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ABSTRACT

The Krein-Milman Theorem says that each compact, convex subset of
a locally convex space is the closed convex hull of its extreme points.
In the case of a separable Banach Space several collections of extreme
points are known to be dense in the whole set of extreme paints (e.g.
the set of exposed points [5; theorem 4]; the set of denting points [8;
remarks following definition44]). Consequently these sets can be used
instead of the whole set of extreme points to generate compact convex
sets. In this thesis we examine such a dense subset of extreme points
in the context of less structured separable locally convex spaces. We
also examine 'some applications of the resulting extended Kréin-Milman

Theoremn.
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INTRODUCTION

This paper might well have been called the chipping Lemma and its
applications rather than its present title, since the chipping lemma is
the main tool in extending the Krein-Milman theorem. Breifly, given a
separable, Hausdorff, locally convex space and a continuous pseudonorm
p defined on it, the chipping lemma states that for any compact, convex
set, a small (of p-diameter less than a given e > 0) but non-empty set
can be '"chipped away" leaving intact‘the properties of compactness and
convecity of the remainder.-

In chap&er 1. of ghis paper this result of I.Namioka and E. Asplund
[2] is motivated and slightly gemeralized. The proof in [2] of the
Ryll-Nardzewski fixed point. theorem using the chipping lemma is repro-
duced, and some applications of it are examined to motivaten this line
of research historically. Following Namioka in [1], the lemma is then
applied to extend the Krein-Milman theorem. The method of proof here
is the same as Namioka's, however the notation has.been somewhat simpli-
fied, and the procedures motivated.

We begin chapter 2 of applications by examining épecific locally
convex hausdorff spaces to which the extended Krein-Milman théérem can
be non-trivially applied, and as in [1l; theorem 2.3] the resulf is re-
formulated in greater generality. Next, diverse applications are ex-
amined. " For example the Krein-Milman-theorem is extended in a different
direction [1; theorem 3.6] —— in a Frechet space where second duai is
quase-separable relative to the strong topology, the closed, bounded
(not necessarily compact), convex subsets are the closed convex hull of
their extreme points. This and other applications from [1; section 3]

are simplified by the addition of numerous details to the proofs. We
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conclude with a slight generalization of the Ryll-Nardzeurki fixed point
theorem [1l; theorem 3.7].

Chapter 0, the introduction, provides ample background theory

through which this thesis should be accessible to any student having a

first functional analysis course.



Section O

Preliminary Notations Definitions and Theorems

Notations:

Number Spaces

@%” denotes the set of natural numbers.

R denotes the set 6f feal numbers.

C denotes the set of complex numbers.

¢t denotes the Cartesian product of C with itself n-times.

inf(X) is the infemum of a set X of real numbers.
g ’ '
(¢,;8) , [%,B] denotes the open, closed intervals from o to B ,

respectively.

ot TSéttTheory

AXB is the Cartesian product of the sets A and B .

i Pi is Cartesian product of the sets P; ielI .
ieT

A —~ B is the set of elements which are in the set A but not in
the set B .

comp(A) 1is the complement of the set A .

TopylTopology

Cl1(K) denotes the closure of the set K .
int(K) denotes the interior of the set K .

G6 —-sets are sets formed by taking countable intersections of open

sets.



Linear Algebra

dim (X) denotes the dimension of vector space X .

Cs(K)~ -idendtes the set of convex combinations of a subset K of
some vector space.

rational convex combinations refers to convex combinations with

rational coefficients.

Functional Analysis

For (X,J) a topological ﬁector space the scalar field of X will
be presumed to be R unless otherwise stated. By a ﬁéll known result
[6; remarks preceding theorem 3.2], the theory herein presented applies
to cemplex topological vector spaces as well.

A subset XK of X will be described as J-closed (open etc.) to
indicatedthét K is closea (open etc.) in (X,J) . Similarly a con-
tinuous -(lower semicontinuous, etc.) function on (X,J) will be des-

cribed as J-continuous (lower J-semicontinuous, etc.) on X .

Other Topologies on X

For (X,J) a locally convex topological vector space (X,J)* (or
X* when J is understood) will denote. the continuous dual of x,J) .
The weak topology on (X,J) wwill be denoted by (X,J,) .

 Topologies on . Xk
Topologies on X*

(X,)* with the weak-star topology will be denoted (X*,w*) .
(X,JJ)* with the strong topology is denoted as (X#,s) and is the top-

ology of uniform convergence on bounded sets in (X,J) . That is: a
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local base for (X*,s) is given by {B® : B is bounded in X } where

BO = {f € X¥ : f(x) <1 for every x < B } is the polar of B .

N

Other Derived Topologies

For (X,J) a topological vector space and K C X , (K,J) denotes

K with the induced topology.

DEFINITIONS

Pseudo Nomms

0.1 Definition: A pseudo—nbrm (called semi norms by some authors) p

on a vector space X is a map, p: X — [0,©) such that

[p(x +y) £ p(x) + p(y)| for each x,y € X
and}p(ax) = |a] p(x) )i andcae R .

|

. J . .
0.2 Definition: 'Let (X,J) be a topological vector space and p a

P——

M

pseudo-norm on "X . P is lower J-semicontinuous if and only if
{x: p(x) sﬁi}:.is‘ J—clbsed.

0.3 Remark: A pseudoznorms. p on_éfvector space X generates a top-
ology on X in the same manner as does a norm. That is, a local base
for the topology is given by ‘{Bele>6 where Bé £ {x: p(x) <el} .

Of course this topoldgy is not in gemeral hauédorff.

0.4 Notation:. The topology derived from pseudo-norm p will be denoted

I .

0.5 Definitioen: Let f{pa} be a set of pseudo-nerms on a locally con-

a€l

vex topological vector space (X,J) . i{pa}ael determines J means

am f
198 T _(‘.',}



that a net {xg} will J-converge to some x in X precisely when

lim pu(xs - x)=0 for every o€ I .
& ' :

0.6 Definitdion: Let A be aléonvex, balanced, absorbing set in a vec-

'~ tor space X . The Minkowsky functional onfﬁA ~(denoted uA) is de-
fined by UA(X) = inf{t > O: t—lxéA} . {ﬁg‘[6: theorem 1.35] it is

easily seen that ¥, is a pseudo-norm on X .

A

0.7 Definitdon: A pseudo metric Cd on a vector space X iis a map

dl X — [0,%) - such that:,

sd(x,x) = 0
ddbxyy)- = id{y,x)

andndcagx,y) <@ilk,z) + d(z,y) for each x,y,z € X .
€d(x,y) = 0 Where xx%%yy mmaAyoOoCcur .

dl generates a topology on X in the usual way.

Properties of Sets

0.8 Definition: A subset of a topological space is said to be nowhere

dense if its closure has empty interior.

0.9 Definition: A subset of a topological space S is of first cate-

gory in S if and only if it is a countable union of nowhere dense sets.

0.10 Definition: . A subset of a topological space S is said to be of

second catogory in S provided that it is not of first category in S .

PRELIMINARY THEOREMS

Classical Results

The first four well known theorems are stated (without proof) due



to their importance in the results of this thesis.

