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Abstract

We let:
ZF = the Zermelo-Fraenkel axioms of set theory
without the Axiom of Choice. (AC) .
ZFC = ZF + AC .
I = " There exists an inaccessible cardinal " .
Y = " Every set of reals definable from a count-
able sequence of ordinals is Lebesgue meas-
urable ".
DC =‘the Axiom of Dependent Choices.

LM = " Every set of reals is Lebesgue measurable ".

In 1970, Solovay published a proof by forcing of the

following relative consistency result:

Theorem If there exists a model M of ZFC + I, then

there exist extensions M [G] and N of M

such that:
(a) MI[G] E 2FC + V¥ .
(b) N E ZF + DC + LM .

Boolean-valued techniques are used here to retrace
Solovay's proof on a different foundatibn and prove the
following result:

Theorem Let K be a non-minimal standard transitive

model of ZFC + I. Then:
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(a) K F there is a model of ZFC + V¥ .

(b) K }= there is a model of ZF + DC + LM .
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Introduction

Under what hypothesis can we consistently assume that
all sets of reals are Lebesgue measurable? This is the
essence of the Lebesgue measure problem. Here we present
a recent set theoretical investigatioﬁ of this problem due
to Solovay.

Lebesgue measure is countably additive and translation
invariant. Under the hypothesis that the reals can be well-
ordered, these two properties allowed early researchers
( e.g. Vitali, Bernstein ) to construct various sets of
reals which are not Lebesgue measurable. Set functions
with domain the powerset P (IR) of the reals, which drop
one of the above two constraints, have been the focus of
some attention. But such would-be measures cannot compete
with Lebesgue measure for its central role in modern real
analysis. If we must accept the presence of non-measurable
sets in ordinary analysis, then it would be useful to know
how much their existence depends on the Axiom of Choice (AC).

Solovay's research, published in 1970, shows that it
is consistent with the Zermelo-Fraenkel axioms of set the-
ory (ZF) and the Principle of Dependent Choices (DC) to
assume that all sets of reals are Lebesgue measurable (LM),
given the consistency of ZF+AC together with the statement
(I) that a ( strongly ) inaccessible cardinal exists. This
main theorem of Solovay indicates that it is impossible to

prove the existence of non-measurable sets from the ZF
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axioms with DC, provided that the theory 2ZF+AC+I is con-
sistent. Hence the existence of non-measurable sets is
dependent on some form of AC which is stronger than DC.

To prove this relative consistency result, a model
N of ZF+DC+LM is constructed from a model M of ZF+AC+I.
Solovay's construction uses an unramified form of the
forcing method, essentially due to Cohen. His main inn-
ovation is the use of Borel sets of positive measure to
replace Cohen's finite forcing conditions.

Solovay has conjectured that the hypothesis regard-
ing the consistency of I is dispensable, though no proof
has been forthcoming as yet. In 1969, Sacks published an
account of another Solovay result, using ramified langua-
ges and a measure theoretic forcing argument. He demon-
strated that if ZF is consistent, then ZF+DC+ "there ex-
ists a countably additive, translation invariant extension
of Lebesgue measure on IP (IR)" is consistent. The state-
ment in quotes is weaker than LM, but its consistency re-
qﬁires no hypothesis regarding I.

In 1965, Solovay and Scott, and independently Vopénka,
noticed that forcing arguments could be translated into
constructions involving so-called Boolean-valued models.
Our presentation of Solovay's 1970 research begins with a
'résumé of fhis method of constructing a generic exténsion
of a given ground model without forcing. A close examina-

tion of [23] ( e.g. pp. 31 - 8, pp. 49 - 50 ) leaves no
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doubt that Solovay's original conception of his work on
the Lebesgue measure problem was in terms of Boolean-
valued models, rather than the classical forcing arguments
which predominate his final published account. The use of
Boolean-valued methods provides a more natural and intui-
tive development of Solovay's ideas. In our initial sec-
tion, we have concentrated on those aspects of Boolean-
valued models which have a direct bearing on Solovay's
1970 constructions, and have tried to improve and complete
some of the standard proofs in this area.

In Section 3 we deséribe Solovay's notion of a random
real, which is his main innovation mentioned above and the
notion which motivated the Solovay-Scott development of
Boolean4valued models. In this, we have started with Solo-
vay's definition, and translated his development into the
language of Section 0. A different development ( based on
Definition 3.5 ) in the same Boolean language can be found
in [9]. Lemma 3.8 estabiishes the equivalence of the two
approaches.

In this exposition we have endeavored to combine the
intuitive clarity of the Boolean—vélued approach with a
rigorous foundational background. Two points are often
glossed over in presentations of this type. It is often
not.specified whether the models involved are sets or
classes. This lack of precision opens any treatment of

definable sets to the possibility of set theoretical para-
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doxes. To combat this, we consider all our model construc-
tions to take place within a model which is a set, rather
than within the "real world" of Solovay. The second stip-
ulation is that our ground model is countable. The reason-
ing behind this is explained in Sectioh 0. These two points
ensure that our model constructions rest on an explicit
and correct foundation.

The concluding sections describe the two main models
of Solovay, whose origin he attributes to Lévy and McAloon.
The latter model is usually defined via the eight funda-
mental Godel operations ( see [27] ), or by an extended
form of the Reflection Principle ( see [15] ). Because of
our adherence to models which are sets, we have been able
to employ GO6del-numbering to present a simpler construction
- needing much less background. The Lévy model is construc-
ted from an unpleasant Boolean algebra L which is the sub-
ject of Section 4. We have filled in some of the necces-
sary technical work in this Lévy algebra that is avoided
elsewhere. By a.classical algebraic argument, a theorem
of Jensen ( [9], p. 76 ) indirectly implies that L is homo-
geneous. In our Lemmas 4.8 and 4.10 we have modified
Jensen's theorem considerably, providing a direct proof
0of the homogeneity of L.

Another often neglected point is the problem of first-
order definability of sets. In addressing this topic, we

have included relevant material here which is usually only
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alluded to. In Section 5, for example, we introduce the
notion of uniform definability. This has other names in
the literature ( e.g. "specifiability", [4] ), but there
seems to be no standard usage. In this, we differ from
Solovay's development which uses his M-1R -definability
( [23] p. 41 ). The somewhat informal use of definability
in Section 5 is formalized in Section 6. Here we show
that the source of our definability problems is Richard's
paradox.

While the McAloon model substantiates the main theorem
of Solovay quoted above, the Lévy model gives an equally
interesting secondary theorem of Solovay: If ZF+AC+I is
consistent, then it is consistent with ZF+AC to assume that
every set of reals definable from a countable sequence of
ordinals is Lebesgue measurable. Using the formulas of
set theory, we cannot explicitly define a non-measurable
set without an uncountable sequence of ordinals. These
notions are made precise in Sections 5 and 6.

Section 2 deals with some absoluteness properties of
Lebesgue measure. For this work we have selected a notion
of absoluteness due to Shoenfield that is naturally adap-
ted to the model extension process. In most other respects,
the development of this section follows Solovay. We differ
ffom the Solovay development by first establishing that
the property of being a set of Lebesgue measure zero is

absolute. The main lemma of Solovay ( Lemma 1.6.4, p. 31,
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[23] ) follows easily as our Corollarf 2.25,

Some prefatory remarks on the use of the Countable
Axiom of Choice (ACw) in analysis are included in Section
1. Our aim here is to emphasize that the real impact of
DC on ordinary analysis is through ACw.

Our set theoretic and model theoretic notation and
nomenclature is standard for the most part, being consis-

tent with that of [1] and/or [14].
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Section 0 : Boolean-valued models and generic extensions

Our approach to the proof of Solovay is based on the
concept of a Boolean-valued model of set theory. We start
here with a fairly general treatment of this subject, then
in later sections select the line of application that
leads to the Solovay result.

To begin, we recall some background. As usual, ZF is
used to stand for the Zermelo-Fraenkel set theory, i.e. the
collection of theorems that follow from the Zermelo-
Fraenkel axioms ( less the Axiom of Choice ). ZFC denotes
the full collection of theorems following from ZF and the
Axiom of Choice (AC). For this section the terms "set
theory" and ZFC will be used synonymously.

A model of set.theory is an ordered pair M = (M,E),
where M is a set and E is a binary relation on M ( i.e.

E &« M? ) which satisfies all the axioms of set theory as
the interpretation for 'e'. The symbolism M fk ¢, which
the complexity of ¢ ( see [1l] ). M is referred to as the

universe or underlying set of M. In stipulating that M

is a set rather than a class, we will avoid the danger of
set theoretic paradoxes which might otherwise impair the
model construction process. However, many popular versions
of the theorems we will use assume M to be a class, and

care must be taken when we meet such theorems.
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Definition 0.1 (a) A binary relation R is well-founded
in a set H < dom(R) if there is no se-
quence fxn} < H such that xn+lRXn holds

for each n ¢ w .

(b) A model = (H,R) is extensional

if for all x, y, and z in H,
( ZRXx —+ 2ZRYy ) » (x =y ) .

(c) A model TH

~(H,R) is standard if
R « H?2 he.

(d) A model M = (H,R) is transit

[
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if H is a transitive set, i.e. for each

X ¢ H, x © H .

In 0.1 (c) above, we assume that there is a "real
world" of sets, and that € is the natural membership re-
lation.

The statement that ZFC has a model implies the state-
ment that ZFC is consistent. The latter of these state-
ments is unprovable in ZFC ( [3], p. 56 ). .So in order to
proceed very far with the set theoretical manipulation of
the models defined above, it becomes convenient and some-
times necessary to add some new axiom to ZFC which asserts
their existence. [3], p. 78 discusses this. The following
is a relatively strong form of model existence axiom, and

will be adequate for our purposes.

Axiom A There is a set H and a binary relation R well-
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founded on H, such that M = (H,R) is an ex-

tensional model of ZFC.

Any transitive model is extensional ( see [9], p. 21,
and note that this proof is valid for our definition of
model ). For any model ™ = (H,R) satisfying Axiom A, the
Mostowski Collapsing Theorem ( [9), p. 27 ) guarantees the
existence of a unique standard, transitive model K = (K,
K2fe) which is isomorphic to HI. To see that K is truly
a model, we must keep in mind that the isomorphic copy of
a set is also a set ( by the Axiom of Replacement ). This

gives us the following more useful form of Axiom A.

Axiom A' There is a set K such that K = (X,K?Ng) is a

{ standard ) transitive model of ZFC.

By the Axiom of Regularity we know that K2Ag is well-
founded ( [3], p. 54 ), and so the two statements A and A’
are equivalent.

Axiom A implies the existence of a minimal standard
transitive model M, of ZFC; one that is countable and is
a submodel of all other standard transitive modeis of ZFC
( [3]1, p. 83; [24], p. 197 ). M, has no standard proper
submodels which are transitive. Since M, does not satis-
fy A, -Axiom A cannot be proved from the other axioms of
ZFC ( [4], p. 110; c.f. [26], p. 83 and [9], p. 37 ).

The upward LOwenheim-Skolem Theorem certainly allows
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us to pick K uncountable. We do this to prevent K = 1M, .
From this point we fix this K, writing e for K?*he..

All further models we will consider are understood
to satisfy the condition that their universes belong to K.
Because K is a set, the downward Ldwenheim-Skolem Theorem
allows us to construct, within ZFC, transitive submodels
of XK ( [3], p. 18, c.f. p. 79, where the problem of models
with class universes is discussed ). By a suitable argu-
ment, one such model M is countable and has countable
rank! ( [4], p. 110 ), hence M ¢ K. We fix M = (M,M2n¢),

and call it the ground model.

By standardness and transitivity, ordinals in XK and
M are ordinals in the real sense. The class of ordinals
in I turns out to be the least ordinal not in X ( [24],
p. 197 ).

We now turn to the topic of Boolean algebra, begin-

ning with the definition.

Definition 0.2 B is a Boolean algebra if B = (B,+,+,-,

0,1) where B is a set, * and + are
binary operations on B, - is a unary
operation on B, and 0 and 1 are distin-
guished constants in B, all of which

satisfy:

Transitivity guarantees the existence of a rank func-

tion ( [3], pp. 68-9 ).
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(a) x+y=y+x, Xe«s V=Y. ZX.
b) x+ (y+z)=(x+y) +2z,
Xe (Yyoez)=(Xev).z.
(¢) (x+y).ez=(x.2)+(y.z),
(x.y)+z=(x+2z2). (y+2z).
(d) x+ X=X, 9Y.V=Y .
(e) x+ (-x) =1, x. (-x) =0 .
(f) - (x+y) =-x. -y,
- (xe+y)=-x+-y.
(g) =-(-x) = x .

We note that B is partially ordered by the relation:
X >y iff X =y + x .
With this partial order, x + y corresponds with sup(x,y)
=inf [u:u>x%x, u>y ], and x+y corresponds with -
inf(x,y) = sup [ u : u < x, u<yl. Generalizing this
notion, we write A for sup(A) and MA for inf(A), when
A B, It follows that B =1, and B = 0., It is conven-

ient to adopt the convention: g = 0 and IIg = 1 .

Definition 0.3 (a) A Boolean algebra B is complete if

for each A« B, $A and JIA exist, and
A € B and TIA € B.

(b) A Boolean algebra B is M-complete

if B ¢ M, and for each A < B:

A g M implies A ¢ B and 1A ¢ B.
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There is no problem regarding the existence of Boolean
algebras in models. Since any field of sets ( e.g. the
powerset P (x) of x ) is a Boolean algebra, each model
abounds in Boolean algebras. If B is a Boolean algebra
in M, then it is clear that B is a Boolean algebra in K.
We need not be concerned then, about losing Boolean alge-
bras when we move from a given model to a more inclusive
model. However, it is quite conceivable that an incomplete
Boolean algebra exists which is complete in a certain model
H simply because the A « B for which A ¢ B do not belong
to H. An M-complete Boolean algebra is therefore not
necessarily a E(—coﬁplete Boolean algebra.

For the remainder of this section we will consider B

to be a fixed M-complete Boolean algebra. Without danger

of confusion, we will write B for both B and its under-
lying set B, and write M in places where its universe M
is understood ( e.g; X e M ).

TwovprocesSes will now be dealt with._ The first is
the cohstruction of the Boolean-valued model IIB from M
and B. |

The Boolean-valued model IMB e IK may be thought of
as a generalization of the ground model M, where set theo-
retic statements may be evaluated for their "degree" of
truth. More precisely, where classical logic allows only
two truth values, the Boolean-valued model E{B assigns as

truth value a member of the complete ( in M ) Boolean
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algebra B to each statement. This explains the name

Boolean valued model. If B is the two-element algebra de-

neted 90,1} , the notion of Boolean-valued model reduces to
the classical notion of model. We define IMB from within
M, by induction on the ordinals less than OII, the least

ordinal not in M.

Definition 0.4 II? = {0}

IIS = U Iﬁg , if a is a limit ordinal.

B<a
B F Lo :
Iﬁu+l = { x : x is a function, dom(x) c
Iﬁg , rng(x) ¢« B }

M® = U ™MD -

u<®E{

Notice that each element x of I{B must by induction
belong to II2+1 for some least o. This a we may call the
rank p(x) of that particular object in IIB.

Even though we are working within the ground model,
it does not follow that IEB € M, and in general this is
false. There is, however, a concfete way of envisioning
M as being inside IIB. This is done via the following

embedding functor ' : M f; IMB, defined by transfinite

induction on p(x).

Definition 0.5 (a) 0 =20

v

(b) for each x ¢ M, we have xX ¢ EIB,
v v vov
with dom(x) = {y : y € x -}, and x(y)

= 1 for each y & X.
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Notice that'p(;) < p(;) if y € x, so that ; is indeed
defined in termé of elements of lower rank.

The “-functor illustrates each set x ¢ M as a spe-
cialized characteristic function ; £ IIB. Because each
y € X is also a sét in II; ; is also a characteristic func-
tion of this type, and so ; becomes a composition of charac-
teristic functions on sets of characteristic functions.

The rank p(x) serves to indicate how long this process has
gone on.

It is clear that other function-objects exist in IIB
whose ranges include values other than 1. These of course
have no pre—imageAby v among the sets of M, but they show
that the IIB construction enables the handling of objects
which may be set-like to varying degrees. This presents
us with the possibility of considering some of these ob-
jects set—like enough to combine with the sets of M, thus
forming a new, more inclusive model of ZFC. This is the

subject of the last portion of this section.

