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Abstract 

This thesis consists of two parts. The first part (chapters 1 and 2) consists of an 
introduction to theory of Coxeter groups and Artin groups. This material, for 
the most part, has been known for over thirty years, however, we do mention 
some recent developments where appropriate. In the second part (chapters 
3-5) we present some new results concerning Artin groups of finite-type. In 
particular, we compute presentations for the commutator subgroups of the 
irreducible finite-type Artin groups, generalizing the work of Gorin and Lin 
[GL69] on the braid groups. Using these presentations we determine the local 
indicability of the irreducible finite-type Artin groups (except for F4 which 
at this time remains undetermined). We end with a discussion of the current 
state of the right-orderability of the finite-type Artin groups. 
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Chapter 0 
Introduction and Statement of Results 

0.1 Introduction 

A number of recent discoveries regarding the Artin braid groups Q3n com­
plete a rather interesting story about the orderability1 of these groups. These 
discoveries were as follows. 

In 1969, Gorin and Lin [GL69], by computing presentations for the com­
mutator subgroups *8'n of the braid groups Q3n, showed that 233 is a free group 
of rank 2, is the semidirect product of two free groups (each of rank 2), and 
93̂  is finitely generated and perfect for n > 5. It follows from these results 
that <Bn is locally indicable2 if and only if n = 2,3, and 4. 

Neuwirth in 1974 [Neu74], observed <8n is not bi-orderable if n > 3. How­
ever, Patrick Dehornoy [Deh94] showed the braid groups are in fact right-
orderable for all n. Furthermore, Dale Rolfsen and Jun Zhu [RZ98] proved 
(non-constructively3) that the subgroups Vn of pure braids are bi-orderable. 

So, by this point in time (1998), the orderability of the braid and pure braid 
groups were known. What remained unknown was the relationship between 
a right-ordering on !B n and a bi-ordering on Vn- That is, does a right-ordering 
on restrict to a bi-ordering on Vn? 

This question was recently answered by Rolfsen and Rhemtulla [RR02] 
J A group G is right-orderable if there exists a strict total ordering < of its elements 
which is right-invariant: g < h implies gk < hk for all g,h,k e G. If in addition g < h 
implies kg < kh, the group is said to be orderable, or for emphasis, bi-orderable. 

2A group G is locally indicable if for every nontrivial, finitely generated subgroup there 
exists a nontrivial homomorphism into Z (called an indexing function). 

3Rolfsen and Djun Kim construct a bi-ordering on Vn in [KR02]. 

1 



Chapter 0. Introduction and Statement of Results 2 

by determining the connection between local indicability and orderability. In 
particular, they showed that since the braid groups *Bn are not locally indi-
cable for n > 5 a right-ordering on 25n could not restrict to a bi-ordering on 
•p 4 ' 

This thesis is concerned with investigating whether these results on the 
braid groups extend to all finite-type Artin groups. In particular, we are con­
cerned with determining the local indicability of the finite-type Artin groups. 

0.2 Outline and Statement of Results 

In Chapter 1 we give a quick yet thorough introduction to the theory of Cox­
eter groups. 

In Chapter 2 we introduce Artin groups and develop their basic theory. 
Most of these results have been known for over thirty years, however, we do 
mention recent developments where appropriate. 

The remaining chapters consist of recent and new results. 
In Chapter 3 we follow the direction of Gorin and Lin and compute pre­

sentations of the commutator subgroups of the finite-type Artin groups. The 
results here are new (aside from the particular case of the braid groups which 
were done, of course, by Gorin and Lin). 

In Chapter 4 we use these presentations to extend the results of Gorin and 
Lin on the braid groups to the class of finite-type Artin groups as follows. 

Theorem 0.1 The following are finitely generated and perfect: 

!• A'Anforn>4, 

2. A'Bnfor n > 5, ~ • 

3. A'DJorn>t>, 

4. A'Enforn = 6,7,8, 

5. A'Hnforn = 3,4. 

Hence, the corresponding Artin groups are not locally indicable. 
4see theorem 5.7. 
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On the other hand, we show the remaining finite-type Artin groups are 
locally indicable (excluding the type F 4 which at this time remains undeter­
mined) . 

In Chapter 5 we discuss the orderability of the finite-type Artin groups. 
We show that in order to determine the right-orderability (bi-orderability) of 
the finite-type Artin groups it is sufficient to determine whether the positive 
Artin monoid is right-orderable (bi-orderable). Furthermore, we show that 
in order to prove all finite-type Artin groups are right-orderable it suffices to 
show the Artin group of type Eg is right-orderable. 



Chapter 1 
Basic Theory of Coxeter Groups 

The first comprehensive treatment of finite reflection groups was given by 
H . S.M. Coxeter in 1934. In [Cox34] he completely classified the groups and 
derived several of their properties, using mainly geometrical methods. He 
later included a discussion of the groups in his book Regular Poly topes [Cox63]. 
Another discussion, somewhat more algebraic in nature, was given by E. Witt 
in 1941 [Wit41]. A more general class of groups; the Coxeter groups, to which 
finite reflection groups belong, has since been studied in N . Bourbaki's chap­
ters on Lie Groups and Lie Algebras [Bou72], [Bou02]. Another discussion 
appears in Humphrey's book Reflection Groups and Coxeter Groups [Hum72]. 

In this chapter we develop the theory of Coxeter groups with emphasis 
on the "root system" (following Deodhar [Deo82]). The approach we take 
here is precisely that of Humphreys [Hum72].. A l l of the results found in 
this chapter may be found in some form or another in Humphreys book , 
however, its inclusion here has primarily two purposes: (1) to make this thesis 
self contained for the convience of the reader and (2) to draw a comparison 
with the theory of Artin groups developed in chapter 2. The material has been 
reorganized and emphasis has been put on the parts of the theory we wish to 
compare with the theory of Artin groups. 

I. 1 Definition 

Let S be a finite set. A Coxeter matrix over 5 is a matrix M = (mss>)SjSies 
indexed by the elements of S and satisfying 

• (a) mss = 1 if s € S, 

4 



Chapter 1. Basic Theory of Coxeter Groups 5 

(b) mss> = msis E {2, . . . , oo} if s,s' E S and s ^ s'. 

A Coxeter matrix M = (mss')S:S>es is usually represented by its Coxeter graph 
F. This is defined by the following data. 

(a) S is the set of vertices of F. 
(b) Two vertices s,s' E S are joined by an edge if mssi > 3. 
(c) The edge joining two vertices s,s' E S is labelled by mss> if mss> > 4. 

The Coxeter system of type F (or M) is the pair (W, S) where W is the group 
having the presentation 

W = (sES : (ss')m°°' = 1 if mssl < oo). 

The cardinality |5| of 5. is called the rank of (W, S). The canonical image 
of S in W is a generating set which may conceivably be smaller than S, that is, 
under the above relations two generators in S may be equal in W. In 1.3 we 
show this does not happen. Furthermore, we show in theorem 1.14 that no 
proper subset of 5 generates W. In the meantime, we may allow ourselves to 
write s E W for the image of s E S, whenever this creates no real ambiguity 
in the arguments. We refer to W itself as a Coxeter group of type T (or M), 

. when the presentation is understood, and denote it by Wp. Although a good 
part of the theory goes through for arbitrary S, we shall always assume that 
S is finite. However, this does not mean that the Coxeter group W is finite. 

Here are a couple of examples. 

Example 1.1 Ifmssi = oo when s ^ s' then W is the free product of\S\ copies of 
,Z/2Z. This group is sometimes referred to as a universal Coxeter group. 

Example 1.2 It is well known that the symmetric group on (n + l)-letters is the 
Coxeter group associated with the Coxeter graph; 

• • • • • • > • • 
1 - 2 • 3 n - 2 n - 1 n 

where vertex i corresponds to the transposition (i i + 1). 

When a group is given in terms of generators and relations it is quite dif­
ficult to say anything about the group - for example, is the group trivial or 
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not? In our case it is quite easy to see that W has order at least 2. Con-
sider,the map from S into {±1} , defined by taking each element of S to —1. 
Since this map takes each relation (ss')m^' to 1 it determines a homomor-
phism e : W —> {±1} sending the image of each s G S to — 1. The map e is 
the generalization for an arbitrary Coxeter group of the sign character of the 
symmetric group. 

Theorem 1.3 There is a unique epimorphism e : W —> {±1} sending each gener­
ator s G S to —1. In particular, each s has order 2 in W. 

Note that when \S\.= 1, W is just a group of order 2, i.e. Z/2Z. When 
\S\ = 2, say S = {s, s'}, W is the dihedral group of order 2mssi < oo. 

1.2 Length Function 

We saw that the generators s G S have order two in W, so each w ^ 1 in 
W can be written as a word in the generators with no negative exponents: 
w = s\S2 • • • sr for some Sj (not necessarily distinct) in S. If r is as small as 
possible we call it the length of w, written l(w), and we call any expression 
of w as a product of r elements of S a reduced expression. By convention 
1(1) = 0. Note that if s\S2---sr is a reduced expression then so are all initial 
segments, i.e. S1S2 • • • Si, i < r. Some basic properties of the length function 
are included in the following lemma, whose proof is straightforward. 

Lemma 1.4 The length function I has the following properties: 

(LI) l(w) = l(w~l), . 

(12) l(w) = lijfw£S, 

(L3) l(ww') < l(w) + l(w'), 

(LA) l(ww') > l(w) - l(w'), 

(L5) l(w) - V< l(ws) < l(w) + l,forseS and w G W. 

Property (Lb) tells us that the difference in the lengths of ws and w is at 
most 1, the following theorem tells us that this difference is exactly 1. 

Theorem 1.5. The homomorphism e : W — • {±1} of theorem 1.3 is given by 
e(w) = (-l)l(-w\ Thus, l(ws) = l(w) ± 1, for alls G S and w G W. Similarly for 
l(sw). 
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Proof. Let w € W have reduced expression si«2 • • • sr, then 

e(w) = e(Sl)e(s2)---e(sry=(-iy = (-iyW. 

Now e(ws) = e(w)e(s) = —e(w) implies l(ws) ^ l(w). • 

In our study of Coxeter groups we will often use induction on l(w) to 
prove theorems. It will therefore be essential to understand the precise re­
lationship between l(w) and l(ws) (or l(sw)). It is clear that if w <G W has 
a reduced expression ending i n s e 5 then l(ws) = l(w) — 1, however it is 
not clear at this point whether the converse is true: for w € W and s € S if 
l(ws) = l(w) — 1 then w has a reduced expression ending'in s. This turns out 
to be true, see section 1.5, but to prove this we need a way to represent W 
concretely. 

1.3 Geometric Representation of W 

Since Coxeter groups are generalizations of finite orthogonal reflection 
groups it should be no surprise that we wish to view W as a "reflection 
group" on some real vector-space V. It is too much to expect a faithful repre­
sentation of W as a group generated by (orthogonal) reflections in a euclidean 
space. However, we can get a reasonable substitute if we redefine a reflection 
to be merely a linear transformation which fixes a hyperplane pointwise and 
sends some nonzero vector to its negative. 

Define V to be the real vector space with basis {as : s € S} in one-to-one 
correspondence with S. We impose a geometry on V in such a way that the 
"angle" between as and ay will be compatible with the given m s s / . To do 
this, we define a symmetric bilinear form B on V by requiring 

B(as, a , = — cos . 
mss> 

In the case of mssi — oo the expression is interpreted to be —1. From this 
definition we have B(as,as) = 1, while B(as,a's) < 0 for s ^ s'. Note that 
B is not necessarily -positive definite, i.e. there are Coxeter groups W for which 
some v € V does not satisfy B(v, v) > 0. Consider the following example. 
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Example 1.6 For the universal Coxeter group of rank two> 

W = ( s i , s 2 : si,si), 

take v = aSl + aS2 G V. It is easy to check B(aSl + aS2, aSl + aS2) = 0. 

Moreover, the following example shows that B may not even be positive 
semidefinite. 

Example 1.7 For the Coxeter group 

W = {si, s2, s 3 : si, s2,, si, (sis2)4, ( s i s 3 ) 4 , (s 2 s 3 ) 4 ) , 

take v — asi + aS2 + aS3 G V. Since B(aSi, aSj) = — cos f < -1 for i ^ j, then 
B(v,v) < - 1 . i 

For each s G S we can now define a reflecton as : V —> V by the rule: 

as(A) = \-2B(as,\)as. 

Clearly as(as) = —as, while as fixes i f s = {A G V : B(as, A) = 0} pointwise. 
In particular, we see that as has order 2 in GL(V). 

Theorem 1.8 There is a unique homomorphism a : W —• GL(V) sending s to as, 
and the group a(W) preserves the form B on V. Moreover, for each pair s, s' G 5, 
the order of ss' in W is precisely mss> 

For a proof of this theorem see Humphreys [Hum72]. To avoid cumber­
some notation, we usually write w(as) to denote a(w)(as). The last statement 
in the theorem removes the possibility of s = s' in W even though s ^ s' in 
S, as promised in section 1.1. We will show next that this representation is 
indeed a faithful one. To do this we need to introduce the concept of a root 
system. 

1.4 Root System 

For a Coxeter system (W, S) a root system $ of W is a set of vectors in V 
satisfying the conditions: 

(RI) $ n R a = { ± a } for all a G $ 

(R2) s$ = $ for all s G S 
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The elements of $ are called roots. We will only be concerned with the specific 
root system given by $ = {w(cts) : w G W, s G S}. It is clear that axiom (R2) is 
satisfied for this choice of $, to check axiom (RI) it suffices to note that since 
W (more precisely o(W)) preserves the form B onV (theorem 1.8), $ is a set 
of unit vectors. Note that $ = —<& since if /3 = w(as) G <fr then — f3 = ws(as) 
is also in 3>. If a is any root then it can be expressed in the form 

OJ = E C s a s ( C s € R). 
ses 

If cs > 0 for all s G S then we call a a positive root and write a > 0. Similarly, 
if cB < 0 for all s € S then we call a a negative root and write a < 0. We 
write $ + and $~ for the respective sets of positive and negative roots. It 
may come as some surprise that these two sets exhaust this follows from 
the following theorem. The proof of this theorem is nontrivial, we refer the 
reader to Humphreys [Hum72] for proof. The set of roots {as : s € S} are 
called simple roots. 

Theorem 1.9 Let w e W and s G S. Then 

l(ws) > l(w) iff w(as) > 0. 

Equivalently, 

l(ws) < l(w) iff w(as) < 0. 

This tells us the precise criterion for l(ws) to be greater than l(w): w must 
take as to a positive root. This is the key to all further combinatorial proper­
ties of W relative to the generating set 5. 

Corollary 1.10 The representation a : W —> GL(V) is faithful. 

Proof. Let w G Ker(a). If w ^ 1 then it has reduced expression s\S2 • • • sr 

where r > 1. Since l(wsr) = r - 1 < l(w) then w(aSr) < 0 by theorem 1.9. But 
W(O>ST) = o S r > 0, which is a contradiction. • 

Another consequence of Theorem 1.9 is that the length of w e W is com­
pletely determined by how it permutes For w G W let IT(w;) denote the set 
of positive roots sent to negative roots by w, i.e U(w) — {a G $ + : w(a) < 0}. 
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Theorem 1.11 (a) If s G S, then s sends as to its negative, hut permutes the re­
maining positive roots. That is,U(s) = {as}. 
(b)Forallw eW,l{w) = \U(w)\. 

This theorem provides valuable information about the internal structure 
of W, see section 1.5. We refer the reader to Humphreys [Hum72] for the 
straightforward proof. 

