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Abstractt 

In this thesis we show that for n even, the Grassman manifolds 

CG have the fixed point property and that CG_ . has 

Lusternik - Schnirelmann Category 13» 
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INTRODUCTION 

In the f i r s t chapter we give a proof of the famous Lefschetz - Hopf 

Fixed Point Theorem. In the second chapter we use this theorem to show 

that various examples of familiar manifolds have the fixed point property. 

We also give examples of manifolds which do not have the fixed point 

property and mention how manifolds with this property may be constructed. 

In the third chapter we find the cohomology of the Grassman manifolds. 

Due to the nature of these cohomology rings, i t does not appear likely at 

fi r s t glance that one can prove using only the Lefschetz - Hopf Fixed 

Point Theorem, as i s done with the projective spaces, that certain of 

these manifolds have the fixed point property. Bachmann, Glover and O'Neill, 

however, have shown that for some Grassman manifolds ( See Theorem 4.1 ), 

the endomorphism of the cohomology ring induced by any self map of such a 

manifold must take the f i r s t characteristic class to a time3 the f i r s t 

characteristic class, the second characteristic class to ar the second 

characteristic class and so on. Such a self map i s known as an Adams type 

mapping. If a self map of an appropriate Grassman manifold i s an Adams type 

mapping, i t i s easy to show that it's Lefschetz - Hopf number i s nom - zero 

through the use of well known theorems concerning the Euler number of these 

manifolds. We know from Theorem 4«1 that i f n i s even and greater than or 

equal to ten that CG^ n has the fixed point property. O'Neill, in his 

doctoral thesis, proved that CG has the fixed point property, and so 
3,2 

to prove that CG has the fixed point property for a l l even n we only 

have to show that the remaining three manifolds have the fixed point 
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property. In proving that <CG, . has the fixed point property, we also 

prove that i t has maximal cuplength and thus we are able to determine i t ' s 

Lusternik - Schnirelmann Category. ( See Page 39 ). I t should be noted 

that since H*( CG ;2ZL) has no torsion and there i s the natural injection 
Tiff K 

of the integers into the rationals, the Lefschetz - Hopf number w i l l be the 

same whether calculated with integral or rational coefficients and thus i n 

a l l the calculations of Chapter 5 we may assume that the variables involved 

take their values only i n the integers. 
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1. The Lefschetz - Hopf Fixed Point Theorem 

In the following chapter, let X be a connected n - dimensional manifold 

and R a commutative ring. For more details see (l)» 

Locally Constant Lemma: Let £ : %(X,X-0;R)—• ^(X^-xjR) be the 

homomorphism induced by the inclusion X-U —*• X-x for an open neighbourhood 

U of a point x in X. Every neighbourhood W of x in X then contains a 
V 

neighbourhood V of x such that for every y in V, j y i s an isomorphism. Hence 

a generator \ of Hn(X,X-x;R)= R has a unique continuation in U. 

Definitions: 

Given a subspace UCX, an element ^ e ^(XJX-XJR) such that jy(^ ) generates 

H^XjX-yjR) for each y€U i s called a local R - orientation of X along U. 

An R - orientation system i s a family of open subspaces which cover X 

such that for each 1 there i s a local R - orientation ^ H^XjX-U^;R) of 

X along U and i f x€U i^U i,, then j^M'S ±) = i ^ ' C ^ i . ) . X i s said to be 
R - orientable (orientable) i f an R - orientation (ZL - orientation) system 

for X exists. 

Let X° - ^(x, " S ^ l x C X ^ e ^(XjX-x^R)} and p: X ° — * X be defined by 

p(x , \ ) = x. The sets <U,\> = [(x , ' S x)|xGU , v S x = f o r m a b a s e 

for the topology on X°. X° i s known as the R - orientation sheaf of X. For 

any subspace ACX, a map s: A — X such that ps = inclusion i s called a 

section over A. Let s(x) = (x,s'(x)) define a section over A. Then x|— 

(x, Xs'(x)) for some X in R also defines a section over A. Also, i f s^ and 

s 2 are sections over A, then x|—• (x, s^x) + s^(xj) i s a section over A. 
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Therefore the set of a l l sections over A i s an R - module P A. There i s a 

canonical homomorphism j A : ^(XJX-AJR) • P i defined by j )(*) = 

U>J X(^)) for x in A. 

Theorem 1.1: Suppose ACX i s closed. Then 

i) Hq(X,X-AjR) = 0 for q>n 

i i ) i s a monomorphism and i t s image i s the submodule P A of sections 

over A with compact support. A section has compact support i f i t agrees 

with the zero section outside some compact subset of A. In particular, i f 

A i s compact, P^A = PA, and i f X i s compacttthen j ^ : BpCX^)•-— »» X i s 

an isomorphism. 

Corollary 1.2: Let X be a compact connected manifold and R an integral 

domain. Then Hn(XjR) i s isomorphic to R i f X i s R - orientable and 0 i f not. 

An R — orientation of a compact connected manifold X i s therefore 

determined by a generator of pX or a generator (3 of Hn(X;R) which i s called 

the fundamental class of the R- orientation of X. The local R - orientation 

at each point x in X i s then ^(/6). 

Given an R - orientation of X, that i s , given a global section s: X — • X 3 

such that for each x, s'(x) generates ^(XJX-XJR), there exists the dual 

sheaf 2P »̂ X whose fibre over a point x in X i s the local cohomology 

module ifHXjX-xjR) and a global section s : X — 2 r which i s characterized 

by (s*(x),s(x)) = 1 for x i n X. Suppose D i s open in X. Denote by P*U the 

module of a l l sections over U of the dual sheaf. If & i s the diagonal of 
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XXX, define U ± X: (X,X-x) >• (XXU,XXU - A ) by U i x(x') = (x',xj, x1 in 

X, x in U. 

Theorem 1.3: Let X be an R - oriented n - dimensional manifold, U an open 

subspace. Then rfHxxu/XXU - A ) = 0 for a l l q<n, and there i s a unique 

isomorphism $ : ̂ (XX^XXU - A ) *• P*U such that 0(<x)(x) = ̂ ( U ^ ) ^ ) 

for a l l oc £H n(XXU,XXU - A ) , x in U. 

Corollary 1.4: There i s a unique cohomology classJ~> - y in rf^XXXjXXX - A) 

such that for a l l x i n X, s*(x) = H^X X ) ( ^ ). This class jj i s called the 

Thorn class of the given orientation. 

Corollary 1.5: Suppose X i s compact. Let /3 e Hn(X;R) be the fundamental 

class of the R - orientation. Let fiPCj). H^XXX^XX - A ) vPr^XXX) 

be the homomorphism induced by inclusion and let yu 1 = H^jHyj ). Then 

JJ%/^> - 1» where / i s the homology slant product. 

Proof: For any x in X consider the commutative diagram: 

U,X-x) (XXX,XXX - A ) 

j 
i X X XXX 

Then 1 = ( r f K l^.sU)) = { ^ ( X ^ . H ( j ^ ) = <fU\)f ,/3> = 

(H'XjiJ^/S) = ^ S H ^ i ^ ) . However, HXO^S = ̂ X x is a property 
of the exterior homology product and <(yu»',|5X = ^'^3 »x)> a property 

of the homology slant product. (See appendix) Q.E.D. 
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Before proceeding to the proof of the Lefschetz - Hopf Fixed Point Theorem, 

we need some additional facts about compact manifolds* 

i) A compact manifold can be embedded in a Euclidean space. 

i i ) A space i s called an Absolute Neighbourhood Retract. (ANR), i f for any 

normal space Y and a map f: B »»X of a closed subspace B of Y into the 

- space X, f extends to a map of an open neighbourhood of B into X. It i s 

known (see for instance (2)) that every compact manifold i s an ANR and 

consequently i f a compact manifold i s embedded in Borne Euclidean space, i t 

is the retract of some open neighbourhood (just apply the universal property 

to B = the manifold and f = the identity). 

Lemma 1.6: If X i s a compact manifold and A i s the diagonal in XXX, then 

there i s an open neighbourhood V of A such that the identity map of V i s 

homotopic in XXX to a retraction of V onto & • 

N 
Proof: Embed X in R , and let U be an open neighbourhood having a retraction 

r: U — X . Let £ = the distance from X to RN - U, and let V be the £ -

neighbourhood of A in XXX. Define F: XXXXI >-RN by F(x,x',t) - (1 - t)x 

+ tx'. Then F maps VXI into U. Let G = r(F|Vxl): VXI >»X so that 

G(x,x',0) = r(x) = x, G(x,x',l) = x». Define H : VXI >XXX by 

H(x,x*,t) = (x,G(x,x',t)) which i s the required homotopy. Q.E.D. 

Lemma 1.7: If ̂ eHP(XXX,XXX - A ), r^GH^X), then H P ( J ) ( ^ ) W (ryx l) -

HP(j)(^ ) W (lXry) where j : XXX —>- (XXX,XXX - A.) is the inclusion. 

Proof: By Lemma 1,6, there i s an open neighbourhood V of A in XXX and a 



retraction r: V—*~ A such that i r c ^ k , where i : A— > • XXX and k: V >• 

XXX are inclusion maps. Denote the inclusion (V,V-A)—>(XXX,XXX - A ) ' 

by k1, and note that k' i s an excision. The following diagram i s 

commutative: 

H*(X X) 

rfl(A) #(k) 

HP + (*(X X , X X - A ) 

K?+q(k«) 
I?+<1(V,V-A) 

Let p ±: XXX—>• X, i = 1,2; be the projections. Then l x r ^ = H°(Pl)(l) W 

H q(p 2)(r^) =r H q(p 2)(r^), r\X 1 = I?(p^Cry). Let p: A ^X be the common 

restriction of p^ and p 2 to the diagonal. From the diagram we have 

* KJ &{T>±Kry) = K^VfVuOa ) U H q ( P i i r ) ( ^ > = rf^k'^(k-)(X ) 
H°»(pr)(»"̂ ) for both i = 1,2. By the properties of the cup product we have 

ffCjJU ) W rfkp^) = #*q( ^XJ iftp^CryH which proves the lemma. Q.E.D. 

Lemma 1.8: The basic formula relating a l l the products i s : 

for ̂  C 'lfUxY),^ €. H5(X), r^eH^Y^oc e H g(x). 

Proof: SupposeY e«p + q + r_ 8(Y). Then 

[ryw| ^ r\^/c<j,V] = [̂ rOu/oC, ry^Y] - a property of r\ 

= \t ,(^r\OC)X(ry^y)] - a property of/ 
, W « ) [ ^ ) ( ^ X r v ) ^ ( 0 C X > ) ] = (-D 

= ( _ 1 ) q ^ p + q + r " s ^ ' 

- a property of r\ 

[|(^xr^) \ j^/bc/y/] Q.E.D. 
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Theorem 1.9: Let X be a compact R - oriented n - dimensional manifold with 

fundamental class (3£H n(X). Then for any p^n, the inverse to the Poincare 

Duality isomorphism H^X) —>- H (X) i s given by <X —>(-l) Pyu«/c< for 
n-p / 

cxeH (X). n-p 
Proof: If r^LH^X), then /S,r\ry i s i t s image in Hn_p.(X) and y j ' / p ^ r ^ 
= l ^ y u ' / p x r ^ j = (_i)P(n+p+0-n) | ( ^ x !) w y / ^ ^ ^ Lemma 1 # 8 

= (-l)p 2^(lxr^) \JjJ*/£>^ by Lemma 1.7 

- {-l)W{-l)°i\y {fj'/irsfi} by Lemma 1.8 

.= (-l) Pr\ W {jj'/p ) 

= (-l)pr\^» 1 by Corollary 1.5 

= (-l) pr\ Q.E.D. 