It is possible now to define a -Boolean value g1¢(xl, .o

oo ,xn) ] € B for each formula ¢ of n free variables, and

B

each x ,xn ¢ M. These Boolean values behave like

l’ e o o
the conventional truth values of first order predicate cal-
culus, but since they belong to the IM-complete Boolean
algebra B, thay extend our notion of semantics beyond the

usual duality of truth (1) and falsity (0).

The Boolean values [ x e y ] and [ x = y 1 are defined
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for x, y ¢ IIB by transfinite induction on the lexicograph-
ical ordering ( p(x), p(y) ) ( i.e. the orderihg defined

by: (a,8) > (8§,y) iff ¢ > § or a = &, B > v ).

Definition 0.6

(a) T xeyl= = (y(z)eL z=x7 ) - .
z ¢ dom(y)

(b) [ x=yT1= 1 (-x(z) + 0T zeyl)
z ¢ dom(x)

e 1 (-y(z) + [ zex1) .
z ¢ dom(y)
For a discussion of the form and efficacy of the above
and similar definitions, see [17], pp. 41 ; 4, and [25],
pp. 121 - 2.
Having defined [ ¢ 1 for ¢ an atomic formula, we ex-

tend the definition to include any set theoretic formula.

Definition 0.7 (@) I 1¢d1=-10¢1 .
| ) [ ¢ & ¢pT=1"0¢ D0yl .
() Tovyeyl=10¢1+Tvy]l .
(d) T o>y 1 ==-IT¢1+1Tv1] .
() [ (wx)¢ 1= T o[ é(x)1 .
: X g M
(£) [ Ex)¢ ] = T gl ¢(x) 1 .
X £ M

The IM-completeness of B ensures that 0.6 (a), (b)
and 0.7 (e), (f) are well-defined. The following is a

trivial but useful consequence of the above definitions.

~
-
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Lemma 0.8 [ ¢1 <[ v1 iff [ ¢~y =1

A series of lemmas now follows, which give several
useful relations concerning the Boolean values of some
specific formulas. The proofs are straightforward, and
are usually accomplished by transfinite indﬁction on
( p(x),p(y) ). A sample proof accompanies the first of

these lemmas.

Lemma 0.9 (a) [T x=x]1 =1 .
(b) x(y) <[ yexl .

(c) [T x=y1=0y=x1 .

Proof: Suppose (a) to be true for any x satisfying
p(x) < y. Let p(x) = v now. By definition:
(i) [ x=x1= T (-x(y) + [ yvexI).

y £ dom(x)
For each y e dom(x):

(ii) [ yex] = X ( x()*f u=y1)
u & dom(x)

>x(y)- Iy =vy1 =x(y) 1,
by hypothesis, as p(y) < v.
Since x(y) is defined only where y & dom(x),
(b) follows. Substituting for [ y € x ] in
(i), we have:

[ x=x71 =2 .H (-x(z) + x(z) ) =1 .
z € dom(x) '

Therefore: X =X =1 for p(x) = v .

Calculating directly: [ 0 = 01 =1 ( the
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Boolean infimum of the empty collection is 1 ),
so (a) follows by transfinite induction.

(c) is verified directly from the definition.

The next three interdependent statements are proved
simultaneously by transfinite induction on ( p(x),p(y) )

( see [25], p. 123 ).

Lemma 0.10 (a) f x

y I -

<lTyezl .

==
]
™
N
=
A

N
Il
~
"
A
N
=
.

(b) [ xezl - I x ¢

(c) I x=y) -Ty=2z1<0x=27] .

The lemma below follows by induction on the complexity
of ¢, using the fact that the previous lemma establishes

the result for atomic formulas.

Lemma 0.11 [ x=y 1 « 0 ¢(x) T < T ¢(y) 1.

Lemma 0.12 (a) [ (=gy € x)¢(y) 1 = X (x(y) [ o(y) 1),
' y e dom(x)
(b) [ (Wy € x)¢(y) 1 = I (x(y)-L o)1 ).
y € dom(x)
Proof: See [25], p. 125 .
Definition 0.13 » Let X7 ees X € IﬁB. ¢(xl, .o ,xn)

is said to be valid in IIB if:
g ¢(xl, . oo ,xn) 1 =1,

in which case we write:

B = P(xys wew 41X ).
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This notion of validity sets the stage for two of the

most important results of this section.

Theorem 0.14 Every axiom of first order predicate

calculus with identity is wvalid in IIB.

Those formulas obtained by rules of in-
ference of first order predicate cal-
culus from formulas valid in IIB, are

themselves valid in IﬁB.

" Theorem 0.15 Every axiom of ZFC is valid in IIB.

Corollary 0.16 IIB is a model of ZFC ( i.e. every theo-

rem of ZFC is valid in IIB ).

No proof will be given here for 0;14 as the usual com-
putational proof ( see [25], pp. 60, 124, and [17], pp. 36
- 51 ) is unaffected by our definition of model.

Theorem 0.15 is also standard, but it is worthwhile
to look at some aspects of its proof, particularly those
which surface as techniques in later proofs. This selective

approach to 0.15 is carried out in the next series of lem-

mas.

We défine the Boolean-valued singletOn'{x}B, for x € IIB,
as follows: dom({x}B) = {x} ; '{x}B(x) = 1 . Hence
{x}Bs:IMB, and for p(x) = o, we have p({x}B) =q + 1. In
general, {x}B and {x} are distinct, however [ {x} ='{x}B 1 =1

( see Lemma 0.30 ).



19

Lemma 0.17 For each S <« IIB, S € M, there is a T ¢ IIB

such that [ x € T = 1 for each x € S.

Proof: We take the Boolean sum of functions
T = 3 {x!B, i.e. dom(T) = S ;
X € 8
T (x) ='{x}B(x) =1 , for each x € S. From

0.9 (b) we have [ x ¢ T ] = 1, for all x ¢ S.

Note that T ¢ MP since p(T) = sup ({x}B),
X £ 8

which exists since S & M.

The verificationlof 0.15 proceeds one axiom of ZFC at
a time. The IIB—validity of some of the axioms of ZFC is
a matter of a basic computation. Our previous lemmas re-
duce the validations of the Axiom of Extensionality ( see
[17], p. 50 for a proof that can be adapted to our founda-
tions ), and the Axiom of Regularity ( [25], p. 89, [9],
p. 56 ) to this computational level.

Slightly more sophisticated are those validations
which are a consequence of 0.17. These include the valida-
tions of the Axiom of Pairing and the Axiom of Unions,
whose closely related proofs ( [9], p. 55 ) are immediate.

The next few lemmas also use the 0.17 strategy.

whenever o < B8 , and is eventually constant if there exists

an ordinal vy such that for all B > y, F(B) = F(y).
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Lemma 0.18 For each formula ¢ of set theory, the function

F(a) = ] 5 [6(x)]

X € M
o

is nondecreasing and eventually constant.

Proof: For increasingly larger ordinals B , F(B) is
a Boolean supremum taken over increasingly
larger sets EIE

decreasing. We define a function H: B — 0O

. hence F is obviously non-

™M
by: H(a) = inf[ B : a < F(B) 1 .

Since B ¢ M, an ordinal y exists which is the
supremum of the image of B by H. For each

B > v, F(B) = F(y).

The fact that B is a set is crucial; neither the Axiom
of Replacement ( 0.19 ), nor the Axiom of Power Set ( 0.21 ),
nor the Maximum Principle ( 0.26 ) hold in some IIB where

B is a proper class ( [25], p. 196 ).

Lemma 0.1%9 For each formula ¢ of set theory:

M° E(¥x) (3y) (Yu e x) [ (@v) ¢ (u,v) » (v e y)¢(u,v) ]
Proof: Let x ¢ IIB. The function Fu(B) = z B [o(u,v)]
v € IIB

is eventually,constant; by 0.18, for each

u e dom(x).

This enables us to define the function:
g(u) = inf [ o: ¥R > a, Fu(B) = Fu(a) ] for

each u ¢ dom(x). We may write:
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L g [e(u,wv] = I B: I ¢(u,v) 1T.
v € M v e M
“g (u)
Following 0.17, we let dom(y) = (u ]M[B(u)
u £ dom(x) g
= Iﬁs , where v = sup g(u), and we set

u € dom(x)
y(z) = 1 for all z ¢ dom(y). For a chosen
X € IMB, we have constructed a set y ¢ IIB
such that for each u & dom(x):

I (&)d(u,v) - (& € y)o(u,v) ]

= - I o Ietuw o+ T oo [e(u,v)]

v e M vV € Eﬁv
- - I G letwwl + I oo [é(u,v)]
veM vV € Mg(u)

= 1.

Therefore, for each x ¢ IMB there exists y ¢ IIB

satisfying:
[ (W e x) [ (3)6(u,v) > (v e y)o(u,v) 1T
= I [ =x(u) + [(a&v)¢(u,v) > (A € y)o(u,v)]]
u £ dom(x)
= I ( ~x(u) +1) =1 . The result
u ¢ dom(x)

now follows.

The above lemma validates one form of the Axiom Schema
of Replacement. It is well known that the Axiom Schema of
Separation is a logical consequence of the Replacement
Axiom. We could infer then, by way of 0.14, that the Axiom
of Separation also holds in I{B. The following lemma is a

more ﬁseful statement of the validity of the Separation
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Axiom. 1Its proof is a basic calculation, so in view of the

above discussion we will omit it ( see [9], p. 55 ).

Lemma 0.20 For each x ¢ IﬁB and formula ¢, there is a set

Y € IMB satisfying: dom(y) = dom(x) , and:

[ (zevy)(zexsoz) )l =1,

I (¥z ¢ x)( ¢(z2) » 2z ey ) 1 1 .

The main application of the above lemma is in the

next result.

Lemma 0.21 m® F (¥x)(@y)(Wu)(ue x >uey)
Proof: Let x, u ¢ EIB. From 0.20, there exists v ¢ IIB
satisfying: dom(v) = dom(x) , [ v=uh x] = 1.

For each t ¢ dom(x) we have:

I tevI=0¢teuleltex] ,
thus, Ttevl <TtexI .
Following 0.17, we define y ¢ IIB as follows:
dom(y) = { z : dom(z) = dom(x), t & dom(x)

Itezl <Ttex?} ,

and y(z) =1 for z ¢ dom(y). We know that y # B
when x # B, since v ¢ dom(y). Furthermore:
luexl =10u cvx‘]-ﬂ v=unxIl <Tu=v1l,

so that:

[l uvex]1 < ) lu=zl=L0ueyl.
Tz g dom(y)

on the other hand:
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‘Tuey 1= | I z=ul
-z £ dom(y)
(1) S I z=ul-[lzecxl ,
C z ¢ dom(y)
since z ¢ dom(y) implies [ ze x 1 =1 .
0.11 gives (i) < I luexl=0ue x 1.
z ¢ dom(y)

Given any x ¢ IIB, we have produced a y € IIB

satisfying lue x 1 = [Tuey 1, for each

u € IMB. The result now follows.

"Lemma 0.21 establishes the validity of the Axiom of

Power Set in IMB.

The Axiom of Infinity may be validated by various stra-

tegies. Jech sketches a recursive construction of an in-
finite set in IIB ( [91, p. 56 ). Requiringvslightly more
background is Rosser's proof that'Ikg is infinite B‘= 1

( [171, p. 77 ). At this point we quote a general theorem
that yields the immediate validation of the Axiom of Infin-
ity, as well as that of the Null Set Axiom.

¢(xl, .o ,xn) is a bounded formula of set theory if

each of the quantified variables of ¢ are restricted to one

of the sets x PX, 1 €.9. (¥x ¢ a)(dy ¢e bY)( x e vy ).

l,' e o0

Theorem 0.22 If ¢(xl, e ,xn) is a bounded formula

of set theory, then:

MBI=¢(§<1, cee X)) AEE M §(xg, ...

Proof: This follows from our Corollary 4.14.

P X
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For an elementary proof, see [25], p. 127 .

" Corollary 0.23

(a) MPEF @Ex)(x e w) & (Vx € 0) (@y € 0) (x € y) .

) MPE (¥x e f)(x # x ) .

The remaining lemmas of this series culminate in the
validity proof of the final axiom of ZFC, namely the Axiom

of Choice.

Definition 0.24

Let u e Band u# 0 . { ug: B eI} is
a partition of u if L u, =u

B eI B

, and

uY'us

0 for vy # § (I GII , I € M),

Lemma 0.25 Let { u

g B € I} be a partition of u ¢ B,

u# 0. Let { tB : Bellte nt, and I ema ,
I ¢ M. Then there exists t ¢ IIB such that:
ug < [ t= tB 1 for each B € I

Proof:

Letting o = sup

p(tB) , we define t as follows:
B e I B
dom(t) = I{a+l ’
t(z) = L u,*t_(z)
Bel B B

An immediate consequence is that for each B ¢ I

B - . = L)
and each z ¢ I“a+1 : uB tB(z) = uB t(z) .
This fact gives us two calculations:
(1) uge ( -t(z) + [ z ¢ to 1) > [ugs -t(z)1+[ugety(2)]

= [uB' —t(Z)]+[uB° t(z)]
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(11)  uge (-tg(z) + I zetl)>[u

8 ¢-tB(Z)]+[uB't(Z)]

B

=_[u8'-t8(;)]+[u8't8(z)]

=uB .

Employing (i) and (ii), we conclude:

[ t-= tg B> uB'H t =ty J

> u.e i u.*(-t(z)+ [z ¢ £, 1)
- B z ¢ M° B ' B
. I uB-(-tB(z)+ﬂz e t 1)
zZ € dom(tB)
>ug

In satisfying the above lemma IIB is said to be a com-
plete Boolean-valued structure ( see [25], p. 62 ). The
t in Lemma 0.25 is unique in the sense that if t and t'
both satisfy the Lemma, then [ t = ¢'1 =1 .

The next lemma is known as the Maximum Principle as

it states that Boolean suprema in EIB are in fact maxima.

Lemma 0.26 For each formula ¢(x) of set theory there exists

t e M2 such that [ (Ax)p(x) 1 =0 ¢(t) 1 .

Proof: Let u=0[ (Ex)¢(x) 1 = y. B I ¢(x) 01 .
, ' x £ M

Without loss of generality, we assume u # 0 .
It follows that for some t, we have:
u, =0 ¢(£x,) T >0 .

The sequence { tg 8 < o} e MP is constructed
inductively. If u- il -u > 0 , we may
y < B

pick tB £ IIB such that:
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0<u, =10¢(t) D] <u T -u ,

u

B

by virtue of the fact that AC holds in M, and
that B ¢ M. A second consequence of this fact
is that B has a cardinality in M, which allows

us to conclude that an ordinal o ¢ GI{ exists

such that L uB = u . By Lemma 0.25 there
Bo< a

is a t ¢ EIB such that: uB

1.1 b (tg) I <0 ¢(t) 7,

<[ te tg I, for

B <o . Soug-= It = tg

for each B < a ; and u = 2 u

B < a B

<z B [ ¢(x) ] =u . Henceu=10 ¢(t) 1 .
Xx e M

<@ ¢o(e) I

Definition 0.27 For x ¢ MMB, we write sup(x) for [ x # 21

= )3 x(u) .
u € dom(x)
Before entering into the validity proof of the Axiom
of Choice, we must briefly review the property of function-

hood in IIB. By induction, we know that elements of DEB

B look like

are functions in M. What does a function in M
from the point of view of M ? First, a function is a
special set of ordered pairs. But the pair (x,y) is foreign
to M~ since it has no domain in I@B or range in B. Just

as we have defined the Boolean-valued singleton ( p. 17 ),

we may define Boolean-valued pairs.

Definition 0.28 For each x, y € IIB:

(a) {x,y}° = {x,y} x {1}
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B Gy = xR Gy P

Notice that {x}P ='{x,x}B .
The definition of a Boolean—valued.function parallels

the usual notion of functionhood.

