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Abstract

The main objective of this thesis is to study Heegaard diagrams and their applications.
First, we investigate Heegaard diagrams of closed 3-manifolds and introduce the circle
and chord presentation for a connected, closed 3-manifold. The equivalence problem
for Heegaard diagrams after connected sum moves and Dehn twists will be investigated.
Presentations will be used to detect reducible Heegaard diagrams and homeomorphic
3-manifolds. |

We also investigate Heegaard diagrams of the 3-sphere. The main result. of this part
is that if two Heegaard diagrams of the 3-sphere have the same genus, then there is a
sequence of connected sum moves and Dehn twists to pass from one to the other. If we
use connected sum moves only, Heegaard curves can be changed to primitive curves and
if we use Dehn twists only Heegaard curves can be brought into a simple position.

Finally, we construct an immersion of a compact, orientable, connected 3-manifold

with non-empty boundary into R® with at most double and triple points as singularities. |

Further, we prove that if the boundary of the 3-manifold consists of 2-spheres and the
3-manifold can immerse into R® with only double points as singularities, then the 3-

manifold must be a punctured 3-sphere or a punctured (S! x S?)f---#(S! x §$?).
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Introduction

In the early 1960s, W.Haken [13], [12] introduced the theory of normal surfaces and
he exhibited an algorithm to detect embedded, 2-sided, closed, incompressible surfaces
in closed, irreducible 3-manifolds. His algorithm will eventually stop if such surfaces
exist. But the algorithm had no bound for termination. W.Jaco and U.Oertel [19]
obtained an efficient algorithm with such a bound. Jaco and Oertel’s algorithm and a
result on the conjugacy problem in the mapping class group of surfaces (Hemion [16]
or Hatcher and Thurston [14]) gives an algorithm to decide if two closed, irreducible
3-manifolds are homeomorphic assuming one of the 3-manifolds contains an embedded
2-sided incompressible surface. J.H.Rubinstein [33|, [34] generalized normal surfaces to
almost normal surfaces and used them to solve the recognition problem for the 3-sphere,
i.e., to decide if a given closed 3-manifold is the 3:sphere. ‘A.Thompson [38] also gave an
algorithm to recognize the 3-sphere by using thin position.

In the first part of the thesis, we investigate Heegaard diagrams of closed 3-manifolds
and introduce a new representation method for connected, closed 3-manifolds. Recall that
a Heegaard splitting of genus ¢ of a closed 3-manifold M decomposes M into two han-
dlebodies V, W of genus g. The boundary curves by, by, - - -, b, of the disks in a complete
meridian disk system in W (i.e., cutting W along the disks is a 3-cell) lie in the surface
9V as a complete system (i.e., cutting OV along the curves is a disk). The (one;sided)
Heegaard diagram (V'; by, bo, - - -, b,) completely determines M. After choosing a suitable
complete meridian disk system D;, Dy, -, D, of V, we can find sub-arcs ¢;, ¢, - -, €291
of the curves by, by, - - -, by whose end-points lie in the curves Dy, 0Dy, - --,0D, such that

cutting OV along the sub-arcs c;,cg, - -, c3g—1 and the curves 0Dy, 0D;, - -,0D, leaves

viil




a disk. The remaining parts of the Heegaard curves by, by, - - -, b, are chords in the disk.
We can use the disk, the chords and the labels which denote the intersection points be-
tween the curve set {b;,bs,---,b,} and the curve set {dD;,0D,,---,8D,} to represent
the 3-manifold M. We give a necessary and sufficient condition that a circle with some
chords and labeled endpoints represents a 3-manifold (Theorem 2.6).

We also investigate the equivalence problem for Heegaard splittings of closed 3-
manifolds. We prove that a Heegaard diagram (V';by,b2,---,b,) can be changed to an-
other Heegaard diagram (V; b, b, - - -, ;) by using a sequence of connected sum moves if
and only if b3, b5, - - -, b, have trivial reduced words corresponding to the complete system
b1, ba, -+ -, by of the surface 9V (Theorem 2.2). Properties of connected sum moves and
Dehn twists are investigated. Combining these results with results about stabilization of
Heegaard splittings ([11], [36], [23], [20], [35]), we obtain an algorithm to detect if two
closed, connected 3-manifolds are homeomorphic (Theorem 2.12). It is an open problem
to find a bound for this algorithm.

In the second part of the thesis, Heegaard diagrams of the 3-sphere are investigated.
The main result of this part is that if two Heegaard diagrams of the 3-sphere have the
same genus, then there is a sequence of connected sum moves and Dehn twists to pass
from one to the other (Theorem 3.3). For every Heegaard diagram (V';by,bo, -, b,) of
the 3-sphere, we prove the following two properties. First, if the handlebody V lies in
the 3-dimensional Euclidean space R® standardly (i.e., R® — Int V is homeomorphic to
a handlebody of genus g with a 3-cell removed), then we can use Dehn twists on V to
change the Heegaard curves b1, by, - -, b, to new Heegaard curves b}, by, - - -, b, such that
by, bh, - - -, by bound pairwise disjoint disks in R3 — Int V (Theorem 3.5). Second, we
can use connected sum moves on the curves by, by, - - -, b, to obtain new Heegaard curves
by, by, + -+, by such that by, b}, - - -, by are primiti've curves of V; i.e., they form a free base

of the fundamental group of the handlebody V (Theorem 3.4).

X



In the third part of the thesis, we construct an immersion of any given compact,
orientable, connected 3-manifold with non-empty boundary into R® with at most double
and triple points as singularities by using a Heegaard diagram of the 3-manifold (Theo-
rem 4.1). This is stronger version of a special case of a result of J.H.C.Whitehead [41]
which does not have a bound on the multiplicity of the singularities. Further, we prove
that if a compact, orientable, connected punctured 3-manifold can immerse into R® with

only double points as singularities, then the 3-manifold must be a punctured 3-sphere or

a punctured (S? x S%)§(S? x S?)§---4(S* x S?) (Theorem 4.2).



Chapter 1

Notation and Preliminaries

We will work throughout in the piecewise linear category. All manifolds and all maps
are piecewise linear. All intersection points are in general position. The term homeo-
morphism always means a piecewise linear homeomorphism. Our reference is [17] and
[31].

A 3-manifold V is called a handlebody of genus g if there exist g disjoint proper 2-cells
Dy,---,D, in V such that if D; x [—¢,€],5 =1, -, g are disjoint regular neighborhoods
of Di=D; x0,i=1,---,gin V then C =V — (D; x (—€,¢) U---U D, X (—¢,€)) is a
3-cell. The disks Dy, - -, D, are called a complete meridian system of V. The 3-cell C
is called a cut of V alo'ng Dy,--+, D,

A Heegaard splitting (V, W) of genus g of the closed connected 3-manifold M consists
of two handlebodies V, W of genus g in M such that M = VUW and VNW = 9V = oW..
If {By,:--,B,} is a complete meridian disk system of W and 0B; = b;,i =1, - -, g; then
(Viby, -+, by) is called a (one-sided) Heegaard diagram of genus g of M. Note that a
Heegaard diagram determines the 3-manifold M (i.e., M can be obtained by attaching
2-handles along disjoint regular neighborhoods b; x [—€,€],4 = 1,--+,g in dV, plus one
3-handle.

Two Heegaard splittings (V, W), (V',W') of M are called strongly equivalent if there

exists an ambient isotopy h; : M — M,0 < t < 1, such that hy = identity and

h(V, W) = (V', W'). Following Birman [2] , we call two Heegaard splittings (V, W), (V',W’)
equivalent if there exist a homeomorphism h : M — M with h(V) = V(W) = W'
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or (V) =W' h(W)=V"

Let (V, W) be a Heegaard splitting of genus g of the closed connected 3-manifold M.
Let v C V be an arc and D C V be a disk such that 8D = yU(DNV),dy = ynoV. If
N(7) is a closed regular neighborhood of v, then V! = VUN(y) and W’ = CI(W — N(v))
are handlebodies of genus g+ 1. Therefore, (V', W') is a Heegaard splitting of genus g+ 1
of M. This construction from the Heegaard splitting (V, W) to (V', W') is called handle
addition. The inverse procedure is called a reduction. A Heegaard splitting is called
minimal or irreducible if it can not be reduced.

Reidemeister-Singer Theorem. Let M be a connected, closed 3-manifold and let
(i, W), (Va,Ws) be two Heegaard splittings of M. Then there exist Heegaard splitting
(Vi, W), (Va, W) of M such that (Vi, W) reduces to (Vi, W;) and (Va, Wa) reduces to
(Va, Wa) and (Vi, W1), (Va, Ws) are strongly equivalent. _

Now, we state the definitions of three well-known fundamental moves on some curves

in the boundary surface of a handlebody here.

Definition 1.1 Suppose that V' is a handlebody of genus g and ¢y, ¢, - -, € GTE PaiTWISE

disjoint, simple closed curves in V. Then we can use the following three kinds of moves

to change the positions of the curves in OV .

I. Connected sum or handle sliding. We replace the curve ¢; by c;flac; in the curve
set c1,C, -+, Cm as in the following figure (where 1,7 = 1,2---,m;i # j, and « is
an arc in OV whose endpoints P, Q lie in the curves c¢; and c; respectively such that
an (Ui c) ={P,Q}. (See Fig. 1.1.) |

Note. Connected sum moves are defined in an orientable surface, i.e., we can ignore
the handlebody itself and only consider the moves in its boundary.

Note. If (V,W) is a Heegaard splitting of M and (V;b1,be,---,by) a corresponding

Heegaard diagram defined by a complete meridian system By, By, - -+, By of W with 0B; =
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Figure 1.1: Connected sum move

bi,i=1,2,--+,g, and if bif.b; is a connected sum move (to replace b;) on 8V = OW, then
there is a complete meridian system By, -+, B;_1, B, Biy1,- -+, By of W with 8B = bifi.b;.

II. Dehn twist. Suppose D is a meridian disk in 'V, i.e., cutting V along D is con-
nected. Then we use the following Dehn twist on the curve set. (See Fig. 1.2.)

Note. If (V;bi,bo,--+,b,) is a Heegaard diagram of M and b, - - -, b, are the curves
obtained by applying a Dehn twist Tp (where D is a properly embeded, non-separating
disk in V) to by, by, -, b,. Then (V5 01,05, -,by) is a Heegaard diagram of M' with
Heegaard splitting (V, W’.) such that there is a homeomorphism h : M — M' with
h(V,W) = (V,W') and h |v= Tp.

Note. Sometimes we need to use one kind of move similar to a Dehn twist. Suppose
D is a proper disk in V' that separates V into two connected components. We rotate one
of the connected components with angle © along the disk D. (See Fig. 1.3)

III. Handle addition (or stabilization) and reduction. Suppose Dy, Dy are two small

disjoint disks in OV and (D1 U D) N (URy¢;) = 0. Then we add a 1-handle to V' along
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Figure 1.2: Dehn twist

Figure 1.3: Twist handle
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m+1

Q)= 00)0)

Figure 1.4: Handle addition

Dy, D, and let ¢4 be a simple closed curve in the boundary of the 1-handle as in Fig. 1.4.
That 1s, cm41 1S the union of an arc in OV — (Int(Dy) UInt(D2) U (UT,c;)) and an arc in
the handle. The inverse move of a stabilization is called a reduction. A Heegaard splitting
is called minimal or irreducible if it cannot be reduced, that is, it can not be obtained by

a stabilization of a Heegaard splitting of smaller genus.

Remark. It is clear that the inverse move of a connected sum or a Dehn twist is
still a connected sum or a Dehn twist, respéctively. And the inverse move of a handle
addition is a handle reduction, i.e. removing a 1-handle from H and removing the curve
cm if there exists a proper embedded disk D in the 1-handle and a curve, say c¢,,, in the
curve set such that 0D N (UZ,¢;) = 0D N ¢y, and 0D and ¢, intersect transversely at
one point.

Sometimes, we will consider other special curves in the boundary of a handlebody V.

A simple closed curve in 9V is called primitive if there is a meridian curve in 9V such

that the two curves intersect transversely at one point. A complete primitive system of V.
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is a complete system {b;,bs,--,b,} of 8V which in addition satisfies the property that
there exists a complete meridian system {di,ds,---,d,} of V such that b; intersects d;
transversely at one point and b; does not intersect d;, where ¢,j =1,2,--+,g;i # j. The

concept primitive refers to primitive elements of free groups. (See Definition 1.2.)

Definition 1.2 A set of primitive elements of a free group F is a set of elements which

can be completed to a set of free generators for F.

Although primitive curves are curves which have a simple property, they may have
infinite possible positions in the surface. By a result of Zieschang [43], also [10], if we
choose a complete meridian system for the handlebody, then the word of a primitive curve
corresponding to the complete system is conjugate to a word which can be extended to
a basis of the fundamental group of the handlebody. It is clear that the above condition
is a necessary and sufficient condition. By Whitehead’s results about automorphisms of
free groups [42], there is an algorithm to determine if an element w of a free group F' of
finite rank is or is not primitive. Therefore, this gives an algorithm to determine whether
a curve in the boundary of a hlandlebody is a primitive curve or not. Gordon [10] proved
another necessary and sufficient condition: A curve in the boundary of a handlebody of
genus g is primitive if and only if adding a 2-handle to the handlebody along the curve
yields a handlebody with genus g — 1. .

The above results of Zieschang and Gordon imply that to check whether a simple
closed curve in the boundary of a handlebody is primitive or not it is only necessary to
check whether or not the word of the curve with respect to a complete meridian system
of the handlebody is conjugate to a primitive element in the free group generated by the -
elements which are corresponding to the curves in the complete meridian system.

There is a well-known simple method to check whether a simple closed curve bounds

a disk in a handlebody or not.
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Lemma 1.1 Supposse V is a handlebody of genus g and di,da,---,d, is a complete
meridian system of V. If D is a properly embedded disk in V then the reduced word of
0D corresponding to the complete meridian system is 1, i.e., the empty word. On the
other hand, suppose c is a simple closed curve on OV. If the cyclically reduced word of

¢ corresponding to a complete meridian system is trivial, then c bounds a disk in the

handlebody.

Proof. Since the fundamental group of V is a free group generated by the generators
corresponding to the complete meridian system and D can shrink to one point in V/,
then [0D] representes the trivial element 1 in the free group. Therefore, the reduced
word of 0D corresponding to the complete system is 1. |

On the other hand, if the reduced word of ¢ corresponding to a complete meridian
system is 1, then we consider a regular neighborhood N of the curve c in the surface V.
Suppose i : N — V is the inclusion map. Since ker(i, : m1(N) — m(V)) # 0, then by
the loop theorem [29], there exists a properly embedded disk D in V such that 8D C N
and 0D can not be moved to a point in N continuously. Note that 8D is a simple closed
curve. Thus we may assume that the curve 9D is just the curve ¢. Therefore, ¢ bounds
a disk D in the handlebody.

O

There are some fundamental results on free groups which are useful for determining

primitive elements of a free group.

Definition 1.3 (Nielsen transformation). Suppose that wy,ws, - -+, w, are words in the
generator set X = {x1, 29, -+, Zn} of the free group F(X). An elementary Nielsen trans-
formation of the word set W = {wy,ws, -+, wy,} is of one of the following three types:

for some 1,1 <i<n,

(1) replace z, by z7*,
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(2) interchange 1 and x;, leaving others the same,

(8) replace x1 with T,zo, all others fized.

