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Abstract

In this paper we give expositions of Roth’s theorem, Weyl’s inequality and
Vinogradov’s three-primes theorem. In the proofs, we will frequently use
exponential sums and more specifically the discrete Fourier transform. In
the proof of Vinogradov’s three-primes theorem we will use Hardy and Lit-
tlewood’s circle method. This paper is intended to be self-contained and will
hopefully be readable to someone with little background in the area.
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Preface

When 1 first read about Vinogradov’s three-primes theorem, I was over-
whelmed. After examining a few sources, I came across Gowers’ lecture notes
[3] on the internet. His notes were much more readable and intuitive than
any of the other sources I had seen. This paper originates with those notes.
My goal in this paper is to provide a gentle introduction to the applications
of Fourier analysis in Number Theory.

At the suggestion of my advisor, Izabella Laba, I began studying this
area of Number Theory with Roth’s theorem. Besides the applications to
Szemerédi’s theorem [4], the proof of Roth’s theorem provided me with a
nice way to become more comfortable with the discrete Fourier transform.
Therefore, I have included a proof of this theorem here.

Weyl’s inequality is typically used in minor arcs estimates in applica-
tions of the circle method. I have included a proof of Weyl’s inequality for
quadratic polynomials as well as the related lemma A.0.5 which we will use
in the minor arcs estimates for Vinogradov’s three-primes theorem. The
inclusion of Weyl s inequality provides for a fairly sélf contained proof of
the three-primes theorem and also gives the readerimportant background
material for other problems in this field. : '

In the proof of Vlnogradov s three primes theorem my prlmary goal was
to clarify Gowers’ notes and to fill in the gaps that may have resulted from
the notes being written as a supplement to class lectures. I have chosen to
omit constants since they originally distracted me from overlying ideas.

Throughout this paper, I have tried to combine available sources and to to
take the best elements from each of them. I have tried to provide the reader
with a foresight in the form of outlines of proofs, where a lemma or theorem
may be used, etc. I have attempted to clarify portions of the proofs that I
found difficult upon first reading. And, finally, I have used the opportunity
to write this thesis to become familiar with this area of mathematics.
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Chaﬁte‘r 1
Introduction

The purpose of this paper is to provide an introduction to the application
of Fourier analytic techniques in number theory. The theorems presented
below combine methods from additive, combinatorial and analytic number
theory. Specifically, we will prove Roth’s theorem, Weyl’s inequality and
Vinogradov’s three-primes theorem. In an effort to keep this paper fairly
self-contained, we include an introductory section to the discrete Fourier
transform. We also briefly describe the history of each theorem and summa-
rize recent related results.

The theorems presented all concern the structure of subsets of the inte-
gers. The following are natural questions: Does a subset contain an arith-
metic or geometric progression? Does a given subset form a base of the
integers? When is the distribution of a subset of integers ‘random’? What
can we extrapolate about a subset from its sumset? The theorems in this
paper formulate and provide answers to some of these questions.

We say that a subset of nonnegative integers, A, is a basis of finite order
kit NCA+A+ ... +A={a1+..+a :a € A}. For example, it is
clear that A = {0,1,3,5,...} is a basis of order 2. In 1770, Waring stated
without proof that every natural number is the sum of at most four squares,
nine cubes, nineteen fourth powers, etc. Stated precisely he claimed that A =
{0,1™,2",3", ...} is a basis of finite order for each n. The Goldbach conjecture
states that every even integer greater than or equal to six is the sum of exactly
two prime numbers. This general type of problem can be characterized as an
attempt to show that the natural numbers can be represented as solutions
to arithmetic equations over a restricted domain.

An arithmetic progression of length k is a set of the form P = {a,a + -
s,a+2s,...,a+ (k —1)s}. Szemerédi’s theorem proves that an arithmetic
progression of arbitrary length can be found in every sufficiently dense subset
of the integers. An example of a set which is not sufficiently dense, and hence
does not satisfy the hypothesis of Szemerédi’s theorem, is the prime numbers.
Despite this, Green and Tao recently (May 2004) proved that the primes
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- also contain arithmetic progressions of arbitrary length. Another interesting
result in this area is that any sufficiently dense subset of the integers must
contain two elements which differ by a perfect square. This result was first
proved by Sarkozy and separately by Furstenberg, who came by the result
as a corollary to his proof of Szemerédi’s theorem.

A third topic in this area is called inverse additive number theory. While
we will not address this in detail the area may be of interest to the reader.
Problems from this area involve the study of sumsets or difference sets. Let
A be a subset of the positive integers. We define a sumset to be the set
A+ A = {a;+ay : ay,a; € A} and similarly the difference set A.— A. An
important result is Freiman’s theorem which states that if the sumset A + A
is small, then A must be contained in a generalized arithmetic progression.
Freiman’s theorem is related to the Balog-Szemerédi theorem Whlch Gowers
uses in his proof of Szemerédi’s- theorem. . .. P

Many different methods can be apphed to the above problems A good
illustration is Szemerédi’s theorem which can be proved using combinatorial
or ergodlc or analytrc methods. Each approach has its own advantage and
in this- paper we will focus..on Fourier analytlc techniques. Although this
approach gives quantitative bounds (which ergodic methods do not give), we
will not always provide them in an effort to keep the proofs as readable as
possible.

1.1 Notation

Throughout this paper we will use the following notation: :
We will be estimating many exponential sums and therefore the following
will be very useful.

exp(z) = €°

At times, we will find that it is easier not to keep track of certain constants
and so if f and g are functions, g(z) > 0 for all z and there exists a constant
M such that |f(z)| < Mg(x) for all z, then we will write
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or

, flz) < g(z).

The standard floor and ceiling functions are defined to be
la] =max{n € Z:a>n}

and
[a] =min{n € Z: a < n}.

We define the fractional part of the real number « to be
{a} =a-|al.
We will denote the distance from a real number « to the closest integer by
lla|| = min(|n — a| : n € Z).

We will also use some functions typically used in Number Theory:
We define the Mobius function to be

1 ifn=1,
pn) =<0 if n is divisible by the square of a prime
(—=1)" if n is the product of r distinct primes.

The Euler ¢-function is defined to be the number of positive integers less
than n which are relatively prime to n. We can count the number of primes
less than any real number z which we denote by 7(x). Finally, we define the
von Mangoldt furiction to be’ S S '

An) logp if n = p™ for some prime p and some m > 1,
) =
0 otherwise .

We refer the reader to appendix B for some mterestlng results relating to
these functions.




Chapter 2

The discrete Fourier transform

In this section we will introduce the discrete Fourier transform and prove
several related identities. We take f to be a function which maps the group
Zy, the set {0,1,..., N—1} under modular addition, to the complex numbers.
The Fourier transform fof / preserves certain important properties and is
often easier to study. The Fourier inversion formula will provide a way to
recover the original function f. :

Although this necessary background comes ahead of where we must use
it, we will attempt to provide some motivation. Roth’s theorem states that
any subset A of the numbers {0,1,..., N —:1} of size. 6N must .contain an
arithmetic progression of length. three for any § > 0 assuming that N is
sufficiently large. To prove Roth’s theorem, we will cover the two cases
defined by the size of the Fourier transform of the characteristic function of
the set A.

Definition 2.0.1. Let f : Zy — C. Then for any r € C define the discrete
Fourier transform of f to be

P

Firy =" f(s)e(~rs/N).

S

1l
=)

In the case of Roth’s theorem, we define A(z) to be the characteristic
function of A. Then by definition 2.0.1 A(r) = Zf:—ol A(z)e(—rz/N) =
> acae(=7ra/N). Therefore, the magnitude of the Fourier transform A is
dependent on the distribution of points e(—ra/N) on the unit circle. We will
see that small Fourier transforms, which means these points have a fairly
even density on the entire circle, coincides with the set A being “random”.

For the remainder of this section, where the limits of summation are clear
we will omit the bounds.

Definition 2.0.2. Let f,g: Zy — C. Then

f#g(s) Ejf g(t—s)
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is defined to be the convolution of f and g.

The next identity provides a relation between the discrete Fourier trans-
forms of f and g and their convolution.

Lemma 2.0.3. (m) = f~(r)—§(7)
Proof: By definition 2.0.1 and definition 2.0.2 we have

(Frg)= Z(f x g)(s)e(~rs/N)

-.ZZf )g(t — 5))e(—rs/N)
_}:f )g(t — s)e(—rt/N)e(—r(t — s)/N)

—Zf (=rt/N)g(u)e(~ru/N)
=f("‘)9(7‘)-

We will use the following identity in the proof of Parseval’s identity,
Plancherel’s formula, the Fourier inversion formula and Roth’s theorem.

N-1

S e(—rs/N) :{ M ;00 | (2.0.1)

s=0

Lemma 2.0.4. Parseval’s identity.

Z fr NZ f(s)
Proof: Using lemma 2.0.3 and equamon 2 0.1 we have
Z fr Z Z f % g)(s)e(—rs/N)
= Z (f*9)(s) ) _e(~rs/N)

= N((f = 9)(0))

=N f(t)g(t). O
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Plancherel’s formula says that the L? norm of the discrete Fourier trans-
form of f is proportional to the L? norm of f.