Definition 0.29 f ¢ IIB is a Boolean-valued

there exist u,v ¢ IIB such that:
(a) - dom(f) « { (x,y)B: X eu, yevl}.
b) [ (euwildewl (x,)Z ¢ £11
=1 .
(¢) if (x,v)°, (x,y")2 e dom(f), then:
Lx,v)2 e £+ [(x,y)P e £1 <0 y=1y"1]

(d) f(w) € B for each w £ dom(f) .

(a) and (d) above provide that f € M2, [ f is a func-

tion 1 = 1 iff f satisfies (b) and (¢). [ £: u~> vl =1
iff £ satisfies (a) and (b). Definition 0.29 is thus equi-
valent to the condition:

[ £f is a function & f: u~>v il =1 .

Lemma 0.30 (a) E'{x,y}B = {x,y}1 =1
(b) [ (X,Y)B = (x,y) 1 =1
© [ (x,y) = (x',y) 1 =101 (x,)° = (x',y")°1
(@) [ (x,y) eul =1 x,y)2 e ul .

Proof: (a) is trivial when we interpret it as:

I z-e'{x,y}B++ (z=xvz=y)]=1 .

The others follow from (a) via the early lemmas.
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Now it is possible to freely exchange (x,y) ( unnat-
ural in E{B ) with (x,y)B ( natural in IMB ) in express-
ions like (d) ébove. This will be exploited in the next
proof, as ordinary pairs are less cumbersome to use than
their Boolean counterparts.

We recall that £ is a choice function for a nonempty

set x-., if dom(f) = x , rng(f) « x., and £(z) € z for

each z e x , 2z # 80 .

Lemma 0.31 M° E (¥x) [(x# @) > (@y)(y is a choice

tion for x )]

Proof: Let x € IIB. For each z € dom(x) we use the

Axiom of Choice in M and Lemma 0.26 to pick

t, € M® such that: sup (z) < ﬁ t, €z 1.
Let y € IEB be defined:
dom(y) = { (z,£)2 : z € dom (x),
t=t, I (z,tz)B) = x(z) , for

z € dom(x) .

Then let ¢(x,y) be:
(¥vz) [ (zex &z #P) > (Et)( t ez
s (z,6)2 ey ) 1.

Using Lemma 0.30 and others, we calculate:

I ¢(x,y) 1 > I [ -x(z) + ( -sup(z)+x(z)-
zeIﬁBi
sup (z)) ] = 1.
Now we will show [ y is a function @} =1 .

Actually, only part (c) of Definition 0.29
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needs demonstration.
Let g be the function in M defined by:
dom(g) = dom(x) ; g(z) = tZ P

i.e. g is the choice function on dom(x)

described above. g is extensional, i.e.

(1) ¥z € dom(x), [ z =2z'1 < I g(z) = g(z") 1 .
The verification of the above involves an
elementary applicaton of 0.9 (b) and 0.11 .

For each z £ dom(x) and t ¢ IIB, we have:

[(z,6)%ey 1 =] v( (z',9z"N)P1z,08 = (z',9(z') "1
_ z'e dom (x)

= 3z x(z')0(z,t) = (z',9(z")] (by 0.30)
z'e dom (x)

= T x(z'")s [z =2' 1[I £t =g(z') 1
z'e dom (x)

< I x(z")[g(z) = g(z")]1-[t = g(z")1
z'c dom (x) ( by (i) above )

<Tg(z)y =t1 .
Applying this calculation, we conclude:

[(z,0)Beyl-I(z,t)Beyl<lg(z) = tl-Ig(z) = t'I<it = £'1 .

This validation of the Axiom of Choice in IﬁB concludes
our partial proof of Theorem 0.15 .

Our attention now turns to Corollary 0.16 . Is IMB a
model of ZFC, according to our convention on p.7 ? From
the beginning we have deliberately confounded the distinction
between IMB and its universe, by neglecting to invent a sep-

arate symbol for the latter. Neither have we drawn attention

to the membership relation for IIB. Our unconventional
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notion of validity tends to further obscure the matter.

IIB is clearly a set in X: II% e K; if IIE e K,

then I{§+l e IK; if Iﬁg £ IK for each B<a, whereais a limit
. . . B R .
. : - @ =
ordinal in M, then B%& EIB € K; and since O, ord n:M,
we have B = U M2 e K .
<
o SII

IIB has a membership relation EB, which we may define:

B = x eB y iff z y()*l u=x1 =1, and this
u € dom(y)

relation satisfies ( via Theorems 0.14 and 0.15 ) the the-
orems of set theory. Of course, we have been refering to
EB as ¢ from the beginning, to simplify our notation.

This leads us to another problem: B E x = y does
not necessarily imply x = y in KX, i.e. IIB has a different
equality relation thén K. This is éasily resolved, if we
are willing to further complicate our notion of model by
relegating the symbol '=' to the status of a predicate con-

stant. In this case, W = (N, ) is a model of set

NP

theory if N is a set, is a binary relation on N satis-

NN
fying the axioms and inference rules of first order predi-
cate calculus with identity, etc. , .

This augmented notion of set theoretic model clears
up the problem. Both IM and IIB aré easily construed as
models of this sort: M = (M,=,qﬁM2) , m® = (IMB,=B,8B),
where IEB symbolizes both the model and its universe, and

=B ana P are definea recursively ( as in 0.6 ). Following

v .
this convention, Theorem 0.22 tells us that is an embed-
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ding of M into IIB. In particular:

(a) M°k x = iff MEx=y .

K< K<

(b) MP k% B iff MbExey .

Our study of IEB; though not complete, is sufficient
for the comming use we are to put it to. We will come to
see the IIB construction as the intermediate stage of a
larger process. Moreover, the issue of whether IIB fits
one of several feasible notione of modelhood will have

essentially no impact on the work to come.

The remainder of this section deals with the extension

of the model M to a larger model that is related to IIB,

but that fits in every way the criteria of modelhood given

on p. 7 .
Definition 0.32 (a) A subset G of a Boolean algebra B
is an ultfafilter if:
(i) 0 g G .
(ii) x, v € G implies x°*y € G .
(iii) x € G, vy > x implies y ¢ G .
(iv) ¥x € B, x € G or -x € G .
(b) G« B is an M-generic ﬁltrafilter
if, -in addition to the above, G satisfies:
(v) Ae G, A e M implies IA & G .
G is just a filter if it satisfies (i) - (iii) above,

G is a proper filter if G # B. Condition (iv) is equivalent
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to saying that G is a maximal proper filter, i.e. one that
is not properly included in any other proper filter.

A useful equivalent to 0.32 is the following.

" Lemma 0.33 An ultrafilter G on B is M-generic iff for each

partition A of u € G such that A ¢ M, there

exists b € B such that A N G = {b} .

Proof: Let A B, A € M, then G is M-generic iff:
(1) IIA £ G implies A & G ..
We write: A' = { -a: a e A } .

Since G is an ultrafilter, we have:

A ¢ G iff -(IA) e G iff ZIA' £ G .
Similarly,

A#G iff (daed)( agG ) iff

(Facd) (-acG) iff (FacA')( acG) .
Hence (i) is equivalent to:
(ii) IA'e G implies (JaeA')( aeG) .
Given A', by simply taking the supremum of the
a's which satisfy (ii), we arrive at a unique

beA'N G , with no essential change in A'.

Definition 0.34  Let G be an M-generic ultrafilter on

B. By transfinite induction on p(x),

i, of M" by G:

(@) i,(0) =0 .

(b) i (x) = { igly) @ x(y) € G o
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We usually write 'i' for i, , dropping reference to

G

G when it is understood.

" Definition 0.35 M [G] = { i(x) @ x ¢ IMB } is called

G is an M-generic ultrafilter on B.

As seen below, the notation M [G] suggests ( as in

field theory ) what it should.

Theorem 0.36 M [G] is the least model of ZFC exten-

ding M and containing {Gl} .

The situation is summarized in the commutative diagram

below:

inclusion

At this point we will only show part of 0.36, i.e.
that M{[G] is a model of ZFC extending M and containing
G as an element. This will be done in the next series of
lemmas, ending with 0.40 . The minimality of MI[G] is es-
sentially a consequence of our Lemma 5.5 . [9], p. 59 gives
another proof using absoluteness, which would be almost un-

changed in our system of models.
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" Lemma 0.37 For each x ¢ M, i(x) = x .
Proof: Induction on p(x) :
i(0) = i(0) =0 .

v

i(x)

{i(y) : x(y) e G}
={y: ;(;) e G}, as p(;) < p(;) ,

={y:yex1}, asx(y) =1¢G,

= X .

We define the canonical generic ultrafilter G on IIB:

dom(G) = { x : x e B} ; G(x) =x, ¥ ¢ B .

G belongs to IIB by definition.

Lemma 0.38 G ¢ M [G] .

Proof: i(G) = { i(x) : G(x) € G }
= { i(x) : x € G}
=G .
Suppose X € IIB r X € M[G], and i(X) = x . Then we

S
say that X is a name for x. For example, x is a name for

Xx. and G is a name for G.

Lemma 0.39 If x, y are names for x, y ¢ MI[G], respectively

then: X ey iff Ilxeyl G,
and x=y iff [ x=y1 eG.
Proof: (a) Given that x e y, we show [ x ¢ y 1 ¢ G.

If x € y, then there exists z, ¢ dom(y) such
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that y(z,) € G and i(z,) = X . Proceeding by
transfinite induction on ( O(g),Q(X) ), we
assume by induction hypothesis that E'zo =‘§ 1 G,
as p(z,) p(y) . Hence y(z,)* Iz, =‘X 1 ¢ G,
and since [ x e'z_]’i y(zo) el zo = x1, we

have that [ x e vy 1 ¢ G .

(b) For the converse of (a), see [9], p. 58 .

(c) Given that x =y, we showl[ x =y 1 ¢ G.
Since i(y) = £ i(z) : y(z) ¢ G} N
= = i(x) ,

{ i(z) : x(z) e G}
we have: |
¥z ¢ M°, y(z) e G iff x(2z) € G .
Hence, for all z e dom(x):
(1) (x(z) £G) » (-x(2) ¢ G )
+ (-x(z) +T zeyl eG),
(ii) (x(z) e G ) » (i(2) ey )
(I zeyl €G)
(as p(z) < p(x) )
+~ (=x(2z) + [ 2z eyl € G) .
Similarly, for all z ¢ dom(y):
(1i1) (y(z) £ G ) » (-y(z) + [z e x1l €G) ,
(iv) (y(z) e G) » (~y(z) +T z ¢ xI €6G) .
From the definition of I x=y0, (1) - (iv)
above, and the genericity of G ( 0.32 ), it

follows that [ x = y 1 ¢ G.
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Proof:
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(d) The converse of (c).

Given that [ x = y'J] € G; for all z ¢ dom(x):

'x(z) € G implies [ z € y ] € G, because G is

an ultrafilter and -x(z) + [ z eyl e G.
So, if x(z) € G ( i.e. i(z) € x ) then [ z e y 1
€ G, and by induction hypothesis i(z) € y, as
p(z) < p(x) .
For the same reason, for all z ¢ dom(z):
y(z) € G (‘i.e. i(z) e y ) implies [z ¢ x] € G,
which by induction hypothesis implies i(z) ¢ x,
as p(z) < p(y) .
We conclude that for all z e dom(x) v dom(y)
such that x(z) € G and y(z) € G:

i(z) ¢ x iff i(z) €y .

Hence, x =y .

If Z{-l’

e M[G], and ¢ is a formula of set theory, then:

B
;X € M~  are names for xX,, ... ,X
n . 1 n

MGl F ¢(xy, -.. bx ) iff _[[7_'¢(xl, -ee 4x )1 € G

This follows from the previous lemma by induc-

tion on the complexity of ¢ .

0.16 and 0.40 prove that M [G] is a model of ZFC.

0.39 implies that M [G] is standard, and it is not hard to

show ( using 0.40 ) that M [G] is transitive. Because i

G

is defined by transfinite induction over GII e K, we have
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iG € K. The Axiom of Replacement thus implies that M [G]
e"XK . The other details of the diagram on p. 33 follow
from 0.37 and 0.38 .

Sincg KX is transitive, our diagram seems to indicate
that G ¢ K. All along however, our tacit assumption has
been that M-generic ultrafilters do exist. To make such
an assumption is equivalent to adding a very strong axiom
to ZFC. Martin's Axiom, which is a weaker and more reason-
able form of this assumption, may be invoked for this pur-
pose ( see [13] ), but we would like to avoid any further
additions to our fouﬂdations. We shall now show that the
foundations laid at the beginning of this section are enough
to provide the existence of an Ii—generic ultrafilter G in
K.

An ultrafilter Ha is said to be principal if it is of
the form { b e B : b > a }. Suppose that H, is M-generic.
Then 0.33 implies that there are no partitions of a € B in
M. Within M, a is an atom, or minimal non-zero member
of B ( even if B is in reality nonatomic, i.e. having no
atoms ). A similar argument shows that if an IM-generic
ultrafilter G belongs to M, then IIG is an atom of B. Since
we do not restrict our attention to Boolean algebras having
atoms in the sequel, we cannot rule out the possibility
that each M-generic ultrafilter G on B is non=-principal
and that G ¢ M. G, if it exists at all, may be highly non-

constructive.
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" Definition 0.41 Let F be a family of subsets of a Boolean

algebra B. A filter U on B is F-complete

if for each E € F such that IIE ¢ B:

Ec U implies IE e U .

There is an obvious redundancy in the above definition
if B is complete.

Two elements a, b € B are compatible if a*b # 0 . A

pairwise compatible subset of B is one whose members are

compatible with each other. It is apparent that filters
are pairwise compatible, and that each subset of a pairwise
compatible set is pairwise compatible. Below, we have a
trivial extension lemma which will be helpful in construc-

ting and extending pairwise compatible sets.

Lemma 0.42 If He B is pairwise compatible, then for each

b € B, either HY {b} or HU {-b} is pairwise

compatible.

If H is a pairwise compatible subset of B, then we can
enlarge it to the following filter:

J={zeB: z> I a, , a

e H .
“kx<nk }

k

By maximalization, we may further extend J to an ultrafil-
ter. This is expressed in the well-known Ultrafilter

Theorem below.

Theorem 0.43 Each pairwise compatible subset of B is

contained in some ultrafilter on B.
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Since the above theorem follows from AC, it holds in

K, and ultrafilters are plentiful in XK. The difficulty

of the existence problem we are considering must lie in

the property of genericity.

" Theorem 0,44

Proof:

Given a countable family F of subsets
of a Boolean algebra B, and an F-com-
plete filter G, on B, there exists an
F-complete ultrafilter G on B extend-

ing G, .

Let F* = { A eF : -IIA # G, } . Since

F is countable, we may enumerate F* =

{ AL, ... 'An’ ... } , and define Pn =

H(An) . By definition, Pn # 0 , for
each n. F* has the following property:
¥n, ¥Ya e G, , a-p #0
since asp = 0 implies a < ~P, but
-P, £ G, . Because of this, we know
that H, = G,y {p,} is pairwise compat-
ible. Having defined Hn and assuming
that it is pairwise compatible, we use
0.42 to define Hn

41 @s H v {pn} , if

this is pairwise compatible; or Hnu'{-pn}

otherwise. H = .y Hn is thus a pairwise
n

compatible set containing G, . We ex-

tend H to an ultrafilter G by way of 0.43.



40

G is clearly G-complete.

Theorem 0.44 is an extended form of the Rasiowa-Sikorski
Lemma ( c.f. [25], p. 29 et seqg. ). While the usual form
of this result is sﬁfficient fpr our present purpose, we
will need the stronger hypothesis of 0.44 in Section 4.
It may seem natural to release F from the countability re-
striction, but this cannot be done without making further
restrictions oh B ( e.g. Martin's Axiom [9], p. 99 ). It

ground model 1IMI.

Corollary 0.45 If M <« K is a countable model of ZFC,

and B is a complete Boolean algebra in
M, then M-generic ultrafilters on B

exist in XK.

Proof: G is M-generic iff G is E’I{(B)—complete. Since
E’Iﬁ(B) is countable, Theorem 0.44 yields the

result.

This concludes our study of IEB and M [G] as abstract
objects. In the sequel we will work with particular ex-
amples of these coﬁstructions, and virtually all of the
material in this section will find application.