Nielsen Theorem. Suppose {uj,u, -+, u,} and {vy,vq, -+, v,} are two sets of
words in the generator set X = {z;,2, -, z,} of a free group F(X). If {uy,ug, -, us}
and {v1,vs,---,v,} are bases of F(X), then a finite sequence of elementary Nielsen
transformations will change wuy,ug, - -+, up, to vy, v, - -+, Up.

On the other hand, Birman established a simple criterion to show whether or not a
word set is a basis of a free goup F in terms of the free differential calculus which was
introduced by Fox in [Fox].

Birman Theorem. A set of words {w;,ws, -, w,} in the generator set X =
{z1, 22, -, 2} of the free group F(X) is a basis for F(X) if and only if Fox matrix

(G

is invertible in the group ring Z[F'(X)], where the Fox derivative

0
o Z[F(X)] - ZIF(X)]
J
is given by
_8 € . € ; i i—1)
Oz ('Tftll ’ x;z; """ xurr) = Z eidui,jxull """ lei—_ll : xﬁi(e ;
J =1

(where €; = 1 or —1; and §,, ; is the Kronecker §).

Birman’s theorem determines an algorithm to see whether a curve on the boundary

surface of a handlebody is primitive or not.




Chapter 2

Geometry and Algebra of Heegaard splittings

In this chapter, M will always denote a closed, connected, orientable 3-manifold.

In this chapter, we consider two operations on Heegaard diagrams of a 3-manifold:
Connected sum move ( or called handle sliding by some authors ) and Dehn twist.

We also introduce a new tool, the circle and chord presentation of a closed, orientable
3-manifolds. Using this presentation, we will obtain the following results.

1. An algorithm to list all possible circle and chord presentations of closed, orientable
3-manifolds. Furthermore, we obtain a method to list all closed orientable 3-manifolds.

2. An algorithm to detect whether the corresponding Heegaard diagram of a circle
and chord presentation is reducible or not. This will also give a method to detect whether
or not a closed, orientable 3-manifold is the 3-dimensional sphere.

3. Relations between strong equivalence and equivalence.

2.1 Connected sum move

Definition 2.1 Let F' be an orientable closed surface of genus g. A set of k pairwise
disjoint, oriented, simple closed curves in F' is called non-separating if the result of cutting
F along these curves is connected. If furthermore, k = g, then we call the curve set a
complete system of F'. If V is a handlebody of genus g, then an oriented curve c is called
a meridian curve of V if ¢ is a non-separating curve on OV and ¢ bounds a proper disk D

in V. D is called a meridian disk of V. A complete meridian system of V is a complete

system of OV which in addition satisfies the property that every curve in the system is a
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Q The orientation of F Q The orientation of F

c

8
1). Reading off the intersection point as " b " 2). Reading off the intersection pointas " b, "

Figure 2.5: Reading word of the intersection points

meridian curve of V.

Definition 2.2 Suppose {b1,bs,---,b,} is a complete system of an oriented closed sur-
face F' of genus g. Suppose c is an oriented simple closed curve in F. If we travel along
c in direction of its orientation starting at a point on ¢, and reading off the intersection
points between c and the curve set {by,bo,---,b,} according to the orientations of the
respective two subarcs near each intersection point ( see Fig. 2.5 ), then we obtain a word
w(by,ba,- -+, by). We call the word w(by, by, --,b,) the word of ¢ corresponding to the
complete system {by, by, -, by}

Note.  In Definition 2.2, since {b,bq,---,b,} is a complete system of F, there is
another complete system {a1,as, -, a,} such that b;Na; =0 fori,j =1,2,---,9;5 # j
and b; intersects a; at one point. After isotopically moving the curves by,---,by, a1, -, a,
in F' to let them be attached to one point P € F, cutting F' along the new curves

which are still denoted by,---, by, a1, -+, a, leaves an open disk. Therefore, the fun-

damental group m(F) has 2g generators by, bs,- -, by, a1,02,--,a, and a relator R =
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a1b1a1‘1b1_1a2b2a2‘1b2_i---agbgag‘lbl_l. By the Independence Theorem ( see Theo-
rem 4.10 in [26] ), the subgroup of m{(F) generated by by,bs,---,b, is a free group and
w(by,- -+, by) is an element of this free group.

Note. When we isotopically move the curve ¢ to a new curve c” in F, the word w’ of
¢’ corresponding to the complete system is given by inserting or removing some cancelling
pairs of generators.

Among the equivalent moves of Heegaard diagrams, connected sum moves ( or handle
sliding ) is the most important of the moves because of the following two reasons. One
is that only connected sum moves can decrease lengths of cyclically reduced words of
Heegaard curves. Another reason is that only connected sum moves can be used to
obtain new primitive curves which can be used to reduce Heegaard diagram.

We generalize a result in [37] to obtain an algebraic property of the connected sum

move.

Theorem 2.1 Suppose I' is an oriented surface of genus g and curve set {by, by, -, by}
15 a complete system in F'. Suppose a, is a simple closed curve in F' and a; does not sep-
arate F. If the reduced word w of a, corresponding to the complete system {by, b2, -, by}
18 1, i.e., empty word, then we can use a sequence of connected sum moves on the curve
set {b1,by, -+, by} to obtain a new complete system {ay,as,---,a,}. In particular, if the

length of w is s, then at most (s +1)(g — 1) moves are required..
In the proof of Theorem 2.1, we will make use of the following two lemmas.

Lemma 2.1 Suppose F, {b1,b, - ,b,} and a; are the same as in Theorem 2.1. Suppose
that we use a connected sum move on the curves by, by along an arc « to replace by by

by = biffabs to obtain a new complete system {b},bs,--,by}. Suppose that the words of

ay corresponding to the old complete system {by,bs,---,b,} and the new complete system
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{b5,b2, -, b} are w(by, by, - -+, by) and , w' (B, by, - - -, by) respectively. If the reduced word
of w(by, ba, - -, by) is 1, then the reduced word of w' (b}, by, - - -, b,) is also 1.

Proof. Without loss of generality, we may suppose that the orientation of b} matches
the orientations of both b; and b;. In an intersection point between o and a;, we read
nothing for the old complete system and read a cancelling pair b} - (b))~ or (})7! - ¥}
for the new complete system. In an intersection point between b, and a;, if we read b,
or (by)~! for the old complete system, then we read b, or (b,)~! respectively for the new
complete system. In an intersection point between b, and a;, if we read by or (by)~!
for the old complete system, then we read b} - by or (b} - by)~! respectively for the new
complefe system. In all other intersection points, we read the same results for both the
complete systems. Therefore, w'(b}, b, -, b,) has the same reduced word with a word
w(by, b) - ba, -+, by). The reduced word of w(b}, b} by, - -,b,) is 1 since the reduced word
of w(by, by, - -+, b,) is 1. Thus, the reduced word of w'(b;,ba, -, b,) is also 1.

O

Lemma 2.2 Suppose F, {b1,bs,---,b,} and a; are the same as in Theorem 2.1. If
a; N (U?=1bj) = ), then we can use at most g — 1 connected sum moves to change the

complete system {b1, by, -, by} to a new complete system {ay,as,---,a,}.

Proof.  'The result of cutting F' along the curves by, b, - -, b, is a 2-sphere with 2g

holes. Denote this surface as ¥ and the holes as by, b3, 03,03, - -, b, b2, where b}, b2 are
two copies of b; for j = 1,2,---,g. If we cut ¥ along a;, we obtain two surfaces ¥;, ¥,

which are 2-spheres with holes. One of the surface X;, ¥ has at most g + 1 boundary
connected components. Without loss of generality, we assume the surface is £;. Since a;

does not separate F, there is some i € {1,2,-- -, g} such that b} C 1, b? C X or b} C Xy,

b? C ¥;. Without loss of generality, we may assume that b} C ;, b C Zy. Suppose
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that the number of the holes of ¥; is k. We draw k — 2 properly embedded, pairwise
disjoint arcs in 3; such that each hole of £; except b} and a; is connected to the hole b}
by exactly one arc. Now, these arcs define k¥ — 2 connected sum moves. The result curve
of the moves is isotopic to a; in the surface F. Therefore, we obtain a new complete
system {al,az,n-,ag}. In fact, the curves ay,---,a4 are by,---,b;_1,b41, -, by. The _
number of moves is k —2 < g — 1 since k < g+ 1.

O

Proof of Theorem 2.1. If a; N (U?zlbj) # (, we read the word w of a; cooresponding
to the complete system {b1,bs,---,b,}. Since the cyclically reduced word of w is 1,
the empty word, we can reduce w to 1 by cancelling reduced pairs of w step by step.
Suppose the first such reduced pair in w is b; and b;' for some i € {1,2,---,g}. Then
b; and b;'! are adjacent in the presentation of w. This fact indicates that there exists an
arc ¢ C a; so that c intersects (US-,b;) by two points A and B which are the endpoints
of c. The points A, B separate the curve b; into two arcs a and b. The result of cutting
F along the curves by, by, -+, b, is a 2-sphere with 2¢ holes and we denote this surface
as X. If we cut the surface ¥ along ¢, we obtain two surfaces ¥; and ¥,. One of the
surfaces ¥; and ¥, does not include the hole which is the copy of b;. We assume, without
loss of generality, this surface is 3; and assume that ¥; includes the hole ¢ U a. Now,
we view Y; as a disk bounded by c U a and with & holes inside. We draw k properly
embedded, pairwise disjoint arcs in ¥; such that each of the holes is connected to the
curve a by exactly one arc. Now, we go back to consider the surface F. Along each of
the arcs, we use the respective connected sum move. These moves do not remove the
curves by, -+, b;—1,bi41,- -+, by from the new complete system, i.e., we replace the curve
b; in the complete system {by, by, - -, by} with the curve which is the connected sums of

b; with the k curves in the curve set {b1,--+,b;_1, 041, -+, b,} along the k arcs. Note

that this curve (up to isotopy in X) is just cUb. Then, we obtain a new complete system
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{b1, -+ bi_1,cUb, by, -, by} which has at least two less intersection points with the
curve a; and the reduced word of a; corresponding to the new complete system is still 1
by Lemma 2.1. Note that the number of our moves is k which is at most 2g — 2. Further,
we reduced one cancelling pair b; and b} ! in the representation of w.

We continue the above step to the adjacent cancelling pair of the word w and finally
we will get a complete system {by, b5, -, b, } of the surface F' so that every curve in this
complete system does not intersect the curve a;. The number of the moves is at most
5/2 x (29 — 2).

Now, a; N (U_,b}) = 0. Therefore, by Lemma 2.2, we can use at most g — 1 connected
sum moves on the complete system {by,b5,--+,b,} to obtain a new complete system
{ai,as, -, a4}

Since we only need s/2 x (2g — 2) times of connected sum moves to cancel the s
intersection points between a, and the complete system by, bs, -, b, and need at most
g — 1 more moves to get the curve a;, the number of total connected sum moves is at
most §/2 X (29 —2) + (9 — 1) = (s+1)(g — 1). This completes the proof of the theorem.

O

Now, we apply Theorem 2.1 to get several results.

Theorem 2.2 Suppose F is an orientable surface of genus g and {b,b2,---,bs} is a
complete system in F. Suppose {a1,a0, --,a,}(n < g) is a non-separating curve set
in F, i.e., cutting F' along {a1,as,---,a,} is connected. If the respective reduced words
W1, W, * **, Wy, Of @1,09," -, ay, corresponding to the complete system are all equal to 1,
then we can use a sequence of connected sum moves on the complete system to obtain
a new complete system {a1, a2, *,an, b, ,---,b,}. If the sum of the word lengths of

Wy, Wa, -+, Wy 1S 8, then at most (s + n)(g — 1) moves are required. In particular, if

n = g, then the requirement that all w; reduce to 1 gives a necessary and sufficient
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condition passing one Heegaard diagram to another Heegaard diagram by using connected

sum moves.

Proof. 'The proof is similar to Theorem 2.1. We cancel all intersection points be-

tween the curve set {by,bo,---,b,} and {ai1,as,--,a,} first, that is, we can use at most
s(g — 1) moves on the complete system {by, b, - - -, by} to obtain a new complete system
{61, 05, -+ -, by} such that by, by, - -+, by, by, 85, -+, b, are pairwise disjoint curves in F. We.

cut F' along {b,85, --,by} to obtain a 2-sphere with 2g holes. Denote this surface as |
Y. There is a curve, say a; without loss of generality, in the curve set {a1,a9, ", a,}
such that a; bounds a disk with m holes in ¥ with m < g and no curves in the curve set
{a1,as, -+, an} lie inside this punctured disk. Denote this punctured disk as ;. By the

proof of Theorem 2.1, we can use at most g — 1 connected sum moves to obtain a;. We

continue the similar steps for other curves in the curve set {a1, as,- - -, a,} and finally get
a complete system {ai,a, -, an, b, ,b,}. The number of total moves is at most
s(g—1)+n(g—1) =(s+n)(g—1).

O

Theorem 2.3 Suppose that (V;by,be,---,b,) is a Heegaard diagram of genus g of M.
If one of the following conditions is true, then the Heegaard diagram is reducible ( i.e.,.
we can use a reduction move on the Heegaard diagram to obtain a Heegaard diagram of
genus g —1 ).

1). One of the Heegaard curves by, by, - -, b, is primitive in the handlebody V.

2). There is a simple closed curve c in OV such that ¢ is primitive in V and c can be
obtained by using a sequence of connected sum moves on the curve set‘bl, by, -+, by.

3). There is a simple closed curve ¢ in OV such that ¢ is primitive in V and the
reduced word of the curve ¢ corresponding to the complete system {by,ba,---,b,} of OV

s 1.
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Proof. 1). If one, say by, without loss of generality, of the Heegaard curves by, by, - - -, b,
is primitive in the handlebody V, then adding 2-handle to V along the Heegaard curve
is a handlebody V' of genus g — 1 by Gordon’s Theorem[Gordon]. Now, (V';bg,---,b,)
is a Heegaard diagram of genus g — 1 of M.

2). If ¢ is a simple closed curve in 8V such that ¢ is primitive in V and ¢ can be
obtained by using a sequence of connected sum moves on the curve set by, by, - - *, by,
then the connected sum moves give us a Heegaard diagram (V;c, b}, - - -,b'g). Since ¢
is primitive, by 1), the Heegaard diagram (V;c, b, - -+, by) is reducible. Therefore, the
Heegaard diagram (V;by,b,,- -, b,) is also reducible.

3). If ¢ is a simple closed curve in 8V such that c is primitive in V and the reduced
word of the curve c corresponding to the complete system {b1, by, --,b,} of V is 1, then
by Theorem 2.1, we can use connected sum moves on the complete system to obtain c.
Therefore, by 2), the Heegaard diagram (V; b1, by, - - -, b,) is reducible.

O

Now we consider the converse of Theorem 2.3 and obtain the following result.

Theorem 2.4 Suppose that (V;b1,bq, -+, b,) is a Heegaard diagram of genus g of M. If
1 the Heegaard diagram is reducible, then the following conditions are true.
1). There is a simple closed curve ¢ in OV such that c is primitive in V and c
can be obtained by using a sequence of connected sum moves on the complete system
{b1, b2, ,bg} of OV.
2). There is a simple closed curve ¢ in OV such that c is primitive in V and the

reduced word of the curve c corresponding to the complete system {by,ba,--,b,} of V is

1.

