that is <{gl,...,gn}>* = <{bl,...,bn}> ;. We do an induction on the
number of generators. For n =1 clearly. <{b }> is free since G

is torsion free. Assume any pure subgroup on n - 1 generators is

i

®

free and let <{gl,..hgn}>. be generated by b,,...,b . If

R n
<{bl,...,bn}>'_is not freely generated by bl’

some z € Z, mnot all zero, ¥ cz,b, =0 =2 5 zb. =-zb
i o =1 "i74 -odi=l TiTd nn

.sb , then for
n

b € <{b’,...,b
n 1

n-1

}>* . Thus 7 the pure subgroup-generated by gl,..,;gn

has rank less than mn, a contradiction. So b .,bn freely

B
" generates <{glg.ﬂ.,gn}> and by the induction hypothesis any pure

'subgroup'generated by a finite subset of G- is free. Thus G is

‘wi-free.
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Now let 'G*V be any.admissible naming of the elements of G.

. Choose ¢ < w; such that ‘Xn is in ‘Gg for all n < w .  As
{xf(a>:av<'@1} is uncountable and Gy 'is countable, we can find
uncountably many X -'s such tha£ xk ' ¢ G. for k <w . let

T T(a) (o) 78 _ ,
{x" B < wy}  be such a set. By letting:
T(B) " . T v
@ 6= G N
(ii) n(B) = 0, and so LB = ¢
Laey B m ' .
iii) ap = x for < W
(iii) 20 T (8) B <

it follows that G* satisfies Possibility I in exactly the same

way as G . was shown to satiéfy Possibility I.

Cése (ii): We will construct a group satisfyiﬁg ‘Possibility II.

For this exampie, - the stationary set A required by the definition
~for Poséibility I1 _will-be the set of all limitlordinals. First

‘we show that this set-uA = {6 <>w1:6 is a limit ordinal}l is.stationary.

This follows from the observation that any closed and unbounded set -C

contains a limit ordinal. That is if. {ay,00,05,...} ~1s any countably

infinite subset of C where a, .< a, , then ,sug o, = o is a limit
' i i+l 7. ~oA< i ] :

ordinal for if not then o has.a predessor o .- 1 which would be an

- upper bound to the sequence.

Now for 6 ajlimit ordinal, let 1. be a sequence of ordinals

. §

1 . ) = . : ) 1
of lengtn w  such that -538 Td(n)' § where TS(H). is the n'th
ordinal of the sequence Ts - Let G be generated by:

(i) x; for o < w;
(ii) km *. T (kiﬁx ‘ for m< w ‘6 ; and ' §
§  k=m " m! Té(k) © RO B

a limit ordinal



15 .

Using the notation of the definition of Possibility II let:

(1) XocE'GS R xlgé_GG, for <68, m<w , and § a

" limit ordinal

(ii) n(8) = 0, ‘and so _VL(S = $

. § .
(1ii) ap = x, , m Ffixed
.Since x?eiGs', then {x? + Gd} is an independent familyvin

G/G, and so condition (A) in the definition of Possibility II

holds. I(x™

6’L6’G$’G) “holds using the same arguement as used for

HPossibility’I , and s0 cdndi;ibn (B) 1is satisfied. The wl;ffeeness
‘of G 1is again similar to Possibility I. |

.Lastiy we-muét‘show_that G doesn't satisfy .Poésibility‘l;
It is sﬁfficient to show that a given admissible naming of G' does

not satisfy it. Let G

s be generated by:
(% B X o <
(1) X, for a §
(1) xy for B<6, m<w, § a limit ordinal
" Now define the _TG'S to be‘inCréasing sequences for all limit ordinals
§ <'wy . Then H(X?,@Gé,G) holds for any m < w .. The "I condition
cannot hold for any other XZ"S » B# ¢, since for B < &, XZ is
. L m k- ;
in ‘G, , and for B> § , <G5lJ {XB}>* =G, @ <XB>* where k is
the largest element of the increasing sequence .TB less than § .
As the x- 's are the only possibilities for creating the '"I"

B

condition, we carn conclude that it is satisfied at only countably

mény.places for eéch G Thus Possibility I. cannot hold and so

s

G satisfies Possibility II.



Case (iii)ﬁ Let G be the free group on w) generators. .It is
sufficient to éhow that G does not satisfy Possibility I or 11

for some admissible naming of G. Let G be. generated by the

. elements aB . 8:< wy; . Let ng be the grbup genérated'by aB )
B <&, .for £ not a li@i# ordiné;. That is ‘ng = ngGB ,  where
G_B is the subgroup of G generated by the element aB . Let ng

g B < g, for £. a limit ordinal.

R where GB is the suﬁgroup of G generated

be.the group generated*by o
That is Gy = ngcs _
by the element GB‘. Cieérly this is an admissible naming of G.
'Claiﬁl that H(a;L,GS;G ). does not hold for any limit ordinal &,
where L is a finité subéetvof G. and a:is an element pf_ G. So
suppése for somé L and a that H(a,L,Gé,G) holds. If we can
show that onlyyfinifely many elements éré in the group W wﬁeré
W = <G$ v L U,{a}>*/<_<G<S v L> U {a}>,‘ then by ;he.reéult on
page 24 (G./G, is infinite if "I'" holds)’ since W = 6.6, 5
"I" must fail. If P = {ai,;. |
m, :

a, = Z;z o
13517

.a} and if a =a , then each

n o’ .
where zjé Z, and aj -is the generator of G*J
Then the only new elements in W will be linear combinations of
the <aj's ‘which make up the ai's. Clearly there are only finitely
many of these in W. Thus the "NI" condition fails in G under
this admissible naming, and so Possibility I or II cannot hold. .

Also G 1is w;-free since any subgroup of a free grbup'is free,

(1) page 74. Thus G must satisfy: Possibiiity III.

16:
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Lemma (5): Let .G‘_be wi-free. Then Possibility I1I- is
equivalent to G 'being tHe.aireét éum of couﬁtable groups. |
Pféof: Suppose G "is the direct sum of countable groups agd G;vis
wi~free. Then G= @& 6% where each ¢” - is countable. Siﬁce G
is ‘wy-free, eaéh c* is free;_ so each G” i; isomorphic to av
countable direct sﬁm of cobies of Z. Thus G is isomorphib-to a
direct 'sum of @r 'copieé éf‘ Z and so G 1is freé-on wi generators.
By‘ Leﬁma (4) case (iii),‘ G satisfies Possibility III.i"

Now suppose G satisfies' Possibility iII. “First Qe show that
if C. is a closed and unbounded subset of w; , then C* = {6:6€C and
§ is a limit ordinal} is'also'closed and,unbpundéd. C* 1is closed
since C» is'closed-and the sup of a sequénce of limit»ofdinals is a

ilimit ordinal. C% -is.unbounded since C 'is unbouhded and the sup
of an infinite increasiﬁg sequence of Ordihals of C  is anlimit.
ordiﬁal»of -C."Thﬁs ‘c* is closed and unbounded and.contaiﬁs only
liﬁit‘ordinals. : ‘

Since Pbséibility I épd fossibility iI fails, we éan find
a closed unbounded set C " such that if 66(3; _there does not_éxist
a€G and L,»ia finite subsei of G, such that”.H(a,L,Qs,G) hOldg.
That ié, if.for:evéry-Closed‘and unbounded set such a § - exists,

“then by taking;the set of theée: §'s we get a statioﬁary éet wﬁich

isatisfiés céndition (B) of PéséiBility II. By taking - L¥*<L such
that pES is a maximal.indeéendent family in L, then condition (A)
of PossiBility II would be satisfied ﬁsing the L*'s iﬁ place of

the L's . Since .Possibility I fails, then Possibility II would .



~hold for G, a contradiction. Therefore such a C exists.

18

From previous remarks in this proof we can assume that C contains

only limit ordinals. Since sup C = w, , then the cardinality of

is 'wl since no countable set is cofiﬁal with wy; . So let C

i

where each 6a is a limit .ordinal and‘ o < B 6@ < § Now we

B

rename G as follows:

Rename- {Bféa ; 8 < 3§ } . as {Biwa < B < wlax + 1)}.-

C .