By now we are acquainted with the use of a generic ult-
rafilter as a type of decisibn process capable of evaluating

any set theoretic statement regarding its validity in M [G], .
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In practice, many of the properties of II[G] will be demon-
strated by Boolean-valued calculations involving generic
ultrafilters. We will also find in the sequel that generic
ﬁltrafilters can be used to reflect a number of algebraic
and analytical notions. They can be used in certain situ-
ations to provide direct answers to purely non-logical

problems.
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" Section 1 : The Lebesgue Measure Problem and the Axiom of

" Choice

The Axioms of Pairing, Unions, and Infinity ensure
that all standard transitive models of ZF contain the set
of natural numbers w ( see [24],p.129 ). Well-known
methods ( e.g. Dedekind cuts ) of generating the rational
and real numbers are easily.duplicated in these models
( see [16],p.271 ), however the set of Dedekind cuts gen-
erated from w may vary from model to model. It is possible
thus to express statements of real analysis as formulas
in ZF. As the concept of Lebesgue measure is definable
in this context; we may view the Lebesgue Measure Problem
from the vantage point of ZF by asking whether models of
ZF exist which satisfy the statement:

LM All sets of reals are Lebesgue measureable.

In the event that a model IE does exist such that
E F LM , we immediately conclude that E [ AC , for AC+ |LM.
For an analyst, our model IE might be unattractive as there
is no guarantee that certain bésic prerequisites of analysis
hold on IE. Not only are the non-constructive principles ,
such as the Hahn-Banach Theorem, derived from some form of
AC, but so are some commonplace facts like the regularity
of wy ( countable unions of countable sets are countable ).
Moreover, the presence of AC in some ( possibly weaker )

form is necessary to provide acceptable properties for
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Lebesgue measure in IE .
There are two main characterizations of the basic top-

ological notions of metric spaces:

(a) e-9¢ criteria.;

(b) sequential limit criteria .
The definitions of a limit point and the closure of a set,
as well as continuity of functions have obvious versions
in (a) and (b). If our model under discussion satisfies
the Heine-~Borel Theorem_( which may not be the case; see
1.2 ), then versions in (a) and (b) exist for the defini-
tion of compactness of a set. Using AC we can prove the
equivalence of both versions of all the definitions men-

tioned above. What happens if our model does not satisfy

AC ?

Proposition 1.1 - For each of the following notions there
is a model of ZF not satisfying AC in
which versions (a) and.(b) of said no-
tion are not equivalent.

(i) " limit point of a set.
(ii) closure of a set.
(iii) continuity of a function.
(iv) compactness of a set.
" Proposition 1.2 For each of the following statements

there is a model of ZF not satisfying

AC in which said statement holds:
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(1)  w; is singular.
(ii) the set of reals IR is the union
of countably many countable sets.
(iii) there is an infinite set of reals
having no countable subset.
(iv) there is a subspace of the reals
which is not separable.

(v)' the Heine-Borel Theorem is false.

See [10], pp. 141 - 4 for a demonstration of the above
results.

As far as the needs of the analysis and topology of
the reals are concerned, the appropriate weakening of AC
is the following statement, known as the Countable Axiom'

of Choice.

ACw Every countable collection of nonempty sets has

a choice function.

If E F 2ZF + AC, then versions (a) and (b) of each of

(i) - (iv) in Proposition 1.1 are equivalent in IE .  Also,
none of the statements (i) - (v) in Proposition 1.2 can
hold in any model of ACw . In fact, we have the following
result.

Proposition 1.3 If E | Z2F + AC  then each of the foll-

owing statements must hold in IE:

(a) the Heine~Borel Theorem
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(b) every subspace of a separable metric
space is separable,.
(c) Lebesgue measure exists and is count-
tably additive.
(d) the family of First Category sets

is countable additive.
Proof: See [10], p. 21 - 2, p. 29 .

The Baire Category Theorem does not depend at all on
AC.

ACw does not imply the full strength of the general
Hahn-Banach Theorem; the McAloon model of Section 6 verifies
this ( see [23], pp. 2 - 3 ). However, ACw easily yields
the Hahn-~Banach Theorem for separable Banach spaces.

Sincé the family of Borel sets will have a special
significance in later constructions, it is worthwhile to
examine the relation it has with AC. There are two usual

definitions for this family, B.

" Definition 1.4 (a) B is the smallest oc-algebra of

sets of reals containing the open sets.
(b) B is the collection of sets hyper-
arithmetic in some real ( see [21], p.
179 ); or, by a theorem of Souslin:

B is the collection of A} sets
in the Projective Hierarchy ( see [21],

p. 185, cf. [11l], v.l, p. 453, et seq. ).
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As (b) is the type of definition we will rely on, wé
need ACw at least, in orderAto show that IBB 1is closed under
countable unions ( we must gigé'a code for each of count-
ably»mahy Borel sets ). Without AC, (a) and (b) above are
‘not generally equivalent; however ACw is strong enough to
guarantee the equivalence of (a) and (b), and- show ( se?
[10], P. 22 ): |

(i) B = v ]BOL where B, the open
a<w; '

sets, and Hﬂx is the set of all count;
able unions of elements of U B and
. , v<a

their complements.

(1\1) ]Bas .IB0L+1 ; Yo<w;.

It is evident that Acw'is a necessary and possibly
adequate form of AC as far as elémentary analysis and top-
ology are concerned. The gquestion now remains as to whe-
‘ther models of ZF exisﬁ.which satisfy.both LM and ACw .
Solovay has éhowﬁ that under a certain hypothesis the con-
struction of a‘model of ZF satisfying LM + Acw is possible,
using the techniques of . Sgctiqh 0 . Solovay's con-

struction is the subject of the sequel.
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" Section 2 : Some Model Theoretic Properties of Lebesgue

We shall define some types of set theoretic formula

from two syntactic hierarchies and develop some of their

model theoretic properties. Our first sour

ce of notation

is Kleene's analytical hierarchy ( see [21], p. 173 et

seq. ). Strictly speaking, this is a classification in

recursion theory of formulas of second-order arithmetic.

There is a natural translation of these formulas into the

first-order language of set theory, however.

Definition 2.1

The following is

A formula of set theory

, W
o < | Vkl, cee 4% €W

¢ is Il if:

)y , where y

is a formula whose only quantifiers are

of the form W ¢ w , or

formulas of ZF, known as the Lévy hierarchy

Definition 2.2

(a) A formula is I, =

bounded ( see p. 21 ).

(b) ¢ is I_ ., if ¢ = &
I .

n .
(c) ¢ is Hn+l if ¢ = ¥x
r_ .

n

. ZF ZF
(d) ¢ is Zn , resp. Hn

where { 1is Zn , resp. Hn

dy € w .

a syntactic classification of the

( see [12] ).

I, if it is

Y where y is

Y where y is

if ZR R ¢ <

°
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ZF

(e) ¢ is An , resp. An“ if ¢ is both

2 and II_ , resp. 2%F ana m?F .
n n n n

Let E, F be standard models of ZF with universes E,
F respectively. It is obvious that IE is a submodel ( see
[1], p. 21 ) of F if E <« F . For such standard models

satisfying this condition we write E ¢ ¥ . Let ¢ be a

formula of ZF. An assignment f of ¢ in IE is a mapping of

the free variables of ¢ into E; we write ¢[f] for the sub-
stitution of f(x) for each free variable x occuring in ¢.
We now define the fundamental model theoretic concept

of this section, the notion of absoluteness between stan-

dard transitive models of ZF. There are many notions of
absoluteness in the literature, Unlike the absoluteness
of Goedel ( see [7] ) or of Cohen ( see [3] ), the defini-
tion we use ( due to Shoenfield; see [4], pp. 85, 106 )
does not employ relativization of formulas to transitive

classes.

Definition 2.3 Let IE, T be standard transitive models
of 2F, and let E ¢ T .

(a) A formula ¢‘is‘absolute between IE

in IE :
E-F= ¢[f] iff T k= ¢[£f] .
(b) A term t is absolute between IE and

F iff the formula ( x = t ) is absolute
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between E and F , and x does not occur
in t;
(c) An operation D is absolute between
E and F iff the term D(u) is absolute

between E and T for each u'etdom(D) .

For the followihg sequence of lemmas let IE, T be

standard transitive models of ZF, and Ec T .

Lemma 2.4 (a) Atomic formulas are absolute be-

tween E and T .
(b) If ¢ and Y are absolute between IE

and F then so are |¢, oVy.

Proof: (a) and (b) follow from the definitions

of submodel and k , respectively.

If every formula is absolute between IE and F , then
F is obviously an elementary extension of E ( see [1],
p. 82 ). Since the models we will build are not elementary
extensions of the ground model, the problem of determining
whether a formula is absolute in this context is non-trivial.

Our purpose is served by a partial solution to the problem.

" Lemma 2.5 (a) Bounded ( Z, ) formulas are absolute

between IE and F .

(b) A%F formulas are absolute between IE

and TF ..
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Proof; (a) Either by induction on complexity
( [11, p. 478 ), or by way of Skolem
functions ( [4], p. 87 ).
(b) If ¢(k,y) is absolute between IE
and IF , then dx ¢(x,§j is preserved
under extension from IE to F , by def-
inition of F .
Hence ZiF formulas are preserved under -
the above extension ( i.e. they hold
in F if they hold in E ).

Similarly, ¥x ¢(x,§) is preserved
under restriction from IF to E . Hence
H%F formulas are preserved under the
above restriction ( i.e. they hold in

E if they hold in TF ).

It follows from (a) above and Lemma

ZF
1

IE and IF .

2.4 that A formulas are absolute between

Most of the fundamental concepts of set theory are ex-

pressible as AiF formulas, terms, and operators. These in-
clude: xcvy ; {x,v} ; (x,¥) ; (x is an ordinal) ; (suc-
cessorof x) ; 0,1, 2, ... ;3 (xXe w); (x=uw) ; the

ordinal arithmetic operations ; rank of x ; functionhood ;
range (x) ; domain(x) ; union(x) ( see [4], p. 81, et seq. ).
These concepts are therefore absolute between IE and T .

There are two notable exceptions: neither P (w) nor
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‘{‘x : rank(x) = o } are preserved under extensions. Since
. _ , ~ZF , .
both notions are Hl ;, We cannot expect the higher orders
of the Levy hierarchy to add much to our knowledge of ab-
solutness. Lemma 2.5 seems to be the best possible result
of its type; fortunately it is enough for our needs.
The following result due to Mostowski and Shoenfield

( see [20] ) establishes an important connection between

the analytic hierarchy and absoluteness.

Theorem 2.6 : In any transitive model of ZF: Hi for-
mulas are equivalent to AiF formulas.

Proof: See. [4],:p.. 160.

Corollary 2.7 Hi formulas are absolute between IE and
|

The assumption is now made that E [ AC -

Borel sets have a central role in the construction
ahead. It is imperative that we have some method of naming
and refering to Borel sets within the language of set theory.
The method we use is that of Gadél-numbering or 'coding'
the 2% Borel sets with number theoretic functions. Of the
many possible recursive coding procedures the foilowing,
due to Solovay, is simple and adequate. |

Let {ri} be an arithmetic énumeration of Q ( the rat-
ionals ). Let J be the following pairing function:

J(a,b) = 2%@2b + 1) .
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It is easily verified that J is one-to-one from w?

onto w~{0} , and is recursive.

Definition 2.8 (a) o codes [r;,x,] if:
a(OY = O (mod 3) ,
a(l) = i ,
a(2) =3 .
(b) Suppose oy codes Bi , 1 =0, 1, ...

then o codes (U Bi if:
i

a(0) = 1 (mod 3) and
a( J(a,b) ) = o (b) .
(c) Suppose B codes B, a(0) = 2 (mod 3),
and a(n+l) = B(n), then o codes
IR~B ( the complement of B ) .
(d) o codes B only as required by the

above cases.

Lemma 2.9 The following holds in IE :
(a) Every set coded by o ¢ w® is Borel.
(b) Every Borel set is coded by some o ¢ w® .

(c) If o codes A and o codes B, then A = B .

Each code gives a seQuential 'recipe' for a Borel set.
If a Borel set A with code o is used in the construction
of a Borel set B then the resulting code B for B will con-
tain o as a subsequence. The correspondence betWeen Borel

sets and their codes is clearly not. one-tosone.
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The recursive defihition of the codes ensures that
they are definable by a set theoretic statement. We will
continue to use recursiveness for this purpose.

If d codes a Borel set B we will use the notation Ba
for B. If, furthermore df:EI, and B € IE then we write Bil
for B.

Let {sh}»be a non-repetitive recursive enumeration of
the finite sequences of positive integers satisfying:

(a) s, = () .
(b) If S is an initial segment of Sy then
m<n.

For n > 0, Sy is nonempty and has length k, say. Let

s be the initial segment of S, having length k-1. Let

n*
. % - —_ 1

the final segment of S, be ny .. Then n*<n and S, S * (nk) .

Solovay (in [23]) constructs a code-generating function

% (a,n) such that if o is a code, then for each new ¢(a,n) is

a code.

Definition 2:10 ®(a,n) (1) = (a) o(i) § n=0 .

(by O ; n>0,
®(a,n*) (0) = 0 (mod 3)

(¢) &(a,n*)(J(n,1)) ; n>0
d(a,n*) (0) = 1 (mod 3)

(d) o(a,n*)(i+l) ; n > 0 ,

(e) ®(a,n*) (0) = 2 (mod 3)

\

The purpose of this function is to 'decode' o ,‘yield-
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ing the codes of the component Borel sets from which B,
may be constructed. Let B ¢ W’ . We define>§ e ¥ via
the finite sequence sz .\ = (B8, ... ,B(n-1) ) . The

following Lemmas are due to Solovay.

‘Lemma 2.11 Define ¢,(a) as (YBew”) (Anew) [® (a,B(n)) = 0] .

Then: E [ ¢,(a) < ( a codes a Borel set ) .

If o codes a Borel set and x € R , define:

]{l ; X € B@(a,i) .

0 ; otherwise .

y(i) = -

The previous lemma guarantees the existence of B@(a i) -
14

Lemma 2.12 There is an arithmetic formula ( see [22],

p. 160 ) ¢4(a,6,x) such that ¢4(a,8,x) > B=y .

Lemma 2.13 Let x €eIR . There are Hi formulas ¢2(a,x) ,

¢3(a,x) such that:
(a) E E ¢2(u,x) < ( o codes a Borel set and
X € Ba ) .

(b) E E ¢3(a,x) < ( o codes a Borel set and

x £ Ba ) .

Proof: (a) Define ¢2(a,x) as the following:
(VBew”) (¢, (a,B,x) > B(0) = 1) & ¢ (a) .
¢2(a,x) iff vy(0) =1 , by Lemma 10, and v(0) = 1

iff x € B iff x ¢ Ba , as ¢(o0,0) = o .

®(0,0)
(b) Define ¢3(u,x) as:
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(¥Bew™) (¢, (a,8,%) > B(0) = 0 ) & ¢, (a) .
¢3(ﬁrx) iff y(0) = 0 , by Lemma 10, and Y(0) = 0

iff x ¢ B iff x € B .

3 (0, 0)
Both of the above formulas are Hi .
" Corollary 2.14 There are H} formulas ¢5(a,8) and ¢6(a,6)

sﬁch that:
(a) E k ¢g(a,B) < (B, = By ) .

(b) E E ¢(a,B8) < (B, =By ) .

Proof: : Define ¢ (a,B) as ¢;(a) & ¢,(B) &
(vx € R) ( ¢5(a,%) v 6, (B,%) ) .
Define ¢6(u,8) as ¢5(a,8) & ¢5(B,u) .
Quantifying over the reals is permissible
in the definition of ¢5(u,B) . We could
code each real by its binary expansion,

thus ensuring that ¢5(a,8) is Hi .

If ¢(x) is Hi

then ¢(a) is absolute between IE and F .

,and o is a code belonging to B « T

Affixing subscripts and superscripts ( e,g.JREE) to
emphaéize that the construction of a defined terﬁ is car-
ried out within a specified model, we summarize the above
results in the following theorem. From now on we make the

additional assumption that F [ AC_ .

" Theorem 2:15 For d,B e(mw)E:and xeR_, the following

o

notions are equivalent in E to formulas
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absolute between E and TF :
(a) Q codes a Borel set.
(b) o codes a Borel set and xeB .
(c) d,B code Borel sets and B, < BB .

