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Abstract

We define a notion of logic that provides a general framework
for the study of extensions of first-order predicate calculus. The concept
of partial isomorphism and its relation to infinitary logics are examined.
Results on the definability of ordinals establish the setting for our
proof of Lindstrom's Theorem: this theorem gives conditions that characterize
first-order logic, We then consider the analogues to the general case of
the compactness and Lowenheim properties. For a wide class of logics it
is shown that interesting connections exist between the analogues of these

properties,
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INTRODUCTION

In the last two decades logicians have done considerable research
on logics that extend the first-order predicate calculus. Bell and Slomson,
for instance, devote the last two chapters of their textbook "Models and
.Ultraproducts" to the study of such extensions. The motivation for léoking
at these extensions stems from a desire to avoid certain shortcomings of
first-order logic; in particular, as is well known, first-order logic is
deficient in expressing many useful mathematical notions.

Any good introdgction to the first-order predicate logic will
list the following properties that this logic possesses:

(1) Compactness property,

(ii) Lowenheim-Skolem property.
A natural question arises: wunder what conditions does an extension also
satisfy these properties? The answer is perhaps surprising: any logic
possessing the above properties must be equivalent to first-order logic.
This is a result of the Scandinavian logician P. Lindstronﬂflsz. Besides
being interesting in itself, Lindstrom's result has stimulated the growth
of a field of research, abstract model theofy, which attempts to construct
a model theoryffor general extensions of first-order logic.

Among the many extensions of first-order ¢alcéulus there are two
logics which have been the subject of especially close study. One, pioneered
by Tarski, is obtained by allowing the formation of infinitely long sentences.

The other, due to Mostowski, involves the use of generalized quantifiers.



Because these logics are proper extensions of first-order logic Lindstrom's
result ensures the failure of either the compactness or .the Lowenheim property.
It turns out, however, that analogues of thesevproperties exist for the

above exténsions. In addition,.reduction techniques of Fuhrken u[9] and
Lopez—Escobar[13] can be used to show certaiﬁ interesting connections between
the analogues of these properties.

The purpose of this thesis is threefold. First, a general notion
of logic is established that is adequate for formulating results in a wide
framework, (Chapter One). Second, the machinery necessary to prove Lindstrom's
result is developed, (Chapters Two and Three). Third, the analogues of the
compactness and Lowenheim properties are examined in the general setting,
(Chapter Four).

Our definition of a general logic and the proof of Lindstrom's
result is based on the treatment of Jon Barwise in [l] . The material on
general compactness and Lowenheim properties has its source in Flum 8 .

In our presentation we have modified, reorganized and supplemented the
material with examples and connecting links. Thus we condense Barwise's
notion of a logic while emphasizing certain assumptions which prove to be
very important. Completevproofs and results from the literature have been
supplied in places. The constructions in the proofs of Chapter Three are
given explicitly (for example, Theorems 3.1.9 and 3.2.3). The complete
proof given of Theorem 4.3.1 provides -the justification for the remark that
follows that theorem. What were originally exercises and statements are
also given .proof (Lemmas 4.3.4,4.3.5). Lastly, the existence of the well-
ordering number of L(Qa) is nowhere explicitly expressed in the literature

but falls out naturally from:xFuhrken"s reduction technique.
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It ‘is hoped that this thesis will be accessible to anyone familiar
with fipst—order logic. The rudiments of cardinal. and Qrdinal arithmetic
are assumed; the material that is needed here may be found in Chapter 0
of the above mentioned book of Bell and-Slomson. Finally; the terms- 'set'
and 'class' are understood in the sense .of the'Godel—Bernays system of set

theory, a set being a class which is a member of another class.(see Mendelson

[14] for more details).
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CHAPTER ONE

THE BARWISE NOTION OF A LOGIC

In this section we present the bare essentials of Barwise's
treatment of logics. We have,ffor example, dispensed with his categorical

approach which, while interesting, doesn't seem to be essential.

1.1 Some Preliminaries and Basic Definitions

Definition 1.1.1: AAlanguage L is a collection of relation, function,and

constant symbols. L will always contain the symbol V , a unary relation symbol
which denotes the domain of the universal quantifier. The use of v , although

it is a somewhat artificial comnstraint, proves to be technically convenient.

Definition 1.1.2: A partial structure M for L is a function M with domain

& L such that:
o M

(i) M= VY is a set, called the universe of M .
(ii) 1If Ree'L is a n-ary relation symbol then ﬂwszlfl.
(iii) If f ¢ L is a n-ary function symbol then fM is a partial

.. n
function from M to M .

(iv) If'c € L is a constant symbol and cM‘ is defined then cM e M.,

If in (iii) and (iv) each fM and each cM is defined totally then
M is an L-structure. An L-structure will sometimes be displayed as follows:

f

M=<M, R, R y.uu, £ £,

1’ _2 __1, e sy al,a >,

g3

where M is the universe of'M,_g1 is the .interpretation of Rl’-£1 is the

interpretation of fl, etc. .
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Definition 1.1.3 : Two partial structures M and N for -a language L are

isomorphic if there is a bijective mapping from the universe of ‘M to the
universe of N which preserves in a natural sense the relations and functions.

We write M = N to indicate that M is isomorphic to N.

An expansion of a language L is any language K with L& K. An
L-structure M is a reduct of a K-structure N, and N is an expansion of M, if

M is NP‘L , the restriction of N to the language L.

Every language L hassa set of terms associated with it, defined
inductively as follows: if ¢ is a constant term of L then & is a term; if
tl’ ey tn are terms and £ is a n-ary function symbol then f(tl""’tﬁ) is
a term. Given a structure M for L every term t of L denotes an element t
of . . Mo, M .
of M (the universe of M). If c is a constant symbol t is just.c¢ and if t

Mo MM, ! M

. . M W
is f(tl,...,tn) then t (tl,..., tn) where tl’ . tn are already assumed
(inductively) to have been defined.

We now introduce the important concept of an interpretation( morphism).

Definition 1.1.4 : Let r > O be an integer. Let L, K be languages. An r-term

interpretation or morphism a of L into K consists of r terms tl’ ey tr
of K and a mapping o from L into Kasatisfying :
(i) If R ¢ L is an n-ary relation symbol then R& is an (ni+ r)-ary
relation symbol.
(ii) If f ¢ L is an(d-ary function symbol then £% is an (n + r)-ary

function symbol.

(iii) If o(x) =V thenx =V .

We thus have that \f o is a (1 + r)-ary relation symbol, usually



denoted by U or V. A O-term interpretation o such that a( V¥ ) =V is

called a simple morphism.

Now morphisms on languages induce operations on the corresponding

structures. Let & : L >~ K be an r-morphism and let M = < M,..., EERERE af >

be a typical K-structure, where a; is the interpretation in M of fi. We
- - . -a
wish to pull Maback to a structure M ® for L. The universe of M = is
N={aeM: (a, ays ey ar) € UM; U=a(Vy) }

The interpretation of an n-ary relation symbol R € L is given by

S M. .
(b cees bn) e-R iff b1,4..., bn € N and (bl, cees bn’ ars oo ar)

1,
€ (Ra)M .

The interpretation of an n-ary function symbol f ¢ Lsigithe restriction

of £ , to N" where
B LR
£ (b b.) = ("M b, a a)
=a ,...5a_" 17 "7 T 12 °°°2 "o 17 "7 Tr
1 r
Since N may not be closed under the functions f | s M is only a

AR
partial.L—structure:‘ Ifi many cases, however, M™® will be an L-structure

and M is then said to be a-invertible.

There are two important examples of the above which are used

repeatedly in future proofs.

‘Example 1.1.5 : Let L be a language and V a unary relation symbol not in.

L and let K = L(V). (L(V) is the language obtained from L by adjoining
the symbol V}) Let o : L -+ K be the interpretation which sends V tovV
but leaves the other symbols of L unchanged. A typical K-structure has
the form (M,V) where M is an L-structure. . The structure (M,V) is a-invertible

iff the set V is closed under the various functions of M, in which case
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M™% is just the usual relativization of M to the set V, M == u",
Example 1.1.6 : Given a language L and a collection of L-structures

{'Mi :ieI ¥ it is possible to code this set of structures into a single

model for an expanded language K of L. For example, let L = { R } where
R is a binary relation symbol and let K = { R', V, ¢ } where R' is 3-ary,
VVis binary and c¢ is a constant symbol. Let o : L - K be the.l-morphism
which sends \/ to Vand R to R'. The term of o is just c¢. From the set
of L-structures { Mi : i eI} we form the K-structure M = < M, V, R' >

the indexed union of the Mi , by defining

_ i Y = M -
M=1I i:’i!'éJIMi where M, = V"%
<a,i>eVif ieTIandac Mi s

<a; by 1> ¢eVR'"if i ¢ T'and < a, b > ¢ RMi LT
The interpretation of the constant symbol was deliberately left umspécified;
if we denote by ( Mj j ) the indexed ﬁnion in which ¢ receives the interpretation
j then Mj = (M, j j—u’ i.e. it is possible to recover each of the structures
Mj from the indexed union M.
One more preliminary definition is needed.

Definition 1.1.7 : By a collection C of languages we will always mean a

collection which satisfies the fbllowing two conditions:
(i) If L and K. are in C then LKK is in € ,
(ii) If L is in C and K is obtained from L by adding (finitely)
many relation, function or constant symbols to L then K is

in C.



1.2. The Main Notion

Definition 1.2.1 : A logic L* on a collection C of languages consists of

two,components, a syntax and a semantics. The syntax of L* assigns to each
L in C a class L* of sentences. The elements of L* are called L*-sentences.
The syntax satisfies the following two properties:

(1) If L SX then L* & K*.

