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~ INTRODUCTION

In the first chapter we give a proof of the famous Lefschetz - Hopf

Fixed Poinf.Theorem. In the second chapter we use this theorem'to show

that various examples of familiar manifolds h#ye the fixed point property.
We also give examples of manifolds which do not have the fixed point
-property and mention how manifolds with this property may be éonstructed.
In the third chapter we find the cohomology of the Grassman manifolds.

Due to the nature of these cohomology rings, it‘does_not appear likely at
first glance that one can prove using only thé Leféchetz - Hopf Fixed

Point Theorem, as is done with the projective spaces, that cértain'of

these manifolds have the fixed point propertye. Bachmann, Glover and O'Neill,
ﬁovever, have shown that for some Grassman manifolds ( See Théorem‘A.l ),
the endomorphism of the cohomology ring 1ndu¢éd by any self map of such a
manifold must take the first characteristic class to a times the first
characteristic class, the second characteristic class to a? the second
| charabteristig ¢class and so on. Such a self map is known as an Adams‘type
mapping. If a sgif map of an appropriate Grassman manifold is an Adams type
mapping, it is easy to show that it's Lefschetz - Hopf number is nom - zero
through the use of well known theorems ooﬁcerning the Euler'nuhber.of these
‘manifolds. We know from Theorem 4.1 that if n is even and greater than or
equal to ten that <I:G3’n has the fixed point property. O'Neill, in his

doctoral thesis, proved that CG has the fixed point property, and so

3,2
to prove that ¢1G3 has the fixed point property for all even n we only

3

 have to show that the remaining three manifolds have the fixed point
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property. In proving that.QlGB,L has the fixed point property, we also
prové that it has maximal cuplength and thus we are able to determine it's
Lusternik - Schnirelmann Category. ( See Page 39 ). It-should be hoted

. _that since .H*( (EGn,k;Z) has no torsion and there is the natural injection
of the integers into the rationals, the Lefschetz - Hopf number will be the
| same whether calculated with integral or rational coefficients and thus in
all the calculations of Chapter 5 we may assuﬁe that the variables involved
‘take their values only in the integers.
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1. The L - Hopf Fixed T
In the following chapter, let X be a connected n - dimensional manifold

and R a commutative ring. For more details see (1),

Locally Copgtant L ¢ Let j?‘: H,(X,X-U;R) —» H (X, X-x;R) be the
" homomorphism induced by the inclusion X-U — X-x for an open neighbourhood
U of a point x in X, Eirery neighbourhood W of x in X then contains a "
neighbourhood V of x such that for every y in V, jyr is an isomozphism. Hence

a generator \S of H (X,X-x;R) =R has a unique continuation in U,
X n

Def;‘ nitiong:
Given a subspace UCX, an element $§ € H (X,X-x;R) such that j‘;(ﬁ) generates

Hn(X,X-y;R) for each y€U is called a local R - orientation of X along U,
4n R - orientation system is a family of open subspaces U; which cover X

such that for each i there is a local R = orientation Sie HD(X,X-Ui;R) of

. * U, U
X along Uy and if x€U3 N\Uy,, then 53($4) = 5,3 (S51)s X 15 said to be

R -‘oriegtablg (orientable) if an R - orientation (Z - ori_entation) system
for X exists.. _ _ | -

Let X0 = {(x, \gx)t x€ X_,‘Sxé_ Hn(X,X-x;R)} and pt °—+ X be defined by
p(x, %x) = x, The sets (U,‘%U) = {(x,‘%x)ler,‘&x = j‘i(‘gu) form a base
for the topology on 2. x° 15 known as the R - orientation sheaf of X. For
any subspace ACX, a map s: A—» X such‘that ps = -inclusion is called a
gegtion‘over A. Let s(x) = (Sc,s'(x)) define a section over A. Then x|—
(x, \8'(x)) for some X in R aleo defines a section over A, Also, if"sl and

8, are sections over A, then x}—» (x, 8](x) + sb(x)) is a section over A,
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Therefore the set of é.ll sections over A is an R - module (" A. There is a
‘canonical homomorphism j,: Hp(X,X~A;R)—T" 4 defined by J A(S )x) =
(x,35(3)) for x in A,

Theorem 1,1: Suppose ACX is closed. Then

1) By (X,X-A;R) = 0 for q>n

ii) jA is a monomorphism and its image is the submodule Y‘CA of sections
over A with compact support. A section has coxﬁpact support if it agrees

- with the zero section outside some compact subset of A. In particular, if
A is compact, f‘cA = T4, and if X is compacttthen jAz _Hn(X;R)‘ip Xis

an isomorphism,

Corollary 1,2: Let X be a compact connected manifold and R an integral
domain. Then Hn(X;R) is isomorphic to R if X is R - orientable and O if not,

An R - orientation of a compact connected manifold X is therefore
determined by a generator of "X or a generator B of HA(X;R) which is called
the fundamental 'clagg of the R- orientation of X. The local R - orientation |
at each point x in X is then jﬁ(,@). ‘

Given an R - orientation of X, that is, given a global seétibn g1 X—» X0
such that for each x, s'(x) generates Hn(X,X-x;R), there exists the dual
sheaf XO*—-—v_X whose fibre ‘over a point x in X is the local cohomology
module Hn(X,X-x;R) and a global section s*: X—> XO i which is characterized
by (s*(x),s(x» = 1 for x in X. Suppose U is open in X. Denote by \—'?U the

module of all sections over U of the dual sheaf. If A\ is the diagonal of
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i 1 |
XxX, define U X: (X,X-x)—> (XXU,XXU = A) by U ¥(x') = (x',x), x' in

X, x in U

Theorem 1,3: Lét X be an R - oriented n - dimensional manifold, U an open
subspace. Then HI(XXU,XXU = A) = VO for all q{ n, and there is a unique
isomrphisn @ 1 HXXE,XXU = & )—» C*U such that B (o )(x) = (U ) ()
for all enn(xxu,xxu -4), xin U,

‘Corollary 1,4t - There is a unique cohomology class/J = )Jx in Hn(XXX,XxX -N)

such that for all x in X, s*(x) = H(X X)()1 ). This classly is called the

Thom clagg of the given orlentation,
Corollary 1,5: Suppose X is compact. Let B € Hn(X;R) be the fundamental

class of the R - orientation. Let H3(j): H(XXX,XXX = &) —> H}(XXX)
be the homomorphism induced by inclusion and let p' = HY( j')(/.l )e Then
/J'/ﬁ) = 1, -where / is the homology slant product.

Proof: For any x in X consider the commutative diagrams:

X
(X, X-x)— > (XXXXXX - A)
T iy [ j
i |
X X >~ XXX

Then 1 = (Hn(xix)/tl,s(x» = (Hn(xix)/u B (3B = (Hn(xixjx)ﬁ L) =
-(Hn(jix)/u By = </J',Hn(ix)/5> . However, Hn‘(ix)ﬁ) = BXx is a property
of the exterior homology product and </u', BX x) = @'45 ,x}, a property

of the homology slant product. (See appendix) Q.E.D.
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Before proceeding to the proof of the Lefschetz - Hopf Fixed Point Theorem,
we_need some additional facts about coﬁpact mani folds. |
1) A compact manifold can be embedded in a Euclidean space.

ii) A space is called an Absolute Neighbourhood Retract, (ANR), if for anj
normal space Y and a map f: B—X of é. closed subspace B of Y into the

- space X, 6xtends to a map of an open neighbourhood of B into X.lIt is
known (see for‘instance.(Z)) that every compact manifold'is an ANR ahd
consequently if a compact manifold is embedded in some Euclidean space, it
is the retract of some open neighbourhbdd (just apply the universal property
to B = the manifold snd £ = the identity).

Lemma 1.6: If X is a compact manifold and A ie the diagonal in XXX, then
there is an open neighbourhood V of A such that the identity map of V is

homotOpic in XXX to a retraction of V onto A .

Proof: [Embed X in RN, and.let U be an open neighbourhood having a retraction.
rt U—= X, Let € = the distance from X to K" - U, and let V be the € -
neighbourhood of A in XXX, Define F: XXXX I-——.——+-R.N by F(x,x',t) = (1 - t)x
+ tx'. Then F maps VXI into U Let G = r(Fl-VXI)_: VXI—>X go that
G(x,x',0) = r(x) = x, G(x,x',1) = x'. Define H: VX I—> XXX by

H(x,x',t) = (x,G(x,x',t)) which is the required homotopy. Q.E.D.

' Lemma ;,'1: CIf ¥ e BP(XXX,XXX - A ),'r\en‘i(-x), then H(§)(X¥ )u (nx 1) =
(5)(¥) (1%Xn) uhere j: XXX —» (XXX, XXX = A) is the inclusion.

" Proof: By Lemma 1.6, there is an open neighbourhood V. of A in XXX and a
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retraction r: V—> A\ such that ir~k, where it \A—> XXX and kst V—>~
XXX are inclusion maps. Denote the inclusion (V,V=-A) —> (XXX, XXX = A)
by k', and note thA'c k' is an excision. The following diagram is

commutatives

/ (X X) ———> 'YX LX X-A)

l #l(k) | iap*q(k')

\ﬁ(v) > }P*q(v_,v-a.) '

Let pj¢ XXX—>X, i = 1,2; be the projections. Then lxr\ = Ho(pl)(l) (O

H(AD)

'Hq(pz)(\'\) = Hq(pz)(\‘\) nxX1= }F(pl)(r\) Let pt A—— X be the common
restriction of p, and p, to the diagonal. From the diagrem we have

¥ u i, () = F7) P (piu)u\) = P -I}P(k')(X)
‘ Uﬂq(pr)(l\) for both i = 1,2, By the properties of the cup product we have

| P ) v Hq(pi)(r\) = Hp*'q( N 4V, Hq(pi)(\'\)) which proves the lemma. Q.E.D.

Leﬁa 1,8: The basic formula relating all the pr'oducts is:
S - e, S )
for ¥ eﬂp(xxx) R e H(x), n e (Y),x €H S(X).