(d) 9,8 code Borel sets and Ba==B8 .

We may define a one-to-one map # by: #Bf: = B§‘.

Theorem 2.15 indicates that # maps the Borel sets in E onto

a subfamily of the Borel sets in F , which we call the Borel

sets rational over IE.

F
o

" Definition 2.16 (a) BeF is rational over E if B = B

for some code ae:(ww)E:.

(b)y If {Bi} is a sequence of Borel sets

in T, {Bi} is rational over IE if there

is a sequence {o;} in E of codes a, in
r

IE such that B, = B, , for each icw .
1 OLi~

Solovay points out a redundancy in 2.16 (b), namely that
if the o belong to IE, then by ACw the sequence of these
codes automatically belongs to E.

From Theorem 2.15 we conclude:

Corollary 2.17 : For Be F rational over IE, B = #(BhIRE:)

# is natural in that the following diagram commutes for

Borel sets in IE :



........ k.
E ¥
Y
#l\]K'/ #,

where #l and #2 are defined as above, but between IE and

KX, and F and K, respectively.

Definition 2.18 ¢(x,B ) is #-absolute if for all assign-

ments £ in IE :
E F ¢[f] (B) iff F F ¢[f] (#B)) .

( Similarly for terms and operations. )

Lemma 2.19 (a) Boolean set operations are #-absolute.
(b) Infinite Boolean set operations are
#-absolute.
(c) Let A,B be Borel sets in IE, then A c B

and A = B are #-absolute relations.

Proof: By Boolean set operations, we mean those on the
field of sets of reals. Let {Bi} be a sequence
of Borel sets in IE with codes oy v then vy de-
fined by: vY(0) = 2 (mod 3); v¥(1) = 1 (mod 3);
Y(3(i,0)+1) = 2 (mod 3); Y(J(i,3)+1) = o, (3-1) ,
for j > 1; is a code for both 'G}Bi in E, and
~Q#B, in F. By definition: # G}Bi = 'G}#Qi ,
and (b) follows for the case of infinite inter-

. section. Codes for complementation and infinite

unions are covered in Definition 2.8 (b) - (c).
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- Thus (b). (a) follows from (b). . Theorem 2.15

(e - (d) imply (c).

Of the numerous topological notions that are #-absolute,

the two most basic are all we need here.

Lemma 2.20 (a) ( B is open ) is #-absolute.

(b) ( B is closed ) is #-absolute.

Proof: Let {[r. i o ]}k comprise the closed rational-
k k -

endpoint intervals containing B. Define Yy as:

¥(0) =2 (mod 3); v(1) =1 (mod 3);

i
Hi

Y(J(k,0)+1) 2 (mod 3); v(J(k,1)+1) 0 (mod 3);

vy (J(k,2)+1) i y(J(k,3)+1) =

k ’ I 7

then Y codes the closure of B. B is closed if
B=2B-= BY . (b) follows from Lemma 2.19 .

B is open if R-B is closed. (a) follows from

(b).

With similar arguments ( [23], p. 30 ) we can show

that the intervals are rational over IE.

Lemma 2.21 Let a, b ER g » then #(a,b) = (a,b);

#la,b] = [a,bl; #{a} = {a} .

We now have all the tools necessary to explore Lebesgue
measure in this model theoretic setting. Our concept of

Lebesgue measure u is that of an outer measure

[o0]

u*(E) = inf { 2,(b -a) : YU.(a,b)>E, b >a }
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restricted to the o-~algebra of measurable sets.

" Lewma 2,22 If IE %‘Acw then for each Lebesgue measurable

set E in E there are sets(3€§56 and N such

that E F E = G~N & p*(N) = 0 .

Proof: We take E measurable to mean that for each
g > 0 there is an open set 0€ and a closed set
* ; < e
F8 such that F€ c E Oe sand u (0£~F€) € «

By AC we may pick such a pair (OL/n 7Fl/n)

for each n € w . Let G = N o . Then de-
'n 1/n °
i = G-~ u*
fine N G~E . ¥n g w, (N) < u* (Ol/ / )
< 1/n .

We now look at various cases of #-absoluteness for

Lebesgue measure.

Lemma 2.23 Let B be aﬁgg—set in I, then ”E:(B) = UE,(#B) .

Proot: The equality we wish to prove is expressed in,
K , so our point of view is that of the diagram

following Corollary 2.17 .
n .
{a) Suppose B =‘m&& (am,bm) , then from Lemmas

2.19, 2.20, 2.21, the definition of Lebesgue
measure, and the naturality of #,

u(B) = e l(bm - am) is #-absolute, and

g (B) = Ui (#B) in K.

(b) Let B be any open set. Enumerate the sets
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of form in (a) above: {a } . Then:

H(B) = As;lp { u(;An) : Anc: B\v}

is sup of a countable collection of #-absolute

reals, hence it is #-absolute.

(c) Let Bs:-&%i . We need only look at the
ation: = N .

represectation: B nOn ; 0n+l c On . By

a well-known property of p :

u(B) = igf u(on)

which is #-absolute. The result follows.

The next -theorem is the main result of this section.

Theorem 2.24 Let o code a Borel set, then ( u(Ba)=0 )

is #-absolute.

Proof: ' Our strategy is reminiscent of Lemma 2.5..
(a) «( u(Ba) = 0 ) 1is preserved under
the extension IE - IF . For B8 € w® let

. 2

;%(B) hold iff ( B codes afgglset ).
From Lemmas 2.19(b) -and 2.20(a), we in-
fer that‘;%(s) is (#-)absolute. From
Lemma 2.23: (;%‘B) & u(BB)'= 0 } is
#-absolute. Using Lemmas 2.4 and 2.19(c)
we see that if ( u(Ba)'= 0)

0 -
« 33 ¢ 0"( gg(B) & B < By & u(By) = 0)
holds in E , then by definition of [,

it holds in IF. Thus Yo ¢ wﬁgz‘



L (B ) = O., if o is

a code.

(b) ( u(Ba) = 0 ) is preserved under
the restriction F » E. For B e w”

let /(8) hold iff ( B codes a closed

set ). Lemma 2.20 says//?B) is (#~-)ab-
solute. Sincej/ﬁB) +¢?6(8) , Lemma 2.23
implies that ((8) & u(By) = 0) is
#-absolute. If

(H(B) =0)

< ¥Bew”( (A(B) & By = B ) » u(Bg) = 0)

B
holds in F then by definition of |, it
holds inIE. Thus Yo ¢ W’

(Y

_ E, _ . .
W (B ) =0 > UIB(Ba y =0, if a is

a code.

The folilowing lemma of Solovay is a consequence of the

abovs theorem;
2
Corclliary 2.25 (a) Let B be a Borel set in IE, then:
g (B) = up (#B) .
(b) Let B be a Borel set in T rational
over IE, then:
up (B) = up (BOJRE)”..V
Proof: (a) Consider B as a measurable set; by

Lemma 2.22 B = G\N, where G issgg and
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N is null ( measure zero ). Note that
in this case N must be Borel also.

UE,(#G) - UEL#N) ( by 2.19 )

Mo (#B)

g (G) = 0 ( by 2.23, 2.24)

(B) .

H E ’ _
(b) follows from (a) and Corollary 2.17 .

The proof above might lead us to conjecture that the
result holds for B measurable. Our present dévelopment
offers no ground for this claim, and £he reason it doesn't
underscores the whole ratiomale of this section. Because’
the codes range over the set ww, we may express universal
statements about Borel seté as Hi formulas. Even if we
could appli codes to the measurable sets, their cardinality

R, v
would be too large ( 22 ) for this treatment. In such a
case we have no information regarding absoluteness, even

for simple formulas.
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" Section 3 ; The Random Reals

We assume the existence of a standard transitive ground
model M éf ZFC which is a submodel of X countable in K.
All our subsequent model constructions will be built from
M. Let IR denote the real numbers of K, and IB denote
the O0-algebra of Borel sets of reals in M. Let N denote

the o-ideal of Lebesgue measure zero sets in M.

Definition 3.1 B* = IS/ﬁiis the quotient algebra of

equivalent classes of Borel sets [A]

such that B ¢ [A] ( B = A (mod N ) )
iff w(A A B) = 0 ( A is symmetric diff-
erence ).

Proposition 3.2 B* is a complete Boolean algebra satis-

fyving the countable chain condition.

Proof: See [8], p. 67 . This proof involves

AC, but M [ AC, thus B* is M-complete.

E{mﬁ = IR M is countable, so most reals fall outside
it. A large portion of these extraneous reals have a spe-
cial property which is instrumental in the construction of

our generic extensions of M.

" Definition 3.3 E(%: is the set of those reals belonging

t0 no measure zero Borel set which is
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rational over IE.

For x € Izia we say that the real number x is random

"over IE-.. Since M is fixed we will write E{iﬂ as IR*, and

call the elements of IR * random reals. While it is clear

that there are no random reals in M. ( ﬁ({x}) = 0 ), the

existence of random reals is immediate:

Lemma 3.4 IR* is a Borel set having measure zero comp-
lement.
Proof: As M is countable we may enumerate the Borel

sets of measure zero, rational over M. Their
union is a Borel set of measure zero and equals

IRYIR *,

Of course IR* is not rational over M, and since

" Q € M, each random real is irrational. Solovay ( [23],
pp. 4, 33 ) remarks that the random reals are characterized
by. 'random' binary expansions: for large n, any block of

2n consecutive entries in the expansion contain approxi-

mately n zeros and n ones.

" Definition 3.5 Let G be an M-generic ultrafilter on

B¥: x,={r:re@, [ (r,») 1 eG}.

It is easy to show that x., is a (left) Dedekind cut,

G

and as such can be identified with the real: sup x b4

G ° G

tells us a great deal about the structure of G.
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into the ordinals.

" Definition 3.6 - (a) If a code Y ¢ w” satisfies

Y(0) = 0 (mod 3), define A(y) = 0 .

(b) If v(0) =1 (mod 3), let’

v;(3) = v(J(i,3)) and define

Aly) = sup(A(y,) + 1) .
: i
(c) If v(0) = 2 (mod 3), define

“A(y) = XA(B) + 1, where B(n) = y(n+l) .

Strictly speaking, the proof below is a transfinite

induction~on‘AI{ = A N M, which maps (w?) into Qn& e

M ;

but we omit the extra notation.
Lemma 3.7 Suppose B is a Borel set in M and G is an M-

generic ultrafilter on B*, then:

X, € #B 1ff [B] € G .

Proof: We set E = M, I = K, and define # as in the
last section. Let B = BY where v ¢ (ww)DI .

(a) Suppose y(0) = 0 (mod 3), then B-Y =

= #[r = #B .
Y

vy y@! Y’ Ty

X5 € #BY > ry(l) < X < rY(Z)
[rY(l)' o) ¢ G & (rY(z)’ o) ff G < [BY] e G .
(b) Suppose y(0) = 1 (mod 3), then B. = UB

- | Y i Vi
and #BY = kJ#BY by Lemma 2.19. By induction

i i
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hypothesis and filter properties;

XG € #BY X € L;#'B"i’ <~ Hi( X € #B.Yi)_
< di( [B,. ] € G) (as A(yi) < X(y) )
Yi . :

< [B,] €6 ( as JZL‘[BYi'] = ,[Byj )

(c) Suppose Y(0) = 2 (mod 3), then
BY = Ef BB , where B(n) = y(n+l) .
Xs € #BY<+xG £ #BB ( by Lemma 2.19 )

< [Bg] £ G (as A(B) < A(y) )

o =[Bg]l = [B,] € G ( as G is an ultra-
filter ) .

The result follows by transfinite induction
on complexity of codes. ( An argument

similar to that of Lemma 2.9 proves that

every code has a complexity. )

We can use Lemma 3.7 to establish a natural bijec-

tion between the generic ultrafilters and the random reals.

Lemma 3.8 x € R* iff x = x. for some generic ultrafil-

ter G .

Proof: (a) Let x € R*. Define G, = {(B1 : x ¢ #B} .

Let A,Be BB ; if A B (mod N) then x e #A

~ X € #B., as umﬁ( A AB) =0 and
ﬁ(#A A #B) = 0 ( Lemma 2.19 and Theorem 2.24 ).

Thus:
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IB] € G_ < VA ¢ [B], x € #A . e (1)
By Theorem 2;24:
[(F]1 £ GX .o ... (2)
If [A], [B] ¢ GX then x ¢ #A; X € #B, and
X e #A n#B = #( A nB ) by Lemma 2.l§ . Thus:
[Af\B] = [A]-[B] € G_ . ... (3)
Let [A] € GX and [A] < [B], then by (1):
¥C ¢ [B], x € C and so [B] ¢ Gx e« (4)
(2) == (4) imply that GX is a proper filter.
GX is obviously maximal, and is thus an ultra-
filter.
Let S B*, S ¢ M, IS ¢ Gx . Since B* obeys
the countable chain condition, there is a M-
countable collection of Borel sets:

A 7 e e A € M
{ Y; v, }
such that [AY ] € 8§, for each 1 € w, and:
i
Z[A 1] = &S
i Y4
( see [8], p. 61 ). Let y(0) =1 (mod 3),

I

y(J(i,3)) Yi(j)~, then AY = LJAY and [AY]

i i

€ GX . Hence x € #AY‘by Lemma 3.7 . Lemma

2.19 implies #A, = (#A , SO Hi( x € #A, )
Y - Y. Y,
i i i
and [AY ] € Gxn S ( Lemma 3.7 ). This estab-
i

lishes the genericity of G,-- Note that even
though |M| = X, , the countable chain con-

dition is required.



68

Lemma 3.7 now gives: x = x. , where G = G_ .

(b) Conversely, let x = X for some generic

ultrafilter G on B*. For each Borel set BY

rational over M and satisfying p(BY) = 0, Theo-

M
Y

It follows from Lemma 3.7 that x £ BY .

rem 2.24 implies ﬁmi(B ) = 0 , and so [Bﬁﬁ] £ G.

Corollary 3.9 For each x € R*, G_ = { [B] : x ¢ #B }

is an M-generic ultrafilter on B*.

These results give us some notation and terminology:

(a) Each x € R* has an associated generic ultrafil-

ter G. on B*.
X

(b) Each generic ultrafilter G on B* has an associated

random real XG .

Definition 3.10 For x € X, let M{x] be the least tran-

sitive submodel of XK extending M and
containing {x} , 1f this exists; M [x]

= JK otherwise.

We will only use the above notation where it is well

defined, primarily by the result below.

Lemma 3.11 For every x €¢ R*, M[x] = II[GX] .

Proof: II[GX] is the least transitive submodel of K
extending M and containing {G;}‘( see proof [9],

p. 56 via absoluteness, or Lemma 4.8 for direct
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proof of a stronger result ). x ¢ Iﬂ[gx], by
Definition 3;5‘; If N o M is a transitive
submodel of IK ( hence N is standard ), and
x € N, then GX £ N by Corollary 3.9, and so

II[GX] c N, i.e.

X
MI[G ] ¢« N
MG X
" Definition 3.12 For a given generic ultrafilter G on B¥%,

. B*
define Xpe M as:

dom(x,) = { £ :reQ [(xr,]e6}"
%, (1) = [(r,=)]

. . B*
§G is called the canonical random real in M . EG

names X. i.e. ig(xg) = x For G understood, x = X, .

G ° =G
We recall this restatement of Lemma 3.8 of Section 0.

Lemma 3.13 For each formula ¢ and vy € R*: MI[y] P o (y)

iff [ ¢(x) 1 ¢ GY .

This result holds with parameters in IM by making the
substitution ¢§(y) = ¢(y,B) 5 ¢ M. This gives:

Mlyl F 6(y,B) 4iff [ ¢(x,B) 1 « G, r Y e R* Be M.

Theorem 3.14 For each formula ¢, the set

E={vyveR: M[yl F ¢(y) } is Lebesgue

measurable.

Proof: Let E' = { y e R* : Myl F ¢(y) } .
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By Lemma 3.4, E' = E (modN ).

. Tﬁen by Lemma 3.13: y € E' .« E¢(§)B€Gy .
Let v ¢ (mwlnm code the Borel BY such
that: [B,] = [$(x)] . Then for all
y € R*:

E' «— [B G+ B .
y € [Y]ey ye#Y

111

Therefore: E' #BY (modﬁ )

E #BY (modN ) ,

and E is Lebesgue measurable.

