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ABSTRACT
Let {N(t), -T<t<T} be a nonstationary Poisson process with
intensity function, A(t)>0, assumed integrable on [-T,T]. The

~

~optimal linear estimator, A of the intensity function is con-

Ll

sidered in this thesis.

Chapter 1 discusses A_. as.a function of h(t;s), which is

L
the unique solution of the Fredholm integral equation of the

" second kind,
m(s)ht(s) + ng(s;u)ht(u)du = K(t;s), a<s<b.

}Chaptérs 2 and 3 are respectively devoted to a discussion
of some of the exact and approximate methods for solving the

above integral equation.

To illustrate thé use éf the techniques devised, three
numerical examples are treated. Chapter 4 deals with data on
oilwell disco?eries in Alberta, Canada. Finally, in Chapter.S,
the model is applied to data on traffic counts on the Lions
Gate Bridge, Vancouver, and to data on coal-mining disasters
in Great Britain.-.Computer programs and numerous diagrams\are

also presented.
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CHAPTER 1
"ON THE ESTIMATION OF THE INTENSITY FUNCTION
OF THE NONSTATIONARY POISSON PROCESS:

INTRODUCTION, PRELIMINARIES
INTRODUCTION .

In this chapter we consider linear estimators of the inten-
sity function of a nonstationary Poisson process. Using the
formulation given by Clevenson and Zidek (7), we consider a point

process
{N(t),—TstsT}, 0<Tg»

with independent increments and with

where
b
A(a,b)=fak(t)dt, ~Tga<bgT,

and the intensity function A(t)>0, is assumed to be Riemann
integrable on [—T,T]. The unknown A(t) does not have parametric
form. For details we refer to Grandell (10). In section 1.1, we

consider linear estimators of the intensity function, A(t), in



general, and two natural estimators, in particular, the histogram
and the moving-average. In section 1.2, Grandell's criterion is

imposed énd i(t), the best estimator of A(t), is determined in a

particular form. Following the work of Clevenson and zidek (7),

a Fredholm integral equation of the second kind is obtained; the

solution of which is requiréd in order to obtain the best linear

estimator A (t) in the given form.

L

1.1 OPTIMUM LINEAR ESTIMATORS OF THE INTENSITY FUNCTION

Let {N(t),-Ts<t<T} be a nonstationary Poisson process with
intensity function, A (t)>0, assumed integrable on [—T,T]. We seek
an estimate of {A(t);~-T<tgT}. Following the approach of Grandell
(10), as extended by Clevenson and Zidek (7 ), A(t) is assumed to be
square integrable function on [—T,T . Denoting by E the expec-
tation with respect to thé joint distribution of N and A, the

~

performance of an estimator, ‘A, is measured by

(1.1.1)  mrl [ -ae)]%ae

In the present work as well as in the references cited
above, the estimate is constrained to be a linear function of the
counting record . The motivation for this constraint is tha£ it
leads to estimétors that are relatively easy to compute in prac-
tice with numericalvalgorithms. Also, two well khown estimators,

the histogram and the moving average, are linear. A disadvan-

tage, however, is that for many applications of interest, linear



estimates may not be sufficiently accurate. One may wish to
consider the estimation problem without the linearity constraint.

Here, the major difficulty is analytic intractability.

In general, by the linearity constraint, the estimate i (t)
of A (t) must have the form

fT

(1.1.2)  A(t)=a(t)+ s,

h(t,s)d(N(s))
for some deterministic function a(t).

As an example, let

1
(1.1.3) a(t)=0 and h(t,s)=r’
0, otherwise.

t-Trgs<t

For this choice,

(1.1.3)  A(t)=2S5_ aN(s)=(N(t)-N(t-T))/T.
This is a moving-average, histogram estimate of the intensity
process. Such an egtimate is widely used because it has the
ladvantage of requiring almost no knowledge about the intensity
brocess»beyond that needed to select the averaging time T. It is
common practice to evaluate the moving-average estimate at dis-
créte times; for instance, at integral multiples of T', and then
to least-squares curve fit an assumed time function to the

sampled values.



Clevenson and Zidek (7) assumed prior knowledge about A (t)
is representable by the condition that {A(t);-T<t<T} is a wide-
sense sgationary stochastic process with constant mean u and

covariance function K.

DEFINITION; A stochastic process {x(t);—w<t<w} is said to be
wide—sense stationary if its mean-value function m(t)=E{x(t)}
is a constant independent of t and its covgriance function

K(t,s)=E{x(t)x(s) }-E{x(t) }E{x(s)} is a function only of (t-s)

and not t and s separately.

In (7) Clevenson and Zidek define the histogram estimator
(1.1.4) A (€)= [N(t.)-N(t, )] [2a 171 e, <kt
L H i i-1 RIS I 1

where -T=t, <t <...<tp=T is any partition of [fT,T] and 2Ai=ti—ti_

0 "1 1.

A

The moving-average estimator, A is defined by

M’

(1.1.5) AM(t)=[N(t+4)-N(t-A)][2A]‘1,
provided -T+A<t<T-A.

The optimal class width for the histogram estimator and
the optimal window width for the moving-average estimator
were also obtained. We do not, however, intend to discuss the

details here.



1.2 THE BEST LINEAR ESTIMATOR

It is at least intuitively evident that estimators having
performance superior to the moving-average and histogram esti-
mators can be designed if more knowledge about the statistics of

the intensity process is available.

Let A. denote the linear estimate of X (t) that results in

L
(l.l.2)'when both a(t) and h(s,t) are selected to minimize the
mean-square error E[(X(t)fAL(t))z]. This linear minimum mean-
square error estimate is given by Grandell (10). The method

we consider here follows the Clevenson-Zidek (7) generalization
of Grandell's technique. Thus we seek an estimator of the form

~

(1.2.1) A (t)=a(t)+/ h(t,s)d(N(s)-M(s)).
"Here, we drop the assumptions in section 1.1 that X (t) is wide-
'sense stationary and that m(t)=EAr(t)zp. We take M(s)=f§m(t)dt.
The problem now is to determine the functions a(t) and
h(t;.) to minimize the functional E[Al(t)—x(t)]z. If the
resulting optimal choices are, say, ao(t) and ho(t;.), then
these will in turn minimize (1.1.1). Grandell, and subsequently

Clevenson and Zidek, show, after some manipulation, that

(h(t;.)).

(1.2.2)  E[r ()=2 (1) ]%=(a(t)=m(£)) *+(h(t;.) h(t;.))-2L,



where (.,.) is defined by

(1.2.3) (x(.) ,y(.))=ITTX(s)y(s)m(s)ds+fTTfTTX(S)y(S)K(s,u)dsdu
for all functions x,y for which (xX,x)<~; and because K(.,.) 1is

nonnegative definite, (x,x)<«® is an inner product. The linear

T

_Tx(s)K(t;s)ds,

functional L, is defined by L _x(.)=/

t t

for all x such that (x,x)<e. It is clear from (1.2.2) that the
optimal choice for a(t) is

(1.2.4) a® (t)=m(t) for all t.

Assume that 0<infm(s) and that m and K are bounded, it follows
s .

that Lt is a continuous linear functional on the Hilbert space

of functions
H={x:(x,x)<=}.

It in turn follows by the>Ries2 representation thgorem that
th(.)=(X(-),gt(.))

for all xeH where gt(.)aH. Thus the optimal choice for h,

(1.2.5)  h°(tis)=g _(s),



. is the unique solution in H of the integral equation,
. . m
(l1.2.6) 'x(s)m(s)+f:Tx(u)K(s,u)du=K(t;s).

This is the well known Fredholm integral equation of the second
kind which occurs frequently in many areas of applied mathe-

matics such as in Communication and Information theory.

The integral equation (1.2.6) has been studied extensively
in connection with the linear filtering problem for observations
that contain additive noise (see, for example, H. Van Trees (19),

chapters 4 and 6).

The solution to equation (1.2.6) is our main concern in
this work and exact methods as well as approximation techniques

for this problem are given in subsequent chapters.

'REMARK: It is perhaps.worth emphasizing that theoretically only
the mean and covafiance functions are needed to solve the integral
equation (1.2.6) and thus to design the estimator. However, for
numerical and approximate solutions the data in hand is very

useful.

In the sequel (e.g., in chapter 4), we shall consider the

special case where

(1.2.7) m(t)zZu, and K(t;s)zZK(t-s).



Thus (1.2.6) becomes
(1.2.8)  ux(s)+/rx () K(s-u)du=K(t-s), -T<s<T.

It follows that our linear estimator now takes ‘the special form

B 1

(1.2.9) (t)=p+r I H(Eis)d (M (s)-us)

A
obtained from (1.2.1) by setting a®(t)=m(t)=p. This is the form
in which our model will be used in the applications in chapters 4

and 5.



CHAPTER 2
SURVEY OF EXACT METHODS FOR SOLVING

FREDHOLM INTEGRAL EQUATIONS (OF TYPE ITI)
SUMMARY

This chapter is devoted to a discussion of some of the exact
methods for solving Fredholm Integfal Equations (of the second
kind), together with some theoretical background, and a number of
applications. The basic methods arevtreated in some detail, and
recent developments are also discussed and comparéd. By means of
examples, some motivation will be given for the differences in
theory and methodology underlying these methods and their inves-
tigation. The necessary background in linear algebra Qill be
sketched and some aspects of Hilbert space theory will be pre-
sented. Subsequently,vall integral operators will be viewed as
acting on suitable Hilbert spaces.

\

1. ' INTRODUCTION

An integral equation is an equation in which the unknown

function appears under the integral sign.

Integral equations have been encountered in mathematics for
a number of years, originally in the theory of Fourier Integrals.
The actual development of the theory of integral equations began,

however, only at the end of the nineteenth century due to the
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works of the Italian mathematician V. Volterra, and principally
in the year 1900, when the Swedish mathematician Ivar Fredholm
published his famous work on a new method of solving the Dirich-
let problem*. From then on, up to the present, integral equa-
tions have been the subject of research for numerous mathema-

ticians.

The theory of integral equations has close contacts with
many different areas of mathematics. Indeed, many problems of
applied mathematics can be statéd in the form of'intggral equa-
tions. To make a list of such applications would be almost
impossible. Suffice it to say that theré is almost no area of
applied mathematics and mathematical physics where integral

equatibns do not play a role.

It is worth mentioning, at this stage, that in dealing with
linear integral equations the fundamental concepts of linear
.vector spaces, eigenvalues and eigenfunctions play a significant

role.

*"Sur une nouvelle méthode pour la résolution du probléme de

Dirichlet".  Ofvers. af Kungl. Vetensk. Akad. Forh., Stockholm,
57, nr. 1 (10 Jan. 19200), 39-46.
*"Sur une classe d'équations fonctionnelles". Acta Matheratica,

Stockholm, 27 (1903), 365-390.
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The most frequently studied integral equations are the

following:

(2.1.1) fﬁK(p,s)f(s)ds = g(t)
(2.1.2) | £(t) + 2 ng(t,s)f(s)ds = g(t)
(2.1.3) L om(E)E(t) + A SoK(,;s)E(s)ds = gi(t)

The above equations are generally known as Fredholm equa-
tions of the first, second, ‘and third kind, respectively. The
interval (a,b) may in general be a finite interval or (-=,b],
[a,w), or (-«»,»), where a and b are finite. We note that we

may divide (2.1.3) by m(t) to reduce it to (2.1.2).

The function K(.,.), which is generally known as the kernel,
and g(.). are assumed known and f(.) .is sought. All the above
equations are linear; that.is, the function f£(.) enters the

equations in a linear manner so that

b _~ b , b -
IoKR(t,s) [cqf) (s)+C, £, (s)]ds=C K (t,s) £y (s)ds+C, [ K(t,s)f,(s)ds.

As stated earlier, the equations (2.1.1)-(2.1.3) arise in
many situations; in statistical problems the kernels are usually

.symmetric and often also nonnegative definite.
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In the next section we shall briefly state some mathematical
results,‘including a discussion of the necessary background of
Hilbert space theory, as useful tools in the sequel. The classi-

cal Fredholm expansion techniques.will be considered in Section 3.