{8 ta < wy}
a S

a+l
- Now we can assume that C = {wa:a < w;}, and it is clear that we still
- have an admissible naming of G.
" Now we do an induction to show that G . = G ® <b,,b.,...>
: ' S wotw wol 127 %
. 1 . . . . . ) i . 1
for 'some _bi s .in Gwa+w\\Gwa . Suppose - bl""bn have~beenvcnoosen.
Let G° =G & <b.,...b >, . Now let L ={b.,...b } . and let
S woL wo 17 "n* 1 n :
‘a = inff{d:&é(l ' \\-Gn'} . As wa dis in €, then 10{(a,L,G ,G)
_ wotw wo ' : - wo

fails and so there must exist b . €<G U LV {a}ﬁh‘ such that
: n+l wo *

< ] > = @<L = e >
Gwa LV {a) % Gwa’$ _L<U {bn+l}%* ?@a ® <bl’ ’bn’bn+l w
n .
i . G = . = < .
Since clearly ({ wat ‘-Gwa+w we ggt that Gwa+w Gwa & bl’bz’
' = < > T ' = . T
:Let Hwa bl’ 23 > Then, Gwa+w qu [+ Hwa Thus

G=G . & H
w 12o<w; wo

>v
kS

and so G 1is the direct sum of countable groups.
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(G,Z)~-Groups

In this.section we will define (G,Z)—grdups ~and prové some lemmas o

about them necessary for the consistency result. .

Definition (14): A (G,Z)-group is a group H . with underlying

1 set G'x Z = {(a,B):ae.G,l)EZ} such tha£:

(1) '(a,b) + (0,c) = (a,b+c) ,

(ii) The map. h:H » G .defihed‘by h(a,b) = a is a g?oupxhémomorphisﬁ.
For -a given Gi ; Hi_ will.denote.ab (Gi,Z)?group, ana the correspoﬁding

homomorphism will be denoted by hi .

Lemma (6): Let Gl .be a countable subgroup of G2 "where G2'

i is w)-free -and the cardinality of G, is at most - w; . Let H. be

2

‘a (Gl,Z)—group.- Then Hl can be extended to a (GZ.Z)—group.

1

Proof: First note that G1 is freely generated since it is countable

and G2 is wl;free. Thus from the result noted before, Gl is a

W-group since freely generated gfoups are W-groups. The result will
be proved by transfinite indection; To simplify the induction we will

deal with two special cases first. Let <a + G15 be the subgroup of

GZ/Gl ‘generated by the element a + G1 , where .a is in GZ. Let

' Ga = <{a} U GIS be the subgfoup of G2 generated by {{a} U Gl};
Case (i): <a + Gl>' is "“isomorphic to Z.
© Case (ii): <a +_Gl> is cyclic of prime order.

- We will show ‘that in cases (i) and (ii) H, can be extended

' 1
to'a (Ga,Z)—group. B
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Proof of case (1): Suppose <a + Gl>4 is_iSOmorphic to Z. .Then every

be Ga' has a unique representation as =za + ¢ where zeZ and cé€ Gl

Now. define for bl s bziin Ga and »kl s k2 in Z , the following:

OBk F (byky)
= (zla + cl,kl) f (zza +c
def

%!

2’k2)

+22)a + c3,k3)

» whgre ‘(Ci’kl)v+ (C25k2) =‘(c3,k3) in Hl It is easy to chgck that

this natural extension of 'Hl- forms a.group. Call this group 'Ha.

Theri (b,k) + (0,m) = (za + c,k) + (0,m) -

= (za + ¢,k + m)

(B,k + m) , since in Hl

(c,k) + (0,m) = (c,k + m).
Also the mapping h tH > G defined by h_(b,k) = b is clearly a

homomorphism, and so Ha is a (Gé,Z);group.

Proof of case (ii): Suppose <a + G1> 'isncyclié of prime order p.

.Since hl;H1‘+ G1 has kernel isomorphic to Z and G1 is a W-group,

then the?e exists' gl:G1 > H1 such that»'hlgl = lGl-' Let gl(c) ='(c,m(t))
~for c'é,_G1 . Every' béGa has a unique. représentation as za + ¢

where 0 <z<p, cE€ Gl'. "Now for bl , b, in G and k k, in Z

2 . a 1’ 72

define:

= + : . s
(z,a k) + (za +C2’k2), ‘
def ,-, - : v . .
.= ((z_-1 + 22)a,+_cl + §2,k1 + k2 - m(gl).f.m(cz) +.m(cl + c2)

.+vf(zl + zz?)
~ vhere 0 ;-zl.,z2 <p, and f(n) =0 when n < p and f(n) = MeZ.

otherwise; where ‘M is an arbitrary constant which once chosen:



'reﬁains the same for allvsuch defined sum§. We will shOﬁ that this sgt,
-calirit: Ha75 fo;ms a (G%;Z)—group under this defined Qpération. To
show Ha is.a group, ‘the only non trivial thing to'showlthe exisfenée
of iﬁverses. Let (b,k) = (za + ¢,k) bg in Ha and: -c' be the
inverse of c in 4Gl‘.; Then: .

| (éa + c,k) + ((p --z)a - ¢, -k —'M)

((z + (p - z))a+ ¢ - c,k.- k = M - m(c) - m{c) +;m(c.; c)
T E@ (- D)) B
= (pa, M+ £(p))

= (0, -M + M)

(0,0)
. This the inverse of ~(b,k)'is ((p ~2z)a~-c, -k = M), and so H, is
a.grOup.- Now let (b,k)‘= (za +'c,k) and (0,t) be in Hé. Then:

" (b,k) + (0,t)

(b,k + t - m(c) - m(0) + m(c) + £(z))

(b,k +'t) , a8 z <p

Also the mapping ha:Ha.

s0 Ha is a (Ga,Z)—group.

Since G2 is wj-free and Gl

“and so it is freely generated. Thus Ga is a W-group.

Now we do the-induction. First we find a sequence of elements. of

G2 s, say A = {a6:6 < 0,0 gn ordinal},.'such that G. U A generates

1

Gy-s and such that if J, = <G, U {ab:p <.8}> for all '§ < 6, then

<a

5 +_.J6 is infinitevcyciic or cyclic of'primeiorder. The sequence

A is defined as follows:

21

> G, , defined by ha(b,k) =b is a'homomorbhism,

is countable, theén G, is countable
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Assume aB has been defined for all B8 < §. Let b = inf{a:a{EGé\\Jd}.

If <b + J6> is infinite cyclic or cyclic of:prime order, 1let a, = b.

S

If not, fﬁhen <b +-J6> is cyclic of non prime order, - say of order np

where p 1is prime. Theﬁ let 36 = nb. So <aa'+ J6> hég primé order"pf
It is cleér that cgrd(A) ;:wlr, since Gl\J A ggnerates 1G2 and
card(GZ) < ml”.
to be a - -

Let KO = Hl , a (JO,Z)—group. We will define KB

(JB,Z)~group for all B é:c.l

(a) B is not a limit ordinal: Since B is not a limit ordinal, it

- has a predessor. So we can suppose a (

_JB_l,Z)—group; .K

; -has been

B-1

défined. .Then by construction of the sequence . A, <a8_1 + JB—1> is
infinite cyclic , or is cyclic of prime order. If it 1is infinite

_cyclic then case (i) can be applied directly to to show it

can be extehded to a (JB,Z)—group K If it is cyclic of prime

B

order, then as JB41 is countable, it 1is freely generated and so
it is a W-group. Then{there exists gB-lsz—l +.KB_1 such thgt
h8—1g8—1_= IJB;I» where .as usual hB_lzKB_1 -+ JB—l and h(a,b) = a.‘
Thus - we ;an'apply case (ii) wusing g841 as the required map, and so
ex;end' KB—ll to a (JB,Z)—group KB .
(b) B is a limit ordinal: Define KB~=Q:%K6 It is easy. to check

" that KB is a (JB,Z)?group.' .

So inductively we can define a (JG,Z)4group. Call it HZ . As.

the set Gltl A genérates G2 , then Jo = G2 s and so H2 is a

(GZ,Z)~group and the lemma is proved.



