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Abstract 

The motion of a surface wave in a two-layer fluid can lead to generation of two internal 

waves through a resonance mechanism under certain circumstances. Two subjects related to 

this interaction are studied theoretically here. These are the behavior of the waves in three-

dimensional interaction when the density difference between the two layers is small, and the 

effect of a diffuse interface on the interaction. 

In the first study, the three-dimensional interaction of a surface wave with two oblique 

internal waves is analyzed asymptotically in an attempt to obtain simple approximate 

expressions for the growth rate as well as the kinematic properties of the internal waves. The 

non-dimensional density difference 8 is taken as a perturbation parameter, and the first few 

terms in the expansions of the desired quantities are derived. The results indicate that the 

internal-wave numbers are o(S~l), one order larger than the surface-wave number. Also, at 

leading order the internal wave frequencies are equal to a>0/2, and the directions of the two 
o 

internal waves differ by 180 . An important finding is that an immediate consequence of 

taking S as a small parameter is that the internal waves become deep-water waves in both 

layers. According to the asymptotic analysis, the interaction coefficients ax and a2 are 0(l) 

and are equal at leading order. 

The second study concerns the generation of two internal waves by a surface wave on a 

thin diffuse interface. As in the first analysis, the non-dimensional density difference 5 is 

taken as a small perturbation parameter. In addition, it is assumed that the diffuse interface is 

small compared to the internal wavelengths by taking it to be order S2. A three-layer system 

admits two modes of internal wave motion, and similarly two modes of interaction are found 

possible through the analysis. These are interaction between a surface wave and two first-
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mode internal waves, and interaction between a surface wave, a first-mode and a second-

mode internal wave. It is shown that, contrary to the first mode, in the second mode of 

interaction the waves are not sub-harmonic to the surface wave. An important finding is that 

the growth rate in the first mode is higher than in the second. This implies that in a real 

situation the interaction between a surface wave and two first-mode internal waves has more 

chance to occur. 
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C H A P T E R 1 

I N T R O D U C T I O N 

1.1 M O T I V A T I O N 

The layers of fluid mud found at the bottom of many lakes, estuaries, and coastal waters, and 

the unconsolidated sludge at the bottom of mine-tailings ponds can often be treated as 

viscous fluids. Re-suspension of material from these layers can be of significant practical 

importance. In coastal waters it can lead to the need for substantial dredging or sediment 

replenishment (U.S. Army Coastal Engineering Research Center, 1984; Mehta et al., 1994). 

In mine-tailings ponds it can cause blockages in processing plants when the pond water is 

recycled, and adverse environmental impacts if the pond water flows into natural water 

courses (Luettich et al., 1990; Lawrence et al., 1991). Re-suspension can be the result of 

surface wave action triggering instabilities at the interface between the fluid mud (or mine-

tailings) and the overlying water. 

To investigate the interfacial instabilities, the model of surface wave motion in a two-layer 

fluid can be adopted. This simplified problem was first studied by Wen (1995) in the context 
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of surface wave motion over a highly viscous sub-layer. Wen's (1995) study was motivated 

by her qualitative observations of interfacial wave generation and growth by a surface wave 

over a fine-sediment bed in a laboratory flume. She found that a resonant interaction between 

the surface wave and two opposite-travelling internal waves leads to the instability of the 

interface. 

The interaction was subsequently investigated by Hill and Foda (1996), and Hill (1997). 

The first work (Hill and Foda, 1996) was limited to a two-dimensional analysis of the 

interaction. In the subsequent work, Hill (1997) investigated the interaction both 

experimentally and theoretically and showed that the interaction has in fact a three-

dimensional nature. More recently, Jamali (1998) studied the interaction both theoretically 

and experimentally,in an attempt to investigate the phenomenon in more detail and to address 

some issues surrounding Hill's (1997) results. 

Jamali (1998) also made some recommendations for further study of the interaction and 

pointed out a few subjects in this regard. Two of them were the derivation of a simple 

relation for the growth rate of the internal waves and study of effect of a diffuse interface on 

the interaction. In the theoretical analysis of Jamali (1998), the equations for the growth rates 

of the internal waves were found quite long and complicated. Since the interaction is of great 

importance to the internal mixing in a two-layer fluid subject to surface wave motion, a 

simple approximate equation to predict the onset of the interfacial instability is needed. The 

second subject was set forth by the laboratory observation of Jamali (1998) that the diffuse 

interface of the two layers had an affect on the growth rate of the internal waves. In this 

study, these two subjects are studied on a theoretical basis. Before proceeding further, it is 

instructive to first review the past studies on resonant wave interaction and the interaction of 

a surface wave with two internal waves in particular. 
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1.2 WAVE INTERACTION 

Nonlinear wave interactions are considered to be an important aspect of the dynamics of the 

oceans (Philips, 1977; Komen et al., 1994) and the atmosphere (Yi and Xiao, 1996). Of 

particular interest are resonant interactions, which are important in the redistribution of 

energy among wave modes with different spatial and temporal scales. To study the 

characteristics of this energy transfer, the theory of resonant wave interaction has been used 

extensively (Philips, 1981; McComas and Muller, 1981; Hammack and Henderson, 1993; 

Komen et al., 1994). In principle, the theory addresses the problem of wave generation by 

weakly non-linear interaction of a group of waves. Each wave in the group can be treated as 

linear, but when the waves satisfy certain resonance conditions, energy is interchanged 

preferentially between them (Turner, 1973). 

Resonant wave interaction can be described as a non-linear process in which energy is 

transferred between different natural modes of an oscillatory system by resonance. Consider 

a non-linear system that is oscillating by one or more of its natural modes. As the system is 

non-linear, the motion is not simply a summation of the linear modes, but consists of the 

linear harmonics plus their non-linear coupling. Under resonance conditions the non-linear 

coupling between some modes may lead to excitation of a natural mode or modes. The 

behavior of this excited mode(s) depends on the properties of the original modes and the 

system. An interesting situation occurs when the created mode(s) grows rapidly in time, 

being of primary importance in studies of hydrodynamic stability. 

It is well known that the development of water waves is non-linear in character, and 

resonant interactions are of particular importance in this regard (Komen et al., 1994). Two 

examples of such interactions are the generation of an internal wave by two surface waves 

(Ball, 1964) and the interaction of an internal wave with two higher-mode internal waves on 
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a thin density interface (Davis and Acrivos, 1967). In the study of oceanic internal gravity 

waves a considerable amount of work has been based on the concept of resonant wave 

interaction (Hasselmann, 1966; McComas and Bremerton, 1977; McComas and Muller, 

1981, Muller et al., 1986). Resonant interactions are a source of internal wave energy and a 

mechanism for surface wave modification. Furthermore, they contribute to the redistribution 

of energy among different modes in the spectrum of internal waves in a continuously 

stratified fluid (Philips 1981). For similar applications of the theory to atmospheric gravity 

waves, reference can be made to the works of Yeh and Liu (1981), Fritts et al. (1993), and Yi 

and Xiao (1996). 

The phenomenon of resonant wave interaction was first studied by Philips (1960) and 

subsequently by Longuett-Higgins (1962). Textbooks by Drazin and Reid (1981), Craik 

(1985), and Komen et al. (1994) as well as articles by Philips (1981) and Hammack and 

Henderson (1993) give excellent reviews of the subject. Philips (1960) showed that energy 

can be exchanged among three deep-water surface waves 1, 2, and 3 provided their 

frequencies and wave numbers meet the following kinematic conditions. 

• 2 3 (i.i) 
2ojj - OJ2 - co3 

where kt and ty are the vector wave number and frequency of the i-th wave respectively. 

Equation 1.1 is called the kinematic conditions of resonance. In wave interaction problems, 

the resonance conditions are expressed in terms of certain relations between the wave 

numbers and the frequencies of the waves involved. Note that the form of equation 1.1 is 

specific to deep-water waves, and the resonance conditions may differ from one class of 

waves to another. 
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Philips (1960) showed that under the resonance conditions (1.1), the amplitude of the third 

wave, if initially infinitesimal, grows in time due to the transfer of energy from finite-

amplitude waves 1 and 2. It should be noted that resonant wave interaction, in general, does 

not necessarily lead to instability (Hasselmann 1967). 

Although the analysis by Philips (1960) showed the possibility of energy transfer between 

deep-water surface waves, it did not address their long-term behavior. Benny (1962) 

extended Philips's (1960) analysis by adopting the technique used by Bogoliubov and 

Mitropolski (1959) in non-linear oscillations. Benny (1962) was able to derive a complete set 

of equations for the time evolution of the wave amplitudes. 

After Philips's (1960) work on deep-water waves, the idea of resonant wave interaction 

was soon extended to other classes of water waves: McGoldrick (1965, 1970, and 1972) 

studied interaction between capillary-gravity waves in a series of papers. McGoldrick studied 

the problem when the following conditions of resonance hold between three capillary-gravity 

waves 1, 2, and 3. 

Jc j — k>i I Jco 
' 2 3 (1.2) 

CO, = Q)2 + C03 

where 0) = (gk + ycapillaryk3)112, and ycapiUary is the capillary constant for the interface of air 

and water. McGoldrick derived the following evolution equations for the wave amplitudes. 

—— = iaco,a1a, 
dt 2 3 

= iau)2ala3 (1.3) 
da2 

dt 
da3 _ 
—^j- — iao)3axa2 

where a is a constant, and ai is the amplitude of the i-th wave. The over-bar denotes the 

complex conjugate. 