The above theorem easily generalizes by adding para-
meters in M, and it is this form of Theorem 3.14 that

finds application in Section 5..
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Every Boolean algebra is a partially ordered set, but
seldom does a partially ordered set have the necessary struc-
ture to make it a Boolean algebra, much less a complete
Boolean algebra. Fortunately, a standard technique exists
which transfbrms.ény given partially ordered set into a
complete Boolean algebra. If P is a partially ordered.setv

we write RO(P) for the regular open algebra of P. This is

obtained by imposing the order topology on P ( with basic

open sets [p] = { qg:q<p } ). The elements of RO(P) are
those open sets U which are regular ( i.e. U = U° ). RO(P)
is a complete Boolean algebra. Complete details are to be

found in [8] ( p. 25 ) and/or [25] ( pp. 14 - 17 ).

As usual, cf(a) denotes the cofinality of an ordinal «a.

Definition 4.1 Suppose M E k is a cardinal & cf(k) = w.
P|< is defined by:
MFEFPpEe P.+ (dn e w)(p:n»k) , and

is partially ordered by: p > g < > p .

For each cardinal k, PK is simply a collection of fi-
nite functions in M with range in k. The ordering of P'<
is reverse of the usual inclusion ordering.

The partially ordered set PK_gives us a complete Boo-

( the reason for this name: for any generic ultrafilter G
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on LK  the function - LJG,maps w onto k, and so k "collap-
ses" onto w and is countable in E@IG]; See'IZBJ)_p. 8 ).
For the present we shall assume there is a ( strongly )
inaccessible'cardinal_A: The ramifications of this assump-
tion are discussed in the next section. The family"{'PK :

cf (k) = w, K <_k-}-forms a normal limiting system ( see

[25], p. 193 ). It follows that the associated family

{'LK : cf(k) = w, kK < A } is an example of a direct system

of complete Boolean algebras. An exhaustive development

of this topic is found in [25], pp. 183 - 195 .

Definition 4.2 A Boolean algebra B satisfies the k-chain
B has cardinality. less than k. 1In the
case where «k = w, we say that B satisfies

the countable chain condition.

Two members a, b of a Boolean algebra ( or partially

ordered set ) B are said to be compatible if there exists

a nonzero c¢ € B such that ¢ < a and ¢ < b, otherwise they

are said to be incompatible. Since a partition of unity

is a maximal family of pairwise incompatible elements of

B, the k-chain condition implies that no family of pair-
wise incompatible elements of B has cardinality k, or
~greater. A partially ordered set satisfies the k-chain
condition if it contains no strictly descendipg chain ( to-

tally ordered set ) of cardinality «.
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The.propositiqn below gathers together a number of
technical results, mainly from the above reference, which
support the work of this seCtion; We quote them without
their lengthy but straightforward proofs, some of which

derive from the work of Engelking and Kartowicz [5].

Proposition 4.3 (a) For each k < X such that cf(k) = w,
P = .UP

(b) P = é&P satisfies the’ A-chain
K K _

condition.

(c) L = K&&LK satisfies the A-chain

condition.

(@) L = RO(P) .

(e) For each k < A, L. is a complete

subalgebra of L.

(£) |L%| < A, for each k < X .

The Boolean algebra L defined above will be referred

to as the Lévy algebra. The significance of Proposition

4.3 lies mainly in two facts. From (c) we have that L.
satisfies the A-chain condition. This fact will have app-
lications to situations in both this and the next section.
From (c), (e), and (f) on one hand, énd (d) on the other,
we have two distinct representations of L. The first rep-
resentation would normally be improper. In general, we
cannot say that the union of a family of complete Boolean

algebras will :be a Boolean algebra, complete or otherwise.
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Takeuti and Zaring use Proposition 4.3(a) and the fact that
the collapsing algebrasiLK form a direct system to show
that this union is equal to the direct limit,\or’égﬁ; of
the LK. The usual method of defining the sum of a family
of Boolean algebras, and taking the completion of this sum,
is thus circumvented. Takeuti and Zaring show further that
L thus defined is isomorphic to RO(P), giving us a second
representation ( Within isomorphism ) of L.

Our next result takes a closer look at the structure

of L by way of this second représentation.

Lemma 4.4 (a) P is the collection of finite sets of tri-
ples p = { (a0, B8;) }iik satisfying:
(1) n, e w, Bi < ai < A
(ii) (aInIBO)I (alanl) €Ep > B, = Bl .
(b) Suppose S « L\{0} and |S| < A . For each

Kk < A there is a collection { a, e L : B < « }

B

of pairwise incompatible elements such that:

¥s € S, ¥B < k, aB°s #0 .

Proof: (a) is an obvious formal renaming of the ele-
ments of P. The proof of (b) is a straight-

forward calculation using (a) ( see [9], p. 76 ).

Many of the intrinsic properties of L are obtained by
looking at P, specifically the representation given in (a)
in the lemma above. This habitvof calculating in P rather

than L carries right over to some of the results concerning
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IIL and iELGJ in.the'nekt section;_and mirrors the method-
ology of classical forcing to some extent. In preparation
for these calculations we will introduce at this point

some indispensable tools.

" Definition 4.5 Let P be a partially ordered set and

Se P . S is dense in P if:

¥p € P, s € S, s < p .

If G is any filter on L ( or any other regular open
algebra ), it is not difficult to induce a related filter
G' on the partially ordered set P. Of course, we must de-

scribe G' on P in an order language rather than a Boolean

language. We say that G' is a filter on P if:

(a) the members of G' are pairwise

compatible.

(b) xe G', vy >2x>yc¢eG'..
Complementation and the existence of 0 must not be taken
for granted in P; that is why we are forced to simplify
the notion of filter from the original Boolean algebraic

case.

" Definition 4.6 G' is an M-generic filter on P iff for

each dense sét Sec P, S € M, we have

SNG' # @ .




76

We will not delve into the method of inducing a gen-
eric filter G' on P;_given a generic ultrafilter G on L,
or that of inducing G from G' on the other hand. The 1lit-
erature contains ample treatment of.this ( see [25], pp.

25 - 32, eépedially p; 30; see also [9], pp. 48 - 52 ).and
we shall never need to appeal to the mechanics of it .
Suffice it to say that RO induces a one-to-one correspon-
dence between the generic ultrafilters of L and the generic
filters of P.

Why have we defined L, and what’ properties does it
have that simpler, more familiar algebras do not? We have
already mentioned that by its definition, L satisfies the
A-chain condition, andithat this fact is very useful in
both this section and the next. L has however, a very
strong and unusual property having critical impact on Solo-
vay's application of random reals to the measure problem.

It is to this property of homogeneity that the duration of

this section is devoted.

All of the priér results we have cited are easily ac-
cessible in thé literature, and so we have quoted them with-
out proof. The proof that L is homogeneous is not well re-
presented elsewhere, so it deserves a detailed treatment
here.

Suppose A is a complete subalgebra of L, and g is an
automorphism on A. We say that g lifts from A to L if there

is an automorphism g' of L whose restriction to A is g.
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g' is called an'eifeﬁéiaﬁ'of_g. It is by no means clear
what conditions we might impose on A to ensure the lifting
of each g & Aut(d).

Letting Aut (A) denote the set of automorphisms on A,
we say that a complete subalgebra A of L has the lifting

" property if each g & Aut(A) lifts.

" Definition 4.7 L is homogenous if each complete sub-

algebra A of L satisfying |A| < A has

the lifting property..

The term "homogeneous" has various meanings in the
literature. For our purposes, the strong notion of homo-
geneity we use is necessary.

Let us first review some easily obtainable information.
I is complete, as it is a regular open algebra. A Hahn-
Banach type extension argument can be employed to show that
complete Boolean algebrés are injective-( see [8], pp..132 -
143 ), i.e. -they satisfy the commutative diagram below for

~any Boolean algebras A and B:

B
/7
//
T
O
N y
L “A
h

where e is any monomorphism, and h is any homomorphism.

Having fixed all of the above particulars, injectivity
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simply means that a‘thqmorphism f exists which'cOmpletes
the diagram;
One of the main consequences of injectivity is the
fact that homomorphisms on subalgebras into L extend to

homomorphisms on L. This follows directly from the dia-

~gram by letting B = L, and e be the inclusion map. We

know then, that an automorphism on a subalgebra A of L
extends to some homomorphism on L. Using a Hahn-Banach
type argument, we can show that embeddings ( complete mono-
morphisms ) of subalgebras extend to embeddings of L. Un-
iversal techniques éhow us then, that automorphisms on any
subalgebra extend to embeddings of L into L. To show that
L is homogeneous however, we must use properties specific
to L.

The path we will take involves a novel use of Boolean-
valued techniques. Though we are confronted with a non-
logical problem concerning L, we will find that much alge-
braic information about L is reflected in IIL. We recall

that M is our transitive ground model of ZFC.

Lemma 4.8 Let A be a subalgebra of L, and h be an auto-
morphism on A, In IIL there is an ultrafilter

G, on i such that for each a € A:

b v
h(a) = & ¢ Gy 1.

Proof: ' G is the canonical ultrafilter on M. Since

‘ g(l) = Z(l) = 1, we have:
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L v o A
M~ FANG # £ .
and the Maximal Principle ( Lemma 0.26 ) de-
fines GA such that:
Mt E G =ANG .
~A el
Likewise, we use the Maximal Principle to de-

v

fine Gh on A:

M" FacG < h@veq, .

An elementary calculation yields:

v

I ace GA 1 =a,
for each a € A . So we have:

i ace Gh 1 =10 h(a) ¢ GA 1 = h(a) .
From this, and the fact that h is a monomorph-
ism, simple calculations give:
(@ [0g6 1 =1,
(b) a < b implies [ a ¢ G II <1 b e G, I .
() [ (@) eG I =0acgG &Esch]],
(d [ (-a)” e Gy 1
We conclude:

IML F Gh is an ultrafilter on i.o

_ o .
We refer to Gh as the ultrafilter on A associated with

h. This lemma is understated in the sense that h could

just as well have been an embedding of A into L. Even so,
we have not extracted all the information about Gh that is

reflected in h.

" Corollary 4.9 IML = Gh is (EKA))V—complete.
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Proof: - h is complete.

The main work within L is carried out by the follow-
ing reSult; which is our modified version of a theorem due
to Jensen ( see [9], pp. 75 - 76 ). To prepare for it, we
mention the following items that are necessary in the proof:

(a) A subalgebra of a Boolean algebra is said to be

to both algebras correspond to the same value in each

algebra. It is easily verified that complete subal-
gebras of complete Boolean algebras are regular.

(b) The fact that ) = [&1] , which is proved in the

next section ( Corollary 5.2 ) using no information

dependent on Lemma 4.10 .

Lemma 4.10 Let A, B be complete subalgebras of L having

cardinality less than A, and let A be a com-
plete subalgebra of B. Each automorphism on

A lifts to be an automorphism on B.

Proof: Let h be an automorphism on A, and Gh be its
associated ultrafilter on A. Using the Max-
imal Principle again, we induce a filter G* on
v
B:
mr E (¥xeB) (( xeG* <+ (dyed) (y<x & yeG,) ).

In IIL, G* is the filter on B generated by the

pairwise compatible set G For each b ¢ B,

ho
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we define;

b*=f{acazasbl,
where the supremum is taken in A, which is com-
plete. Obviously, b* e A and b*,i b . Using
completeness of h and Corollary 4.9,for each
b ¢ B:

Ibec*l =10 (b*) €6 1 =h(b*) (1).
For each E « B, [IE]* = H{'b* : b eE },

and so we have by (1):

{ E cG*] =0 {b*:bekE]} ¢ Gy 1

It

I (MEY*" € G 1

[ (TE) e G* T (2).
This gives:
IEL E G* is a (P (B)) '-complete filter
on B. Since ) is inaccessible, Theorem 0.44
and item (b) preceding this lemma allow us to
extend G* to an ultrafilter G':
EEL F G' is a (I’(B))V—complete ultra-
- filter on B and G' o G* .
A mapping g may now be defined for each b € B:
gb) =0 beG' 1.
The following Boolean suprema, evaluated in
their respective algebras, are equal:

® _[peap® |

I b eG']
as B is a regular subalgebra of L. Hence g

maps B into.B.
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Using the fact that G' is an ultrafilter and
that v is injective, we have for each a, b & B:
I (ca)veG' 1T=0afgGc ]

= - 5 e G'J = -g(a) r

I

g (-a)

[ (ab)v ¢ G'J =0 a e G'&b e G'J]

I

~g(a*b)

~g(a)-g(b) .

Thus g is a homomorphism. Similarly, we can
use (IP (B)) v¥-completeness of G' in IEL to show
that g is a complete homomorphism. . For each

a € A, we have: g(a) = aeG'"]} =1 a = Gh 1
= h(a) , so g is an extension of h.

There are many ultrafilters G' for which the
above calculations hold. We will select one
of these which ensures the injectivity of g.

By Lemma 4.4(b), there is a pairwise incompa-
tible family {'ab €L : beB, b# 0} such
and each ¢ € A where c # 0.

a, *c # 0 for each a

b b’
By Lemma 0.25, there exists t € IML such that
ab <[ t =Db1l, for each b € B where b # 0.
We pick t' ¢ EIL such that:

[ (' eB) & (' =-t) 1 =1,
i.e. t' is the complement of t in g. Now we
define G' as before, but with the added proviso:
It'g6G*01 <0 tecG"1T.
This amounts to generating G' from E = G*U {t}

if E is pairwise compatible, i.e.
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IEL E (G is a (P (BY)Y-complete ultrafilter
on B )& ( G*xc G' )& ( t"#G*>teG' ) .

Let b € B, and b # 0 .

g(b) =[beG'D > [b=tl[tecT

= t]-[t' £ G*I' > [b = tI-[-(b) £ G*I

| v
=
o3

= [b = tN-I(-b)Y £ G*]
a,_ * =((=b)*) .
Since -b < 1; (-b)* < 1, -((-b)*)# 0, and so

g(b) # 0, by definition of a ‘Thus ker(g) = 0

b*
and g is injective..

Since B is injective, the diagram indicates
that each monomorphism on B ( such as g ) has

a retraction f, i.e. an epimorphism f such that
fog is the identity map on B. If f is a re-
traction for g, then f is complete, and the
kernel of £ is a complete Boolean ideal. Id-
eals of this type must necessarily be princi-
pal, i.e. there is an element u € B such that
ker(f) = [u] = {‘v : v < u } .

If rng(g) # B, then u # 0 and u £ rng(g) .

Define: E = { t € B : [t € G'] >u } .

I

Since dom(E) {t:teE}, and E(t) =1
for each t ¢ E, a simple calculation yvields:

[EcG'] = I [teG'] =u, by definition of
teE

of E and ker(f). But (2) above implies:

u=1[0E Gl = [(E)* e G'T = g(IE),
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"Proof:
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i.e. u & rng(g). We conclude that ker(f) = [0],

and rng(g) = B .

L is homogeneous.

Suppose A is a complete subalgebra of L,
and that |A| < A . Then A c L_ , where:

k = sup inf { vy < X : ae L},
ach Y

We show that A is a complete subalgebra
of LK . Let E €« A, We use superscripts
to denote the Booléan operations of var-
ious subalgebras. A is a subalgebra of
L, and P is a base for the topology of
L, so: ‘
rB®lg - 3 (L)Z{ p:peP, p<altl
T (L)Z{ p:peP,pc<al .

acE K -
Since PI< is a base for LK, the above
Z(LK)E

equals

Now we will show that for each a ¢ A,

—a(L) € LK . PK may be represented as

the following truncation of P:

P ={p :peP}
where: p. = { (o,n,B) e p : a <k} .
Then L. = [ix : X P P Recalling
Lemma 4.4(a), we see that it is possible

for p, g € P to be incompatible, due to
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the functionality constraint (ii). If
p and g are incompatible, where p e P,

g € PK; then P, and q are also incom-

patible.
Let a € A, a = ZX where X PK, and —a(L)
= I¥, Y€ P, For each q € X and p ¢ Y,
p*g = 0; and so P.*d = 0 .
Therefore: V

'-a(L) = X P, € L|< .

peY

A is thus a complete subalgebra of L.
If h € Aut(A), Lemma 4.10 extends h to
an automorphism h € Aut (L ). By trans-
finite induction, we use Lemma 4.10 to
define hY € Aut(LY) for each vy > «:

h =h

K

By Lemma 4.10, if hY £ Aut(LY),

hY+l = hY € Aut(LY+l)

hY = J hB , if v is a limit

- B<y
ordinal.
Note that for vy < X a limit ordinal, hY
is an embedding and rng(h ) = UL, = L_,
Y g<y B Y
hence h. ¢ Aut (L ) .
Y Y

h, = Uh is likewise an embedding, and
.>‘ y<)\Y '
rng(hx) = L . Thus hk e Aut (L), and we

have produced the required lifting of h.
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We close this section with an application of Theorem
4,11 to a definability problem to be'encéuntered later;
First we will look at a natufal method of extending auto-
morphisms of L to automorphisms of IIL. Given g € Aut (L),
we may induce an automorphism g* on IML by transfinite

induction on rank op.

