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ABSTRACT

In this thesis, we discuss the problem of .estimating a
characteristic function and its derivatives. We obtain estimates which
are consistent and asympototically normal, and uniformly comsistent

with probability one.

The methods employed here are similar to the methods used in
- estimating a probability density function and its derivatives (see [7],

[9] for references).
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0. INTRODUCTION.

.Suppose given a sequence of independent identically distributed

o

(iid) random variables Xl, XZ’ ceey Xn’ «+« with a common characteristic

function ¢(t).-

The problém of estimating a characteristic function is interesting.
for.many reasons. bne possible application is to determine the components
“of a corresponding'mixture diStriﬁutibn function (see [4] ). A In this
thesis, we conmstruct an estiﬁate ¢n(t) of ¢(t), which is based on the
random sample X,, XZ’ ey Xh’ such that ¢n(t) will have some nice
':aéymtotic properties, and converges uniformly to ¢ (t) with probébility

- one.

:In'addition, if E[szq is finite for some integer q > 0, we
are able to obtain an.estimate' ¢§p)(t), the estimate of the p-th
. derivative of ' ¢(t) for O < p < g, -such that ¢§p)(t) will have the
WasymptotiC’properties parallel to those of ¢n(t). Furthermore, if
sup EnIX[q =M for some éons£ant M, thén for 0 <p < q,' we are able
n

‘to .show that’ ¢§p)(t) converges uniformly to ¢(p)(t) with probability

-one .



I. THE ESTIMATE ¢n(t) OF ¢(t).

Let X,, X,, ++., X be iid as the random variable X whose
1° 72 n o

distribution F(x) = P[X < x] 1is absolutely continuous. That is
X
F(x) = J » f(u) du

with the density f(x). Let ¢(t) be the characteristic function of
i F(x). Then each estimate ¢n(t) of ¢(t), based on the empirical data,

will be in the form of

. itx.
(1.1) » ¢n(t)_= fin,g‘ fn(x) dx ,
where
1 n x - X,
fn(x) = h le k( _—_lh ] ’

is the kernel estimate of f(x) as given in [8], and h = h(n) is a
function of the number n which converges to zero as n + < j; k(y) is
some symmetric density function, such that the moments of all orders exist.

(1.1) can also be expressed as

_ 1 n_' it r x - X,

(1.2) ¢ () == ¥ r e X_k[.—l] dx
_ - o j=1 J = 5 h
n itX, |
(R L ey
j= =
1 n - iEX.
o 3=l .

where



® ith
et ™Y k(y) dy

—C0

(1.3) |  p(th) = J

Since k(y). is some symmetric demsity function, then by definition, Y (th)

is a characteristic function, and is real and even.

I—l& Asymptotic Unbiasedness of ¢n(t)

'¢n(t) would be unbiased if E¢n(t) were equal to é(t). But

a.zy E¢_(t) = p(th) j e f(x) dx

p(th) 6 (t) ,

and y(th) equals one only when (th) = 0, however as n -« , (th) - 0,

5D w(th)-+ P(0) = 1. It follows immediately that

limit B¢ (t) = ¢(t) limit y(th) = ¢(£)y(0) = ¢(t)

n-e n->o

Hence, ¢n(t) is asymptotically unbiased as n >+« and h =+ 0 .

I-2. Quadratic Consistency.

The mean square error of ¢_(t) converges to zero as n > « ,
: n

.and h -+ 0 . In notation,
@.s) Elo () - o(&)]> > 0 as m>=, h->0.

- or {1.5) can be rewritten as
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2

(1.6)  Ele (6) - ¢(0)|? = E[Re(s_ (1) = o(6))1% + ElInm(s_(t) = $())]

Var[Res_(t)] + [b(Res (£))1% + Var[Imp_(t)]

+ [b(Imp ()17

Var[¢ (t)] + lb[¢n(t)]|?.,

Qhere Var[¢n(t)] is the'variancé of ¢n(t); and b[¢n(t)] =

E¢n(t) - ¢(t) is the bias of ¢n(t). The quadratic consistency can be
shown if Var[¢ (t)] and lb[¢n(t)]|2 vanish as n + and h - 0. But -
Ib[¢n(f)]|2 = IE¢A(t) - ¢(t)|2 = |y(th) - 1|2]¢(t)|2 +0 as n > and
“yp(th) » ¢(0) = 1. It remains to sﬁow that the variance of ¢n(t) vanishes
as n > e ,. As we know any.complex random variable, say Z = U + iV, is

‘such that its expectation and variance can be put in the following forms :

EfZ]) = E[U] + iE[V] ,

Var[Z] = Var[U] + Var[V] ,
where U and V are the real and the imaginary parts of Z .

Observe that

1 B X 1-r
1.7 ¢n(t) = [H jzl e ]w(th) = (H jZl(cosAth + i sin th)]w(th) .
Hence
- ' 2 - ;
(1.8) . Var[¢n(t)] =1 (;h)] { Var(cos tX) + Var(sin tX) } .

Since c0328 = %(1 + cos 28) and v sin29 =-%(l - cos 28), it



follows that

E{cosztx} = %{1 + E(cos 2tX)} = %{1 + Redp (2t)} ,
and'

e 2 1 1,

E{sin"tX} = E{l - E(cos 2tX)} = E{l - Rep(2t)} 3
and siﬁce sin B cos 6 = %-sin 20 , it follows that,

E{sin tX cos tX} = %{E sin ZtX} = %-Im¢(2t)

From above computations, one gets

Var{cos tX} = 3 {1 + Rep(2t)} - {Res(£)}” ,
€179)  Var{sin X} = 7 {1 - Reg(26)} - (Imp(e)¥? ,

‘Cov { cos tX, sin tX } = %-Im¢(2t) = [Red (t)][Im¢ ()]

It follows immediately that (1.8) can be replaéed by
- . - 2 .
@100 varls (0] - B (repe)? - (a1 )

2
- Lp(eh)] {1 _ Wt),z}

Since y(th) - 1, as n - ®~3 it follows from (1.10) that Var[¢n(t)] >0

a n > «°

Meanwhile we know that, for any given real random variable Y
‘with absolutely continuous distribution, - E[Yz] '>‘{E[Y]}2 ‘when

Var[Y] > 0 . Simiiarly, when t # O,”qnd Var[cos tX] > 0,



Var[sin tX] > 0 , one gets

lo(e) |2

" [E(cos tX)]2 + [E(sin tX)]2

A

E[costi] + E[sinti] =1.
Then“it follows that

(.11) | 1

.V'

varfe ()] > 0

From above, we know that the variance of ¢n(t) satisfies
n Var[¢;(t)] > {1 - [¢(t)|2} , for t#0 as n->® ; but for t =0,

¢_(0) =1 and Var[¢_(0)] 0 .