Lemma 2.0.5. Plancherel’s formula.

DO =N If(s)

Proof: Using lemma 2.0.4 let a(r) = fr). Then f(r)f(r) =|f(n. O
Finally, we are ready to prove the Fourier inversion formula.

Lemma 2.0.6. Fourier inversion formula.
_N- Z f 'rt/N
- Proof:
1Zf(r 'I”S/N N Z Zf rt/N (T‘S/N)
- —Nl‘LZf (a—0m)

=N~ Zf Z r(s —t)/N)

(f(S) )
= f(S)

by equation 2.0.1. O




Chapter 3
Roth’s Theore_m

3.1 History

In this section we prove Roth’s theorem on arithmetic progressions of length
three. One of the first developments in the study of arithmetic progressions
in sets of integers was given by van der Waerden in 1927 when he proved the
following theorem:

Theorem 3.1.1. Let k and r € N. Then there ezist M € N which depends
on k and r such that if {1,..., M} is partitioned into any r subsets, then one
of these subsets must contain an arithmetic progression of length k.

In 1936, Erdés and Turdn attempted to strengthen van der Waerden’s
result with their conjecture that an arithmetic progression of length & could
be found in any sufficiently dense subset of the integers. In 1953, Roth made
the first progress toward this conjecture by proving the case with k£ = 3.
Szemerédi proved the conjecture for £ = 4 in 1969 and generalized for all
k in 1974. Later, Furstenberg was able to prove the theorem using ergodic
theory. A third proof is due to Gowers in 2001 in which the methods of Roth
are generalized.

Theorem 3.'1.2. Szeméredi’s' Theorem. Letk be a posz’tivé integer and let
6 > 0. Then there ezists N = N(k,§), such that every subset A of {1,..., N}
such that |A| > 6N must contain an arithmetic progression of length k.

Roth’s proof of the case k = 3 also provided a quantitative bound on the
- size of N in relation to the density ¢ of the subset A. We define N (4, k) to be
how large N must be to guarantee that any subset A C {0,1,..., N — 1} with
density 6 contains an arithmetic progression of length k. In Roth’s proof, he
was able to show that N(4,3) = Cexp{exp(cd~!)). Szemerédi’s proof gave
the bound N(4,3) = C; exp(6~2). In 1999, Bourgain gave the bést bound
known with N(8,3) < Cexp(62log?(671)).
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Szemerédi’s proof of progression of length k also contained a quantitative

. bound on N(4, k), although it is extremely difficult to write down. Fursten-

berg’s methods gave no bounds at all. Gowers’ proof did significantly improve
2k+9

Szemerédi’s bound. Gowers showed that N(4, k) = 928"
"The next natural question is to find a lower bound for N(§,3). The best
bound known to date was given by Behrend [2] in 1946. In his argument

. 1 v2Tog2 e .

he constructed a subset of {0,1,...,N — 1} of size N'~ Ve~ "Ve¥® with-
out arithmetic progression of length three. In other words, he showed that
N(8,3) > c1exp(calog’(671)). His construction is based on the fact that
higher dimensional spheres are convex, and so any line which passes through
the sphere can intersect the sphere at most twice. There is also a result for
longer arithmetic progressions due to Rankin [12]. He showed that for k > 1,
there are subsets of {1, ..;, N} of cardinality at, least N exp(—C{(logN)/(:+1)
that do not contain arithmetic progressions of length 1 + 2%.

The remainder of this chapter follows Gowers’ paper ”A New Proof of
Szemerédi’s Theorem” [4].

3.2 | Roth’s Theorem

Before presenting the details of Roth’s theorem, it is useful to give an outline
of the proof. We begin with A C {0,1,...,N — 1} with |A] = dN. If A is
“random”, then we will be able to show that A contains many arithmetic
progressions of length three. On the other hand, if A4 is not “random”, then
we are able to choose a subset A’ C A which has higher density in some
subprogression of the integers. We must then determine if A’ is “random”
or not, and we iterate the argument until the theorem is proved. For this
argument to work, we must count the number of necessary steps to ensure
that we do not eliminate too many elements for the number of steps needed.
Eventually we will have a set contained in an arithmetic progression with
density one and at least three elements.

We recall that for any set A € Zy we can define its characteristic
function

Oifz¢ A

To the characteristic function, we associate the balanced function f of A
defined to be f(z) = A(z) — 4.

A(m):{ lifze A
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As a final note before we begin the details of the proof we will need to
distinguish between an arithmetic progression in the integers (an arithmetic
Z-progression) and a progression modulo N (an arithmetic Zy-progression).

We will say that a set A is random if the Fourier coefficients of the bal-
anced function are small.

Definition 3.2.1. We say that the mapping f of Zy to the closed unit disk
in C is a-uniform if |f( N < aN forallr #0. If f is the balanced function
of A(z) then we will say that A is a-uniform or random.

We will now state and prove results which will be useful when a Fourier
coefficient is large, in other words, when A is not random.

Lemma 3.2.2. Assume N is a sufficiently large prime. Pick integers r and s
such that0 <7 < N and0 < s < N—1. Then the set {0,1, ..., N —1} can be
partitioned into arithmetic Z-progressions P; such that (1) \/s / 2 <|Pj} < /s
and (2) if 1,25 € P;, then |z1r — x97| < 25 inZpy.

Proof: Partition the interval [0, N — 1] into N/2+/s intervals of equal
length. Consider the set S = {0,7;2r, ..., | N/v/2s|} modulo N. Then, by the
pigeonhole principle, there must be two elements from S, kr and Ir, which lie
in the same interval. Assume that k& > . Then |kr—ir| < v/4s. Set u = k—1.
Now we consider the set {0,1,..., N — 1} modulo u. Each residue class will
have | N/u] or [N/u] elements. Now, [N/u] > |N/u| > N/(N/\/2s) =
v2s. Now will simply divide each residue class into subprogressions, P; of
sequential elements with the desired length; \/s/2 < [P;| < /5. Then given
T1,Ty € P; we have |z17 — zor| < (/5 -ru < /5 - \/__ 2s as desired. O

Lemma 3.2.3. Let N be a sufficiently large odd integer and let f' be a
Junction such that f : {0,1,..,N — 1} — {z : |2| < 1}. Assume that
1f(r)] > aN for some r # 0. Then the set {0,1,...,N — 1} can be par-
titioned into arithmetic Z-progressions P such that |P| > y/aN/32r and
25| 2sep, f(2)] 2 aN/2.

Proof Set s = aN/8r and apply lemma 3.2.2 in order to partition

{0,1, .., N — 1} into arithmetic progressions P; such that \/aN/327 < |P;|
and glven x1 and zy € P; we have |27 — z97r] < 25 = aN/4r in Zy.
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By assumption and definition of the Fourier transform, we have

N-1

aN < [(r) |~|Zf' (~or/N)
—IZZf(:c (—or/N)

<Z|Zf (~ar/N)|
<ZlZf(ml+ZlPl o/2

To see this, we estimate the inside sum for fixed j as follows.

|Zf (=ra/M)]

,=|Zf(fc e(=sr/N) + el /N) —e(ayr/N) |

SIS ez 41 Y £@) (e(ar/N) — é(—ayr/N)|
z€EP; z€P; '

<1 F@)+ Byl max|£(@)] - max fe(~ar/N) - e~a;n/N)
z€EP; ! ' !

<1 f@)l+ 1B -af2

ZEP]’

Here we use the fact that |zr — z;7| < aN/4n by lemma 3.2. 2 to show
le(—zr/N) — e(—z;7/N)| < a/2.

: Therefore we have proved aN —aN/2 = aN/2 < Z IZZer f(z)] as

desired. []

Corollary 3.2.4. Let A C {0,1,..,N— 1} such that |A| = 6N. -Assume that
|A(r)| > aN for some r #0 and o = 6%/10. Then there exists an arithmetic
Z-progression P = {a,a+u, ...,a + mu} of length at least \/62N/320m such
that Y550l > 6+ 62/40. .

Proof: Assume r # 0. Consider the balanced function f(z) = A(z) — 4.
We first note that f(r) and A(r) are equal since
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=

f(r) (A(z) = d)e(~ar/N)

I
il

N-1
A(z)e(—ar/N) =8 e(—zr/N)

= A(r)
We apply lemma, 3.2.3 to partition {0, 1,..., N 41} into arithmetic progres-
sions P; such that |P;| > \/aN/32r = /32N/3207 and 251 eep, f(2)] >
aN/2 = §2N/20. Since '

il
o

S i@ = 3 (Alw) - 9)
= E_:A(a:) — Z_d
_|A—sN

we have

DI f@)+ ngéf(x); > (',Z @)+ f(x))j

7 zeP; ¥ zeP;~ z€P;
> 6°N/20
Therefore, there must be at least one j such that | >~ B L@ cp, f(2) 2
6%|Py|/20. This implies that 3,5 f(z) > 62| P;|/40 since |a|+a > b > 0 =
a > b/2. Thus, for this chosen j, we have

[ANP)| =Y Aa)

:EGPJ'

=Y (f(z) +9)

:I?EP]'

= f(z) +3|Py|

(EEPJ'

> 8% P;|/40 + 4| P
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as desired. O

Lemma 3.2.5. Bertrand’s Postulate: If n > 1 then there is a prime p such
that n < p < 2n. _

We are now ready to prove Roth’s theorem.