Suppose we have a map f: X **Y, where Y i s another compact R - oriented 

manifold of dimension m. We define the cohomology class jj^ of the graph of 

f by jjf ~ H ^ f X i d X y u ' K l A x X Y ) where jj' £ Hm(Y Y) i s the image of the 

Thorn class of Y. The class JJ ̂  completely determines the homomorphism 

induced by f on the cohomology. 

Lemma 1.10: For any <\<Ll?{l), lP(t){<(\) = i-lfjJf / f i j ^ ^ where fd^C 

^(Y) is the fundamental class of Y. 

PE22£» jJf / r l ^ N ^ Y = K P + m - p ( f X i d ) ^ y P y ^ / C i 

= ifCfJC^J/H^ ( i d ) ( r y ^ | Q Y ) by naturality of / 

= HP(f)( / J.)/r{^ i6 i 

= ( - l W C f ) ^ by Theorem 1.9 Q.E.D. 



Theorem 1.111 Let f» X »-X where X i s a connected compact R - oriented 

manifold. If yu f / 0 then f has a fixed point. 

Prooft If f has no fixed point, then we have the factorization 

XXX »- XXX 
fX id 

where i i s the inclusion. Since lfti)Hn(jj = 0 and JJ^ = AjK^), 
JJ = i f C f X i d ) ^ ^ ) = 0. Q.E.D. 

Next, define the Lefschetz - Kopf class L£ = lT(f,id)(}J %) and the 

Lefschetz - Hopf number f\r =^Lj..ft). 

Theorem 1.121 The Lefschetz - Hopf Fixed Point Theorem 

Let X be a compact connected R - oriented manifold, where R i s a field. If 

fx X >-X i s any map, then the Lefschetz - Hopf number of f i s given by 

A p = H (-l)qTrace H q(f). If lA. f / 0, then f has a fixed point. 
q 

Proof? Let^c< A be a basis for H*(X), where i runs through a finite set; 
q i / 

let be the integer such that H (X). By the Kunneth formula (since 

R is a field), the o^x (Xj form a basis for H*(XXX), so that 
/ " = S ° i J ^ X U h e r e C U = ° l f ^ + q J * n ) 

'Let H*(f)(oci) = ^ (where a ^ = 0 i f q k / q±) 

Let y k j = ( o C j , ^ ^ ) =(^\J 0Cyp>) so that y j k = ( - l ) ^ ^ 
when q k + q^ = n, and v

k j = 0 when q k + qj ̂  n. 
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* iScijaki<ockw °VP> = i ? j c i j a k i y k j = E \ i ( 9 V k j ^ 
Howeveri 

q, 
(-1) KOC k = yu'/oC k/^p by Lemma 1.10 

= pi0^"1^ ^ ( ^ j * ^ ̂ z5) b y L e m m a 1 4 8 

' ? C E c j i y J k ) o c i 5 0 t h a t ? c j i y j k = ( - l ) q ^ i k b e c a u s e t h e ° Y 8 f o r m 

a basis. Since the right inverse of a matrix i s also its left inverse, 

? C i / k j = ( - l ) q k
q

S i k -
Thus = C (-1) k« . Q.E.D.. 
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2. Manifolds with the Fixed Point Property 

A topological space, X , i s said to have the fixed point property i f 

every self map of X has a fixed point. That i s , i f f: X >-X i s a map 

then f(x) = x for some x in X . There are many examples of topological 

spaces that have the fixed point property, (see for example (3))> howevdr 

relatively few of these are manifolds. The following is a l i s t of some of 

these manifolds. 

1. A compact manifold X i s said to be Q - acyclic i f FPUJQ) = 0 for a l l 

p ̂  0, where Q denotes the field of rational numbers. Such a manifold has 

the fixed point property since-A-^ = 1 for a l l maps f» X — » - X . In 

particular, the n - discs D have the fixed point 

property. This result i s known as the Brouwer Fixed Point Theorem. 

2. Real protective 2n - space. jR F^n, n ^ l has the fixed point property 
_2n"*"l 

since i t i s Q - acyclic. The manifolds, iR r , however, do not have the 

fixed point property. Since IRr = the set of equivalence classes of 

vectors ( r Q , . . . , r 2 n + 1 ) e IR 2 n + 2 - (0,0,...,0) where (r Q,..•»r 2 n + 1) i s 
equivalent to ( r j , . . ) i f a n d ovl7 i f ( V , , r 2 n + 1 ^ = C* r0'' * * ,r2n+l^ 
for some non - zero real number c, the function f s R2n+2 - (0,0,...,0) 
—>(R 2n+2 - (0,0,...,0) defined by f ( r Q , . . . f r 2 n + 1 ) = (-VV ,- -'~ r2n+l , I2n ) 

induces a self map of (R p211*1- which fixes no point. 

3» Complex pro.lective 2n - space. CP211, n>l, has the fixed point property. 



The cohomology ring of CP 2 1 1 with rational coefficients i s the truncated 

polynomial algebra generated by a generator c of IT( CP 2 1 jQ) where c = 0 

Therefore i f f i s a self map of CP 2 1 1 and f*fc = ac thenJV^ = 1 + a + a 2 +.. 

+ a 2 n . If a / 1 then_/Vf = ( l - a 2 n + 1 ) / ( l - a ) / 0. If a = 1 thenA_ f = 

2n + 1 and hence CP 2 1 1 has the fixed point property. However, i f f: C P 2 n 

^ C P 2 n + 1 is defined by f [ ( c 0 , . . . , c 2 n + 1 ) ] = [(-c1,^),...,-«ijnfl,ft2B)], 
we see that the CP 2 1 1*^^ do not have the fixed point property. 

U» Quaternionic projective space. NP n, has the fixed point property for 

a l l n greater than 1. (IHF^^S^ does not) 

Proof i B*(lHPnjQ) = Q [ h J / h n + 1 , the truncated polynomial algebra 

generated by h-^ a generator of H^HF^jQ). Therefore the Lefschetz - Hopf 

number,-A-f for a self map f of IHP i s 5̂ (-l^a* where f * ^ = ah^. 

JV, = 0 only i f a = -1. We shall show however that a cannot assume the 

value -1 

Let P1: tfKXj'Z. )• ) be the reduced power operation. (See 
3 3 

There exists a map g which makes the following diagram of Hopf bundles 

commute and i s such that g*hj= c^ where c^ i s the generator of 

S 1 S3 

S 4n-l _ c4n-l 

CP 2 1 1 >. HP11 
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l t is sufficient to show this for the case n = 1. Here the fibre of g is 
1 2 

just CP ^ S and we have the result from the Gysin cohomology sequence, 

Since dim c^ = 2, P̂ c-̂  - c^ and the Cartan formula gives P^(c^) = 2c^. 

Since P 1 is natural F L(h ) = 2h^ and by the Cartan formula PL(h^) = 4h^. 

Therefore 

P 1 

f* 
P 1 

H^OHP 1 1;^) — — • H L 2(lHP nj2^) 

•->• a 

3 2 
implies that Ubt=~. 4a (mod 3) which implies that a ̂  -1. 

5. The Cayley Plane 

The Cayley numbers are ordered pairs of quaternions. They are added by 

adding coordinates and multiplication i s defined by (q-̂ qgHq̂ fq̂ ) ~ 

^ q l q l " ̂ 2 q 2 , q 2 q l + q2^P* d>°) i s a t w 0 sided unit. Also i f the conjugate 

of c = (q^,q2) i s defined to be c~ = ("q̂ ,-̂ ) t h e n c ^ = * s r e a l a n d n o n ~ 

negative and equals zero i f and only i f c = (0,0) = 0. It can also be shown 

that multiplication is distributive with respect to addition and cd = 0 

implies that either c = 0 or d = 0. Thus the set of a l l Cayley numbers forms 

a division algebra. The associative law does not hold in general and so we 

cannot use the equivalence relation used for the real, complex and 

quaternionic spaces to define projective spaces based on the Cayley numbers 
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Using the fact that any two Cayley numbers generate an associative 

algebra isomorphic to a subalgebra of the quaternions, we can construct 

a fibering of S t o v e r S3 with S 7 for a fibre to define the notion of a 

Cayley plane. (See (5))» It i s , in fact, the homogeneous space F /Spin(9) 

where F i s the Lie group which i s the quotient group SO(8)/U(4.). Its 

rational cohomology ring is the truncated polynomial ring generated by a 

generator c in dimension 8 such that c^= Oj and hence by the Lefschetz -

Hopf Fixed Point Theorem i t has the fixed point property. 

Since a l l that i s used to show that these manifolds have the fixed point 

property i s the Lefschetz - Hopf Fixed Point Theorem, any manifold with the 

same rational cohomology algebras as these will have the fixed point 

property. Such manifolds may be obtained for instance by mixing homotopy 

types. (See (6)). 

Using the Runneth formula we see that cartesian products of the above 

manifolds also have the fixed point property, however, in (7) Husseini 

constructs manifolds with the fixed point property such that certain 

cartesian products of them do not. 

In (2), Brown shows that i f X is a compact manifold and M i s an n -

manifold with the fixed point property and n>3 then the mapping 

cylinder of any map f: X—>• M has the fixed point property. In 

particular i f I i s the unit interval then MX.I has the fixed point 

property. 
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3. Cohomology of the Grassman Manifolds 

Let K be fi^ , (TJ. or |H , the real, complex, and quaternionic fields 

respectively, and let G denote the Grassman manifold of n - dimensional 

subspaces of K11*^. Let ̂  £ denote the bundle (and total space of the 

bundle) of G . which i s the set whose points are the pairs: (n - plane, 

point in the n - plane) and ^ £ the set of pairs: (n - plane, point in the 

complementary k - plane). For a vector bundle ^ = (E,B,tr ) let the 

projectivization, P(^ ), be the space of one - dimensional subspaces of the 

fibres of E, and let l ( ^ ) be the bundle over P(^ ) consisting of the pairs 

(cr,e) where o i s a one - dimensional subspace of a fibre and e i s a point 

in that subspace. 

Proposition 3.1: (See (8) for further details of Chapter 3) 

Let ^ be a locally tr i v i a l vector bundle over a compact Hausdorff space 

B. There exists a finite dimensional vector space V over K and a 

surjective bundle map e: VXB —>-B and a commutative diagram: 

. J , 
' 7Z • 

P(E) ^P(VXB) = P(V)xB »- P(V) 

I 
B B 

For example, i f ^ = X£ then V = Knand P(V) i s K- projective (n-l) -

space, 
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Now let A = 7L i f K = <C or IH and 7L i f K = 1R . Let o<v be the 
class in ^(POOjA) SO that H*(P(V);A) i s the free A - nodule on 1, 

dimV - 1 

Theorem 3.2: Let ceH k(P(E);A) be the class j*(o<v). Then H*(P(E)JA) i s 

the free H*(B;A) module (viaTT*) on the classes l,c,...,<P~̂  and there 

exist unique classes ) € ^ ( B ^ ) , (where k = the real dimension of K) 

and a0(\ ) = 1 such that c n - c * " 1 * * * ^ ^ ) ) + . . . • ( - l ^ c w M c r )) 

• (-i)\r*(cr (*)) = 0. 
n 

The class c r ( ^ ) = 1 + CT ) + ... + a ) i B called the total 

characteristic class o f ^ • These classes are also called: 

i) K = R ; Stiefel - Whitney class to ) 

i i ) K = C : Chern class c(^) 

i i i ) K = IH : (Symplectic) Pontrjagin class -f>C^) 

Theorem 3.3: The total characteristic class cr ) has the following 

properties: 

1. CT (^) = 0 i f i>dim^. 

2. ) is natural:, i f f; B' >B then CT(f*^ ) = f * c r ( ^ ), 

3. If ^ and are two vector bundles over B then c r ( ^ ©f|) = C J ^ ) v ^ c r ( r ^ ) 

4. If 1 i s the canonical line bundle over P(V), then CT^l) = Cxr̂ . 

Now, let O" = CCCK?), O, = o t t f ) . Property 3. of the previous 
X X K X K 

theorem implies that CV^O = 1. 
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Proposition 3.4: H*(G , jA) i s the quotient of the polynomial algebra 

over A on the CT̂ , i ^ n , by the relations imposed by = 0 for j>k. 