I-3. Asymptotic Normality of. ¢n(t)

: From (1.9) one éees that Var[Ré¢n(t)] # Var[Im¢n(t)], and
Cov[Re¢n(t), Im¢n(t)] # 0. It follows that '¢ﬁ(t) is not distributed
according to the special kind of the univariate complex normal distribution
bf R.A. Wooding [11]. However, since- |¢#(t)| <1, |Re¢n(t)| <1 and
.[Im¢n(t)| <1, one may expect that Re¢n(t) and Im¢n(t) will be

asymptotically bivariately normally distributed.

‘Consider ~¢n(t) as an average of enl, 6n2, ceesy enn iid

complex random variables with common distribution. In notation, one writes

8=

a.12 s () == ) 8. ,
o . -n j=l nj .
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‘ itX, ‘ '
where -~ 6 , = 6, = y(th)e 3= p(th) {cos tX, + 1 sin tX.} , the
. n3 J . v ] J
univariate complex random variable, is considered as a bivariate random
_vector>in RZ.' One form of the k-variate central limit theorem is stated
in S.S. Wilks [10],as follows : " Suppose (le, ij, cees ij; j=1, 2,

<.y, n) 1is a sample of size n from a k-variate distribution having

finite means Uy 'i=1, 2, ..., k, and (positive definite) covariance

‘matrix I[cimll, i, m= 1; 2, ..,,'k.;“ ....... , then
—— ‘—— - .b 0‘
‘»(Xl’ ey Xk) ~ N{{pi}, | —iﬂ ]'f" ‘>We apply this result to the case
k = 2 with sample means,
7 D 1 ‘n e
. --Re¢n(t) = H,z Reenj = ?1- 'z .[w(th)COS th] s
. j= . J=1A
and
Imp (1) = = Z Imé . =3 2 [¢(th)sin £X,]
j= j=1 _
Let
-w(th)ul = E[yp(th)cos tX] ='1p(th)Re¢(t) s '
l‘-q;(t;h)uz = E[{¢(th)sin tX] =

Y(th)Im¢(t) ,

-be the expected means, which aré’both bounded by one respecfively. Let

.- [9Cen) 1%, = Var[y(th)cos tx]

[v(th)1? {%tl + Rep(26)] = [Rep(t)]? } :



- o

| [xp(ch)]'zozz_='Var[¢'(th)siﬁ' tX]
= [w(m)? { {1 - Rep(26)] = [Imp(1)]° } :
[¢(th)]202i2= Cov[y(th)cos tX, P (th)sin tX]

[v(th)1? {-% Tmp (2t) - [Re (£)] [Im(t)] }

(e 1%,

be the variances and .the covariance of [Rep (t)] and [Imd_(t)]. It is
: n n .

~clear that all of o0y, 0,, and Ogys Oqp 3TE bounded at most by 2 ,
: °11 . %12 .
-and that det ) 1 > 0 . The mean vectors and the covariance matrix
%21 922 |

will have limits

g, YlEW) > (g, uy)
and
. r o g ) ' g (0]
[w(th)]z{ 11 12] . l[ 11 12]
- n n )
%21 Y22 ‘

as n->» , y(th) -1.

2 4
w_(tn)aim

it fdllowé that [Re¢n(t), Im¢n(t)} ~ N[{w(th)ui},-“ o

)

«for i, m =1, 2. .Since y(th) is just a number for any constant t,

and Y(th) »1 as n -+« , so ¢n(t) “is asymptotically normal.



I-4, Limits of the Bias and the Mean Square Error.

(a) The bias of ¢n(t)_ satisfies

iy blo_(01] = lu(en) - 1]]s(0)] .

This expression shows that the bias of ¢n(t) depends on thé properties of
wtth) ‘which are in turn based on the function k(y) and h.. Since w(thj
is real and even, J{w(th) - 1} is alwayé real and negative for £ £0 ,
and zero as n > and h > 0 . Suppose k(y) has moments of all orders,
uthen the odd moments of k(y) are zero, since Kk(y) is symmetrically
distributed.’ Hence, for any t held constant, and n sufficiently large,

we can put- P(th) in the following form :

o
-m

2 @em™ + o(ew ,  as (th) » 0,

- (1.14) p(th) = ¥
m=0

where @ is the moment of order m of k(y), and is assumed to be

finite. 1If and a, are finite and also non-zero, (1.14) can be

%2
written as

%

(1.15) ‘ - p(th) = 1 - 5 (th)2 + o(th)2 s sese as h >0,

since t is constant, (th) > 0 implies h -+ 0 . It follows that
@y, 2 o

(1.16) |b[¢n(t)]| = 5 (th) l$(t)| + o(th)", as (th) -0,

or as (th) >0,

| | o
plog1l/em? > 2 [so] -
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The expréssion (1.16).shows that for any real ¢t # O, the bias Of, ¢n(t),
1b[¢n(t)]l -0 at the same rate as 'hz -~ 0 . In fact, the expression
(1.16) can still be‘true,:even'whén t is not'held constant, but only
,required‘to.increase slowly enouéh that (th) stays small or approaches