(ii) (Occurrence Property): For every L*-sentence ¢ there is a smallest:

* .
¢ ¢
*

For each morphism a from L to K, the syntax also induces a map ao

(under inclusion) language L, in € such that ¢ € L
' from L* to
K*. 1If ¢ is an L*—sentenée, u*?¢) will be denoted by ¢a. The semantics of
L* is a relation = such that if MlF=¢ then M is an L-structure for some L
in'C and ¢ € L¥. The semantics satisfies: .
(:31) (iti):s(TsomorphismrProperty)ft IE Mi=¢ and Mhz.Nithen NE=¢.
Ml=¢ is read as "M is a model of ¢". The syntax and semantics of L* fit
together according to the'final property:

(iv) (Translation Property): For every L*-sentence ¢, every

morphism o : L, - K and every K-structure M

¢
a L , . . -0
MEs¢~ 4iff M is o-invertible and M ~j=+¢.
The next two examples provide some motivation for the requirement
of the translatién property.

Example 1.2.2: Let ¢ be an L*-sentence and let K be any language such that

L= 1@ =K. If a: L¢ + K is the natural embedding map and M is a K-structure
then M™% is just the L-reduct of M, i.e. M %= M,\L. The translation property
asserts that-NlF=¢a iff hirI‘ $. So the translation property implies that

L* has the above 'reduct property’.

Exanple 1.2.3: Let ¢ be an L*-sentence and let L #-L¢ be the set of symbols



occuring in ¢. Let V be a unary relation symbol not in ¢ (i.e. not in Lz),
and let o : L > L(V) be the relativization defined in Example 1.1.5. We-

write ¢V for ¢a. The translation property asserts that the L(V)-structure
(M, V)HE ¢V iff V is closed under the functions of M and M(V)FZ $ .

¢V is called the relativization of ¢ to V, and the translation property

implies that our logic has this relativization property.

In the following we stipulate a few additional .assumptions on a
logic. These assumptions are not a necessary part of a logic but are designed
to ensure that any 1ogicvunder consideration extends the classical first-
order predicate calculus.

Observe first-that any language L gives rise to a set of atomic
sentences. If t1 and t2 are terms of L then t1 = t2 is an atomic sentence
of L. ('=' denotes equality and is treated here as a logical symbol; it
deesn't occur in the language L.) If R is an n-ary relation symbol and
tl, caey tn are terms then R(tl....,tn) is an atomic sentence of L.

Let L* be a logic on the collection C of languages. We formulate

three assumptions which we require L* to satisfy:

Assumption 1 : L* contains all atomic sentences. This means that:

(i) if t1 = t2 is an atomic sentence of L then it is an element

of L*, and for each L-structure M

oo Mo M

2 R

(ii) if R(tl,...,tn) is an atomic sentence of I fthen it is an

[\" [‘
tn) e E

element 6f£ L*, and for each L-structure M

M

ME R(tl,...,tn) iff (tl,...,tﬂ) € RM

Assumption 2 : L* contains conjunction and negation. Suppose L is a language
p ]

of C and ¢ and ¢ are any Sentences of L*.



Conjunction: There is a sentence X of L* such that if M is any L-structure
then My iff ME= ¢ and ME= ¢ . The senténce X will be denoted

by ¢ N\ V

Negation: THéTX€ is a sentence X of L* such that if M is any L-structure

then M = x iff not M= ¢. x will be denoted by ¢¢ .

Assumption 3 L* is closed under existential quantification. Again let.

L be any language in C and let ¢ be a sentence of L* which may or mxy not
contain the constant symbol c. Then there is a sentence Xfof*L* such that
if M is any L-structure:

ME= x iff there is some constant a € M such that ( M, a )= ¢
{ (M, a ) is the L-structure differing at most from M in that c receives

the interpretation a in the universe of M. ) The sentence x will be denoted

by 3x¢¢ (x).

For our purposes then a logic L* as defined earlier satisfieé
the four properties of the definition and the three assumptions given above.
Additional restrictions might be introduced. For instance, Barwise proposes
a tentativee definition for finitary syntactic operations. This definition,
however, is extremely general and may be too weak to be useful; we will
not look at it further. At this point it is interesting to look at- some

examples of logics that are covered in the Barwise set-up.

Example 1.2.4 :- L&ww-the classical firstZorder predicate calculus.

Syntax: Given any language L the set wa = 1.* 18 formed inductively as
follows:
(i) L contains all atomic sentences (see page )

ww

(i) If ¢, e L then ¢ AN e L



(iii) If ¢ ¢ wa then ¢ ¢ wa |
(iv) If ¢ R then dx6(x) € Low .
wa is sometimes referred to as the set of well-formed sentences.
Semantics: . Given an L-structure M we inductively define the relation
ME ¢ (4 a sentence of me) as follows:
(i) If ¢ is an atomic sentence the relation MF ¢ is exactly as given.
in the stateﬁent of assumption 1 above
Wiy ME oAy iff  ME=¢ and M= g
(ii1) ME ¢ iff not ME ¢
(iv) If ¢ is a sentence which may or may not contain the constant symbol
c then MFE dx¢(x) iff there is some a € M such that ( M, a )¢ (c)
' where ¢ receives the interpretation a
in (M, a) .
(We wrote ¢(c) for ¢ to indicate the special role of the constant

" symbol c. )

Note:. In our formulation of a logic we have avoided the usual concept of

a free variable. This is because a free individual variable of a language

can be identified with a constant symbol of a larger language. More precisely,
given a language L form the language L{C) by adjoining the coﬁstant symbol

c toL. If M is an L-structure we are free to interpret c arbitrarily in -

the universe of M to get an L(c)-structure ( M, a ). 1In this manner, c

can be thought of as a free variable of L. And similar remarks apply in

the case of (highef—order) logics which allow relation or predicate variables.
(I

Example 1.2.5 : - second-order logic. Informally, this is an extension

off¢lassical first-order logic in which quantification over predicate variables-
is allowed.

Syntax: We add a new logical symbol & (the membership relation) to wa.



New atomic senténces t € U are allowed, where t is a term and U is a
unary relation symbol. If L is a language L* is obtained from L by
adding the following formation rule to the syntax of wa.:
(v) If ¢ ¢L* then X6 e L* .
Semantics : € isbinterpreted in any L-structure M as set-membership.
Add the following semantic rule to wa :
(v) If ¢ is any sentence of L* which may or may not contain the unary
relation symbol U then
ME= 3X¢ iff there is some U C M such that (M, U )E=¢(U).
Here ( M, U ) is the structure differing at most from M in that U
receives the interpretation U; we write ¢(U) for ¢ to indicate the

special role of the symbol U.

Example 1.2.6 : L(Qd) - logics with the quantifier Qa' These logics are

obtained from wa by adding the quantifier Qu’ where oiis an ordinal. They
are but one example of the many different logics that result from employing
generalized quantifiers.
Syntax: Add the following rule to the syntax of wa:
(v) If ¢ ¢ L¥ then an¢(x) € L* .
Semantics: Add the following rule to the semantics of wa:
(v) If ¢(c) is a sentence of L* then

M FZan¢(x) iff cardinality( {aeM ; (M, a Yp=9(c)} ) >w, .
(wa is the o cardinal in the sequence of infinite

cardinals)
Intuitively, de¢(x) holds in M if there are W, objects a such that
(M, a)F ¢).- One important specific example is L(QO): in this logic,

= Q0x¢(x) iff there are infinitely many a € M such that ( M, a Y= ¢(c).
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Infinitary logics are important extensions of the predicate
calculus and have been the object of close study in recent years. . The

next logics we will consider are examples of these infinitary logics; they

will be examined in greater detail in Chapter II.

Example 1.2.7 3. L - logic with infinite conjunctions and disjunctions.

W

Syntax; Add the following rule to the syntax of wa :
(v) 1If ¢ is a set of sentehces of L* then N\ ® and \/ ¢ are sentences
of L*.

Semantics: Add the following rule to the semantics of wa:

wv) ME AN® iff M|=¢for_al_l¢ev<1> and
MFE o iff Mp= ¢ffor some ¢ e & .

Example 1.2.8: de ,» where o is an infinite cardinal. This logic has the

ams at . . o :
She s?ggaﬁxand semantics as me except for the following restriction: the

set ¢ of the previous example must have cardinality less than o. Thus for
o = w; we get the logic Lw " in which only the countable conjunction and

1
disjunction of sets of sentences is allowed.
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CHAPTER TWO

PARTTAL ISOMORPHISMS AND SCOTT SENTENCES.

In this chapter we give some definitions and state some results
from the infinitary logics described at the end of the last chapter. A

more detailed account including proofs of the results may be found in [2] .

Let M be an L-structure. A partial substructure MO of M is
a subset MO of thecunivVerse of M together with the restrictions of the
relations and functions to M0 (so some of the functions may be partial).

Given L-structures M and N, a partial morphism from M to N is just an

isomorphism F : M0 = NO for partial substructures of M and N respectively.

Definition 2.1 : Let I be a set of partial morphisms from M to N. We
say I has the back and forth property if for every F € I and a ¢ M (resp-
ectively b € N) there is a G € I with FEG and a ¢ domain(G) (respectively
b € range(G)). If there exists a set I with the back and forth property
then Miand N are said to be partially-isomorphic, written I : M :p N or
simply M = N,

P
N

<M, <M > and N = < N, < > be dense linear orderings

ExXample 2.2 : Let M

=l

without endpoipts. For example M and N could be the reals and the rationals
respectively with the natural ordering. Let. the set I consist of all maps
f such that f is an isomorphism from a finite subordering of M onto a finite
subordering of N. Then it is straightforward to check that I has the back

and forth property and so I : M :p N.
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The notion of partial isomorphism can be viewed as a 'weak' form
of isomorphism. The next result shows that in certain cases the .two notions

are equivalent.

Tleorem 2.3 : If M and N are countable L-structures then M = N iff there
exists a set I such that I : M zP’N;

{f} and clearly I : M :P'N' To prove the

converse we give a special case which is actually a classical result..

