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ABSTRACT 

Acoustical radiosity is a technique based on assumptions of diffuse reflection and 

incoherent phase relationships that has been used to predict room sound fields. In this 

research, the background to acoustical radiosity is given, the integral equation (on which 

the technique is based) is derived, and a numerical solution is detailed for convex rooms 

of arbitrary shape. Several validations are made by comparison of the numerical solution 

to (1) analytical solutions for a sphere; (2) results from a ray tracing algorithm in cubical 

enclosures, and; (3) measurements in three real rooms. 
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CHAPTER 1 

Introduction 

1.1 Room sound field prediction 

People have been attempting to understand and predict the behavior of sound in rooms 

for nearly a hundred years. The prediction of sound fields in enclosures is needed for design 

purposes, such as the adjustment of classrooms and lecture halls for intelligibility, of concert 

halls, recording studios, and theatres for sound quality, of workrooms for minimized noise levels, 

of offices for privacy, and so on. Also, as computer simulations become increasingly popular for 

entertainment and training purposes, fast and accurate room acoustical modeling techniques are 

required. 

Initial attempts at understanding room acoustics used physical models (including 

ultrasonic, ripple tank, and optical methods) and scale models [51]. The wave equation model, in 

which the wave equation is solved for boundary conditions imposed by the enclosure, gives very 

accurate results. Typically, finite element methods and boundary elements methods are used in 

the solutions. Unfortunately, the wave equation method is often impractical, particularly for large 

and/or irregularly shaped rooms with complex boundary conditions and at high frequencies (due 

to an increase in the number of modal frequencies). A greatly simplified approach to room 

acoustics is through 'geometrical-acoustics' models, according to which sound waves are 

replaced by sound rays which have energy but not phase [13,36]. They can be accurate at middle 

and high frequencies. Because of the relatively good trade-off between accuracy and complexity 

(particularly with the use of computers) and the fact that many important perceptual effects 

mainly involve mid to high frequencies, geometrical models have been used extensively in room 

acoustics over the past forty years. Geometrical room acoustics includes statistical models 

(notably diffuse field theory), the image source model, particle, ray, cone, and beam tracing 
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models, acoustical radiosity, and hybrid models (which combine two or more models). 

Information on all of these models is readily available in the literature on acoustics. 

The key concern of any sound field prediction method is the prediction of the impulse 

response at a given receiver position. This is just the output signal at the receiver position to an 

impulsive sound signal radiated from a source in the room (see definition in Appendix A). Once 

the impulse response is known, the response to any other input signal can be found. The first 

non-zero peak of the impulse response normally corresponds to the direct sound - that is, the 

sound that propagates from the source directly to the receiver without interaction with any 

surfaces in the enclosure. The direct signal is usually followed by several smaller signals, called 

low-order reflections, that correspond to sound that has reflected one or more times from the 

boundaries of the enclosure. After these initial signals, a multitude of signals that have been 

repeatedly reflected from the boundaries arrive at the receiver. This is called reverberation. As 

time progresses, arriving signals have decreasing amounts of energy, causing sound decay. If the 

signals are plotted against time by horizontal lines with length corresponding to the magnitude of 

the signal, we can visualize the impulse response. If the plotted magnitude is scaled or squared to 

represent squared pressure, such visualization is known as an echogram. The echogram contains 

much of the significant information about the sound field for the receiver position in the room. 

From the echogram, numerous room acoustical parameters can be found. Examples of such room 

acoustical parameters are steady state sound pressure level (SPL), strength (G), reverberation 

time (RT), early decay time (EDT), center time (TS), clarity (Cso), and definition (DJO), all of 

which are defined in Appendix A . These parameters have been developed by researchers in room 

acoustics as quantitative measures that correlate [8] with subjective judgment of sound fields. 

They are often used in the evaluation of room acoustical predictions methods. 

To predict impulse responses, a room acoustical mode relies on knowledge about the 

physical characteristics of the enclosure. One such characteristic is the absorptive properties of 

the surfaces, which are described by their absorption coefficient. This coefficient is just the 

proportion of sound energy incident on the surface that is absorbed. As we shall see in the 

experimental section of this thesis, absorption coefficients are often difficult to estimate. Energy 

that is not absorbed is either transmitted through the surface or reflected back into the enclosure. 

Reflection can occur specularly, semi-diffusely, or diffusely. Specular reflection describes the 

case in which sound energy incident on a surface is reflected at an angle equal to the angle of 
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Figure 1.1. Specular, semi-diffuse, and diffuse reflection. 

Specu la r Semi-diffuse Diffuse 

incidence, as might be expected for smooth, hard surfaces. For surfaces with irregularities, such 

as bumps or grooves that are of similar or smaller size than the wavelength of sound in question, 

sound will be scattered in many directions upon incidence. If it is reflected completely randomly, 

the reflection is called diffuse; otherwise, it is semi-diffuse. See Figure 1.1. Assumptions about 

the way sound is reflected from the surfaces must be made, and different methods of prediction 

make different assumptions. 

This thesis explores a geometrical sound field prediction method that assumes perfectly 

diffuse reflection. We call this method acoustical, or time-dependent, radiosity. The method has 

been previously called in various ways, including 'the integral equation method' [36], 'radiant 

exchange' [41], and 'an intensity-based boundary element method' [17]. The name 'acoustical 

radiosity' is taken from a similar (time-independent) technique used in computer graphics, where 

it is simply called radiosity. 

1.2 History and literature review 

Called 'radiative transfer theory', radiosity was initially introduced in illumination 

engineering in the 1920's by photometric theorist, Yamauti [65]. Without computers to carry out 

the lengthy calculations, however, the potential of the method could not be realized at that time. 

The technique was rediscovered and further developed by the thermal engineering community in 

the 1950s and 1960s [57,62]. It was referred to as 'radiosity' or 'radiation heat transfer' (among 

other names). Radiosity was introduced as a technique in computer graphics in the 1980's and 

has since become one of the leading global illumination techniques for realistic image synthesis 

[2,12]. The computer graphics community has developed many efficient methods for 
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implementing radiosity, and the success of the technique in that field has prompted the use of 

radiosity in other fields. 

The first formulation of the radiosity technique in acoustics was made by Kuttruff in the 

early 1970's [30,31,36] in the form of an integral equation (see Section 2.3). In the late 1970's, 

some of the first papers published on acoustical radiosity developed the theory and presented 

analytical solutions in spheres, both for the steady state sound field [11] and for sound decay 

[10,28]. 

A fast, iterative method for finding reverberation time from the integral equation and the 

assumption of exponential decay was proposed in 1980 by Gilbert [18], and implemented by 

Schroeder and Hackman [54]. In 1995, Kuttruff presented an even easier approach [34,35] and 

also developed a method, based on the integral equation, to find the sound absorption coefficient 

of a test sample from reverberation time [33]. In the same year, Kuttruff [32] published the 

solution to his steady-state integral equation for flat enclosures (in which side walls are 

neglected). Also included were comparisons to experimental data. 

In 1984, Miles [45] was the first to apply a numerical solution of the integral equation to 

rectangular rooms. In his paper, Miles gives a detailed account of his iterative solution, and deals 

with both steady state and time-varying sources. Moreover, by finding poles and zeros of the 

Laplace transform of the integral equation, Miles proved that decay curves in rooms with 

diffusely reflecting boundaries are exponential. Moore's Ph.D. thesis, entitled "An approach to 

the analysis of sound in auditoria" (Cambridge, U K , 1984) is referred to by several authors 

[9,41] as containing a theoretical development of acoustical radiosity, but the thesis could not be 

obtained for reference. A 1993 paper by Lewers [41] used acoustical radiosity to model the 

diffuse reverberant tail of the impulse response in a hybrid model. Some details are given in his 

paper, as well as minimal results. Another 1993 paper, by computer scientists Shi, Zhang, 

Encarnacao, and Gobel [56], outlined an algorithm for acoustical radiosity, although no details 

were given. Two comparisons of predicted with measured reverberation times were found to be 

close, but no other comparisons were made. More recently, Tsingos [63] used acoustical 

radiosity to simulate sound fields for interactive graphics applications. Tsingos used hierarchical 

methods from radiosity in computer graphics, suggested the incorporation of specular reflection 

into the model, and gave results for a validating case. 
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In 2000, Le Bot and Bocquillet [40] did a thorough comparison of steady state sound 

pressure level predictions by acoustical radiosity and ray by tracing with diffuse reflection. Their 

work included numerical comparisons and an analytical proof of the equivalence of the two 

methods. Also in 2000, Kuttruff [37] combined the image source method and analytical solutions 

to the integral equation to explore the steady state sound propagation in non-empty, flat rooms. 

Kang's work [29] used radiosity to investigate the propagation of sound in long enclosures with 

diffusely reflecting boundaries. Franzoni, Bliss, and Rouse [16,17] gave a theoretical 

development of acoustical radiosity with a slightly different approach. Validations for a steady-

state, two-dimensional model problem were given by comparison to exact solutions found by 

solving the wave equation. Other recent work relevant to acoustical radiosity includes that by 

Alarcao and Coelho [1]. 

A n interesting paper by Rougeron, Gaudaire, Gabillet, and Bouatouch [52] from 2002 

describes a time-dependent radiosity method to simulate the propagation of a 60 GHz 

electromagnetic wave in an enclosure. Their method is fast, requires little memory, and was 

validated in two rooms. A similar approach might be applied to acoustical radiosity. Very 

recently, Le Bot [39] published a paper, in which the integral equation is replaced by a functional 

equation, which aims to model specular reflection with an adapted radiosity method. 

1.3 Why acoustical radiosity? 

Even though several authors have explored some of the problems and potential of 

acoustical radiosity, the technique has never become popular in room acoustics. Possible reasons 

for the poor reception of radiosity into the acoustical community include the seemingly 

prohibitive computational costs and the limiting assumption of diffuse reflection. These 

limitations are discussed below. 

The key difference between radiosity in acoustics and radiosity in computer graphics (or 

in any of the other fields in which it has been used) is time-dependence. Because sound, unlike 

light, travels so slowly through air that the time delay cannot be ignored, any model of sound in 

rooms must incorporate time. As we will see, the introduction of time dependence into radiosity 

is one of the limiting aspects of acoustical radiosity because of the high computational cost. 

Nevertheless, acoustical radiosity is promising in that the computational costs are incurred only 

in the initial 'rendering' of a room. In particular, once a room has been rendered for a given 
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Figure 1.2. Conversion of specularly to diffusely reflected sound energy. 
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source, the remaining costs are low enough to enable real-time sound field simulation for moving 

receivers. This 'view-independence' is the major advantage of radiosity, particularly for 

interactive simulations. Furthermore, there are possible methods to accelerate the initial 

rendering [52,63]. If they can be developed, such methods would certainly make acoustical 

radiosity much more accessible to room acousticians. 

The assumption of diffuse reflection may not be as limiting as it initially seems. It has 

been suggested [34,35] that the assumption of diffuse reflection is less restrictive than the 

assumption of specular reflection that is commonly made in geometric-acoustical prediction 

methods. It is definitely less restrictive than the assumption of a diffuse field that is still so 

popular among room acousticians (because of its simplicity). Further, it is not clear how the 

assumption of diffuse reflection actually affects a sound field, and indeed some characteristics of 

the field may not be sensitive to a change from specular to diffuse reflection [21]. Acoustical 

radiosity may be an effective predictor of such characteristics. 

Certainly, it is likely that acoustical radiosity is highly effective in predicting the late part 

of a decay curve. It has been shown that the conversion of specular energy into diffuse energy is 

irreversible and that all walls produce some diffuse reflection [22]. Hence, though the initial 

reflections in a room may be more specular than diffuse, most of the energy in the sound decay 

of a room will consist of higher-order, diffuse reflections. As effectively shown in Figure 1.2 
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[34], after several reflections, nearly all energy has become diffusely reflecting. For this reason, 

there is strong reason to believe that the late part of decay curves should be well predicted by 

radiosity. For the figure, 75% and 25% of reflection were assumed to be specular and diffuse, 

respectively, and the boundary had a uniform absorption coefficient of 0.2. 

Initial evidence for the effectiveness of radiosity in predicting the late part of decay 

curves has already been presented (for spherical [28] and rectangular [38] enclosures) by 

comparison of decay curves for rooms with relatively small amounts of diffuse reflection and 

diffusely reflecting walls. If radiosity is indeed effective in this regard, hybrid methods that 

account for the specular component by another method (such as ray tracing or the method of 

images) and the diffuse component by radiosity may be highly successful in predicting room 

sound fields. Such a model has been suggested by Lewers [41] and for rectangular enclosures by 

Baines [4]. Still, the effectiveness of radiosity in the prediction of the late part of the decay 

curve, as well as the prediction of other room characteristics, remains to be explored. 

It should further be recognized that it may be possible to extend the acoustical radiosity 

methods outlined in this thesis to non-diffuse reflection. Such extensions have been made in 

computer graphics (for the time-independent cases) [53,58,59] and have been applied in a few 

time-dependent cases [22,52,63]. Such an extension was beyond the scope of this thesis, but is 

certainly of great interest. 

1.4 Organization of thesis 

Upon reviewing literature on acoustical radiosity, it became quite clear that a unified, 

consistent approach to the technique is not available. Indeed, there is not even a consensus about 

what the technique should be called, nor is it anywhere fully outlined. It was evident that the 

most beneficial starting point of this thesis would be a clear and thorough development of 

acoustical radiosity, starting from the basic definitions and derivations. This was done and is 

presented in Chapter 2. 

A basic numerical algorithm relying on the discretization of the boundary and of time is 

developed and presented in Chapter 3. Solutions to some problems regarding the implementation 

of acoustical radiosity in non-rectangular enclosures are investigated in this chapter. Chapter 4 

deals with the methods used to predict impulse responses, echograms, and room-acoustical 

parameters from the solutions. 
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The algorithm and methods presented in Chapters 3 & 4 were programmed and initial 

investigations into the applicability and validity of acoustical radiosity for predicting room sound 

fields were performed. Such validations are, for most part, absent from the literature, despite the 

fact that they are vital to our confidence in predicting sound fields in enclosures. The 

investigations are presented in Chapter 5. Chapter 6 is gives a summary of the work done and 

gives suggestions for future work. 
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CHAPTER 2 

Theoretical development 

2.1 Assumptions 

Acoustical radiosity relies on several assumptions that are outlined in this section. 

2.1.1 Diffuse reflection 

The main assumption of acoustical radiosity is that all boundaries are diffusely reflecting. 

Diffuse reflection has been introduced in Chapter 1 and will be further discussed in Section 2.2. 

The assumption of diffuse reflection allows for major simplifications in the development of 

acoustical radiosity because it is 'memoryless'. In particular, the way that a ray is reflected is 

not dependent on the direction from whence it came. It has been shown that diffuse reflection is 

the only such memoryless reflection law [27]. 

2.1.2 Incoherent phase relationships 

Another assumption on which acoustical radiosity depends (as do all geometric-

acoustical prediction methods) is that of incoherent phase relationships between propagating 

waves [35]. In room acoustics, this assumption is usually sufficient, and may be justified when 

the wavelengths are small compared to the dimensions of the room. In particular, we consider 

Schroeder's 'large room limit' [55] 

where RT is the reverberation time in seconds and Vis the room volume. Above this limit, the 

density of eigen-frequencies is so high that a strong overlap of normal modes results. As a 

consequence, many modes are stimulated simultaneously. A nearly random distribution of phase 

(Hz) 



Chapter 2. Theoretical development. 10 

effects among the stimulated modes means that their phase effects will cancel when they are 

superimposed [35]. 

For large halls, fs is typically around 2 0 - 3 0 Hz, with only 2 0 - 3 0 eigen-frequencies 

below fs. In a small room,jS is typically around 100 - 200 Hz, with 60-100 eigen-frequencies 

below fs. Because the frequency range of interest is usually above Schroeder's limit, it is usually 

possible to neglect phase effects. 

With this assumption, acoustical radiosity traces energy and neglects the effects of phase. 

As pointed out by Kuttruff [35], this does not unduly restrict prediction accuracy, because almost 

all common parameters in room acoustics - such as reverberation time, early decay time, clarity 

index, definition, center time, strength, and lateral energy fraction - are based on energy (or 

pressure squared) instead of on pressure. Echograms, decay curves, and steady state sound 

pressure levels are also functions of energy. An important exception is the inter-aural cross-

correlation coefficient, which cannot be predicted by radiosity. 

2.1.3 Other assumptions 

In this thesis, several further simplifying assumptions are made, most of which would not 

be prohibitively difficult to relax. Reflection coefficients are taken to be independent of their 

angle of incidence, and diffraction effects are neglected. Also, the method is developed only for 

empty, convex enclosures. In addition, sources are assumed to be omni-directional (that is, they 

radiate sound with equal intensity in all directions) point sources. 

2.2 Diffuse reflection 

Diffuse reflection has been introduced in Chapter 1 and in Section 2.1.1 as one of the 

main assumptions of acoustical radiosity. In this section, we discuss Lambert's Law, which 

governs diffuse reflection. Then we develop formulas based on diffuse reflection that will be 

used to derive the integral equation in the next section. 

2.2.1 Lambert's (Cosine) Law 

Suppose a sound ray strikes an infinitesimally small, perfectly diffuse reflector, dS. If 

1(6, R) is the intensity of the sound which is scattered by dS, in direction 9 (0<6 <n 12) from 

the surface normal measured at distance R from the reflector, then 
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I(0,R) = I(O,R)co&O. (2.1) 

In words, Lambert's Law states that the intensity transmitted in any direction varies as 

the cosine of the angle between the direction and the normal vector to the surface. We can think 

of Lambert's Law as forcing the 'viewed' intensity of the element dS to be constant with varying 

viewing direction. As # increases, the observer (at angle f?and distance R from dS) 'sees' less of 

dS. In particular, the area seen (the projected area) varies as cos# (see Figure 2.1 for the two 

dimensional analogy), so it to appear that the intensity coming from the element is constant with 

varying 6, 1(0,R) must also vary as cosd . 

Note that the direction of the incident ray is not a variable in Lambert's Law, as stated 

above. This is what makes diffuse reflection 'memoryless', as discussed in Section 2.1.1. Also, 

it may be helpful to realize that this formulation of Lambert's Law may be different that that 

found in other sources (in particular, the formulation found in computer graphics). This can be 

explained by the different way in which intensity is defined in different fields, where it is 

sometimes defined using solid angles rather than using projected areas. 

2.2.2 Intensity from radiation density 

If we know the radiation density, B0 (defined as the rate at which energy leaves a unit 

area of surface), of the differential element dS, then, from Lambert's Law, we can find 

1(0, R) for any 0 and R. Consider a hemisphere of radius R centered over dS. If no energy is lost 

Figure 2.1. Projected length. 
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in propagation, then the rate of energy incident on this hemisphere from dS must equal the 

radiation density, B0. In particular, we require that the surface integral of 1(6, R) over the 

hemisphere be equal to B0dS. In equations, we have 

B0dS= \l(0,R)da (2.2) 

where S is the hemisphere. We introduce a Cartesian coordinate system {(x,y,z) such that x, y, z 

are real} so that the wall element is centered at (0,0,0) and has normal (0,0,1), and note that all 

energy is emitted into the top half of the space (z > 0). Then 

cos# = — 
R 

so that, by Lambert's Law, 

S can be parameterized by 

I(9,R) 
1(0, R)z 

R 

s(u,v) = (Rcosucosv, /?sinwcosv, i?sinv) 

with 0 < u < 2n and 0 < v < n/2 . We call this parameter set Q . See Figure 2.2 [14]. We get 

WR) r . i 
i \ u , JV i uw — iz ao — 

n J 
s 

B0dS = jl(0,R) do = \z da = \z(u,v)\\N(u,v)\\du dv (2.3) 

Figure 2.2. Parametrization of a sphere. 

jRcosv 

/ 
/ u 

^:z] ivSinv 
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where||7V(«, v)|| is the norm of N(u,v), the fundamental vector product of S. - i.e. 

N(u,v) = su' xsv' . 