Proof. The condition 1) is equivalent to the condition 2) by Theorem 2.1. Therefore,

we only need to prove the theorem in the case of condition 1). Suppose the Heegaard

o
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diagram (V';by,bs, - -, b,) is reducible and (V, W) is the respective Heegaard splitting of
the Heegaard diagram. Then there are properly embedded disks D € V and D' € W
respectively such that DN D' = 9D NAD' is one point, that is, the curve 8D’ is a prim-
itive curve of V. Note the word of 0D’ corresponding to the complete meridian system
{1, b2, -+, b,} of the handlebody W is 1 since 9D’ bounds a disk D’ in W. Therefore,
we can use a sequence of connected sum moves on the complete system by, by, - - -, by of
0V to obtain the curve 8D'.

O

It is a consequence of Theorem 2.4 that if we can find an algorithm to obtain all
primitive curves in the boundary surface of a handlebody, then we have an algorithm
to detect if a Heegaard diagram (V; a1, as,- -, a,) of a 3-manifold M is reducible. The
steps are as follows.

Step 1. List all primitive curves according to their word lengths as ci, ¢y, -« -, Cm, ..

Step 2. Fori = 1,2, -, read the word w; of ¢; corresponding to the complete system .
{b1,bg,---,bg}. If w; is 1, then the Heegaard diagram is reducible and we can stop.
Otherwise we continue to consider the next primitive curve.

If for a sufficiently large N, all of the words w, ws, - -+, w,, are not 1, then the Hee-
gaard diagram is irreducible.

Note. It is an open problem to find a bound N.

Example. The following figure shows a Heegaard diagram (V; by, by) of the 3-sphere

[17]. The corresponding fundamental group presentation of the Heegaard diagram is

3 o2 .3 3. 4
m1(S°) =< 21, %2 : T} - T35, - Ty > .

It is clear that c¢ is a simple closed curve which satisfies condition 3) in the above

theorem. Therefore the Heegaard diagram is reducible.

Now we discuss the algebraic properties of connected sum moves.
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Figure 2.6: A Heegaard diagram of the 3-sphere

The words of a simple closed curve in the boundary surface of a handlebody corre-
sponding to different complete meridian systems are in general completely different. We
need to know how to choose suitable complete meridian systems to make such words sim-
pler. We know that one complete meridian system can be changed to another complete
meridian system by using connected sum moves ( [37] ). Now, we investigate transfor-
mation properties of word presentations under the connected sum moves on a complete
meridian systems.

Suppose V is a handlebody of genus g with a complete meridian system {d;,---,d,}
and « is a simple curve in dV which connects two points in different curves of the complete
meridian system, and « has no other intersection points with the curves in the complete
meridian system. Without loss of generality, we may assume that the endpoints of « are
P, P, and P, € dy, P, € dy. Suppose c is a simple, oriented closed curve in 3V and ¢

intersects a at points 1, Qs, - - -, Qn, where we list the intersection points according to

the order of passing through them when we read the word of ¢. Suppose the word of ¢
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corresponding to the complete meridian system is

Wo(dy, da, -+ -,dy) = d5pidg?---dSe

€21 J€22 |, , J€9 ...
ddge - - ds

6’:11 6k12 ekl,tl 6k1,ll+1 Eklg

dytdy e dy N YT e dg
6kgl €k22 €k2,t2 €k2,22+1 ekzg

dl d2 ...dtz dt2+1 "'dg L
€ € € €kq,tn-+1

dlk"1d2k"2 e dt:""t" dtnil-ln_'_ [N d;kng [N

€ml JEM?2 €
dimidgn? - - - dims

where 1 < k) < ky < -+ < ky < m; g5 € {—1,0,+1}, ¢, € {1,2,---,g} for

1=1,2,---;m, 73 =1,2,---,g and @; lies in the subarc of ¢ which corresponds to the

€ €
subword d;** d,re et

ettt (or dgfod ™! if the former ¢, = g ) of w, for s = 1,2,---,n.

Then we apply the proof of the lemma 2 in the section 2.3 and obtain the following

proposition.

Proposition 2.1 Suppose we use the sum d} = diffds of di and dy along o (we assume
that their orientations are the same as in Lemma 2.1. ) to replace di to obtain a new
complete meridian system {d},ds,---,d,}. Then the word of ¢ corresponding to the new

system 1s

wlc( Il’ d27 Ty dg) = dllén (d’1d2)612 coe d;lg

i (dydp)™ -+ dS% - -

1 €ky1( gt €ky2 € r g —1\€1 € €k1g
dl 1 (d1d2) 12, .. dtl ky,t1 (dldl ) dt1+l kist1+1 .., dg cee
d 2t (' do)*22 o d, Skata (Ll TP, L Ratatt L dR29 L
1 (12) "'tz’(ll)tz+1 ccclg
€ € —1\€n
B ()7 -y e (™) "y
1 €m1 ! €m?2 € .
dl m (d1d2) m2 ... .dgmg,

where €1, €2, -, €, € {—1,1}.
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Proof. We can directly write the word w.(d},ds, - - -, d,) according to the discussion in
the proof of the lemma 2. Note that ¢; is equal to —1 or 1 is decided by the orientations
of c and d near @; fori=1,2,---,n.

O

Note. There is a similar result for Proposition 2.1 for any complete system on
an oriented surface. But the result is important to a complete meridian system of a
handlebody since the above group transformation can be used to present the respective
transformation of presentations of fundamental group of a 3-manifold corresponding to
different bases. ( We know that every base corresponds to a complete meridian system
of the respective Heegaard handlebody. )

It is clear that connected sum moves on a complete meridian system do not change
the primitive property of a curve since the primitive property is independent of complete

meridian systems.

2.2 Dehn twists

Sometimes we can not use connected sum moves to reduce cancelling pairs of words of
Heegaard curves. Then we consider the use of the Dehn twists.
The word presentations of Heegaard curves corresponding to a complete meridian

system have the following transformations under Dehn twists.

Proposition 2.2 Suppose V is a handlebody of genus g with a complete meridian system
{d1,---,d,} and D is a properly embedded disk in V. Suppose d = 8D and the word wq

of d corresponding to the complete meridian system is

— €1 €2 ... JEk
wd — d’i1 * d’iz v dik’

where 41,40, € {1,2,---,9} and €1,€s, -+, € {1,—1}. Suppose ¢ is a simple
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closed curve in OV. Suppose the word w, of the curve ¢ corresonding to the system s
we=d3} - d? - s,

where ji,ja, *,Jn € {1,2,-++,9} and o1, 0, -+, 0y € {1,~1}. Suppose that ¢ inter-

sects the curve 0D at m points Py, Py, -+, P, in order and P, lies in the subarc of ¢
which corresponds to the subword d;-":: -d?L‘gn"ll of we and Py lies in the subarc of D
which corresponds to the subword d;** d:::::ll of wap for s = 1,2,---,m, where p, €

{1.12)"'an}71/s € {1a2a7k} fOTS = 1a2>"'7m and,ul Spe <o < i, andfOTPOSi"
tive integers p, q, T, we define ¢q®,r as the least positive number with ¢, = q+r(mod p).
If we use Dehn twist one time on ¢ which corresponds to a small neighborhood of the disk

D in H and is along the direction of 8D, then c is changed to a new curve ¢ whose word

we corresonding to the system {dy,dy, -+ ,d,} is
1, 3 y We
= a1 J%2 ... . Gui=l | g% | @1 | o182
We = djl d.h djul-—l dj;q diulekl Ty @) 2
Aerk | g%+l doret . doee . de_"szkl 2%k
vy @k Juy+1 Jug—1 Juo To®y 1 @2

JokE | Pt | g

luo® Lk Juo+1 In ”

Proof. We can directly check the move result for each small neighborhood of P, in
the curve c for s =1,2,---,m. The s-th small subarc of ¢ has been changed to a simple

curve ¢, which is just like a copy of 0D and which has word

= ekt | JeOR2 |, Crsdpk
wc~9 - dius$k1 ius®k2 iusﬂ)kk
for s =1,2,---,m. Adding all the m words we,, We,, - -+, We,, to the word w, in suitable

places according to the positions of respective subarcs, we obtain the word wy whose

form is as in the proposition.

O
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If we only consider word presentations of Heegaard curves, connected sum moves on
complete meridian systems produce the similar results with Dehn twist.
Now, we note that Dehn twists do not change the primitive property of a curve in

the boundary of a handlebody.

Proposition 2.3 Suppose V is a handlebody of genus g and c is a simple closed curve
in OV. Suppose D is a proper embedded disk in V and ¢ is the curve obtained by using

Dehn twist along D on the curve c. Then c is a primitive curve in OV if and only if ¢/

18.

2.3 Stabilization and reduction

Although stabilization and reduction are not powerful methods to simplify Heegaard dia-
gram of a 3-manifold, they change the genus of a Heegaard diagram. Therefore sometimes
we need it to obtain minimal Heegaard diagrams. ( A minimal or irreducible Heegaard
diagram of a 3-manifold M is a Heegaard diagram of M which can not be reduced, that
is, does not result from a stabilization of a Heegaard diagram of smaller genus.)

According to Boileau and Zieschang [3], there exists a 3-manifold with two irreducible
Heegaard splittings, one of genus 2, the other of genus 3. Thus minimal does not mean
smallest genus.

The transformations of word présentations for stabilization and reduction moves are

as follows:

Proposition 2.4 Suppose (V;b1,bs,---,by) is a Heegaard diagram of genus g of M.

Suppose we use a stabilization move on this Heegaard diagram to obtain a new Heegaard
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diagram (V'; b1, b5, - - -, b} ,1). If the associated fundamental group presentation of the Hee-
gaard diagram (V;by, by, -, by) is m(M) =< z1,Ta,+ -+, T, : Ri, Ra,+++, Ry >, then the
associated foundamental group presentation of the Heegaard diagram (V'; b, b, - -+, 9+1)
is M(M) =< x1,Z9,++, Ty, Tygs1 : Ry, Ra,- -+, Ry, 411 >. And the word of a curve in OV

18 same with the word of the respective curve in V',

Proof. By the definition of stabilization.

O

We need to prove that stabilizations have the same property as connected sum moves
and Dehn twists, that is, stabilizations do not change the primitive property of a curve

in the boundary of a handlebody.

Proposition 2.5 Suppose (V;b1,bs, - -,by) is a Heegaard diagram of genus g of a closed
“orientable 8-manifold M andcisa simple closed curve in OV . Suppose we use a stabiliza-
tion move on this Heegaard diagram to obtain a new Heegaard diagram (V'; ’1‘, 9t 0ytn)-
If the curve c is a primitive curve for the Heegaard diagram (V;by,bo,---,b,), then

the corresponding curve ¢ of ¢ in V' is a primitive curve for the Heegaard diagram
(V7 b’la ’2a Ty fq+1)'

Proof. Since c is a primitive curve for the Heegaard diagram (V;by,bs,- -+, b,), then
there is a proper embedded disk D in the handlbody V such that DN¢= dD Ncis one
point and we can use connected sum moves in OV on the curves by, by, - - -, by to obtain c.

Suppose D' is the respective proper embedding disk in V' associated to D. Theﬁ
clearly, D'Nc = D' N is one point in 0V’. Note if we try to use connected sum moves
on the curves by, b5, - - -, b, to obtain the curve ¢/, there are obstructions when we try to
isotopically move a curve passing through the disk B which‘corresponds to the 1-handle

that we add to V' to obtain V'. We solve this problem by using the connected sum moves

in the following figure.
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O Q handle addmon Q Q
& connected
sum moves

Figure 2.7: Handle addition move and connected sum move

Thus, we can use connected sum moves on the curves b, b, - - -, by in the surface
0V’ to obtain the curve ¢’. Then, we have proven that ¢’ satisfies the two conditions
of primitive curve in 0V'. Therefore, ¢ is a primitive curve for the Heegaard diagram

(V,; bll: blza ) b;-i—l)

O

The similar result for reduction moves is also true.

Theorem 2.5 Suppose (V;by,bs,---,by) is a Heegaard diagram of genus g(g > 1) of
M and c is a simple closed curve in OV. Suppose D is a properly embedded disk in V
such that D N (U,b;) = 0. Suppose cutting V along D has two connected components:
One of them is a handlebody V' of genus g — 1 and the other connected component is
a solid torus T so that b, is a standard meridian curve in 8T and T N (U1 b;) = 0.
We use a reduction move on the Heegaard diagram (V;by,ba, -+, b,) along the disk D to
obtain a new Heegaard diagram (V';by, by, -+, by—1) ( for the sake of simplication, we do

not change symbols for the Heegaard curves this time). If ¢ is a primitive curve for the
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Heegaard diagram (V;by1,by,- -+, b,) and ¢ C V', then c is also a primitive curve for the

Heegaard diagram (V';b1, by, -+, by_1).

Proof. Suppose B is a properly embedded disk in V such that ¢ B = ¢N 8B is one
point. If BN D # (), then each connected component of (BN D) U (8B N T) bounds a
disk in T'. Then, we can isotopically move B in the handlebody V such that BN D = {.
This indicates that there is a properly embedded disk B’ in V' such that cN B’ = c0B’
is one point.

On the other hand, since the curve c is a primitive curve for the Heegaard diagram
(V5b1,ba, - - -, by), the cyclically reduced word of ¢ corresponding to the curves by, by, - - -, b, _
is trivial. But ¢N b, = @. Then, the reduced word of ¢ corresponding to the curves
by, b2, -+, bg_1 is also trivial.

The above two conditions indicate that ¢ is a primitive curve for the Heegaard diagram
(V';b1,b2, -+, bg—1).

O

2.4 A property of moves

The following theorem implies that we can reverse the orders between a connected sum

move and a Dehn twist.

Proposition 2.6 Suppose (V;b1,bs, -, b,) is a Heegaard diagram of genus g of M. Sup-
pose that D is a properly embedded disk in the handlbody V and Tp is a Dehn twist along
D in'V. Then Tp(by,---,blcb;,---,b) = (To(b1), -+, To(b:)iroIn(b)),- -, To(bg))-

That is applying first a connected sum move along an arc ¢ and then a Dehn twist along

D is equivalent to applying first the Dehn twist and then a connected sum move along an

arc Tp(c).




Chapter 2. Geometry and Algebra of Heegaard splittings 26

Proof. If cNOD = 0, then the proposition is true. If cNOD # 0, we may assume that
0cN 8D = (. Note that in this case the disk in OV given by applying the Dehn twist on

a neighborhood of ¢ in 9V is the same with the disk which is a neighborhood of Tp(c)
in OV

O

2.5 Circle and chord presentations of closed 3-manifolds

In this section, we introduce a new method to represent 3-manifolds. We call this method

the circle and chord presentations of closed 3-manifolds .

Definition 2.3 Suppose that (V;by,bs,---,b,) is a Heegaard diagram of M. Suppose
that {dy,ds, -+, dy} is a complete meridian system of the handlebody V. Further suppose
there are connected curves ci,cs, -+, Cog-1 Such that the following conditions hold.

1). For each i € {1,2,---,29 — 1}, ¢; C b; for some j € {1,2,---,9} and the
intersection points between c; and the curve set {di,ds,---,d,} are the endpoints of c;.