Proof: If f : M =~ N let I

The general case is then proved in a similar manner. The special case
is where M, N and I are as given in Example 2.2 above with the added’
stipulation that M and N are countable. Since M and N are both countable

let M = { a;,a,,a yeeo '} and N =°{ b.,b_,b }.‘ The set I is used to

3 1°72°73>"°°

construct an isomorphism £ from M = < M, <M > onto N = < N, <N >. 1In fact
a sequence fl‘:f c:f3._,... is constructed such that f = Lﬁ)fﬁ is the desired
isomorphism. Let fl = { <a1,b > } be the function in I which maps a, to
bl, We now proceed inductively :
= . . C . .

f2n some function g ¢ I with f2n—l“g and a € domain(g)
- - , . . .
'21£2n+1 some function g ¢ I w1th,f2 __g and b € range(g)

Then £ = Lﬁj fn has domain all of M, range all of N and preserves the

. M N . .
relations <, < , Hence f is an isomorphism.

Recall the definition of me_rgivéﬁ in Example 1.2.7. Two L-
structures M and N are said to be wa—elementarily equivalent , written
' M'EL N, if the same set of mefsenteﬁces hold 'in both structures. The

oo
following theorem is fundamental in that it provides a connection between
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the algebraic concept of -partial isomorphism and the logical concept ‘of

wa—elementary equivalence.

Theorem 2.4 : Given L-structures M and N the following are equivalent:

@ M = s N

oofy

(ii) There is an I : M :p.N .

One effect of thi$§ theorem is to make clear the transitivity
of the relation =p because of the fairly obvious transitivity of me—
elementary equivalence.

Later results require a refinement of the above theorem. To

this end a precise measure of the -complexity of an wa—senténce is needed.

The next definition gives one such measure.

Definition 2.5 : Let ¢ be. an me=SEntence. The quantifier rank of ¢,

written qr(¢), is defined inductively as follows:

R
g

(i) If ¢ is an atomic sentence in which no function symbols occur
then qr(¢) = 0.
(ii) Suppose ¢ is an atomic sentence of the form t, = t2 in which

function symbols occur. Let n be the number of occurrences:-of

=
§ -

-wlor syfunction symbolsoin?tlzor t2' Then qr(¢) = n~1.
(iii) Suppose ¢ 1is an atomic sentence of the form R(tl,...,tk) in
which function symbols occcur. Let n be the number of océurrences
of function symbols in any of the ty- Then qr(¢) = n .

(1v) qr(vg) = qr(s), qr(vx6(x)) = qr(Fxé(x)) = qr(4(c)),
qr( /\?®) = qr(\/®) = sup {qr(¢) : ¢ e &}.

If o is an ordinal we write M = ‘N to indicate that the
ooy
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same set of sentences of quantifier rank < o hold in both M and N.

Theorem 2.6 : Given L-structures M and N and an ordinal o the following

are equivalent:
1 M= N
oo

2...21.2...21 vwhere, for
1= B— — o

is a non-empty set of partial morphisms

(ii) There is a sequence IO‘QI

each 8 < a, I

B

between M and N such that if g+l < o and F e'IB+1 then for

each a ¢ M (resp. b € N) there is a G ¢ I8 with F G and

a € domain(G) (resp. b & range(G)).
The sequence { IB }559

isomorphism in the case where M Z,¢ N although not necessarily M =, N .
L&$ wa

gives an approximation to a partial

Let L be a language and ¢ a sentence of L*., 1In the subsequent
definition the following notation is used::3 ¢(§) denotes the seritence
of L* such that for any L-structure M

Aﬂh::3x¢(§) iff (M, a)fE ¢(¢) where a is the interpretation
of c in M .

Also, if the logic is wa then wa denotes the set L* of sentences of L.

Definition 2.7 : Let L be a language. For each ordinal a, each L-structure

. o
M and each sequence @ = a,,...,a € M we define a sentence ¢ €
1 n . . (Msa-)

L(cl,...,cn)mw . This_is»called a Scott Sentence. The definition proceeds
by induction on a:
O%M,a) = /A\{ Y ¢ Y is an atomi¢ or negated atomic sentence of L(cl,...,cn),
’ qr(¥). = 0,and (M,al,...;an)F:dJ} .

. o+l
Fot any o, 0}

M, a)

is the conjunction of the following sentences:
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o
°M,a)

c
.0 ntl..
X [6)
besz} nt+l (M,al,...,an,b)(xn+1)
Cn+l "

\\//eu
\w/xn+l‘beM (M,al,...,an,b)(xn+1>

For. lizit erdinziy 2,

A . . . ‘ .
For limit ordinals A, O(M,a) 1s.the conjunction a<) O%M,a) . We write
o for o when a4 is the empty sequence
M M, a) Pty seq .

. [s . .
Informally, the Scott Sentence,o(M @) gathers up all the information
Q).
about (M,a) that is contained in those sentences of quantifier rank <o

which hold in (M,a). The next theorem makes this remark more precise.

Theorem 2.8 : Let M and N be L-structures and let a = al,...,an R

b = bl,...,bn be sequences in M and N respectively. Then

(N,b) = G%M’a) iff  (M,a) ngw (N,b) .

A special case of this theorem is when i = 0 and a,b are the

empty sequences. In this case NF= Ga iff M = o N ~. Hence Theorem
)

. . . . . o
2.8 gives a nice criterion in terms of Scott sentences for wa—elementary

equivalence.

Deinition 2.9 : The sequence of beth cardinals is defined as follows:
] = O ] = zju
0 ’ o+l
:]B =.ggg:]u if B is‘a limit ordinal.
=<We will be particularly interested in those cardinals o for

which::]a = a . One important example of this type of cardinal is w.

We call cardinals such that :]a = o fixed point beth cardinals.
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The last theorem of this chapter providesbadditional information
about Scott sentences in the case where cardinality(L) < k for some fixed
point beth cardinal k. The theorem is also crucial in the proof of the
main result of Chapter Three.

Theorem 2.10 : Suppose k is a cardihal such that k = :]K_ and L is a

language with cardinality(L) < « . Then for each o < k and each positive
integer n: -
. , o .. .
(i) If M is any L-structure the sentence O(M,a) is in L(cl""’cn)Kw .
o

(ii) There are less than k sentences of the form O(M @) as M ranges
b

over all L-structures.
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CHAPTER THREE

DEFINABILITY OF STRUCTURES AND LINDSTROMSS THEOREM

3.1 Definability of Structures

In this section we establish some results on the definability
of structures and, in particular,; the definability of ordinals in a logic.
These results are important because the definability of ordinals gives some
measure of the 'strength' of a logic. This becomes more clear in the material

of 3.2 where the results are needed in some of the key proofs.

Throughout this section L* is a logiczon a collection Co6f

languages.

Definition 3.1.1 : Structures M and N are similar if domain{M) = domain(N) = L.

1f K is a class of similar structures for a language L then K is L*-definable
if there is a sentence ¢ ¢ L* such that M e K iff ME $. So if L*== wa
then K is L*-definable iff K is an elementary class (i.el! the class of models

of some first-order sentence.)

We now give the notion of Z%—definability. This is the notion

of definability which will be used most often.

Definition 3.1.2 : L&t K be a class of L-structures. K is said to be

i%-definable if (i) there is a laﬁguage K and a O-morphism ¢ : L - K which
is the idenity on L except possibly that a(y ) # V and (ii) there is a
sentence ¢ in,K* such that each model M of ¢ is a-invertible and

K= {M s ME o} .

The following remarks should help clarify whatiit means for a set
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of structures K of a language L to be Zi—definable. Suppose L is contained

in a larger language K and let K(V) be the language obtained from K by
adjoining the new unary relation symbol V.toWe denote a typical K(V)-structure
by ( M, V) where Miis a K-structure and V is the interpretation of V in

the universe of M. Let ¢ be a sentence of'K(V)* with the following property:
if (M, V) ¢ then (M(V)Wp L is a full L-structure. (“(M(V))P L is

the structure obtained by first relativizing M to V to get a (partial) K-
structure and then taking the reduct of this structure to the language L. )
Then a class K 6f E%sﬁrﬁétu&és is Z%—definable iff there exist a K, V and

a sentence ¢ as above such that K consists of'all and only those structures

of the forn (MV)p  for (M, W=,

Clearly any definable class is Zi—definable. “Also, the class of
reducts of a definable class will be Zi-definable,

Definition 3.1.3:(i)A structure M is definable (Zi—definable) in L* if

K={N:Nis similar to M and N = M } is definable (Zi-definable).
(1i)1# @lds's sAtoffordinalss is definable (Ii-definable) if the
class of structures K ={{ M : M = < o, < > for some o cAA} is definable

(2-definable).

Theorem 3.1.4 : The following are equivalent:

(i) The collection of finite sets is Z%—definable in L¥.
(i1) < w, < > is Ii-definable in L*.
(iii) There is a class of ordinals A Z%—definable in L* which contains

an infinite ordinal.

Proof:

( (1) implies (ii) ): Let ¢ be the Z%-definition of the collection K of
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finite‘sets.A We suppose ¢ is a sentence of the language L = L¢. Thus a

unary relation symbol occurs in ¢ and the finite set M ¢ K iff M = UN for

some N such that N ¢. We may, by the isomorphism property of Definition
1.2.1, assume that M is an initial segment of the integers. For each n < w
there is an Nn|= ¢ with |UNn4‘|/ > n. 1If the language L = {Vy , U, Ry,..., -fl""}
then consider the language K = {{ , V, U', Ri’f"’ fi;... } and the 1-

morphism with constant d € K such that-

le_____g Rl ...etc.
Wewrite ¢'(d) for ¢a. We take the indexed union Nw of { Nn tn<aw} to
form a K-structure (see Examplell.l.6). The universe of Nw will be the

set UN ‘Lj w. Expand K to the language K

n<w n = K(w, '~<‘) where W is a unary

1
and ¢ a binary relation symbol. Let y be the conjunction of the following
two KT sentences: " < is an infinite linear ordering of w "

VW@ # Iy A VzG < x>0 @y))] -
We show two things: (a) that ¢ has a model and (b) if ( N, W, 4) is a model of ¥
then < W, 4 > =<qw, <> ,
(a) Consider the structure ( Nw’ w; <) for R(W, <) (here < in ( N&, w, <)

- "

is the natural ordering on w). If a e whghénritoﬁolmowsLthat a_e UNn for - -

soméiny Let n be the interpretation of 'y in Nw . Clearly if b < a then
N ‘ A
beU nn, i.e. (U')Nw(bgﬁysholaée:eTherefbnesEheesentence Y holds in
(N 0, <)
(b) Let ( N, W, 4 ) be a model of y. To show <W, £ > = < @, < > it is
only necessary to show that each a € W has a finite number of predecessors.