Lemma(7): Let H. be a (Gl,Z)—group. Let h and'.gl'-be

1 1
hémomorphlsms, hl;Hl > G1 and hl(a,b) = a, .gl:G1 +_H1‘, §UCh that
hgy =1 2 be £ d card < s
1°1 Gy . Let G, be w;-free and car (Gz) < wy . Suppose

H(a,A;Gl,GZ,) holds. Then' H, 'can be extended to a (GZQZ)—group H

1 2

such that for no homomorphism : gZ:G2 - H2 does thgz = lG2 where g5

extends 8 ‘and as. usual hz(a,b) = a,

Proof: Let: (i) A - {al,...,am}
(ii) Gy = chxJ A>, = <Gl>* & <A>,
(1ii) 6, = <G U {al> ‘
(iy)‘ G5 = <Glll AV {a}>*
S , A _ mo -

Let H4 be ? ,(G4,2)4group. Consider the homS%phisms g:G4 - H4
that extend 8, and such that -hag =.1G4 . Any such g  is uniquely
determined by where g maps ai,...,am and a. That ié‘if béEG4 s
vthen b .= ¢ + za where ‘céG'3. and. z€Z. .So. b =d+ x + za where-
(1€<Gl>* gﬁd'$<€<A>* . XE&<A>  implies =nx is a linear combination

-of_the ai's. for i =;l,;.;,m. Thus the g(ai)'é determine g(nx)v=
and so-they,detefmine g(x) éince there is a unique.solution to 
ng(x) = y. As (16;G1$* ,  g(d) ‘is'alreédy dé£ermined by 8 . Let
ay = a.. As ‘h4g.=le4 ‘and hA(b,z) =;b, then _g(ai)é'{(ai,z):zész}
for i = 0,...,m. Sq[each g(aij can Be defined in only countably
many ways and Since.fhere are-qniy finiﬁely many .ai's ,» there can
beAbniy_countabiy many such _g's;A Callvthem {én:n < w} =R.

‘Now we will shqw that G5/G4 ﬁust be infini?ei Then we will

.make some observations about the structure of’ GS/G

4 and classify it

into two possibilities.

23

ng(x),
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5 1

G;/G, is infinite: Since G, = <G U AU {a}>, # <G>, ® <A U {a)>,,
VA Ulal>, , x§<G>, & <A U {a}>, such

then there exists x€ <G1

that ‘nx = g + ¢ + ka .wherelfér some n # l,. BE<G >, , c€<A>, ,
and‘ k # 0. Let n. be the‘sméllest positive integer-fof.whiéh,there
is such a‘ g,bk,‘aﬁd c. .Théh the‘greétest common divisor.of' n and
k is 1, ‘for if nét then say m dividés"n and k. Then

n k o . _ '
vxn(q;)x - (a)a) = g + ¢, and since <GltJ A, = <G1>* ® <A>, , then

. k
€ _ N . S
<A> sugh that (m)g (m)a 8, + c

and ¢ 1

" there exXists _gié <G 1

>
1 %

and so '(ﬁ)x = 8, + ¢y + (%Da, contradicting the minimality of mn.

Thus there exists integers w and 2z, such that nw + kz = 1.  Now

-consider wa + zx:

nx g+ c+ ka ,

so - wg + wec = wnx - wka ,

and so wg + wc + k(wa + zx) .= wnx -wka + kwa +kzx

wnx + kzx

(wvn +.kz)x
= X

Similarly:-

- -zg - zc + n(wa + zx) —znx + zka + nwa + nxz

- o (zk + nw)é
= a

So if x was the only new element in <Gl UV AU {a}>* , then

lU AV {a}> = <G > @ <A {wa +zx}>_  , a contra diction to

<G 1 *

H(a,A,Gl;GZ), since wa + zx is in <Gl

Vv AU {a}>* . So there
must be & y such that my'= g+ c+sa+tx, or my =g +c +u(va +zx)

for some u Z. Using the same method we can find an element b "in

<GV AV {a}>  such that y and wa + zx are in <G>, @ <A v.{bl>,

:



Since this process can be repeated for any finite number of such
elements, it follows that there must be infinitely many of them else
we get a contradiction to the T condition. Thus 'GS/G4 is a

countably'infinite torsion group.-

Definition (15); A group G is divisible if for every x in
G and every integerv n, Athére egistS'élements‘in' é -that satisfy
the‘equation ny‘=“x.

From KaplanskyA(S); we have the following twé results:
(a) Aﬁy_abélian.g?oup G hasAa unique largest divisible subgroup M,
and 'Q =M@ N _wheré N has no divisible_subgrou?s.b (5)vpage 9. |
- (b) “Any divisible gfoﬁp is a direct sum of groups, eacﬁ_iéomorphic'
to the:additive groﬁp of>rationals Q, dr to Z(pm),v the group of
all pth foots.éf unity for various primes p. (5) page 10.

As .GS/Ga is a torsion group it cannot have a.subgrdup isomorphic
"to Q. So if»?.‘GS/G4 -has a non trivial divisible subgrbup, thén by
"Kaplansky's two re;ult;,‘ GS/G4 contains a copy -of Z(pm).for some
prime p and the copy,qf Z(pm) is a direét'summand of the group.

So suppose GS/G4 has no_noﬁ’trivial divisiblé subgroups. |

Definition.(16):; A group G is reduced if it has no non trivial

divisible subgroups.

Froﬁ Kaplaﬁsky we have the following result:
() If_ G_ is a réduced group{which is;not'tdrsion free, then VG"
1ha$.a finite cyélic s#mﬁand. (5) -pagé 21.

Since GS/G4 is a reduced torsion group, #hén by (d) G has

a finite cyclic summand. Now apply (¢) to the other summand. Repeated



application of (c) to thé'iﬁfinite remaining_summand of GS/G shows

4
that’ GS/G4 contains an infinite direct sum of finite cyclic groups.
From each of these choose an element of prime order. Thus we can

‘assume that there exists infinitely many distinct elements, " say a

for n < w, such that p 3 €G, where each P - is prime.

4
Now we.can saygtbat-one,of the follbwing possibilities occurs
in GS/Q4:- |
(o GS/CA' contains infinitely mény elements of.primé order .
>:0r (1I) fGS/G4 contains a copy of Z(pw) for some p.
Let (I) hold in GS/GA" Let a_ R n < w, be the elements of

' prime order.  That is the element a, + G, ‘has order P, in 'GS/G4

4
Let: Gn be generaped by (%_u {ao,...,an_l}. We w1ll.1nduct1vely
. % . * : ’ %
define a (Gn+l,Z)-group Hn+l, using Lemma (6) so that Hn+l

* , N
extends Hn . First use Lemma (6) to extend Hi to a (GA,Z)—group
* .
0

meet all the conditibns.of Lemmé (6). That is- G

which we will call H Clearly this can be done as G, and G,

1

subgroup of .-G4 s ‘and‘:GA is wj;-free as it is a subgroup of the

is a countable

wi—-free group G2 . Also Hl dis given to be a (Gl,Z)—group. Thus
Sk ’. ,. ‘ . . . X ' K3
H? exists. Assume inductively H;. is defined.. G; and G;+

0

1

v o _ A .
satisfy the conditions of Lemma (6) using Hn as the required

% ) : ) » v . . : . . *
(Gn,Z)fgroup. So by _Lemma.(é) Hn caﬁ bg extended_to a .(Gn+l,Z)—_

' . « . . w .
) . .+ ‘ + G

groupf -Hn+l As a, G4 has order P a 0 has order Py
%

. - . ' : % :
Let M_ be the constant used in Lemma (6) to extend H to H
: n o _ ) n n+l

. : x . *
Inductively we define Hw . Again apply Lemma (6) to extend 'Hw_

o

to a (GS’Z)—groqu -Séy  H5 , which extends all the 'H;'S.
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S g5:G5 > HS"iS a homomorphism extending gll:such that

h =1 then for some n, g

‘n . do ' amm T
58 extends g ; that is ng‘ g

5
. : . _ 0
where gnéli -as defined earlier in the proof. Now we will show

G‘5 .3

. % % . %
using gSIH% =8, as ‘the required map in extending Hn to Hn+l s

‘(see Lemma (6),.case (ii) ), that constants Mn can be chosen

: *
* has no extension to G

such that‘ gSIHn 1

for each 'm < w. This

. . n o,
will show that g and thus g  has no extemsion to G5 and so

such a g5 does not exist.