0.11

Theorem: (Krein-Milman) [6; theorem 3.21]

Suppose X 1is a locally convex topological vector space. If

K< X is compact and convex, then K is the closed convex hull of its

extreme points.

0.12

Theorem: [13; V.8.3 Lemma 5 Page 440]

space

Let Q be a compact set in a locally convex linear topological

X whose closed convex hull is compact. Then the only extreme

points of CZ[C5(Q)] are points of Q .

0.13

Theorem: (Baire) [6; theorem 2.2]

(a)°
(b)
then

sets

0.14

If S 1is either

a complete metric space, or-

a locally compact Hausdorff space,

the interseétion of eveyy countable collection of dense open sub-

of S is dense in S .

Theorem: (Markov-~Kakutani).) [13: V.10.5 Page 456 theorem 6]

Let
into.

each

0.15

Let K be a compact convex subset of a Linear topological space X .
F be a commuting family of continuous linear mappings which map K
itself. Thenkthere exists a point p & K such that Tp = p for

TeF .

CATEGORY THEOREMS

Definition: Any space which satisfies the conclusion of Baire's

Theorem is called a Baire Space.



0.16 Remark: Every Baire space S is of second category in itself.
Indeed, the assumption that. S =£§1Ci where each Ci is nowhere dense
means that s =i§lCZ(Ci) where int[CK(Ci)] =@ for every i -

Clearly comp(CK(Ci)) is open dense in S and thus iE comp (CK(Ci))

1
is dense in S , hence non~empty. Consequently i§1 CK(Ci) # S and’
the assumption is contradicted.

To deal with lower J-semicontinuous pseudo-norms on a topological

vector space: (X,J) , and the subsequent J-closed subsets we restate

part of Baire's theorem for closed sets.

0.17 Corollary: [1l; lemma 1.1]

Let X be a compact Hausdorff space. Let '{Cﬂ}icm be a countable

i
collection of closed subsets of X such that X =i§ C. . Then iglin;(ci)

17i

1§ dende damsx-ie X .

Proof: Let U # @ be an arbitrery open set in X . Then (U,J)

is a locally compact Hausdorff space and U =i§ un Ci where each Uf'\Ci

1
is closed in (U,J) . But (U,J) is a Baire space and hence second

category in itself (remark 0.15) thus U N Ci has non-empty interior

for some Ci' and since U  was arbitrarily chosen, iglci is dense in
&, .

EVALUATION MAPS

0.18 Definition: Let E be a topological vector .space, and E* its

dual. For every x € X define Fx:. E*¥* — IR by Fx(f) = f(x) . Then
F € (E*,s)* and the map I: E —(E*,s)* defined by I(x) = F_ called

the evaluation map on E is one-to-one.
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The following theorem and its proof are adoptéd from [10; 33.2 page

3461 and [10; 36.5 page 373].

0.19 Theorem: For E a Frechet Space, the evaluation map

T: . (E*»s[(E%]s)%ssdonidncontinuous.

Proof: Let V be a O-neighbourhood in f(E*,s)*,s] . Since {B°: B
is strongly bounded in E*} forms a local base for [(E*,s)*,s] we can
find B°< V , B strongly open in E* .

I_l(Bo)

I

{x: |£(x)| <1 for every f € B} is absorbing in E .
Indeed if y € E then by the continuity of scalar multiplication: {y}
is bounded in E and 'so {y}° 4is a strong O-neighbourhood in E* .

Slince B is strongly bounded in E* there exists m > 0 such that

1, o0

B e m{y}° = m{f: if(y)[ < 1} = {f: |f(y)|'§_m} . Thus ye€ mI ~(B) .

y being arbitrarily chosen, we get that E =£jN mI—l(Bo) and
-1

ml A(Bo) is closed in E for every m . But E is Frechet, hence
a Baire Space, hence second category in itself, - (0.15 remark).

Thus mI—lﬂBo) - has non~empty interior for some m , and so
-1,.0 ' . . . -1, 0 .
I "(B') has non-empty interior. But O is internal to I (B') in
the algebraic sense (i.e. each line passing through 0 has some seg-
ment in I_l(Bo)) algnﬂrhénéééby;a well-known theorem O is interior

to I_l(Bo) (topologically). This proves that I is continuous.

0.20 Corollary: I: E — I(E) is a homeomorphism from the Frechet

space E  onto its image TI[E] in [(E*,s)*,s] .

w¥*~-compactness

As an easy consequence of the Banach-Alaogité theorem -



[6;»théofem 3.15 page 66] we state the following proposition.

0.21 Proposition: Let E be a Banach space. Let K £ E¥ be norm

bounded. Then K, = w* - CL(K) 1is w*-compact.

10
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Chapter 1

THE CHIPPING LEMMA AND THE KREIN-MILMAN

EXTENSION THEOREM

In this chapter, an extension of the Krein-Milman theorem is. obtained
by means of the Chipping Lemma (I. Namioka [1]). A proof of the Ryil—~
Nardzewski fixed point theorem (I. Namioka and E. Asplund [2]), to which
the chipping lemma was originally abplied, is presented, and various
applications of the Ryll-Nardzewski fixed,péiqtntheoreﬁ are sketched to

3 v . - 3 P eks"
provide some motivation for this area of resedrch.

1.1 Definition:  An affine map T from a convex set K into itself is
a map which satisfies T(ax +88y) = aTx + BTy for every x,y € K and
every o,B >0, a+B8 =1 .

A subset Q of K is T-invariant if T(Q) & Q .

For S a collection of affine maps, Q is S-invariant if and only

if Q iis T-invariant for each T € S .

1.2 Definition: A collection S of affine maps from K into K is

a semigroup if it is closed with respect to composition of mappings. A

semigroup S of affine maps is finitely generated if all members of S

are compositions of a fixed finite subcolledétion of S .

1.3 Definition: Let (E,J) be a locally convex topological vector space.
Let Q< E and let S be a semigroup-of affine maps such that Q is

S-invariant. S is J-noncontracting on Q if for each distinct pair

x,y€ Q , Q¢ J-ce({Tx~-Ty: TeS}H .

1.4 Proposition: Let Q ¢ (X,J) , and S a semigroup of affine maps
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from Q' into Qﬁ . »Then S is'J—honcontracting if and only if for
every distinct =x,y € Q there exists -a J-continuous pseudo-norm pl on
Q such that ‘

“inf {p(Tx - ' Ty)} > 0 .

TeS
Proof: S is J-noncontracting. Thus for every distinct x,y € Q there
exists a balanced, convex, absorbing O-neighbourhood V £ X such that
Tx - Ty ¢ V for every T€ 8 . The Minkowsky functional By is the
requiréd continuous pseudo-norm.

Conversely assume that for every distinct x,y € Q there is a

J-continuous pseudo-norm p suéhvthat § = inf{p(Tx - Ty)} > 0 . Let
V={x€Q p(x) <8} . Then V is a O-Eiighbourhéod in X, ;-and

Tx - Ty ¢ V for every T €S .
1.5 Theorem: (Ryll-Nardzewski) [I.Namioka, E. Asplund; 2]

Let (E; J) be a locally convex hausdorff topological vector space.
Let Q £ E be non-empty, wonvex and weakly compact. Let S be a J-non-
contracting semigroup of weakly continuous affine maps of Q into Q .
Then there is a point =z € Q such that VTz =z for all' T €S . (That
is, 2z is a common fixed point of S on Q ).