(Note: O" i s the polynomial of degree j i n a, given by the formal 

inversion of O .) 

Proof: This polynomial algebra i s certainly mapped into H*(Gn ^;A) and 

to prove that this i s indeed an isomorphism we induct on n. For n = 1, 
G l k = K j k + 1 s o t h a t H k>A) i s g e n e r a t e d by c< = with the one 

v+i 2 \k k 
relationoc =0 but since CJ = 1 - oc + oc - ... + (-1) oc. + ..., 

the condition O. = 0 for j>k gives this and only this relation. 

If the result holds for a l l G . with n<s. then consider G . . A point 
n,k 7 s,t r 

in P ( ^ ) i s a line a in an s - planejj • The orthogonal complement of a 
in u i s an s-1 - plane and hence a point of G , . ,. Therefore ?(% f) / _ s-l,t+l t 

t+i 

e.g. s=2, t = 1 

2 2. 
a€PU ) and aeP (K 2 ) 

We have the diagram: t i t+x 
TT 

Tf 

s-l,t+l 

*s,t 



- 1 6 -

Letting 1 = 1(% I) = 1(1 *"*) one has that T T * ( ^ J) = ^® 1, T f * U ^ ) 

= ry® 1 with ^ © ffi 1 being the tri v i a l bundle. Since c = ^ ( l ) we have 

0 = ^ t - l j V ' V ^ U *)) = C(- l )cf ^ D ^ a ^ ^ f l )) by naturality 

= E C - l ) 1 © ^ ! ) 8 " 1 ^ ^ ) + 0 i. 1(^)0 1 ( D ) = CSaC%) (the other terms 

canceling in pairs). 

Therefore regarding P( ̂  **) as a bundle over G the above property 

and the induction hypothesis say that H*(p(^ ̂ )»A) i s generated by the 

characteristic classes of ^ , 1, and subject only to relations imposed 

by the conditions: 

1. dim cr(r^e 1 ) = t 

2. O (r^® 1 ) = 1 

Since C7UC = 1 we already have that H*(G jA) i s generated by CT , 
S , t J . 

i-^s with one of the relations being that dim(CS !*)~^) = t. Now looking 

at P(^ f) as a bundle over G ^ we see that this must be the only relation, t s,t 
Q.E.D. 

V 
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4. Fixed Point Properties of the Grassman Manifolds 

In (9), F. Bachmann, H.H. Glover and L.S. O'Neill prove the following: 

Theorem 4.3,: 

i) For q>p 2,H G has the fixed point property. 

i i ) For q>p2and pq even, CG^ ̂  has the fixed point property. 

i i i ) For q>p 2 ( P* q) o d d a n d P ̂  & " 1> ^ G
p q the fixed point property. 

This theorem partially satisfies their conjecture: 

Conjecture 4.2: IH G has the fixed point property i f and only i f p / q. 
p,q 

For F = iR or € , FG has the fixed point property i f and only i f p ̂  q 

and pq even. 

If this conjecture i s true then the question of which Grassman manifolds 

have the fixed point property i s completely settled. This i s because the 

self map of KG , where K = R ,C, orlH, induced by orthogonal complementation P*P 
is fixed point free and also because of the following theorem: 

Theorem 4.3: For p + q even let fx F p + q *-F p + q be defined by 

f(u_,...,u ) = (-TJL/U, ,. ..,-u ,H ) and f be the induced map of 1 p+q 2 1 p+q p+q-1 V 
Stiefel manifolds f : FV > FV which is seen to be well defined i f 

V P,q p,q 
F = ift or € . If p and q are both odd and F = iR or € , then the 
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induced map f Q : F Gp~^ *"FGp,q i s f i x e d P o i n - t free, 

Pgoofj In the case that F = ̂  , f is given by the direct sum of matrices 
(0 -1\ 

of the form I j • It follows then that the characteristic equation of 

f i s (z*2 + l) P + 0 ^ / 2 = o, which is seen to have no real roots and thus f 

has no eigenvectors. Now i f W i s an odd dimensional invariant subspace of 

f then f|w must have at least one eigenvector, a contradiction. 

For the case F = C, we refer the reader to (10), page 304 for a proof 

using differential geometry. Q.E.D. 

Theorem 4»1 follows from an application of the Lefscheta - Hopf Fixed 

Point Theorem and the following theorems also proved by Bachmann, Glover 

and O'Neill in (9). 

Theorem 4.4: Let R be ZZ i f F = C or IH, 7Z^ i f F = (R . Let f be a 

self map of FG • Then clearly f*o, = key. for some k in R , C5, being P,q 1 1 1 
the f i r s t characteristic class. Suppose q̂ .p (and p ^ 2 - 1 i f F =1R ), 

Then f * ^ = k 1 ^ for i = l,...,p. 

A self map f with the above property i s called an Adams type mapping. 

Corollary 4.5: For F = IR , C or IH and q^p 2 (and p £ 2 r - 1 i f F = IR ) 

every self map f of FG has Lefschetz - Hopf number J\, = 
P»q 1 

£ qdim H (FG jR) k 1 where d = 1,2,4 i f F = IR, <C or \H respectively. 
o p>q 

Corollary 4.6: 

i) For F = C or VA and q^.p2 and f a self map of FG , _\ = 1 (mod k) 
p,q r 
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i i ) For q>p2, ( P + q^ odd and p / 2 r - 1 and f is a self map of IRG j \ P / P»Q 
-Ay = 1 (mod 2). 

Theorem 4.1 now follows from the Lefscheta - Hopf Fixed Point Theorem. 

If F = C or IH ,_/Vj, = 0 only i f k = -1 perhaps. But then 7 ^ = 

IK-l^dim H ^ F G ^ j Z ) = D - l J ^ C t R G ) ="X^Gp,q» t h e number, 

since dim Hdi(FG ;Z) i s the number of cells in dimension di in the 
p»q 

canonical CW structure for FG where F = {R, C or|H ( d = 1, 2, or A ) 
P>°i 

( See ( l l ) ) It is well known, however, that"XfRG for p £ q, pq even, 
p»q 

i s greater than zero, ( See (10) page 303 ). In the case where F = IH and 

pq i s odd we may use P*" in the Steenrod Algebra mod 3 to eliminate the 

case k = -1 in the same way i t was eliminated for IHG^ 2r&\ ~ 'HP20*** 

In the case F = IR , (P**) odd, J V j = dim KP^IRG ; Z 2 ) (mod 2) == 

^Ppq^(mod 2) = 1 (mod 2) and thus Theorem 4.1 i s proved. 



5. Properties of some of the <^ Gj > k'a 

Theorem 5.1: Any self map of CQ. i s an Adams type mapping and hence 
3>2 

CG has the fixed point property. 

Proof; Since CG i s homeomorphic to CG , i t s cohomology ring is 3»*- 2,3 
generated by a generator x in dimension 2 and a generator y in dimension A 

subject to the relations imposed by the sums of elements of the same 

dimension in the formal inverse of the total class, 1 + x + y. ( l + x + y)""^ 

= 1 - x - y + x 2 + 2xy + y 2 - x 3 - 3x2y - 3XJT2 - y 3 + x^ + Ax?7 + bx2?2* 

Axj3 + y 4 - x 5 - 5xAy - 10xV - lOxV - 5xyA - y 5 + x 6 +... 

Thus dimension 8 i s completely determined by three generators, and 
2 Z. 2 2 2 y with the one relation : x* - 3x y + y = 0. We can therefore choose x y 

2 
and y as a basis for dimension 8 with 

1. xA = 3x2y L y 2 

Dimension 10 i s generated by x-5, x^y, and xy 2 subject to the two relations: 

- xy (equation 1. multiplied by x) 

3. -x5 + Ax?y - 3xy2 = 0 
Solving this system of equations gives us the single element xy as a basis 

with 

A* x^y = 2xy2 and 
5xy2 

5. x 5 - — 2 

Let f: CG > CG with f*(x) = ax and f*(y) = bx2 + cy. Using 
3 , 2 3 ; / equation 1. and the fact that f* i s a ring homomorphism we have a x = 

f*(x 4) = f*(3x2y - y 2) = 3a2x2(bx2 + cy) - ( b 2 / + 2bcx2y + c 2y 2) = 

3a2bx^ + 3a2cx2y - b2x*-- 2bc x 2y - c 2y 2 = 3a2b(3x2y - y 2) + 3a2cx2y 



- b 2(3x 2y - y 2) - 2bcx2y - cV = (9a2b • 3a 2c - 3b2 - 2bc)x2y • 

(-3a2b + b 2 - c2)f. 

Since a^x^ = 3a^x2y - a^y2 and ^y, y 2 form a basiB we have* 
6. 3&A = 9a2b + 3a2c - 3b2 - 2bc 
7. -a^ = -3a2b + b 2 - c 2 

Adding three times 7. to 6. gives us; 

8. 3a2c - 2bc - 3c 2 = 0 

Using equations A* and 5. in a similar manner gives us» 

5a5xy2 = a V = f*(x 5) = f*(5xf) - 5ax(&y£ + 2bcx2y + c 2 / ) = 5a.b2x? * 

lOabcj^y + 5ac2xy2 = (25ab2 + 20abc + Sacf^Jxy2. Therefore 

9. a^ = 5ab2 + 4abc + ac 2. 

Case l i a = 0. 

If b = 0 as well then equation 8. becomes = 2bc - 0 which means that 

c = 0 as well as a and b. 

If b ̂  0 then after dividing b into equation 6. we have 3b = -2c or b = 

(-2/3)c Substituting this into equation 8. gives us 3c 2 = (A/l)<? which 

implies that c = 0. But i f c =0 then according tb equation 6. b must also 

= 0, contradicting the assumption. Therefore i f a =0 then b = c = 0. 

Case 2t a / 0 

If a / 0 then dividing equation 9. by a gives us the equation: 

10. a^ = 5b2 + Ate + c 2 

Now i f b f 0 then c / 0 for i f c = 0 then equation 10. becomes a^ = 5b2 to 

which there are no solutions consisting of non - zero integers. 



- 22 -

Adding equation 7. to equation 10. produces 

11. 6b2 + 4-bc - 3a2b = 0 and dividing this by b gives 

12. 3a2 = 6b + 4c 

Substituting for 3a in equation 8. and then dividing equation 8. by c* 

13. c = -4b 

Substituting for c in equation 12. gives 3a2 = -10b and therefore 9a^ = lOOb2" 
A 2 A 2 2 Substituting for c in equation 10. gives ar - 5b and thus 9eT = 45b = 100b 

This implies that b = 0 contradicting the assumption. Thus i f a / 0 then b 

= 0 and by equation 9. we see that c / 0 and then by equation 8. we see that 
2 

c = a and thus f is an Adams type mapping. Q.E.D. 