6 

Simmons (1969) used a variational method and obtained equations 1.3 more quickly. His 
work was inspired by Whitham's (1965, 1967) averaged Lagrangian method. Simmons 
(1969) formulated his method quite generally and showed how to find the evolution 
equations as well as conservation relations for a general wave interaction problem. A 
variational formulation systematizes and shortens the detailed calculations. This lessens the 
likelihood of making elementary errors in the long calculations of the interaction coefficients 
of the evolution equations. Variational formulation also leads more readily to conservation 
laws such as energy and momentum relations. 

Ball (1964) was the first to investigate the resonant interaction in stratified fluids. He 
studied the resonant interaction between two surface waves and one internal wave in a two-
layer fluid and showed that the two surface waves can excite the internal wave to a large 
amplitude. Denoting the two surface waves as waves 1 and 2 and the internal wave as wave 
3, the resonance conditions are the same as given by equation 1.2. As a result, the internal 
wave has much larger period and wavelength than the surface ones. Ball's (1964) analysis 
was limited to shallow-water waves. Brekhovskikh et al. (1972) removed this limitation and 
considered the problem for the whole range of shallow-water to deep-water waves. 

Experimental works on the interaction of two surface waves and one internal wave were 
conducted by Lewis et al. (1974) and Koop and Redekopp (1981). In the former, a layer of 
fresh water overlay a denser freon-kerosene mixture. Since the density difference between 
the two layers was small, the surface waves in the triad had close frequencies and 
wavelength, and the internal wave was a long wave. Hence, according to the resonance 
conditions the internal wave phase velocity is expected to be close to the group velocity of 
the surface waves. In the experiments, one surface wave and one internal wave train were 
generated mechanically as primary waves with the same direction of propagation. The 
observations confirmed that the strongest modulations of the primary surface wave occurred 



7 

when the group velocity of the surface waves was close to the phase velocity of the internal 

wave, in agreement with the theory. The study of Koop and Redekopp (1981) concerned 

similar interaction of long and short waves on the two interfaces of a three-layer 

configuration. 

Using a different approach from the conventional wave interaction theory, Gargett and 

Hughes (1972) studied the same interaction theoretically. They modeled the process as one 

in which the short surface waves interact with a slowly-varying, propagating current 

supposed and produced by the long internal wave. It then became possible to remove the 

restriction on the internal wave amplitude and to use the conservation laws for wave trains in 

slowly-varying media. They found that the variations in the direction and magnitude of the 

current induced by the internal wave cause local concentrations and reductions in the surface 

wave amplitudes. Their theoretical analysis was complemented by the field observations of 

the phenomenon made in the Strait of Georgia, British Columbia. 

Resonant wave interaction among internal waves was first studied by Davis and Acrivos 

(1967). They showed that the lowest-mode internal wave in an infinite two-layer fluid with a 

diffuse interface is unstable. The wave forms a resonant triad with two second-mode internal 

waves that modulate the original wave by extracting energy from it. 

In summary, since the original work by Philips (1960), resonant wave interaction has been 

studied in different classes of wave motion in fluids. In the present study, the focus is on the 

interaction mechanism responsible for instability of the interface in a two-layer fluid subject 

to surface wave action. 

1.3 INTERNAL WAVE GENERATION BY A SURFACE WAVE 
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1.3.1 Two-dimensional Interaction 

The resonant interaction of two internal waves with a surface wave in a two-layer fluid has 

been studied in two dimensions by Wen (1995), Hill and Foda (1996), and Jamali (1997a and 

b). Consistent with the experimental observations, the theoretical analyses of all the above 

authors indicated that two internal waves of nearly the same wavelength moving in opposite 

directions combine to form a short standing internal wave whose frequency is approximately 

half of that of the surface wave. The results of the studies mainly differ as to the role of 

viscosity of the lower layer in the interaction. The following summarizes these studies. 

The configuration of the problem is shown in figure 1.1. Wen (1995) analyzed the 

problem for both cases of an inviscid and a viscous lower layer. She found that viscosity has 

a destabilizing effect on the interface and is essential to the growth of the internal waves. 

Wen's (1995) theoretical work was prompted by her observations of the interaction in a 

laboratory wave flume where a surface wave was allowed to travel over a fluidized silt bed. 

In the experiments, fine silt with mean grain size d50 = 50 (Jm constituted the sediment bed. 

Wen (1995) reported two opposite-traveling internal waves formed at the interface of the 

clear water and the fluidized silt bed. The internal waves had nearly the same frequencies 

and wavelengths, and hence formed almost a standing internal wave. The internal waves 

were also short compared to the surface wave and had a frequency close to the half of the 

surface wave frequency. Although in the experiments by Hill (1997) and Jamali (1998) the 

interaction was observed to be three-dimensional, Wen (1995) did not report such a situation 

in her experiments. However, Jamali's (1998) theoretical analysis indicates that when there 

is a considerable density difference between the layers such as that in Wen's (1995) 

experiments where the density difference between the fresh water and the fluidized sediment 

was large, the two-dimensional interaction is possible. 
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Wen's (1995) work was followed by Hill and Foda (1996), who by taking a similar 

approach arrived at nearly the same theoretical results regarding the significance of viscosity 

in the interaction. In both analyses of Wen (1995) and Hill and Foda (1996) the predicted 

kinematic properties of the waves were in qualitative agreement with the experimental 

observations. As part of their study, Hill and Foda (1996) also made qualitative observations 

on the generation of the internal waves at the interface of fresh water and fluidized sediment 

by a surface wave travelling over a bed of fine silt with the same grain size as in Wen's 

(1995) experiment. 

According to the theoretical studies of Wen (1995) and Hill and Foda (1996), viscosity has 

a destabilizing effect on the interface and is essential to the growth of the internal waves. 

Jamali (1997 a and b) performed a two-dimensional, inviscid analysis of the interaction and 

found that in contrast with the above authors' result, the internal waves may grow easily in an 

inviscid two-layer fluid. Jamali verified his result later in a series experiments (Jamali, 1998) 

in a wave flume with fresh and salt water as the upper and lower layer respectively. In 

addition, Jamali (1998) reported that a series of experiments with fresh water as the upper 

layer and corn syrup as the lower layer did not result in appearance of the internal waves even 

though different experimental conditions were examined. Note that compared to the corn 

syrup, salt water can be considered as an inviscid fluid. These observations led to the 

conclusion that viscosity does not facilitate generation of the internal waves (Jamali, 1998). 

1.3.2 Three-dimensional Interaction 

The three-dimensional interaction was observed in both experiments of Hill (1997) and 

Jamali (1998). This interaction was investigated independently by these authors theoretically 

and experimentally. Hill (1997) carried out a series of experiments in a small wave flume 

containing a light mineral oil overlying fresh water. In Jamali's (1998) experiments fresh 
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water was used as the upper layer and salt water as the lower layer. A three-dimensional 

standing wave pattern was observed in both authors' experiments. However, in Hill's (1997) 

experiments the wavelength of the 3D standing wave across the flume was always twice the 

flume width, corresponding to the first mode of a standing wave across the flume, while 

throughout Jamah's (1998) experiments a variety of modes were observed. Some of the 

modes observed by Jamali (1998) are shown in figure 1.2, where n=the total number of 

peaks and troughs of the three-dimensional standing wave across the flume. In the 

experiments of both authors the internal wave frequencies were measured to be almost half of 

the surface wave frequency, and the internal waves were short compared to the surface wave. 

Hill (1997) and Jamali (1998) both made a theoretical analysis of the three-dimensional 

interaction. The calculated frequencies in both studies were in good agreement with the 

experimental measurements. However, in Hill's (1997) study there was poor agreement 

between the calculated and measured growth rates of the internal waves. This can be 

attributed to the fact that although mineral oil has an appreciable viscosity, Hill (1997) used 

the results of an inviscid analysis for comparison with the measurements. 

Hill's (1998) theoretical analysis also suggested that there are narrow bands of frequency, 

density ratio, and direction angle of the internal waves only within which growth of the 

internal waves is possible. However, Jamali (1998) showed that these are in contrast with 

both his experimental observations and theoretical results, and the interaction is not limited to 

narrow bands of the parameters. 

1.4 PRESENT STUDY 

The present study is aimed at a theoretical study of two subjects related to the interaction of a 

surface wave with two internal waves in a two-layer fluid: the asymptotic behavior of the 
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waves at small density difference and the effect of a diffuse interface on the interaction. In 

the theoretical analysis of Jamali (1998) the equations for the growth rates of the internal 

waves were found to be quite long and complicated. Since this interaction is of great 

importance to the engineering study of internal mixing in a two-layer fluid subject to surface 

wave motion, a simple relation to predict the onset of the instability of the interface is a need. 

In the first study, by assuming that the density difference between the layers is small, the 

three-dimensional interaction is analyzed asymptotically in an attempt to find useful 

expressions for the interaction quantities. In the second study, the effect of a diffuse interface 

on the two-dimensional interaction is analyzed asymptotically. According to the laboratory 

observation of Jamali (1998), the diffuse interface of the two layers had an effect on the 

growth rate of the internal waves. 

In chapter 2, the theoretical analysis of Jamali (1998) on the three-dimensional interaction 

is reexamined, and an attempt is made to obtain an approximate relation for the growth rate 

of the internal. The density difference of the layers is taken as a small perturbation 

parameter, and asymptotic equations are obtained for the growth rate and the kinematic 

properties of the internal waves. The effects of different parameters on the interaction are 

explored in light the asymptotic analysis as well. 