-Zero as n > ®

~ But even if t increases so fast that (th) becomes large or
-approaches infinity as n > s the bias of. ¢n(t) still vanishes as

n >« and Itl > o , Given any £ > 0, there exists a Ts so large that

()] <-§ , and lb[¢n(t)]| = |yp(th) - 1||e(t)] < 2-%—= € , whenever
It Z_Té . Hence it follows that 1imit[b[¢n(t)]| = 0 uniformly for all
, ' : n-e .
real t .
(b) Limits for the mean square‘erfor;
“The mean square error satisfies
. _ )
(1.17) . Q= E[¢ (1) - ¢(D)]

Var[s ()] + [bls (0)]]

L@ a - 1o + e - 12w |

When t is held coﬁstant, one can, with the proper choice of y(th),

s e : . 9 .
minimize the mean square error. Setting Q9 0, that is

T
2 2 Y
S p(en) L = fo(e) [} + 2 fu(eh) - 1Mo [T =0 .

One easily gets
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lecey|?
1 ‘ 2
ira-dlw]

bpin(ER) =

Formally, just lobking at the last equation, one would say that wmin(th)

R . 2 1 2
is not defined when |¢(t)| =1 -a" However, wmin(th) = |¢(t)| when

n = 1. " Since 1 E = < 0 for n=2, 3, ..., while O §_I¢(t)|2 <1,

the exceptional case with |¢(t)[2 =

can not arise when n > 1.
l-n
Thus we see that wmin(th) is well defined for every whole number n .

It is not difficult to check that wmin(th) is indeed a characteristic

function - (see {3]). Then

. - 2
1- lo(o)]
1 -y . (th) =
o b - D e |?

" For the fixed t # 0 and n, a minimized mean square error, Qmin’ can

be obtained. It is

Qin = 7 V(WL - 007 + Uy (th) - 1% ]¢(0) |

2, 2 ‘ 2
_ 6 ()| “{1 - JQ(C)|2} R b o) [T} as n > .,
1+ (a-1|¢(0)]

n

I-5. Uniform Consistency of ¢n(t) with Probability One.

To prove this uniform consistency of ¢n(t), it is enough to

show that

limit suprémum_|¢n(t) - ¢(t)| = 0
n->o -0 t<o o
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with probability one.

An approximation Fn(x) of F(x), based on the empirical data,

is given in [5]. It is
>4
Fn(x) = J_m fn(u) du ,

where fn(x) is the kernel estimate of f(x) as given in [8]. Since
k(y) is assumed to be a density function, Fn(x) is some distribution

function; din fact, Fn(x) is absolutely continuous.

Assume f(x) = F'(x) and vfn(x) = F;(x) are defined for every
x. Then from E.A. Nadaraya [5], it follows that if £(x) is uniformly

) . —ynhz
continuous, if the sequence h :is such -that-the -series Ere ' “is
finite for~évery positive value of vy, and if k(y) is a function of
bounded variation over (-, =), then

limit supremum |fn(x) - f(x)l = 0
N —00 <L <EO

with probability one. .Hence limit fﬂ(x) = f(x) for every x .
n-o X

The sequence Fn(x) of the absolutely continuous distributions
-converges uniformly to F(x) for all x as n -+ and h >0 (see [4]).
Hence, the sequence: {¢n(t)} of the corresponding characteristic functions

~converges to ¢(t) for évery t. That is, 1limit ¢n(t) = ¢(t) for every

- n-o
t. Since F(x) is absolutely continuous, we know that limit ¢(t) =0 .
Similarly, we have 1limit ¢n(t) = 0 for every n. Moreover, for any real

| £]>e
t,
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|¢n(cj - ()] = lfm eitxfn(x) dx - Jm el e (x) dx
< J“ lfn(x) - f(x)| dx

" Since the last expression is independent of t, it follows that

(1.18) supremum l¢n(t) - ¢(t)| f'f lfn(x) - f(x)l dx

—o< <o

To see the uniform consistency of ¢n(t), we only have to show that

(1.18) » 0 as n->w and h -0 . Let

(£ -7 = max (0, £G0) - £ ),
and
{f - £} (x) = - min{0, £(x) - £ ()}
- Then
(EG) - £} = (£&) - £, = (£G) - £,01
(1.19)

£ - £ (x| = [£_ () - £(x0]

G - £ + () - £ ) .

Since f(x) and fn(x) are densities, we have

Jm £(x) dx =1  and Jm £ (x) dx = 1

for every n. It follows that
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fw -{f(x)‘— £ (0} dx - 0

= jm {fx) - fn(x)}+dx - fm {f(x) - fn(x)}'dx ,

and

(1.20) Jm {f(x) - fn(x)}+ dx = f” {f(x) - fn(x)}_ dx

Since '{f(x)_- fn(x)}+ < f(x), and limit fn(x) = f(x) for every x,
n-><°

then by the Lebesque Dominated Convergence Theorem, one-gets

(1.21) limit fm (£(x) - £ (x)} dx = Jw limit {£(x) - fn(x)}+dx -0 .
N> >y n -d =00 n->w :

From (1.20),

(1.22) limit [” @) - £ (x)} dx = limit Jw ) - fn(x)}+ax =0 .

n-o -0 n-><o 00

Substituting (1.19) in (1.18), we have

supremum|¢n(t) - ¢(t)| j_jm{f(x) - fn(x)}+ﬂx + [w>{f(x) - fn(x)}-dx .

—o< £ <o

From (1.21) and (1.22), we obtain finally that

0 < limit supremum|¢n(t) - ¢(t)|
. no® - < <o

< limit J“ {f(x) - fn(x)}+ax + limit J {f(x) - fn(x)}_dx =0 .

N n->o

This shows that the convergence is uniform with respect to t as n » « .