Let g*(0) = 0 .
SuppoSe g* is defined for each v ¢ IIL such that p(y)
< p(x) , given an x ¢ IML. In particular, g*(y) is

defined for each y € dom(x). We define:

dom(g*(x)) = g*(dom(x)) ,
[g* (x) 1 (g*(y)) = g(x(y))
for each g*(y) € dom(g*(x)) .

g* thus defined is a bijective map of IIL onto IIL,

and g*(x) = x for each x € M..
" Lemma 4.12 Let X, y ¢ IIL, and g € Aut(L). Then:
g(llx=y1 ) =10g*(x) =g*(y) 1,
and g(Ix eyl ) =10g9g*(x) e g*(y) 1 .
Proof: The two equations are proved by a simultaneous
transfinite induction on ( p(x), p(y) ). Ass-

ume both equations are true for any z ¢ IML
satisfying p(z) < p(y) , or p(z) < p(x) .
Then:

g(Ix eyl ) =gl I y(z)+[z=x] ]
zedom (y)
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= X gy (z))-glllz = x])
zedom (y)

= I [g*(y)1(g*(z))*[g*(z) = g*(x)]
zedom (y)

= [g*(x) € g*(y)],
A similar calculation holds for the other equa-

tion, establishing the inductive step for z sa-

tisfying po(z) = p(y) .

The generalization below follows from Lemma 4.12 by in-

duction on the complexity of ¢. For simplicity, we drop

t

parentheses where convenient. |
j
Corollary 4.13 Let ¢ be a formula with n free variables.

(X € EIL:
n

For each Xl’ e

glo (xqs - )xn)ﬂ = [0(g*xys «-- ,9*x )],

It is apparent that if ¢ is a sentence ( i.e. having
‘no free variables ), then [¢] is a fixed point for any g ¢
Aut(L). Hence [¢] is either 0 or 1. The same reasoning
gives us a 0-1 law ( see [19], p. 408, and [25], p. 171 )

for formulas whose variables range over M.

" Corollary 4.14 Let ¢ be a formula with n free variables.
For each Xl’ .o ,xn e IM:

[6(xys --- X )0 € {0,1} .

Proof: For each b ¢ L\{O,l}, we may use Theorem

4.11 to construct g, € Aut (L) such that
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.gb(b) # b . For example, define the
automorphism e on the subalgebra
{0,b,-b,1} by e(b) = -b , and lift e to
9% on L. |
Let b = E¢(;l, ce ,;n)]. 1f b ¢ {0,1},
Corollary 4.13 implies:
b= [6(gtx,, -.. ,gfx )]
gbﬁ¢(§l, cen ,&n)ﬂ
# b .

Hence b € {0,1} .

I

It is possible to prove Theorem 0.22 from the above,

since bounded formulas are of this type, and their Boolean

values are non-zero when they are valid in M.

In the next section, we define L

as the complete sub-
L

t

algebra of L generated by rng(t), where t € M.

Lemma 4.15

Proof:

If |rng(t) | < XA, then |L < A .

¢!

Since P corresponds to the basic open sets in

the topology of L, P is dense in L. Using the

~A-chain condition, we can thus find for each

a ¢ L, a subset S, « P such that |Sa| < A, and
a=235 . Let §=U{S_ :acerng(t) }.
Since [S_ | < A, there is a « < A such that Sc

P . LK = RO(PK) and S< L, , so L

< L , and
K : K

| t
ILtL < 1LK| <.
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A generalized form of Corollary 4.14 now follows.

" Theorem 4.16 Let t ¢ M" be such that dom(t) e { x :
x € M} , and |rng(t)| < A . Then:
o ()T € Lt .
Proof: For each u #£ Lt let Lt(u) be the sub-

algebra of L generated by LtLJ{u} , i.e.
L (W) = { (a*u) + (b+-u) : a, b e L_} .
t

Define the following automorphism on
Lt(u): |

e( a*u + b*-u ) = (beu) + (a*-u)..
e(a) = a, for each a ¢ Lt’ but e(u) = =-u .
By Theorem 4.11, e lifts to Iy € Aut (L) .

For each u ¢ L, there exists 9y € Aut (L)

t

such that gu(a) =a , for a € L and

t’
gu(u) # u . For each such u, gG(t) = t,
by‘definition of dom(t). Hence gu(b)

= b, where b = [¢(t)]. Since u = b

yields a contradiction, we conclude that

b ¢ Lt'

All of the constructions in this section were carried
out within M, and so our many uses of AC in various forms
have been proper. In spite of the forbidding number of
technical results in this section, only two of them have
~any application in the sequel. These are: Proposition 4;3

(c), used in some cardinality calculations, and Theorem 4.16
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above, which is our sole application of the homogeneity

of L.
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'SeCtiQn'S ;' The Model of Lévyy

In previous sections we have imposed a number of plau-
sible restrictions on the ground model M. To begin this
section, we add one more restriction to the list: namely

that M satisfy the following axiom.
Axiom T There exists an i1naccessible cardinal.

The above statement is much stronger than the axiom A
we used in section 0 to justify the existence of K. Tar-
ski [26] shows that a model of ZFC can be constructed if
there exists an inaccessible cardinal ( see also [14], pp.
159-63; [4], p. 109-10 ). Similar arguments show that such
a model may not be a model of I ( e.g. [4], p. 110; [9],

p. 37 ). Hence model existence axioms such as A cannot
imply I.

The assumption M E I is, indirectly, én added con-
straint on our assumptions regarding K . Though axiom A
in its present form is not sufficient to provide such a K,
we shall bypass this problem for the present.

Taking M to be the ground model containing an inac-
cessible A , we may conétruct within M the Lévy algebra
L of Section 4. We fix an M-generic ultrafilter G on L,
and in the course of this section construct the following

'tower' of generic extensions:



L

—~ M[s] e—— " M[s][y] — — M.[G]

N A SL A

rrls M [s]B*

M

'Since iﬁﬁF_AC, each‘genéric extension éiso.éééggéiééf
AC, and therefore“}LM as well. However, the'results of the
~last section will providevthat a large family of sets of-
reals in M [G] are Lebesgue meaéurable.

To begin, we check ﬁhe behaviour of cardinals with re-

spect to the above tower.

ggggg 5.1 Let E be. a model of ZFC, B be a Boolean alge- -
bra in E, satisfying the countable chain éon-
dition in IE, and let H be an E -generic ultra-
filter on B. Then:
¢ = ( k is a cardinal )-

iS'absolute between E and E [H].

Proof: Finite.cardinals are absolute, so we assume k
>%, . Suppose E FE ¢ , and,E:[H]‘F']Qv, vThen
_.there exists a Boolean-valued function f e E B
such that for § <«
b=1[dom(f) =8 & rng(f) =k # 0 ..
Since we have not defined the Boolean¥va1u§d_ 
notions éf'ggg(f),_ér‘ggg(f),vwe will assume £

satisfies Definiﬁion 0.29 and define:
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b= 1 Zl(,y)>efl+ Iv I 0(a,M>ef]
a<§ y<k Y<Kk a<§
# 0 .
We let b(a,8) = b « [(a,8)% ¢ £1 . Two facts
emerge:
(a) Ffom Definition 0.29(c) and Theorem 0.22,
B#Y > b(a,B)*b(a,y) < b * [[V.B = ;Il =0, as
f is a Boolean-valued function.
(b) Since b # 0, ¥B < x , dy > B , 4o
( b(a,y) # 0) . From (b) we have:
{8 <-x : da, b(a,B) #0 }| =« .
Since § < «, da, such that:
|[{ B <k : b(ag,B) #0 }| =« .
By (a), { b(as,B) : B < k } is a set of pair-
wise incompatible elements of B having cardin-
ality Kk . This violates the countable chain
condition.
® is therefore preserved under the extension

IE > E [H] . A routine argument shows that ¢

is preserved under restriction.

The corollary below recalls some terminology from Sec-
tion 4. P is the.collection of finite sets of triples p
_.' .‘ s H -
= {(ai,ni,Bi)}i <k satisfying:

(a) n. e w, Bi < oy < A

(b) (o,n,B,), _(.d,n,Bl) e P> B, = Bl .

P is partially ordered by p < g iff p> g. L = RO(P).
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If G is an M-generic ultrafilter on L, let G' be its in-

duced M-generic filter on P. We think of p € P as a func-

tion having finite domain & AXw, with,p[(ai,ni)] =-Bi < di.
' Corollary 5.2 _ A = (&d)II[G] .
Proof: Let § = w and ¥ = A in the proof of the

preceeding lemma. Usingbthe fact that
L obeys the A-chain condition, we infer
x> (RI)EI[G] . For each o < A, we de-
fine:

£,= {(n,8) : {(a,n,B)} e '} .
From (b) above, each fd is a function
in M [G], and fa T w > oa .
For a # 0, ¥n € w, n € dom(fa):
Let A, = { h ¢ P : (a,n) & dom(h) } .
Since o > 0, A, is dense in P. By gen-
ericity there is én h € G'"NA, such that
ag, hi(a,n)] = 8 . Then {(o,n,B8)} € G',
as G' is a filter. n ¢ dom(fu). ¥B < a,
B € rng(fa):
Let A; = { h e P : @n e v, hi(a,n)] = 8 }.

Al is dense in P. Therefore there is

an h ¢ G'nA, such that h[(a,n)] = B8,

1
so {(o,n,B)} € G' and B ¢ rng (£ ) .

We conclude that for all o < A, fa maps

» onto a. Thus X i-(kl)II[G] .
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‘Definition 5,3 Let s ¢ M[G], s € M, and s € M" be
a name for s. .Lé is the complete sub-

algebra of L generated by rng(s).

" Lemma 5.4 - For each x €¢ M, and s ¢ HE[GJ,:EX e sl € Lé ¥,

where S names s.

Proof: Let A be a complete subalgebra of L containing

v v
rng(s). For each x ¢ M, x € EEA as x € II{O’l}

and {0,1} is a subalgebra of A. Since dom(s)
c IILg, [z = x] € A for each z ¢ dom(s).
Thus:

Ix € sl = X s(z)-[z = x] € A,
z € dom(s)

by coﬁpleteness of A.

Our attention turns now to the first extension of the
tower. The role of this extension concerns the definabil-
ity of those sets of reals in M [G] we wish to be Lebesgue
‘measurable. We say that a set E is definable ( in M {G] )
from s € M[G], if there is a formula ¢ having free varia-
bles only x, s, such that E = { x : M[G] F o¢(x,s) } .

For the rest of this section, our interest will focus
on those sets of reals in M [G] definable from a sequence
of ordinals. Thus s € M[G] is a function with domain w,
ranging over Opr ’ the ordinals of M ( M and M [G] have
the same ordinals; see [25], p. 128 ).

In Séection 3 we found a connection between the generic
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ultrafilters over B* and the random reals. The next’result
~gives us a'éeneral connection between the generic ultra-’

filters induced by G on Lé and the extensions M/|s] .

" Lemma 5.5 Let s € EIL name s ¢ M[G] . Then:

M[s] = M[G N Lyl .

Proof: Since G is an M-generic ultrafilter on L,

G N Ls inherits all the prbperties necessary

to make it an Iiugeneric’ultrafilter on L_ .
EI[G(\LSI is therefore a true generic exten~
sion.

Since for all x € M :

MI[Gl E x € s

iff I xesl € G ( by 0.40 )
iff [ xesl e GNLg ( by 5.4 )
iff  MI[Gn L)k ox e's ( by 0.40 ),
we have: - s e MI[GN is] ' ;J—

Let JN_:»]‘M[, and s e N . For each o € OM‘ we
define:

¢, (s/B) «> (a@x e dom(s))( b = s(x) & b e G)
'¢&(b) «+ ( o is even ordinal ) & ’

(28<a )(Tce Ay )(b=rcaciC

9L (b) «> ( o is odd ordinal ) &

( @arey A

Y ( b = ZT'& b e G)
Ka -

B
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Y(s,s,b) < (i(g) = s ) &
[ ¢y (s,b) ¥ (Haedy ) (o<’
& ((9g(b) o o () ) 1 .
These formulas refer to the following sets:

o = rng(s) ,

A =
A, = f-c : c ¢ BgaAB}’; for q even,
A, =f{ir : Te UAB} ; for o odd.

B<o
Let Gd = GrﬁAa . '

Since L, € Mc N, and G, €« L, the separation
axiom implies G, € N .

If o > 0 is even, G, = {b: 92 (b) }, and if o
is odd, G, = { b : ¢) (b) } . so if Gy € N
for each B8 < a, then Ga e IN.

We conclude that GF\LS = { b : y(s,s,b) }

= U G € N, and that M[GNL_] is the
. o s
o e GEI =

least model of ZFC extending M and containing

{s}.

We say that b = b(g) e E is uniformly E -definable in

if there is a formula ¢ with free variables among E, X,

o+

such that for any set of values 50 of the parameters E:
b(Bo) = { x : E E ¢(Posx) } .

It is usually not convenient to mention all the parameters

in 5, particularly those which are always fixed. In the

corollary below, we make no reference to such parameters

as L or G for this reason. Where no parameters are needed,



98

we will drop the adverb "uniformly".

" Corollary 5.6 G(lLé is uniformly Bﬂ[s}*defihable’in

s, S.

‘Our first diagram left out an unusual architectural de-
tail of tower. The second extension is really a simultan-

~eocus generic extension, revealed below:

M [s]TSrY

M < > M[s]€

L *

As we shall see, the upper extension apparatus is a
a natural repetition of the first extension, using the real
nuitoer v oin the place of s. The lower extension uses theg
results of Section 3, on the hypothesis that y is "almost
alwavs" a random real. Roughly speaking, definability as-

zre handled by the upper extension and measure the-

jo)
)
[$]
ot
[

D
x)

tic aspects are handled by the lower extension. How do

O

r

}

we kxnow that these extensions agree? Lemmas 3.7 and 5.5
ensure this.
The specific properties of s may now be used to our

advantage.
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Lemma 5.7 If s is a countable sequence of ordinals in
EIIGJ,Vit has a name s € BIL such that:
|rng(s) | < A .
Proof: By Lemma 0.40, we pick s so that
I[sce (wémir1ufk'ﬂ € G, where u is some set
in M. PFor each n £ w,

K = l{ o : [(n,0) esT #0}| <X,
since L obeys the A-chain condition. By re-
gularity of A we have:

|rng(s) | < lim Ky < A

Corollary 5.8 With s as above, |Ls| <A
Proof: By Lemma 4.15 .

The next lemma is the culmination of all our work on

the Lévy algebra L and its associated model M [G]. The

existence of A and the resulting homogeneity of L are cru-

cial factors in its proof. The lemma introduces a reduc-

tion in the definability of sets of reals in M [G] that

places them within reach of the upper second extension of

the tower.

Lemma 5.9

Let E be a set of reals in M [G] which is de-
finable from a countable sequence of ordinals
s € M[G]. E is uniformly M [s][y]-definable

in s, s, for each y ¢ E.
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We represent y € E by its Dedekind.cut;.'There
is a formula ¢ whose only free wvariables are
S, y;‘such that the following are equivalent:
(a) y & E ,
(b)  MIG] kF ¢(y,s) ,
(c) (ay e M™) (I¢(y,s)] € G & dom(y) =

ffr:re 9»} & rng(y) « L & (fr e Q)(r ey

Sy

« y(f) € G)) .