-gm_g;: Supposeve.'l‘&ﬁq,.r_s(y)o Then .
[r\u{g r\X/oé}ﬂ//] = [‘SA‘&/oc,r\r\y/] - a property of M\

= X, (‘%r\oc)x(x\r\\,u)] ~ & property of/

- (ptlerarms) [GOIXR A eex )] - property of M
[(\SX\)UX,&‘X}U] B -
[{(XXr\)uX %/oc W Q.E.D,

- (cpprarr-s)

- (4 )q(p*q *+r-s)
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Theorem 1.9 Let X be a compact R - oriented n - dimensional manifold with
 fundamental class S€ H (X)s Then for any p<n, the inverse to the Poincare '
Duality isomorphism H (X) —> B, (X) 1 given by o< —> (-1)p/q'/o< for

4 .
< Hn_p(x) |

Proof: If N\ € Hp(x), ‘then /Sf‘\r\ is its image in Hn.p_SX) and /u'/@/\r\
= 1\J§éu'/‘5><\’\§ = (-1)P(n*p+0-n) {(r\x 1) p/B3 by Lema 1.8
= (-1)P {(1xr\')U/¢'//5§ by Lemma 1.7
= D U 1B} by Lema 1.8
= ('-l)pr\ J (/J'//S )
= («1’Pn\U 1 by Corollery 1.5
= (-1)pr\  QED. ‘

Suppose we have a map f: X—>Y, where Y is another compact R = oriented
manifold of dimension m. We define the cohomology class /u P of the graph of
: m

= X ! t ' d :
£ by py (¢ 1a)( v )€ H(XX ) where J'EH(Y ) is the image of the
-Thom class of Y. The class }J P completely determines the homomorphism

induced by f on the cohomology.

Lemma 1,10: For any r\G_Hp(Y), Hp(f)(r\) = (-1)pf)f/,6!ﬁr\ where‘,@ye
%( Y) is the fundamental class of Y.

Bt pog /Ay = FREYANy
= B(£)( f';f)/ﬂn_p(id)(v\'r\ S by naturality of /

= Hp(f)(/Jé)/r\f\ {SY
= (-l)pﬂp(f)r\ by Theorem 1.9 Q.E.D.
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Theorem 1,11t Let £t X-——-X where X is a connected compact R - oriented
manifold. If )Jf';é O then f has a fixed point.

Proof: If f has no fixed point, then we have the factorization

' XX - A

s

IXX _ > XXX
: £xid

where 1 is the inclusion. Since Hn(i)Hn(J) =0 and py = Hn(J)()J X-)’
M, = £ (£x 1d)(p1) = 0. Q.ED. a

Next, define the Lefschetz - LHopf class

Lefschetz - Hopf pumber Ay =<{LpyR)e

L, = Hn(f,id)()J').and the

Theorem 28 The Lefschetz - Hopf Fixed Point Theorem

Let X be a compact connected R - oriented manifold, where R is a field. If
f: X—>X is any map, then the Lefschetz - Hopf number of f is given by

: _/\f = 2 (~1)%race HY(£). If N, # 0, then f has a fixed point.
q

Proof: Let{o(ig be a basis for H‘(X), where i runs through a finite set;

' q
let q; be the integer such that o< € H-i(X). By the Kunneth formula (since

i

R is a field), the ™, X 6<j form a basis for H*(XXX), so that

}J' = i%cijbcilx oy (whexfe 45 = 01ir q * 9 # n)

‘Let H*(f)‘(b(i) = § a,,%,  (vhere 84 = 01f q # q;) ( )
Let Vi = (Mj.ockr\@ = <°<kv °<j’(5> 5o that y, = (--1.)qk o Tij

when 9y +/qJ = n, and Vg = 0 when q * ay # n.



-8 -

Ap = Doy ()00 x o ) BY = Loy, (MO U o<J,ﬁ>>
1;‘1 1j k1<°< M ,,6) 4 J 127y T 4 k“ki(§‘ ijykj

Bowever:

(D¥ee = prfoc NG by Lemna 1,10
| :(jz_,i it XEX)/")S("\!@
= >:i ( l)qk 7% <°C ,ock/\ﬁ)>oc by Lemma 1.8
=45 (jZk jiyjk)ui so that Z;‘ jiyjk ( l) kg x pecause the OCi's form

a basis, Since the right inverse of a matrix is also its left inverse,

Q
oy = (1.
Thus '/\1‘ 2 (-1) kakk . QeE.D..
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2. Manifo: th the Fixec t_Pr

A topological space, X, is said to have the fixed point property if
every self map of X.has eL fixed point. That is, if f: X—>X is a map
then f_(x) = x for sdme x in X, There are ma.n& examples of topological
_spaces tha“b have the fixed point property, (see for example ( 3)), howeveér
relatively few of these are manifolds. The following is a list of.séome of
these manifolds.

1. A compact manifold X is said to be Q - acyclic if F(X;Q) = 0 for all
P ;5_0, where Q denotes the field‘of rational numbers. Such a manifold has
fhe fixed point property s:lnce».f\_f = 1 for all maps f3 X—>=X, In |
particular, the n - discs ® = {xe Rn;\\x\\£l§ have the fixed' point

property. This result is known as the Brouwer Fixed Point Theorem.

L

2., Real projective 2n - space, ngn, n2>1 has the fixed point property
+ ' .
" since it is Q = acyclic. The manifolds, R l’2n 1, however, do not have the

fixed point property. Since iRP2 n+l the set of equivalence classes of :
 Dons ‘
r2n+1)€R o2 _ (0,0,404,0) where (

equivalent to (r('), ceey

vectors (ro_,..., ) is

ro’...’r2n+1

' . = ' L N ] '
r2n+1) if and only if (rO""’rzml) c(ro, ,r2n+1)

for some non - zero real number ¢, the function f: R2n+2 - (0,0,...,0)

— R 20*2 _ (0,0,...,0) defined by £(xgsee., ) = (-r

Tontl 19707 ** " Tope12Ton)

induces a sélf'map of RPznﬂ‘ which fixes no point.

3. Complex projective 2n - space, CPzn, n2>1, has the fixed point property.
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‘The cohomology ring of CPzn with rational coefficients is the truncated
polynomial algebra generated by a generator c of Hz( CP’Q %:Q) where Aol 0.
Therefore if f is a self map of Cl’zn and f%c = ac then J\.f =1+a+ az toee
+ 8% If a £ 1 then Ap= (1 - a°™1)/(1-a) #0. If a =1 then N\, =
2nv*‘ 1 and hence CP—zn has the fixed point property. However, if f: CP?ml
——¢cP™ § defined by'f[(co,...,c2n+l)] = [(-cl,co,._..,-c2n+1,c2n)] ,
we see that .the Qszl's do not have the fixed point property.

4e Quaternionic projective space, IHPn, has the fixed point property for.
all n greater than 1. (IHP]'NSI‘ does not)

- Proof: H*_(lHPp;Q) = Q(hy)/ hi”l. » the truncated polynomial algebra
generated by hl’ a generator of H'/‘(\HPn Q). Therefore the Lefschetz - Hopf
number, J\_f for a self map f of HP is %(-l)iai where f*hi = ahy.
J\f_= O only if a = ~l. We shall show however that a cannot assume the
value -1 | |

Let Pl: Hq(X;‘ZB)-—>Hq+4(X; ZB) be the reduced power operation. (See
(4)). There exists a map g which makes the following diagram of Hopf bundles

commte and is such that gth. = 02 where ¢, is the.'generator of HZ(IH PZB;Z)
1 _ ,

1
| SI s3
3411‘1 - Szbn"l
CPn WP
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It is sufficient to show this for the case n = 1. Here the fibre of g is
just "(tPlN 32 and Qe have the result from the Gysin cohomology sequence.
Since dim ¢; = 2, Plcl = ci and the Cartan formula gives Pl(ci) = 2c§,

Since P' is natural Pl(h ) = 2h:2L and by the Cartan formula Pl(hi) = Ahi.

Therefore
| | - o R
. . 8 : » .
H(HP%;2Z) HB(\HPn;ZB)
3
-
R (HPP;  Z,) = . le(\HPu 2,
4 ‘ - 4270 = 4678

implies that 4a= 4a° (mod 3) which implies that a # -1.

- 5« The Cayley Plane

The Cayley numbers are ordered pairs of quaternions. They are added by
‘adding coordinates and multiplication is defined by (ql,qz)(qi,qé) =
(qlqi - ﬁ%qz;qéql + q5a}). (1,0) is a two sided unit. Also if the conjugate
of ¢ = (ql,qz) is defined to be © = CQi,—qz) then c& = |c[* is real and non-
negative and equals zero if and only if ¢ = (0,0) = O, It can also be shown
| that multiplication is distributive with respect to addition and cd = O
implies that either ¢ = O or d = 0o Thus the set of all Cayley numbers forms
a division algebra. The associative law does not hold in general and so we
cannot use the equivalence relation used for the real, complex and

- quaternionic spaces to define projective spaces based on the Cayley numbers
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Using the fﬁct that ény~two Cayley numbers generate an assoclative
algebra isomorphic‘to a subalgebra of the quaternions, we‘can construét-
a fibering of s 5over 58 with 87 for a fibre to define the notion of a
Cayley plaﬁé. (See (5))e It is, in fact, fhé homogeneous space F /Spin(9)
where F is the Lie group which is the quotient éroup S0(8)/0(4)e Its
rational cohomolégy ring is the truncated polynomial ring generated by a
generator ¢ in dimension 8 such that c3= O; and hence by the Lefschetz -

Hopf Fixed Point Theorem it has the fixed point property.

Since all that is used tb.show that these manifolds have the fixed point
property is the Lefschetz - Hopf Fixed Point Theorem, any manifold with the
same rational‘cohomology algebras as these will have the fixed point
property. Such manifolds may be obtained for instance by mdxihg homo topy
types. (See (6)).

Using the Kunneth formula we see that cartesian products of the above
manifolds alfo have the fixed point éroperty, however, in (7) Husseini
constructs maﬁifolds with the fixed point property such that certain

cartesian products of them do not.

In (2), Brown shows that if X is a compact manifold and M ig an n -
~manifold with the fixed point property and n23 thenv‘the mapping |
~ cylinder of any map f: X—> M has the fixed point property. In
particular if I is the unit interval then MXI has the fixed point

property.
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Let Kbe R, C oriH , the real, complex, and quaternionic fields
respectively, and let Gn,k denote the Grassman manifold of n - dimensional
subspaces of Kmk. Let X;: denote the bundle (and total space of the
‘bundi}l.e) of Gn,k which is the set whose points are the pairs: (n - plane,
poj.nt in the n - plane) and Y; vthe set of pairs: (n - plane, point in the
complementary k - plane). For a vector bundle % = (E,B,™ ) let the
'projectivization, P(‘g ), be the space of one - dimensional suﬁspaces of the
‘fibres; of E, and let 1(‘% ) be the bundlé over P(% ) consisting of the pairs

(o,e) where G is a one - dimensional subspace of a fibre and e is a point

~ in that subspace.

Propogition 3,1: (See (8) for further details of Chapter 3)
Let ‘?g be a locally trivial ‘vector ‘bundle over a compact Hausdorff space
‘B. There exists a finite dimensional vector space V over K and a

surjective bundle map e: VXB —>B and a commutative diagram:

J
‘E)——~————>-P(VXB) = P(V)XB _ - P(‘g) '

i

B

For example, if% = X; then V = K*hnd P(V) is K- projective (n-1) -
space, KPn-l. ’
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Now let A= ZZ if K= € orH a.nd'Z2 if K=R . Let o< be the

| v
class in H(P(V);4) so that H*(P(V);A) is the free A - module on 1, o 402 -
..., v L ] .