From [5], we know- -P{ limit supremum]fn(x) - f(x)] =0 } = 1. This

n->o -0 <K <o

indicates that the probability of getting exceptional random sequencés
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Xl(w), Xz(m), cens Xn(w), .o is zero. These exceptional sequencesAare'
the only ones for which it may not be true that

limit supremum |¢n(t) - ¢(t)1 =0 .

N> —c0 <t <o

Hence ¢n(t) »> ¢(t) wuniformly with probability one.

We obtain the following theorems.

Theorem 1.5.1. Suppose F(x) is absolutely continuous, and £f(x) is
uniformly continuous. If fn(x) converges uniformly to f£(x) with
probability one, then ¢n(t) converges uniformly to ¢(t), the charac-

teristic function of F(x), with probability one.

Theorem 1.5:2. Suppose $(t) and P(th) are ébsolutely integrable over
“(~~, ®), and for any & > O, _k(y) satisfies the Lipschitz condition of
order o (0 < a < 1), and that ¢n(t) converges uniformly to ¢(t) with
brobability one. Then fn(x) converges uniformly to f(x)? the uniform

continuous density of F(x), with probability one.

Proof : Since ¢(t) is absolutely integrable over (-», =), 'and F(x)

is absolutely continuous, then by the Inversion Theorem, the density

£(x) = z—ir N TON

where f£(x) 1is continuous everywhere. In fact, it is uniformly continuous.

To see this observe that we have, for any A >0, ¢ > 0,
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(1.23)  |£(xte) - f(x)l"iz—i-r le™T5¢ _ 1le(r)| at

< l.{ J“ |sin £%|I¢(t) dt + J |sin £%|[¢(t) dt } .
B IR [e]>a
~ For any ¢ > 0, we may choose’ c-‘sufficiently small, that
LJ |sin .tCH ACJ g
==]]e(t)|dt < 5= e ()] at <
Tleea P T e o
and choose A sufficiently large, that

_1_[' " |sin £5[[¢(0)]at <
ti> )

ERre.

_ loCe)|de < & .
" JItI>A 2

Hence £(x) 1is continuous, and since the bounds above are independent of

X, so it is also uniformly continuous.

“Similarly, ¢(th) is absolutely integrable over (—~, ®), so

k(y) = —2—71;r e 1Y yeen) dth)

or

It follows that

1 n x - X,
(1.24) fn(x) = h . k[ -—E——l }
. n itX,
-_-_2-11;r itx{%z e Jw(th)}dt
-0 j=1 :
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Since f(x) = F'(x) and. fn(x) = F;(x) are assumed to be defined every-

where,' for any A > 0, we may let

F(x +A) -~ F(x - A)

o , if A # 0,
w(x, B) = .
1| ~itx .
f(x) = E;‘Jm e é(t) dt , if A =03
and similarly,
Fn(x + A) - Fn(x - A) i oh 4o
ZA k ’ ]
wn(x, A) =

' _ 1 -itx . _
fn(x) =5 fiw e ¢n(t)dt , if A=0.

Now, for any reai X, we can write
(1.25) [£ (=) - £(0)|

< E G = (x, ]+ Jo_Gx, ) - wGx, 8] + ok, &) - £ .

By the Mean Value Theorem, w(x, A) = £(&), wn(x, A) = fn(g) with
X - A <& <x+ A . There is strict inequality if A # 0. Consider the

.first term on the right side of (1.25), for A # 0,

(1.26) £ ) = w_(x, 0] = |£_(x) - £ (2)]

S ALEIELL

By hypothesis k(y) € Lip(a), O < o <1, that is, for ¢ > 0,
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supremum lk(y") - k(M| j_LGa ,

-@0<y<°° .
ly'-y|<s
, » x - X,
for some constant L. Now, we have y ='__T;_dl . Then
x - X, - X,
J_g il x84
h “h h —h °
Let § = %-. Then (1.26) is not greater than
1 n x - X, £ - X
- oh 2 supremum l k[-——~—4l] k[-————dl] ‘
.= h h
j=1 x-X,
—oo<h o0
. n o o
s L (R) - =]
< = ) Ll ¢ = L .
nh.j=1 h L hl+0L
| ‘ .,m“t. K
Let . §% = o(h) as n > , it is clear that L[ 1 ] >0 as
: h +o

n >,

For any ¢ > 0, there exists an integer N1 > 0 such that, for

n > Nl" one has, for A # 0, .lfn(x) - wn(x, A)l < ¢/3 . We assume that

¢n(t) > (L) vuniformly for all t with probability one as n =+« . By
the continuity theorem, it follows that 'Fn(x) > F(x) uniformly as n > =,

Given € > 0, there exists an integer N, > 0 not dependent on 'x such

2

that [Fn(x) - F(x)| < €/6 whenever n >N One takes N = mak{Nl, N, 1},

2° 2

and for m > N, one has, for A # 0 that

lu_(x, 8) - w(x, 8)]

Fae +8) = F = 8) g 40) = Fx = 8)
2A 2A
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F(x+8) - F(x + 4) F_(x = 8) - F(x - 4)
24 " ~2a

| A

E%-{ ‘Fn(# +A) - F(x + A)! + [Fn(x - A) - F(x - A)I }

-+

wim

£
6

/oxlm

For the last term of (1.25) Iw(x, A) - f(x)l < ef/3 , when A

is chosen

small enough. Hence (1.25) is lfn(x) —‘f(x)l <e/3+e/3+e/3=¢,

and fn(x) > f(x) as n >~ . We obtain that
o,(t) > ¢(t) ==> f (x) » £(x) as n>® .

Thus limit fn(x) = f(x). It follows that
S )

il
——
é 8
©
I,
3
ct
oM
-
~~
t
NI
[a N
(nd

.. 1 ~itx
limit 5 Jm e ¢n(t) dt 5
n-ee - -0 :

for every x. It.certainly holds for x = 0, so

limit-é—}rr ¢ (v) dt = r o(t) dt
n->« . ¢ =0 —c0

or

- U O |
(1.‘27) | limit T f:o {¢>n(t) - ¢(t)} dt = 0.

n-o®.