Here, 

s.. = 

s.. = 

= (-R sin u cos v, R cos u cos v, 0) 
dx dy dz^ 

ydu' du' du, 

cbc dy dz^ , _. . „ . . „ x — , — , — = (-/ccosMSinv,-/csinwsinv,/(cosv) 
dv dv dv J 

so that 

N(u,v) = i?cosv(i?cosMCOSv,i?sinucosv,rsinv) = i?cosv s(u,v) 

\\N(u, V)|| = R2 Icos vl = R2 cos v 

since |cosv| = cos v for 0 < v < nil. Hence, Eq. (2.3) becomes 

WR) 
B0dS = jz(u,v)R2 cosvdudv 

R Q 

/ ( 0 ' ^ ][ I (Rsinv)(R2 cosv)du 
R o V o 

dv 

= In W,R) 
R 

nil 

R3 J sinvcosvrfv 

= nI(0,R)R2 

It follows that 

I(0,R) = B o ^ d S . 
nR 

To account for air absorption, we need to include an air absorption term, exp(-mR), in 

the above equation above to get 

I(6,R) = Bae(-mR)^rdS. 
nR 

(2.4) 

2.2.3 Intensity from incident intensity 

Suppose that a bundle of parallel rays is incident on the differential wall element dS. If 

this bundle makes angle 0O to the element normal and has intensity /„ , then the irradiation 

density, defined as the rate at which energy is incident on a unit area of surface, is simply 
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/„ cos 0O. This is obvious from the definition of intensity, since a unit area normal to the 

direction of flow of energy projects an area of 1 / cos 0O onto the plane containing dS. 

Assuming that the element dS has reflection coefficient p (assumed independent of 

incidence angle), the radiation density corresponding to the incident bundle of rays is 

B0 = pl0 cos0o. (2.5) 

Combining Eq. (2.4) and (2.5), we get 

I(0,R) = Ioe{-mR)pCOS0CO

2

Sd°dS. (2.6) 

2.3 Integral equation 

For completeness, the derivation of the integral equation for acoustical radiosity will be 

outlined here. It has been previously been derived by Kuttruff [36]; his work is the basis of the 

present derivation. However, this development differs from Kuttruff s in the definition of 

B(r,t) (see below) and in the inclusion of air absorption. 

2.3.1 Explanation and derivation 

Consider an enclosure in which the whole boundary reflects diffusely. Within this 

enclosure, place a sound source and a receiver. We wish to predict the sound field at the receiver 

position. To do so, we mesh the boundary into differential elements, each of which is itself a 

diffuse reflector. Energy from the source propagates to the wall elements, and the radiation 

density due to the source is found for each element. The surface elements are considered to be 

secondary sources, each emitting energy diffusely to all of the other elements. This process 

continues, with elements receiving and emitting energy. The process can be modeled by an 

integral equation, from which the total intensities at the wall elements can be found. Once the 

element intensities are known, the sound field at the receiver can be found by propagating the 

energy 'emitted' by the patches to the receiver. 

As was discussed in the introduction, an essential difference between radiosity in 

acoustics and radiosity in thermal heat transfer or in graphics is that the process is time 

dependent. The time that it takes for sound to travel from one element to another is not 

negligible, and it must be accounted for. As a result, our integral equation wil l be time 

dependent. 
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Figure 2.3. Illustration for the derivation of the integral equation. 
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To derive the integral equation, consider two of the wall elements, dS and dS' (see 

Figure 2.3). By the assumption that the enclosure is empty and convex (see Section 2.1.3), we do 

not need to determine visibility between wall elements. We characterize the locations of dS and 

dS' by the vectors r and r'. Let R be the length of the line joining dS and dS', and let 

9 and 0' be the angles between the line and the normals of dS and dS', respectively. Note that R, 

6 and 6' are all functions of r and r'. 

Let B(r',t) be the radiation density of dS' at time t. The energy radiated from dS' that 

hits dS has intensity given by Eq. (2.4) 

nR2 

Sound takes RJc seconds to travel from dS' to dS (where c is the speed of sound in air), and since 

it is incident at an angle of 8 to the normal of dS, the radiation density of dS due to B{r',t) is, 

according to Eq. (2.5), 

Bd,(r,t + R/c) = B(r',t)p(r)e^ C ° S ^ ' dS' 
nR 
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where p(r) is the reflection coefficient of dS (recall the assumption of reflection coefficient 

independent of angle of incidence angle). We can equivalently write 

BdArj) = B(r\t-R/c)p(r)e^COS0C°2

Se'dS'. 
Tl R 

To get the total radiation density, B(r,t), of dS at time t, we integrate this equation over 

all wal l elements dS' and add the direct contribution Bd(r,t) from the sound source to get: 

B(r,t) = ̂  \B(r>,t-R/c)e-™« C°S°™6'dS'+ Bd(r,t) 
n s R 

P(r) r , . j,, ^ , ^^mR(ry)cos(d(r,r'))cos(0'(r,r')) 
= \B(r ,t-R(r,r )lc)e ——— dS+Bd(r,t). (2.7) 

n I R(r,r) 

The second formulation is included to emphasize that R, 6 and 0' are functions of r and r . It 

is important to realize that the assumption of phase independence underlies this step. Without 

this assumption, we could not simply integrate over radiation densities to find the total radiation 

density. Eq . (2.7) is what is commonly referred to as the 'integral equation', and is the basis for 

acoustical radiosity. 

2.3.2 Simplifications 

If the sound source ceases to radiate and sufficient time passes so that there is no longer 

any contribution of the source to the boundary, the direct contribution term of Eq . (2.7), 

Bd(r,t) drops out to give a homogeneous integral equation. Other such simplifications can be 

made, with two listed below. 

2.3.2.1 Impulsive sound sources 

If the source is impulsive, and we let t = Obe the time of generation of the impulse, then 

we can simplify the equation by neglecting air absorption until the end. We get 

fl(r,0 = £ f r > ^ f ^ , , _ J ! / c ) » ! ^ ( B ' + i , 4 ( P , 0 . (2.8) 
n S R 

The term exp(-mtc) can simply be incorporated this way because all energy in the system was 

introduced at time t - 0 and has thus traveled tc meters through the air at time t. 

The air absorption term could also be incorporated even after finding the total intensity at 

the receiver. To do so, the method outlined in the next section is used to find the intensity at the 
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receiver without air absorption, I0 (r,t). Then the intensity with air absorption, Im (r, t) is given 

by 

/ m (r ,0 = e- B t e/ 0(r ,0. (2-9) 

Another simplification here is that Bd(r,t) is zero except at a unique value of t for each r. 

This value of t is simply the distance between the source and the wall element, divided by the 

speed of sound. 

2.3.2.2 Continuous sound sources 

For a steady continuous (not changing with time) source, we can eliminate the time 

dependence to get a time-independent integral equation: 

B(r) = ^ l \B(r')e-"COS0C

2°S0'dS' + Bd(r). (2.10) 
K s R 

In discrete form, this is simply a set of linear, inhomogeneous equations that can be solved by 

iteration or by standard methods. This is the form that is found in computer graphics, and which 

is thoroughly discussed in the computer graphics literature. 

2.3.3 Direct radiation density 

Suppose the sound source is omni-directional with power W(t) at time t. If the distance 

between the source and wall element dS is RS and the line between the source and dS makes 

angle ds with the normal to dS (see Figure 2.3), then the radiation density of dS due to the source 

is 

BAr,t + RJc)=W®™f'p(r)e™. (2.11) 

The cos(t9 ) term is needed for the same projection of area reasons as before; the 4TTRS

2 term 

accounts for the spherical divergence of the sound, and the absorption of the wall and the air are 

accounted for. Once again, it should be noted that RS and 6S are functions of r and the position of 

the source. 
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2.3.4 Sound pressure at the receiver 

Once B(r,t) is known for all r and t - that is, once the radiation density of all elements 

on the boundary for t > 0 is known - we can find the intensity and, hence, the energy density and 

the sound pressure, at the receiver. For a given wall element dS, characterized by r, the 

resulting intensity at the receiver at time t is, by Eq. (2.4), 

nRr 

where rr is the position of the receiver, Rr is the distance between the receiver and dS, and 9r is 

the angle between the line joining the receiver to dS and the normal to dS (Rr and 6 are both 

functions of r ). Assuming incoherent phase relationships, the total intensity at the receiver is 

obtained by integrating the above equation over all wall elements and adding the direct 

contribution Id (r, t) from the source. This gives 

/ ( r , , , ) - l f * ' - ' - * ; e > ~ * ^ E + /,(r,,0 (2-12) 
n I R 

with 

IArr,t)=W{\-R"!C)e^ (2.13) 

where Rsr is the distance between the source and the receiver. 

Given I(rr,t), the energy density E(rr,t) and the square of the average sound 

pressure p2 (rr, t) are found by 

E(rr,i) = I{rr,i)lc and p2(rr,t) = I(rr,t)p0c (2.14) 

where p0 is the static value of the medium density. For air under normal conditions, 

poc = 414kg m"2 s"1 [36]. 

2.3.5 Note on view independence 

One of the unique features of radiosity is that once B(r,t) is known, the intensity at any 

receiver position is found relatively easily. B(r,t) is defined by the enclosure and the source and 

is independent of the receiver. This feature gives radiosity an advantage over more traditional 

room acoustical models such as ray tracing or the method of images, in which the entire process 
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must be repeated for different receiver positions. An example of a situation where this would be 

an advantage is in walk-through simulations, where the environment is constant, and only the 

receiver position changes. 

2.4 Analytical solutions of the integral equation 

The inhomogeneous, time dependent integral equation, Eq. (2.7), must, in most cases, be 

solved numerically. The method used to do so in this research is outlined in the next chapter. 

Before that, however, it is useful, both for understanding and validation of the algorithms, to 

look at several cases for which closed form, analytical solutions do exist. Two such cases are the 

sphere and the infinitely long and wide, flat room. 

2.4.1 Sphere 

There are several papers [10,11,28,35,36] that explore solutions to the integral equation 

in spherical enclosures. Some of the main results are given here for use in validations of the 

numerical approach and algorithm used in this thesis. The reader is referred to the papers for 

details and for other useful results. 

For a spherical enclosure of radius a, uniform absorption coefficient a , with a 

continuous omni-directional point source of power W located at the center of the sphere, and 

neglecting air absorption, Carrol & Miles [11] found the radiation density of the boundary (Eq. 

(34) of their paper) to be 

S = ^ > . (2.15) 
Ana a 

Here B = B(r,t) is constant over the boundary of the sphere for all times (due to the continuous 

sound source). (This formula differs from that of Carrol & Miles in the inclusion of the 

(1 -a) term, because their / is irradiation density while ourB is radiation density). 

From this, and recalling that the integral over the solid angle over the entire sphere is just 

An , it follows easily from Eq. (2.12) and (2.13) that 

I M . * < t < » + * ( 2 , 6 , 
na a AnR, 

where Rsr is the distance between the source and the receiver (see also Eq. (39) of Carrol & 

Miles), and rr characterizes the position of the receiver. 
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By definition, then, the steady state sound pressure level is simply 

SPL(7U = 101og 
Po2 

a o i o g / (*„ )414 
4x l0" 1 0 

dB. (2.17) 

It is important to notice that the reverberant intensity, the first term in Eq. (2.16), is constant 

throughout the sphere. In particular, the reverberant sound field is fully diffuse (see Appendix A 

for definition of a diffuse field). 

For the same spherical enclosure, Carrol & Chi en [10] and Joyce [28] found the 

following equation relating decay time TQ, diameter transit time r = 2a I c , and absorption 

coefficient a 

1 = 2(1-a) I 
f 
1-

T \ 
J 1 e'T+^ T 

T 
(2.18) 

Air absorption can be incorporated into the decay time expression by assuming 

exponential decay. If Em (t) and E(t) denote the energy in the room at time t with and without 

accounting for air absorption, respectively, and T denotes the decay time including air 

absorption, then 

E(t) = E(0)e-"1" and Em(t) = E(0)e 

Adding the air absorption term to E(t), we get 

Em(t) = E(t)e-mtc 

=> E(0)e-"T = E(0)e-"T°e-mct 

1 1 
=> — = Ymc 

T Tn 

-tIT 

(2.19) 

Having found the decay time, reverberation time can be found using Eq. (B.l) . 

2.4.2 Flat room 

Kuttruff [32,36] solved the integral equation for the case of a flat room consisting of two 

unbounded parallel planes (floor and ceiling). Both surfaces were assumed to have the same, 

uniform reflection coefficient, p. If an omni-directional point source with power Wis located 

half way between the planes, and if the height of the room is h, then the steady state solution of 

Eq. (2.12) is 
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/ ( r ) = — 
4K 

W ( 1 4pc°re-zJ0(rz/h)zLd^ 
+ re J0\rzn 

h2 J 1-pzAT.C 

4;r 
1 4p 
r 2 /z2 

. 2 \ -3 /2 

1 + -
& 2 + 

bp 
l-p 

b 2

+

r 

2 s 3 / 2 

A 7 , 
(2.20) 

where r is the horizontal distance from the point source, J0 is the Bessel function of order zero 

and Kx is a first order modified Bessel function. Kuttruff goes on to approximate Eq. (2.20) by a 

much simpler formula. The reader is referred to the literature for more on this. 
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CHAPTER 3 

Numerical solution 

3.1 Discretization 

Due to the mathematical difficulty in finding analytical solutions to the integral equation 

derived in the previous chapter, we will seek numerical solutions. These involve discretization of 

the enclosure and of time. 

3.1.1 Enclosure discretization 

Following Miles [45], we discretize the room interior into small patches, Sj. From Eq. 

(2.7) we obtain the average radiation density of the z'th patch, given by 

Bi(t) = —\p(r)\F(r,r')B(r',t-Rlc)e-mRdS'dS + — JBd(r,t)dS 

A S, 5 A S, 

where Ai is the area of patch i and 

cos 0 cos 0' 
F(r,r') = -

nR2 

Let N be the number of patches, and assume that the reflection coefficient is constant 

over each patch, with p. the reflection coefficient of patch i. For r and r' representing some 

central point and on patches Si and Sj, respectively, we replace B(r',t-R/c) by B}(t -Ry Ic), 

where Rij is the distance between r and r'. We also replace e~mR by e'mR" to get 

Bi ^ = \ F i < r > r">BJ (' - R<J1 ^ d S ' d S + B * 

A S, 7=1 Sj 



Chapter 3. Numerical solution. 23 

where 

Bdi=\\Bd(r,t)dS. (3.1) 
<' s, 

We can interchange the order of summation and integration over Si, and take the constant 

Bj(t - Ry I c)e~mRii out of the integrals to get 

f \ N 

Bi(t) = piYdBJ(t-R./c)e-
7=1 

N 

— \\F(r,r')dS'dS 
K

A i S j S j 

+ Bdi(t) 

^p^Bjit-Ry/cy^Fy+B^) (3.2) 
7=1 

where 

\F(r,r')dS'dS = - 1 J \ C ° S ° C ° f dS'dS . (3.3) 

4 S, Sj Ai X,. sy ^ 

F y is known as the form factor between patch i and patch j. Physically, Fy is the fraction of 

energy leaving patch i that is incident on patch j. Finding form factors is one of the more difficult 

aspects of radiosity, as will be discussed in the next section. 

3.1.2 Direct contribution 

Assume a point source with power output W{t). Then from Eq. (2.11), the direct 

contribution is 

*,(0 - y \Bd(r,t)dS = BL IW-R. W e . m R , d S 

where Rs is the distance between the wall element and the source, and 6S is the angle between the 

normal to St and the line joining the source and the wall element. Replacing Rs with Rsj, the 

distance between the source and r, we get 

Bdfi) = W(->-R"'C)P'e'-\dn (3.5) 
Air A •> 

where 

4 * A i s, 

\dQ=\C-^dS (3.6) 
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is the integral over the solid angle subtended by St and the source. Solid angles and the 

evaluation of the integral over them are discussed in Section 3.3. 

3.1.3 Sound pressure at the receiver 

If we discretize Eq. (2.12) in the same way as we did Eq. (2.7), we get 

1 " cBi(t-R./c)cos0r . 
J f r . O — E J— \r- r-e-mR"dS + Id(rr,t) 

TT m s

j Rr 

-fjBi(t-Rri/cymR« \dCL + Id(rr,t) 
7T TT _J 

(3.7) 

where Id(rr,i) is as in Eq. (2.13), Rrj is the distance between the receive and r, and 

ldn=l dS. 

Again, this integral is dealt with in Section 3.3. Once I(rr,i) is known, Eq. (2.14) gives 

3.1.4 Time discretization 

The final step to be made in the numerical solution of the integral equation is to discretize 

time. This idea of discretizing time has been previously applied to acoustical radiosity by several 

authors (Shi and Zhang [56], Miles [10]), although our approach differs slightly in several 

respects. 

To discretize time, we split time into equal time steps, 

where n = tmM I At is the number of time steps and is dependent on the length of the time 

interval, A ; , and on the maximum time for which the predictions are to be carried out, tmm. The 

choice of At and fmax are affected by various considerations, such as room dimensions, 

frequency of the sound source, absorption coefficients, desired accuracy and speed of 

predictions, and so forth. This will be investigated in the next chapter. For notational purposes, 

we note the following property: 

p2(rr,t) = I(rr,t)p0c. 

t0 = 0, tx = At, t2 = 2At,..., tn = nAt = tt max (3.8) 

t a + t b ~ a ^ + = (<* + b)At - tt a+b " (3.9) 
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We may now follow energy through the room from one time step to the next. The 

sound is generated at t0 = 0 and is propagated thought the room according to Eq. (3.2). Now, 

however, any energy that arrives at a patch between time steps is pushed forward and added to 

the later time step. In this way, the radiation densities of the patches, 5, become discrete 

functions, with their domain being the set of all time steps. In a similar way, sound pressure at 

the receiver becomes a discrete function. 

Time and enclosure discretization are incorporated into the radiosity algorithm outlined 

in Section 3.4. First, however, i f is necessary to find the form factors and solid angles, as given 

by Eq. (3.3) and (3.6), respectively. These are dealt with in the next two sections. 

3.2 Form factors 

This section deals with the evaluation of form factors as given by Eq. (3.3) (see Figure 
3.1): 

' All nR 

The evaluation of form factors can be an extremely difficult problem. For most pairs of surfaces 

Si and Sj there is no analytical solution to the form factor equation. 

Figure 3.1. Form factor geometry. 
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3.2.1 Literature on form factors 

The evaluation of form factors has been well researched in other fields where radiosity is 

used - in particular, in illumination engineering, thermal radiation heat transfer, and, most 

notably, in computer graphics. Form factors in acoustics are the same as form factors in these 

other fields, hence the many methods developed in these fields are applicable to acoustical 

radiosity. Howell [24] published a catalog of radiation configuration factors (form factors) for 

use in thermal radiation heat transfer, that gives some useful references, although most of the 

configurations that are dealt with are not likely to help in room acoustics (notably, that between a 

differential element and a cow!). Any text on radiosity in computer graphics [2,12,15,60] will 

deal extensively with an overwhelming number of techniques for form factor evaluation and give 

references to a large body of literature on the topic. 

Researchers in acoustical radiosity have applied various approaches in the evaluation of 

form factors. For rectangular, perpendicular and parallel patches, Miles [45] reduced the 

equation integrals to ones that may be calculated numerically by standard methods. Lewers [41] 

applied a discrete approximation. 

More recently, Tsingos [63] estimated form factors by point-to-polygon form factors (or 

'configuration factors' - see Section 3.2.4.2), which were estimated over a sampling of the 

receiver patch. The sampling method is very popular in the computer graphics community, and 

can be extended to find area-to-area form factors using a technique known as Monte Carlo 

Integration [12]. This method can be highly effective, particularly in the case of occlusions, and 

has been extensively researched in computer graphics. In this research, however, other methods 

were employed, and they are outlined below. 

3.2.2 Form Factor Algebra 

A few properties of form factors of interest for reducing computation times are explored 

here. Many other properties can be found in the thermal engineering literature, in which the topic 

is called 'form factor algebra'. Perhaps the most important property is that of reciprocity. Notice 

that Fjt can be found by simply reversing the patch subscripts, i and j , of F{j. This gives the 

'reciprocity relation': 

AF^A^. (3.11) 

Furthermore, a planar patch cannot 'see' itself, thus 



Chapter 3. Numerical solution. 27 

(3.12) 

Moreover, for a closed environment with YV patches, no energy can escape the environment so all 

energy leaving one patch must be received by the patches in the environment (conservation of 

energy). This gives the 'summation relation': 

3.2.3 Analytical form factors for rectangular rooms 

In the initial stages of this research, when only rectangular patches in rectangular rooms 

were being considered, form factors were found using the analytical formulas from Hahne et al. 