Theorem 3,2: Let ¢ HS(P(E);A) be the class (o<, ). Then H'(P(E);4) 1is
the free H*(B;A) module (via Tr" ) on the classes 1,Cy000,¢"L and there
exist unique classes O’i(\?g )e Hki(B;A), (where k = the real dimension of K)
- n n-1_ s . n-1
and (%) = 1 such that o = (e (%)) + el v ()T e (o ()
+ (1) (o (%)) = 0.
n

| The class o (%) =1+ crl("’§) $oaes t cn("i) is called the total
characteristic class of\oﬂ + These classes'_ are also called:

1) K= R ¢ Stiefel - Whitney classwd(¥)

ii) K= € : Chern class c(wg)

| iii) K= s (Symplecﬁic) Pontrjagin class ‘P(%S )

Theorem 3,3t The total characteristic class o’(%) has the following
properties: | | -

1. 0, (%) = 0 1r 1> aim¥.

2. of(‘g) is naturalt if £1 B'—>B then O(£*%) = rfo(%).

3. If \% and r\ are two vector bundles over B then O‘(% @Yl) = d(“'ﬁ)ucr(r\)
4e If 1 is the canonical line bundle over P(V), then 0’1(1) = OCV.

Now, let O, = O’i(x :), -61 = G(X;). Property 3. of the previous

i
theorem implies that O\JG = 1,
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Proposition 3.4t H (Gn X ;A) is the quotient of the polynomial algebra
$4

over A on the 0’1, i£n, by the relations imposed by EJ =0 for j> k.

(Note: Bj is the polynomial of degree j in O’i given by the formal

inversion of G )

Proof: This polynomial algebra is certainly mapped into H (Gn’k';A) and

to prove that this is indeed an isomorphism we induct onn. For n=1,

Gl,k with the one

relation o¢

1
=0 but since © =1 -~ < +OQ2 - eee * (--l)kock teaey

= KF*1 go that H'(Gl k;A) is generated by X = O
’ .
k+1
the condition Ej = 0 for j>k gives this and only this relation. |
If the result holds for all G n, k with n<s, then consider G ,t° A point
in P(X ) is a line a in an 8 = plane)u The orthogonal complement of a

in /u is an s-1 - plane a'L and hence a point of G

o Therefore p(Y t) '
s-1

= P .
F L)

s=1,t+1

e.g. 8=2, t=1

i
| A

aEP(Xi) and a€P(_X;)

W P = —» G ‘
e have the diagrams | (Y ) l t+1 : s-1,t+1
G
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Letting 1 = 1(% ¢ )-1(‘6 1) one has that w*(¥ )-‘%e 1, 7Y D)

t*l t+l
n® 1 with 381 @ 1 being the trivial bundle. Since ¢ = G,(1) we have
= SR, (X)) = Te 0 o, (%01) by aturality
Z(-l) o, (1 o, (‘g) ci 1(X)csl(l)) cs(‘%) (the other terms

canceling in pairs)

o

v 8
Therefore regarding P(X t) as a bundle over G 41 the above property

s-1’
and the induction hypothesis say that H*(P(Y¥ 2)';A) is generated by the
characteristic classes of \g‘, 1, and r\ subject only to .rela'_cion's imposed
by the conditions:

l.dimo(nel) =
2.5(ne1 e‘g ) =1

~ Since OGS = 1 we already have that H*(G t;A) is generated by Sy
i<s with one of the relations being that dim(CJ (%°® ) ) = t.' Now looking
at P(¥ :) as a bundle over Ga,t we see that this must be the only relation.
- Q.E.Ds |
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Le Fixed Point Properties of the Gragsman Manifolds

In (9), F. Bachmann, H.H. Glover and L.S. O'Neill prove the following:

T rem :

1) For q>p%, H G,,q has the fixed point property.

»q
ii) For q> p2and pq even, CGP q has the fixed point property.
t4 N

11i) For g2 p% (p;q) odd and p # 2F¥ - 1, RGp q has the fixed point property.
\ H : .
' This theorem partially satisfies their conjecture:

Conjecture : Gp q has the fixed point property if and only if p # q.
: p, _ |
For F= R or C, FGp q has the fixed point property if and only if p # q
’

- and pq evene.

If this conjecture is true then the question of which Grassman manifolds
have the fixed 'point property is completely settled. This is because the
~ self map of KGp p , where K = R ,C » orH, induced by orthogonal complementation
s

is fixed point free‘and also because of the following theorem:

Theorem 4,3¢ For p + q even let £1 FP*9— > FP* pg gefined by
.f(ul,...,up+q) = (-uz’ul""’-up*-q’up-*q-l) and £, be the induced map of

- Stiefel manifolds £ s FV——> FV
: v P»q Psq

F= R orC . If pand qare both odd and F = R or C, then the

which is seen to be well defined if
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induced map f : FGP—TI—>FGP q is fixed point free.

Prooft In the case that F =R, f is given by the direct sum of matrices
of the form (0 l) o It follows then that the characteristic equation of
£1s (2 + l)%p+q)/2 = 0, which is seen to have no real roots and thus f
has no eigenvectors. Now if W is an odd dimensional invariant subspace of
f then fIW must have at least one eigenvec‘bor, a contradiction. |

For the case F = €, we refer the reader to (10), page 304 for a proof

“using dlfferential geometry. Q.E.D.

Theorem 4.1 follows from an application of the Lefscheta - Hopf Fixed
Point Theorem and the following theorems also proved by Bachmann, Glover
and 0'Neill in (9).

Theorem 4s4: LetRbe Z if F=C orlH, Z, if F=R, Let £ be a

= R
1 kcr1 for some k inR , o’l being

the first characteristic class. Suppose qZp2 (and p #2¥ =1 if F=R ).

- self map of FGp q° Then clearly f*c
’ .

Then i"*ci = kici for i = 1,..4,p.

A self map f with the above property is called an Adams type mapping.

 Corgllary 4,5: For F=R,C orH and qzp° (and p# 25 = 14if F=R)
ev:ry self map f of FGp Q has Lefschetz - Hopf number./\.f =
)g;dim H (Fo q,R) il where d = 1,2,4 1f F = R, C or H respectively.

’

Corollary 4,.6:
'i)ForF-CorlHanqup andfaselfmpofFG _/\,f—l(modk)



-19 -

 1i) For q_>__p2, (p;q) odd and p # 2° = 1 and f is a self map of YRGP &
. , ‘D,

Theorem 4.1 now follows from the Lefschetsz - Hopf Fixed Point Theorem,

If F= CorH ,;/_\? = 0 only if k = -1 perhaps. But then J\I‘ =
_ i T = 1 _ | "
2.(-1) @m Hdi(_FGp,q’Z) = >Y(=1) pi(tRGp,q) —XIRGb’q, the Euler ngmber,

since dim Hdi(mp,q;Z) is the number of cells in diménsion di in thé
canonical CW structure for }S‘Gp’q where F = R, C orj4(da=1, 2, ér 4)
( See (11) ).It‘i‘.s well known, however, that 'XYRGp,q for p # q, pq even,
is greater than zero, ( See (10) page 303 ). In the case where F =IiH and
pq is odd we méy use Pl in the Steenrod Algebra mod 3 to eliminate the
' 12 = HET,
In the case F =R, (p;q) odd,_/\f = dim Hpq/Z(RGp,q; _Zz) (mod 2) =

case k = =1 in the same way it was eliminated for |IHG

_(p;q)(mo'd 2) =1 (mod 2) and thus Theorem 4.1 is proved.
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~

5. Properties of some of &Qﬁ_&% klﬂ
) ]

Theorem 5,13 3 Any self map of (163 5 is an Adams type mapping and hence
H

(IZG3 2 has the fixed point property.
l9 &

Proof: Since CG is homeomorphic to CG
3,2 2,3

generated by a generator x in dimension 2 and a generator y in dimension 4

y 1ts cohomology ring is

: subjgct to the relations imposed‘by the sums of elements of the same
dimension in the formal inverse 6f the fotal cl#ss, 1+ x+ yo (1 + x + y)-l
=l-x-y+X +t2ay+y -0 -3y - 3y~ + o+ 4Ty + 6P
I.xy3 + y'4 - x5 - 5x4y - lOJn:.By'2 - l_Oxzy3 - 5xy'4 - y5 + k6 teee

Thus dimeneion 8 is completely determined by three generators, x‘, xzy, and
y2 with the one relation x4 - 3x2y +’y'2 = 0, We can therefore choose x?y
and yg as a basis for dimension 8 with

1. xﬁ = Bx?y g.y? |

Dimension 10 is generated by.x5, xay, and‘xy2 subject tobthe two relations:
2. © = 3x3y - xy2  (equation 1. multiplied by x)

3e fx5 + LXBY - 3332 =0

Solving this system of equations gives us the single element xy'2 as a basis

with
de x3y = .’ny2 and
5 XS = 5XY2

Let f: (:GB—E——4? GLGB 2 with f*(x) = ax and f*(y) = bx2 + cy. Using -
H ’

equation 1, and the fact that f* is a ring homomorphism we have a“x® =
f*(x‘) = f*(3x?y - yz) = 3a2x?(bx2 + cy) - (Vo + 2bcx?y +'02y2) =

3a2bx1' + 3agcx2y - ble*-- 2bc x2y -‘<:2y2 = 3a2b(3x2y' - 'yz) + 3a2cx2y
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Ry - ) = 2bely = AR = (982D + 3a?c - 31 - 2bc)x2y +
(-38°b + B2 = ¢2)yR.

Since &' xl‘ = 3a4x2y - al*f and xzy, }*2 form a basis we have’
6. 36* = 9a%b + 3a%c - 3 - 2bc

4 2

7. -a% = -3a%p + b° -

i

' Adding three times 7. to 6. gives us:

8. 3ac-2bc-3c =0

Using equations 4. and'S. in a similar manner gives us: .
5557 = 8530 = £0(x5) = P(5m2) = Sax(iPo + 2berly + AyP) = sarsd +
lOaba?y + ‘jaczx-y_2 = (.’25:;1b2 + 20abc + _58.02')11}'2 « Therefore

© Q4 a5 = 5ab2 + Jabe + ad_?.

