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Abstract 

We define a notion of l o g i c that provides a general framework 

for the study of extensions of f i r s t - o r d e r predicate calculus. The concept 

of p a r t i a l isomorphism and i t s r e l a t i o n to i n f i n i t a r y l o g i c s are examined. 

Results on the d e f i n a b i l i t y of ordinals e s t a b l i s h the s e t t i n g for our 

proof of Lindstrom's Theorem: this theorem gives conditions that characterize 

f i r s t - o r d e r l o g i c . We then consider the analogues to the general case of 

the compactness and Lowenheim properties. For a wide cla s s of l o g i c s i t 

i s shown that i n t e r e s t i n g connections e x i s t between the analogues of these 

properties. 
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INTRODUCTION 

In the l a s t two decades l o g i c i a n s have done considerable research 

on l o g i c s that extend the f i r s t - o r d e r predicate calculus. B e l l and Slomson, 

fo r instance, devote the l a s t two chapters of t h e i r textbook "Models and 

Ultraproducts" to the study of such extensions. The motivation for looking 

at these extensions stems from a desire to avoid c e r t a i n shortcomings of 

f i r s t - o r d e r l o g i c ; i n p a r t i c u l a r , as i s well known, f i r s t - o r d e r l o g i c i s 

d e f i c i e n t i n expressing many useful mathematical notions. 

Any good introduction to the f i r s t - o r d e r predicate l o g i c w i l l 

l i s t the following properties that t h i s l o g i c possesses: 

(i ) Compactness property, 

( i i ) Lowenheim-Skolem property. 

A natural question a r i s e s : under what conditions does an extension also 

s a t i s f y these properties? The answer i s perhaps s u r p r i s i n g : any l o g i c 

possessing the above properties must be equivalent to f i r s t - o r d e r l o g i c . 

This i s a r e s u l t of the Scandinavian l o g i c i a n P. Lindstrom£l2[] . Besides 

being i n t e r e s t i n g i n i t s e l f , Lindstrom's r e s u l t has stimulated the growth 

of a f i e l d of research, abstract model theory, which attempts to construct 

a model theoryffor general extensions of f i r s t - o r d e r l o g i c . 

Among the many extensions of f i r s t - o r d e r calculus there are two 

l o g i c s which have been the subject of e s p e c i a l l y close study. One, pioneered 

by T a r s k i , i s obtained by allowing the formation of i n f i n i t e l y long sentences. 

The other, due to Mostowski, involves the use of generalized q u a n t i f i e r s . 
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Because these l o g i c s are proper extensions of f i r s t - o r d e r l o g i c Lindstrom's 

r e s u l t ensures the f a i l u r e of e i t h e r the compactness or the Lowenheim property. 

I t turns out, however, that analogues of these properties e x i s t f o r the 

above extensions. In addition,.reduction techniques of Fuhrken ,[9] and 

Lopez-Escobar [13] can be used to show c e r t a i n i n t e r e s t i n g connections between 

the analogues of these properties. 

The purpose of t h i s thesis i s threefold. F i r s t , a general notion 

of l o g i c i s established that i s adequate f o r formulating r e s u l t s i n a wide 

framework, (Chapter One). Second, the machinery necessary to prove Lindstrom's 

r e s u l t i s developed, (Chapters Two and Three). Third, the analogues of the 

compactness and Lowenheim properties are examined i n the general s e t t i n g , 

(Chapter Four). 

Our d e f i n i t i o n of a general l o g i c and the proof of Lindstrom's 

r e s u l t i s based on the treatment of Jon Barwise i n [ l ] . The material on 

general compactness and Lowenheim properties has i t s source i n Flum 8 . 

In our presentation we have modified, reorganized and supplemented the 

material with examples and connecting l i n k s . Thus we condense Barwise's 

notion of a l o g i c while emphasizing c e r t a i n assumptions which prove to be 

very important. Complete proofs and r e s u l t s from the l i t e r a t u r e have been 

supplied i n places. The constructions i n the proofs of Chapter Three are 

given e x p l i c i t l y (for example, Theorems 3.1.9 and 3.2.3). The complete 

proof given of Theorem 4.3.1 provides the j u s t i f i c a t i o n f o r the remark that 

follows that theorem. What were o r i g i n a l l y exercises and statements are 

also given,proof (Lemmas 4.3.4,4.3.5). Lastly,, the existence of the w e l l -

ordering number of ^-(Qa) i s nowhere e x p l i c i t l y expressed i n the l i t e r a t u r e 

but f a l l s out n a t u r a l l y from:iFuhrken"s reduction technique. 
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I t i s hoped that this, thesis w i l l be accessible to anyone f a m i l i a r 

with f i r s t - o r d e r l o g i c . The rudiments of cardinal.and o r d i n a l arithmetic 

are assumed; the material that i s needed here may be found i n Chapter 0 

of the above mentioned book of' B e l l and-Slomson. F i n a l l y ; the terms 'set' 

and 'class' are understood i n the sense of the Godel-Bernays system of set 

theory, a set being a cl a s s which i s a member of another class.(see Mendelson 

[l4] f o r more d e t a i l s ) . 
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CHAPTER ONE 

THE BARWISE NOTION OF A LOGIC 

In t h i s section we present the bare e s s e n t i a l s of Barwise's 

treatment of l o g i c s . We have,ffbr example, dispensed with his c a t e g o r i c a l 

approach which, while i n t e r e s t i n g , doesn't seem to be e s s e n t i a l . 

1.1 Some Preliminaries and Basic D e f i n i t i o n s 

D e f i n i t i o n 1.1.1: AAlanguage L i s a c o l l e c t i o n of r e l a t i o n , function,and 

constant symbols. L w i l l always contain the symbol V , a unary r e l a t i o n symbol 

which denotes the domain of the u n i v e r s a l q u a n t i f i e r . The use of V , although 

i t i s a somewhat a r t i f i c i a l constraint, proves to be t e c h n i c a l l y convenient. 

D e f i n i t i o n 1.1.2: A p a r t i a l structure M for L i s a function M with domain 

£ L such that: 

(i ) M = i s a set, c a l l e d the universe of M . 

( i i ) I f Ree L i s a n-ary r e l a t i o n symbol then R^ c M n . 

( i i i ) I f f e L i s a n-ary function symbol then f ^ i s a p a r t i a l 

function from M n to M . 

(iv) I f c e L i s a constant symbol and c^ i s defined then c^ e M . 

M M 

If i n ( i i i ) and (iv) each f and each c i s defined t o t a l l y then 

M i s an L-structure. An L-structure w i l l sometimes be displayed as follows: 

M = < M, R^, R_2,..,, f_ l 5 f_ 2,..., a x , a 2,... > , 

where M i s the universe of M , R^ i s the i n t e r p r e t a t i o n of R^, f_̂  i s the 

in t e r p r e t a t i o n of f , , etc. . 
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Definition 1.1.3 : Two partial structures M and W for a language L are 

isomorphic i f there is a bijective mapping from the universe of M to the 

universe of W which preserves i n a natural sense the relations and functions. 

We write M - W to indicate that M is isomorphic to W. 

An expansion of a language L is any language K with L c K. An 

L-structure M i s a reduct of a K-structure W, and W is an expansion of M, i f 

M is W N , the restriction of M to the language L. 

Every language L hassa set of terms associated with i t , defined 

inductively as follows: i f c is a constant term of L then c is a term; i f 

t,, t are terms and f is a n-ary function symbol then f(t..,...,t ) is I n J J I n 
M 

a term. Given a structure M for L every term t of L denotes an element t 
8l M (the universe of M ) . If c is a constant symbol t^ is just c^ and i f t 

is f ( t - , . . . , t ) then t = f ( t , ; . . . , t ) where t,, t are already assumed i n 1 n 1 n 
(inductively) to have been defined. 

We now introduce the important concept of an interpretation( morphism) 

Definition 1.1.4 : Let r > 0 be an integer. Let L, K be languages. An r-term 

interpretation or morphism a of L into K consists of r terms t^, t 

of K and a mapping a from L into Kasatisfying : 

(i) If R e L is an n-ary relation symbol then R is an (n-H- r)-ary 

relation symbol. 
Cfc 

( i i ) If f e L is an(n-ary function symbol then f is an (n + r)-ary 

function symbol. 

( i i i ) If a(x) = V then x = V . 

We thus have that V " is a (1 + r) -ary relation symbol, usually 
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denoted by U or V. A 0-term i n t e r p r e t a t i o n a such that a( \f ) = \J i s 

c a l l e d a simple morphism. 

Now morphisms on languages induce operations on the corresponding 

structures. Let a : L •> K be an r-morphism and l e t M = < M,..., a^,..., a^ > 

be a t y p i c a l K-structure, where i s the i n t e r p r e t a t i o n i n M of t'^. We 

wish to p u l l Maback to a structure M f o r L. The universe of M i s 

N = { a e M : (a, a ^ ..., a^) e U^, U = a( V ) } 
The i n t e r p r e t a t i o n of an n-ary r e l a t i o n symbol R e L i s given by 

(b, , .... b ) e R i f f b b e N and (b , , b , a,, a ) I n l n I n i r 

e ( R a ) M : 

The i n t e r p r e t a t i o n of an n-ary function symbol f e L s i s i t h e r e s t r i c t i o n 

of f_ to N n where 
1 r 

f (b , b ) = (f°') M(b 1, b , a , a ) —a,,...,a 1 n 1 n l r 1 r 

Since N may not be closed under the functions f , M i s only a 
1 r 

p a r t i a l L-structure. In many cases, however, M 01 will be an L-structure 

and M i s then said to be a - i n v e r t i b l e . 

There are two important examples of the above which are used 

repeatedly i n future proofs. 

Example 1.1.5 : Let L be a language and V a unary r e l a t i o n symbol not i n 

L and l e t K * L(V). (L(V) i s the language obtained from L by adjoining 

the symbol Vi) Let a : L K be the i n t e r p r e t a t i o n which sends V to V 

but leaves the other symbols of L unchanged. A t y p i c a l K-structure has 

the form (M,V) where M i s an L-structure. The structure (M,V) i s a - i n v e r t i b l e 

i f f the set V i s closed under the various functions of M, i n which case 
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JVf"a i s j u s t the usual r e l a t i v i z a t i o n of M to the set V, M a== 

Example 1.1.6: Given a language L and a c o l l e c t i o n of L-structures 

{ M. |: i e I •! i t i s possible to code t h i s set of structures into a s i n g l e 

model f o r an expanded language K of L. For example, l e t L = { R } where 

R i s a binary r e l a t i o n symbol and l e t K = { R', V, c } where R' i s 3-ary, 

W i s binary and c i s a constant symbol. Let a : L -> K be the 1-morphism 

which sends V to V and R to R'. The term of a i s j u s t c. From the set 

of L-structures { M : i e I } we form,the K-structure M =? < M, V, R' > 

the indexed union of the , by defining 

M = I U . M.M. where M. = \/ ^ i , n e l i i v ' 

< a, i > e V i f i e I and a e M. , 
— 1 

M 
< a", i > e¥R' i f i e I and < a, b > e R i *.' 

The i n t e r p r e t a t i o n of the constant symbol was d e l i b e r a t e l y l e f t unspecified; 

i f we denote by ( M, j ) the indexed union i n which c receives the i n t e r p r e t a t i o n 

j then M_. = ( M, j ) , i . e . i t i s possible to recover each of the structures 
M. from the indexed union M. 
J 

One more preliminary d e f i n i t i o n i s needed. 

D e f i n i t i o n 1.1.7 : By a c o l l e c t i o n C of languages we w i l l always mean a 

c o l l e c t i o n which s a t i s f i e s the following two conditions: 

(i) I f L and K are i n C then L QKK i s i n G , 

( i i ) I f L i s i n C and K i s obtained from L by adding ( f i n i t e l y ) 

many r e l a t i o n , function or constant symbols to L then K i s 

i n C. 
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1.2. The Main Notion 

D e f i n i t i o n 1.2.1 : A l o g i c L* on a c o l l e c t i o n C of languages consists of 

two,components, a syntax and a semantics. The syntax of L* assigns to each 

L i n C a cl a s s L* of sentences. The elements of L* are c a l l e d L*-sentences. 

The syntax s a t i s f i e s the following two properties: 

(i) I f L £ K then L * £ K * . 