2). Cutting OV along the curves di,da, -, dg, c1,C2," "+, Cog-1 is a disk.

Then we can use the boundary circle of the disk and some disjoint chords which are

29—1

the connected components of the set Ul_1b; — U;27 "¢; to represent the 3-manifold M.

i=

We call such a presentation a circle and chord presentation of M.

Note. We can obtain a circle and chord presentation from each Heegaard diagram
after we isotopically move Heegaard curves in 0V .

Example. We can obtain a circle and chord presentation of the Poincaré homology
3-sphere in Fig. 2.8 by cutting the surface along d,, ds, ¢y, ¢3, c3.

From the preceding example, we know that a circle and chord presentation of a

closed 3-manifold consists of a circle and some chords. The circle consists of the d-

curves di,--+,d, and the c-curves ci,- -+, cy—1 in Definition 2.3. The chords consist of
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Figure 2.8: A circle and chord presentation for the Poincaré homology 3-sphere
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the connected components of U{_;b; — (U7 '¢;). And we use some marking numbers to
denote the respective intersection points of the Heegaard curves and the curves in the
complete meridian system.

On the other hand, a graph consisting of a circle with some marking signs, such as
numbers, on it and some chords may correspond to a Heegaard diagram of genus g of
a closed 3-manifold. In the following we give conditions for such a labelled graph to

represent a 3-manifold.

Definition 2.4 We classify the marking numbers assigned to vertices in a circle and
chord presentation by the following three types.

Type I. The marking number which appears four times and each appearance is not an
endpoint of any chord.

Type II. The marking number which appears three times and among three appearances
of such a marking number ezactly one is an endpoint of a chord.

Type II1. The marking number which appears two times and each appearance is an

endpoint of a chord.

Definition 2.5 An h-arc of a circle and chord presentation is the arc of the circle
bounded by two adjacent marking numbers each of which is not endpoint of any chord.

m-arcs are the connected components of the complement of all h-arcs in the circle.

Example. In Fig 2.8, we have two marking numbers of Type I ( 2, 11 ), two marking
numbers of Type II ( 4, 9 ), nine marking numbers of Type III ('1, 3, 5, 6, 7, 8, 10, 12,
13 ), six h-arcs ( endpoints marked by (2,9), (11,2), (4,11),(11,4), (2, 11), (9,
2 ) respectively ) and six m-arcs ( passing through ( 9, 10,11 ), (2,1, 6, 5,4 ), ( 11, 10,
9,8,7,13,12,11), (4,3,2), (11,12,13,7,8,9), (2,3, 4,5, 6, 1, 2 ) respectively ).

Now, we obtain a necessary and sufficent condition for a graph to correspond a circle

and chord presentation of a 3-manifold.
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Suppose that G is a planar graph consisting of a circle and disjoint chords and all
vertices of G lie on the circle. Suppose that the vertices listed according to the anti-
clockwise direction of the circle are P;, Py, -, P,, and P, has been assigned a marking
number f(P;) for 4 = 1,2,---,m. Then G is a circle and chord presentation of a 3-
manifold if and only if it satisfies the following conditions.

Condition 1. All vertices are classified by four types:

Type 1. A vertex of degree 2 whose marking number is of Type I ( i.e., there are
exactly three other vertices with the same marking number ).

Type 2. A vertex of degree 2 whose marking number is of Type II ( i.e., there are
exactly two other vertices with the same marking number ).

Type 3. A vertex of degree 3 whose marking number is of Type II ( i.e., there are
exactly two other vertices with the same marking number ).

Type 4. A vertex of degree 2 whose marking number is of Type III ( i.e., there is
exactly one other vertex with the same marking number ).

Condition 2. The circle is a union of two Types of arcs. An h-arc only includes two
adjacent vertices of degree 2. An m-arc is a connected component of the closure of the
complement of all h-arcs in the circle.

Two h-arcs have no common endpoints and for each h-arc bounded by P;, Pg, 1, there
is exactly one h-arc bounded by P;, Pjg,.1 such that f(PF;) = f(Pjg,.1), f(Pien1) = f(F;)-

From now on, we suppose that the number of h-arcs is a.

Two m-arcs have no common endpoints and each m-arc does not include two vertices
which have the same marking number. We define an equivalence relation between m-arcs
as follows: Two m-arcs are m-equivalent if and only if a vertex in an m-arc and a vertex
in the other m-arc have the same marking number, then we obtain a/2 — 1 equivalence

classes. And if we list all the marking numbers of the vertices in an equivalence class

according to anti-clockwise direction, we obtain iy, 49, - - -, 9, %k, 4%—1, - - , 41, Where 2k is




Chapter 2. Geometry and Algebra of Heegaard splittings 30

the number of the vertices in the equivalence class, is € {f(P1), -, f(Pn)} for s =
1,2, k. |

From now on, we suppose that the number of equivalence classes is g.

Condition 3. Consider the set consisting of all chords and h-arcs. Define an equiva-
lence relation on this set as follows: Call two elements in the set h-equivalent if they have
vertices whose marking numbers are equal. Then we have g equivalence classes for this
equivalence relation.

Condition 4. All chords separate the disk D Bounded by the circle as disjoint re-
gions. Call two such regions D', D" adjacent if there exist adjacent vertices P;, Pig, .1 €
0D" and Pj, Pjg,1 € OD" such that f(B;) = f(F;), f(Pign1) = f(Pjen1) or f(B) =
f(Piom1), f(Pign1) = f(P;). “Adjacent” is an equivalence relation. Condition 4 requires
that all regions are in the same equivalence class.

Therefore, we have the following theorem.

Theorem 2.6 The preceding 4 conditions are necessary and sufficient that a circle and

chords with marking endpoints can represent a closed, orientable 3-manifold.

Proof. According to Condition 2, if we pairwise attach the respective vertices in an
m-equivalence class which have the same marking number and the respective arc bounded
by these vertices and pairwise attach the two h-arcs which have the same marking number,
we obtain a connected, orientable, closed surface F' of genus g. Condition 3 defines g
simple closed curves in F'. Condition 4 ensures the surface and curves can be used to
p.resent a Heegaard diagram.

O

The following theorem is a criterion to check whether a circle and chord presentation

correspods to a Heegaard diagram and a complete meridian system exists or not.
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Theorem 2.7 Suppose (V;b1,bs,- -+, b,) is a Heegaard diagram of the 8-manifold M and
{di,da,---,d,} is a complete meridian system of the handlebody V. Let wy, ws, - - -, w, be
the cyclical words of the respective Heegaard curves associated with the complete meridian

system. Then the Heegaard diagram and complete meridian system can give a circle and

chord presentation of M if and only if the words w1, ws,- -, w, include the nontrivial
€ 01 . b2 €2g9—1 G2g—1 .
subwords T - Ty, T2 T, Tep ) “Tppe_y s Where €1,01,€2,09,+ -, €99_1,099_1 € {1, —1}

and % - 23 # (x5 - ) fori # ki k€ {1,2,---,29—1},6 € {1,—-1}.

Note. If w; = z;, for some i,k € {1,2,---, g}, then we regard w; as including the
subword z, - . '

Proof. Cutting V along the curves dy,d,, - - -, d, is a 2-sphere with 2g holes. Subword
z xf: indicates that there exists a subarc of the Heegaard curves to connect two holes.
The condition zg - a:f: # (x5 ~xf]j)‘5 indicates that there are no two holes which are

connected by two such subarcs. Therefore the union of the boundary curves of the holes
and the subarcs is a connected graph.

From a suitable circle and chord presentation, we can form some Heegaard diagrams.
It is clear that all these Heegaard diagrams determine a homeomorphic 3-manifold. In
fact, all these Heegaard diagrams are equivalent and we only need move II to change
one to another. This is because if we let the respective simple closed curves in the
two complete meridian system match and let the respective subarcs in the circles of the
presentations match, all other part will match.

a

Definition 2.6 The complezity of a circle and chord presentation of a §-manifold M
corresponding to a Heegaard diagram (V;by,bs,---,b,) and complete meridian system
{di,da,---,dg} is defined to be the sum of the lengths of words of the curves by, ba, -, b,

corresponding to the complete meridian system. The genus of such a presentation is the
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genus of V.

It is clear that for fixed positive integer m, there are only finitely many circle and chord
presentations with complexity < m for all possible 3-manifolds and these presentations

and the 3-manifolds can be found. Therefore, we have the following theorem.

Theorem 2.8 There is an algorithm to list all circle and chord presentations and then
to obtain all closed 3-manifolds. There is also an algorithm to list all possible primitive

curves for a circle and chord presentation.

Proof. By Birman’s theorem in section 1, one can list all primitive curves.
a
Example. The 6 circle and chord presentations with complexity 7 and genus 1

include all lens spaces with fundamental group Z-.

Theorem 2.9 There is an algorithm to detect whether a Heegaard diagram is reducible

or not.

Proof. Suppose the Heegaard diagram is (V;by,bs, -, b,). It is easy to find a com-
plete meridian system {dy, ds, - -, d,} such that a circle and chord presentation can be
obtained. Now, we can draw primitive curves and check whether we can use connected
sum moves on the Heegaard curves by, by, -, b, to obtain a primitive curve. If such a
primitive curve exists, then the Heegaard diagram is reducible.

a0

Example. The following example is a Heegaard diagram of the 3-sphere ( see Fig.

2.10 ). We find it is reducible by drawing respective circle and chord presentation.
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Figure 2.9: Circle and chord presentations for the lens spaces L(7,q), ¢ = 1,2,3,4,5,6
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We know that a Heegaard splitting (V, W) of genus g of M produces a Heegaard dia-
gram (V; by, by, - - -, bg) where by, b, - - -, b, are the respective boundary curves of the disks
in a compeltely meridian disk system {By, By, - -, B,} of the handlebody W. Suppose
that {dy,ds,---,d,} is a complete meridian system of the handlebody V which corre-
sponds to a complete meridian disk system {D;, D, -+, D,} of V. We need to know

how to draw the curves dy,dy, - -, d, on the surface 9W. The following theorem solves

this problem.

Theorem 2.10 There ezists an algorithm to obtain a circle and chord presentation cor-
responding to the Heegaard diagram (W;dy,ds, - - -,d,), where d; = 8D; fori=1,2,---,g
and the complete meridian system {b1,b2,-+-,bs} of W directly from a circle and chord
presentation corresponding to the Heegaard diagram (V';by,ba,- -, b,) and the complete

- meridian system {di,ds,---,d,} of V.

Proof. The necessary and sufficient condition that there exists a circle and chord
presentation corresponding to the Heegaard diagram (V'; by, b, - -, b,) and the complete
meridian system {d;, ds, - - -, d,} of V is that there does not exist a simple closed curve ¢ C
OV such that ¢N (U, (b;Ud;)) = 0 and ¢ does not bound a disk in V. Thus, there exists
a circle and chord presentation corresponding to the Heegaard diagram (W;dy, da, - - -, dy)
and the complete meridian system {b;,bs, - -,b,} of W if and only if there exists a circle
and chord presentation corresponding to the Heegaard diagram (V; by, b, - -, b,) and the
complete meridian system {d;,ds,---,dy} of V.

Now, suppose the latter exists. To obtain the former, we determine subarcs of the

curves dy,dy, - -,d, and use them and the curves b, b, -, b, to obtain the circle in a
circle and chord presentation. This procedure means that we find subarcs ci, ¢, -, cag—1
of dy,dy, -+, dy which corresponds to the above subarcs of the curves dy,ds, - -, dg such

that cutting V' along the simple closed curves by, by, - - -, by and the subarcs ¢y, ¢z, - - -, €291
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A Heegaard splitting of the 3-sphere. The two wider semicircles consist of a primitive curve C since this primitive curve has trivial reduced word
corresponding to the Heegaard curves, the Heegaard splitting is reducible.

Figure 2.10: A circle and chord presentation of S3
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is a disk. Then the other parts of the curves di,ds, -+, d, are the chords in our circle
and chord presentation.

O

Definition 2.7 We call the two circle and chord presentations in Theorem 2.10 dual

circle and chord presentations.

Example. The dual circle and chord presentation of the standard Heegaard diagram
of the lens space L(p, q) is just the circle and chord presentation of the standard Heegaard

diagram of the lens space L(p, q'), where ¢'q = 1mod p.

Definition 2.8 Two circle and chord presentations are equivalent if the respective Hee-

gaard diagrams corresponding to them are strongly equivalent.

Theorem 2.11 Suppose (V,W) and (V',W') are two Heegaard splittings of M. Suppose
their respective Heegaard diagrams are (V;by,ba, -+, b,) and (V'; 0y, b5, -+, b,). Then the
two Heegaard diagrams are equivalent but not strongly equivalent if and only if the circle
and chord presentation given by the first Heegaard diagram is equivalent to the dual

presentation of the circle and chord presentation given by the second Heegaard diagram.

Proof. A dual circle and chord presentation of the Heegaard diagram (V'; b}, by, - - -, b))
corresponds to the Heegaard diagram (W';d}, dy, - - -, d; ), where the curves d,dy, - -+, d;
consist of a complete meridian system of the handlebody V’. Therefore, according to
Birman’s definition about strong equivalences, the theorem is true.

O

Example. The circle and chord representations of L(7,2) and L(7,3) drawing in

this section are dual. Therefore, L(7,2) = L(7,3). In fact, we can extend this fact

to give a new proof of the classification theorem of the lens spaces since for ¢ = +¢'
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(mod p), the circle and chord representatins of L(p,q) and L(p, ¢') are same or are same
after changing the direction of a Heegaard curve; for ¢- ¢’ = £1 (mod p), the circle
and chord representaﬁns of L(p,q) and L(p,q') are dual or are dual after changing the
direction of a Heegaard curve.

Example. An application of circle and chord presentations is to decide whether
a word of a free group generated by generators di,ds, - -,d, is the word of a curve in
the boundary surface of a handlebody of genus g corresponding to a complete meridian
system dy,dy, - -+, d,. For example, Gillman [8] gave a balanced presentation of the trivial
group < a,b : aba"'b72,bab"1a=% >. In this presentation, the words aba~'6=2, bab~1a 2
can not be the words of the Heegaard curves by, by corresponding to a complete meridian
system {a, b} of the handlebody V for any Heegaard diagram (V;b;,b,) of genus 2 of
a closed 3-manifold. In fact, we can not draw a curve in 0V with the word aba=1b~2

since the sub-curves ab, ba~!

,a~1b! gives us a unique circle in the circle and chord:
presentation and there exists at least one intersection point when we try to draw the
sub-curves b=1671, b 'a. This method can be extended to list all the words or word sets

which correspond to a Heegaard diagram of a 3-manifold.

2.6 Detection of closed homeomorphic 3-manifolds

In this section, we use the circle and chord presentation to detect two homeomorphic
3-manifolds.

We will analyse the stable equivalence relation of two Heegaard diagrams step by step.
Since we can determine equivalence of Heegaard diagrams through strdng equivalence of
Heegaard diagrams and their dual Heegaard diagrams by the last section, we will only

consider strong equivalence.

Through out this section, we use the following definitions.
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(1). M is a connected, closed, orientable 3-manifold.

(2). (V,W), (V',W’) are two stably equivalent Heegaard splittings of M of genus g.