In chapter 3, the effect of a diffuse interface on the two-dimensional interaction is 

investigated theoretically. The interface thickness as well as the density difference of the two 

layers is assumed to be small, and an asymptotic analysis of the interaction is performed to 

obtain the growth rate and the kinematic properties of the interacting waves asymptotically. 

Finally, a summary of the earlier chapters along with the conclusions and 

recommendations for future studies is presented in chapter 4. ; 



Figure 1.1 Configuration of the problem 
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n=6 

Figure 1.2 Top-side views of 3D standing internal waves with different n's. 
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C H A P T E R 2 

T H R E E - D I M E N S I O N A L I N T E R A C T I O N IN 

A T W O - L A Y E R F L U I D 

2.1 INTRODUCTION 

The interaction of a surface wave with two oblique internal waves was studied by Jamali 

(1998). In the theoretical part of the study the problem was formulated for a three-

dimensional, inviscid, two-layer fluid system as shown in figure 2.1. Taking the typical 

wave amplitude as a small parameter, a perturbation technique was used to find the solution 

to the interaction problem. At first order, the linear wave theory was obtained, and at second 

order, the evolution equations of the waves were derived. Taking a0, bx, and b2 to be the 

complex amplitudes of the surface wave 0 and the internal waves 1 and 2 respectively, the 

evolution equations of the internal waves were given by 

and 
db2 

dt 
(2.1) 



15 

where the overbar denotes complex conjugate, and or, and a2 are the interaction 

coefficients. These equations were obtained from appropriate solvability conditions at 

second order. As the energy content of the surface wave is much more than those of the 

internal waves, the amplitude a0 can be assumed constant in (2.1). Subsequently, the 

evolution equations can be solved to yield the growth rate of the internal waves in terms of 

a{, a2, and a0. 

Jamali (1998) reported that the expressions for the interaction coefficients were too long 

and complicated to yield a useful equation for the growth rate of the internal waves. In the 

present study, which is a follow-up of Jamali (1998), an attempt is made to obtain simple 

approximate expressions for the interaction coefficients or,, a2 as well as the growth rate. 

As in many situations the density difference between the layers is small, the non-

dimensionalized density difference 8 = 1 - r, where r = pu / pt, is taken as the .perturbation 

parameter, and the leading order terms in the perturbation expansions of the interaction 

coefficients are derived. The leading order terms are then used to obtain a simple expression 

for the growth rate. 

2.2 REVIEW OF FORMULATION OF T H E INTERACTION 

PROBLEM 

Consider the two-layer fluid system shown in figure 2.1. The system is assumed to be 

infinite horizontally and three-dimensional. The coordinate system xyz is located on the 

interface. The depth of the upper layer is denoted by h, the depth of the lower layer by d , 

and the total depth by H. The densities of the upper and lower layers are pu and p{ 

respectively. The surface wave is denoted as wave 0 and the two opposite-traveling internal 

waves as waves 1 and 2. Without loss of generality, wave 0 is assumed to travel in the 
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positive x direction and the two internal waves in the x-y plane. The internal wave 1 has 

an arbitrary directional angle with respect to the surface wave. As the three waves are in 

resonance, certain kinematic conditions hold between their frequencies and wavelengths. 

The kinematic conditions of resonance are given by 

k = k + k 
o N T K2 (2 2) 

where for each wave i the wave number ki and the frequency cot are related by a dispersion 

relation. For a two-layer inviscid fluid the dispersion relation is given by 

^(a* -g2k2 )tanh(kh) 
P l +gk-co2coth(kd) = 0 (2.3) 

( gk tanh( kh)-CD ) 

(see Appendix A), where the parameters are defined in figure 2.1. These equations ensure a 

continuous and effective energy transfer between the waves. Note that from the resonance 

conditions the direction angle of internal wave 2 is obtained as a function of 0,. 

With the assumptions of incompressible fluid layers and irrotational flows in the layers, 

the fluid motion can be described by velocity potentials <j)'(x,y,z,t) and <p(x,y,z,t)'m the 

upper and lower layers respectively. The potentials satisfy Laplace's equation in the two 

domains. < 

V y = 0, 0<z<h (2.4) 

. V 2 0 = O, -d<z<0 (2.5) 

The above equations are subject to the boundary conditions at the free surface, the interface 

of the layers, and the solid bed. On the free surface, the boundary conditions are: 
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+ z = h + 4(x,y,t) (2.6) 

P u Iti + \ it? +<t>y2+<?>'z

2) + gz] = C'(t), z = h + %x, y, t) (2.7) 

where £(x,y,t)= the displacement of the free surface. The first equation represents a 

kinematic boundary condition while the second equation corresponds to a dynamic one. On 

the two-layer interface, the kinematic boundary conditions are: 

V, + tiVx + <t>'yriy = #, z = Tj(x,y,t) (2.8) 

nt+</>xrjx+<PyVy=<Pz, z = Jl(x,y,t) (2.9) 

where rj(x,y,t)= the displacement of the interface, and the dynamic boundary condition is: 

z = ri(x,y,t) (2.10) 

On the bed, the problem is subject to a kinematic boundary condition requiring the normal 

velocity be zero, i.e., 

<PZ=0, z = -d (2.11) 

For the purpose of the interaction analysis, it is assumed that the amplitudes of the waves 

are sufficiently small that a weakly nonlinear interaction analysis can be performed. This 

implies that terms of order e3 and higher, where £ is non-dimensional wave amplitude, may 

be neglected. Accordingly, the following expansions in £ are considered for n, <j>' and <p. 

^(x,y,t) = a0 Exp[i(k0.x - a)0t)] + a, Exp[i(k,.x - tyt)] + a2 Exp[i(k2.x - 0)2t)] 
2 2 

+ YY^ij(x,y,t) + complex conjugate 
i'=0 j=i 
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T](x,y,t) = b0 Exp[i(k0.x-a)Qt)] + b} Exp[i(kvx- (Oxt)] + b2 Exp[i(k2.x-Q)2t)] 
2 2 

+ ^^TJij:(x, y, t) + complex conjugate 
i=0 j=i 

f(x,y,z,t) = <po(x,y,z,t) + <f\'(x,y,z,t) + <fe(x,y,z,t) + 
2 2 

^ ^^(/>-(x,y,z,t) + complex conjugate 
;=o j=i 

0(x,y,z,t) = 0o(x,y,z,t) + 0l(x,y,z,t) + 02(x,y,z,t) + 
2 2 

]jT ^ fly (x,y,z,t) + complex conjugate 
i=0 j=i 

(2.12) 

where x - ( x, y ); ai and b{ are half of the amplitudes of wave i at the free surface and the 

interface respectively. The amplitudes are assumed to be complex numbers in general. The 

three interacting waves constitute the wave field at first order. The single-indexed terms, 

such as <pn are 0(e) while the double-indexed terms such as <ptj are 0(e2). Expansions 

(2.12) follow the standard procedure for three-wave interaction (e.g., see Craik, 1985). 

In a weakly non-linear interaction, as far as the short-time behavior of the waves is 

concerned, the component waves can be regarded as independent and be treated by the linear 

theory. However, energy is exchanged between the waves as a result of resonance, and the 

amplitudes of the interacting waves undergo changes with time, but the rate of energy 

exchange is small, and so are the time variations of the amplitudes. The amplitudes have, in 

fact, a time scale much greater than the individual wave periods. The time variations of the 

amplitudes are functions of the amplitudes of the waves; the higher the amplitudes, the faster 

the variations. To solve the above perturbation problem, a commonly used technique 

proposed by Benny (1962) for the solution of weakly non-linear interaction problems is 

employed. The technique makes use of the large-time behavior of the waves, and is quite 
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efficient in predicting their dynamics. Benny (1962) assumed that the wave amplitudes are 

slowly varying functions of time, and that the time-derivative of each amplitude is a function 

of the product of the amplitudes of the other waves, and hence is a second-order quantity. 

These imply that in the present problem the amplitudes of the interacting waves can be taken 

as: 

dan db, — db0 — 
—^ = 0(b]b2), —L = O(a0b2), -^ = O(a0bi), (2.13) 
dt dt dt 

where symbol overbar denotes complex conjugate. The quantity a0 is the amplitude of the 

surface wave at the free surface, and bx and b2 are the amplitudes of the internal waves 1 and 

2 at z = 0 respectively. The above assumption makes the time derivatives of a0, bt, and b2 

appear in the perturbed equations at second order. For a lucid discussion of this technique, 

the interested reader is referred to Drazin and Reid (1981) and Craik (1985). 

