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Abstract

This thesis consists of two parts. The first part (chapters 1 and 2) consists of an
introduction to theory of Coxeter groups and Artin groups. This material, for
the most part, has been known for over thirty years, however, we do mention
some recent developments where appropriate. In the second part (chapters
3-5) we present some new results concerning Artin groups of finite-type. In
particular, we compute presentations for the commutator subgroups of the
irreducible finite-type Artin groups, generalizing the work of Gorin and Lin
[GL69] on the braid groups. Using these presentations we determine the local
indicability of the irreducible finite-type Artin groups (except for F which
at this time remains undetermined). We end with a discussion of the current
state of the right-orderability of the finite-type Artin groups.
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Chapter 0

Introductlon and Statement of Results

0.1 Introduction

A number of recent discoveries regarding the Artin braid gfoups ‘B, com-
plete a rather interesting story about the orderablhty of these groups These
discoveries were as follows.

In 1969, Gorin and Lin [GL69], by computing presentations for the com-
mutator subgroups B/, of the braid groups B, showed that 9} is a free group
of rank 2, B}, is the semidirect product of two free groups (each of rank 2), and
B;, is finitely generated and perfect for n > 5 It follows from these results
that 8., is locally indicable? if and only if n=2,3,and 4.

Neuwirth in 1974 [Neu?74], observed B, is not bi-orderable if n > 3. How-
ever, Patrick Dehornoy [Deh94] showed the braid groups are in fact right-
orderable for all 7. Furthermore, Dale Rolfsen and Jun Zhu [RZ98] proved ‘

_ (non-constructively®) that the subgroups P, of pure braids are bi-orderable.
So, by this point in time (1998), the orderability of the braid and pure braid
groups were known. What remained unknown was the relationship between
aright-ordering on %n and a bi- -ordering on P,. That is, does a right-ordering
on ‘B, restrict to a bi- ordermg on P,?
‘This questlon was recently answered by Rolfsen and Rhemtulla [RRO2]

1A group G is right-orderable if there ex1sts a strict total ordering < of its elements
which is right-invariant: g < h implies gk < hk forall g, h, k € G. If in additiong < h
implies kg < kh, the group is said to be orderable, or for emphasis, bi-orderable.

- 2A group G is locally indicable if for every nontrivial, finitely generated subgroup there

~ exists a nontrivial homomorphism into Z (called an indexing function).
3Rolfsen and Djun Kim construct a bi-ordering on P,, in [KR02].
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by determining the connection between local indicability and orderability. In
particular, they showed that since the braid groups B,, are not locally indi-
cable for n > 5 a right-ordering on B,, could not restrict to a bi-ordering on
Pt B ’

This thesis is concerned with investigating whether these results on the .
braid groups extend to all finite-type Artin groups. In particular, we are con-
cerned with determining the local indicability of the finite-type Artin groups.

0.2 OQutline and Statement of Results

In Chapter 1 we give a quick yet thorough introduction to the theory of Cox-
eter groups.

In Chapter 2 we mtroduce Artin groups, and develop their basic theory.
Most of these results have been known for over thirty years, however, we do
mention recent-developments where appropriate. '

The remaining chapters consist of recent and new results.

In Chapter 3 we follow the direction of Gorin and Lin and compute pre-
sentations of the commutator subgroups of the finite-type Artin groups. The
results here are new (aside from the particular case of the braid groups which -
were done, of course, by Gorin and Lin).

In Chapter 4 we use these presentations to extend the results of Gorinand
Lin on the braid groups to the class of finite-type Artin groups as follows.

Theorem 0.1 The following are finitely generated and perfect:
1. -A’An forn > 4,. |
2. .A’anor n > b, -
3. Ap forn> 5, |
4 Ap, forn=6,7,8,
Ay, forn =3,4.

Hence, the corresponding Artin groups are not locally indicable.

4see theorem 5.7.
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"On the other hand, we show the remaining finite-type Artin groups are
locally indicable (excluding the type Fy which at this time remains undeter-
mined) . ' o ‘

In Chapter 5 we discuss the orderability of the finite-type Artin groups.
‘We show that in order to determine the right-orderability (bi-orderability) of
the finite-type Artin groups it is sufficient to determine whether the positive
- Artin monoid is right¥orderable (bi-orderable). Furthermore, we show that
in order to prove all fin/ite-type Artin groups are right-orderable it suffices to
show the Artin group of type Ej is right-orderable.



Chapter 1

Basic Theory of Coxeter Groups

The first comprehensive treatment of finitelreflection groups was given by
H.S.M. Coxeter in 1934. In [Cox34] he completely classified the groups and
derived several of their properties, using mainly geometrical methods. He

later included a discussion of the groups in his book Regular Polytopes [Cox63].

Another discussion, somewhat more algebraic in nature, was given by E. Witt
in 1941 [Wit41]. A more general class of groups; the Coxeter groups, to which
finite reflection groups belong, has since been studiéd in N. Bourbaki’s chap-
ters on Lie Groups and Lie Algebras [Bou72], [Bou02]. Another discussion
appears in Humphrey’s book Reflection Groups and Coxeter Groups [Hum?72].

In this chapter we develop the theory of Coxeter groups with emphasis
on the “root system” (following Deodhar [Deo82]). The approach we take
here is precisely that of Humphreys [Hum?72].. All of the results found in
this chapter may be found in some form or another in Humpbhreys book ,
however, its inclusion here has primarily two purposes: (1) to make this thesis
self contained for the convience of the reader and (2) to draw a comparison
with the theory of Artin groups developed in chapter 2. The material has been
reorganized and emphasis has been put on the parts of the theory we wish to
compare with the theory of Artin groups.

1.1 Definition

Let S be a finite set. A Coxeter matrix over S is a matrix M = (mgy)s ses
indexed by the elements of S and satisfying '

‘(a) mss=lifS€S,
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(b) msy = mgs € {2,...,00}ifs,s' € Sand s # &'.

A Coxeter matrix M = (mss')s.ses is usually represented by its Coxeter graph
F. This is defined by the following data.

(a) S is the set of vertices of I".
(b) Two vertices s, s’ € S are joined by an edge if mss > 3.
(c) The edge joining two vertices s,s’ € S is labelled by mgg if Mmss' 2 4.

The Coxeter system of type r (or Myis the pair (W, S) where W is the group
havmg the presentation

W = (s €S (s8)™e = 1lif mgy < 00).

The cardinality |S| of S is called the rank of (W, S). The canonical image

of Sin W is a generating set which may conceivably be smaller than S, that is,

under the above relations two generators in S may be equal in W. In 1.3 we
show this does not happen. Furthermore, we show in theorem'1.14 that no
proper subset of S generates W. In the meantime, we may allow ourselves to
write s € W for the image of s € S, whenever this creates no real ambiguity

. in the arguments. We refer to W itself as a Coxeter group of typ'e I (or M),
.when the presentation is understood, and denote it by Wr. Although a good

part of the theory goes through for arbitrary S, we shall always assume that
S is finite. However, this does not mean that the Coxetgr group W is finite.
Here are a couple of examples.

Example 1.1 If mgy = 00 w(hen s # ' then W is the free product of |S| copies of

Z/27. This group is sometimes referred to as a universal Coxeter group.

Example 1.2 It is well known that the symmetric group on (n + 1)-letters is the
Coxeter group associated with the Coxeter graph;

[ . Se— o o o [ s ———— ]
't -2 <3 n-2 n—-1 7N

where vertex i correéponds to the transposition (i i + 1).

When a group is given in terms of generators and relations it is quite dif-

ficult to say anything-about the group — for example, is the group trivial or
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not? In our case it is quite easy to see that W has order at least 2. Con-
sider the map from S into {1}, defined by taking each element of S to 1.
Since this map takes each relation (ss')™s' to 1 it determines a homomor-
phism e : W — {£1} sending the image of each s € S to —1. The map € is
the generalization for an arbitrary Coxeter group of .the sign character of the
symmetric group. '

Theorem 1.3 There is a unique epimorphism ¢ : W — {£1} sending each gener-
_ ator s € S to —1. In particular, each s has order 2 in W.

Note that when |S| = 1, W is just a group of order 2, i.e. Z/2Z. When
IS| = 2,say S = {s, s'}, W is the dihedral group of order 2m;y < oc.

1.2 Le_ng_th Function

We saw that the generators s € S have order two in W, so each w # 1 in
W can be written as a word in the generators with no negative eXpohents:
w = s189--- s, for some s; (not necessarily distinct) in S. If r is as small as
possible we call it the length-of w, written [(w), and we call any expression
of w as a product of r elements of S a reduced expression. By convention

(1) = 0. Note that if 5152 - - - s, is a reduced expression then so are all initial
segments, i.e. s182---s; 4 < 7. Some basic properties of the length function ’
are included in the followmg lemma, whose proof is.straightforward.

Lemma 1.4 The length function [ has the followihg properties:

(L) . Uw)=Uw™),

(L2) l()_lzﬁweS

(13)  Lww') < Uw) + 1w,

(L4)  Uww') > U(w) - (v, |

(L5) - Hw)—-1<(ws) < l(w)+1,fors€ Sand we W.

Property (L5) tells us that the difference in the lengths of ws and w is at
most 1, the following theorem tells us that this difference is exactly 1.

Theorem 1.5 The homomorphism ¢ : W — {£1} of theorem 1.3 is given by
e(w) = (1)), Thus, l(ws) = l(w) £ 1, forall s € S and w € W. Similarly for
l(sw). L ' ’ '
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Proof. Letw € W have reduced expression s1s2 - - - sy, then

() = elsn)els) +-elor) = (-1 = (-1
~ Now e(‘ws) = e(w)e(s) = —e(w) implies l(ws) # l(w) L O

In our study of Coxeter groups we will often use induction on I(w) to
. prove theorems. It will therefore be essential to understand the precise re-
lationship between I(w) and l(ws) (or I(sw)). It is clear that if w € W has
a reduced expression ending in s € S then I(ws) = {(w) — 1, however it is
not clear at this point whether the converse is true: forw € W and s € S if
l(ws) = I(w) — 1 then w has a reduced expression ending'in s. This turns out
to be true, see section 1.5, but to prove this we need a way to represent W
concretely. 4

1.3 Geometric Representation of W

Since Coxeter groups are geherali'zations of. finite orthogonal reflection
groups it should be no surprise that we wish to view W as a “reflection

group” on some real vector-space V. It is too much to expect a faithful repre-.

sentation of W as a group generated by (orthogonal) reflections in a euclidean
space. However, we can get a reasonable substitute if we redefine a reflection
to be merely a linear transformation which fixes a hyperplane pointwise and '
sends some nonzero vector to its negative.
Define V' to be the real vector space with basis {a; : s € S} in one-to-one

correspondence with S. We i 1mpose a geometry on V in such a way that the

“angle” between a, and ay will be compatible with the given m,s. To do
this, we define a symmetric bilinear form B on V by requiring

Blas,}) = — cos ——

Mgg!

In the case of msy = oo the expression is interpreted to be —1. From this
definition we have B(as, as) = 1, while B(as, o)) < 0 for s # s'. Note that
B is not necessarily positive definite, i.e. there are Coxeter groups W for which
- some v € V does not satisfy B(v,v) > 0. Consider the following example.
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Example 1.6  For the universal Coxeter group of rank two,
W = (s1,82: 5, 53),

take v = ag, + as, € V. Itis easy tocheck B(as, + ag,, s, + as,) =0.
Moreover, the following example shows that B may not even be positive
semidefinite. '
Example 1.7 For the Coxeter gfoup
W = <'517 82,83 ¢ S%a 3%) Sgy (3132)4: (3133)4‘a (5233)4%' '

take v = s, + as, + as, € V. Since B(ay,, as;) = —cos§ < —% for i # j, then
B(v,v) < —1. ¢ '

For each s € S we can now define a reflecton o5 : V. — V by the rule:
gs(A) = A\ = 2B(as, Nas.

Clearly o5(as) = —as, while o, fixes H; ={\ eV : B(as, )\) = 0} pointwise.
In particular, we see that o has order 2 in GL(V).

Theorem 1.8 There is a unique homomorphism o : W — GL(V) sending sto o, =
and the group o(W) preserves the form B on V. Moreover, for each pair s,s' €S,
the order of ss’ in W is precisely mg .

For a proof of this theorem see Humphreys [Hum72]. To avoid cumber-
. some notation, we usually write w(a;) to denote o (w)(a;). The last statement
in the thedrem removes the possibility of s = s’ in W even though s # s in
S, as promised in section 1.1. We will show next that this representation is
~ indeed a faithful one. To do this we need to introduce the concept of a root
system. | .

\

1.4 Root System

For a Coxeter system (W, S) a root system & of W is a set of vectors in V
- satisfying the conditions:

- (R1) ®NRa = {ta}foralla e d
- (R2) s®=2@forallse S
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The elements of @ are called roots. We will only be concerned with the specific
root system givenby ® = {w(as) : w € W, s € S}. Itis clear thataxiom (R2) is
satisfied for this choice of @, to check axiom (R1) it suffices to note that since
W (more precisely o(W)) preserves the form B on V (theorem 1.8), @ is a set
of unit vectors. Note that ® = —® since if 8 = w(as) € & then — 8 = ws(as)
is also in ®. If « is any root then it can be expressed in the form |

o = ZCsaS (Cs € R).
ses '

If ¢ > O forall s € S thenwe cali'a a positive root and write o > 0. Similarly,
if ¢; < 0 for all s € S then we call o a negative root and write o < 0. We
write ®+ and ®~ for the respective sets of positive and negative roots. It

' may come as some surprise that these two sets exhaust @, this follows from

the following theorem. The proof of this theorem is nontrivial, we refer the
_ reader to Humphreys [Hum?72] for proof. The set of roots {c; : s € S} are
called simple roots . "

Theorem 1.9 Let w € Wand s € S. Then '
- l(ws) > l(w) iff w(as) > 0.
' Equivalently,

H(ws) < Hw) iff w(as) <O.

This tells us the precise criterion for I(ws) to be greater than [(w): w must
take o to a positive root. This is the key to all further combinatorial proper-
- ties of W relative to the generating set S.

Corollary 1.10 The representation o : W —s GL(V) is faithful.

Proof. Letw € Ker(o). If w # 1 then it has reduced expression 518« -+ Sy

where r > 1. Since l(ws,) = r — 1 < I(w) then w(as,) < 0 by theorem 1.9. But
w(as,) = as, > 0, which is a contradiction. . a

Another consequence of Theorem 1.9 is that the length of w € W is com-
pletely determined by how it permutes ®. For w € W let II(w) denote the set
of positive roots sent to negative roots by w, i.e I(w) = {a € &% : w(a) < 0}.
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Theorem 1.11 (a) If s € S, then s sends as'to its niegative, but permutes the re-
maining positive roots. That is, II(s) = {o}.
(b) Forallw € W, l(w) = [II(w)|.

This theorem provides valuable information about the internal structure
of W, see section 1.5. We refer the reader to Humphreys [Hum?2] for the
straightforward proof. ‘ ‘

If W is infinite the length function takes on arbitrafily large values (recall
we are assuming S is finite). It follows from theorem 1.11 that @ is infinite.
One the other hand, if W is finite (® is also finite by definition) it contains a
unique element of maximal length . Indeed; clearly W must contain at least
one element of maximal length, say wo. For s € S, {(wos) < l[{wp) s0 wo(as) <
0. Thus, wo sends all positive roots to negative roots, i.e. II(wp) = ®;. Sup-
pose that there is another element w; € W of maximal length, then w; lisalso
of maximal length and so II(w; ') = ®*. It follows that wowi ' (®F) = @+, so
l(wowy 1) =0. Therefore wo = w so we have uniqueness. Since wg and wg 1
have the same length uniqueness of the maximal element implies wo = wg ',
moreover it follows from theorem 1.11 that [(wg) = |®7].