Theorem 5.2t Any self map of CG i s an Adam's type mapping and hence 
3»4 

CG. has the fixed point property. 3>4 
Proof t The ideal of zeros of H^dLG^ jjTD are generated by the following 

relations in dimensions 10, 12, 14, 16, 18, 20, 22, 24 respectively! 

1. -x5 + 4x̂ y - 3X3T2 - 3x2z + 2yz = 0 (z being the third Chern class) 
2. x 6 - 5x^y + 6x 2y 2 - y 3 + 4x3z - 6xyz + z 2 = 0 

3. -x7 + 6x5y - lO^y 2 + 4x3̂  - 5x̂ z + 12x2yz - 3y2z - 3xz2 = 0 

4. x 8 - 7x6y + X^J2 - lOx 2^ +. + 6x5z - 20x3yz + 12x3^ + 6x 2z 2 - 3yz2 = 0 

5. -x9 + 8x7y - 21x5^ + 20x3y3 - 5xy^ - 7x6z * 30x^yz - 30x2y2z + Ay3* -

lOxV + 12xyz2 - z 3 = 0 
6. x 1 0 - 9x8y + 28x6y2 - 35xV* + ^x 2/^ - y 5 + 8x7z - 42x5yz + 60x3y2z -

20xy3z + 15x^z2 -•30ac2yz2 + oy 2z 2 + 4xz3 = 0 

7. -x 1 1 + 10x9y - 36x7y2 + 56xV - 35X3/ + 6x3̂  - 9x8z + 56x6yz - 105xVz 
+ 60x2y3z - 5/z - 21x 5z 2 + 60x3yz2 - 30xy2z2 - 10x 2z 3 + 4yz3 = 0 
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8. x 1 2 - llx^-Oy • ̂ ^ y 2 - S ^ y 3 + 70xV" - 21x2y5 + y 6 + 10x9z - 72x7yz 
+ IbSxtyz - U O x ^ z + 30x/z + 28x 6z 2 - 105x^yz2 + 90x 2y 2z 2 -lCy^z 2 

+ 20x3z^ - 20xyz3 + z^ = 0 

3 2 2 
Dimension 10 has a basis of four elements: x^y, xy , x z and yz with 
9. x5 = 4x3y - 3XJT2 - 3x2z + 2yz 

Dimension 12 has two relations: equation 2 and 

10. -x̂ > + 4xV - 3x 2y 2 - 3x3z + 2xyz = 0 (equation 1. multiplied by x) 
By row reducing the associated 2 by 7 matrix we get a basis of 5 elements: 
x^ 2, x^z, y^, xyz, and z 2 with 

11. - 3x 2y 2 + x 3z - y 3 - 4xyz + z 2 

12. x 6 = 9xV+ x 3z - 4y 3 - 14xyz 4z 2 

Dimension 14 has four relations: equation 3 and 

13. -x 7 + 4x5y - 3x^y2 - 3x^z + 2x^z = 0 (equation 1. multiplied by x ) 

14. -x5y + Ax^y2 - 3xy3 - 3x^z + 2y2z = 0 (equation 1. multiplied by y) 

15. x 7 - 5x-*y + 6x 3y 2 - xy 3 + 4x^z - 6x2yz + xz 2 = 0 (equation 2. mult, by x) 
3 2 2 2 By linear algebra we have a basis of 4 elements: xy , x yz, y z, and xz with 

16. x 7 = 14xy3 + 7x2yz - 28y2z - 7xz 2 (-14(13) - (14) - 23(15) - 10(3)) 

17. x^r = 5xy3 + 5x2yz - 10y2z - 4xz 2 (-4(13) - (14) - 8(15.) - 4(3)) 

18. x V = 2xy3 + 2x2yz - 3y2z - xz 2 ((13) + 2(15) + (3)) 

19. x4s = 3x2yz - y 2z - 2xz 2 - ((H) + (15) + (3)) 

By.Poincare Duality we know that Dimension 16 i s spanned by 4 elements. To 

find 4 such elements we multiply equations 16, 17, 18, and 19 by x to get: 
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20. x 8 = Ux2^ + Ix^yz - 2Sxy2z - 7x 2z 2 

21. x 6y = S x V + 5x3yz - lOxy^z - 4x 2z 2 

22. x 4y 2 = Sx 2^ + 2x3yz - 3xy2z - x 2z 2 

23. x 5z = 3x^yz - xy 2z - 2x 2z 2 

Multiplying equation 1. by z and substituting for x^z with equation 23. gives: 

2A. x-*yz = -2yz2 + 2xy2z + x 2z 2 

Substituting x^yz with equation 24. in equations 20,21,22, and 23 and 

collecting terms gives: 

25. x 8 = U x V 3 - Uxy 2z - Myz 2 

26. x 6y = Sx 2^ + x 2z 2 - 10yz2 

27. x V = 2x 2y 3 + xj^z + ^ z 2 - 4yz 2 

28. x 5z = Sxj^z + x 2 z 2 - 6yz2 

Multiplying equation 11. by y and substituting gives: 

29. y 4 = x 2 ^ - Jsq^z * 3yz2 

Since CG~ . i s an orientable 24 - dimensional manifold, we know that -?»4 
can be spanned by a single element. To find such an element 

3,4 
we solve the following system of 22 equations (equation 8. plus equations 

3© to 50 inclusive) in 19 variables. Equation 30. is equation 24. multiplied 

by xz, 31 i s 25. multiplied by xz, 32. is 26. by xz, 33. i s 27. by xz, 34. 

i s 28. by xz, 35. i s 29. by xz, 36. i s 11. by z 2, 37. is 12 by z 2, 38. is 

16. by yz, 39. i s 17. by yz, 4O. i s 18. by yz, 4I. is 19. by yz, 42. is 20. 

by x4-, 43. i s 21. by x 4, 44. i s 22. by x 4, 45. is 4. by x 4, 46. i s 5. by xy 

47. is 5. by x 3, 48. i s 6. by y, 49. i s 6. by x 2, and 50. i s 7. by x. 

We find that z 4 generates dimension 24 with xyz 3 = z 4, x 3 z 3 = z 4, jr^z 2 = z 4, 



x ^ z 2 = 2ẑ , x^yz2 = 3zA, x 6z 2 = 5z4, xy^z = 3^, x ^ z = 6ẑ , x 5 ^ = l l z ^ , 

x 7yz = 21zA, x 9z = 42Z4, y 6 = 5Z4, x 2 ^ = llzA, x^/ = 23 z^, x6y3 = A7z^, ' 

x 8 ^ = 98zA, x*°y = 2IO2A, x 1 2 = 462ẑ . which of course can be checked by 

substituting these values into equations 8. and 30 to 50, 

Let ht CG — >- CG where a,b, c,e,f, g are integers such that 

h*(x) = ax 

h*(y) = bx2 + cy 

h*(z) = ex3 + fxy + gz 

Using equation 1. and the fact that h* is a ring homomorphism we have: 

hHx5) = hM^y - 3xy2 - 3x2z + 2yz) = Aa^Cbx2 + cy) - 3ax(b2xA + 2bcx2y 

+ c 2^) - 3a2x2(ex3 + fxy + gz) + 2(bx2 + cy)(ex3 + fxy + gz) = Aa3bx5 + 

4a3cx3y - 3ab2x5 - 6abcx3y - 3ac2xy2 - 3a2ex5 - 3a2fx3y - 3a2gx2z + 2bex5 

+ 2bfx3y + 2bgx2z + 2cex3y + 2cfxy2 + 2cgyz = (l6a3b - 12ab2 - 12a2e + 8be 

+ Aa3c - 6abc - 3a2f + 2bf + 200)3^ + (-12a3b + 9ab2 + 9a2e - 6be - 3ac2 

+ 2cf)xy2 + (-12a3b + gab2 + 9a2e - 6be - 3a2g + 2bg)x2z + (8a3b - 6ab2 -

6a2 e + Abe + 2cg)yz 

Since h*(x5) also equals a 5x 5 = 4a5x3y - 3a5xy2 - 3a5x2z + 2a5yz and x3y, 

xy 2, x 2z and yz form a basis, we have the following equations: 

51. 4a5 = l6a3b - 12ab2 - 12a2e + 8be + Aa3c - 6abc -3a2 f + 2bf + 2ce 

52. -3a5 = -12a3b + 9ab2 + 9a2e - 6be - 3ac2 + 2cf 

53. -3a5 = -12a3b + 9ab2 + 9a2e - 6be -3a2g + 2bg 

54. 2a5 = 8a3b - 6ab2 - 6a2e + Abe + 2cg 

Subtracting 53. from 52. gives: 

55. -3ac2 + 2cf + 3a2g - 2bg = 0 



- 26 -

Adding three times 54. to twice 53. we have: 

56. 6cg - 6a g + 4bg = 0 

Adding four times 52. to three times 51. we have: 

57. -12ac2 + 8cf + 12a3c - 18abc - 9a 2f + 6bf + 6ce = 0 

Using equations 11. and 12. and the given basis of dimension 1Z we have: 

h*(x6) = h*(9x2y2 + y?z - Aj3 - Hxyz + A*2) giving us the equations: 

58. 9a6 = 81a2b2 + 9a3e - 36b3 - 126abe + 36e2 + 54a2be + 3a 3f - 36b2c 

-42abf -42ace + 24ef + 9a2 c 2 - l^bc 2 - 14acf + Af2 

59. a 6 = 9a2b2 + a 3e - 4b3 - 14abe + 4e2 • 18a2bc + a 3f - 12b2c - 14abf 

-14ace + 8ef + a 3g - 14abg + 8eg 

60. -4a6 = -36a2b2 - 4a3e + 16b3 + 56abe -I6e2 - 18a2bc - a 3f + 12\£c 

+ 14abf + 14ace - 8ef - 4c3 

61. -14a6 = -126a2b2 - 14a3e + 56b3 + 196abe - 56e2 - 72a2be - 4a 3f + 48b2c 

+ 56abf + 56ace - 32ef - 14acg + 8fg 

62. 4a 6 = 36a2b2 + 4a3e - 16b3 - 56abe + l6e 2 • 18a2bc + a 3f - 121^0 - Uabf 

- 14ace + 8ef + 4g2 

Subtracting three times equation 59. from 58. gives: 

63. 6a6 = 54 a 2b 2 + 6a3e - 24b3 - 84abe + 24e2 + 9a 2c 2 - 12bc2 - Uacf 

+ 4^ - 3a3g + 42abg - 24eg 

Adding equation 59. to 60. gives: 

64. -27a2b2 - 3a3e + 12b3 + 42abe - 12e2 + a 3g - 14abg + 8eg - 4c3 = -3a6 

Subtracting four times equation 60. from 61. yields: 

65. 18a2b2 + 2a3e - 8b3 - 28abe + 8e2 + 16c3 - 14acg + 8fg = 2a 6 

Adding equation 60. to equation 62. provides: 
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66. g 2 = c 3 

Since x^y = 21C-5S4 and x 1 2 = 4622A, l l x ^ y = 5X12. h ^ l l x ^ y ) = 

l l a ^ x ^ b x 2
 + cy) = l l a ^ b x 1 2

 + 11a 1 0 cx^y = (5082a10b + 2310a10 c ) ^ = 

h*{5*12) = 5a 1 2x 1 2 = 2310a 1 2 A Therefore: 