Substituting (2.12) in the governing equations and collecting first order terms results in 

the linear wave theory for waves 0, 1 and 2. The solution to the linear problem is given in 

Appendix A. At second order, the nonlinear interaction terms appear in the forcing functions 

of the resulting inhomogeneous systems of partial differential equations. The forcing terms 

contain the time derivatives of the wave amplitudes. Due to the resonance conditions, the 

forcing functions are of the form that produces secular solutions at O(a0b{), O(a0b2), 

0(bxb2), and at their complex-conjugate counterparts. A secular solution grows in time and 

hence becomes unbounded as time becomes arbitrarily large. From a physical point of view 

secular solutions are not acceptable as the energy is bounded. Mathematically, secular 

solutions destroy the uniformity of the asymptotic expansions. To avoid secular solutions it 

is necessary to impose a solvability condition on the forcing functions. ' The desired 

solvability condition is the requirement that the forcing functions and the homogeneous 
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solution,of the adjoint system be orthogonal (Drazin and Reid, 1981, p 385). Applying the 

solvability condition to the forcing functions result in three equations from which da0 / dt, 

dbx / dt, and db2 / dt can be explicitly found in the following forms. 

da0 dbx — db2 — 

— = a0bxb2, — = axa0b2, — = a2a0bx (2.14) 

where a0, a, and a2 are constant. The direct derivation of the interaction coefficients ax 

and a2 is presented in Appendix B of Jamali (1998). The analysis indicates that ax and a2 

are purely imaginary. 

Since the energy content of the surface wave is much more than those of the internal 

waves, variation of the surface wave amplitude a0 with time is negligible. Hence, the first 

equation in (2.14) can be eliminated to yield (2.1) with the amplitude a0 taken as constant. 

The evolution equations can then be solved to yield the growth rate of the internal waves in 

terms of ax, a2, and a0. In the following, an attempt is made to obtain asymptotic 

expressions for the interaction coefficients and hence the growth rate. 

2.3 PERTURBATION EXPANSIONS OF T H E INTERACTION 

PARAMETERS 

In this section, first an asymptotic expansion for cc2 is obtained, and then the analysis is 

extended to include ax. The equation yielding the evolution equation for internal wave 2 is 

the solvability equation at 0( aQbx). It is given by (Jamali, 1998) 
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^ K + 2 / a > 2 / 2 ( z ) ^ 
8 dt 

z=h 
G(z)-

8 dG(z) 

co2 dz 
z=0 

1 dG(z) 

a>2 dz 
+ 2io)2(g2(z)-rf2(z)) 

db, 

dt 
z=0 

(2.15) 

where m,, m2, and m3 are given by 

m 

(2.16) 

+ g{((<Po)y-r(ti)yk+kh)y-r(ti)yho\ 

+ {r((ti)M)x+(ti)y(J;)y+(ti)M 

- {((0o ) n - Wo ) n % + ((^i) * - r(0i) M , 

(2.17) 

and 

V * ={((*„), -iti)X% +((^)x ~(ti)Mx +fao)y -(Oyh +((h)y -(tf)>0}. 

(2.18) 

and the functions f2( z) and g2( z) are defined by 

$'2(x, y,z,t) = f2( z)e it*, 
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(j)2( x,y,z,t)=g2( z je'"2 

where t?2 = k2 • x - a>2t. The functions F(z) and G(z) are the solution to the adjoint system 

of equations corresponding to internal wave 2. It can be shown that if F(z) and G(z) in the 

adjoint system are replaced with f(z) and g(z)/r, the linear system of equations 

corresponding to the motion of internal wave 1 is obtained. Hence, F(z) and G(z) turn out 

to be 

F(z) = f2(z) (2.19) 

G(Z) = M5± (2.20) 
r 

As seen all the terms in the solvability conditions are in terms of the linear solutions of 

waves 0, 1, and 2. Hence, first the asymptotic expansions of the linear solutions are found. 

2.3.1 Asymptotic Expansion of Linear Solution 

In general the independent variables of the problem can be chosen to be 8, k0, 6X, d, h, a0. 

The dependent variables are coQ, o^, co2, kx, k2, bx, and b2. The resonance conditions can 

be used along with the dispersion relations of the waves to yield the relations for coQ, a\ , OJ2, 

fc,, k2. To guess the correct forms of the asymptotic series, the order of each variable has to 

be determined first. Given k0 is 0(1), co0 turns out to be 0(1) from the surface-wave 

dispersion relation. From the previous studies (Wen, 1995; Hill, 1997; Jamali, 1998) it is 

known that Q)Q ~ ~ C0Q 12. This implies that both o\ and co2 are order 1. It can be shown 

that for an internal wave, the wave number is proportional to 8s, where s = -l for deep 

waters (Turner, 1973). Later it will be shown that by assumption of small density difference 
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the internal waves turn out to be deep-water waves. Hence, it follows that fc, and k2 are 

O C T 1 ) -

After ordering the kinematic variables, the resonance conditions and the dispersion 

relations are solved to find the first few terms in the asymptotic expansions of these 

quantities. In the scalar form the resonance conditions (2.2) can be written as 

(OQ = 6), + C02 

k0 — kt cos0l +k2 cosd2 (2.21) • 
0 = k{ sin 0, + k2 sin 62 

Note that as the surface wave is moving in the x direction, k0 doesn't have any component in 

the y direction. Next, the dispersion relation (2.3) is simplified for the internal waves 

knowing that fc, and k2 are 0(8~l). For each internal wave the terms tanh(kd) and 

coth( kd) are asymptotically equal to 1 correct to 0( 8") for any n > 0. Consequently, the 

dispersion relation for the internal waves reduces to 

co2=gk-^— (2.22) 
2 — o 

From now on, when a quantity is accurate to 0(8") for all n > 0, it is called to be accurate 

to 0(8°°). Simultaneous solution of the resonance conditions (2.21) and the individual 

internal wave dispersion relations gives the following expressions for a\, co2, , k2 in 

terms of k0, co0, and 62. 

kx= - k ° S i n 0 2 (2.23) 
sin( dx-62) 

k2= k°Sin6> (2.24) 
sin( 0x-62) 

2=-8k0sin62 8 
• sin(6i-82)2-8 
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sin(dx-62)2-8 

Also, the following relation between 6j and 62 is obtained 

{^sindx +^-sind2)2 _co0

2 2-8 
sin( 6x-62) gk0 8 

2 gkn sin 9, 8 
Q)2=^-^ ! (2.26) 

(2.27) 

The above equations are correct to 0(8°°). Note that in the above equations O)0 and 02 

themselves are dependent variables. 

For later use, the first few terms in the asymptotic expansions of d2 and sin02, and cos92 

are obtained. The following expansion is assumed for 62. 

92=dl+d\8 + 0(82) (2.28) 

Substitution of the above in (2.27) and collection of the terms at 0(1) yields 

Sin(6x-e°2)=0 

Knowing that the two internal waves have nearly opposite directions (e.g., see Hill, 1997, 

and Jamali, 1998), 62 is obtained as 

6Q

2=K + dx (2.29) 

At 0(8), the following expression for d\ is obtained. 

d l = 2sin6^K ( 2 3 0 ) 

The dispersion relation for the surface wave can be written as 

co2 = gk0tanh(k0H ) + 0(8) (2.31) 

Substituting for co0

2 from (2.31) in (2.30), the asymptotic expansion of d2 is obtained as 
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82=7C + 0X+ 2 s i n 6 x S + 0(S2) (2.32) 
tanh( k0H ) 

Using (2.32), the asymptotic expansions of sin62 and cosd2 are obtained as follows. 

sind2=-sindx ——x— S + 0(S2 ) (2.33) 
tanh( k0H) 

cosd2=-cosei+ 2 s m °l 8 + 0(82) (2.34) 
tanh( k0H ) 

The linear solution of the internal wave motion is given in Appendix A. Considering the 

fact that the internal waves turn out to be deep-water waves due to the assumption of small 

density difference, the expressions for 0' and </> can be greatly simplified. Knowing 

tanh( kh) and tanh( kd) are asymptotically equal to one, correct to 0(8°° ), due to the fact 

k ~ 0(8~x), (j)' and <f> reduce to 

< A ' ( W ) = ^ V V " (2.35) 
k 

<P(x,y,z) = Z!pHei«e-» ( 2 . 3 6 ) 

Ac 

The above equations are correct to 0(8°°). Using (2.35) and (2.36), the asymptotic 

expressions for f2 (z), g2 (z), F(z), and G(z) can be obtained as follows. 

f2(z) = ̂ -e~h (2.37) 
k 

g2(z) = -^-eb (2.38) 
k 

F(z)= — e-kz (2.39) 

G(z) = ~-^e- (2.40) 
k r 
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Again, the above equations are correct to 0(8°°). 

2.3.2 Asymptotic Form of Solvability Condition 

Next, the asymptotic form of the solvability condition (2.15) is obtained. Substituting for 

F(z), G(z), f2 (z), and g2 (z) from (2.37) to (2.40) in (2.15) gives 

1(0 
gk2 

2 e - k 2 h 

V 

i _ (02 _kh db2 

h = h k, dt 
+-

-10), 
rk. 