Theorem 3.2.6. Let 6 > 0, let N > expexp(Cé~1) (where C is an absolute
constant) and let A C {1,2,...,N} be a set of size at least SN. Then A
contains an arithmetic progression of length three.

Proof: As previously outlined, we will prove Roth’s theorem by consid-
ering the distribution of the set A. We recall that we will show that if A is
uniform, then we can find a progression of length three. If A is not uniform,
then we are able to find a subprogression of N where the density of A is
higher. We iterate this argumert, until we have a density of one. Finally,
we will show that N is large enough to perform the number of iterations
necessary to reach a density of one and to have at least 3 elements remaining
in our set. » 7 , ‘ 4 .

Assume N is a large postive integer and let d; > 0. Assume Ay C
{0,1,..., No — 1} such that |Ao| > doNg. We will need N to be prime and
since our argument is iterative, this argument allows us to choose N prime
in each step. Applying lemma 3.2.5, we choose a prime N € [Ny/3,2Ny/3].
Let A= A,n{0,1,..,N —1}.

Case 0: If |A| < éo(1 — 8/160) N, then we have

Ao N AN, .o, No = 1} > | 4| — |4]
> 6o(No — (1 — 6o/160)N)
= 6o((No — N) + 6o N/160)
> do(1 + 60/320)(No — V)

Set 6 = 50(1 — 50/160)

Case 1: Assume |A] = éN. Let B = AN [N/3,2N/3] and assume
|B] < 8N/5. In this case, we have a small density in the middle third of the
set {0,1,...,N —1} which must mean that A has a higher density in at least
of of the other intervals [0, N/3) or {2N/3, N — 1]. In this case, without loss
of generality, |A N [0, N/3)| > 26N/5=66/5- N/3. '
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Case 2: Let o = 6%/10. Assume that A is not o-uniform. Then there
exists r # 0-such that |Z(r)| > aN. Here we have satisfied the hypothesis of
corollary 3.2.4 and we know that there is an arithmetic progression such that
A has higher density in this progression than in our original set. Specifically,
the progression will have length at least \/62N/3207r and |A N P|/|P| >

§+62/40. This will be the basis for our iteration argument. We will consider
(AnP)cC P.

Case 3: Assume that none of the previous cases holds. In this case we
are able to show that A contains an arithmetic progression of length three.
By assumption, we know that |A(r)| < aN for each nonzero r € C.

We would like to put a lower bound on the number of progressions of
length three. We first note that an arithmetic progression modulo N is not
necessarily an arithmetic Z-progression (consider 10,12,1 modulo 13 for ex-
ample). However, the number of arithmetic Z-progressions (z,y,z) € Z3
must be greater than or equal to the number of arithmetic progressions re-
stricted to (z,y,2) € Ax B x B where B = AN[N/3,2N/3] as defined above.
The triple (z,y,2) € A x B'x B is an arithmetic progression modulo N if
and only if z + 2z = 2y modulo N. We will now estimate the number of such
triples.

N—

[wey

> 1=N"3"3"3N "N e(r(2y — 2 — 2)/N)
(z,y,2)EAX B2 z42=2y 2€A yeB zeB r=
N-1 _
= N7'> " A(r)B(~2r)B(r)
r=0
> N7HA||BJ?
N-1 N-1
_ w1 A YR 211/2 B\ [2V1/2
N max A)ICY 1B(-20) (3 1B

r=1 r=1

> §|B|? - a| B|N.

Since our technique has counted trivial progressions (z = y = 2), and
there are | B| such progressions, we want to show that §|B|2—a|B|N > |B|+1.
Now we use the fact that | B| is at most N and | B| is at least 6N/5. Therefore,
we can conclude that N > (50 4+ /2500 + 443)/263.

In Case 3, we are able to produce an arithmetic progression of length
three. Now we will begin our iteration argument for the other three cases.




Chapter 3. Roth’s Theorem 14

First we must establish a method for finding subprogressions P such that
AN P has a higher density in P. The result of corollary 3.2.4 tells us that
in Case 2, there exists an arithmetic progression P of {0, 1,. — 1} of
cardinality at least \/62N/320m and |AN P|/|P| > &+ 62/40. We now apply
this to our original progression {0, 1, ..., Np — 1} by noting that §(1+6/ 40) >
80(1 + 89/320). Now since Nj is at most three times N, we know that this
subprogression P must be at least of cardinality aNy/967 and |40 N P| >
do(1 + 6o/320|P]). In case 0 we can take Ay N {N +1,..., Ny — 1} such that
[Ao N {N +1,...,Ng — 1}|/{N, ..., Ny — 1}| > & + 52/320 In case 1, we
assume Wlthout loss of generality that |AN{0,N/3)|/(N/3) > 65/5.

- We now begin our iteration argument. We need to be sure of two conclu-
sions: that it is possible to reach a density for which an arithmetic progression
is guaranteed (in our case we will actually reach density one, and that our
N is large enough so that we do not run out of possible subprogressions.
Beginning with our first step, we start with a density of . Then in each
subsequent iteration, we have the density i mcreasmg by at least 62 / 320. Then
we will reach a density of 20y after at most 3208, steps. Now, at any point
where we satisfy case 3, we can stop. However, there is no way to guarantee
this. Instead we will reach density one. Reaching a density of 26, after at
most 3205, steps we can then see that we will reach a density of 46, after
at most 320(2(50 ) further steps. In general, at step m where the density is
Om, we will reach a density 24,, after at most 3206.! further steps. We now
calculate the maximum number of steps required to reach a density of one:
320(1/80 + 1/260 + 1/480 + ...) = 640/8g. Now, we ask what bound we must
put on N in order that this number of steps makes sense. First observe that
at each step of the iteration the size of the subprogression chosen is about
the square root of the progression of the previous step. Therefore after the
first step we go from a progression of length N, to a progression of at least
~ length (clNo)l/ 2. Then after 6406~ steps we will have a length of at least
cN, 1% ), Now 1f we are still to have a progression of length three then we

085
must have ¢V, 1% > 3. This is equivalent to showmg N 1/@*% ) > 3/c.
Taking the log of both sides, we have log Ny > 264%" . 3/¢c. Therefore, we

640557} log ¢ 64055 ¢
must have Ny > e& >ee . O
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3.3 Szemerédi’s Theorem

Now that we have proved Roth’s theorem, we will be able to discuss Gowers’
generalization of the proof used to prove Szemerédi’s theorem. The outline of
Gowers’ proof mirrors that of Roth’s theorem. If a subset A of {0, 1, ..., N—1}
is ‘random’, then one can show that A must contain a progression of length
k. Otherwise, there is a subprogression, P C {0,1,...,N — 1} such that
|ANP|/|P| > 6. The argument can then be iterated as in Roth’s theorem.

The most obvious way to generalize would be to use a-uniformity to
show that A contains an arithmetic progression of length k. Unfortunately
the information given by a-uniformity does not seem to be sufficient to find
progressions of length greater than three using known methods of estimation.
Gowers’ idea is to use a stricter definition of ‘randomness’ which lends itself
to finding progressions of arbitrary length. However, this definition will of
course complicate the iteration argument in the non-random case since fewer
subsets of {0, 1, ..., N — 1} will satisfy the new definition of random.

We give here the definition of higher degree uniformity for all k, however,
we will focus on the case with k£ = 4 in Szemerédi’s theorem.

Definition 3.3.1. Assume f : Zy — [—1,1] and let z € Zy. Then we define
the difference function A(f;x) to be

Af;z)(s) = f(s)f(s — ).

Given a set {zy, 22, ..., xd}-ohe'can iterate the difference function. In the
case d = 2 (which we will need for progressions of length four) this iteration
is straightforward:

A(fim0,22)(s) = MA(fs 81 20)(s) = £(5) (s = ) (5 —e&af(s-:é?l(:? )
In general we have A(f;z1,...,24) = A(A - (A(f;31) -+ ;24). -

Definition 3.3.2. Let f be a function which maps Zy to [-1,1]. Then we
say that f is a-uniform of degree d if

Do 1D Alf5an, e ma)(5)] < aNH2,

L1, Lg S€ZLp

In the case where d = 2 we say that f is quadratically a-uniform.
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Given d = 1 this definition means
SIS AR = I f6)f s ~ D) < N,
x S T S .

One can see that this definition implies a-uniformity as defined for Roth’s
theorem since

DD f@fs—a)P= D> f@FOF(fd) =N IF)

a—b=c—d

which is easy to verify and follows from Chapter 2.