67. 5a 1 2 = l l a 1 0 b + 5a 1 0c 

Since x V = 98zA and x 1 2 = 462zS 33x8y2 = 7X 1 2. h*(33x8y2) = 

33a8x8(b2x^ + 2bcx2y + c V ) = 33a 8b 2x L 2 + 66a8bcx10y + 33a8 c ^ y 2 = 

(l5,246a8b2 + 13,860a8bc + 3234a8c2)z^ = h*(7x12)" = 7a 1 2x 1 2 = 3234a 1 2 A So: 

68. 7a 1 2 = 33a8b2 + 30a8bc + 7a 8c 2 

Since x 9z = 42ẑ  and x 1 2 = 462ẑ , l l x 9 z = x 1 2. h*(llx 9z) = 

lla 9x 9(ex 3 + fxy + gz) = 11a 9ex 1 2 + 11a 9fx^y + lla 9gx 9z - (5082a9e + 

2310a9f + 462a9g)zA = h H x 1 2 ) = a^x 1 2 = 4 6 2 a 1 2 A Therefore: 

69. a 1 2 = 11a9e + 5a9f + a 9g 

Since y6= 5^ and x 2y 5 = l l z ^ , l l y 6 = $x 2y 5. h*(lly 6) = l K b x 2 + cy) 6 = 

l K ^ x 1 2 + 6b 5cx 1 0y + I S D V X V + 20b 3c 3x 6y 3 + 15^</^hU + 6bc5x2y5+ c 6y 6) 

= h*(5x2y5) = 5a 2x 2(b 5x L O + 5tAcx8y + 10b3 c ^ y 2 + lOt rVxAy 3 + 5bcAxV" + 

c^y5) Using the basis in dimension 24 gives us:: 

70. ll(462b 6 + 1260b5c + 1470tAc2 + 940b3 c 3 + 345b2c^ + 66bc5 + 5c6) = 

5(2310a2b5 + 5250a2lAc + 4900a2b3c2 + 2350a2b2c3 + 575a2bc^ + 55a2c5) 

Case 1: a =0, g = 0. If g = 0 then according to equation 66, c = 0 
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If c = 0 and a = 0 then according to equation 70, b = 0 

If a = b = c = g = 0 then according to equation 64, e = 0 and then i t 

follows from equation 63. that f = 0 as well. 

Case 2: a = 0, g ̂  0: I f g ^ O then according to equation 66, c ̂  0. 

If a = 0 then equation 56. becomes 6cg + 4bg = 0 and i f we are assuming 

that g 0 then we have that c = (-2/3)b. Substituting a = 0 and c = (-2/3)b 

into equation 70. gives us (4I,342/729)b^ = 0 which means that b = 0 and 

c and g are both zero contradicting the assumption. Therefore i f a = 0 then 

b = c = e = f = g = 0. 

Case 3; a ̂  0: If a £ 0 then dividing equations 67. and 68. by a 8 gives: 

71. 5a2 = l i b + 5c 
72. 7a^ = 33b2 + 30bc + 7c2 

Squaring 71. and multiplying by 7 produces: 

73. 175a4 = 847b2 + 175c2 + 770bc 

Multiplying equation 72. by 25 produces: 

74. 175a^ = 825b2 + 175c2 + 750bc 

Subtracting 74. from 73. yields: 

75. 0 = 22b2 + 20bc = 2b(llb + 10c) 

Therefore i f a ̂  0 then either b = 0 and c = a 2 (by equation 71.) or b = 

(-lO/ll)c and c = -a 2. Since by equation 66. g 2 = c 3, i f c = -a 2 , then 

g 2 = -a^ which means that both a and g are equal to zero, contradicting the 

assumption. Therefore i f a / 0 then b = 0 and c = a 2 and g = a 3. Equation 

55. becomes 2a f = 0 which means that f = 0 and after dividing equation 69. 

by a 9 and substituting we have that e = 0 as well, hence h i s an Adams 

type mapping. Q.E.D. 
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Theorem 5.3: Any self map of CG^ ̂  is an Adams type mapping and hence 

<CG has the fixed point property. 3,o 
Proof: Let x,y, and z be the f i r s t , second, and third universal Chern 

classes as usual. Dimension 14- i s spanned by seven elements with 

1. x 7 = 6x5y - lOx^y2 + Axp - 5xAz + l ^ y z - - 3XZ2 

If h i s a self map of G , such that h*(x) = ax, h*(y) = bx2 + cy, and 

h*(z) = ex3 + fxy + gz, then taking h* of both sides of equation 1. and 

comparing the coefficients of the x^y2, x4z, xy3, ̂ yz, j^z, and xz 2 

terms gives us the equations: 

2. -10M - 10a3c2 + 12abc2 + 12a2cf - 6bcf - 3^6 - 3a^ = -10a7 

3. -5M - 5a^g + 12a2bg - 3b2g - 6aeg = -5a7 

4. W + Aac3 -3<?£ = 4a 7 

5. 12M + 12a2cg - 6bcg - 6afg = 12a7 

6. -3M - 3c2g = -3a7 

7. -3M - 3ag2 = -3a7 

where M = 6a5b - 10a3b2 +. Aab3 - 5a^e + 12a2be - 3b2e - 3ae2 

From these equations we get: 

8. c 2g = ag 2 ( (6) - (7) ) 

9. 12a2cg - 6bcg - 6afg = 12c2g ( (5) + 4(6) ) 

10. 15a^g - 36a2bg + 9b2g + 18aeg = 15c2 g (5(6) - 3(3) ) 

11. - ^ a c 3 + 9 ^ = -12c2g ( 3(4) + 4(6) ) 

12. 30a3c2 - 36abc2 - 36a2cf + 18bcf + 9c 2e + gaf 2 = 30c2g ( -3(2) + 10(6) ) 

Dimension 16 i s generated by 10 elements and 2 relations: 

13. x 8 - 7x6y + lSx^y 2 - lOx 2 ^ + y^ + 6x5z - 20x3yz + 12x3^ + 6x 2z 2 - 3yz2 

= 6 as well as equation 1. multiplied by x. 
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By row reduction, we find that dimension 16 i s spanned by 8 elements with: 

14. x 6y = Siry2 - 6x 2y 3 + y 4 + x 5z - 8x 3yz + 9xy2z + l^z2 - 3yz2 

15. x 8 = 202TJ2 - 32x 2y 3 + 6y* • x 5z - 36x 3yz + 51x7^ + l S x 2 ^ - Wyz2 

Taking h* of equation 14. and comparing the coefficients of y 4, yz 2, and 

x^z of both sides gives us the equations: 

16. 6M + N + c 4 = 6a6b + a 6c 

17. -IBM - 3N - 3cg2 = - l S a S - 3a6c 

18. M + N + a 5g - 8a3bg + 9ab2g + 6a2eg - 6beg = a 6b + a 6c 

where M = 5a 4b 2 - 6a 2b 3 + b 4 + a 5e - 8a3be + 9ab2e + 3a2 e 2 - 3be2 and N = 

10a4bc - 18a2 b^c + 4 ^ 0 • a 5f - 8a3bf - 8a3ce + 9ab2t * 18abce + 6a2 ef 

- 6bef - 3ce • From these equations we get: 

19. c 4 = eg2 ( 3(16) + (17) ) 

Dimension 18 i s generated by 12 elements and 4 relations: 

20. -x9 + 8x7y - 21x5y2 + 20x3y3 - 5XV 4 - 7x6z • 30x£yz - 30x2y2z + 4y3z 

- lOx^z2 + 12xyz2 - z 3 = 0. 

21. equation 13. multiplied by x 

22. equation 1. multiplied by x 

23. equation 1. multiplied by y 

Solving the associated matrix, we find that dimension 18 i s spanned by 8 

elements with: 

24. x 9 = 48x3y3 - 54X3T4 + 9x^2 - 135x2y2z + 81^% - 9x 3z 2 • 108xyz2 -

21z3 ( -47(21) - 21(20) - 27(22) - (23) ) 

25. x 7y = U x 3 ^ - 14xy4 + 7x4yz - 42x 2y 2z + 21y3z - 6x 3z 2 + 33xyz2 - 6z 3 

( -6(20) - 12(21) - 6(22) - (23) ) 

26. x^y2 = 4x 3y 3 - 3XV 4 + 2xVz - ̂ j^z + 4y3z - x 3z 2 + 6xyz2 - z 3 
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( (20) + 2(21) + (22) ) 

27. x 6z = 5x^yz - oxVz + y*z - 4x 3z 2 + 6xyz2 - z 3 ( (20) + (21) + (23) ) 

Taking h* of equation 27. and comparing the coefficients of z 3, x 3y 3, and 

xy^ we have: 

28. -21M - 6 N - P - Q - g 3 = -21a6e - 6a 6f - a 6g 

29. 48M + U N + 4P - 6a 2c 2f + 3bc2f + c^e + oacf2 - f 3 = 48a6e + H a 6 f 

30. -54M - U N - 3P + c*t = -54a6e - U a 6 f 

where M = 5a^be - 6a2b2e + b^e - 4a3e2 .+ 6abe2 - e 3 and N = 5a^bf + 5a^ce 

- 6a 2b 2f - 12a2bce + t^f + 3 ^ 0 6 - 8a 3ef + 12abef + 6ace2 - 3e 2f and P = 

5a^cf - 12a2bcf - 6a 2c 2e + 3b 2cf • 3bc2e - ^ f 2 + oabf2 + 12acef - 3ef 2 

and Q = 5a^bg - 6a2b2g + b 3g - 8a3eg + 12abeg - 3e2g 

Case l a : g ̂  0, c = 0 

If g 0 and c = 0 then according to equation 8, a = 0 and consequently 

by equation 10. we have that 'b = 0 as well. However, i f a = b= c= 0 and 

g ^ 0 then equations 28., 29., and 30. become; 

31. 21e3 + 18e2f + 3ef 2 + 3e2g - g 3 = 0 
32. -48e3 - 42e2f - Uef2 - f 3 = 0 

33. 54B3 + 42e2f + 9ef2 =0 

Equation 31. implies that e ^ 0 and therefore equation 32. implies that 

f ^ 0. Adding 9 times equation 32. to 8 times equation 33. and then dividing 

this sum by f gives: 

34. -42e2 - 36ef - 91*2 = 0 

Dividing equation 33. by e and then adding to equation 34* produces: 

35. 12e2 + 6ef = 0 or f = -2e 
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But i f f = -2e then according to equation 33. 6e3 = 0 which implies that 

e = 0. Therefore i f g ̂  0 we only have to consider the case: 

Case lb: g ̂  0, c ̂  0 

Equation 19 when divided by c becomes: 

36. c 3 = g 2 

Equations 36. and 8. then imply that c = a 2 and g = a 3. Equation 11. then 

implies that f = 0. Equation 9. then implies that b = 0 and then equation 

10 implies that e = 0. Thus i f g / 0 then h i s an Adams type mapping. 