If W is infinite the length function takes on arbitrarily large values (recall 
we are assuming S is finite). It follows from theorem 1.11 that $ is infinite. 
One the other hand, if W is finite ($ is also finite by definition) it contains a 
unique element of maximal length . Indeed, clearly W must contain at least 
one element of maximal length, say wo- For s G S, l(wos).< l(wo) so wo(as) < 
0. Thus, WQ sends all positive roots to negative roots, i.e. U(WQ) = $ + . Sup­
pose that there is another element w\ G W of maximal length, then u>f1 is also 
of maximal length and so n(u;^ 1) = It follows that wow^1(^+) = $ + , so 
/ ( w o ^ r 1 ) =

 0- Therefore wo — w\ so we have uniqueness. Since WQ and WQ1 

have the same length uniqueness of the maximal element implies wo = WQ1, 
moreover it follows from theorem 1.11 that l(wo) = |$+|. 

1.5 Strong Exchange Condition 

We are now in a position to prove some key facts about reduced expressions 
in W, which is at the heart of what it means to be a Coxeter group. 

Theorem 1.12 (Exchange Condition) Let w = sx • • • sr (si G S), not necessarily 
a reduced expression. Suppose a reflection s G S satisfies l(ws) < l(w). Then there 
is an index ifor which ws = s\ - ••§}••• sr (omiting s j . If the expression for w is 
reduced, then i is. unique. 

There is a stronger version of this theorem, called the Strong Exchange 
Condition in which the simple reflection s can be replaced by any element 
w G W which acts on V as a reflection, in the sense that there exists a unit 
vector a G V for which w(\) = A - 2B(X, a)a. It turns out that the vector 
a must be a root for w to act on V in this way. On the other hand, to each 
positive root a G $ + there is a w G W which acts on V as a reflection along 
a. Indeed, take w' G W, s G S such that a — w'(as). Then w = w's(w')~1 is 
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such an element'. Thus, there is a one-to-one correspondence between the set 
of positive roots $ + and the set of reflections in W. For a complete discussion 
see Humphreys ([Hum72] sec. 5.7,5.8). 

Before we prove theorem 1.12 we need to make the following observa­
tion. If s, s' G S and w G W satisfy ay = w(as) then wsw~l —. s'. Indeed, 
tusu;~1(A) = w(w~1(X) - 2B(w'1 (X), as)as) and since B is W-invariant the 
result follows. 
Proof. Since l(ws) < l(w) then w(as)' < 0. Because a s > 0 there exists 
an index i < r for which SJ + I • • • sr(as) > 0 but SjSj+i • • • sr(as) < 0. From 
theorem 1.11 we have Sj+i • • • sr(as) = aSi, and by the above observation 
Si+i • • • s r s s r • • • Si+i = Si, from which it follows ws = si • -.- s~i • • • sr. 

In case l(w) = r consider what would happen if there were two distinct 
indices i < j such that ws = si • • • si • • • sr = si • • • s~j • • • sr. After cancelling, 
this gives s , + i • • • Sj = S f • Sj-i, or Si • • • Sj = s^+i • • • Sj-±, allowing us to 
write w = si • • • si • • • s~j • •'• sr. This contradicts l(w) = r. • 

Corollary 1.13 (a) (Deletion Condition,) Suppose w = si • • • sr (si G S), with 
l(w) < r. Then there exists i < j such that w = s\ • • • s} ••• • Sj • • • sr. 
(b) If w = s\ • • • sr, (si G S), then a reduced expression for w may be obtained by 
omitting on even number of S j . 

Proof. (a) There exists an index j such that l(w'sf) < l(w') where w' = 
s\---Sj-i. Applying the exchange condition gives W'SJ = s i • • • si • • • Sj-i, 

allowing us to write w = W'SJ • • • sr = s i • • • si • • • s~j • • • sr. • 

1.6 Parabolic Subgroups 

In this section we show that for a Coxeter system (W, S) the subgroup of W 
generated by a subset of S is itself a Coxeter system with the obvious Coxeter 
graph. 

Let (W, S) be a Coxeter system with values mssi for s, s' G S. For a subset 
I C S we define Wj to.be the subgroup of W generated by / : At the extremes, 

= 1 and Ws = W. We call the subgroup Wj a parabolic subgroup . 
(More generally, we refer to any conjugate of such a subgroup as a parabolic 

http://to.be
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subgroup.) Let li denote the length function on Wj hvterms of the generators 
I. 

Theorem 1.14 (a) Tor each subset Iof S, the pair (Wi, I) is a Coxeter system with 
the given values mss'. 
(b) Let Id S. If w = s\- • • sr (si G S) is a reduced expression, and w G Wi, then 
all Si G / . In particular, the function I agrees with the length function li on Wj, and 
Wins = i. 
(c) The assignment 1i—• Wi.defines a lattice isomorphism between the collection of 
subsets of S and the collection of subgroups Wi ofW. 
(d) S is a minimal generating set for W. 

Proof. For (a). The set I and the corresponding values mss> give rise to an 
abstractly defined Coxeter group Wj, to which our previous results apply. In 
particular, Wi has a geometric representation of its own. This can obviously 
be identified with the action of the group generated by all as (s G /) on the 
subspace Vi of V spanned by all as (s G /), since the bilinear form B restricted 
to Vi agrees with the form Bi defined by Wj. The group generated by these 
as is just the restriction to Vj of the group cr(Wi). On the other hand, Wi maps 
canonically onto Wi, yielding a commutative triangle: 

Wi — • GL(V) 
\ / 

Wi 

Since the map Wi —> GL(Vi) is injective by corollary 1.10, we conclude 
that Wi is isomorphic to Wi and is therefore itself a Coxeter group. 

For (b), use induction on l(w), noting that Z(l) = 0 = Z/(l). Suppose w ^ 1 
and let s = sr. Since w G Wi it also has a reduced expression w = t\ • • • tq, 
where ti G I. Now, 

i 

w(as) = as + ̂ 2ciati (CJ G R) . 
i=i • ' 

According to theorem 1;9 l(ws) < l(w) implies w(as) < 0, so we must have 
ti = s for some i, forcing s E l . Now, ws = s\ • • • s r _ i G Wi, and the-expres-
sion is reduced. The result follows by induction. 
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To prove (c), suppose I, J c S. If W> C Wj, then, by (b), J = W> n 
5 C Wj n 5 = J Thus 7 c J (resp. / = J) if and only if W 7 c Wj (resp. 
Wj — Wj). It is clear that W / U J is the subgroup generated by W> and Wj. 
On the other hand, (b) implies that W / n j = Wj n Wj. This yields the desired, 
lattice isomorphism. To prove (d), suppose that a subset / of S generates W 
then Wj = W = Ws, so by (c) I = S. • 

If T is the Coxeter graph associated with the Coxeter system (W, S) then 
theorem 1.14 tells us that the Coxeter graph associated with (Wj,I) is pre­
cisely Tj: the subgraph induced by I, that is, the subgraph of T with vertex 
set I and all edges (from F) whose endpoints are in / . Another way to view 
this result is that every induced subgraph of F is a Coxeter graph for some 
(parabolic) subgroup of W. 

We say that the Coxeter system (W, S) is irreducible if the Coxeter graph 
is connected. In general, let Fx, ..., Fr be the connected components of F, 
and let ij be the corresponding sets of generators from S, i.e. the verticies 
of Tj. Thus if s G Ii and s' € Ij, we have mssi = 2 and therefore ss' = s's. 
The following theorem shows that the study of Coxeter groups can be largely 
reduced to the case when F is connected. 

Theorem 1.15 Let (W, S) have Coxeter graph F, with connected components Fi, 
... ,.Fr, and let Ii,... ,Ir be the corresponding subsets ofS. Then 

w = wh®---®wIr, 

and each Coxeter system (Wiv Ii) is irreducible. 

Proof. Since the elements of Ii commute with the elements of Ij, i ^ j, it is 
clear that the indicated parabolic subgroups centralize each other, hence that 
each is normal in W. Moreover, the product of these subgroups contains S 
and therefore must be all of W. According to theorem 1.14(c), for each 1 < 
i < r - 1, (Wh Wh... Wh) n W / i + 1 = {1}. It follows that W = Wh ® • • • 0 WIr 

(for example, see [Gal98]). . • 
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1.7 The Word and Conjugacy Problem 

Let a group G be given in terms of generators and relations. 
(i) For an arbitrary word w in the generators, decide in a finite number of 

steps whether w defines the identity element of G, or not. 
(ii) For two arbitrary words w\, w2 in the generators, decide in a finite 

number of steps, whether w\ and u>2 define conjugate elements of G, or not. 
The problems (i) and (ii) are called the word problem and the conjugacy 

problem, respectively, for the presentation defining G. It is shown in [Nov56], 
[Boo55] that there exist presentations of groups in which the word problem is 
not solvable, and there exist presentations of groups in which the conjugacy 
problem is not solvable [Nov54]. 

A very nice solution to the word problem for Coxeter groups was found 
by Tits [Tit69]. It allows one to transform an arbitrary product of generators 
from S into a reduced expression by making only the most obvious types of 
modifications coming from the defining relations. Here is a brief description. 

Let F be a free group on a set £ where £ is in bijection with S, and let 
7r : F —> W be the resulting epimorphism. The monoid F+ generated by £ 
already maps onto W. If co € F+ is a product of various elements o € £, we 
can define l(co) to be the number of factors involved. If m = mst for s,t € S, 
the product of m factors of a and r; crra • • •, maps to the same element of 
W as the product of m factors TOT • • •. Replacement of one of them by the 
other inside a given LO G F+ is called an elementary simplification of the 
first kind; it leaves the length undisturbed. A second kind of elementary 
simplification reduces length, by omitting a consecutive pair aa. Write £(w) 
for the set of all elements of F+ obtainable from to by a sequence of elementary 
simplifications. Since no new elements of £ are introduced and length does 
not increase at each step, it is clear that £(w) is finite. It is also effectively 
computable. Clearly the image of £(w) under -n is a single element of W. 

Theorem 1.16 Let LO,LO' eF+. Then TT(CJ) = ir(u>') ijffE(w) n E(w') + 0. In 
particular, it(to) — lifflG £(u). . 

One direction is obvious. To go the other way, Tits assumes the contrary 
and analyses a minimal counterexample (in terms of lexicographic ordering 
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of pairs (ui, LO')): both elements must have the same length and T,(u>) consists 
of elements of equal length, etc., leading eventually to a contradiction. 

Much less seems to be known about the cdnjugacy problem for Coxeter 
groups. Appel and Schupp [AS83] have given a solution for extra large Cox­
eter groups (those for which all mssi > 4 when s ^ s'.) 

1.8 Finite Coxeter Groups 

In this section we restrict our attention to finite Coxeter groups. We will clas­
sify all finite irreducible Coxeter groups in terms of their Coxeter graphs, in 
fact, we will give a complete list of all Coxeter graphs corresponding to finite 
irreducible Coxeter groups. According to theorem 1.15 every finite Coxeter 
group is isomorphic to a direct product of groups from this list. 

Recall in 1.3 the bilinear form B was not necessarily positive definite, the 
next theorem tells us that it is precisly when W is finite. 

Theorem 1.17 The following conditions on the Coxeter group W are equivalent: 
(a) W is finite. 
(b) The bilinear form B is positive definite. . ' 

The proof of this theorem is rather involved and so we refer the reader to 
Humphreys [Hum72]. 

If (W, S) is a Coxeter system with Coxeter graph Y (resp. Coxeter matrix 
M) then we say that Y (resp. M) is of finite-type if W is finite. Also, if the 
bilinear form B is positive definite then we call Y positive definite as well. 
Theorem 1.17 tells us that Y is positive definite if and only if it is of finite-
type. Therefore, to classify the irreducible, finite Coxeter groups we just need 
to determine all connected, positive definite Coxeter graphs. Classification 
of all connected positive definite Coxeter graphs turns out -to be relatively 
straightforward. For a wonderful discussion and solution of the problem see 
Humphreys ([Hum72] sec. 2.3 - 2.7). It is shown in [Hum72] that the graphs 
in figure 1.1 are precisely all the connected positive definite Coxeter graphs. 

The letter beside each of the graphs in figure 1.1 is called the type of the 
Coxeter graph, and the subscript denotes the number of vertices. Recall ex­
ample 1.2 shows the symmetric group on (n+l)-letters is a Coxeter group of 
typeA n . 
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An ( n > l ) 

Bn (n>2) 

Dn (n>4) 

E6 

H3 

l2{m) (m > 5) m 

1 

m m m 

m m m 

m m m 

1 

Figure 1.1: A l l the connected positive definite Coxeter graphs 
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Wr injects into Wp' 
r r 

An 
Am (for m > n), 

Bm (for m > n + 1), 
Dm (for m > n + 2), 

E8 (for n < 7), 
etc. 

B2 
Bn (for n > 2), 

*4, 
I2(4) . 

B3 Bn (for n > 3), 
, 

ET, Eg 
E7 E8 

HA 

H$, Hi 

Table 1.1: Inclusions among Coxeter groups 

The remarks after theorem 1.14 imply that if V is an induced subgraph of 
r ' then the corresponding Coxeter group Wv injects into Wv>. Table 1A lists 
some such inclusions for the Coxeter graphs in figure 1.1. 



Chapter 2 
Basic Theory of Artin Groups 

The braid groups, which are the Artin groups of type An, were first intro­
duced by Artin in [Art25], he further developed the theory in [Art47a,b] and 
[Art50], Since their introduction the braid groups have gone through a seri­
ous line of investigation. One of the most influential papers on the subject was 
that of Garside [Gar69], in which he solved the word and conjugation prob­
lems. Later, the connection of the braid groups with the fundamental group 
of a particular complex hyperplane arrangement lead to a natural general­
ization: the Artin groups. In this chapter we introduce the Artin groups and 
discuss some of their basic theory. We follow closely the work of Brieskorn 
and Saito [BS72], which is a generalization of the work of Garside. 

2.1 Definition 

Let M be a Coxeter matrix over S as described in section 1.1, and let Y be the 
corresponding Coxeter graph. Fix a set S in one-to-one correspondence with 
S. In the following we will often consider words beginning with a e S and 
in which only letters a and b occur, such a word of length q is denoted (ab)q 

so that 

(ab)q = aba ... 
q factors 

The Artin system of type Y (or M) is the pair (.4, E) where A is the group 
having presentation 

A = (a e E : •(ab)mab = (ba)mab if mab < oo). 

18 
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The group A is called the Artin group of type V (or M), and is sometimes 
denoted by Ar- So, similar to Coxeter systems, an Artin system is an Artin 
group with a prescribed set of generators. 

There is a natural map v : ̂ 4r —• Wr sending generator a, £ £ to the cor­
responding generator Si G S. This map is indeed a homomorphism since the 
equation (sjS 7) m^' = (sjSi)mii follows from sf = 1, = 1 and ( s j S j ) m ^ =• 1. 
Since z/ is clearly surjective it follows that the Coxeter group Wp is a quotient 
of the Artin group Ar- The kernel of v is called the pure Artin group, gener­
alizing the definition of the pure braid group. From the observations in section 
1.1 it follows that S is a minimal generating set for Ar- The homomorphism 
u has a natural set section r : Wr —> Ar defined as follows. Let w G W. We 
choose any reduced expression w = s\ • • • sr of w and we set 

T\W) = a\ • • • ar G Ar-

By Tits' solution to the word problem for Coxeter groups (sec. 1.7), the defi­
nition of T(W) does not depend on the choice of the reduced expression of w. 
Note that r is not a homomorphism. 

The Artin group of a finite-type Coxeter graph is called an Artin group of 
finite-type . In other words, .Ar is of finite-type if and only if the correspond­
ing Coxeter group Wr is finite. A n Artin group Ar is called irreducible if 
the Coxeter graph F is connected. In particular, the Artin groups correspond­
ing to the graphs in figure 1.1 are irreducible and of finite-type. These Artin 
groups are our main interest in the remaining chapters. 