We will give a more detailed outline of the proof that the set A C
{0,1,..., N — 1} which is a-uniform of degree 2 and satisfies the hypothe-
ses of Szemerédi’s theorem must contain an arithmetic progression of length
four. Before this outline, we would like to make a few comments regarding
the non-uniform case. Here we assume-that the subset A C {0,1,..., N — 1}
is not quadratically a-uniform. Precisely, this definition states that there are
at least aN integers k such that there exists r € Zy such that

-

| ‘IZA(w‘)A(a:—'k‘)e(—hrm/N)] SaN.  (332)

Denote the set of such k£ by B and define the function ¢ : B — Zy by
#(k) = r (if more than one r satisfies equation 3.3.2 we can just pick one
such r for a given k). One would then like to show that the function ¢
satisfies some sort of linear properties. To do this, one shows that there exist
o' N3 ?additive quadruples” (a,b,c,d) € B* such that a + b = ¢ + d and
d(a) + ¢(b) = ¢(c) + #(d). One then uses Gowers’ quantitative version of
the Balog-Szemerédi theorem to show that there exists an long arithmetic
progression modulo N on which ¢(s) = As+p for many s € B. By restricting
¢ to this large arithmetic progression, one is able to iterate the argument in
a similar manner to the proof of Roth’s theorem.

Now we return to the a-uniform case. As before, we denote the character-
istic function of the set A by A(z) and the balanced function associated with
A by f(z). We say that A is quadratically a-uniform if f is quadratically
a-uniform.

- Now we will use the characteristic function of A to count arithmetic pro-
gressions. If A(z)A(z—y)A(z—2y)A(x — 3y) is one for some z and y then we
clearly have an arithmetic progression. We will sum over all z and ¥ modulo
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N to count the total number of progressmns Here we w1ll assume, that N is
prime.: : - K _ .
The number of Zn progressmns contamed in A is glven by

DD Al@)Alz — y)Alz — 2) Az — 3y)

=33 (@) + 8 (f(z — y) + ) (F(= — 20) + ) (f(z — 3y) + )

Nt
+6( Z Z fl= )f(z - 2y) (3.3.3)
+ Z Z f flz —2y) f(z — 3y) (3.3.4)
+ Z Z flx)f )f(z — 3y) | (3.3.5)
- Z Z fl@— )@ — ) f(z - 39)) s
+ Z Z flz )f(z —2y) f(z - 3y), | (3.3.7)

where we use the fact that ) _ f(z) =

Using this method we count progressions modulo N as well as the trivial
progressions. This is a technicality similar to the one in the proof of Roth’s
. theorem. What we have in the above sum is the expected number of progres-
sion, N2§%, plus an error term which we would like to show is small. Ignoring
the modulo N technicality, we will show that the magnitude of each of the
terms, (3.3.3), (3.3.4), (3.3.5), (3.3.6) and (3.3.7), is small, therefore forcing
a positive number of progressions. This will give a rough outline of Gowers’
method to show that higher degree a-uniformity guarantees progressions of
length four. This problem can be generalized for progressions of arbitrary
length using the same techniques.

Lemma 3.3.3. Assume f : Zy — [-1,1] and f is a-uniform of degree d.
Then there exists a function § : Zy — [0,1] such that erz B(z) = aN
and A(f;z) is B(z)-uniform of degree d — 1.
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Proof: We prove this for the case when f is quadratically a-uniform. For
A(f;z) to be B(x)-uniform of degree 1, we would like to show that

Z(ZA(A
=2 (X6 =)o = (s~ z ~a)’

< B( )N
where >~ ((z) = aN. But we know that

ZZ Zf S_JU)fS—a) (s—m—a))éga]\ﬂ

since f is quadratically a-uniform. Therefore, we could take

By =1 VL (s Afiwss) Vit £0
alN = N3 03 (X, Alfsz, S))2 otherwise,

to prove the lemma. [ S “r . o s

We present the followmg theorem exactly as it appears in Gowers paper
[4]. There does not appear to be an advantage to treating the theorem
separately for the case k = 4.

Theorem 3.3.4. Let k > 2 and let fi, ..., fi be functions from Zy — [—1, 1]
such that fy is a-uniform of degree k — 2. Then

Z Z fi(@) fo(z — ). fk(:zs-—( - 1)y) Sa1/2’°"‘N2_

2€ZN YyELN

We can see that using this lemma, we will be able to bound each of
the terms (3.3.3), (3.3.4), (3.3.5) and (3.3.6) using linear uniformity (ie. a-
uniformity of degree 1). For example, the sum (3.3.4) can be estimated using
9(z) = f(z —y) to give

X 1@t~ =0) = S5 Sl ot =)

which we can estimate using theorem 3.3.4. The other term, (3.3.7), we
estimate directly from theorem 3.3.4 using quadratic a-uniformity.
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Proof of theorem 3.3.4: We will prove this theorem by induction. For the

case k = 2 we have
= |<Z fl(x)) <Z f2(U)>

ZZﬁ ) fa(z —y)

since |3, fi(z)] is trivially bounded by N and {3, fo(u)| < o*/2N using
a-uniformity of degree zero.

For k > 2 we assume that the inequality holds for k — 1. Since we assume
that fi is c-uniform of degree k — 2, by lemma 3.3.3 we know that there
exists a function § : Zy — [0, 1] such that Y f(z) = aN and A(f;z) is
B(z)-uniform of degree k£ — 3. Now we would like to have a form to which we
can apply this inductive hypothesis.

SN A@) e - ) ile — (k- 1)y)

x€ELN YyELN

_SNZZﬁ )fo(@ = ). fulz — (k— 1)y)

2

2

2

SN D h—yhe = 2).fulz - (k- 1)y)
= ij 2 Zb(«fc —9)fol@ = u).filz — (b~ D) fule ~ (k = 1)u)
—NZZZ& oo =v)--fela = (k= 2o = (k= 2y = (k= 1)0)
—NZZZA ()5 A 20) (& — ). A (8 — 1o ><x—ik—2>y>
< NZB )2 N2,

Therefore,

> Y Al fale —y)dile - (k= 1)y)| < @7 N?

T€ELN YELN

using the induction hypothesié. 0
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This shows that each of the terms must be small as desired. We hope
that this brief introduction to Gowers’ proof will entice the reader to read
his paper [4].




Chapter 4
Weyl’,s inequality

4.1 History

In this chapter we will state Weyl’s inequality, prove a special case of the
theorem and also give a simple application.

Although Weyl’s inequality has many applications, our primary reason for
including it here is for its importance in applying the circle method, which we
will use to prove Vinogradov’s three-primes theorem. We will briefly describe
the circle method here, however we leave the details for the next chapter.
Hardy and Littlewood first developed the circle method in the early 1920s.
They used it to prove Waring’s problem, described in the introduction. It
was soon realized that their method would have many applications, and the
technique was refined most notably by Vinogradov, Vaughan and Wooley.
Vinogradov’s refinement enabled integration over the interval [0, 1] rather
than the original circle of integration used by Hardy and Littlewood.

In the case of Waring’s problem, we denote the number of representations
of N as a sum of s positive k™ powers (ie N = z¥ + ...+ 2%) by 7, ;(N). The
first step in the circle method is to write 7 s(N) as an integral, which one
then estimates. In this case, the goal is to show that the integral must be
positive. In estimating the integral, one divides the bounds of integration into
two-disjoint sets called the major arcs and the minor arcs. One then shows
that the integral over the major arcs is positive and is the main contribution
to the entire estimate. The integral over the minor arcs is shown to contribute
a small error term. It is in the estimate of the integral over the minor arcs
that one is able to apply Weyl’s inequality.

We will also use Weyl’s inequality to prove that the set S = {{P(n)} :
n = 1,2,..} defined by the polynomial P(n) = an? + fn + v is uniformly
distributed in the unit interval whenever « is irrational. Wey!’s inequality is a -
useful tool for proving a set is uniformly distributed because Weyl’s criterion
gives a set of equivalent conditions for a set.to be uniformly distributed.

The primary source used in this section is Montgomery’s Ten Lectures
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on the Interface Between Analytic Number Theory and Harmonic Analysis
[9]. We also consulted Nathanson [10] and took examples in the applications
section 4.3 from a course at the University of British Columbia taught by
Izabella Laba in the spring of 2004.

4.2 Weyl’s inequality
Theorem 4.2.1. Weyl s inequality

Let P(z) = Z] 0027 where a; € R for each i ancl lax —a/q| < g2 for
some a, ¢ € Z and (a,q) = 1. Then :

21k

Mz

e(P(n)) < Cp N'*(g7t + N~1 4 gN=F)

n=1

We will prove Weyl’s inequality for P(z). = a* 4+ Bz + 7. The following
lemma will be used for Weyl’s inequality and in proving Vinogradov’s three
primes theorem. We will also prove that given « ¢ Q there exists a sequence
q1, g2, --- such that lim,_.., gy and gy < N such that |o — aN/qu < gy’ in
lemma 4.3:4. Wthh allows us to make use of Weyl’s 1nequahty

Lemma 4.2.2. Leta ,BERandletM N €N. Then

|Z e(an+ )| < min{N,
= 2|| /]

Proof: The sum is trivially bounded by N since

CTIPIER

N

Zecm-i—ﬁ

| le(an + B)] < N.
n=M

an

Since e(an + ) = e(an)e(B) we can take 8 = 0. To show the other bound,
we have :
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Theorem 4.2.3.