In Section 4 we shall consider Hilbert-Schmidt, Rarhunen—
Lo&ve, and Grandell (7) type solutions and the resulting expah-
sions. We shall discuss some other methods in the literature
including the detection theoretic approach by Vantrees (19),

Slepian (18), and others.
2. SOME USEFUL MATHEMATICAL TOOLS

Although we are dealing with exact methods, We find it
appropriate to briefly consider finite difference approxima-
.tions at this stage because finite difference approximations
are not only of great practical utility, but also provide
certéin insight into the nature of integral equations. We‘shall
also state Hadamard's inequality as well as sorme aspects of

Hilbert space theory.
2.1 FINITE DIFFERENCE APPROXIMATIONS
If, in the equation

(2.2.1) f(t)—AIéK(t,s)f(s)ds = g(t)
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we replace the integral by a suitable sum:
sl i, i
(2.2.2) £(t) - Z___—H 'H)f(ﬁ_) = g(t)
for large n and a continuous kernel K(t,s) and continuous f(t),
the sum in (2.2.2) représents a close approximation to the

integral in (2.2.1). 1If, furthermore, we evaluate (2.2.2) only

at n discrete points
SIIC wanb O, B TN | j
(2.2.3) f(-ﬁ)—xgﬁmﬁ,ﬁ-)f(-ﬁ) =g(7), 3=1,2,...,n,

we have replaced the integral equation (2.2.1) by the algebraic

system (2.2.3) which may be rewritten in matrix form
(2.2.4) (I-MH)F = G

where the i-jth element in the matrix H is ( )K(% %), and P is

a vector with components'f(%) and G-has components g(%).
To solvev(2.2.4) we invert the matrix and find
(2.2.5) F=(I-AH) "G.
-The above inverse will exist for all ), with the exception of

at most n values. These are the roots of the characteristic

determinantal equation,
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(2.2.6) | I-AH| = 0.

In (2.2.5) we see that there may be special values of X for
which no solution exists. Such values are éommonly known as
eigenvalues. We also note that every finite algebraic system
(2.2.3) necessarily.has eigenvalues, even though the integral

equation (2.2.1) need not have eigenvalues.
2.2.1 Hadamard's Inequality

We state this as a theorem.
THEOREM 2.2.1 Let H be a matrix with the general element hij’
An upper estimate for its determinant is given by

n 2‘
> Ingyl%
2.2.2 Hilbert Spaces

So far we have not really addressed oﬁrselves to the
question of what we mean by a solution of an integral eqguation.
Basically, éf course, a solution of any equation must reduce
the equation to an identity. But often, however, we may impose
additional restrictions on the solution, such as demanding that’
it should belong to a particular class of functions. »qu these
purposes it will pro&e to be convenient to work in the so-called

Hilbert spaces.
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DEFINITION 2.3.1 A linear space X is said to be an inner
product space if an inner product is defined on it. Such an
inner product assigns to every pair f and g in X a complex

number denoted by (f,g) with the following properties:

1. (f,9) = (g,f)
2. (af+B8g,h) = a(£f,h)+B(g,h)
3. (£,£)30 and (f,£) = 0 if and only if £ = 0.
We note that (f,f) is real, since by property (1) (f,f) = (f,f).

)%

We let (£,£)° = ||£f|| and call it the Norm of f.
DEFINITION 2.3.2 ‘Let H be an inner product space and {fn} a
Cauchy sequence in H. Then H is said to be a Hilbert space if

.every Cauchy sequence converges to an element in H.

In the study of integral equations, we find that the notion

of an integral operator is fundamental. Such an oﬁerator assigns

to an element f in H a new element, say Kf in H.
If the operator satisfies the condition

(2.2.1) K(af+Bg) = aKf+BKg

we say that K is a linear operator. An example of a linear

operator is
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KE = IéK(t,s)f(s)ds,

where £ éLz[O,l] and K(t,s) is continuous. Such an operator
may or may not be defined on the whole space H.
THEOREM 2.3.1 Consider Lz[a,b], where the interval [a,b} may be

-infinite. If
fbfb|K(t,s)|2dtds = M2<°o
a” a .

then the operator Kf = ng(t,s)f(s)ds is bounded.

The stage is now set for our main concern in the sections

ahead.
2.3 THE CLASSICAL FREDHOLM TECHNIQUES

To begin with, in order to fix our ideas, we shall consider

the Fredholm equation
(2.3.1)  £(t) = g(8)+A/2K(t, ) £(s)ds
with a Riemann integral in a given interval (a,b).

Fredholm was the first person to give the solution of equa-
tion (2.3.1) in the general form for all values of the para-
meter A. The results of Fredholm's investigations are contained

in three theorems which are among the most important and beautiful
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mathematical discoveries. The method used by Fredholm consisted
in replacing the integral in (2.3.1) by a sum, the reduction of
this equation to a system of linear equations and letting the

number of terms of the sum tend to infinity.

In accordance with Fredholm's methdd, we partition the
interval (a,b). into n equal parts by the points
a=t

t ",tn=b' h=ti+ -t,=—

1" ~27 1 71 n

and replace equation (2.3.1) by

n
(2.3.2) f(t)=g(t)+)\h§K(t,ti)f(ti).

Let f(ti)=fif K(tj,ti)=Kji; then we may rewrite the sys#em of

equations as

(2.3.3) (l—AhKll)fl—AhKlzfz—...—AhKinfh=g(tl)
—AhKnlfl—Ahan—...+(l—AhKnn)fn=g(tn).
The solutions fl’f2""’fn of (2.3.3) can be expressed in

the form of ratios of certain determinants by the common charac-

teristic determinant
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1—AhKll —)\hKl2 e —AhKln
(2.3.4) Dn(A) = -xhKZl l—Ahkzz - —xthn
-XhK -AhK e 1-2hK

nl n2 nn

provided that this determinant is not equal to zero.
"An expansion of (2.3.4) may be éxpressed in the form

K.. . .
n ii ij

n 1=1,ll i,5=1 %51 %55
(2.3.5)
| Kii. Koo Ki i
0 171 172 ° 1°n
(-2h)
: K. . K. . K. .
+...+ nl z 1211 1212 .. lZln
T S T
Ky i %Ki g Ki g
n-1 n-2 n

For the sake of simplicity, let

K(tl'sl) K(tl’s2) .. K(tl'sn) ., ta.. .t
‘ 1772 n
(2.3.6) e e e e e e e e e = K
Sl’SZ"'Sn
K(tn’sl) K(t ’52) . K(tn,Sn)

The determinant (2.3.6) is called Fredholm's determinant,
and the above symbol is taken to be defined for every kernel

K(t,s) also in a multi~dimensional - domain.
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The fundamental property of Fredholm's determinant is that,
if any pair of arguments in the upper or the lower sequence 1is

transposéd, the value of the determinant changes the sign.

Using the symbol (2.3.6), we may write the expansion in

the form
(-Ah_)2 n tiots
(2.3.7)  D_(A)= 1- xhi K(t,, £+ 2! 5 K J
i=1 i,3=1 \t.,t.
1" 7/
n ti’tj’tr
(Ah
: 5:: Kt.,t.,t + ...
i,j,r=1 i"3'r .

Now suppose that h»*0 and n»«, then each of the terms of
sum (2.3.7) tends to some single, double, triple integral, etc.

Thus arises the series

(2.3.8) D(M)=1-AsP °K (s, s)ds+2r2/0rPk[ 1 256, as
27 @ a8 1lg.,s 2
- 175,
‘lifbfb rPx "1 ds.ds.ds.+ .
37 a’a ‘a\s g [9519898 3T - ey

1755153

which was shown by Fredholm, on the basis of Hadamard's theorem,

to converge for every value of X.

In this vein the Fredholm's function D(X) may be expanded
in a convergent power series (Fredholm's first series) of the

form/
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14t (g ! i :
(2.3.9) D=1+ _ (=) j[_,.JfK ds,ds,...ds;
2 Q

in an arbitrary domain §.
We now seek a solution of the form

(2.3.10) f(t)=g(t)+A/ﬁ(t,s,x)g(s)ds
Q

where the resolvent kernel N(t,s,A) is the product

(2.3.11) N(t,s,2)=D(t,s,}\)
D(A) '

D(t,sck) is the sum of a certain sequence,

(-x) 1
i!

(2.3.12) D(t,s,l)=CO(t,s)+z Ci(t,s),
i=1 :

and

t’Sl’S2""’S

(2.3.13) Ci(t,s)= . }tﬁ slsllsz’...'s' dsldsz...dsi.

Q 0

This leads to the Fredholm series:

(2.3.14) o (_A)i t,Sl,...,Si
: D(t,s,A)=K(t,s)+§ T ... VK dsl.
i=1 ) S’Sl' ..,Si

~which has the same convergence properties as Fredholm's first

series. /

.ds.
i
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We are now 1in a.position to stafe the three Fredholm
theorems. N
THEOREM 2.3.1 Fredholm'é equation'of the second kind, under the
assumption that the functions g(t) and K(t,s) are integrable,
has in the case D(k)+0 a unique sclution, which is of the
form (2.3.10).
THEOREM 2.3.2  If AO

the homogeneous equation

is a zero of multiplicity g of D(A), then

(2.3.15) f(t)=x0fK(t,s)f(s)ds
Q

possesses at least one, and at most g, linéarly independent

.solutions

not identically zero, and any other solution is a linear combi-
nation of these solution;. Di denotes a Fredholm minor of

order i relative to the kernel K(t,s).

THEOREM 2.3.3 ' For the nonhomoéeneous equation to possess a soluf
tion in the case D(AO)=O, it is necessary and sufficient that

the given function g(t) be orthogonal to all the characteristic
solutions wj(t) (j=1,2,...,1) of the associated homogeneous
equation corresponding to the eigenvalue Y and forming the

fundamental system. The general solution then has the form
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_ (t,tl,...,tp
Doy1\SrSys---sS,

' [ P \
Q ( 1 p )
D A
P Sl,...,_Sp 0

(2.3.16) f(t)=g(t)+)\O

p ] <%l,...,tj_l,t,tj+l,...,tp A)
g e e e e e 0
+; C-@--(t), where ¢.(t)= EAS L "“p
(— %3 | J t €. ,t.,t £ N
J:l Dq ll--cl j_ll J, j+l,o-.p )\\
2.3.2 Fredholm's Equation with Degenerate Kernel

We call the kernel K(t,s) degenerate if it is the sum of
products of functions of one variable
N
(2.3.17) K(t,s)=% ' Ni(t)Li(S)

i+l

Substituting (2.3.17) into
f(t)=g(t)+ASK(t,s)f(s)ds

we notice immediately that a solution is the sum of the function
g(t) and of a certain linear combination of the functions Ni(t):
n
(2.3.18) f(t)=g(t)+§ AiNi(t), Al being constant
: i=1 .

In order to determine the constants.Ai, we substitute
expression (2.3.18) in the integral equation. We illustrate
this by an example:

EXAMPLE 2.3.1 Suppose we are given the integral equation

f(t)=g(t)+xfé(t+s)f(s)ds
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The solution should have the form

‘f(t)=g(t)+Alt+A2,

whence we have the identity-

g (£)+A 4R, =g (£) +ASg (t+s) [a(s)+A, s+A,]ds

1

and the system of equations

1 R |
Al(l—jk)—AZA—AIOg(s)ds,

1 1., 4.1
—§A1A+A2(l—EX)—Afosg(s)ds.

Hence we obtain Al and A

equation in the form

5 and the solution of the given .integral

1 6AtS+3(2=-X) (t+1)+2A

f(t)=g(t)+2>\f0 5 g(S)ds
12-12x=-X
provided X is not one of the eigenvalues. The eigenvalues are

roots of the equation
12-12x-1%=0
and hence

Al=-6+4/§, A2=-6—4/§.
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The corresponding characteristic solutions are

£ ()= L _ !
£,(8)=C(A t+l 5h) e £y () Ca,t+l-52,)
where C is an arbitrary constant.
REMARK The Fredholm eqguation with degenerate kernel plays ah‘

important role. in the theory and applications of integral equa-
tions, since it can easily be solved by a finite number of

integrations.
2.3.3 Existence of Solutions. The Fredholm Alternative

Equations of the second kind have an existence theory:
Suppose that the range of integration is finite, then we have

the Fredholm Alternative as follows:

Either: If A is a regular value,vthen the equatioh
f(t)=g(t)+AI2K(t;s)f(s)ds has a uniqﬁe solution for any arbitrary
g(t);

Or: If X is a characteristic value, then the homogeneous

equation
(2.3.19) f(f):xng<t,s)f(s)ds

has a finite number (p, say) of linearly independent solutions

¢l(t),...,¢p(t). In this case the transposed homogeneous equation
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(2.3.20) 'W(t)=xng(t,s)w(s)ds

also has p_solutions»Wl(t),...,W (t); -and the nonhomogeneous

p
equation has a solution if and only 1if g(t) is orthogonal to all

theWi,; that is, if and only if
Py, (e)at=0, i=1
ag' i ’ reeerP-

This solution is clearly not unique, since we can add to it

any linear combinations of the ¢i's, and obtain another solution.