+ i ' = b .o
As a, G4 is of order 15 3 then let .pnan bne G4 »Let

n o - % _ . o .

g (bn) = (bnfkn) and gn(an) (an,cn). Since bn is in .G4 and
* d n . n . * vd ) .

g, extends g . we 1av§ g (bn) = gn(bn) and so:

_8n(bn)‘F (Bn’kn) . - by definition
= g:(bn). o as bne Gav )
= gz(Pnan) L as Apngn-=-bn
= pngz(an) _ B as gz ‘is'a.homomérphism
= pn(an’cn{ i by definition
= (bﬁ,PnCn +'Mn) | , ‘bf definition of "+" in‘_H:+l as

‘as defined in Lemma (6), case (ii).

- w
So in H
n

+1°
ph(an¢n) = (a ,cn) A +(a ,c ) | (p times)
= (a_+a,c +c +£(1+ 1)) +ase) ot (ae)
= (Zan,gén)v} (aﬁ,Qn) +f';"+.(%n’cn)

((pn.—\l)aﬁ;(pn'- De ) + (a_,c )

. e .
(pnan,pncn f(pn)).

+
(bn’pncn Mn)
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. Recall thét the constant Mﬁ as ‘chosen in Lemma.(6) case (ii)~

was arbitréry. By the calculation on the previous page we have that

- + dso k =M (mod p ). By choosing M =k + 1,
v kn P.C. Mn and so kn' Mn(mo pn)‘ 3y choosing -
: . o * : *

this 'is impossible,- and so 8, cannot be extended to Gn+1 and so

e

n ’ * : n ' '
g cannot be extended to G and so g cannot be extended to G

n+l 5

Now suppose (II) holds. That is 'GS/G4' contains a copy of
‘Z(pm) for some p. Then from the structure of Z(pm) there are
elements, say anv for n < w, such that:

_ cc

@) pag = by€G,

(b) pay - a, = b €6, | |
- That is a, is a pth .root of unity and a, is the,(pn)th root of

. % o
unity such that - (pan - ) = 0(mod Ga); Again let Gn be generated

_an~l
% E3 -

' U {: ces : ' -gr ]

by G4 {ao, ’an—l} and let Hn‘ be a (Gn,Z) group constructed

inductively as before using the constants an. We will agéin show

that by pfoper choice of the Mn's, that gne R haé no extension to

*

' ! B . % 3 -
Gn+l and.thus no extension to G5 . vAs_befpre let gn(an) —'(an,cn)
n ok . .
and..g (bn) —.gn(bn) = (bn,kn). Then:

n -
8" (by) = (by,ky)

g:(bo)

= Pg:(ao)
=-p(a0’¢o)
=.(bo,pc0>+ MO)

And so- k

= . + E .
‘ 0° ch MO. orﬂkO Mo(mod p)
Also:
' n : _ _ e
8 (bn) = (bn,kn) S _ | .by.deflnltlon
* . ' ‘ :
= ' . ' b €
gn(bn) | | | as . bn G

4
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%

= 'gn(pan - an"].')' » . by (b)
x x - - . ok h . hi
—‘Pgn(an) - gn(an—l) : as g 1is a homomorp ism
= p(an;cn) - (an_l,Cﬁ_l) ‘ by'def;nition
' . *
— = TR LT
_'(bn +~an—l’p?n'+-Mn) (an—l’cn—l) +oin Hn+l
= ; __. A " " . ! -7'¢ . * E .
(bn_,pcn + Mnf gn—l) N +" in Hn+1 using fact
that a H7<
“n-1. n
o= +M - or + = p).
And so kn pc Mn_ c _; °f kn S Mn(mod P)
Thus .we have:‘ (l)_’kO = Mo(mod P) “
(2) kh + co_i Z Mn(mod p)

1

Keeping in mind the Mn s were chosen arbitrarily we can do the

. i . ' . . = p . » = -+
following For Kl) choose 'MO_ ko + 1 and‘fot (2) choose Mn kn -1 +
" ‘Clearly in both cases no such k's exist. Thus g: , and so gn;

cannot be extended to G5 .

Finally use Lemma (6) to extend H5 to a '(GZ,Z)Fgroup, say H2

Let 'g2 be any homomorphism gZ:G2 -~ H such that h2g2-= 1 and

2 Gy

gz-'extends gy - Then 89 extends some gnélk. We have just shown

'

% %
. g . = l ES

} As'_Hé extends H;+l it follows that gn_'cannot be extended to g2 .

: £
that gn cannot be extended to 841 such that h

‘Thus g, does not exist. Therefore HZ‘ satisfies the requirements

df the lemma.
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V=1L and W-groups

In this section we will show that under the assumption V =.L,

groups’ satisfying Possibility‘I or' Possibility IIV are not W-groups.

Lemma (8): ‘If G satisfies Possibility 1  or 'fI- then G can

A : S P i ‘ 8
be named so that for any limit ordinal §, - there exists an element a

and a fiﬁite subset L G
' ' S+w

) _holds.

. | s .
5 such that 1(a ’LG’ GG’

Proof: There are two cases to prove.
'Casev(i): Let G satisfy Possibility I. Thus G is named such

~ that for any limit ordinal 8 < wy; » G is a pure subgroup and for

S

some limit . ordinal B, 'GB is the particulaf pure subgroup required .

by conditions (A) and (B) in the definition of PoSsibility I.
‘That is:

(A) {az + GB:a <(qv, L ;:ﬁ(a)} is aﬁvindependént family in G/G8 .
% : ' ' . : = (4%, SO

(B) (an(a)fLa’QSG) holds for all o < w; where La e.{az.z < n(a)l}.

_ Let @ = {8:8 is a limit ordinal, § < w, , and GS' does not satisfy

conditions. (A)  and (B)}. That is there do not exist suitable ‘az's,

o <.wl , such that .G could replace G in the above. We claim

B
that ¢ is bounded in w;. If ¢ is unbounded then card(9)= Wy

$

say © = {6 :a < wy } where § <6 if o) < ap; . Rename G so
o : Q‘l Qp - .
that. {08:8 <g<§ } becomes {6:w < 6 < w(o+l)}. This renames G
N o= u—}—l . , . o == ! b
so that. under the new ordering, if. ¢ is a limit ordinal, then G6
cannot satisfy coﬁditions_ (A) and (B). As G must satisfy
Possibilify I under any naming that is admissible, by the definition

of Possibility I, this is a contradiction. . Thus ¢ ‘is bounded, by
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say p < w) where p is a limit ordinal} Now renéme G so that
.Gp. becomes ‘Gw and {9:p+wa ;ze < p+w(a+l)}.'becomes {B:wtwa < 8 < whw(otl)}.

Under this admisséble naming if ¢ is a limit Qrdiﬁal then G, will

$

satisfy conditions (A) .aﬁd (B) for some az's, a < wp .

Now consider Gm . As Gw satisfies conditions . (A) ~and (B),
then there exists a and L such that H(a,L,Gw,G)‘ holds. . Choose a -

limit ordinal & <'w; 'so that <G U L U {a}>, G, . Thus I(a.L,G ,C)

': holds. Now rename G so that {6:w < 0 < 6}.;becomes {6:w 26 < whu}
: jaﬁd‘ {Q:6+wa:;:6 < S+w(q+1)}' becomes {8:w+w+wa:§:6 ; wtotw (6+1)}  for
a < ml.. Uﬁdér‘this hamipg H(a,L,Gm,Gw+w). holds. Nowlwe do the.l
indﬁctidn step. Suppose: G has been named so that fdr all § < B

G ) holds. Since

B . ) o 6
there exists a and L such that H(; ’L6’Gw6’ oot

§

Gmé satisfies conditions (A) and (B), then there.existS'ba and L .

" such that I(a,L,G ,,G) holds. As before choose a limit ordinal p < w)

wf’

such that <G _ i L {al}> G and so (a,L,G _,G ) holds. Rename
: wB ® P wB’ p

G so that G remains unchanged), fesz é:e‘< p} becomes {6:wB < 6 < wBtw},

wf
and {8:ptwa < 6 < ptw(ot+l)} becomes {6§w6+m+wa < 0 < wBtwtw(at+l)l.

- Thus H(a’L’GwB’GwB+w) holdsf

Thus we can assume G ‘can be named so that H(aé,Lé,Gd,G5+m) holds

‘for any limit ordinal § < w1 and suitable a5f§ and’ L6's.