If b e N is such that (N, b ) E ¢'(d) then all the predecessors of a

are in X ={ 2z : <z, b> ¢ (U')N }. But then M= (N, b )"® is a model
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of ¢ with UM'= X and so X is finite. This finishes ((i) implies (ii)).
((ii) implies (iii)) : This is trivial. Let A = { w } and the result
follows from the definitionms.
((iii) implies (i)) : Let A be a class of ordinals Zi—definable in L* and
let ¢ be the Zi—definitioniof A. So ¥ contains the unary W and the binary
< and ME= ¢ implies < WM, <M > is well-ordered. Add a unary relation symbol
to the language L = L¢ to form Lw(U) and and let % € LW(U)* be the conjunction
of ¥ and YVx(U(x) > W(x)) h
Vxyy(UEIAyY < x »U0(y))
VUGN Iy < x) > Ay < xAVzu(y <zz <xx)))]
Then a set M is finite iff M = UN for some N ¢ so ¢ is an Z%—definition

of the collection of finite sets.

. . 1 . .
This theorem tells us that < w, < > is not Zi~def1nable in wa,
If it were then there would be an wa sentence ¢ containing the unary symbol

U that Zi—defines the collection-of finite sets. Let ¢n be the sentence:
N\ ((Qvp).. - ( dv) (v1=#v2,‘/\ . ./\7v1=¢vn[\v2#§\£:¥\. -\ vz#vn/\. .. f\vn_l#vn /\
| A TEDPN- AT )

Then the set of sentences { ¢n': n £ w } would have no model -even though

every finite subset has a model. And this contradicts the well known
compactness property of wa.
In many of the other examples of logics given in Chapter One

< w < > is definable hence 3j-definable.

Example 3.1.5 : L --second order logic. Consider the following sentences:

(1) " < is a total ordering"
(ii) VXIyVYx(y e X Axe X >y < x)

(iii) VxJyx < y)
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(1), (ii) and (iii) say intuitively that < ié a well ordering with no
largest element.

@) Vx[Jy(r < + Ayl < x AVer(y < z <xx))]

(iv) says intuitivély,that each element has an immediate predecessor in

the ordering <. Le# ¢ be the conjunction of these four sentences. Then:
<-A,<<>>=1g a;medei of ¢ iff < A, <> = < w, <> s0 ¢ is the L definition
of < w, < >,

Example 3.1.6 : L(Q.) - logic with the quantifier ' there exists infinitely
0 .

many'. Let ¢ be the conjunction of the sentences:
" < is a total ordering'", \ix(&QOy(y < x)), Qox(x =x) .
Then < A, < > 1is a model of ¢ iff A is infinite, < well orders A and there
are only finitely many predecessors of any a € A. Consequently < A, < >
is isomofphi¢ to < w, < > and ¢ is the L(QO) definition of < w, < >.

Example 3.1.7 : For the definability of < @; < > in the logic Lw o See 4.1.
1

Definition 3.1.8 : An ordinal o is L*-accessible if o € A for some class

A of ordinals that is Zi—defiﬁable in L*.

In wa ﬁhe-definable and accessible ordinals coincide: they are
just the finite ordinals. Clearly every finite ordinal is definablé and
therefore accessible. By the previous theorem if an infinite ordinal were
wa—accessible then < w, < > would be Zi-definable; this, as was noted
above, is not the case.

The following theorem is an important result for obtaining new

L*-accessible ordinals.

Theorem 3.1.9.: Let A be a class of ordinals which is Z%—definable in L*.
Then

(i) the class of ordinals A' = { a : o < B for some B eiA}l is
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Zi—definable in L*,

(ii) 4if A is a set and B = Sup{ & :oa € A} then B is L¥*-accessible.

Proof of (i) : Let ¢ be the Zi—definition ofAA. Thus ¢ contains a unary
symbol U and a binary symbol <. o ¢ A iff < o, < > = ( UN,‘<N ) for some
N such that NFE¢. Let U', <' be new unary and binary relation symbols
respectively and let ¢ a_L¢(U',<')* be the conjunction of the following
two sentences: Vx(U'(x) - U(x))
" <' is the reduction of:< to U' "
M

Then if vy < o for some a € A then X vy, <> = ( U'", < M) for some M such

that- M= ¢ . ( M is obtained by modifying the above structure N.)

Proof of (dii) : Because A is a set B = sup{a: a & A} is indeed an ordinal.

By part (i) we may assume that A=8={a : a < B }. Let $ be the Zifdefinition
of A (as in part (i) ). If L, ={V , U, <,...} let K = { \{,V, U', R,...}

and let o : L, - K be a l-morphism with constant d such that

¢
V v
u Uy p— 7'
< b——1Rr ...etc.
Write <¢'(d) for ¢a. Expand K to form the language K(W, € ) (where W is
unary and < binary). Let 6 be the conjunction of the. following two
RW, £ y* sentenées: "'{ is a linear ordering of W "
Vx[x) > Iy @) A Vz(z 4 x > R(z,%,7)))]
As in the proof of the previous theorem we must show two things:
(a) MF 0 implies ¢ WM, 4¥ 2> is well-ordered and
(b) There exists a Mi= 8 such that < wM,‘<N > =2 < B, <>,
M

(a) Suppose M = (N, W, <N ) where N is an K-structure. Assume that

M= ¢6and < WM, J¥ > 1is not well ordered. Then there exists an infinite
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descending chain aIA& 'az% aBAg";'.. where ‘each a, € WM. Let a be the
interpretation of y in N such that ¢(a) and Blyaf_implies RN(b,al,a). This-

implies b < a; in-N_a. Letting b = a2, a3,...etc. we get a chain

. -0 . ~-Q .. . . .
a; > a, > a, > ... in N 7. Since < well orders N =~ this is a contradiction.

v
Hence < wM, dﬂ x> 1is well ordered.

(b) We must find M such that Mk 6 and < WM, -4w>>
Na

1t
A

B, < >.¥For each

A\
1R

o < B there is an Na such that NaF: ¢ and < UN“, < <ag, < > . ket

NB be the indexed union of the { Na :a £ B8 }. Then ( NB’ B8, <) is a model

of 8. For if o e B (i.e. a < B) let o+l be the interpretation of y in NB.

Then y < o implies vy < o in Na so that RNB(Y,a,u+1) .

+1
We close this section with some definitions and examples.

Definition 3.1.10%: The logic L* is bounded (respectively bounded by B)

Lo 2 aen ouy . . p .
if every ZiLdéflnable class Afof ordinals is bounded (respectively bounded
B§b B) . Note: bounded here means strictly bounded.

Definition 3.1.11 : If the logic L* is bounded by some B then wo(L*),

the well ordering number of L*, is the least such B.

Example 3.1.12 : As was noted earlier the only cSets of ordinals Zi-definable
in wa must consist of finitely many finite ordinals. Hence wa is

bounded by w; in fact, wo(L$g)'= W .

eExample 3.1.13 : The logic (X (second-order logic) is not bounded and

therefore WO(EH:) is not defined. This is because the class A of all ordinals

1
is definable hence Zl—definable by the sentence ¢ which is the conjunction

of: " < is a total linear ordering "

Yx -[ﬂy;(:}’{yee;x:‘/\ Yx(x € X+ y <) .
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3.2 Lindstrom's Theorem

The main result of this section is Lindstrom'!s Theorem. This
theorem outlines conditions that characterize first-order. logic in the sense .
that any logic that satisfies these condition must be equivalent to first-
order logic (the meaning of 'equivalent' will be made predise). Actually
a more general result is established that specifies conditions which char-
acterize logics in terms of the hierarchy LKw , where k is a certain type
of infinite cardinal.

Let L* be a logic on a collection C of languages. In this section
we stipulate another assumption that a logic will be required té satisfy
in addition to those giwm in Chapter One:

Assumption 4 : Let ¢ be any L* sentence. Then the set L is finite -’

¢

only a finite number of symbols occur in ¢.
The motivation for Assumption 4 will become apparent in the proofs of the
results of this sectin.

Let L* be a logicagn C and let L be a-language of C. If M and
N are two L-structurestthen M and N are said to beeelementarily equivalent
with respect to L¥*, written M =, N, if the same set of L* sentences is true

in both structures.

Definition 3.2.1 : The logic L* has the Karp proprty if for all languages

L in C, and all L-structures M and N , if M = N then M =, N i.e. partial
isomorphism implies elementary equivalence.(see Chapter Two for an account

of partial isomorphisms). /

Definition 3.2.2 : The logic L* has the Lowenheim property if every L*-

sentence ¢ which has a model has a model of power < P,
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Theorem 3.2.3 : If L* has the Lowenheim property then it also has the Karp

property.
Proof: Suppose L* doesn't have the Karp property and let L be a language

with structures MO and M1 such that MO :p M1 but for some ¢ ¢ L*

MO|= ¢ and Ml': U

We assume L = L, and hence is finite (by Assumption 4). Enrich L to form

¢
the language K = L(U,W,E,p) where U and W are unary relation symbols, E

is a binary relation symbol and p is a binary (pairing) function symbol.