2.2 Positive A r t i n M o n o i d 

We now introduce the positive Artin monoid associated to the Artin system 
(A, E). A l l of the basic properties of Artin groups will follow from the study 
of the positive Artin monoid. 

Let 77s be the free group generated by E and F£ the free monoid generated 
by E inside F%; We call the elements of Fs words and the elements of F£ 
positive words. The positive words have unique representations as products 
of elements of E and the number of factors is the length I of a positive word. 
In the following we drop the subscript E when it is clear from the context. A n 
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elementary transformation of positive words is a transformation of the form 

U(ab)m"bV —> U(ba)mabV 

where U, V € F+ and a, b € S. A positive transformation of length t from a 
positive word U to a positive word V is a composition of t elementary trans­
formations that begins with U and ends at V. Two words are positive equiv­
alent if there is a positive transformation that takes one into the other. We 
indicate positive equivalence of U and V by U =p V. Note, it follows from 
the definition that positive equivalent words have the same length. We use = 
to denote equality in the group and = to express words which are equivalent 
letter by letter. 

The monoid of positive equivalence classes of positive words relative to 
T (or M) is called the positive Artin monoid (or just the Artin monoid) and 
is denoted A£. The natural map Ap —> .Ar is a homomorphism. We will 
see that for F of finite-type this map is injective. Recently, Paris [ParOl] has 
shown that for arbitrary Artin groups this map is injective. 

2.3 Reduction Property 

The main result in this section concerns the positive Artin monoid and it ac­
counts for most of the results we will encounter in this chapter. The statement 
is as follow. 

Lemma 2.1 (Reduction Property) For each Coxeter graph we have the following 
rule: If X and Y are positive words and a and b are letters such that aX =p bY then 
mab is finite and there exists a positive word U such that 

X =p (ba)mab-lU and Y =p (ab^^U. 

In other words, if aX =p bY then there is a positive transformation of the 
form 

a X —* > (ab)m«»U (ba)m"bU —> > bY 

taking aX to bY. 
The proof of this is long and tedious, we refer the reader to [BS72] for 

proof: . 
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A n analogous statement holds for reduction on the right side. We see this 
as follows. For each positive word 

U = ajj • • • ajfc 

define the positive word rev U by 

rev U = a i f c • • • , 

called the reverse or reversal of U. Clearly U —p V implies rev U =p rev V 
by the symmetry in the relations and the definition of elementary transforma­
tion. It is clear that the application of rev to the words in lemma 2.1 gives the 
right-hand analog. 

It follows from the reduction propery that the positive Artin monoid is left 
and right cancellative. 

Theorem 2.2 If U, V and X, Y are positive words with UXV =p UYV then 
X=PY. -

Proof. It suffices to show that left cancellativity holds since right cancellativ-
ity follows by applying the reversal map rev . For U a word of length 1, say 
a, the reduction property implies that if aX =p aY then a word Z exists such 
that 

X =P {aa)m™-lZ = Z and Y =p {aa)maa~lZ = Z. 

Thus X —P Y. The result follows by induction on the length of U. ' • 

Let X, Y and Z be positve words. We say X divides Z (on the left) if 

Z = XY (if working in F+), 
Z =p XY (if working in A+), 

and write X\Z (interpreted in the context of F+ or A+). 
The term reduction property, which comes from [BS72], is appropriate as 

this property (in conjunction with left cancellativity) allows the problem of 
whether a letter divides a given word to be reduced to the same problem for 
a word of shorter length. In the following section we describe a method to 
determine when a given word is divisible by a given generator. 
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2.4 Divisibility Theory 

In this section we present an algorithm used to decide whether a given let­
ter divides a positive word (in A+), and to determine the smallest common 
multiple of a letter and a word if it exists. 

2.4.1 Chains 

Let a € E be a letter.' The simplest positive words which are not multiples 
of a are clearly those in which a does not appear, since a letter appearing in 
a word must appear in all positive equivalent words by the definition of ele­
mentary transformation and the nature of the defining relations. Further, the 
words of the form (ba)q with q < mab are also not divisible by a. This follows 
from the reduction property. Of course many other quite simple words have 
this property, for example concatenations of the previous types of words in 
specific order, called a-chains, which we will now define. 

Let C be a non-empty word and let a and b be letters. We say C . i s a 
primitive a-chain with source a and target a if mac = 2 for all letters c in C. 
We call C an elementary a-chain if C = (6a)9 for some q < ma&. The source 
is a and the target is b if mab even and a if mab odd. An a-chain is a product 
C = C i • • • Cfc where for each i = 1,..., k, Ci is a primitive or elementary 
aj-chain for some a* G E , such that a\ = a and the target of C; is the source of 
Ci+i- This may be expressed as: 

C i t v c f c_i ck a = a\ ——> a,2 • 03 • •.• • afc ? afc+ 1 = o, 

The source of C is a and the target of C is the target of Ck- li this target is b 
then we say: C is a chain from a to b. 

Example 2.3 Let £ = {a, 6, c, d} and M be defined by mac = m ad = BIH = 2, 
™-a& = rnbc = 3, m c d = 4. • 

• c, d, cd 2 c 7 are primitive a-chains with target a, 
• b, ba are elementary a-chains with targets a and b, respectively 
• a, ab, c, cb are elementary b-chains with targets b, a, b, c, respectively, 

The word 

ab^^cd^J)c^s&b_^ dec,sba_ 
C\ C2 C2, CA C 5 C§ 
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is a d-chain with target b, since C\ is a primitive d-chain with target d, C2 is an 
elementary d-chain with target c, C% is an elementry c-chain with target b, C4 is an 
elementary b-chain with target a, C 5 is a primitive a-chain with target a, and finally 
CQ is a simple a-chain with target b. The chain diagram for this example is: 

, Ci , C2 C3 , CA Cs Ce , a > d > c > 0 • •a > a - • 0. 

As the example 2.3 indicates there is a unique decomposition of a given a-
chain into primitive and elementary factors if one demands that the primitive 
factors are a large as possible. The number of elementary factors is the length 
of the chain. 
Remark. If C is a chain from a to b then rev C is a chain from b to a. 

We have already noted that primitive and elementary a-chains are not 
divisible by a, the next lemma shows that this is also the case for a-chains. 

Lemma 2.4 Let C = C\ • • • Ck he a chain from a to b (where Ci is a primitive or 
elementary chain from a, to â +i for i = 1,..., k) and D is a positive word such that 
a divides CD. Then b divides D, and in particular a does not divide C. 

Proof. We prove this by induction on k. Suppose k = 1. 
Suppose C — x\ • • • xm is primitive, so maXi = 2 for all i. Then a; 1 • • • xmD 

=p aV for some positive word V. By the reduction property there exists a 
word U such that x2 • • • xmD =p (axi)maxi = all. Continuing in this way 
we get that a divides D, where a is the target of C. 

Supppose C = (ba)q is elementary, where mab > 2 and 0 < q < m0&. Then 

• (ba)qD=paV 

for some positive word V. By the reduction property, (ab)q~1 D=p(ab)ma'b~1U 
for some positive word U. So by cancellation, theorem 2.2, 

'•(ab)mab-qU if q is odd, 

{ba)mab~qU if q.is even. 

so D is divisible by a if q is odd, and b if q is even, which in each case is the 
target of C. 

This begins the induction. Suppose now k > 1. By the inductive hypothe­
sis afc divides CkD, and by the base case, b = ak+i divides D. 

The last claim follows by taking D equal to the empty word. • 

D=p 
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Corollary 2.5 IfC is an a-chain such that a divides Cb, then b is the target ofC 

2.4.2 Chain Operators Ka 

An. arbitrary word will in general not be an a-chain, for any particular a, and 
so we need to know firstly whether, given an arbitrary word U, there exists 
an a-chain C which is positive equivlent to U, and secondly how to calculate 
it and its target. We define operators Ka for each generator a which take as 
input a word U and output either 

• a word beginning with a if U is divisible by a, or 
• an a-chain equivalent to U if U is not divisible by a. 

Ka is called a chain operator (the K stands for Kette, German for chain). 
To state the precise definition of Ka, we need some preliminary definitions 

and notation. We call a primitive a-chain of length one or an elementary a-
chain a simple a-chain, that is, a simple a-chain is a word of the form (ba}q 

where q < mab (where mab = 2 is allowed). For a simple a-chain of the form 
C = (ba)mab~1 we call C imminent and let C+ denote (ab)mab, so C+ =p Cc 
where c is the target of C. If D is any positive nonempty word denote by D~ 
the word obtained by deleting the first letter of D. For every letter a € S, we 
define a function 

Ka:F+—>F+ 

recursively. Let U be a word. If U is empty, begins with a or is a simple 
a-chain then . -

-Ka(U):=U. 

Otherwise, write U = CaDa where Ca and Da are non-empty words, and Ca 

is the largest prefix of W which is a simple a-chain, with target 6, say. The rest 
of the definition of Ka(U) is recursive on the lengths of U and Da: 

{ CaK~b{Da) if Kb{Da) does not begin with b; or 

C+Kb{Da)~ if Ca imminent and Kb{Da) begins with 6; or 

Ka{CabKb{Da)-) otherwise 

Observe that Ka(U) is calculable. 
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Example 2.6 Computing Ka(U). Let S and M be as defined in example 2.3. First 
we will compute Ka of the word U = bcbabdc (notice U is not an a-chain). By the 
recursive nature of the definition ofKa we first need to decompose U as follows: 

U = ̂ b^-^c^-^ba^- bdc^ 
Ci C2 C3 D 

where C\ is an a-chain with target a, C2 is an a-chain with target a, and C% is an 
a-chain with target b. Since D begins with the letter b then Kb(D) = D. Since C 3 is 
imminent, Ka(Cs • D) = C^D~ = abadc. Since C2 is imminent, and Ka(Cz • D) 
begins with the letter a, 

Ka(C2 • C3D) = C+ • Ka(C3 -D)-
= ac • bade. 

Now Ka(C2CzD) begins with a but C\ is not imminent, so 

Ka(U) = Ka(Ci-C2CzD) 
= Ka(Ci • acbadc) since Ka(C2CzD) = acbadc 
= Ka(ba • cbadc) by definition of Ka. 

Applying the definition of Ka to the word bacbadc just returns the same word (try 
it!). Therefore, 

Ka(U) = bacbadc, 

which can be seen to be an a-chain positive equivalent to U, with target d. 
For our second example we will compute Ka of the word W = bacbacab. Again 

we need to decompose W as follows: 

W = ^ba^-^cb^-^a^-^cab^ 
Ci C2 C3 D, 

where C\ is an a-chain with target b, C2 is an b-chain with target c, and C 3 is 
a c-chain with target c. Since D begins with the letter c then KC(D). = D, so 
Kc(CzD) = C^D~ = ca • ab. Since C2 is imminent, KC(C2 • C 3 D ) = beb • aab. 
Finally, since C\ is imminent, Ka(W) = aba • cbaab. 
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Lemma 2.7 Let U be positive and a € S. Then 
(a) Ka(U) =p U and Ka(U) is either empty, begins with a or is an a-chain, 
(b) Ka{U) ~ U if and only ifU is empty, begins with a, or is an a-chain, 
(c) a divides U if and only ifKa(U) begins with a. ^ 

Proof, (a) If U is empty, begins with a or is a simple a-chain then Ka(U) = U 
and we are done. Otherwise, write U = CaDa where Ca and Da are nonempty 
and Ca is the longest prefix of U which is a simple a-chain. Let c denote the 
target of Ca. Since l(Da) < l(U) then by induction on length, KC(D) =p Da 

and KC(D) is either a c-chain or begins with c. If KC(D) is a c-chain then 
it cannot begin with c (lemma 2.4), so Ka{U) = CaKc(Ds) which is an a-
chain, and moreover Ka(U) =p CaDa = U. Otherwise KC(D) begins with 
c. Considering first when Ca is imminent, we have Ka(U) = C+K 0 (D a )~ , 
which begins with a, and moreover, 

Ka{U)=pCacKc(Da)- = CaKc(D)=pCaDa = U. 

Otherwise se have Kc(Da) =p Da, Kc(Da) begins with c and Ca is not immi­
nent; so 

Ka(U) = Ka(CacKc(Da)-). 

Now Cac is a simple a-chain of length greater than the length of Ca so by 
another induction, Ka(CacK0(Da)) begins with a or is an a-chain, and 

Ka{CacKc{Da)-) =p CacKc(Da)- = CaKc{Da) =p CaDa = U. 

(b) The direction (=>) follows from (a). To see the other direction notice the 
result is clear if U is empty, begins with a or is a simple a-chain. Suppose U is 
a nonempty a-chain, so U = CaDa where Ca is a simple a-chain with target c, 
say and Da is a c-chain. By induction since l(Da) < l(U), 

Kc(Da) = Da. 

Since Da is a c-chain it does not begin with the letter c thus by definition of -
Ka, 

Ka(U) = CaKc(Da) = CaDa = U. 

(c) This follows from (a) and lemma 2.4 • 
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2.4.3 Division Algorithm 

Let U and V be words. We present an algorithm to determine whether U 
divides V (in A?) and in the case U divides V it returns the cofactor, i.e. the 
word X such that V =p UX. This can be done relatively easily using the 
chain operators Ka. 

Write U = a\ • • • a^. If U is to divide V then certainly a\ must divide 
V, this can be determined by calculating Kai (V) and checking if a\ is the 
first letter. If a\ is not the first letter then a\, and hence U, cannot divide 
V. Otherwise, we have Kai (V) = a\Kai (V)~. If U = a\ • • • were to divide 
V =p Kai (V) = a\Kai (V)~ then it is necessary for a2 to divide Kai (V)~. This 
can be determined by checking the first letter of Ka2(Kai(V)~). Continuing 
this way we either get that some aj does not divide 

Kai(Kai_1....Ka2(Kai(V)-)-•••)-) 

in which case U does not divide V, or d{ divides the above word for each 
1 < i < k, in which case U divides V and the cof actor X is 

Kak'Kak_1..'-Ka2(Kai<V)-)----)-)-. 

We reformulate the above observations into the following definition. Let 
U and V be words. If U is empty then define (V : U) :=. V. Otherwise 
write U = Wa for some word W and some letter a. We make the recursive 
definition: ' - • • 

{co if (V : W) = oo, or if 

Ka{V : W) does not begin with a; or 
Ka(V : W)~ otherwise. 

Some remarks on the definition. 1 

1. By induction of the length of U, if X is any word then (UX : U) = X. 
2. Since Ka(X) is calculable for any word X, then (V : U) is also calcula­

ble, for any pair of words V and U. Thus the following result gives a solution 
to the division problem in Ap. 
Lemma 2.8 The word U divides V precisely when (V : U) / oo, in which case 

V = p U(V : U). 
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Proof. If U is empty then the result clearly holds, so we may write U = Wa 
for some word W and some letter a. Suppose U divides V, so there is a word 
X such that UX = WaX =p V. By induction {V : W) + oo and V =p W(V : 
W). By cancellation, aX =p (V : W),so a divides (V : W). By lemma 2.7, 

' Ka(V : W) begins with a, so (V :U) + oo and (V : U) =p X. 
On the other hand, suppose (V : U) ^ oo. Then (V : W) ^ oo, and in fact 

Ka(V : W) has to begin with a. By induction V =p W(V : W), so 

V = p W{V : W) =p WKa{V : W) =p WaKa{V : W)~ =p U{V : U) 

by the definition of (V : U). • 

Since we have a solution to the division problem in A? we get a solution 
to the word problem in A£ for free. 

Corollary 2.9 Tifo positive words U and V are positive equivalent precisely when 
(V : U) is the empty word. 

In section 2.6 we will show how to use this to solve the word problem in 
finite-type Artin groups Ap. 