Case 2a: g = 0, a = 0 

If g = 0 then according to equation 18. c = 0 and i f a = 0 as well then 

equations 16. and 18. become: 

37. 6b4 - lBbe2 - 6bef = 0 

38. b 4 - 3be2 - 6bef =0 

Subtracting 6 times equation 38. from equation 37. yields 

39. 30bef =0 
Subtracting equation 38. from equation 37. makes 

40. 5b( b 3 - 3e2 ) = 0 so that either b = 0 or 0 b 3 = 3e2 

Now i f a = b = c = g = 0 then equation 28. becomes: 

41. 21s3 + 18e2f + 3e^ = 0 

and we also have in this case equations 32. and 33. Equations 4l. and 32. 

imply that e = 0 i f f f = 0, however, as we have shown before with equations 

34. and 35. e and f must equal zeros in this case. On the other hand, i f 

0 / b 3 = 3B2 then by equation 39. we have that f = 0. But i f a = c = f = g = 
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then equation 28* becomes: 
42. -21b3e + 21e3 = 0 , \" 

which contradicts 0 ̂  b 3 = 3e2. 

By Proposition 3.4, the universal Chern classes x, y, and z are subject 

to the following equations: 

43. x 1 0 - 9*^ + 28xV - 35x4y3
 + 15x2/ - y 5 + 8x7z - 42x5yz + bOxtyz 

- 20x^2 + lSx^z 2 - 30x2yz2 + d^z2 + 4xz3 = 0 

44. -x 1 1 + 10x9y - 36x7y2 + 56x5y3 - 35x3y4- + 6xy5 - 9x*z + 56x6yz - 105x4y2z 

+ 60x2v3z - 5 ^ - 21ac?22> 60x3yz2 - 30xy2z2 - lOx^ 3 + 4yz3 = o 

45. x 1 2 - l l x 1 0 y + / ^ y 2 - 84x6v3 + 70x^y^ - 21x^5 + y 6 + 10x9z - 72x7yz 

+ I68x5y2z - l40x 3y3 z + 30xjr4z • 28x6z2 - lOSx^yz2 + qOx2?2^ - 10y3z2 

+ 20x3z3 - 20xyz3 + z 4 = 0 

We now continue with the final case: 

Case 2b: g = 0, a ̂  0 

If c = g = 0 and a ̂  0 then we have by equation 12. that f = 0. We 

further subdivide this case into three subcases: i) b = 0, i i ) e = 0, and 

i i i ) b ̂  0, e ̂  0. 

Case 2bi: I f b = c = f = g = 0 then h* of equations 20', 43, and 44 • become: 

46. -a 9 - 7a6e - 10a3e
2 - e 3 = 0 

47. a 1 0 + 8a7e + 15a4e2 + A&e3 = 0 

48. - a 1 1 - 9a8e - 21a5e2 - 10a2e3 = 0 

Equation 46. implies that e ̂  0. Dividing the sum of 4a times equation 46 
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plus equation 47. by a gives us the quadratic equation: 

49. 25e2 + 20a3e + 3a6 = 0 
Equation 49. has two solutions: e = (-3/5)a3 or e = (-l/5)a3 both of which 

when substituted into equation 48. imply that a = 0. 

Case 2bii; l f c = e = f = g= 0 then h* of equations 20, 43, and 44. become: 

50. -a 9 + 8a7b - 21a5b2 + 20a3b3 - 5ab* = 0 

51. a 1 0 - 9a8b + 28a6b2 - 35a^b3 • 15a2tA - b 5 = 0 

52. - a 1 1 + 10a9b - 36a7b2 + 56a5b3 - 35a3tA + 6ab5 =0 

Equation 50. implies that b ̂  0. The sum of a 2 times equation 50. plus 2a 
p 

times equation 51. plus equation 52. when divided by ab i s : 

53. -a 6 + 6a^b - 10a2b2 + 4b3 = 0 

Letting c = e = f = g=0in equation 16. and then dividing by 6b results in: 

54. -a 6 + 5â b - 6a2b2 + b 3 = 0 

Subtracting 4a times equation 54. from equation 53* gives us the quadratic 
55. 3a 6 - 14a^b + 14a2b2 = 0 
which i s readily seen to have no non-zero integer solutions. 

Case 2 b i i i : c = f = g = 0, a ^ 0 , bj*0, e ^ 0 . 

According to Proposition 3.4 we have 

56. 1 = ( 1 + x + y + z ) ( + "©2 +... ) 
where the are the polynomials of degree i in the formal inversion of 

1 + x + y + z and a l l but a finite number of the £5^ are equal to zero. 

If we have c = f = g = 0 then h* of equation 56. gives us the equation: 

57. 1 = ( 1 + a + b + e ) ( O x + 0 2 +... ) 
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where the are now the polynomials of degree i in the formal inversion 

o f l + a + b+ e and since a l l but a finite number of these are equal to 

zero, we have that any integral solution of this equation must satisfy: 

58. a + b = -e 

Also i f c = f = g = 0 then equations 20, 43, and 45. become: 

59. -a 9 + 8a7b - 21a5b2 + 20a3b3 - 5atA - 7a6e + 30a^be - 30a2b2e + 4b3e 

- l O a V + 12abe2 - e 3 = 0 

60. a 1 0 - 9a8b + 28a6b2 - 35a^b3 + 15a2tr> - b 5 + 8a7e - 42a5be + oOa^e 
- 20ab3e + ̂ a^e 2 - 30a2be2 + 6b 2e 2 + 4ae^ = 0 

61. a 1 2 - l l a 1 0 b + 45a8b2 - 84a6b3 + 70a^tA - 21a2b5 + b 6 • 10a9e - 72a7be 

+ I68a5b2e - 140a3b3e + 30atAe + 28a6e2 - lOSa^be2 + 90&2\?£ - lOlPe2 

+ 20a3b3 - 20abe3 + «A = 0 

Equations 58. and 59. imply that a, b, and e must a l l be even. If 2^\a, 

2k|b, and 2 ^ 6 for some k^-1 ( m\n means m divides n ), then equation 59. 

implies that 24k|e3 and therefore 2 k + 1| e. 

If 2 k + 1/ b then according to equation 60. we have 25k|6b2e^because 

^ l e 3 , 25k|4ae3and clearly 
25k 

is a factor of the other terms) and thus 

we also have 2d|e where d = 3k/2 i f k is even and d = (3k - l)/2 i f k i s 

odd. If k is even then according to equation 60. 2 5 k + 1| -b5 ( since 2 5 k + 1 

now divides a l l the other terms of equation 60. in particular 25 k +l|6b 2e 2) 

and therefore 2 k + 1|b which contradicts our assumption. If k is odd then 

according to equation 61. 2 6 kje^ ( in particular 26k|-10b3e2 since 

23k-l| e2 ) a n d t h u g 2 d | e w h e r e d = (3k + l)/2 ( since k is odd ) and 

therefore again by equation 60. we have that 2 k + 1|b, a contradiction. 

Therefore, i f 2k|a and 2 k + 1| e then 2 k + 1|b. However, by equation 58. i f 



2 k + 1|b and 2 k + 1| e then 2 k + 1|a and we have thus shown that 2 kU, 2k|b, and 
kl 
2 |e for a l l positive integers k which is impossible. 

2 
Therefore i f g = 0 then a = b = c = e = f = 0 and i f g ̂  0 then c = a , 

g = a and b = e = f = 0. Therefore any self map of CG^ ^ i s an Adams type 

mapping and hence CG^ ^ has the fixed point property. Q.E.D. 
Theorem 5.4: Any self map of CG ft i s an Adams type mapping and hence 

CG has the fixed point property. 3,8 

Proof: Let x, y, and z be the fir s t , second and third Chem classes. As 
for H*(CGo .j7Z) we also have for H*( CG„ i~H) the following: 3,o 3,8 
1. x 9 = 8x7y - 21x5y2 + 20x3^ - 5XT4 - 7x6z + 30x4yz - 30x2y2z + 4y3z 

- l O ^ z 2 + 12xyz2 - z 3 

2. x 1 0 - 9xBy + 28x6y2 - 35x4y3 + IS*2?^ - y 5 + 8x7z - 42x5yz + oOx^z 

- 20xy3z + 15xAz2 - 30x2yz2 + 6y2z2 + 4xz3 = 0 

3. -x 1 1 + 10x9y - 36x7y2 + SoxSy3 - 35x3y4 + 6xy5 - 9x8z + 56x6yz - lOSx^y2 

+ 60x2y3z - Sy^z - 21x5^ + 60x3yz2 - 30xy2z2 - 10x 2z 3 + 4yz3 = 0 

Dimension 18 is spanned by 11 elements with one dependent element, x , as 

shown by equation 1. 

Dimension 20 has two relations: equation 2. and equationl. multiplied by x. 

It is therefore spanned by 12 elements with: 

4. x 1 0 = 35x6y2 - lOOxV3 + 75X2/ - 8y5 + x 7z - 66x5yz + 210x3y2z - 124xy3 

+ 30x4z2 - 132x2yz2 + 483̂  z 2 + 23xz3 

5. x8? = ly^y2 - 15x4y3 + l O ^ y 4 - y 5 + x 7z - 12x5yz + 30x3y2z - l6xy 3z 
+ 5yrz2 - 18x2yz2 + oj^z 2 + 3xz3 

Let h: CGj g — C G ^ g be a map with h*(x) = ax, h*(y) = bx2 + cy, and 
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h*(z) = ex3 + fxy + gz. Taking h* of equation 1, and comparing the 

coefficients of the terms x 3y 3, xy^, x^yz, y^z, x 3z 2, xyz 2, and z 3, we get 

the following equations: 

6. 20M + 20a3 c 3 - 20abc3 - 30a 2c^f + l^bc^f + ̂ e + ^ a c f 2 - f 3 = 20a9 

7. -5M - 5ac^ + Ac?t = -5a9 

8. 30M + 30aAcg - 60a2bcg + 12b2cg - 20a3fg + 24abfg + 24aceg - 6efg = 30a 9 

9. 4M + Ac?g = 4a 9 

10. -10M - 10a3g2 + liabg 2 - 3eg2 = -10a9 

11. 12M + l^acg 2 - 3fg 2 = 12a9 

12. -M - g 3 = -a 9 

where M = 8a7b - 21&>}? + 20a3b3 - 5atA - 7a6e + 30a^be - 30a2 t^e + 4b3 e 

- 10a3e2 + 12abe2 - e 3. 

Taking h* of equation 5» and comparing the coefficients of the y 5, xy 3z, 

j ^ z 2 , and xz 3 terms gives us the following equations: 

13. -8N - P - c 5 = -8a8b - a 8c 

14. -124N - 16P - loac^g + 12c2fg = -124a8b - l6a 8c 

15. 43N + 6P + 6crV = 48a8b + 6a8c 

16. 23N + 3P + 3ag3 = 23a8b + 3a8c 

where N = 7a 6b 2 - lSa^b 3 + 10a2lA - b 5 + a 7e - 12a5be + 30a3b2e - l6ab3e 

+ Sa^e2 - 18a2be2 + 6b 2e 2 + 3B6 3 and P = 14a6bc - 45a4D
2c + 40a2b*c - 5b^c 

+ a 7f - 12a5bf - 12a5ce + 30a 3b 2f + 60a3bce ,- l6ab3f - 48ab2ce + lOa^ef 

- 36a2bef - 18a2ce2 + 12b2ef + 12bce 2 + 9ae 2f. From these equations we get 

the following: 

17. c?g = g 3 ( 4(12) + (9) ) 

18. -5ac^ + ̂ <j3f = -5g3 ( (7) - 5(12) ) 



19. 12acg2 - 3fg2 = 12g3 ( (11) + 12(12) ) 
20. -10a3g2 + 12abg2 - 3eg2 = -10g3 ( (10) - 10(12) ) 

21. 30aAcg - 60a2bcg • 12b2cg - 20a3fg + 24abfg + 24aceg - 6efg = 30g3 

22. 20a 3c 3 - 20abc3 - 30a2 c^f + l^bc^f + U<?e + ^ a c f 2 - f 3 = 20g3 

23. c 5 = c 2g 2 

24. 16c5 - loacPg + ^ c ^ f g - l ^ g 2 + 12ag3 = 0 

(The linear combinations for equations 21. to 24. being ( (8) + 30(12) ), 

( (6) + 20(12) ), ( 6(13) • (15)), and ( -16(13) + (H) - 2(15) + 4(16) ))-

Case 1: g ̂  0 

If g / 0 then equation 17. tells us that c 3 = g 2 and thus c ̂  0. Dividing 

equation 18. by c 3 gives 4f = 5(ac - g) and dividing equation 19. by g 2 

gives 3f = 12(ac - g) and therefore 15(ac - g) = 48(ac - g) which implies 

that ac = g and f = 0. From this we have by equation 24. that c 5 = ag3. 