Before presenting the proof of this theorem, we examine its princi-
pal application to the existance of a left invariant mean on W(G) - the
set of weakly almost periodic functions from a locally compact group G

into C’(Ff Greenleaf [12; chapter 3]).

1.6 Definition: Let G be a locally compact group. B(G) is the space’

of all bounded complex-valued functions on G equipped with the supnorm
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"fj”;. CB(G) 1is the subspace.of continuous functions.

1.7 Definition:. Let G bé a locally compact group. Let f € .CB(G)
The left orbit of f is definied by LO(f) = {3f: x € G} , where

§%(y) = f(x_lg) , for every g e G .

1.8 Definition: Let G be a locally compact group. f € CB(G) is weak~-

ly almost periodic if and only if LO(f) is relatively weakly compact in
CB(G) . (That is ‘the weak closure of LO(f) is weéakly compact. in

CB(G) .) The space of all such funtions is denoted by W(G).

1.9 Definition: A linear functional m on W(G) is a mean if

m(f) = mf for all £ € W(G) .

f denotes the conjugateifumetion to -f

and inf{f(x)} < m(f) j_sup’{f(x)} for all real valued
x€G xeG
f € W(G) . f W)

If furthermore m(Xﬁ) =m(f) for each xe€ G , and f in W(G)

then m is said to be a left invariant mean on W(G)

1.10 Theorem: [12; pagés 38-40]

Let- G be a locally compact group. Then W(G) has a left in-

variant mean. .

Sketch of Proof: Let @(f) be the weakly closed conves hulliof Lo(f) ,
where f € W(G) . Thén Q(f) is non—empt§ convex and weakly compact.
Define LX : Q(f) — Q(f) by Lx(h) = x_lh for x € G . Then Lx '
is an affine map. Also S ='{LX: x € G} is norm-noncontracting. In-

deed, if f, # f, then [f - f

1 B }

>0 , and hence 0 ¢ CZ{fol - Lf, %eG
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= CH{L_(f; - £,)} since inf “Lx(fl - £)] = inf | £, - £, >0 .
x¢G xeG

Since S 1is a semigroup of weakly continuous maps which are norm non-

27" xeG

contracting, the Ryll-Nardzewski fixed point theorem yeilds some

hf ¢ Q(f) such that Lx(hf) =h,. for every x € G . Then h. is a

f

constant funcfion on G. , since hf(xg) = hf(g) for all x, ge G .

f

Hence for g = x one gets hf(e) = hégél%) for all g € G so h. takes
the constant value hf(e) on G .

A detailed proof that; he 1is the unique fixed point of S in
Q(f) ; that the map m: W(G) — € which assigns to each f ¢ W(G) the
*value of the comstant function hf B is linear; and that ing f(x)
< m(f) < sup £(x) for all real valued f ¢ W(f) , is showzein [12;
page'39—4§§Gfor details)  Given then -that m is a mean, it is clearly
left invariant since LO(f) = LO(xf) for all x ¢ G , thus the unique

fixed point of LO(f) coincides with that of LO(fx) .
We now present I. Namioka's and E. Asplunds proof of the Ryll-

Nardzewski fixed point theorem. [2{2] (Theorem 1.5) -

Proof: It suffices to prove the result for S' a finitely generated set

of affine maps. Indeed, the assumption that S haé-novcommon fixed

point, but that each finite subset of S does, leads to a contradiction

as follows:

Sincé: S has no.common fixed point x eQ , I§ # x for some T €S .
That is Q =T%§{x: Tx>— x # 0} . Now {x: T§'— x # @} = comp ({: Tx - x
= 0}) is weakly open for each T &€ S , since T is weakly continuous.

Q is weakly compacf; thus‘ Q =i§i{X: T}§‘— x # 0} for finitely many.

Ti € S . This says that ‘{Ti; ...,Tﬁ} 'ﬁassné.éommon fixed point, which

is a contradiction. Thus we assume that '{Tl,-...,Tm} is a finite
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generating set for S .

Consider Tg.= T.+ ... +T
Kz m

1
m
M

Q 1is convex, therefore ETO: Q—Q . Also To‘ is weakly confinuous
and affine. Thus the Markov-Kakutani. (0.14) applies to T0 , and there
exists a fixed point X, of To .
We show that"xé #§ the required fixed point for S .
Assumg not:

- Without ioss of generality we can assume that Xo is.a fixed point
ofno T, &S { '(We simply discard those for which T,(x) = x  and
work with the remaining: J—noncontracting subsemigroup.)

Since S is J—nohéontracting, by proposition 1.3, there is a J-

continuous pseudo-norm p and an & >0 such that:

¢h) p(TTi(xo) - T(xo)) > 89 for every Ti ¢S ,i=1...m .

Let K = j —.Cﬁ[Co({T§o: T «S})] . K is weakly‘compact since
K 1is a subset of the weakly compact set Q , and K 1s weakly closed
‘since it is J-closed and convex. Also K is J-separable since the
rational convex combinations of the countable col1ection '{T§o: T € S}
(8 1is finitely generated) is a countable J-dense subset of X .

If we further assume now that there exists a closed, convex C ¢ K
such that C # K , but that the p—diam(K\C)‘é;eo (Chipping lemma) then
a contradiction can be achieved as fodlows:

Let C be the above postulated subset of K . Now there is some

S € S such that S; € K~C since K\C is open in K ..
o .

S, = ST (x.) = ST,x_+ ST
[o] o] L O

%, 1 2xo + ... +vSTmXo

m
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C 1is convex, thus STix0 € KNC for some i =1, ..., m . Hence
p(STiX0 - SX).f_p—diam(K‘sc) 5_60 which contradicts (1).
It remains to prove the chipping lemma.

10
1.11 Chipping lemma: (I. Namioka, E. Asplund [2])

Let (E,J) be a locally convex, hausdorff topological vector space.
Let K &€ E be non-empty, weakly compact, convex, and such that K is
contained in some J-separable set in E . Then for every € > 0 there
is a J-closed convex C =K such that C# K , and the p-diam(K~C) < ¢ .

Remark: In [2] K is taken to be J—separable;

(outline of proof): The method of the proof consists in taking for some

u ¢ ext(K) , convex combinations. CE,= {)\ui + (1L -MNu: 0<r<l,
A€ [5,1], u e ext(K)~{u}} . Then u ¢ C. since A # 0 and u is

7 “tends towards

an extreme point of K . As £ tends towards 0 , C.,
K . Eventually some C; is chosen as C

Of course the set C so deriyed does not conform to the requirements
of this lemma, since it is neither closed nor convex.

The procedure which we followiis to find a weakly open set W such

that p-diam(W)'f_%- and such that W contains an extreme point of K .
s Convex combination Cyg- of the form

Cy = Dx; + @ - Nxy: 0 < @<l re [£,1], x—l € J-cllc,(D~W)1,

x, € J-c!.[co(D NN}

where D 7is the weak closure of ext(K) will satisfy this lemma for

some ‘sufficiently small & .