( i i ) (Occurrence Property) : For every L*-sentence <j> there i s a smallest 

(under inclusion) language L. i n C such that 9 e L* . 
9 9 

For each morphism a from L to K, the syntax also induces a map ao from L to 

K . I f 9 i s an L -sentence, a (9) w i l l be denoted by <j> . The semantics of 

L* i s a r e l a t i o n such that i f M 1== 9 then M i s an L-structure for some L 

i n C and 9 e L*. The semantics s a t i s f i e s : 

( i i i ) (iiiT):o-.("1J*s6mo.rphismrErpperty)f:.' I f Mi!==cj>' and Mhs.M'then Nl=<f>. 

M^=(() i s read as "M i s a model of 9". The syntax and semantics of L* f i t 

together according to the f i n a l property: 

(Iv) (Translation Property): For every L*-sentence 9, every 

morphism a : L^ -> K and every K-structure M 
j 

M F= 9 i f f M i s a - i n v e r t i b l e and M ^=9. 

The next two examples provide some motivation f o r the requirement 

of the t r a n s l a t i o n property. 

Example 1.2.2: Let 9 be an L*-sentence and l e t K be any language such that 

L = L, £ K . If a : L1 ->• K i s the natural embedding map and M i s a K-structure 
9 9 

then M i s j u s t the L-reduct of M, i . e . M == M | S
L « The t r a n s l a t i o n property 

asserts that M F= 9 i f f 9. So the t r a n s l a t i o n property implies that 

JL* has the above 'reduct property'. 

Exanple 1.2.3: Let 9 be an L*-sentence and l e t L = L^ be the set of symbols 



occuring i n <j>. Let V be a unary r e l a t i o n symbol not i n A> ( i . e i not i n L , ) , 
<P 

and l e t a : L -* L(V) be the r e l a t i v i z a t i o n defined i n Example 1.1.5. We 
V a 

write <j> f o r <j> . The t r a n s l a t i o n property asserts that the L(V)-structure 
( M, V ) |= <}> i f f V i s closed under the functions of M and M ( V ) | = 4 . 
V 

cf> i s c a l l e d the r e l a t i v i z a t i o n of <J> to V, and the t r a n s l a t i o n property 

implies that our l o g i c has t h i s r e l a t i v i z a t i o n property. 

In the following we s t i p u l a t e a few a d d i t i o n a l assumptions on a 

l o g i c . These assumptions are not a necessary part of a l o g i c but are designed 

to ensure that any l o g i c under consideration extends the c l a s s i c a l f i r s t -

order predicate calculus. 

Observe f i r s t - that any language L gives r i s e to a set of atomic 

sentences. I f and are terms of L then t^ = -X. i s an atomic sentence 

of L. ('=' denotes equality and i s treated here as a l o g i c a l symbol; i t 

doesn't occur i n the language L.) If R i s an n-ary r e l a t i o n symbol and 
t, , .... t are terms then R ( t . , . . . , t ) i s an atomic sentence of L. 1' ' n v 1 n 

Let L* be a l o g i c on the c o l l e c t i o n C of languages. We formulate 

three assumptions which we require L* to s a t i s f y : 

Assumption 1 : L* contains a l l atomic sentences. This means that: 

(i) i f t^ = i s an atomic sentence of L then i t i s an element 

of L*, and for each L-structure M 

' 1 .'. 2 ji 1 Zl . n 
( i i ) i f R ( t . , . . . , t ) i s an atomic sentence of L then i t i s an 

i n 
element of L*, and f o r each L-structure M 

Mt= R(t. t ) i f f ( t f , . . . , t M ) e R M . 
i n i n 

Assumption 2 : L* contains conjunction and negation. Suppose L i s a language 

of C and <j> and are any sentences of L*. 



Conjunction: There i s a sentence x of L * such that i f M i s any L-structure 

then M (=x i f f W t= <J> and M f=- 1(1 The sentence X w i l l be denoted 

by 4> A * 

Negation: There i s a sentence x °f L such that i f M i s any L-structure 

then M x i f f n ° t M |=- <(>. x w i l l be denoted by (̂j> . 

Assumption 3 : L* i s closed under e x i s t e n t i a l q u a n t i f i c a t i o n . Again l e t 

L be any language i n C and l e t if be a sentence of L* which may or ma/not 

contain the constant symbol c. Then there i s a sentence %fof• *L such that 

i f M i s any L-structure: 

M t= x i f f there i s some constant a e M such that ( M, a ) F=- <J> 

\ ( M, a ) i s the L-structure d i f f e r i n g at most from M i n that c receives 

the i n t e r p r e t a t i o n a i n the universe of M. ) The sentence x w i l l be denoted 

by 3 x < H ( x ) . 

For our purposes then a l o g i c L* as defined e a r l i e r s a t i s f i e s 

the four properties of the d e f i n i t i o n and the three assumptions given above. 

Ad d i t i o n a l r e s t r i c t i o n s might be introduced. For instance, Barwise proposes 

a tentativee d e f i n i t i o n f o r f i n i t a r y s y n t a c t i c operations. This d e f i n i t i o n , 

however, i s extremely general and may be too weak to be u s e f u l ; we w i l l 

not look at i t further. At t h i s point i t i s i n t e r e s t i n g to look at some 

examples of l o g i c s that are covered i n the Barwise set-up. 

Example 1.2.4 : L R . - t h e c l a s s i c a l f i r s t S o r d e r predicate c a l c u l u s . 
i5(j)u) 

Syntax: Given any language L the set L = L i s formed i n d u c t i v e l y as 

follows: 

(i ) L contains a l l atomic sentences (see page ) 
ami 

( i i ) I f d>, Tb e L then A A * e L 
0)0) 0)0) 



( i i i ) I f <|> e L then d̂> E L 
0)0) (DO) 

(iv) If d> E L then 3x<J> (x) e L 
, 0 ) 0 ) 0)0) 

L i s sometimes referred to as the set of well-formed sentences. 
0)0) 

Semantics: . Given an L-structure M we i n d u c t i v e l y define the r e l a t i o n 

M fc= <j> (A a sentence of L_ ) as follows: 
0)0) 

( i ) I f <j) i s an atomic sentence the r e l a t i o n M ^ <|> is exactly as given, 

i n the statement of assumption 1 above 

( i i ) r ; Mf= <f)/\i|) i f f M(=(|> and MJ= ^ 
( i i i ) JVH==̂ (() i f f notM^^' 
(iv) I f (f> i s a sentence which may or may not contain the constant symbol 

c then Mf= 3X(f>(x) i f f there i s some a £ M such that ( M, a )|=(j)(c) 
where c receives the i n t e r p r e t a t i o n a 
i n ( M, a ) 

(We wrote <(>(c) for tj) to i n d i c a t e the s p e c i a l r o l e of the constant 

symbol c. ) 

Note: In our formulation of a l o g i c we have avoided the usual concept of 

a free v a r i a b l e . This i s because a free i n d i v i d u a l v a r i a b l e of a language 

can be i d e n t i f i e d with a constant symbol of a larger language. More p r e c i s e l y , 

given a language L form the language L'^c) by adjoining the constant symbol 

c to L. I f M i s an L-structure we are free to i n t e r p r e t c a r b i t r a r i l y in 

the universe of M to get an L ( c ) - s t r u c t u r e ( M, a ). In t h i s manner, c 

can be thought of as a free v a r i a b l e of L. And s i m i l a r remarks apply i n 

the case of (higher-order) l o g i c s which allow r e l a t i o n or predicate v a r i a b l e s . 

Example 1.2.5 : - second-order l o g i c . Informally, t h i s i s an extension 

o f f c l a s s i c a l f i r s t - o r d e r l o g i c i n which q u a n t i f i c a t i o n over predicate variables 

i s allowed. 

Syntax: We add a new l o g i c a l symbol E (the membership r e l a t i o n ) to i • 



New atomic sentences t e U are allowed, where t i s a term and U is a 
* 

unary relation symbol. If L is a language L is obtained from L by 

adding the following formation rule to the syntax of L .: 
0)0) 

(v) If <j> e',!.*• then H X * e L * . 

Semantics : e is interpreted in any L-structure M as set-membership. 

Add the following semantic rule to L : 

0)0) 

(v) If <j> i s any sentence of L * which may or may not contain the unary 

relation symbol U then 

M|= 3X<j> i f f there i s some U C M such that ( M, U )^=<j>(U). 

Here ( M, IJ ) is the structure differing at most from M in that U 

receives the interpretation U; we write <j>(U) for ((> to indicate the 

special role of the symbol U. 
Example 1.2.6 : * - ( Q A ) ~ logics with the quantifier Q ^ . These logics are obtained from L by adding the quantifier Q , where a i i s an ordinal. They 

0)0) J b n 

are but one example of the many different logics that result from employing 

generalized quantifiers. 

Syntax: Add the following rule to the syntax of 

(v) If (f> e L * then Q x<|>(x) £ L * . 

Semantics: Add the following rule to the semantics of L : 
0)0) 

•k 
(v) If (j) (c) i s a sentence of L then 

M|=Qax<))(x) i f f cardinality ( {aeM : . ( M, a ) |= <j> (c) } ) >_ o) ~ . 
(w i s the a cardinal in the sequence of i n f i n i t e 

cardinals) 

Intuitively, Q^xKx) holds in. M i f there are oi objects a such that 

( M, a )|==<(>(G)»-' One important specific example i s L ( Q Q ) : in this logic, 

M |= QQX<))(X) i f f there are i n f i n i t e l y many a e M such that ( M, a ) ( = <t>(c) 
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I n f i n i t a r y l o g i c s are important extensions of the predicate 

calculus and have been the object of close study i n recent years. The 

next l o g i c s we w i l l consider are examples of these i n f i n i t a r y l o g i c s ; they 

w i l l be examined i n greater d e t a i l i n Chapter I I . 

Example 1.2.7 : L - l o g i c with i n f i n i t e conjunctions and di s j u n c t i o n s . 

Syntax: Add the following r u l e to the syntax of L : 
0)0) 

ft 

(v) I f $ i s a set of sentences of L then A $ and V $ are sentences 

of L*. 

Semantics: Add the following r u l e to the semantics of L : 
0)0) 

(v) M {=• /\$ i f f M |= 9 f o r a l l 9 e $ and 

M (=• V $ i f f M fc= <|>f f or some 9 e $ . 
Example 1.2.8: L , where a i s an i n f i n i t e c a r d i n a l . This l o g i c has the 

C 0CU) 

sfme^yn^ajPand semantics as L except f o r the following r e s t r i c t i o n : the 

set $ of the previous example must have c a r d i n a l i t y l e s s than a. Thus f o r 

a = U j we get the l o g i c ^ i n which only the countable conjunction and 

di s j u n c t i o n of sets of sentences i s allowed. 
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CHAPTER TWO 

PARTIAL ISOMORPHISMS AND SCOTT SENTENCES 

In t h i s chapter we give some d e f i n i t i o n s and state some r e s u l t s 

from the i n f i n i t a r y l o g i c s described at the end of the l a s t chapter. A 

more d e t a i l e d account including proofs of the r e s u l t s may be found i n [2 J . 

Let M be an L-structure. A p a r t i a l substructure MQ of M i s 

a subset M^ of S-hecuniverse of M together with the r e s t r i c t i o n s of the 

r e l a t i o n s and functions to MQ (so some of the functions may be p a r t i a l ) . 

Given L-structures M and W, a p a r t i a l morphism from M to W i s j u s t an 

isomorphism F : MQ - WQ f o r p a r t i a l substructures of M and W re s p e c t i v e l y . 

D e f i n i t i o n 2.1 : Let I be a set of p a r t i a l morphisms from M to M. We 

say I has the back and f o r t h property i f for every F e I and a e M (resp

e c t i v e l y b e N) there i s a G e I with F£-G and a e domain(G) (respectively 

b e range(G)). I f there e x i s t s a set I with the, back and f o r t h property 

then M Z a n d W are said to be p a r t i a l l y isomorphic written I : M = hi or 

simply M - W. 
P 

Example 2.2 : Let M = < M, <^ > and W = < N, <^ > be dense l i n e a r orderings 

without endpoints. For example M and M could be the r e a l s and the r a t i o n a l s 

r e s p e c t i v e l y with the natural ordering. Let the set I consist of a l l maps 

f such that f i s an isomorphism from a f i n i t e subordering of M onto a f i n i t e 

subordering of W. Then i t i s straightforward to check that I has the back 

and f o r t h property and so I : M W. 
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The notion of p a r t i a l isomorphism can be viewed as a 'weak' form 

of isomorphism. The next r e s u l t shows that i n c e r t a i n cases the two notions 

are equivalent. 