Thus - a 2g^ = a 2c 9and therefore c = a 2. Also g^° = (p-5 = a 3g 9 and 

therefore g = a 3 and a j4 0. We then have from equation 20. that e = 4ab 

and thus b = 0 i f f e = 0. Equation 21. reduces to -60a2b + 12b2 + 96a2b = 0. 

If b ̂  0 then b = -3a2 and e = -12a3 but these values along with equation 

22. imply that 12a9 = 0 and thus i f g £ 0 then c = a 2, g = a 3, and b = e = 

f = 0. 

Case 2t g = 0 

If g = 0 then according to equation 23. c - 0 and then by equation 22. 

f = 0. We have 4 subcases to consider: 

Case 2a: b = c = f = g = 0 
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Case 2b; c = e = f = g = 0 

Case 2c: a^O, b^O, e^O 

Case 2d: a = 0 

Cases 2a, 2b, and 2c have a l l ready been covered in the proof of the previous 

theorem because the only equations used there were equations 1. 2. and 3. We 

need only consider the remaining case: 

Case 2d: If a = c = f = g = 0 then equations 1. and 2. become: 

26. 4b3e - e 3 = 0 

27. -b 5 + 6b 2e 2 =0 

Equations 26. and 27. imply that b = 0 i f f e = 0. The sum of 6b2 times 

equation 26. plus e times equation 27. i s 

28. 23b5e = 0 

which implies that b = e = 0. Therefore we have shown that i f g = 0 then 

a = b = c = f = e = 0 and thus any self map of C.Ĝ  g i s an Adams type 

mapping. Q.E.D. 

Combining Theorems 5.1, 5.2, 5*3, 5.4, and 4.1 gives us the following: 

Theorem 5.5: For n even, (DG has the fixed point property. 
3,n 

The Lusternik - Schnirelmann category of a topological space X is the 

smallest integer k 1 such that X may be covered by k open subsets which 

are contractible in X. The category of the sphere, S2, is then 2 and the 

category of the torus, S1"* S1, i s 3. It i s well known that the Lusternik 

- Schnirelmann category i s greater or equal to the cuplength of the space 

plus one. The cuplength of a space X over a ring R i s the largest number 
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m such that there exist elements x^,..., x^ €. H*(X;R) with the cup product 

XjX 2«..x m / 0. It i s also well known that the category of a manifold i s 

less than or equal to i t 1 s dimension plus one. Thus we have from these 

upper and lower bounds, for instance, that the category of the real 

projective space, tRP^ = IRG^ ̂  i s k • 1. In the complex case, we observe 

that since there exists a cell decomposition of C G , which contains only 

cells of even dimension, ( See (l l ) ), cat C.G- , = k + 1 as well. Heinz 
X,K 

and Singhof ( See (12) ) have shown that the cuplength ( with TL coefficients) 

of C G 2 i s 2k and thus cat C G 2 K = 2k + 1 for any k 1. In the proof 

of Theorem 5*2 we found that the cuplength of <LG~ , i s 12 ( since x = 
i.*A 

4.62) and so we have: 

Theorem 5.6: The Lusternik - Schnirelmann category of C G is 13» 
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toffldlx - Products 

Ellenberg - Zilber Theorem: The functors S(x) ® S(Y) from Top X Top to 

the category of chain complexes are homotopy equivalent. More precisely, 

there are unique ( up to homotopy ) natural chain maps 1 : S(x) ® S(Y) 

—> S(XXY) and "V: S(XXY) ^S(X) ® S(Y) such that $0(a<2>T) = 

(a,X) and Y 0 ( a , t r ) = a®TT for zero simplices O :AQ- X, 

~ £ : AQ Any such chain map is a homotopy equivalence; in fact, 

there are natural homotopies ~ id, I V ~ id. Any such chain map 

will be called an Eilenberg - Zilber map and will be denoted EZ. For 

more details and proofs see (13)» 

Corollary: For arbitrary Eilenberg - Zilber maps the following diagrams 

are homotopy commutative: 

SX ® SY 

SY® SX 

EZ 

EZ 

-J-S(XXY) 

set) 
S(YXX) 

SX ® SY 03 SZ 
id ® EZ 

SX® S(YXZ) ̂ ~ 

EZ ® id 

EZ 

SX ® SP EZ S(XXP) 

jid®f^ |proj. 
SX® (7LyQ) -^-sx 

^ S(XXY)® SZ 

EZ 

S(XXYXZ) 

where t(x,y) = (y,x), t(u®v) = (-1) * u n v * v«>u ( I \ denotes gradation), 

P i s a point and i s augmentation 

Proof: In each case the two ways of going from corner to corner diagonally 



induce the identity in dimension 0 (or on HQ), hence are (naturally) homotopic. 

Q.E.D. 

Corollary: For arbitrary EZ map6 jE , Y and arbitrary pairs of spaces (X,A) 

and (Y,B) we have commutative diagrams with exact rows: 

SA <8> SY + SX ® SB ^SI ® SY —v SX/SA ® SY/SB — ^ 0 

Y' V I" 

0 - > S{AX Y,Xx B* .S(XX l ) - ^ ^ g I x B | — 0 

The vertical maps are induced by I , Y and S{AXY,XXB} = im S(AXY) 8 

S(XXB) >S(XXY). Moreover, there are natural homotopies 1 '"Y1 ~ id, 

Y ' i d , Y ' ' <P'~id. 

Proof: Natural!ty of I applied to j : A-̂ =-̂ X and id shows 1 (SA® SY) C 

S(AXY) similarly I ( S X ® S B ) C S(AXY) and analagously f o r Y . This gives 

the desired maps. Since the homotopy id i s natural i t maps S{AXY,XXB} 

into itself and hence induces I ' Y ~ i d , ^ ' Y ' ^ i d . The other 

homotopies are similar. Q.E.D. 

The Exterior Homology Product 

Consider the composite chain map 

(SX®LA © r S(XXY) & (L©RM)_4,S(XXY) toU®* 
\SA y \ SB ) S\AXY,XXB) K S(AX YUXXB) K 



where (X,A),(Y,B) are arbirary pairs of spaced and L,M are R - modules* 

Passage to homology and composition with the unique map 

o C . H ( g ® L ) < X > R H ( § ® M ) : — H ( | ® L ® R § ® M ) 

such that ©c(rx]<8>ly]) = [x<8>y] for x C z ( g ) and %y£ z(||) gives 

jft(EZ),c<: Ht(X,AjL) <X>R H^Y^jM) H i + k(XX Y,AX YOXXBjL ® R M) 

This map i s called the exterior homology product and we write 

^ X r ^ = J*(EZ)#OCi^® ). In terms of representative cycles this reads as 

Ca] X Lb] = [EZ(a®Rb)] where a £ SX ® L, <̂  a £ SA <8> L, b £ SY ® M, & b £ SB <S> M. 

Properties : 

Naturalitvt If f: (X,A) ^(X',A') and g: (Y,B) >.(Y',B') are maps then 

the naturality of EZ implies ( f X g ) t ( ^ X n^) = (f*^ )X (g*r^) 

Commutatlvitv: t * ( ^ X r^) = ( - l ) ' ^ ^ lyX ^ 

Imciatiyity.. ( ^ X f^)x^ = ^x ( r ^ X ^ ) 

Unit element; If Y = P i s a point, B = 0, and 1 P = 1 P£ R = H0(Y}R) then 

(XXY,AXYUXXB) = (X,A) and 1 PX^ = ̂ x i P = y . 

These properties follow from the corresponding ones for EZ maps. We also 

have that the following diagram is commutative: (coefficients ommitted) 

H(X,A>® H(Y,B) — H(XXY,AX YUXXB) 

, \ , vdim \ \ H(AXYUXX B,AXB) 
( c ) * ® id^-lj^id® d # ) | ' 

X © X • l [ il * , 1 2 » ) 

(HA <S) H(Y,B)) $ (H(X,A)<S) HB) >H(AXY,AXB) 6 H(XXB,AXB) 
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where i p i g a*"e inclusions. That i s C**(^X Cy) = i ^ U c ^ )x r\) + 

i 2 < ) ( ( - l ) ^ X When B = 0 we have i ^ = id, i 2 # = 0 and 

c \ ( ^ X r^) = ( c ^ )Xir^ where ̂  €. H(X,A), r^ e HY. 

Proof: Let a €1 SX, b£l SY be representatives of ̂  , ̂  ; in particular ̂  a 

6SA, c>b€ SB. EZ(c^a®b)eS(AXYUXXB) represents )x f | ) , 

EZ(a®^b)€ S(XXB)C S(AXYUXXB) represents i 2«(^Xc}*r|) and 

c)(EZ)(a®b) = (EZ)cMa®b) = EZ(c^a®b) + ( - l / ^ EZ(a®^b) represents 
; 4 ( ^ X r ^ ) . Q.E.D. 

The Exterior Cohomology Product: 

Let (X,A),(Y,B) be pairs of spaces such that (XX Y;AX Y,XXB) i s an 

excisive triad and let L,M be R - modules. Consider the composite chain map: 

Bom ( g , L) <S>r Horn ( § , M ) Horn ( § f ® § , L ® R M ) 

^ ( S ^ X I I I X B ^ ' L ® R M ) j > ^ ( S I & U I X B I ' L ® R M ) 

where the chain map V i s defined by U (^®y))(c®d) = (-1) | c U d *p(c)®"y/(d) 
and j i s induced by the inclusion s(AXY,XXB}c S(AXYUXXB), which like 

EZ, is a homotopy equivalence since (XX YjAX Y,XX B) is an excisive triad. 

Passage to homology and composition with 

CC: H*(X,A;L) ® R Hom*(Y,B;M) —H(S*(X,AjL) <&R S*(Y,BJM)) gives 

(j*)" 1^)*^*;. ^ ( X J A J L ) ® R H^YJBJM) >-H^UXY,AX YUXXBjL ® M) 

This map is called the exterior cohomology product and i t is written: 

xXy = (jar^EZ^^Ufcy) or in terms of cocycles ( ^ ) X ( y ) = 



Properties! 

Naturalitvi If f; (X,A) >- (X',A«), g» (Y,B) ^(Y',B») are maps of 

pairs such that (X'X Y«;A«X I',X«X B») is also an excisive triad then 

(fx g)*(x'® y') = (f*x' )x (g*y' )• 

Commutativitvi t*(xxy) = ( - l ) l x M y l y X x where t: X X X — » - X X X commutes 

factors. 