2.4.4 Common Multiples and Divisors 

Given a set of words Vi £ Ap where i runs over some indexing set I , a com­
mon multiple of {Vi : i € 1} is a word U e A? such that every V divides U 
(on the left). A least common multiple is a common multiple which divides 
all other common multiples. If U and U' are both least common multiples 
then they divide one another, it follows by cancellativity and the fact that 
equivalent words have the same length that U =p U'. Thus, when a common 
multiple exists, it is unique. By a common divisor of {Vi : i G 1} we mean a 
word W which divides every Vj. A greatest common divisor of {Vi : i € 1} 
is a common divisor into which all other common divisors divide. Similarly, 
greatest common divisors, when they exist, are unique. 

With the help of the chain operators Ka defined in 2.4.2 we get a simple 
algorithm for producing a common multiple of a letter a and a word U, if one 
exists. 

The essence of the method lies in lemma 2.4 which can be rewritten to say: 
IfC is an a-chain to b, and U is a common multiple of a and C then U is a common 
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multiple of a and Cb. 
Given an arbitrary word X, to calculate a common multiple with a generator 
a, we begin by applying Ka to X. If Ka(X) begins with a then we are done (X 
is divisible by a and so itself is a common multiple of a and X). Otherwise, 
Ka(X) is an a-chain, we determine its target b, and then concatenate it to 
get Ka(X)b = X'. If Ka(X') begins with a then we may stop; otherwise we 
repeat the process. If a common multiple exists, then the process will hault, 
producing a word which is in fact the least common multiple of a and X. 

Let a be a letter and W a word. The a-sequence of W is a sequence 
W 0

a , W f , . . . over F+ defined as follows. Set W 0

a := Ka(W), so by lemma 2.7, 
either WQ is empty, an a-chain or begins with a. Then for i > 1, define recur­
sively 

{a if Wf_ 1 is empty; 

W/Li if W?_x begins with a; 

#a(W£_i&) if Wj 0 , ! is an a-chain to b. 
By lemma 2.7, W " is either an a-chain of begins with a (or if i = 0, may be 
empty). The a-sequence converges to a word W^ precisely when W£ begins 
with a. The following definition is intended to capture a notion of the limit of 
the a-sequence of W . 

W f c

a i fW£ = W f c

t t

+ 1;-or 

co otherwise. 

The following example illustrates the way in which L(a, W) = oo 
Example 2.10 Let S = {a, b, c} and M , f/ze Coxeter matrix, he defined by mab = 
mac = mbc = 3. (Note, by the results in 1.8 Ar is not of finite type.) Consider the 
word W = be. Observe that for any k > 1, Uf. = (bacbac)k is an a-chain with target 
a. The first member of the a-sequence ofW is WQ = be = Uobc, and then for all 
k>0, 

W6k+2 = Ukbaca, 
W 6

a

f c + 5 = Ukbacbabc, 
Thus, the a-sequence never 

L(a, W) :=• 

W 6

a

f c = Ukbc, • W 6

a

f c + 1 = C/fe6ca, 
wSk+3 = Ukbacab, W 6

a

f c + 4 = Ukbacbab, 

and so W g f c + 6 = Ukbacbacbc = Uk+ibc and so on. 
converges to a word, and so L(a, be) = oo. 



/ 

Chapter 2. Basic Theory of Artin Groups 30 

The following result characterizes the situation when L(a, W) ^ oo. 

Lemma 2.11 L(a, W) ^ oo precisely when a and W have a common multiple,, in 
which case L(a, W) is a least common multiple of a and W begins with a. • 

Proof. If W is empty then Wg =• W and Wf = a for all? > 1. Thus 
L(a, W) = a, and so the result holds trivially. So we may that suppose W is 
nonempty. 

Suppose that a and W have a common multiple M. By lemma 2.7, we 
know that W Q = Ka(W) —p W and so divides M. Since. W is nonempty, W§ 
either begins with a or is an a-chain, is a multiple of W and divides M. We 
will show that the same is true of all Wf, using induction on i. Suppose that, 
for a given i > 0, Wf is a multiple of W and divides M. If Wj" begins with a, 
then Wj1 = Wf for all j > i, and so we are done. Otherwise, Wf is an a-chain 
to b and, by lemma 2.4, M is a common multiple of W?b =p Ka(Wfb) = W°-+l 

and a. Since W divides Wf then W must also divide Thus we have 
shown that when a and W have a common multiple, every element of the 
a-sequence of W is a multiple of W, and divides M . Since elements of the a-
sequence increase in length until an element begins with a, and since divisors 
of M cannot exceed M in length, eventually there is a first W% which begins 
with a. Hence L(a, W) = W%. Futhermore, we have shown that L(a, W) 
divides every common multiple M of a and W, making it a least common 
multiple. 

On the other hand, suppose L(a, W) ^ oo. Then there is a first number 
k > 0 such that W% begins with a. If k = 0, then L(a, W) = Wg =p W. If 
k > 0 then by definition of the a-sequence, there are letters bi,...,bk which 
are targets of the a-chains WQ , . . . , W%_v respectively, and for each i < k, 
Wz

abi+1 =p Wf + 1 , so L(a, W) = W£ =p Wgbx---bk.=p Wbx---bk. hence 
L(a, W) is a common multiple of a and W. • 

Thus we have-in L(a, W) a calculator of least common multiples of a gen­
erator and a word. By repeated application of this operation, we can obtain 
least common multiples of arbitrary pairs of words. 
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Let V and W be words. Define recursively: 

UV, W) := 

W if V is empty; or 

aL(U, L(a, W)~) if V = aU,L(a, W) ± oo and 

L(U,L(a,W)-) 7^.00; or 

00 otherwise. 

Similar to lemma 2.11 we get the following lemma. 

Lemma 2.12 L(V, W) ^ 00 -precisely when V and W have a common multiple, in 
which case L(V, W) begins with V and is a least common multiple of V and W. 
Moreover, L(V, W) / 00 precisely when L(W, V) ^ 00, in which case L(V, W) =p 

L(W,V). 

We can also compute the least common multiple of any finite collection of 
words by induction on the number of words. In particular, let V i , . . . , Vm be 
words and let 1 denote the empty word. Define recursively: 

L ( V i , . . . , V r o ) := { 

1 m. = 0; or 

Vi if m = 1; or 

00 m > 2 and Liy2, • ••, Vm) = 00; or 

L(Vi, L(V2,..., Vm)) if m > 2 and L(V2,..., Vm) + 00. 

The next result follows by induction on m using lemma 2.12. 

Lemma 2.13 L ( V i , . . . , Vm) ^ 00 precisely when V i , . . . , Vm have a common mul­
tiple, in which case L(V\,..., Vm) begins with Vi and is a least common multiple of 
V i , . . . , Vm. Moreover, for any permutation a of {1,... m}, L ( V i , . . . , Vm) ^ 00 if 
and only if L(V r

C T( 1),. . . , V a(m)) / 00, in which case L(V\,..., Vm) =p 

Corollary 2.14 Let fl be a finite set of words. Then Q has a common multiple if and 
only if it has a least common multiple. • 

Since E is finite then an infinite set of words in F+ must have elements 
of arbitrary length. Since positive equivalent words have the same length it 
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follows that a common multiple must be at least as long as any of the factors. 
So an infinite set of words can have no common multiples. On the other hand, 
the empty word divides every other word, so an arbitrary nonempty set fl of 
words has a common divisor. If D denotes the set of all common divisors of 
fl, then D is finite by the preceding discussion. Since every element of fl is a 
comon multiple of D, then by corollary 2.14, D has a least common multiple, 
which is a greastest common divisor of fl. Thus, greatest common divisors 
for nonempty sets of words always exist. 
Remark. The only letters arising in the greatest common divisor and the least 
common multiple of a set of words are those occurring in the words them­
selves. 
Proof. For the greatest common divisor it is clear, because in any pair of 
positive words exactly the same letters occur. For the least common multiple, 
recall how we found L ( a , W): W$. = Ka(W), and W?+1 = W? if W? starts 
with a, or W?+1 = Ka(W£b) if W f is an a-chain from a to b. But if b ^ a, then 
the only way we can have an a-chain from a to b is if there is an elementary 
subchain somewhere in the a-chain containing 6. So W?+l only contain letters 
which are already in W f . • 

2.4.5 Square-Free Positive Words 

When a positive word U is of the form U = XaaY where X and Y are posi­
tive words and d is a letter then we say U has a quadratic factor. A word is 
square-free relative to a Coxeter graph T when U is not positive equivalent 
to a word with a quadratic factor. The image of a square-free word in Ap" is 
called square-free. 

Lemma 2.15 Let V be a positive word which is divisible by a and contains a square. 
Then there is a positive word V with V =p V which contains a square and which 
•begins with a. Thus, if W is a square-free positive word and a is a letter such that 
aW is not square free then a divides W. 

Proof. The proof is by induction on the length of V. Decompose V, as 

V = Ca(V)Da(V) 
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where Ca(V) and Da(V) are non-empty words, and Ca{V) is the largest prefix 
of V which is a simple a-chain. Without loss of generality we may assume that 
V is a representative of its positive equivalence class which contains a square 
and is such that l(Ca{V)) is maximal. 

When Ca(V) is the empty word it follows naturally that V = V satisfies 
the conditions for V. For nonempty Ca(V) we have two cases: 

(i) Da(V) contains a square. By the induction assumption, one can assume, 
without loss of generality that Da(V) begins with the target of the simple a-
chain Ca(V). Thus, since the length of Ca(V) is maximal, Ca(V) is of the 
form (ba)mab~1. From this it follows that when Da(V)~ contains a square 
then V = aCa(V)Da(V)~ satisfies the conditions for V, and otherwise V = 
a?Ca{V)Da(V)— does. 

(ii) Neither Ca(V) nox-Da{V) contains a square. Then V is of the form 
V = (ba)qDa(y) where q > 1, and Da(V) begins with a if q is even, and b if q 
is odd. If q even then (ba)q. is a simple a-chain with target b so, by lemma 2.4, 
since a divides (ba)qDa(V), b divide Da(V). But Da(V) begins with a so by 
an application of the reduction property there exists E such that 

Da(V)=p.(ba)m«bE. 

Similarly, for q odd. Then 

V = a ( 6 a ) m o t _ 1 ( 6 o ) 9 £ ; if m a 6 is even, 

V = a(ba)mab-l{ab)qE i fm a 6isodd. 

satisfies the conditions. 
To prove the second statement, we have that there exists a positive word 

U, such that all contains a square and aW =p all from the first statement. It 
follow from cancellativity that U =p W and, since W is square free, that U 
does not contain a square. So U begins with a and W is divisible by a. • 

From this lemma we get the following result concerning the a-sequence of 
a square-free word W, which will be needed in the next section. 

Lemma 2.16 If W is a square-free positive word and a is a letter then each word Wf 
in the a-sequence of W is also square-free. 
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Proof. W§ is square-free since W§ =p W. Assume W" is square-free. Then 
either W?+l = Wf or W?+i =P Wfbi where h is the target of the chain Wf. If 
W^bi is not square-free then fyrev W f is not square-free and by lemma 2.15, 
the 6i-chain rev W? is divisible by 6*, in contradiction to lemma 2.4. • 

Let QFAp be the set of square-free elements of A.p~. Consider the canon­
ical map of QFAp into the Coxeter group Wr defined by the composition of 
the canonical maps Ap~ —> Ar —-> Wr- It follows from theorem 3 of Tits 
[Tit69] that 

QFAf —> Wr is bijective. 

Thus, QFAf is finite precisely when Ar is of finite type (i.e. Wr is finite). 
This result is needed in the next section. 

2.5 The Fundamental Element 

Let M be a Coxeter matrix over E, and let I c E such that the letters of I in 
«4p" have a common multiple. Then the uniquely determined least common 
multiple (which exists by lemma 2.13) of the letters of I in Ap" is called the 
fundamental element Aj for I G Ap. 

The word "fundamental", introduced by Garside [Gar69], refers to the 
fundamental role which these elements play. It is shown in [BS72] that when 
Ar is irreducible (i.e. T connected) and there exists a fundamental element 
A s , then A s or A | generates the center of .Ar- The conditions for the exis­
tence of A s are very strong and are outlined in the following two theorems, 
which appear in [BS72]. . 

Theorem 2.17 For a Coxeter graph T the following statements are equivalent: 
(i) There is a fundamental element A s in Ap~. 
(ii) Every finite subset ofAp has a least common multiple. 
(iii) The canonical map Ap~ —• .Ar is injective, and for each Z G Ar there exist 
X,Y G A+ with Z = XY~\ -
(iv) The canonical map Ap —> A r is injective, and for each Z e Ar there exist 
X, Y G Ap~ with Z — XY'1, where the image ofY lies in the center of Ar-

Theorem 2.18 Let The a Coxeter graph. There exists a fundamental element A s in 
Ap if and only ifT is of finite-type (i.e. Wr is finite). 
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To prove theorem 2.18 we need to recall the theorem of Tits we discussed 
at the end of section 2.4.5 on page 34: F is of finite-type if and only.if QFAp 
is finite. It is shown in [BS72] that every element of QFAp divides A s thus 
if A s exists then QFAp must be finite. To prove the converse suppose that 
A s does not exist in Ap. Let J = { a i , . . . , afc} C E be such that A j exists 
but A J U { a f c + 1 } does not exist (here we have assumed £ has been ordered). 
Then the afc+i-sequence of A j does not terminate. Since A j is square-free 
(see [BS72]) then by lemma 2.16 every element of the ak+i-sequence of A j is 
square free (and distinct). Thus QFAy is infinite. 

It is important to note that in theorem 2.17 the positive words X and Y 
such that Z = XY~X are calculable. This can be seen from the proof given in 
[BS72]. We use this fact in 2.6 to solve the word problem for finite-type Artin 
groups. 1 

For a complete discussion on properties of the fundamental element see 
[BS72]. There it is shown that the image of the fundamental element of Ap in 
the Coxeter group Wr is precisely the longest element. Also they give formu­
lae for the fundamental elements of irreducible finite-type Artin groups, i.e. 
the Artin groups corresponding to the Coxeter graphs in figure 1.1. 

2.6 The Word and Conjugacy Problem 

In this section we use the machinary developed thus far to give a quick solu­
tion to the word problem for finite-type Artin groups. The conjugacy problem 
is also discussed. 

Let U, V G Ar, where F is of finite-type. We want to decide if U = V. By 
theorem 2.17 we know there exists (calculable) positive words Xi,X2, Y%, Y2 G 
Ap such that 

U = X1Y1~1 and V = X2Y2~X 

where the images of Y\ and Y2 are central in Ar- To decide ii U — V it is 
equivalent to decide if X{Y2 = X2Y\, but since the canonical map Ap —> Ar 
is injective this is equivalent to deciding if X{Y2 —p X2Y\. In 2.4.3 we gave a 
solution to the word problem for Ap, thus a solution to the word problem for 
,4r follows. 

In [BS72] it is shown elements oi Ap and .Ar can be put into a normal 
form using the fundamental element. This also gives a solution to the word 
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problem in both A^ and Ar- Brieskorn and Saito also give a solution to the 
conjugacy problem in finite type Artin groups. 

Another solution to the word and conjugacy problems appears in [Cha92]. 
It is shown that finite-type Artin groups are biautomatic in which case they are 
known to have solvable word and conjugacy problems. 

Some infinite-type Artin groups have been shown to have solvable word 
and conjugacy problems. Appel and Schupp [AS83] solve these problems for 
Artin groups of extra-large type (i.e. mab > 4 for all a, b G £). 

2.7 Parabolic Subgroups 

Let (Ar, S) be an Artin system with values mab for a, b £ £. For a subset I c £ 
we define A r 7 to be the subgroup of Ar generated by I. We call the subgroup 
Arj a parabolic subgroup. (More generally, we refer to any conjugate of such 
a subgroup as a parabolic subgroup.) 