[19](see also references [9] and [25]). These formulas allow for very simple and fast 

computation of form factors for rectangular patches. Because of their lengths, the formulas are 

not reproduced here. 

3.2.4 HeliosFF 

It was of interest to generalize the algorithms to non-rectangular rooms discretized by 

non-rectangular patches. To do this, the original code used in this research was modified to 

incorporate the form factor output from the software HeliosFF [20]. HeliosFF is a modified 

version oiHelios32, a commercial graphics radiosity renderer. Ian Ashdown of byHeart 

Consultants, creator of Helios32, adapted his code to create HeliosFF for use in this research. 

Given a room and the reflection coefficients of its surfaces, HeliosFF meshes the room, and 

outputs form factors along with other pertinent data, such as patch vertices, centers, areas, 

normals, and reflection coefficients. The room is specified by an ordered listing of the vertices 

for each of its surfaces, and the user has basic control over the number of patches into which the 

room is meshed. HeliosFF uses a two-level hierarchical, cubic tetrahedral algorithm to compute 

form factors. 

3.2.4.1 Two-level hierarchy 

In radiosity, we can think of the patches in a room as having two functions - first as 

receivers, receiving energy from the source and from other patches, and then as sources, emitting 

towards other patches. The main idea behind a two-level hierarchy is that when the patches are 

(3.13) 
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behaving as sources, it is sufficient to have a coarser meshing than when the patches are 

behaving as receivers (see later in this section) [12]. In a two-level hierarchy, the TV patches are 

subdivided into M smaller elements (N<M) , with each patch composed of the union of a subset 

of the elements. The patches act as sources and the elements act as receivers. The radiation 

density of a patch is then the weighted average of the radiation densities of the elements forming 

the patch. 

To account for two-level hierarchy, we modify Eq. (3.2) as 

BE, (0 = PE, X Brs (' " REiPj ' cW"*** FE>Pj + BdE> 

with 

Ap ieE 

where EI and P. denote element i and patch j, respectively and E is the set of all i such that 

element i is contained in patch j - i.e. E = jz = 1 , 2 , M \ E ; CZ PJ j . 

The reason for a two-level hierarchy in computer graphics is intuitive [12]. When the 

patches are emitting energy to a distant receiver, the assumption of diffuse reflection effectively 

averages the energy arriving over a solid angle. Hence, the small details of the energy leaving the 

patch are lost, and a coarser meshing is sufficient. When an image is rendered, however, the 

details of its surface are crucial, so a finer meshing is needed. Since the number of patches 

required is less than the number of elements, a two-level hierarchy may considerably improve 

computational efficiency. More on two-level hierarchies (as well as extended hierarchical 

representations) may be found in books dealing with radiosity in computer graphics [2,12]. 

In acoustics, the benefit of a two-level hierarchy is questionable and remains to be 

explored. Here, we are trying to reproduce the impulse response at some point in the room, and 

are not so interested in the details of the sound field at the surfaces. In particular, since the sound 

field may not depend significantly on the exact detail of the surface, further subdivision of the 

patches into elements may not improve the model to the same extent that it does in graphics. In 

other words, i f we have enough patches to correctly model the room, then perhaps more elements 

will not significantly improve the model (the effect of surface discretization is studied in Section 

5.3.1.1). Since HeliosFF uses a two-level hierarchy, since the approach can only make 



Chapter 3. Numerical solution. 29 

predictions more accurate, and since computing efficiency is not the main objective of this 

research, we will use two-level hierarchy. 

3.2.4.2 Cubic tetrahedral algorithm 

Because it is quite complicated, rather than trying to explain the cubic tetrahedral 

algorithm in detail here, we refer the reader to the computer graphics literature, where it is well 

documented [2,6,7,12]. It is a Gaussian quadrature method popular in computer science for its 

computational efficiency and accuracy. The method involves centering a tetrahedron over a 

differential element on patch i, meshing the tetrahedron into cells, and finding the form factors 

between the differential element and the cells. The form factors are stored in a look-up table. 

Patch j is then projected onto one or more of the cells of the tetrahedron. The sum of the form 

factors of the cells covered by the patch is approximately^.. 

It is important to note that the cubic tetrahedral algorithm makes one underlying 

assumption that may affect predictions by the radiosity algorithm. This main assumption is that 

the form factor, Ftj, from patch / to j can be approximated by the form factor between one point 

on patch i and patch j . In equations: 

at some sample point x, on S. (this is also called a 'configuration factor'[2]). (The 

generalization for element-to-patch form factors for a two-level hierarchy is straightforward and 

is left to the reader). What is really being assumed is that the inner integral is constant over patch 

/ . Such an assumption may be reasonable i f the distances between the patches are much greater 

than the size of patch i, but may be questionable for large or near patches. Obviously, what 

makes a patch 'large' or 'near' is important to investigate. In illumination engineering, a 'five-

times' rule is used which states that a patch can be modeled as a point source only when the 

distance to the receiver is at least five times the maximum projected dimension of the patch [2]. 

Detailed studies by researchers in illumination engineering and in computer graphics have 

investigated the errors introduced by the approximation. For sound sources, Rathe [48] has 

shown that for a receiver located on the vertical line of symmetry of a rectangular source, the 

cosf9cosf9' 
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source can be modeled as a point source i f the distance to the receiver is at least the maximum 

dimension of the receiver divided by TT. 

For patches that are too large and too close, it is possible to reduce the error introduced 

by this assumption by subdividing the patch areas. Criteria governing when to stop subdividing 

(i.e. when further subdivision has insignificant effect on the rendered image) are available in the 

literature on computer graphics. Such criteria will probably be different in acoustics than in 

graphics - likely, they wil l be less stringent. 

Several tests were carried out to compare the form factors given by HeliosFF'to 

analytical form factors for rectangular rooms and rectangular patches [19]. For all cases 

considered, the maximum difference between the analytical form factors and those predicted by 

HeliosFFwas 15%. For example, for an 8 by 4 by 2 room with 160 patches, the maximum 

difference between corresponding form factors was 14%>; Helios gave a form factor of 0.073 

when, analytically, it should have been 0.064. In general, finer subdivisions resulted in less error 

in the form factors predicted by HeliosFF. Further tests to establish the applicability of form 

factors found by HeliosFF are discussed in Section 5.3.4. Because a full investigation of form 

factors and their effect was beyond the scope of this research, we will satisfy ourselves with the 

subdivisions and calculations carried out by HeliosFF. 

3.3 Integrals over solid angles 

In Section 3.1 we were twice faced with the problem of finding the integral over the solid 

angles subtended by a point r and a surface Sj. In our case, the point was either the source or the 

receiver, and the planar surface was one of the patches. We need to find 

where 9 is the angle between the surface normal and the line joining r and the surface element, 

and R is the distance between r and the surface element. In this section, we discuss possible 

approaches to evaluating the integral. 

3.3.1 Possible approaches 

Miles [45] gives a simple, closed form expression for a rectangular surface. In the present 

work, however, we wish to be able to work with non-rectangular patches, hence we need to find 
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a more general approach to finding the integrals. We will, however, assume planar, convex 

surfaces with straight edges (convex polygons). 

cos 0 
One obvious approach is to approximate the integral by the value of A) r 2- where At is 

the area of Si and 0O and Ro are defined for some central point on the surface. Unfortunately, this 

is an unacceptable approximation, particularly for points that are close to the surface. Another 

approach that has been suggested [3] is to convert the integral to a contour integral using Stake's 

theorem, but this is quite complicated. 

3.3.2 Spherical triangle method 

The developed and approach taken here, which we call the 'spherical triangle method' 

was not found elsewhere in the literature. It was developed to quickly and accurately find 

integrals over solid angles subtended by polygonal planar patches. The idea is to recognize that 

the integral is simply the area of the unit-spherical polygon (see Appendix A) subtended by the 

planar polygon and r (the unit sphere is centered at r) (see Figure 3.2(a)). To understand this, we 

consider an infinitesimally small differential element of S with area dS, at a distance R from r. 

We find the area it subtends on the unit sphere, da>. Consider the conical solid S with vertex at r 

and the differential element as base (see Figure 3.2 (b)). The area of the cross section of S at 

distance R from r is the area that the differential element projects in the direction 0 -

i.e. cos ddS (refer to Figure 2.1). Keeping the ratio of distance from r to cross-sectional area 

constant, the area of the cross section of S at unit distance from r must be cos 9dS IR2 (since the 

Figure 3.2. Illustrations for the spherical triangle method. 
(a) (b) 
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cross sectional area is proportional to the square of the distance from the vertex). Since dS is a 

differential area, dco is precisely this cross sectional area at unit distance from r - i.e. 

Then is just the integral over Si of infinitesimally small areas on the unit-sphere, so is itself 

It follows that, to find dQ., we need only find the surface area of a spherical polygon. 

To do this, we apply the generalization of Girard's theorem as outlined in Appendix C. It follows 

from this theorem that, to find the surface area of a spherical polygon, we need only find the sum 

of all angles between planes formed by adjacent edges of the polygon and the center 

(source/receiver) point. Call this sum a . Then, by Eq. (C.3) (with a-l), 

where N is the number of edges of the polygon, a can be easily found given the vertices of the 

polygon and the central point by taking cross products and using the cosine law as follows. Let 

vvv2,...,vN be the vertices of the polygon listed in clockwise (or counter-clockwise) order 

around the polygon and let p be the central point. Define vN+l = v,. Then, for i -1,2,TV, the 

normal to the plane Pt passing through v,., v.+ 1, and p is 

dco = 
cos# 

dS. 

the area of the unit-spherical polygon subtended by 5, and r, as required. 

(3.15) 

ni = (yM-p)*(yi-p). 

Let a,, be the angle between Pt and PM where PN+l = Px. Then, by the cosine law, 

cos a,. 

where we take -nM to get the interior angle. Then 

N 
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3.4 Algorithm 

In this section, we outline the basic algorithm used in the implementation of the 

numerical solution, as discussed in the previous three sections. First, a basic outline is given for 

finding the numerical solution without further approximation, then an averaging technique is 

introduced for use in finding the later part of the decay. 

3.4.1 Basic algorithm 

First, we define 

'' R 
T 

E,P, 

E,pl 

cAt 
(3.16) 

as the number of time steps (rounded up to the nearest integer) between element Et and patch 

Pj, where At is the time interval between time steps, as in Section 3.1.4 . The time, rounded to 

the nearest time step, taken for sound to travel from element i to patch j is simply tT = TEPAt. 
EjPj i j 

We similarly define the time steps for source-to-element, receiver-to-element, and source-to-

receiver, TsE ,TrE , and Tsr, respectively. To reduce the number of operations, we also define 

K E l P j =PEi

FEipj- (3-17) 

Now, consider an omni-directional, impulsive sound source of power W that emits 

energy at time t0 (time varying and steady state sound source responses can be found from 

impulsive source responses - see Appendix A). We will use the simplification suggested in 

Section 2.3.2.1 for impulsive sources to deal with air attenuation. In particular, we will neglect 

air attenuation until the end of our calculations, and add it according to Eq. (2.9). By Eq. (3.5), 

the direct contribution to element E{ is given by: 

PEW f -
^ . ( ^ ^ T V I ^ (3-18) 

E, E, 

where AEi is the area of element i and the integral is as in Eq. (3.6) and can be found by methods 

discussed in the previous section. 

If n is the number of time steps, M is the number of elements, and N is the number of 

patches, then the time-discretized radiosity algorithm is as follows: 
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for q = 1 to q = n, 

for i -1 to i = M , where 

BE (tq ) = BE (tq) + BdE (tq) % adding direct contribution 

end 

for j = 1 to 7 = TV 

B » j ^ = 7 ~ X AE,BE,) where E = {|E, cz P.} 

%byEq(3.14) 

for i -1 to / = M , 

BE, (V V y ^ = B p i ^ K E , P j + BE< (V V y ^ 

% b y Eq (3.2) 

end 

end 

end 

3.4.2 Averaging 

Because the above process is very costly in the case of many time steps (i.e. large n), it 

may be desirable to estimate the late radiation densities rather than calculate them explicitly. A 

method for doing this, slightly modified from a suggestion by Rougeron et al. [52], is as follows. 

First, we note that the above algorithm traced element radiation density for more that the 

maximum time-step, tn. Indeed, q + TEP , the subscript in the last 'for' loop, may be greater than 

n(for q = n, for example). Let n'be the maximum such subscript. Then BE (tq) for n<q <ri is 

the 'un-shot' instantaneous radiation density of element Ei at time tq (where 'un-shot' means that 

it has not yet propagated to other elements). Define: 
M 

^ ( ^ ) = ^ 4 T L J for (3.19) 

IX 
1=1 
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as the average un-shot radiation density at time tq. Bavg for other time steps is zero, 

M 

Pavs=^ (3-20) 
I X 

as the average reflection coefficient, and 

AV 
R

a*8=U (3-21) 
I X 
1=1 

where Vis the volume of the enclosure. Ravg is the mean free path length of sound in the room. 

(See Kuttruff [36] for a derivation of 4V/S as the mean free path length in a room of arbitrary 

shape and with diffusely reflecting boundaries, where S is the surface area). Then define 

avg 

Ravg (3.22) 
cAt 

as the average number of time steps between elements. From this, we find the estimated radiation 

densities at time tq , for n +1 < q < n' + qavg , as 

B At) = B (t-t ) + p B (t -It ) + p2 B (t -3t ) + ... 
estVq) avgVq qavg > H avg avgVq qavgJ r avg avgV q qmg) 

= Y p w B (t . ) (3.23) 
avg"avg\"q-iqavsl \-"' J 

(=1 

where the summation is taken to the maximum i such that q + qavg > n and Bavg(tq) = 0 for 

q > n'. 

Now, let be the maximum time step for which we wish to predict. Then Best(tq) for 

n ' + aavg

 < a - "max remain to be found. They can be found by Eq. (3.23) above, but, since 

Bavg(tq) = 0 for q > n', it is simpler to find them by 

B e s , ( ^ i + j q , J = PJ

avgB(tn.+i) (3.24) 

for / = 1,2,q a v g and j > 1 such that n' + i + jqavg < «max. 

Once all Best have been found, we add the estimated radiation densities to the exact ones 

to get the updated radiation densities, 

B'Eitq) = BE(tq) + pEjBesl(tq) (3.25) 
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for 1 < q < « m a x (where BE (tq) for q > n' are defined as zero). The applicability of this method 

will be explored in the Chapter 5. 

3.4.3 Sound pressure at the receiver 

Having found all BE (tq) (we have dropped the primes in the above expression for 

convenience), the sound intensity at the receiver (characterized by r) is found, using Eq. (3.7), by 

the algorithm: 

for q = 1 to q = n, 

for i = 1 to / = M , 

W tq+Trpi ) = / (r , tq+TrF/) + - BE (tq) \dQ. 
K Ei 

end 

end 

W 
I(r, tT ) = I(r, tT ) H % direct contribution. 

T*' T*J AKRsr

2 

Finally, it remains to add the air absorption. This is done, very simply, according to Eq. 

(2.9). We can then find the squared pressure at the receiver from Eq. (2.14). This done, we may 

find the echogram and room acoustical parameters, as predicted by acoustical radiosity. Methods 

for doing this are discussed in the next chapter. 
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CHAPTER 4 

Predictions from the solution 

In this chapter we outline the methods used to make predictions of the room sound field 

from the solutions obtained by numerical evaluation of the integral equation (as outlined in the 

previous chapter). First, we find the impulse response, from which we can find the echogram, 

steady state sound pressure level (SPL), as well as the sound decay curve. From the decay curve, 

we can find reverberation time (RT) and early decay time (EDT). The impulse response can also 

be used to find clarity index (Cso), definition (Dso) center time (TS), and strength (G) directly 

from their definitions. 

Based on the numerical methods and algorithms presented in the previous chapter and on 

the methods discussed here, code was written in MATLAB to implement acoustical radiosity. The 

code is outlined in Appendix D and is validated and investigated in the following chapter. 

4.1 Impulse response 

4.1.1 Definition 

We have already introduced the impulse response in Chapter 1, and a formal definition 

can be found in Appendix A . In acoustical radiosity, as presented in this research, we are 

interested in finding an impulse response, g(t), that can be convolved with the source power, 

s'(t) (possibly varying with time), to give the pressure-squared response at the receiver, 

s(t) (that is, the square of the pressure arriving at the receiver as a function of time). We refer to 

this as the 'pressure-squared' impulse response, and it has units Pa 2/W. Often (and ideally) in 

acoustics, the impulse response is the pressure response, but this is not feasible here because 

radiosity loses the required phase information by tracing sound intensity. Nevertheless, the 
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pressure-squared impulse response is sufficient for predicting echograms, decay curves, steady 

state sound pressure levels, and other common acoustical parameters, such as RT, EDT, Cso, D50, 

TS, and G [35]. 

4.1.2 Prediction 

Assume we have predicted p2(t) at the receiver by the radiosity algorithm outlined in 

Section 3.4 for an impulsive signal with power Wat time t = 0 (and 0 for all other times). Then 

the predicted pressure-squared impulse response of the room for this signal is simply 

g(0 = I ^ W - O (4.1) 

;=i " 

This predicted squared impulse response is discretized, with all reflections that come between 

two time steps, U and ti+/, having been pushed forward and added to the reflection at tt+j. This is 

a result of discretizing time in the numerical solution of the integral equation. 

The Wx factor is included in Eq. (4.1) to fit our definition of an impulse response. In a 

sense, our impulse response is 'normalized'. Were the Wx factor not included, g(t) would be the 

response to W8(t) rather than to 5(t), as defined, and pressure-squared impulse response would 

be a function of the power of the source; signals would need to be weighed by W~x before 

convolution with g(t) to get the correct output. This way, convolving with our original 
f W for t = 0 , 

signal, s (t) = \ gives back the output, p (t) from the radiosity algorithm, as required. 
10 for f^O 

4.1.3 Consistency check 

It is important to confirm that sources of different powers will give the same impulse 

response when predicted this way (equivalently, that convolution with sources of different 

powers than the original gives the correct output). Of course, we require that the predictions are 

for the same room with the same meshing, and that the sources and receivers are in the same 

position. The confirmation is as follows. 

Consider two impulsive sources, s[ (t) and s2' (t). Suppose that source / , (/ = 1,2) has 

power W{, predicted pressure square response pf (t), and corresponding predicted impulse 

response (by Eq. 4.1) 
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where the tt are the times for which p2(t) * 0 , and nt is the number of such times. Clearly, 

si (0 * g, (0 = P,2 (0 (where * denotes convolution). We want to check that 

s2 (0 * S\ (0 = Pi (0 • Carrying out the convolution gives, 

'2'(0*s,(0 = 5-/>,2(0 = W(0 <4-2> 

where k = . So, we need only to show that p2

2 (t) = kp^it). 

In what follows, subscripts 1 and 2 correspond to sound sources 1 and 2, respectively. 

From Eq. (2.13) it is evident that Idi (rr,t) = kld> (rr,t). By the last theorem in Appendix C, it 

follows from Eq. (2.12) that 

n s R, 

= k 
71 s R 

= klx(rr,t) 

What we wanted to show - i.e. p2(t) = kp2(t) - follows directly from Eq. (2.14), so that Eq. 

(4.1) is indeed consistent. 

4.1.4 Integrating the impulse response 

For many of the parameters and measures dealt with in the remainder of this chapter, it 

will often be necessary to integrate the impulse response over some limits. For a < b : i f 

b < 0 or tn < a then 

b 

\g{t)dt = 0 
a 

because our impulse response is zero in the interval. Otherwise, by Eq. (4.1), 
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b 

\g(t)dt 
a 

" 1 i=a 
(4.3) 

where a' and b' are such that *a,_, < max(0, a) < ta, and fft,_, < min(Z>, ) < tb.. Simply, ta. is the 

nearest time step above t = a , and similarly for b. The 'max' and 'min' are taken because the 

4.2 Signal response 

From the pressure-squared impulse response, g(t), the response to any signal, s(t), is 

found by convolution of the source signal and the impulse response. For the original signal (the 

one used in the radiosity algorithm to give p2 (t) ), we have s(t) = p2 (t). From the discussion 

W 
above, for an impulsive source with power W2, s(t) = — p2(t) where Wl is the power of the 

wi 
original source. 