(proof of chipping lemma):. Let S = {x p(x) < £y /s is convex.
— 4

e
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(D Since p is J-continuous, S is J-closed. Thus S is weakly
closed. |
Next,

(2) since p is J-continuous countably many.translates of S cover K .

This is true sinee K is contained in a J—ggparable set, and J-int(S) £ ¢
Sifice - 'sEf‘-irs‘eweé{»klgzcclr@sé‘&,: ﬁﬁé&@ﬁanérétésaz:ox}er; Di=-Jz Cllext(K)] .-
But D is a weakly closed subset of the weakly compact set K .
Therefore D is weakly compact.  Thus (D,JW) is a Baire Space, and
hence second category in itself. (remark 0.15). Therefore there is a
k € K such that JW——int(k +S8)ND#G .
Clearly then ext(K) NW # ¢ where W =-JW—int(k +8S) . Let

ueext(K) N W .- Let
‘?g = v{)\xl + (1 - Mx,: 0<w<1, re [5l] x, € J—CK[CO(D\W)],

x, € J—CK[CO(D nNWit .

We show that C. is J-closed, convex, that Cr # K , and that Cr

L% ~

.can be made p-arbitrarily small by choosing %. sufficiently small.
Consider the jointly.continuous map

foix;J-@LICADNWE]XT-CL[C_(D (W) ]X[£,1] — K defined by
l;xz,l) =_Axl + (1 - A)x2 . Clearly the image of this map in K is

C. , which is thus shown to be J-closed since the domain is compact.

fg(x

C, is cohvex, since if ais,y [#,11 , X)5Yq € J—Cﬂ[CO(D‘\W)] ,

and Xy, Y, e‘J—CK[CO(D N W] then yﬁax1:+'(1;~ m)xz; + .

#(@k14+BX§2} a)&§2'+_(i 4»&?&Eleﬁeﬁ&'—SBéyg)-ﬁyrZi +a (1 L;r)zz where
§5= BI2,¥B 4sjacdr,i1- ¥B S1€ [£,1]n-sinkeyye 8 4

Bl yBd%a < B - yB+ vy < B+ y(d -BB)<<AB + (1 -AB) = 1 , and
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B-YB+vyo>B-By+yr>B8(1-vy)+yr> (1l-y)r+yr=1r ),

_ye o ye
zq E - V8 T vo X + (l_ B - Y8 + Yalyl and

_ Y - ya Y- ya )
22 l—B+yB—yux2+(l 1-8+ 8- ya))2

and the coefficients of xq and x, can be shown to be in [0,1] hence

z) € J-CL(Cy(D\W)) and z, € J-cl(Co(d NW)) .
u (the extreme point of K found in W) ¢ C, » since if u e C, ,
then u would be an extreme point of C,. .. By theorem 0.12 this would

imply u € D~W contradicting u ¢ W . This shows C. # K .

Finally we show that the p-diam of Cf is arbitrarily small for

&

small § . Consider ff defined above with # = 0 . The image of fg,
is J-closed and convex and contains all of the extreme points of K ,
hence it équals K (Krein-Milman theorem). That is every x € K can be

written x = Ax + (1 —'A)xz,k €[0,1]1, x, J-CL[C,(D~W)]

1
x, € J-CL[C,(D NW)] .

Consequently for any vy ¢ K'\C@f(i #0)y= Xxl +- (1 - A)xz'k ef0, ) .
Therefore p(y - X2) = )\p(x1 - x2) < td¢ where Cd = p-diam(K) . But,
(3) p 1is J-continuous, therefore {x: p(x) <1} 4is weakly open and K
is weakly compact, hence covered by finitely many translates of

{x: p(x) <1} . That is CHd= p—diém(K) <.°o .

now x, € J-cL[Cc,(D N W)] which has p-diam < thus p-diam (K~ Cy)

g
2
= su remﬁgc {p(y1 )}< §ugremuR\C f[p(yl 2) + p(x2 - x2') +
1
£

+p§£}g\ﬂ”@ = JCWH ' EDX

55 € sJ2cL[C, (DN W) ])

l\l ]‘J

2
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C = C€ satisfies the chipping lemma, and completes the proof of

Jhd

the Ryll-Nardzewski fixed point theorem. -

1.12 Remark:
Definition: A subset K of a Banach space: E is called dentable
if for each € > 0 there is a u ¢ K such that u ¢ CLIC (K ~{y:fu - y]

<el)] . ue K is a denting point of K if
u ¢ CL[Co(RN{y: "u - y” < el)] for each e=> 0 .

Since the set W in the proof i§ defined as a translate of
{x: p®x) 5_%& and since u»é CLI[Co(K~W)] we might say that K is

"p-dentable". Since the point u € W was dependent on € we are not
entitled to denote u aas a '"p-denting point". (More on denting points
in sequel).

A slight modification of the chipping Lemma leads into another
paper by Namioka [1], where the lemma forms one of the two basic techni-
cal arguments.

The main thrust of Neighbourhoods of Extreme points [1l] is towards
an éxtension of the Krein-Milman theorem. Let K be a compact, convex
subset ofvsome hausdorff topological vector space (E,J) . This stronger
version is achieved by determining a dense subset of special points of
ext(K) . The closed convex hull of this subset is clearly, again K .

Since the pseudo-norm p of the chipping lemma is J-continuous,
the topology on (K,jp)‘ which p generates on K satisfies that each
Jp—open set contains a J—opeﬁ set. Thus, since E is hausdorff, the

following property is readily seen to hold for each x, € K:
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Every (K,Jp) neighbourhood of x, contains a (K,J)-open set.

If however p is only lower J-semicontinuous, then for a given
point x, € K , the above property is not guaranteed to hold. This can
be more succinctly stated as: the identity map 1i: (K,J) - (K,Jp) may
not be continuous at Xo - We show that the dense subset of special
points of ext(K) refered to above are precisely the points of céntinuity
of the identity map i which are in ext(K) .

Since the chipping lemma is to be our main tool in proving this
assertion, we broaden it to include lower J=semicontinuous pseudo-norms
instead of just J-continuous ones.. We compensate for this strengthened

result by strengthening the separability condition on K .

1.13 Proposition: Let (E,J) be a locally convex, hausdorff topological

vector space. Let p be a lower J—semicontinuous.pseudo-norm on E .
Let K& E be convex, J-compact, and such that it is contained in some
Jp—separable set. Then for each ¢ > 0 there is a J-compact; convex

C ¢ K such that p-diam(K ~C)<<ec , but C # K .

proof: To modify the chiépping lemma we show that all of the steps justi-
fied by the J-continuity of p in the proof can be obtained with the
present hypothesis. Since the Jw—compactness of K follows from the J-
compactness of K , the result will follow.

. The relevant steps‘have been numbered (1), (2) and (3) in the proof
of Theorem 1.5.