Tfeorem 2.3 : I f M and W are countable L-structures then M - W i f f there 

e x i s t s a set I such that I : M - W. 
P 

Proof; If f : M - W l e t I = { f } and c l e a r l y I : M - W. T ° prove the 

converse we give a s p e c i a l case which i s a c t u a l l y a c l a s s i c a l r e s u l t . , 

The general case i s then proved i n a s i m i l a r manner. The s p e c i a l case 

i s where M, W and I are as given i n Example 2.2 above with the added 

s t i p u l a t i o n that M and W are countable. Since M and N are both countable 

l e t M = { a^,a^,a^,... } and N = { b^jb^jb^*... }• The set I i s used to 

construct an isomorphism f from M = < M, <^ > onto W = < N, <^ >. In f a c t 
a sequence f . ^ . f n — £ „ ?r. •. i s constructed such that f = f ±s the desired 1 2 3 n n 

isomorphism. Let f^ = { <a^,b^> } be the function i n I which maps a^ to 

b^. We now proceed i n d u c t i v e l y : 

f„ = some function g e l with f„ ,^Zg and a e domain(g) 
2n Zn— 1 n 

f, f „ ,. = some function g e l with f„ 9̂ .g and b e range(g) . /.'.zn+i zn n 

Then f = U f has domain a l l of M, range a l l of N and preserves the n n 
, . M W „ c . r e l a t i o n s < , < . Hence f i s an isomorphism. 

R e c a l l the d e f i n i t i o n of L rgiveh i n Example 1.2.7. Two L-

structures M and W are said to be L ^ - e l e m e n t a r i l y equivalent , written 

M = W, i f the same set of L -sentences hold i n both structures. The 
L °°a> 

following theorem i s fundamental i n that i t provides a connection between 
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the algebraic concept of p a r t i a l isomorphism and the l o g i c a l concept of 

L^-elementary equivalence. 

Theorem 2.4 : Given L-structures M and W the following are equivalent: 

(i ) M =. W 
°°U) 

( i i ) There i s an I : M = M 
P 

One e f f e c t of t h i s theorem i s to make cl e a r the t r a n s i t i v i t y 

of the r e l a t i o n - because of the f a i r l y obvious t r a n s i t i v i t y of L -
p °°U> 

elementary equivalence. 

Later r e s u l t s require a refinement of the above theorem. To 

t h i s end a precise measure of the complexity of an L^-sentence i s needed. 

The next d e f i n i t i o n gives one such measure. 

D e f i n i t i o n 2.5 : Let d) be an L ^sentence. The q u a n t i f i e r rank of d>, 
— 00(0 

written qr ( d ) ) , i s defined i n d u c t i v e l y as follows: 

(i ) I f <j> i s an atomic sentence i n which no function symbols occur 

then qr(d)) = 0. 

( i i ) Suppose <j> i s an atomic sentence of the form t^ = t ^ i n which 

function symbols occur. Let n be the number of occurrences of 

::.or.yfunction symbols„ in': t^ or t^. Then qr(<j>) = n-1. 

( i i i ) Suppose <j> i s an atomic sentence of the form R(t^,...,t^) i n 

which function symbols occur. Let n be the number of occurrences 

of function symbols i n any of the t ^ . Then qr(cj)) = n . 

(iv) qrOH>) = qr(rf)), q r ( V x < K x ) ) = qr( 3x<j>(x)) = qr(<J)(c)), 

q r ( / \ $ ) = q r ( \ / $ ) = sup {qr(<()) : d> e $ } . 

If a i s an o r d i n a l we write M =^ a W to indicate.that the 
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same set of sentences of q u a n t i f i e r rank _< a hold i n both M and M. 

Theorem 2.6 : Given L-structures M and N and an o r d i n a l a the following 

are equivalent: 

(i ) M -E l W • . 

( i i ) There i s a sequence I n 3 I D . .. D i -D . . .31 where, f o r 
U I p ot 

each g < a, I i s a non-empty set of p a r t i a l morphisms 
— p 

between M and W such that i f 3+1 < a and F e I then f o r 
— p+i 

each a e M (resp. b e N) there i s a G e I with F G and 
p 

a e domain(G) (resp. b e range(G)). 

The sequence { 1^ ^ g < a gives an approximation to a p a r t i a l 

isomorphism i n the case where M =,a W although not ne c e s s a r i l y M =.. W . 
°°u) °°OJ 

Let L be a language and 9 a sentence of L*. Ln the subsequent 

d e f i n i t i o n the following notation i s u s e d : ^ <Kx) denotes the sentence 
it 

of L such that f o r any L-structure M 

M fc= 3 x<j> (£) i f f ( M, a )[= 9(c) where a i s the i n t e r p r e t a t i o n 
of c i n III . 

Also, i f the l o g i c i s L then L denotes the set L of sentences of L. 

D e f i n i t i o n 2.7 : Let L be a language. For each o r d i n a l a, each L-structure 

M and each sequence d = a. a - e Mwe define a sentence a a,u N e 
I n (M,a) 

L(c,,...,c ) . T h i s - i s ^ c a l l e d a Scott Sentence. The d e f i n i t i o n proceeds 1 n r 

by induction on a: 

a(M a) = ^ : ^ i s a n atomic or negated atomic sentence of L(c^ c 
qr(ijO. = O sand (M,a1,...,'a } 

1 n 
a+1 

For any a, ^ i s the conjunction of the following sentences: 
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a 
C(M,a) 

c 
beM—' xn+l (M,a.,...,a ,b).Sc 

1 n n+1 

V N / 0 1 <- C n + 1 ,i 
V x

n + i beM a(M,a.,...,a ,b)Sc _,,' 
1 ii n+1 

-Far., l i c i t erdineiv > , 
- X a For l i m i t ordinals X, a,,, „ N i s the conjunction , a,,. * . We write 
' (M,a) J a<\ (M,a) 

a^j f o r ^ when a i s the empty sequence. 

Informally, the Scott sentence a^ ^ gathers up a l l the information 

about (M,a.) that i s contained i n those sentences of q u a n t i f i e r rank <_ a 

which hold i n (M,a). The next theorem makes t h i s remark more precise. 

Theorem 2.8 : Let M and W be L-structures and l e t a = a,,...,a 
1 n 

b = b^,...,b be sequences i n M and N re s p e c t i v e l y . Then 

( N,6)F= o ° M j a ) i f f (M,a) =^a (N,b) . 
°°U) 

A s p e c i a l case of t h i s theorem i s when ri = 0 and d,b are the 

empty sequences. In t h i s case N F i f f M W ~. Hence Theorem 

2.8 gives a nice c r i t e r i o n i n terms of Scott sentences for L -elementary 

equivalence. 

Ddiinition 2.9 : The sequence of beth cardinals i s defined as follows: 

~1 = 0 I = 2~-^a 

-^0 ' — l a + l 

L = sup. I i f M s a l i m i t o r d i n a l . 
3 a<B a 

JJWe w i l l be p a r t i c u l a r l y interested iri those cardinals a for 

which | = a . One important example of t h i s type of c a r d i n a l i s oi. 

We c a l l cardinals such that ~] = a f i x e d point beth c a r d i n a l s . 
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The l a s t theorem of t h i s chapter provides a d d i t i o n a l information 

about Scott sentences i n the case where c a r d i n a l i t y ( L ) _< K f o r some f i x e d 

point beth c a r d i n a l K. The theorem i s also c r u c i a l i n the proof of the 

main r e s u l t of Chapter Three. 

Theorem 2.10 : Suppose K i s a c a r d i n a l such that K = and L i s a —'K ' 

language with c a r d i n a l i t y ( L ) <_ K . Then for each a < K and each p o s i t i v e 

integer n: 

(i ) I f M i s any L-structure the sentence a°lu N i s i n L(c,,...,c ) 
J (M,a) 1' n KO) 

( i i ) There are l e s s than K sentences of the form a ̂  ^ as M ranges 

over a l l L-structures. 
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CHAPTER THREE 

DEFINABILITY OF STRUCTURES AND LINDSTROMSS THEOREM 

3.1 D e f i n a b i l i t y of Structures 

In t h i s section we e s t a b l i s h some r e s u l t s on the d e f i n a b i l i t y 

of structures and, i n p a r t i c u l a r ^ the d e f i n a b i l i t y of ordinals i n a l o g i c . 

These r e s u l t s are important because the d e f i n a b i l i t y of ordinals gives some 

measure of the 'strength' of a l o g i c . This becomes more clear i n the material 

of 3.2 where the r e s u l t s are needed i n some of. the key proofs. 

Throughout t h i s section L* i s a logicapn a c o l l e c t i o n Coof 

languages. 

D e f i n i t i o n 3.1.1 : Structures M and W are s i m i l a r i f domaim'(iM) = domain(W) = L. 

If K i s a cla s s of s i m i l a r structures f o r a language L then K'As L*-definable 

i f there i s a sentence d> e L such that M e K i f f M \p= <b. So i f L == L 
0)0) 

then K i s L*-definable i f f K i s an elementary class ( i . e l the cla s s of models 

of some f i r s t - o r d e r sentence.) 

We now give the notion of Z { - d e f i n a b i l i t y . This i s the notion 

of d e f i n a b i l i t y which w i l l be used most often. 

D e f i n i t i o n 3.1.2 : Let K be a cla s s of L-structures. K i s sa i d to be 

Z{-definable i f ( i ) there i s a language K and a 0-morphism a : L -> K which 

i s the i d e n i t y on L except possibly that a(\/ ) + V and ( i i ) there i s a 

sentence <j> i n K* such that each model M of d) i s a - i n v e r t i b l e and 

K = {M"a=* M t= <p> 

The following remarks should help c l a r i f y w h a t i i t means f o r a set 
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of structures K of a language L to be Z{-definable. Suppose L i s contained 

i n a l arger language K and l e t K(V) be the language obtained from K by 

adjoining the new unary r e l a t i o n symbol V.toWe denote a t y p i c a l K(V)-structure 

by ( M, V ) where Miis a K-structure and V i s the i n t e r p r e t a t i o n of V i n 

the universe of M. Let <f> be a sentence of K(V)* with the following property: 

i f ( M, V ) |=. rf> then (M(V)j>|\ L i s a f u l l L-structure. ( ( M ( V ) ) f i s 

the structure obtained by f i r s t r e l a t i v i z i n g M to V to get a ( p a r t i a l ) K-

structure and then taking the reduct of t h i s structure to the language L. ) 

Then a c l a s s K of Ljsliructures i s £{-definable i f f there e x i s t a K, V and 

a sentence <)> as above such that K consists of a l l and only those structures 

of the form (M ( V ))(v for (M, V)|=d). 

C l e a r l y any definable c l a s s i s z{-definable. Also, the c l a s s of 

reducts of a definable c l a s s w i l l be Z^-definable. 

D e f i n i t i o n 3.1.3:(i^A structure M i s definable (Z{-definable) i n L* i f 

K = { hi : hi i s s i m i l a r to M and W - M } i s definable (z{-definable) . 

(i i < ) l ^ (cTa^sa'sAtof-fordinalss i s definable (Z{-definable) i f the 

cl a s s of structures K ={{ M : M - < a, < > for some a eAA} i s definable 

( z j-definable). 

Theorem 3.1.4 : The following are equivalent: 

(I) The c o l l e c t i o n of f i n i t e sets i s Z{-definable i n L*. 

( i i ) < to, < > i s Z{-definable i n L*. 

( i i i ) There i s a c l a s s of ordinals A Z{-definable i n L* which contains 

an i n f i n i t e o r d i n a l . 

Proof: 

( (i)' implies ( i i ) ): Let tj) be the Z { - d e f i n i t i o n of the c o l l e c t i o n K of 
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f i n i t e sets. We suppose 9 i s a sentence of the language L = L^. Thus a 
W 

unary r e l a t i o n symbol occurs i n 9 and the f i n i t e set M e K i f f M = U for 

some W such that W t= 9. We may, by the isomorphism property of D e f i n i t i o n 

1.2.1, assume that M i s an i n i t i a l segment of the integers. For each n < co 

there i s an 9 with II/' 1 1'!' >_ n. I f the language L = { \/ , U, R^,..., f^,...} 

then consider the language K = {\f , V, U', Rj,..., f j , . . . } and the 1-

morphism with constant d e K such that 

V I > v 

u 1 * u' 
Rj 1 > R^ ... etc. 