_(_J_z_a_g_g_l: a =0,

If b= 0 as well then equé.tion 8. becomes -3c2 = 2bc = 0 which means that
¢ =0 as well as a and b, | _

If b # 0 then after dividing b into equation 6..'we have 3b = -2cor b =
(=2/3)c. Substituting this into equation 8. givesvuS'B‘c2 = (4/3)02 which
implies that ¢ = O, But if ¢ =0 then according to equation 6. b must also

= 0, contradicting the assumption. Therefore if a =0 then b = ¢ = 0O,

Cape 23 a-'# OH

If a # O then dividing ‘equation 9. by a gives us the equation:
10, &% = 5% + 4be + &2

Now if b # O then ¢ # 0 for if ¢ = 0 then -equation 10. becomes a4 = 5b2 to

which there are no solutions consisting of non - zero integers.'
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Adding equation 7. to Qquation 10. produces

11, 6b° + 4bc - 3a°b =0  and dividing this by b gives

12, 3a2 = 6b + 4¢ |

Substituting for 3a in equation 8. and then dividing equation 8. by c?

13. ¢ = =4b

Substituting for ¢ in equation 12, gives 3a2 = ~10b and therefbre 9a4 = IOOtFQ
Substituting for ¢ in equation 10. gives a* = 5b° and thus 9a% = 45%° = 100t%
This implies that b = O contradicting the assumption. Thus if a #_O then b

= 0 and by equation 9. we see that ¢ # O and then by equation 8, we see that

c =‘a2 and thus f is an Adams type mapping. Q.E.D.

Theorem 5,2:¢ - Any self map of (LGB A is an Adam's type mapping and hence

H

(163 A has the fixed point property.

’

Erooft The ideal of zeros of'H*(Q;GB,A;ZZ) are generated by the following

relations in dimensions 10, 12, 14, 16, 18, 20, 22, 24 respectively:

1. =x? + 4y - Ixy? - 3z + 2y2 =0 (2 being the third Chern(class)

. Re X = 5x4y + 6m?y2 y3 4x3z - bxyz + 2 =0

3. x| + bx° y - 10x.3y2 4xy3 - 5x4z + l2x?yz - 3y2z - 3x2° = 0

he B = 1By + 15452 - 10293 + P4 + 6352 - 20:3yz + 12372 + 627° - 3yaR = O

5. =x7 + 8x'y - 21x0y° + 205y3 - Sxyt - 7xéz‘+‘30x4yz - 30X°yz + 4yoz -
10x32° + 12xyz° - 23 = 0 |

6o x10 - 0By + 28:092 - 35hyd + 16:R%4 - 35 + 8xTz - 42303z + 60x3yRz -
20xy3z + 15x422 - 30x2yz° + 6y°2° + 4xz° = 0 |

7o =t + 10:% - 36x7y2 + 56x°07° = 35074 + 6xy5 - 982 + 56x vz - 105x4y2z
+ 6Ox2y3z - SyAZ - 21x°2° + 60x3yz- -.BOxyrzz2 10x°2> + I,yz3 =0
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8. x12 - 11x105 + 45852 - 84x03 « 7oA - 2120 + 30 + 1075 - T2xTya
+ 168x5y2z = 140x3y3z + 30xyhz + 28x022 - 105¥4y22 + 90xyRa2 -10722
+ 20x323 - 20xy23 + 24 = 0 o

Dimension 10 has a basis of four elements: x3y, xyz, xzz and yz with
9. X2 = 4x3y - 3xy2‘- 3x2z + 2yz '

Dimension 12 has two relations: equation 2. and

10, -x6 + 4aby - 3x2y2'- 3x3z + 2xyz =0 (equation 1. multiplied by x)
'By row reducing the associated 2 by 7 matrix ve get a &sis of 5 elements:
.x2y2,1x32, y3, xyz, and 2° with

li. xby = 3x2y2 + x3z - y3 - 4xyz *+ 22

122, xb = 93%2* x’z - 1.y3 - Uxyz + Azz

Dimension 14 has four relations: equation 3 and

13. ;x7 + 4x5y - 3x3y2 - 3x42 + 2x2yz =0 v(equation 1. multiplied by x )

14. -x5y +_4x3y2 - 3xy3 - 3x2yz + 2yzz =0 (eqpation 1, multiplied by y)

15. x7 = 5x%y + 6x7y° = xy° + 4x’z - 6x%yz + xz% = 0 (equati§n 2. mult. by x)
By linear algebra we have a basis of 4 elements: xy3, x2yz, y2z, aﬁd xz2 with
16, x7 = Laxy3 + 1y - 285% - Txa® (-14(13) - (L) - 23(15) - 10(3))

17, x% = 5xy3 + 5x%yz - 10y% - 4x2® (-4(13) = (14) - 8(15) ~ 4(3))

18. x3‘y2 = 2xy3 + 2x2yz - 3yzz - x2° ((13) + 2(15) + (3))

19. xhy = 3x2yz'- y2z - 2x2° . ((14)\* (15) + (3))

By::Poincare Duslity we know that Dimension 16 is spanned by 4 elements. To

find 4 such elements we multiply equations 16, 17, 18, and 19 by x to get:
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20, x~ = 2y3 + 7x3yz - <8xy22 - 7R2%
21, x6y = 5x°y + 5x°yz - 10xy°z - 4x2z°

22, x4y2 = 2x2y3 + 2x3yz - Bxyzz - ¥*2?

23. xsz = 3x3yz - xy 2 - 2x222

Multiplying equation 1. by z and substituting for x°z with equation 23. gives:

2 4 2xy z + x?z

e x3yz = <2yz v
Substituting x3yz with equation 24. in equations 20,21;22, and 23 and
lrcollecting terms gives: |

25, # = Uy? - UxyPs - Lya?

26, x y = 5% y3 P - z

27, xl'y2 = 2x2y3 + xyzz + x?z - Ayz2

23. Xz = Sxyzz + Po® - 6yz2

Multiplying equation 1l. by y and substituting givesz

29. ¥ = x2y3-3xy2z + 357

Since QZGB 4 is an orientable 24 - dimensional manifold, we know that
H?L(GLGB 4;ZZ) can be spanned by a single element. To find such an element
we‘solve,the following system of 22 equations (equation 8. plus equations

36 to 50 inclusiQe) in 19 variables. Equation 30, is equationv24. multiplied
by xz, 31 is 25. multiplied by xz, 32. is 26. by xz, 33. is 27. by x2z, 34e

is 28. by xz, 35. 18 29. by xz, 36. is 11, by 2%, 37, is 12 by.zz,‘38. is

16. by yz, 39. is 17. by y2, 40. is 18, by yz, 41. is 19. by yz, 42. is 20.
by ¥*, 43. is 21. by ¥*, 44 is 22. by x*, 45. is 4. by x%, 46.-is 5. by xy
47, 18 5. by 33, 48. is 6. by ¥, 49+ is 6. by x°, and 50. is 7. by xe |

We find that z4.generates dimension 24 with xy23 = 24, %323 = zA, y32 = 24,
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x2y222 = 224, XA’YZZ = 324: x622 ='524: XYLZ = 324’ x_35’32 = 624: x5y22 = llzl*,
x7yz = 2124, ¥z = 4.2421‘, y6 = 52/‘, :(2y5 = llzl’,' xl‘yl‘ = 23 zl‘, .x6y3 = 4721‘,
L7

substituting these values into equations 8. and 30 to 50.

98z4, xloy = 210z4, 2 = 46224, which of course can be checked by

Let ht (IZGB’—Z——* 'CGB',A where a,b, c,_e',f, g are integers such that | ,
b*(x) = ax

h*(y) = bxX* + cy

n*(z) = ex> + fxy + gz

Using equation 1. and the fact that h* is a ring homomorphism we have:

W (x0) = (437 - 3x7° = 3x°%z + 2yz) = Lad3 (bR + cy) - 3ax(BFxé + 2bely
s c2y2) - 38°(ex2 .+ fxy + gz) + 2(bx® + cy)(ex? + fxy + gz) = 4adbx’ +
AaBmc3j - 3atPx’ - babexdy - Jactxy® ~ 3aex’ - 3a°fx’y - 3azg:f?z + 2bex’
R 2bfx3y + 2bglz + 2ce;(3y + 2cfxy? + 2cgyz = (16a°b - 12ab° - 12a%e + 8be
+ 4adc - babe - 382f + 2bf + 2ce)x0y + (-12a7b + 9at® + 9ale - 6be - 3acd
+ 2¢f)xy? + (-12a3b + 9atf + 9ace - 6be - 3a%g + 2bg)x¥z + (8adb - babtd -
6a%e + Lbe + 2cg)yz _b _ ”

Since h*(x_5) also equals adx’ = 4a5x3y - 3a5x}f2 - 3a5x22 + v2a5yz and x3y,
iyz, ¥z and yz form a basis, we have the foilowing equations:

51. 4a° = 16ab - 12ab° - 12a%e + 8be + 4a’c - babc =382f + 2bf + 2ce

H

52, -3a% = -12a%b + 9ab® + 9a%e - bbe - 3acd + 2cf
,53'. ~3a° = -12ab + 9abt® + 9ae - bbe -3a’g + 2bg
54, 285 = 8a3b - 6at? - 6ale + 4be + 20g

- Subtracting 53. from 52. givesi

55, =3ac® + 2¢cf + 3a%g = 2bg = O
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Adding three times 54. to twice 53. we have:
- 56, bcg -6a2g +4bg = 0
Adding four times 52, to three times 51. we have:

57. -12ac® + 8ef + 1287c - 18abc - 9a°f + 6bf + bce = 0

Using equations 11, ahd 12, and the given basis of dimension 12 we have:
B () = 1 (9P + B2 - 4y - Lxyz + 42°) giving us the equations:
58, 980 = 81a°1° + 9ade - 36b° - 126abe + 3662 + 54abe + 3adf - 6tc
| -42abf -42ace +-2fef + 98°° - 12bF - Liact + 4E2
59. a 6 = 9a2b2 + ade - 4b3 liabe + 4e2 + 18a2bc + 3f - 12t°%¢ -—I liabf
—lAace + 8ef + a3g - liabg + 8eg | |
60, ~4a° = -36a21R - 1.53e + 1607 + 56abe -16€° - 18a°bc - adf + l2b2c
| + 14abf + liace - 8ef — 4c> -
61, -14a° = -126a°1? - Lisde + 5607 + 196abe - 56¢2 - 72abe - 4adf + iERe
s 56abf + 56ace - 32ef -~ liacg + 8fg ‘ |
62, Aaé = 36at° + @3e - 160> ~ 56abe + 16e? + 18abc + a3f - 121Pc - liabf
'-'14ace+8ef+4g2 |
Subtractin!g three timés. equation 59. from 58. gives:
63. 6a% = 54 212 + 6ade - 2413 - Blabe + 24e? + 9822 - 12bc2 - liact
+ 4£° - 3a3g + L2abg - 2deg |
Adding equation 59. to 60. gives: _
64s ~278°1° - 3ade + 1267 + 42abe - 1262 + adg - liabg + 8eg - 4 = -3a®
Subtracting four timés equation 60, from 6l. yields:
65. 18a°1° + 2a’e - 813 - 28abe + 8e® + 16¢3 - Liacg + 8fg = 2a®