(1) - S is J-closed since p is J—continuous.aei*Sinceb~p in our-

pnesengfhyﬁdthgsfg ig lower J-semicontinuous, -SS = {x: p(x) <1} is J-
closed. 'Since K in our present hypothesiQ.js T

* szt we a2ed only that Jpwinﬁfs) F 4 . Thao
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(2) -~ Since p 1is J-continuous countably many translates of S
cover K .—--

Since K in our present hypothesis is contained in a Jp—separable
set we need only that Jp—int(S) # @ . This is clearly true since
S = {x: p(x) f_fj

(3) == 7d = p-diam(K) <-* since p is J-continuous. --

Following is a proof of Cd's finiteness based on the lower J-semi-
continuity of p . The proof is modelled on the absorption theorem [3;
page 91].

Let A = {x: p(x) <1} . A 1is convex and it is J-closed since
p is lower J-semicontinuous. Also, since p 1is defined en all of E',

E =AanAA , and consequently K =ééNA NK , where nA NK is J-closed
for each ne N . But since (X,J) is a Baire space, it is 2nd cate-
gory in itself (remark 0.16) thus there exists an N¢ IN such that
int(NAQK) #¢ . If n >N , then int(nA N K) = int({x: p(x)

<n} NK) 2 int({x: p(g)‘ _<_N} N K) = int(NANK) # ¢ .

Let U be a J—op;n O—neighbourhood and y € K such that
§# (y+U)NKEe int(nANK) for every n>>N . Now E is a locally
convex space and K is J-bounded, therefore K> K is also J-bounded.
Hence we can find b € (0,1) such tha b(X~K)< U , from which we get
that nA2 (y+U) NK2 [y+bE~KINK .

K 1is convex, thus bK + (1 - b)y€ K . But y(1 - b) + bK
=y +bKk-by<Ey+b(K-K) , therefore y(l1 -Db) +bKE y + b(K~K)
NKgnA for every n >N .

Let p(y) =8 . Then p(%y) =1 so éy € A which is to say
y € sA . Therefore -y(1 - b)¢ sA since 1 -b <1 . This shows that

1

A 2 %{y(l - b) + bK] - %y(l-—tﬂ 2 EbK (A is convex) for each
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r > m = -max(s,N)

Thus K& i—mA ie p-diam(K) 5—';@ <w

We are now prepared to .examine Ndamioka's extension of the Krein-

Milman theorem [1; theorem 2.2]

1.14 Theorem: Let (E,J) be a Hausdorff locally convex topological

vector space. Let p be a lower J-semicontinuous pseudo-norm on E .
Let K be a J-cempact, convex subset of E such that K is Jp—
separable. Then the set of extreme points of K which are also points
of continufty of the identity map i: (K,J) — (K,J5) 1is a J-dense Gs

set in ext(X) .

Remark: Namioka takes (E,Jp) separable.

Proof: Let Z be the set of points of continuity of the identity map

i: (K,J) — (K,Jp) . Then for u€ K, ue Z if and only if for each

€ >0 we can find a (K,J)-open neighbourhood of u of p-diam < e .
Setting € = %- , and letting n increase through IN we can re-

o
formulate this condition to Z =ngl—Biznwhere9ﬁBé'ﬁi{u'E K: U is con-

tained in a (K,J)-open set of p—diamﬁi_e} . Note that B, is the
union of all open sets in (K,J) of p-diameter < ¢ , hence it is open.
We must show that ZQext(K) is demse in ext(K) . This will be
accomplished by showing:
(a) that BE N ext(R) is dense in ext(K) for each ¢ > 0 ,

and (b) (ext(K),J) is a Baire space.

This will give us that Z Q ext(K) = Bl N ext(X) is a dense G§
n

“subset Of'EQX%(ﬁ) .

(a) Let W be an arbitrary open set in (K,J) such that W N ext(K)
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# @ . By the chipping lemma we know that K’ contains a closed convex
subset C # K . Int(K\NC) must contain an extreme point of K , since
if ext(K) &€ C and C is closed and convex, then K & C which cannot
be. 1In other words, @ # ext(K) N int(KNC)< B, N ext(K) . It remains
to locate the set C so that it misses a part of W containing an
extreme point of K . That is, @ # ext(K) (N int(K~C) ¢ B. N W AN ext(K) .

Let S = {x: p(x) 5_%5 ©+ S is J-closed, since p is lower J-

semicontinuous. Let D = J-CL[ext(K)] . D is compact since K is .
Since K 1is Jp—separable, a countable collection of translates of S

will cover K and hence D .

That is, D =,

=
ncs

L DN (x +8),{x,} ek ,and DO (x; +8) is

closed for each i¢ W . By corollary 0.17 of the Baire Category theorem

300

U

191 int{D N (xi + 8)] dis dense in D . It follows that int[D N (xi

+s38)INW # @ for some x&_e K , and clearly this intersection contains
an extreme point of K
~ But int[D n (xi + S)]le B, for every X, € K . Therefore ext(X)

NB.NW#D .

(b) That (ext(K),J) is a Baire space is a theorem of Choquet's
[4; page 355]. It is translated and included herein for the sake of
completeness, and because of the interesting techniques of the proof.

Explanatory comments are in italics.

1.15 Theorem: Let E be a locally convex separable space, C a

compact, convex, subset of E, A the set of extreme points of C .
Then A 1is a Baire Space.
proof: For all continuous linear functionals f on E , and for all real

numbers o , let us denote by Uf’a(resp Ff’a) the set of x € C such
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that f(x) < a (resp. f£f(x) < o)
The strategy of the proof is to show that Ff;a for which =z e Uf, o
form a basic neighbourhood system for x <if x € A
Next given a sequence {V,} of dense open sets in A and an arbit-
rary open V in A , we embed the V,'s and V <in appropriate sets in

C . In particular V <s embedded in U = ij,uj for some fE,c Bt |

OLJ,E g .
Next we find a sequence ‘{(fé, az)} € E*X R such that the Ff o
AR

are déscendhng compact, non-empty and such that th’an intersects with

V and Vi1 The non-empty intersection of the '{Ff o } will contain
A 7:: 7:
a member of each Vﬁ s and of V , and the result follows.

Let x¢ A . We will first show that the set of Ff o for which
b
X € Uf’a ggrm a basic neighbourhood system of x . By the Hahn-Banach
b
Theorem, the intersection of these ngu is {x}
b

Indeed E* separates points on E , and thus if x,y € Ff g then
b

g,B can be found such that y ¢ Fg,B

Since the Ff;& are compact, it suffices to show that the family
b ]

of the Ffﬁd for which x € Uf,u is a descending net. Let Fl’ f2, a5

ay be such that x ¢ Ufls“l N Uf2’“2 . Let Cl’ 02 be-the complements

of Ufl’al s Ufz,az in C . Since C1 and C2 are compact, the convex

hull C3 of Cl U C2 is compact and x ¢ C3 because x 1is an extreme

point.

If x € C, then by theorem 0.12 x € C, U (C, since (C, U Cq 18

3 1 2 1

compact and x € A . This contradicts x € Uf IR
F1o07 " Too0y
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Thus there exists a linear continuous funcitonal £ on E , and

a real number o such that f(x) < a , and f(y) 2 o for y € C

3
separation theorem for convex sets
1 . . e
So Ff,u doesn't intersect Cl or C2 . That is Ff,a = Ufl,ul
Nnu
fz,az and x ¢ Uf,a .