. Case (ii): Let G satisfy Possibility II. The proof is almost the

same. Let A be the required stationéry set in the definition of

Possibility II.. Let A = {Su:a < w;}, -and of course the Ga{s are

Timit ordinals with Ga < Ga if .al < ap . From condition (B) in
. 1 - G2

-_the definition of Possibility II, there exists a and L such that
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G) .holds._ Choose & so that <G6

8

Rename G so that G.(S beéomes Gm »- and {08:85 < 0 < 66}‘ becomes .
S : . 0 ) =

1{(a,L,G U LU {a,}>7,c <G
Q-

(So’ - CSB

{6:w ;:8<w+w}, and. {6:63+wa <8 < 68+w(a+1)} becomes .{in+m+wav;:6 < whwtw (at+l) }
for all a < w; . Then: H(a’L’Gw’Gw+w) holds. . The induétion step.is

- the same as. case (i) except that the limit ordinals will always be

chosen from the da's of A.

Definition (17): An infinite cardinal K is regular‘if no set
of cardinality less than K is cofinal in K.
As noted in Remark (3), no countéble set is cofinal in w,; ,.

and so w; 1is regular.

Definition (18): "Let K be an infinite cafdinal number and let
A be a subset of"K. i theré is a sequence Su‘, o A, such ﬁhat
'Sa is a subéet}of' o, and‘for:egch subset X ﬁof K - the sgt
.{a:X N a-=‘Sa} is stationary in K,. then we say ()k(A) holds.
From Jensen (6) page 293, we get the following result:
”Assume V=1L and-letl K be a regular infinite cardinal. Then
()K(A) holds for every stationary subset A of K."

So this result holds whén- K is the regular cardinal w;

Now consider a group G of cardinality w; . Let A' be a -
'stationary'set.of-limit ordinals. As shown before the restriction of
any stationary set to its limit ordinals is again stationaty, so there

ére'many such- A's. Consider the set G x Z = {(a,z):ceG,ze2}.
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Name the elements of G x Z as follows:‘

.(a)_ Name J

i {(a;z):u < w} as {B:8 < w} which is easily

'dbne as J1 is- countable.
(b) Suppose {(a,z):a < wd} has been named as {B:B < ws},

then.name the elements of J 1= {(o,2) 108 ;:q < w(6+l)}

§+
as  {B:ws < B < w(s+l)} which is easily done as Jepp 1s
countable. .

So byAthis-inductive naming process the elementé of G x Z are the

ordinals {a:a < w;} and each G, x Z has been named as the ordinals

8
{ata < 6} for all limit ordinals less than w; . Let H be such a

" naming Of thé elements_of "G x Z, and sovthe set A is'stationary.in
H=uw = {aga < wl}. Assume V =L and apply Jensen's result to H
and A. Thus 'OH(A) holds. Let .g:G + G x Z be a‘function such

that g(a) = (a,za) .Where thg rza's -aré.in “Z. Then g can be
‘viewed as é set of ordered pairs, say L = {(a,za):a <.w1 . and a}éZ},
and so g cén be viewed as a, subset of H,'.say Y, whete  Sey if
and only if § is the name in H of some (d,;d) in .L. By Jensen's
result there exist Sa ,1 for _aélA; such that Sa < a and'ﬁor any

X« H, the sgt {a:X N o= Sa}. is stationary. In particular,

ES

A = {atYN a

it

Sd} is stationary. Since o 1is a limit ordinal and

ca = {B:B < o} {@,d:§<a, z€2}={(&zﬁééca, Z€Z} = %xxz

and Y = {B€H:p = _(6,23) for (S'GGOL}, then for O(.‘EA’_:, YNa-= VSOL =

{ReHu:B = (6,2 ) for 6€G}. Thus YN o =8 = g’ can be viewed as
_ , & o : - o Gy _

*

a function S :G > G x Z. Let S =g for all o€A . As g . was
. FTatta. e T a o -

arbitrary, then for ay function g:6 + G x Z where g(a) has shape
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(o,z),the set {6 < wlﬁgIG = 8g < 86} is stationary and since g is a
v $ - v ’ %%
s 7 Cs x Z a function. So let A = {§€A:S

is .a function.from Gé into G

fgnctlon so is %G:G 5 = 8

5 x Z}. Thus we can make the following

statement:

) : : . : v ok
J) ”If V =1, ‘there are functions g ;G6 - G6'X Z;, SEA 755 A,

such that for any function g:G - G x Zz where g(a) = (a,z),

the set {6‘<<q;g|G = g } 1is stationary."
§ :

S

Théofem,(l):. Assume 'V ="L.. Tﬁen if ‘G satisfies Possibility I
or Possibility.li, then G is not a W-group. |
Proof: Suppose G sarisfies Possibility I or II.. By lLémma (85
G can be named éo that for anyAlimit ordinal’ § < w; , there exists

a6 and L such that H(aé,L

5 ) holds. Let A‘lbe the

S’Gd’G6+w
stationary set consisting of all limit ordinals. Thus by Jensen,
'since V =1, we can assume (J) as above. Let. H6‘= Ga‘x Z, and

- *% C . s . .
so for S€A s B is a function from G6 into H6 and g(a) = (a,z).

. ) C - % :
Let K be the set of these functions, K = {gé:éézx 1.
We will now construct a (G,Z)-group, H , such that there”dﬁes

Wy . .
not exist a map g:G ~H . such that hg = lG “and as usual h(a,z) = a.

Wiy

If we can construct such a Hw ', then G cannot be a W-group. We
- . 1.

do the construction by transfinite induction. Define a (Gm,Z)—group,

Hw ) arbltrar;lyf Suppose:we have defined g (Gwa,z)—grqup, Hwa

for all o < §, such that de extends H for all B < a.

wh’
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Define H as follows:
wd - ,

,Césé (i): Suppose § 1is not a limit‘ordinal;» so we can assume
H sy 1is well defined. As before let H =G x Z and hiH > G
with _h(u;z) = a.
' . ' . ek . . kK . .
(a) If w(s-1) (f, A or if w(s-1) €A and. the corresponding

function ‘gw(é_i)_ in K is not a homomorphism such that

hg =1 , then extend H . . to H
Cw(s-1) Gw(d—l) w(s-1) w§

arbitrarily using Lemma (6)..
: v o . o
(b) If - u)(cS--l)éA77 and the corresponding function

b

gw(é-l) 1§. K 1is a homomorphism such Fhat hgw(d—l) =1

G
L0(8-1) w6

then '8, (s-1) ° o Lugs-n) 0 Cage-ny 0 @ G

satisfy the conditions of Lemma (7). That is:

(1) G is a countable subgroup of the wj;~free
‘ “w(8-1) B » v - ' 1
-gréup. Gw6 , and. Hw(&—l) is a'(Gw(s_i),Z)—group.
coy o ow(8-1) ' » :
(i1) TIi(a ’Lm(é—l)’Gw(é—l)’Gwé) holds by Lemma,(g)

as stated in the beginming of the proof..

_ (ididi)- gw(éfl):Gw(G—l)‘+ Hw(é—l) is a homomorphism

such that hg =1
: w(s=-1) G
: w(8-1)

So we can apply Lemma (7) to extend- H to H

w(G—i) ‘wd
50 that gw(é—l) cannot be extended to a hompmorphism

:G. . > H . such that hgm(S =1

8567706 w6 G
. : wé .
Case (ii):' Suppose § - is a limit ordinal. Define de = J Hwa"

o . o<é
and a;,before 'Hwé. is a (Gwd,z)fgroup-extendlng ~ku for all

a < 4.



Let H be the
. w1
Suppose g:G >+ H is
* . L
A = {8:g]l. =g} is
Gd )

non empty, say ¢ 1is

85 cannot be extended

G

that hg, =1
T2 84w
: S+w

36

(G,Z)~group constructed by this induction.

a homomorphism such that hg = lG . Then

v : %
stationary by (J). In particular A is

% : ) B .
in - A . Thus by the construction of Hw 5
. ’ i 1

to.a homomorphism 'g6+w:G6+w > He o such

Thus 8s cénnot be extended to ¢ 'such-thét

hg = lG 5 and so g is,npt an extension of g6 s contradiptioﬁ.

Thus no such g exists and so G 1is not a W-group.
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Martin Axiom and W-groups

- In this section we will show that under the assumption of the
Martin Axiom and 2% > wy - anY'group‘satisfying Possibility IT -

is a  W-group.

Definition (19): .Let P be a poset (partially ordered set),

and let aJ)éP; We say. a and b are contradictory if they. have.