Associativity! (x xy)x z = X X (yx z) 

Units; If Y = P i s a point, B = f6> and l p € is the cohomology class 

of the augmentation ry: Ŝ P — R , Pl—»-1, then lpX x = x = x x l p (where 

PX(X,A) = (X,A) = (X,A)XP). If Y is an arbitrary space again, andIT : Y 

>P then 1^ = Tr*(l p) € H°(Y;R) is the class of the augmentation SQY y-

R and naturality gives x X l v = (idXTr)*(xXl p) = p*(x) where p: (X,A)X Y 

—»-(X,A)XP i s the projection. 

The following diagram (coefficients ommitted) i s comutative: 

or &*(i*) (axy) = ( b*a)xy for a e H*A, y €. H*(Y,B). In the case where 

B = 0, i = id and &*(axy) = ( o*a)x y. 

H»A <& H»(Y,B) X >- H»(A^Y,AXB)S H»(AXYUXXB,XXB) 

H»(X,A) ® H*(Y,B) X H*(XX Y,AX YUXXB) 
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Duality: If ^ £ H(X',A;R), rye H(Y,B;R), x £ H*(X,A;L), y£H*(Y,B;M) 

then { xxy^Kry) = ( - l ) , y l ^ <x,^>® <y,ry) . 

The Interior Cohomology Product (The Cup Product): 

This product is equivalent to the exterior cohomology product because 

Eilenberg - Zilber maps EZ J S(XXY)—>- SX ® SY and natural diagonals 

DJ SX —>• SX ® SX are formally equivalent notions and we get the definition 

of the interior cohomology product by replacing the EZ map which occurs in 

the definition of the exterior cohomology product with a diagonal map. 

Consider the composite chain map: 

* > * ( i i v M i ) ® R * > » ( f x / M

2 ) * ' * » ( § ® 12> M i ® R * a ) 

* • ( l i A ^ A j ^ "x ® R * — J M i ® A ) 

where, as before, U t ^ ® <^ 2))(a 1®a 2) = (-1) ± (f^)® (^ 2

a 2) 

and j is the homotopy equivalence induced by inclusion. Passage to homology 

and composition with OC as before gives 

(j*r1D»,K #0C : HL(X,A1|RL) ® Hk(X,A2;M2) Hi*k(X,A1 ® R *t>) 

We write the cup - product as x^\j x^ - (j*)~*D*^ #°c (x-j® x 2) and in terms 

of representative cocycles V ^ V ^ ' (y^) ̂  (y? 2) = ^ D^ 

where y? G S*(X;Mi), y?̂ !̂ SA± = 0, yi ±o S = 0. 

Propert3.es> 

Naturalitvt If ft ( X ^ ^ ) >-(X1 ;A^,A£) is a map of excisive triads 

http://Propert3.es


then tfHyjOyg) = (f*y x) W (f*y 2) for j± € H*( Y,B;M̂ ). 

Uj) \x2\ 

Assgc^Uvity: x^Kj^KJxJ - {x^x^k^x^ 

Units t 1^w x = x = x \ j l x , where ± x £. H°(XjR) is the augmentation class. 

The following diagram i s communist: 

H*Â  63 H*(X,A2) i d g > i * H * ^ ® H»(A 1,A 1AA 2) — —> H*(Â ,Â  A A^ 

&*®id H*(A1\JA2,A2) 
j * 

H*(X,A1) <S> ffKX.Ag) . i ^ ^ H*(X,A1UA2) 

That i s : V l j * ) " ^ ^ ^ ) = ("b*a)wx for a t H*^, x £ H*(X,A2) and 

i f A 2 = fbt $>*(a^i*x) = ( W ) u x for a £ HfA^ x £ H*X. 

x 1 v j x 2 = A*(x 1X.x 2), x ± e H*(X,Ai), where A : '(X^UAj) =9-

(XXX,A.jX XuXxA^ is the diagonal map. 

xxy = (p*x)w(q*y), i f x € H*(X,A), y €_ H*( Y,B) and p: (XXY,AXY) 

(X,A), q: (XXY,XXB) (Y,B) are projections and (XXYjAXY,XXB) i s 

excisive. Therefore we have; 

\y1\ \x2\ 
M j a i i p l i c ^ y i i y ; (x^y^\yU2 X y 2) = (-1) U xwx 2) x (y±w y 2) 

i f X i £ H^X^), H»(Y,BA) and ( X ; ^ ^ ) , (YjB1,B2) are triads such 

that the products above are defined. 



The Cohomology SJlant Product 
Consider the chain map: 

E: Hom(D,M)® (C®D®L) S: (C<X>L) ® (Hom(D,M)®D)— i d® e^ C<SL(S>M 

where C,D are R - complexes, and L,M are R - modules,(JO permutes factors 

and e i s the evaluation map. E("y®c®d® 

1) = (-1) i>Ucl 0®l®]/(d). 

Passage to homology and composition with o<gives 
E*c*; H*(D,M) ® Hn(C®D<&L) »- H (C<»L«>M) 

This map is called the cohomology slant product (for complexes) and is 

written y \ ^ = E ^ ( y ® ^ ) G H^C&LfcM) for y e ^ ^ M ) , ^ e 

H n(C®D®L). The cohomology slant product for spaces (X,A),(Y,B) i s 

obtained by taking C = S(X,AjR), D = S(Y,B;R) and replacing S(X,A;R)® S(Y,B;R) 

by the homotopy equivalent complex 

S(XXY,AXYUXXB) — s{AXY,?XXB;R^ ^ S(X,A;R)® S(Y,B;R) 

assuming that (Xx Y;AX Y,XX B) i s an excisive triad. In terms of 

representative cocycles Lz3 = (-1) ̂ ( 1 z t y l ^ i® V < b i >] 

where EZ(z) = E a ^ b ^ & ± € S(XjL), b ± e S(YjR) for Si(Y;M), z e 

S(XxY;L). The representative z must be such that c^ze s{AXY,XXB;L} as 

well as being in S(AX Y\JXX BjL). 

Properties: (ommitting coefficients) 

Naturalitv: If f: (X,A) >(X',A«), g» (Y,B) ^(Y»,B') are maps of pairs 

then f*(g*y'\X> ) = 7 ! \ ( f X g ) ^ , for y'e H*(Y',B«), ̂ € H(XX Y,AX YUXX B). 



Associativity: ( x X y M = x\(y\>0, for x<LH*(X,A), y&H*(Y,B), ^<L 

H((W,U)x(X,A)x(Y,B)). In particular i f W is a point and U = 0 we have 

(xxy,^) =<x,y\^) , for xtH»(X,A), y£H*(l,B), 
H(Xy Y,AXYUXXB). 

The following diagrams are commutative: 

H*(Y,B) ® H(XXY,AXYUXXB) — H(X,A) 

(-l) d i mid®^ 

H*(Y,B)<& H(AXYUXXB,Xy,B) i d S J * H*(Y,B) H(AXY,AXB) — HA 

That i s : \iy\\) = (-l) ̂ VXJ*1^*\, i f y€_H*(Y,B), ^ £. H(X XY, Ax YOXXB). 

H*B <$) H(XX Y,AXYUXX.B) . ^ H*(Y,B) & H(XX Y,AX YUX X B) 

v - ( - l ) d i m i d ® ^ I \ 

H»B(g)H(AXYuXXB,AXY) i d < ^ » > H » B H(XXB, AXB) *-H(X,A) 

That i s : ( VbjX^ + (-1)'^bNj^c^ = 0, i f bCH*B, H(XXY, AX YUXXB). 

Multiplicativitv: y\ujx^ = (-l) 1 7 U C P > O J X (y\^), i f y & H*(Y,B), UJ £ 
H(W,U), \eH(XXY,AXYOXXB), and (W,U),(X,A),(Y,B) are pairs of spaces 
such that the products above are defined. 

Units: iyV^ = P « ^ > where 1 Y e H°(YjR), ^£H(XX Y,AXY), and 
p: (XXY,AXY) (X,A) i s the projection. 

T̂ e Cap Prod,u,cv: 

Let (XjApA 2) be an excisive triad, and let M̂ , M2 be R - modules. Consider 
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E ^ SX 

where D i s a natural diagonal and E is the same as in the slant product. 
SX 

Passing to homology ( using H( S^ A ^ A ̂  ) HCXjA^U k^) ) and composing 

with <X we obtain ^(id®D) #eU I^U.A^Mg) ® H ( X , ^ A^!^) 
*n k ^ , A l * M l ® R ^2^* ^ J l i s 1115115 i s c a l l e a - t l i e c a D product. W e write x /"\ ^ 
= E^(id®D)#oC(x ® ^ ) , i f xeR>(X,A2jM2), HU.AjU A 2JM 1). In terms of 
representatives this reads C^}/^ £cl = ( - l ) ^ ^ c I " ^ I ^ c}®f ( c 2)] 
where Dc =E<̂ X>c2 . a s s u m i n g ^ £ S » X , y?|SA2 = 0, = 0, c € SX, 

Properties. 

Naturalitvt f*((f*x')r\*\ ) = 'x* r\(f*\ )» i f f is a map of excisive triads 
and x'£ H»(X',A2), ^ e HU.AjUA^. 

Aas9ctattYa,iar,» ( X 1 V J . X 2 ) ' " ^ = xir\U2r\^) i f x t e H » ( X , A 1 + 1 ) , ^ e 

• H ( X , A 1 U A 2 - U A ) . 

Duality: x ^ ) = ( x ^ / ^ ) , i f x A £ H»(X,A ), ^ £ H U ^ U A ^ . 

In particular, ( l . x ^ ) = <x,^) , for x e Hj(X,A), ̂  e Hj(X,A). 

Units: lr\\ = ̂  , i f ^eH(X,A), and 1 £ H°(X;R) i s the augmentation 
class. 

The following diagrams are commutative; 



H*(X,A2) ® H(X,A1UA2) ?-H(X,Â ) 

( - D d l V ® \ ^ 
T id® j * ^ V u 

H ^ A ^ H A , , ) ® H(A1UA2,A2) ^ ^ ( A j ^ ^ r V A g ) ® H(A1,AinA2) HÂ  

That i s : &*(xr>t%) = (-1) U \ i * x ) / " \ ( j ^ c } ^ ) i f x £ H*(X,A2), ^ £ 

H(X,A1UA2) 

H*A2 ® HU^VJ A2) <^*® i d If^XjAg) ® H U.A^Ag) H(X,A;L) 

-(-l) d i mid®^ i * 

H»A 2® H(A1UA2,A1) S H*A 2® H U ^ ^ ) : > H l A ^ ^ U ^ ) 

That i s : ( V a ) r \ ^ + (-1) i * ( a ^ J * 0 * ^ ) = 0 i f a e ^ , ^ £ 

H ( X , A 1 U A 2 ) 

xr\\ = *\A>V i f xe'B»(X,A2), ̂ £ H(X,A 1VJA 2 ) and A : (X.A^A^ 

^ ( X X X , A ^ x X U X X A 2 ) i s the diagonal map and the triads are excisive. 

= p*(q*yr\V» i f y £ H * ( Y , B ) , H ( X X Y , A X Y U X X B ) and 

p: ( X X Y , A X Y ) — > ( X , A ) , q: ( X X Y , X X B ) — - ^ ( Y , B ) are projections and 

(XXYjAXY , X X B ) i s excisive. 

MultjJDlicatiYJVY* ( x X y ) A ( V ^ ) = ( - l ) * 7 ^ (x r<\ ) X (yr\ ry) i f 
x £ H * ( X , A 2 ) , y £ H * ( Y , B 2 ) , ^ €. H U ^ V J A ^ , f^e Hd.B^B^ and the triads 

are such that the products are defined. 