Adding equation 60. to equation 62. provides:
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66, & = &

Since ¥0y = 2102% and ¥1° = 46274, 1140 = 5x2. w(11d%) =
1121939 (52 + oy) = 11a1%x? + 112100 = (5082a10b + 2310al0c)7% =
n*(5x12) = 5412512 = 2310al%74. Therefore:

67. 5812 = 11al% + 5419

Since ByR = 987+ and x2 = 462, 33ER = 72, m*(33:5%°) =

33858 (B + 2bely + F¥R) = 33851Rx02 + 66a8bexily + 338 R8P =
(15,2468% % + 13,8608 b + 32348 )4 = 1 (1R) = 7612612 = 323481274, So:
68, 7al? = 33a8%° + 30a%be + 78R

Since Xz = j27% and 2 = 4627, 1137z = 2, h*(11x73)
11a9%7(ex? + fxy + gz) = Llaexd? + 112880y + 112972 = n( 5082a%e +
231089f + 462a7g)7% = b (xt2) = a2 = 46281274, Therefore:

69, at? = 11a%e + 527 + a’g | "

Since yO= 57 and 2y5 = 1174, 1230 = 525, B (1150) = 11(bR + cy)b =

11(5532 + 6b° ety K 154282 + 200333853 + 1512 xdyh + 6bIRy5+ cbyd)

= B(5x2y9) = 5822 (b9xd0 + sthady + 10302 + 10RFxby3 + sbchalyh +

c?y’) Using the basis in dimension 24 gives us:

70. 1146265 + 126065¢ + 170 + 94063¢3 + 3453ch + 66bed + 505) =
5(2310a%b° + 5250a%tc + 4900a°b3c% + 2350a%b°c> + 575a%bc% + 55a%c))

Case 1t a =0, g = 0, If g = O then according to equation 66, ¢ = 0
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If ¢ =0 and a = 0 then according to equation 70, b= 0
If a

= ¢ = g = 0 then according to equation 64, e = O and then it

follows from equation 63. that £ = 0 as well.

Cage 2¢ a =0, g # 01 S If g # 0 then according to equation 66, c # O.

If a = 0 then equation 56. becomes bcg + 4bg = O and if we‘areAassuming

that g # O then we have that ¢ = (-2/3)b. Substituting a = 0 and ¢ = (=2/3)b
into equation 70. gives us (41,342/729)b§ = 0 which means that b = 0 and
c and g are both zero contradicting the assumbtion. Therefore if a = 0 then

:cze.: =g=0.

Cage 3: a#0: - If a #0 then dividing equations 67. and 68. by a® gives:.
71. 582 = 11b + 5c -

72. 7a% = 33KF + 30bc + 72

Squaring 71. and multiplying by 7 produces:

73. 17584 = 84TK? + 1758 + 770bc

Multiplying equation 72. by 25 produces:

*The 17584 = 825F° + 175¢° + 750be

Subtracting 74. from 73, yields;

75..0 = 22b° + 20be = 2b(11b + 10c)

Therefore if a # O then either b = 0 and ¢ = a® (by equation 71.) or b=
(-10/11)c and ¢ = -a%. Since by eguation 66. g2 = o3, if ¢ = -a2 , then
_g2 = -36 which means that both a and g are equal to zero, contradicting the

0.and ¢ = a° and g = a’. Equation

assumption. Therefore if a # O then b
55 becomes 2a%f = O which means that £ = O and after dividing equation 69.

by a’ and substituting we have that e

0 as well, hence h is an Adams

typer mapping. Qo E.D.
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Theorem 5.3: Any self map of CG 6 is an Adams type mapping and hence
. [ .

Q203 6 has the fixed point property.
3, .

Proof: Let x,y, and 'z be the'first, second, and third universal Chern
‘classes as usual. Dimension 14 is spanned by seven elements with

1. x? = 6x5y -'10x3y2 + 4xy3 - 5x42 + 12x?yz - 3y22 - 3xz2

If h is a self map of 03’6.such that b*(x) = ax, W*(y) = bx* + cy, and
h#(3z) = ex3 + fxy + gz, then taking h* of both sides of equation 1. #nd
comparing the coefficientslof the x3y2, x‘z; xy3, x?yz, yzz, and x7°
terms gives us the equations:

2. -10M - 10a3c2 + 12abc® + 128%cf - 6bef - 3623 - a2 = -10a7

3., -5M - 5abg + 12a°bg - 3°g - 6aeg = -5a’

he WM+ 4add -3¢ = 4aT

5 12M + 12azcg - bbeg - Gafg = 12a’

6. -3M - 362g
7. =3M - 38
where M = 6a5b - 10a3t2 + 4ab? - 5abe + 12a%be ~ 3t - 3ae?

_337
.-337

From these equations wa get:

8. c2g = agz' ( (6) =(7))

9, 12a%cg - bbeg - bafg = 126%g (" (5) + 4(6) )

10, 15abg - 36a2bg + 9t%g + 18aeg = 158  ( 5(6) - 3(3) )
11, -12ac® + 9¢%F = ~12c%g  ( 3(4) + 4(6) )

12, 30a32 - 36abc? - 36a2ef + 18bef + 9c%e + 9af? = 30¢%¢ ( -3(2) + 10(6) )
Dimension 16 is generated by 10 elements and 2 relations:

13. 13 - 78 y + 15xl‘y2 - 10x2y3 y4 + 6x°z - 20x° yz + l2xy22 + 6x22 - 3yz

= 6 as well as equation 1. multiplied by Xe
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By row reduction, we find that dimension 16 is spanned by 8 elements with:
14 x6y = 5x4y2 - 6x2y3 +'y4 + X0z - 8x3yz + 9xy22 + 3x%22 - 3yZ°

15. o = 2084%% - 3253 + 674 + X0z - 3633z + 5Lz + 15272 - 18572
Taking hi éf equation 14. and comparing the coefficients of y,‘, yzz, and
A x5 z of both sides gives us the equations:

16, €M+ N+ b = 6abb + a6

17, -18M = 3N = 3cg® = -18ab - 3a |

18, M+ N+ asg - 8a3bg + 9ab2g + 6azeg - bbeg = ab + a6c

‘where M = 5a"b2 6alt’ + th + ade - Sa’be + 9ab2e + Ba & - Bbe and N =
leal‘bc - 18 e + 4bPc + a°f - 8a3bf - 8adce + 9ab2f + 18abco + 6a2ef
v-_-_6bef-- Bce . From these equations we get:

9. H=cg  ( 3(16) + (17) ) |

. Dimension 18 is generated by 12 elements and 4 relationss

20. -x° +8xy--§21x5y’_2 +20x3y3-5:q4-7xz*301472-30x2y22+4y3z
- 10x32° + l2xyz - 23 O.

21, equation 13. multiplie_d by x

22, equation 1, multipliec; by x

23, equation 1. multiplied by y

Solving the associated matrix, we find that dimension 18 is spanned by 8
elements withs

e X0 = 483333 - Shxyh + 9xbyz - 1352522 + 8133z - 9x372 + 108xy22 -
2123 ( -47(21) - 21(20) - 27(22) - (23) )

25, xly= Ux3y? - Lixy* + Ay - A2x2y22 + 21372 - 6x°2° + 33xyz - 623
| ( -6(20) - 12(21) - 6(22) ~ (23) )

26, x5y2 = 4oy - gk + 2xbyz - 9x2y2z + 4ydz - x3z2 + bxyz? - 23
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( (20) + 2(21) + (22) )

27, ;xéz = 5xbyz - 6§72 + P9z - 4322 + bxyzR - 23 ( (20) + (21) + (23) )
Taking h* of equation 27, and comparing the coefficients of z3; x3y3, and

xy4 we haves |

28, =21M = 6N = P = Q = g3 = =21abe ~ 6abr - abg

29. 48M + LN + 4P - 68Rc2f + 3bRf + cde + bact? - £3 = 48abe + 14aff

30, =54M = 14N = 3P + Af = ~54a% - 14a6r |

where M = 554be - 6a%tRe + be - 4a3e2.+ 6abe? - e and N = SaLbf + 5abce

- 6a%t2f - 12abce + B3f + 3tPce ~ Badef + 12abef + bace® - 36°f and P =
Sa%cf - 128%bef - 6a°cFe + 3bcf + 3bcoe - 4adf + Gabf? + 12acef - 3ef

and Q = 5a%bg - 6a°b%g + bg - Badeg + L2abeg - 3e°g

Case lat g#0, ¢=0

If g # 0 and ¢ = O then according to equation 8, a = 0 and éonsequently
. by equation 10. we have.that‘b = 0 as well, However, if a=zb=¢=0and
g # 0 then equationsv28., 29., and 30. becomes
31. 2163 + 18e*f + 3ef? + 36%g - g2 = 0
32. 483 = 42ef - 12ef2 - £3 = 0
33. 5483 + 42e*f + 9ef2 = 0 |
Equation 31. implies that e # O and therefore equétion 32, implies that
£# 0; Adding 9 times equation 32. to 8 times equation 33. and then dividing
this sum by £ gives: \
3 ~426% = 360 - 912 = O
Dividing eéuation 33. by e and then adding to equation 34. produces:
35, 1262 + ef =0 or f=-2e |
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But if f = -2e then according to equation 33. 6e? = O which implies that

e = O, Therefore if g # 0 we only have to consider the case:

Case 1bt g # 0, ¢ # 0
Equation 19 when divided by c becomes:
%, =& |
Equations 36. snd 8. then imply that ¢ = a® and g = a. Equation 11. then

implies that £ = O. Equation 9. then implies that b = O and then equation

10 implies that e = O, Thus if g # O then h is an Adams type mapping;

Cagé 2at g=0, a =0 )

" If g = O then according to equation 18. ¢ = 0 and if a =0 as well then
equations 16. and 18. become: |

37. 6t¢ - 18be® - bbef = 0

38, B - 3be? - bbef = 0 |

Subtr;cting 6 times equation 38. from equation 37; yields

39, 30bef =0

Subtracting equation 38. from equation 37. makes

40, 5b( b2 -3 ) =0 so that either b= 0 or 0 # 1’ = 3¢
Nowfif a=b=c=g=0 then equation 28, becomes:

4. 2167 +18ef + 3ef2 = 0

and we also have in this case equations 32. and 33. Equations 41. and 32,
imply that e = Ciff £ =0, however;‘aa we have shown before with equations
34. and 35. e and f must equal zeros in this case. On the other hand; if