Van der Lek [Lek83] has shown that for each I c £ the pair (Arj,I) is an 
Artin system associated with T/. That is, parabolic subgroups of Artin groups 
are indeed Artin groups. A proof of this fact also appears in [Pa97]. Thus 
the inclusions among Coxeter groups in table 1.1 also hold for the associated 
Artin groups: Crisp [Cri99] shows quite a few more inclusions hold among 
the irreducible finite-type Artin groups. Table 2.1 lists these inclusions. Notice 
that every irreducible finife-type Artin group embeds into an Artin group of 
type A, D or E. 

Similar to that of Coxeter groups we have that the study of Artin groups 
can be largely reduced to the case when V is connected. 

Theorem 2.19 Let (Ar, £ ) have Coxeter graph Y, with connected components Y\, 
..., YT, and let I\,... ,Ir be the corresponding subsets o/£ . Then 

Ar = Arh ®---®ATlr, 

and each Artin system (ArT., W is irreducible. 

Cohen and Wales [CW01] use this fact and the fact that irreducible finite 
type Artin groups embed into an Artin group of type A, D or E to show all 
Artin groups of finite-type are linear (have a faithful linear representation) by 
showing Artin groups of type D, and E are linear, thus generalizing the recent 
result that the braid groups (Artin groups of type A) are linear [BiOl], [Kr02]. 
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Ar injects into Ar> 
r r 

An Am (m > n), ' 
Bn+i {n > 2), 

Dn+2, 
Ee(l<n< 5), 
E7 (1 < n < 6), 
£ 8 ( l < n < 7), 

FA, H3{l<n< 2), 
HA (1 < n < 3) 

I 2 ( 3 ) (1 < n < 2) 
Bn An, A2n-\, A2n, 
Ee E-j, E% 
E7 E% 

. F4 E&, E-J, E% 
H3 D& 

HA Eg 
h(m) Am—l 

Table 2.1: Inclusions among Artin groups 
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2.8 Geometric Realization of Artin Groups 

In this section we discuss how finite-type Artin groups appear as fundamen­
tal groups of complex hyperplane arrangements. From this point of view we 
can see that finite-type Artin groups are torsion free. 

Let (Wr, S) be a Coxeter system where Wr is finite and \S\ = n. Let V be 
the associated (real) n-dimensional vector space, and B the bilinear form on 
V introduced in section 1.3. We know from theorem 1.17 that V is a Euclidean 
space. Let T denote the set of reflections in W. For each t £ T let Ht denote 
the hyperplane in V (pointwise) fixed by t. Let Ti = {Ht}teT be the collection 
of such hyperplanes. The complement of Ti in V is defined by 

M(H).= V\ | J H. 
Hen 

Note that since V is a real vector space M(Ti) is not connected. However, if we 
"complexify" V and the arrangement of hyperplanes Ti we get a connected 
space. This is done as follows. The complexification of V is Vc ,= C N . The 
complexification of a hyperplane H is the hyperplane He of Vc having the same 
equation as H. The complexification of Ti is the arrangement Tic = {He '• H G 
Ti.} in Vc- The topological space 

M(HC) = VC\ | J H. 

is our primary interest. 
Before we proceed any futher we need to make some definitions. A collec­

tion of hyperplanes Ti in a (real) vector space is called a (real) arrangement of 
hyperplanes. We say Ti is central if all the hyperplanes of Ti contain the ori­
gin. We say further that Ti is essential if the intersection of all the elements of 
Ti is {0}. Call Ti simplicial if it is central and essential, and if all the.chambers 
of Ti (i.e. connected components of V \ \JHen H) are cones over simplices. 
The following theorem indicates the importance of knowing an arrangement 
is simplicial. 

Theorem 2.20 (Deligne [Del72]). Let Ti be a simplicial arrangement of hyper­
planes. Then M(Hc) is an Eilenberg-Maclane space (i.e. its universal cover is con-
tractible). 
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The importance of this theorem lies in the fact that if M(G) is a finite dimen­
sional Eilenberg-Maclean space for a group G then G has finite cohomological 
dimension and so, from a result in homological algebra, G is torsion-free. 

Let us return now to our particular hyperplane arrangement H defined 
above. It follows from our work in chapter 1 that the arrangement of hy-
perplanes H = {Ht}teT is central and essential. Futhermore, Deligne [Del72] 
showed that H is simplicial. Thus, it follows from theorem 2.20 that M(Hc) is 
an Eilenberg-Maclean space. Deligne has shown that the fundamental group 
of M(Hc) is precisely the pure Artin group associated with T. Moreover, 
Deligne showed that Wr acts freely on M(Hc) so that M(Hc)/Wr is also an 
Eilenberg-Maclean space and -Ki(M(T-L<c)/Wr) is the Artin group Ar- Thus, 
Ar is torsion-free. 

For arbitrary Artin groups Ar (not necessarily of finite-type) more general 
constructions of K(Ar, l)-spaces have been done, for example see [CD95]. 

A n algebraic argument showing finite-type Artin groups are torsion free 
was discovered by Dehornoy [Deh98]. The proof uses the divisibility theory 
we developed in this chapter. 



Chapter 3 
Commutator Subgroups of Finite-Type 
Artin Groups 

Gorin and Lin [GL69] gave a presentation for the commutator subgroup 23^ 
of the braid group 5 B n , n > 3 , which showed 9 3 ^ is finitely generated and 
perfect for n > 5 . This has some interesting consequences concerning Q 3 n 

and "orderability", which we discuss in chapter 5. In this chapter we extend 
the work, of Gorin and Lin and compute presentations for the commutator 
subgroups of all the other irreducible finite-type Artin groups; those corre­
sponding to the Coxeter graphs in figure 1.1. This will be applied in chapter 
4 to "local indicability" of finite-type Artin groups. 

3.1 Reidemeister-Schreier Method 

We will use the Reidemeister-Schreier method to compute the presentation for 
the commutator subgroups so we give a brief overview of this method in this 
section. For a complete discussion of the Reidemeister-Schreier method see 
[MKS76]. 

Let G be an arbitrary group with presentation (ai,... J an : i?M(a v), . . .) 
and H a subgroup of G. A system of words TZ in the generators ai,...,an 

is called a Schreier system for G modulo H if (i) every right coset of H in G 
contains exactly one word of TZ (i.e. TZ forms a system of right coset repre­
sentatives), (ii) for each word in TZ any initial segment is also in TZ (i.e. initial 
segments of right coset representatives are again right coset representatives). 
Such a Schreier system always exists, see for example [MKS76]. Suppose now 
that we have fixed a Schreier system TZ. For each word W in the generators 

40 
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a i , . . . , a n we let W denote the unique representative in TZ of the right coset 
HW. Denote 

SK,av = Kav • Kav \ (3.1) 

for each K e TZ and generator av. A theorem of Reidemeister-Schreier (theo­
rem 2.9 in [MKS76]) states that H has presentation 

(SK,av,----SM,ax,---',T(KRIJ,K~1),...) (3.2) 

where K is an arbitrary Schreier representative, av is an arbitrary generator 
and R^ is an arbitrary defining relator in the presentation of G, and M is a 
Schreier representative and ax a generator such that 

Ma\ ~ Ma\, 

where « means "freely equal", i.e. equal in the free group generated by 
{ai,..., an}. The function r is a Reidemeister rewriting function and is de­
fined according to the rule 

r(a?

ei • ••a'") = s% n • '• • s% „ (3.3) 
v n iP

J K j j ^ j j Kip,aip \ ' 

where Ki. = a-1 • • • a6/"1, if e, = 1, and ifj, = a-,1 • • • ae/, if e, = - 1 . It should 
be noted that computation of T(U) can be carried out by replacing a symbol 
al of U by the appropriate s-symbol se

K a v . The main property of a Reide­
meister rewriting function is that for an element U € H given in terms of the 
generators a„ the word T(U) is the same element of H rewritten in terms of 
the generators SK,O,V 

3.2 A Characterization of the Commutator Subgroups 

The commutator subgroup G' of a group G is the subgroup generated by the 
elements [51,52] := 9i929i1921 r o r a n 9i>92 £ :G. Such elements are called 
commutators. It is an elementary fact in group theory that G' is a normal 
subgroup in G and the quotient group GjG' is abelian. In fact, for any normal 
subgroup N < G the quotient group G/N is abelian if and only if G' < N. If G 
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is given in terms of a presentation (Q : K) where Q is a set of generators and 
1Z is a set of relations, then a presentation for G/G' is obtained by obelianizing 
the presentation for G, that is, by adding relations gh = hg for all g,h G Q. 
This is denoted by (Q : TZ) A b . 

Let U G Ar, and write U — a-1 ••• • a^, where = ± 1 . The degree of U is 
defined to be 

Since each defining relator in the presentation for Ar has degree equal to zero 
the map deg is a well defined homomorphism from Ar into Z. Let Zr denote 
the kernel of deg; Zr = {U € Ar •• deg(U) = 0}. It is a well known fact that 
for the braid group (i.e. F = An) ZAK is precisely the commutator subgroup. 
In this section we generalize this fact for all Artin groups. 

Let ToM denote the graph obtained from T by removing all the even-
labelled edges and the edges labelled oo. The following theorem tells us ex­
actly when the commutator subgroup A'r is equal to Zr-

Theorem 3.1 For an Artin group Ar, F0dd is connected if and only if the commu­
tator subgroup Ar is equal to Zr-

Proof. For the direction (=>) the hypothesis implies 

Ar/A'y ~ Z. 

Indeed, start with any generator ai, for any other generator a,j there is a path 
from <2j to aj in F0(id-

ai = a i i * a i 2 * ' ' ' > a i m = aj • 

Since mi f c i f c + 1 is odd the relation 

K ^ + 1 ) m ^ f c + 1 = ( a l k + 1 a i k ) m ^ . 

becomes atk = a,ik+1 in Ar/A'r- H e n c e / a% = aj m Ar/A'T. It follows that, 

Ar/A'r ^ (a i , . . . , an : a x = • • • = an) 
~ Z, 

where the isomorphism 4>: Ar/Ar —> Z is given by 
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UA'r^deg(U). 

Therefore, A'r = ker^ = Zr- ' 
We leave the proof of the other direction to theorem 3.2, where a more 

general result is stated. . • 

For the case when F0dd is not connected we can get a more general de­
scription of A'r as follows. Let F0dd have m connected components; F0dd = 
Ti U . . . U T m . Let Ej c S be the corresponding sets of vertices. For each 
1 < k < m define the map 

degfc : Ar —> Z 

as follows: If U = a-1 • • • a- r G Ar take 

degfc(C7) =  er 

l<j<r where ai^E^k 

It is straight forward to check that for each 1 < k < m the map degfc agrees 
on (ab)rnab and (ba)mab for all a, b G E . Hence, degfc : Ar —>• Z is a homomor-
phism for each 1 < k < m. Let 

Zr

{m):= f ) ker(degk). 
\<k<m 

The following theorem tells us that this is precisely the commutator subgroup 
of -4[ -

Theorem 3.2 Let The a Coxeter graph such that TQdd has m connected components. 
Then A'T = Z r

{ m ) . 

Proof. Clearly A'T C Zr^ since commutators certainly lie in the kernel of 
degfc for each k. To show the opposite inclusion let W G Zr^m\ i.e. deg f c(W) = 

0 for all 1 < k < m. Since . 

Ar/AT ~ {ai,...,an: (aiaj)ma^ = (ajai)ma^)Ab 

~ {ai,... ,an : cn = aj iff i and j lie in the same connected 
component of r o ^ ) , 

~ Z ' " . 

with the isomorphism given by 
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U A T ^ (deg1(C/),...,degm(c/)) / . 

then WA'r must be the identity in Ar/Ar (since it is in the kernel). In which 
case W € A'r. • 

It is this characterization of the commutator subgroup which allows us to 
. use the Reidemeister-Schreier method to compute its presentation. In partic­
ular, we can find a relatively simple set of Schreier right coset representatives. 

3.3 Computing the Presentations 

In this section we compute presentations for the commutator subgroups of 
the irreducible finite-type Artin groups. We will show that, for the most part, 
the commutator subgroups are finitely generated and perfect (equal to its com­
mutator subgroup). 

Figure 3.1 shows that each irreducible finite-type Artin group falls into 
one of two classes; (i) those in which Todd is connected and (ii) those in which 
T0dd has two components. Within a given class the arguments are quite sim­
ilar. Thus, we will only show the complete details of the computations for 
types A n and Bn. The rest of the types have similar computations. 

3.3.1 Two Lemmas 

We will encounter two sets of relations quite often in our computations and 
it will be necessary to replace them with sets of simpler but equivalent re­
lations. In this section we give two lemmas which allow us to make these 
replacements. 

Let {pk}kez > a> b, and q be letters. In the following keep in mind that the 
relators Pk+iPk+2Pk1 s P n t U P i n t 0 t n e t w o tyPes °f relations Pk+2 = Pk~lPk+i 
(for k > 0), and pk = Pk+iPk+2 ^ o r k <0). The two lemmas are: 

Lemma 3.3 The set of relations 

Pk+\Pkl2Pkl = 1' PkaPk+2a~1Pkl1a~l = 1, b = p0apQ1, (3.4) 
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(An)odd (n > 1) • 
ai 0,2 03 O-n-2 ttn-1 &n 

(Bn)odd (n>2) • 
ai a 2 (13 

• • • 
dn-2 O.n-1 On 

(Dn)odd ( n > 4 ) • 

6) odd 

(3 7) odd 

odd 

a\ 02 03 

B n - l 

1a 6 

ai 02 (13 04 as 

> • • 
a\ 0,2 03 14 as 16 

1a 8 

• • • • 
a\ a2 03 04 .as a6 .07 

an-3 , a„_2 

[Ft) odd 

{Hz) odd 

(H4) odd 

(h(m))odd {m > 5) 

ai a 2 03 04 

ai a 2 a3 

ai a 2 a3 04 

ai a 2 

ai 02 

m odd 

m even 

Figure 3.1: Fodd for the irreducible finite-type Coxeter graphs F 
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is equivalent to the set 

PobPo1 = 
PiapT1 = 
PibpV1- = 

1, 
b, 

b2a-lb 

(a^bfarH. 

pkq =,qpk+1, 

qpi, Piq = qPo 1Pi-

(3.5) 
(3.6) 
(3.7) 
(3.8) 
(3.9) 

Lemma 3.4 The set of relations: 

Pk+iPlliPl1 = 1, 

is equivalent to the set 

Pk+iPkLPk1 = l> PM = 

The proof of lemma 3.4 is straightforward. On the other hand, the proof 
of the lemma 3.3 is somewhat long and tedious. 
Proof. [Lemma 3.4] Clearly the second set of relations follows from the first 
set of relations since p2 .= PQ lpi- To prove the converse we first prove that 
pkq = qpk+\ (k > 0) follows from the second set of relations by induction on 
k. It is easy to see then that the same is true for k < 0. For k = 0,1 the result 
clearly holds. Now, for k = m + 2; 

Pm+2qPm+3q~1 = Pm+2qpm\2Pm+iq~l, 

= Pm+2{pm\iq)Pm+iq~l by IH (k = m + 1), 

= Pm+2Pm

1+i(qpm+i)q~l, . 

= Pm+2Pm+1(pmq)q~1 b y I H ( /c = m ) , 

= Pm+2Pm

1+\Pm, 

= 1-

• 

Proof. [Lemma 3.3] First we show the second set of relations follows from the 
first set. Taking k = 0 in the second relation in (3.4) we get the relation 

p0ap2a~lpi1a~1 = 1, 
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and, using the relations p2 = p0

 lpi and b = poap0 \ (3.8) easily follows. Tak­
ing k = 1 in the second relation in (3.4) we get the relation 

Piap3a~lp2 1a~1 = 1. 

Using the relations p% = p1~1p2 and p2 = p^Pi this becomes 

Piap^p^pia^p^poa'1 = 1. 