We write <j>'(d) f o r 9 . We take the indexed union W of { W : n < co } to 
io n 

form a K-stfucture (see Examplell.1.6). The universe of W w i l l be the 
00 

set U N n U co. Expand K to the language = K(W, :<•) where III i s a unary 

and < a binary r e l a t i o n symbol. Let be the conjunction of the following 

two K* sentences: " < i s an i n f i n i t e l i n e a r ordering of W " 

V x [ W ( x ) * 3y(9'(y) A Vz(z < x + D ' ( z , y ) ) i | . 
We show two things: (a) that has a model and (b) i f ( M, W, <) i s a model of i\i 

then < W, < > - < co, < > 

(a) Consider the structure ( W , co* < ) for K(W, <) (here < i n ( Ws, co, <)) 
CO CO 

Ây? Jvn i s the natural ordering on co) . I f a e 55 'thenritafiollowsLthaC a_e U f o r < -

somein.! Let n be the i n t e r p r e t a t i o n of y i n hi . C l e a r l y i f b < a then 
co 

Wnn W 

b e U , i . e . (U') w(b9n)'.sholds?.reTherefbrestheesentence IJJ holds i n 

( Wu,.u, < )• 

(b) Let ( W, W,_-< ) be a model of \\>. To show <JW, -< > = < co, < > i t i s 

only necessary to show that each a e W has a f i n i t e number of predecessors. 

If • b e W i s such "that ( W, b ) ̂  9 '(d) then a l l the predecessors of a 

are i n X = { z : <z, b> e (U')^ }. But then M = ( W, b ) ~ a i s a model 
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of <f> with = X and so X i s f i n i t e . This f i n i s h e s i((i) implies ( i i ) ) . 

( ( i i ) implies ( i i i ) ) 1 : This i s t r i v i a l . Let A = { oi } and the r e s u l t 

follows from the d e f i n i t i o n s . 

( ( i i i ) implies ( i ) ) : Let A be a c l a s s of ordinals E{-definable i n L* and 

l e t i> be the z{-def ini'tioniof A. So \p contains the unary W and the binary 

< and M j ^ ij; implies < Ŵ , <^ > i s well-ordered. Add a unary r e l a t i o n symbol 

to the language L = L^ to form L^.(U) and and l e t <f> e L^(U)* be the conjunction 

of if) and \/x(U(x) -> W(x)) 

\/xyy(U(x)Ay < x ->UU(y)) 

Vx[u(x)/\3y(y < x) ->3y(y < xA\/z<v(y <zz <xx)))] 

Then a set M i s f i n i t e i f f M = for some hi <j> so <J> i s an z { - d e f i n i t i o n 

of the c o l l e c t i o n of f i n i t e sets. 

This theorem t e l l s us that < o), < > i s not Ej-definable i n L 
1 0)0) 

If i t were then there would be an L sentence <j> containing the unary symbol 

U that I^-defines the c o l l e c t i o n of f i n i t e sets. Let d> be the sentence: J- n 

/\u l̂)l\...l\w(%)) 

Then the set of sentences { <f> ? n ? o) } would have no model even though 

every f i n i t e subset has a model. And t h i s contradicts the w e l l known 

compactness property of L 
0)0) 

In many of the other examples of l o g i c s given i n Chapter One 

< o) < > i s definable hence E{-definable. 

Example 3.1.5 : L — s e c o n d order l o g i c . Consider the following sentences: 

(i) " < i s a t o t a l ordering" 

( i i ) V X 3 y V x ( y e X A x e X - > y ^ x ) 

( i i i ) V x 3 y ( x < y) 
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( i ) , ( i i ) and ( i i i ) say i n t u i t i v e l y that < i s a we l l ordering with no 

largest element. 

(iv) Vx[3y(y < x) -> 3y(y < x /\Vz^(y < z <xx))J 

(iv) says i n t u i t i v e l y that each element has an immediate predecessor i n 

the ordering <• Let <j> be the conjunction of these four sentences. Then 

< A,<<>>=is a smddel of 9 i f f < A, < > - < co, < > so 9 i s the L d e f i n i t i o n 

of < co, < >. 

Example 3.1.6 : ^-(QQ) ~ l o g i c with the q u a n t i f i e r ' there e x i s t s i n f i n i t e l y 

many'. Let 9 be the conjunction of the sentences: 

" < i s a t o t a l ordering", Vx(^Qgy(y < x ) ) , Q Q X ( X = X ) • 

Then < A, < > i s a model of 9 i f f A i s i n f i n i t e , < well orders A and there 

are only f i n i t e l y many predecessors of any a e A. Consequently < A, < > 

i s isomorphic to < co, < > and 9 i s the 4(QQ) d e f i n i t i o n of < co, < >. 

Example 3.1.7 : For the d e f i n a b i l i t y of < < > i n the l o g i c L see 4.1. 
c û co 

D e f i n i t i o n 3.1.8 : An o r d i n a l a i s L*-accessible i f a e A for some clas s 

A of ordinals that i s E^-definable i n L*. 

In L the definable and accessible ordinals coincide: they are 
coco 

j u s t the f i n i t e o r d i n a l s . C l e a r l y every f i n i t e o r d i n a l i s definable and 

therefore accessible. By the previous theorem i f an i n f i n i t e o r d i n a l were 

L - a c c e s s i b l e then < co, < > would be Y,}-definable: t h i s , as was noted coco 1 ' 

above, i s not the case. 

The following theorem i s an important r e s u l t f o r obtaining new 

L*-accessible o r d i n a l s . 

Theorem 3.1.9.: Let A be a clas s of ordinals which i s EJ-definable i n L*. 

Then 

(i) the cla s s of ordinals A' = { a : a < 3 f o r some 3 eAA}. i s 
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E^-definable i n L*. 

( i i ) i f A i s a set and g = sup{ a :aa e A} then g i s L*-accessible. 

Proof of (i ) : Let a) be the E { - d e f i n i t i o n ofAA. Thus <f> contains a unary 

symbol U and a binary symbol <. a e A i f f < a, < > ^ ( U^, <^ ) for some 

W such that Wt=<}>. Let U', <' be new unary and binary r e l a t i o n symbols 

res p e c t i v e l y and l e t ̂  e L (U',<') be the conjunction of the following 

two sentences: V x ( U ' ( x ) •> U ( x ) ) 

" <' i s the reduction of < to U' " 
M M 

Then i f y _< a f o r some a e A then § y, < > - !( U' , < ) f o r some M such 

that M |= . ( M i s obtained by modifying the above structure N.) 

Proof of ( i i ) : Because A i s a set g = sup{a: a e A} i s indeed an o r d i n a l . 

By part ( i ) we may assume that A = g = { a : a < g } . Let <|> be the £*-definition 

of A (as i n part ( i ) ). If L = ( V , U, <,...} l e t K = { W,V, U', R,...} 
<P 

and l e t a : L, -> K be a 1-morphism with constant d such that 
9 I > v 

u D i >u' 
< I » R ...etc. 

Ct 

Write <<f>'(d) for (j> . Expand K to form the language K(W, -4 ) (where W i s 

unary and binary). Let 6 be the conjunction of the following two 

K(W, •< ) sentences: " ^ i s a l i n e a r ordering of W " 

Vx[w(x) + 3y(<f>(y) A Vz(z < x + R(z,x, y)))] 

As i n the proof of the previous theorem we must show two things: 

(a) M 9 implies i Ŵ , j- i s well-ordered and 

(b) There e x i s t s a M|=. 0 such that i , J- - < g, < > . 

(a) Suppose M = ( N , W^, ) where H i s an K-structure. Assume that 

Mt= 90and < ifT^, ^ § i s not well ordered. Then there e x i s t s an i n f i n i t e 
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descending chain a-j^V  a ^ ' '' where each a^ e Ŵ-. Let a be the 

i n t e r p r e t a t i o n of y i n W such that 9(a) and b'^a-J implies R^Cb.a^a). This 

implies b < a^ i n W . L e t t i n g b = a^, a^,...etc. we get a chain 

a^ > a^ > a^ > ... i n N . Since < w e l l orders W t h i s i s a co n t r a d i c t i o n . 
M MM 

Hence < W , ^ > i s well ordered. 

(b) We must f i n d M such that M|= 6 and < Ŵ , -^'> - < 3, < >.ZFbr each 

a < 3 there i s an W such that W <j> and < U^ a, -c^01 > - <aa, < > . Let 
a a 1 

W be the indexed union of the { W : a £ .3 }. Then ( W , 3, < ) i s a model 
P Ot p 

of 9. For i f a e 3 '('i.e. a < 3) l e t a+1 be the i n t e r p r e t a t i o n of y i n W_. 
p 

Then y < a implies y < a i n W + j so that R^(Y,a,a+l) . 

We close t h i s section with some d e f i n i t i o n s and examples. 

D e f i n i t i o n 3.1.101-!: The l o g i c L* i s bounded (respectively bounded by 3) 

i f every zj-definable class Afof. ordinals i s bounded '(respectively bounded 

Byb 3) . Note: bounded here means s t r i c t l y bounded. 

D e f i n i t i o n 3.1.11 : If the l o g i c L* i s bounded by some 3 then wo(L*), 

the w e l l ordering number of L*, i s the l e a s t such 3. 

Example 3.1.12 : As was noted e a r l i e r the only csets of ordinals z j-definable 

i n L must consist of f i n i t e l y many f i n i t e o r d i n a l s . Hence L i s 
0)0) 0)0) 

bounded by 00; i n f a c t , wo(Lo)O)*) = o> . 

0)0) 

eExample 3.1.13 : The l o g i c I? (second-order l o g i c ) i s not bounded and 

therefore wo(L^) i s not defined. This i s because the cla s s A of a l l ordinals 

i s definable hence Z^-definable by the sentence <f> which i s the conjunction of: " < i s a t o t a l l i n e a r ordering " 

V x - [ y J y ^ x y e e x r A V x ( x e x •+ y •_< ) ) 
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3.2 Lindstrom's Theorem 

The main r e s u l t of t h i s section i s Lindstrom's Theorem. This 

theorem outlines conditions that characterize f i r s t - o r d e r , l o g i c i n the sense 

that any l o g i c that s a t i s f i e s these condition must be equivalent to f i r s t -

order l o g i c (the meaning of 'equivalent' w i l l be made p r e c i s e ) . A c t u a l l y 

a more general r e s u l t i s established that s p e c i f i e s conditions which char

a c t e r i z e l o g i c s i n terms of the hierarchy L , where K i s a c e r t a i n type 

of i n f i n i t e c a r d i n a l . 

Let L* be a l o g i c on a c o l l e c t i o n C of languages. In t h i s section 

we s t i p u l a t e another assumption that a l o g i c w i l l be required to s a t i s f y 

i n a d d i t i o n to those givai i n Chapter One: 

Assumption 4 : Let <|> be any L* sentence. Then the set L^ i s f i n i t e -

only a f i n i t e number of symbols occur i n d>. 

The motivation for Assumption 4 w i l l become apparent i n the proofs of the 

r e s u l t s of t h i s s e c t i n . 

Let L* be a logicaon C and l e t L be a language o f C. I f M and 

W are two L-structurestthen M and W are said to beeelementarily equivalent 

with respect to L*, written M =^ W, i f the same set of L* sentences i s true 

i n both structures. 

D e f i n i t i o n 3.2.1 : The l o g i c L* has the Karp proprty i f f o r a l l languages 

L i n C, and a l l L-structures M and N , i f M = M then M = M i . e . p a r t i a l 
P * 

isomorphism implies elementary equivalence.(see Chapter Two f o r an account 

of p a r t i a l isomorphisms). / 

Ddiinition 3.2.2 : The l o g i c L* has the Lowenheim property i f every L*-

sentence a) which has a model has a model of power <_ . 
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Theorem 3.2.3 : If L* has the Lowenheim property then i t also has the Karp 

property. 

Proof: Suppose L* doesn't have the Karp property and l e t L be a language 

with structures M „ and M, such that M . - M, but f o r some <b e L* 0 1 0 p 1 

MQ (= 9 and M j t = ^9 

We assume L = L, and hence i s f i n i t e (by Assumption 4). Enrich L to form 
<P 

the language K = L(U,W,E,p) where U and W are unary r e l a t i o n symbols, E 

i s a binary r e l a t i o n symbol and p i s a binary (pairing) function symbol. 