1.5 Strong Exchange Condition

We are now in a position to prove some key facts about reduced expressions -
in W, which is at the heart of what it means to be a Coxeter group.

Theorem 1.12 (Exchange Condition) Let w = s1 - -+ s, (s; € S), not necessarily
a reduced expression. Suppose a reflection s € S satisfies l(ws) < l(w). Then there
is an index i for which ws = s1--- 8 - - - s, (omiting s;). If thé expression for w is
reduced, then i is unique. '

. There is a stronger version of this theorem, called the Strong Exchange
Condition in which the simple reflection s can be replaced by any element
w € W which acts on V as a reflection, in the sense that there exists a unit
vector a € V for which w(A\) = A — 2B(A, a)a. It turns out that the vector
a must be a root for w to act on V' in this way. On the other hand, to each
positive root & € @ thereis a w € W which acts on V as a reflection along
. Indeed, take w’ € W, s € S such that o = w/(a;). Then w = w's(w’) 1 is
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such an element. Thus, there is a one-to-one correspondence between the set
of positive roots ®* and the set of reflections in W. For a complete discussion
' see Humphreys (([Hum?72] sec. 5.7,5.8). -

Before we prove theorem 1.12 we need to make the followmg observa-

tion. If 5,5' € S and w € W satisfy oy = w(as) then wsw™! = s'. Indeed,
wsw™(A) = w(w () — 2B(w‘1( \); @s)as) and since B is W—mvanant the
~ result follows. . . .
- Proof. Since l(ws) < l(w) then w(as) < 0. Because o > 0 there exists
an index ¢ < r for which s;4; - s;(as) > 0 but s;841 - - sr(as) < 0. From
theorem 1.11 we have s;;1--- s (as) - a,, and by the above observation
Si41° 8488y Si+1 = 85, from which it follows ws = 53+ &; - C 8 .

In case I(w) = r consider what would happen if there were two distinct
indices i < j such that ws = s1-+§---s, = 81 ---§;---s,. After cancelling,
this vgives Si41° " Sy
write w = s -+ 8-+ &5 -+ s,. This contradicts [(w) = r. |

Sj---8j-1, OF S;- -8 = Si11- --s;_1, allowing us to

Corollary 1.13 (a) (Deletion Condition) Suppose w ; s1-- s (s € S), with
l(w) < r. Then there exists i < j such that w =sy---5; -+ 5; - 5. ]
(b) If w=s1---5r,(5; € S), then a reduced expression for w may be obtamed by
omitting on éven number of s;.

Proof. (a) There exists an index j such that [(w sj) < l{w') where w' =
s1---sj-1. Applying the exchange condition glves w's; = s19--8 851,
allowing us to write w = w's; -+ - sp = s1---5; -5 5. _ ]

1.6 ' Parabolic Subgroups

In this section we show that for a Coxeter system (W, .S) the subgroup of W

- generated by a subset of S is itself a Coxeter system with the obvious Coxeter
graph. '

' Let (W S)be a Coxeter system with values mgy for s, s’ € S. For a subset
I ¢ S we define W7 to.be the subgroup Qf 1% generated by I. At the extremes,
We = 1 and Wg = W. We call the subgrdup Wi a parabolic subgroup .
(More generally, we refer to any conjugate of such a subgroup as a parabolic
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subgroup.) Let /; denote the length function on W; in'terms of the generatoré
1.

Theorem 1.14 (a) For each subset I of S, the pair (Wy, I) is a Coxeter system with

the given values mg. ' .

() Let I C S. Ifw = s1---8; (s; € S) is a reduced expression, and w € Wy, then
all s; € I. In particular, the function [ agrees with the length function l; on Wy, and

wWins=1 ' ' A

(c) The assignment I — W defines a lattice isomorphism between the collection of
" subsets of S and the collection of subgroups Wi of W.

(d) S is a minimal generating set for W.

Proof. For (a). The set I and the corresponding values my give rise to an
abstractly defined Coxeter group W, to which our previous results apply. In
particular, Wi has a geometric representation of its own. This can obviously
be identified with the action of the group generated by all o, (s € I) on the
. subspace V; of V spanned by all s (s € 1), since the bilinear form B restricted
to V; agrees with the form By defined by W,. The group generated by these
0 is just the restriction to V; of the group o(W). On the other hand, W maps -
canonically onto W7, yielding a commutative triangle: ‘ | '

W — GL(V)

NS

Wr -

Since the map W; — GL(V1) is injective by corollary 1.10, we conclude
that Wy is isomorphic to W and is therefore itself a Coxeter group. '

VA For (b), use induction on !(w), noting that /(1) = 0 = I;(1). Suppose w # 1
and let s = s,. Since w € WI it also has a reduced expression w =ty --- tgs
‘where t; € I. Now, , ‘ ' ' ;

q
w(as) = as + Zciati (ci € R).

i=1 -

| According to theorem 1.9 I(ws) < [(w) implies w(abs) < 0, so we must have
_ t; = s for some i, forcing s € I. Now, ws = s1---s,—1 € Wy, and the-expres-
sion is reduced. The result follows by induction. '




!

Chapter 1." Basic Theory of Coxeter Groups o 13

To prqvé (c), suppose_ ILJcS IftWr C Wy, then, by (b), I = Wy N
Sc Wy;nS =JThusI C J (resp. I = J)if and only if W; C W (resp.
Wi = Wjy). Itis clear that Wy is the subgroup generated by Wy and W7.
On the other hand, (b) implies that Winy; = Wy N W;. This yields the desired.
lattice iéomorphism. To prove (d), suppose that a subset I of S generates W
thenW1=W:WS,soby(c)I=S. , O

If T is the Coxeter graph associated with the Coxeter system (W, S) then
theorem 1.14 tells us that the Coxeter graph associated with (Wy,I) is pre-
cisely I'y: the subgraph induced by I, that is, the subgraph of I' with vertex
set I and all edges (from I') whose endpoints are in I. Another way to view
~ this result is that every induced subgraph of I' is a Coxeter graph for some
(parabolic) subgroup of W'.- :

We say that the Coxeter system (W, S) is irreducible 1f the Coxeter graph
is connected. In general, let I'y, ..., I'; be the connected components of I',
and let I; be the corresponding sets.of generators from S, i.e. the verticies
of I';. Thusif s € I; and s’ € I;, we have m,y = 2 and therefore ss' = §'s.
The following theorem shows that the study of Coxeter groups can be largely "
reduced to the case when I' is connected.

Theorem 1.15 Let (W, S) have Coxeter graph I', with connected components Iy,
Dy, and let In, . .., I be the corresponding subsets of S. Then

Wﬁwll@"'@WIT,

and each Coxeter system (W7y;, I;) is irreducible. .

Proof. Since the elements of I; commute with the elements of I;, i # j, it is
* clear that the indicated parabolic subgroups centralize each other, hence that
each is normal in W. Moreover, the product of these subgroups contains S
and therefore must be all of W. According to theorem 1.14(c), for each' 1 <
i <r—1,(W,Wi,...W;,)NWy,,, = {1}. Itfollows that W = W, @---@ W],
(for example, see {Gal98]). . ' N » |
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1.7 The Word and Conjugacy Problem

Let a group G be given in terms of generators and relations.

(i) For an arbitrary word w in the generators, decide in a finite number of
steps whether w defines the identity element of G, or not.

(ii) For two arbltrary words w;, we in the generators, decide in a f1n1te
number of steps, whether w; and w; define conjugate elements of G, or not. -

The problems (i) and (ii) are called the word problem and the conjugacy
problem, respectively, for the presentation defining G. It is shown in [Nov56],
[Boo55] that there exist presentations of groups in which the word problem is
not solvable, and there exist presentations of groups in which the conjugacy
problem is not solvable [Nov54].

A very nice solution to the word problem for Coxeter groups was found
by Tits [Tit69]. It allows one to transform an arbitrary. product of generators '
from S into a reduced expression by making only the most obvious types of
modifications coming from the defining relations. Here is a brief description. -

Let F' be a free group on a set ¥ where ¥ is in bijection with S, and let
7 : F — W be the resulting epimorphism. The monoid F* generated by &
already maps onto W. If w € F't is a product of various elements ¢ € ¥, we -
can define {(w) to be the number of factors involved. If m = my; for s,t € S,
the product of m factors of o and 7; o170 ---, maps to the same element of
W as the product of m factors 7a7---. Replacement of one of them by the
other inside a-given w € F* is called an elementary simplification of the
first kind; it leaves the length undisturbed. A second kind of elementary
simplification reduces length, by omitting a consecutive pair oo. Write $(w)
for the set of all elements of F'* obtainable from w by a sequence of elementary
. simplifications. Since no new elements of ¥ are introduced and length does
not increase at each step, it is clear that Y(w) is finite. It is also effectively
computable. Clearly the image of ¥(w) under 7 is a single element of W.

~ Theorem 1.16 Let w,w' € F*t. Then n(w) = m(w') iff I( ) W) # 0 In
particular, m(w) = 1 iff 1 € L(w). .

One direction is obvious. To go the other way, Tits assumes the contrary
and analyses a minimal counterexample (in terms of lexicographic ordering
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of pairs (w,w’)): both elements must have the same length and ¥(w) consists
of elements of equal length, etc., leading eventually to a contradiction.

Much less seems to be known about the conjugacy problem for Coxeter
groups. Appel and Schupp [AS83] have given a solution for extra large Cox-
eter groups (those for wh1ch all mss > 4 when s #.5'.)

1.8 Finite Coxeter Groups

In this section we restrict our attention to finite Coxeter groups. We will clas-
sify all finite irreducible Coxeter groups in terms of their Coxeter graphs, in
fact, we will give a complete list of all Coxeter graphs corresponding to finite
irreducible Coxeter groups. According to theorem 1.15 every finite Coxeter
group is isomorphic to a direct product of groups from this list.

‘Recall in 1.3 the blhnear form B was not necessarily positive defmlte the
next theorem tells us that it is precisly when W is finite.

Theorem 1.17 The following conditions on the Coxeter group W are equivalent:
(a) W is finite. -
(b) The bilinear form B is positive definite. -

The proof of this theorem is rather involved and so we refer the reader to
Humphreys [Hum?72].

If (W, S) is a Coxeter system with Coxeter graph I’ (resp Coxeter matrix
M) then we say that I (resp. M) is of finite-type if W is finite. Also, if the
bilinear form B is positive definite then we call I" positive definite as well.
Theorem 1.17 tells us that I' is positive definite if and only if it is of finite-
type. Therefore, to classify the irreducible, finite Coxeter groups we just need
to determine all connected, positive definite Coxeter graphs. Classification -
of all connected positive definite Coxeter graphs turns out to be relaﬁvely N
straightforward. For a wonderful discussion and solution of the problem see
Humphreys ([Hum?72] sec. 2.3 — 2.7). Itis shown in [Hum?72] that the graphs
* in figure 1.1 are precisely all the connected positive definite Coxeter graphs.

The letter beside each of the graphs in figure 1.1 is called the type of the
Coxeter graph, and the subscript denotes the number of vertices. Recall ex-
ample 1.2 shows the symmetric group on (n+1)-letters is a Coxeter group of
type Ap. '
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Ay (n21)  O——p—o cee - S——
: : <4
Bn (7’L>2) [ . aa—— e o o G )
D, (n>4) e—e—e .- -—~<:
e
Eg ® ® & g
)
Fr ® > - ® ®
® }
Eg ® *>—9 ® ® ® °
4
Fy ® e <
5
H; *r——p—-—=9 .
£
Hy ® O ®

Figure 1.1: All the connected positive definite Coxeter graphs
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~ Wrinjects into Wrv
r | I
An Am (form > n),
B, (form>n+1),
D,, (form .2 n + 2), . :
By (forn<7), ,
- ete. '
By B, (forn >2),
Fy,
Lr{4)
B3 B, (forn > 3),
. _ Fy
Eg Er, Eg
E7 Eg
Hj H,
Ix(5) | Hs, H,

~ Table 1.1: Inclusions among Coxeter gfoups K e

The remarks after theorem 1.14 imply that if T is an induced subgraphof . . -
I then the corresponding Coxeter group Wr injects into Wyv. Table 1.1 lists
some such inclusions for the Coxeter graphs in figure 1.1.




Chapter 2
Basic Theory of Artin Groups

,/

The braid groups, which are the Artin groups of type A,, were first intro-
duced by Artin in [Art25], he further developed the theory in [Art47a,b] and
[Art50]. Since their introduction the braid groups have gone through a seri-
ous line of investigation. One of the most influential papers on the subject was
* that of Garside [Gar69], in which he solved the word and conjugation prob-
lems. Later, the connection of the braid groups with the fundamental group
of a particular complex hyperplane arrangement lead to a natural general-
ization: the Artin groups. In this chapter we introduce the Artin groups and-
discuss some of their basic theory. We follow closely the work of Brieskorn
and Saito [BS72], which is a-generalization of the work of Garside.

2.1 Definition

Let M be a Coxeter matrix over S as described in section 1.1, and let I be the
corresponding Coxeter graph. Fix a set ¥ in one-to-one correspondence with °
S. In the following we will often consider words beginning with ¢ € ¥ and
- in which only letters a and b occur, such a word of length ¢ is denoted (ab)? .
so that ‘ ‘

(ab)? = aba. . .,
: N —
- qfactors

The Artin system of type I' (or M) is the pair (A, ¥) where A is the group
having presentation ’

A= (a €% : (ab)y™ = (ba)™b if mgy < 00). -
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- The group A is called the Artin group of type I' (or M), and is sometimes
denoted by Ar. So, similar to Coxeter systems, an Artin system is an Artin
group with a prescribed set of generators

There is a natural map v : Ar — Wr sending generator a; € T to the cor-
responding generator s; € S. This map is indeed a homomorphism since the
equation (s;s;)"™7 = (s;s;)™ follows from s} = 1, s7 = 1 and (s;5;)™% = 1.
Since v is clearly surjective it follows that the Coxeter group Wr is a quotient
of the Artin group Ar. The kernel of v is called the pure Artin group, gener-
alizing the definition of the pure braid group. From the observations in section
1.1 it-follows that ¥ is a minimal generating set for .Ar. The homomorphism
v has a natural set section 7 : Wy — Ar defined as follows. Let w € W. We
choose any reduced expression w = s - - - s, of w and we set

T(w) =-a1---ar € Ar.

By Tits” solution to the word problem for Coxeter groups (sec. 1.7), the def1- :
nition of 7(w) does not depend on the ch01ce of the reduced expression of w.
Note that 7 is not a homomorphism.

The Artin group of a finite-type Coxeter graph is called an Artin group of
finite-type . In other words, Ar is of finite-type if and only if the correspond-
" ing Coxeter group Wr is finite. An Artin group Ar is called irreducible if
the Coxeter graph I is connected. In particular, the Artin groups correspond-
ing to the graphs in figure 1.1 are irreducible and of finite- type These Artin
groups are our main interest in the remaining chapters.