4.3 Echogram 

The echogram for an impulsive source of power W2 can easily be made from the signal 

W 
response by definition. In particular, at time tt we mark a vertical line of height sit,) = —p2(ti) 

w \ 

to get the echogram, where p2{tt) is found using the radiosity algorithm outlined for an 

impulsive signal with power Wi. 

4.4 Steady state sound pressure level 

The steady state sound pressure level for a continuous source of power W2, s\t) = W2 for 

all time t, is found as follows. The squared pressure response after sufficient time (the time 

needed for the room to reach a steady state, also the length of our impulse response) will be 

impulse response is zero for t < 0 and for t > tn. 
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constant, so that the root-mean squared pressure can be taken at one time, say t0. Intuitively, the 

root-mean square pressure is just the sum of all the reflections (non-zero values) of the pressure-

squared response of the impulsive signal with power W2. The steady state sound pressure level is 

found as: 

SPL = lO\og 's(tS 
K Po' , 

= 101og 
\s'(T)g(tQ-T)dT 

Po 

lOlog 
W2 \g(t)dt 

= 101og 

Po 

^ ± P % ) 

Po 

by convolution 

by Eq. (4.3) 

= 101og + 101og 

r » 
TP2(0 
;=i 

Po2 

(4.4) 

where p2(t;) is found using the radiosity algorithm outlined for an impulsive signal with power 

4.5 Sound decay curve 

To find the decay curve, suppose a steady source, s'(0, of power W2 is turned off at 

\W2 for t < 0 
time / = 0 - i.e. s (t) - < . The decay curve for this source is found as 

0 for t = 0 
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A(0 = 101og „ 2 
Po J 

•lOlog '̂ 1 
, A)2 , 

lOlog 

So, by Eq. (4.3) 

= 10 log 

s{0) 

\s'(T)g(t-z)dz 
f 

= 101og 

j V ( r ) g ( 0 - r ) J 

( o ^ 
W2 \g(t-T)dT 

= 10 log 

u 

^ 2 Jg(-r)Jr 
v 

ay 

Jg(r)Jt Vo 

A(0*101og 

f n \ 

i=a ' 

V 1=0 

(4.5) 

where ta is the time step with r0_1 <t<ta. h(t) is the amount, in dB, at time t that the sound 

pressure level has changed from the steady state sound pressure level (at time t - 0). Note that 

this curve is in fact independent of the source power. In particular, the decay curve characterizes 

the room and its configuration, not the source. 

4.6 Reverberation and early decay time 

The reverberation time, RT, is found by estimating the slope of the decay curve. For this 

purpose, only part of the decay curve is considered. This is often taken to be the part where the 

decay curve has fallen to between 5 dB and 35 dB below the initial level. The slope is also often 

estimated from the decay between 5 dB and 25 dB below the initial level [26]. Once the slope m 

is found, the reverberation time is simply 

RT = -60m"1. (4.6) 
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In this research, a line of best fit was fitted (using linear least-squares regression) to the decay 

curve between -5 dB and -35 dB. 

EDT is also found by fitting a line of best fit to the decay curve. The slope is estimated 

from the decay between 0 and -10 dB. 

4.7 Other Parameters 

Define d to be the time taken for sound to travel from the source to the receiver. This is 

the time of arrival of the direct signal. Before t = d the impulse response is zero (the direct signal 

is the first to arrive at the receiver). 

4.7.1 C lar i t y 

Q 0 = i o i o g 

f d+80ms \ 

j g(t)dt 
d 
CO 

f d+Wms \ 

\ g(t)dt 
f d+80ms \ 

j g(t)dt 
d 
CO = 10 log 0 

OO 

j g(t)dt 
\ d+SOms ) 

J g(t)dt 
\ d+SOms J 

= 101og 

f a \ 

I>2(0 

since jg(t)dt = 0 

(4.7) 

where ta is the time step with ta_x <d + 80ms <ta 

4.7.2 Defini t ion 

d+50ms d+50ms 

\ g(i)dt \ g(t)dt 
D =—^- = 101og 

\g(t)dt jg(t)dt 

Z P % ) 
I=0 

±p\h) 
V 1=0 

where tn is the time step with t , <d + 50ms < t , 
a r a—l a 

(4.8) 



Chapter 4. Predictions from the solution. AA 

4.7.3 Center time 

)tg(t)dt ^^ilsit-Odt 
TS = 0 i"=0 

\g(t)dt 
w, 1 1=0 

<=0 

p'itjjtSit-tJdt 

1=0 

1=0 

2>2(0 

by Eq. (4.1) and (4.3) 

(4.9) 

4.7.4 Strength 

G = 101og 

\g(t)dt 
_ 0 
00 

\gA(f)dt 
Vo 

= 101og 
Y Y \ i=0 

4 :̂10^ 

(4.10) 

Note that the term in the denominator is just the free field squared sound pressure at 10 

meters from an omni-directional point source of unit power. The simplification for this comes 

from understanding that there will only be one non-zero value in the impulse response in the free 

field, and that will come directly from the source (see Eq. (2.13)). The source has unit power to 

be consistent with our impulse response (in the numerator), which has power 'normalized' out 

(see the discussion after Eq. (4.1)). The strength calculated in this way is indeed independent of 

power. 

4.7.5 Others 

Measures of spaciousness, such as the lateral energy fraction (LF) and inter aural cross 

correlation (IACC) could also be easily predicted from the calculated wall radiation densities, 

Bt(t), but are not considered in this research. 
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CHAPTER 5 

Validation and experimentation 

5.1 Validation of the numerical solution 

As with any numerical solution, it was desirable to validate the numerical solution (both 

the methods and the algorithms) by comparing them to a known analytical solution. Such a 

comparison could also reveal possible problems or errors in the coding of the numerical solution. 

The algorithms developed are valid for (un-occluded) rooms of any shape with planar surfaces. 

We have analytical solutions for the sphere (Section 2.4.1), so one way to validate is in the case 

of a spherical enclosure with the curved walls approximated by a sufficiently fine mesh. 

Ian Ashdown provided data for a meshed sphere, ready for input into HeliosFF. The 

meshing consisted of 288 patches and 408 elements. Predictions were made for three spheres of 

varying sizes and absorption coefficients. In all cases, the source was an omni-directional point 

source of power 0.005 W in the center of the sphere, and the sphere's surfaces had constant 

absorption coefficient, a . Absorption of air was neglected. The results are given in Table 5.1 . 

In the table, a is the radius of the sphere and r is the distance between source and receiver, both 

in meters. The subscripts 'theory' and 'rad' denote predictions by the analytical solution based 

on formulae from Section 2.4.1 and predictions by the radiosity algorithm, respectively. RT is 

reverberation time in seconds, and SPL is steady state sound pressure level in dB. The radiation 

Table 5.1. Numerical and analytical predictions for three spheres. 

Case a a r ^theory Brad Brad Rl"theory RTrad SPLmd 

1 1 0.05 1/2 0.0076 0.0076 0.0074 1.047 1.044 105.18 105.24 
2 2 0.20 J i 3.98e-4 4.03e-4 4.11e-4 0.483 0.488 92.68 92.66 

3 3 0.50 4~2 4.42e-5 4.48e-5 4.52e-5 0.242 0.240 85.90 85.90 
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densities listed (Bin W/m 2) are for a steady-state source (with power 0.005 W). For radiosity, 

these are found by summing radiation densities for each patch (found from Eq. (3.2) for an 

impulsive source of power 0.005 W) over all time. This is just the radiation density signal 

response of the patch - the convolution of the radiation density impulse response of the patch 

convolved with the signal. Brad is the average over all patches and Brad is the value for the patch 

that differed most from Blheory (the worst case). 

In each case, time was discretized at 24000 samples per second and the impulse response 

was found up to 'maximum time' seconds. Simulations were run on a Pentium III computer, with 

speed indicated in the Table 5.2. Run times and memory requirements are given in Table 5.2. 

Note that the long run times are for Module 2 (finding the radiation densities of the patches -

refer to Appendix D for a discussion of the codes and modules). Run times for Module 3 (finding 

the impulse response at the receiver and making predictions) were always only a few seconds. 

Furthermore, HeliosFF found the form factors within a few seconds. 

Clearly, the analytical and numerical solutions are very close, and we can have 

reasonable confidence in our numerical solution. It would have been interesting to investigate the 

effect of the resolution of the meshing of the sphere on the prediction. However, in the interest of 

time, and because the current meshing gave predictions consistent with analytical results, such an 

investigation was not performed. 

5.2 Comparison Preliminaries 

In this section we briefly describe the procedures to be used in investigating and 

evaluating the radiosity algorithm. These procedures will be used to compare radiosity to (1) 

variations for different predictions (different numbers of patches, differing time resolutions, and 

so on) by the radiosity algorithm; (2) other prediction methods (in particular, ray tracing); and (3) 

measurement. 

Table 5.2. Time and memory requirement for predictions on three spheres. 

Case Computer speed 
(MHz) max. time (s) CPU time (s) Memory requirement 

(MB) 
1 1794 1.0 6.33 e4 93 
2 2193 0.6 4.20 e2 63 
3 2193 0.6 2.40 e2 30 
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5.2.1 Parameters, echograms, and discretized echograms 

Listener perception of a sound field is affected by two main attributes of the field. The 

first is the arrival time and strength of the direct signal and the first-order reflections. 

Differences between sound fields with respect to these reflections can be seen in the comparison 

of echograms, which is perhaps the most fundamental way to compare prediction and 

measurement. Similar predictions and/or measurement will have similarly looking echograms. 

Such a comparison will reveal information about the sound fields, such as prominent reflections 

and other finer details about the distribution of energy in time. 

The other perceptible attribute of the field is the temporal distribution of energy. Most 

room acoustical parameters are measures of this distribution (for example, Cso and D50 are 

defined by ratios of early and late energy), and have been established as being well correlated 

with listener perception [61]. For this reason, a comparison of these parameters is a good way to 

compare sound fields. Nevertheless, much information about the distribution of energy is lost to 

these parameters, which are not highly sensitive to subtle changes in the distribution. 

To enable comparison of such changes, a technique called 'echogram discretization' was 

developed for use in this thesis. Echogram discretization is a way to compare total energy levels 

within small time steps. The idea behind echogram discretization is very simple: time is 

discretized and all energy arriving between points of discretization is summed to give the total 

energy for the corresponding time step. This is a similar idea to that used in discretizing time in 

the radiosity algorithm. To gain more information from the discretized echogram than is 

available from the original echogram, the resolution used in the echogram discretization must be 

coarser than the time resolution used in the radiosity algorithm (or in the case of measurements, 

the inverse of the sampling frequency). Note, however, that using a larger time interval in the 

radiosity algorithm will not give the same results as using a smaller time interval in radiosity and 

then using the larger interval in the discretization of the echogram. 

5.2.2 Auralization 

Auralization refers to techniques by which the predicted sound field is realized audibly. 

This can be done over headphones or by using loudspeakers. Because it is difficult to quantify 

what we hear, perhaps one of the best ways to compare predictions and measurements is to 

auralize their sound fields and compare the listener's perception of the different fields. Indeed, it 
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would be very interesting to listen to a room with perfectly diffusely reflecting boundaries, 

which does not exist in reality. Unfortunately, time limitations did not allow for the inclusion of 

auralization into this research. 

5.2.3 Ray tracing with RAYCUB 

It is of interest to compare radiosity to ray tracing, which is one of the most 

comprehensive and thoroughly investigated room acoustics prediction methods. The ray tracing 

model used for this comparison is RAYCUB, consolidated by Murray Hodgson. RAYCUB uses 

the ray tracing algorithm suggested by Ondet and Barbry [47], with modifications to predict 

echograms and acoustical parameters, and to account for diffuse reflections, as described by 

Kuttruff [30]. RAYCUB allows the user to input all of the room characteristics (room 

dimensions, source/receiver positions, absorption coefficients, air absorption exponents), the 

receiver size (a cube of finite volume), the number of rays to be traced, the number of ray 

trajectories, and the sampling rate. In addition, a diffuse reflection coefficient, d, is input for 

each of the surfaces. This coefficient gives the proportion of the incident energy that is diffusely 

reflected. The remaining proportion, 1 - d, of the energy is specularly reflected, so that d = 1 and 

d = 0 correspond to purely diffuse and specular reflection, respectively. To incorporate this, a 

random number in the interval (0,1) is chosen at each reflection. If the number is less than or 

equal to d, then the reflection is diffuse, otherwise it is specular. In the case of diffuse reflection, 

two additional random numbers determine the direction of the reflected ray. The first number is 

chosen in the interval (-ri, ri) to define the azimuthal angle of the reflected ray. The polar angle 

of the reflected ray is defined by the arccosine of the square root of the second number, chosen in 

the interval (0,1). Details about this method can be found in the paper by Kuttruff [30]. 

5.2.4 Predicted impulse response length 

It is important to have an understanding of how the length of the predicted impulse 

response may effect our predictions and, thus, what prediction length is required. In particular, 

since many of the parameters involve integrals of the impulse response from some time to 

infinity, we must be careful not to lose too much information and introduce too much inaccuracy 

by not predicting the impulse response to a sufficiently large time. We turn our attention to 

reverberation time. 
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For this discussion, we assume exponential decay of the energy in the room. Let Tbe the 

decay time at the receiver position. Then 

s(t) 
E{t) = - 2 (5.1) 

by Eq. (2.14), where E(t) is the energy density at the receiver position at time t and s(t) is the 

pressure squared signal response. A lso, E(t) = E(0)e~"T by the assumption of exponential decay 

(see Appendix A ) . It follows that s(t) = s(0)e~"T , and that the decay curve is given by 

A(0 = 101og = 101og 
rs{Q)e-"T^ 

s(0) 
= 101og(e- ' / r ) (5.2) 

Let g(t) be the complete (pressure squared) impulse response extending to infinite time. Then 

the decay curve, as in Section 4.5, is given by 

/*(/) = lOlog 
v * (0)v 

lOlog 

TO 

J 
CO 

\g(t)di 

V o 

If tfinai is the maximum time to which the impulse response is predicted, the integral to 

infinity is approximated by the integral to tfmai, and we get the approximate decay curve, 

^ ( 0 , defined for 0<t<tfinal 

h (0 = 101og 

^ ''final 

V o 

C 00 

= 101og 

J g(r)di 
0 

\g{v)dt- \g{r)dr 

'filial 
J g ( r ) d r - J g{r)dv 

'final 

= 101og 
r^)-s(tfinS 
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In our predictions, reverberation time is found from the slope of the line of best fit to the 

decay curve between -5 and -35 dB (see Section 4.6). The exact decay curve, h(t), is a straight 

10 
line (passing through the origin) with slope m (this can be easily confirmed by 

rin(10) 

taking the derivative of h(t)). Differentiating happrox(t) with respect to time to find the slope of 

the approximate decay curve at time t we get 

dh T(r) 
m„ 

approx y 

dt 
-10 

10 

V 

V 

rin(lO) 

m 

(e-' / r-e"W r)ln(10) 

1 

f e-"T^ 

l-ev (>-<f,„a,)IT • (5.4) 

Since 0 < e

( '~' f" , a , ) / T < 1 for t < tfmal (the domain of definition of happrox(t)\ mapprox(t) < m < 0, the 

approximated slope will always be greater than the actual slope. By Eq. (4.6), the approximated 

reverberation time is, consequently, less than the actual reverberation time. We have shown that 

predicting the impulse response to a finite time results in low approximated reverberation times. 

(Note that lim h (t) = h(t) and lim m (t) = m as they should.) 

Suppose we want to find the approximate reverberation time within some small values 

of the actual reverberation time (we requires < RT , otherwise we are allowing the predicted 

reverberation to be less than zero). Notice in Eq. (5.4) that as t increases to tfiml, mapprox(t) 

decreases. Thus, the slope of the line of best fit to (a finite sample of points along) 

happrox(t)between -5 and -35 dB is a better approximation to the actual slope, m , than the line 

between (t5, -5) and (^5, -35), where t's, and t'i5 are such that happrox(t's) = -5 , and 

^W<«(4) = - 35 respectively. We approximate the slope as 

30 
m„ approx t' ~t' 

30 
At' 

(5.5) 

where At' - t'i5 -t'5. From this we find the approximate reverberation time as 

RTapprox=-60mapprox-]=2At'. (5.6) 
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Note that RTapprox < RT (from the discussion after Eq. (5.4)). If we can ensure that 

RT-RTapprox<s, (5.7) 

then the reverberation time predicted from the line of best fit will also be within s of the actual 

reverberation time (by the 'better approximation' argument above). We know 

RT = -60m~] =6rin(10). (5.8) 

To find RTappr0X we must find At'. By Eq. (5.3) and by definition of t\ for i = 5,35, 

-*=Awc;)=ioiog 
f e-t\IT _e~'finalIT "N 

v 1 e J 

10~'710 {\-e~'fi"a,IT j = e~''s'T -e~tf"""'T 

r' = - r i n 

It follows that 

At' = t'35 -t's 

Tin 

= T ln 

1 Q-5/10 ^ _ G - ' > , „ ; T j + ^ 

10~35/1° (l - e~'f"""'T j + / r 

1 0 - 5 / 1 0 ( e ^ ' / r - l ) + l 
•1 

(5.9) 
1 0 - 3 5 / , 0 ( e ' ^ / 7 ' - l ) + 

To find the minimum required value of tfiml to satisfy Eq. (5.7), we combine Eq. (5.6) - (5.9), to 

get 
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3 -TT 

1 + -

1(TV -1 
J 
r 

10 -35/10 -10 -5/10 10" V r 

v J 

(5.10) 

Note that all times (including tfmal (s,T)) are in seconds and that Eq. (5.10) applies only 

for s < RT = 6rin(10) . For values of epsilon equal to the reverberation time, the second term in 

the brackets for natural log is zero, giving tfmal = 0 . Indeed for s > RT , RTapprox = 0 satisfies Eq. 

(5.7) so that no prediction is needed. Figure 5.1 shows tfinal. versus reverberation time for 

various s. 

If the reverberation time is to be predicted from the decay curve between -5 and -25 dB, 

-35 in the denominator of Eq. (5.10) must be replace by -25. This will result in a smaller value 

of tfiml (e, T) , so that the impulse response does not need to be predicted as far. 

Figure 5.1. t r . versus reverberation time for various s . 
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In summary, to guarantee that the reverberation time predicted from a truncated impulse 

response is within e of the reverberation time obtained from the full impulse response, the 

truncation must occur at a time greater than t r . . (s,T), given in Eq. (5.10), where Tis the 

actual decay time. The reverberation time obtained from a truncated impulse response will 

always be less than the reverberation time obtained from the full impulse response. This is based 

on an assumption of exponential decay, and may not be applicable to responses with non-

exponential decay. 

5.3 Predictions for a cubic room 

To investigate several issues surrounding the convergence and computational efficiency 

of the numerical solution developed in the previous section, the radiosity algorithm was run 

numerous times for four cubic rooms. Each cube had walls 8 m long, and an average absorption 

coefficient of 1/6 (average absorption coefficients were chosen to be equal to allow for 

observations about the effect of absorption distribution). The absorption was distributed as 

indicated in Table 5.3. 

Predictions were made varying: (1) the number of patches (only a singe-level hierarchy 

was applied); (2) the resolution of the time discretization; (3) the length of time for which exact 

and approximate predictions made are made; and (4) the form factor prediction method. The 

effect of the varying distribution of absorption (among the four cubes) was investigated using the 

results, and comparisons were made with predictions by ray tracing. For each prediction, the 

source was in the center of the cube and had power 0.005 W. The receiver was located two 

meters above the floor, two meters from the front wall, and two meters from a side wall (by 

symmetry of the configurations, it doesn't matter which). Air absorption was neglected 

throughout because it has no effect on convergence (from the way it is incorporated). 

Table 5.3. Distribution of absorption in the cubical rooms. In all cases, a = 1/6. 