 Since ¢, (t) ~and ¢(t) are both complex, from (1.27) one gets

1
o

A4mit ﬁ—r Re{o, () - 6(8)} dt
. Do -

"
()

limit Z_TITF Im{¢n(t) - ¢(£)} dt
n-»o © d =0 )
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For any € > 0, and n > N, some constant N ,

l -2%[: Re{¢_(t) - ¢(t)} dt | < % ,
e Im{ | }dae | < £
27w - m ¢n(t) - ¢ (1) t 2

As the result of Riemann;Lebesque's Lemma, we know limit £f(x) = 0 .
X |

For any real x ,

-itx

£, () - £(x)] = !711;[ e " {p (£) - ¢(£)} dt

1311; r; ENG) - o(t)| dt

fa~

5% j:’ |~Ré{¢n(t) - ¢(t)}] -at

+2_11r [m |Im{_(t) - ¢(t)}] dt .

The last expression is independent of x , so

(1.28) supremum |£_(x) - £(x)]

< _2_3[_- r_m IRé{¢n(t)" s(£)}] dt +2—i-J_m ]Im{cbn(t) - o(t)}] dt .

Let

BN () = (Relo(®) - o (D1},  R(D

fl

| {Re[(t) = ¢ (D)1}
(1.29)

I = {mle() - o, (1Y, 1_(0)

A{Imfe(t) - 9, (D)1} .
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It follows immediately that

o+
Re[¢(t) - ¢ ()] = R (©)
[Relé(t) = o (O1] = R ()
~ (1.30) ' ; |
| Im{e(e) - ¢ (©)] = I (®)
n ~m
I}m[¢(t)'— o (B)I] = I:(t)

- From (1.29) and (1.30), one has, for any

constant "N, that

I 5x r_w Rel¢(t) = ¢, ()] dt ‘

1

1 + v -
= !2“ Jjvah(t) dt - 7 J_m Rn(t) dt <

. or

€

+

-+

R;(t) s

R;(t) >

'I;(t) ’

I_(t)

0

and n > N,

o N|m

1 - 1 + €
0 < 5 jim Rn(t) dt < 7 jim Rn(t) dt + 5

‘Similarly for the imaginary part, one gets

S L + £
0 < oy Jim In(t) dat < 7 fjm In(t) dt + 5 s

" -hence (1.28) can be put ‘into the form

some
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- supremum [fn(X) - f(_X)l
-0 <KL

< ’i%{ [w.R:(t) dt + J: R;(t) dt + J: I:(t> dt
+f:° I;(t) dt }
1 + +
< = { r—m Rn(t) dt + r_m In(t) dt } + € ,

" where . R;:(t) < Rep(t) and I:(t) < Im¢(t) for all t , By the

Lebesque Dominated Convergence Theorem
S+
r R (t) dt = 0 and r I+(t) dt - 0
— B ‘ - I
“~as "n > '« , “Hence

limit supvremum lf x) - f(-x)l =0
n->e =00 LYK <00 n

b

and this convergence is with probability one.
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II. THE ESTIMATE ¢§P)(c) ‘OF ¢(P)(t).

In this section, we assume that E|X|2q is finite for some
positive integer q. If r 1is any positive integer less than or equal to
2q, then ElXIr exists and is also finite, the characteristic function
.is r times differéntiable. Let 0 < p < q, then thé p-th derivative‘

of ¢(t), denoted by ¢(P)(t), " can be put into the following form :

P ® i
3P - ‘d—p $(t) = [ (1P e £ ax .

dt

(p)(t)

Naturally, we may choose the estimate of ¢ as

2.1 o) - Jm (1x)P ™ £ (x) ax.
- n - n
J 1 n ¢ x - X, v
where f (x) = — E k is the kernel estimate given in [8];
n - nh j=1 h , o

k(y) is some.symmetric density which is assumed to have moments of all
orders. This ensures that Y(th) is any number of times differentiable.

. n itX,
Hence, since ¢n(t) = w(th)[ %- Z e J ], (2.1) can be also replaced by
. . =1

" the following expression
(2.2) (P)(t) = 1 E (ix)p eitx k f_:_fj. dx
. . ¢.n ‘ nh i1 J = h s

n P . 1tX,
n =1 2‘:0 J

n r-1 B - itX,
=1 =

o=

: 1tX,
~ P(th) (in)p e I,

+
' 1

-1

([ ane B}

3
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where O < ppi q,' and
-2 ® . .p-% _ith
o) () = J AP et k(y) ay .

~ For any real t,

: . ) 0 if (p - 2) _is odd,

finite  if (p - &) 1is even,
as n->+x , h->0.

It follows that, as n » = and h->0,

n ' P _
(L3 { nPy®) 0y + [ ]hp‘zw(l"z)(oxix.)2 + ol
?o=1 La. ' 3

(P - itX,
+ [ ]hzxp(z)(O)(iX.)p_2 }e J
p-2 J

itX,
(iXJ.)P e J s ‘'when p 1is even ;
(2.3) 1

s} _ _ - p _ _
% y {hp lw(P 1)(0)(ixj) + { » ]hp 3¢(p 3)(0)(iX.)3 + ...
=] 3 J . .

P itX,
+ [ ]hzw(z) (0) (ix.)P~2 }e j
p-2 o

itX,
(in)p e 7 . when p is odd.

1 n
+3 Z

It doesn't matter whéther p 1is even or'odd, one can see that the first

partial sum in (2.2) becomes small and approaches zero as n - ® - and h - 0.
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itX, -
_(in)p e J as n >

= I
e 1-2

However, the last term in (2.2) -
: _ 521
Hence, when n is very large, one can simply approximate (2.2) by

itX,

itX, ,
(in)p e 4

{'% Z w(th)(ixj)pe J } , which approaches to
j=1 :

=N
o~

j=1

as n > o and yY(th) -1 .