2.2 Positive Artin Monoid .

We now introduce the positive Artin monoid associated to the Artin system
(A, X). All of the basic properties of Artin groups will follow from the study
of the positive Artin monoid.

Let Fy; be the free group generated by £ and Fyf the free monord generated
by X inside Fx. We call the elements of Fg words and the elements of F+
positive words. The positive words have unique representations as products
of elements of  and the number of factors is the length | of a positive word.
In the following we drop the subscript £ when it is clear from the context. An
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elementary transformation of positive words is a transformation of the form
U{ab)™e*V — U(ba)™*V

~ where U,V € F* and a,b € 2. A positive transformation of length t from a
positive word U to a positive word V' is a composition of ¢ elementary trans-
formations that begins with U and ends at V. Two words are positive equiv-
alent if there is a positive transformation that takes one into the other. We
indicate positive equivalence of U and V by U =, V. Note, it follows from
the definition that positive equivalent words have the same length. We use =

‘to denote equality in the group and = to express words which are equivalent
letter by letter. ' :

The monoid of positive equlvalence classes of positive words relatlve to

T (or M) is called the positive Artin monoid (or just the Artin monoid) and
_is denoted Ajf. The natural map A — A is a homomorphism. We will

see that for I" of finite-type this map is injective. Recently, Paris [Par01] has

shown that for érbitrary Artin groups this map is injective.

2.3 Reduction Property

The main result in this section concerns the positive Artin monoid and it ac-
counts for most of the results we'will encounter in this chapter. The statement
is as follow. v

Lemma 2.1 (Reduction Property) For each Coxeter graph we have the following
rule: If X and Y are positive words and a and b are letters such that a X =, bY then
Mg 1S ﬁmte and there exists a posztzve word U such that

X =p (ba)™*1U and Y =, (ab)™ U

In other words, if aX =, bY then there is a positive transformatlon of the
form

aX — - (ab)m“”U elemn. (b'a)m“”U — s — BY

taking a.X to bY.
The proof of this is long and tedlous we refer the reader to [BS72] for
proof.
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An analogous statement holds for reduction on the right side. We see this
as follows. For each positive word '

U=ay - aj
define the positive word rev U by

revU = a;, -+ a;,,

called the reverse or reversal of U. Clearly U=, VimpliesrevU =, revV -

by the symmetry in the relatlons and the definition of elementary transforma-
tion. It is clear that the application of rev to the words in lemma 2.1 gives the
right-hand analog.’

It follows from the reduction propery that the posmve Artin monoid is left
and rlght cancellative.

Theorem 2.2 If U V and X,Y are posztwe words with UXV =p UYV then
X =Y. :

Proof. It suffices to show that left cancellativity holds since right cancellativ-
ity follows by applying the reversal map rev . For U a word of length 1, say
a, the reduction property implies that if aX =, aY then a word Z exists such
that

X =, (aa)™"'Z=2Z and Y =, (aa)™="1Z = 2.
Thus X =, Y. The result follows by induction on the length of U. a
Let X,Y and Z be positve words. We say X divides Z (on the left) if

Z=XY (if workingin F'"),
Z =, XY (if working in A™),

" and write X |Z (interpreted in the context of F'* or A™).

The term reduction property, which comes from [BS72], is appropriate as
this property (in conjunction with left cancellativity) allows the problem of
whether a letter divides a given word to be reduced to the same problem for
a word of shorter length. In the following section we describe a method to
* determine when a given word is divisible by a given generator.
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2.4 Divisibility Theory

In this section we present an algorithm used to decide whether a given let-
ter divides a positive word (in .A™), and to determine the smallest common
multiple of a letter and a word if it exists. '

2.4.1 Chains

Let a € X be a letter. ' The simplest positive words which are not multiples
of a are clearly those in which a does not appear, since a letter appearing in
a word must appear in all positive equivalent words by the definition of ele-
mentary transformation and the nature of the defining relations. Further, the
words of the form (ba)? with ¢ < myy, are also not divisible by a. This follows
from the reduction property. Of course many other quite simple words have
this property, for example concatenations of the previous types of words in

. specific order, called a-chains, which we will now define.

Let C be a non-empty word and let a and b be letters. We say C'is a

‘primitive a-chain with sourcé a and target a if mq. = 2 for all letters ¢ in C.

We call C' an elementary a-chain if C = (ba)? for some g < mgp. The source
is a and the target is b if mq; even and a if mg, odd. An a-chain is a product

- C = Cy---Cy where for each i = 1,...,k, C; is a primitive or elementary

a;-chain for some a; € ¥, such thata; = a and the target of C; is the source of
Cit1. This may be expressed as: '

' Ch Co’ Cr-1 Ch
a=a] as asg--.- ag > Ap+1 = b,

The source of C is a and the target of C is the target of Cy. If this target is b
then we say: C is a chain from a to b.

-Examplez 3 LetX = {a,b,¢,d} and M be deﬁned by mac = mad = Mg = 2,

Mgh = Mpe = 3, Med = 4.

e ¢, d, cd’c are primitive a-chains with target a,

e b, ba are elementary a-chains with targets a and b, respectively

e a,ab, c,chare elementary b-chains with targets b, a, b, ¢, respectively,
The word -

ab cd bc ab dec ba
SR

Ci C» C3 Cs Cs G
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is a d-chain with target b, since C1 is a primitive d-chain with target d, Cs is an
elementary d-chain with target ¢, Cs is an elementry c-chain with target b, Cy is an
" elementary b-chain with target a, Cs is a primitive a-chain with target a, and finally
Cé is a simple a-chain with target b. The chain diagram for this example is:

C. Cs C
LI 5 a 6 b.

d -, q 2, 9D,y

As the example 2.3 indicates there is a unique decomposition of a given a-
chain into primitive and elementary factors if one demands that the primitive
factors are a large as possible. The number of elementary factors is the length
of the chain.

Remark. If C is a chain from a to b then rev C is a chain from b to a.

We have already noted that primitive and elernentary a-chains are not

divisible by a, the next lemma shows that this is also the case for a-chains.

Lemma24 Let C = Cy---Cy be a chain from a to b (where C; is a primitive or
elementary chain from a; t0 aj41 fori = 1,..., k) and D is a positive word such that
a divides CD. Then b divides D, and in particular a does not divide C.

Proof. We prove this by induction on k. Suppose k = 1.

Suppose C = z1 - - - Ty is primitive, so mqg, = 2 for all <. Then'z; - - -z, D
=p aV for some positive word V. By the reduction property there exists a
-word U such that zo - - - 2, D =, (az1)""*"! -1y = al. Continuing in thJS way
* we get that a divides D, where a is the target of C.
Supppose C = (ba)? is elementary, where my, > 2 and 0 < ¢ < mgp. Then

TN

‘ ba)iD =, aV
P

for some positive word V. By the reduction pfoperty, (ab)™' D=, (ab)m‘ivb_lU o
for some positive word U. So by cancellation, theorem 2.2,

J

- {(ab)mdb‘qU- if ¢ is odd,
D=, :

(ba)™*"IU  if ¢ is even.

so D is divisible by a if ¢ is odd, and b if g is even, which in each case is the
target of C. :

This begins the induction. Suppose now &k > 1. By. the inductive hypothe-
sis ai, divides C. D, and by the base case, b = aj41 divides D.

The last claim follows by taking D equal to the empty word. g
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Corollary 2.5 If C is an a-chain such that o divides Cb, then b is the target of C:

242 Chain Operators K,

An arbitrary word will in general not be an a-chain, for any particular a, and -
so we need to know firstly whether, given an arbitrary word U , there exists
an a-chain C which is positive equivlent to U, and secondly how to calculate
it and its target. We define operators K, for each generator a which take as
input a word U and output either »

e a word beginning with a if U is divisible by a, or B

e an a-chain equivalent to U if U is not divisible by a.

K, is called a chain operator (the K stands for Kette, German for chain).

To state the precise definition of K,, we need some preliminary definitions
and notation. We call a primitive a-chain of length one or an elementary a-
chain a-simple a-chain, that is, a simple a-chain is a word of the form (ba)?
where ¢ < mg (where' map = 2 is allowed). For a simple a-chain of the form
C = (ba)™* ™! we call C imminent and let C* denote (ab)™?*, so C* =, Cc
where c is the target of C. If D is any positive nonempty word denote by D~
- the word obtained by deleting the first letter of D. For every letter a € ¥, we -

define a function : '

K,:Ft — F*

| recursively. Let U be a word. If U is empty, begins with a or is a simple
a-chain then ~

Ka(U) = U.

Otherwise, write U = C, D, where C,; and D, are non—emptywords, and C,
is the largest prefix of W which is a simple a-chain, with target b, say. The rest
of the definition of K,(U) is recursive on the lengths of U and D:

| CoKy(Dy) if Ky(D,) does not begin with b; or
Ko (U) := { CFKW(Da)™ if C, imminent and Kyy(D,) begins with b; or
K, (CobKp(D,)™) otherwise ‘

¥

| Observe that K, a(U) is calculable.

-
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Example 2.6 Computing K,(U). Let $ and M be as deﬁned in example 2.3. First
- we will compute K, of the word U = bebabdc (notice U is not an a-chain). By the ,
recursive nature of the definition of K, we first need to decompose U as follows:

U= b ¢ - ba -bdc
: R N s i =g
Cy Ca Cs3 D

where Cy is an a-chain with target a, Cs is an a-chain with target a, and Cs is an -
a-chain with target b. Since D begins with the letter b then Ky(D) = D. Since C3 is

“imminent, K,(Cs - D) = C§ D™ = abadc. Since Cy is imminent, and Kq(C3 - D) -
begins with the letter a, :

K, (Csy : CsD) =~ C;_ - Ko(Cs - D)~

= ac- badc.
‘Now K,(C2C3D) begins with a but Ci is not imminent, so

Ka(U) = Ka(Cl . CQC3D)
= Ko(Ci - acbadc) since K, (C2C3D) = acbadc
= Kg(ba - cbadc) by definition of K,.

- Applying the definition of K, to the word bachade ]ust returns the same word ( try
it!). Therefore, :

K,(U) = bacbadc,

which can be seen to be an a-chain posztzve equzvalent to U, with target d. _
For our second example we will compute K, of the word W = bacbacab. Agam
we need to deconpose W as follows:

W = _ba - cb‘~ a - cab
—

Ci Cy C3 D,

where Cy is an a-chain with target b, Cy is an b-chain with target c, and Cs is
a c-chain with target c.- Since D begins with the letter ¢ then K. (D) = D, so
K (C3D) = Cf D™ = ca - ab. Since Cy is imminent, K.(Cs - C’3D) = beb - aab.
Finally, since 01 is imminent, K, (W) = aba - cbaab
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Lemma 2.7 Let U be positive and a € . Then |

(a) K,(U)=p U and K, (U ) is either empty, begins with a or is an a-chain,

(b) K,(U) = U ifand only if U is empty, begins with a, or is an a-chain,
"(c) adivides U if and only if K,(U) begins with a.’ - '

Proof, (a)If U is empty, begins with a or is a simple a-chain then K,(U) = U
and we are done. Otherwise, write U = C, D, where C, and D, arenonempty
and C,, is the longest prefix of U which is.a simple a-chain. Let ¢ denote the
target of Ca. Since I(Ds) < I(U) then by induction on length, K.(D) =, D,
and K (D) is either a c-chain or begins with ¢. If K;(D) is a c-chain then
it cannot begin with ¢ (lemma 2.4), so K,(U) = CoK.(Ds) which is an a-
chain, and moreover Ko(U) =, C,D, = U. Otherwise K (D) begins with
c. Considering first when C, is imminent, we have K,(U) = C} K,(D,),
which begins with a, and moreover, '

Ka(U) =p C‘ICKC(DG)‘ = CoKe(D) =p CaDe = U.

Otherwise se have K.(D,) =p Dq, Kc(D,) begins with c and Cj, is not immi-
nent; so ~ ' : ' '

| Ko(U) = Ko(CacKe(Da)™).
Now Cyc is a simple d-chain of length greater than the length of C, so by
another induction, K,(CocKy(D,)) begins with a or is an a-chain, and
K, (CocKo(Dg)7) .‘=p CacKo(Dg)™ = CoKo(Dy) =p CaDe =U. \

(b) The direction (=) follows from (a). To see the other direction notice the
result is clear if U is empty, begins with a or is a simple a-chain. Suppose U is
a nonempty a-chain, so U = C, D, where C, is a simple a-chain with target ¢,
say and D, is a c-chain. By induction since {(D,) < I{(U),

' K.(D,) = D,.

Since D, is a c-chain it does not begin with the letter ¢ thus by definition of -
Ko,

Ko(U) = CoKe(Dy) = CoDy = U.

(c) This follows from (a) and lemma24 O
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243 Divigion Algorithm

Let U and V be words. We present an algorithm to determine whether U
divides V' (in Ai’:) and in the case U divides V it returns the cofactor, i.e. the
- word X such that V =, UX. This can be done relatively easily using the’
chain operaforé K,. o

Write U = aq - -a,,;. If U is to divide V then certainly a; must divide
V, this can be determined by calculating K,, (V) and checking if a; is the
first letter. If a; is not the first letter then a;, and hence U, cannot divide
V. Otherwise, we have K, (V) = a1 K, (V)™. If U = a; - - - a, were to divide
V =p Ko, (V) = a1K,, (V) then it is necessary for as to divide K, (V) ™. This
can be determined by. checking the first letter of K,,(K,,(V)™). Continuing
this way we either get that some a; does not divide - '

Ko, (Kay_, - Koy (Kay (V)7) ™ )7)

in which case U does not divide V, or a; divides the above word for each
1<i<k, in which case U divides V and the cofactor X is

Koy (Ko, -+ Koy (Kay (V)7) ™))"

We reformulate the above observations into the following definition. -Let
U and V be words. If U is empty then define (V : U) :=.V. Otherwise
write U = Wa for some word W and some letter a. We make the recursive \
definition:

, 00 - if (VW) = oo, orif
v:uy=¢ . K,(V : W) does not begin with a; or
K,V :W)~ otherwise.

Some remarks on the definition. ¢

1. By induction of the length of U, if X is any word then (UX : U) = X.
2. Since K,(X) is calculable for any word X, then (V : U) is also calcula-
ble, for any pair of words V and U. Thus the following result gives a solution
to the division problem in A}

\

Lemma 2.8 The word U divides V precisely when (V : U ) # oo, in which case

V=, UV:U)
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Proof. If U is empty then the result clearly holds. so we may write U = Wa
for some word W and some letter a. Suppose U divides V, so there is a word
X such that UX = WaX =, V. By induction (V : W) #occand V =, W(V :
W). By cancellation, e X =, (V : W), s0 a divides (V : W). By lemma 2.7,
KoV W) begins with a,so (V :U) #ocoand (V : U) =, X ' :
On the other hand, suppose (V : U) # oo. Then (V : W) # oo, and in fact
K, (V : W) has to begin with a. By induction V =, W(V : W), so '

V= WV W) =, WK,(V : W) =, WaKo(V : W)~ =, U(V : U)
by the definitic')n of (V:U ). o O

Since we have a solution to the division problem in Af we get a solution
 to the word problem in A for free. : '

Corollary 2.9 Two positive words U and V are positive equzvalent preczsely when
(V: U ) is the empty word.