(3). The strong equivalent map of the two Heegaard splitting is a homeomorphic map
h: M — M with h(V) =V’ A(W) = W'

(4). W, V, W', V' have compiete meridian disk systems By, By, - - -, Bg; D1, Da, - - -, Dg;
Bi, By, -+, By; Dy, Dy, - - -, Dy; respectively.

(5). bi = 0B;; d; = D;; b, = OB, and d, = 0D, for i = 1,2,---, g.

(6). (V5b1,by,--+,by) and (V';b),bh,- - -,b) are the respective Heegaard diagrams of
the above two Heegaard splittings, i.e., b; (or b, ) is the image of b; in the surface OV (

or the image of b} in the surface OV'; respectively ) fori =1,2,---,g.
(7). Words of the curves by, by, - - -, b, corresponding to the complete meridian system
{di,dy,---,d,} are wi, ws, - - -, w, respectively.

Case 1. h(B;) = B},h(D;) = D! fori=1,2,---,g.

Even in this simple case, the two Heegaard diagrams (V; by, -, b,) and (V'; b, - - -, b))
may be different. For example, we may use a Dehn twist on V’ along a disk which does not
intersect the complete meridian disk system of V’. This does not change the equivalence
relation but will change the presentation of ¥/, - - -, b,. However, if we use the circle and
chord presentations and choose the same sub-curves for the two Heegaard curve systems,
then the respective two circle and chord presentations will be exactly the same since
the circles in the two presentations are equal and the chords have unique positions in
the presentations. Therefore, this case will be easily decided by using circle and chord
presentations. We only need to find all such presentations for the two Heegaard diagrams
and compare them.

Case 2. h(D;) = D] fori=1,2,---,4.

In this case, the curves by, by, -,b, are not the respective curves in the curve set

by, by, b,. Since h(Bi), h(Ba), -, h(B,) are disks in the handlebody W', the curves
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by, ba, - -, by are connected sums of the curves b}, b5, -, b,- Then, by, by, -, b, are con-
nected sums of the curves b},b),---, b),-

For each circle and chord presentation of the Heegaard diagram (V'; b}, b}, - - -, b,), we
draw the chords which correspond to the words wy, ws, - - -, wy. By the last section, we
have only finitely many possible positions for these chords. For each possibility, we read
the words of the chord set corresponding to the complete meridian system {b}, b}, - - -, b},
where the chord set represent the words ws, ws, - - -, w, respectively. Then in this case, at
least for one possibility, all the words that we just read have trivial reduced form. Thus,
there is an algorithm to determine whether two Heegaard diagrams represent the same
manifold so that the equivalent relation belongs to this case or not.

Case 8. The general case.

In this case, even the curves by, bs, - - -, b, will not match with the curves b}, b}, - - -, b,
respectively. By the same reason as in Case 2, we know that by, bs, - - -, b, are connected
sums of the curves by,b,---,b), and {by,bs,---,b,} are connected sums of the curves
{b1,b,---, bg}-

Since we can not directly know the connected sum moves on the curves {b}, b, - -, b’g}
to obtain the curves {by, bs, - - -, b, }, we need to consider many complete meridian disk sys-
tems of the handlebody V. Suppose that we list all such systems ( according to the num-
bers of the intersection points with the original complete meridian system {dy, d,- -, d,}
) as {Diy,- -+, Dig};{Dar,- -+, Dag};+++,{Dn1,+++, Dng};+ . Then since the two Hee-
gaard diagrams are stably equivalent, there exists a number n such that h(D,;) = D} for
t=1,2,---,g. The remaining problem is to apply the method in Case 2 to find such an

n.

Combining the Reidemeister-Singer Theorem and the above algorithm, we have the

following result.
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Theorem 2.12 There is an algorithm to detect if two closed, orientable B—ﬁzanifolds are

homeomorphic.

Note. The method in Case 3 can only detect the sﬁable equivalence property of
two Heegaard diagrams if they are really stably equivalent. For two Heegaard diagrams
which are not stably equivalent, the above algorithm will not stop since the n does not
exist. Therefore, we need to find a bound for n, i.e., we need to find a number M(g) for
any two Heegaard diagrams of genus ¢ such that we do not need to consider the cases
n > M(g) When we use our algorithm to determine the two Heegaard diagrams are stably

equivalent or not.

Problem. Find a bound M/(g) for the above algorithm.




Chapter 3

Heegaard diagrams of the 3-sphere S*

In this chapter, we will prove that for any two Heegaard diagrams of the same genus
of S3, there is a sequence of connected sum moves and Dehn twists to pass from one
to the other. In particular, there is a sequence of connected sum moves to change the
Heegaard curves of a Heegaard diagram (V; by, b, -« -, b,) of S3 to become primitive curves
of the handlebody V and there is also a sequence of Dehﬁ twists on the Heegaard curves
to change their positions such that the new Heegaard curves bound disjoint disks in

R —IntV.

Definition 3.1 Let V be a handlebody of genus g in R3 or S3. We say that V lies in R?
standardly if V lies in R® as in Fig. 3.11.

Let the handlebody lie in the R® standardly. We know that there exists a simple
Heegaard diagram of S3 for each genus. We call this Heegaard diagram a standard

Heegaard diagram of S%in R? .

Definition 3.2 The following Heegaard diagram (V;ei,e2,---,e,) of genus g of S? in
R3 is called the standard Heegaard diagram of genus g of S® in R® ; where V is the
corresponding Heegaard handlebody and ey, ez, - -, e, are Heegaard curvesl. We also call
the complete meridian system {dy,dy, - - -, dy} in the figure the standard complete meridian

system of the handlebody.

One important fact for Heegaard diagrams of S3 is that we can use a sequence of

connected sum moves and Dehn twists to change them to the standard Heegaard diagram

41
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D

Figure 3.11: Standard handlebody in R3

Figure 3.12: Standard Heegaard diagram of S*
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of the same genus if the corresponding Heegaard handlebodies lie in R® standardly.

Definition 3.3 Let A be an annulus in 3-space. If there exists a 3-cell B in 3-space such

that A C 0B, then we say N is attached to the 3-cell B in R® .

We also discuss an algorithm to determine Heegaard diagrams of S3.

3.1 Simplifying Heegaard diagrams of S3

We use Dehn twists and connected sum moves to change Heegaard curves of any Heegaard

diagram of S to new positions such that the new Heegaard curves have the simplest forms

in R3 .

Theorem 3.1 Suppose (V;by,bo,---,b,) is a Heegaard diagram of genus g of S3. Let the
handlebody V' lie in a 3-space R® or S* standardly. If the complete system {b1,ba,- - -, by}
consists of primitive curves, then we can use a sequence of Dehn twists and connected
sum moves on the complete system {bi,bs,---,b,} up to ambient isotopy to obtain the

standard Heegaard diagram of genus g of S3.
In the proof of the theorem, we will use the following lemmas.

Lemma 3.1 Suppose V is a handlebody of genus g and {Dy, Ds,---,D,} is a complete '
meridian disk system of V and {e1, ez, -+, €.} is a dual complete system of the system
{D1,Ds,---,Dy} (see Fig. 3.18). Suppose c is a simple curve on OV such that its end-
points P,Q lie in the curves 0D, 0D, respectively, where s,t € {1,2,---,g},8 # t. If
cN (UL,0D;) = {P,Q}, then we can use Dehn twists along some disks which do not

intersect the disks in the complete meridian disk system and ambient isotopy on OV to

change ¢ to a curve ¢’ such that cN (UL e;) = 0.
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Figure 3.13: A handlebody with two standard complete systems in R3

Note. We use Dehn twists to change the position of ¢ only, i.e., we keep the curves
0D,,0D,,---,0D, fixed in OV

Proof. Denote the boundary curves of the disks Dy, Dy, -, Dy as dy,d, - -,d, re-
spectively. Suppose the word of the curve ¢ — beginning from the endpoint P — cor-
responding to the curve system {dy,dy,---,dg, e1,€9,+, €5} is we = dlefle? - - - efndy;
where p,v € {1,-1}; a4, 0, -+, € {~1,1}; and iy, 49, -+, 4p € {1,2,--+,9}. We will
prove that we can use a sequence of Dehn twists on the curve ¢ to change it to a curvé
¢! whose word corresponding to the same curve system is ddY.

We cut the surface 9V along the curves in the complete meridian system {dy, da, - - -, dg}
and obtain a 2-sphere with 2g holes d},d},dj, d3,- -, d}, d%, where d},d? are the two re-
spective copies of d; for i = 1,2,---,g. We denote this surface as Q and use A}, A2 to

denote the two endpoints of ex, k = 1,---,g. (See Fig. 3.14)
Forany k € {1,2,---,g} and k # s,k # t, if cNeg # 0, there exists a point R € cNeg

such that the portion e’ of e, bounded by A}, R satisfies € Nc = R, i.e., c does not intersect
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Figure 3.14: Cutting OV along the complete meridian system

the interior of e/. Suppose R separates ¢ into two simple curves ¢/, c” whose endpoint

sets are {P, R}, {R, Q} respectively. Then the respective words of ¢/, ¢" corresponding

to the the curve system {d;,dy,---,dg,e1,€3,- -+, €.} are wy = drellef? - - ef™, we =
egm - -egrdy, where i, = k. Then, ¢/'U¢’ is a simple curve whose endpoints P, R lie on the

curves d¢, d; respectively for some € € {1,2}. Now, consider a small regular neighborhood
N of graph d€Uc Ue' Ud}, in the surface Q. Let d be the boundary connected component
of N not parallel to either dj or d¢. Then d bounds a disk D in the handlebody V.
We use a Dehn twist along D in a suitable direction to change ¢ to a curve ¢; whose
word is we, = didZest e - egrtegmtt - edrdy, where oo € {1,—1}. We use one more
Dehn twist along D, to cancel the new intersection point between c;, e,. Thus, the new

curve c; has at least one less intersection points with the curves in the dual complete

. — o . .
system. In fact, the word of c; is w,, = d¥ellef? ---epm! €imy * € dy with reducing

some adjacent cancel pairs. (See Fig. 3.15)




Chapter 3. Heegaard diagrams of the 3-sphere S3 46

¢ Dehn twist move alongd to
noet the intersection poing R

Figure 3.15: Using two Dehn twists to remove intersection points
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Applying the preceding construction repeatedly, we may assume that the curve ¢ has
been changed to a new curve also denoted by ¢ which does not intersect the curves in
the dual complete system {e;,es,-- -, eq} except possibly the curves e;, e;. Finally, we
will apply a similar construction as before to cancel the remainning intersection points
between ¢ and e, U e,.

If cNe; # 0 and @ € d? in , suppose that Z is one of the intersection points between
c and e; such that ¢ does not intersect with the interior of the simple sub-curve a’ of
e; whose endpoints are A} and Z. Suppose Z separates ¢ into two simple curves also
denoted by ¢, ¢" whose endpoint sets are {P, Z}, {Z, Q} respectively. Consider a small
regular neighborhood U of graph d¢Uc'Ua’Ud} in the surface . The boundary connected
components of U consist of three simple closed curves: d}, d¢ and another curve d'. d'
bounds a disk in V. After we suitably use a Dehn twist on ¢ along d’ we change it to a
new curve which has one less intersection point with e;. This surgery lets the new curve
have one more intersection point ¥ with e,. But Y can be removed by using one Dehn
twist move along df as before.

There are three other cases we need to consider: cNe; # 0 and Q € d} in Q; or
cNe;#0and Ped?in Q;orcNes; # 0 and P € d! in Q. Tt is clear that they can be
solved by using the same method as the case we just solved.

Therefore, we can use Dehn twists to change ¢ to a new curve which does not intersect
with the curves e;, ez, -+, €,.

O

Lemma 3.1 shows h;)w to change the position of ¢ in the surface 0V. Now, we
consider changes to the curves ej, e, - -, e, that remove the intersection points between

¢ and these curves.

Lemma 3.2 Suppose the hypothesis of Lemma 8.1. Then we can use Dehn twists along
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some disks which do not intersect the curves in the complete meridian system on the
curves ey, ey, -,€, to obtain a new dual complete system {e’l,e’z,o--,e;} such that c

does not intersect the curves of the new dual complete system.

Proof. 1t follows from Lemma 3.1 that there is a sequence of Dehn twists 171,75, - - -, T},
along disks By, B, - - -, B, respectively and ambient isotopies which applied to ¢ change ¢
to ¢’ such that ¢'N(U_;e;) = 0. We also know that the disks By, Bs, - - -, B, do not inter-
sect the curves dy,dy,---,d,. Now we use a sequence of Dehn twists T, LY AU M
and ambient isotopies on both ¢’ and all the curves in the complete system {eq,---, €4},
where T; ! is the inverse Dehn twist of 7} for ¢ = 1,2, - - -, n. These moves change ¢ back
to ¢ and change the curves e, e, -+, e, to curves ey, e5,- -+, ;. ¢ N (UL, e;) = 0 implies
cn (UL,el) = (Z) . Since By, By, -+, B, do not intersect with the curves di,ds,- -, d,,
the intersections between the curves ej,e5,---, €, and the curves dy,ds,---,d, are the
same as the corresponding intersections between the curves e;, es, -, e, and the curves
di,d, - -+, dg. Therefore, {€], €5, -, €} is a dual complete system of the complete merid-
ian system {di,ds, -+, d,}

a .

Next, we consider the use of connected sum moves to change a complete meridian

system and its dual complete system.

Lemma 3.3 Suppose that {di,ds,---,d;} is a complete meridian system of a handlebody
V of genus g and {by,bs,---,bs} is a dual complete system, i.e., d; Nb; is one point P;
and d; Nb, = 0 for i,k = 1,2,---,9;1 # k. Suppose c is a simple curve in OV whose
endpoints P,Q respectively lie in the curves dg,d; for some s,t € {1,2,--+,g9},s < t
and the interior of c does not intersect the curves of the two complete systems. Then

{di,da, ... ds, -+ dio1, dsleds, degr, - -+, dg} is a complete meridian system of V. It has

a dual complete system {b1, ba, -+, bs_1, bsierbs, b1, -+, b, - -, by}, where we isotopically




Chapter 3. Heegaard diagrams of the 3-sphere S® ‘ 49

move P,Q together with their neighbor part sub-curves of ¢ in small neighborhoods of
ds U bs,dy U by in the surface V' to obtain the simple curve ¢ whose endpoints lie in by, b,

respectively.

Proof. {di,dy,...,ds, -, di_1,ds8cds, dy1,- -+, d,} is a complete meridian system of
V. Note that the simple closed curve d,f.d; intersects the curves b,,b, at P, Q' re-
spectively. P’ Q' separate d.f.d; into two simple curves. Denote one of them as c.
Then the simple closed curve b,f.b; intersects ds,d; at P,Q respectively and it does
not intersect with the curve d,f.d;. Since the interior of ¢ does not intersect the curves
dyy vy dg, by, - by, Dby N ((Ufydi) U (UI18;)) = (bslerbs N ds) U (bsfieb: N dy) = {P,Q}
and (dsfiedy) N (UI_1b5) = (dsttedy) N (B U k) = {P', Q'}.