But piapj1 = a~xb (by (3.8)) so this reduces to 

a~lbpQlb~1apoa~l =. 1. 

Isolating bp^ 1 on one side of the equation gives 

bpQ 1 = O?PQ 1a~1b. 
r 

Multiplying both sides on the left by po.and using the relation poap^1 = b it 
easily follows pobpg 1 = b2a~lb, which is (3.7). Finally taking k = 2 in the 
second relation in (3.4) we get the relation 

P2ap4a~1p^1a~1 = 1. 

Using the relation p4 =-p2~1P3 this becomes 

P2ap~2~ 1P3a~lP3 loTl = 1. (3.10) 

Note that 

P^Piap^Po byp2=p0~1pi 
p^a^bpo by (3.8) 

a~2ba'la using (3.4) and (3.7) 

a~2b 

Pi1p2ap21Pi byp 3 = p 1 "
1 p2 . 

Pila-2bpu 

p2ap2

1 = 

and 

p-sapz1 = 
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where the second equality follows from the previous statement. Thus, (3.10) 
becomes 

a~2bpV1b~1a2pia~1 = 1 

Isolating the factor bpV1 on one side of the equation, multiplying both sides 
by pi, and using the relation (3.8) we easily get the relation (3.9). Therefore 
we have that the second set of relations (3.5)-(3.9) follows from the first set of 
relations (3.4). 

In order to show the relations in (3.4) follow from the relations in (3.5)-
(3.9) it suffices to just show that the second relation in (3.4) follows from the 
relations in (3.5)-(3.9). To do this we need the following fact: The relations 

pkapll = akb, (3.11) 
' p.bp-1 = (a'kb)k+2a^k+1\ (3.12) 

p~\Pk = ab-'a^2, (3.13) 

p-^bpk = (ab-lak+2)ka, (3.14) 

follow from the relations in (3.5)-(3.9). The proof of this fact is left to lemma 
3.5 below. From the relations (3.ll)-(3.14) we obtain 

Pfc+iaPfc+i = a - ( f c + 1 ) 6 = a'1 • a~kb = a^pkapl1, (3.15) 

and 

Pk+iaPk+i — a b _ 1 a f c + 3 = ab~1ak+2a = pi lapka. (3.16) 

Now we are in a position to show that that the second relation in (3.4) follows 
from the relations in (3.5)-(3.9). For k > 0 

PkdPk+2a~1Pkl1a~l = Pkap^Pk+ia^Pkli^1 by (3.5) 
v v ' 

= PkapF1(a~1pkapI1)~1a~1 by (3.15) 

= 1. 

and for k < 0 

Pkapk+2a~lPklia~1 = Pk+iPkl2aPk+2a~1pllla'1 by (3.5) 

= Pk+i(Pkliapk+ia)a'1Pklia~1 by (3.16) 
= 1. 
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Therefore, the relations 

Pkapk+2a~1Pkl1a~1 = 1, k 6 Z 

follow from the relations in (3.5)-(3.9). • 

To complete the proof of lemma 3.3 we need to prove the following. 

Lemma 3.5 The relations 

Pkapk

l = akb 

pkbp^ = (a-kb)k+2a-(k+% 

p^apk = a & - 1 a f c + 2 

pfbpk = {ab-lak+2)ka 

follow from the relations in (3.5)-(3.9). 

Proof. We will use induction to prove the result for nonnegative indices k, 
the result for negative indices k is similar. Clearly this holds for k = 0 , 1 . For 
k = m + 2 we have 

P m + 2 a p ~ + 2 = PmPm+iaPm+lPrn by (3.5), 
= pZ^a~^m+1^bpm by induction hypothesis (IH), 

= {pm

la-^pm){pm

lbpm), . 

= {Pm

lapmr{m+l\pm

lbpm), 

= \ a b - l a m + 2 ) ^ m + l ) ( a b - l a m + 2 ) m a by IH, 

= \ab-1am+2)-1a, • 

= a^"H2)b. 

Pm+2bpm\2 = PmPm+lbp'^Pm by (3.5), 
= p - 1 ( a - ( m + 1 ) 6 ) m + 3 a - ( r a + 2 ) 6 p m by IH, 

= ( ( P ^ a ^ ) ^ ^ 1 ) ^ - 1 ^ ) ) ^ 3 ^ - ^ ^ , , , ) - ^ 2 ) ^ - 1 ^ , 

= ( (ar 1 a r a + 2 ) - ( m + 1 ) (ar 1 a m f l ) m a) ( , n + 3 I 

• ( a 6 - 1 a m + 2 ) - ( m + 2 ) ( a 6 - 1 a T n + 2 ) m a by IH, 

= ( a - ^ b ) m + 3 ( a b - l a m + 2 ) - \ 

= (a-(m+2h)m+Aa-(m+3h; 
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Similarly for the other two equations. Thus, the result follows by induction. 
• 

3,3.2 Type A 

The first presentation for the commutator subgroup *&'N+X = A'AN of the braid 
group 25 n + i = A A „ appeared in [GL69] but the details of the computation 
were minimal. Here we fill in the details of Gorin and Lin's computation. 

The presentation of A A U is 

AA„ = {ai, —,an : ataj = a^a* for | i —. j | > 2, 

ajaj+iaj = a^iaia^i for 1 < i < n — 1 ). 

Since (An)0dd is connected then by theorem 3.1 A'AN = ZA„. To simplify no­
tation in the following let Zn denote A'AN = ZAn- Elements U, V G A A U lie in 
the same right coset precisely when they have the same degree: 

znu = znv uv-'eZn 

• . • < = > deg(f/) = deg(y>, 

thus a Schreier system of right coset representatives for A A „ modulo Zn is 

K = {a\ : / c £ Z } 

By the Reidemeister-Schreier method, in particular equation (3.2), Zn has gen­
erators sak a . := ^^(a^aj)-1 with presentation 

<sa*.«i' • • • : S*?A» • • •' r(a{Ria7e), • • •, T(a[Titja7e),...), (3.17) 

where j € {1 , . . .,n},k,£ £ Z; and m G Z, A G { 1 , . . . ,n} such that af-ax « 
ama\ ("freely equal"), and Ty , Ri represent the relators aiCLja^aJ1, > 2, 
and aiai+iaia'^aT1 a~+v respectively. Our goal is to clean up this presenta­
tion. 

The first thing to notice is that 

a^ax « HfaTx = a ™ + 1 A = 1 

Thus, the first type of relation in (3.17) is precisly saf,ai — 1/ f ° r a l l m £ Z. 
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Next, we use the definition of the Reidemeister rewriting function (3.3) 
to express the second and third types of relations in (3.17) in terms of the 
generators s a * a . : • 

T(akTaa7k) = snk n.snk+in s~k+1 • s~k _ (3.18) 

T(akRia7k) = snk„.s„k+i„ snk+2 „ s~k+2 s~k+1 s"k (3.19) 

Taking i = 1, j > 3 in (3.18) we get 

Thus, by induction on k, 

= *l,a,- (3-20) 
for j > 3 and for all /c € Z. 

Therefore, Z„ is generated by sak a 2 = a^aT^" 1" 1^ and s i > a £ = a^aT1, 
where keZ,3<£<n.To simplify notation let us rename the genera­
tors; let pk := a\a2a^k+r) and qe agaT1, for k 6 Z , 3 < £ < n. We now 
investigate the relations in (3.18) and (3.19). 

The relations in (3.19) break up into the following three types (using 3.20): 

Pk+iPkUPk1 (taking i = 1) (3.21) 
PkQ3Pk+2q3 Vfc-jW 1 (taking i = 2) (3.22) 

g i Q i + i ^ ^ W ^ i + i for 3 < i < n - 1. (3.23) 

The relations in (3.18) break up into the following two types: 

PkQjPkliQj1 for4< j <n, (taking i = 2) . (3.24) 

QiWi1 Q.J1 for 3 < i < j < n, \i - j\ > 2. (3.25) 

We now have a presentation for Zn consisting of the generators Pk,qe, 
where k G Z, 3 < t < n — 1, and defining relations (3.21) -(3.25). However, 
notice that relation (3.21) splits up into the two relations 

Pk+2 = Pk Vfe+i for k>0, (3.26) 

Pk= Pk+iPkU f o r k '< °- (3-27) 
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Thus, for k ^ 0,1, pk can be expressed in terms of po and p\. It follows that 
Zn is finitely generated. In order to show Zn is finitely presented we need to 
be able to replace the infinitly many relations in (3.22) and (3.24) with finitely 
many relations. This can be done using lemmas 3.3 and 3.4, but this requires 
us to add a new letter b to the generating set with a new relation b — po<?3£>o 
Thus Zn is generated by po, pi,qi, b, where 3 < £ < n— 1, with defining 
relations: 

P0Q3P01 =•&, PobPo1 = b2q7lb, piqzpT1 = q^b, P\bp7l = (q^b)3q^2b, 

PoQj = QjPi (4 < j < n), piq-j = qjP^pi (4 < j < n). 

QiQjQ^Qj1 (3 < i < j < n, | i - j | > 2). 

Noticing that for n = 2 the generators qk (3 < k < n), and b do not exist, 
and for n = 3 the generators qk (4 < k < n) do not exist, we have proved the 
following theorem. 

Theorem 3.6 For every n > 2 the commutator subgroup A'A of the Artin group 
AA„ is a finitely presented group. A'A is a free group with two free generators 

po = a2a71, pi = aia2a72-

A'AS is the group generated by 

Po — a2a71-, pi = axa2a72, q = a3aT1, b = a2ax

la3a7l, 

with defining relations 

b = PoqPo1, PobPo1 = b2q'1b, 

PiQPT1 = q^b, PibpT1 = (q~1bfq-2b. 

For n> A the group A'AN is generated by 

p0 = a2a1~1, pi = aia2ar2, q3 = a3aT1, 

b = a2ax

la^a^1, qe — a^aV1 (4 < I < n — 1), 
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with defining relations 

b = p0q3Pol, Pobpo 1 = b2q^lb, 

Poqi = qiPl (4 < i < n), pxqi = qip0~1pi (4 < i < ri) 
Q3Qi = qm (5 < i < n), g3<?4<?3 = 9403Q4, 

QiQj = QjQi (4 < t < j - 1 < n - 1), qiqi+im = qi+iqiqi+1 (4 < % < n - 1). 

• 
Corollary 3.7 For n > 4 the commutator subgroup A'An of the Artin group of type 
An is finitely generated and perfect (i.e. A"An — A'A ). 

Proof. Abelianizing the presentation of A'A in the theorem results in a pre­
sentation of the trivial group. Hence A"A — A'A . • 

Now we study in greater detail the group A'A3, the results of which will 
be used in section 4.2.1. From the presentation of A'A given in theorem 3.6 
one can easily deduce the relations: 

Po 1QPO = qh~lq2: PolbPo = q, • 
Pilqpi = qb^qK pTlbPi = qb~lqA-

Let T be the subgroup of A!Az generated by q and b. The above relations and 
the defining relations in the presentation for A'Aa tell us that T is a normal 
subgroup of A'A . To obtain a representation of the factor group A'Aa/T it 
is sufficient to add to the defining relations in the presentation for A'A the 
relations q = 1 and b = 1. It is easy to see this results in the presentation of 
the free group generated by po and pi. Thus,-A'A JT is a free group of rank,2, 
F2. We have the exact sequence 

1 ^ T ^ A ' A 3 ^ A ' A J T - ^ 1 . • 

Since A'As JT is free then the exact sequence is actually split so 

where the action of F2 on T. is defined by the defining relations in the presen­
tation of A'A and the relations above. In [GL69] it is shown (theorem 2.6) the 
group T is also free of rank 2, so we have the following theorem. 
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Theorem 3.8 The commutator subgroup A'As of the Artin group of type A% is the 
semidirect product of two free groups each of rank 2; 

A'M~F2*F2. 

• 

3.3.3 TypeS 

The presentation of AB„ is 

Asn•= (ai, ...,an : a^j - c^a* for \i - j\ > 2, 

ajaj+iaj = a j + i a i Q i + i for 1 < i < n — 2 

Let Tij, Ri (1 < i < n—2), and Rn-i denote the associated relators ciiaja^aj1, 
aiai+iaia^:1a71a^1, and an-ianan-iana'^a^a^a'1, respectively. 

As seen in figure 3.1 the graph (Bn)odd has two components: Ti and F2, 
where F2 denotes the component containing the single vertiex an. Let degx 

and deg 2 denote the associated degree maps, respectively, so from theorem 
3.2 

A'Bn = Zfn = {Ue ABn : degl(U) = 0 and deg2(U) = 0}. 

For simplicity of notation let Z$ be denoted by Zn. 
For elements U, V € AAU, 

znu = znv & uv-1 e zn . 
deg^U) = deg^V), and -

deg2(U) = deg2(V), 

thus a Schreier system of right coset representatives for Asn modulo Zn is 

TZ = {akan : k,£e Z} 

By the Reidemeister-Schreier method, in particular equation (3.2), Zn is gen­
erated by 

• = UWn^nia~{ 

\ 1 . if j = n. 

aia^aja^a-^ ^k+l^ if j ^ n 
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with presentation 

2 n = (sakae

n,a3- > • • • : Sap

1aq

n,ax> • • • > 

: T C a ^ T i j C o ^ ) - 1 ) , • • •, (1 < i < j < n, \i - j\ > 2), 
r l a J a ^ l a K ) - 1 ) , . . . , d < i < n - 2), 
r ( a ^ i ? n _ i ( a ^ ) - 1 ) , . . . } , 

(3.28) 

where p , q e Z , A e { l , . . . , n - l } such that a^anax ~ a^a&a.\ ("freely equal"). 
Again, our goal is to clean up this presentation. 

The cases n = 2, 3, and 4 are straightforward after one sees the computa­
tion for the general case n > 5, so we will not include the computations for 
these cases. The results are included in theorem 3.9. From now on it will be 
assumed that n > 5. 

Since 

v a -p—q— fai + 1 an A ^ n n a^a9aA « a^a£aA = < -4=4> A = n or; A = 1 and g = 0, 
ya^ah X = n 

the first type of relations in (3.28) are precisely 

Sa\ai,an = 1> a n d S a k , a i

 = L ( 3 " 2 9 ) 

The second type of relations in (3.28), after rewriting using equation (3.3), 
are • 

Sakae„ AiSnkne a - a-
 S~T7 '—~ S~T~7 - l -1 '• . (3.30) 

where 1 < i < j < n, \i — j\ > 2. Taking i = 1 and 3 < j < n — 1 gives: for 
I = 0 (using (3.29)); 

Sak+\a} = Sak,a^ (331) 

so by induction on k, 

sak,a3 = s i ,a; f o r 3 < j < n - 1, (3.32) 

and for ^ # 0; 
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We will come back to relation (3.33) in a bit. 
Taking i = 1 and j = n in (3.30) (and using (3.29)) gives 

V a * a , S k e+i • ( 3- 3 4) 
a i " n > a i a j a „ + ,ai v ' 

So, by induction on £ (and (3.29)) we get 

s a k a i m = l forfe,£eZ. ' (3.35) 

Taking 2 < i < n - 2, i + 2 < j < n in (3.30) gives 

f o r j

 ( 3 3 6 ) 

S a K ^ S a f ^ , a i - • for j = n. 

In the case j — n induction on £ gives 

M ^ . a * = M . a i (2 < * ' < « - 2 ) . (3.37) 

So from (3.32) it follows 

{•5i a, 3 < i < n — 2 

*1 • 7-2 ( 3 3 8 ) 

We come back to the case j < n — 1 later. 

Returning now to (3.33), we can use (3.35) to get 

s„t+i„£ „ ' = snkne „ (3 < j < n - 1). 