1- gk2 

OJ, 
\z=0 

rO)0 

fn-,] „+-
2 I z=0 

2(0, 
-(1 + r)-

db, 
(2.41) 

dt 
= 0 

Using the dispersion relation for the internal wave 2, and noting that e klh ~ 0 correct to 

0( 8°°), the above equation simplifies to 

2m 2-8 
3lz=0 1-8 

i 2<y2 fn7\ „ + -d + r) 
db2 

dt 
= 0 (2.42) 

So, the contribution from the free surface is eliminated from the solvability condition. Next, 

using (2.35) and (2.36) asymptotic solutions of the potentials are substituted in (2.17) and 

(2.18) to obtain the corresponding expressions for m2\^ and m 3^ = o in (2.42). As a result, 

(2.42) becomes 

l - 8 k 2 

( 
Q)0 cosQ2 2coth(k0d)--8Sk° 

2-8 
g(l-S) 

con 

+ (Ox cos( 6X - 62 )8 ib0bx 

J 

-O)0O)x(O2 

g8kt 
\ 

8 H -^-cos0l -2coth( k0d )cos0. 
OJn 

•G)2((O0

2+(Ox

2)8 ib0bx 

2(2-8)8 db2 

(1-8) dt 
= 0 

(2.43) 

where b0 is the complex amplitude of the surface wave at the interface given by 
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b0 = a0 cosh( k0h J 
gk0 tanh( k0h ) 

2 
0Jn 

(2.44) 

Equation 2.43 is the asymptotic form of the solvability condition and is correct to 0(8°°) 

Solving this equation for db21 dt gives 

db. 
dt 2(2-8) 

co0Cosd2 2Coth(k0d )- g8k0 

(On 

2g8 -6)0a)Ia>2 -S+1^1 Cos6,-2Coth(k0d)Cos61 -co2{co0

2 +a),2)8 \b0b, 
(On 

-rojjCoste, -e2 )8 M i -

(2.45) 

Since from the early discussions 

G)o,(o\,co2,ko,ex,02 ~ 0(1) and k{,k2~0(8~]) (2.46) 

db2ldt is expected to beO(8~l) according to (2.45). However, rearrangement and 

simplification of the terms on the right-hand side of (2.45) shows that db2/dt is indeed 

0(1). The new expression for db21 dt is 

db. - coth( k0d )k0 

dt 

( c o 2 f 

V 
2-8 

co0 + coy cosdx — 
«h((0, +62)/2) 
sinfa -62)/2) 

J 
cos 6, gkn 

—2-^-cos(ex-e2)cox 

(On 

+^-{^(o2) 2g 
^rCOSd.-l 
(On 

^W+co2) ib0b, 
2g 

J 

(2.47) 

The above equation is correct to 0(8°°). Now it is clear from the above equation that 

db2 /dt is 0(1). 
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2.3.3 Leading Order Approximation of a2 

To obtain the leading order approximation of a2, the leading order approximations for co0, 

cox, Q)2 and 62 are needed. These are 

cox ~ u)2 

Q)0 ~ -yjgk0 tanh( k0H ) 

(2.48) 

(2.49) 

e2 ~ ex +K 

A By substituting the above in (2.47) and noting that 

b0 ~ aQ cosh(k0h) 
^ j tanh( k0h)^ 

tanh( k0H ) 
V 

the leading order approximation for db21 dt is obtained as follows. 

db2 _ ? (coth(k0d){-3 + cos(2d, ))+2tanh(k0H)^ 
dt V 8 

C 

(2.50) 

(2.51) 

coshfk0h i 1-
tanh( k0h) 

tanh( k0H ) 
ia0bj 

(2.52) 

The above equation can be simplified to yield the following leading-order approximation for 

a2. 

a2 -• 
(On 

4 gsinh2(k0H) 
(cosh(k0H )cosh(k0d )sin2 6, + cosh( k0h j) (2.53) 

Note that by substituting for co0 from (2.49) in (2.53) a2 is obtained merely in terms of the 

independent variables of the problem. 

2.3.4 Leading-order Approximation of ax 

To obtain the leading-order approximation of ax, the following relation between the 

interaction coefficients (Jamali, 1998) is used. 
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ax _ a2 

C0X 0)2 

(2.54) 

Given that to the leading order cox ~ a>2, the above equation implies that 

ax ~a2 
(2.55) 

Hence, the leading order expression for ax is the same as that for a2, given by (2.53). 

2.4 NUMERICAL EXAMPLE 

Consider a test case where d = 4.0 cm, H = 16.0 cm, OJ0=2IT/0.8 rad/sec, 

pu = 1.00 gr/cm3, pt - 1.04 gr/cm3, and 6X =75°. From the surface-wave dispersion 

relation k0 = 7.54 rad/m . To compare the exact and the asymptotic values of the interaction 

coefficients, variations of the non-dimensional parameter cdi / Q)0 with the non-dimensional 

parameters pl/pu, k0H, d/H, and 6X from the two solutions are compared in the 

following. It can be shown (Jamali, 1998) that at large times the solution to (2.1) is given by 

where the forcing parameter a is equal to ^axa2 . From the asymptotic solution, it can be 

shown 

correct to the leading order. 

Variations of ocH /OJ0 with the density ratio /?, / pu from the two solutions are shown in 

figure 2.2. As expected, the two curves are asymptotic when the density ratio approaches 

unity. The asymptotic solution deviates from the exact solution for density ratios greater 

bx(t),b2(t)~e a\a0\i (2.56) 

a ~ ax ~ a2 
(2.57) 
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than 1.06. It is expected that by finding the next terms in the asymptotic expansions of ax 

and a2 the range of validity of the asymptotic solution increases. 

Variations of aH / a>0 with k0H from the two solutions are demonstrated in figure 2.3. It 

is recalled that a surface wave with k0H <;r/10 is a shallow-water wave, and one with 

k0H > K is a deep-water wave. From the graphs, it is seen that the asymptotic equation 

closely reproduces the exact value of the forcing parameter when the surface wave is 

basically a deep-water wave. However, the asymptotic solution deviates from the exact 

solution when the surface wave becomes a shallow-water wave. This can be explained by 

the fact that as k0H , and hence the surface wave frequency, decreases, the frequencies of the 

internal waves decrease too, see (2.48). This implies that for sufficiently low OJ0 the internal 

waves are not deep-water internal waves any more in the two layers. However, it was shown 

before that by taking the density difference as the small parameter the internal waves were 

found to be deep-water waves in the two layers. Therefore, the asymptotic theory is unable 

to predict the interaction when k0H is small. According to this discussion, even the 

complete asymptotic series of a will not be asymptotic to the exact solution when k0H is 

small. 

Variations of ocH / a>0 with d / H from the two solutions are demonstrated in figure 2.4. 

It is seen that the asymptotic solution closely reproduces the exact solution except for low 

values of d / H . This can be explained by the fact that for a constant total depth H when 

the depth of the lower layer approaches zero, the internal waves become shallow-water 

waves in the lower layer. However, this violates the assumption of the asymptotic theory 

that the internal waves are deep-water waves. From this discussion it can be also concluded 

that even the complete series of the forcing parameter a can not capture the exact solution 

when d / H is close to zero. 
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Variations of aH /a)0 with 6X from the two solutions are demonstrated in figure 2.5. It is 
seen that the approximate leading-order solution has closely predicted the exact values for 
different directional angles of the internal wave 1. 
, From the above discussion, it is interesting to note that the leading-order asymptotic 

solution closely predicts the forcing parameter of the interaction when the medium of interest 
is a deep ocean. In deep oceans, the density ratio is always less than 1.05, and the surface 
waves are deep-water waves. 
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Figure 2.1 Configuration of the problem in the three-wave resonant interaction. 
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Figure 2.2 Comparison of variations of Ha/co0 from the exact and the leading-order 
asymptotic solutions with p,/ pu. 
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Figure 2.3 Comparison of variations of Ha/co0 from the exact and the leading-order 
asymptotic solutions with k0H . 



Figure 2.4 Comparison of variations of Ha/Q)0 from the exact and the leading-order 
asymptotic solutions with d / H . 
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Figure 2.5 Comparison of variations of Ha/a>0 from the exact and the leading-order 
asymptotic solutions with Gx. 
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C H A P T E R 3 
r 

I N T E R A C T I O N O N A D I F F U S E 

I N T E R F A C E 

3.1 INTRODUCTION 

In this chapter, a two-dimensional analysis of the generation of internal waves by a 

progressive surface wave on a thin diffuse interface is presented. The fluid system is 

modeled as a combination of upper and lower layers, divided by a thin third layer. A 

standard weakly nonlinear wave interaction analysis is performed. By taking the non-

dimensional density difference 8 as the small perturbation parameter, the evolution 

equations of the internal waves are derived asymptotically. In this analysis, consistent 

with some experimental observations (Jamali, 1998), the thickness of the intermediate 

(diffuse) layer is assumed to be of order 82. 

In general, a three-layer system admits two modes of internal wave motion. 

Accordingly, two possibilities for the interaction are obtained during the analysis: 1-

interaction between a surface wave and two first-mode internal waves, 2- interaction 

between a surface wave, a first-mode and a second-mode internal wave. The case of 
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interaction between a surface wave and two second-mode internal waves is shown to be 

impossible. The asymptotic analysis indicates that the internal waves have a higher 

growth rate in the first case, so in a real situation only the interaction between a surface 

wave and two first-mode internal waves is perceptible. 

3.1.1 Resonant Triad 

The present study considers a triad consisting of a surface wave (denoted as wave 0) and 

two internal waves (denoted as waves 1 and 2) as shown in figure 3.1. Without loss of 

generality, wave 0 is assumed to travel in the positive x direction. The three waves 

satisfy the resonance conditions 

0 1 2 (3.1) 
CO0 = (Ox + co2 

where for each wave i the wave number £, and the frequency co{ are related by a 

dispersion relation. The resonance conditions (3.1) and the individual dispersion relation 

of each wave form a system of algebraic equations from which the wave numbers and the 

frequencies of the interacting waves can be determined. A three-layer system with a free 

surface admits a surface-wave mode and two internal-wave modes. A plot of the 

dispersion relations for surface and internal waves in a typical three-layer system is given 

in figure 3.2. It can be seen that there are two possible resonant triads: one composed of a 

surface wave and two first-mode internal waves, and the other composed of a surface 

wave and a pair of internal waves of different modes. Later, this point will be confirmed 

analytically. 