Therefore, {dy,ds,...,ds, -, di-1,dscds,dt11, -+, dy} has a dual complete system
{b1, b2, bg1, bsllerby, bsy1, -, by, - -+, b} and {dy,...,ds—1, dsteds, dsi1, - dy -+, dg}
has a dual complete system {by,- -, by, -+, bi—1, bstierbe, bys1, - -+, by}

O

Now, we are ready to prove Theorem 3.1. Our main idea is to change a complete
meridian system of S® to the standard complete meridian system and at the same time
to obtain new dual complete systems by using connected sum moves.

Proof of Theorem 8.1 Since by, b, - - -, b, are primitive curves, there exists a complete
meridian system {di,ds, - -, d,} of the handlebody V such that b;Nd; = @ and b, N b; is
one point P for 5,t =1,2,---,9,5s#t,ie., {b1,be,--+,by} is a dual complete system of
the complete meridian system.

It is easy to see that the reduced words of the curves in a complete meridian system

corresponding to another complete meridian system are all trivial. Thus, by the chapter

1, we know that we can use a sequence of connected sum moves on the curves in the

first complete meridian system to change them to the curves in the second complete
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meridian system. Therefore, we can use a sequence of connected sum moves Ty, Ty, - - -, Thpy
to transform the complete meridian system {d;,d,---,d,} to the standard complete
meridian system of V. Suppose that d} = di,d} = dy,-+-,d} = d,. Then for i =

1,2,---,m, T is a connected sum move on the curves di™1, d5™*, - - -, d:~! which transforms

g

the above curves to the respective curves in a new complete meridian system d?, d, -, d;,
i.e., there are s;,t; € {1,2,---,¢g},s; # t; and a simple curve ¢; in 0V whose endpoints
lie in dii‘l, di:l respectively such that the interior of ¢; does not intersect the curves in
the complete meridian system {di™",d5™",---,di"!} and di, = di ', di7t, di = di* for
ke {1,2,---,g9},k #t; and {d7,d},- - -, dy'} is the standard complete meridian system
of V. |

wa, we use connected sum moves and Dehn twists according to the following steps.

Step 1. Use Dehn twists stated in Lemma 3.1 on the curves in the complete system
{b1,b2,- -+, be} to transform them to the curves in a new complete system. {b1, b3, -+ -, by}
such that ¢; N (U{;b;) = 0. Note that {b],b},---,b}} still is a dual complete system of
the complete meridian system {dy,ds, -+, d,}

Step 2. Use one connected sum move T} introduced in the above on the curves
d,d3,- -+, dj to transform them to the curves d},d}, - - -, dy.

Step 3. Use one connected sum move stated in Lemma 3.3 on the curves in the
complete system {bj,b},---,b;} to transform them to curves which form a new complete
system {b,03,---,b2}. Note that this new complete system is a dual complete system of
the complete meridian system {d},d3, - - -, d}}.

Repeat the above steps on the complete meridian system {d},d3, - -,d}} and its dual
complete system {b3,63,---,62}. ---,---. Finally, after using the above three steps m

times, we change the complete meridian system {d;,ds, - -,d,} to the standard complete

meridian system of V' and change the complete system {b;, by, - -, by} to a dual complete

system {bf™,b3™,---,b2™} of the standard complete meridian system {z1,z,---,z,}.
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That is 57 N z; is one point if i = j or is an empty set if i # j for i,j=1,2,---,g.

If {bf"‘, b3™,+--,b2™} is not the standard dual complete system of the standard com-
plete meridian system (see the following figure), then we can easily find Dehn twists on
the curves 3™, b3™, - - -, b2™ along disks which do not intersect the disks in the standard
complete meridian disk system to change the curves b2™,b3™, - -, b2™ to their standard
positions one by one. (To move one such a curve, for example 6™, to its respective
standard position e;, we can use a similar method as in the proof of the lemma 6 to
change b7™ to a curve b/ which does not intersect with the curves ey, es, - - - ,€g. Then
we use Dehn twists suitable many times along z; to change ] to a curve #; such that
6N (U e:) = 0, i.e., £ does not intersect with the curves ej,es, -+, g, g, -+, 2, and £
intersects with z; at one point. Perhaps £ still is not e;. In this case, we can use Dehn
twists along some disks Ay, Ay, - -+, A, to change the curve ¢; to curve £ such that ¢ lies
in a neighborhood of e; U z; in 9V, where the disk A; intersects e; at one point and A;
does not intersect with the curves ey, - -, e,4, 1,22, +,z, for j = 1,2,---,m. Now, we
can use Dehn twists along z; to change £ to the standard curve e;. After we move a2™ to
e1, we use the similar method to move a2™ to ey. It is clear that when we move Y™, we
do not need to care about the curve e; since the curves which we use Dehn twists along
does not intersect with e;. We continue to move the remaining curves to the positions of
the respective curves in the complete system {e;,es,---,€e,} and at the same time keep
the curves which are already in their standard position fixed. Finally, we change all the
curves b3™, b3™, - -+, b2™ to their standard positions.)

O

Theorem 3.2 Suppose that (V;by,by,---,b,) is a Heegaard diagram of genus g of S3.

- Then we can use a sequence of connected sum moves and Dehn twists on the Heegaard

curves by, by, - -+, by to transform these curves to the positions of the Heegaard curves of
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ise Brehn fwist moves along B°, 0

to trpastonm | 1o the standard position

Figure 3.16: Using Dehn twists to change curves to standard positions
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the standard Heegaard diagram of genus g of S3.

Proof. By a result of Waldhausen [40], every Heegaard diagram of genus g of S3
is strongly equivalent to the standard Heegaard diagram (V’;ej,es,---,€,) of genus g
of §®. Note {by,bo,- -, by} consists of a complete meridian system of the handlebody
Cl(S® — V), and the Heegaard curves e, es, - - -, eq of the standard Heegaard diagram
also consist of a complete meridian system of the handlebody CI(S?® — V’). Since these
two Heegaard diagrams are equivalent, there exists a homeomorphism ¢ : S* — S3 such
that ¢(V) = V' and ¢(CU(S® — V)) = CI(S® — V'). Therefore, ¢(e1), d(e2), -+, d(ey)
bound g pairwise disjoint disks in the handlebody S® — V' and cutting $® — V along
these disks is a 3-cell. Therefore, ¢(e1), p(e2), -, P(e,) consist of a complete meridian
system of S® — V. Now, let by, by, -, by be the standard complete meridian system of
V'. Then by the same reason, {¢(b1), ¢(b2), - - -, #(b,)} is a complete meridian system of
V. Note {e1, ez, --,€,} is the standard dual complete system of the complete meridian
system {by,bs,---,b,} of the handlebody V'. Then, ¢(e;1), ¢(e2), -, d(e,) consist of a
dual complete system of the complete meridian system {¢(b1), ¢(ba),- -, é(bg)} of the
handlebody V. Therefore ¢(e1), ¢(e2), - -, ¢(e,) consist of primitive curves in V. Since
{#(e1), o(e2),- -, d(eg)} and {by,bs,---,b,} are two complete meridian éystems of the
handlebody CI(S? — V)? the reduced words of the curves by, by, - - -, by corresponding to
the complete system {o(e1), d(ea), - -, P(e,)} are trivial. Therefore, we can use a sequence
of connected sum moves to change the complete system {by,bs,---,b,} to the complete
system {@(e1), d(e2), -, P(eq)} (Theorem 2.2). Since ¢(eq), d(ez), - -, d(e,) consist of
primitive curves in V', we can use connected sum moves and Dehn twists to change them
to the positions of the standard Heegaard curves in the handlebody V by Theorem3.1.

This completes the proof of the theorem.

a
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The proof of the above theorem implies the following properties of Heegaard diagrams

of S3.

Corollary 3.1 Suppose that (V;by,bs,---,b,) is a Heegaard diagram of genus g of S®.

Then there is a sequence of connected sum moves on the curves by, by, -+, b, to obtain a
new Heegaard diagram (V; by, b}, - -, b;) of S® such that b}, b}, -+, b, are primitive curves
of V.

Proof. In the proof of Theorem 3.2, we have proven that we can use connected sum

moves on the curves by, by, - - -, b, to obtain primitive curves ¢(e1), d(e2), - -, d(ey).

O

Theorem 3.3 Suppose that (V;by,bs,---,by) and (V;b],bh,---, b,) are two Heegaard di-
agrams of genus g of S3. Then we can use a sequence of connected sum moves and Dehn

twists to pass from one to the other.

Proof. By Theorem 3.2, we can use a sequence of connected sum moves and Dehn
twists T1,To, -+ +, Ty (or 17, T3, - -, T},) to change the Heegaard diagram (V; by, by, - - -, by)
(or the the Heegaard diagram (V';b},by,- - -, b)) respectively) to the standard Heegaard
diagram (V;ey,es,- -+, e,). Therefore, the moves Ty, Ty, - -, Tp, T2 7, - - ST T will
change the Heegaard diagram (V';by,by, -+, by) to the Heegaard diagram (V;8},-- -, b));
where we use T~! to denote the inverse move of a move T. Note the inverse move of a
connected sum move (or a Dehn twist) still is a connected sum move (or a Dehn twist
respectively). Therefore the corollary is true.

d

Theorem 3.4 Suppose that (V;b1,ba, -+, b,) is a Heegaard diagram of genus g of S and

{d1,da,---,d,} is a complete meridian system of V.. Then there is a sequence of connected
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sum moves on the curves by, by, - - -, b,y to obtain a new Heegaard diagram (V; b, b, - - -, b,)
of S® such that the new Heegaard curves have cyclically reduced words dy, ds, - - - ,dg cor-
responding to the complete meridian system {dy,ds,--,d,} respectively.

Proof. By Theorem 3.2, we can use connecfed sum moves and Dehn twists to change
the Heegaard curves by, by, - -, b, to the dual Heegaard curves ej, ez, -, €, of the com-
plete meridian system {di,dy,---,d,}. Note the words of e, ey, - -, e, corresponding to
the complete meridian system {dy,ds,---,d,} are di,ds, - - -, d, respectively. By Lemma
11 of Section 1.7, we can use the corresponding connected sum moves first to obtain
a Heegaard diagram (V;b,b5, -, b.). Then we use the corresponding Dehn twists to
change the Heegaard diagram (V'; b}, b5, -+, b)) to the standard Heegaard diagram. The
cyclically reduced words of the Heegaard curves b}, b}, - - -, bj, corresponding to the com-
plete meridian system {dy,d,,- -+, d,} are {dy,dy, - -,d,} respectively since Dehn twists
do not‘change such cyclically reduced words.

Remark. We can not generalize the above corollary to two equivalent Heegaard
diagrams of a 3-manifold. In fact, we can not even generalize it to two strongly equiv-
alent Heegaard diagrams. We proved Theorem 3.1 by using a very special property of
a Heegaard diagram of S3: there exist free primitive curves which consist of a complete
system of the respective handlebody. For other 3-manifolds, this kind of free primitive
curves do not exist. Therefore, the above method does not work. |

For example, the standard Heegaard diagrams cdrresponding to Lens space L(7,2)
and L(7,3) are stably equivalent. But we can not pass from one to the other by using
connected sum moves and Dehn twists. The reason is that the Heegaard curve set

consists of one curve we can not use connected sum moves and if we use Dehn twists on

the standard Heegaard diagram of L(7,2) we will obtain L(7,2 + 7k) for some integer k.
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Figure 3.17: Two strongly equivalent Heegaard diagrams of (S! x S?)§RP3

Figure 3.17 is another example. Both the Heegaard diagrams in the figure are of
(St x S?)RP? and they are strongly equivalent. But we can not use connected sum moves
and Dehn twists to pass from one to the other, i.e., in the upper Heegaard diagram, we

can not exchange the positions of the two Heegaard curves.

3.2 An example

Example. = We consider the example given in Section 1.7. The Heegaard diagram
(V'; 51, 42, J3) of S% is drawn in R® as Fig. 3.18. |

The corresponding fundamental group representation of S2 for this Heegaard diagram
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Figure 3.18: A Heegaard diagram of S3

is:

m(S%) =< z,y, 2 : zye Sy o7 (y2)?, wyz ly e By 2(ay)?, ayz Tty e Ry (ay)? >

We use a connected sum move on the curves j,, j3 along a (see the above figure), i.e.,
we use j, = jollajs to replace jo. Then we obtain a new Heegaard diagram (V'; 7y, jb, j3)
for 8% Tt is easy to see that the curve j} is a primitive curve for the handlebody. (See
Fig. 3.19)

Fig. 3.20 draws the Heegaard diagram after several more Dehn twists.

3.3 Using Dehn twists on Heegaard diagrams of S3

In Proposition 2.6 of Chapter 2, we proved that we can change the move order of a

connected sum move and a Dehn twist without changing the move result.
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Figure 3.19: Using a connected sum move to simplify the Heegaard diagram

Theorem 3.5 Suppose that (V;by, b, -,b,) is a Heegaard diagram of genus g of S3.
Let the handlebody V lie in R3 standardly. Then there is a sequence of Dehn twists on

the Heegaard curves to obtain a new Heegaard diagram (V;b),b,---,b,) such that the
curves by, by, - - -, by bound pairwise disjoint 2-cells in the closure of the complement of V
in R .

First, we prove the following lemma.

Lemma 3.4 Suppose that (V;by,---,b,) is a Heegaard diagram of genus g of S®. Let
the handlebody V lie in 3-space standardly. Suppose that T is a connected sum move
which moves the above Heegaard diagram to a new Heegaard diagram (V;b,---, bfq). Let
Ny, -+ Ng,Ny,---, N, be small regular neighborhoods of the curves by, - -, bg,b’h oo, b in
the surface OV respectively. Then if the 2g curves ONy, - -+, 8N, form a trivial link in R®

; then the 2g curves ONj,---,0N, also form a trivial link in R3 , and vice versa.
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.

\
3. After use Dehn twist move along B in the B ( B is defined in the picture 2 )

Figure 3.20: Using Dehn twists to simplify the Heegaard diagram
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Proof. Since the inverse move of a connected sum is aléo a connected sum move, then
we can use the inverse move 7! of T to change the Heegaard diagram (V; b’l, by, -+, by)
to the Heegaard diagram (V;b1,b,:--,b,). If ON;, ON},- -+,0Ny is a trivial link in 3-
space, then Ny, 0Ny, - -+, 0N, is a trivial link in 3-space too. Therefore, both the curve
sets form a trivial link in 3-space or both of them do not form a trivial link in R® .

O

Proof of Theorem 3.5. By Theorem 3.2, we can use connected sum moves and Dehn
twists to change the Heegaard curves by, by, -+, b, to the Heegaard curves e, e, -, e,
of the standard Heegaard. Since we can exchange the move order of one connected sum
move and one Dehn twist .by Proposition 2.6, then we can use the Dehn twists first and
then use the connected sum moves. That is, if we suppose these Dehn twists change
the Heegaard diagram (V';b1,by,- -+, b,) in order to Heegaard diagram (V; 4], b5, - -+, b)),
then after we use the connected sum moves on this new Heegaard splitting in order we
obtain the standard Heegaard diagram (V;e;,es,---,€,). Denote the respective small
neighborhoods of ¥7,83,---,b] in 0V as Ny, N, - -+, Ny. If 2g curves ON;, 0Ny, -+, 0N,
do not consist of a trivial link in 3-space, then after each connected sum move, the 2g
boundary curves of the small neighborhoods of new Heegaard diagram in 8V do not
consist of a trivial link in 3-space by Lemma 3.4. This implies that ej, es, -+, e, do not
bound pairwise disjoint disks in the closure of the complement of V in 3-space. This
clearly contradicts the definition of the standard Heegaard diagram of S3. Therefore,
ONy, 0Ny, -, 0Ny is a trivial link in 3-space.