IT-1. Assymptotic Unbiasedness.

itX, .
w(th)(in)p e J . Since the

: . n
Let %ip)(t) i-% le
_ expectations of all terms in (2.2) are finitg, the term involving -hp—z
gbes to zéro af the same rate as hp—l' does. The term of h® or 1 is
“the onme ‘involved in calculating 'E[wﬁp)(ff], 'Vaf{¢ﬁp)(t)] and etc.
$£p)(t) is the term of h% in (2.2). For the asymptotic properties, one

may just study those of ¢§p)(t) 3 ¢§p)(t) should have the same asymptotic

.properties as $£p)(t), since
2.6)  E {¢f}’)<t) - 4@ (t)} - & {¢ff’)<t) - éflp)(w}
+E {J»ff”(c) - ¢(")<t)}

| o ~ p-1 p
where E {¢§P)(t) - ¢£p)(t)} = 7 [ ] I I A )
2= 0 % & .

Sincee n+» , h->0, and |¢<2)(t)| _§_E|X[2 is finite, = and since
¢(p—2)(th) 5 11,(9-’1)'(10) :_[w(P‘z)(o)| is finite, for 2=0,1, ..., p,

it follows immediately‘that E {¢ép)(t) - $§p)(t)} -+ 0 és n->o,
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: itX, (p)
w<th>(ixj)P e - 4P (t)}

o}

n 3 1

(2.5) E {é(P’<t) -'¢(p)<t)}

{ o(th) - 1 } sy > 0,

1 (in fact {y(th) - 1} = 0?)) .

" since, as n - =, IW(th)'+ v(0)
Hence E {éép)(t)} l+’ ¢(p)(t) "as n—>® . TFrom (2.5), we know that

¢£P)(t) is also asymptotically unbiased.

II-2. Quadratic Consisteﬁcy;’ :

~ The mean square error of $§p)(t) can be written as

2o EiPm® - P m|% = varli® 1+ piP 1%,

 where lb1e® 1] = [E3P )1 - 6@ (6)]  ana

. 2 .
var3®P (01 = L varpPet™ |
Since E'{%ép)(t) - ¢(p)(t) >0 as n >® , as shown above,

be® @i = 2P @1 - 6P @] > 0 as now.

itX
} .

- For Var[éip)(t)]v, we need to compute the variance of {(iX)p e

»*(a) When p is even,

Re{ (1X)° éitx} = (_1)p/2 xP cos tX ,
(2.7) , - o
itX}

.Iﬁ{(iX)p-e = (_1)p/2 XP sin tX H
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(b) When p 1is odd,
ptl
2

1tX} = (-1) xP sin tX s

Re{ (iX)? e

(2.8) p-1

(-1) 2 %P cos tX .

In{ (ix)P ™)
Hence in case (a), where p > 0 1is even,

re 6P (0) = (1P? 0P cos tx}

(2.9) m P (t) = 1)/ E(xP sin tx} ,

i

Var[(iX)p e tX] = Var[Xp cos tX] + Var[Xp sin tX] ;

Win,£a8£v(b)5~mhene Jp .:is .odd,
Re 6 PY(t) = (-1) 2 E(xP sin tx} ,
Im ¢(p)(t) = (-1) E{xP cos tXx} ,

Var[(iX)p eltx] = (—1)p+1 Var[Xp sin tX] + (_1)p—l Var[Xp cos tX].

Sincer'(ﬁ +1) and (p - 1) are both even, if p is odd,
(2.10) - Var[(iX)p eltX] = Var[Xp sin tX] + Var[Xpbcos tX]

)p eitx} is the

From (2.9) and (2.10), one sees that the vériance of {(iX

same in either cases (p even or odd). For p < q, we have



E(X%® cos’tx) = %{ £ 2P + —%— re ¢ (%P) (21) } ,
EX 25 °

v B sin’ty} = %{ B0 - 55 re o P 2e) } ;
& 2

,E{kZPAsi;ltX cos tX} = 22;+1.1m 6 (2P oy |
Thus, |
Var[gP cos tX] = % {E(X)2p + ;%5 Re ¢(2P)(2t)‘} - {ge ¢(?)(t)}2_,
(2.11) | Var [P j.sin tX] = %{ B %P - _2%’ Re ¢ ZP) (2¢) } - {Im ¢(p)(t)}2 RN
-Cov[xp coé'tX; %P sin tX] = —Y— Im ¢(2p)(2t)

-re 4P () P (o) .
:From tﬁe above compu;ations, we obtain that
Cean verlao® o = {ax(® - pP o2},
wﬁere ElXIzP and l¢(p)(t)lz .are both finite.

. .The variance of $§p)(t) >

o, 2 ‘ . 2
) éth? var[(ix)? it¥) - ¥1Cth) { E|Xl2p,- l¢(p)(t)|2 }

n

- approaches zero as n > and {(th) > ¢(0) 1. It follows that
)

;E|$ip)(t) - ¢(p)(t)!2 + 0 iaS' n+e, so ¢.0/(t) is quadractically"

~consistent.
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To see ¢(p) (t) is quadractically consistent, we need to show

o - 4P @|* >0 as nse . Now,

ean ElPo - s (0)1% < el6P vy - §P (0]

+ e3P (0 - 6@ (0]

~ and

Here we ’have .
_ ‘ n p-l (p _ _ itX,
P - Py =1 3 { ) [ ] Py P78 ey (ix )Pe },
=1 J
Then

BP0 - P o) - 20 [ ] w274 P2 1y s M () = o)
- R= 2

(2.14) 6P (1) - 3P (03] = o) ,

as n->® and h->0.