We write <x,y> for p(x,y) and <x > for p(<x

).

X >

X X X
b n’ n b n+l

12" 10

Let ¢ e L(U,W,E,p)* be the conjunction of the following sentences:

n+1

(1) ¢° and (v)"  (see Example 1.2.3)

(2 Vxyu [EG,y) AU@) > Fu@@w) A E(<x,u>,<y.w>))] .
(3)  Vxyw [EGx,y) AW > Fu@@) NE(<x,u>,<y.w))] .
(4) For each n-ary relation symbol R the sentence:

\fxl...xnyl...yn [E(<xl,...xn>,<y1,...yn>)

n
> NUE) = W) ARG x> R,--y)]
(5) For each n-ary function symbol f the sentence:

Vxl...xnyl.. A [E(<Xl" SFE IR SIS0 PRy .,yn,yn+1>)
nﬁ&
sPAYCICR I (CI) NEGeeax ) = x < £y ey )=y ]

Note that because L¢ is finite only finitely many sentences arise in (4)
and (5). Thus by our assumptions on the logic L* the conjunction y is
indeed an L*-sentence. We show that Y has a model N. The universe of

N will be the set: | = MO\J Ml where My is the universe of MO and

M; is the universe of M1 .
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. N
Let pN-be any injective map from N N into N and let U =»MO, WNw= M1 .
N , |
Define EN as follows: E (<X1""?xﬁ>’<y1""’yﬁ>) 1ff-x1,...,xneGU s
YyreeerV, € WN and there is a partial morphism from M0 to M1 such that
. N .
xlk—-—ayl, cens xn}_——qyn . Define R as follows:

T‘.N . . M 0
R (x ..,xn) holds iff KiseeesX € M. and R (xl,...,xn) or

1’ 0

My ,
FpoeeesX € Ml and R (gl,,..,gn).
Define fN as follows: i:

) N N _ Mo
if XjeeeesX € M0 then f (xl....xn) = f (xl,...,xn)

if XiseeesX € Ml then fN(xl,...,xn) = fMl(xi.....xn)

otherwise define f arbitrarily.
Since'M0 zPM@l sentences (2)—(5).in the conjunction of Y hold in'N, And
because sWQ)F= ¢ and MIF=‘%¢ w‘N'is indeed a model of {. Assume now that
the logic L* has the Lowenheim property. ‘Thgn there exists a model,-"N0
for ¢ of cardinality < 3[0. Let o : L ~ L(U,W.E,p) be the O-morphism which
is the idenity except that o(¥) = U. Let B : L » L(U,W,E,p) be the »-
O-morphism which is the idenity excépt that o(V) = W. Then Nad is a
countable model of ¢ and NBB is a countable model of v¢. Méreover,_the
conjﬁncgion-oft(QD&(S)riﬁ;thé?formation of epsuréﬁthgtiNggzgg’ NIB.

By the classical result given in Chapter Two (Theorem 2.3 ) partially

. . . . ~Q - .
isomorphic countable structures are isomorphic. Hence.N0 = N Since

B8
e
NSQ'F:¢ and NIBF=’wb this is a contradiction. Thus L* does have the Karp
property.

This result tells us that a large class of logics have the Karp

property. For instance, it is well known that wa satisfies the Lowenheim

property and it is shown in [4] that L(QO) (see Example 1.2.6) does also.
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By the above theorem both these logics have the Karp property. The converse
of this theorem is false: as was noted in Chapter Two me has the Karp
property; however, it doesn't satisfy the Lowenheim property.

The next definition gives a partial ordering on the class of
all logics.

Definition 3.2.4 : Given logics L*aand L# on the same collection C of

languages we say that L# is as strong as L* and write L#_i L* if for every
L*-sentence ¢ there is a L#-sentence ¥ ‘such that:

(i) Iw)gilw ,i.e., every 8ymbol occurring in y occurs in ¢.

(ii) ME=* ¢ iff Mp=# ¢ for all L¢-structures‘M.
We say L¥ is stronger than L*, and write L# > L* | if L# > L* but not
L* > 1# . If L* > L¥ and L¥ > L* we write L* = L# and say that L* and
L# .are equivalent.

The assumptions listed in Chapter One ensure that wa < L* for
all logics L*. Also. it is clear that Luw j_wa for all infinite cardinals
o

The following theorem. contains the key result of this chapter.

It provides a more precise measure of the strength of certain logics.

Theorem 3.2.5 : Let « be a cardinal such that k = :]K . (For the definition

of :]K see Chapter Two.) If L* has the Karp prbperty and WO(L*)‘j_K then

-

Aﬁ“ )
the logic LKw is ‘as strong as L¥*.

Proof: Assume LKm is not as strong as L* and suppose L* has the Karp -
property. We show that k is L¥-accessible; this contradicts the condition
WO(L*)_i K . Because LKw is as not as strong as L* there is an [*-sentence
¢ which does not have the same models as any sentence of LKw'

Claim: For each o < k there are L -structures M, N with M =0 N, Mh=*¢¢

K®w

¢
and N f=*'\:¢
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Verification: suppose the claim were false. Then there would be some

a < k such that M =0 N, M=% ¢ implies N ﬁ?* ¢ for all L¢—struCtures
KW

M and N. By Theorem 2.8 M =0 N iff Aﬁh=ca (here /= denotes the semantic
KW
implication relation with respect to the logic_me). "Hence we would have

Nt:oa, Mi=*s¢ implies NF=* ¢ for all L

-structures M, N. Consider

¢
the sentence V/({ GEL{ : ME=* ¢ }. By Theorem 2.10 it is a sentence of
K

L " (this is where the assumption k = ;]K- is used). If N is a model of

this sentence then NI= 0; for some L -structure M such that ME* ¢. By

¢
the above comment thiszgives NE=* ¢. Similarly, if N|=* ¢ then (since .
N|=oz y NE VI Oﬁ : M=* ¢ }. Thus if the above claim were false
¢ would havé the same models as \/{‘o; : ME=* ¢ }, a sentence of LKw;
and this coﬁtradicts our assumption on ¢. ~This establishes the claim.
Using Theorem 2.6 we can rephrase the claim as follows:
For each a < k there are L structures M and N such that

9
(1) MEE ¥ ¢, NE=* g

(ii) There is a sequence I, 2I. 2 ..._D_IB'-_) "'Qld . where,:for each

0

is a nonempty set of pisonefphismsibetweenwzpartial

1

B <o, 1
= ~ B

substructures of M and N. This sequence has the following property:

if g+l < o and F ¢ I then for each a ¢ M (respectively b € N) there

Bg+1
is a G e-IB with FEG and a € domain(G) (respectively b e range(G)).

We now proceed with the proof. The technique resembles that uSed in proving

the previous theorem. Let K be the language obtained from L¢ by adding

the following new symbols: U, Wo» Wm?(all’unary), < (binary), p (a binary

pairing function symbol),and E a 3-ary relation symbol. We construct a

N

sentence y of K* Sﬁch:that: (1) if NF=* ¢ then < UN, <" > i% a well-ordering
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N

and (ii) for each a < k there is a model N F=* ¢ with < UN, < 5 of -order
type o. It will then follow from Theorem 3.1.9 of the previous section
that k is L*-accessible. peis the conjunction of the following sentences:
W %0 ana ()"

(2) " < is a linear ordering of U "

(3) ".p is a pairing function "

(&) " it E(c.x,y) and c¥ < c then for every a ¢ Wo there is a b € Wl and

for every b € W, there is an a € Wy. such that E(c',<x,a>,<y,b>).

1
(5) For each n-ary relation symbol R:

"if E(b,<xl,...,xn>,<y1,...,yn>)

and U(b) then £§1KWO(§§) /\Wi(yi)) and R(xl,...,xn) <> R(yl,...,yﬁ) "

(6) Similar to (5) except for function symbols f.

The notationOSXI;;.:;xhiwisﬂthé4same“astWas uséd indthé prodf-of Theorem
3.2.3 . Our assumptions on a logic ensure that ¢ is indeed an L*-sentence.
Now for each o < k using condition (%) above it is easy to comstruct a
model N of Y such that NE=* ¢ and < UN,<N'> = < q, <> (condition (%)

is used in satisfying (4),(5) and (6)). The construction of N is similar
to the construction given in Theorem 3.2.3. We need only show that N k=% P
implies that < UN, <N > is a well ordéring. Suppose there was some

XC_:UN with no least element. Using X we can define a set I of partial
morphismsffrom N(WO) toiN(wl) . I consists of all partial morphisms F
such that for sbme be X, F is given by:

xlk——éyl,...,Xﬁf—-—ayh where EN(b,<xl,...,xn>,<y1,...,yn>). Because X
has no least element I has the back and forth property. Hence N(wo) and

N&Wl) are partially.isomorphic, I : N(WO) :pN(Wl)

o) - y(p)

. Since L* has the Karp

. But NMo) =4 ¢ and N(WI)F==* 8

property this gives
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this a contradiction. Thus < UN,j<N > 1is well-ordered. We have shown

that « is L*-accessible and this completes the proof.

If we let k = w in the above theorem we obtain Lindstrom's
Theorem which is actually a corollary to the above result.

Theorem 3.2.6 (Lindstrom)c:™ Let L* be a logic on a collection C of languages.

1f L* has the Lowenheim property and either of the properties stated below,

L ..~

ww

then L*

(a) (Upward Lowenheim-Skolem) : If a sentence ¢.0of L* has an infinite

model then it has an uncountable model.