O

We know that every Dehn twist T twists a small neighborhood of a disk D in the
handlebody V. That is, the disk D and twist direction completely determine the move.
Note the complexity of the disk D can be determined by the length of the word of 0D

corresponding to the standard complete meridian system of V. To move Heegaard curves
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of a Heegaard diagram to a trivial link in R® we only need to use some Dehn twists along
not too complicated disks (i.e., the disks for our Dehn twists cén be chosen such that
the length of the word of each of these disks corresponding to the standard complete
meridian system of V is less than a constant k, where k is completely determined by the
Heegaard diagram). Furthermore, given a Heegaard diagram, we think that we only need
a constant number m times Dehn twists to change the Heegaard curves of the Heegaafd
diagram to trivial link in R® . For exmple, perhaps m is less than the cross number of
all the Heegaard curves.

If the above statement is correct, then we would have a good algorithm to determine
Heegaard diagrams of S®. Given a Heegaard diagram in R® , we compute the numbers
m, k first. Then we check all the possible combinations of n Dehn twists to see whether -
we get trivial link such that each move is along a disk which satisfies that the length of
the word of the disk corresponding to the standard complete meridian system of V is less

than k, where n < m. Since we only have finite possible combinations, this algorithm

can finally determine whether the Heegaard diagram is a Heegaard diagram of S3 or not.




Chapter 4

Immersing orientable 3-manifolds into R3

It is well known that every compact, connected, orientable 2-manifold with non-empty
boundary immerses into R?2. The immersion can actually be used to describe the 2-
manifold ( see [27] ). J.H.C.Whitehead [41] proved that a connected, orientable polyhe-
dral 3-manifold that is not closed immerses piecewise linearly into R3.

In this chapter, we will give a stronger version of Whitéhead’s theorem in the spe-
cial case of compact, connected, orientablev 3-manifolds with non-empty boundary by
constructing an immersion with singularities that are at most double and triple points.
Our proof uses a Heegaard diagram. The application of algebraic linking theory and
Zy-homology in [41] is replaced by a direct and more transparent geometric construction.
This geometric method of proof can be adapted to give a proof of the general case of the
Whitehead theorem with the additional property that the singularities of the immersion

are double and triple points. only.

Theorem 4.1 Suppose M is a compact, connected, orientable 3-manifold and OM # (.

Then M immerses into R® such that the singularities are only double and triple points.

If M is a compact, connected, orientable 3-manifold with OM # 0, we embed M
into a closed, connected, orientable 3-manifold M by attaching a handlebody or a 3-cell
to each component of M. Note, there is some choice involved in the attachment of
a handlebody, but any such M will do. If (V,W) is a Heegaard splitting of M and

Viby,--+,b,) a Heegaard diagram, let By,---, B, C W be disjoint proper 2-cells such
9 9

62
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that 0B; = b;,i =1,---,g. Let B;x[—¢,¢€],i = 1,---, g, be disjoint regular neighborhoods
of B; = B; x 0 in W with (B; X [—¢,¢]) NOW = 0B; x [~¢,¢],i=1,---,g. Consider the
punctured manifold My = V U (UL, B; X [—¢, €]) with M, the 2-sphere [0W — UL_,8B; x
(—€,€)] U (UL B; x (—€)) U (UL, B; x €). By the homogeneity of closed 3-manifolds, we
may assume that M C MO ( there is a 3-cell B3 C M — M and there is an ambient
isotopy on M that moves B to the 3-cell W — (US_, B; x (—¢,€)) ).

An immersion of M, into R® will restrict to an immersion of M into R®. Therefore it
will suffice to prove the theorem for compact, connected, orientable 3-manifold M with
OM a 2-sphere with the presentation M = V U (U, B; X [—¢, €]). as above. We use M
to denote the corresponding closed 3-manifold obtained by attaching a 3-cell to OM.

Let . : V — R® be an embedding such that ¢(V) is in the upper half space R of
R?® in the standard position Fig. 4.22. We assume from now on that V = (V). Let
7 :R® — R? = R? X 0 be the projection 7(z,y, z) = (z,y,0).

Definition 4.1 Let (V;by,...,b,) be a Heegaard diagram of genus g of M. Let Ay, . .. Ag
be small disjoint regular neighborhoods of by, ..., by in V. We call Ay,..., A, Heegaard

annuli of the respective Heegaard curves by, ..., b,.

Definition 4.2 Let (V;by,...,b,) be a Heegaard diagram of genus g of M with Heegaard
annuli Ay,---,Ay. We call the Heegaard curve b; an even ( odd ) Heegaard curve if the
following conditions are satisfied:

1) 7 |: A; — R? is an immersion.

2) The number of self intersection points of w(b;) is even ( odd respectively ).

If all Heegaard curves are even, then we call the Heegaard diagram an even Heegaard

diagram.

A Heegaard diagram being even or not even only depends on the position of the

Heegaard curves in 0V.
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We will prove that an even Heegaard diagram of M defines an immersion of M into
R3. ( Section 4.2. )

In [24], Kirby posed the following problem.

Problem 3.19 of Kirby’s problem list: Which immersed 2-spheres in R® bound im-
mersed 3-cells?

We note that in particular each even Heegaard diagram of the 3-cell defines an im-
mersion of the 3-cell. -

We will prove that we can use Dehn twists and connected sum moves on the Hee-
gaard curves of a Heegaard diagram of M to obtain an even Heegaard diagram of M (
Theorem 4.3 ).

We also classify all compact, connected, orientable 3-manifolds with 2-sphere bound-
aries which can be immersed into R? with singularities that are at most double points.

We will prove the following theorem.

Theorem 4.2 Suppose M is a compact, connected, orientable 3-manifold with dM con-
sisting of 2-spheres. If there exists an immersion T : M — R3 whose singulari-

ties are at most double points, then M is either a punctured 3-sphere or a punctured

(S! x S2)§(S! x S2)f - - - #(S! x S2).

Corollary 4.1 Suppose that (V;by,---,b,) is.a Heegaard diagram of genus g of a com-
pact, connected, orientable 3-manifold M. If M is not homeomorphic to S* or (S x
SH(S x S - - #(St x S?), then there does not exist an embedding of V into R® such
that the boundary of the Heegaard annuli Ai,---, A, of the respective Heegaard curves

form a trivial link in R3.

At the end of the chapter, we give an explicit immersion of the punctured real pro-

jective space RP? into R3.
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4.1 Even Heegaard diagrams

We have already defined an even Heegaard diagram. Not all Heegaard diagrams are even.
For example, the Heegaard diagram of S® = L(1, 1) is not even. Note that the boundary

components of its Heegaard annulus are trivial but linked. ( See Fig. 4.21. )

In this section, we will prove that by applying Dehn twists and connected sum moves
to a Heegaard diagram we can obtain an even Heegaard diagram.
At first, we isotopically move all Heegaard curves in the boundary of the handlebody

into a neighborhood of 3g — 1 standard simple closed curves.

Lemma 4.1 Suppose that M is a compact, connected, orientable 3-manifold with bound-
ary and (V;by,--+,by) is a Heegaard diagram of genus g of M. Assume that the simple
closed curves ey, - --,eqg,dy, -+, dog_1 on the surface 8V are as in Fig. 4.22.

Let N be a small regular neighborhood of the set Ui_,e; U UXT d; in V. We can
isotopically move the Heegaard curves by, - - -, b, in the surface OV to obtain new Heegaard

curves by, - - -, by, such that the new Heegaard curves lie in N.

Proof. Note that 0V — IntN is a union of g disks. The Heegaard curves by, - -, b,
can isotopically be pushed out from these disks into N.

|

From now on, we assume that all Heegaard diagrams in this section satisfy the con-
clusion of Lemma 4.1. Let (V;by,---,b,) be such a Heegaard diagram of genus g of M.
Note that 7 |y is an immersion with at most double points as singularities.

It follows Fig. 4.23 that whether the Heegaard diagram (V; b, - -, b,) is even or is not

even is completely determined by the image of the Heegaard curves by, - -, b, under the
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Figure 4.21: A Heegaard diagram of S3 that is not even
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Figure 4.22: Curves in 0V that separate 0V as disks

projection 7. If for k € {1,2,---, g}, simple closed curve 7(b;) has an even number of self-

intersection points, then the Heegaard diagram is even. Suppose that for k =1,2,---, g,

the word wy of the curve a; corresponding to the curve set {e;, es, -, €4;d1,d2, -+, dg}

is the following.

— oMk | JVIk |, M2k, JY2k . .. .. Hmpk  Mmgk,
Wk = €q)) dﬂm €agt dﬁzk d

where p;, Vi, € {—1,0,1}fork= L---,0;0=1,2,- -+, my and ajx, Bjx € {1,2,“',9}‘

fork=1,2,---,¢;5=1,2,---,my. We assume that p;; + v > 0.

Proposition 4.1 Fors=1,2,---,9, let ng = vig+vog+- - +Vmk- If 1k, Nogy s Mo

are all even numbers, then the Heegaard curve ay is even.

Proof. The fact that n,, is an even number indicates that the curve ¢ = 7(ay)

has an even number of intersection points with the simple closed curve 7(d,) in the zy-

plane. Note that if ¢, has an even number of intersection points with 7 (d;) and 7(ds+1),
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Figure 4.23: Getting a diagram for Heegaard annuli
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then it has also an even number of self-intersection points with 7(ds49) since cutting V
along the disks bounded by d,, d, 1, ds+§ is a 3-cell for s =1,2,---,9— 1. Therefore, the
hypothesis of the lemma implies that ¢; has an even number of self-intersection points
in the zy-plane. Thus, the Heegaard curve ay is even.

0

Proposition 4.1 shows that some Heegaard diagrams are even. For example, the
standard Heegaard diagram of genus 1 of RP3 is even since the Heegaard curve intersects
the meridian curve in exactly two points ( see Fig. 4.29 ). But for the lens space L(3,1), .
the standard Heegaard diagram is not even. However, we can apply a Dehn twist along
the meridian circle to change this Heegaard diagram to an even Heegaard diagram. We
note that in this case, every time we use a Dehn twist we alternatively exchange the
odd/even number of the intersection points. Thus in the case of genus 1, we can always
apply Dehn twists to obtain even Heegaard diagrams.

For higher genus cases, using Dehn twists alone will in general not suffice to obtain an
even Heegaard diagram since a Dehn twist may change an odd Heegaard curve to become

even but at the same time it may change another even Heegaard curve to become odd.

Lemma 4.2 Fiz i € {1,2,---,2g9 — 1}. Suppose that d; = 0D; is the meridian curve
wn Fig. 4.22 and d; intersects a Heegaard curve a at v points. Suppose that along D; we
apply a Dehn twist on a to obtain a new Heegaard curve a'. If r is even, then both of
a and @' have even numbers of crossings in the box R;. If r is odd, then a has an even
number of crossings in R; if and only if a' has an odd number of crossings in R; and
hence a has an odd number of crossings in R; if and only if o' has an even number of

crossings in R;.

Proof. In the zy-plane, suppose that m sub-arcs of the curve 7 (a) pass through the

box R; directly, n sub-arcs of 7(a) move along d; once and then pass through R; and &
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sub-arcs of 7(a) move around d; once and then do not pass through the box ( see the
figure a) in Fig. 4.24 ). The number of the crossings of 7(a) in R; is (k+n)(n+m). Then,
after a Dehn twist along d; in the direction of Fig. 4.24, a changes to a' such that 7(a')
has m sub-arcs move around d; once ( in the other direction ) and then pass through the
box , n sub-arcs pass through the box directly and k sub-arcs of n(a) move around d;
once and then do not pass through the box ( see the figure b) in Fig. 4.24 ). Therefore,
the number of the crossings of 7(a') in R; is (k + m)(n + m).

Note that r = m 4+ n. Therefore, if r is even, then both a and &’ have even numbers
of crossings in the box R;.

If r is odd, then m is odd if and only if n is even. Thus k + m is odd if and only if
k +n is even. Therefore, a has an even number of crossings in R; if and only if o’ has an
odd number of crossings in R;.

If we use Dehn twist along d; in the other direction, then the number of crossings
of ¢’ in R; is (k + m + 2n)(n + m). Since (k + m + 2n)(n + m) is even if and only if
(k+m)(n+m) ié even, the theorem is true by the preceding proof.

a

Next we consider connected sum moves.

Lemma 4.3 Fizi € {1,2,---,29g—1}. Suppose that ¢ is a simple curve whose endpoints
lie in two Heegaard curves a',a” respectively and Int ¢N (o' Ua") = 0. Let a = a't.a” be
a connected sum move on a',a" along c. Then a has an even number of crossings in R;
if and only if both a',a" have even numbers of crossings in R; or both of them have odd

numbers of crossings in R;.

Proof. The number of crossings of a in R; is the sum of the number of crossings of a’

in R;, the number of crossings of a” in R; and the number of crossings in R; produced by
g

the two copies of ¢ used as connected sum move. The two copies of ¢ always produces
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Figure 4.24: Dehn twist along D

an even number of crossings. Therefore, the number of crossings of @ in R; is even if and
only if the sum of the number of crossings of a’ in R; plus the number of crossings of a”
in R; is even.

O

Theorem 4.3 Suppose that (V;by,---,b,) is a Heegaard diagram of a connected, ori-
entable, closed 3-manifold M. Then we can use a sequence of connected sum moves and

Dehn twists on the Heegaard diagram to obtain an even Heegaard diagram.

Proof. If each Heegaard curve has an even number of crossings in each box, then
each Heegaard curve is even and then the Heegaard diagram is even.
Now, we assume that there exists a box R; such that the Heegaard curves b;,,-- -, b;,

have odd numbers of crossings in R; and all other Heegaard curves b

ik+1"",bi9 have

even numbers of crossings in R;. Then we replace each b;, (s = k+1,---,¢ ) in the
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Heegaard diagram (V;by,---,b,) by a connected sum b, = b; i, b;, to obtain a new Hee-
gaard diagram (V;b;,,- -+, b;,, by, beiny v b,). Note that for s=k+1,k+2,---,g, the
new Heegaard curve b, has an even number of crossings in box Rj,j’ € {1,---,j —
1,7 +1,--+,2g — 1} if and only if the old Heegaard curve b;, has an even number
of crossings in the box by Lemma 4.3. Now, each Heegaard curve in the new Hee-
gaard diagram has an odd number of crossings in R;. We apply a Dehn twist along
dj to the Heegaard curves b;,---,b;,, b 1, b} 125"+, by to obtain a Heegaard diagram
(V8 s g 01y i pgs - -+, b)), Then each Heegaard curve of this Heegaard diagram
has an even number of crossings in R; by Lemma 4.2.

Since our connected moves and Dehn twists do not change the odd/even property

of the numbers of crossings in other boxes, we can use the above method to let each

Heegaard curve have an even number of crossings in each box.

O

4.2 Proof of Theorem 4.1

Definition 4.3 Let K be a simple closed curve in R3. An annulus A = K x [-1,1] in
R® with K = K X 0 is trivial in R® if there exists a 2-handle B x [-1,1] in R® with
0B x [-1,1] = A.

We need some concepts from knot aﬂd link theory here.