Stated in another form, the Fredholm Alternative says: If
the homogeneous equation (2.3.19) has the unique solution f =0,
then the nonhomogeneous eqguation is solvable for arbitrary g
(and the solution must evidently be.unique). In other words,

uniqueness implies existence.

Before we turn to the next section we make the following
observation concerning the above.
REMARK The Fredholm classical techniques yield rather pfeéise
information regarding solvability of equations and existence and
distribution of eigenvalues, but often reéuire rather tedious
and wearisome analeis. Consequently Fredholm's formulae have
so far found only a few applications, either analytical or
numerical, apart from providihg a foundation for the theory of

integral equations.
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2.4 HILBERT-SCHMIDT, KARHUNEN-LOEVE,
' AND GRANDELL TYPE SOLUTIONS

2.4.1 Hilbert-Schmidt Theory

In the first part of this section we define the so-
called selfadjoint compact‘operators and obtain some information
vregarding their eigenvalues, eigenfunctions and the associated
expansion theorems. These results are then épplied to compact

integral operators.

As before, we shall be concerned with integral equations of

the type
(2.4.1)  £(t)=g(t)+1/ K(t,s) £(s)ds

in the Hilbert space Lz[a,bJ. The function g(t) will be assumed
to belong-to Lz[a,b] and the kernel will be assumed to be square-

integrable, so that
(2.4.2) 2Pk, s) | Patds<e,

DEFINITION 2.4.1 Let K'be a bounded, linear operator on a

Hilbert space H. Then K will be said to be a compact operator

if from the sequence {Kfn} we can extract a subsequence {Kfn }
' K

that is a Cauchy sequence, for any uniformly bounded sequence,

{fn}, in H.
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Now let {¢i}'be an orthonormal set in H, and let

n

'an=Kf'§ nplEregdey  nalez...
=1

where {ui} is the sequenbe of eigenvalues of K ordered such that
. lull? I'U2|;>‘ e

Then if K has an infinity of nonzero eigenvalues, these accumulate
at the origin, and {an} is a convergent sequence in H. We thus
have the following results:

THEOREM 2.4.1 Let f be an element in H. Then f can be rep-

resented in the form

(2.4.3) f=Z(f,¢i>¢i+fO

1

where fO is a suitable element in the nullspace of K (i.e., Kf0=0).
THEOREM 2.4.2 Let {¢i} be the corresponding eigenvéctors asso-

ciated with K, and suppose H is Lz[a,b], then

n
, . — 2
(2.4.4) llmfbfblK(t,s)—} u.¢.(t)¢ixs)| dtds=0

n>~-a’a i1
i=1

so that

K(t,S)=§Z:ui¢i(t)¢i(S)

i=1

converges in the mean (in the sense of (2.4.4)).
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It then follows that

(2.4.5) fgf§|x‘(t,s)|2dtds=2 .2

l=

'._l

We note that in the above results the fact that K(t,s) is
square-integrable is vital, since for arbitrary compact operators
the sum Tf—uizlneed not be finite.

i=1

We also recall that operators for which K(t,s) is an L2
kernel are referred to as Hilbert-Schmidt operators. We now

state the important

HILBERT-SCHMIDT THEOREM 2.4.3 Every function f(t) of the
form
(2.4.6) f(t)= fK(t,s)h(s)ds

' Q

is almost everywhere the sum of its Fourier series with respect
to the orthonormal systém ¢i(t) of eigenfunctions of the sym-

metric kernel K.
The above theorem implies that
(2.4.7) f(t)=; fi¢i(t) converges,
Z
i=1

where the coefficients fi are the Fourier coefficients of the

" function f(t) with respect to the system {¢i(t)}, that is
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(2.4.8) fi=ff(t)¢.(t) dt=

and the hi are the Fourier coefficients of the given function h
with respect to the system {¢i(t)}:

(2.4.9) hi=éh(t)¢i(t) dt

Consequently, the function f(t) is almost everywhere equal

to the sum of its absolutely and uniformly convergent Fourier

series:
] N B fee] h i
(2.4.10) £(t)= 77¢i(t)‘
i=1 *
2.4.2 Application of the Hilbert-Schmidt Theorem

!

Using the Hilbert-Schmidt Theorem, it is possible to obtain

a series expansion of the solution £(t) of the integral equation

(2.4.11) f£(t)=g(t)+r/K(t,s)£f(s)ds

Q
with respect to the system of eigenfunctions {¢i(t)} of a sym-
metric kernel K(t,s). Assuming that X is not equal to any of
the eigenvalues, A#xi, there exists a unigque solution £ (t) in

Lz(Q).

Specifically equation (2.4.11) may be expanded in the form

o0

f(t)-g(t)_~——
(2.4.12) f———;————— Ci¢i(t)

i=1
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which may be substituted in (2.4.11) and integrated term by

term to obtain
z A
(2.4.13) % C.(1-X.)¢.(t)=SK(t,s)g(s)ds

But, according to the Hilbert-Schmidt theorem, we have again

(2.4.14) fK(t,s)g(s)ds=? T—¢i(t)’
| Q k!

where the fi are the Fourier coefficients of the function g(t).

From (2.4.13) and (2.4.14) it follows that

' ; A, 91 B
(2.4.15) zl_{ci(leT)'XT]¢i(t)_o'

Multiplying both sides in turn by dqrdore-- and integrating,

because of the orthogonality we obtain

Ay Ji :
(2.4.16) ©C, (1l=-+—)=-+—=0 for every 1i.
1 AL AL, o
i i :
91
Consequently v Ci— Y

Substituting these values in the series (2.4.12), we obtain
the required expansion of the solution of equation (2.4.11) as
an absolutely and uniformly convergent series in terms of eigen-

functions of the kernel:

(2.4.17) f(t)=g(t)—Aj{:%:71¢i(t) (A#Ai).
i=1
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REMARK If » were equal to one of the eigenvalues A=Ap=xp+l

hg#a=r ¢ Thppgei WER rank g, then equatioh (2.4.16) would be

gatiefied if and only if

(2.4.18) g, =/g(£)g i (€) dt=0  (i=0,1,2,...,q-1)

p+i
Condition (2.4.18) is in accordance with the Fredholm Third
Theorem and it has to be extended to all the eigenfunctions
corresponding to the Valueixp which is repeated in the above
series as many times as the number of its rank. 1In that case

the solution takes the form

o *
. g.
(2.4.19) f(t)=g(t)—x§ A_i'¢i(t) + Cro(8) *
' i=1 * ' :
+Co b (t) + ... + C_¢ (t)
ptl - q'ptg-1

*

where'?, denotes that in the summation we have excluded all
the values of i equal to p, p+l, ..., p+tg~-1l, for which
Ao pr1™ 2= T hpege1r

where q is the rank of that eigenvalue.

By a similar methcd we may find the expansion of the resol-

vent kernel N using the integral equation satisfied by N:

(2.4.20) N(t,s,r)=K(t,s)+r/K(t,y)N(y,sA)dy.
Q
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We obtain in this case

- whence, as before, on account of the orthogonality of {¢i(t)},

it follows that

¢i(S)
Ai(xi—x)

(2.4.22) bi(s)=

The required expansion of the resolvent kernel is therefore

obtained in the form

L(£)0,(s)

(2.4.23) N(t,s,M)=K(£,s)-1) 5
L.

i=1

(>‘=>‘i) 7

the convergence of which is evident in view of the similar

¢i(t)¢i(s).

absolute and uniform convergence of the series E
‘ . 2
i=1 AL
i
REMARK The expansions (2.4.17) and (2.4.23) are clearer and
seem more convenient to apply than Fredholm's formulae, but the
functional'analytic techniques often may not lead to the quan-

titative results provided by the classical techniques.

¢

2.4 THE KARHUNEN-LOEVE EXPANSION

The approach will be to expand the function f(t) in a par-

ticular kind of series. This is analogous to a Fourier series
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expansion in terms of sine and cosine functions with appropriate
weighting coefficients; a good referenceé is Helstrom (126 pp.l24-

133).

To be more precise, we desire an expansion in terms of a
set of orthonormal functions ¢i(t) with uncorrelated weighting

coefficients ri.

Recall that a set of functions {¢i(t):i=l,2,.,.} defined

over the interval (0,T) is orthonormal on this interval if

1, 1i=j

T
S ¢.(t)¢>*.(t)dt={
* J 0, i#j

0

If the orthonormal set is complete, then a square-integrable

function f£(t), defined on (0,T) may be represented as

(2.4.1) f(t)=§;£i¢i(t).

The coefficients r; may be determined by multiplying each side

of (2.4.1) by ¢*j(t) ahd integrating over the interval (O,T),

T _ T . '
/T f(t)¢*j(t)dt_§£:fo ANCDAUES

1

Since the functions are orthonormal, the right-hand side is

zero except for j=i, and so

(2.4.2) ri=fgf(t)¢*k(t)dt.
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For illustrative purposes we consider the homogeneous
integral equation

(2.4.3y /¥

- =X
K(t s)¢i(s)ds i¢i(t)
where K(t-s) is the kernel and where we assume that ¢i(t) is an

eigenfunction, and Ay and eigenvalue.

We know that for a positive definite kernel, the eigen-
values are strictly positive. Furthermore, if K(t,s) is positive
definite, the eigenfunctions form a complete set. By definition,
the set of functions ¢i(t) is said to be complete if the only

function g(t) satisfying
FTg(e) ¢, (£)dt=0
EAREST =
for all i is the function g(t)zO. In essence this means that if
a function g(t) not identically zero, is orthogonal to the set
of functions ¢i(t), then g(t) is also an eigenfunction.
The significance of the completeness property of the func-

tions ¢i(t) is that the series expansion (2.4.1) converges in

the mean to f£(t). Convergence in the mean means

n .
lim _ ' 2
oo E_{[E r 4. (£)-£(t)]%1=0
. I=1
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The series expansion of equation (2.4.1) with the functions
¢i(t) chosen as the eigenfunctions of the integral equation

(2.4.3Y is the Karhunen-Loé&ve expansion.

Some other facts will be of eventual interest. One is
Mercer's theorem which states if K(t,s) is positive semidefinite
it can be expanded in terms of eigenvalues and eigenfunctions

as

(2.4.4) K(t,s)=§——k.¢.(t)¢*.(s).
[ 11 J
i=1

i+.. In some circumstances it is convenient to use the inverse
kernel K_l(u,v) defined by
WV T -1
(2.4.5) fOK (t,u)K(u,v)du=¢$ (t-v), 0g<t, v<T.
- The inverse kernel has an expansion in terms of ¢i(t) and Xi

given by

(2.4:6Y K—l(t,u)=57f 75 () o*. (u)
i=1

The usefulness of the inverse kernel is, however, mainly
analytical. In practice, it may be difficult to determine.

In summary, we may represent a square-integrable function
of a random process over a finite observation interval in a

series of orthonormal functions. The coefficients may be made
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to ‘have the useful property of being uncorfelated.

REMARK Homogeneous Fredholm integral equations play‘an impor-
tant role in communication theory. As a theoretical tool, they
are used in determining the Karhunen-Lo&ve expansion theory of

a random process. A difficult aspect of this theory, however,
is that it is often difficult to find solutions to the equations

involved.
2.5 GRANDELL TYPE SOLUTION

In (10), Grandell used a method similar to that used in
chapter 1, to obtain the best linear estimator. In this section
we briefly review Grandell's method and make some comments

thereon.

With the assumption that only the covariance is known,
Grandell adopts as a criterion for the choice of the estimate,
the quadratic mean. Thus he seeks estimates of the type

(2.5.1) A*(t)=a(t)+fget(s)d(N(s)—s).

where the functions a(t) and Bt(s) (as in chapter 1) are

determined so that
2
E{x*(t) - a(t)}

is minimized.
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By virtue of the Karhunen-Loeve expansion and Mercer's
theorem of the preceding section, the covariance kernel K(s,t)

can be represented by

b ()¢, ()
(2.52) K(s,t)=§:: 1 1

the g and ¢i being eigenvalues and eigenfunctions, respectively.