Cube Distribution of absorption 
1 a = l/6 over all walls 
2 a = 1 on the floor, 0 on the other walls 
3 a = [/2 on the floor and the ceiling, 0 on the other walls 
4 a = % on the floor and the front wall, 0 on the other walls 
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5.3.1 Initial predictions with varying patch sizes 

The fundamental basis of the numerical solution of the integral equation was the 

discretization of the boundary. This results in discretization error, which we expect becomes 

smaller as the resolution of the meshing is increased. In particular, we expect that, as the 

resolution is increased, the numerical solution approaches the analytical solution. Because CPU 

requirements increase with the square of the number of patches (as we shall see later in this 

section), we wish to minimize the number of patches used in the discretization. The following 

investigation was conducted to gain better understanding about requirements for the resolution of 

the mesh used. 

For each cube, the radiosity algorithm was run ten times for each cube with an increasing 

number of patches. The first prediction for each cube had each wall as a single patch, giving a 

total of six patches. For the second prediction, each wall was divided into four equally sized, 

rectangular patches, giving 24 patches in total. The third prediction had nine patches on each 

wall for a total of 54 patches, the fourth had 16 for 96 total, and so on (in general, the « t h 

prediction had n patches on each wall and 6n patches in total - see Figure 5.2). 

The predictions were made with discretization period A? =1/24000 s. This was chosen 

based on initial, rough predictions that indicated that there is almost no variation in the 

parameters i f the time is discretized more finely than At = 1/18000 s. Time discretization is 

discussed further in Section 5.3.2. Form factors were found using the analytical formulas given 

byHahne et al. [19]. 

texact and tf,„ai were set to 0.8 s and 1.0 s, respectively, where texac, is the time step to 

which the exact radiosity prediction is made (corresponding to t„ of Section 3.1.4) and tf,n„i is 

the last time step to which the prediction is made (corresponding to tn of Section 3.4.2). They 
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were chosen according to Eq. (5.10) as follows. According to Eying, RT in the cubical rooms 

should be 1.1782 s, which corresponds to a decay time of 0.0853 s by Eq. (B.l). Although this 

decay time may not be perfectly accurate (due to the limitations of diffuse field theory [23] we 

can take it as an initial estimate for use in Eq. (5.10). To apply Eq. (5.10), we also must assume 

exponential decay. Miles [45] has shown that in general, after some time, the decay curves 

predicted using the integral equation, Eq. (2.7), are strictly exponential. Consequently, even 

though the first part of the sound decay may not be exponential, the assumption of exponential 

decay along the entire curve may not be unreasonable in this application. If we wish to predict 

reverberation time within 0.01 s of the full impulse response RT (which represents very high 

accuracy), then according to Eq. (5.9), we need 

W ( ° - 0 0 1 ' ° - 0 8 5 3 ) = ° - 9 2 6 4 s-

tfmai =1-0 w a s chose accordingly, and t^^ was chosen quite close to tfmal because the effects of 

varying tawct remained to be explored. tfinal and t^acl are discussed further in Section 5.3.3. 

5.3.1.1 Patch Size 

Figure 5.3 shows the echograms for Cube 1 obtained from the 2 n d , 3 r d , 5 t h, and 10 th 

predictions (with 24, 54, 150, and 600 patches, respectively). As the meshing is refined, it 

appears that the energy arriving at the receiver is spread out in time, with fewer distinct 

reflections. Indeed, the echogram for 600 patches has none of the outstanding, large peaks that 

the echogram for 24 patches has (apart from the direct signal). An explanation for this 

observation is that, with a finer meshing, the energy leaving a patch is divided into more parts to 

propagate to the other patches, so that large units of energy are quickly dissipated. This is what 

we would expect in a room with diffusely reflecting boundaries. The echograms have been 

plotted in Figures 5.4 and 5.5 with different domains and ranges than Figure 5.3 to show 

different details. 

In a real room, with partially specularly reflecting boundaries, some distinct reflections 

would be expected, suggesting that fewer patches may give echograms looking more similar to 

measured echograms. However, this should not be interpreted as meaning that predictions with 

fewer patches give more realistic predictions. The arrival times and amplitudes of the distinct 

reflections in such predictions are unrealistic and do not correspond to times and amplitudes that 

would result from specular reflection. 
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Figure 5.3. Echograms for Cube 1 from predictions with 24, 96, 294, and 600 patches. 
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ê -O.OOS 

Q-.0.008 

go.ooe 

1 SO Patches 

O.:02 !0:04 0.06 
time(s) 

600 Patches 



Chapter 5. Validation and experimentation. 

Figure 5.4. Range reduced from Figure 5.4 for more detail 
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Figure 5.5. Range reduced and domain increased from Figure 5.5 for more detail. 
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Figure 5.6 shows discretized echograms for Cube 1, with time intervals of 0.01 s and 0.05 

s. For each time interval, the pressure-squared sums found for the 1st, 3 r d , 5 t h, and 10 th predictions 

(with 6, 54, 150, and 600 patches, respectively) are plotted next to one another. From the graphs, 

we see that more patches tend to result in more energy in the very early time steps, with levels 

becoming more uniform at about 0.15 s. The very early trend seems to reverse itself from about 

0.2 s to 0.35 s, after which energy levels are once again very similar. 

The most noticeable changes in the echograms and discretized echograms occur for 

predictions with less than 150 patches. For more than 150 patches, there is much less change, 

with predictions for 150 patches already very similar to predictions with 600 patches. This 

indicates that 150 patches are sufficient for accurate predictions in this case. 

In Figure 5.7, the predicted values for the various parameters are plotted as a function of 

the number of patches. These plots are for Cube 1, and were very similar for all four cubes. Each 

of the parameters considered {SPL, TS, EDT, RT, Cso, and D50) converged to a finite value as the 

number of patches was increased. The difference (in percent) between consecutive predictions 

decreased with increasing number of patches (here consecutive means between the n t h and the 

(«+7) s t prediction, with 6n2 and 6(n+l)2 patches, respectively). This suggests convergence by the 

ratio test [14]. Because the algorithm gave predictions very close to analytical solutions for the 

sphere, we can be quite confident that the numerical solution does indeed converge (with 

increasing number of patches) to the analytical solution to the integral equation. 

Cso was quite clearly the slowest to converge of all the parameters. Even in the case 

where it was slowest to converge (Cube 1), however, the differences between fifth and sixth 

predictions of Cso were less than 1%. In fact, all of the other parameters (in all cubes) had 

differences less than 1% already between the third and fourth predictions. Indeed, a fine 

subdivision of the enclosure was not at all necessary in these trials, and 150 patches were 

sufficient for good predictions, as in the echograms. 

Worth noting is that the difference between SPLs for the first and second prediction was 

already less than 1% (in all cubes). This suggests that radiosity can be used with a very coarse 

subdivision (one patch per wall in this case) to predict steady state sound pressure levels in 

rooms with diffusely reflecting boundaries, even with non-uniformly distributed absorption (at 

least for a cubical room). 



Chapter 5. Validation and experimentation. 60 

Figure 5.6. Discretized echograms for Cube 1. 
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.7. Parameter predictions versus number of patches for Cube 1. 
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At this point, it is worth pointing out that the required patch size does not depend on the 

frequency of the sound that is being considered. This is due to the fact that phase is not 

accounted for in radiosity. Indeed, the integral equation is the same for any frequency (except for 

the values of absorption coefficients and air absorption constants), and consequently 

convergence of the numerical solution to the analytical solution is not frequency dependent 

(apart from changes in convergence with varying absorption). Convergence of the numerical 

solution to the analytical solution is not to be confused with convergence to the true solution (the 

solution that would be obtained in a real room). We certainly expect that the analytical solution 

to the integral equation (which is the converged numerical solution) will be closer to the true 

solution at higher frequencies, because phase effects are less significant at these frequencies. The 

phase independence of radiosity might also help to explain the adequacy of a coarse subdivision 

of the enclosure. Still, it is important to keep the relationship between the patch sizes and the 

wavelength of sound being considered in mind when working with acoustical radiosity. 

Particular attention must be paid in the case of high frequencies, where shorter wavelengths 

might require smaller patches. Refer to Section 3.2.4.2 for further discussion on patch sizes. 

5.3.1.2 Absorption distribution 

From the predictions made for the four different cubes, we can learn something about the 

effect of different distributions of absorption. As mentioned above, the average absorption 

coefficient in each cube was 1/6. Refer to Table 5.4 for the predicted parameters (from the run 

with 150 patches). 

Reverberation time was longest in Cube 1, with uniform absorption, while the shortest 

reverberation time was in Cube 2, which had absorption on the floor. The 12% difference in RT 

Table 5.4. Parameter predictions for the four cubical rooms. 

Cube 1 2 3 4 
SPL (dB) 84.87 84.99 84.63 84.67 
Cso (dB) 2.00 2.85 2.39 2.35 
D50 (%) 45.87 49.88 47.83 47.58 
TS (ms) 94.67 84.50 89.70 90.20 
EDT(s) 1.24 1.08 1.17 1.17 
RT(s) 1.23 1.08 1.17 1.17 



Chapter 5. Validation and experimentation. 63 

in these cubes indicates that absorption distribution has significant effect on RT. Following a 

line of reasoning set forward by Schroeder and Hackman [54], the reason Cube 2 had the lowest 

RT\s that the absorbent surface 'sees' only reflective surfaces. In the other cubes, the absorbing 

surfaces 'see' surfaces that absorb some of the sound, so they receive lower sound energy than 

they would from reflecting surfaces. In Cube 1, no surfaces are fully reflecting, so that 

absorbing surfaces 'see' only other absorbing surfaces, resulting in a lower decay rate and higher 

RT. Since the absorbing surfaces in Cubes 3 and 4 'see' both reflecting and absorbing surfaces, 

the reverberation times are between those in Cube 1 and Cube 4. 

Steady state sound pressure levels were very similar (within 0.4 dB) for all four patches. 

Predicted values of Cso are D50, which are lower for Cube 1 and higher for Cube 4, are consistent 

with the predictions for RT. For higher RTs, we might expect lower Cso and D50 values because a 

slower decay rate means more late energy, giving lower early-to-late energy ratios (which are the 

basis of the definitions of clarity and definition). Similarly, higher and lower center times for 

Cubes 1 and 4, respectively, are consistent with the reverberation time results. 

5.3.1.3 Computational efficiency 

Experimental data suggests a computational time complexity of order n2, where n is the 

number of patches and we are working in single level hierarchy (see Appendix A for the 

definition of order). This can be explained theoretically as follows. At each time step and for 

each element, ( n -1 ) elements must be considered in the calculations. Since there are n elements 

in total, this gives n * (n -1) calculations for each time step, giving a time complexity of order n2. 

For a two-level hierarchy with n elements and m patches, we expect a complexity of order m * n. 

Also suggested by experimental data is a memory complexity of order n; memory 

requirement increases linearly with the number of patches. Once again, this makes sense 

theoretically because for each element, we need to compute radiation densities for all time steps, 

so that there are always n* (number of time steps) values to be stored. 

Refer to Figure 5.8 for plots of elapsed time versus number of patches and for memory 

requirement versus number of patches. The run times and memory requirements are for 

predictions for Cube 2 (and are very similar to times and requirements for the other cubes). A 

2193 MHz Pentium III desktop computer was used for these predictions. 
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Figure 5.8. C P U time and memory requirements versus number of patches for Cube 2. 
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5.3.2 Predictions with varying time resolution 

First, it should be recognized that the nature of time resolution in the radiosity algorithm 

is quite different from sampling periods used in digital systems and in measurements. In the 

radiosity algorithm, we are not really sampling the response every At seconds. Rather, energy 

within a time interval is summed to give the energy level for the corresponding time step. Also, 

phase is neglected in radiosity all together, so that signal frequency does not affect the algorithm 

(apart from requiring different absorption coefficients and air absorption exponents). Previous 

authors have referred to Nyquist's and Shannon's theorem, claiming that by these theorems, a 

discretization frequency (1 / At) of at least twice the maximum signal frequency is sufficient. 

Because it is not clear that the application of these theorems is appropriate, they are not used 

here. 

On the other hand, the Courant Number criterion is applicable here. The Courant Number 

can be expressed as cAt I Ax m j n where Ax^n is the minimum distance between patches. To satisfy 

the Courant Number criterion, we require this number to be less than one; i f the Courant Number 

is too big, then the time resolution must be refined to satisfy the criterion. This ensures that the 

distance traveled in one time step is not more than the distance between patches. In all 

investigations performed in this research, the Courant Number criterion was satisfied by default. 

To investigate the effect of resolution, further predictions were made for all cubes, with 

discretization periods of At = 1/16000, 1/12000, 1/8000/, 1/4000, 1/2000, and 1/1000 s (recall 

that the initial predictions had At = 1 / 24000 ). For these predictions, 150 patches were used to 

mesh the cubes (in the same way as before for 150 patches) because this number of patches was 
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found to be sufficient in the previous section. Once again, texact and tfmai were set to 0.8 s and 1.0 

s, respectively. 

Several echograms for Cube 1 are given in Figure 5.9. Echograms for the different 

resolutions look quite similar. Already for At -1 / 2000, the distinct early signals are in the same 

place and of the same amplitude as the ones for At = 1/24000. The overall amplitudes of the 

signals in the later parts of the echogram are smaller for finer time resolution, as expected; 

smaller time steps result in more time steps, each with less energy. From this we conclude that 

discretization periods of At = 1/4000 are sufficient, and that already at At = 1/2000 we get 

reasonable results. 

Discretized echograms for the different time resolutions were almost identical. There 

tended to be slightly more energy in the early time steps for finer resolutions. This tendency 

reversed for later time steps (after about 0.2 s). Interestingly, this is a similar trend to that for 

varying patch discretization. Nevertheless, the differences for the varying time resolutions are, 

for all practical purposes, negligible. 

Plots of the various parameters versus 1/ At are shown in Figure 5.10. The figures are for 

Cube 4, which had the most significant differences in parameters for different resolutions. 

Figures for the other cubes were very similar. 

As was the case for varying patch sizes in Section 5.3.1, the parameter predictions 

converged with finer resolution. SPL was unaffected by discretization period. This is expected 

because different time resolutions do not alter the total energy in the system, they only distribute 

it differently. Values of Cso, D50, and TS changed very minimally for the different discretization 

(differences between predictions with At = 1/1000 and At = 1/24000 were less than 1%). The 

most significant changes were for EDT and RT. Even for these parameters, however, predictions 

for At = 1 / 2000 were within 1% of predictions for At = 1 / 4000, and the differences for 

predictions for At = 1/4000 and At = 1/24000 were less than 1%. As with the echograms, this 

suggests that discretization periods of At = 1/4000 are sufficient for accurate predictions. 

Both time complexity and memory requirements were of order 1 / At, as would be 

expected. Figure 5.11 shows elapsed time versus \l At and memory requirement versus 1/ At for 

the predictions on Cube 1. Once again, the computer was a 2193 M H z Pentium III. 
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Figure 5.9. Echograms for Cube 1 with varying time resolution (range reduced to cut off 
direct signal, which is the same for all predictions). 

At » 1/1 OOO 

CO 

<a=_ 

j 1.5 

4 

3.S 

3 

c<—2.5 

S 1.5 

1 

0.5 

4 

3.S 

3 

c«~2.5 
CD 

r i 

J l 1 .5 

1 

O.S 

4 

3.5 

3 

c<r—2.s 
CO CV. 
to 

i 1.5 

1 

O.S 

o 

• C M o . o e 
llmo(s) 

At — 1/2000 

0.02 0.04 O.OS 
time(s) 

/\t = 1/SOOO 

illi, ulLlkiL 
O.O-* O.OS O.OS 

time(s) 

1/24000 

0.02 0.04 0.06 
time(s) 



Chapter 5. Validation and experimentation. 

Figure 5.10. Parameter predictions versus 1 /Ar for Cube 4. 
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Figure 5.11. C P U time and memory requirement vs. discretization frequency for Cube 1. 
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5.3.3 Predictions with varying time limits 

We have shown that to get accurate predictions of reverberation time, we need to predict 

the impulse response to at least tfmal , as given by Eq. (5.10) (we require tfmal > tfinal ). 

Although this gives us an idea of what value of tpml to use in our predictions, it is still not 

known what time (to which the exact radiosity prediction is made) is necessary. It was also 

desirable to investigate the effect of changing tfiml in the predictions to see i f Eq. (5.10) does 

give the necessary minimum final time. To do so, predictions were made for the cubes with 

varying tfmal and reTOC,. In this investigation, 150 patches were used with 1/Af = 12000 . 

First, as an 'exact' case, a prediction was made using tfmal = 2 s and t^ = 1.4 s. This 

was confirmed as the limit to which predictions with increasing time converge; there was no 

change (up to four decimal places) in parameter predictions between this case and predictions 

W i t h tfinal > 2 S a l l d / 0 r
 1 exact > L 4 S -

For the first set of predictions, tfiml was held constant at 2 s while / C T a r t was varied 

(between 0.05 s and 1.4 s). In Figure 5.12, the parameter predictions for Cube 2 are plotted as a 

function of increasing t^. From these predictions, it became clear that reverberation time is 

the parameters most sensitive to changes in f e i a c (. Still, in all cubes, the RT prediction with 

*ema = 0-6 S a v e l e s s than 1% difference from the exact answer. For all the other parameters, 
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t exact = ® A
 w a s sufficient for the same accuracy (at this exact time limit, RT predictions were up 

to 5% off). 

To investigate the effect of tfiml, another set of predictions held tfiml constant and varied 

*ama • F i g u r e 5.13 shows plots of the parameters predicted with t^ = 0.6 s and varying tfmal. 

Predictions did not change significantly as tfinal was increased beyond 1 s. This is consistent with 

Eq. (5.10). Indeed, the prediction with t^ = 0.6 s and tfinal = 1.0s gave all parameter 

predictions within 1% of the predictions in the 'exact' case for all cubes. 

5.3.4 Predictions using form factors by HeliosFF 

Because the form factors found by HeliosFF are approximations (see Section 3.2.4 for 

details), it was necessary to check that the use of these form factors does not significantly affect 

predictions. For this reason, predictions were made for all four cubes under the same conditions 

as those outlined in Section 5.3.1. In all cases, the parameters other than Cso were within 1% of 

those found using analytical form factors (in Section 5.3.1) for the meshing with 96 patches. Cso 

came to within 1% of the analytical form factor predictions for 150 patches. Echograms and 

discretized echograms were also very similar to those predicted in Section 4.3.1. From this, we 

conclude that the approximations made in the determination of form factors by HeliosFF do not 

significantly affect predictions, particularly when a reasonably fine meshing of the enclosure is 

used. 

5.3.5 Comparisons to ray tracing 

Finally, to compare radiosity to ray tracing, predictions were made for the four cubes 

using RAYCUB (see Section 5.2.3 for details). The ray tracer was run on all four cubes for 

perfectly diffuse reflection, perfectly specular reflection, and 50% diffuse / 50% specular 

reflection from all walls. To ensure high precision, a million rays were traced for 500 reflections 

at a sampling frequency of 24 kHz. The receiver was a cubic cell with side-lengths of 0.1 m. 
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Figure 5.13. Parameters predictions versus tfinai (s) for Cube 1 (with texact = 0.6 s). 
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Echograms obtained by radiosity (with 600 patches and At = 1 / 24000 ), ray tracing with 

diffuse reflection, and ray tracing with specular reflection for Cube 2 are shown in Figures 5.14 

and 5.15 (echograms for the other cubes were similar). The echograms are clearly quite 

different. The echogram for ray tracing with specular reflection has much more prominent 

reflections than the echogram for radiosity. This is obviously due to the specular reflections, 

which keep energy moving in a single direction rather than scattering it in many directions, as is 

the case in diffuse reflection. The echogram for ray tracing with diffuse reflection seems to lie 

somewhere in between the other two echograms; it has more peaks than the radiosity echogram, 

and less pronounced peaks and more uniformly distributed energy than the specular echogram. It 

seems that radiosity tends to smear the energy in time even more than ray tracing with diffuse 

reflection. 

When the discretized echograms were compared, differences were apparent in the 

distribution of the energy for all cubes (see Figures 5.16 and 5.17). The larger amounts of energy 

in the later time steps for ray tracing with specular reflection in Cubes 2 and 3 explains the 

longer reverberation and early decay times and lower clarity and definition values predicted by 

specular ray tracing for these cubes. In general, it can be observed that total energy levels in very 

early time steps (before 200 ms) were quite similar between the two ray tracing predictions, 

whereas in later time steps, levels were more similar between radiosity and diffuse ray tracing 

predictions. This seems to suggest, as did observation of the echograms, that radiosity tends to 

smear (or diffuse) energy faster than ray tracing with diffuse reflection. 