* . no common upper bound in the.poset P.

s

Définitidn (20): Let P be-a poset and let D be'é subset of Pﬂ
We say that D 1is a dense subset of P if fof any a in P there

isa b in .D such that . a < b.

- Definition (21): Let X be a cardinal number. Let MAA be

tﬁe following assertion:

"Let P be»aﬁy poéet of cardinality A. Suppose iﬁ P thefe is
.no éubset.of wy pairwise contradiétory elements. Also suppose
{Du:a < A} éré dénse_subsets of © P. Then there exists a subset
B of P such that BN D 4 ¢ for all o < A, and such that any .
;wo{mémbers-of B  have a common upper bound in B."
Such a set B ié called a gengric subset of P (with respect to

w

the. Da's). MA (Martin Axiom) says that MAA

holds for any X\ < 2
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Theorem (2): Assume the Martin Axiom and 2% >w, . If G

~ has cardinality wy s is__wi-free,l and does not éatisfy PoSsibiiity‘I.
then G is a W-group. | |
_Proof:‘ Suppose"GF satisfies »Poséibility III. By Lemma (5) G is
tHe diredt sﬁm of countable gfoupé; As ‘G- is wl—free'thén each summand is
free, ‘and so G 1is free. Thus G is a W—groﬁp. So we can assume
G ‘satisfies-'Possibility IT.

Let H be a group whose set of elements is G x Z, and let
_ h:ﬁ - G. 5e defined by. h(a,b) = a. Now we define a poset P. The
elements of P are homOmorphisﬁs ‘g from finitely generated pure

subgroups. I of. G .into H such that hg = lI'.

. If .g1  aﬁd 8y
belong to ' P, write:'gi ;:gz if g, extends gy - .Wé ﬁill now
shqw that"the cérdinality of P is wy. -
| First we compute the number of finitely generatéd fure subgroups
of . G. As each sﬁbgrogp is coqntable and G is their union; there '
_ _muSt'be at least wi _different finitely_generated puré subgroups.
1Ihere cannoﬁ be mofe thah wll'finitely generated pure éubgrbups
of G- éincé the?e afe-only wy finite subsets of G. Now each
of thése pure subgroups.is freely generated by a finite set as G
- l,;..,bn ,

the homomorphisms of I into H are uniqﬁely-determined by the

is wjy-free. For a given pure subgroup I, with generators b

images of the genefators. If g:1I > H 1is in P, then for each.
“.generator bil,g(bi)G{(bi,z):zE'Z}. Thus there are oniy countably
many choices for the image of each bi" and since there are only -

.finitely mény bi's,f there are only.countably many diStiﬁct'mappiﬁgs
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-of the bi's. Thus there are only countably many g's _for each I.
~Since the number of finiteiy'genérated pure_subgroups isl wy ; then
Lhe cardinélity of P is wy |
" We now define subsets Daf of P for a < wy. aS follow$:
D, = {g€P:a is in the domain of -g}.
We now show: |
| (a) Each Dd , o< w, , 1is dense in P.

- (b)- There do not exist wy pairwise contradictory elements of - P.

" Proof of (a): Let a< w and let 'gI‘ be in P where gI:I -+ H.

" Then I 4is pure and freely generated by say a al - We must

1

show that there exists g in Da such that gi < g. If o€ Dom g1

(domain of gI), ;hen g€ Da and g < 8 » SO we can lgt g = g -

_ S0 suppose now’ a&lkmlgl and consider I <ayseeesa 0%, . If
I is a free group.generated by - al""’an’an+l then define g as

fdllows:
(i) Let g(ai) = gI(ai) for i=1,...,n.

.(11) ‘Let g(aﬁ+l) = (an+l,z? for any z Z.

] . . . ’ * » .
As the a; i=1,...,ntl, generate the free group I, then this

mapping of theée generators can be extended to a'ﬂomomorphism g:Ix - H.
B ‘ %
Clearly g extends 8y and o€Dom g = I-'. Thus 'gé]%» and 81 -

. . w®
It remains to show that I is freely generated by a »a 58

100" o+l

for some a1 - Since a4 I, then o is independent of. {al,.;t,an}

%

since I is pure. So I contains at leaét ntl -independent elements.

* - ' -
If- x€1 1, then mx€<a '..,an,a> for some m, and so  x is

l,:-
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‘not independent of {al,..l,an,u}. Thus I contains exactly nt+l

. o .k . .
independent elements, and so 1 is a free group on n+l generators.

% ' ' -
Let I . be freely generated by b .,b As shown before, for

1’ n+1
any finite number of elements in <al,...,an,a>* and not in <al,...,an,a$;
there exists an element, say a i , such that the finite set of
elements is in <a,;...,a ,a_ ,.>. see G./G, is infinite age 24).
, 1’777 "n’ "ntl ¢ 5/ 4. » Ppag )
lLet B be the set of elements of {bl’""’bn+l} in <aj,...,a 0,
: in <a ... >, ] , BE<a,... >
and not in al, ,an,a Then for some an+1 , B ars ,an+1 s
. _ N .
S <a’,... >. Si 1 = <b,,... >
and so {bl, -’bn+1} as a1 ' Since I. : bl’ ,bn+l ,
then I = <a > and the result is proved. .

: l,...,an+l.

Proof of (b): Suppose there exists a set of wy pairwise_contfadictory

elements of P, say {g6:6 < wy}. We will derive a contradiction.
, , s "
1""’én(6) where

n(3) is.a finite positive integer. We can replace W = {géfd < wyl

Let the domain ofb g(S be freely generated by a

'by any subset of W~ of the same cardinality.ﬁithout loss of

generality. As each :n(d) is_finife and card (W) f.ml , then

some n{8) must oécur_ wy; times. So we can assume n(§) = n,iA

for some fixed n, .for ali the g6's. That is withogt loss of
generality the domain of éé is generated'by .{ai,,..,ai} 4for every

8s in W. Let K = {al,...,am} be a maximal set of elements of .

1G which:freely generate a pUre subgroup and ‘{él,!..,am} < Dom g6

. for ml"é's. Note that K can‘be empty. For if any.uncoﬁntable family
‘of the Dom:(gd)fé has‘a trivial interséction,. then K 1is empty,

else K is non empty. So égain without loss of generality we can
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assume a .,ameDomg(S for all § < wi . Let a, =a, ,..., a = a

l,..

For any 6 we can extend {al,...;am} to an n-element generating

set for Dom 85 - Thus we can assume Dom 85 ~1s generated by
s 5, . |
{al"'°’am7am+l""’an} for each gs in wi

Now consider Dom 85 - VDom 8s is freely generated by n élements.
‘Aé any homomorphism g from Dom g(S is uniduely‘determined by where
the generatqrs.are mépped and‘ g(a) = (a,z) for any generator a;
there can be qnly countébly many different homomorphisms from D'bm-g(S
_into H.  So if there were only countably many different domains of
;he' gd's} ‘there would oﬁly be countably many HgS's? fé éoﬁfradigtion.
Thus there are wi different domains or which the 'gé's are defined.
Choose Qng‘»gs .on.eaghbdomain. .So withéut loss of generalify we
‘can -assume de.gé # Dom.gu for S # a. In'dther'wofds; in the

sep {a ;5..,am,a .,an}, m < n.

1

Again without loss of generality we will take a subset of the gﬁis
of cardinality wy 3 ‘this-time such that the set {{ai,.,.,am},.U

5 . _ o _ -
{agzm <% < m 8§ < wy}ll is independent in G. Dom g is generated
. . .

' ‘ .. 0 . . , : "
by {al""’amfam+l”"‘an} which is an 1ndepe§dent sgt in G.

Assume for ‘o < 8 < w; we have chosen g&'s such that the set
'{{al;...,am} V) {az:m'< 2 <n, a <B}} is an independent set in G.

Now consider <J{BDom gd > From the remaining' gé's, toss out

*

any g such that (<;{‘D9m gd>*‘\-<al,...,am>)f] Dom 8 is non empty.

B
We claim that- only countébly many gd's will be tossed out. This will

follow from the fact that < U
. a<pB

If some elément in D, -say b. was ‘in uncountably many Dom gd's

,8 > =D 1is countable.

Dom > ~<a. ,...
By w - S8 m
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then as b is not an element of <al,...,am>, it is independent of

the pure subgroup <a1,.,.,am>; and so we would get a contradiction.