Let '{Vﬁ} be a sequence of open dense subsets of A . It is re-
quired to prove that I’\Vn is dense in A . That is it intersects
every non-empty open subset V of A . Let ‘{Un} » U , be open sub-

sets of C with Un dense in C , such that Un na-= Vn ,UNA=YV ,

)

One can assume the Un s and Vn's are descending and that U is of

the form U
f.,a

1’

' _ ’ . . ’ . .
Let 7V, _igk v, and work with {V_ }. instead of {Vh} .

This béing the case, we will prove the existence of (fl,al),(fz,az),

an+‘ o = gf ,qn n Un+l and

«+. with the following properties:. - <
n+1> o+l Tn

Uf N A#@ for each ne¢IN .
50,
n’’n .

We already .have (fl,al) .  Suppose we have found (fl,al), ...(fn,un).

$péreuexT§t§eaﬁ4*xte tm xNAXNTY . Hence .Uclzxn AT

fn’ n Ln’ug+l fn’an n+}
is a neighbourhood of x in C , thus there is (fn+l’an+1) such that
xe U = F c U nbu
P _*" —
Etl %1 foero®HE fo% oW

'{Uf o) t8 a neighbourhood system of x in C

N A# @ and we can continue

Since xe A , we get that U o
n+l’ n+l

f
inductively,

The Ff - are descending, noncempty, compact. Therefore they have
n’ n -

a non—-empty intersection ¥ . F ¢ Uf and F&N Un . Finally F

1°%
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Thus there exists a linear continuous funcitonal f on E , and

a real number o such that f(x) < a , and f(y) > o for y € C3 .

separation theorem for convex sets

So F doesn't intersect C, or C . That is F cU
f,a 1 2 f,a fl,al

nvu
f2,a2 and x € Uf,a .

Let {Vn} be a sequence of open dense subsetsvof A . It is re-
quired to prove that r\vn is dense in A ., That is it intersect§
every non-empty open subset V of A . Let {Un} » U , be open sub-
sets of C with Un dense in C , such that Un NnAs= Vn s, UNA=V .
One can assume the Un's and Vn's are descending and that U is of

the form U
£, ,0

1’71

? — n . ’ [
Let V, AN Vi and work with {Vh } instead of {Vh} .
This being the case, we will prove the existence of (fl,al),(fz,az),
«.. with the following properties: F < U nu and
n+1’ n+l fn’a,n n+l

Uf N A+ @ for each n¢IN .
L, 0
n’ n

We already have (fl,ul) - Suppose we have founé -(fl,al), ...(fn,qn).

There exists an x € U N NAN Un+ Hence U_. ' NU_ .

£, 17 f ,o n+l

n’ n n’ n .
is a neighbourhood of x in C , thus there is (fﬁ+1’an+1) such that
X € Uf c F c U N Un+lv

0+1° %+l fn+1’an+l fn’an
{Uf o 8 a neighbourhood system of x in C .
k)

Since xe€ A , we get that U N A# @ and we can continue

| £l
inductively,

The Ff are descending, non—empty,compact. Therefore they have
. ‘ n’ n : .
a non-empty intersection F . F ¢ Uf and Fel Un . Finally F

1°%
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is compact, convex, and its complement in C is convex.

A simple lemma proves that F .contains at least one extreme point
y of C . (In all F contains an ektreme point x . If x is an
extreme point of C , we're done. If not, let § be a straight line
through x and such that x is an interior point of C NS . Then
one shows that one of the énd points of F N§ is an extreme point of
c ).

The extreme point of C in F NS ean be found in a u, -

ye AN Un n Vn for each n GINB’ and ye AN Ufl’ul =V .

This concludes Choquet's theorem and theorem 1.14.
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Chapter 2

"APPLICATIONS

Many applications of the Krein-Milman extension theorem 1.14 occur
by associating the lower J-semicontinuous pseudo norm p on the locally
convex space (E,J) with another topology on E . We begin this secz
tion on applications by investigating these topologies on E and reform-
ulating theorem 1.14 to facilitate the further applicatioms.

The topology with which p can be most directly associated is a
norm topology -- namely in the case that p is itsélf a norm.. The probz
lem with choosing (E,J) a Banach space with norm p s that then p
is J-continuous, and hence the identity map i: (E,Jp) — (E,J) is
everywhere  continuous making theorem 1.14 trivial.

Consider however J to be the weak topology on a normed space (E,Jp) .

2.1 Lemma: In a normed space (E,Jp) the norm p 1is lower weakly semi-
continuous. Furthermore if E 1is infinite dimensional then the norm p

is not weakly continuous.

Proof: Let S = {x: p(x) <1}

To show S 1is weakly closed consider a weakly convergent sequence
X —7X for which each X €S .

I xv¢ S , then by the Hahn-Banach theorem, there is an f € E*
such that f(x) >1 and £(y) <1 for every ye& S . But X —> X
weakly means precisely that f(xn) — f(x) for each f ¢ E*¥ which is a
contradiction. Hence x € S .

Next assuming that E is infinite dimensional, we show that p is

not weakly continuous. {V = {x: Ifi(x)}.< ri,lfgii i_n,fi € E*}} is a
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local base for the weak topology on E . Thus every weak O-neighbourhood
contains a subspace of the form N = {x: fi(x) =0, 1<1i<n} . But
N is the null space of the map from E into R" which takes an element
x€E to (£,,6,&, ..., £ () e R .

dim (E) < n + dim(N) ,, therefore dim(N) = =
This shows the N (hence V) is not p-bounded and p is not con-
tinuous.

This gives the first corollary to theorem 1.14.

2.2 Theorem: Let (E,J) be a normed space, p its norm. Let K& E
be convex, weakly compact, and norm separable. Let Z be the points of
continuity of the identity map i:(K,JW) —+-(K,Jp) . Then Z Next(XK)

is weakly dense in ext(K) . Hence K = JW—CK[CO(Z Next(RK)] .

2.3 Remark: This result also follows from the work of Joram Lindenstrauss
[5; theorem4].

Theorem: Every weakly compact, convex subset of a separable Banach
space is the closed convex hull of its strongly exposedppoints, (since
strongly exposed points are (a) points of continuity of the identity map
i: (K,J&) — (K;Jp) and (b) extreme points of XK .

Definition: a point x 1in a convex subset K of a Banach-space E

is ‘a strongly exposed point of K if and only if there is an f ¢ E*

such that
(1) £(y) < f(x) foreach ye K,y #x .
and (ii) f(xn) — f(x) implies HXﬁ - xn — 0 .
(a) x 1is a point of continuity of the identity map (K,Jw) — (K,Jp)
means that W%n - x” — 0 whenever X X weakly. Since X X

weakly is equivalent to f(xn) — f(x) for every f ¢ E* we get that all



30
strongly exposed points ef K are points of continuity of the identity
map i .