In section 2.6 we will show how to use this to solve the word problem in
finite-type Artin groups Ar.

2.4.4 Common Multiples and Divisors

Given a set of words V; € Al where i runs over some indexing set I ,acom-
mon multiple of {V; : i € I} isa word U € A} such that every V; divides U
| (on the left). A least common multiple is a common multiple which divides
all other common multiples. If U and U’ are both least common multiples
then they divide one énother, it follows by cancellativity and the fact that
equivalent words have the same length that U =, U’. Thus, when a common
multiple exists, it is unique. By a common divisor of {V; : i € I} we mean a
word W which divides every V;. A greatest common divisor of {V; : i € I}
is a common divisor into which all other common divisors divide. Similarly,
greafest common divisors, when they exist, are unique. ' :
With the help of the chain operators K, defined in 2.4.2 we get a simple
algorithm for producmg a common multiple of a letter a and a word U, if one
exists. :
The essence of the method lies in lemma 2.4 which can be rewritten to say:
If C is an a-chain to b, and U is a common multiple of a and C then U is a common
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multiple of a and Cb.

Given an arbitrary word X, to calculate a common multlple with a generator
a, we begin by applying K, to X. If K,(X) begins with a then we are done (X
is divisible by a and so itself is a common multiple of a and X). Otherwise,
K.(X) is an a-chain, we determine its target b, and then concatenate it to
get Ko(X)b = X'. If Ko(X') begins with a then we may étop; otherwise we
repeat the process. If a common multiple exists, then the process will hauilt,
producing a word which is in fact the least common multiple of a and X.

Let a be a letter and W a word. The a-sequence of W is a sequence
Wg, W, ... over Ft defined as follows. Set W§ := K, (W), so by lemma 2.7,
either W§ is empty, an a- -chain or begins w1th a. Then for ¢ > 1, define recur-
~sively

' a A if W2 , is empty;
W= qWe, if W | begins with a; |
K,(Wg2 b) if W2, is an a-chain tob.

By lemma 2.7, W¢ is either an a-chain of begins with ¢ (or if i = 0, W{* may be
empty). The a-sequence converges to a word W} precisely when Wk begins

with a. The following definition is intended to capture a notion of the limit of

the a-sequence of W.

Lia,W) = {W’? HWEE Wi sor

00 otherwise.
The following example illustrates the way in which L(a, W) = oo

Example 2.10 Let & = {a,b,c} and M, the Coxeter matrix, be defined by mqy =
Mae = Mpe = 3. (Note, by the results in 1.8 Ay ‘is not of finite type.) Consider the
word W = bc. Observe that for any k > 1, Uy = (bacbac)® is an a-chain with target
a. The first member of the a- sequence of Wis W§ = bc = Upbe, and then for all
k>0,

W =Ugbe, Wg,c+1 =Ukbca, . Weip = Ukbaca,
W3 = Uxbacab, ~ Wg, 4 = Uibacbab, ~ W5 = Urbacbabc,

and so W, o = Ugbacbacbe = Uk+1bc and so on. Thus, the a-sequence never
converges to a word, and so L(a, bc) = oo. v

-~
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~ The following result characterizes the situation when L (a, W) # 0.

Lemma 2.11 L(a, W) # oo precisely when a and W have a common mitltiple,, in
which case L{a, W) is a least common multiple of a and W begins with a.

Proof. If W is empty then W¢ = W and W2 = a for all i > 1. Thus |
L{a,W) =a, and so the result holds tr1v1ally So we may that suppose W is
nonempty

Suppose that ¢ and W have a common multiple M. By lemma 2.7, we
know that W§ = K,(W) =, W and so divides M. Since. W is nonempty, W§
either begins with a or is an a-chain, is a multiple of W and divides M. We
will show that the same is true of all W7, using induction on i. Suppose that,
for a given i > 0, W} is a multiple of W and divides M. If W? begins with q,
then W;l = W for all j > 4, and so we are done. Otherwise, W/ is an a-chain
to b and, by lemma 2.4, M is a common multiple of W2b =, K,(W?b) = W1,
and a. Since W divides W then W must also divide W, ;. Thus we have:
shown that when a and W have a common multiple, every element of the
a-sequence of W is a multiple of W, and divides M. Since elements of the a-

sequence increase in length until an element begins with o, and since divisors

of M cannot exceed M in length, eventually there is a first Wk which begins
with a. Hence L(a, W) = Wg. Futhermore, we have shown that L(a, W)
divides every common multiple M of a and W, making it a least common
multiple. H

On the other hand, suppose L(a, W) # oco. Then there is a first number
k > 0 such that W begins with a. If k = 0, then L(a, W) = Wg =, W. If

k > 0 then by definition of the a-sequence, there are letters by, ..., by which.
_are targets of the a-chains W¢,...,W2_,, respectively, and for each i < &,
Wb =p W2y, so L(a, W) = W =, Wby by =p Wbi-- bp. hence

L(a, W) is a common multiple of a and W. o

Thus we have.in L(a, W) a calculator of least commion multiples of a gen-
erator and a word. By repeated application of this operation, we can obtain

least common multiples of arbitrary pairs of words.
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Let V and W be words. Define recursively:

w if V is empty; or
aL(U,L{a,W)™) if V.=aU, L(a,W) # oo and
L(U,L(a,W)™) # o0; or

00 otherwise.

L(V, W) =

Similar to lemma 2.11 we get the following lemma.

‘Lemma 2.12 L(V, W) # co precisely when V and W have a common multiple, in
which case L(V, W) begins with V and is a least common multiple of V and W.
Moreover, L(V, W) # oo precisely when L(W, V') # oo, in which case L(V,W) =,
L(W, V). : |

We can also compute the least common multiple of any finite collection of
words by induction on the number of words. In particular, let V4, ...,V be
words and let 1 denote the empty word. Define recursively:

1 m.= 0; or
‘ W if m = 1;
LA, Vi) = nm=Lor
00 m > 2and L(Vs,..., V) = oo; or

L(Vi,L(Va,..., V) ifm>2and L(Va,..., Vi) # co.
The next result follows by induction on m using lemma 2.12.

Lemma 2.13 L(Vy,...,V;;) # oo precisely when V1, . . ., Vi, have a common mul-
tiple, in which case L(V1, ..., Vi) begins with V; and is a least common multiple of
Vi, ..., Vin. Moreover, for any permutation o of {1,...m}, L(V1,...,Vm) # oo if
and only if L(Vyay,...,Vom)) # oo, in which case L(Vy, Vi) =p
L(Va(1)> ceey Va(m))' .

: Corolla;ry 2.14 Let ) be a finite set of words. Then 2 has a common multiple if and
only if it has a least common multiple. ' _ O

Since ¥ is finite then an infinite set of words in F'™ must have elements
of arbitrary length. Since positive equivalent words have the same length it

5
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follows that a common multiple must be at least as long as any of the factors.
So an infinite set of words can have no common multiples. On the other hand,
the empty word divides every other word, so an arbitrary nonempty set {2 of
words has a common divisor. If D denotes the set of all common divisors of
Q, then D is finite by the preceding discussion. Since every element of {1 is a
comon multiple of D, then by corollary 2.14, D has a least common multiple,
which is a greastest common divisor of 2. Thus, greatest common divisors
for nonempty sets of words always exist. |

Remark. The only letters arising in the greatest common divisor and the least
common multiple of a set of words are those occurring in the words them-
selves.

Proof. For the greatest common divisor it is clear, because in any pair of
positive words exactly the same letters occur. For the least common multiple,
recall how we found L(a, W) Wg = K.(W), and W2, = W if W starts
with a, or W7 | = K,(W{b) if W is an a-chain from a to b. But if b # a, then
the only way we can have an a-chain from a to b is if there is an elementary
subchain somewhere in the a-chain containing b. So W} i+ only contain letters .
which are already in W7. O

2.4.5 Square-Free Positive Words

When a positive word U is of the form U = XaaY where X and Y are posi-
tive words and d is a letter then we say U has a quadratic factor. A word is
square-free relative to a Coxeter graph T when U is not positive equivalent
to a word with a quadratic factor. The image of a square-free word in Af is
called square-free.

Lemma 2.15 Let V be a positive word which is divisible by a and contains a square.
Then there is a positive word V with 1% =p V which contains a square and which
‘begins with a. Thus, if W is a square-free positive word and a is a letter such that
aW is not square free then a divides W.

Proof. The proof is by induction on the length of V. Decompose V,as

V = Co(V)D, (V)
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where C, (V) and D, (V) are non-empty words, and C, (V) is the largest prefix
of V which is a simple a-chain. Without loss of generality we may assume that
V is a representative of its positive equivalence class which contains a square
and is such that I(C(V)) is maximal. ‘

When C, (V) is the empty word it follows naturally that V = V satlsfles
the conditions for V. For nonempty C, (V) we have two cases:

(i) Do (V) contains a square. By the induction assumption, one can assume,
without loss of generality that Do (V) begins with the target of the simple a-
chain C,(V). Thus, since the length of C,(V) is maximal, C,(V) is of the
form (ba)™» ™. From this it follows that when D o(V)™ contains a square
then V = aCo(V)D,(V)~ satisfies the conditions for V, and otherw1se V=
a?Co(V) Do (V)™ does. ‘ : :

(ii) Neither Co(V) nor D, (V) contains a square. Then V is of the form

'V = (ba)?D,(V) where ¢ > 1, and D, (V') begins with a if ¢ is even, and b if ¢

is odd. If ¢ even then (ba)? i a simple a-chain with target b so, by lemma 2.4,
since a divides (ba)?Do(V'), b divide Do(V). But D,(V) begins with a so by
an application of the reduction property there exists E such that

Da(V) =5 (ba) ™ E.

Similarly, for ¢ odd. Then

a(ba)m“"fl(ba)qE ~if mgbiseven,

alba)™* Hab)E  if mgbis odd.

i

L <

satisfies the conditions. _

To prove the second statement, we have that there exists a positive word
U, such that aU contains a square and aW =, aU from the first statement. It
follow from cancellativity that U =, W and, since W is square free, that U
does not contain a square. So U Begins with a and W is divisible by a. O

From this lemma we get the following result concerning the d-sequence of
a square-free word W, which will be needed in the next section.

Lemma 2.16 If W is a square-free positive word and a is a letter then each word W
in the a-sequence of W is also square-free.
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Proof. W is square-free since W¢ =, W. Assume W2 is square-free. Then
either W2 | = W or W, =, W{b; where b; is the target of the chain W“ If
Wb, is not square-free then b;rev W is not square-free and by lemma 2.15,
the b;-chain rev W2 is diyisible by b;, in contradiction to lemma 2.4. O

Let QF A be the set of square-free elements of A}. Consider the canon-
ical map of QF A into the Coxeter group Wr defined by the composition of
the canonical maps Alf — Ap — Wr. It follows from theorem 3 of Tits
~ [Tit69] that '

QF AL — Wr  is bijective.

Thus, QF AL is finite precisely when Ar is of finite type (1 e. Wris flmte)
This result is needed in the next section. :

2.5 The Fundamental Element

Let M be a Coxeter matrix over £, and let I C X such that the letters of I in -
A{ have a common multiple. Then the uniquely determined least common
multiple (which exists by lemma 2.13) of the letters of I in Aff is called the
- fundamental element A; for I € Af. ' S
The word “fundamental”, introduced by Garside' [Gar69], refers to the
fundamental role which these elements play. It is shown in [BS72] that when
Ar is irreducible (i.e. T’ connected) and there exists a fundamental element -
Ay, then Ay or AQE generates the center of Ar. The conditions for the exis-
tence of Ay, are very strong and are outlined in the following two theorems, -
which appear in [BS72]. .

Theorem 2.17 For a Coxeter graph T the following statements are eqmvalent

(i) There is a fundamental element Ay, in A

(ii) Every finite subset of A{ has a least common multiple.

(iii) The.canonical map A+ — Ap is injective, and for each Z €. Ap there exist
X,Y € At with Z = XYL,

(iv) The canonical map A} — Ar is injective, and for each Z € Ar there exist
X,Y € Af with Z = XY‘I, where the image of Y lies in the center of Ar.

Theorem2.18 Let I be a Coxeter graph. There exists a fundamental element Ay, in ‘
Af if and only if T is of finite-type (i.e. Wr is finite).




/

Chapter 2. Basic Theory of Artin Groups - ‘ o 35

To prove theorem 2.18 we need to recall the theorem of Tits we discussed
at the end of section 2.4.5 on page 34: I is of finite-type if and only if QF Af"
is finite. It is shown in [BS72] that every element of QFAJr divides Ay, thus

_if Ay, exists then QF Af must be finite. To prove the converse suppose that

As, does not exist in A+ Let J = {aj,...,ax} C X be such that A exists
but Ajyu(a,,.} does not exisf (here we have assumed ¥ has been ordered).
Then the a4 1-sequence of A; does not terminate. Since A; is square- -free
(see [BS72]) then by lemma 2.16 every element of the ag41- sequence of Ajis
square free (and distinct). Thus QFA is infinite.

- It is important to note that in theorem 2.17 the positive words XandY
such that Z = XY ~! are calculable. This can be seen from the proof given in -
[BS72]. We use this fact in 2.6 to solve the word problem for f1n1te—type Artin
groups.

For a complete discussion on properties of the fundamental element see
[BS72]. There it is shown that the image of the fundamental element of AF in

~ the Coxeter group Wr is prec1sely the longest element. Also they give formu-

lae for the fundamental elements of irreducible finite-type Artin groups, i.e.
the Artin groups corresponding to the Coxeter graphs in figure 1.1. '

2.6 The Word and Conjugacy Problem

7/

In this section we use the machinary developed thus far to give a quick solu-
tion to the word problem for f1n1te -type Artin groups The con]ugacy problem
is also discussed. ,

Let U,V € Ar, where I is of finite-type. We want to decide if U = V. By |
theorem 2.17 we know there exists (calculable) positive words X1, X5, Y;, Yo €
At such that

U=XY7' and V= X2Y2_1

where the images of Y; and Y, are central in Ar. v‘To decide if U = V. itv is
equivalent to decide if X1Y> = X,Y7, but since the canonical map AF — Ar
is injective this is equivalent to deciding if X 1Yz =, XoY7. In2.4.3 we gave a

. solution to the word problem for A; , thus a solution to the word prbblem for :
" Ar follows.

In [BS72] it is shown elements of .A+ and Ar can be put into a normal
form using the fundamental element. This also gives a solution to the word



Chapter 2. Basic Theory of Artin Groups _ - ' - 36

problem in both .Alf and Ar. Brieskorn and Saito also give a solution to the -
conjugacy problem in finite type Artin groups.

Another solution to the word and conjugacy problems appears in [Cha92].
It is shown that finite-type Artin groups are biautomatic in which case they are
known to have solvable word and conjugacy problems.

Some infinite-type Artin groups have been shown to have solvable word }
and conjugacy problems. Appel and Schupp [AS83] solve these problems for
Artin groups of extra-large type (i.e. my, > 4 for all a, b€ ¥).