(b) (Countable Compactness) : If T is a countable set of sentences of
i fhgwﬁor anynLCinnC addeifrevéryifinitessubsétTofaT hasod=iiodel theh
modeT.has a model.
Proof: . Observe first that because of our assumptions on a logic L*, L*
is always stronger than wa. Also, since L*nhas the Lowenﬁeim property.
by Theorem 3.2.4 it has the Karp property. We show that conditions (a)
or (b) imply that wo(L¥) < w ; by the previous theorem this gives
Ly, 25

It was shown in an argument in Section 3.1 that the Zi—defiﬁability

of < w, < > dnkbk¥ makes countable compactness fail. So (b) implies
wo(E*j;ﬁ w. Assume now that (4) holds and suppose < w, < > is Zi—definable
by an Lf—sentence ¢ containing the unary U and binary <. Let § be an
.L*-sentence which says that f is an injective function with range contained
in U. Clearly the conjunction of ¢ and § have only countable models and

this contradicts (a) . Hence < w, < > is not.Z%—definable in L*.-
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CHAPTER FOUR

HANF NUMBERS AND WELL-ORDERING NUMBERS.

’

In this chapter we continue our investigation of general logics.
We will examine the analogues in the general setting of the familiar
compactness and Lowenheim-Skolem theorems of the first-order predicate
calculus.

We assume that a logic L* on a collection C of languages is as
defined in Chapter One; hence a logic satisfies the four properties and
three assumptions given there. We will, however, not require that a logic
satisfy Assumption Four stipulated at the beginning of Chapter Three.

That is, we drop the requirement that an L*~sentence ¢ must contain only

finitely many symbols,

4.1 Definitions and Preliminaries

The first definition of this section gives a generalization

of the Upward Lowenheim-Skolem property.

Definition 4.1.1 : The Hanf number of a logic, written h(L*), is the

least cardinal o such that if an [*-sentence ¢ has a model of cardinality
>0 then it has arbitrarily large models. More generally, hA(L*) is the
least o such that if a set I of L*-sentences with cardinality(Z) < X has

a model of cardinality > a then Ithas arbitrarily large models.

Note that in general the Hanf number of a logic need not exist

( aillater example shows this), Clearly hX(wa) = w for all cardinals A:-
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this is the content of the Upward Lowenheim-Skolem theorem for wa.

Recall tﬁe definition of Wo(L*) given in 3.1.11. wo(L*), if
it'exists, is the least ordinal ¢ which is an upper bound for any class
A of ordinals Zi—definable in L*. Wo(L*) is also called the well-ordering
number - of the logic L*. The next definition provides a generalization

of the well-ordering number to sets of sentences.

Definition 4.1.2 : Let X be a cardinal. Suppose ¢ is an ordinaluwith

the following property:
If Iids any set of < A L*-sentences containing the binary relation
symbol ¥ and M is a model in which <M well-orders its field in order-
type > z, then I has a model N in which <N is not well-ordered.

Then-woi(L*), if it exists, is the least ordinal ¢ with this property.

In the case A = 1 this definition is equivalent to our original
definition, i.e. wol(L*) = wo(L¥). In this chapter we will find it convenient
to work with this new definition of the well-ordering number of a logic.

In Chapter Three the compactness property of wa was used to
show that wo(wa) = w. In fact, the well-orderingnnuimberoéfzallggic is
closely connected with compactness properties. Some evidence for this

is provided by the next theorem. .

Theorem 4.1.3 : Let L* be .a logic on a collection C of languages and

let L be a countable language in C. Then the following are equivalent:
(i) (Countable Compactness) If each finite subset of -a countable
set I of L*-sentences has a model, then Z has a model.

(ii) (WO&(L*) < w) Assume L contains the binary symbol  and let
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% be a countable set of L*-sentences- Suppose that for each positive
integer n, I has a model M such that <M well-orders its field in
order-type > n. Then I has a model N such that <N is not a well-
ordering.
Proof: ( (i) implies (ii) ): Consider the set t{J { Chpp <€y D E WL
By compactness and the assumptions in (ii) this set has a model M. The
cﬁ give an infinite descending chain in M so <M is not a well-ordering. .
( (ii) implies (i) ): Let ¢gq, $¢15... be countably many L*-sentences and
suppose that for all'n,'{¢0,...,¢n} has a model. Let U and < be new unary
and binary relation symbols respectively. Let X be the set of sentences
of L(U,<)* consisting of the following:
"U is f closed" for each function symbol f in L
"If the field of < has more than n elements then ¢g"" for each positive
integer n . |
Fa each n, if M is a model'of'{¢0,...,¢n_1} we can construct a model Mn»of
%. The universe of Mn will be MU {0,1,...,n-1}. The field of < in Mn
will be {0,1,...,n-1} with the natural well-ordering. By (ii) there is a
model N of I in which <N is not well-ordered. Thus the field of <N is
infinite and so N is a model of ¢E for all n. Taking the U-reduct of

N we get a model of'{¢0, ¢1,,..}.

Our aim laterrin this chapter will be to examine what relationship
exists between the Hanf and well-ordering numbers of a logic L*. The -
Upward Lowenheim~Skolem theorem for wa is usally prdved using compactness.
We will discover that the size of the Hanf number of many general logics

is determined by their well-ordering numbers. Indeed, our results may be
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viewed as a welcome extension of first-order model theory if the following
two 'equations' are accepted:
Hanf number = generalization of Upward Lowenheim—SkolemlpropertyA

well-ordering number = generalization of compactness property.

We will focus our attention on the logics LK+w and L(Qu)
introduced in Examples 1.2.8,1.2.6. (If « is any cardinal then k¥ denotes
the next largest cardinal, eg. wt = wl}) A small digeession is necessary
to provide for future reference certain results about these logics.

The next two theorems are Downward Lowenheim-Skolem results

for the logics LK+w and L(Q );; proofs of the theorems may be found in -
o _
[11] ana [4] .

Theorem 4.1.4 : (Downward Lowenheim-Skolem Theorem for LK+w) Assume

that M is a model of the Lk+w—s¢ntence,¢.' Let M. € M and suppose

0
IMOI + Kk <p< [MI. Then there is a structure N such that

NCTM, N9, MOQN and |N| = u..

Theorem 4.1.5 : (Downward Lowenheim-Skolem Theorem for L(Qa)) Let k = wu'

Assume M is a model of the set I of L(Qa)—sentences where |Z|_§ k. Let
M, M and suppose IMOI + R < u < |M|. Then there is a structure N such that

NS M, =2, M= N and |N| = u.

We now show that well-orderings of the form < g, < > are definabile
in LK+w for any ordinal ¢ < «*. Suppose L is a language containing only
the binary relation symbol < and the constant symbol c¢. For each z < kKt

we define sentences ¢€(c) and wc'of LK+w ~such that :
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(i) For all L-structures M and all a ¢ M
(M,a)F=’¢C(C) iff < {b:beM, b M al, LN g, <>
(ii) For all L-structures M, M= wg iff WM = < g, < >.
The definition of ¢§(c) proceeds by recursion. Suppose ¢n(C) has been

defined for all n < ¢. Then,¢§(c) is the sentence

I{g}‘(ayxy <ens ML ¥y <xe + Yo )

n<g'n
The sentences wC are then defined in terms of the ¢n(c):

b, = [ Fme ] A [¥x( Y8, )]

n<g n<g'n
A straightforwafd induction argument shows that (i) and (ii) above hold.
The sentences wc tell @s immediately that W°(LK+m) Z_K+. They
also show that- the Hanf number and well-ordering numbers need not exist

for a given general logic. More specifically, since ¢c isaan me—sentence

for all ordinals ¢ it is clear thatth(wa), wd(wa) are both undefined.

We close out this section with some observations which will be:

useful later.
(i) ' There is a sentence ¢, of LK+w which only has models of cardinality
K.
(ii) If ¢ = W, then there is a sentence ¢0 of L(Qa) having only models
of cardinality «.
To verify (i) take ¢0 to 'be the sentence wK defined above. For (ii) take
¢0 to be the conjuncfion of the following K(Qa)fsentencesr
"<< is a totad otdefing "
Qx(x = x)
VxwQ y(y < %)

These sentences also serve to show that H(LK+w) 3_2+, h(L(Qd) Z_K+.
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4.2 Existence Theorems

The main result of this section employs an argument of Hanf

( ﬁiﬂ) to show that the Hanf number-of a large class of logics exists.

Assume L¥ is a logic on a collection C of languages. Let L
be a language in C and suppose that L*, the class of sentences of L, is
a set. For each £ & L* with |I] < A (X accatdinal) define Ky by

0 if ¥ has arbitrarily large models

sup{ ]MI : M= £ } otherwise.

, _ % :
Let Ki = supfi K; I e L*, IZ] <A} Because L is a set, an application

of the set theoretic axiom of replacement shows that»fi is a cardinal.
The‘A-Hanflnumber'of the logic L*, if it exists, will equal
: L a language in C }.

§up{lK§

We now prove that for many logics this supremum does in fact exist.

Theorem 4.2.1 (Hanf) : Assume that a logic t* on a collection C of languages

satisfies the following properties:
(1) The number-of symbols occuring inaany L*-sentence. is bounded.

i.e., there is a cardinal u such that for each L*-sentence $ IL < .

N
(ii) L¥ is a set for alihL in C._

Then h§(L*) exists foraall .

Proof: We construct a language K. such that KL;i K§8 for each L in C.

0 A

(We are assuming the cardiﬁal A is fixed). Intuitively K0 will contain

within it a copy of each of the languages L. More precisely, for each

positive integer n the set Koicontains ueA n-ary predicate symbols and’
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u*A n-ary function symbols. Assume now L is any language in C. If %

is a set of < A L*-sentenCes we show that Kz_i K§0 . Let a be a O-morphism

from L to K0 such that o :\/l———#\/. Define % = { ¢a : e }. If-

M is any model of I it is easy to construct from M a K -structure N such

0
- *
that: (a) N % = M and (b)) NEF 22, By (a) |M| #,]N|. Because KO is a
set, Kio exists and M| = |N|_§ Kib . 'Hence K f_ﬁ§0 and so it follows
A L 4 * ' Ko . L
that Ky = sup{ Ky 3 €LY, |z] <A} <k, . Since this is true for any
language L in C, hX(L*) = gsup{ Ki : L in C } exists.