By assumption o (t) and Bt(s) are finite and E{X*(t)—x(t)}2

exists, SO Bt(s) has the form

o

(2.5.3) By (s)=) B;0;(s)+b(s)

i=1

wherevbt(s) is orthogonal to Oprborenn-

We now proceed to minimize the expression

(2.5.4)  EOV*(£)=2 (£) }2=EL (o (£)-1)+/ 8, (s)dN(s)-s)- (Nt)-1)}°
2 g2
=d (o (t) -1) +2L_B 1T (s )ds+> —
i=1 i=1 *
© .2
e 200 e ()
1 1 1
+>~ ™ -22_ ™
1=1 i=1

Since (2.5.4) is being minimized, a(t)=1 and bt(s)=0. Thus

2
' (B.=¢.(t))
B{A* (£) =\ (£)}2=) {8, °2+-* - }.
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so that

, 2 2(By=9, (L))
BB (R -a ()3 L, 21PLT0

98B, .
B1 ‘ * My

setting this equal to zero we obtain

¢, (t)

1

Bi ST
i

which corresponds to a minimum since

82E{>\* (t)-2(t) }2 - 2+.2_>0

5g . 2 My
1

It follows that (substitution in (2.5.3)),

| 0. (t)d. (s)
: _ i i
(2.5.5) st(sy-i Tr ,

and (2.5.1) in turn becomes

0 1+u.
i=1 1

d(N(s)-s);

(2.5.6)  A*(£)=1+/

and

® 2
. —b .7 (t)

(2.5.7)  EO ()M (£))2=) i
=T L

If we now multiply. expressions (2.5.2) and (2.5.5), and

integrate over the interval (O,T), we obtain



TK-— Si—'¢i(t)¢i(u) ¢j(u)¢j(5)
oy /L _

T -
fogt(u)K(u s)du=/f | l+ui = du
i=1 J=1 J
_ ¢l(t) ¢l(s)
- (1+y,) v,
=1 o
N B9 S (60
i 2 1+y
=1 o =1
Thus Bt(s) is a solution of the integral equation
T ! _ .
(2.5.8) Bt(s)+fOK(u,s)Bt(u)du = K(t,s).
REMARK Although equation (2.5.8) is a Fredholm integral

L4

equation of the second kind, Grandell fails to note this fact

in (10).

Grandell shows that Bt(t) is a unique solution. Further,
in the case of a degenerate covariance kernel, there exists an
unbiased estimate of A(t). On the other hand, if the number of
eigenfunctions is infinite, i£ is impossible to find an unbiased
estimate of A(t) which is useful for every t in (0,T). The

interested reader may refer to Grandell's paper.

To illustrate this theory, we consider an example.

EXAMPLE (2.5). Suppose the kernel is given as

K(s,t)

Tl
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As was noted in the previous section, all eigenvalues, u, of

o (t) = ung(t,S)¢(S)ds

are positive. Thus in this example we get the equation

_ 1.7
(2.5.9) o(t) = u§f0¢(s)d5,_
the only solution being

¢ (t) = C, a constant.

The orthogonality requirement of the ¢i(t) implies

see? ey = p® = 1,
so that
/T
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Substitution in equation (2.5.9) gives

N Y%

/T P
so that

= P

U—T.

Now to get the best linear estimator, X*, we use equation (2.5.6),

thus

T

A*(t) =.1 + fo

1/T

l+—W'T-)— d{N(S)—S}

from which we obtain the best linear estimate as:

P+N(T)
*:———-—————
(2.5.10) A BT

REMARK We note that in the above exémple the best linear esti-
mate is dependent only on the covariance function and so the
estimate, (2.5.10), is the best linear estimate for every process

with the given covariance function.
2.6 SOME OTHER METHODS

We now turn to other solution techniques which appear mainly
in the engineering literature as described by Van Trees (19), -

Helstrom (12b) and others.
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Integral equations are frequently encountered in the theory
of signal detection and estimation. Two such equations encoun-
tered in connection with the detection of signals in nonwhite

noise are:

(2.6.1) IgF(t—s)f(s)ds = ME(E) O<teT

where f(t) and A are to be determined, and

T

(2.6.2) fO

F(t-s)f(s)ds = g(t)
where f(t) is to be determined. By assumption the covariance
function is the sum of parts corresponding to white and non-

white noise, So
Ny
R(t-s) = 7—6(t—s)+K(t—s)

and substituting this into equation (2.6.2) produces the integral

eguation

N
(2.6.3) igf(t)+ng(t—s)f(s)ds = g(t) 0<tgT
which we immediately recognize as a Fredholm integral eguation

of the second kind.

" As mentioned in sections (2.3) and (2.4), a solution to

(2.6.3) will generally exist unless (—NO/Z) is an eigenvalue



of the homogeneous integral equation (2.6.1). Since K(t-s) 1is
a positive-definite kernel, the integral equation cannot have a

negative eigenvalue, and there is no trouble about the existence

of a solution.
2.6.1 " Applications of Fourier Transforms

In numerous applicatiohs, integral equations of the type
,_(2.6i4)f fme(t—s)f(s)ds = g(t)

are encountered. The integral on the left is a convolution.

If K(1), gl(1)e Lz[—w,w], we can use the Fourier transform of both

sides to obtain

(2.6.5) /fﬁG(K)G(f) = Gl(g), and so

(2.6.6) a(f) = @
V2 TG (K)

provided G(K) does not vanish.

If the right side, as a function of u, is in Lz[-w,w] we

finally obtain
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EXAMPLE 2.6.2. Consider
(2.6.8)"-f(t)—xffmﬁ'lt's|f(s)ds = g(t).

By a direct integration

G(G_Jtl)
l+u
so that
7T .
G(£)-av/aT 225 (£) = G(g)
1+u
énd SO
: 2
. 1+
(2.6.9) G(f) = —5—— G(g)
_ 1+u™=-2)
where we require A<%. Then
f=or (P20 = L7 et
1+u”-2A 1+u2_2x
and for A<%, we obtain the solution
. e_y I t ]
(2.6.10) T f = T where y = vV1-22A
REMARK Techniques and properties of Laplace, Hankel, and

Mellin transforms (Helstrom (12b)) can be derived by relating
them to Fourier transforms; we do not, however, intend to dis-

cuss these transforms in the present work.
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2.6.3 : Equations with Separable Kernels

In this case we may expand the kernel in the form

n
(2.6.11) K(t,s) = > Ajcbi(,t) ¢; (s),
. j—_-l

where Aj and ¢j(t) are the eigenvalues and eigenfunctions of

K (t,s). Thus we can use the techniques of sections (2.4) and
(2.5) to solve the givén integral equation.

REMARK Lack of space prevents us from discussing all the
numerous methods which are found in the literatﬁre. A note-
worthy omission for finite observation and nonstationary pro—
cesses, 1s the state-variable formulation of Kalman and Bucy (6b)

which leads to a complete solution.
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CHAPTER 3
A SURVEY OF APPROXIMATE METHODS
FOR THE SOLUTION OF FREDHOLM INTEGRAL EQUATIONS

OF THE SECOND KIND
3.1 INTRODUCTION

Since exact solutions of the Fredholﬁ inteéral equation afe
usually difficult to obtain, it is natural to consider,'as we do
here, the possibility of finding approximate solutions. In a
private communicationh, Proféssor James Varah suggested the use
of quadrature methods of the form

. n.
(3.11)  S2f(t)ae = Z woE(e,),
i=1
i.e., the integral is represented by a weighted sum of values of
the integrand at a fihite number of points ti.’ In this chapter
we explore this and other approximate methods; in general, the
numerical methods'are explained without proof of their validity,

for which we can refer to the cited literature (6), (12), (14).

In section (3.2) we shall deal with simple quadrature rules;
in pafticular the Trapezium and Simpson's rules. We shall briefly
consider generalizations‘to these rules in section (3.3), and
then consider the method of collocation in section (3.4). 1In
‘section (3.5) we tackle the question of errors and the subsequent

suggested improvements on the methods discussed thus far. Finally,
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in section (3.6) we shall mention other methods which are not
discussed in detail here. Then we shall end the chapter with

a summary '‘and some concluding remarks.
3.2 QUADRATURE RULES

We summarize the principal formulae of ﬁypé (3.i.l) with
their error terms. Let us write I(f) for the(integral fgf(t)dt.
For the repeated forms, the interval |a,b] is divided into
n equal‘steps of‘length.h, SO that.h = (b?a)/n, and the formula

is applied over sub-intervals. The error depends on some high

order derivative of f(t) at a point & in [a,b], where we assume

that this derivative is continuous. The following three for-
mulae use equally spaced points, so we let i=a+ih.
i=1,2,...,n.
(3.2.1) The Mid-Point Rule
n \
I(f) =h ; f(ti—%)+Rl
i=1"
where
1 2 n e .
Rl = fz(b—a)h f° (), is the remainder term
(3.2.2) The Trapezium Rule
n-1
I(f) = %h{f(a)+22 £(t,)+£(b) J4R,

I.J
1l
'_l
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where
> = _____]_-_ = 220
R2 = 12(b a)h“"t" (g).
(3.2.3) Simpson's Rule
%n. %n—l ‘
_ 1 E ' . .
I(f) = gh{f(a)+4 f(t2i_l)+2 E f(tZi)+f(b)}+R3
i=1 ' i=1
where
_ 1 4_iv
REMARK In formula (3.2.3), n must be even. The above formulae

all use equally spaced points, and higher-order formulae of the

same type may be derived. However, the above three are the most

important in practice.
(3.2.4) . Formulation of Discrete Equations
Fredholm equations of the second kind can be approximated

in a straightforward way by means of quadrature formulae. The

general case is now clear. We choose any quadrative formula

n ,
b - S
Iaf(t)dt = wif(ti)
=T
involving the n points ti and the corresponding weights W The

‘general Fredholm integral equation of the second kind
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(3.3.1) f?K(t,s)f(s)ds+g(t) = f(t)

is then replaced by a system of n linear algebraic equations for
the unknowns f(ti) (to indicate that this is only an approxima-
tion to the integral equation f(t) has been replaced by £f(t)).

Written in matrix form, this system of equations becomes
(3.3.2) (I-KD)f = g,

where the matrix K has the elements Kij=K(ti,tj) and D has the

diagonal elements wi; The solution of these equations, fi’ rep-

resents the approximate values of f£(t) at the points t=ti.

We illustrate the above methods by two simple examples:

EXAMPLE 3.2.1 Consider
1
f(t) = t+fOK(t,s)f(s)ds

where the kernel is of the form

t(l-s) if t<s

K(Ers) = {5(1-t) if t>s

(Hilderbrand (13) notes that this kernel. is weakly singular.)

-y tg = ] and h = % (trapezium rule)

= tl(l—tz), . ooy K35 = t3(l—t

Take tl =0, t, =

l
4’ °°
Then K l)’

2
11 = Ep-t), Ky

i.e., Kij = ﬁi(l—tj), i<j, i,3j = 1,...,5.

5)



so that (

(@)

o O O O

and

D = diag h(l1/2, 1, 1, 1, 1/2)

0
3/16
1/8

- 1/16
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0
1/8
1/4
1/8
0

0
1/16
1/8

3/16

o O O © O

Hence from (I-KD)f=g with gl=[o 1/4 1/2

the system of equations

>

61/64f2—l/32f3—l/64f4

—1/32%2+15/16%3—1/32%

~1/64F,-1/32£ ;+61/64%

The solution to this set of equation is

r-A-w
1

h

H >

2

+h >

3

R

4

‘|—h>

5

.0000
.2943
.5702

0.

Ll.

-

8104

0000

4

~

f

4.

3/4 1], we obtain.

1/4
1/2

3/4

EXAMPLE 3.2.2 Suépose we are required to find an approximate

solution of the integral equation
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IéK(t,s)f(s)ds+g(t) = £(t).

We use Simpson's rule to approximate the integral in the form
fTu(t)dt = 1/6{u(o)+4u(1/2)+u (1) ME,

where E2 represents the error or remainder term. Neglecting

this remainder for the moment, we obtain the relation
1/6{K(t,o)f(o)+4K(t,%)f(%)+K(t,l)f(l)}+g(t) = £(t).

In this equation we write

t =20, % and 1 successfully, and obtain

l/6{K(o,o)£(o)+4K(o,%)%( )+K (0,1) £(1) 14g (o) = £ (o)

N

1/6{K (5,0) £ (0) +4K (5,3) £ (2)+K(2) , 1) £ (1) }+g(1/2) = £(1/2)

1/6{K(1,o)£(o)+4K(1,%)%(1/2)+K(1,1)%(1)}+g<1) = £(1)

which may be written as
(I-KD)f = g
with D = diag(l/6, 4/6, 1/6).