2.7 Parabolic Subgroups

Let (Ar, ) be an Artin system with values mq, fora,b € X. Forasubset I C &
we define .Ap', to be the subgroup of Ar generated by I. We call the subgroup
Ar, a parabolic subgroup. (More generally, we refer to any conjugate of such
a subgroup as a parabolic subgroup.) "

Van der Lek [Lek83] has shown that for'each I C ¥ the pair (Ar,, /) is an
Artin system associated with I'7. That is, parabolic subgroups of Artin groups
are indeed Artin groups. A proof of this fact also appears in [Pa97]. Thus
the inclusions among Coxeter groups in table 1.1 also hold for the associated |
Artin groups: Crisp [Cri99] shows quite a few more inclusions hold among
the irreducible finite-type Artin groups. Table 2.1 lists these inclusions. Notice
that every irreducible finite-type Artin group embeds into an Artin group of
type A, Dor E. ‘ : -

Similar to that of Coxeter groups we have that the study of Artin groups
can be largely reduced to the case when I is connected.

Theorem 2.19 Let (Ar, 3) have Coxeter graph T', with connected components Iy,
., Dy andlet I, ..., I, be the corresponding subsets of . Then

Ar = ‘AF11 ¥ "'GB.A['IT,
and each Artin system (Ar 1, I;) is irreducible.

Cohen and Wales [CWO01] use this fact and the fact that irreducible finite
type Artin groups embed into an Artin group of type A, D or E to show all
Artin grdups of finite-type are linear (have a faithful linear representation) by
showing Artin groups of type D, and F are linear, thus generalizing the recent
result that the braid groups (Artin groups of type A) are linear [Bi01], [Kr02].
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I "Ar injects into AF/ ‘

| T | r |
A, Am (m >mn), "
Buy1 (n>2),
Dn+2/

Eg(1<n<5),
E7(1<n<6),
Es(1<n<0),
Fy, H3(1<n<?2),
Hy(1<n<3)
L3)(1<n<2)
Bn An( A2n—1/ A2n/ Dn+1

Eg Eq, Eg A
E7 Eg ' . g
Hj Ds
| Ha FEs
IQ(m) ) Am_1

* Table 2.1: Inclusions among Artin groups '
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2.8 Geometric Realization of Artin Groups |

In this section we discuss how finite-type Artin groups appear as fundamen-
tal groups of complex hyperplane arrangements. From this point of view we
can see that finite-type Artin groups are torsion free.

Let (Wr, S) be a Coxeter system where Wr is finite and |S| = n. Let V be

the associated (real) n-dimensional vector space, and B the bilinear form on -
- V introduced in section 1.3. We know from theorem 1.17 that V' is a Euclidean

" space. Let T denote the set of reflections in W. For each ¢t € T let H; denote
the hyperplane in V (pointwise) fixed by t. Let H = {H;}:e7 be the collection
of such hyperplanes. The complement of # in V is defined by

v\ U =

HeH

Note that since V is a real vector space M (H) is not connected. However, if we
“¢omplexify” V and the arrangement of hyperplanes H we get a connected
- -space. This is done as follows. The complexification of V is V¢ = C". The
complexzﬁcatzon ofa hyperplane H is the hyperplane Hc of V¢ havmg the same
equat1on as H. The complexification of H is the arrangement H«; {Hc :H €
H} in Vc. The topological space o

M(He) = Ve \ U H.
‘ . HeHc

is our primary interest.

Before we proceed any futher we need to make some definitions. A collec-
~ tion of hyperplanes Hina (real) vector space is called a (real) arrangement of
hyperplanes. We say H is central if all the hyperplanes of H contain the ori-
gin. We say further that H is essential if the intersection of all the elements of
H is {0}. Call H simplicial if it is central and essential, and if all the chambers
of H(i.e. connected components of V' \ Uxen H) are cones over simplices.
The following theorem indicates the 1mportance of knowing an arrangement
is s1mphc1al

Theorem 2.20 (Delzgne [Del72]). Let H be a simplicial arrangement of hyper-
planes. Then M (Hc) is an Ezlenberg -Maclane space (i.e. its universal cover is con-
tractible).
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The importance of this theorem lies in the fact that if M (G) is a finite dimen-
sional Eilenberg-Maclean space for a group G then G has finite cohomological
dimension and so, from a result in homological algebra, G is torsion-free.

Let us return now to our particular hyperplane arrangement 1 defined
above. It follows from our work in chapter 1 that the arrangement of hy-
pérplanes H = {H;}ser is central and essential. Futhermore, Deligne [Del72]
showed that  is simplicial. Thus, it follows from theorem 2.20 that M (Hc) is
an Eilenberg-Maclean space. Deligne has shown that the fundamental group
" of M(Hc) is precisely the pure Artin group associated with I'.: Moreover,
. Deligne showed that Wr acts freely on M(Hc) so that M (Hc)/Wr is also an
Eilenberg-Maclean space and 71 (M (Hc)/Wr) is the Artin group Ap. Thus,
Ar is torsion-free.

For arbitrary Artin groups Ar (not necessarily of finite-type) more general
constructions of K (Ar, 1)-spaces have been done, for example see [CD95].

An algebraic argument showing finite-type Artin groups are torsion free -
was d1scovered by Dehornoy [Deh98]. The proof uses the divisibility theory

we developed in this chapter




Chapter 3
Commutator Subgroups of Finite-Type
Artin Groups SO

* Gorin and Lin [GL69] gave a presentation for the commutator subgroup B/,
‘of the braid group B,, n > 3, which showed B, is finitely generated and .
perfect for n > 5. This has some interesting consequences concerning By,
and “orderability”, which we discuss in chapter 5. In this chapter we extend
the work. of Gorin and Lin and compute presentations for the commutator
subgroups of all the other irreducible finite-type Artin groups; those corre-
sponding to the Coxeter graphs in figure 1.1. This will be applied in chapter
4 to "local indicability” of finite—type Artin groups.

3.1 Reidemeister-Schreier Method

We will use the Reidemeister-Schreier method to compute the presentation for .
the commutator subgroups so we give a brief overview of this method in this
section. For a complete discussion of the Reidemeister-Schreier method see
[MKS76]. ‘ :

Let'G be an arbitrary group with presentation (a1, ...;as : Ru(a),...)
and H a subgroup of G. A system of words R in the generators ay, ...,an
is called a Schreier system for G modulo H if (i) every right coset of H in G
contains exactly one word of R (i.e. R forms a system of right coset repre-
sentatives), (ii) for each word in R any initial segment is also in R (i.e. initial
segments of right coset representatives are again right coset representatives).
Such a Schreier system always exists, see for example [MKS76]. Suppose now
that we have fixed a Schreier system R. For each.word W in the generators

40
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ai,...,an we let W denote the unique representative in R of the right coset
HW. Denote

SK,GU = Ka’l) ) Ka‘;U-l) ‘ ) (3.1)

for each K € R and generator a,. A theorem of Reidemeister-Schreier (theo-
rem 2.9 in [MKS76]) states that H has presentation )

(8Kyaur- SMays - TKRWETY), ) - (3.2)

where K is an arbitrary Schreier representative, ay is an arbitrary generator
and R, is an arbitrary defining relator in the presentation of G, and M is a

" Schreier representative and ay a generator such that

Ma)\ z Ma,\, .

where ~ means “freely equal”, i.e. equal in the free group generated by
{ai,...,an}. The function 7 is a Reidemeister rewriting function and is de-
fined according to the rule

€1 p

— o€ ) €
T(a’il T alp) - S}éil,a'il e sIéip,a,-p ) (33)

' B P T 09 ife = —
where K;; = a; aij_l,_lf €; = 1,and Ki; = a; aij,lf e =—11It should_

be noted that computation of 7(U) can be carried out by replacing a symbol
ay, of U by the appropriate s-symbol s , . The main property of a Reide-
meister rewriting function is that for an element U € H given in terms of the
generators a, the word 7(U) is the same element of H rewritten in terms of
the generators sk ;. ‘ '

3.2 A Characterization of the Commutator Subgroups

The commutator subgroup G’ of a group G is the subgroup generated by the
elements [g;, go] := g19297 g5 " for all g1, g2 €:G. Such elements are called
commutators. It is an elementary fact in group theory that G’ is a normal
subgroup in G and the quotient group G /G’ is abelian. In fact, for any normal
subgroup N <1G the quotient group G/N is abelianif and only if G’ < N. If G
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is given in terms of a presentation (G : R) where § is a set of generators and
R'is a set of relations, then a presentation for G/G’ is obtained by abelianizing
the presentation for G, that is, by adding relations gh = hg for all g,h € Q
This is denoted by (G : R) ;. :
Let U € Ar, and write U = a;! -- a7, where ¢; = +1. T_he degreé of U is
defined to be

deg(U) =371 ¢

Since each defining relator in the presentation for Ar has degree equal to zero

the map deg is'a well defined homomorphism from Ar into Z. Let Zr denote
_the kernel of deg; Zr = {U € Ar : deg(U) = 0}. It is a well known fact that

for the braid group (i.e. I' = A,) Z4, is precisely the commutator subgroup.
In this section we generalize this fact for all Artin groﬁps.
Let I'yqq4 denote the graph obtained from I' by removing all the even-

labelled edges and the edges labelled co. The following theorem tells us ex-.
actly when the commutator subgroup A is equal to Zr.

Theorem 3.1 For an Artin group Ar, Logq 15 connected if and only if the commu-
tator subgroup Al is equal to Zr. : -

Proof. For the direction (=) the hypothesis implies
Ar/ AL~ 7.

Indeed, start with any generator a;, for any other generator a; there is a path
from a; to a; in T'o4q4:

a; = Q; — A4y _’""—’aim;aj-
Smce mzm 41 is odd the relation
' (q’1ka1k+l>mlklk+l = <aik+1aikr>mikik+1-
bec.omes ai, =‘A ai,, in Ar/Ar. Hence, a; = a; in Ar/ Ap. It follows that,
AF/.A/F ~ (ay,...,0n :.al = =ap)
~ 7,

where the isomorphism ¢ : Ar/ A — Zis given by
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UAR — deg(U ).
Therefore, A = ker¢ = Zr. '

- We leave the proof of the other dlrectlon to theorem 3.2, where a more
general result is stated. . ' O

For the case when I',4, is not connected we can get a more general de-.
scription of Ar. as follows. Let I',qq have m connected components; I'ogg =
FpU...UTy,. Let Z; C T be the corresponding sets of vertices. For each
‘1 < k < m define the map

‘degk cAp — Z
as follows: f U = afll . -af: € Ar take

deg,(U) = Z €

1<j<r where aijEEk

It is straight forward to check that for each 1 < k < mthe map deg, agrees
on {(ab)™* and (ba)™** for all a,b € . Hence, degk Ar — Z is a homomor-
phism foreach 1 < k < m. Let

Zplm = ﬂ ker(degy,).
1<k<m
The followmg theorem tells us that this is prec1sely the commutator subgroup
of Ar.

Theorem 3.2 LetT'bea Coxeter graph such that Lodd has m connected components.
- Then Ap = Zp™.

Proof. Clearly Ay C Zp™ since commutators certainly lie in the kernel of
degy, for each k. To show the opposite inclusion let W € Zp(m) ie. degy(W) =
Oforall 1 <k < m. Since

Ar/Ap = (a1,-..,an t (aaag)™ % = {aja;)" %) oy,
~ (a1,...,a, :'a; = a; iff i and j lie in the same connected
component of I'g44),

~ 7™,

with the isomorphism given by
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UAp — (degy (U), .., degp, (U)),

then W AL must be the 1dent1ty in .A]" /Ap (since it is in the kernel) In Wthh
case W € .A' _ : : O

It is this characterization of the commutator subgroup which allows us to -
.use the Reidemeister-Schreier method to compute its presentation. In partic-
ular, we can find a relatively simple set of Schreier right coset representatives.

3.3 Computing the Presentations

In this section we cofnpute presentations for the commutator subgroups of
the irreducible finite-type Artin groups. We will show that, for the most part,
the commutator subgroups are finitely generated and perfect (equal to its com-
mutator subgroup).

Figure 3.1 shows that each irreducible finite-type Artin group falls into
one of two classes; (i) those in which I[',44 is connected and (11) those in which
I"o4q has two components. Within a given class the arguments are quite sim-
ilar. Thus, we will only show the complete details of the computations for
types A, and B,,. The rest of the types have similar computations. '

| 3.3.1 Two Lefnmas

We will encounter two sets of relations quite often in our computations and
it will be necessary to replace them with sets of simpler but equivalent re-
lations. In this section we give two lemmas Wthh allow us to make these
~ replacements. |

Let {px} keZ ,a, b and g be letters In the followmg keep in mind that the
relators py1p;. +2pk spht up into the two types of relations py4o = p; Ykt
(for k > 0), and p, = Pk+1pk o (for k < 0) The two lemmas are:

Lemma 3.3 The set of relations

Prhi1PriaPi =1, Prapesoa”'ppliet =1, b=poapyt,  (34)
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(A")Odd (TLZ 1) ay az as. R @n-2 Gn-1  Gn
—o— o ‘ *—e

(Bn)oad (n>2) @———e cee a4
> . . . an-1

(D")Odd (n - 4) a1 az as - e Gn-3 , Gp-2 ™~
2293

Ia6
(Es)odd r—tr—7—

ar
(E7) odd —— J *>———=8

ay az as aq as ag
Ias
(Bs)ods S——8——3—8—9—9o—2
(F4)Odd . a1 az a3 a4
5 -
[ s am——
(H3)odd ——o——o
H D o
(H4)odd —o—o—2
m
(I2(m))oda (m235)  e=——8 m odd
@ [ ] m even
al a2 .

Figure 3.1: I'y4q for the irreducible finite-type Coxeter graphs T
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is equivalent to the set

Pet1PisoPis = 1, (3.5)
poapy' = b, | (39
pobpg! = b2 lb R V)
plapl_l- = a7 'b, ‘ (3.8)
pibpyt = (a7'b)% . (3.9)

Lemma 3.4 The set of relations:

Pet1Prroli =1 Drq =.aPr+1,

is equivalent to the set
Pe+1PiroPr =1, pog=aqp1, Ppi1q=qpy pr..

The proof of lemma 3.4 is straightforward. On the other hand, the proof
of the lemma 3.3 is somewhat long and tedious. -
Proof. [Lemma 3.4] Clearly the second set of relations follows from the first .
set of relations since py = py 'p1. To prove the converse we first prove that
prq = qprr1 (k > 0) follows from the second set of relations by induction on
k. It is easy to see then that the same is true for £ < 0. For £ = 0, 1 the result
clearly holds. Now, for k = m + 2;

Pmt+20Pm3d T = Pm+2qPmyoPmt1q
Pma2(Pry10)Pmar1q™" by IH (k = m + 1),
Pm2Ppia(@pmin)a ™,
pm+2pr_n£r1(PmQ)q—1 by IH (k = m),
pm+2p;zilpm>

- 1

O

Proof. [Lemma 3.3] First we show the second set of relations follows from the
first set. Taking k = 0 in the second relation in (3.4) we get the relation

poapza”tprla™t =1,
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and, using the relations ps = py I; énd b = poap, 1 (3.8) easily follows. Tak- B
_ing k = 1 in the second relation in (3.4) we get the relation '

prapsa”'pylat = 1.
Using the relations p3 = p *p2 and py = p;'p; this becomes
}Plapflpglplawlpflpoa_l =1.
But p;dp;l =a7'bh (by (3.8)) so thié reduces to
a—lbpa\lb_lapoa’1 =1.
Isolating bpg, 1.on one side of the equation gives
bbal = agpala_lb. ; R .