The projection 7 : R® — R? = R? x 0 in 4.23 defines a regular projection on a link L
in R? consisting of all the Heegaard curves by, - - -, b,. For each crossing c of L, 7!(c)NL
consists of two points ¢ = (¢, Y, Zey ) = = (Te, Yoo 2c.) With 2o, > 2,_. We say that
c+ is an overcrossing and c_ is an undercrossing. The segment of L that contains the

overcrossing or undercrossing of c is called the overpass or underpass of c, respectively.

We will apply the following well-known lemma.
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Figure 4.25: Changing crossings in a diagram of annuli

Lemma 4.4 Let K be an oriented simple closed curve in R® such that n(K) in R? has
only transversal intersection points. We move along K once beginning from a point on

K according to its orientation. If for each crossing, we alway pass through the respective

overcrossing first, then K bounds a 2-cell in R3.

a

Lemma 4.5 Let K C R® be a knot such that m(K) has only transversal intersection
points and their number is even. Let A = K X [—¢,¢], K = K x 0 be an annulus with
7 |: A — R% = R? x0 an immersion. Then we can change some crossings of A according
to Fig. 4.25 to obtain an annulus A' = K' X [—¢, €] such that m(K) = n(K') and A’ is

trivial.

Proof. If K is a standard trivial knot, i.e., 7(K) is a simple closed curve in the

zy-plane, then let K’ = K, A’ = A.

From now on suppose that K is not a standard trivial knot.
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Q=

Figure 4.26: Reidemeister moves

Let P = (20, %0,0) € 7(K) satisfy that yo = maz{y : (z,y,0) € 7(K)} and P is not
a crossing of K.

We move along K once beginning from 7~!(P) in R® according to the orientation
of K. That is, we define a map ¢ : [0,1] — K such that ¢(0) = ¢(1) = #~*(P) and
t|: (0,1) — (K — 7~*(P)) is an orientation preserving homeomorphism ( where the
orientation of (0,1) is the induced orientation of z-axis ).

Since K is not a standard trivial knot, then there exists a!,o! € (0,1),0) < ol

such that 7(¢(al)) = 7(¢t(al)) and for any g, 8- € (0,1) with 7(¢(84)) = 7(t(8-)) we

have B > ol. That is ¢! = 7(t(a})) = 7(t(al)) is the first crossing we pass through
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both of its overcrossing and undercrossing.

Now, let S; = {od,al,02,a?,---,a™, o™} be the maximum set such that the fol-
lowing conditions are true:

1). Fori=1,2,---,m, &},0’ € (0,1),¢% < o’ and 7(t(cf)) = 7(t(ci)). That is
¢ =m(t(ad)) = w(t(al)) is a crossing of K.

2). Fori,j=1,2,---,m;i < j, o’ <c and o0 ¢ (o ,a"). That is, after we
pass through ¢!, we do not need to consider the crossings which lie in the closed, passed
- curve &' = 1(t(c,, o' )) any more.

Then, o} ,al € S, ie., S; # 0.

Now, we change the crossings of K to obtain a knot K’ according to the following
rules:

1). If a crossing ¢ & {c!,c%---,¢™} and cy,c. = t7H(r71(c)) with ¢, < c_, then
7(c4) should be the overcrossing of ¢ and 7(c_) should be the undercrossing of c.

2). For i < m, if i is an odd number, then the overcrossing of ¢; should be 7(c% ) and
the undercrossing of ¢; should be 7(c? ).

3). For ¢ < m, if i is an even number, then the overcrossing of ¢; should be 7 (o’ )
and the undercrossing of ¢; should be 7(a?).

Note that when we reverse an overpass segment as an underpass segment we always
move the underpass segment upward and we assume that the pre-image of the points of
the underpass segments for the map ¢ remain fixed ( that is if we move (z,y,2) € K
upward to (z,y,z +€), t7((z,y,2 + €)) == t7(z,9,2)) )-

Suppose the above moves change A to an annulus A’ in R3. Then A’ = K’ X [—¢, €]
and 7 |: A’ — R? = R? x 0 is an immersion. Further, 7(A") = 7(A4).

Note the projection 7 gives a diagram «’ of the knot K.

Claim 1. We can use a sequence of Reidemeister moves of Type II and Type III on

2 m

,...,c .

the diagram k' to obtain a knot diagram k" which has only m crossings c',c
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Proof of Claim 1. Using Reidemeister moves of Type II and Type III on the respective
part of 7(£') in ', we can move 7(£!) into a small neighborhood of ¢! since 7(¢!) is an
~open arc in the zy-plane and it only corresponds to overpass segments of K. Now, 7(£2)
is an open arc in £’ and it only corresponds to overpass segments of K’, thus we can use
a sequence of Reidemeister moves of Type II and Type III to cancel all crossings in 7 (£?)
perhaps except ¢!. We use this method step by step ana finally obtain a knot diagram
k" which has only m crossings c!,c?,-- -, c™.

Claim 2. m is an even number.

Proof of Claim 2. By the hypothesis of the theorem, K has an even number of
crossings. K' has the same number of crossings with K. Since each Reidemeister move
of Type II does not change the number of crossings and each Reidemeister move of Type
IIT changes the number by 2, by Claim 1 implies that m is even.

Claim 8. A’ is trivial. -

Proof of Claim 8. Consider the diagram k” in Claim 1. There are two cases for the
portion of £” including ¢!, ¢®. ( See a) and b) in Fig. 4.27. ) But Case b) can be moved
to Case a) by using two Reidemeister moves of Type II and a Reidemeister move of Type
III. The c¢) and d) show that the portion of A’ will be changed to standard case after
attaching a 3-cell to it. Therefore by induction, A’ is trivial.

O

Lemma 4.6 Let A = K x [-1,1] be a trivial annulus in R3. Then there are two 2-
handles By x [—1,1], B_ x [-1,1] with A = (B, x [-1,1]) N (B- x [-1,1]) = 8(B+ X
[-1,1])) nd(B- x [-1,1]) =B, x [-1,1] =8B, x [-1,1].

Proof. Let B, x [—1,1] be a 2-handle with 4 = 0B, x [-1,1]. Let S? be a 2-sphere
in R® and let S?2 = D, U D_,D,,D_ 2-cells with &D, = OD_. There is an ambient
isotopy h; : R® — R®,0 <t < 1 with hi(B; x 0) = D,. Let S% x [—1,1] be a regular
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Figure 4.27: Changing crossings in a diagram of annuli

neighborhood of S? = $2 x 0. We may assume that h;(B, x [~1,1]) = Dy x [-1,1].
Then B_ x [—1,1] = h~'(D_ x [~1,1] has the required property.
a

Theorem 4.4 Let (V;by,by,---,b,) be an even Heegaard diagram and Ay, Ay, -+, A, its
Heegaard annuli. Then there is an tmmersion 7 : V — R® with at most double points

as singularities such that 7(A1),7(Az),---,7(A,) bound disjoint 2-handles in R3.

Proof. Let V be embedded in R? as in Fig. 4.23. Then 7 |U§=1 4, 1s an immersion
from the Heegaard annuli into the zy-plane. This immersion ensures that the positive
side of the Héegaard annuli is upward where the positive side means the outside of the
handlebody V. This projection also gives us a diagram for the annuli A;, Ay,---, A, in
R3.

By Lemma 4.5, we can suitably change the crossings in the annulus diagram to ob-

tain a trivial annulus. That is, we can change the crossings of the Heegaard annuli
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Figure 4.28: Adding a 3-cell to change crossing

A, A, ..., Ay in R3 to obtain new annuli A}, A, .. ., A} such that 0A}, DAY, ---,0A4) is
trivial in R3.

Similar to the proof of Lemma 4.5, we can suitably change the crossings produced by

different annuli to let A; lie above A;; fori=1,---,9 — 1.

Now, suppose that we need to change n crossing relationships of the Heegaard annuli
which are near B}, B}; B}, BZ;---; BL, B2 respectively; where B}, B? is a disk pair such
that two disks m(B}), m(B?) form a crossing in the zy-plane and B} lies below B? in the
3-space for 1 = 1,2,---,n. That is, if we move the parts of the Heegaard annuli near
B},Bj,---, B} upward to let B? lie below B} in the 3-space for i = 1,2, --,n, then the
new annuli are trivial in R3.

The above moves can be completed by attaching 3-cells Ey,---, E, to B}, ---,B}

respectively according to Fig 4.28. That is, we attach Ej to Bj along a disk Dy, € 0E;

and let the disk Dj lie over the disk Bji, where Dy U D) is an annulus in 9F} for
k=1,2,---,n. ( See Fig. 4.28. )
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Now, we replace By, B3, -+, BL by D}, D}, ---, D! respectively in the corresponding
annuli to obtain new annuli A}, A, - -+, A} such that each annulus is trivial in R® and 4]
lie above A; , fori=1,---,g—1. . |

By Lemma 4.5, A}, A}, -- -, A}, bound disjoint 2-handles.

O

Proof of Theorem 4.1 By Theorem 4.4, we can immerse V into R® with at most
double points as singularities such that the Heegaard annuli can be attached to disjoint
2-handles. That is, we can immerse My into R3 with at most double and triple points as
singularities.

a

4.3 Proof of Theorem 4.2

We will apply the following lemma.

Lemma 4.7 Let S be a set of disjoint 2-spheres and let 7 : S — R3 be an immersion
such that 7(S) is in general position in R3. If T has at most double points as singularities,
then the image of the singular points consists of disjoint simple closed curves which form

a trivial link L in R3. The components of 7(S) — L are open disks with holes.

Proof. Each connected component of the image of singular points is a simple closed
curve since the singular points are double points and the map 7 is an map in general
position. There exists a simple closed curve ¢ in 7(S) such that ¢ is a connected com-
ponent of the image of singular points and ¢ bound a disk D € 7(S) so that there are
no connepted components of the image of singular points in the interior IntD of D, i.e.,
7 |: 771 (IntD) — IntD is a homeomorphism. Then we may use the following surgery

on 7(S). Suppose that D belongs to the image surface S; of 7 and surface S, is the

other image surface which includes the curve c. Consider a small regular neighborhood
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N of D in R® bounded by the surface Sy. We view N as D x [—¢, €] with D x 0 = D
and 9D x [—¢,€] C S;. We remove the open annulus D x (—¢, €) from S, and add the
disks D x (—¢) and D X € to S, — 8D x (—¢,€) by attaching 8D x (—¢) and 8D x ¢
to the respective boundary connected components of Sy — 8D x (—¢,¢€). This surgery
can cancel the singular connected components of 7(S) step by step. Note that every
simple closed curve in a 2-sphere separates the sphere into two disks. Then, the result of
the above surgeries is a disjoint union of 2-spheres. Therefore the image of the singular
points consists of disjoint simple closed curves which form a trivial link in R®. It is clear
that the result of cutting the image along the curves is an open disk with some closed
disk removed since each connected component of the resulting surface is a homeomorphic
image of a portion of a 2-sphere in the set S.

O

Now, suppose that M is a 3-manifold with OM consisting of 2-spheres. Suppose that
7 : M — R is an immersion with at most double points as singularities. Then 7
restricted to M is an immersion of M into R3. We may assume that 7(dM) is in
general position.

In the proof of Lemma 4.7, there exists a disk D so that D C 7(0M) and 8D consists
of a connected component of the image set of the singular points of the immersion map
T restricted to M and there are no other such connected components in the interior of
the disk D. Note that 771(8D) consists of two simple closed curvés ¢1,¢2 in OM such
that c; bounds a disk D; in 0M with 7(D;) = D. Let the annulus NV be a small regular
neighborhood of ¢; in OM.

We consider the two cases.

Case 1. D is part of the boundary surface of a connected component of the image set

of the singular points of the immersion map 7, i.e., the curve ¢, bounds an open disk Ds

in the interior of M so that 7(D;) = D and N is in the boundary of a 3-cell B which is
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a small regular neighborhood of D, in M. Thus B = D, X [—¢, €] with Dy x 0 = D;.

Case 2. Int D does not intersect the image set of the singular points of the immersion
map 7.

In Case 1, we remove D, x (—¢,€) from M and obtain the 3-manifold M’ whose
boundary continues to consist of 2-spheres, and we restrict the immersion ¢ : M — R3
to M’ — R3. In Case 2, we é,ttach a 2-handle B to M along the annulus N ( i.e.,
B = D3 x [—¢,€] with D3 x [—€¢,¢] = N ). The resulting 3-manifold we again denote
by M'. We extend the immersion ¢ : M — R3? by homeomorphically mapping the 2-
handle B to the corresponding 3-cell B', that is a small regular neighborhood of D with
(D) C 8B'.

Both of the above surgeries cancel one connected component of the image set of the
singular points of the immersion 7 restricted to M. Thus, after finitely many steps
we will obtain a 3-manifold M"” with OM" consisting of 2-spheres and an immersion
7 : M" — R® such that the map 7" restricted to dM" is a homeomorphism. Therefore,
7" restricted to each connected component of M” is a homeomorphism. Suppose M is a
connected component of M", then 7""(M,) is a compact, connected 3-manifold embedded
in R?* and (7" (M;)) consists of 2-spheres. Therefore, 7”(My) is 4 3-sphere with holes.
Thus, M" is the disjoint union of several 3-spheres with holes.

Note that in Case 1, we remove a 2-handle from M to obtain the 3-manifold M’,
and in Case 2, we add a 2-handle to M to obtain the 3-manifold M’. Thus we can
add 1-handles to M" to obtain a 3-manifold M* such that M C M*. Note that OM*
consists again of 2-spheres. Therefore, M* is a punctured 3-sphere or a punctured (S! x
S2)(Stx S - - - (St x S?). Since M C M* and OM consists of 2-spheres, then M embeds
in Triad x I x I. By Rolfsen and Li [32], M is a punctured 3-sphere or a punctured
(St x S?)3(St x SHf--- (St x §?).

O
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Figure 4.29: A Heegaard diagram of RP3

4.4 An immersion of RF?, the punctured 3-dimensional projective space,

into R3

The real projective plane RP? has a complicated immersion into R® ( {4], [18], [7], [1] ).

Note that RP? embeds in RP$. Thus the following lemma gives an immersion of RP?

into R3.
Lemma 4.8 RP? immerses into R®.

Proof. RP? has a Heegaard diagram (V;a) as showing in Fig. 4.29. After adding a
3-cell D? X [—¢, €] to the solid torus V = D? x S! by identifying D? x [—¢, €] with the
annulus N a regular neighborhood of the Heegaard curve a, we obtain the 3-manifold
RP?. That is, let h : dD? x [~€,¢] — N be the identifying homeomorphism, then
RP¢ =V U, (D? X [—¢,¢€]).
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Now, we isotopically move V in Ri such that one side of the annulus N always points
upward ( see Fig. 430 ). Let 7 : R® — R? = R? x 0, n(z,v,2) = (z,%,0), be the
projection onto the zy-plane in R®. Then 7 |y is an immersion. Fig. 4.30 shows that the
Heegaard diagram is even .

After we change the crossing according to Fig. 4.31, the new annulus is trivial in R3.

Therefore, we can attach a 2-handle to its positive side.

O




Chapter 4.

Immersing orientable 3-manifolds into R

Figure 4.30: A projection from R% to the zy-plane
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Figure 4.31: An immersion of the solid torus into R3
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