~ ~

We can, therefore, solve for the unknown values El’ f2 and f3.
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3.3 GENERALIZED QUADRATURE

Assume fec[a,b] and ¢(t) is Lebesque integrable on [a,b].
Consider the problem of numerically integrating f (t)¢(t) over
[d,b]. The approach here is to use piecewise polynomial inter-
polation to develop the generalizations of the trapezoidal.rule

and Simpson's rule.
3.3.1 The Generalized Trapezoidal Rule
As in the preceding section, let

h = (b-a)/n and define t, = a+ih, i = 0, 1, ..., n.
Let fn(t) be the piecewise linear interpolation function of f(t)

at the nodal points t t

17 e t. ; i.e.,

o’ n

(3.3.1) () = Bt ~t)E(t, D+(t-t, DE(t)}, €,  stst,

i=l,...,n.

Substituting (3.3.1) into /O£ (t)4(t)dt, we obtain

n
by =
(3.3.2)  SJE (£)e(t)dt = g Lo £(t; ) +8E (k)]

i=1

where o, and Bi are given by:

(3.3.3) o, =

(t-t.

jop) ¢(e)at
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REMARKS For this form of guadrature, it is necessary to evalu-
ate the integrals of ¢(t) and té¢(t) over arbitrary intervals.
Since usually the singularity of an integrand can be isolated

as a simple function, these integrations may, in general, not be

difficult.

We also note that when ¢ (t)=1l, we obtain the ordinary

trapezoidal rule since in this case

3.3.2 The Generalized Simpson's Rule

Here we let h=(b-a)/2n, n>1, and define fn as the piecewise
quadratic interpolation function to £ on to, tl, ey 5 £
being quadratic on each subinterval [t21—2’ tZi]’ i=1l, ..., n.

The quadrature formula beomces:

n
b _ _
(3.3.4)  J2f_(t)é(t)at = g lo £ty L) +B E(Ey, )+, E(,,))
‘ =1 :
- where
o, = 2ST25 (t-t,,) (t-t,, ;) e(t)dt,
2n° t2i-2
(3.3.5) B. = —=r%2i  (t-t ')(t—t )6 (t)dt
.- i 27 23 2i-2 2i
h 21i-2
Y, = 1 ft2i A(t—t i(t—t Yo (t)dt
i 2 et 2i-1 2i-2
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Wé shall see the usefulness of these generalizations when

we are dealing with error analysis in section (3.5).
3.4 COLLOCATION METHOD

The above direct methods often have the disadvantage of
concealing anomalous errors. In a sense, they are too general,
and need to be modified in order to take advantage of any

special features which the particular equation may posses.

Following Green (12), let‘¢l, ¢2,...., ¢n form a set of
linearly independent functions on [a,b]. We assume that the
‘éi's form part of an orthondrmal basis for Lz[ﬁ,b]. Now con-

sider the integral equation
(3.4.1) () = g(t)+Af2K(t,s)f(s)ds,

and assume an approximate solution of the form

where the Ci's are undetermined constant coefficients.

Substituting (3.4.2) into (3.4.1) yields

n

n . ) .

K/ - 2 b i

(3.4.3) ' Ci¢i(t) = g(t)+2 CifaK(t,s)¢i(s)ds+en(t.cl,...,Cn)
i=1 i=1

where € denotes the error involved as a result of assuming the



55

solution f(n)' We aim to choose the coefficients in such a way
as to minimize the error €h

In this vein we choose a set of points t . tn’ and

ll t2l
determine the coefficients by the requirement that Ekn)(t) should
vanish at each of these points.

Let

bj = g(tj)
and
a.. = . (t.)=A/PK(t,,s) 0, (s)ds,
ij 173 a 3 1
substituting these into the expression (3.4.3), we cbtain a system

of n linear equations:

n
(3.4.4) 2 aijci = bj =1, 2, ..., n

from which the Ci's are to be determined.

Now £o solve (3.4.4), we choose the points tj from the
numerical data at hand, and the numbers aij are obtainéd by use
of a quadrature formula.

Conditions for solvability:

(i) The determinant of the system (3.4.4) must be non-zero.
(11) At least one of the bj's must be non-zero.

If these conditions are satiSfied, the solution of (3.4.4) gives
f(n) in the form of a polynomial approximation. We now give an

example.
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EXAMPLE 3.3.1 Consider the equation

(3.4.5) £(£) = t+/gK(t,s)f(s)ds

with
S sg<t

t s>t

Suppose we have the points
1 1 3

v 83 = 0o g 33 L
Let us assume a solution of the form
_ 2
f(3) (t) = C +C,t+Cot |
with the condition that the error should vanish at the points
tl=0, t2=% t3=l. We use the analytic form of the kernel to
1

simplify the computation.

The coefficients aij are given by

_ 1t 1 .
ajy = 1 foj sds ftj tjds
t. 2 1
L= t.—f - .
sy tJ oJ s ds ftj tjsds
2 t. 3 1 2
a3j = t 3 foj [S] ds—ftj tjs ds
and :
b, = t..
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Thus 1-r9sas-o0srtas = 1

o)
|

11 - 0 0

ar. = 1-r¥2gas-%/1 45 = 5/8
12 0 5712

bl = ul, etc.

Hence the system (3.4.4) assumes the form

N - =0
120 C{+52 C,+17 C, = 96
6 C,+ 8 C,+9C = 12

1 2 3

which leads to the approximation:

f(3)(t) = l.988t—0.434t2
which is automatically best for the chosen points t=0, %, 1,
where fl=0, f3=0.836, f5é1.554,>and gives the solutions

f2 = 0.470; f4 = 1.247

at the points t2=% and‘t4=3/4, respectively. Thus the approxi-

mate solution to equation (3.4.5) is:

~O.OOO1
0.470
0.836
1.247
1.554)

REMARKS The qollocation method suffers from the disadvantage
.that an exact matching of the solution at certain points does

not control the size of the deviation between the exact and the
approximating solutions at other points (unless we want to choose

all the given points which may not be computationally feasible).
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At any rate, the collocation method is worth considering

because at least it is an improvement on the direct (and widely
used) methods of successive apprpximations and the quadrature

methods.

3.5 ' ERROR ANALYSIS

We now consider the problem of estimating the accuracy of
the result of the calculation for any of the quadrature methods

discussed. In the sequel we shall denote the norm of any function
9 (t) by

_ b
[Tell = rlee)] at

Returning to the problem of estimation we know that the

function f(t) is required to satisfy the integral equation
(3.5.1)  SOK(t,s)f(s)ds+g(t) = £(t)
The computed. function f(t) actually satisfies

(3.5.2) ng(t,s)%(s)ds+g(t) = %(t)-E(t)

where E(t) denotes the error term.
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If_we write
e(t) = f£(£)-£(t)

for the error in our result, we find by subtraction that
(3.5.3)  IPK(t,s)e(s)ds = e(t)+E(t).

" In the usual way, writing K for the integral operator:

K(f) = fiK(t,s)f(é)ds,

the error is given by
(3.5.4) e(t) = -(1-K) *E(t), and so

(3.5.5) |l el] <I| a-x)"H||IE

l.

Now I|ELL can be estimated. E(t) will usually be expressed

in terms of a derivative, either of the complete integrand in

the nonsingular case, or perhaps of f£(t) only in a singular case.

Under suitable assumptions about the smoothness of the various

-terms we can estimate the magnitudes of the derivatives by

examining finite differences.

It remains to estimate lI(l—K)_lII

M,[ﬂ, states that

(3.5.6) I (1-x) "4 <1/ -] &]] )

A well known result:
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where K is any bounded linear operator in a Banach space, pro-
vided that |[K||<l. If we choose the norm ||£f||=max|£f|, over the
interval [a,b], then the norm of K is
_ max b .
(3.5.7) | |x]] = astsbfa|K(t,s)|ds, and (3.5.6) holds provided
| x| f<1.
We therefore have a rigorous bound for the error in the result.

3.5.2 ' " Generalized Error

Turning to the corresponding error term of the.generalized

guadrature rules, and using the notation of section (3.3), we

have
(3.5.8)  E_(£) = s2UE(t)-F (£)}y (t)dt, and
(3.5.9)  |E ()|<|le] ]Il £-£|].

Assuming that fll is continuous, and using the error for-
mula for Lagrange interpolation on each subinterval [tj—l’tj]’
Atkinson (3) has shown that the generalized trapezoidal rule

has the error bound

(3.5.10) lEn(f)Is%hzllfllll [ 1o}
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REMARK We note that the order of convergence is the same as
that of the ordinary trapezoidal rule, but, as we shall find
below, this will not be true for the generalization of all

quadrature rules.

Considering Simpson's rule, the corresponding bound for
the error is:

/2 ,
(3.5.11) e ()<= e el

As hinted earlier, we find that, unlike the case of the trépe—
zoidal rule, the generalized Simpson's rule only has an h3 order
of convergence whereas the regular Simpson's rule is of a higher
order h4.

Thus, at least, the generalized Simpson's rule provides an

improvement on the ordinary method.
3.6 » SUMMARY AND CONCLUSION

We have considered in some detail the trapezium and Simp-
son's rules plus their generalizations as convenient quadrature
‘methods for the numerical approximation to the solution of the
Fredholm integral equation of the éecond kind. We found that
the method of collocation may yvield a significant improvement

on the results of the former methods.
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We do not claim to have mentioﬁed all, of even most, of
the available methods. "Indeed, for quadrature rules, some other
methods go by various names as: Simple Gauss rule( "Three-
Eighths" rule, Newton-Cotes rule, Radau gquadrature, Lobatto

rule, etc.

Although we do not have an opportunity to discuss all
methods here, yet it is worth exploring some further possibili-
Jties. For example, there are expansion methods such as the
Galerkin and the Rayleigh-Ritz techniqués, all of which may be

found in the cited literature.

In conclusion, we wish to.point out that finding explicit
solutions of integral equations is in general difficult. Only
in exceptional cases can such solutions be found. Generally,

various approximate and numerical methods have to be used.

We do not feel, however, that an approximate method is in
any way too inferior to one giving an exact solution. A solu-
tion in closed form may certainly be con&enient, but is rarely
absolutely necessary, bearing in mind that the integral equation,
considered as a model for some‘real system, is almost certainly
only an approximate representation of the system in the first

‘place.
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CHAPTER 4
COMPARISON: AN EXACT VERSUS AN APPROXIMATE SOLUTION

IN A SPECTAL CASE
INTRODUCTION

Whittle (22) does obtain Bayes 1inear estimators and equa-
tion (1.2.6) for certain special cases. Whittle's work suggests
a method of obtaining the optimal linear estimator using linear
smoothing techniques. We shall use a slightly modified form of
.Whittle's method to obtain an exact solution to the Fredholm
integral equation (1.2.6) and cohsequently obtain the linear

estimator (1.2.1).

To illustrate the use of the techniques devised, a numerical
example is treated. The data consists of successive 30-day totals
of 0il wells discovered by wildcat exploration in Alberta fdr
the period 1953 to 1971. Clevensén and Zidek (7) consider
this'practical problem and compute. the approximate optimal
linear estimator im.  We compare our exact and ClevensonAZidek's

approximate results.
4.1 A BRIEF OUTLINE OF WHITTLE'S DERIVATION OF (l1.2.6)

Estimate A (t) by a linear smoothing formulae so that x_ (t)

L
will be estimated by statistics of the type
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fb

awt(S)dN(S),

S
.
(=
|
>
t
I

for which, conditionally, given A

s _ /b
(4.1.2) EAL(t) = fawt(s)k(s)ds,
and
(4.1.3) var; (t) = fbw2(s)k(s)ds
L S Tat -

Assume that thelparticular function, A(t), is a member of
a population of such functions, so that the X (t)'s have an a
priori distribution of values. The optimum linear estimator

will then be obtained by minimizing

2

(4.1.4)  C*[t;w] = E[/fwihds+(fwrds)2-21 (£) fwhds+r2 (£)],

where E denotes expectation with respect to prior distribution

of the A (t)'s.

If EA(t)=u(t) and E[A(t)A(s)]=u(t,s) then minimizing (4.1.4)

with respect to w£(s) yields the integral equation

(4.1.5) b(s)wy (8)+/u(s,wWw, (Wau = u(t,s).
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By a normalization of the form

£ (8) = wt(s)/{u(s)/u(t)

r(t,s) u(t,s)/Vult)u(s)

we get

(4.1.6) u(t,s) r(t,s)/u(t)u(s),

(4.1.7) w(s) = gt(s)/u(t)/u(s)‘

Substituting these into (4.1.5) we obtain, after some manipula-

'tion,
(4.1.8) ¢, (s)+/Pr(s;u) e, (Wdu = r(t;s),
, t a t o

which is obviously of‘thevrequi?ed‘form.
452- _ | THE EXACT SOLUTION

We seek the‘optimal linear estimator of the form
(4.2.1) A (t) = u+ffTh(t;$)d(N(s)—us)
Wﬁere h(t;s) is the solutiop oflthe integral equation

(s)+fTTK(s;u)ht(u)du = K(t;s), -T<s<T.