0 # b = 3e° then by equation 39, we have that £ = 0. But if a=c=f=g=0
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then equation 28, becomes:
42, =21bde + 21 =

b3 - 2l
which contradicts 0 # = 3¢,

By Proposition 3.4, the universal Chern claéses X, ¥, and 2 are subject
to the following equ;tions:
43, 0 . 9x§y + 28x6y2 - 35x4y3 + 15x2y4 -_y5 + 8x/z - 4215yz + 6Ox3y22
| - 20xz + 155422 - 30x°yz° + 6y222 + 4xz3 =0
ihye =L + 20x7 y - 36x y2 + 56xsy3 - 35x37% + bxy° - 983z + 56x6yz - 105x4y2z
+ 603z - 55z = 21x97° + 60x3y7R - 30xR7E - 10223 + 4y2d = O
45. X2 - 110 + 45852 - 84053 + T0xbyh - 21250 + ¥ + 1092 - T2xTyz
+ 168x5y22 - 140x3y3z + 30xy4z + 28x6z2 - 105x4yz2 + 90x2y222 - lOyBZ2
+ 20x323 - 20xy23 + = 0

We now continue with the final case:

Cage 2bt g=0, a #VO

If c=g=0and a # 0 then we have by equation 12. that f = 0. We
further subdivide this case inté three subcases: i) b =0, ii) e = 0, and
1i1) b# 0, e # 0. |

Cage 2bi: If b = c'= f =g =0 then h* of equations 20, 43, and 44. become:
46, -a9 - 7a6e - 10a3e® - e3 = 0

L7 210 + ga7e + 15a4e2 + 43e3 =0

8. -all - 9a8e - 21a%¢? - 10a%e3 = 0

Equation JA mplies that e # 0. Dividing the sum of 4a times equation 46
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plus equation 47. by a gives us the quadratic equation:
49, 256° + 20a% + 3% =0 |
Equation 49. has two solutions: e = (-3/5)a3 or e = (-;/5)a3 both of which

~ when substituted into equation 48. imply that a = O,

Cage 2bii: If c=e = f

50, -a’ + 8a'b - 2ladb?

g = 0 then h* of equgticns 20, 43, and 44. become:

+

20a’b’ - sabd = 0
350413 + 15a2bA4 - b5 = 0
52, —atl + 10a%b - 36a7t° + 56893 - 35a3b4 + Gabd = O

51, a10 - 9a8p + 28412

Equation 50. implies that b # O. The sum of a? times equation 50. plus 2a
times equation 51. plus equation 52. when divided by ab® is:

53, -a®+ 6abb - 106767 + 47 = 0 |

Letting c = o =f= g =0 in equation 16. and then dividing by'6b results in:
540 =88 + 5abb - 62212 + B3 = 0 |

Subtracting 4a timesv equation 54. from equation 53. gives us the quadratic
55. 38 - 14a%b + La?tP = 0

which is readily seen to have no non-zero integer solutions.

Case 2biij: c=f=g=0, a#0, b#0, e # 0.

According to Proposition 3.4 we havg
56.'1=(1+x+y+z)'(761+ TH *ees )
where the 51 are the polynomials of degree i in the formal inversion of
l+x+y+ 2 and ell but a finite number of the 61 are equ;l to zero.
If we have ¢ = £ = g = 0 then h* of( equation 56. gives us tﬁe equatién:

——

57, 1=(l+a+bre) (S +T, +u. )
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where‘the‘ffi are now the polynomials of degree 1 in the formal inversion
of 1 +a+b+eand since all but a finite number of these are equal to

zero, we have that any integral solution of this equation must'satisfyz
58, a+b= =~ , | |
Also if ¢ = f = g = O then equations 20, 43, and 45. becomes
59, «a? + 8a’b - 2185t + 20a°b3 - Sath - 7abe + 30abbe - 30a2tRe + 4ble
- 10a%e® + 12abe? - & = 0
60, al0 - 9a8p + 28a812 - 358417 + 15a°t¢ - b + 8ale - 42adbe + 60a3Pe
- 20ab’e + 1524 ~ 30a°be? + 6K e + Laed =
61, al? - 11al0b + 455512 - 84a613 + 70abth - 212205 + B0 + 10s% - 72a7be
+ 1688°tRe - 140a7b3e + 30athe + 28a6e2 - 10504be? + 9022 e? - 10b3e?
+ 208313 - 20abe3 + e = 0 |
Equations 58. and 59, imply that a, b, and e must all be even; If 2k\a, .
2k\b, and.2k\e for some k21 ( mln means m divides n ), then equation 59.
implies that 24k|e3 and therefore 2k+1|e
If 2k*1Y b then according to equation 60. we have 25k|6b2e2(because
24k| 63, 25K| 4ae3and clearly 25X is a factor of the other terms) and thus
~we also have 23|e where d = 3K/2 if k 18 even and d = (3k - 1)/2 if Kk s
odde If k is even then according to equation 60. 25k+1‘-b5 ( since 2ok*1
. now divides all the other terms of equation 60. in particular'25k’1\6b2e2)
and theféfore 2k+l\b which contradicts our assumption, If k is odd then
according to equation 61. 26k‘e4 ( in particular.26k\—10b3¢2 since
<23k'1|e2 ) and thus 2d|e where d = (3k + 1)/2 ( since k is odd ) and’
therefore agaiﬁ by equation 60. we have that 2k+11b, a contradiction.

Therefore, if 2k|a and 2k+lle then 2kf1\b. However, by equation 58, if
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2%*1|y ana 25*1|e then 25*1|a and we have thus shown that 2¥|a, 2¥|b, and

2kle for all positive integers k which is impossible.
Therefore if g= 0O thena=b=c=ze=f =0 and if g # O then ¢ = 82,
g = a3 and b=e=f= O. Therefore any self map of QLG ,6 is an Adams type

mapping and hence G:GB 6 has the fixed point property. Q.E.D.
’ .

Theorem 5,4% Any self map of (EGB 8 is an Adams tjpe mapping and henmce
H

G:GB 8 has the fixed point property.
, .

Proof: Let x, y, and z be the first, second and third'Chern classes; As

for H*(([‘,G3 6,ZZ) we also have for H*(G:G3 S,QZ) the following:

1. x?) =8x’ y - 2lx5y2 + 20x3y3 - 5xy4 - 7x z + 30x4yz - 30x2y22 + 4y

- 102952 + 12xyd? - z3

'2. x10 - 9x8y + 28x6y2 - 35x4y3 + l5x2y4 -y +8x7z - 42x0yz + 60x3y22
- 20xy32 + 15x42 - 30x2yz + 6y2z + 4xz? = 0

3. exll + 10x9y - 36x y2 + 56x5y3 - 35x:3y4 + 6xy - 98z + 56x6yz - 105x4y2z
+ 60x2y3z - 5phz - 21x°22 + 6Ox3yz2 - 30xy2z - 10223 + 4y23 = 0

Dimension 18 is spanned by 11 eleﬁents with one dependent element, x , as

shown by eéuatipn 1. ‘

Dimension 20 has two relations: equation 2. and equationl. multiplied by x.

It is therefore spanned by 12 elements with: |

4o x0 = 35x6y2 - 100x4y3 + 75x2y4 - 8y5 + x/z - 66x5yz + 210x3y2z - 124xy3z
4 30x42 - 132x2yz + 48y22 + 23x23

5. By = 7x6y2 - 15xby3 + 1012y4.- y5 + x'z - 12x5yz‘+'30x3y2z - lbxy’z
+ 53472 - 18x?y22 + 6y222 + 3xz3

Let h: .CG3,8 ——»d:(‘S’S be a map with h*(x) = ax, h*(y) = bx? + cy, and
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1 (z) = ex® + fxy + gz. Taking h* of equation l. and comparing the |
coefficients of the terms x3y.3, xy", x“'yz, sz, x322, xyz2, and 23, we get
the following eqﬁationsz | |

6. 20M +_20a3c3'-'2oabc3 - 308%2f + 12bPf + 4cde + 12acf? - £3 = 2089
7. =5M = S5ac* + 4Sf = -5a7 |

8. 30M + 30abcg - 6ba2bcg + 12b°cg - 20a3fg + 24abfg + 2faceg - befg = 30a°
9. M+ 47g = 4a | |

110, -10M - 10sg? + 12abg? - 3eg? = -10a7

11, 12M + 12acg® - 3f¢° = 1207

12, -M-g = -’ |

where M = 8a’b - 21a%t¥ + 20a7b° - 5ath - 7abe + 30sbbe - 30a°1Pe + 4ble

- 10a3¢® + 12abe? - &, |

Taking h* of equation 5. and comparing the coefficients of the ¥, xy3z,
y2z2 , and xz3 terms gives us the following equatiohs:

13, -8N - P - & = -8ab - &8¢

14 -124N - 16P - 1éac’g + 12c2fg = -124a8b - 16a8¢c

15, 48N + 6P + 6c2g° = 48aBb + 6aBc

16, 23N + 3P + 3ag3 = 23a8b + 3a8¢ | |

where N = 7a6b2 - 1584b3 + 10ath - b0 + a7e - 12a%be + 30&3bf2e - 1l6able

+ 5ahe? - 18a”be? + 6bRe? + 3ae’ and P = lAaébc - 4584PP¢ + 40a%b3c - 5t
+ aTf - 12a5bf = 120%ce + 30a3t2f + 60adbce ~ 16abPf - 4BatPce + 10abef

- 36a%bef ~ 18a%ce? + 12b2e_f + 12bce? + 9ae”f. From these equations we get
the following: _ |

17, Sg =3 (4(12) + (9) )

18, -sack + 403t = 53 ( (7) - 5(12) )
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19. 12acg® - 3fg® = 12¢7  ( (11) + 12(12) )

20, -10a3g2 + 12abg?® - 3eg? = -10g>  ( (10) - 10(12) )

21, BOaAcg - 60a25cg + 12b20g - 20a3fg + 24Labfg + 24aceg - befg = 30g3

22, 20a3c? - 20abc’ ~ 30a2Rf + 12bcRf + 4cde + 12acf2 - £3 = 20g3

23. 5 = ? g? - ' |

24, 16¢? - 16acdg + 126%fg - 12c%g° + 12ag3 =

~ (The iineaf combinations for eqﬁations 21l. to 24. being ( (8) + 30(12) ),
((6) +20(12) ), ( 6(13) + (15) ), and ( =26(13) + (14) - 2(15) + 4(16) ))°

Case 1: g # 0 |
If.g # O then equation 17. tells us that ¢® = g° and thus ¢ # O. Dividiné‘
equation i8. by ¢ gives 4f = 5(ac - g) and dividing equation 19, by g2
gives 3f = l2(aci- g) and therefore 15(ac - g) = 48(ac - g) which implies
that ac = g and £ = O, From this we have by equation 24. that ¢ = agl.
%ucm=a%6=gﬁmdmuﬁwec=¥.Mw§w=95=9§am
therefore g = a® and a # O, We then have from equation 20, ihat e = 4ab
and thus b = 0 iff e = 0. Equation 21, reduces to -60a%b + 12b° + 96a2b = 0.
If b# 0 then b = -3&2 and e = ;12a3 but these values along with equation |
22, imply that 12a% = O and thus if g # O then c = a®, g = a3, and b= e =

£ =»O.