We write <x,y> for p(x,y) and <x,,...,x ,x f o r p(<x,,...x >,x , ..) . 
J 1 n n+1 r 1 n n+1 

Let iji e L(U,W,E,p)* be the conjunction of the following sentences: 

(1) 9 U and (S>) W (see Example 1.2.3) 

(2) Vxyu [E(x,y) AU(u) -> ]w(W(w) A E(<x,u>,<y,w>))]. 
(3) Vxyw [E(x,y) A W(w) -»• 3u(U(u) A E(<x,u>,<y.w>))] . 

(4) For each n-ary r e l a t i o n symbol R the sentence: 
Vxj_.• -x^.--y n [E(<X X,.. '\ > > < y l >• • -y^) 

n 
+ .^^(x.) «-> W(y±)) A R(xlS...xn) R(ylf...yn)] . 

(5) For each n-ary function symbol f the sentence: 

V x r . . x n y r . .y n [ E ( < x l S . - ., V V l ^ l ' " ' * 'Wn+l^ 
n+1 

.AdKx.) - w(y.)) Af(x i s...,xn) = x n + 1 -> H y 7 J - y ^ 

n+1 

Note that because L J i s f i n i t e only f i n i t e l y many sentences a r i s e i n (4) 

and (5). Thus by our assumptions on the l o g i c L* the conjunction ^ i s 

indeed an L*-sentence. We show that IJJ has a model W. The universe of 

W w i l l be the set: N = MQ(J ^ where MQ i s the universe of MQ and 

i s the universe of . 
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Let p be any i n j e c t i v e map from N N into N and l e t U = MQ, W . 

W M . • W Define E as follows: E (<x, ,. .. ,x >, <y_ ,. .. ,y •>). i f f x.,...,x et:U , J L . n l n i n 
y y e and there i s a p a r t i a l morphism from M- to M, such that 
^ 1 n 0 1 W x, I >y,> • x I »y . Define R as follows: 1' 1 n 1 n 

R^(x..,... ,x ) holds i f f x,,...,x e M„ and R^0( x ,...,x ) or I n 1 n U I n 
Mi 

x l 5 . . . , x n e and R 1 ( 2 ^ , . . . . x ^ ) . 
W 

Define f as follows: 

i f x, .... ,x e M» then f^(x, ,. . .x ) = f ^ ( x , ,.. . ,x ) 1 n 0 1 n I n 

i f x. x e M, then f^(x,,...,x ) = f ^ i ( x , x ) 
I n 1 I n 1 n 

otherwise define f a r b i t r a r i l y . 

Since MQ = ;viM̂  sentences (2)-(5) i n the conjunction of \p hold i n W. And 

because 'MQ|=9 and M̂ |= ^9 ip W i s indeed a model of ip. Assume now that 

the l o g i c L* has the Lowenheim property. Then there e x i s t s a model, WQ 

f o r ip of c a r d i n a l i t y _< J ^ 0 • l e t a : L -> L(U,W.E,p) be the 0-morphism which 

i s the i d e n i t y except that a(V) = U. Let g : L L(U,W,E,p) be the a 

0-morphism which i s the i d e n i t y except that a(V) = W. Then W~a i s a 
— 3 

countable model of 9 and WQ i s a countable model of ^9. Moreover•, _ the 
c o n j . u n c £ i o n - o f r . ( 2 ) ^ : ( 5 ) x i n v ; t h e 7 f o r m a * i o n o f to e n s u r e ^ . t h a t i N x s ' : s t f N , . 

,T 0 p 1 

By the c l a s s i c a l r e s u l t given i n Chapter Two (Theorem 2.3 ) p a r t i a l l y 

isomorphic countable structures are isomorphic. Hence WQ - . Since 

WQ b= 9 and W.̂  |= H t h i s i s a cont r a d i c t i o n . Thus L* does have the Karp 

property. 

This r e s u l t t e l l s us that a large c l a s s of l o g i c s have the Karp 

property. For instance, i t i s w e l l known that L s a t i s f i e s the Lowenheim 
0)0) 

property and i t i s shown i n [4] that L ( Q Q ) (see Example 1.2.6) does also. 

http://JL.nl


By the above theorem both these l o g i c s have the Karp property. The converse 

of t h i s theorem i s f a l s e : as was noted i n Chapter Two L has the Karp 
°°o) 

property; however, i t doesn't s a t i s f y the Lowenheim property. 

The next d e f i n i t i o n gives a p a r t i a l ordering on the cla s s of 

a l l l o g i c s . 

D e f i n i t i o n 3.2.4 : Given l o g i c s L*aand L# on the same c o l l e c t i o n C of 

languages we say that L# i s as strong as L* and write L# >_ L* i f for every 

L*-sentence 9 there is. a /.^-sentence ij; such that: 

(i ) Q_ , i . e . , every symbol occurring i n d) occurs i n <j>. 

( i i ) Mh=* d> i f f M br# ib for a l l L -structures M. 
9 

We say L# i s stronger than L*, and write L# > L* , i f L# _> L* but not 

L* > W . If L* > L# and L# _> L* we write L* = L# and say that L* and 

L# are equivalent. 

The assumptions l i s t e d i n Chapter One ensure that L < L* for 
wio — 

a l l l o g i c s L*. Also, i t i s c l e a r that L < L for a l l i n f i n i t e c ardinals 
acu — °°u) 

ai 
The following theorem contains the key r e s u l t of t h i s chapter. 

It provides a more precise measure of the strength of c e r t a i n l o g i c s . 

Theorem 3.2.5 : Let K be a c a r d i n a l such that K = | . (For the d e f i n i t i o n of 3 see Chapter Two.) If L has the Karp property and wo(L*) j< K then 
'•fi 

the l o g i c L i s as strong as L*. 
KOJ 

Proof: Assume i s not as strong as L* and suppose L* has the Karp 

property. We show that K i s L*-accessible; t h i s contradicts the condition 

wo(L*) < K . Because L i s as not as strong as L* there i s an L*-sentence 
— KOJ 

<i) which does not have the same models as any sentence of L . 
' KO) Claim: For each a < K there are L -structures M, W with M hi, M\=.*^$ 

KO) 
and hi !=*'">(()•. 
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V e r i f i c a t i o n : suppose the claim were f a l s e . Then there would be some 

a < K such that M =.a W, M k=* 9 implies f/l=* 9 for a l l L -structures 
L 9 KU) 

M and W. By Theorem 2.8 M E^a W i f f W]=a^j (here |= denotes the semantic 
KU) 

i m p l i c a t i o n r e l a t i o n with respect to the l o g i c !„,,). Hence we would have 
°°U) 

W|=a^, M>=*99 implies W M 9 for a l l L^-structures M, N. Consider 

the sentence V { oĵ j : M t = * 9 }. By Theorem 2.10 i t i s a sentence of 

L ( t h i s i s where the assumption K = ~| • i s used). I f W i s a model of 
KU) K ^ K 

t h i s sentence then M t= a?, f o r some L - s t r u c t u r e M such that M l=* 9. By 
M 9 

the above comment thisggives Wt==* 9. S i m i l a r l y , i f W |= * 9 then (since 

N|=ojJ ) W|= V( ajjj : M l=* 9 }. Thus i f the above claim were f a l s e 

<b would have the same models as \J{ a?, : M \=* 9 }, a sentence of L , 
• M KU) 

and t h i s contradicts our assumption on 9. This establishes the claim. 

Using Theorem 2.6 we can rephrase the claim as follows: 
For each a < K there are L,structures M and W such that 

9 
(i ) Mr=5 9, Wt=* «u9 

( i i ) There i s a sequence 1̂  51^=? • • • 21^2 • • • 2 I'a where',-for each 
3 < a, I i s a nonempty set of pi'Somof.pbismslb,eitweenW£p.artial p 
substructures of M and W. This sequence has the following property: 

(*) 

i f g+1 < a and F e I , then f o r each a e M (respectively b e N) there 

i s a G e l . with F E G and a e domain(G) (respectively b e range(G)). 
p 

We now proceed with the proof. The technique resembles that used i n proving 

the previous theorem. Let K be the language obtained from by adding 
9 

the following new symbols: U, WQ , W.-J,, ( a l l unary), < (binary), p (a binary 

p a i r i n g function symbol),and E a 3-ary r e l a t i o n symbol. We construct a 

sentence \\> of K* such, that: ( i ) i f Wt=* i|> then < U^, i s a well-ordering 
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and ( i i ) for each a < K there i s a model N 1=̂ * <f> with < U^, <^ > of order 

type a. I t w i l l then follow from Theorem 3.1.9 of the previous section 

that K i s L*-accessible. ipeis the conjunction of the following sentences: 

(1) 9w 0 a n d QH)Ui 

(2) " < i s a l i n e a r ordering of U " 

(3) " p i s a pa i r i n g function " 

(4) " i f E(c,x,y) and c' < c then f o r every a e WQ there i s a b e and 

for every b e Ŵ  there is. an a e WQ. such that E(c',<x,a>,<y,b>). 

(5) For each n-ary r e l a t i o n symbol R: 1 1 i f E(b,<x^,...,x >,<y^,...,y >) 
n 

and U(b) then A^Wn^) / ^ ( y ^ ) and R ^ , . . . ^ ) R ( y i , . . . , y n ) " 

(6) Similar to (5) except for function symbols f. 

The notaMemG£x..y.;>.v.yX' S-.cis.'-thi - same.-, as twas used iiidfche pr.oof-of Theorem 
. . . I n • 

3.2.3 . Our assumptions on a l o g i c ensure that \p i s indeed an L*-sentence. 

Now for each a < K using condition (*) above i t i s easy to construct a 

model hi of such that hi l =* ijj and < U^,<^ > - < a, < > (condition (*) 

i s used i n s a t i s f y i n g (4),(5) and (6)). The construction of hi i s s i m i l a r 

to the construction given in.Theorem 3.2.3. We need only show that hi (=* 

hi hi 

implies that < U , < > i s a we l l ordering. Suppose there was some 
W 

X C u with no le a s t element. Using X we can define a set I of p a r t i a l 

morphismsffrom hl^& to,,;W^l^ . I consists of a l l p a r t i a l morphisms F 

such that for some b e X, F i s given by: 
hi 

>y^,...,xn| )y.^ where E (b,<x^,. . . ,x >,<y^,. .. ,y >) . Because X 
has no le a s t element. I has the back and f o r t h property. Hence and 

are p a r t i a l l y isomorphic, I : hl^1^ ~ p ^ W ^ • S i n c e L* n a s t n e Karp 

property t h i s gives W ( W o ) W ( W1 } . But W ( V F=* <f> and W ( W l } r = * H , 
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W W 

t h i s a c o n t r a d i c t i o n . Thus < U , < > i s well-ordered. We have shown 

that K i s L*-accessible and t h i s completes the proof. 

If we l e t K = GO i n the above theorem we obtain Lindstrom's 

Theorem which i s a c t u a l l y a c o r o l l a r y to the above r e s u l t . 

Theorem 3.2.6 (Lindstrom)c.:T Let L* be a l o g i c on a c o l l e c t i o n C of languages. 

If L* has the Lowenheim property and e i t h e r of the properties stated below, 

then L* = L 
LOU) 

(a) (Upward Lowenheim-Skolem) : If a sentence 9 '.of L* has an i n f i n i t e 

model then i t lias an uncountable model. 
(b) (Countable Compactness) : If T i s a countable set of sentences of 
ft 

f b r f o r any.nLCinnS andeif-revery.ifinitessubsetTofaT hasoaeihodel then 

modeT.has a model. 

Proof: . Observe f i r s t that because of our assumptions on a l o g i c L*, L* 

i s always stronger than L . Also, since L*mhas the Lowenheim property 

by Theorem 3.2.4 i t has the Karp property. We show that conditions (a) 

or (b) imply that wo(L*) <_ GO ; by the previous theorem t h i s gives 

L, > L* . 
coco — 

I t was shown i n an argument i n section 3.1 that the E ^ - d e f i n a b i l i t y 

of < co, < > dunkls*. makes countable compactness f a i l . So (b) implies 

wo (!'*) < co. As sume now that (a) holds and suppose < coi < > i s Z,-definable 

by an L*-sentence 9 containing the unary U and binary <. Let ip be an 

L*-sentence which says that f i s an i n j e c t i v e function with range contained 

In U. C l e a r l y the conjunction of 9 and UJ have only countable models and 

t h i s contradicts (a) . Hence < co, < > i s not Y.\-definable i n L*. 
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CHAPTER FOUR 

HANF NUMBERS AND WELL-ORDERING NUMBERS-

In t h i s chapter we continue our i n v e s t i g a t i o n of general l o g i c s . 