(4.2.2) uht
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Consider the special case where the kernel K(t;s) depends only

upon (t-s) so that (4.2.2) may be written as
(4.2.3)  uh(s)+/2K(s-u)h(u)du = K(t-s),

where, for convenience, we have dropped the subscript, t, of h

and [a,b] =[-T,1].

We further specialize our results by assuming

Cov(Ar(t),r(s))

EX(t)A(s)-EAX(t)EX(s)

u(t,s)-u2

czp(t—s) _ OZQ—alt—Sl

-so that

w(t,s) = oze‘“lt"4+u3.
.Since

K(t’s) = B__Lt.LS)—_,

/u(t)u(s)
we obtain
‘02 —u{t—

(4.2.4) K(t,s) = K(t-s) = ﬁ—e #+u.

Whittle treats the special case where the kernel is of the
form

K(t) = a(y+peltl
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which in our example means that

2
ay = qu and ag = ¢ /u

Following Whittle we find that the integral equation (4.2.3) can

be converted by repeated differentiation to

2

(4.2.5)  h" (5)-0%n(s) = -2% & (t-s)+ua’ [foh(w)du-1],
2,2

with 0% = 2"—u—o¢+°‘

The §-function arises here because of the discontinuity of the

derivative of e—a|t—s[ at s=t. Whittle asserts that (4.2.5) must
hold without the &§-function for s+t, however for s=t the deriva-
2 .
O‘_e_a‘t“SI
u

tives of h(s) and must have step discontinuities of

the same magnitude.

Equation (4.2.5) has a general solution of the form

2

(4.2:6)  h(s) = o g0l t=s| pe=0(s*a)  1o=0(b-s) ¢

QFE

We determine the quantities P, Q and R by substituting

(4.2.6) back into (4.2.3) to get

(4.2.7) AG_GIS—tl+P€—®(S—a)+Qe—(b—s)+R

2 A |
+fg[ (%e‘“' s=ul ) e 0l s=ul  pe=0(u-a)

-0 (b-u

+QP )+R)] du

2
= Le_al S—t‘ +U ’
H
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a0
Lo

where A E

Recalling that [a,b]E[—T,T}, and performing the integration

involved, (4.2.7) yields the solution,

- (4.2.8) h, (s) = x[e‘®|S'tl+e-®(t—a)—®(s—a)+e—®(b—t)—®(b-s)]i

If (4.2.8) is substituted into (4.2.1) we obtain

(4.2.9) AL(t) = u+Il+12+13,

where
_ . bo-0|s-t]| _
Il = Afae d(N(s)=-us)
1, = a/be @ (¥ 7220 g ((s) -us)
a
I, = A fPe =0 (-t=5+2b) 4 (N (s) -us)
a
with
2 2
x = o . ®2 _ 200 0L2
Lo u )

The expression (4.2.9) is the exact optimal linear estimator
of the intensity function, X (t), and it is the form which is used

to obtain the exact solution to the oilwell discovery problem.

Figure (b) displays the exact and the approximate results
graphically for comparison. A Computer Program to compute

(4.2.9) is given in Appendix (1).
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4.3 : AN APPROXIMATE SOLUTION OF 1.2.6

This presentation follows Clevenson and . Zidek (7). Denote

by hT(t;s) the solution of
(4.3.1)  ux(s)+/1 x (WK(s-u)du = K(t-s), ~T<s<T,

and let h_(t;s) be our approkimation to hT(t;s); that is,

hw(t;s) is the solution of
(4.3.2)  ux(s)+f°_x(u)K(s-u)du = K(t-s), -=<s<w=,
with f x(s)ds<w.

Using Fourier transform techniques, Clevenson and Zidek (7)

show that

eT(t;s) = hT(t;s)—hm(t;s)+0

as T»» for each fixed (t,s) under suitable regularity conditions.

Their argument also gives a bound for ¢, in the form,

T

1 -1

(4.3.3) IeT(t;s)|5Au_l{fIu|>Thi(t;u)du}2{T 24u7hy,

with

'_J

A= (7 |s|k%(s)ds)?
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and 1
B = (/7 K (s)as)?
Corresponding to equatigns (4.3.1) and (4.3.2), let
(4.3.4)  Ag(t) = u+ffThT(t;s)d(N(s)—us)
and.
(4.3.5)  aA_(t) = u+s7 h_(t;s)d(N(s)-us)

respectively be the optimal linear estimator and the approxima-

tion to ;T' Then by applying the bound in inequality (4.3.3),

a bound for E|A|=E|AT(t)—iw(t)| is obtained in the form:

,._l

1

(4.3.6) E]A[54TAu_l{f|u[>Thi(t;u)du}2{T 2+Bu—l}.

Clevenson and Zidek (7) observe that this bound is small

only when t is not too near the boundaries of the observation

period, [-T,T]. Thus,im will not be a good approximation to

~

Am, near the boundaries of that period. Note that this is equiva-

T

lent to our remark after'(4.2.8).

Further, Clevenson and Zidek give the large time, T,

approximation of the optimal linear estimator XL(t) as
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(4.3.7) im(t) = u+Bf?Te*Y|t_Sld(N(s)—us), -T<t<T,
where 1
2 -1 2 -1 - 2
B = o u " (1+2c7n l% l)
and y = a(l+202u_la—l)2

To determine the accuracy of the approximation (4.3.7) the bound

given in inequality (4.3.6) was evaluated, and found to be

(4.3.8) Pcosh(syt),

where T
P = 4AT{T 2+Bu"l}32y_le—2YT.

4.4 COMPUTATION: OIL WELLS DISCOVERY DATA

From the data the mean, u, was estimated as ;=O.70. We
used Cov (A(t),A(s)) = o’p(|t-s]|),

~ where p(u) = e—a|u|'

with o=0.05, was chosen without expli-
citly using the data.  The form of p is that of a one-step auto-
regressive process; we believe that p is symmetric and decreasing
on [0,®). Also to express our uncertainty about the choice
p=0.70, the value ;2=0.25 was chosen, with support from the
data,vas an estimate of 02.

Time was measured in 30-day intervals and there were

108 observations in the period [-T,T|. For this particular
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~case T=110.5, and with reference to the constants in section (4.3),
the following values were obtained:

A 5/V2, B = /5/2,

B 0.0913, Y 0.195.
The bound given in inequality (4.3.6) qu found to be less than

0.01 provided |t|<87.

As mentioned earlier, we display in Figure (B) for compari-

son the exact linear estimator and the large time approximation.

- REMARK The graphs in Figure (b) support the above calcula-
tions; that is, the bound is small only when t is not too near
the boundaries of the observation period, [-T,T]. This indi-

cates that A_ will not be a good approximation to the optimal

linear estimator, A near the boundaries of that period.

LI
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CHAPTER 5

APPLICATIONS

1
=

INTRODUCTION

The main purpose of this chapter is to apply the techniques
developed thus far to practical situations which may be slightly
different from the special case considered in chapter 4. Recall
that we have been concerned with the optimal linear estimator,

~

AL’ of the intensity function, A (t), of a nonstationary poisson

process. It has been shown that AL(t) is a function of h(t;s)

which is the solution of the integral equation
(5.1.1)  m(s)h_(s)+/ K(s;wh,_(w)du = K(t;s) a<s<b,
where m(s) = u is a constant (in chapter 4).

In many cases the assumption that m(t) is a constant over
the entire period of observation [a,b] is unrealistic. It is
therefore of interest to study other special situations where
we drop that assumption. To facilitate the application of our
general model to such practical situations, consider the integral
equation (5.1.1) where m(t) is not a constant but is a pre-
scribed function of t. An integral equation with this property
is sometimes called a Fredholm integral equation of the third

type. However, by suitably redefining the unknown function, ht(s),
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and/or the kernel, K(t}s), it is always possible to rewrite such

an equation in the form of the second type.

In particular, when m(t) is positive throughout the interval
[a,b], Hilderbrand (13), shows that the equation (5.1.1) can be
rewritten in the form

(5.1.2) Ym(s)h (s)+fb _K(sju) Vm(u)ht(u)du'= K(t;s) ,

t ay m(s)m(u) vm{(s)

or

(5.1.3) xt(s)+fgr(é;u)xt(u)du = 9. (s).

Thus in this form one must recompute

x, (s)

ht(s) =

/m(s)
after xt(s) has been found.
Having shown that by appropriately redefining the functions

involved, we can rewrite (5.1.1) in a suitable form as a second

type equation, we give two practical examples of such situations.
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5.2 ~ ESTIMATION OF TRAFFIC DENSITIES
AT THE LIONS GATE BRIDGE

Voluﬁes of data have been collected for the distribution
"of cars on the Lions Gate ﬁridge in Vancouver. Figure () gives
five-minute counts of traffic for the totél traffic (southbound)
crossing a detéctor on a "typical" day in 1974. An estimafor

of the intensity function A (t) was sought. To say the least,
this intensity function reflecté the effects of weather, time

of day, and other exogenous variables and knowledge about these
effects are useful in decision-making. For example, should

another lane be added to the existing ones?

A look at the counts at an individual detector convinces
one that, on the Lions Gate Bridge, counts are highly reproducible
from day to day. In particular, on working days one would expect
traffic to be mainly composed of cars which pass the particular
location of the aetector_at nearly the same time every day; thus
there appears to be an underlying schedule. If one were to make
traffic counts over a time which is large compared with the
uncertainty in an individual arrival time, the variance in
counts from one day to the next should be guite small. 1In ordér
to treat the appérent ﬁnderlying schedule mathematically, a
realization of a nonstationary Poisson process is assumed to be
observed. Thisvenables us‘to apply our model and the tech-
niques developed in the previous'chapters to study the under-

lying intensity process. Specifically, we seek a linear
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estimator, A of the intensity function, A(t), in the form

Ll
o = T . Y .
(5.2.1) A, () = w +/ 5 h(t;s)d(N(s)-H(s));
where h(t;s) is a solution of (5.1.1). ©Note that here we write

subscripted My to indicate that in this example we drop the
assumption that m(t)=p is constant. With the assumptions in
chapter 4 about the kernel, we require that

'(5-2-2) Cov(A(t),r(s)) = oze_u,t—sll

and

e I

(5.2.3) K(t;s) = K(t-s
A ™
We are now faced with the problem of finding estimates
for the constants 02 and o, and also a method of obtaining the
pt'S. This is where, following the Bayesian recipe, intro—‘
spection comes in. The motivation for Bayesian metﬁods is
essentially the desiré to base calculations and decisions on
any available information, Whether it is sample information or
informatioh of some other nature, such as. that based on pasf

experience.

We shall use empirical Bayes' methods as suggested by
Barnett (4, pp. 189-200), the 1974 data at hand, and also some
- values published by Lea, N.D. and Associates (16b) where data

collected from the same location was used.
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CALCULATIONS:
Consider the data in Table 5.1.

TABLE 5.1

HOURLY VARIATION: LIONS GATE BRIDGE, 1966

Time of Day Volume of Cars
9 - 10 1,550

10 - 11 1,240

11 - 12 1,140

12 - 13 : 950

13 - 14 _ | 1,400

14 - 15 1,150

15 - 16 1,175

16 - 17 ' 1,300

17 - 18 - 1,300

Source: Traffic Unit, City of Vancouver

In order to use this information to obtain the prior mean

u

£ for the 1974 data, it is convenient to let 1 change hourly,

thus in our calculations My varies for every 1l2th t since we
are dealing with five-minute vehicle counts. One intuitively
appealing possibility would be to divide the 1966 figures by 12
and use the resulting values as the ut's. But this cannot be
ehtirely satisfactory; one would expect that the volume of

traffic might have increased since 1966. Calculations show the
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hourly volume fqr 1974 was, on the average, 1,650, while that
of 1966 was 1,050; thus in the ratio of 11:7. Hence, in order
to step up the 1966 values, the correction factor.ll/7 was used
in the calculation df the ;t‘ However, to make room fof'

sampling fluctuations and other considerations, the factor 3/2

was used in the computer program presented in Appendix (B).