By Lemma 5.7, we may pick s so that [rng(g)l

< A . For y € E we may pick a name y € I{L sSo

that Irng(z)l < A ( as a Dedekind cut, y is
definable from a countable sequence of ordi-:

nals ); We define Ls y to be the complete sub-
——’—
algebra of L generated by rng(s) Urng(y) .
Corollary 5.8 provides that lLs | < x .
—-’ S

We note that X(f) e G «— Z(f) € Gf\LS y °

From Theorem 4.16, [¢(y,s)l € G <« [¢(y,s)l €

GfWLS g This is the principal use of the

homogeneity of L. By Lemma 5.5, we have

EI[GF\LS y] = M{s}[y]l] . From Corollary 5.6,
'-—-

we obtain:

y e E iff M[sllyl F @ ¢'(v,¥,s,8) -

We have used the upper second extension to effect a

reduction in the criterion of membership in E, from M [G]

to M[s]ly].

We will apply the tools of Section 3 to this
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reduced criterion by way of the lower extension and obtain

the first main theorem of Solovay.

Lemma 5.9 renders E in the parametric form of Theorem

3.14.. The only fact we need check is whether or not M [s]

is an appropriate ground model from the standpoint of Sec-

tion 3. M [s] can,

in fact, be shown to be countable ( by

induction on rank, as in [22], p. 361‘). Instead, we will

use a more specific argument about cardinals that re-estab-

lishes Lemma 3.4 for the lower second extension.

Theorem 5.10

Proof:

Let E be a set of reals in M [G] which
is M [G]-definable from a countable se-
quence of ordinals s € M[G]. E is

Lebesgue measurable.

Each subset t of w in M [s] has a name
t e E{LE with dom(t) = {Hi:newl},
and so determines a function ft:w -> Ls

defined by:

ft(n) = net] (see 5.4 ).
Note that,fE e IM.,. fE = fE -
Vinifl netl =ITneul—0It=ul =1

Thus the number of subsets of w in M [s]

cannot exceed the number of functions
in M from w into Lé. Using the inac-

cessibility of A in M and Corollary 5.2:
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( 2%eyPIs) o

( %, )II[G] ;

The cardinality of the family of Borel
codes in M [s] is countable in EE[G],
so there can only be countably many
Borel sets of measure zero in M [G]
which are rational over M [s]. Lemma

3.4 and Theorem 3.14 yield the result.
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" Section 6 ; The Model of McAloon

We cannot expect any generic extension of a ground mo-
del of ZFC to be a model of ZF + LM. However, the Lévy
model is an example of a generic extension which comes very
close to satisfying LM, in that a certain large family of
sets of reals are Lebesgue measurable. This fact suggests
a new approach. Can we find a suitable submodel of M [G]
whose sets of reals fall within the above family? In this
section we follow the McAloon-Solovay construction of one
such internal model N <« M[G]. All the work of this sec-
tion is carried dut within M [G].

If N F LM, the problems of Section 1 regarding the
needs of analysis and measure theory become pertinent. The
model ﬁq which we construct will satisfy the axiom below,

known as the Principle of Dependent Choices:

DC : If R is a binary relation on a nonempty set A
such that for every x € A there exists y € A
so that xRy, then there is a sequence'{xn} of
elements in A satisfying:

) .

(' ¥n £ w ) ( anxn+l

It is easily shown that DC implies ACw ( see [10],
p. 23 ), and so the real analysis of W is "normal". It
is also true that AC implies DC ( see proof of Theorem .

6.12 ). As an interesting aside, our construction of W



104

will establish.two independence results previously shown
by other methods:

(1) The Axiom of Choice is independent of the other

axioms of ZF ( Cohen, [2] ).

(2) AC is independent of DC ( Feferman, [6] ).

Definability is the central concept in our construc-
tion of W. Our ultimate interest is with a family of
sets which are the values of abstraction terms having spe-
.cial parameters. These notions are subject to hidden dif-
ficulties of which mention is now made. We first look at
the simplest type of definability. A set x is definable

without parameters ( we write: Dwp(x) ) if:

x=1{y:oe },
where ¢ 1s some formula with one free variable. For the
class of such sets we write: DWP.
Our previous uses of definability have’ been informal in
the sense that no formula ¢; of ZF has been exhibited for
which: ¢,(x) <> Dwp(x) . In general, the following version

of Richard's paradox prevents this.

" Proposition 6.1 "| Dwp (DWP) .

Proof: Since DWP is countable for the first or-
der language of set theory, undefinable
ordinals exist. If ¢(x) has only x free,
note that y = { o : ¥8 < a, ¢(Bi } is

the least ordinal not definable by ¢.
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We have pr(ﬂl,_but'7¢(xl.

Thus, no formula having one free variable can "define"

DWP. Let DWPIE be the class of sets IE -definable without

parameters, i.e. prgg(x) —x={y:EEsy)]} .
Because we are working with models having set-universes,

the next result is true.

. Proposition 6.2 (a) prm:(a) iff there is a formula

U (x) with free variable x only, such
that:
E E Ux( ¥(x) < x=a ) .

(b) pr(DWPE:) .

Proof: (a) Let a ¢ DWPE:, Then there is a

formula ¢ such that a = {y : E E ¢(y)}. :
Define Y, (y,x) < (y e x < ¢(y) ) .
Then E E wvx( Qy(wo(y,x)) “— x =a ) .
Conversely, suppose there is a formula
P(x), Qith only x free, and E F
Ux(P(x) <> x = a) . Then a = {y : E

E vx ¢°(ymx)}, where:

bo(Y,x) < (y e x < P(x) ) .

(b) We arithmetize the set theory of
IE, and apply GOdel numbers f¢1 to each
formula ¢ ( [24], pp. 175 - 95 ).

Since IE has a set as universe, there
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is a 4," formula ( [25), p. 193; cf.
141, p. 91 1: o

sét(jd,m,a) « a= "' & E F ¢(a) .
ﬁErom (a)'we have:

Dup™ (a) = E F ¥x( ¥(x) * x = a)

> Sét(qo,El,a) , Where o, = M'vx (P (x)

+ x =a )! is dependent on a, and E is

fixed.

Next, we look at the class of sets which are the values

of abstraction terms whose only parameters are ordinals.

This class is known in the literature as the ordinal-defin-

abie sets, denoted OD. Because of Proposition 6.1, the
definabiliﬁy of this class within ZF must be shown with an
extended form of the reflection principle. ( [15]; p. 273 ).
Since we are working within P [G] which has a set as uni-
verse, we can use the simpler device of Proposition 6;2(b).
We first arithmetize the formulas of ZF, assigning them
unigua Gbdel numbers as in [24], pp. 175 - 95. We let %
denccz the set of GOdel numbers of formulas of ZF. y7 may
be thoucht of as a countable set of ordinals in MI[G].

Our analogue to OD must include an additional parameter,

namely a countable sequence of ordinals, so we give it a

different symbol.

Definition 6.3 x € 0D' = MI[G] k (277 e ¥Y) (@t e “ppy)
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(Fogy von yo € QM) (¥y) (y e x < ¢(y,

t,ul,_.,.';an)) .

OD' is the family of sets ordinal-definable in MM [G]
from a sequence of ordinals. For each set of reals E & OD',
- Theorem 5.10 asserts that E is Lebesgue measurable.

Neither OD nor OD' are necessarily transitive, as ele-
ments of OD ( resp. OD' ) sets may not be OD ( resp. OD' ).

OD does contain, however, a transitive submodel known in

the literature as the family of hereditarily ordinal-defin-
able sets ( HOD ). The sets of HOD and all their ancestors

via the membership relation are HOD.

set containing x that is transitive. Existence of TC(x)

presents no problem:

Proposition 6.4 Let E be a standard transitive model

of ZF. ¥Yx € IE, TC(x) € IE .

Proof: Let the sequence'{xn} be defined:

X, = X, X = Lan . By standardness

n+1l
and transitivity, along with the axioms
of Infinity and Replacement}'{xn} e B .

By the axiom of Regularity, Lﬁxnx=;TC(x).
: n--

By the axiom of Unions, TC(x) e E.

These conditions are essential; see [4], . 111 .
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Just as OD' is our analogue to OD, our definition of

N is analogous to that of HOD = { x € OD : TC(X) € OD } .

" Definition 6.5 N = { x eoOD' : TC(x) ¢ OD' } .
" Lemma 6.6 N = { x e OD' : xe N } .
Proof: By 6.4, TC(x) = {x}u{ TC(y) : vy e x } ,

so x e N iff x € OD' & (¥y € x)(y ¢ W) .

Corollary 6.7 N is transitive.

Despite the close definitional analogy between the
class HOD and the set IN, there is one important differ-
ence. HOD satisfies AC ( see [15], p. 276 )}, but we shall
see that IN does not.

The Myhill-Scott proof for HOD k ZF adapts easily to IN.

Theorem 6.8 N | zF .

Proof: (a) Since N is transitive, the follow-
ing hold ( see [9], pp. 21, 23 ):
(i) N is extensional.
(ii) (x,v) = (x,y) .
C . N
(iii) Uoox = uUx
. N
(iv) P (x) = P (x)NIN .
These verify the axioms of Extensional-
ity, Pairs, Unions, and Powerset in IN.

(b} W is standard and e A N? is well-
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'ﬁoﬁnded,_so the axiom of Regularity
holds in NN .
(¢c) P e N and w € N, so the axioms
of Null set and Infinity hold in W.
(d) The axiom schema of Separation
holds in I : |

(1) TIf x is definable from

parameters b e.. ;b which are in OD',
n

17
then x € OD'. This is obvious from
6.3; the ordinal parameters for each bi
parametrize x, and the ordinal sequence
parameters ti for each bi can be amal-
gamated into a single ordinal sequence
parameter t for x, in which the ti ap-
pear as subsequences:

k = 2i

. J
t (3) 3

~e

t(k) =

0 ; otherwise

(ii) Let ¢ be a formula and
let a,bl, .o ,bn € N ¢« OD' . Then:
c={xea: NE ¢ (x,bys «o. ,b) |
¢ OD' from (i). ¢ € W by Lemma 6.6 .
(e) The axiom schema of Replacement
holds in I :
Suppose: (i) f = {(x,y) ¢ N? : N [

/b

0 (%,7,bys ... ,bn)} where by, ... ,b_
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e N < OD'
(ii) ™ k f is a function.
Then for a ¢ W,
c :'{y‘: N E (ux e'a)¢(x,y,bl, f;"’bn)}
belongs to OD', as in the argument for

(d). Therefore ¢ ¢ W by Lemma 6.6 .

From Proposition 6.2(b) and Definitions 6.3 and 6.5,
we see that Dwp(IN ). The following uniformity result pre-

sents this fact in a more significant and useful form.

Lemma 6.9 There is a formula ¢, free in s, y only, such
that:
MIG] F x e N « (ds € w@M) (Yy) ( 9o,(s,Yy)

Hy:x).

Prcof: Let:
bo(s,y) < (@"¢! eY) (Foy, ... o € 0qy) (¥2)
([z € y <> ¢(z,s,al, oo ,an)] & $o(y)) e
where ¢,(y) <> TC(y) < OD', which is free in
y only ( when fully written out in ZF using'6.3

and 6.4 ).

For any x € N, Lemma 6.9 tells us that x is uniquely
determined by a sequence s . g w@I@ . The next lemma ex- . .
ploits this to show that a large family of mathematical

objects of M[G] exist in WN.
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'Lemm@“Gng, Let h:w - N and h € M[G], then h ¢ WN.

Proof: Working in I{IG];_we define an ordinal vy (x)
as the least ordinal o such that there is an
s:w > o such that X ié the unique y satisfying
o (s,y) ( Lemma 6.9 ).

Let ¥y = sup y(h(n)). Using AC, we define a
n

well-ordering L on { s : s:w = v } . Let
S W > Y be the least of these s such that
h(n) is the unique y satisfying ¢,(s,y). We

amalgamate the sequences S, into a single se-

quence g:w *—@Iq:
[s (0 3 k= 230
g(k) =
0 ; otherwise

h is definable from {sh} via the well-ordering

< 2

M
I

h(n) < (¥s < s ) (Jéo(s,y) ) & ¢o(s_,¥)
and {sn} is clearly definable from g. Thus,

h € OD'.

Since w ¢ N and the axiom of Pairs holds in

N, h «IN by definition. h € N by Lemma 6.6 .

" Corollary 6.11 (a) EREI[G] e N .

W .

(b) @M¢ N .

The above techniques are all we need to prove the last

two main theorems.



" Theorem 6.12

Proof:

" Theorem 6.13

Proof:
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N kE DC .

Let A, R € N satisfy the hypothesis of
DC. Suppose'{xi}i < n is a finite se-
quence of elements of A such that

Vi < n . Since MI[G] F AC,

.Rx.
Rif®%it1 r

we may pick x £ A such that anxn

n+l +1
for any value of n. By induction, there
is a map h:w > A such that h(n) = X, -

From Lemma 6.10, h ¢ N .
N E LM .

By Corollary 6.11, each real in M [G]
belongs to W, each closed interval with
rational end-points in M [G] belongs to
N, and each Borel code in M [G] belongs
to W. Thus M[G] and N have the same
Borel sets. Let E <« H&Iq, E € N, then
by definition of N and Theorem 5.10

and Lemma 2.22, M[G] F ¢(E), where:

$(E) + (3G %) @N) ( u(N) = 0 & E

G~N ) . From Theorem 2.24 and the above:

N F ¢(E) ,

i.e., E is Lebesgue measurable in IN.

From the assumption that there exists a model M ¢ K
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such that M k 2FC + I, we have arrived through these last
two sections at a model N ¢ K satisfying N [ ZF + DC +

LM .
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Conclusion

To summarize the development of the past seven sections,

we will present the main results in the form of a theorem.

Theorem Let KX be a non-minimal! standard transitive

model of ZFC + I . Then:
(a) K E there is a model of ZFC + " Every

set of reals definable from a countable seg-

uence of ordinals is Lebesgue measurable .

(b) K E there is a model of ZF + DC + LM .

We note that for E = (E,Eﬂﬁe), where E is a set, and
¢ a sentence, the statements IE % $ , and E % ZF, are ex-
pressible as A%F—formulas ( [4], pp. 94, 96, 97 ). Hence

" there exists a model of ... " are abbrev-

the statements
iations of formulas in the language of set theory.

'Our point of view is clearly different from that of
Solovay [23]. His model construction takes piace within
the intuitive but ambiguous "real world" of set theory,
while our constructions are relativized to a fixed model
K of set theory. For this reason, Solovay's construction
appears in the form of a model extension. Our actual con-
stuction takes the same form of model extension, but our
models M, MI[G], and N are internal models with respect

to IK . This explains the format of our main theorem above.

Theorems 0.36, 5.10, and 6.8, 6.12, 6.13 provide the

i.e. X is not the least such model. See pp. 9 - 10

.
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main verification of this theorem, except for the found-
ational aspects to which we now return.

Axiom A, which worked so well as a foundation for Sec-
tions 0 - 3, proved not to be‘powerfﬁl enOugh ( p.91 ) to
ensure the existence of an inaccessible in the ground model.
Even the adoption of the much stronger Axiom I as a part of
our metatheory would fail to do this. Perhaps the best com-
promise Would,be to introduce an axiom that guarantees the
existence of at least two inaccessibles. Standard techniques'
( e.g. [4], p.110 ) then produce a set K such that K E 1.

Now, supposing that K does exist such that X F I, we
must still produce a countable ground model M satisfying I
and belonging to K.

A standard modifiéation of the LOwenheim-Skolem-Tarski
technique exists by which we can constuct a countable elem-
entary submodel beionging to K .( Kis non-minimal ), which
we outline ( see [12], c.f. [4] ). First we take the clo-
sure of {@} under a set of Skolem functions for K and
Mostowski-collapse this to a transitive set M. M will be a
countable elementary submodel of K, thus M F I. By a

theorem of Lévy ( [4], p.104 ) M is hereditarily countable

( |Tc(M)| < w; ) which implies that M has countable rank.
( [4], p.103 ). Hence Mc{xe XK : rank(x) < w;} ¢ K. The
power set axiom.then tells us that M ¢ XK.

This completes the proof of our theorem.
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