~

Multiplying both sides on the left by pg and using the relation poapg " = b it
easily follows pobpy' = b2a~'b, which is (3.7). Finally, taking & = 2 in the
second relation in (3.4) we get the relation T

poapsa”'ps e = 1.

Using the relation py =.p; 153 this becomes

p?apglpga'lpgla"l =1. (3.10)
Note that |
pap;t = py'piapipo by p2 =py o1
' = pgla‘lbpo by (3.8) .
= a ?ba"'a using(3.4) and (3.7)
= a7% :
and
psap;’ = pr'poapy'pr. by ps = pi'ps

pl_la_prla .

Il
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- where the second equality follows from the previous statement. Thus, (3.10)
becomes : '

a%?bpl_lb_l'QLQpla_} =1
Isolating the factor bp; ' on one side of the equation, multiplying both sides
by p1, and using the relation (3.8) we easily get the relation (3.9). Therefore
“we have that the second set of relations (3.5)-(3.9) follows from the first set of
relations (3.4). ' '
In order to show the relations in (3.4) follow from the relations in (3.5)-

(3.9) it suffices to jﬁst show that the second relation in (3.4) follows from the :
relations in (3.5)-(3.9). To do this we need the following fact: The relations

pkap,;l = a”p, ’ (3.11)
: pkbp,zl — (a~hb)k+2 ~(k+1)p, o  (3.12)
pilapy = ab la*? y (3.13)
pglbpk = (ab 1ak‘,”)ka, ' (3.14)

follow from the relations in (3.5)-(3.9). The proof of this fact is left to lemma
3.5 below. From the relations (3.11)-(3.14) we obtain

pk+1ap,;+1 = a"(k’"’l)b =gt a,__kb =a pkap;%, B (315)

and
pk+1apk+1 =ab~lakt3 = ab~ a2 = p,;lapka. (3.16) _ a

Now we are in a position to show that that the second relation in (3.4) follows
from the relatlons in (3.5)-(3.9). Fork > 0

PrOpr42a ppaT = pkapk "pry1a”ppi a7t by (3.5)
N—— :
= prapy (e tprapyt)rat by (3.15)
= 1. - '
and fork <0

PkaPE+20 D0 = Pl Piie0Prt20 D0t by (3.5)

Pri1(Ppirapei1a)a” pea”t by (3.16)
= 1.
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Therefore, the relations
Prapri2a pat =1, keZ
follow from the relations in (3.5)-(3.9). - o . O

To complete the proof of lemma 3.3 we need to prove the following.

Lemma 3.5 The relations

pkaplzl = o

pkbp];r — (a—kb)k}2a—(k+1)b
leaﬁk = gb-lgk+?

p,:lbpk _ (ab ak+2)1c

follow from the relations in (3.5)-(3.9).

Proof. We will use induction to prove the resuilt for nonnegative indices k,
the result for negative indices k is similar. Clearly this holds for £ = 0, 1. For
k =m+ 2 we have

pfnlpmﬂap;;ilpm by (3.5),

prla~ M pp, by induction hypothesis (IH),
(pra™ ™ p )( s bPm), -

(P apm) m“)( P bPm),

— -(a -1 m+2) (m+1)(ab—1am+2)ma_ byIH,
(ab~la™*2)~1 a,

a (m+2)b

-1
Pm+280D, 1o

?

Pma2bPris = PrPmi1bp pm by (35),
_ p;z,l (a—(m+l)b)m+3a—(m+2) bpm by H,
= (' apm) ™" (07, bom)) ™ (0 apm) " pr opim,
— ((ab—lam+2)—(m+1) (ab—lam—}_-'Z)ma) (m+3)
(ab L™t~ (Mt (gh=legmF Mg by IH,
_ (a—(m—i;?) b)m+3 (ab—lam+2) —2a

3

(a—(m+’2)b)m+4a——(m+3)b;
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Similarly for the other two equations. Thus, the result follows by induction.

s

d i ' p

3.3.2 Type A

The first presentation for the commutator subgroup B;,,; = A’, of the braid
group B1 = Aga, appeared in [GL69] but the details of the computation
were minimal. Here we fill in the details of Gorin and Lin’s computation.

The presentation of A4, is

) .AAn = (al,'...,an : . diaj = a;a; for |Z — ]' > 2,

4 AiGi410; = Q410041 forl <i<n—1).
Since (An)odd is connected then by theorem 3.1 Ay = Z4,. To simplify no-
tation in the following let Z,, denote A}y = Z4,. Elements U,V € Ay, liein
the same right coset precisely when they have the same degree:
ZU =2V < UV'ez,
<= deg(U) = deg(V),

thus a Schr_eiér system of right coset represehtaﬁves for A4, modulo Z, is
R={d}:kc?}

By the Reidemeister-Schreier method, in particular equation (3 2), Zy has gen-

erators s aka; = a’faj(a'faj) with presentation '
Lp £ e =1
<Sa’f,aj7 Sam,a,\, o r(erRiar), . (e Thag )y )y 3.17) .

- where j € {1,..'.,n},'k,€ €ZandmeZ \e {1,...,/n} such that aT’ay =

a*ay (“freely equal”), and T; ;, R; represent the relators a;a;a; laj—l, li—7] > 2,

-~ and 0074100, +11ai‘ a7, +11, respectively. Our goal is to clean up this presenta-

tion.
The first thmg to notice is that

alaA~a1aA—aT+1<=>A=1

Thus, the first type of relation in (3.17) is precisly s,m 4, = 1, for all m € Z.
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Next, we use the definition of the Reidemeister rewriting function (3.3)
to express the second and third types of relations in (3.17) in terms of the
generators Sak.a

k- By -1 -1
T(aiTija7%) = Sa’fvaisa'f“,ajSak“,disa’f o . (318
- : -1 1 -1
r(a*Ria = s S k+1 S k2 8 s s 3.19
(\ 14y ) al G a1+ g1 0 + 0 allc+2 Qit1 ak-l—l a; a’f:ai-l»l ( )

Taking i =1, j > 3in (3.18) we get

sa'f“,aj = Sq’f,aj
Thus, by induction on &,
ey =S 3:20)
forj > 3and forall k € Z. : )
Therefore, Zy, is generated by sy ,, = = a¥asa;] ~(k+1) and s1,, = aeaj’,

where k € Z, 3 < ¢ < n. To simplify notation let us rename the genera-
tors; let py = alagal( +D) and g := agal“l, fork € Z,3 < £ < n. Wenow
investigate the relations in (3.18) and (3.19).

The relatlons in (3.19) break up into the followmg three types (usmg 3 20)

pk+1pk+gpk - (taking i = 1) (3.21)
PrG3Pr+20; ‘Priqds - (takingi=2) (3.22) .
qiq’i+lqiqz'__+_11qi_ 1qi_+11 for3<i<n-1. (3.23)

The relations in ( 3.18) break up into the following two types:
pkqu,;_ll_lqj'fl for 4 < j < n, (taking i =92) o (3.29)
qigia; 'q;' for3<i<j<m,li-jl>2 - (3.25)
We now have a presentation for Z, consisting of the generators py, g,

where k € Z, 3 < ¢ < n — 1, and defining relations (3.21) -(3.25). However,
notice that relation (3.21) splits-up into the two relations

Pr+2 = ﬁ;lpk“  fork >0, ' (3.26)
Pk = Pit1Ppr,  fork <O (3.27)
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Thus, for k # 0,1, p, can be expressed in terms of pg and p;. It follows that
Zy-is finitely generated. In order to show Z, is finitely presented we need to
be able to replace the infinitly many relations in (3.22) and (3.24) with finitely
many relations. This can be done using lemmas 3.3 and 3.4, but this requires
" us to add a new letter b to the generating set with a new relation b = pogsp; -
Thus Z, is generated by po, p1,qe, b, where 3 < ¢ < n-— 1, with defining
relations: ' :

pogspy’ =b, pobpyt = 0¢5'b, prgsprt =ai'h, pubpt = (g5 ')%q5%b,
GGnEag G BSi<n-l),
pogi =gip1 (4<ji<n), pgg=gpg ;. (@ <j<n).
%ug;q; 'y (B<i<ji<nli—j>2)

Noticing that for n = 2 the génerators g5 (3 < k < n), and b do not exist,
and for n = 3 the generators gi (4 < k < n) do not exist, we have proved the
following theorem. ’ '

Theorem 3.6 For every n > 2 the commutator subgroup Aly  of the Artin group
Aa,isa ﬁnz’tely presented group. Ay is a free group with two free generators

Po = azal_l, Py = alagal_Q. '
s, 15 the group generated by
po = aa7l, p1 = a10907%, ¢ = azar?, b= azarlagaz’,
with defining relations ,
b= pogpy ', pbbpa L= 2",
prapit =q7'b, pibpy = (710’7,
Forn > 4 the group .A;‘n is generated by

-1 -2 ~1
Po = aga; ~, p1 = a1a2a, -, ¢3 = aza; ,

b =,a2af1a3a2—1, qe = agal_l» 4<e<n-1),
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with defining relations

“b=pogspy", pobpy = b2q3'h, -
pagsprt =a3'h, pibprt = (g370)°q5%h,
Pogi =IQip1_ (4.S i<n), p1gi=qp;' ;1 4<i<n)
g3 =qigs (5<i<n), 430403 = quq3qs,
| @95 =q;qs (4<i<j—-1<n-1), . 9ii+19i = Gi+19idi+1 (4 <i<n-—1).
. : _ A _ -

Corollary 3.7 For n > 4 the commutator subgroup ;414" of the Artin group of type
Ay is finitely generated and perfect (ie. Ay = A/, ). ‘

Proof. Abelianizing the presentation of A’, in the theorem results in a pre-
sentation of the trivial group. Hence A’} = A’ . o

) Now we study in greater detail the group .A’ ,» the results of which will
‘be used in section 4.2.1. From the presentation of A/, given in theorem 3.6
one can easily deduce the relations: ' ' ' '

pglapo = ab~'q®, pg bpo =g,

pilapr = gb7'¢® prlbpr = gb7 ¢t
Let T be the subgroup of A’;, generated by ¢ and b. The above relations and
the defining relations in the presentation for .4’ tell us that 7' is a normal
subgroup of A,.. To obtain a representation of the factor group A, /T it
is sufficient to add to the defining relations in the presentation for .4/, the
‘relations ¢ = 1 and b = 1. It is easy to see this results in the presentation of
the free group generated by py and p;. Thus, .4, / T is a free group of rank 2,
F5. We have the exact sequence

1— T — Ay, —>A;,3/T~—>1.
Since Ay, /T is free then the exact sequence is actually split so

Aiqs’::TX.Ahs/TETXIFQ,

where the action of Fy on T is d’efined_ by the defining relations in the presen-
tation of A’ , and the relations above. In [GL69] it is shown (theorem 2.6) the
group T is also free of rank 2, so we have the following theorem. '
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.Theorem 3.8 The comrﬁutatqr subgroup Ay, of the Artin group of type Az is the
semidirect product of two free groups each of rank 2;

;-

3.3.3 Type B
The presentation of..A‘Bn is
.ABn = (dl, ceny Oy 0 ;a5 = @04 for |Z — ]l > 2,
Q04105 = Q4100541 for 1 SZ S n—2
Op—1Anln—10n = anan-—lanan——1>~

LetT;;, R; (1 <4 < n—2),and R,—1 denote the associated relators aza]a”la-‘l,

j
aiai+1aiai_£1ai_1a;£1, and an_janan—1ana; a7 a1 a7, respectively.

As seen in figure 3.1 the graph (By,)dq has two components: I'y and Ty,
where I's-denotes the component containing the single vertiex a,. Let deg;
and deg, denote the associated degree maps, respectively, so from theorem
3.2 A
| Ay =Z9 ={U e 4sp, : deg,(U) =0 and deg,(U) = 0}.
For simplicity of notation let Zg (2 ) be denoted by Z,.

For elements U,V € Ay,

ZU=ZV o UV'eZz,
v < degy(U) = deg;(V), and
degy(U) = deg,y(V),
thus a Schreler system of rlght coset representatlves for Ag, modulo Z, is
R = {ala WA Z}

By the Reidemeister- Schreler method, in particular equat1on (3.2), 2, is gen—
erated by

~ k_e -1
Satata, = abala;(aFalay)

- {a’faea]a —ta; (k+1) ifj#n . .

ajak,a;

1 ' Cifj =mn.
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with presentation

Z, = (Sallcaguaj, e ISaPalanr
r(afanTg(atay) ™), ..., (L<i<j<nli—jl22),
r(a¥af Ri(a¥al)™Y),..., 1<i<n-2),

r(afag Ro-1(afag) "), . ..),
' (3.28)

where p,q € Z, A € {1,...,n — 1} such that alaflay ~ ala}a, ("freely equal”).
Again, our goal is to clean up this presentation. ,

The cases n. = 2,3, and 4 are straightforward after one sees the computa-
tion for the general case n > 5, so we will not include the computations for
these cases. The results are included in theorem 3.9. From now on it will be
assumed that n > 5. o

Since

) .
" lad N#n

1
a’f a%+ A

a’l’a%aAza’fa%a,\=A{ e A=nor;A=1landqg=0,

=n
the first type of relations in (3.28) are precisely

Sa’fa%,an = 1, and Sa’f,al =1. ’ (329)

The second type of relations in (3.28), after rewriting using equation (3.3),
are ) - :
' Sabat aiS et o S S . (3.30)

oS S S
a; £ n . . -1 <
ni 47050405 gkaba,a;a; 1,a¢4a’faflaiajai laj 1,aj

wherel‘lg i<j<mnli—-j>2 Takingi =1land 3 < j < n—1gives: for
¢ = 0 (using (3.29)); '

‘ Sahtl g = Sab e (3.31)
so by induction on k,
_Sa’f,a]‘ = 81’% for 3 S] <n-— 1, ‘ (332)
and for £ # 0; ‘ o : < : .
: , -1 -1
Safal,a: Sa‘f+1afuag‘ Sa’f"”lafwal Sa’fafl,aj ) (3.33)
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We will come back to relation (3.33) in a bit. ‘
Taking i = 1 and j = n in (3.30) (and using (3.29)) gives

! . - (3.34)

Sakat a; S;llcaﬁ+1 o
So, by induction on £ (and (3.29)) we get
Sqkat e =1 fork, L€ Z. - (33Y)

Taking2§z’Sn—2,i+2§jSni{\(3.30)gives

1 -1

‘vsa’fafuaisi K148 0 Sa’f“af;,az‘ a’fafmaj forj<n-1, (3.36)
Sallcafwaisg’faf{*'l,ai ) ) : forj = n. }
In the case j = n induction on £ gives
Sa'faﬁ,ai = sll’f,ai (2 S 1 S n— 2) (337) .
So from (3.32) it follows ‘
S1g; 9<t1<n—2
Sutaga = B CED)
Sakay . ° =2.

We come back to the case j < n — 1 later.
A Returning now to (3.33), we can use (3.35) to get

- Sgktlat o = Sakal a 3<jisn-1).

aj

Thus, by induction onk

= Sp. (B<j<n—1). (3.39)

A Sakal a;
For3 < j < n— 2 we already know this (equation (3.38)), so'the only new
information we get from (3.33) is '

salfaﬁvan— 1 Sa% yOn~1

(kez). (3.40)
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1<i<j<n,li—j|l =2 weget:

Sakal ay = 1 (k2 € Z),

. Slae, 3<1<n—2,
k £ =
ayar,a; .