3.2 FORMULATION 
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In this section, a standard three-wave interaction analysis (e.g., refer to Davis and 

Acrivos, 1967 and Craik, 1985) is performed. Consider a three-layer inviscid fluid 

system with a thin middle layer as shown in figure 3.1. The system is assumed to be two-

dimensional, and horizontally infinite. The coordinate system xyz is located on the mid-

height of the interface. The surface of the upper layer, and the bottom of the lower layer 

are located at z = h and z = -d respectively. The middle (diffuse) layer has a thickness 

of 2hp as indicated. The total depth is denoted by H. The densities of the upper, the 

middle, and the lower layer are pu, pm, and pl respectively, where pm = (pu +p, )/2 . 

Each layer has a constant density. 

With the assumption of incompressible fluid layers and irrotational flows in the layers, 

the fluid motion can be described by velocity potentials </>'(x,z), <p"( x,z), and <j)(x,z) 

in the upper, middle, and lower layer respectively. The potentials satisfy Laplace's 

equation in their respective layer. 

V y = 0, hp<z<h (3.2) 

VV" = 0, -hp<z<hp (3.3) 

VV = 0, -d<z<hp (3.4) 

The above equations are subject to the boundary conditions at the free surface, the 

interfaces of the layers, and the solid bed. On the free surface, the boundary conditions 

are: 

z = h + &x,t) (3.5) 

Pu[ti + \(</>?+4>?) + gz] = C'(t), z = h + Z(x,t) (3.6) 

where g(x,t) = the displacement of the free surface., The first equation represents a 

kinematic boundary condition while the second equation corresponds to a dynamic 

condition. At the interfaces, z = hp + rju(x,t) and z =-hp+T]t(x,t) where TJU and rj, are 
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the displacements of the upper and the lower interface respectively, there are four 

boundary conditions. Transferring these boundary conditions to the corresponding 

undisturbed interfaces yields the following, correct to o(e2) where £ is a typical non-

dimensional wave amplitude: 

K-K = W-f\riu}x, z = hp (3.7) 

(1 - 8 / 2 ) « + g0'z)-« + g<t>:) = {((1 - 8 / 2 y - f ) x grju }x 

+Xk2^r)-(i^/2fe2^;2)l 

z = hp (3.8) 

ti-f^U-flm};, z = -hp (3.9) 

{1+6/ 2l<p„ + g<pz)- (<p;, + gfz) = {((1+S / 2 V - f)xgVl }x 

-{{(1 + 3 / 2 ^ - ^ , 1 

•z = -hp (3.10) 

where 8 = (p2 - p , ) / p^. At the bed, the problem is subject to a kinematic boundary 

condition requiring the normal velocity be zero, i.e., 

< = 0 , z = -d (3.11) 

3.3 PERTURBATION SOLUTION 

For the purpose of the interaction analysis, it is assumed that the amplitudes of the waves 

are sufficiently small that a weakly nonlinear interaction analysis similar to that in chapter 

2 can be performed. This implies that terms of order e3 and higher may be neglected. 

Accordingly, the following expansions in £ are considered for £ , 77 „ , 7 7 , , <j>', <p " and (j). 
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2 2 
g( x,t) = £ 0( x , t)+£ (*,*) + £,(x,?)+ X2^ + c o m p l e x conjugate 

i=0 7'=' 

2 2 
rjjx,t) = T]u0{x,t)+r]uX (x,t)+^ 2 (x,r)+XX/?u..f x,f j+complex conjugate 

i=0 j=i 

2 2 

rjl(x,t) = T J 1 0 (x,t)+T}U (x, f)+fy, 2 X X ^ ' y ^ x ' ̂  +
 con}Plex conjugate 

i=0 j=i 
2 2 

x, z, t) = x, z, t) + <$>[{ x,z,t ) + ̂ '2( x,z,t ) + ^^l^>'j( x,z,t) + complex conjugate 

i=0 j=i 

2 2 
0"( x, z,t') = <PQ( x,z,t) + </>"( x, z, t) + 0*( x, z, t) + X X X-Z>t) + complex conjugate 

2 2 
x,z,t ) = <p0( x,z,t ) + <px( x,z,t)+<p2( X>Z,t ) + XX^'/ x,z,t)+complex conjugate 

(=0 j=i 

(3.12) 

where ki and Q)i are wave number and frequency of wave i respectively. The three 

interacting waves constitute the wave field at first order. The single-indexed terms, such 

as <pui, are first-order terms, while the double-indexed terms, such as <puij, are second-

order terms. Expansions (3.12) follow the standard procedure for three-wave interaction 

(e.g., see Craik, 1985). 

As the three waves are in resonance, certain kinematic conditions hold between their 

frequencies and wavelengths. These conditions, known as kinematic conditions of 

resonance, are given by (3.1). They ensure a continuous and effective energy transfer 

between the waves. 

Next, as in the previous analysis it is. assumed that the time-derivative of each 

amplitude is a function of the product of the amplitudes of the other waves as follows. 

dan db, - db, -
—f- = 0(bxb2), -± = O(a0b2), —j- = 0(aobj, (3.13) 
dt dt dt 
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where symbol overbar denotes complex conjugate. The quantity a0 is the amplitude of 

the surface wave at the free surface, and b{ and b2 are the amplitudes of the internal 

waves 1 and 2 at z = 0 respectively. The above assumption makes the time derivatives 

of a0, bx, and b2 appear in the perturbed equations at second order. Substituting (3.12) 

in the governing equations and collecting first order terms results in the linear wave 

theory for waves 0, 1 and 2. At second order, the nonlinear interaction terms appear in 

the forcing functions of the resulting inhomogeneous systems of partial differential 

equations. The forcing terms also contain the time derivatives of the wave amplitudes. 

Due to the resonance conditions, the forcing functions are of the form that produces 

secular solutions at Oiajb^), O(a0b2), 0(bxb2), and at their complex-conjugate 

counterparts. To avoid secular solutions it is necessary to impose a solvability condition 

on the forcing functions. As in the previous analysis, applying appropriate solvability 

condition to the forcing functions result in three equations from which da0 / dt, 

dbx / dt, and db2 / dt can be explicitly found in the following forms. 

da0 dbx — db2 — 
— = a0blb2, — = ala0b2, — = a2a0b, (3.14) 

where a0, a, and a2 are constant. 

As in the previous analysis, a 0 is assumed constant in the last two equations of (3.14), 

and hence the need for computing a0 is eliminated. Simultaneous solution of the last 

two equations yields variations of the internal wave amplitudes with time. 

In the following the linear and the second-order solutions are derived asymptotically. 

3.3.1 Linear Solutions 

As discussed, at first order the linear solutions of the surface and internal waves are 

obtained. Assuming hp =o(S2), for the surface wave the leading order solution 
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corresponds to the motion in a homogenous medium. The effects of density variation in 

the surface wave solution appear at higher orders. 

For the internal waves, knowing that the internal wavelengths are 0(l/S) (Jamali, 

1998), the free surface and the bed boundary conditions turn into infinite boundary 

conditions (the same is true for the system of equations at second order). As a result, for 

an internal wave 1 ( k > 0 ) the linear solution is obtained as follows. 

<p'(x,z,t) = Cle-kzei{hc-0*), hp<z<h f 

<p"(x,z,t) = ^-sinh{kz)+C3 cosh{kz) Y^'^, -hp<z<hp 

<p(x,z,t) = C2ekzei{kx-M), -d < z < -hp 

(3.15) 

where 

-libera)3 

k(co2(- 2'cosh(khp )+{S- l)sinh(khp))+ gkS sinh(khp)) 

c - ibe^(o{(Q2 (- 4e**' + -1)5)+ (em> - l)kSg) 
2 2k(cv2 (-2cosh(khp)+ {S - l)sinh(khp))+ gkS sinh(khp)) 

ibo)(co2((-2 + S)cosh(khp)-2sinh(khp))+ gkS cosh(khp)) 
3 k(oj2 {-2cosh(khp)+ (S - 2)sinh(khp))+ gkSsinh(khp)) 

(3.16) 

and b is the amplitude of the wave at z = 0 . The corresponding dispersion relation is 

fl,«(_16e

4tt' -l)52)+Sa)2e4U,>gkS-(em>-\)g2k282 = 0, (3.17) 

Solving the above equation for ca2 yields two roots; the smaller corresponds to the first 

mode and the bigger to the second mode. Assuming hp = o(S2), a three-term expansion 

for co2 of the first mode in terms of S can be obtained from (3.17) as follows. 
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» - - - ^ - ^ S + ^ + 0 ( S > ) . 0.18) 

For the second-mode the corresponding expansion is 

a 2 s ^ g _ W s i + * ^ s , + d ( s < ) t ( 3 . 1 9 ) 

2 2S 3d2 V ' 

From the above equations it can be seen that the frequency of the first mode is 0(l) while 

that of the second mode is o(s1/2). 

By replacing k by —k in (3.16) through (3.19), the corresponding equations for 

internal wave 2 (k < 0) is obtained. 

3.3.2 Solution of Resonance Conditions 

Having dispersion relations for the interacting waves, the solutions to (3.1) are obtained 

asymptotically in terms of 5 with the assumption hp =o(S2). When both internal 

waves are both primary, simultaneous solution of (3.1) with the expanded dispersion 

relation (3.18) for waves 1 and 2 yields the following solution for (Ox, a>2, , and k2. 