Case 2: g=0
If g = 0 then accofding to equation 23. ¢'= 0 and then by equation 22,
f = 0. We have 4 subcases to consider:

Case 2a =c=f=g=0
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Cage 2b: c=e=f=g=0
Cage 2¢t a#0, b#0, e #0
Cage 2d: a =20

Cases 2a, 2b, and 2c have all ready been covered in the proof of the previous
theorem because the only equations used there were‘equgtions 1. 2, and 3, We
need only consider the reﬁaining casge:

Case 2d: If a = ¢ = £ = g = O then equations 1. and 2. becomes

26, 4t - &3 =0

27, b + 66262 = 0

Equations 26. and 27. imply that b= 0 iff e = O, The sum of 6b° times
equation 26, plﬁs e times equation 27. is

28, 23b%e = 0

which implies that b = e = O, Therefore we have shown that if.g = 0 then
a=b=c=f=e-= Q and thus any self map of 6263’8 is aﬁ Adams type
mapping.  Q.E.D. -

Combining Theorems 5.1, 5.2, 5¢3, 5¢4, and 4.1 gives us the following:

Theorem 5,5¢ For n even,'(I?,GB,n has the.fixed point property.

The Lugternik - Schnirelmann category of a topological space X is the
smallest integer k 1 suchvthat X may be covered by k open subsets which
are qontractible in X. The category‘of the sphere, 32, is then 2 and the

-categorylof the torus, Sl¥.Sl, is 3. It is well known that the Lusterﬁik
- Schnirelmann category is greater or edﬁal to the cuplength of the space

plus one. The cuplength of a space X over a ring R is the largest number
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n such that there exist elemeﬁts xl,...,.xm € B(X;R) with the cup'product
X Xyeeex # 0. It 15 also well known that the category of a manifold is
less than or equal to it's dimension plus one. Thus we have from tyese
upper and iouer bounds, for instance,'that the category of the real -
projective space, ﬂ{Pk.= ﬁ{Gl,k is k + 1, In the complex case, we observe

that since there exists a cell decomposition of G:Gl which éontaihs only

’k

cells of even dimension, ( See (11) ), cat CG, , = k + 1 as well., Heinz

1,k
and Singhof ( See (12) ) have shown that the cuplength ( with Z coefficients)

of CG, , is 2k and thus cat €G, , = 2k + 1 for any k 1. In the proof
? 2 .
12 _

of Theorem 5.2 we found that the cuplength ovaLGB 4 is 12 ( since x“ =
. # ]

46223 ) and so we havet

| is 130

Theorem 5,6: The Lusternik - Schnirelmann category of QZGB 4
' H



(1)
(2)
(3)
,(")
(5)

(6
()

(8)
(9)

(10)
(11)
(12)

(13)

M.
R,
R,
N.
Ne

P,

Se

R.

F,

Jo

-[J_..
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 Jfppendix - Products

Eilenberg — Zilber Theorem: The functors S(X) ® S(Y) from Top X Top to

the categofy of chain cqmplexes are'honbtopy equivalent, More precisely,
there are unique ( up to homotopy ) natural chain maps ¥ : S(X)® S(¥)
—> S(XXY) and W1 S(XXY) —5(X) ® S(Y) such that 35(CT@®T) =
(o,Y) and YO(CS ,I’) = o®T for.zero simplices O :Aof——7- X,
’t:A()-—v- Y. Any such chain‘ map is a homotopy equivalence; in fact,

| there are natural homotopies‘._tf§ -~ 14, T~ id. Any such chain map

- will be called én Eilenberg - Zil-bér map and will be denoted EZ. For

more details and proofs see (13).

Corollary: For arbitrary Eilenberg ~ Zilber maps the followihg diagrams

are homotopy commutative:

SX® SY ~—2—>5(XX¥) SX ® SP~<—2 > S(XXF)
T l _ lS(t) ‘ | lid@r\ lproj.
SY® sX <—EZ—> s(Yyxx) =~ - SX® (Z,0) 44 gy
SX ® SY ® 57 ~— 2 ®1d S(XXY)® Sz
Iid ® EZ T EZ
SX® S(YX2Z) < E2 > S(XXYXZ)
where t(x,y) = (y,x), T(uav) = (-1)_‘““"\v®u ( V) demotes gradation),

P is a point and r\ is augmentation

Proof: In each case the two ways of going from corner to corner diagonally
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induce the identity in dimension O (or on Ho), hence are (naturally) homotopic.
QeEaDs |

Corollary: For arbitrary EZ maps £ ,~Y and arbitrary pairs of spaces (X,A)

and (Y,B) we have commutative diagrams with exact rows:

0—>SAQ®SY + SX® SB —>SX ® SY -;sx/smo SY/SB —0
§'“Y’ 3 HY E“Y

( - S(xxy)
0 —> SIAX Y, XX B} —— > S(XXY) S{AX Y,X X B} °

The vertical maps are induced by & , Y and S{AXY,XXB} = im S(4XY) &
S(XX B) —>S(XX Y). Moreover, there are natural homotopies 3 ''t'~ id,

Y‘ﬁ'f:id,‘ Y"i":id.

Proof: Naturality of ¥ applied to j: A<>X and 1d shows B (SA® 5Y) C
S(AX Y) similarly §(SX® SB)C S(AXY) and analagously for & . This gives
the desired maps. Since the homotopy 3 ~ id is natural it maps S{AXY,XXB}
into itself and hence induces 3'Y'~-1id, 3''Y''~~id. The other

homotopies are similar. Q.E.D.

The Exterior Homology Product
Consider the composite chain map

(SX L SY oM _EZ_ s(xXY) (L®, M) _J s(xx¥ L®, M
,(SA® ) ®x (SBQ )- §S{ixx,xxs}® R _is§Ax¥uxx3)®( @ M
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where (X,4),(Y,B) are arbirary pairs of spaced and L,M are R - modules,
Pagsage to homology and composition with the unique map
_ SX SY SX
i i(EoL) ® H(Z o) —-——-——>H( ®L ®, SB®M>

such that O<([x]®(y1) = [(x®y] for x € Z(SA) and.y c Z(SB) gives '

(XX ¥,AX YUXX B;L @ M)

3x(E2) 00t H (X,45L) ®p Hk(I,B;M)._", "

- This map is called the exterior homology product and we write
\%Xr\ = j*(EZ)*O(GKQ? r\.). In terms of representative cycles this reads as
() X [b) = [EZ(a®pb)] where a € SX® L, QaE€SA®L, bE SY®M, Obe SBRM,

v Prépertj,es:
| Naturalitys If f1 (X,A)—> (X',41) and gt (Y,B) —>(Y',B') are maps then
the paturality of EZ implies (£xg), (% X n) = (5% )X (g*r\)
Commuta tivity: t*(‘gx r\) = (-1)RH‘\\ x\x‘i
Agsociativitys (%x r\)x’§ = ﬁx(_r\x‘g )

Upit element: If Y= P is a point, B=f, and 1P =1Fe r=1 o(T5R) then
(XXY,AXYUXXB) = (X,A) and 1 x\‘ﬁ X X 1F =% .

These properties follow from the corr_esponding ones for EZ maps. We also

. have that the following diagram is commutative: (coefficients ommi tted)

A

H(X,A) ® H(Y,B) —> H(XAY,AX YUXXB)

*

l(é ® 1d,(-1)H%a @ d .) H(AXYUIX B, AXB)v

‘ X®X 1* 2*)
(BA® H(Y,B)) 9 (H(X A)® HB) ———> H(AXI,AXB) ® H(XXB AX B)
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\

where 11’12 are inclusions. That is 5*(\3X l'\) = il*((ck*l% )X f\).*‘

__12,,((-1)“%“% x O *\\). When B = f§ we hgve 1, = 1d, 1

_2*§0and

5*(‘§x n) - (3,% )X\ where R € H(x,4), ne HL

Proof: Let a € SX, b& SY be representatives of \ﬂ R \\ 3 in particular B a
€ SA, Db € SB. EZ( a®b)€ S(AX YUXXB) represents 176((9,% )x r\),
EZ(a®Jb) € s(_xxB)c S(AX YUXXB) represents 12,(‘§x é* r\) and

191

O(E2)(a®b) = (E2)A(a®b) = EZ(A a®b) + (-1) EZ(a@a_b) represents

-/c)*( Kx r\). Q.E.D.

The Exterior Cohomology Product:
- Let (X,A),(Y,B) be pairs.of spaces such that (XX Y;AX Y,XXB) is an

excisive triad and let L,M be R - modules. Consider the composite chain maps:

SB?

S(XXY) J (XX Y .
(3 X L,IXET ¢ L ®p M) — > Hom (s(Aquxxsi’ L @ )

where the chain map ¥ 1is defined by (¥ (P®VY))(c@d) = (-1)‘°“d‘tp(c)®l//(d)
and j is induced by the inclusion S{AXY,XXB}C S(AXYUXX B), which like »

Hom (-SS%, L) Q@ Hom (‘2’%’ ‘M) qu -Sé%@) 81 L®p M) k2

EZ, is a homotopy equivalence since (XX Y;AX Y,XXB) is an excisive triad.

Passagé to homology and composition with
o B¢ (X, A5L) ®@p Hom*(Y,B;M) — H(S*(X,4;1) ®p S#(Y,B;M)) gives
(#)7H(Ez)* X 008 BH(X,A50) ®p H(Y,Bjk) — B KX XY, AX TUXXBL ® | M)

This map is called the exterior cohomology product and it is written:

XXy = (J*)"l(Ez)*%*o((x@ay) or in terms of cocycles (‘P)X (V) =
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(Y(P@Y)° B2) vhere @ € s*(X;L), Plsa =0, Pod =0, Ve L),
V|sB =0, Yoo =o,

- Properties:

Naturality: If f3 (X,‘A)—_—-—)- (x',4'), g (_Y,B)->-(Y',B') are maps of

pairs such that (X'X Y';A'X Y',X'X B') is also an excisive triad then

(£x gl (x'®y') = (£%x')x (g*y')e

Copmutativity: t*(xxy) = (-l)hd\y‘yxx where t: XXY—>YXX commutes

factorse

Associativity: (xxy)xz = xx(yxz)

Units: If Y= Pisa point, B = §, and 1€ HO(P;R) is the cohomology class
| of the augmentatiq_n n ¢ SOP —> R, Pl—>=1, then IPXX =x = ile (where |
PX(X,A) = (X,4) = (X,A)X P), If Y is an afbitrary space again, and W s Y
—>P then 11 = 'l'*r*”(lp) € H(Y;R) 1s the class of the augmentation Sof —
R and naturality gives xx1y = (1d XY )*(xx1,) = p*(x) where p: (X,A)X Y

—>(X,A)X P is the projection.