L2, : . . s . - . L
Example 4.2.2 (Application to LK+w L(Qu)))Assume that the logics o
and L(Qa) are defined on a collection C of languages and assume that-

LK+m , LQ ate sets for each L in C (LK+w’L denote L* for the logics

Q

o o

LK+w’ L(Qa) respectively). If ¢ and y are sentences of LK+waand L(Qa)
respectively it is clear that
cardinality({symbols occuring in ¢}) < «
€ardinality (fsymbols occuring in ¥}) < w.
Thus these logics satisfy the hypotheses of the above theorem and hA(L(Qa))’

hA(LK+w) exist for all A.

Remark: We noted earlier that the Hanf number of me doesn't exist.

The above theorem might suggest that the reason for this is that. an wa
can contain arbitrarily many symbols. This, however, is quite misleading.
Let L:w be the logic obtained from wa by adding the requirement that only
finitely many symbols occur in each sentence of.wa. Then all of the
sentences wc defiged in the last section belong to L:@; consequently h(L:w)

is undéfined. The failure of the existence of the Hanf number Of\me and
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and Liw is actually an outcome of the following: given a language L the

class L, of sentences of L is not a set.

No general method similar to the abové theorem is available
for determining whether wo(L*)~exiSESfandogachmlogic-muSt be investigated
individually. Lopez-Escobar shows in 13 that WOA(Law) exists for all
cardinals X and a. The existence 6f woi(L(Qu)) will be a direct corollary
of the reduction given in Example 4.3.7 of the next section. We assume .

in the future therefore that WOA(Lwa% and WOA(L(Qa)) both exist.

4,3 Relationship of Hanf and Well-ordering Numbers

In Chapter Two the beth cardinals were defined in terms of
cardinal exponentiation. An extension of this idea gives rise to the
generalized beth cardinals. For each cardinal « and ordinal ¢ the general

beth cardinal :]Z is defined by recursion as follows:

K
k _ K _ n
Jo= Jp=ge 0.
If « = 0 we get the usual beth cardinals: ‘] = ]9: Generalized beth

4 g

cardinals are of interest to us here because they provide a connecting’ link

between the Hanf and wellCordering numbers of many logics. That is , for

K-

many logics L* the following relation holds: hA(L*) = :]WOA(L*) :

For
example,ssSince WQA(wa) = hA(wa) = u, we get the relation

h)\(wa) o ='Jw - ]WOA(L )y

Lww

The next theorem provides a partial result in this direction for more



39

general logics.

Tleorem 4.3.1 Let A and k be cardimals with 1 < X < k and k infinite.

Assume that the logic L* satisfies the following properties:
(i) woAQL*) exists.
(idi) Tﬁere is an L*-sentence ¢0 that has only models of power «.
(iii) Let I be any set of < A [*-sentences of some language L. If
the L-structure MF I and MOEEbd then there is an L-structure N such
that: NE £, NCM, MOE:N and |N| < IM(!)(I! +«<&. (This condition is a

Downward Lowenheim-Skolem property.)

- K
Then hA(L”) > :lwoA(L*) .

Proof: ‘An easy argument -shows that woA(L*) is a limit ordinal. Hence if
is sufficient to show that for each g < woA(L*)_there is a set Z of < A
many L*-sentences that hés a model of powér 32 but not arbitrarily large .
models. Since g < WOA(L*) there is a language L containing the binary
symbol < and a set Z‘of <A L -sentences such that:
(i) ME % for some L-structure M in which <M well-orders its field
in order-type ¢z.
(ii) If MF £ then <M well-orders its field in order-type less than on(L*)u
Let K be the language obtained from L by adjoining Uhand V (unary relatioﬂs),
E (binary relation), and g (unary function). The set I will consist of the

following K*—sentences:

U
¢0

¢V for ¢ € &
Vx(V(g@)A " g(x) & field(<) ")
VxVy(Eyx > g(y) < g(x))

Vx(‘U(x) -+ "g(x) is the first element of <") .
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Yx Vy(ux) A ’i'Uf(Y) N\ Vz(Ezx <> Ezy) » x = y)
We now show two things: (a) MF I implies |M] j_'j;OA(L*). Ifi particular,
£ doesn't have arbitrarily models. (b) I has a model of power ]2..
(a) If MF I then MP:XV for all ¢ € . In the subset VM of M, <M well-
orders its field in order—-type n < woA(L*); 'We -assume n is a limit ordinal;
the proof of (a) in the case where nbis not a limit ordinal is essentially
the same. Let X0,= UM and for 0 < B < n let XB
P(A) denotes the power-set of A). Set X ='é2%X

==P(£:%xa). (For any set A

8" Clearly cardinality(X)

18§ &§ual to ']:. To prove (a) we define an injective map f from M to X.

This will show that |M| < ]K < 1° %y The definition of f foraa ¢ M
S - =n— woA(L ) »

4 s M, M . M _
proceeds by induction on g (a). If g (a) = 0 (i.e. a € U ) f(a) = a. Assume

f has been defined for all b such that gM(b) <M B <M n. If gM(a) = B then

f(a) = {£(b) : EMba}'e XB. The last sentence included in ¥ ensures that f

is injective and this proves (a).
(b) We construct a model M of % with |M| = ]Z. Let M; be a model of I in

which <M} well-orders its field in order-type . As in (a) we suppose ¢ is

a limit ordinal; the other case is treated similarly. Using hypothesis (iii)
we may assume that l;[_i |Mll E_ICI + k. By hypothesis (ii) there is a model

M, of $ with |MB )= ki Let VM = M; and o - Mp. Define X, = o and £ -

g = P(&?%Xa)° Set X = ézEXB° We assume that M; is embedded

in X so that M}© X (this is possible since |M;| <'|g| + kK < IXI).. The universe

B < ¢ define X

of M is then M = X. If a € M let B be the least ordinal such that a ¢ XB.

Then define gM(a) = B. Define EM by EMab iff g(a) < g(b). The structure

M so constructed is a model of % and IM[ = ]Z. This proves (b).
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Remark: Let L* be a logic for which hA(L*) exists and assume L* is bounded
(see Definition 3.1.10). If L* satisfies properties (ii) and (iii) of Theorem
4.3.1 then the above proof can easily be adapted to show that-wox(L*)'exists

for each A < «.

Example 4.3.2: (Appliécation to LK+w’ L(Qa)_where K = wa)_ The results at
the end of section 4.1 show that the logics LK+w and L(Qa) satisfy the

hypotheses of the above theorem. Hence for each X < «
By (L) > 35wy, (L@ > I
ATk w WOA(LK+w) A o WOA(L(QQ))

As mentioned earlier, we wish to obtain results of the form

h(L*) = :]:o(L*)’ For logics satisfying the hypotheses of the above theorem
we need only.show inequalities of the form h(L*).i j]zo(L*)' The logics
introduced in the next definition, {i-logics, are designed for this purpose.
Q-logics are an invention of the logician Flum and our treatment of them is
taken from [8] . (Note: we have altered Flum's notation; he calls Q-logics
M&pgics}) ESsentially an_Q—logic is just wa with semantic restrictions
~on the class of allowable structures. We will see that LK+w and L(Qa) can
be reduced in some sense to these Q-logics; the results hodding for the latter
can then be applied to the former.

We assume throughout that all logics belong to some collection

C 6f languages.

—-structures. Let

Dinition 4.3.3: Let L0 be a language and Q a class of L0
U be a unary relation symbol not in LO. Given any language L, an L-structure
M is said to an Q-model if the following two conditions hold: -

(1) LOU {u} € L.

(ii) Let o : L0 + L be the identity map except that o :¥YF— U. Then
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M is a-invertible and M = N for some N in Q.
Condition (ii) says simply that Fhe Lo—reduét“of UM is a full Lo—structure
isomorphic to some structure in Q, i.e. each Q-model contains within it a
relativized reduct which lies in Q. The Q~logic L(Q) is then defined as
follows. If L is any language the set of sentences of L, written LQ, is

given by:

¢ if L U{v}dLL

L if L U{Uul}=L
ww 0
For each L-structure M and Lﬂ—sentence ptthe relation F=Q is given by:
M F:Q ¢ 1iff M is an Q-model and M= ¢ .

Here = denotes the semantic entailment relation in.thezfirst-order logic

wa (this makes sense since any sentence of LQ i§ first-order).

Observe that L(Q) is not a logic as defined in Chapter One. For
example, the relativization property given in Example 1.2.3 fails. This,
however, should cause no alarm: the Q-logics can be viewed as devices for

establishing results about more famiiiar, genuine, logics.

Lemma 4.3.4: Assume that all structures in © have the same infinite cardinality
k. Then

(a) VxU(x) has only Q-models of power k.

(b) If £ has an Q-model and |Z| < k then = has an Q-model of power k.

(c) wok(L(Q)) exists foraall cardinals A.
Proof: (a) 1If M is an Q-model then |UM| = k. Thus M F=Q WxU(x) implies
that M| = |o¥] = «. ©

(b) Let M be an Q-model of X. Using the Downward Lowenheim-Skolem theorem
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for wa, take an elementary substructure N of M such that'UMEN ‘and -

IN] = k. N will be an 9-model of % of'power k.

(¢) By choosing the cardinal p large enough and taking a sufficiently rich
language it is possible to find an Luw—senténce ¢ such that

M F=L ¢ iff (M(U))r = N for some N ¢ & .
e Ls |

Now suppose wok(L(Q)) doesn't exist. For each ordinal r there will be some
set'ZC of < A L(Q)-sentences such that ZC has only Q-models M with <M well-

. M
ordered and one with < in order-type f. Form the Luw—sentence :

§. = (NZHON.
. ( C) ¢
Then the sentences 6§ imply that WO(Luw) doesn't exist and this is a -

contradiction. Hence WOA(L(Q)) exists.