For the variance of [¢I(1p)(t) - (51(111) ()] , we have

) . . n p_l p _ _
(2.1 var[pP(0) - §P (0] = 5 Var[ 7Y [ ]hp 2, @ 2)(th)(ixj)£

n j=1 2=0 2
) itX,
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Since X Xn are independent identically distributed, (2.14)

10 Xps eees

can be written as

!
I
<
W]
H

o R |
var[p®P (0) - §P (] = T ‘[. 5 [ ]hp 2y P70 (eny (a3 T LR ]

o(hz) as n->« , h-> 0.

The exact calculations.will be given in the following section. II-3. As

a result,

P (0 - 3P (0]% = 00® as n>=, h>0.

Hence

EE® (o) - §@ o2 - e {m19% - 5P w01} + ot
; 0 as n->® and h >0 .

Clearly ¢§p)(t) ié also quadractically consistent.

II-3. Asymptotic Normality of ¢(p)(t)

Consider

3P ()

Z . That is

Zn2’ " “pn

-distributed complex random variables, an,

itX,
= (in)pw(th)e J, for j=1, 2,

5(p)(t) =1 § "2 . , where Z . Z.
. ‘ =1 nj pJ J

~esssy'n .. Treat each complex random variable as a two dimensional random

vector, such as

as the average of the independent identically
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. P : _ .
D2 ¢ X y(th) cos tX,, X0 y(th) sin tx,), if p is even;

| P ~
and (1) 2 (_X§ w(th) sin th,—Xg ¥(th) cos tX,), if p is odd.

- Hence, in ‘the case, p 1is even,

wz(th)oll = wZ(th) Var[Xp cos tX] > o

11 °
2(thys.. = p2(th) Var[x® sin tX] |
v ¥ 022 =9 (t ar sin > 022 N
‘ 2 2 P P .
(2.16) . vy (th)o12 = 3 (th) Cov[X" cos tX, X sin tX] » Oyig >
wv(th) uy = ¥ (th) E{Xp cos tX} - Hy >
y(th) My =.Q(th)-E{Xp sin tX} > Uy as n > o .
In thé»case, p . is odd,
2en)s, . = z(th)rﬁ %P sin tX] -
9y Gy =¥ ar sin tX Tpgy
2(th)s.,, = y2(th) v [xP X]
¥ Gpy = ¥ ar cos tX] » 0,4 »
: | 2 A 2 P o . P
o (217 .y (th)o12 = (-1) ¢ (th) Cov[X" sin tX, X' cos tX] - ~T4q1 »
ptl - Cpl
W(th) i = -1 2 y(en) EGP sin X} > (1) C oy,
p-1 - p1
Cw(th) i, = (-1 % p(th) E(xP cos tx} > (-1) 2 as n oo .

1

Al; Mis Hgs Og9s Ogy ~and Gyp are f1n1te.- Then the covariance matrices,
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o o o o
2 11 12 1 12
_R_%EEl " -% _ - , when p is even;
a [s) o 022

21 22 21

" in the case, when p . is odd,

G g . o} -g
2 11 12 : 22 21
P (th) ' f\,l“- as n > o ,
n o o R o
12 11

21 22
Clearly ‘5§p)(t) is asymptoticaliylnormal.

Similarly, we consider ¢£p)(t)' as an average of the independent

.identically.distributed complgx variables, W ps Whos sees W such_as

p TS o
‘{ }hp’&w(p'gl4th)(ixj)%e 3
2

S.Ww_, .. ~where .w_, = §

Ly o1
~:‘¢n . ‘(t) ha n 1 nj nj | r_-_-O

SN

SN~y

for 3 =1, 2, ..., n. Ve want to show that ¢§p)(t) is also asymptotically
normal. TFor each wnj is considered in a two-dimensional random vector,
such as (Re w_,, Im w_.)

. nj - nj

The expectations of Re ¢ép)(t) and Im ¢ip)(t), when p is even-

n .
E{Re ¢§P)(t)} =-E{% .2 Re mnj} = E{Re w_} = 5 a, Re s My,
» ‘ j=1 2=0
- (2.18) ‘ o
D)y 17 . 3 (2)
_ E{Im ) (t)} = E{— z Im w .} = E{Im w_} = Z a, Im ¢ (v) ,
. = B R =
[P -2, (-0 D
where . a, = [ ]h P (th) , and ap = y(th)
: - | |

From (2.16), we can put
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o p-1
E az Re ¢(2)(t) = y(th)Re ¢(p)(t) + Z a, Re ¢
2=0 2=0
p-1 p-l p
and for ) a, Re ¢(2)(t) = Y [ _]hp-zw(p_z)(th)Re ¢(2)(t) = o(h)
' £=0 2=0 \ g

(z)(t)

as n->o , It follows immediately from (2.16) and (2.18) that, we have

E{ 5 )<t>} + o) ,

E{Re ¢§P)(t)}

E{Im ¢§p)(t)}

-and

E{I r(x )(t)} +om

as n - o . The variances of Re ¢ip)(t)-'and- Im ¢ip)(t) are

1
—.Nar [ v§ 0]
n 0=0 2L

i

JMan[Rew¢ip)Ct)]

P
Verltm ¢ P ()] = L var[ | av1,
| 220

g itX g itX

where U = Re(iX) e , and Vz Im(iX)"e for 2 =0,1, 2, ...

. § R - | P 2
~since [ aZUR] = zo aRUQ + 2 z z azamUZUm . [lz aQVQ} is

2=0

similar. It simply replaces U, Uy by VY,V . Now

I
9|H

| (®) 1y o
varlke *a ] 2=0 ~ 0<f<m<p o

-1 ,
1 2 |3 2

L r

S { a.p \ar[Up] + QZO a2 Yar[Ug]

+2 ) I aa Covlu,

0<f<m<p 2

U]

{ Y a Var[U ] + 2 Y Y aa Cov([U,, U ] }
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-where. ai Var[Up] = wz(th) Var[Xp cos tX] , and

p?l' o p?l. p - . 2

1 1 aa CovlU,, U]
0<2<m<p -

f PP g _ _
) [ ][ ]th )y =8 (enyy @™ (e Coviv,, U]
0<2<m<p L m ’ .