Plots of the parameters predictions for the cubes are shown in Figure 5.18 (parameters for 

radiosity were taken from the predictions for 150 patches in Section 4.3.1). In general, ray 

tracing with diffuse reflection gave predictions closer to predictions by radiosity than ray tracing 

with any other type of reflection. The parameter that exhibited the greatest discrepancy between 

predictions was TS, with a maximum difference of 20% for Cube 2. It should be noted that 

radiosity predictions for SPL were consistently lower than predictions by ray tracing with diffuse 

reflection. Similarly, radiosity predictions for 75" were consistently lower than diffuse ray 

tracing, while radiosity predictions of Cso and D$o were higher. EDT and RT were both higher 

and lower, but radiosity and diffuse ray tracing predictions differed by less than 0.1s (or 5%>) in 

all cases except RT in Cube 2 (where radiosity predicted 1.08 s and ray tracing predicted 0.86 s 

reverberation time). 
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Figure 5.14. Echograms for Cube 2 from radiosity (600 patches), ray tracing with diffuse 
reflection, and ray tracing with specular reflection predictions. (Range reduced to cut off 
direct signal to show detail). 
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Figure 5.15. Range reduced from Figure 5.14 for more detail. 
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Figure 5.16. Discretized echograms for Cubes 1 and 2 by radiosity and ray tracing 
(diffuse and specular) with time resolution of 0.05 s. 
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Figure 5.17. Discretized echograms for Cubes 3 and 4 by radiosity and ray tracing 
(diffuse and specular) with time resolution of 0.05 s. 
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Figure 5.18. Parameter predictions by radiosity and ray tracing with diffuse, 50% diffuse/50% 
specular, and specular reflection for all four cubes. 
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In Cubes 2, 3, and 4, specular and 50% specular / 50% diffuse reflection predictions were 

often quite different from predictions by radiosity and ray tracing with diffuse reflection. 

However, all parameters were predicted quite similarly by all methods in Cube 1. This is 

evidence (although far from conclusive) that, for regular enclosures (all dimensions of similar 

magnitude) with uniform absorption, the resulting sound field is similar, regardless of how the 

surfaces reflection (with respect to diffuse/specular components). 

Because real room surfaces always have some specular component, it is of practical 

interest to compare diffuse reflection predictions with specular or partially specular predictions. 

It seems that the assumption of diffuse reflection results in over-estimated center times and 

under-estimated reverberation and early decay times. These trends were evident in all four cubes. 

Predictions for SPL, Cso, and D50 were variable. 

5.3.6 More on ray tracing with diffuse reflection 

The difference in parameter predictions, echograms, and discretized echograms for 

radiosity and ray tracing with diffuse reflection might be a consequence of the different manner 

in which diffuse reflection is incorporated in radiosity and ray tracing. Indeed, a ray in diffuse 

ray tracing is not scattered in all directions, as it is in radiosity, but only in one, random direction 

(see the description of RAYCUB in Section 5.2.3). Consequently, the energy of the ray is not 

broken into many parts, as it is in radiosity; rays with high amounts of energy retain this energy, 

resulting in peaks in the echogram and less smearing of energy. In radiosity, all energy is 

immediately scattered, so that no larger 'bundles' of energy remain intact to propagate through 

the system to cause peaks in the echogram. Also, because of this scattering in radiosity, energy is 

quickly smeared in time, giving different discretized echograms and parameter predictions. 

Still, in the limiting cases (with infinitely many rays traced indefinitely with a point 

receiver in ray tracing, and with infinitely many patches and continuous time in radiosity) we 

would expect the two methods to be equivalent. It is somewhat surprising to see such obvious 

differences, particularly in the echograms (where the difference is most pronounced). Several 

attempts were made to understand this, including finer meshing of the wall in radiosity and 

further predictions with ray tracing. It is possible that the solutions obtained by the two methods 

had not converged; likely that the least converged solution was the one found by ray tracing. 
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Ray tracing predictions were made for a squash court (discussed in the next section) at 

the 1 kHz octave band with a sampling frequency of 24 kHz, a cubical receiver with 0.1m side-

lengths, and rays traced for 500 trajectories. For the same room, radiosity was run with the 

specifications outlined in Section 5.5 (300 patches), and with a discretization frequency of 24 

kHz. Plots of the resulting echograms and discretized echograms are shown in Figures 5.19 and 

5.20. The number of rays hitting the receiver for the ray tracing runs (with 1 million rays) was 

consistently around 18000. When the number of rays was increased to 10 million, the number of 

hits increased by a factor of 10 (to 178860), indicating that the solution had not yet converged for 

the case with 1 million rays, and that noise artifacts may be the source of the problem. In 

addition, even with 10 million rays, when the ray tracer was run a second time with a different 

initialization number, the echogram was different than it was the first time. This indicates that 

the solution had not yet converged, even with 10 million rays. The echogram in the case of 10 

million rays looked more similar to the radiosity echogram than in the case of 1 million rays; 

some of the most predominant peaks were slightly reduced in amplitude. Still one certainly could 

not conclude that the two methods give similar echograms. When 50 million rays were used, 

902014 rays hit the receiver (about 5 times the number that hit for 10 million rays). The 

echogram for 50 million rays looked quite similar to the one for 10 million rays; even with 50 

million rays, ray tracing was not similar to radiosity. Predicted discretized echograms also 

changed with increasing numbers of rays, and those for ray tracing with 50 million rays were not 

necessarily closer to radiosity than those with fewer rays. Parameter values, on the other hand, 

did not change with the number of rays. It would be of interest to run the ray tracer with a much 

larger number of rays. This could not be done because of time restrictions (the run with 10 

million rays took 15 hours on a 500 M H z Pentium III PC; the one with 50 million rays took 80 

hours on a 2193 M H z Pentium III PC). There is a possibility that, with many more rays, ray 

tracing would converge to the radiosity solution. If this is the case, then clearly radiosity presents 

a more efficient way to predict the details of the echograms for rooms with diffuse reflection (the 

run for radiosity took about 5 hours). It may also be the case, however, that with a much finer 

meshing, the echogram predictions made by radiosity would be more like those by ray tracing. 

Very long run times prohibit an exhaustive investigation of the issue at this time. We conclude 

that the presented results may not represent converged solutions, but that they represent limits in 

the algorithms used and in current computing capabilities. 
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Figure 5.19. Echograms from radiosity and ray tracing with diffuse reflection in the 
squash court. 
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5.4 Experiment 

Through the experiments in the cubical rooms, we have explored some of the aspects of 

acoustical radiosity. Since we wish to investigate how acoustical radiosity performs in predicting 

real sound fields, we now turn our attention to experimental results and predictions in real rooms. 

Three rectangular rooms were used to validate the radiosity technique experimentally. The rooms 

were chosen with increasing non-uniformity in geometry and absorption distribution, associated 

with increasingly non-diffuse sound fields. This section discusses the rooms and the 

experimental set-up and procedure for the measurements. 

5.4.1 Test Environments 

5.4.1.1 Squash court 

The first room was a squash court. The particular squash court used was court number 

one in the Dunbar Community Center in Vancouver. It is a regulation squash court with 

dimensions 6.40 m (width), 9.75 m (length), and 6.65 m (height). The walls and ceiling are 

painted concrete and the floor is varnished hardwood. Allowing access into the court, a small 

door is located in a corner of the front wall. Also, this particular court has a glass window along 

the top 2 m of the front wall for observers. The squash court was chosen for its relatively 

uniform geometry (width, length, and height are similar) and because all walls have similar 

properties. That is, the contained sound fields should be highly diffuse. 

5.4.1.2 Environmental Room 

The second room measured is room 369C of the Library Processing Center at the 

University of British Columbia. We will call it the Environmental Room. It is a small room, 3.94 

m wide, 5.36 m long, and 2.71 m high. The Environmental Room has a floor of vinyl tile on 

concrete, four walls of drywall on 100 mm studs, and a suspended acoustical-tile ceiling. The 

Environmental Room was chosen for use in the validation because it is small with relatively 

uniform geometry but non-uniform absorption distribution (the acoustical-tile ceiling is much 

more absorbent than the other surfaces). It is the same room used by Ressl in her 1997 thesis 

[49]. 
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5.4.1.3 Hebb 12 

The third room was a medium-sized classroom (room 12 of the Hebb building) at the 

University of British Columbia. The classroom, called Hebb 12, has width — 7.80 m, length = 

13.70 m, and height = 2.60 m. Hebb 12 has walls of painted concrete, blackboards on the front 

and side walls, a short length of curtain on one side wall, a floor of linoleum tiles on concrete, 

and ceiling of acoustical tiles on concrete. The blackboard on the front wall has area = 7.20 m 2 , 

while those on the side walls have area = 7.40 m 2 . The curtain is 2.80 m wide and runs from the 

ceiling to the floor on one of the walls. Two doors are located on one side wall, one near the 

front and the other near the back (see Figure 5.21 for a diagram of Hebb 12). Hebb 12 was 

chosen because it has one dimension (the length) much longer than the other dimensions, 

because it has non-uniform distribution, and because its furnishings (desks and chairs) could be 

easily removed. Once again, Ressl previously used this room in her thesis [49]. 

5.4.2 Measurements 

In each room, measurements were made of room impulse responses between a source and 

a receiver using the Maximum Length Sequence System Analyzer (MLSSA) [46]. The 

equipment used was as follows: 
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Figure 5.22. Experimental setup. 
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• Portable personal computer with the MLSSA board and software installed; 

• Power amplifier: QSC Audio U S A 370; 

• Omni-directional loudspeaker array: Realistic model 40-1284E, dodecahedral array, 

frequency range 700 Hz - 20 kHz, on an adjustable stand; 

• Microphone and amplifier: Rion model NA-29 (sound level meter with internal 

amplifier) with ]/2" microphone. 

The PC was located outside of the room, as was the power amplifier. The maximum 

length sequence signal from MLSSA passed through the amplifier (to be amplified) to the speaker 

in the room. From the signal, the speaker radiated sound energy into the room. The microphone 

converted the pressure at the receiver position into an electrical signal. This signal, amplified by 

the sound level meter, was transmitted back to MLSSA for analysis. The set-up is illustrated in 

Figure 5.22. Before measurements were made, the system was calibrated using a calibrator (pure 

tone at a known steady state sound pressure level) placed over the microphone, and using the 

Calibrate command. 

Measurements were made for several source and receiver positions. These positions 

were measured and recorded. Room dimensions and the locations of the different surfaces (in 

Hebb 12) were also noted. 

For each measurement, the response was averaged over 12 samples in the Environmental 

Room and 5 samples in the other two rooms (using the Go Average command) to increase the 

signal-to-noise ratio. A l l measurements had MLSSA operational parameters as follows: 

Acquisition length = 65536 samples (the maximum possible in MLSSA); Stimulus amplitude = 
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± 0.5332 volts. For the Environmental Room and Hebb 12 the following additional settings 

were used: Anti-aliasing filter bandwidth =12 kHz; Acquisition sample rate = 36 kHz, giving a 

sample length of 1.819 seconds. Because of longer reverberation times in the squash court, 

longer samples were needed to get accurate predictions. Thus, the sample rate was decreased 

and, consequently, the filter bandwidth also was decreased (this insured sufficient alias 

suppression - see the MLSSA manual [46]). Settings for the squash court were: Anti-aliasing 

filter bandwidth =10 kHz; Acquisition sample rate = 30.1 kHz, giving a sample length of 2.179 

seconds. 

MLSSA analyzes the received signal from the microphone, calculating the cross-

correlation between the received response and the original signal, to find the impulse response. 

From this, steady state sound pressure levels, and all of the room parameters in which we are 

interested (RT, EDT, Cso, D50, TS, and G) are calculated. The (unfiltered) impulse responses 

output to data files were then input into MATLAB - MLSSA does not output the filtered impulse 

responses. In MATLAB, the impulse responses were filtered into octave bands using a MATLAB 

function written by Ann Nakashima. The filtered impulse responses can subsequently be used 

for comparison with predicted impulse responses, echograms, and decay curves. Octave band 

filtered steady state sound pressure levels and room parameters were read directly from the 

MLSSA output display (using the Calculate Acoustics command). 

5.4.3 Air-absorption exponents 

Environmental conditions in all rooms were typically 23° C and 50% relative humidity 

under normal atmospheric pressure (1 atmosphere). Corresponding air absorption exponents 

were found using the formulas in Bass et al. [5] and are listed in Table 5.5. 

The formulas of reference [5] give the air absorption coefficient, am and not the required 

air absorption exponent (see Appendix A). Also, am in reference [5] is in nepers/m. To convert 

to dB/m, recall that there are 20/ln(10) decibels in a neper, so 

Table 5.5. Air absorption exponents at 23° C, 50% relative humidity, and normal atmospheric 
pressure in 10"3 m"1. 

Frequency (Hz) 125 250 500 1000 2000 4000 8000 
in 0.095 0.305 0.699 1.202 2.290 6.240 21.520 
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« m = « m * 2 0 / l n ( 1 0 ) 

where am is the air absorption coefficient in nepers/m and am is the air absorption coefficient in 

dB/m (this notation was chosen for consistency with reference [5]). Finally, to find the air 

absorption exponent, m, refer to Appendix B for the relationship between air absorption 

coefficients and exponents. 

5.4.4 Source power 

Before measurements were made in the rooms, the omni-directional loudspeaker was 

tested for omni-directionality and power output for the given setup. The same setup was used as 

in the actual tests, with the room being an anechoic chamber (to create a free-field environment). 

The anechoic chamber used is located in the Rusty Hut on the U B C campus and has dimensions 

of 4.7 m x 4.0 m x 2.5 m. Because the MLSSA operational parameters were set in two different 

ways for the validation experiments, two tests were done in the anechoic chamber, one with the 

parameters as in the squash court (bandwidth =10 kHz), the other with the parameters as in the 

Environmental Room and Hebb 12 (bandwidth =12 kHz). For each test, measurements of sound 

power were made at three microphone positions: 'low' (below and to the side of the 

loudspeaker), 'medium' (on the same horizontal plane as the loudspeaker), and 'high' (above and 

to the side of the loudspeaker). In each position the microphone was 1 m away from the center 

of the loudspeaker array. For each of the three receiver positions, sound pressure level was 

measured 7 times, each time with the speaker rotated by about 25° from the previous 

measurement (until the speaker was returned to the original position). Each measurement was 

the average of 5 samples (using the Go Average command). Sound pressure levels were 

recorded for the seven octave bands between 125 Hz and 8 kHz. Sound pressure levels over all 

the positions were decibel averaged (see Appendix A) to obtain the average sound pressure level 

at one meter. 

For omni-directional point sources in a free-field, there exists a simple formula relating 

sound pressure and power levels. We consider an imaginary sphere of radius R with the source 

at the center. A l l of the sound radiated from the source (that has not been attenuated by the air) 

passes through the surface of the sphere. Since the source is omni-directional, the intensity must 

be the same at all points on the sphere. Now, 
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P0c 
by Eq. (2.14), and W = Li 

where / is intensity (W/m2), p is pressure (Pa), Wis power (W), and A is area (m2) (note that this 

first formula applies for point sources in the far field only - i.e. for r » XI In = 0.44 m for 125 

Hz). Combining these, and recalling that the surface area of a sphere with radius R is AnR2, we 

get: 
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SPL(R) = PL + 10 log 
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where PL is the sound power level (see definitions) and SPL is the sound pressure level at 

distance R from the source. It follows that 

'WoPoce-m^ 
PL = SPL-\0\og 

p24n 
SPL -10.84 

where SPL is the average sound pressure level at one meter from the omni-directional source 

found above. The (octave band) average sound power levels found for the two MLSSA 

operational parameter settings found by this method are given in Table 5.6. Also given in the 

table are the differences (arithmetic, not decibel) between the maximum and minimum measured 

sound power levels measured over all 21 positions for the squash court setting. For a perfectly 

omni-directional source, these differences are zero. From these values, we see that the source is 

indeed quite omni-directional at low frequencies, but that it has directional characteristics at 

higher frequencies, particularly above 2 kHz. This is not surprising; as such arrays are typically 

omni-directional only at low frequencies [36]. 

Table 5.6. Sound Power Levels (dB) of the source with settings for (1) the Environmental Room 
and Hebb 12 and (2) the squash court. 

Octave Band (Hz) 125 250 500 1000 2000 4000 8000 
setting 1: bandwidth = 12 kHz 81.18 93.81 95.01 93.77 95.90 92.27 90.50 
setting 2: bandwidth = 10 kHz 81.80 94.35 95.92 95.22 96.88 95.10 92.26 
maximum difference 0.70 0.70 0.50 1.20 3.30 5.90 6.70 
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5.4.5 Room surface absorption coefficients 

Perhaps the most difficult variables to estimate for use in the radiosity algorithm are the 

room surface absorption coefficients. Reliable methods for measuring sound absorption - such 

as impedance tube methods or reverberation chamber methods [36] - could not be applied 

because we did not have removable samples of the surfaces. In-situ methods, such as those 

suggested by L i and Hodgson [42], among others, were beyond the scope of this thesis. 

Extensive tables of absorption coefficients of various materials and surface finishes, found by 

test in reverberation rooms, exist [50]. However, since it is often not possible to know the exact 

materials that a wall is constructed from - particularly what lies behind the surface - these tables 

can only act as a guideline. Even i f the construction of a wall were known accurately, the actual 

absorption coefficient would vary somewhat from case to case. The empirical method used here, 

which incorporates values obtained from the tables, is outlined below. 

First, the average room absorption coefficients were found from the measured 

reverberation times by assuming a diffuse field, based on the assumption that room sound fields 

are often highly diffuse with respect to reverberation time [23]. To do this, reverberation times at 

all the measured source/receiver positions were averaged to find the average reverberation time, 

i?T(note that, in a diffuse field, reverberation time does not vary with position in a room). Then, 

by Eyring's formula (see Appendix A), 

a = 1- exp 
fV(. 241nl0^ 

S 
4m • 

v cRT j 

where a is the average room absorption coefficient, Fis the room volume in m 3 , S is the surface 

area of the room in m 2 , and m is the air-absorption exponent in m"1. 

Second, absorption was distributed among the room surfaces based on physical 

considerations and in such a way that the assigned absorption coefficients combined to give the 

average absorption coefficient found in the first step. This involved looking up the surface 

materials in tables of absorption coefficients (see above). Surfaces were initially assigned the 

coefficients found in the tables. These were then manually adjusted until the average coefficient 

in each band corresponded to that found from measurements. The absorption coefficients for the 

rooms found by this method are given in Table 5.7. 
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Table 5.7. Surface absorption coefficients. 

Room Surface Area Frequency (Hz) Room Surface Area 
125 250 500 1000 2000 4000 8000 

Squash Court all 414.96 0.103 0.065 0.048 0.044 0.043 0.030 0.024 

Environmental 
Room 

walls 50.41 0.060 0.050 0.030 0.020 0.030 0.040 0.030 
Environmental 

Room 
ceiling 21.12 0.200 0.140 0.160 0.170 0.270 0.300 0.300 Environmental 

Room floor 21.12 0.010 0.010 0.010 0.010 0.010 0.020 0.010 
Environmental 

Room 
average 0.081 0.061 0.055 0.052 0.080 0.095 0.087 

Hebb 12 

curtain 7.28 0.010 0.010 0.010 0.010 0.020 0.030 0.020 

Hebb 12 

blackboard 22.00 0.010 0.010 0.010 0.010 0.030 0.040 0.020 

Hebb 12 walls 82.16 0.020 0.010 0.030 0.030 0.030 0.040 0.020 Hebb 12 
ceiling 106.20 0.270 0.280 0.290 0.300 0.350 0.340 0.230 

Hebb 12 

floor 106.20 0.020 0.020 0.020 0.020 0.020 0.010 0.010 

Hebb 12 

average 0.101 0.102 0.110 0.113 0.131 0.128 0.086 

This method is not perfect, in that it assumes a diffuse field and estimations about 

absorption distribution. There is a definite possibility that error is introduced into predictions 

through the inaccurate estimation of absorption coefficients. These errors, and the uncertainty 

they introduce, are discussed further in the next section. 