I’7°"am> . 'That is

<‘al,...,am,b>>,c would be a pure‘spbgroup of order m+ 1 contained

to the maximality of the pure subgroup: <a

in the domain éf .Ql of the gd's. So foriany element b€D, we
toés out only countably many. gGﬁs;. Since D isvcduntable we £OSS
 out oﬁly countgblylmany .gé's. and éo theré are uﬁcountablyvmany

‘ .gé's.‘léftf Cﬁoose one and cail it ge . We claim'that.the elements
{{al;...;am}(J {azﬁm3< 2 <n, o<B} are independent in G. This
ié ea;ily seer. We.need only check that no linear éombinafibn of the

elements of {a .,ai} is a linear combination of the elements of

w1
{{al,...,am} U {aZ:m <& <n, a< B} Any linear combination of the
. B B L : -
elements of {am+l""'ah} is in Dom gS‘\ <al,...,am> aﬁd any linear
combination of the elements of'[{{al,...;am}!J {ai:m”# 2 <n, a < B}}

is in <U s R . - :
~is in a<BDom 8,7 % By choice of _gB > (Dom gB \.<a1,...,am>) N
‘ o o o

<J{BDom 8,7 1§ empty and so the set ‘{{él"f"am} v {alzm < £.é=n’ a < B}}
is independent. So'inductively we '‘can choose w; of the g6's, in
such a way that V ='{{a1,...,am} L/{agzm <% <mn, §<uwll is an
independent‘set in G.

Since .?bssibility I fails, there is an admissible naming of
| | . s 8o that
conditions  (A) and',(B) ‘of the definition of- Possibility I hold.

the elements of .G such that there does not exist G

,a

So assume G has such a naming. Also make sure Gw contains apseeera -

This is.easily done. . Then there is an uncountable subset of V

independent over G/Gw . If an.elemént gE(%) is a finite linear
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combination of elements of V, then for any a, in the representation

of g, ‘toss 0uc.“?m+l""’an . Since Gw is gountable and if g(iGw

can be representéd as a linear combination of elements of V, then

~that representation is unique, only countably many subsets . {am+1,...,an}
e ) : . % .

will be tossed out of V. Let V be the remaining elements of V.

N * , ' ‘ * .

Clearly "V  is uncountable.” Now let J be the set of all.-ai+1's in

* : * L .
V , say J = {am+l:§ < wyt. »Then:l
%

(A) J  is an independent family in G/Gw .

‘ <G >, = .
® <0z, =0, |
 Since Possibility I fails, then there must exist bf in <G®1J {ai+l}>*

x -~ 6 - o
such that <Gle {am+l}>* f.Gw & <{bl}>* for all but couptably many

(o2

HEY < wl}.

P

o § ~ s, 5
6'5.» So .<Gw(J {am+l}>* = <Gw U {b1}>;.< = Gw ® <{b1}>* for {b

C wk
Now let L. = {bé}. for § < w; and J<7 be the set of all a(S 's
.6 -1 . : m+2
] o ' 8, K _ S . _ v : .
_corresponglng to the bl‘s' So J = {am+2.6 < wy}. Then:
: KT . .
a)y J is .an independent family in G/Gw .

§ %

l'(B) <qu' 7L6>>‘< = Gw ® <L >, for § <up .
Again since Possibility I. fails there must exist - bg in _%Gw{j L6'U
8 P 8, '
{am+2}>* such_Fhat <Gw.u L5 v {aﬁ+2}>*”_ Gw'$‘<L6 v {b2}>* ‘for

L : $ . 3 Y
uncountably many. of the am+2's. Continuing this finite process we
§ 8

b >, for uncountably

: N 8 6 -
-get that <Gw v {am+l,...,§n}>* = Gw & <bl,...3 n-m_ %

many ¢&'s. Choose such a §,say o, and let o(l) d.’ Note that

o ' oy ’ U o o
< iy e = < > .
<G U {am+l’ ,an}>* ‘ <G U Dom g >, . Also note.that bli _’bn—m
! o o o o
< cen 3 . s >

are elements of. ars ,am,am+l, ’?n’cl Ck(a) % for some

a a o . : ' o, . a o o
: R i . This 1 <G . >, .
S5O () .}n G, | his is because b € oY {bl’ "bi—l}-u {am+i} N
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‘Now we can repeat this process for aﬁy"Gwa aﬁdichoosé' o(a)
different each time since we afe chbosing from ah uncountable set
of which only Eountably many_have’beeﬁ.chosen beforé; In fact we
éould'choose oga) > O(B)‘ for all B < a. éince the o(B)'s aré not
~cofinal in'oﬁr uncountable set. Thus we can definé a strictly increasing

sequence‘of.ordinals' o(a), o < w; , such that <Gw U Dom g 5 (a )

S <b0(u) ..,b 0(a)> where {bo(u) e o(a)} S <a,...,a,
W n-m % 1 n- 1 m

' O(a) ; o(a) G CICON c(a) o(e) A
m+l -1 n Sy saessC 1 (a) > énd 1 s ey k(a)€ G Note
that by ch0051ng k(oc)A we can assume that {a,,.0.,a ‘ag(a)’...’ao(a)

1 m mtl n

o ) . 0( ) minimally - :

¢y ¢ ey k(a)} is an 1ndependent set in G. To simplify notation

assume of(a) =

At this point we must make the observatiqn that the set of
.ordinals C = {8:8 < w; and AQG = 8§} dis a closed and unboundéd
subset of w;

@) C is unbounded: By (7), page 108, ordinals of the form
w® o S B LB |
w. , for any B, are in C.  That is w - = w{w ). Thus if C

‘was bounded above by say a, a.< wll, then choose £ such that
B : B g

. . W w . : w . .
a0 <B<w; . Then w >8 and so w > a. As w is in C

we get a contradiction.

(b) C is closed: Let Bv be a countable sequence of members of C.
Then for -each element.of,the sequence BV ='w8v . Let a = lim Bv
Then:

.o = 1im Bv = lim wBV'= m(llm.Bv) =

Thus o is in € and so C is closed.
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For every o < w; , k(a) is finite and so some k(a), 'say‘ k(a) = t,
occurs unCouﬁtably many‘timeé. "Let A be this set under the natural

-ordering of ordinals. A = {atk(a) = t} = {aG:k(dd) =t, 6 <uw; , and’

asl <.a62 1f‘and only 1f .61 < 8,}. Now renamé__G. 80 that.AGwdbé Gwaé,.
o1 o] a : , -
Thus at every ordinal a our set {?17""Ck(a)]-EE‘qu ‘has t élements.

pr let JO

=C = {8:8<w; and ws= 8). 3, is closed and

‘unbounded and hence stationary. Since k(a) = t for all "a < w ,

then k(o) = t for all 6 in J Note also that for 1 < & < t,

0 .
cj < wd as cSé’Gwa'; Now we can apply a result of Fodor to. define
- a sequence of 's_tat:ionary'sets .JO 2 Jl_?_. cew '-'_:_'Jt such that for all
<S€'J2 s Ci =c, for some fiied 'cz . We proceed as.follows.‘

Definition (22): A function £:J > A, where J ‘and A are
sets of ordinalé; is.called regressive if f(a) < a for all a €J~{0}

and £(0) = 0 if O0€J.

Fodor's result >(8), page 141, says that for a regular cardinal

A'>'w,- and J a stationary subset of A; " there exists for each

» : %
defined regressive function f on J a stationaty subset J of J
* B

‘such that £(a) = 8 for all o din J ,» and some fixed B8 in .

Now.consider' Jo = C,_ a statiénary set, and. wy 5 a regular
cérdinal; As note@ for 1 <8<, Vci < ws ‘and so for 6€ JO ,
cz < & as _6 =:w§. Thus we can define a regfessive function f:jO > wy
. by £(8) = ci since cf < § for all 66.10 . By. Fodor's result’
there exists Jl ,'“a'stationary subset 6f J, such that £ (8) =.Cl
for alL' 6" in J . wa‘repeét this for J, -+-w1.

1 1

by defining f:Jl
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by £(8) = cg < 8. This will produce a J, < J such'that_ J2 is

2 1

2

stationary and f(é)'=»c 9

for all & cin J, . By repeating'this

t times we can define a nest of statioﬁary sets thi*j < .. .=

_ =1 " 0
such that for all <S€Ji s A= 1,...,t, ci = CQ " for some fixed
cy o In particular for GélJt , ci =c, for all & = 1,...,t.