Sak as 1= 2,

Sakat, in1 = Salan-r’

and (from (3.36)), for2<i<n-3andi+2<j<n-1,

—1 -1
Saka 8 k+1, 8 8 .
afab,a;%a; a5 af el a; akal a;

~ This relation breaks up into the following cases (using (3.41))

‘o
_ -1 -1 - : _
Sa’f»QZSl’ajsa’f+l,a281,aj fori = 2,4<j<n-2

. -1 -1
.Sa’f,ag Saﬁ,an_l sallv+1

fori=2j=n—-1,

S ¢
a2 Op,0n-—1

Slvdislyajsiglisiij for3<i<n-3,i+2<j<n-2,

-1 -1 . o
81,a;5a¢ .an_1 51, aisae e for3<i<n-3,j= n—1,

fan)™h),

Collecting all the information we have obtained from 7 (a¥a4T; ;(a}

(341)

(3.'42) A

(3.43)

The third type of relations in (3 28); T(alae R; (ala )~1), after rewriting

using equation (3.3), are

-1 —1 . -1
Sakq S k41 s k2, S S8 S
01,0 "a; af,0:41°a] a; a'f+2a3 2041 ak+ af ;. a¥al aity’

which break down as fpllqws (using (3.41)):

-1 -1 1
sa’f+1 S ak+? agsak as (i=1),

-1 -1 -1 .
Sak,azsl,agsalwz 4251035, [ 31,a3 (i=2),

-1 - 1 ' : :
31a151a1+131a131al+131alslahm for3<i<n-3,
-1 -1 -1 .
\Slaan-—Zsae ,an_lslyan—Zsaf an—181 a,n_zsalf an-—l,. (7’ =n- 2)/

(3.44)

(3.45)

The fourth type of relations in (3 28); T(ala Rn—1(akaf)™1), after rewriting

usmg equation (3.3),1is

-1 -1
808 ,an—15at+1 q,_1 8 e+2 S g41 )

+
=1 ap ",Gn-1 Qn' ,4n-1

(3.46)
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where we have made extensive use of the relations (3.41). _

-From (3. 41) it follows that Z, is generated by Sk ayr SLas and Sat an 1 for
k,£ € Z and 3 < i < n — 2. For simplicity of notation let these generators
be denoted by pi, ¢;, and ry, respectively. Thus, we have shown that the
following is a set of defining relations for Z,:

Pr4; = 4iPk+1

DkTe = TePk+1

‘ 995 = 4j%
qiTe = Teq;

Pr+1PrsoPk
Prd3Pk+203 Ppyd3
qi9i+149i = 9i+19iqi+1
Gn—2T0Gn—2 = Tedn—2T¢

-1 _.—1
TeTe+1Tp 40 041

@gjgn—zkem,

(k£ € 7), | ' r
B<i<j<n-2li=jl22),
3<ign=-3),

(k € 2),

(ke 2),

(B<i<n-3),

(€ 7),

(347)

(tew),

The first four relations are from (3.43), the next four are from (3.45), and the .
last one is from (3.46). '

The fifth relation tells us that for k # 0,1, py can be expressed in terms of pg
and p;. Similarly the last relation tells us that for £ # 0,1, 7, can be expressed
in terms of g and r;. From this it follows that Z,, is finitely generated. Using
lemmas 3.3 and 3.4 to replace the first, second and sixth relations assuming
we have added a new generator b and relation b = p0q3p0 , we arrive at the
following theorem.

Theorem 3.9 For every n > 3 the commutator sitbgroup A
Ap,, is a finitely generated group. Presentations for A’y
‘B, 154 free group on countably many generators:

of the Artin group
_,n > 2are gs follows:

hor] (€ 2\ (0,%1)), [obas,ar] (k€ 2\ {0)).

', 18 4 free group on four generators

la7! a5, .

0103, ag)(ar ", a5 ).

[as, as] [afl, 7Y, lar,azllart, a5,
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‘s, 15 the group generated by

k 1 - _
pk = afaga] FY = [aF av)a7?, 0]y (k€ Z)

= a£a3(ala£) | [a'i’afi] [agl’agl][al_l’agl]’ (¢ € Z),
with deﬁning relations

Prr1Piopi - (k€ 2),
DPrQePk+2 = Qepk+19e (kL € Z),
Qeqe+1 = Qe+1geye (3 <i<n-—-3).

, For n > 5 the group A% is generated by

1 L9 o ¢
Po = Q2a] , D1 = 010207 , 3 = a3Gy , T¢= QpQn_ 1(a1a )t (Ee Z),

b= azal‘lagqgl, g = aial (4<i< n— 2),
with defining relations

Pog; = q;ip1, P1gj = gip, ;1 (A< j<n—2),
pore =Tep1, Pire =Tepg p1 (¢ EZ),
69 = ¢ B3<i<j<n-—-2i=j[2>2),

Cqre=rg 3<i<n-—3),
pogapy ' = b, pobpyt = bPg; b,
prgsprt = a3, pubprt = (g5 10)3¢5 %,
Gigi+10i = %i+10igi+1° B <i<n—3),
Gn—2TeGn—2 = TeGn—are (£ € Z),

-1 -
rgrgHrHQrHll (e ),
O

Corollary 3.10 For n > 5 the commutator subgroup A'p of the Artin group of type
By, is finitely generated and perfect. e '

Proof. Abelianizing the presentation of Aj in the theorem results in a pre-
sentation of the trivial group. Hence Ay = A . o m]
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3.3.4 TypeD

The presentation of Ap,, is

n

Ap, = {aj;...;an : aia; = aja; for1§i<j§n—1,|i—j|22,~
anaj = ajan, forj #mn—2, ‘
;054105 = ;41050541 for1 <i<n—2

Ap—-20nan—2 = anan—2an> .

/
/

As seen in figure 3.1 the graph (Dn)odd is connected. So by theorem 3.1
A/Dn = ZDn = {U € ADn : deg(U) =_0}.

The computation of the presentation of A7, is similar to that of A’ ., S0 we
will not include it. o N :

Theor,em‘3.1'1 For)e‘very n > 4 the commutator subgroup Alp of the Artin group
Ap, is a finitely presented group. A’ is the group generated by '

aa=1 R N |
Po =aga; -, P1 = a1020; , g3 = a3q; -,

q4 = C_L4a1-1, b =-asaj 'asay’, c = azai lasa;’,
with defining relations
b=pogsp; , pobpy ' = b%q3'h,
prgspr’ = a3'h, pabprt = (g510)%5 %,
c=poqapy’s Pocpy = clqp e
praap;' = gqite, prepyt = (g5 0)%q; %,
/ , 4394 = q4q3.

Forn > 5 the group Al is generated by -

‘ -1 —2
bo = a2ay ", P1 = 01020y ,

g =ap]’ 3<€<n), b= azay tagay?,
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with defining relations
b=pogsp, ", pobpy ' = b%g3'h,
. maprt=g3'b, pibpr = (6570)°5 7,
Pog; = q;p1, P1g; = qpy ;1 (A< <),
411G = ¢i+13iGi+1 (3 <i<n—2),
, . Qndn—29n = Gn-2qnGn-2,
g =g (3<i<j<n—Ll]i—j>2),
' angj = gign (J #n—2).
O
-.Corollary 3.12 Forn > 5 the commutator subgroup A’ of the Artin group of type
Dy, is finitely presented and perfect. O
3.3.5 TypeE
The preséntatio’n of Ag,, n= 6,7,0r8,1is
Ag, = (a1y ..., an aa; = aja; forl <i<j<n-1Ji-j| >2,
. a;an = apa; fori # 3,
aiai+1ai = a{+1aiai+1 forl<i<n-2

o a3zanas3 :anagan).
. As seen.in figure 3.1 the graph (Ep)odq is connected. So by theorem 3.1
A, = 25, = {U € Ag, : deg(U) = 0}.
The computation of the presentation of A’ is similar to that of A/, .

Theorem 3.13 Forn = 6,7, or 8 the commutator subgroiip A’ of the Artin group
Ag, is a finitely presented group. A%, is the group generated by

-1 =2 : -1 : ~1 ~1
po=agal", p1=aaa;, @=aa; (3<£<n), b=ax] aza;
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with defining relations

b=pogspy’,. pobpy' = b2g3 b,
pigspy = g3'b, pibprt = (g5 '0)%a3%,
Pog; = qjp1,  P14j = ¢ipg p1 (4<j<n),
GG = G161 (3< i <n—2),
Gng30n = 93Gng3,
q; =¢i¢ 3<i<ji<n-—-1]i—j|>2),
Gidn=qngi (4<i<n-1). '

O
Corollary 3.14 Forn = 6,7, or 8 the commutator subgroup A7, of the Artin group
of type E,, is finitely presented and perfect. . 0
3.3.6 Type F

The presentation of Ar, is .

AR, = (a1,a2,a3,a4 : aa; = aja; for |i—j| > 2, L
a1a2a1 = az2a1az,
9030203 = 300303, B ‘
a30403 = 040304).

- As seen in figure 3.1 the graph (Ej,)oqq has two components: I'; and I'y,

where I'; denotes the component containing the vertices a1, az, and I'y the

component containing the vertices a3, as. Let deg; and deg, denote the asso-

ciated degree maps, respectively, so from theorem 3.2

A =28 ={Ue Ap, : deg; (U) = 0 and deg,(U) = 0}.
By a computation similar to that of B, we get the following.

Theorem 3.15 The commutator subgroup A%, of the Artin group of type Fy is the
group generated by S :

pi = dbaza; ®*Y = (b, agllar, 03] (k € 2),

~(e+1 -1 =
Q= a£a3a4( +‘\) = [6657‘13][‘14 1,‘13 1] (¢ € Z),
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with defining relations
-1 -1 (k€ Z) “Lat (Lez)
Pk+1Pg 2Pk »  9e+19p4 04y )
PrqePk+19e+1 = QePkqe+1Pk+r (K, L € Z):

The first two fypes of relations in the above presentation tell us that for
k # 0,1, pr can be expressed in terms of py and p;, and similarly for ¢,. Thus
A%, is finitely generated. However, A7, is not perfect since abelianizing the
above presentation gives A, / A}, ~ Z4
3.3.7 Type H
The presentation of Ay, n =3 or4,is
Ag, = (a1, ...,an : a;a; = aja; for|i —j| > 2,
' ala2ala2a1 = (201020102,
azaHlal = az+1aza1+1 for2<i<n-—1 )
"As seen in figure 3.1 the graph (H,,)oqq is connected So by theorem 3.1
! Ay =2y, ={U € Ay, : deg(U) = 0}.

The computation of the presentation of Af; is similar to that of A’,

Theorem 3.16 For n = 3 or 4 the commutator subgroup Al of the Artin group
Ap, is the group generated by

" pr = afagay () (k€Z), qr=api® (3<L<n),

with defining relations

Prgj = @iprr1 (4 <J<n),
Ph+1Pk+3PraPtoPy (k € Z),
PGsPE+203 Piora s
G019 = ¢Gi+10igi+1 (3 <i<n—1).
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The second relation tells us that for k£ # 0, 1,2, 3, p; can be expressed in

terms of pg, p1, p2, and ps. Thus, A%, is finitely generated. Abelianizing the
| Hy Y8 : g

above presentation results in the trivial group. Thus, we have the following.

Corollary 3.17 For n = 3 or 4 the commutator subgroup .A’ _ of the Artin group of
type Hy, is ﬁmtely generated and perfect. : _ o O

3.3.8 Typel
The presentation of Io(m), m > 5, is
-AIQ(m) = (al,aQ : <a1a2')m = <a2a1>m>.

In figure 3.1 the graph (I2(m))odq is. connécted for m odd and discbnneéted
for m even. Thus, different computations must be done for these two cases.
We have the following. : '

Theorem 3.18 The commutator subgroup Al (m) of the Artin group of type I(m),
m > b, is the free group generated by the (m — 1)-generators

a¥asal (k+1) (ke{0,1,2,...,m —2}),
when m is odd, and is the free group with countably many generators

[a’g’al] (Z € Z\ {_(m/2 - 1)})a [G’{G‘Qaal] (@ E Z, j= 1 2,. m/2 - 3)7
[am/2 %0 a1] (L€ Z\{m/2-1}), [dFas,a1] (K € Z).

when m is even.

3.3.9 Summary of Results

[

Table 3.1 summarizes the results in this section. The question marks (?) in
the table indicate that it is unknown whether the commutator subgroup is
finitely presented. However, we do know that for these cases the group is
. finitely generated. If one finds more general relation equivalences along the
lines of lemmas 3.3 and 3.4 then we may be able to show that these groups
are indeed finitely presented. |
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l finitely generated/ ?resented ‘

perfect

Type I’
Ap ’ yes/yes n=1,2,3:no,
n>4: yes
A n=2:no,n>3:yes" n=2,3,4:no,
By -/ n>5:yes
n=3:yes,n>3:7
Dy, yes/yes n =4:no,
: n > 5:yes
- E, yes/yes - yes
Fy yes/? no
H, yes/? yes -
I(m) (m even) no/no no
(m odd) yes/yes no

Table 3.1: Properties of the commutator subgroups




Chapter 4

. Local Indlcablllty of F|n|te-Type
Artin ‘Groups

Locally indicable groups first appeared in Higman'’s thesis [Hig40a] on group '
rings. He showed that if G is a locally indicable group and R an integral
domain then the group ring RG has no zero divisors, no idempoients other
than 0 and 1, and no units other than those of the form ug (v a unit in R,
g € G). Higman's results have subsequently been extended to larger classes
of groups, for example right-orderable groups. Our primary interest in local
indicability is its application to the theory of right- orderablllty Wthh is'the
topic of chapter.5.

4.1 Definitions

A group G is indicable if there exists a nontrivial homomorphism G— Z
(called an indexing furiction). A group G is locally indicable if every nontriv-
ial, finitely generated subgroup is indicable. Notice, finite groups cannot be
~ indicable, so locally indicable groups must be torsion-free. '

Every free group is locally indicable. Indeed, it is well known that ev-
ery subgroup of a free group is itself free, and since free groups are clearly
indicable the result follows.

Local md1cab1hty is clearly inherited by subgroups The followmg simple
theorem shows that the category of locally indicable groups is preseved under
extensions.

Theorem 4.1 If K, H and G are groups such that K and H are locally indicable and
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fit into a short exact sequence

1—wK 2.0 Y, g1,

_ then G is locally indicable.

- Proof. Letg, . , gn € G, and let <g1, -+, gn) denote the subgroup of G which R
they generate. If ({91, ..., gn)) # {1} then by the local indicability of H there
exists a nontrivial homomorphism f : ¥({(g1, ..., 9n)) — Z. Thus, the map

fov: (g, gn) — 7T

is nontrivial. Else, if (g1, ..., gn)) = {1} then g1, ..., gn € kerp = Im¢ (by
exactness), so.there exist k1,...,k, € K such that ¢(k;) = g;, for all 5. Since

- ¢ is one-to-one (short exact sequence) then ¢ : (ki,...,kn) — (91,...,9n)
is an isomorphism. By the local indicability of K there exists a nontrivial
~homomorphism h : (ki,...,kn,) — Z, therefore the map ‘

hoo™ (g1, gn) — Z

is nontrivial. : o , ' ’ m]

. Corollary 4.2 If G and H are locally indicable then so is G__EB H.