Thus, by induction on 
* a K . « i = s 4.a* (3 < J < " - ! ) • (3-39) 

For 3 < j < n — 2 we already know this (equation (3.38)), so the only new 
information we get from (3.33) is 



/ 
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Collecting all the information we have obtained from T(a\anTij (a\an) l) 

1 < i < j < n, \i — j\ > 2, we get: 

sakai

n,ai 

Sl,at 3<i<n-,2, 

.Sak,a2 
i = 2, 

saka^l,an-1
 sa£,an_i> 

and (from (3.36)), for 2 < i < n - 3 and i + 2 < j.<n-l, 

M < . ^ S a f + 1 a ^ , a / a J + 1 a £ , a i

S a K . < » i ' 

This relation breaks up into the following cases (using (3.41)) 

(3.41) 

(3.42) 

S a* .a2 S l ' ° ^a* 1 + 1 , a2 S l i for i = 2, 4 < j < n - 2, 

- i snk n^sne n , s fc. i s , ' for i = 2, ?' = n — 1, 
• a1;a2 an,an_i Qfc+1

)(l2 a*,a„_i J , 

si^si^jSri^Mj for 3 < i < n - 3, i + 2 < j < n - 2, 
I «i a,-sn« n i sVl s~e for 3 < i < n — 3, j = n — 1, 

(3.43) 

The third type of relations in (3.28); T(a\anRi(a\an) l), after rewriting 
using equation (3.3), are 

M a i , 0 l \ { + V « , a j + 1 \ f + 2 a ' „ , a I

S

A W A ( I A J + 1

S „ W A « 1 „ J

S

A { « « , T T I + 1 

which break down as follows (using (3.41)): 

(3.44) 

s„k+i „ s k + 2 s k (i = 1), 

Sa*,o2

Sl,a3Sa^+2,a2

Sl,a3S

Q^+\a2

Sl,a3 
1 --1 a = 2), 

for 3 < i < n - 3, 

I si a „ , s i a „ „s~} s r i s - / , (i = n — 2), 
^ l , " n - 2 an,an_;i l , « n - 2 <j*,an_l l , 1 n - 2 a£,a„_l' v " 

(3.45) 

The fourth type of relations in (3.28); T(ak^anRn-i(af{an) 1), after rewriting 
using equation (3.3), is 

sne n , s„i+1 n s C+2 s e+l ) an,an-! an ,o„_i a* + 2 ,a n _! a& + 1 ,a„_i (3.46) 
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where we have made extensive use of the relations (3.41). 
From (3.41) it follows that Zn is generated by sak -a2, s ^ a i , and saen a n _ 1 for 

k, £ € Z and 3 < % < n — 2. For simplicity of notation let these generators 
be denoted by pkl Qi/ a n d rt> respectively. Thus, we have shown that the 
following is a set of defining relations for Zn: 

Pkqj=QjPk+i (4 < j < n - 2, k € Z), 

Pkre = rePk+i {k, £eZ), 

q.i%=°i<li (3 < i < j < n- 2, \i - j\ > 2), 

Qir'e = reqi (3 < i < n - 3), 

Pk+iPkUPk1 (fc€Z), (3.47) 
Pkq3Pk+2Q31Pkl1q31 (ke Z), 

q%qi+iqi = qi+iqm+i (3 < i < n - 3), 

qn-2reqn-2 = reqn-2re (£ € Z), 

rere+1r7+2re+i ( ^ z ) . 

The first four relations are from (3.43), the next four are from (3.45), and the 
last one is from (3.46). 

The fifth relation tells us that for k ^ 0,1, pk can be expressed in terms of po 
and p\. Similarly the last relation tells us that for £ ^ 0,1, re can be expressed 
in terms of ro and r\. From this it follows that Zn is finitely generated. Using 
lemmas 3.3 and 3.4 to replace the first, second and sixth relations, assuming 
we have added a new generator b and relation b = poqsPo1, we arrive at the 
following theorem. 

Theorem 3.9 For every n > 3 the commutator subgroup A'Bn of the Artin group 
Asn is a finitely generated group. Presentations for A'Bn, n > 2 are as follow s: 
A'B2 is a free group on countably many generators: 

.[<4ai] ( * e Z \ { 0 , ± l } ) , [aka2,ai} (k 6 Z\{0}) , 

A'B is a free group on four generators: 

[a^ 1 ,^ 1 ] , [a 3 ,a 2 ] [a^ 1 ,a2 : ], [ai',a2\[aT1,a2~l], [aia 3, a2\[a71, a 2

1 ] . 
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A'B is the group generated by 

P k = a\a2a-[k+1) = [ak

l,a2][a^,a2

l\1 (k € Z) 

qe = a{az{aia{)~1 = [ai,^]^1,^1]^1,^1], (t € Z), 

with defining relations s 

PkqePk+2 = qePk+iqe (k,£eZ), 

qeqe+i = qe+iqe+2 {3 <i <n-3). 

For n>5the group A!Bn is generated by , 

p0 = a2a1~1,' pi = a 1 a 2 a 1 ' 2 , g 3 = c^aT/1, re = anan-i(aian)~l (I £ Z), 

6 = a 2 a ^ 1 a 3 a 2 X , = a ^ a ^ 1 (4 < z < n — 2), 

i f z'r/j defining relations 

Poqj = qjPi, Piqj = qjPoXPi C4 < J < n - 2), 

Pore = repi, pire = rep^Pi (£€%),. 

QiQj = qjqi C3 < i < j < n - 2, \i = j\ > 2), 

q%ri = nqt (3<i<n-3), 

Poq^Po1 = b , PobPo1 = b2q^lb, 

PiqzPi1 = q^b, ' Pibp\~l = (q^bfq^b, 

'QiQi+iQi = qi+iqiQi+i (3 <i <n-3), 

qn-2Tiqn-2 = require (£ € Z), 

ren+ir^r^ (£ e Z), 

• 

Corollary 3.10 For n>5the commutator subgroup A'Bn of the Artin group of type 
Bn is finitely generated and perfect. 

Proof. Abelianizing the presentation of A'B in the theorem results in a pre­
sentation of the trivial group. Hence A"Bn = A'B. ' • 



Chapter 3. Commutator Subgroups of Finite-Type Artin Groups 60 

3.3.4 Type£> 

The presentation of AD„ is 

Aon = ( a i , —,an : CLidj = ajdi for 1 < i < j < n - l,\i - j\ > 2, 

- , ano-j — ajan for j ^ n — 2, 

a j a j + i a j = a j + i a i a i + i for 1 < i < n — 2 

a-n-2Q>n&n-2 = anan-2an). 
j 

As seen in figure 3.1 the graph {Dn)odd is connected. So by theorem 3.1 

A'Dri=ZDn = {UeADn:deg(U) = 0}. 

The computation of the presentation of A'Dn is similar to that of A'A , so we 
will not include it. 

Theorem 3.11 For every n > 4 the commutator subgroup A'Dn of the Artin group 
Aon is a finitely presented group. A'Da is the group generated by 

po = a2aT1, pi = aia2a72, q3 = a^aV1, 

04 = a^aT1, b = a2aT1a3a2

1, c = a2aT1a,4a2

 1 , 

with defining relations 

b = PoqzPo1, PobPo1 = b2q^b, 

PiQ3Pil = <lzlb, PibpV1 = (<?3 16)3q3"26, 

c = P094P0 X> Pocpo 1 = c ^ T ^ c , 

P i Q ^ r 1 = Q4lc' PicPi1 = (04 1 c ) 3 o 4 " 2 c , 

/ 93<?4 '= 9403-

For n>5the group A'Dn is generated by . . . 

po = a2a7l, p\ = aia2a72, 

qi = a^aT1 (3 < £ < n), b = a2aTla3a2

l, 
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with defining relations 

* = Po93Po1' PobPo1 = tfq^b, 

. PiqsPr1 = %lb, PibpT1 = {q^bfq^b, 

PoQj = QjPu PiQj = QjP^Pi (4 < j < -n), 

QiQi+iQi = qi+iqiQi+l (3 < i < n - 2), 

qtqj = qjqi (3 < i < j < n - 1, \i - j\ > 2), 

qnqj = qjqn ( j ^ n - 2 ) . 

• 

- Corollary 3.12 For n> 5 the commutator subgroup A'Dn of the Artin group of type 
Dn is finitely presented and perfect. • 

3.3.5 TypeE 

The presentation of A E N , n = 6,7, or 8, is 

. A.EN = (o-i; an : CLidj = djdi for 1 < i < j < n — l,\i — j\ > 2, 

a;a n — anai for i ^ 3, 

aiOi+idi = di+ididi+i for 1 < i < n — 2 

a3anaz = , d n a 3 d n ) . 

As seen.in figure 3.1 the graph (En)odd is connected. So by theorem 3.1 

A'En = ZEn = {U£ AEn •: deg(U) = 0}. 

The computation of the presentation of A'En is similar to that of A'An. 

Theorem 3.13 For n = 6,7, or 8 the commutator subgroup A'E of the Artin group 
AE„ is a finitely presented group. A'En is the group generated by 

po — d2dT1, pi = a^a^" 2 , q£ = a^dV1 (3 < £ < n), b = d2al~1 d^a^1-, 
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with defining relations 

b = P0Q3P01, . Pobpo1 = b2q^b, 

PKl3Pil = q^b, Pibp^1 = [q^bfq^b, 

Poqj - qjPi, Piqj = qjP^Pi (4 < j < n), 

QiQi+iqi = qi+iqiqi+i (3 < % < n - 2), 

mqj = qjqt (3 < % < j < n - l , \i - j\ > 2), 

q%qn = qnqi ( 4 < v < n - i ) . 

Corollary 3.14 For n = 6,7, or 8 the commutator subgroup A'EN of the Artin group 
of type En is finitely presented and perfect. . . • 

3.3.6 TypeF 

The presentation of AFA is -

A F „ = (ai,,02,03,04 : didj = ajdi for \i - j\ > 2, 

o i a 2 o i = 0,20.10,2, 

0,20,30,20,3 = a 3 a 2 a 3 a 2 , 

030403 = 040304). 

As seen in figure 3.1 the graph (En)odd has two components: T i and T 2 , 
where T i denotes the component containing the vertices 01,02, and r 2 the 
component containing the vertices 03,04. Let degx and deg2 denote the asso­
ciated degree maps, respectively, so from theorem 3.2 

A'F4 = 4? = iU G M • d e § i ( ^ ) = 0 and deg2(U) = 0}. 

By a computation similar to that of Bn we get the following. 

Theorem 3.15 The commutator subgroup A'Fa of the Artin group of type F4 is the 
group generated by ~ 

. P k = aka2a-{k+l) = [ak,a2}[a^,af] (fceZ), 

qe = o ^ a 3 a 7 ( m ) = [a{,oslfaj1,03 l] {I G Z), 
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with defining relations 

PkqePk+iqe+i = qePkqe+iPk+i ( M e Z): 

The first two types of relations in the above presentation tell us that for 
k ^ 0,1, j>fc can be expressed in terms of po and p i , and similarly for qg. Thus 
A ' F 4 is finitely generated. However, A'Fi is not perfect since abelianizing the 
above presentation gives A'F/AFi c± Z 4 . 

3.3.7 TypeS 

The presentation of AH„, n = 3 or 4, is 

Aff„ = ( a i , a n : a jO j = ajCii for | i - j\ > 2, 
aia2aia2ai = a2aia2a\a2, 

ajaj_|-iai = ai+iajaj+i for 2 < i < n — 1). 

'As seen in figure 3.1 the graph (Hn)olid is connected. So by theorem 3.1 

4 = 2tf„ = e -4//n : deg(U) = 0}. 

The computation of the presentation of A'Hn is similar to that of A'An. 

Theorem 3.16 For n = 3 or 4 f/ze commutator subgroup A'Hn of the Artin group 
AHu is the group generated by 

pk = aka2a^{k+1) (JfeeZ), qe = aea~e ( 3 < £ < n ) , 

wn'f/z defining relations 

PkQj = QjPk+i (4 < j < n), 

qiqi+iqi = gj+i<Mm (3 <.i < n - l ) . 

• 
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The second relation tells us that for k ^ 0,1,2,3, pk can be expressed in 
terms of po,Pi,P2, and p3. Thus, A'Hn is finitely generated. Abelianizing the 
above presentation results in the trivial group. Thus, we have the following. 

Corollary 3.17 For n = 3 or A the commutator subgroup A'Hn of the Artin group of 
type Hn is finitely generated and perfect. • 

3.3.8 T y p e / 

The presentation of h{m), m > 5, is 

Ar2(m) = (ai,Q2 : {aia2)m = ( a 2 a i ) m ) . 

In figure 3.1 the graph {h{fn))0dd is.connected for m odd and disconnected 
for m even. Thus, different computations must be done for these two cases. 
We have the following. 

Theorem 3.18 The commutator subgroup A'l2^ of the Artin group of type him), 
rh > 5, is the free group generated by the {m — l)-generators 

aka2a~ik+1) (k G {0,1,2,... ,m — 2}), 

when m is odd, and is the free group with countably many generators 

[ai,ai] {£eZ\{-{m/2-l)}), [a{ai,ai} ( f 6 Z , j = l ,2 m / 2 - 3 ) , 

{a™/2-2ai,ai} {£EZ\{m/2-l}), [aJo2,oi] (k € Z). 

when m is even. 

3.3.9 Summary of Results 
r 

Table 3.1 summarizes the results in this section. The question marks (?) in 
the table indicate that it is unknown whether the commutator subgroup is 
finitely presented. However, we do know that for these cases the group is 
finitely generated. If one finds more general relation equivalences along the 
lines of lemmas 3.3 and 3.4 then we may be able to show that these groups 
are indeed finitely presented. 
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TypeT finitely generated/presented perfect 
A  R  

-tin yes/yes n = 1, 2,3 : no, 
n > 4 : yes 

n = 2 : no, n > 3 : yes n = 2,3,4: no, 

B N , / 
n = 3 : yes, n > 3 : ? 

n > 5 : yes 

D N yes/yes n — 4 : no, 
n > 5 : yes 

EN 
yes/yes yes 

FA yes/? no 
H N 

yes/? yes 
I2 (m) (m even) no/no no 

(m odd) yes/yes no 

Table 3.1: Properties of the commutator subgroups 



Chapter 4 
Local Indicability of Finite-Type 
Artin Groups 

Locally indicable groups first appeared in Higman's thesis [Hig40a] on group 
rings. He showed that if G is a locally indicable group and R an integral 
domain then the group ring RG has no zero divisors, no idempotents other 
than 0 and 1, and no units other than those of the form ug (u a unit in R, 
g G G). Higman's results have subsequently been extended to larger classes 
of groups, for example right-orderable groups. Our primary interest in local 
indicability is its application to the theory of right-orderability which is the 
topic of chapter 5. 

4.1 Definitions 

A group G is indicable if there exists a nontrivial homomorphism G —> Z 
(called an indexing function). A group G is locally indicable if every nontriv­
ial, finitely generated subgroup is indicable. Notice, finite groups cannot be 
indicable, so locally indicable groups must be torsion-free. 

Every free group is locally indicable. Indeed, it is well known that ev­
ery subgroup of a free group is itself free, and since free groups are clearly 
indicable the result follows. 

Local indicability is clearly inherited by subgroups. The following simple 
theorem shows that the category of locally indicable groups is preseved under 
extensions. 

Theorem 4.1 IfK, H and G are groups such that K and H are locally indicable and 
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fit into a short exact sequence 

1 — • K —^—» G —^—> H — • 1, 

then G is locally indicable. 