" The following diagram (coefficients ommitted) is comutative:
H*A @ H*(Y,B) X > H*(AXY,AX B) = H*(AXYUXXB,XXB)

lS*‘@.id o l%*
X

#(X,A) ® B*(Y,B) - B (XX Y,AX YUXXB)

or g*_(i*)'l(ax y) = ( S*a)x y for a € H*A, y € H*(Y,B). In the case where

B=g, i = 1d and &*¥(axy) = ( $*a)x y.
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Duslity:s If ‘ﬂ € H(X,A;R), r\e' H(Y,B;R), x € H*(X,A;L), y€ H*(Y,B;M)

then {(xx y,‘%xy\) = (-1)\7\\“ <x, X)@ <y,\\>o

The Interior Cohomology Product (The Cup Product):
This product is equivalent to the exterior cohomology product because

'Eilenberg.- Zilber maps EZ: S(XXY)—> SX ® SY and natural diagonals

" Ds SX —>_SX ® SX are formally equivalent notions and we get the definition:-
of the interior cohomology product by replacing the EZ map which occurs in
the definit:.on of the exterior cohomology product with a diagonal mape.

Consider the composite chain map:

on (8, 1) ® }bm(SX,'M)'__\‘ﬁno (B0 8,0, 2~
on Sy M1®RM2) o= (Staomy n® )

g
(-1) “PZ a

: 1
where, as before, _(\6 ((Pl@) (,02_))(9.1@ a2) = 1 (5018'1)® ()0232)

and jJ is the homotopy equivalence induced by inclusion. Passage to homology
and - composition with OC as before gives

‘(j*’)'lnﬁx £ Hi(X,Al;Ml) & }ﬂ‘(x,Az;Mz) | H“k(x,Al Ayt @ M)
We write the cup - producﬁ as X;\J X, = (% )~dp ¥ &< (xl® x2) and in terms
of representaf.ive cocycles 501, Yoy (Wl) WV, (502) = (X (’01® Y/ 2)° D)

vhere \0, € S*(X;M,), \p,|SA, =0, yioS = 0.

- Properties:

Na;;gglj'ty_z If f3 (X;Al,Az)—+- (x'; ‘,Aé_) is a map of excigive triads


http://Propert3.es

- 48 -

then f*(yl\.) yz) = (f*yl)U(f*yz) for y, € H*(Y,B;Mi).

RN
g = () et

Agsociativity: xlu(xQUxB) = (xluxz)UXB
Unitss lxu X=Xx= xulx, where lX € ﬁo(x;R) is the augmentation class.

The following diagram is communist:

| | O |
A @ B(X,4,) 24018 pa @ B(A,A4 NL) > (A, A N A)
| .
S*mia . H*(A;UAZ,AZ)
%*

./

B (X,4,) @ (X,A,) — > 1#(X,A,U4,)

‘That iss %*(j*)_l(avui*x) = (S *a)\ux for a € A, x € H*(X,Az) and

if A, =8, Haitx) = (B¥*a)Ux for a € WA, xc BX

X \JX, = A*(xlxx )y % € B(X,A,), where ANE 08 AIUA ) >

(xxx,A * XUXXAz) is the diagonal map.

1

xxy = (p*x) w (qty), if x € H(X,A), y < B(Y,B) and pt (XXY,AXY) —>
(X,A), qt (XXY,X%XB)—— (Y,B) are projections and (XXY;AXY,X%B) is
excisive. Therefore we have: |

\1\\2\

| Matiplicativity: (xxyy) i, X ¥,) = (-1) (xl\)x )% (¥ 7,)

ifx € H*(X A ), 7, € H*(Y,B ) and (x,Al,A ), (1; »B, ) are triads such

Bys
that the products above are defined,.
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T Sla :
Consider the chain map:

idge

w)
E: Hom(D,M)®(0®D®L) = (C®L)® (Hom(D,M)®D)- CRLOM

where C,D are R - complexes, and L,M are R ~ modules, ) permutes factors
and e is the evaluation map. E(’l)u®c®d®l) = (=1) viiel o1 ®'y/(d).

Passage to homology and composition with ogives
Bt H(D,M) @K (CODBL) ——— H__, (COLOY)

This map is called the cohomology slant product (for complexes) and is
Cwritten y\Y§ = E,x(y®R)€ H _ (COLDM) for y c ®(D,M), ‘SQ
Hn(C®D®L). The cohomology slant product for spaces (X,4),(Y,B) is
obtained’by taking c‘= S(X,4;R), D = S(Y,B;R) and replacing S(X,A;R)® S(Y,B;R)
by the homotopy equivalent complex

S(XXY,AXYVUXXB) = %%&%;&B;R} -~

S(X,A;R) ® s(Y,B;R)

'assunﬂ'ng that (XX Y;AX Y¥,XX B) is an excisive triad. In terms of
répresentatiw-(e cocycles EV“J\ [2] = (-1) WA“Z‘- A )‘:Zi'ai.@ly(bi;_\

where E2(z) = La,®b,, a, € S(X;1), b, € S(L;R) for Fe st(y;m), 2 €

i
S(XxY;L)e The representétive z must be such that Az € S{AX Y, XX B;L‘; as

" well as being in S(AX YUXX B;L).
Properties: (ommitting coefficients)

Naturalitys If f£: (X,A) —>(X',A'), gi (Y,B)—=(Y',B') are maps of pairs

then f*(g*y'\\) = y"™\ (£X g)*\ , for'y'e H¥(Y',B'), ‘ie B(XX Y,AX YUXX B),
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Agsoclativity: (xxy)\¥ = x\(y\¥), for x cB*(X,A), y&H(Y,B), b
H((W,U)% (X,A4) X (Y,B)).s In particular if W is a point and U = @ we have

Duality: <xxy,‘§> = <x,y\‘%> , for xe ™ (X%,A), ye B*(Y,B), “%G_
H(XXY,AXYUXX B), |

The following diagrams are commutative:

- 1(1,B) ® K(XXT,AXYOXXB) ~ ‘ — H(X,4)
,‘(-1)dim1d®;&. l Y

B (Y,B) @ HAXYUXXB,XAB) 4%8Jx (Y, B) ® H(AX Y, AXB) ~—Ha

That 1s3 B*(y\‘ﬂ) = (DT, R, 1f yem(Y,B), § € H(X XY, AX YUXXB).

S*@1id

 H*BQ H(XX Y,AXYUXYB) — > m*(Y,B) ® H(XXY,AX YUX X B)
l-(-l)dimid@;é* - - l N

| AN
H*B ® H(AXYUXXB,AXY) %ms & H(X % B, AX B) ———> H(X, A)
That is: ( D*b)\'Q + (-1)\b‘b\j;16,“§ = 0, if bSHB, ¥'c H(XXY,AX YUXXB).

Mutiphiestivityr  y\wxY = ()TN 1 (5\R), 1f y e m(1,B), w €
H(W,U), ‘%en(xxx,Axx UXXB), and (W,U),(X,A),(Y,B) are pairs of spaces

such that the products above are defined.

Upltg: 1Y\‘% = p*‘ﬂ, vhere 1y € H (Y;R), R € H(XX Y,AXY), and
pt (XXY,AXY) (X,4) is the projection,

The Cap Product:
Let (X;Al,Az) be an excisive triad, and let M), M, be R - modules. Consider
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}bm(g “2)® ( )®M1 192 ko s.u:z) ®p SAl 3.(@“;)

- SX
> 5 ®M1®RM

" where D is a natural diagonal and E is the same as in the slant product.

Passing to homology ( using H(_{—A§-) = KX, AUA, ) ) and composing
with X ve obtain E, (1d® D), ot s B (X,AM) ® H (X,A) A M) ———
(X Al,M ®R M2) This map is called the cap product. We write x r\‘ﬁ
= E#(id®D)*o< (x ®‘§), if xG_H*(X,Az;Mz), KG‘_ H(X,Alu A2;M1). In terms of
representatives this reads [‘70']/‘\ el = (-1) \f\ (ley -\C\o\ )[Z éi@f(ci)}
- 1_ 2 .
where Dc ~Zci®ci ; assuming $0€,S*X, 50\SA2 = 0, %SD =0, c¢€ SX,

dce S{A 4%,
Propertiesg:

Naturality: f*((f*x')['\lﬂ) = .x'f"\(f*‘ﬂ )y if £ is a map of excisive triads
and x'€ H*(X',Aé), ‘g c H(x,Alquq.

Agsociativity: '(xluxz)r'\‘ﬂ = x, "\ (x, r\‘g) if x, € (XA, ), \ﬁ <

H(X,A, VAU A3).

Duslity: (X x,R) = {xpx, KD, if x, € B (X,4 ), § € H(X,AU4).
In particular, (1,x,\~t§> B <x,‘§> , for x € Hj(X,A), ‘g c HJ(X,A).

Units: 1/-\“% =“i , if KG_ H(X,4), and 1 € HO’(X;R) is the augmentation

class.

The following diagrams are commutative:
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B(X,A,) ® H(X,AUA,) — . >H(X,A)
l(-l)dimi*® 8* _ l 5* .

. | id®Jy N
CH(A A NL,) ® H(AUA,A,) o= H*(Al,Alf\Az) ® H(4,,A)N4,) —> HA,

That is: é (x/\‘ﬂ) = ( l)\X\(:L*x){\(j*lc)*\K) if x € H*(X,A ), “X e
H(X,AlUA )

A, ® H(X,AUA) _o*@id H*(X,A2)® H(X,A,N\4,) : \H(X,A-l)
l"(-l)di d®C§ ' T i%
A, ® H(A,UAy,A ) 22 HA,® H(Az,vA;Lf\AZ) A > H(A,, A UA,)

That is:  ( Q¥a)\R + (-1)13‘1*(;f\j;1<§*5§) =0if a €Ay, § €

H(X,AlUAz) ,

xR = x\AN, if x € B (X,4,), R € HX,A VL) and A (X,AIU.Az)

— (XXX,AIX XUXXAé) is the diagonal map and the triads are excisive.

7\X = pelaty MR ), if y € B(L,B), K& HXXY,AXTUXXB) and
p: (XXY,AXY) —>(X,A), q: (XXY,XXB)—>(Y,B) are projections and

(XX Y;AX Y,XXB) is excisive.

Mult ati : (ny)r\(er\) = (-1)‘3'“\" (x r\"\)x (y /\r\) if
x € B (X,A ), y € H*(Y,B ), “ge H(X,A1UA ), r\e H(Y, B,UB, ) and the triads

are such that the products are defined.