Proof. The seqﬁence '

1—*'H—~£——>G€9HL>G—>1

where ¢(h) = (1, h) and (g, h) = g is exact, so the theorem applies. o

If G and H are groups and ¢ : G — Aut(H). The semidirect product of
G and H is defined to be the set H x G with binary operation

(h1,91) - (h2,g2) = (h1 - g1 * h2,9192) ‘

where g x h denotes the action of G on H determined by‘d), ie. gxh :=
#(g)(h) € H. This group is denoted by H x4 G. :

Corollafy 4.3 If G and H are locally indicable then s0 is H x 6 G.
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Proof. If ¢ : H x4 G — G denotes the map (h,g) — g then keryp = H and
the groups fit into the exact sequence '

1——>H—1£c—1——>H>4¢GL>G—>1

O

The following theorem of Brodskii [Bro80], [Bro84], which was discovered
independently by Howie [How82], [How00], tells us that the class of torsion- v
free 1-relator groups lies inside the class of locally indicable groups Also, for
1-relator groups: locally indicable < torsion free.

Theorem 4.4 A torsion-free 1-relator group is locally indicable.

To show a group is not locélly indicable we need to show there exists a
finitely generated subgroup in which the only homomorphlsm into Z is the
tr1v1a1 homomorphism.

Theorem 4.5 If G contains a ﬁmtely generated perfect sugroup then G is not locally
indicable.

Proof. The image of a commutator [a,b] := aba~'b~! under a homomor-
phism into Z is 0, thus the image of a perfect group is trivial. m]

4.2 The Local Indicability of Finite-Type Artin Groups

Since finite-type Artin groups are torsion-free (see section 2.8), theorem 4.4
implies that the Artin groups of type Ao, By, and I>(m) (m > 5) are locally
indicable. In this section we determine the local 1nd1cab1hty of all' irreducible
finite-type Artin groups.

It is of interest to note that the discussion in section 3. 2 in particular the-
orem 3.2, shows that an Artin group Ar and its commutator subgroup Ap f1t<
into a short exact sequence: : T

¢

l— A, — Ap ——— Z™ — 1,

lwith.the exception of type Fy which at this time remains undetermined.
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where m is the number of connected components'in I';44, and ¢ can be iden-
tified with the abelianization - map. Thus, the'local indicability of an Artin.
group Ar is completely determined by the local indicability of its commuta-
tor subgroup' A~ (by theorem 4.1). In other words,

Ar'is locally indicable <=> A is locally indicable.

This gives another proof that the Artin groups of type Az, By, and I(m) (m >
5) are locally indicable, since their corresponding commutator subgroups are
free groups as shown in Chapter 3.

. . ’ . Y

421 TypeA

Ay, is clearly locally indicable since A4, =~ Z, and, as noted above, AA;, is
also locally indicable.

For A,4,, theorem 3.8 tells us Ay ‘a5 18 the semidirect product of two. free
groups, thus A’ is locally indicable. It follows from our remarks above that
Ay, is also locally indicable.

As for Ay, n > 4, corollary 3.7 and theorem 4 5 1mply that Ay, is not
locally indicable.

Thus, we have the following theorem.

Theorem 4.6 A A, 18 locally indicable ifand only if n = 1,2, or 3.

422 Type B

We saw above A B, is locally indicable. For n = 3 and 4 we argtie as follows.

Let Pt} denote the (n + 1)-pure braids in B, 41 = Ay, that is the braids
which only permute the first n-strings. Letting b1, ..., b, denote the genera-
tors of Ap, atheorem of Crisp [Cri99] states '

Theorem 4.7 The map
S ¢ Ap, — Aa,

defined by
' by — dz‘, bp — a2

is an injective homomorphism_onto Pfl’j_'ll That is, Ag,, ~ 79”+1 < %n+1 Ag,.
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By “forgetting the n' —strand” we get a homomorphism f : ﬁi’ll — By,

-which fits into the short exact sequence

1—>K—>’Pgill %%n—>1,'

where K = ker f = {8 € PJ{] : the first n strings of 3 are trivial}. It is
known that K ~ F,, the free group of rank n. Since F, is locally indicable

.and B,, (n = 3,4) is locally indicable then so is Ap,, for n = 3, 4. Futhermore,

the above exact sequence is actually a split exact sequence so .A Bn = ~ PRt~

F,, x%B,.

As for Ap,, n > 5, corollary 3.10 and theorem 4.5 imply that Ap, is not
locally indicable, for n > 5.

Thus, we have the following theorem.

- Theorem 4.8 Ap, is locally indicable if and only if n = 2,3, or 4.

423 TypeD

It follows corollary 3.12 and 4.5 that Ap, is not locally indicable for n > 5. As
for Ap,, we will show it is locally indicable as follows.
A theorem of Crisp and Paris [CP02] says:

Theorem 4.9 Let Fy,_; denote the free group of rank n — 1. There is an action
p:Aa,_, — Aut(Fn_1) such that Ap, ~ F,_1 X Aga,_, and pis faithful.

Since A4, and Fj3 are locally indicable, then so is Ap,. Thus, we have the
following theorem.

Theorem 4.10 A, is locally indicable if and only if n = 4.

424 TypeFE

Since the commutator subgroups of Ag, , n = 6,7,8, are finitely generated )
and perfect (corollary 3. 14) then Ag, is not locally indicable.

~4.2,5 Type F.

Unfortunately, we have yet to determine the local indicability of the Artin
group Apr,. :
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4.2.6 Type H

Since the commutator subgroups of Ay, n = 3,4, are finitely generated and
perfect (corollary 3.17) then Ay, is not locally indicable. .

4.2.7 Type I
As noted above, since the commutator subgroup Al my Of Agmy (m 2 5) is
a free group (theorem 3.18) then A’ my 1 locally 1nd1cable and therefore so is

Ap,(m)- One could also apply theorem 4.4 to conclude the same result.




Chapter 5
Open Questions: Orderability

I

In this chapter we discuss the connection between the theory of orderable
groups and the theory of locally indicable groups. Then we discuss the current
state of the orderability of the irreducible finite-type Artin groups.

51 Orderable Groups

A group or monoid G is right-orderable if there exists a strict linear ordering
< of its elements which is right-invariant: g < h implies gk < hk for all g, h, k
in G. If there is an ordering of G which is invariant under multiplication on
both sides, we say that G is orderable or for emphasis bi-orderable .

Theorem 5.1 G is right-orderable if and only if there exists a subset P C G such
that: ' S '

P - P C P (subsemigroup),
G\ {1} =PupPl

Proof. Given P define < by: g < hiff hg™ € P. Given < take P = {g € G :
1<g} : O

In addition, the ordering is a bi-ordering if and only if also
| | gPglCP, Vge G.

Theset P C G in the previohs theorem is called the positive cone with respect
to the ordering <. : :

72
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" The class of right-orderable groups is closed under: subgroups, direct
products, free products, semidirect products, and extension. The class of or-
derable groups is closed under: subgroups, direct products, free products, but
not necessarily extensions. Both left-orderability and bi-orderability are local
properties: a group has the property if and only if every finitely- generated
* subgroup has it.

Knowing a group is right-orderable or bi- orderable provides useful infor-
mation about the internal structure of the group. For example, if G is right-
orderable then it must be torsion-free: for 1 < g implies g < g% < g <

< g” < ---. Moreover, if G is bi-orderable then G has no generalised torsion
(products of conjugates of a nontrivial element being trivial), G has unique .
roots: g" = h™ = g = h, and if [¢", h] = 1 in G then [g, h] = 1. Further con-
sequences of orderablility are as follows. For any group G, let ZG denote the
group ring of formal linear combinations n1g1 + - - - nkg.

Theorem 5.2 IfG is right—orde_mble, then ZG has no zero divisors.

Theorem 5.3 (Malcev, Neumann) If G is bi-orderable, then ZG embeds in a division
ring. i ‘

Theorem 5.4 (LaGrange Rhemtulla) IfGis rlght orderable and H is any grooup,
then ZG ~ ZH implies G ~ H~ '

It may be of interest of note that theorem 5.2 has been conjectured to hold for
a more general class of groups: the class of torsion-free groups. This is known
as the Zero Divisor Conjecture. At this t1me the Zero Divisor Conjecture is
still an open question. . '
The theory of orderable groups is well over a hundred years old. For a

general exposition on the theory of orderable groups see [MR77] or [KK74].

~ Conrad [Con59] investigated the structure of arbitrary right-orderable
groups, and defined a useful concept which lies between fight—inizariance and
bi-invariance. A right-ordered group (G, <) is said to be of Conrad type if for
all a,b € G, with 1 < d, 1 < b there exists a positive integer‘N such that -
a < aVb. The following theorems gives the connection between orderable
groups and locally indicable groups (see [RR02]).

Theorem 5.5 For a group G we have
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bi-orderable = locally indicable = right-orderable.

Theorem 5.6 A group is locally indicable if and only if it admzts a right- ordermg of
Conrad type '

One final connection between local indicability and rlght orderability was
glven by Rhemtulla and Rolfsen [RR02]. -

Theorem 5.7 (Rhemtulla, Rolfsen) Suppose (G, <) is right-ordered and there is a
finite-index subgroup H of G such that (H, <) is a bi-ordered group. Then G is
locally indicable.

An application of this theorem is as follows. It is known that the braid
groups B, = Ay, _, are right orderable [DDRW02] and that the pure braids.~
P, are bi-orderable [KR02]. However, theorem 4.6 tells us that B, is not lo- .
- cally indicable for n > 5 'therefore, by theorem 5.7, the bi-ordering on P,, and
the right-ordering on 9B,, are incompatible for n > 5. _ B

‘5.2 Finite-Type Artin Groups

The first proof the that braid groﬁps B, enjoy a right-invariant.total ordering
was given in [Deh92], [Deh94]. Since then several quite different approaches
have been applied to understand this phenomenon.! However, it is unknown
whether all the irreducible finite-type Artin groups are right-orderable. For
" a few cases one can use theorem 5.6 along with the results of chapter 4 to -

conclude right-orderability.

One approach is to reduce the problem to showing that the positive Artin
monoid is right-orderable. 4 |

5.2.1 Ordering the Monoid is Sufficient

We will show that for a Coxeter graph T' of finite-type the Artin group Ar
' is right-orderable (resp. bi-orderable) if and only if the Artin monoid A} is
 right-orderable (resp. bi- orderable). One direction is of course trivial.

For a wonderful look at this problem and all the differents approaches used to un-
derstand it see the book [DDRW02].
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Let Ar be an Artin group.of finite-type. Recall that theorems 2.17 and 2.18 -
* tell us that: , |
For each U € Ar there exist Uy, Uy € Af, where U, is central in Ar such that

U =UU;"

All decompositionS of elements of Ar in this section are assumed to be of this
form. ' o .

'Suppose Af is right-orderable, let <* be such a right-invariant linear or-
dering. We wish to prove that Ar is right-orderable.

‘The following lemma indicates how we should extend the ordering on the
monoid to the entire group. '

Lemma 5.8 If U € Ar has two decompositions;
U= nUs = 00050
where U;, Uz € At and Ué, U, central in Ap, then
. Ur <t Uy <= Ty <+ Ta.

Proof. U = U Uy ' =TU,U, ! implies UUy =, U1Uy, since Us, Us central and
A canonically injects in Ar. ‘ ‘
If Uy <+ Us then

= U1 Uy <t UyUs since <* right-invariant,
= 31Uy <t UslU,  since Us central,

= U,Uy <* UqUy  since Ur1Us =, UqUs,

= U, <t U,, '

- where the last implication follows from the fact that if U; * > U then either:
(i) U1 = Ug, in which case U = 1 and so U; = U,. Contradiction. (i)
U, * > U,, in which case U Uy t > UyU,. Again, a contradiction.

The reverse implication follows by symmetry. . ‘ o

This lemma shows that the follow_ihg set is well defined:

P = {U cAr: U hasA decomposition U = U1U2"1 where Uy <t Uy }.
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It is an easy exércise to check that P is a positive cone in Ar which con-
tains P*: the positive cone in Af with respect to the order <*. Thus, the
right-invariant order <* on Aj extends to a right-invariant order < on Ar.
Furthermore, one can check that if <* is a bi-invariant order on Af: then P
satisfies:

UPUtCP, VUEA.
" Thus, the bi-invariant order <% on .Aff extends to a bi-invariant order < on
Ar. o

by giving an explicit order condition.

5.2.2 Reduction to Type Eg

Table 2.1 shows that every irreducible finite-type Artin group injects into one
type A, D, or E. Thus, if Artin groups of these three types are right-orderable
then every finite-type Artin group is right-orderable. It is know that Artin
groups of type A, i.e. the braid groups, are right orderable. Also, by theorem
4.9, and the fact that free groups are right-orderable, it follows that Ap,, is

Open question. Determine the orderability of the finite-type Artin monoids -

right-orderable. Finally, the Artin group of types Es and E7 naturally live '

inside Ag;, so it suffices to show Ag; is right-orderable. At this point in time
it is unknown whether Ag, is right-orderable. As section 5.2.1 indicates it is
enough to decide whether the Artin monoid .AEB 1is right-orderable.
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a-chain, see chain,a-chain

abelianize, 42
- Artin
extra large type, 36
finite-type, 19
group, 19
degree, 42
pure Artin group, 19
irreducible, 19, 34
monoid, 20
length, 20
parabolic subgroup, 36
system, 18 '

bilinear form B,7

chain
‘a~chain, 22
source, 22
target, 22
elementary, 22
source, 22
target, 22
imminent, 24
length, 23
primitive, 22
source, 22
target, 22
simple, 24
chain operator, 24
common divisor, 28
common multiple, 28 -

commutator, 41 -
commutator subgroup, 41
conjugacy problem, 14
Coxeter _
_ element
| maximal length, 10
extra large type, 15 .
graph, 5
finite-type, 15 -
positive definite, 15
type, 15
group, 5
universal, 5
length, 6
‘matrix, 4
finite-type, 15
parabolic subgroup, 11
syétem, 5
rank', 5

deletion condition, 11

~divides, 21

on the left, 21

elementary simplification
firstkind, 14 =
second kind, 14
elementary transformation, 20
exchange condition, 10
strong, 10
extension, 66

freely equal, 41
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fundamental element, 34

greatest common divisor, 28
group
Artin, see Artin, group
Coxeter, see Coxeter, group
perfect, 44
symmetric, 5
group ring, 73

hyperplane
arrangement of, 38
central, 38
simplicial, 38

indicable, 66
irreducible, 13

least common multiple, 28
length, 19

linear, 36 :

locally indicable, 1, 66

matrix
Artin, see Artin, matrix
Coxeter, see Coxeter, matrix

orderable, 1, 72
bi-orderable, 1, 72
Conrad type, 73
right, 1,72

positive cone, 72

positive definite, 7
positive equivalent, 20
positive semidefinite, 8
positive transformation, 20

quadratic factor, 32

reduced expression, 6
reduction property, 20, 21
reflection, 7, 38
Reidemeister

rewriting function, 41
Reidemeister-Schreier method, 40
reverse, 21 :
root, 9

negative, 9

positive, 9

simple, 9
root system, 8

Schreier-system, 40
semidirect product, 67
sequence
a-sequence, 29
square-free, 32
subgraph
induced, 13
system
Artin, see Artin, system
Coxeter, see Coxeter, system

word problem, 14

Zero Divisor Conjecture, 73