: s 5. - .
- That }s the set {cl,...,ct} = {Cl""?ct} for all 6 €Jt

We will,now‘maké one more observation. If A and B are pure

. * s .

subgroups of G and if A & B is a pure subgroup then for A and
* : o . : Tk % B

B , pure subgroups of A and B respectively, A & B is pure

*

: : % %
in' G. This is easily verified. Let nx =a + b where a is
% , i3

‘ % ' :
in A. and b is in B . As A @3B is pure then x = a + b

for some a in A and b din B. Then:
» - ok % -
nx=a +b =na + nb ,
% L %
so° na=a and nb=>b ,

L b . x . b . * :
so a€A -and PEB - as A and B are pure,
SO - ‘xeA“ & B s

Tk %

ElS A & B is pure in G.

8 8

Now consider'the ure subgroups <a,,..., ,a eeesd L C
i P g P ‘ ].’ _’m"m+.l’ . ) n

.,c >

I t*

where § is in AJt . We can gxtend' &5 to this domain. Call these

new homomorphisms g . By the above observation <al,...,am,cl,...,ct>*
5 § . - . R -

& <b1,..'.,bn_m w = B 1is pure and contained in Dom g since each
: S ) o P 5

bi is an element of Dom g . By construction each a 4i .is an

element of B and so 'DOm'gé 'is contained in B. Thus Dom;g(S = B.

& o 8§ o
So- Dom g 1$ freely genera?ed by {al""’am+tam+t+l’""an+t} where

j{al,;..,am+t} freély generates S ERETTL AT IPPPRPLIE and
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{ § 8

am+t+1""’an+t} freely generates . <b6 §

--v50 2,
1" "2 " n-m" *

. Since gd(ay)_e{(ai,z):ZEEZ} for 2 =1,...,mt , there are
only countably many different images .of the 'ga(az)'s,. and .so must

- o : $ . .
_appear uncountably many times. So we can assume that g (aQ) is fixed
- ] : * o )
for 2 = l,...,mt . where § is in Jt , an uncountable subset
of J .
. t

- . * . . : .
Now choose u,BE\Jt such that o < B8 and so the generators

of gqé;GwB . Then Dom ga is a pure subgroup of GwB - Also
<aB | LAY is pure and equal.to <bB b L As
mtt+l’ " T+t - T Tmkl? T T T
‘ B . LB . :
GwB & <bm+1’f"’bn>* is purg_then by the Qbservat;on on the last'

B .,aB > = <Dom~gatJ>Dom gs> is pure in ' G.

: o
<
page Dom g & <a okt

“mtt+l’ "

Finally we have the extension needed to produce the contradiction.

o B , a o o
-<Dom g U Dom g >. is frgely generated by {al"'"am+t’am+t+l""’an+t’
B oy . o _ g, . _ : :
am+t+l""’?n+t} énd g (ag) =g (al) Afor -2 =1,...,mtt. Thus

. g:<Dom ga U Dom gB> > H defined by g(a + b) ='ga(a) + gB(b) where
= o . B .. . o , o
a€Dom g , bé&Dom g is a common extension of g and g

Now ga and gB are themselves extensions of some gx” and 85
respectively in our original set assumed to be pairwise contradictory.
So 'g 1is a common éxtension of some gxénd-_g6 and gé€P since
<Dom gaVU'Dom gB> is a finitely generated pure subgroup. bThis
contradicts our original. assumption that g, and 8s “have no

.upper bound in P. - Thus there doesn't exist any subset of - w;

pairwise contradictory elements of P.
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We can now complete the proof of Theorem (2). Since under our
assumptions, w; < 2”0', by Martin's Axiom there exists a (generic)
subset B of P such that B Da = ¢ for ail @ < w; , and such

that any two members of B have a common ﬁpper'bound in B.: Let

% . - : ) ’ 5
g =-% g. Since B 1is generic it is easy to verify that- g  1is

“a function from G to H.. Since each ‘g€ B‘_is'a‘homomorphism, S0

% : . ; '
is g . Since. hg is the identity map on the domain of g, we
x - : x -
have. hg = lG . Thus there exists a homomorphism g :G.> H ‘such

: %
that ~hg7 = lG », and so G 1is.a W-group.
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The Indépendence Result

Theorem (3): The statement: '"Every W-group of cardinality wy is free"
is independént of ZFC (Zermelo-Frankel set theory plﬁs the axiom of

choiéé);

Proof: .Since W-groups are wj;-free, then by Theorem (1) if

V=1, any W-group must sétisfy Possibility III. By Lemma (5)

G =a?lea whgré each Gav.is'céuntablé. As G- is. w-free, .each
:Ga is ffee and so G 1is free. Thus ZFC +‘V’= L -implies'that
every . W-group of cardinality .Wl ‘is free. But by Godel (8),
ZFC + V' = L is consistent if ZFC  is consistent.
- By Martin and Solovay (10), ZFC + MA + %0 > wy is cénsistent

if ZFC is. But by>'Theorem‘(2); in the presénce_of> MA + 290> Wy
any group satisfying- Possibility IT is a W-group. By -Lemma (4)
,tﬁere are groups satisfying Possibility IT. ‘So it is coﬁsistent.
"with - ZFC to assume that there are W-groups of cardinality .wl
ﬁhicﬁ éré not free. |

Thus the statement: "Every" W-group of cardinélity w; is free'"

is.independent'df, ZFC.
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Appendix

.We will describe the significant alterations that we-have.méde
to Shelah's paper (11). The definitidn of Possibility I was changed

from the existence of a G

5 under some admissible ordering, which

'gatisfies”conditions (A) apd' (B); to the existence of a .GS 3

under:every admissible ordering, wﬁich satisfies.conditioﬁs a) and.

(B). Under the original definition there appéared to Be'no wayvqf_

j claséifying, .up to isombrphism, 'wl—free groups into the th%ee

possibilities; This éltered definition of Possibility I‘ allowed

us FQ simpiify some of thé proofs. ’In particular ‘we wéré able to

come ué With a lemma,(Lemma (8)).which allowed us to deal with both

VPossibility I and‘1I in a uniform way via'Theorem‘(l).v Shelah

'héd usedba complicatéd group theoreﬁic argument in dealing with

Possibilitv-I. Thus our set tbeoretic Lemma (85 eiiminated the more

difficqlt gfoup theoretic theorem of Shelah's, (see (115 3.3);
Sheiéh used_airéther complicated combinatgriai argument,

'(séev(ll) 3.1(2) and 3.1(3)); tQ show every Ppséibility III group

is a direct sum of countable ngups.' qu Lemmé'(S) givés a éiﬁpler_

and.mére_diréct proof of this»fact.witout.usiﬁg the coﬁpliéated

combinaforiai technique of (11) 3.1(2).

In thevproof of Theorem (2), the method indicatedbby;Shelah

CG
12577 Tk(8)

-So a completely different.arguément had to be used,- see pages 41-44,

for producing the elements ¢ 'appeared'tg be incorrect.
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In general the set theoretic and group thgoretic details were

- filled in to' the poin£ ﬁhere soﬁeoﬁe Qith only a limited‘knowledgé

of set theory and group theofy cOuid.read the thesis. This involved
much work in places for Shelah assumed 'a knowlédge of.group ;heony

. at a leVgl of Fuch's books (1) and (2).-'In:mény cases only the Erdad
éutline of an argﬁment’was given, and so‘theré had to be a significant
filling in of detail. ‘As an example, in Lemma'(7) GS/G4 has ‘to’

be shown to be infinite and then it'has to be.shown that this implies
eithef GS/G4 contéins a copy éf Z(éw) or it contains infinitelvy
many elements of prime order, see ﬁages 24—26. Another example was
working ouﬁ all thé detaiis in showing that the examples in Lemma (4)
actually Safisfy'the'respegéiVe péSsibilities, see péées 11-16. The,
main difficulties with the set theory, other than redefining Poésibility I
and the'sgbsequent classification into thé three pbséibilities, was
in>showing,how thé‘reéults of Jensen (6) and Fodor'(8)‘applied.to'

our probiem.‘ S0 again here there had to be sﬁbstantial'filling in
of'detail; see pages 32—34 aﬁd>44?46. Also we had to show that G v
cquld be Well—ordereavsuch'that'for'all limit ordinals'ké, G is

$

pure, see Lemma (2) on page 5.