5.5 Comparisons between measurement and prediction 

In this section, results from the measurements outlined the previous section are compared 

to predictions by acoustical radiosity and by ray tracing for the squash court, the Environmental 

Room, and Hebb 12. In all predictions discussed in this section, ray tracing was run with a 

million rays traced for 500 reflections, and the receiver was a cubic cell with side-lengths of 0.1 

m. In the radiosity predictions, the Environmental Room was divided into 200 patches while the 

squash court and Hebb 12 each had 300 patches. These divisions were deemed sufficient for 

accurate prediction based on the discretization investigations of Section 5.3 and on several 

exploratory predictions that showed insignificant variation from predictions with finer meshing. 

Different time discretization periods and time limits were used for different sets of predictions, 

as are indicated in each case below. 

Results were obtained for numerous source and receiver position in each room. For 

practical reasons, they are discussed for one source position and several receiver positions in the 

squash court, and one source and one receiver position for the other two rooms. The echograms, 

discretized echograms, and parameters in the positions chosen for discussion were characteristic 
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of most of the other positions measured. In all rooms, the 'front' refers to one of the walls with 

the shortest dimension, and all sources and receivers were centered side-to-side. For the squash 

court, the source was located 1.00 m from the front of the court and 1.9 m above the floor. Eight 

measurement positions are discussed, each 1.05 m from the ground. The first position was 2.00 

m from the front wall, the second was 3.00 m from the front, and so on, with the eighth position 

9.00 m from the front. Corresponding source to receiver distances were 1.31 m, 2.17 m, 3.12 m, 

4.09 m, 5.07 m, 6.06 m, 7.05 m, and 8.05 m. The source in the Environmental Room was 1.10 m 

from the front wall and 1.72 m high, while the receiver was 3.25 m from the front and 0.90 m 

high, giving a source to receiver distance of 2.30 m. The measurements discussed in Hebb 12 are 

for a source 6.00 m from the front and 1.60 m above the ground, and for a receiver 7.60 m from 

the front and 1.40 m high, giving a source to receiver distance of 1.61 m. See Figure 5.23 for 

section sketches of the three rooms showing source and receiver positions. 

5.5.1 Echograms 

Figure 5.24 shows echograms for the 1 kHz octave band obtained from measurements 

and predictions with radiosity and ray tracing (with diffuse and specular reflection) in the squash 

court; Figures 5.25 and 5.26 show echograms at 1 kHz for the Environmental Room and Hebb 

12, respectively. For meaningful comparison, predicted echograms for the squash court (with 

both radiosity and ray tracing) were made using time discretization frequencies of 30.1 kHz, 

which was the sampling frequency used in the measurements of the squash court. Similarly, 

predicted echograms for the other two rooms used discretization frequencies of 36 kHz. 

Echograms were predicted up to 1 s by ray tracing, and to t^ = tfmal = 2 s by radiosity, but are 

shown for shorter durations in the figures. The echograms for the squash court are for the second 

receiver position in that room. 
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Figure 5.24. Measured and predicted echograms in the squash court at 1kHz. 
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Figure 5.25. Measured and predicted echograms in the Environmental Room at 1kHz. 
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Figure 5.26. Measured and predicted echograms in Hebb 12 at 1kHz. 
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In all cases, the echograms looked quite different. The differences between echograms 

predicted by radiosity and by ray tracing were similar to those seen and discussed in Section 5.3. 

In all of the rooms, the echograms predicted by radiosity were least similar to the measured 

echograms. Strong and distinct peaks in the measured echograms in all three rooms are 

completely lost in radiosity predictions. Having said this, a comparison of the later part of the 

echograms shows less extreme differences between measured and radio si ty-predicted echograms, 

particularly in echograms for Hebb 12 and the Environmental Room past 0.15 s. The energy in 

radiosity is still more smeared than as measured, but the strong reflections that characterize the 

early part of the measured echograms are no longer present. On the other hand, there still are 

some distinct reflections present in the later part of the echogram predicted by specular ray 

tracing. This can be explained by recalling the discussion of the transformation of specular to 

diffuse energy in a room from Section 1.3. In particular, in the later part of the decay, we might 

expect more diffuse reflection than specular, so that a predictions method that assumes diffuse 

reflection, such as radiosity, should give better predictions. For this reason, measured echograms 

might be most closely predicted by incorporating both specular and diffuse reflection (possibly 

by using ray tracing with a mix of specular and diffuse reflection, or possibly by a hybrid method 

that uses a model with specular reflection for the early predictions and radiosity for the late part). 

To better understand the distribution of the energy in the measurement and predictions, 

we turn once again to discretized echograms. 

5.5.2 Discretized echograms 

The same data that was used to plot the echograms in the previous section was used to 

find the discretized echograms for the three rooms, as shown in Figures 5.27-5.29. The time 

resolution used to obtain these figures was 0.01 s. Interestingly, the three prediction methods 

give similar discretized echograms. Nevertheless, it is evident from these discretized echograms 

that none of the prediction methods accurately predicts the distribution of energy with time. 
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Most clearly seen in the discretized echogram for the squash court, the measured 

echograms show a fluctuation of energy with time. In particular, pressure levels in the time 

intervals do not decrease monotonically with time, but rather alternate between decreasing and 

increasing (with a gradual, overall decrease). These fluctuations are not reproduced in radiosity, 

for which the decay of energy with increasing time steps is monotonically decreasing. Both 

versions of ray tracing, particularly with specular reflection, do capture part of the fluctuations, 

although not nearly to the same extent as is measured. Part of the reason for such fluctuations 

may be rays, which reflect specularly, bouncing between parallel walls. This would explain why 

ray tracing captures them to some degree, and why they are lost completely by radiosity. This 

reason is also consistent with the observation that fluctuations are more pronounced in the squash 

court, which might be expected to have the most specularly reflecting walls of all the rooms. The 

fluctuation may also be caused my modal effects, which are lost in both ray tracing and radiosity. 

In the discretized echograms of the Environmental Room and of Hebb 12, energy levels 

in the very early time steps (before 100 ms) are predicted to be much lower than as measured (by 

both radiosity and ray tracing). This is reversed for time steps later than 100 ms in both rooms, 

with more energy in the predicted discretized echogram than in the measured. These 

observations are consistent with observations that can me made about differences in the 

measured and predicted parameters. 

5.5.3 Acoustical parameters 

Figure 5.30 shows the measured and predicted parameters at 1 kHz in the squash court 

for the eight measurement positions (the first being closest to the source, the eight being the 

farthest, refer again to Figure 5.23). With the exception of reverberation time, all three prediction 

methods give similar parameter values. Worth noting is that, while radiosity and ray tracing with 

diffuse reflection predict parameters that tend to vary monotonically (either increasing or 

decreasing), or stay constant (in the case of RT), with distance from the source, parameter values 

from measurement and ray tracing with specular reflection do not behave this way. Rather, 

measurement and specular ray tracing parameters fluctuate higher and lower as the receiver is 

moved away from the source. This effect is evident for all parameters, and may be caused by 

specularly reflected rays bouncing between parallel walls (as we suggested for the fluctuations in 

the discretized echograms for the squash court). 
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A l l prediction methods underestimated the steady state sound pressure levels, with 

radiosity giving the best prediction. The maximum difference between measured and predicted 

levels (by radiosity) was 2.8 dB. Though this corresponds to only a 3% difference, it is certainly 

not close, since an increase in SPL of 3 dB roughly corresponds to a doubling of source power 

(by the log in the definition of sound pressure level). The considerably higher measured pressure 

levels in the discretized echograms for squash court are consistent with the higher measured 

SPLs. 

The cause of this large difference in sound pressure levels is not immediately evident. A 

possible reason is an over-estimation of the absorption coefficients of the walls. This reason is 

questionable, however, because at some positions (particularly those close to the side walls), 

predicted SPLs were much closer to the measured values, sometimes even higher. Also, this 

would not be consistent with the predictions for the other parameters (such as low predicted 

EDTs). The difference may alternately be the result of directionality of the source. In particular, 

the source may not be completely omni-directional as was assumed for the predictions. This 

might explain why predicted and measured levels are more similar near the side walls. At larger 

source-receiver distances, however, directionality should not have such a significant effect. Also, 

i f directionality were the cause, we would expect more energy in the first time step in the 

measured discretized echogram (corresponding to the direct signal from the source), which is not 

the case. Another possible source of error is in the calibration of the source. 

Clarity and definition were both over-estimated by all prediction methods. This can be 

seen in the discretized echograms, where less energy is measured in the early time steps (before 

80 ms) and more in the late time steps (after 80 ms). Differences improved for longer source-

receiver distances. Center time was predicted below measured values, expect at the last three 

receiver positions, where radiosity predicted higher values than measured. This is consistent with 

the Qo and D50 predictions and with the discretized echograms; less early energy (measured) 

results in higher center time. 

A l l prediction methods gave early decay times that were lower than the measured values. 

Differences between measurement and radiosity predictions were never greater than 12%, while 

ray tracing had differences up to 23%. Once again, predictions tended to improve with increasing 

source-receiver distance. 
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Similar reverberation time predictions by radiosity and ray tracing stayed almost constant 

with varying receiver position, with measured RTs both higher and lower than the predicted 

values. The difference was always less than 7%. Constant reverberation time with varying 

position is characteristic of a diffuse field. Worth noting is that RT predicted using Eyring's 

formula is 3.36 s, which is just 0.3 s lower than the values predicted by radiosity and ray tracing 

with diffuse reflection. RT predictions by ray tracing with specular reflection were notably higher 

than the other predictions and measurement. 

Overall, it seems that measured parameters in the squash court were more closely 

predicted by radiosity than by either version of ray tracing. This would not necessarily be 

expected, since the walls of the squash court would be expected to be quite highly specularly 

reflecting. This observation applies for most measurements made in the squash court, including 

those made in different octave bands (than 1kHz). These are presented next. 

In Figures 5.31-5.33, parameter predictions and measurements in the three rooms are 

plotted for the 7 octave bands from 125 Hz to 8 kHz. The fifth receiver position in the squash 

court was taken for these figures. The first thing to note is that there is little consistency in the 

differences between measurements and prediction methods. For example, we cannot say that, in 

general, radiosity predicts higher or lower values for some parameters than measured or than 

predicted by ray tracing, because each case is different. One tentative, general observation that 

might be suggested is that ray tracing with specular reflection tends to predict higher center, 

reverberation, and early decay times than any of the other methods. This trend was also apparent 

in predictions made for the cubical rooms in Section 5.3 for RT and EDT. 

Another such general observation that can be made is that TS, EDT, and RT found by one 

method were generally all either higher or all lower than another method in a given room (with 

some exception in the squash court). For example, in the Environmental Room, specular ray 

tracing predicted the highest TSs, EDTs, and RTs, radiosity the second highest, specular ray 

tracing the third highest, and measurement the lowest. The same observation can be made about 

Cso and D$Q. Further, i f a method gave higher TS, EDT, and RT, it generally gave lower Cso and 

Dso- This can be understood by thinking of higher TS, EDT, and RT as corresponding to slower 

rate of decay. Slower decay means less early energy and, consequently, lower clarity and 

definition. 
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Figure 5.32. Parameter values as a function of frequency (Hz) in the Environmental Room. 
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Reference back to the discretized echograms makes it clear why predicted center times, 

early decay times, and RTs are higher than measured values in the Environmental Room. The 

discretized echogram for this room shows significantly more energy measured than predicted in 

the early time steps. Also seen in the discretized echogram is more energy in the later time steps 

for ray tracing with specular reflection, which might explain why predictions of TS, EDT, and RT 

by this method are so much higher than by other methods or measurement. These observations 

also explain why predicted clarity and definition values are lower than measured for the 

Environmental Room. Similar, although not as obvious or convincing, observations can be made 

for Hebb 12. 

Measured sound pressure levels were predicted much more closely (by all prediction 

methods) in the Environmental Room than in the squash court or in Hebb 12. Radiosity 

predictions of SPL were particularly poor in Hebb 12; radiosity predicted levels up to 3.7 dB 

higher than measured. As in the SPL predictions in the squash court from Figure 5.30, it is not 

immediately evident why predicted levels are so different from measured levels. Once again, 

approximation of absorption and its distribution may be partly responsible. This is not 

immediately obvious, however, since more absorption would be needed to bring the predicted 

SPLs down to measured levels. This would result in lower predicted reverberation and early 

decay times, which are already lower (when radiosity is used) than measured times. As we have 

seen from predictions in cubical rooms (in Section 5.3.1.2), absorption distribution has a 

significant effect on RT, thus it is possible that more absorption distributed differently would 

give more accurate predictions. Once again, calibration of the source may be another source of 

error. 

It is interesting to note that radiosity gave very similar predictions for both RT and EDT 

in all rooms. The same observation applies to ray tracing with diffuse reflection. This indicates 

that the rate of decay in sound pressure level for diffuse reflection is constant, and, 

correspondingly, that decay curves are linear. This also corresponds to an exponential decay of 

energy associated with diffuse fields. This is not the case in real rooms, or for specular reflection, 

as is evident from comparison of measured RTs and EDTs and those predicted by ray tracing 

with specular reflection. Indeed, measured RTs in the squash court are lower than measured 

EDTs. This indicates slower decay near the beginning of the response and faster decay as time 

progresses, corresponding to a less steep decay curve at the beginning, and a steeper curve at the 
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end. Ray tracing with specular reflection predicted the same trend as measured in the squash 

court. In the Environmental Room and Hebb 12, measured RTs were higher than EDTs, so that 

decay cures are steeper at the start. Specular ray tracing also predicted higher RTihan EDT in the 

Environmental room, although in Hebb 12, EDTs were predicted higher than RTs. In general, it 

appears that specular reflections are essential for the correct prediction of decay rate in a room, 

and that, in this respect, radiosity may only be applicable for later parts of the decay, when the 

slope of the decay curve has become more constant (equivalently, when energy decay has 

become exponential). 

It is not clear from the data collected here that radiosity (or either of the ray tracing 

methods) is more accurate at higher frequencies. This observation is mentioned because it might 

be expected that geometrical prediction methods (such as radiosity or ray tracing) give better 

predictions for higher frequencies, for which modal effects are not as great. 

5.5.4 Conclusions 

It is evident that echogram predictions by radiosity are quite different from any measured 

echograms and from echograms obtained by ray tracing, even ray tracing with diffuse reflection. 

Overall, radiosity smears energy in time, and eliminates any strong reflections from the 

echogram. This may make it insufficient for realistic rendering (auralization) of sound fields, in 

which strong signals have considerable effect on listener perception. The discretized echograms 

predicted by radiosity are similar to those predicted by ray tracing, but they tend lose much of the 

information about the distribution of energy in a real room. 

Parameter values, although not completely accurate, were reasonably well predicted by 

radiosity in the three rooms measured, and were often predicted closer to measurement by 

radiosity than by ray tracing. Ray tracing with specular reflection was particularly poor in 

predicting center time, early decay time, clarity, and definition in the Environmental Room and 

in Hebb 12, as well as reverberation time in the Environmental Room. This suggests that diffuse 

reflection plays a very important roll in characterizing the sound field in a room, and cannot be 

ignored. Because the diffuse models (radiosity and ray tracing with diffuse reflection) tended to 

do better than the specular model, we have evidence that an assumption of purely diffuse 

reflection may be less limiting than an assumption of purely specular reflection. 
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Radiosity performed particularly well in parameter predictions for the squash court. This 

is possibly due to the uniform distribution of absorption in the squash court. Uniform distribution 

helps in two ways. First, uniform distribution creates a more diffuse sound field, since energy is 

not being drawn (absorbed) out of the enclosure more strongly in any one direction. Since we 

expect that diffuse reflection, as assumed by radiosity, also results in a more diffuse sound field, 

radiosity might be expected to perform better in an enclosure with a diffuse sound field and, 

consequently, in an enclosure with uniform absorption. Secondly, with uniform distribution of 

absorption, the question of how to distribute absorption is not pertinent; error is not as likely to 

be introduced because of an inaccurate estimation of the distribution of absorption. As we have 

seen in Section 5.3.1.2, the distribution has a significant effect on parameters such as 

reverberation time, and this may explain some of the problems with predictions in the 

Environmental Room and in Hebb 12. 

In general, radiosity is poor at capturing information about the prominent reflections of a 

sound field, but it can predict the overall energy distribution, particularly in the late part of the 

decay in which individual reflections are not as prominent, with reasonable accuracy. As with 

any prediction method, it is often difficult to accurately estimate the physical properties of the 

system for input into the model. 
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CHAPTER 6 

Conclusion 

The objective of this research was to develop a radiosity algorithm for the prediction of 

sound fields in rooms, to validate it experimentally, and to use this algorithm to gain insight into 

the applicability and validity of acoustical radiosity in room acoustics. To accomplish this, 

research was done in several stages. 

The first stage was to review literature on radiosity in acoustics, as well as in other fields 

such as illumination engineering and computer graphics. Literature from other fields was found 

to be highly comprehensive and developed, but could not be directly applied to acoustics because 

of the time-independent nature of radiosity in these fields. Research in acoustical radiosity, 

although begun by Kuttruff in the 1970's, has not been nearly as intense as in the other fields. 

One possible reason for this lack of research is the seemingly limited application of acoustical 

radiosity, due to the assumption of diffuse reflection, which is more restrictive at the lower 

frequencies of sound than it is for light. Also, the time dependence of radiosity in acoustics 

makes it prohibitively computationally intensive, at least at initial glance. Nevertheless, diffuse 

reflection may be a less restrictive assumption than specular reflection. Also, the view-

independent nature of acoustical radiosity (whereby after one lengthy rendering for a given 

source position, predictions for varying receiver positions are very fast) makes it a promising 

model. Further, recent developments in time-dependent radiosity have indicated that it is possible 

to incorporate specular reflection into acoustical radiosity, and that methods can be (and are 

being) developed that increase the computational efficiency of acoustical radiosity. 

Because a thorough, comprehensive development of acoustical radiosity could not be 

found in the literature, one was developed and presented in this thesis. It begins with an overview 

of the assumptions of radiosity, goes through the derivation of the integral equation, and gives 
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the details of the numerical solution. In the development of the numerical solution, both the 

enclosure and time are discretized. Enclosure discretization leads to the evaluation of form 

factors, for which two methods are presented and implemented. The first is an analytical method 

based on formulas from radiation heat transfer for rectangular rooms discretized by rectangular 

patches. The second, implemented for use with non-rectangular rooms and non-rectangular 

patches, uses Helios FF (a modified commercial graphics radiosity Tenderer that uses two-level 

hierarchy and the cubic tetrahedral method to estimate form factors). The author was not aware 

of non-rectangular patches having been used elsewhere in literature on acoustical radiosity. If 

they were, it was not indicated how the integrals over solid angles that arise were evaluated. To 

evaluate these integrals, a method, given the name 'spherical triangle method', was developed 

and implemented. An approximation of late radiation densities by an averaging technique was 

suggested and implemented for the numerical solution. An algorithm, the outline of which is 

given in the thesis, was developed (in MATLAB) to implement the numerical solution. From this 

solution, methods for finding impulse responses, echograms, and room acoustical parameters 

were discussed. 

The numerical solution to the integral equation and the algorithm were validated by 

comparison of predictions for a spherical enclosure to analytical solutions for the sphere. Before 

further predictions were made, a method for analyzing and interpreting echograms called 

'echogram discretization' was proposed. Further, theoretical investigation into the effect of 

predicted impulse response lengths on reverberation time resulted in a criteria for determining 

the minimum time to which predictions must be made. Predictions then were made for four 

cubical enclosures using radiosity and ray tracing. From these predictions, it was suggested that 

150 patches, discretization periods of 1/4000 s, and impulse responses predicted exactly for 

slightly over half of the total predicted length of the response (determined from the criteria 

developed earlier) were sufficient for accurate prediction in these enclosures. Observations about 

the differences between ray tracing and radiosity, the effects of absorption distribution, the 

computational requirements of radiosity, and the validity of using Helios FF for form factor 

approximation were also made based on the predictions in the cubical enclosures. Predictions 

were made by radiosity for three real rooms, and were compared to measurements and to ray 

tracing predictions made in the same rooms. Echogram comparisons revealed significant 

differences between measurement and prediction methods, the most striking (although 



Chapter 6. Conclusion. I l l 

understandable) of which is the lack of strong reflections in the radiosity echogram. Several 

suggestions about the applicability and validity of radiosity as a room sound field prediction 

method were discussed. 