Recall that our choice of p(u)=€-OLlul is in the form of a
one-step autoregressive process. This knowledge may be exploited
in arriving-at a value for o, and also in choosing an estimate for

2
o,

Computer programs were run for the following values of «

and o:
o o
0.01 1.0
0.01- 2.0
0.05 2.0
0.2 2.0
The resulting estimates of the intensity fuhction, A(t), are

shown by the graph of Figures (D, E).
REMARK The graphs indicate that, as in the oilwell example for

fixed o, as ¢ increases, the estimator ). becomes increasingly

L

data-sensitive, and hence irregular.
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We now consider another example where the mean EA(t)=m(t)

is a prescribed nonconstant function of t.
5.3 ' COAL-MINING DISASTERS

Figure (F) gives the numbers, in successive 400-day periods,
of coal-mining disasters in Great Britain for the period 1875 to
1951. The data are taken from Cox and Lewis ( 8, pp. 2-6). A
disaster is defined as a mining accident involving the death of
10 or more men. Cox and Lewis discuss more formal statistical
methods for analyzing this set of data; here as an alternative

to Cox and Lewis analysis, we apply our model.

It is hoped that this example will illustrate in a little
more detail the sort of problem discussed in this work. In par-
ticular, this section may be regarded as an extension to the
preceding section where empirical Bayes ideas were cited as
justification for our choice of 02 and o. Suppose:the assump-
tions of section (5.2) still hold with the exception that we’

now require m(t) to be a continuous function of t.
Fig. (F) suggests consideration of the function

(5.3.1)  Cosht = z(e%+€™%), - <tee.
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1

a ‘f>t

Since, as Fig. (F) indicates, the average rate of occurrence

of disasters is decreasing with time, the positive side of

the function (5.3.1) is unsatisfactory. Let us choose, instead,
m(t) to have the form

(5.3.2)  m(t) = %—(eat+ )y, “l<te<l

where O0<a,bgl and b>a.
The restriction on t is to prevent m(t) from becoming too large.

The restrictions on a and b are imposed for similar reasons.

Note that with these restrictions m(t) takes the following form:
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The sample mean of the given data is about 2; with this
knowledge, and also to simplify the calculations, we choose
a=0.5 and b=1.0. Using the techniques of section (5.2),

02=O.25 is chosen as an estimate of 02. Also, the value

0=0.05 is found to be a good choice.

COMPUTATION: - As has already been said, the form of the kernel
and the method of calculation are essentially those of the pre-
ceding section. It is interesting to note that in conformity
with the restriction on t in (5.3.2), in the subprogram to
compute the function m(t), each time value t is divided by 30.
Note that in this example te[-30,30], while for m(t) we require

te[-1,1].

Another interesting feature of the present example is that,
curiously, the values a=1.75 and b=1.0 were used with the same
values of ;2 and o as above. It turned out that both programs
produced values of the estimator of the intensity function, A (t),

which are pretty much the same. Nevertheless, the cost and time

of computation as given by the computer are as follows:

values Time (sec.) Cost ($)
a=0.5; b=1.0 2.784 1.34
a=0.75; b=1.0 2.791 1.39

Thus one is persuaded to stick to the values a=0.5 and b=1.0,

and this is what was done here.
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Figures (G) and (H) display AL for various values of o©
and o so that one can see the effects of varying ¢ and o. Here
again it is seen that for fixed ®, an increase in 0 causes the

estimator to become more data-sensitive and vice versa.
5.4 CONCLUDING REMARKS

Chapter 2 presents various exact methods of solving the
Fredholm integral equation of type II encountered in our quest
for the optimal linear estimator of the intensity function, X ,
of a nonstationary Poisson process. Several approximation
techniques are also presented in chapter 3. These chapters are
intended as a survey, necessarily incomplete, of some of the
available methods of solving the Fredholm type equations which

frequently occur in many areas of applied mathematics.

We agree with Grandell (10), Whittle (22), and Clevenson

AL'

is Bayes with respect to a restricted class of linear estimation,

and Zidek (7) that only the optimal linear estimator, which

is generally applicable when X is any second order process.
Thus, in chapters 1, 4 and 5 the main emphasis was placed on

~

obtaining the optimal linear estimator, & which involves the

LI

numerical solution of equation (1.2.6).

In the numerical examples, a special form of the kernel was
chosen to reflect our belief about the covariance structure. The

calculations required to obtain AL in the numerical example where
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the assumption of constant mean, m(t)=u, is dropped are much
more extensive than those required for the simple case where

the assumption is upheld.

To the author's knowledge, the exact techniques considered
here had not been applied to real-life situations before this
work was started, even though the methods had frequently been
suggested in the literature. It is gratifying to note that in

~

chapter 4, a comparison of the approximate estimator, Xm, and

~

the exact optimal linear estimator, XL’ shows that the bound,
given by Clevenson and Zidek (7, p. 21), is satisfied in the

case of the oilwell discovery example.

Another interesting observation is that, in choosing
o, 02, o and the other constants which occur in our model, the
Bayesian approach is a very useful tool. At least it is if one

may use empirical Bayes methods as was done here.

It is worth noting that in some situations it is much more
satisfactory not to assume that the mean is constant since, from
our results, it appears that such an assumption may cause the
estimators of A to become more data-sensitive. A word of caution
is in order here about the choice of the mean function, m(t); an
"off-the-mark" choice is very likely to yield intangible results.
A careful examination of the data, at least in graphical form,
is usually helpful. In many special cases, however, one may

safely maintain the assumption that m(t)=u, a constant. Also one
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~

may use the large time approximate estimator, i_, instead of

~

the optimal linear estimator, AL’ since these methods often

yield fairly good results for the estimation of the intensity

function, X (t).
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NUMBER OF DISCOVERIES PER 30 DAY PERIOD

A. Histogram estimators of the intensity of wildcat oil well discoveries using class

widths of (a)30days ,(b)90days and (c) 360 days .
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5 minute vehicle counts
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Number of disasters per 400day period
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Number of disasters per 400 day period
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APPENDIX 1 -
COMPUTER PROGRAM: THE OPTIMAL LINEAR ESTIMATOR

OF THE INTENSITY FUNCTION OF THE OILWELL DISCOVERY PROCESS

Ak OILWELL DISCOVERY  **%
* Kk EXACT SOLUTION USING WHITTLE'S SUGGESTION * k%
REAL MU,SIGMA,ALFA,EXACT
DIMENSION P(120), DS(120), EXACT(225)
DIMENSION TM(225), CEX(225), CAT(225)
READ2, MU, SIGMA, ALFA |
2 FORMAT(3E4}2)
N=108
READ4, (P(I), DS(I), I=1,N)
4 FORMAT (F5.0, F3.0) |
WK = ALFA*SIGMA*SIGMA/MU
TTA = SQRT(2.*WK + ALFA*ALFA)
VK = WK/TTA
PRiNTG, WK, TTA, VK

6 FORMAT (' ',3F10.4)

UTL = 110.5

uT = 221.
T= -110.
K=0
8 IF(T.GT;llO.) GOTO 20
SuUM= 0.
J =20

10 J J+1
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IF(J.GT.N) GOTO 12

R = ABS(T-P(J))

S=T+P (J)

PAl=-TTA*R

IF (PA1.LT.-100.) A=0.
A=EXP (PAl)

PA2=-TTA* (UT+S)
IF(PA2.LT.-100.) B=0.
B=EXP (PA2) |
PA3=-TTA* (UT-S)

IF (PA3.LT.-100.) C=0
C= EXP (PA3)

ABC = A+ B + C

IF (ABC.EQ.0.) GOTO 10
SUM=SUM+DS (J) *ABC

GOTO 10

~CVA = VALU(TTA,UT1,T)

ADVA = MU*VK* (1. - CVA)

K=K+ 1

EXACT (K) = VK*SUM + ADVA
PRINT14, T, EXACT (K)
FORMAT (' ', F6.0,F10.2)
T=T+ 1

GOTO 8

NT=221

M=NT - 1



22

24

97

T™M(1)=1.

DO 22 I=1,M

TM(I+1)=TM(I)+1.

CONTINUE

DO 24 I=1,NT

CAT (I)=TM(I) -

CEX (I

) =EXACT(I)

CONTINUE

*** NOW CALL SUBROUTINE AJOA TO DO THE PLOTTING ***

CALL

AJOA (CAT,CEX,NT)

TERMINATE PLOTTING AND 'STOP **

CALL
STOP

END

PLOTND

SUBROUTINE AJOA(X, Y, N)

DIMENSION X (N), Y(N)

CALL SCALE(X,N,10.0,XMIN,DX,1)

CALL SCALE(Y,N,l0.0,YMIN,DY,l)

CALL AXIS(O.,O., 'TIME', ;4, 10., 0., XMIN, DX)
CALL AXIS (0., 0., 'EXACT', 5, 10., 90., YMIN, DY)V
CALL LINE(X,Y,N,1)

CALL PLOT(12.0, 0., =3)

RETURN

END
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FUNCTION VALU(X,Y,Z)

'REAL X,Y,Z

Al= -X*ABS(-Y-2)

Bl= -X*ABS (Y-7)

IF(Al1.LT.-100..AND.B1.LT.-100.) PF = 0.
IF(Al.GE.-100..AND.B1.LT.-100.) PF=EXP (Al)
IF(Al.LT.-100..AND.B1.GE.-100.) PF=-EXP (Bl)
IF(Al1.GE.-100..AND.B1.GE.~100.) PF=EXP (Al)-EXP (Bl)
A2= -X* (Z+Y)

B2 = =X*(3*Y +Z)

IF(A2.LT.-100..AND.B2.LT.~100.) QF=0.
IF(A2.GE.-100..AND.B2.LT.-100.) QF=EXP(A2)
IF(A2.LT.-100..AND.B2.GE.~-100.) QF= —-EXP(B2)
IF(A2.GE.-100..AND.B2.GE.-100.) QF=EXP(A2) - EXP(B2)
A3 = -X*(Y-2)

B3 = -X*(3*Y-7)

IF(A3.LT.-100..AND.B3.LT.-100.) RF = 0.

IF (A3.GE.-100..AND.B3.LT.-100.) RF= EXP (A3)
IF(A3.LT.-100..AND.B3.GE.-100.) RF= -EXP (B3)

IF (A3.GE.-100..AND.B3.GE.~100.) RF=EXP(A3) - EXP(B3)
VALU = (PF + QF + RF)/X + X

RETURN |

'END
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OILWELL DISCOVERIES;

THE APPROXIMATE AND THE EXACT LINEAR ESTIMATORS,

-110.
-109.
-108.
-107.
-106.
-105.
§104.
-103.
-102.
-101.
-100.

-99.

-98.

-97.

-96.

-95.

-94 .

-93.
-92.
-91.

-90.

RESULTS FOR 0=0.5, «=0.05.

~

A (T)

-89.
-88.
-87.
-86.
-85.
-84.
-83.
-82.
-81.
-80.
-79.
-78.
-77.
-76.
-75.
-74.
-73.
-72.
-71.
-70.

-69.

.88

.91

.94

.93

.92

.91

.86

.84

.81

.82

.81

77

.75
.73
.69
.68
.69
.73
.79
.89

.94

N

>\oo

AND AL.

0.88

0.94
0.93
0.92
0.91
0.86
0.84
0.82
0.82
0.82
0.77
0.76
0.73
0.69

0.68
0.70
0.73

0.80
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-64.
-63.
-62.
-61.
-60.

-59.

-58.

-57.
-56.
-55.
-54.
-53.
-52.
-51.
-50.
~49.
-48.
-47.
-46.
~45.
-44.
-43.
~42.

-41.

0.71

100

A (T) T

0.94 . —40.
0.81 -39.
0.71 -38.
0.64 -37.
0.59 -36.
0.56 -35.
0.55 -34.
0.56 : -33.
0.50 -32.
0.60 -31.
0.53 -30.
0.48 -29.
0.44 -28.
0.42 -27.
0.37 . -26.
0.34 - -25.
0.32 _ -24.
0.31 -23.
0.30 -22.
0.31 - =21.
0.33 - =20.
0.36 -19.
0.40 -18.
0.45 -17.

0.52 -16.

A

_(T)

.60
.67
.77
.86
.94
.98
.96
.93
.90
.86
.86
.86
.85
.86
.88
.93
.90
.87
.87
.87
.89
.88
.90
.96

.01

0.94

0.99

0.96

0.93

0.90

0.87

0.87

0.86

0.85

0.87

0.88

0.93

"0.90

0.87
0;87
0.87
0.90
0.89

0.91
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-14.

-13.

-12.

-11.

-10.
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10.