> lelaw)| =le(am) > e(om)

m<uln 0<un—m
_ |e(a(n—m+1)) — 1l
e(a) — 1
<2
 le(e) -1
le(@/2) — e(—a/2)|
2
- |2¢ sin |
= |sinma|™?
< @llal)™

Weyl’s inequality for quadratic polynomials Let

P(z) =a®+ Bz +7 where a € R. Assume |a —afq| < ¢2, a, ¢ € Z and
(a,q9) = 1. Define S =N e(P(n)). Then

|S| < (N/\/q+ Nlog ++/qlogq)

Proof: To prove Weyl’s inequality, we will estimate |S|? as follows. By

definition,

1
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N
ISP =Y e(P(n))[?
'n;l
= Z e(P(m) — P(n))
n.;:fn— N-n
=3 e(P(n+ h) — P(n))
nI_Vl_}ltzl—n
- S e(Pn+h) - P()
h=1—N 1<n<N,l-n<h<N—h
N-1N—h
= N+ Y3 (e(Pn+ B) ~ P(R) + e(P() — P(n-+ )
- |
=N+ 2Re(e(P(n + h) — P(n)))
h=1 n=1
<N+23 | elPlnt h) - P
h=1 n=1

Noticing that P(n + h) — P(n) = 2ahn + ah? + Bh = o/n + 3’ where we
take o/ = 2ah and ' = ah? + Bh, we can apply lemma 4.2.2 which gives us
the bound

N-1

ISP < N+2) min{N — h, (2||2ah||)"*}
h=1
N

< N+2) min{N, ||he||™'}.
h=1

We will consider the case when « is rational and the case when « is not
rational.

Case 1: If a = a/q where (a,q) =1 and a, ¢ € Z, then we have

> min{N, ||ha| "'} = > min{N, ||a(a/q)||"*}
n=1 h=1
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q—1
=N+ ) min{N,|h(a/q)||"}
- h=1 s ‘
L g—1 . :
<N+ |ih(a/g)l™
h=1

— N+ [Infl”
h=1

qg—1
<N+2> q/h

h=1
<N+ Cqlogq

The fourth step in the above estimates holds since {a,2a, ..., (¢ — 1)a} give
a complete list of residues modulo q. We also note that the same bound
works when we consider any sum Z,(l:“;clq)ﬁl. We now partition 1, ..., 2N into
‘blocks of length q. We will have less than or equal to 2N/q + 1 such blocks.

Therefore, we have
|SI? < N+ (2N/q +1)(N + Cqlog q)

< N?/qg+ Nlogg+qlogg.

Finally, taking the square root, we have

|S| < N/\/q++/Nlogg++/qlogg.

Case 2: We assume |a —a/q| < ¢7% a, ¢ € Z and (a,q) = 1.

As in case 1, it will be useful to split the sum we wish to estimate into
separate sums. In this case, we fix a block of ¢ integers, M <n < M +q.
Write « = a/q + r where 7 < 1/¢?. Then for every u there are at most 3
choices of n in the specified interval such that ||na —u|| < 1/2q. To see this,
we will assume |[na — u|| < 1/2¢ and prove that there are at most three
possibilities. Let n =M +m, v =u — Ma and 1 < m < gq. Then

||ma —v|| = ||[Ma + ma — v — Mal|
= ||(M +m)a —v+v—ul
= |lna —ul| <1/2q
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by assumption. Further, ||mr|| < q|r| < 1/q. Therefore,

llma/q —v|| = |lma/q +mr — mr — 4|
= |lma — v — mr||
< {lma —v|| + [|mr||
<1/2¢+1/q=3/2q.

Therefore, there are at most three distinct choices of m and hence at most
three distinct choices of n for which |jna — ul|| < 1/2q.

Let S ={1/q,2/q,...,(q/2)/q} Then

M+q M=q v
> min(N, [[ha]|™) = (2/g) > > min(V, ||ha||™)
h=M+1 u€S h=M+1
<29 BN+ > lhell™)
: u€S hiflho—ul|<1/2¢

<NH/9Y S (il - 1/20)

u€S h:||ha—ul|<1/2q
T UEAN #2301/ (| - 1/20)
o ues
q/2

m=1
<3N +2qlogg. (4.2.1)
Now using the same argument as case 1 we have

2N

> min(N,1/||hall) < 10(N*/q + Nlogq +qlog ).
h=1

Therefore, we have

IS|> < N+ (N?/q + Nlog q + qlog q).

Taking the square root of both sides, we have the desired result. O
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4.3 Applications to Uniform Distribution

Definition 4.3.1. We say that a sequence ay,ay, ... € [0,1] s uniformly
distributed if for every o € [0, 1]

1
i —_— . < < << = .
I&Er;oNi{n 0<a, <an< N} =«

We will now state and prove Weyl’s criterion.

Theorem 4.3.2. Weyl’s criterion
The following are equivalent:
(1) The sequence {an}3, is uniformly distributed in the interval [0,1] |
(2) For each k € Z and k # 0, .~_, e(—ka,) = o(N)
(3) If F(z) is a bounded and Riemann integrable function on [0,1], then
Bmy—co Soney Flan) = [i F(z)dz

Before proving Weyl’s criterion, we give the immediate consequence that
the set {an} where « is irrational is uniformly distributed. By Weyl’s crite-
rion, condition (2), we can consider the exponential sum

Z

3" e(—k(am)) < min(N, [Jkal)-!)

3
1l

< 1/(2llkel])
=o(N)

since [|ka|| # 0 since « is irrational.

Proof of Weyl’s criterion: (1) = (3) Since we assume F Riemann
integrable, we can compute the left hand side of (3) using Riemann sums.
Let € > 0. Then there exists n such that if we partition [0, 1] into n intervals,
0=1z0<m3 < ... <z, =1andlet M; = maXy, <z<z;,, £(z) we have
Z;’:—Ol M;Az; — fol F(z)dz <.
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For right hand side of (3) we have

n

N Fa) =Y N Y Fa)
k=1 =0

j Laj€lzj,zj+1)
n—1
<Y YN € [z, 3500) - M;
=0
n—1
<> MAz;+e
=0

_ 1
S/ F(z)dz + 2¢
0

as N — oo since limy_oo 1/N|{k : ax € [zj,2;41)} = zj41 — z; = Az; by
definition of uniformly distributed.

Using lower Riemann sums in the same way, we get limy_,oo 1/N Zszl F(ax) >
fol F(z)dz — 2. Therefore, we can conclude limy_oo 1/N S0 F(ay) =
fol F(z)dz as desired.

(3) = (2) Set F(x) = e(—kz) with k # 0. Then by assumption,

N

A}i_rgoZé(—kan) =/o e(—kz)dz

n=1
= —k"le(—kz)|g
=0

(3) = (1) Set F(z) = xo,0)(z) where x is the characteristic function.
Then

N
. . < < — o -1
]\}I_ISOHTL <N:0<a, <ol J&EnooN ZX[O,Q)(an)

n=1

1
=/ X[oo) (2)dz =
0

(2) = (3) Here we give an outline of the proof. We can approximate
Riemann integrable functions with step functions, step functions with con-
tinuous functions and continuous functions by trigonometric polynomials.
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Since
1
: -1
1\}5%0 | E | kan -—0——/0 ‘e(—kw)dac

by assumption and
N

1
Clim N7YY 1= / 1dz,
N—oo 0
n=1

the equality must hold for trigonometric polynomials and therefore, must
hold for all functions by approximation. O

Now we will prove that the set defined by { P(n)} given by the polynomial
P(z) = az? + Bz + v is uniformly distributed if « is irrational.

Lemma 4.3.3. Given a € R and N € N, there ezists 0 < ¢ < N such that
|legl] < 1/N.

Proof: Consider the set S = {0,1, {a}, {2a}, ..., {(N — 1)a}}. Partition
[0,1] into intervals {i/N, (i + 1)/N]. Then we have N — 1 intervals and
N +1 elements of S. Hence, by the pigeonhole principle, there must be two
elements of S contained in the same interval. Assume those two elements are
{az:} = |azi—11| and {azs} = |azy—ya|. Without loss of generality, assume
that 21 > z5. Then [(z10~y1) — (z2a—12)| = [(z1 —z2)a— (y1 —2)] < 1/N.
Thus, ||(z1 — z2)a|| < 1/N as desired. O

Lemma 4.3.4. Ifa ¢ Q then there exists q1, qa, ... such that lim,_.s ¢, = 00,
gy < N and o — an/qn| < 1/¢% for some ay.

Proot: Consider min, |o — a/qn| = 1/qy min, agy — a| = 1/qn]|agnl].
By lemma 4.3.3, for each N, there exists gy such that ||agn|] < 1/N < 1/qn.
Since we require a to be irrational, ||agy]|| # 0 for any ¢q. O

Now the desired result is a simple corollary.

Corollary 4.3.5. The set {{P(n)} :n=1,...,N} is uniformly distributed
in [0, 1].