For the remainder of this chapter it is assumed that each structure

in @ has the same infinite cardinality «.

K
wo)\(L(Q)) ’

Lemma 4.3.5: For each A < k, HA(L(Q)) %= 7]
Proof: We modify the proof of Theorem 4.3.1 making changes necessitated by
the failure of the relativization property for L(Q). Let the set I be as
in that proof and let V, E and g be new symbols. The set I consists of
the following Kwa—sentences of L(V,E,g):

Vx(U(x) » V(x))

For each ¢ € I the first-order relativization of ¢ to V, ¢V

Vx(V(g(x))/\ "g(x) ésfiedrd(<)B) eier - of

Vx(U(x) + "g(x) is thetfirstrelementodf <")

VxVy(Eyx + g(F) < g(x))

VXVY(NU(X)A '\’U(y) /\ VZ(EZX < Ezy) > X== y)
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Applying the previous emma. the rest of the proof proceeds in a similar

fashion -to the proof of 4.3.1.

The next very important theorem provides the raison d'etre for

‘ Q-logics.

K

Theorem 4.3.6: For each A < « hA(L(Q)) = -]woA(L(Q)) '

Proof: This theorem is quite deep and the proof is rather complicated.
Since we are mainly interested in applications of this result we give a
very brief sketch proof. betails may be found in [8]

By Lemma 4.3.5 it is only necessary to show that hx(L(Q))_i

:jzoﬁ(L(ﬂ)) . So let I be a set of < A < k sentences with an Q-model M of

K , . : . . ,
power > ]WOA(L(Q))’ the idea is to construct arbitrarily large models of

Z. . From the Q-model M a set-theoretic partition result of Erdos and Rado
and the well-ordering number of L(Q) are used to construct an Q-model N of

Z containing an infinite set X of elements indiscernible with respect to U.
This means that any two finite sequences in-XsSatisfysthe Same formulas with
_parameters in U. An $-model S of  of arbitrarily large cardinality is then
formed by throwing into the universe of N u. > ]N] new elements which behave

as the elements in X.

The next two examples are applications of Theorem 4.3.6 to the
logics L(Qdi and LK+w' In each case a reduction is defined which allows

us to transfer the results for Q-logics to the above logidcs.

Example 4.3.7: (Application to L(Qa))' Assume that k = w.. Let L0 = {<}

o

and let  consist of all the models of the"sentence'tpK defined at the end of
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4.1. Thus the structure M = < M, < > e Q@ iff
(i) IMI = K,
(ii)' < is a linear ordering of M.
(iii) If a € M then the set {b : b < a} of predecessors of a has
cardinality < k.
Fix the unary relation symbol U. With LO, -and U thus specified we get
‘an Q-logic L(Q). In the following discussion it is assumed that LOLJ{U}EE];
for any language L under consideration. This assumption can always be
justified by expanding L (if nedessary) to include LO\J{U}.

Suppose L is a language and ¢ is a sentence of L. . Form the

Q

o
language K by adjoining the relation symbols V (unary) and F (ternary) so

that K = L(V,F). Let a : L - K be the O-morphism which is the identity
except that VFV. We find a sentence $ of me such that:
(%) Models of ¢ = (M™% : M F=Q $1}

. . 4P £
(Qa) ¢ iff N is of the form (M )r L or

That is, an L—strﬁcture N F=i
some K-structure Miwiith MF==Q¢¢. Result (%) thus gives the desired reduction
of the L(Qa)—sentence ¢ to the L(Q)-sentence $.
First . we outline the idea behind this reduction. We wish to replace
a sentence of the form an¢(x) by the first-order sentence:
"There is a 1-1 map from a subset of {x : V(x) and ¢(x) holds}
onto the set U."
mQa¢(x) is replaced by the first-order sentence: .
"There is a 1-1 map from {x : V(x) and ¢(x) holds} onto a proper
initial segment of U,"

The 1-1 maps referred to belong in a collection which is indexed using the.

ternary relation F. That is, for each x an injective map 8, from a subset
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of V to U is given such that: gX(y) =z iff <x, y, z> ¢ F.
The precise details are now provided. To each sentence y of L(Qu)
is associated by recursion a sentence y¥* of wa as follows:
(i) v¥* = Y if ¢ is atomic. _
1) (p* =N, W Ve )* = ey et
(111) (Ixp N = I=VE) N vH).
(1v)  (QxG)* = AyVz Ix(Vx) A v* AFyxz).

If the sentence y is first-order then (i)-(iii) ensure that ¢* is just the
relativization of ¢ to V. (iv) says that there is a map indexed by F from
a subset of the set defined by v* in V onto U.

Given a sentence ¢ of L. we now define a finite set I of first-

Q

o
order sentences. I consists of the following sentences: .

(1)  ¢F
(ii) The sentence "F is an indexed collection of 1-1 maps from a subset
of V into U"
(iii) For each subformila of ¢ of the form anw(x) the univ§rsal closure of
3}'{ Yz HX[IP* A V() A F(y,x,z)]\/ QWVX BZ[IP* AV(Ex) >z <wA F(y,x,2)] }
This sentence says that among the maps indexed by F there is one that
either (a)'maps a subset of the set defined by w* in V onto U, or (b)
rsgs mapssthedsétndéfined by p* in V onto a proper initial segment of U.
(1v) Vx(UG) V 76) |
Note that I is finite. Let $ be the conjunction of the sentences
in Z. Then $ is a sentence of wa. Fuhrken proves in [9] that N F=Q $

iff (N(V)) rI.F:i(Q ) ¢ and hence establishes result (%*).
a

Remark: The reduction result((*) confirms (among other things) the existence
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of WOA(L(Qu)) via the existence of the well-ordering number of L(Q). Actually
we have more.
Claim: For all A hA(L(Q)) = hA(L(Qa)) and wok(L(Q)) = WOA(L(Qu)).
Since Q is just the set of all models of the L(Qa)—sentence wK it is clear
that hA(L(Q)) f-hA(L(Qa)) and woA(L(Q)) 5"WOA(L(Qa))' The above described

reéduction applied to any set of < A L(Qa)—sentences shows the reverse
inequalities.

We are finally in é position té apply Theorem 4.3.6. Using this

theorem for each A < « from the above claim we get:

K-

_ == K =
hy (L(Q,) = h, (L(@)))= JWOA(L(Q)) jW°>\'(L(('Qa))

In particular, taking A = 1, if the L(Qa)—senténce ¢ has a model of cardinality

v

> ];O(L(Qd)) then ¢ has arbitrarily large models.

Example 4.3.8: (Application to LK+m). Let L0 = { CC : <k} and let

Q= { (x, (C)C<K) } . Q consists of one structure with universe k (where
k 1s conceived as the set of all ordinals less than k). If ¢0 is the LK+w_

N\ = = i
sentence C<n<Kw(cC cn)/\ \fxggz(x CC) then N F=1K+w ¢ iff

O—Structure N. Wwith Q and L0 specified we get an

Q-logic L(Q). As in the previous example it is assumed that for any language

N = (k, (C)C<K) for any L

L under consideration, LO\J{U}EEI“

Suppose now that.L is a language and ¢ is a sentence of Lk+w' We
find a languge K containing the unary relation symbol V and with LOLJ{U}SE'K
which has the following property: |

(%) Let a : L - K be the O-morphism which is the identity exéept

that-V F=V. Then there is a set of < « sentences of Koo
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such that: Models of ¢ = {M ": M is an ®-model and M7==Q z}.

(%) says that an L-structure N F=1 $ iff N is of the form (M(V))r L
ktw

for some M with.N1F=h Z. Result (%) thus gives the desired reduction of
‘the LK+w—sentence ¢ to the set I of L(Q)-senténces.

The idea behind the reduction is to replace a disjunction of <
koformulasaby an existential quantification over the set U. First, to each
sentence Y of LK+w we associate by recursion an wa—sentence w*:

(i) ¢* =y if ¢ is atomic.
(11) (¥ = @H, @V e)F = vt
(111) (F=z* = Ix(VE) A 5.
The purpose of (i)-(iii) is to relativize ¥ to the set V. Suppose now that
P(x) is a formula of tbéeférmhggéwCfx&eWithiibfree variableav(The. generalization to
n free variables is straightforwatd; We consider formulas with finitely many
free variables because we will only be dealing with subformulas of sentences

of LK+w') Let P, be a new binary relation symbol. Then W))* is:

¥
(iv) JyWEm A P Rl

For ¢ -as in (iv) let D¢ be the set D ='{‘Vx(ch€x <> ¢z(x)): <k},

v

Given a sentence ¢ of LK+w let K be the language consisting of

(a) LU{V} and (b) all the predicates P, for any subformula ¢ of ¢ which is

v

an infinite disjunction. Then I is the following set of sentences of wa:
{¢*1U \a DlP U{Vx(V(®) V U(x))} where the middle union is taken over all
subformulas ¢y of ¢ which are infinite disjunctions. Cleafly IZI.S Kk and

an induction argument shows that an Q-model M F=h L iff (M(V))r L F=i ¢ .
ktw

This establishes result (%).

Result (%) and the fact that Q is the set of models of the LK+m—
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sentence ¢0 prove the following two equalities:
(L4 ) = h (L@), woll 4 ) = wo (L(D)).

Applying Theorem 4.3.6 we then get:

K K

h(LK+U.\) = hK(L(Q)) = ]WOK(L(Q)) = ]WO(LK+U))

Y= noted earlier that wo
We noted earlier that wo(LK+m) 3_K+. Thus k + WO(LK+m) = WO(LK+w)' A small

argument shows from this: t]:o(LK+w) = :]WO(LK+w). Hence we obtain the
4

which is an Upward Lowenheim-Skolem result

final result h(L ) = :]
KW +,
KTw)

wo (L

for the logic LK+w .
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