11.

12.

13.

‘14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

34.

.77
.83
.88
.92
.89
.90
.93
.93
.89
.89
.87
.90
.91
.93
.91
.84
.81
.81
.84
.89
.98
.04
.06
.08

.15



35.
36.
37.
38.
39.
40.
41.
42.
43,
44.
45.
46.
47.
48.
49.
50.
51.
52,
53.
54.
55.
56.
57.
58.

59.
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60.

61.

62.

63.

64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.

82.

"83.

84..

.42

.42

40

.37
.34
.32
.32
.32
.34
.37
.41
.42
.42
.43
.45
.46
.48
.52
.57
.65
.67
.69
.66
.61

.59

0.41

0.37
0.34
0.33
0.32
0.33
0.34
0.37
0.41
0.43

0.42

0.46
0.46
0.49
0.52
0.59
0.65
0.68
0.69

0.66



85.
86.
87.

88.

89.

90.
91.
92,
93.
94.
95,
96.

.97.

0.59

0.61

0.62

0.58

0.52

0.43
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98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

.34
.33
.34
.35
.38
.42
.47
.54
.63
.71
.78
.83

.89

.31
.29
.29
.29
.30
.32
.36
.40
.46
.50
.52
.52

.50
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APPENDIX 2
COMPUTER PROGRAM: THE OPTIMAL LINEAR ESTIMATOR
OF THE INTENSITY FUNCTION

OF THE LIONS GATE BRIDGE PROCESS

** LIONS GATE BRIDGE EXACT SOLUTION **
DATA FROM 9A.M. TO 6 P.M.

REAL MU,SIGMA,ALFA,FACT

FACT IS A MULTIPLYING FACTOR TO SCALE UP M(T) **
DIMENSION P(120),DS(120),SK(10) ,EXACT(120)
DIMENSION TM(lZO), CEX(109), CAT(109)

READ 2, SIGMA,ALFA,FACT

FORMAT (3F6. 3)

N=109

M=9

T=-54,

UT=109.

UT1=54.5

kEAD4, (P(I), DS(I), I%l,N)

FORMAT (F6.0,F6.0)

READS, (SK(I), I=1,M)

FORMAT (F6.01)
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CALL FUNCTION UTVAR TO COMPUTE NEW M(T)
MU=UTVAR (FACT, Y)
RMT=SQRT (MU)
WK=ALFA*STGMA*STGMA/MU
TTA=SQRT (2.*WK + ALFA*ALFA)
VK=WK/TTA

8 IF(T.GT.54) GOTO 20

*% CHANGE M(T) AFTER EVERY 12TH INTERVAL **
IF (KT.GT.12) GOTO 7
SUM = 0.
J=0
10 J=J+1

IF(J.GT.N) GOTO 12
R=ABS (T-P (J) )
S=T+P (J)
PAl=-TTA*R
IF (PAL.LT.-100.) A=0
A=EXP (PAl) '
PA2=-TTA* (UT+S)
IF (PA2.LT.-100.) B=0.
B=EXP (PA2)
PA3=-TTA* (UT-S)
IF (PA3.LT.-100.) C=0.
C=EXP (PA3)
ABC= A+B+C
IF (ABC.EQ.0.) GOTO 10

SUM = SUM + DS (J) *ABC



* %

12

14

20

21

22

* %

GOTO 10
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TO COMPUTE XT(S)

-CVA =

VALU (TTA, UT1l, T)

TO COMPUTE HT(S) AFTER CALCULATING XT(S).

HAVE
ADVA

K=K+1

Il

CVA/RMT

MU*VK* (1. - HAVE)

EXACT (K)=VK*SUM + ADVA + MU

PRINT14, T, EXACT (K)

FORMAT ("' '

KT=KT+1

T=T+1

GOTO

NT=10

8

9

T™(1l)=1.

DO 21 I=1,N

’

F6.0,F10.2)

T™M(I+1)=TM(I)+1.

CONTINUE -

DO 22 I=1,NT

CAT (I)=TM(I)

CEX (I)=EXACT(I)

CONTINUE

* k%

NOW CALL SUBROUTINE AJOA TO DO THE PLOTTING *¥*

CALL AJOA (CAT,CEX,NT)

CALL PLOTND

STOP

"TERMINATE PLOTTING AND STQOP **
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END

'SUBROUTINE AJOA(X, Y, N)

DIMENSTION X (N), Y(N)

'CALL SCALE (X,N,10.0,XMIN,DX,1)

CALL SCALE(Y,N,10.0,YMIN,DY,1)

CALL AXIS(0.,0., 'TIME', -4, 10., 0., XMIN, DX)
CALL AXIS (0., 0., 'EXACT', 5, 10., 90., YMIN, DY)
CALL LINE(X,Y,N,1)

CALL PLOT(12.0, 0., =3)

RETURN

END

FUNCTION UTVAR(X,Y)
REAL X,Y

PRO=X*Y
UTVAR=SQRT(PRO)
RETURN

END

FUNCTION VALU(X,Y,Z)

REAL X,Y,Z

Al= -X*ABS(-Y-Z)

Bl= -X*ABS (Y-2Z)
IF(Al.LT.-100..AND.B1.LT.-100.) PF = 0.

IF(Al.GE.-100..AND.B1.LT.-100.) PF=EXP(Al)
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IF (Al.LT.-100..AND.BL1.GE.-100.) PF=-EXP (B1l)
IF(Al.GE.—lOO;.AND.Bl.GE.—lOO.) PF=EXP(A1)-EXP(B1)
A2= -X* (Z+Y)

B2 = —-X*(3*Y +2)

IF(A2.LT.-100..AND.B2.LT.~100.) QF=0.

. IF(AZ;GE.—lOO..AND.B2.LT.—lOO.)‘QF=EXP(A2)
IF(AZ;LT.—lOO..AND.BZ.GE.—lOO;) QF= -EXP (B2)
IF(A2.GE.-100..AND.B2.GE.-100.) QF=EXP(A2) - EXP (B2)
A3 = -X*(Y-2Z)

B3 = -X*(3*Y-2)

IF(A3.LT.4100..AND.B3.LT.—100.) RF = 0.
IF(A3.GE.-100..AND.B3.LT.~100.) RF= EXP(A3)

IF (A3.LT.-100..AND.B3.GE.-100.) RF= —EXP (B3)
IF(A3.GE.-100..AND.B3.GE.-100.) RF=EXP(A3) - EXP(B3)
VALU = (PF + QF + RF)/X + X

RETURN

END
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COMPUTER OUTPUT: LIONS GATE BRIDGE PROCESS "

~

THE OPTIMAL LINEAR ESTIMATOR, A

L
RESULTS FOR 0=2.0, a=0.2.

T XL(T) T iL(T)

~54. 167.99 : -33. 118.86
-53. 167.06 -32. 119.81
-52. 164.14 -31. 118.14
-51. 160.44 -30. 116.04
-50. _  154.74 -29. 117.08
~49. 148.83 -28. 117.80
-48. 145.01 ’ -27. 117.38
-47. 140.18 26, 119.11
-46. 136.26 -25. 120.07
-45, 131.25 -24. 120.30
-44, 127.12 -23. 121.23
-43. 121.96 -22. 118.29
-42. 116.97 -21. 111.63
-41. 114.64 - -20. 107.17
-40. - 111.57 -19. 106.10
-39. . 111.05 ' -18. 103.75
—38.‘ 111.39 -17. 102.03
-37. - 113.03 -16. 100.53
-36. 114.99 -15. 99.50
-35. 117.48 -14. 97.59

-34. . 117.46 " -13. 96.70



-1l2.

-11.

-10.

10..

11.

12.

AL (T)

98.48

100.00

102.80

104.89

. 108.44

110.80

112.50

113.69

114.57

115.16

113.98

114.13

114.05
113.75
113.05
111.85

110.20

108.18

106.06
103.85

101.46

98.84

95.49

95.90

95.41
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13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.
24.

25.

26

27.

28.

29

30.

31.

32.

33.

34.

35.

36.

37.

95.
95.
96.
96.
96.
96.
96.
97.
98.

100.

101

105.
108.
109.
111.
112.
113.
114.
115.

118.
121.
122.
124.
123.

119.

62
71
28
85

80

94
86
90

45

.10

68
08
82
08
17
41
50
23
75
37
75
38
76

45



38.
39.
40.
41.
42.
43.
44.
45.

46.

-116.

111.

105.

102.

97.

91.

90.

89.

88.

63
52
69
30
44
68
67
47

36

47.

48.

49.

50.

51.

52.

53.

54.

88.

89.

91.

89.

89.

85.

82.

80.

13
70
04
87
Q8
83
93

64
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APPENDIX 3

COMPUTER PROGRAM: THE OPTIMAL LINEAR ESTIMATOR

OF THE INTENSITY FUNCTION

OF THE COAL-MINING DISASTER PROCESS

*** COAL MINING DISASTERS * EXACT SOLUTION **¥*

REAL MU, SIGMA, ALFA, DIV, FACT

DIMENSION P(100), DS(100), SK(100), EXACT(100)
DIMENSION TM(100), CEX(60), CAT(60)

READ2, SIGMA, ALFA, DIV, FACT, AA, BB

FORMAT (6F6.2)

N = 60

M= 60

T = -30.
UT = 61.
UT1l = 30.5

READ4, (P(I), DS(I), I = 1,N)
FORMAT (F6.0, F6.0)

DO 5 T = 1,N

SK(I) = P(I)/DIV

CONTINUE

L=20

K =0

IF(T.GE.30.) GOTO 20
L=L+1

Y=AA*SK (L)



* %k
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Z=BB*SK (L)

CALL FUNCTION UTVAR TO COMPUTE NEW M(T)

"MU=UTVAR (FACT, Y, 2)

QMT=SQRT (MU)

" WK = ALFA*SIGMA*SIGMA/MU

TTA = SQRT(2.*WK + ALFA*ALFA)

VK = WK/TTA

SUM= 0.
J =0

J = J+1

IF(J.GT.N) GOTO 12

R = ABS(T-P(J))

VS=T+P(J)

PAl=-TTA*R

IF (PAl.LT.~-100.) A=0.
A=EXP (PAl)

PA2=-TTA* (UT+S)

IF (PA2.LT.-100.) B=0.
B=EXP (PA2)

PA3=-TTA* (UT-S)
IF(PA3.LT.-100.) C=0.

C= EXP (PA3)

ABC = A+ B + C

IF(ABC.EQ.0.) GOTO 10

SUM=SUM+DS (J) *ABC
GOTO 10

TO COMPUTE XT(S)

* % %
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14

20

21

22
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Cva = VALU(TTA,UT1,T)

TO COMPUTE HT(S)

'QCVA = CVA/QMT

ADVA = MU*VK* (1. - QCVA)
K=K+ 1

EXACT(K) = VK*SﬁM + ADVA + MU
PRINT14, T, EXACT(K)
FORMAT (' ', F6.0,F10.2)
T=T+1

GOTO 8

NT = 60

T™™(1) = 1.

DO 21 I = 1,N

T™™(I+1l) = TM(I) + l._
CONTINUE

DO 22 I = 1,NT

CAT(I)=TM(I)

CEX(I)=EXACT(I)

CONTINUE

*** NOW CALL SUBROUTINE AJOA TO DO THE PLOTTING ***

CALL AJOA (CAT,CEX,NT)

TERMINATE PLOTTING AND STOP **

CALL PLOTND

STOP

END
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SUBROUTINE AJOA(X, Y, N)

DIMENSION X (N), ¥ (N)

CALL SCALE(X,N,10.0,XMIN,DX,1)

CALL SCALE(Y,N,10.0,YMIN,DY,1)

CALL AXIS(0.,0., 'TIME', -4, 10., 0., XMIN, DX)
CALL AXIS(0., 0., 'EXACT', 5, 10., 90., YMIN, DY)
CALL LINE(X,Y,N,1)

CALL PLOT(12.0, 0., -3)

RETURN

END

FUNCTION UTVAR(X, Y, Z)

REAL X,Y,2

A = EXP(Y)
B= EXP (-2)
C=A+B
CASH = X*C

UTVAR = CASH
RETURN

END



-30.
-29.
-28.
~27.
-26.
25,
-24.
-23.
~22.
-21.
-20.
-19.
-18.
~17.
~16.
-15.
-14.
-13.
~12.
~11.

-10.
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10.
11.
12.
13.
14.
15.
16.
17.
18.

19.



20.
21.
22.
23
24.

25.

117

2.38

2.40

26.
27.
28.
29.

30.

2.15