Proof. Let g\,..., gn € G, and let (gi,.. • ,gn) denote the subgroup of G which 
they generate. If tp{{gi, •. •, gn)) i1 {1} then by the local indicability of H there 
exists a nontrivial homomorphism / : ip((gi,..., gn)) —• Z. Thus, the map 

foip:(g1,...,gn) —>Z 

is nontrivial. Else, if ip((gi,...,gn)) = {1} then gi, • • • ,gn £ kerV> = Im^ (by 
exactness), so there exist k\,..., kn € K such that <f>(ki) = gi, for all i. Since 
4> is one-to-one (short exact sequence) then <f> : (k\,..., kn) —> (gi,..., gn) 
is an isomorphism. By the local indicability of K there exists a nontrivial 
homomorphism h : (k\,.,., kn) —• Z, therefore the map 

hod'1 : (gi,...,gn) —>Z 

is nontrivial. • 

Corollary 4.2 If G and H are locally indicable then so is G .© H. 

Proof. The sequence 

1 — > H — ^ — > G ® H ^ ^ G — > 1 

where 4>(h) = (1, h) and ip(g, h) = g is exact, so the theorem applies. • 

If G and H are groups and <j> : G —> Aut(iY). The semidirect product of 
G and # is defined to be the set H x G with binary operation 

(hi,gi)-(h2,g2) = {h\-g\*h2,gi92)' 

where g * h denotes the action of G on H determined by <fi, i.e. g * h := 
4>(g)(h) £ H. This group is denoted by H G. 

Corollary 4.3 If G and H are locally indicable then so is H G. 
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g then kei-0 = H and 

4 1 

• 

The following theorem of Brodskii [Bro80], [Bro84], which was discovered 
independently by Howie [How82], [HowOO], tells us that the class of torsion-
free 1-relator groups lies inside the class of locally indicable groups. Also, for 
1-relator groups: locally indicable torsion free. 

Theorem 4.4 A torsion-free 1-relator group is locally indicable. 

To show a group is not locally indicable we need to show there exists a 
finitely generated subgroup in which the only homomorphism into Z is the 
trivial homomorphism. 

Theorem 4.5 IfG contains a finitely generated perfect sugroup then G is not locally 
indicable. 

Proof. The image of a commutator [a, b] := a6a _ 1 6 _ 1 under a homomor­
phism into Z is 0, thus the image of a perfect group is trivial. • 

4.2 The Local Indicability of Finite-Type Artin Groups 

Since finite-type Artin groups are torsion-free (see section 2.8), theorem 4.4 
implies that the Artin groups of type A2, B2, and h{m) (m > 5) are locally 
indicable. In this section we determine the local indicability of all1 irreducible 
finite-type Artin groups. 

It is of interest to note that the discussion in section 3.2, in particular the­
orem 3.2, shows that an Artin group Ar and its commutator subgroup A'v fit 
into a short exact sequence: 

1 A'T — ^ ^ r — Z m —> 1, ' 
1 with the exception of type F± which at this time remains undetermined. 

Proof. If ifi : H xi^ G —> G denotes the map (h,g) 
the groups fit into the exact sequence 

l _ > # _ ™ i L > H^G G 
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where m is the number of connected components in Foa\d, and cf> can be iden­
tified with the abelianization map. Thus, the local indicability of an Artin 
group .Ar is completely determined by the local indicability of its commuta­
tor subgroup A'R (by theorem 4.1). In other words, 

A r is locally indicable A'R is locally indicable. 

This gives another proof that the Artin groups of type A2, B2, and I2(m) (m > 
5) are locally indicable, since their corresponding commutator subgroups are 
free groups as shown in Chapter 3. 

4.2.1 Type A 

AA-L is clearly locally indicable since AAL — Z, and, as noted above, AA2 is 
also locally indicable. 

For AA3, theorem 3.8 tells us A'AA is the semidirect product of two free 
groups, thus A'A is locally indicable. It follows from our remarks above that 
AA3 is also locally indicable. 

As for AA„, n > 4, corollary 3.7 and theorem 4.5 imply that AAU is not 
locally indicable. 

Thus, we have the following theorem. 

Theorem 4.6 AA„ is locally indicable if and only ifn = 1,2, or 3. 

4.2.2 T y p e B 

We saw above AB2 is locally indicable. For n = 3 and 4 we argue as follows. 
Let V^+l denote the (n + l)-pure braids in 2$ n + i = Ayi n , that is the braids 

which only permute the first n-strings. Letting bi, ...,bn denote the genera­
tors of ABH a theorem of Crisp [Cri99] states 

Theorem 4.7 The map 

ABN — • AAU 

defined by 

bi i > dj, bn i > Qjn 

is an injective homomorphism onto V^+l. That is, ABN — VnXi '< ®n+i = AAU-
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By "forgetting the n t h-strand" we get a homomorphism / : V^Xi — > ®n 
which fits into the short exact sequence 

1 — # — B n — 1, ' 

where K = ker f = {(3 <E V^Xl '• m e n r s t 71 strings °f P a r e trivial}. It is 
known that K ~ Fn, the free group of rank n. Since Fn is locally indicable 
and !B n (n = 3,4) is locally indicable then so is A B „ , for n = 3,4. Futhermore, 
the above exact sequence is actually a split exact sequence so AB„ — T^n+l ~ 

F, x <B„. " 1 • 
As for ^4jgn, n > 5, corollary 3.10 and theorem 4.5 imply that ^1B„ is not 

locally indicable, for n > 5. 
Thus, we have the following theorem. 

Theorem 4.8 Asn is locally indicable if and only ifn = 2,3, or 4. 

4.2.3 TypeD 

It follows corollary 3.12 and 4.5 that Aon is not locally indicable for n > 5. As 
for ADA, we will show it is locally indicable as follows. 

A theorem of Crisp and Paris [CP02] says: 

Theorem 4.9 Let Fn-i denote the free group of rank n — 1. There is an action 
P • -4ji n_i —> A u t ( F n _ i ) such that Apn — Fn-\ xi AAu_! and p is faithful. 

Since AA3 and F3 are locally indicable, then so is AD A- Thus, we have the 
following theorem. 

Theorem 4.10 Aryn is locally indicable if and only ifn = 4.. 

4.2.4 TypeS 

Since the commutator subgroups of[AE„, n = 6, 7,8, are finitely generated 
and perfect (corollary 3.14) then AEU is not locally indicable. 

4.2.5 Type 7 

Unfortunately, we have yet to determine the local indicability of the Artin 
group A F A -
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4.2.6 T y p e S 

Since the commutator subgroups of Ann, n = 3,4, are finitely generated and 
perfect (corollary 3.17) then Ann is not locally indicable. 

4.2.7 T y p e / 

As noted above, since the commutator subgroup A'l2^ of Ai2(m) (m > 5) is 
a free group (theorem 3.18) then A'l2^ is locally indicable and therefore so is 
•Ai2(m)• One could also apply theorem 4.4 to conclude the same result. 



Chapter 5 
Open Questions: Orderabiiity 

In this chapter we discuss the connection between the theory of orderable 
groups and the theory of locally indicable groups. Then we discuss the current 
state of the orderabiiity of the irreducible finite-type Artin groups. 

5.1 Orderable Groups 

A group or monoid G is right-orderable if there exists a strict linear ordering 
< of its elements which is right-invariant: g < h implies gk < hkior all g, h, k 
in G. If there is an ordering of G which is invariant under multiplication on 
both sides, we say that G is orderable or for emphasis bi-orderable . 

Theorem 5.1 G is right-orderable if and only if there exists a subset P c G such 
that:. 

V -V CV (subsemigroup), 
G\{1} = VUV-\ 

Proof. Given V define < by: g < h iff hg''1 G V. Given < take V = {g <E G : 
Kg}. • 

In addition, the ordering is a bi-ordering if and only if also 

gVg-yczV, Mg € G. 

The set V c G in the previous theorem is called the positive cone with respect 
to the ordering <. 
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The class of right-orderable groups is closed under: subgroups, direct 
products, free products, semidirect products, and extension. The class of or-
derable groups is closed under: subgroups, direct products, free products, but 
not necessarily extensions. Both left-orderability and bi-orderability are local 
properties: a group has the property if and only if every finitely-generated 
subgroup has it. , 

Knowing a group is right-orderable or bi-orderable provides useful infor­
mation about the internal structure of the group. For example, if G is right-
orderable then it must be torsion-free: for 1 < g implies g < g2- < g3 < 
•••<<?"<•••. Moreover, if G is bi-orderable then G has no generalised torsion 
(products of conjugates of a nontrivial element being trivial), G has unique 
roots: gn = hn g = h, and if [gn, h] — 1 in G then [g, h] = 1. Further con­
sequences of orderablility are as follows. For any group G, let ZG denote the 
group ring of formal linear combinations n\g\ + • • • nkgk-

Theorem 5.2 IfG is right-orderable, then ZG has no zero divisors. 

Theorem 5.3 (Malcev, Neumann) IfG is bi-orderable, then ZG embeds in a division 
ring. 

Theorem 5.4 (LaGrange, Rhemtulla) If G is right order able and H is any grooup, 
then ZG ~ ZH implies G ~H 

It may be of interest of note that theorem 5.2 has been conjectured to hold for 
a more general class of groups: the class of torsion-free groups. This is known 
as the Zero Divisor Conjecture. At this time the Zero Divisor Conjecture is 
still an open question. 

The theory of orderable groups is well over a hundred years old. For a 
general exposition on the theory of orderable groups see [MR77] or [KK74]. 

Conrad [Con59] investigated the structure of arbitrary right-orderable 
groups, and defined a useful concept which lies between right-invariance and 
bi-invariance. A right-ordered group (G, <) is said to be of Conrad type if for 
all a, b e G, with 1 < a, 1 < b there exists a positive integer TV such that 
a < aNb. The following theorems gives the connection between orderable 
groups and locally indicable groups (see [RR02]). 

Theorem 5.5 For a group G we have 
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bi-ordemble => locally indicable =>• right-orderable. 

Theorem 5.6 A group is locally indicable if and only if it admits a right-ordering of 
Conrad type. 

One final connection between local indicability and right-orderability was 
given by Rhemtulla and Rolf sen [RR02]. 

Theorem 5.7 (Rhemtulla, Rolfsen) Suppose (G, <) is right-ordered and there is a 
finite-index subgroup H of G such that (H,<) is a bi-ordered group. Then G is 
locally indicable. 

An application of this theorem is as follows. It is known that the braid 
groups Q3n = i ^ n _ , are right orderable [DDRW02] and that the pure braids 
Vn are bi-orderable [KR02]. However, theorem 4.6 tells us that 23„ is not lo­
cally indicable for n > 5 therefore, by theorem 5.7, the bi-ordering on Vn and 
the right-ordering on 23„ are incompatible for n > 5. 

- 5.2 Finite-Type Ar t in Groups 

The first proof the that braid groups 23n enjoy'a right-invariant, total ordering 
was given in [Deh92], [Deh94]. Since then several quite different approaches 
have been applied to understand this phenomenon.1 However, it is unknown 
whether all the irreducible finite-type Artin groups are right-orderable. For 
a few cases one can use theorem 5.6 along with the results of chapter 4 to 
conclude, right-orderability. 

One approach is to reduce the problem to showing that the positive Artin 
monoid is right-orderable. 

5.2.1 Ordering the Monoid is Sufficient 

We will show that for a Coxeter graph F of finite-type the Artin group Ar 
is right-orderable (resp. bi-orderable) if and only if the Artin monoid Ar is 
right-orderable (resp. bi-orderable). One direction is of course trivial. 

1For a wonderful look at this problem and all the differents approaches used to un­
derstand it see the book [DDRW02]. 
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Let Ar be an Artin group, of finite-type. Recall that theorems 2.17 and 2.18 
tell us that: 

For each U € Ar there exist Ui,U2 € At, where U2 is central in Ar such that 

dering. We wish to prove that Ar is right-orderable. 
The following lemma indicates how we should extend the ordering on the 

monoid to the entire group. 

Lemma 5.8 IJU& Ar has two decompositions; 

; u = I W 2

_ 1 = UjJ?, 

where Ui,Ui <E Ap and U2, U2 central in Ar, then 

Ux <+ y2*=*Ui <+U2. 

Proof. U = UiU2~l' = U\U2

 1 implies U\U2=PU\U2, since U2, U2 central and 
4̂p" canonically injects in Ar-

If (7i <+ U2 then 

where the last implication follows from the fact that ii'Ui + > U2 then either: 
(i) Ui =- U2, in which case [7 = 1 and so Ui = U2. Contradiction, (ii) 
Ui + > U2, in which case UiU2

 + > U2U2. Again, a contradiction. 

=» UiU2 <+ U2U2 

=> UiU2 <+ U2U2 

=> Z/1C/2 < + 

since < + right-invariant, 
since U2 central, 
since UiU2 =p U\U2, 

The reverse implication follows by symmetry. • 

This lemma shows that the following set is well defined: 

V = {U e Ar : U has decomposition U = UiU2~l where U2 <+ U\). 
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It is an easy exercise to check that V is a positive cone in Ar which con­
tains V+: the positive cone in A^ with respect to the order < + . Thus, the 
right-invariant order < + on A^ extends to a right-invariant order < on Ar-
Furthermore, one can check that if < + is a bi-invariant order on A^ then V 
satisfies: 

UVU^cV, VUeAr-

Thus, the bi-invariant order < + on A^ extends to a bi-invariant order < on 
Ar. 
Open question. Determine the orderability of the finite-type Artin monoids 
by giving an explicit order condition. 

5.2.2 Reduction to Type E8 

Table 2.1 shows that every irreducible finite-type Artin group injects into one 
type A, D, or E. Thus, if Artin groups of these three types are right-orderable 
then every finite-type Artin group is right-orderable. It is know that Artin 
groups of type A, i.e. the braid groups, are right orderable. Also, by theorem 
4.9, and the fact that free groups are right-orderable, it follows that Avn is 
right-orderable. Finally, the Artin group of types E§ and E-j naturally live 
inside AES, SO it suffices to show AE6 is right-orderable. At this point in time 
it is unknown whether AES is right-orderable. As section 5.2.1 indicates it is 
enough to decide whether the Artin monoid A% is right-orderable. 
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a-chain, see chain,a-chain 
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degree, 42 
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length, 20 
parabolic subgroup, 36 
system, 18 

bilinear form B, 7 
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a-chain, 22 
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target, 22 
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target, 22 

imminent, 24 
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source, 22 
target, 22 
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chain operator, 24 
common divisor, 28 
common multiple, 28 
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commutator subgroup, 41 
conjugacy problem, 14 
Coxeter 
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maximal length, 10 

extra large type, 15 
graph, 5 

finite-type, 15 
positive definite, 15 
type, 15 

group, 5 
universal, 5 

length, 6 
matrix, 4 
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parabolic subgroup, 11 
system, 5 

rank, 5 

deletion condition, 11 
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on the left, 21 
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first kind, 14 
second kind, 14 

elementary transformation, 20 
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fundamental element, 34 quadratic factor, 32 

greatest common divisor, 28 
group 

Artin, see Artin, group 
Coxeter, see Coxeter, group 
perfect, 44 
symmetric, 5 

group ring, 73 

hyperplane 
arrangement of, 38 

central, 38 
simplicial, 38 

indicable, 66 
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least common multiple, 28 
length, 19 
linear, 36 
locally indicable, 1,66 

matrix 
Artin, see Artin, matrix 
Coxeter, see Coxeter, matrix 

orderable, 1,72 
bi-orderable, 1,72 
Conrad type, 73 
right, 1,72 

positive cone, 72 
positive definite, 7 
positive equivalent, 20 
positive semidefiriite, 8 
positive transformation, 20 

reduced expression, 6 
reduction property, 20,21 
reflection, 7,38 
Reidemeister 

rewriting function, 41 
Reidemeistef-Schreier method, 40 
reverse, 21 
root, 9 

negative, 9 
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root system, 8 

Schreier-system, 40 
semidirect product, 67 
sequence 
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subgraph 

induced, 13 
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Coxeter, see Coxeter, system 
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