We w i l l examine the analogues i n the general s e t t i n g of the f a m i l i a r 

compactness and Lowenheim-Skolem theorems of the f i r s t - o r d e r predicate 

calculus. 

We assume that a l o g i c L* on a c o l l e c t i o n C of languages i s as 

defined i n Chapter One; hence a l o g i c s a t i s f i e s the four properties and 

three assumptions given there. We w i l l , however, not require that a l o g i c 

s a t i s f y Assumption Four s t i p u l a t e d at the beginning of Chapter Three. 

That i s , we drop the requirement that an L*-sentence 9 must contain only 

f i n i t e l y many symbols. 

4.1 D e f i n i t i o n s and Preliminaries 

The f i r s t d e f i n i t i o n of t h i s section gives a generalization 

of the Upward Lowenheim-Skolem property. 

D e f i n i t i o n 4.1.1 : The Hanf number of a l o g i c , w r itten h(L*), i s the 

le a s t c a r d i n a l a such that i f an L*-sentence 9 has a model of c a r d i n a l i t y 

_> a then i t has a r b i t r a r i l y large models. More generally, h.(L*) i s the 

le a s t a such that i f a set E of L*-sentences with c a r d i n a l i t y ( E ) j< 'X has 

a model of c a r d i n a l i t y _> a then E l has a r b i t r a r i l y large models. 

Note that i n general the Hanf number of a l o g i c need not ex i s t 

( a l l a t e r example shows this) -*. C l e a r l y h, (JL ) = co for a l l cardinals A: 
A coco • " 
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t h i s i s the content of the Upward Lowenheim-Skolem theorem for L 
toto 

R e c a l l the d e f i n i t i o n of wo(L*) given i n 3.1.11. wo(L*), i f 

i t e x i s t s , i s the l e a s t o r d i n a l t, which i s an upper bound for any cl a s s 

A of ordinals zj-definable i n L*. wo(L*) i s also c a l l e d the well-ordering 

number of the l o g i c L*. The next d e f i n i t i o n provides a gene r a l i z a t i o n 

of the well-ordering number to sets of sentences. 

D e f i n i t i o n 4.1.2 : Let X be a c a r d i n a l . Suppose t, i s an ordinal.cwith 

the following property: 

If Z i i s any set of <_ X L -sentences containing the binary r e l a t i o n 

symbol £ and M i s a model i n which <^ well-orders i t s f i e l d i n order-

type >̂ £, then Z has a model W i n which <^ i s not well-ordered. 

Then wo((L*), i f i t e x i s t s , i s the l e a s t o r d i n a l ? with t h i s property. 
A 

In the case X = 1 t h i s d e f i n i t i o n i s equivalent to our o r i g i n a l 

d e f i n i t i o n , i . e . wo^(L ) = wo(L*). In t h i s chapter we w i l l f i n d i t convenient 

to work with t h i s new d e f i n i t i o n of the well-ordering number of a l o g i c . 

In Chapter Three the compactness property of L was used to 

show that wo(L^) = co. Iii f a c t , the well-orderingnnumberoofaallggic i s 

c l o s e l y connected with compactness properties. Some evidence for t h i s 

i s provided by the next theorem.. 

Theorem 4.1.3 : Let L* be a l o g i c on a c o l l e c t i o n C of languages and 

l e t L be a countable language i n C. Then the following are equivalent: 

(i ) (Countable Compactness) If each f i n i t e subset of a countable 

set E of L -sentences has a model, then Z has a model. 

( i i ) (wo((L*) _< to) Assume L contains the binary symbol ^ and l e t 
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ft X be a countable set of L -sentences- Suppose that f o r each p o s i t i v e 

integer n, Z has a model M such that <^ well-orders i t s f i e l d i n 
W 

order-type >_ n. Then Z has a model W such that < i s not a w e l l -

ordering. 

ffirodf; ( (i ) implies ( i i ) ): Consider the set X(J { c n + 1 < c n : n e co }. 
By compactness and the assumptions i n ( i i ) t h i s set has a model M. The 

M M 

give an i n f i n i t e descending chain i n M so < i s not a well-ordering. 

( ( i i ) implies (i) ): Let A 0 , 4l5... be countably many L*-sentences and 

suppose that for a l l n, {<f>0, • • • »* } has a model. Let U and < be new unary and binary r e l a t i o n symbols re s p e c t i v e l y . Let Z be the set of sentences 

of L(U,<)* consisting of the following: 

"U i s f closed" f o r each function symbol f i n L 

" I f the f i e l d of < has more than n elements then A ^ " " for each p o s i t i v e 
n 

integer n . 

Far each n, i f M i s a model of { A . , . . . , * we can construct a model M of 
v n—1 n 

Z. The universe of M w i l l be MU {0,1,... ,n-l}'. The f i e l d of < i n M 
n n 

w i l l be {0,1,...,n-l} with the natural well-ordering. By ( i i ) there i s a 

model W of Z i n which <̂ . i s not well-ordered. Thus the f i e l d of <^ i s 

i n f i n i t e and so W i s a model of A ^ for a l l n. Taking the U-reduct of 
n 

W we get a model of { d ) 0 , A , . . . } . 

Our aim l a t e r r i n t h i s chapter w i l l be to examine what r e l a t i o n s h i p 

e x i s t s between the Hanf and well-ordering numbers of a l o g i c L . The 

Upward Lowenheim-Skolem theorem for L ^ i s u s a l l y proved using compactness. 

We w i l l discover that the s i z e of the Hanf number of many general l o g i c s 

i s determined by t h e i r well-ordering numbers. Indeed, our r e s u l t s may be 



34 

viewed as a welcome extension of f i r s t - o r d e r model theory i f the following 

two 'equations' are accepted: 

Hanf number = generalization of Upward Lowenheim-Skolem property . 

well-ordering number = general i z a t i o n of compactness property. 

We w i l l focus our attention on the l o g i c s L + and L(Q ) 
KTOJ a 

introduced i n Examples 1.2.8,1.2.6. (If K i s any ca r d i n a l then K + denotes 

the next l a r g e s t c a r d i n a l , eg. co+ = tOj)) A small digression i s necessary 

to provide f o r future reference c e r t a i n r e s u l t s about these l o g i c s . 

The next two theorems are Downward Lowenheim-Skolem r e s u l t s 

f o r the l o g i c s L + and L(Q proofs of the theorems may be found i n < w a 
[ l l ] and [4 ] . 

Theorem 4.1.4 : (Downward Lowenheim-Skolem Theorem for L + ) Assume 
KMO 

that M i s a model of the L + -sentence d>. Let M„ d M and suppose 

|MQ| + K < p < [MI. Then there i s a structure W such that 

WCM, NJ=d>, M Q C N and |N| = y. 

Theorem 4.1.5 : (Downward Lowenheim-Skolem Theorem for L(Q )) Let K = to . 
" a a 

Assume M i s a model of the set Z of 1(0 )-sentences where III < K. Let 
a 11 — 

MQ M and suppose |MQ| +• K .<_ u <_ |M| . Then there i s a structure W such that 

WCM, W.J=Z, M Q ^ N and |N| = y. 

We now show that well-orderings of the form < t,, < > are definable 

i n i + f o r any o r d i n a l t, < K +. Suppose L i s a language containing only 

the binary r e l a t i o n symbol < and the constant symbol c. For each t, < K + 

we define sentences d> (c) and il) of L ± such that : 
t, t, K'IO -
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(i) For a l l L-structures M and a l l a e M 

(M,a) |= • (c) i f f < {b:b e M, b < M a}, < M > 

( i i ) For a l l L-structures M, M(= ip^ i f f H'M - < C, < >• 

The d e f i n i t i o n of <j>̂ (c) proceeds by recursion. Suppose ^ ( c ) has been 

defined f o r a l l ri < ?• Then <l)^(c) i s the sentence 

l ^ A ^ y X y < c A^Cy))] A [Vy(y <xe V ^ y ) ) ] 

The sentences u) are then defined i n terms of the <f> ( c ) : 
C n 

A straightforward induction argument shows that ( i ) and ( i i ) above hold. 

The sentences t e l l us immediately that WO(L,K-)_^) >̂  K +. They 

also show that the Hanf number and well-ordering numbers need not e x i s t 

f o r a given general l o g i c . More s p e c i f i c a l l y , since UJ isaan -sentence 

f o r a l l ordinals t i t i s c l e a r thatth(£ ), wd(L ) are both undefined. 
. °°U) °°U) 

We close out t h i s section with some observations which w i l l be 

us e f u l l a t e r . 

( i ) There i s a sentence cj>0 of 1̂ +̂  which only has models of c a r d i n a l i t y 

K. 

( i i ) I f K = a)^ then there i s a sentence ^ of ^ ^ a ^ having only models 

of c a r d i n a l i t y K. 

To v e r i f y ( i ) take <j> to be the sentence ip defined above. For ( i i ) take 
U K 

<J>0 to be the conjunction of the following £(Q^)-sentences: 

"<< i s a t o t a l ordering " 

Q x(x = x) 
a-

Vx^Q^y(y < x) 
These sentences also serve to show that K ( L + ) > K +, h(l(Q ) > K +. 

K a) — a — 
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4.2 Existence Theorems 

The main r e s u l t of t h i s section employs an argument of Hanf 

( [ lo]) to show that the Hanf number of a large c l a s s of l o g i c s e x i s t s , 

ft 
Assume L i s a l o g i c on a c o l l e c t i o n C of languages. Let L 

ft 

be a language i n C and suppose that L , the cla s s of sentences of L, i s 

a set. For each Z £E L* with |z| <_ X (X accafdinal) define K by: 

0 i f Z has a r b i t r a r i l y large models 
KZ = 

sup{ |M| : M {= Z } otherwise. 

Let K = sup{ <t : Z£E L , |Z| <_ X }T Because L i s a set, an a p p l i c a t i o n 

of the set theor e t i c axiom of replacement shows that i s a c a r d i n a l . 

The A-Hanf number of the l o g i c L*, i f i t e x i s t s , w i l l equal 

sup{ : L a language i n C }. A 

We now prove that f o r many l o g i c s t h i s supremum does i n f a c t e x i s t . 

ft 

Theorem 4.2.1 (Hanf) : Assume that a l o g i c L on a c o l l e c t i o n C of languages 

s a t i s f i e s the following properties: 
( i ) The number of symbols occuring inaany t*-sentence i s bounded. 

i . e . , there i s a c a r d i n a l u such that f o r each L*-sentence d> IL^I < p. 
9 — 

( i i ) L i s a set for a i l h L i n C. 

Then h((L*) e x i s t s f o r a a l l X. A 

Proof: We construct a language K N such that K\ < K^8 for each L i n C. 
U A : A 

(We are assuming the c a r d i n a l X i s f i x e d ) . I n t u i t i v e l y KQ w i l l contain 

within i t a copy of each of the languages L. More p r e c i s e l y , f o r each 

p o s i t i v e integer n the set contains y X n-ary predicate symbols and 
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y X n-ary function symbols. Assume now L i s any language i n C. I f E 

i s a set of _< X L -sentences we show that K _< K 0 . Let a be a 0-morphism 

from L to K Q such that a : V I ' V. Define E a = { a) a : a) e S }. If 

M i s any model of I i t i s easy to construct from M a K^-structure W such 

that: (a) W~a = M and (b) W1= z " . By (a) |M| = |N|. Because K* i s a 

set, K^O e x i s t s and |M| = IN| <_ icfo . Hence K < K^O and so i t follows 
A A L A 
L j. * i i Kn that K = sup{ KT' : E £ L , | E | < X } < K u . Since t h i s i s true for any 
A L A 

language L i n C, h (JL*) = sup{ : L i n C } e x i s t s . 
A A 

Example 4.2.2 : (Application to L . , L(Q )))Assume that the l o g i c s L + 

and L(Q ) are defined on a c o l l e c t i o n C of languages and assume that 
a 

L + , L„ are sets f o r each L i n C (L + ,L„ denote L f o r the l o g i c s KTU) Q K GO Q a a 
L + , L(Q ) r e s p e c t i v e l y ) . I f <k> and i> are sentences of L + aand 1(0 ) K co a KCO a 

resp e c t i v e l y i t i s c l e a r that 

cardinality({symbols occuring i n 9}) < K + 

cardinality({ fsymbols occuring i n < co. 