The question of the accurate estimation and distribution of absorption in the three 

measured rooms was raised several times. Certainly, it would be beneficial to be able to compare 

predictions to measurements made in rooms for which absorption coefficients are known. 

Further research might attempt to reduce uncertainties about the absorption through the use of in-

situ absorption measurements, or by measurements in models built from materials whose 

absorption coefficients are pre-determined in an anechoic chamber. It would also be very 

interesting to auralize sound fields predicted by radiosity and compare them to real sound fields 

or sound fields created by other prediction methods. Similar experiments and analysis to those 

done in this thesis could be performed in other rooms - particularly non-rectangular rooms - to 

gain further insights into acoustical radiosity. Other future work might include the validation of 

hybrid prediction models that use radiosity to predict the late part of the room response, and 

some other method (which incorporates specular reflection) to predict the early part of the room 

response. Incorporation of specular reflection directly into radiosity is another approach that 

warrants research, as do methods for increasing the efficiency of acoustical radiosity. 

In summary, an acoustical radiosity method for predicting sound fields in rooms was 

developed and implemented, for which several new approaches were suggested and used. 

Validation of the numerical approximations was successful, and the sound fields of several 

enclosures were predicted. Some insight into acoustical radiosity was gleaned from these 

predictions by comparison to other prediction methods and to measurement. 
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A P P E N D I X A 

Definitions 

Absorption coefficient (a). The property of a surface that gives the fraction of energy incident 

on the surface that is absorbed by the surface. 

Air absorption coefficient/exponent. The property of a medium that gives the propagation loss 

in sound energy traveling through the medium. Two forms are used in the literature (see 

Appendix B for a relationship between the two): 

Air absorption coefficient {am ). The amount that the sound pressure level of a plane wave 

decreases per meter o f propagation: 

Lp(x) = Lp(P)-amx (A.1) 

where Lp (x) is the sound pressure level at a distance of x meters in the direction of 

propagation from x = 0 . Units: dB/m. Strictly speaking, am is not really a coefficient, but a 

constant. 

Air absorption exponent (m ). The intensity of a plane wave decreases according to: 

I(x) = I(0)e-mx (A.2) 

where I(x) is the intensity at a distance of x meters in the direction o f propagation from 

x = 0 . Units: m"1. 

Anechoic Chamber. A room with sound absorbers mounted on the walls, floor, and ceiling so 

that (almost) no reflections are produced by the boundaries above some cutoff frequency. 

The sound field in an anechoic chamber simulates free-field conditions. 
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Average absorption coefficient (a ). If a surface consists of several homogeneous sub-surfaces, 

then the average absorption coefficient is defined as: 

a (A.3) 
(=1 / 1=1 

where at and St are the absorption coefficient and surface area of surface /, respectively, and 

there are n surfaces. 

Center Time (TS). A room acoustical parameter defined as the first moment of the pressure-

squared impulse response, g(t), 

TS = 
\tg(t)dt 
0 
CO 
\g(t)dt 

(A.4) 

Clarity Index (C n ) . A room acoustical parameter defined as 

( n ms *\ 

C„=101og j g(f)dt 
_0 
00 

j" g(t)dt V « ms 

dB (A.5) 

where n is time in milliseconds and g(t) is the pressure-squared impulse response. The most 

commonly used clarity index is Cso, which is used in this thesis. See Appendix B for the 

derivation of a relationship between clarity and definition. 

Decay curve. The decay of the sound pressure level as a function of time, with t = 0 the time of 

cessation of a continuous sound. 

Decay time (T). A measure of the rate of decay of reverberant sound in an enclosure [28]. If 

T exists and has finite value greater than zero, then the decay time, T, is defined as 

\/T = \im(N-]dN/dt) (A.6) 

where N(t) is the total sound energy at time t with t - 0 the time of cessation of sound 

generation. For a perfectly absorbing surface ( a =1), both N and dN/dt are identically zero 

after a finite time, so T is undefined by the equation above. In this case, we define the decay 

time as 

T(a = \) = \\mT(a). (A.l) 
a-*\ 
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Decibel averaging. For n levels Lt, i = 1, 2, ..., n , the decibel average level, L is given by 

Z = 101og 

Definition (£>„). A room acoustical parameter defined as the ratio (in percent) of the early to 

total sound energy 
n ms 

J g(t)dt 

Dn=~i % (A.9) 
\g(t)dt 

o 

where n is time in milliseconds and g(t) is the pressure-squared impulse response. See 

Appendix B for the derivation of a relationship between clarity and definition. 

Diffuse sound field. A field in which energy is distributed equally in all positions and flows 

equally in all directions; it is an isotropic, homogeneous distribution of energy. Such a field 

would result in vanishing net energy flow and is therefore incompatible with any wall 

absorption, which causes the flow of some energy towards the wall. The assumption of a 

diffuse field has been established as having limited applicability [23]. Nevertheless, such an 

assumption affords great simplifications in the predictions of room acoustics, which has 

made it very popular among practitioners and room acousticians (particularly the Sabine and 

Eyring formulas). 

Diffuse reflection. Reflection according to Lambert's law (see Section 2.2.1). A surface 

adhering to Lambert's law is called a Lambertian or diffusely reflecting surface. 

Dirac delta function (S(t)). A generalized function defined by two properties. First, 
oo 

J<y(0=i. 
-co 

Second, 8{t) = 0 for all f * 0. 

These two properties give 
co 
\s(r)5(t-T)dT = s{f) (A. 10) 

" L, 
10 

1=1 

(A.8) 
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for any continuous function of time,s(f). <5(/)is often considered as being infinite for 

/ = 0 and zero for t * 0. Refer to a text on mathematical physics or Fourier analysis for 

details [43]. 

Directivity function ( Q ) . A characteristic of the directional distribution of the intensity of a 

sound source. Q(0,%) is the ratio of the energy radiated in the direction 6, in the horizontal 

plane, and t;, in the vertical plane, to the average energy radiated over all angles. 

Double Lune. Region on a sphere bounded by two great circles. See Figure A . l . 

Early Decay Time (EDT). A room acoustical parameter defined as six times the time it takes for 

the energy to reach one tenth of its initial value after the cessation of sound (equivalently, for 

the sound pressure level to fall 10 dB). 

Echogram. A diagram of the pressure squared response s(t) of a room at a receiver position for a 

given signal. The echogram is made by making a vertical mark of magnitude s(t) at time t 

(for all times for which s(t) * 0). 

Energy Density. A characterization of the amount of energy contained in one unit volume of a 

sound field. 

Eyring's Formula. A (famous) formula for reverberation time, RT, in a room based on the 

assumption of a diffuse sound field and incoherent phase relationships[36]: 

RT= 2 4 n n ( ' ° > - ,0.161 L _ (A.11) 
c(4mV-S\n(\-a)) 4mV-S\n(l-a) 

Though it is based on the highly questionable assumption of a diffuse sound field, Eyring's 

formula (along with the similar and equally important Sabine formula) has been widely used 

by room acousticians for its simplicity. 

Figure A . l . Double lune with angle a. 
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Exponential decay. A common and often accurate assumption that energy in a room decays 

according to [36] 

E(t) = E(0)e-"T (A. 12) 

where T is the decay time and E(t) is the total sound energy in the room at time t. 

Free Field. A field with no boundaries; energy propagates without interaction (reflection, 

transmission, or absorption) with any obstacles. A free field may be simulated in an anechoic 

chamber. 

Great Circle. A circle on a sphere that is as big as possible. See Figure A.2. 

Impulse response (g(t)). The output signal g(t) at the receiver position in response to an 

impulsive sound signal represented by a Dirac Delta function. With respect to an input signal 

s'(t), the output signal s(t) is the convolution of s' and g - i.e. 

CO 

S(t)= jg(T)S'(t-T)dT. (A.13) 
-OO 

In this research, we are concerned with the 'pressure-squared' impulse response which gives 

the pressure-squared response at the receiver when convolved with the input signal (see 

Section 4.1.1). 

Inter aural cross correlation coefficient (IACC). A room acoustical parameter that is a 

binaural measure of the difference in sound pressure at the two ears. 

Intensity (/). Energy passing through a unit of area (projected normal to the direction of flow) 

per second. Units: W/m 2 . 

Figure A.2. Great circle and spherical triangle on a sphere. 
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2 
Irradiation density. The rate at which energy is incident on a unit area of surface. Units: W/m . 

Lateral energy fraction (LF). A room acoustical parameter defined as the ratio of the pressure-

squared output of a figure-8 microphone (with null directed at source) to the output of a non-

directional microphone. The figure-8 microphone weights the energy by cos2 (6), where 

6 = 90° is the direction of the sound. 

Omni-directional source. A sound source that radiates equal intensity in all directions. It has 

directivity of one ( Q(6,%) = 1) in all directions. 

Order. / ( « ) of order g(n) means that there are positive constants c and k such that 

0 < / ( n ) < cg(n) for all n > k . 

Plane wave. A wave with planar wave front; the direction of propagation is along a single axis. 

Point source. Radiates energy as i f from a vanishingly small source in space. The resulting 
waves are spherical. 

Power (W). A measure of the rate of radiation of sound energy. Power is equal to 

Radiation density (B). The rate at which energy leaves a unit area of surface (W/m2). 

Reference power (W0). Standardized reference power with a value of IO"12 W. 

Reference pressure (p0). Standardized reference pressure roughly corresponding to the normal 

human threshold of hearing at 1000 Hz. It has a value of 2 x 10~5 Pa. 

Reflection coefficient (p). The property of a surface that gives the fraction of energy incident 

on the surface that is reflected. 

Reverberation time (RT). A room acoustical parameter defined as the time it takes for the 

energy to reach one millionth of its initial value after the cessation of sound (equivalently, for 

the sound pressure level to fall 60 dB). Refer to Appendix B for reverberation time as a 

function of decay time. 

Root mean square pressure (prms). The characterization of a stationary signal as the root of the 

time average of pressure squared over sufficient time 

W = IA (AAA) 

where A is area in m 2 and / is the intensity. Units: W (watts). 

(A.15) 
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Sabine's formula. See definition for Eyring's formula, and substitute the low-absorption 

approximation - ln(l -a) = a in Eq. (A . l 1). 

Sound Power Level (PL). The characterization of a signal given by 

PZ = 101og dB (A. 16) 

where Wo is the reference power and W is the power of the signal. 

Sound Pressure Level (SPL). Used as the characterization of a stationary signal at a receiver 

position instead of intensity or root mean square pressure, which has too much variance in 

magnitude for the human threshold of hearing to be of practical use. It is a function of root 

mean square pressure 

SPL = 20 log r rms dB (A. 17) 
V Po J 

where po is the reference pressure. 

Specular reflection. Reflection from a surface in a single direction. It follows two laws: (1) the 

incident ray, the reflected ray, and the perpendicular to the mirror at the point of incidence lie 

in the same plane; and (2) the angle of incidence (between the incident ray and the surface 

normal) is equal to the angle of reflection (between the reflected ray and surface normal). 

Spherical Polygon. A polygon drawn on a sphere. Each side must be a geodesic; it must be the 

shortest path along the sphere between its two vertices. Each side is thus the arc of a great 

circle. A spherical triangle is just a spherical polygon with three edges (see Figure A.2). The 

angle on a sphere between two straight (geodesic) lines is defined as the angle between the 

planes passing through the great circles formed by extending the lines (alternately, the planes 

passing through two points on each line and the center of the sphere). 

Spherical waves. Waves with wave fronts that are concentric spheres. 

Strength (G). A room acoustical parameters defined as the difference between the steady state 

sound pressure level in the room at the receiver position and the steady state sound pressure 

level in an anechoic room at 10 m from the source. In both cases, the same omni-directional 

sound source is used. In equations, 
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G = 101og 

oo 
\g(t)dt 

_0 

oo 
\gA(t)dt 

(A. 18) 

Vo 

where g(t) is the pressure-squared impulse response and gA (t) is the pressure-squared 

impulse response in an anechoic chamber at 10 m from the source. 

Transmission coefficient ( r ). The property of a surface that gives the fraction of total energy 

incident on the surface that is transmitted through the surface. 
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APPENDIX B 

Relationships 

The relationships between some values are derived in this Appendix. 

B.l Reverberation and decay time 

To find reverberation time, RT, as a function of decay time, T, assume exponential decay 

according to Eq. (A. 12). This gives 

E(RT) = E(0)e'RT,T 

We want 

E(RT) = 1CT6£(0) 

^ \06=eRT,T 

ln(106) = ^ 

i?r = 6r in(10)« 13.827 (B.l) 

B.2 Clarity and definition 
n ms 

To find a simple relationship between clarity and definition, let E = J g(t)dt, 
0 

CO GO 

L = I g(t)dt, and T = ^g(t)dt (where E, L, and T stand for early, late, and total, respectively). 
« ms 0 

Then 

T = E + L (B.2) 

By the definitions of clarity, Cn, and definition, D„, we have 
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so, by Eq. (B.2), 

CB=101og(£yz) and Dn =E/T 

E = L10CJW and E = DnT 

L10 c" / 1 0 =Dn(E + L) 

L(lOCJ]0 -Dn) = DnE 

E 10 c " / 1 0 -£> 
L 

1 0 c„/io = 
lOCJi0-D 

C„=101og 
f D. ^ 

l-D. 
and D. = 

» J 

10c"/'° 
10 c" / 1 0+l 

(B.3) 

B.3 Absorption, transmission, and reflection coefficients 

If p is the reflection coefficient, a is the absorption coefficient, and r is the transmission 

coefficient, then 

p + a + r = \ (B.4) 

B.4 Air absorption coefficients and exponents 

To find a relationship between the air absorption coefficient, am, and the air absorption 

exponent, m, of a medium, recall (Eq. (A.2)) that 

I(x) = /(OK"" 

hence, by Eq. (2.14) p\x) = p\Q)e-mx . 

Taking logs and multiplying by 10 gives 

Lp (x) = Lp (0) +10 log(e-"") = Lp (0) - [l 0m log(e) ] x 

so, by definition of air absorption coefficient, 

am=10mlog(e) (B.5) 
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APPENDIX C 

Theorems 

C l Girard's Theorem 

The solid area of a spherical triangle with angles a, ft, and 9 (measured in radians) is 

where a is the radius of the sphere. 

This theorem first appeared in 1629 in the book "Invention nouvelle en l'Algebre" by Albert 

-Girard. A proof, based on an outline and figures given by Weeks in [64] is as follows. 

Proof 

Let A, be the area of the double lune (see definitions) with angle a on a sphere of radius 

a . For a = n, the double lune fills the entire sphere, so A, = 4na2. Keeping the ratio of 

a to A, constant, the double lune with arbitrary angle a must fill a In of the surface area of the 

sphere - i.e. 

For the spherical triangle with angles a, fi, and 9 , we extend the edges of the triangle around 

the sphere to form three great circles (see Figure C l ) . Each pair of great circles gives a double 

lune. There are three such pairs, each with angles a,P, and 9 (see Figure C.2). By Eq. (C.2), 

these double lunes have respective areas 4aa2,4fia2, and 49a2. 

If all three double lunes are filled in simultaneously, the whole sphere is covered at least 

once, with the original and antipodal spherical triangles filled three times (see Figure C.3). 

A = a2(a + p + 9-n) ( C l ) 

4na2 = 4ar2. (C2) 
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Figure C.1. Extending the edges of a spherical triangle to form 3 great circles. 

Figure C.2. Three double lunes defined by a spherical triangle. 

Figure C.3. Covering the sphere by three lunes. 
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Hence, the sum of the areas of the three double lunes must equal the area of the sphere plus four 

times the area of the spherical triangle - i.e. 

4aa2 +4p3a2 +40a2 = 4rra2+4A. 

It follows that 

a2(a + P + 9) = 7ta2 + A 

=> A = a2(a + fi+ 0-n) 

C.2 Generalization of Girard's theorem to arbitrary polygons 

The surface area of an iV-sided spherical convex polygon with angles 

(measured in radians) is 

A = a2 

where a is the radius of the sphere. 

( N 1̂ 

£ a I . + ( 2 - i V ) ^ 
V 1=1 

( C . 3 ) 

Proof 

Pick an interior point inside the polygon and form N spherical triangles, each with two 

vertices along the same edge of the polygon and the third vertex as the central point P. Then the 

area of the spherical polygon is the sum of the areas of these spherical triangles. 

Let yi (i = 1,2,..., AO be an angle of spherical triangle i at one of the vertices other than P, 

let rj. be the angle at the other non-P vertex of triangle i, and let /?. be the angle at P of triangle /. 

Then 
N N 

/=i 1=1 

and 

1=1 

Also, by Girard's theorem, the area of spherical triangle i is 

Ai=a2(yi + n. + ff.-;u). 

It follows that the area of the spherical polygon 
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N 

1=1 
N 

1=1 
f N N 

V <'=i i=i J 

= r2{y a: + 2K-N7z\ 
V i=i J 
f N \ 

= a2 5]a , + ( 2 - i V ) ^ 
V 1=1 J 

C.3 Theorem 

Define a room, receiver position, and source position. Then for two impulsive (omni

directional, point) signals defined by 

the corresponding radiation densities, Bx(r,i) andi?2(r,0 (from the solution to Eq. (2.7)) are 

W 
related as B2 (r, t) = kBx (r, t), where k = —L (for t > 0). 

W2 

Proof (by strong induction) 

The theorem holds for t = 0 since Bx (r, t) = 0 = B2 (r, t). This is clear from the fact that, 

with the source inside the room, sound energy has not had time to travel to any part of the 

boundary of the enclosure. 

It is clear, from Eq. (2.11), that 

Let tQ > 0 and assume that the theorem holds for all t such that 0 < t < t0 - i.e. assume 

B2 (r, t) = kBx (r, 0 for all 0 < t < t0. Then 

Bdi (r,t) = kBdi (r,t) for all t > 0 (C .4) 
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p(r) 
in t ' * n I \ -mR COS f9 COS (9' 

__m„ cos 6 cos & 

5 2 ( r , / 0 ) = — \B2(r',t0-R/c)e-
R2 

dS' + Bd(r,t0) 

P(r) 
Tt 

^kBl(r',t0-R/c)e~ 
R2 

dS' + kBd(r,t0) 

= k 
P(r) ' ^ l B y A - R i c ) e - - S 2 " d s ' + B d t ( r A ) 

Tt z R 
= kB,(r,t0) 

as required. 
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APPENDIX D 

Code 

The numerical solution to the integral equation was implemented in MATLAB [44] 

Version 6 Release 12. The MATLAB M-files that were written to give the solution can be 

categorized into three modules, which are outlined below. The first module is used to input and 

read the room specifications and conditions. The second module finds the radiation densities of 

the patches and is independent of the receiver. The third module completes the solution by 

finding signal responses and parameters, and plots the results for the receiver position. The M -

Files are run in the order presented in Table D . l , with each routine using the output from the 

previous files. 

Table D . l . List and description of MAT ALB M-files. 

Module M-File Description 

1 

radiosity_input.m 
Used to specify the time discretization resolution and the 
maximum time, source position and power, air absorption 
exponent, and the speed of sound 

1 

helios_read.m 
Reads the output from HeliosFF into MATLAB. Patch and 
element vertices, centers, areas, normals, and reflection 
coefficients are read, as well as patch-to-element form factors. 

2 
source.m Calculates the direct contribution of the source to the element 

radiation densities as given by Eq. (3.5). 2 
radiosity_network.m Calculates the radiation densities of the elements by the 

algorithm outlined in Sections 3.4. 

3 

receive.m Uses the second algorithm in Section 3.4 to calculate the 
pressure squared response at a given receiver position. 

3 parameters.m 
The output from receive.m is used to get the impulse response, 
echogram, and decay curve, as well as SPL, T60, EDT, Cso, 
D50, TS, and G (see Chapter 4). 

3 

figures.m Plots the echogram and the decay curve. 
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One other M-File, named 'solid_angles.m', is called by 'source.m' and 'receive.m' to find the 

solid angles subtended by the source/receiver and the elements. It makes use of the method 

outlined in Section 3.3. 