Proof: By Weyl’s criterion, it suffices to prove

Ze(k

= o(N).
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For each N, choose ay and gy such that o — a,/gn| < 1/4% as given by
lemma 4.3.4. Then, applying Weyl’s inequality to kP(n), we have

Z

-1

1" e(kP(n))| < C(N/qn + /Nlogqn + v/qn log )

1

T

=o(N).O0

e
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Chapter S5

Vinogradov’s thre.e'-primes‘
theorem

5.1 History, outline and setup

In 1742, Goldbach wrote a letter to Euler conjecturing two statements that
would remain open problems for years to come. The first statement was what
is today the Goldbach conjecture- namely that any even integer, greater than
or equal to six, can be written as the sum of two odd primes. The second
statement asserted that every odd integer, greater than or equal to nine,
can be written as the sum of three odd primes. It is clear that proving
the first statement would guarantee the second. Although the Goldbach
conjecture remains open, Goldbach’s second conjecture has been proven for
sufficiently large N. The first progress was due to Hardy and Littlewood [5]
with an application of their circle method in 1923. They proved that if N
was sufficiently large, then the conjecture holds assuming the weak general-
ized Riemann hypothesis. In 1934, using a refinement of the circle method,
Vinogradov [15] was able to remove the dependence on the generalized Rie-
mann hypothesis. In 1946 Linnik [8] proved the theorem for. large N using
Riemann-Hadamard’s method of L-series and contour integration. More re-
cently,.in 1997, Deshouillers, Effinger, te. Riele and Zinoviev [6] proved the
complete conjecture that every odd iumber greater*than six can be written
as the sum of three prime numbers where they assume the generalized Rie-
mann hypothesis. Their proof is divided into two parts. First, they proved
the theorem for N > 10?°. Second, a computational result (independently
due to Saouter [13] and Deshouillers- te Riele) shows that the theorem must
be true for primes greater than or equal to seven.

The proof of Vinogradov’s three primes theorem that is given here follows
the lecture notes of Gowers [3] and gives neither a bound on how large N
must be nor an asymptotic formula for the number of ways which we can
write a large number N as the sum of three prime numbers. We would also
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like to cite here Nathanson’s text [10] and Vaughan’sitext [14] which were
very useful in writing up this material. The current bound given for the size
of N is 109 < N and was proved by Chen and Wang [7]. We define

r(N)= > 1

p1+p2t+p3=N
to be the number of ways to write IV as the sum of three primes.
Theorem 5.1.1. If N is odd and sufficiently large, then

N? loglog N

r(N) = Q(N)W(l + O(W»

where G(N) is the singular series for the three-primes theorem defined by

G = 32 1)

e C) LR
@here .
Q(N)y= > e(aN/q)
. a=1,(d,q)=1 .
[10].

Our goal will be to show that 7(N) > 0 for large enough N. Since we
are not attempting to show how large N must be, or to give an asymptotic
formula for r(N) this will be adequate for our purposes. Let '

R(N)= > logp:logpslogps.

p1t+p2+p3=n

Then showing R(N) > 0 is equivalent to showing that r(N) is positive.
Letting

F(a) = (logp)e(pa)

p<N
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we have
R(N)= Y logp:logp;logps
p1+p2+p3=N : .
= > logp logpzlogpa/ e((p1 + p2 + p3)a)e(—Na)da
p1<N,p2<N,pa<N 0

1 - .
= / Z log p1 log pz log pse((p1 + p2 + ps)a)e(—Na)do
0

P1EN,p2<N,ps<N

= /01 an;?’e_(—’N_a)da.

Our goal is now is to prove that fol F(a)%e(—Na)da > 0. To do this, we must
be able to estimate F'(c), which is difficult. Therefore, we will simplify the
problem by considering the set of “almost primes” which behaves similarly
to the weighted primes. Since the primes have few divisors, we must make
sure that integers in our new set have few divisors.

Definition 5.1.2. Let p,pa,...,pr to be the primes less than or equal to
(log N)# where A is an absolute constant. Then let Q={z<N:ptz 1<
i < k}.

We will rely on the following functions in our estimates:

h{c) =‘Z e(azx)

TEQ

and

hi(a) = K ) e(az)

zeQ
where
k
K=|[a-p ™"
i=1

where k is as in definition 5.1.2. It is clear that fol h(a)3e(—Na) counts the
number of ways which we can write N as the sum of three elements in Q.
Our choice of K has the identity

k .
K =]J(1-1/p)™" = 7 log((log N)*) + O(1) (5.1.1)

=1
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which is Mertens’ formula B.0.10. ‘We will prove that the difference

| / F(a)e (-Na)da - /0 ' hn(@)e(~Na)da]

is small in relation to the size of fo hi(a)3e(—Na) and hence fol F(a)*e(—Na)da
must be positive. The key to proving this will be to show that F(a) and h; ()
are close to each other. Now we are ready to begin our application of the
circle method. In showing that |F(a) — hi(c)| is small, we must consider the
case when « is contained in the minor arcs and when « is contained in the
major arcs. We will find that if o € [0,1] is close to a rational with a small
denominator, then F(a) is large. If not, then F(c) is small. We now make
precise what it means for « to be close to a rational with small denominator.

We will first define the major arcs and then the minor arcs will be every-
thing leftover. Let B = 16. Then given a/q € [0, 1], a rational with small
denominator means that 1 < g < (log N)#. We also have the condition that

- 0<a<q. Now for a € [0, 1] to be close to such a rational means that

o — a/ql < (og N)P/N.

Therefore, we define the major arcs, M(g,a) to be an interval of all o €
[0,1] such that « is close to- a/q Premsely, M(g,a) = {a o= a/q| <
(log N)?/N}.

Since we will be using the major and minor arcs to estimate an integral
representation of RB(N), we must assure that the major arcs M(q,a) are
disjoint in order to integrate. We will show this by contradiction. Assume
that for different ¢;,a; and gs, a3 we have |a;gs — asqi| > 1 and M(qy,a,) N
M (qs, ay) is nonempty. Take ag € M(q1,a1) N M(go, az). Then

1 1 |a1q2 - a2Q1| a1q2 ax(h
S < = - ——ata— =
(log N)*2 = qig9 Qg 0192 q1q2| | @ =
a 2(log N)B
< |——a|+|a———21§(—g).—.
.QQ N

Rearranging the inequality, we have N < 2(log N)3B. If we choose N to be
~ large, then this inequality is certainly false. This proves our claim that the
major arcs are disjoint. Explicitly we have:
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{(log N)B | q
M= U  Mge)co]
=1 a=20
(a’ q) = 1

We can now define the minor arcs m to be the complement of M in [0, 1].
Using this new notation we rewrite the integral for R(N):

R(N) = /M Fla)Pe(~Na)do + / F(0)’e(—Na)da.

In estimating the above integral, we will show that F'(a) is small when « is .
not close to a rational with small denominator and we will estimate F(a)
when a € M(q, a) for some rational number a/q.

5.2 Minor Arcs

The goal of this section is to show that both F(a) and h;(a) are small when
a € m. For each of the following lemmas we use the same hypothesis as
when defining the major and minor arcs. We will denote the distance to the
closest integer to « by ||af|.

Now we are ready to begin our estimate. Instead of estimating F(a)
directly, we will use the function

g(o) = S~ A(w)e(dx)

z<N

which is easier to estimate, and which we can show is close to F ( ) Recall
the von Mangoldt function - . '

{ logp if n = p* where p is prime and k > 1
A(n) =

0 otherwise

The next lemma proves that g(a) is in fact a good approximation for
F(a). ‘

Lemma 5.2.1. For every a € [0,1], |F(a) — g()| < CV'N where C is an
absolute constant.
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Proof:

l9(a) I—IZA (ez) — > log pe(ap)|

<N p<N
=] Z log pe(ap®) Zlogpe (ap)|
pE<Nk>1 P<N
=| Y. logpe(ap®)]
pF<N.k>2
< (logVN) > 1
p<VN

< CV/N.

where the last line is shown using Chebyshev’s theorem B.0.8. (1

We now turn to the estimation of the minor arcs. Here we will use results
due to Vaughan. In the following lemma, we write g(a) as the sum of three
terms plus an error term. We will thén show that each of the terms is bounded
and hence we will be able to bound g(a). Our goal is to show that g(a) is
small when « is not close to a rational with small denominator. We will use
two methods to show this. First, we will be able to consider the cancelation
in the exponential sum as in lemma: 4.2.2. Second, we can relate g(a) to
>4z M@) = log z, discussed above, which should be easier to estimate. We
will, in fact, use both ideas to show that g(a) must be small with these
conditions.

Lemma 5.2.2. Let X = N*/°. Then g(a) = ¥,y A(z)e(ox) = S — T -
U + O(N?) where

S:Zu Z ZA e(adzz),

d<X z<N/dz<N/zd
T = Z w(d) Z Z A(z)e(adzz),
d<X z<N/dz<X 2<N/zd~

and

Z Z Z A(z)e(azu).

X<udN dju,d<X X<z<N/u
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Our proof of lemma 5.2.2 incorporates Vaughan’s identity which we will
use specifically for g(a), but can also be proved in general for any arithmetic
function of two variables. We will begin with g( ) and work towards a form
that we hope to understand.