(b) That all strongly exposed points are extreme is clear, since if x
is strongly exposed and ﬁ =‘Axl + (1 - A)x2 for X € [0,1] , then
f(x) = f(kxl + (1 - A)xz) = Xf(xl) + (1 - X)f(xz) which can only occur

if x=x or X

L , ¢ af xl#x then f(xl) < £(x))

Let E be a normed space. Then E* , its continuous dual is also
a normed space.  Analagously to lemma 2.1 we have that the norm on E¥*

is lower w*-gemicontinuous, and not w*-continuous. Thus:

2.4 Theorem: [1l; theorem 3.2]
Let K be a norm separable, w*-compact convex subset of E* |,
where E is a normed space. Let Z be the set of points of continuity

of the identity map i: (E*,w*) — (E%, nqrm) . Then Z Next(K) is

w¥*-dense in ext(K), hence
K = w*~CL[C,(Z Next(X))]
We abstract from the foregoing, the following

2.5 Theorem: Let E be a normed space, p its norm. Let J be a
locally convex topology on E such that p is lower J-semicontinuous.
Let K be a J-compact, convex subset of E , such that K is norm-
separable. Then Z Next(X) is J-dense in ext(K) , where Z is the
set of points of continuity of the identity map i: (K,J) — (K,Jp) .

The next obvious spaces to look at are locally convex pseudo-
metrizable spaces.

‘If (E,Jl) is a locally convex pseudo-metrizable space, then an

invariant pseudo-metric @@ can be chosen so that for
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A = {x: d(x,0) f_h}

" is a family of pseudo-norms on E

’ V{UAn}nerN

which determines J (see definition 0.5). A simple device extends

1

theorem 1.14 to pseudo-metric spaces.

2.6 Theorem: [1l; theorem 2.3].
Let (E,Jl) be a locally convex pseudo-metric space. Let J2
be another topology on E such that (E,Jé} is hausdorff. Let
{pn}neﬂi be a sequence of Jl—contlnuous, lower Jz—semlcontlnuous pseudo-

norms on E which determines Jl . Let K be a Jz—compact, convex
Jl-separable subset of E . Let Z be the set of points of continuity
of the identity map 1i: (E,Jz) — (E,Jl) . Then Z Next(K) is a 12-

dense G& subset of cext(K) . Hence K = J2 - CLICo(Z Next(K))] .

Proof: Consider E with the topology generated by P, > with J2
as-a second topology on E , such that P is lower Jz—semicontinuous.
Let Zn be the set of points of continuity of the identity map

i: (K,Jz) — (K,Jpn) . Then by theorem 1.14 Z N ext(K) is a J2—
dense Gs subset of ext(K) . By theorem 1.15 of Choquet (ext(K),Jz)
is a Baire space. Thus 2Z N ext(X) =ngHN Zn N ext(K) is a Jz—dense

subset of ext(K) . Also this intersection is GS , since Gafness is

closed under countable intersections.

Included in the diverse applications which we cover of the foregoing theory
are that: each bounded subset of a separable dual Banach space is dent~-
able, and that each closed convex, bounded (not necessarily compact)dsub—
set of a Frechet space whose second dual is separable relative to its
strong topology is fhe closed convex hull of its extreme points. We con-

clude with a slight generalization of the Ryll-Nardzewski fixed point



theorem, also due to Namioka. [1; theorem 3.7]
The following lemma gives a slightly stronger version of theorem

2.4,

2.7 Lenma: Let E be a Banach space such that E* 1is separable. Let

K € E*¥* be bounded, norm~closed and convex. Let K1 = w*-CL(K) . Then

K f)ext(Kl) » which is clearly contained in ext(K) is w*-dense in

ext(Kl) .

Proof: By proposition 0.20 we get that X. is w*-compact. Thus theorem

1

2.4 applies to K, € (E*,w*) . That is, Z F\ext(Kl) is w*-dense in

1
ext(Kl) where Z 1is the -set of points of continuity of the identity map
i:  (K,w#) —+‘(Kl, norm) . We show that Z € K which completes the
proof.

Let z € Z . K is w*-dense in Kl , therefore we can find a
net'{xa} on K which converges w* to z . That is, for each w*-open
neighbourhood U of 2z , there is an ay such that for each o > oy ,
(¢ din the directed index set 1I) |, x, € U . But =z € Z means that
each e-ball about 2z contains a w*-open neighbourhood U . Thus x

o

tends to z in norm. Since K 1is norm closed, z ¢ K .

2.8 Theorem: [1; corollary 3.4].
Let E be a Banach space, such that E* is separable. Then each
norm closed, convex bounded subset of E* is the norm closed convex hull

of its extreme points.

Proof: Let K1 = w*-CL(K) Wwhere K is norm closed, bounded and convex

in E* | Ext(Kl) # ¢ , thus as in lemma 2.7 we get that:

P #£KnN ext(Kl) € ext(K) . We show that Ehissis#éufficientrto prove'that
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K = CK[CO(eXt(K))] , following a proof by Richard Bourgin as presentéd
by N. T. Peck in [7; lemma 1], (and in a written communication from I.

Namioka).

Lemma 2.9: Let E be a locally convex space. Then every closed,
bounded, convex subset of E has an extreme point if and only if every
closed, bounded, convex subset of E is the closed convex hull of its

extreme points.

Proof: Assume that the non-trivial of the implications is false. Then
there is a closed, bounded,cconvex set C ¢ E - such that s
Co = CL[C,(ext(C))] g C .

Let vy € C.'\Co . Then by the separation theorem for convex sets
[6; theorem 3.4, page 58], there is an f € E¥* and B¢ R such that
f(c) < B < f(y) for every c € C;, . That is K = {ce C: f(e) > g}

1
#0 , and K, NC,=® . Now D={xeC: £(x)

B} # § , and it is
closed, bounded and convex. By our hypothesis; ext(D) # § say
u ext@®) . Clearly uc¢ ext(Kl) .

Since u # Co 2 ext(C) , u=ia+ (1 - A)b for some %;e 0,1)
'and a,be C . Since ue ext(Kl) , one of a,b¢ Kl . Say a‘é K1 .
But then b € Kl , since if b % K1 , then B8 = f(u) = Af(a)
+ (1 - MNf(®) <A+ (1 - N)B =B which cannot be.

Without loss of generality, we can let
b=a+ tfu - a) , where t = sup{A € R: a+ A(u -a) e C} .

Indeed, since t > 1, f(a + t(u - a)) = tf(u) - (t - 1)f(a)

>(t-1)B=8B ,s0 a+t(u-a)e L
Now b ¢ Co 2 ext(C) , therefore there are

¢, € C such that

€1°%2
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b = 1/2(cl + c2) , and clearly we can find ¢ € Kl .
Let - + - § c, for i=1,2
P T e e, YT, 1 ’

where &§ = B - f(a) > 0 and e, = f(ci) -B>0 for i=1,2 .

Then P> Py ¢ C since C 4is convex and a,c € C . Note

1°€2
that f(pl) = f(pz) = 8 , hence Py Py € D .

S + €1 § + €,
: “ t . .
55 ¥ e + o P1 + S T e + e P2 which contradicts that

1 2 1 2

]

SR
ut u-

=]

u € ext(D) , and the proof is complete.