(o, ^ + 3 K 8 _ K ^ 8 2

 + o(^) 
2 4u), 482 

(3.20) 

(O, = — ®0 
2 

*k°s+^s2

+o(s>) 
4co, 4S2 

U 2 ^ o 
2g 

1 
• + 

k2 — 
f(o^ 

'co.+

 ao K 
2?2 2 4g28 

2 4 c4 A 

2 j 4 8gX 
k+c(̂ 2) 

2g • + 2 4 g 2 £ 2 

V J 

2 „ 4 o4 A 

8gX 2 £ 4 
£ + o(<S2) 

(3.21) 

(3.22) 

(3.23) 

It is seen that in this mode of interaction (Ov(02= 0(l) and kx,k2 = 0(l/S). 

When the internal waves are of different modes, e.g., when internal wave 1 is primary, 

and wave 2 is secondary, simultaneous solution of (3.1) with the expanded dispersion 
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relation (3.18) for wave 1 and (3.19) for wave 2 yields the following solution for cox, CD2, 

kt, and k2. 

0)x =cvQ 

^oV^ j,/2 , W*, j ^M<K~8%S2) 2 < 2] 

4g~S gS2 Jlg3/283 1 ' 
(3.24) 

«, 8 0 / ^ ^ . ^ ^ ^ V ^ V ' U ^ ^ ) ( 3.2 5 ) 

v * , 

g £ 2 ~ ' V2g 3 / 2^ 3 

r2co2 ^ 

v * y 

V 

• + 

83/2S 
J 

g3/2S 

(3.26) 

(3.27) 

From the above it can be seen that in this mode of interaction u)x = 0(l), a>2 = o(8W2), 

and k„k2=0{\/S). 

Since second-mode internal waves have frequencies of order SU2 whereas a surface 

wave has a frequency of order 1, the second equation of (3.1) can never be satisfied by 

two second-mode internal waves. This proves that interaction between a surface wave 

and two second-mode internal waves is impossible. 

3.3.3 Second-order Solution 

At second order the evolution equations of the waves are obtained. For instance, consider 

the equations at o(a0b1). The unknowns are the terms <t>'Ql(XiZJ), 0oi(x,z,,), $OVX.ZJ) °f m e 

expansions for ^XiZt), </>"xzl), <P(XZt) respectively. Since the forcing functions turn out to 

be in phase with internal wave 2, the following forms are considered for 0oiu,z,»;» <Po\(X.z.t)^ 

0O1( 



46 

K{x,z,t)=g0l{zy^~^) 

(3.28) 

As a result, the governing equations in terms of / 0 1 , s0l, and g 0 1 are 

dz1 K 2 J m 2̂ /oi — ^ ' hp<z<h (3.29) 

d 5o' -fr 2

S - o 
az 

hp<z<hp (3.30) 

^ 2goi 
~ *2 #01 = 0 ' -d < z < -hn (3.31) 

/o. =0, z - (3.32) 

dfQX ds0l 

dz dz 
= InC[{0'-<p")zllulik2), z = hn 

(\-S/2) -O)2

2f0l+g 

(3.33) 

01 
dz 

' -co2

2sm+g^)= InC[((1 -8/2>'- f\gT)u}(ik2) 
dz J 

+y2incU2+<2)-(i-*/2)fe2+£2)1-to2) 

-IntlM^-S/2)(t>[t-^)nul-i(02) 

-(l-S/2^-2iv2f2(Z)^y 2ico2s2 ( z ) ^ 

dz dz 

z = h„ 

z = hn 

(3.34) 

(3.35) 
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(i+<y/2i-
dz 

dgM } ( 2 ds ^ 
-C02sM + g^f- |=/nC[((l + ^ / 2 V - 0 l g / 7 , f e ) 

dz ) 

+ /2InCk2 n + S/2)(<Px

2

 +<Pz

2)\-ic»2) 

-{1 + 8/2}- 2ico2g2(z)^2- )- 2ico2s2(z)^2-
y dt J at 

z = -hn (3.36) 

8oi =0, Z = - o o (3.37) 

where f2(z), s2(z), g2( z) are determined from 

^2{x,z,t) = b2f2{z)e^'\ 

</>;{x,z,t) = b2s2{z)ei{k^') (3.38) 

t2(x,z,t) = b 2 g 2 { z y k ^ 

and the functional Int*m of two functions (/)(x,z,t) and <p(x,z,t) is defined below. 

Int*m [<p{x, z, t)cp(x, z,t)] = (<t>0 {x, z.tfc {x, z,t) + fr {x, z, t)<p0 {x, z, i^eT^^ (3.39) 

where the indices refer to the waves, and overbar means complex conjugate. Due to the 

resonant conditions (3.1), all Int*0] terms in (3.35) become purely a function of z • 

In general, for the above system to have a solution, a certain solvability condition 

should be satisfied by the forcing terms on the right hand sides. It can be shown that the 

above system has the following adjoint system. 

dz 

dz 

hp<z<h (3.40) 

•hp<z<hp (3.41) 
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^-^-k2

2G{z) = 0, -d<z<-h. (3.42) 
dz 

F = 0, z = oo (3.43) 

^-^ ( l - t f / 2 ) = 0, z = hp (3.44) 

S-?-Af = °, z = hp (3.45) 2<w2 dz y 

dG dS ,H 0 , „ \ „ 
(l + ^/2) = o, z = -fc (3.46) 

az rfz p 

S - G + - * r ^ = 0. (3.47) 
2*y2 az ^ 

G = 0, z = - ~ (3.48) 

It can be easily shown that if the following substitutions are made, the above system 

changes to that of linear internal wave motion. 

f 

F(z) = (l-S/2)f(z) 

' S{z) = s(z) (3.49) 

G{z) = {l + 5/2)g{z) 

Having f{z), s(z), andg(z) from the linear internal wave solution, the solution to the 

adjoint system is obtained from (3.49). 

Having the adjoint system, it can be shown that the solvability condition can be 

expressed as follows. 
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8 dS(z) 
dz CD, 

S(z) _ 1 dS(z)T 

M 2 ~ L2 
J CO, dz 

z=h„ 

8 dS(z) 

CO, dz 
S(z) 

CO, dz 

(3.50) 

= 0 
z=-h„ 

where Lx, L2, L 3 , and L 4 are right-hand sides (3.33), (3.34), (3.35), and (3.35) 

respectively. 

Substituting for db2/dt from (3.14), (3.50) can be solved for the interaction 

coefficient a2. Since the resulting expression is long, an attempt is made to find 

asymptotic expansions for a2 and the other growth parameters. This is done below for 

the two modes of interaction discussed before. In the following, the interaction between a 

surface wave and two first-mode internal waves is referred to as mode 1, and the 

interaction between a surface wave and two internal waves of different modes is refereed 

to as mode 2. 

a) First Mode of Interaction 

Substituting the asymptotic forms of the linear solutions of the surface wave and the first 

modes of the internal waves 1 and 2 in (3.50), and solving for a2 yields the following 

two-term expansion. 

a2 ~ a\ +a\8 (3.51) 

where 

ao _ /6>o(^ 0

2 sinh{kQd)- gk0 cosh(k0d)) ^ 
2 4gsinh(k0H) 

A Mathematica® output of a\ is given in figure 3.3. It is interesting to note that the 

effect of the diffuse interface appears at second order. It can be easily shown that a\ is 
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also the leading order solution of the interaction in a purely two-layer fluid system. This 

can be explained by noting that in the present problem, the density gradient in the middle 

layer is of order 8 and hence goes to infinity when 8 —> 0. Therefore, the present 

problem becomes asymptotic to the two-layer problem at small 8. 

To obtain ax, use is made of the following relation between ax and a2. 

(OX OJ2 Q)Q8 

The above is correct to the leading order in 8. A discussion of the above relation is 

given in Jamali (1998). From cox ~ QJ2 = 0(1), correct to the leading order, it follows that 

the leading term of ax is given also by (3.52). 

From (3.53) and the facts that both ax and a2 are of order 1, it is found that 

a0 = 0(8). This verifies the assumption made earlier that a0 can be taken constant in 

the last two equations of (3.14). 

Having ax and cc2, the last two equation of (3.14) can be combined to yield the 

following equation for bx. 

bx\t)-(axa2a0a0)bx(t) = 0. (3.54) 

The equation for b2 has a similar form. At large times, the solution to (3.54) is given by 

bx(t) « Cxe^a°1', (3.55) 

where 

a = y]axa2 . (3.56) 

It can be shown that (3.55) is also the long-term solution for b2. It can also be seen from 

(3.55) that the higher etrja0|, the faster the growth of the internal waves. The parameter 

orja0| is referred to as the growth parameter of the internal waves. Since ax and a2 are 
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equal at the leading order, it follows that the growth parameter a\a0\ is of order 1 in this 

mode of the interaction. 

A plot of / / |a 2|/6; 0 against k0hp / 82 is shown in figure 3.4. The plot corresponds to 

the test case d = 0.1 m , h = 0.1 m , 5 = 0.05, and k0 = 5.02 rad/m. It can be seen that the 

effect of diffusion appears at the second order, and from the two-term solution \a2\ is an 

increasing function of hp . 