Proof of lemma 5.2.2: Using Chebyshev s theorem B.O. 8 we can bound

the sum
| Z Az)e(az) = | Z log pe(ap®)|

z<X pE<X

< ) logp

pF<X

= ¥(X)
= 0(x)

Therefore, by definition,

g(a) = Z A(z)e(azx

<N
= Z Az)e(azx) + Z Az)e(ax)
X<z<N <X
= Z A(z)e(az) + O(NP)
X<z<N
Recall that
5 {1 ifu=1,
w(d .
i if u > 1.
Then
gla) = Z,u Z A(z)e(azu) + O(N??)
u<X dju X<z<N/u
= Z A(z)e(azu) U+O(N2/5)
u<N dlu dSX X<z<N/u .
= w(d) Z A(z)e(azzd) — U + O(N??)
d<X 2d<N  X<z<N/dz
) Z Z A(z)e(azzd) — U 4+ O(NY%)
X 2<N/d X<z<N/dz

CQ

—T — U+ O(NY5).
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Note here that in step one, we use the fact that dju and v < X which |
implies that d < X. In step two, we let u = dz. O
We now show that S, T"and U are small under the prescribed conditions.

Lemma 5.2.3. |S| < (log N)?(¢ + X + N/q).
Proof: By definition

lSl:lZ“ Z Z A(z)e(adzz)|.
d<X 2<N/d z<N/zd

In the next sequence of inequalities we will split the sum into pieces of the
form 3, /4 leu A(z)e(au) and then apply lemma B.0.6. Now letting u =
zz, we have

|S’|=|Zu Z ZA e(adu)]

d<X u<N/d z|u
= u(d Z (adu) ZA
: <X ' u<N/d z|u
= | Z w(d Z (adu) logu|
. d<X u<N/d 0 .
< IZ Z (adu)logu|
d<X w<N/d
= ZI Z (adu) logul.
d<X u<N/d

Now we notice that

| Z (ad)logu| = | Z / (adu)dt /|

u<N/d u<N/d

|/N/d > e(adu) dt/tl

t<u<N/d

N/d
< /1 Y e(adu)de/t.

t<uN/d
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And thus, by lemma 4.2.2

N/d
| Z e(au logu|</ min{||ad||™, N/d}dt/t
A 1

u<N/d
< log N min{||ad||™*, N/d}

Now apply lemma A.0.5 and we have

1S1< Y1 Y elow)logul <Y log N min{||ad|| ™ N/d}

d<X u<N/d \ d<X

< (log N)*(¢ + X + N/q)
as desired. [J
Lemma 5.2.4. |[T] < (log N)*(g+ X% + N/q)
Proof:

ITI=1> wd) Y. > Ale(adsz)]

d<X 2<N/dz<X,z<N/zd
=12 ud Y Ale) Y eladsz)
d<X <X, 2<N/d z<N/dz
< Z w(d Z Az Z (adzz))
d<X d<X 2<N/dz
< Z ZA Z (adzz)|
d<X d<X 2<N/dz
- T T A@Y ele)
y<X2 x<X Ty ~2<N/y

-when we let y = dx. Now we know that Zx<Xw[yA(:U) < logy < logN

by lemma B.0.6 and | 5=, <, e(ayz)| < min{] ag||~%, N/y} by lemma 4.2.2
Therefore, as in the previous lemma, we can apply lemma A.0.5 to achieve
the desired bound. Note that here we have X% = N4/5. [J

Lemma 5.2.5. |U| <« (log'N)“(Nl/?ql/? + N/X1/2 + Nq—l/Q)
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Proof: We know that

|U| = | Z Z Z A(z)e(azu)|

X<u<N dlu,d<X. X<x<N/u
< DD w@lb DD Al)e(ezu).

X<u<N dlu,d<X X<Lz<N/y

We will split the sum into pieces, each of which we will be able to bound.
For each positive integer i, let

2t_1

U= Z Z u(d) Z A(z)e(azu)

u=2¢"1 {dlu,d<X X<z<N/u

The first important observation is that we will be summing over a finite
number of pieces since U; must be zero when 2! > N/X since then for the
last part of the sum we would have X <2 < N/(N/X) = X. Therefore, we
will have log N pieces since we are summing from 2¢ > X and 207! < N/X.
Now for each U; we can apply the Cauchy-Schwarz inequality to U2. Thus

e

K3

IA

2t-1 \ ° 2t—1 LT s 2
( ST Y @) ) > Z " Alz)e(azu) ) :
u=21-1 dlu,d<X u=2i-1 | X <g<N/u

. . (5.2.2)

We now wish to bound each term of this product.
Since p(d) is at most 1 we know that | 2 dpua<x ()] < d(u) where d(u)

denotes the number of divisors of u. Therefore, we are able to bound the

first term of the product (5.2.2) as

2i—-1 | 2 2t-1 2
> You@l <Y [ Y dw
u=2i—1 dlu,d<X u=2~1 \dju,d<X
2
<Y d(u)?
=1
< (log N)3,

using lemma B.0.7.
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Now consider the second term in the product and expand. Thus

. 2
2t—-1

Z Z Az omcu

u=2-1 1 X <g<n/u.’

2t-1

=D X Y A@AWelal - y)u)

u=2t"1 X<z<N/u X<y<N/u

- ¥ S A@A®Y) D e(a(z — y)u)

X<2<N/2i-1 X <y<N/2i-1 2-1<u<2? u<min{N/z,N/y}

Z Z A(z)A(y)min{||a(z — y)||71}, 2071}

X<z<N/2i-1 X <y<N/2i-1

< (logN)(N/2) 3" minfllaz]| 7,27

N/2i-2<z< N/2i-1
< (log N*(N/2) )" min{||az||™, N/z}
. 2<Ny2i-1
< N(log N}(N/qg+ X +q)

IA

where we use lemma 4.2.2 for step three and lemma A.0.5 for step five.
Therefore, putting both estimates together and using the facts that N/2¢ <
N/X and 2t~ 1 < N/X |, we have

U < (log N)* N-(logN)3- N - (iog N3 (g+ N/2"71 + N/qg)
<« N(log N)(g+ N/X + N/g),

where we use the fact that we have N/2! < N/X.
Now taking square roots of both sides, we have

U; < (log N)s(q1/2N1/2 L NXM2 Nq”1/2).
Finally, as mentioned above, we have at most log IV possible i, hence we have
U < (log NY4(qV/2NY? 4 NX-1/2 4 Ng2)

as desired. [
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Lemma 5.2.6. Let a and q be positive integers with (a,q) = 1 and let @ € R
such that |a — a/q| < q72. Then, given N sufficiently large, F(a) and g(c)
are both at most C(log N)*(NY/2g'/? 4 N4/5 4 Ng=1/?).

Proof: This result combines the results from lemma 5.2.1, lemma 5.2.2
and the lemmas bounding S, T and U. (I

We will now use definition 5.1.2 and put a bound on the function h(a) =
2 zeq €(ax) defined in the introduction. This bound will be used later to
show that distance between F(a) and hi(a) = K - h(a) is small when we are
considering « in a minor arc. This will be our last estimate needed for the
minor arcs. We will do the same for « in a major arc, but we must estimate
separately.

Lemma 5.2.7. Let a and q be positive integers with (a,q) = 1 and let « € R
such that |« — a/q| < q~2. Then

lh(a)l << (logN)2(N1/2 +q+Nq—1 +N1_1/4A).

Proof: We want to write h(c) in some form that we can estimate.- There-
fore, we notice that . o

k

he) =D -1 S L3 clapipit). . (5.2:3)

Tos=0- © IS0 K<k y<N/py, -.pig

Since, if € @, then e(az) is added if and only if s = 0. On the other
hand, if z ¢ @, then we can write z = pj! - - pf"w where w € Q. In this
case, we add (—1)|Ble(az) for each subset B C {4y, ..., jr} using the inclusion-
exclusion formula.