We next refer back to denting points as defined in Remark 1.12
following the proof of the chipping lemma. We examine the problem posed
by M. Rieffel [8; question 3] namely for which spaces are all bounded

subsets dentable., Namioka gives a partial answer in [1; theorem 3.5].

2.10 Lemma: [1; remarks preceding theorem 3.5].

Let E be a Banach Space. Let J be a hausdorff, locally convex
topokogy on E such that the norm is lower J-semicontinuous. Let K & E
be such that J-CEZ[C,(K)] is J-compact, and K is norm-separable. Then

K is dentable.

Proof: Let Kl = J—CZ[CO(K)] . By the chipping lemma - proposition 1.13,

there exists a J-closed, convex C &€ K , such that C # Kl , and the

diam(Kl\\C) 5_%- .
But clearly KNC # @ , since if C 2 K then C will also con-

tain the closed convex hull of X , namely K Let x € K~C .

1 °
Then clearly C 2 K‘~B€(x) where Be(x) is the closed ball of radius
g around x . Therefore C 2 J-CK[CO(K‘~Bé(x))] .. That is

x éJ—CK[Co(K\Bg(x))] .
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2.11 Theorem: [1; theorem 3.5].°

Let E be a Banach space such the E* is separable. Then each
non-empty, norm—closed, convex, bounded subset of E* contains a denting

point. Hence each bounded subset of E* is dentable.

Proof: Let 'K be a norm-closed, convex, bounded subset of E* . Let -

Kl = w*-CL(K) , and let u € ext(Kl) be such that u has arbitrarily

. f
norm-small w*-neighbourhoods (theorem 2.4). As in the proof of lemma 2.7,
u € ext(K) .. But them u 1is a denting point of Ki . Indeed let
€ >0 and W a w*-neighbourhood of u such that diam(W) < € . Then

u ¢ K> W and since u is extreme, u ¢ w*-CL[Co(R~W)]

%)

W*—CK[CO(Kl\ Be(u))]g norm closure of CO(K1\~B€(u)) , where again,

Be(u) is the closed ball of radius € around u . But K is norm

bounded hence so is K , and K. 1is w*-closed. Thus K, is w¥*-compact, .

1 1 1
and by lemma 2.10 K is dentable.

We now prove another type of generalization of the Krein-Milman

theorem. [1; theorem 3.6].

2.12 Definition: A topological vector space is called quasi-separable if

each bounded subset is separable.

2.13 Theorem: Let E be a Frechet Space such that (E*,s)* is quasi-

separable with respect to the strong topology. Let K< E be closed,
bounded and convex. Then K is the closed, convex hull of .its extreme

points.

Proof: Let I: E — (E*,s)* be the evaluation map. Let
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Ki = w¥-CL(I[K]).

Consider the bipolar (KO)o of K . (KOO = {F e (E*,s)*:
|F(£)| <1 for each f € E* which satisfies [f(x)| < 1 for each
x eK .

Clearly I[K] ¢ (K©)©

But K° 4is a neighbourhood of 0 in (E*,s) thus (K°)® is
w*-compact in (E*,s)* (Banach Alaoglu theorem). Hence (KO)O is w¥-—
closed and so K, € (K0)0 ., That is K, 1is a closed subset of a ;ompact

1 1
set in a Hausdorff space. Therefore Kl is w*-compact.
Also, we get that K1 is strongly bounded. Let V¥V be a strong
O-neighbourhood in (E*,s)* . Since {B°: B is strongly bounded in
E*} 1is a local base for [(E*,s)*,s] , V 2 BO for some such B . Now
I is continuous (theorem 0.19), thus Iél(Bo) is a O-neighbourhood in

E . K is bounded in E , therefore X ¢ nI_l

(B9) for some sufficiently
large ne N ., That is I[K] € nB® . But B° is w*-closed in (E*,s)* ,
thus Kl € nB%¢ nv .,

Let K' be the subspace of (E*,s)%* generated by K1 . Since
(E*,s)* is quasi-separable, zK! misrstrdhglyiséparable-and metrizable

\TWithﬁtherindﬁcédappﬁdlogﬁm’ TEusiﬁﬁéQEémsZ.6wéppliés to' K; in (K',s)

1
twithethed wiptdpglogy a¥'the sécoﬁdrtqﬁoiogytopf Kbinge So for 'Z =
tsetidfnpéintsaof éoﬁﬁ}guiﬁy—ofKEhe)identity map 1i: (Kl,w*) — (Kl,s)
1 z r\ext(Kl) is w¥*-dense in ext(Kl) .
Consider a net '{xg} in I[K] which converges strbngly to
F € (E*,s)* . I 4is a homeomorphism of E onto (I[E],s) , therefore

'{Xd} is a Cauchy net in E . But E is complete, so '{x&} converges

tosome xe€ E . Since K is closed x€ K ., Thus F = I(x) € I[K] ,
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and I[K] 1is strongly closed in (E*,s)* . This gives, as in the proof
of lemma 2.7, that Z ¢ I[K] . Thus 2Z:'N ext(Kl)g ext (I[K]) =TI[ext(K)] .
By (1) above, w*-CL[Co(I[ext(K)]1)] é,Ki = wk-CL(I[K]) . Inverting back
through T -, we get-that weak-CL[Co(ext(K))] = K .

We conclude with a slight generalization of the first theorem proved-

The Ryll-Nordzewski Fixed point theorem.

2.14 Theorem: [1; theorem 3.7].

Let (E,J) be a locally convex separable topological vector space.
Let JZ be a second locally convex, hausdorff topology on E , such that
J is determined by lower Jz—semicontinuous pseudo-norms p, on E .
Let Q€ E be non—empty; convex and Jz—compact. Let S be a semigroup
of Jz—continuous affine maps of Q into itself, such that S is J-
noncontracting on Q . Then S has a common fixed point in Q .

outline of proof: S is J-noncontracting implies that for every distinct

pair =x,y € Q , there is a J-continuous pseudo-norm p on E such that

$nf'{p(Tx - Ty)} > 0 (prosition 1.4). Since J is determined by a set
TeS

'{pa} of lower Jz—semicontinuous pseudo-norms, for each distinct x,y. p
itself can be chosen to be lower Jz—semicontinuous. Indeed a Jl—O neigh-
bourhood B which is Jz—closed can be found within the p-unit ball
= {x: p(x)lf_l}) . This is true since the bu unit balls are a local

base for Jl and each is Jz—closed. is then Jl—continuous, lower

Mg
Jz—semicontinuous, and since p E-HB s inf{uB(TX - Ty): T € S}
> inf{p(Tx - Ty): T € S} >0 .

If J2 = Jw , theorem 2.14 becomes theorem 1.5 with additional

hypothesis that (E,J) is separable. In the present more general form,

the added hypothesis is required since the chipping lemma to theorem 1.5
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requires that the set K = J—CK[Cb{TX : T € S})] be contained in a J-
0
separable set.  Consequently this theorem can be proved by the same

method as theorem 1.5 with proposition 1.14 replacing the chipping lemma

1.13.
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