= o(h) o as n > ,
Finally, we have, as n + « ,

1

var[Rre ¢ (t)] =;{ o2 (th) var[xP. cos tX], + o(h) }

Var [Re &ép)(t)] + o(h) .

© Similarly, tﬁe variance of Im ¢§P)(t) is
Var{Im ¢§p)(t)] = Var[Im $§p)(t)] + o(h) .
For the covariance‘of ‘Re ¢§p)(t) and Im ¢ip)(t) .

covire o$P (6), Tm 4P (0)]

2 .
az COV[Ul"VQ] + 2 z z . alam Cov[Uz, Vm] }
_ _ 0<f<m<p .
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p-i 2 .
Z' al Cov[U , V ]

1 2
= — a C U v +
n'{_ P ov[ p’ p] 0 2

L

where

aﬁICov[Up, Vp] = wz(th) Cov[Xp cos tX, xP sin tX] ,

Lo o 2

I a Cov[U, V)] =oM%,
2=0 '

2 2 aa. COV[UR’ Vm] = o(h) as n->® ,
0<f<m<p .

'Ifﬁuwsmu,%‘p+w,
“Cov[Re P (0), m s P ()] = covire P (v), m $§P)(t)]'+ o(h).

-‘The covariance matrix for Re ¢ép)(t) and Im ¢§p)(t) is

2 | 911 %12 L. (%11 %12
L(th):om[ | ] . %[ e e

I1f p is odd, the covariance matrix is

{ 11 %12 ] | 922 921
[a¥)

as n >« ,

=R

N 1p2(th) + o(h)
np

-~ ~ - o

921 %22 12 11

~ *Since 5§P)(t) is’ asymptotically normal, so ¢£p)(t) is .
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II-4. Uniform Comsistency of '¢§p)(t) with Probability One.

The absolute moment of order' q of  F(x) is defined as
EIXIq = [” leq f(x) dx , for 'q >0 and is assumed to be finite. We

1Y

bapproximate‘ EIX]q by

(2.19)'. : Enlxlq = Jiw [x|4 dF_(x)

= Jiw lxlq fn(x) dx .

Assume that sup En|x[q =M <o , for some constant M . Since
_ . n o

Fn(x) > F(x) uniformly for all x as n >« , then according to a -

Theorem 4.52 in Chung's Book [1], for each r < q,

limit E_|x|¥ = £|%|¥ .
n>® n

In this section, we choose only p < q , then

(2.20) limit E_|X|P - E|x|P ,
ne .
or
(2.21) limit Im |x|P dF (x) = limit fw |x|P £ (x) ax
4 . UV I n VR S n |
= Jm |x|p dF(x) = j“ lxlp f(x) dx .

uniformly for all t with proba-

In order to see that ¢§p)(t) > ¢(p)(t)

bility one as n - w; we need to show that |x[p_fn(x) > !x|p f(x)
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uniformly for all x with probability one.

Let Elep =M ', and E |X Py  for every n 4, then,
-0 n n

limit Mn = Mb , for some non-zero constants 'Mo and Mn . Consider the
n-roc . )

density function

and its estimate

1 1f 1 ¢
8 = 7 xl? 5,00 - 2 )

s}
=]

They are continuous everywhere.

Let ‘1ifpwfzi) be uniformly continuous over (~~, =), and

lep k[ ——T;"“l } be of bounded variation over (-», =). Clearly, g(x)

is uniformly continuous. We claim the following

: x - X,
Lemma 2.4.1. Suppose lxlp k[-—jg——l } is of bounded variation over
“(-», »), and that lep'f(x) is uniformly continuous, and that the series

. @ 2
2 e—Ynh converges for every positive value of vy, then
n=1 ’ '

(2.22) - - limit supremum Ig x) - g(x)l =0,
. n->x , -0 <X <o n
with probability one.

Proof : With the above assumptions; the proof can be followed from a

theorem of E.A. Nadaraya [6] .



- 38 -

Now, with limit Mn = Mo , one can easily obtain that

e
(2.23) limit supremum lxlplf (x) - fx)| =0,
_ n-eo —00 <K <o : n :

"with probability one.

.Theorem 2.4.1. Suppdse each Fn(x) and F(x) are absolutely continuous.

Then, for 0 < p < q , limit supremum lxlplfn(x) - f(x)| = 0 with
N —0 <K <o :
- e v e (p) _ . _ .
probability one implies - limit supremum |¢ () ¢ (t)l = 0 with
. ' now —c0 <K <0 no.

probability one.

Proof : .For any real ¢t, we have

1620 - 4@ (0] - Um M FlE 0 - £ |x|P ax

| A

Jw |x[Pl£ ) - £(x)| dx ,

-0

.this expression on the right is independent of t, so

- (2.24) suprémum_|¢§p)(t) - ¢(p)(t)| i_fw |x]p|fn(x) - f(x)| dx .

—o< t <o

<

We use the same method as given in Section I. Let

+ P/ -
I_)n(X)_= {]x[ (f(x) - fn(X))} >

D () = {lep (£(x) - fn(X))} .
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Clearly, D:(x).i |x|p f(x) for every x . By Lebesque's Dominated
Convergence Theorem, we have
+
. limit f» D' (x) dx = 0 ,
n->° —oo.n
and by (2.21)

limit f“ lxlp{f(x) - fn(x)} dx = 0 |

n->e

='1imit fim‘{D:v— D;}(x) dx .

no>®
. + .. -
Hence 11m1t_[w D (x) dx = limit f” D (x) dx =0 .
o Jeo T o e D

‘fFinally (2324) can be put as

' supreﬁum |¢£p)(t) - ¢(p)(t)|
~00 < K <00 .

< Jm |xlp|fn(x) - f(x)l dx

< ij D:(x) dx +v[im D;(x) dx > O as n > >,

This shows that the convergence is uniform for all t, and furthermore, it

is with probability one as n > = .
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