This these l o g i c s s a t i s f y the hypotheses of the above theorem and h (L(Q ) ) , 
A 06 

h,(L + ) e x i s t f o r a l l X. 
X K CO 

Remark: We noted e a r l i e r that the Hanf number of L doesn't e x i s t . 
°°co 

The above theorem might suggest that the reason f o r t h i s i s that an L 
<»C0 

can contain a r b i t r a r i l y many symbols. This, however, i s quite misleading. 

Let L*^ be the l o g i c obtained from L by adding the requirement that only 

f i n i t e l y many symbols occur i n each sentence of L . Then a l l of the 
°°co 

sentences \b. defined i n the l a s t section belong to L*„; consequently h(L* ) 
£ & °°to °°co 

i s undefined. The f a i l u r e of the existence of the Hanf number of .L and, 
°°a) 
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and L* i s a c t u a l l y an outcome of the following: given a language L the 

class L ^ of sentences of L i s not a set. 

No general method s i m i l a r to the above theorem i s a v a i l a b l e 

for determining whether wo(L*) exists-andaeachiclogic-must be investigated 

i n d i v i d u a l l y . Lopez-Escobar shows i n 13 that wo,(L ) ex i s t s f or a l l 
A aco 

cardinals A and a. The existence of wo((L(Q )) w i l l be a d i r e c t c o r o l l a r y 
A Ct 

of the reduction given i n Example 4.3.7 of the next section. We assume 

i n the future therefore that wo,(L + ) and wo,(L(Q )) both e x i s t . 
A KJTCOU) X a 

4.3 Relationship of Hanf and Well-ordering Numbers 

In Chapter Two the beth cardinals were defined i n terms of 

ca r d i n a l exponentiation. An extension of t h i s idea gives r i s e to the 

generalized beth c a r d i n a l s . For each c a r d i n a l K and o r d i n a l t, the general 

3K 
i i s defined by recursion as follows: 

l o = K' 3c " n.<?(2 n ) ' 

If K = 0 we get the usual beth c a r d i n a l s : 3̂  = 3J|" Generalized beth 

cardinals are of i n t e r e s t to us here because they provide a connecting: l i n k 

between the Hanf and wellSordering numbers of many l o g i c s . That i s , for 

many l o g i c s L* the following r e l a t i o n holds: h,(L*) = ~ l K . For 
A -IWO^(L ) 

example,ssinee wo (L ) = h., (L ) = to, we get the r e l a t i o n 
A COCO A COCO CO 

h.(L ) = co = ' J = 1 ., A coco ^co -"wo, (L ) 
X LCOCO 

The next theorem provides a p a r t i a l r e s u l t i n t h i s d i r e c t i o n f or more 
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general l o g i c s . 

Theorem 4.3.1 Let A and K be cardinals with 1 <_ A <_ K and K i n f i n i t e . 

Assume that the l o g i c L* s a t i s f i e s the following properties: 

( i ) wo AL*) e x i s t s . 
A 

( i i ) There i s an L*-sentence 9 Q that has only models of power K. 

( i i i ) Let E be any set of <_ X L*-sentences of some language L. I f 

the L-structure M {= E and M Q £ M then there i s an L-structure W such 

that: Nfr=E, NCM, M Q £ : N and | N | <_ |MQ(|! +KK. (This condition i s a 

Downward Lowenheim-Skolem property.) 
Then h (£?;) > JK . A — -*wo (L ) 

A 
3?;poof: An easy argument shows that wo (L*) i s a l i m i t o r d i n a l . Hence i t 

A 
i s s u f f i c i e n t to show that for each L, < wo (L*) there i s a set E of < X 

A 
many L*-sentences that has a model of power ^ but not a r b i t r a r i l y large . 

models. Since £ < wo (L*) there i s a language L containing the binary 
A 

ft 
symbol < and a set E of _< X L -sentences such that: 

(i ) M |= E for some L-structure M i n which <^ well-orders i t s f i e l d 

i n order-type £. 
( i i ) I f M F= £ then <^ well-orders i t s f i e l d i n order-type l e s s than wo (L 

A 

Let K be the language obtained from L by adjoining Uhand V (unary r e l a t i o n s ) , 

E (binary r e l a t i o n ) , and g (unary f u n c t i o n ) . The set E w i l l consist of the 

following K -sentences: 

v 
9 for 9 e E 

Vx(V(g(x))A " g(x) E field(<) ") 

VxVy(Eyx -> g(y) < g(x)) 

Vx(U(x) -> "g(x) i s the f i r s t element of <") 



40 

Vx Vy(^U(x) A MJ'(y) A Vz(Ezx Ezy) -> x = y) 

We now show two things: (a) Mt= E implies |MJ _< (/.*)" ^ p a r t i c u l a r , 
X 

E doesn't have a r b i t r a r i l y models, (b) E has a model of power 3^-

(a) I f Mt= E then M t= | V for a l l <f> e E. In the subset V M of M, < M w e l l -

orders i t s f i e l d i n order-type n. < wo (L*)-. We assume n i s a l i m i t o r d i n a l ; 

the proof of (a) i n the case where n i s not a l i m i t o r d i n a l i s e s s e n t i a l l y 

the same. Let X. = and for 0 < g < n l e t X n ==P( U nX ). (For any set A 
(J g a<g a 

P(A) denotes the power-set of A). Set X = - U x . C l e a r l y cardinality(X)i 
g<n g 

i s equal to J . To prove (a) we define an i n j e c t i v e map f from M to X. 
M < 1 < " I The d e f i n i t i o n of f foraa e M 

1 —  MT] — -»wo (L ) A 

proceeds by induction on g^(a). I f g^(a) = 0 ( i . e . a e l / S f(a) = a. Assume 
M M M M f has been defined for a l l b such that g (b) < g < n. If g (a) = g then 

M f(a) = (f(b) : E ba} e X . The l a s t sentence included i n E ensures that f g 
i s i n j e c t i v e and t h i s proves (a). 

i I K 

(b) We construct a model M of E with |M| = ] . Let M̂  be a model of E i n 
Mi 

which < i well-orders i t s f i e l d i n order-type £. As i n (a) we suppose t, i s 

a l i m i t o r d i n a l ; the other case i s treated s i m i l a r l y . Using hypothesis ( i i i ) 

we may assume that |£| j£ | | <_ |£| + K. By hypothesis ( i i ) there i s a model 

M2 of <j>0 with |M§J,±= KK- Let V M = Mx and U M = M 2 - Define X Q = U^ and i f 
g < z define X„ = P(LJ„X ) . Set X = V x „ . We assume that Mi i s embedded g a<g a' g<£ g 1 

i n X so that MjS. X ( t h i s i s possible since | Mj_ |. _<_" | C | + < £ j x | ) . . The universe 

of M i s then M = X. If a e M l e t g be the l e a s t o r d i n a l such that a e X . 
g M M M Then define g (a) = g. Define E by E ab i f f g(a) < g(b). The structure 

M so constructed i s a model of E and |MI = This proves (b). 
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Remark: Let L* be a l o g i c f o r which h (L*) e x i s t s and assume L* i s bounded 
"N A 

(see D e f i n i t i o n 3.1.10). If L* s a t i s f i e s properties ( i i ) and ( i i i ) of Theorem 

4.3.1 then the above proof can e a s i l y be adapted to show that wo (L*) e x i s t s 
A 

f o r each A <_ K. 

Evxample 4.3.2: (Application to L + , L(Q ) where K = to ) The r e s u l t s at <Tto a • a 
the end of section 4.1 show that the l o g i c s L + and L(Q ) s a t i s f y the 

hypotheses of the above theorem. Hence for each A <_ K 

h. (L + ) > -|K
 + h (L(Q )) > n K

 r l f n ,N . A K»V W OA^ K+UP ~ Jwo <L(Qa')) 

As mentioned e a r l i e r , we wish to obtain r e s u l t s of the form 

h(L*) = " 1 K st*\' ^ o r l o g i c s s a t i s f y i n g the hypotheses of the above theorem wo \ L ) • 

we need only show i n e q u a l i t i e s of the form h(L*) < ~T The l o gxcs 
— WO\L ) 

introduced i n the next d e f i n i t i o n , fl-logics, are designed for t h i s purpose, 

fi-logics are an invention of the l o g i c i a n Flum and our treatment of them i s 

taken from [ 8 ^ . (Note: we have a l t e r e d Flum's notation; he c a l l s fi-logics 

M-logics)) E s s e n t i a l l y an fi-logic i s j u s t L with semantic r e s t r i c t i o n s 
' toco 

on the class of allowable structures. We w i l l see that L . and 1(0 ) can 
KVJO a 

be reduced i n some sense to these ft-logics; the r e s u l t s holding f or the l a t t e r 

can then be applied to the former. 

We assume throughout that a l l l o g i c s belong to some c o l l e c t i o n 

C of languages. 

Definition 4.3.3: Let L^ be a language and Q a class of L^-structures. Let 

U be a unary r e l a t i o n symbol not i n L^, Given any language L, an L-structure 

M i s said to an fi-model i f the following two conditions hold: 
(i ) L Q U (U> £ L. 
( i i ) Let a : L n -* L be the i d e n t i t y map except that a : V l » U. Then 
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M i s a - i n v e r t i b l e and M = W for some W i n fi. 

Condition ( i i ) says simply that the L^-reduct of / i s a f u l l L^-structure 

isomorphic to some structure i n fi, i . e . each fi-model contains within i t a 

r e l a t i v i z e d reduct which l i e s i n Q. The fi-logic L(ft) i s then defined as 

follows. I f L i s any language the set of sentences of L, written L^, i s 

given by: 

<f> i f L Q U { U } £ L L 

L i f L . U - { U } £ L 
coco 0 

For each L-structure M and L^-sentence <(>tthe r e l a t i o n fc=^ i s given by: 

M p= <j> i f f M i s an fi-model and M p= <ji . 
Ob 

Here fc= denotes the semantic entailment r e l a t i o n inubheafirst-order l o g i c 

L ( t h i s makes sense since any sentence of L„ i s f i r s t - o r d e r ) . 
coco Q, 

Observe that L(fi) i s not a l o g i c as defined i n Chapter One. For 

example, the r e l a t i v i z a t i o n property given i n Example 1.2.3 f a i l s . This, 

however, should cause no alarm: the ft-logics can be viewed as devices f o r 

e s t a b l i s h i n g r e s u l t s about more f a m i l i a r , genuine, l o g i c s . 

Lemma 4.3.4: Assume that a l l structures i n have the same i n f i n i t e c a r d i n a l i t y 

K . Then 

(a) V x U ( x ) has only fi-models of power K. 

(b) If E has an ft-model arid | E | _< K then E has an fi-model of power K. 

(c) wo^(L(ft)) e x i s t s f o r a a l l cardinals. A. 

Proof: (a) i f M i s an fi-model then = K. Thus M V x U ( x ) implies 
————— Juj 

that |M| = 1̂ 1 —Km •'• 

(b) Let M be an Q-model of E . Using the Downward Lowenheim-Skolem theorem 
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for L , take an elementary substructure W of M such that U ^ £ N and 
0)0) 

| N | = K. W w i l l be an fi-model of E oflpower K. 

(c) By choosing the ca r d i n a l y large enough and taking a s u f f i c i e n t l y r i c h 

language i t i s possible to f i n d an L -sentence 9 such that 
U0) 

,(U) M F = L 9 i f f (JIT ' ) f ̂  - W for some W e Q 

Now suppose wo (L ( f t ) ) doesn't e x i s t . For each o r d i n a l c there w i l l be some 
A 

set E of < X L(Q)-sentences such that E has only ^-models M with <^ w e l l -
M 

ordered and one with < i n order-type C. Form the L -sentence : 
^ UO) 

6 ' = ( A z ) A <>. 
Then the sentences 6 imply that wo(L ) doesn't e x i s t and t h i s i s a 

C F . yo/ 
contra d i c t i o n . Hence wo^(L(fi)) e x i s t s . 

A 

For the remainder of t h i s chapter i t i s assumed that each structure 

i n 0. has the same i n f i n i t e c a r d i n a l i t y K. 