The plot of /f|ar2|/a>0 against 8 for the same case is given in figure 3.5. It can be 

seen that the leading-order and the two-term solutions are asymptotic when 5 —> 0, and 

\a2\ is an increasing function 5 as well. 

b) Second Mode of Interaction 

In this mode of interaction, internal wave 1 is primary, and wave 2 secondary. It 

should be noted that since the interaction is symmetric with respect to waves 1 and 2 

(Jamali, 1998), the same results are obtained if the two waves exchange their mode 

numbers. Substituting the asymptotic forms of the linear solutions of the respective 

waves in the solvability equation and solving for db2 / dt reveals that the leading order of 

a2, given below, is of order 5 in this mode of interaction. 

a2 ~ a\8 (3.57) 

where 

i(cosh(k0d)+ sinh(k0d)) 

a, = 

r26hp0)S 
—r2 s K 

V 

G)0g3 sinh(k0H) 
(3.58) 

Knowing that in this mode of interaction =0(l) and a>2 =o(SW 2), from (3.53) it 

follows that ax = o(S i / 2). Consequently, a turns out to be o(S 3M), and hence it goes 

to zero when S- > 0. This result implies that in this mode of interaction the internal 



52 

waves have a lower growth rate than that in the previous mode, and hence in a real 

situation the interaction is most anticipated between a surface wave and two first-mode 

internal waves. 
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Figure 3.1 Configuration of the problem. 
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Figure 3.2 Graphical demonstration of resonant triads: a) Interaction of a surface 
wave with first-mode internal waves; b) Interaction a surface wave with 
internal waves of different modes. 



55 

( i g Csch [ (d +h) k 0 ] 2 Sech [ (d +h) k 0 ] kjj (2 62 (-2 Cosh [d k 0 ] + 

2 Cosh[ (d - 2 h) k 0 ] + S inh [ (d + 2 h) k 0 ] + S inh [ (3 d + 2 h) k 0 ] ) + 
62 (Cosh[ (d + 2 h) k 0 ] - Cosh [ (3 d + 2 h) k 0 ] + 

4 S i n h [ d k 0 ] - 2 S i nh [ (d - 2 h) k 0 ] - 2 S i nh [ (d + 2 h) k 0 ] ) 
(c5 (Cosh [ (-d + h) k 0 ] - Cosh [ (d + h) k 0 ] ) 

Csch [ (d + h) k 0 ] Sech[ (d + h) k 0 ] 2 + 2Tanh[ (d + h) k 0 ] ) -
(S inh [ (d + 2 h) k 0 ] + S inh [ (3 d + 2 h) k 0 ] ) 
hp k 0 (<5 (Cosh[ (-d + h) k 0 ] - Cosh [ (d + h) k 0 ] ) 

Csch [ (d + h) k 0 ] Sech[ (d + h) k 0 ] 2 + 2Tanh [ (d + h) k 0 ] 

Figure 3.3 Mathematica output of a\ in the first mode of the interaction. 
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0.20 

0.15 

H\a2\/ao 0.10 

0.05 

0.00 

— one-term expansion 

-0— two-term expansion 

I 1 1 1 1 1 

0.00 1.00 2.00 3.00 4.00 5.00 6.00 

kh/h2 

0 p 

Figure 3.4 Variation of H\a21 /Q)0 with k0hp / 52. 
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#|a|/co o 0.10 
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0.00 

- 0 — one-term expansion 

- 0 — two-term expansion 

0.00 0.05 0.10 

Figure 3.5 Variation of H a2 /co0 with S. 
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C H A P T E R 4 

C O N C L U S I O N S A N D 

R E C O M M E N D A T I O N S 

4.1 ASYMPTOTIC ANALYSIS OF INTERACTION 

Two subjects related to the interaction of a surface wave with two internal waves in a two-

layer fluid were studied theoretically in chapters 2 and 3. These were the asymptotic 

behavior of the waves in three-dimensional interaction at small density difference and the 

effect of a diffuse interface on the interaction. The following is a summary of the two 

studies. 

4.1.1 Three-dimensional Interaction in a Two-layer fluid 

The interaction of a surface wave with two oblique internal waves were studied 

asymptotically in chapter 2 in an attempt to obtain simple approximate expressions for the 

growth rate as well as the kinematic properties of the internal waves. The non-dimensional 
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density difference 8 was taken as the perturbation parameter, and the first few terms in the 

expansions of the desired quantities were derived. The results indicated that the internal-

wave numbers are o(S~ l), one order larger than the surface-wave number. It was also found 

that at leading order the frequency of both internal waves is equal to O)0/2, and the 

directions of the two internal waves differ by 180 . 

According to the asymptotic analysis, the interaction coefficients ax and a2 are O(l) and 

are equal at leading order. As expected, the leading-order term of the growth parameter 

asymptotes the exact value when 5 goes to zero. It was found that an immediate 

consequence of taking 8 as a small parameter is that the internal waves are deep-water 

waves in both layers. For this reason, the asymptotic solution was found to be valid only for 

that range of frequency in which the surface wave motion results in excitation of deep-water 

internal waves. 

4.1.2 Interaction on a Diffuse Interface 
In chapter 3 a two-dimensional analysis of the generation of two internal waves by a surface 

wave on a thin diffuse interface was presented. As in the previous analysis, the non-
r 

dimensional density difference S was taken as the small perturbation parameter. The diffuse 

interface was assumed to be small compared to the internal wavelengths. It was taken to be 

order S2. 

A three-layer system admits two modes of internal wave motion, and similarly two modes 

of interaction were found to be possible. These were interaction between a surface wave and 

two first-mode internal waves, and the interaction between a surface wave, a first-mode and a 

second-mode internal wave. The case of interaction between a surface wave and two second-

mode internal waves was shown to be impossible. The asymptotic analysis indicated that the 
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growth rate in the first mode is higher than in the second. This implies that in a real situation 

the interaction emerges as between a surface wave and two first-mode internal waves. 

4.2 RECOMMENDATIONS 

In many real situations, a water body is stratified into two layers and is subject to the action 

of surface waves. For instance, in many lakes, tailings ponds, and muddy coastal regions a 

layer of fluid mud is present beneath the clear water, and the surface waves continuously 

disturb the interface of the two layers. Similarly, in many stratified estuaries and oceans the 

water body is almost two-layered, and the interface oscillates under the influence of the 

surface waves. The interaction of a surface wave with two sub-harmonic internal waves was 

found to be a strong mechanism for the instability of an interface subject to surface wave 

motion (Jamali, 1998). Considering that in real situations there is always a diffuse interface 

between the layers, the study of interaction in presence of a diffuse interface has considerable 

applications in mixing studies of two-layer fluids. The interaction on a diffuse interface was 

investigated theoretically in the present study. However, the study had two limitations: the 

analysis was confined to two dimensions, and the stratification considered was discontinuous, 

and hence unrealistic. In a real situation, the interaction is more likely to be three-

dimensional as the internal waves have a greater growth rate when they are not in the same 

plane as the surface wave (Jamali, 1998). Also, in stratified aquatic systems, the density 

varies continuously across the interfacial layer. To have a better understanding of the 

interaction in real situations, it is suggested the mentioned limitations be removed from the 

interaction analysis. 
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A P P E N D I X A 

L I N E A R S O L U T I O N 

Here the solution to the linear equations of motion of a wave in a two-layer inviscid medium 

is presented. The equations of motion are given by (2.4) to (2.11). The wave is assumed to 

move in the x-y plane with wave number k = (kx,ky jand frequency u). The solution to 

the linearized equations of motion for a surface wave can be obtained as (e.g., see Lamb 

1934) 

f(x,y,z) = {ciSinh(kz) + C2Cosh(kz (A.l) 

<Kx, y, z) = {DxSinh(k(z + dy) + D2Cosh{k(z + d,))}e'(*'Ar+M~a*) (A.2)' 

&x,y,t) = ae'<k'x+k'y-e'> (A.3) 

7Xx,y) = bei(k'x+k>y-'a> (A.4) 

where 

ia( gkSinh( kh ) - OJ2Cosh( kh )) 
Cl = ~ Too — (A-5) 

^ - ia( gkCosh( kh)-co2 Sinh( kh)) 
C2 = (A.6) 
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D, = 0 (A.7) 

ia( gkSinh( kh)- co2Cosh( kh )) 
A> = (A.8) 

2 kcoSinh(kd) y ' 

b = a n , , , , , gkSinhjkh) 
Cosh( kh)- 1 (A.9) 

In the above equations, a is the amplitude of the surface wave, and the system parameters are 

defined in figure 2.1. The dispersion relation can be written as 

^(Q}A-g2k2 )tanh(kh) 
—• - + gk-Q)2 coth(kd) = 0 (A.10) 

(gktanh{ kh ) - 0 ) 1 ) 

For the motion of an internal wave, the above equations are still valid. However, It is 

convenient to write the coefficients in equations A.l to A.4 in terms of the internal wave 

amplitude b: 

-ibco 
<:,=—— (A.ii) 

k 

ibco{gkCosh(kh)-co2Sinh(kh)) 
C 9 — 7— 7- (A.12) 

-k(aJ2Cosh(kh)-gkSinh(kh)) 

D,=0 (A. 13) 

- ibcuCsch( kd) 
D2= (A. 14) 

bco2 

a=j—7 r (A. 15) 
(co2 Cosh( kh) - gkSinh( kh)) 

The dispersion relation remains the same. 