Lemma 4.3.5: For each X < K, K, (L(f i )) >-~] , i , ^ w - A — —|wo.(,L(.fi;j 
A 

Proof: We modify the proof of Theorem 4.3.1 making changes necessitated by 

the f a i l u r e of the r e l a t i v i z a t i o n property f o r L(fi). Let the set E be as 

i n that proof and l e t V, E and g be new symbols. The set E consists of 

the following KL -sentences of L(V,E,g): 
0)0) 

Vx(U(x) + V(x)) 
v 

For each 9 e E the f i r s t - o r d e r r e l a t i v i z a t i o n of 9 to V, <j> 

Vx(V(g(x))A"g(x) esfield.(<:):!!). el<r -. c f 

Vx(U(x) -»• "g(x) i s t h e l f irst?elemento<5f <") 

VxVy(Eyx -> g(y); < g(x)) 
VxVy(MJ(x)A ^U(y) A Vz(Ezx <-+ Ezy) -* x== y) 
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Applying the previous lemma, the res t of the proof proceeds i n a s i m i l a r 

fashion to the proof of 4.3.1. 

The next very important theorem provides the raison d'etre f o r 

fi-logics. 

Theorem 4.3.6: For each X < K h, (L(fi)) = ~1 /i^w • ~ X -"wo, (.HSJ)) 
A 

Proof: This theorem i s quite deep and the proof i s rather complicated. 

Since we are mainly interested i n app l i c a t i o n s of t h i s r e s u l t we give a 

very b r i e f sketch proof. D e t a i l s may be found i n [8j 

;By Lemma 4.3.5 i t i s only necessary to show that h (L(ft)) < 
A 

1~]K // /̂ w • So l e t E be a set of < X < K sentences with an fi-model M of 

power _> ^ ] w o (L(fi))' t' i e ̂ e a ^ s t o construct a r b i t r a r i l y large models of 

Z. . From the fi-model M a set-th e o r e t i c p a r t i t i o n r e s u l t of Erdos and Rado 

and the well-ordering number of i-(ft) are used to construct an fi-model W of 

£ containing an i n f i n i t e set X of elements i n d i s c e r n i b l e with respect to U. 

This means that any two f i n i t e sequences in-Xssa'tisfysthe same formulas with 

parameters i n U. An fi-model S of E of a r b i t r a r i l y large c a r d i n a l i t y i s then 

formed by throwing into the universe of I y > |N| new elements which behave 

as the elements i n X. 
The next two examples are applications of Theorem 4.3.6 to the 

l o g i c s L(Q ) and L + . In each case a reduction i s defined which allows 
a- KTCU 

us to transfer the r e s u l t s f o r ̂ - l o g i c s to the above l o g i c s . 

Example 4.3.7: (Application to L(Q ) ) . Assume that K = to.. Let L„ = {<} 
a a 0 

and l e t 0, consist of a l l the models of the sentence if) defined at the end of 
K 
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4.1. Thus the structure M = < M, < > e Q, i f f 

(i) |M| = K. 

( i i ) < i s a l i n e a r ordering of M. 

( i i i ) I f a e M then the set {b : b < a} of predecessors of a has 

c a r d i n a l i t y < K. 

F i x the unary r e l a t i o n symbol U. With LQ, Q. and U thus s p e c i f i e d we get 

an fi-logic L(Q). In the following discussion i t i s assumed that L QU { U } £: L 

for any language L under consideration. This assumption can always be 

j u s t i f i e d by expanding L ( i f necessary) to include L Q L H U } . 

Suppose L i s a language and 9 i s a sentence of L . Form the 
a 

language K by adjoining the r e l a t i o n symbols V (unary) and F (ternary) so 

that K = L(V,F). Let a : L K be the 0-morphism which i s the i d e n t i t y 

except that V I—*V. We f i n d a sentence i of L such that: 
coco 

(*) Models of 9 = {M~ a : M *= $} 

That i s , an L-structure W t r = =f f() x 9 i f f W i s of the form ( M ^ ) p f o r 

some K-structure Miw'ith' M ( = 99. Result (*) thus gives the desired reduction 

of the i(Q a)-sentence 9 to the L(fi)-sentence $• 
F i r s t we o u t l i n e the idea behind t h i s reduction. We wish to replace 

a sentence of the form Q xd>(x) by the f i r s t - o r d e r sentence: 
a 

"There i s a 1-1 map from a subset of {x : V(x) and <fi(x) holds} 

onto the set U." 

'v'Q̂ tKx) i s replaced by the f i r s t - o r d e r sentence: 

"There i s a 1-1 map from {x : V(x) and cf>(x) holds} onto a proper 

i n i t i a l segment of U." 

The 1-1 maps referred to belong i n a c o l l e c t i o n which i s indexed using the 

ternary r e l a t i o n F. That i s , f o r each x an i n j e c t i v e map g^ from a subset 
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of V to U is given such that: g (y) = z i f f <x, y, z> e F. 

The precise details are now provided. To each sentence UJ of ̂-(Qa) 

is associated by recursion a sentence \b* of L as follows: 
coco 

(i) = ifj i f 41 is atomic. 

( i i ) CMJO* = 'V'Oli*), (^I v * 2 ) * = * * V*2 • 
( i i i ) (3xij,(x))* = Bx(V(x)A^*). 

(iv) (Qa?n|>(x))* = 3yVz3x(V(x)A A^yxz). 

If the sentence is first-order then ( i ) - ( i i i ) ensure that \p* is just the 

relativization of i> to V. (iv) says that there is a map indexed by F from 

a subset of the set defined by ty* in V onto U. 

Given a sentence <f> of L we now define a f i n i t e set Z of f i r s t -
ex 

order sentences. Z consists of the following sentences: 

(i) 9 * 

( i i ) The sentence "F is an indexed collection of 1-1 maps from a subset 

of V into U" 

( i i i ) For each sub'formula of a) of the form Q^XIJJ(X) the universal closure of 

3y{ Vz 3 X [ ^ J * A V(x) A F(y,x,z)] V 3wVx 3z[^* A V(x) -*• z < w A F(y,x,z)]} 

This sentence says that among the maps indexed by F there i s one that 

either (a) maps a subset of the set defined by ty* i n V onto U, or (b) 

taaps mapssthedsetndef'ined by ̂ * in V onto a proper i n i t i a l segment of U. 

(iv) Vx(U(x) V V(x)) 

Note that Z is f i n i t e . Let <f> be the conjunction of the sentences 

in Z . Then J i s a sentence of K . Fuhrken proves i n [9] that W <j> 

coco Q 
i f f ( W ^ ) f L ^"^(Q ) $ a n d hence establishes result (*) . 

Remark: The reduction result((*) confirms (among other things) the existence 
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of wo (L(Q )) v i a the existence of the well-ordering number of L(ft). A c t u a l l y 

we have more. 

Claim: For a l l X h,(L(ft)) = h, (1(Q )) and wo, (L($*•)) = wo, (L(Q ) ) . 
A A a A A a 

Since ft i s j u s t the set of a l l models of the L(Q )-sentence U; i t i s cl e a r 
a K 

that h, (L(ft)) < h,(L(Q )) and wo,(L(ft)) < wo,(L(Q ) ) . The above described 
A A O t A A O C 

reduction applied to any set of <_ X l(Q a)-sentences shows the reverse 

i n e q u a l i t i e s . 

We are f i n a l l y i n a p o s i t i o n to apply Theorem 4.3.6. Using t h i s 

theorem f o r each A <_ K from the above claim we get: 

\<L<V - \^l»~XoAum - XoAua » • 
A A a 

In p a r t i c u l a r , taking X = 1, i f the i(Q a)-sentence 9 has a model of c a r d i n a l i t y 
K 

— ^woClCQ )) t h e n * n a s a r b i t r a r i l y large models. 

Example 4.3.8: (Application to L^+^). Let L Q = { c : t, < K } and l e t 

ft = { (K, (?) ) } . ft consists of one structure with universe K (where 

K i s conceived as the set of a l l ordinals l e s s than K). I f 9 . i s the 1 + -
0 K CO 

sentence • A ̂ ( c = c ) A V x V ( x = c ) then M t = , 9 „ i f f 
K 00 

W - (K, (?) ) f o r any L - s t r u c t u r e W. With ft and L n s p e c i f i e d we get an 

ft-logic L(ft). As i n the previous example i t i s assumed that for any language 

L under consideration, L Q U { U } S E S L . 

Suppose now that L i s a language and 9 i s a sentence of L | <+ t J« We 

f i n d a languge K containing the unary r e l a t i o n symbol V and with L Q \ J { U } S K 

which has the following property: 

(*) Let a : L ->• K be the 0-morphism which i s the i d e n t i t y except 

that V I—»V. Then there i s a set of < K sentences of K 
— coco 
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such t h a t : Models of <j> = {M 0 1: M i s an ft-model and M F 2 2^ Z } . 

(*) says t h a t an L - s t r u c t u r e W r^, 9 i f f W i s o f the form ( M ^ ) f 

f o r some M w i t h M ?. R e s u l t (*) thus g i v e s t h e d e s i r e d r e d u c t i o n o f 

the L + - s e n t e n c e A to the s e t Z of L ( f t ) - s e n t e n c e s . 
KT0) — 

The i d e a b e h i n d the r e d u c t i o n i s to r e p l a c e a d i s j u n c t i o n o f _< 

£sfQ.mu<la§aby. an e x i s t e n t i a l q u a n t i f i c a t i o n o v e r t h e s e t U. F i r s t , to each 

s e n t e n c e it o f L . we a s s o c i a t e by r e c u r s i o n an L - s e n t e n c e i f > * : 
K+0) 0)0) 

( i ) i f ) * = if) i f if) i s atom i c . 

( i i ) ( M O * = (ipj_V V * = * i * V * 2* • 

( i i i ) ( 3 x < / » * = lx (v(x) A **). 
The purpose o f ( i ) - ( i i i ) i s t o r e l a t i v i z e if) to the s e t V. Suppose now t h a t 

UJ(X) i s a f o r m u l a of jtheafdr-itfn V&if,i . ( x ^ e w i t h l l b f r e e varia^'le7.- i l(The g e n e r a l i z a t i o n t o 

n f r e e v a r i a b l e s i s s t r a i g h t f o r w a r d ; we c o n s i d e r f o r m u l a s w i t h f i n i t e l y many 

f r e e v a r i a b l e s because we w i l l o n l y be d e a l i n g w i t h subformulas o f sentences 

o f L
K + W - ) L e t be a new b i n a r y r e l a t i o n symbol. Then ( i f)(x))* i s : 

( i v ) 3y(U(y) A P ^ y x ) . 

F o r if)-as i n ( i v ) l e t be the s e t = (Vx(P^c^x -w- i f ) * ( x ) ) : <;<<}. 

Gi v e n a sen t e n c e A o f L + l e t K be the language c o n s i s t i n g o f 
K V O ) 

(a) L l H v } and (b) a l l t h e p r e d i c a t e s P^ f o r any su b f o r m u l a if) o f <j> which i s 

an i n f i n i t e d i s j u n c t i o n . Then £ i s the f o l l o w i n g s e t o f se n t e n c e s of K : 
0)0) 

{ A * } U Lpl U{ Vx(V(x) V U ( x ) ) } where t h e m i d d l e u n i o n i s t a k e n o v e r a l l 
subformulas if) of A which a r e i n f i n i t e d i s j u n c t i o n s . C l e a r l y | Z | <_ K and 

an i n d u c t i o n argument shows t h a t an ft-model M |= Z i f f (M^) f j^j A . 
06 I tl L i 

K+0) 

T h i s e s t a b l i s h e s r e s u l t (ft). 

R e s u l t (*) and the f a c t t h a t ft i s t h e s e t o f models o f the L , -
KT0) 
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sentence <|>0 prove the following two e q u a l i t i e s : 

h ( W = h

K

(L<^>> W ° ( W = W O K d ( f i ) ) . 

Applying Theorem 4.3.6 we then get: 

h(L . ) = h (L(n» = n K = 1 K
 „ v K+CO K -"wo (L(ft)) -Jwo(L , ) K KVOJ 

noted e a r l i e r that wo 
We noted e a r l i e r that wo(L + ) > K +. Thus K + wo(L _i_ ) = wo(L + ). A small 

argument shows from t h i s : "~| K,, N = i ,, . Hence we obtain the 
-•wo(L + ) -^wo(L . ) 

f i n a l r e s u l t h(L • ) = _ J which i s an Upward Lowenheim-Skolem r e s u l t K+GJ wo(L . N 

f o r the l o g i c L + 
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