We apply lemma 4.2.2 to the inner sum of (5.2.3) and note the bound

Z e(apiy --pi,y) < min{]|ap;,..pi |74 N/psy - pi, -

YEN/ps, - pig

Now we will split the outer sum of 5.2.3 into two parts where we define
t =log N/2Aloglog N. Then

@I <1 S elopy-py)lt
5=0

1<i1 <. S <k y<N/ps, -..pig
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DYCHEEDY D elapin-piLy)l.

s=t+1 1SZ1SS’LSSIC ySN/pil'“pis

We estimate each term separately. For the first sum we observe that for any

combination of the primes p;, ..., px, we have p;,...p;, < ((log N)A)t = \/N
Thus

DD > S elapy-piy)]

5=0 1Si1<.. <is<k y<N/py, ...pi,

t
<D (=0 >0 minfllapypi |7 N/piypi,}
s=0 1<i1<...<is<k
< Y minflla]| ™, N/x)
z<VN
< (log N> (N2 +q+ Nqg™")

using lemma A.0.5 for the last step.
For our second estimate, we have

. .
DI > elapy..piy)l
s=t+1 IS0 <t Sk y<IN/pi, ..pig

k
< Z Z min{llapil-i-pisll—l, N/piy.-pis}

s=t+11<i <...<is<k

<> S Iy

s=t+1 1<iy <. <ig<k. * j=1

: k k
SN Y () P

s=t+1

<CN Y (s/e)~(loglog(log N)*)?

s=t+1

k
<CN Z (e/s - 2logloglog N)*

s=t+1
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where we use Mertens’ theorem B.0.9 and Stirling’s formula in step four. The
function (2es™!logloglog N)° is decreasing when s > 2elogloglog N and so
to estimate our inequality, we can substitute s = t = log N/2Aloglog N >
4elogloglog N, so we can conclude, '

k
Z (2es™ ' logloglog N)* < 'k(2et™* logloglog N)t.

s=1+1

We want to prove that this last quantity is less than or equal to C(N~1/44),

We know that k = 7((log N)4) < Cﬁég’f}%- < CN¢forany € > 0and N
sufficiently large. Then

log(2et ™" logloglog N)! = tlog(2et™! log loglog N)
B log N
~ 2Aloglog N
log N
~ 2Aloglog N
_ 24—;—1 2¢ log N
< (~1/4A — ¢) log N.

log(Ae(log N)~1+¢/2)

(log(eA) — (-1 —¢/2)log lgg N)

Therefore, we have- |
(2et™!logloglog N)! < CN~1/4A=<o,
Using this and our upper bound for k, we can conclude that
DS Y elapi-piy) < N7V
s=t+1 - 1<i1<..<ie <k y<N/pi, . Pig

which we combine with our estimate for the first part of the sum to have our
desired conclusion. [

5.3 Major Arcs

Now we move on to estimates for the major arcs. Our goal will be to esti-
mate F'(a) and h(a) when « is close to a rational with small denominator.
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In the next section, along with the results we have proved for the minor arcs,
we will show that F(a) — hy(a) is small regardless of our choice of . Be-
fore continuing with the éstiniates, we will provide some motivation for the
following lemmas.

Let X be an arithmetic progression of the form {a,a+1,...,a+(m—1)q}
where a and ¢ are relatively prime and 1 < a < n — (m — 1)q§ Define a

function
logz — KQ(z)if z is prime
G(z) =
—K Q(z) otherwise

where Q)(z) is the characteristic function of Q. Then it is clear that

> G@)e(az) = Fa) — h(c).

<N

(5.3.4)

We will relate G to arithmetic progressions of the above form and therefore
estimate the difference between F(a) and hi(a) by estimating Zpe 5 logp

and X N @|. The following version of the Siegel-Walfisz theorem is taken
from Nathanson [10]

Theorem 5.3.1. (Siegel-Walfisz) If ¢ > 1 and (a,q) = 1, then for any.
C >0,

Z logp = ol +0 (W) ) (5.3.5)‘

p<z,p=a(mod q)

for all x > 2 and where the implied constant depends only on C and ¢ is
defined to be the Euler ¢-function.

The modular condition given to the sum of (5.3.5) provides an estimate
for the arithmetic progressions X described above. Since we chose l1<a<
N — (m — 1)q then we have

Zlogp = + O(N/(log N)©). (5.3.6)

peEX

Here we want the estimate for the major arcs and hence we take ¢ < (log N)2

which allows us to conclude that the implied constant must only depend on
B and C.
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Lemma 5.3.2. Let ¢ < (log N)B, let X = {a,a +q,...,a+ (m —1)q} C
{1,...,N}, m > NY2 qnd let (a,q) = 1. Then

k
mq -l mN~1/44A
X nQ= ¢(q)g(1 p;") + O(mN=1/44).

Proof: The proof relies on the Brun Sieve for arithmetic progresions.
- First note that XNQ ={z € X :p;fzi=1,...,k}. Let z € X be chosen
uniformly at random. Define the X; to be the event p;|z. We let P(Y) be
the probability of the event Y. Then

-1 m~1) if p;
P(Xi):{pi +O0(m™) ifpifq

0 if pilq
Then

X0l =m(1 - P X))

l—P(UX

where P(X;) # 0 for 1<i<r. In order to compute P(U ) we will
use the inclusion-exclusion formula. Given a set of events X“, ey X, With

1< <. <14, <k wecan compute the probablhty that a combmatlon of
the events happens as ' :

P(Xyn..nX,)=]]1/p, +O(m™),

if pyy, -.-ps; 1 ¢ and 0 otherwise.
Therefore, for any ¢, we have

A ECEDSC D N | (R ) o

s=0 1<11< <Lis<k j=1
g

DS o | (T v
s=0 1<i1 <...<is<k j=1 .

+ D) Y Hl/PmLO Z?‘

s=t+1 1§i1§...§zs<k] 1
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For the first sum, we have

Z D S | FY

1<1,1< Lis<k j=1

1—1/pz

(- 1/p) [T - 1/ps)

Il
= 'n o E@

pile

=TI - e [T - 1m0
= ) pilg
a‘% H 1 - l/pz

=1

using theorem B.0.12 in the last step.
The second sum, we can estimate as in lemma 5.2.7

Z (1) Z 1_[1/;)Z < (det™ 1logloglog)

s=t+1 1<i1 <. <is<k j=1

where t > 8elogloglog N.
Putting this all together, we have

1= P(ULX) = f[(l = 1/p) + O((log N)™* + (4elogloglog N/1)")

i=1

k-
q N-1/44y

where .we-take t = log.-N/2A log log.N .anid estimate as in lemma 5.2.7. Mul-
tiplying everything by m we get the desired result. (]

Corollary 5.3.3. Let ¢ < (logN)4, let X = {a,a+q,...,a + (m — 1)g}.
Assume that C is any positive constant. Then

KIXN Q- logp=O(N(log N)~°).

peX
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Proof: Recall that K = Hle(l ~p;!). When (a',',.q) = 1, this follows
directly from lemma 5.3.2 and from equation 5.3.6. If (a,q) # 1 then the

arithmetic progression X contains at most one prime, which must be a, and
the bound holds trivially. O

Lemma 5.3.4. Let ¢ < (log N)#4, let (b,q) = 1 and assume o € R such
that |a — b/q| < (log N)*/gN. Define G : {1,2,..,N} — R such that
|G(z)] <log N for every z and

1> G(x) )| < N(log N)™*

z€X

for every arithmetic progression X defined as above where B > 4A+2. Then

| > Glz)e(az)| = O(N(log N)™*)

<N

Proof: The 1dea of this proof is to split

ZG(x) aa:) Z Z Gz

:c<N ‘ 1—1 zEX;

where the progressmns X; partltlon {1 2 ., N} into 2N /mo sets w1th m <
mo = N(log N)"B/2. We can estimate the magnitude of Y wex G(@)e(ax)
using the following fact and lemma 5.3.3. If z,y € X and 0 = a — b/q then,

le(Bz) — e(By)| = le(Bz)(1 — e(B(y — z)))
=[(1 —e(B(y — 2))|
< 2rly — z||5|
< 27m(log N)“/N.
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Let 29 € X be fixed. Then for each progression we have

1D~ G(a)el azl—lZG e((8+b/q)z)|

zeX zeX
=| Z Gl@)e(br/g)e(a) o
<o ab/q ZG )le(B2) + e(Bz:) — e(Boo)]
zeX
< le(ab/q) Y G(z)(e(Bz) — e(Bo))]
zeX
+le(ab/q)e(Bzo) > _ G(z)|
zeX
<Z|G (e(Bz) —e(Bxo)) ]+|ZG
zeX reX
<> log N - 2rm(log N)*/N + N(log N)=5

< (log N)**'m?N=! + N(log N) 8
Since we have split the sum into 2N/ mo partitions, we can conclude

|Z G(z)e(az)| < 2N/mo((log N) T im? N1 + N(log N)~ By

<N

which gives the desired result. [

5.4 Final calculations

- We now have everything that we need to show that F(a) and hy(a) are close.
In these final calculatlons we will show that fo h1 (a)e(=Na) > N%*/log N,
that the difference |f0 a)e(—=Na) - [} hi(a)e(-~Na)| = O(N?*(log N)~%)
and hence that fo ( Na) > 0.

Lemma 5.4.1. Let A = 16. Then for every a € R, F(a) — hy(a) =
O(N(log N)™4). '

Proof: le a. Then there exist b and ¢ with (b, q) = 1 such that g <
N(log N)=* and | — b/q| < (log N)A/Nq (in particular, |a — b/q| < q~2).
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For the case of « in the minor arcs, we consider ¢ > (log N)#. Applying
lemma 5.2.6 and using the upper bound and lower bound for ¢ we have
F(a) < (log N)Y{(NY2g!/2  N4/5 4 Ng='/?) 7
< (log N)*(N(log N)~4/2 4 N*/5 1 N(log N)~4/2)

and for large enough N, we have
< N(log N)*4/% = N(log N)™.
We now estimate h;(a) using lemma 5.2.7 and (5.1.1). We have

()] < K(log N)2(NY2 4 g+ Ng~t + N1/
< K(log N)*N(log N)™4
< log(log N)N(log N)*=4
= N(log N)™1*

Since we have show that both F(«) and h;(a) are smaller than the desired
bound, it is clear that their difference is bounded as desired. O ’

For the major arcs, we have ¢ < (log N)4. Let Q(z) be the characteristic
function for ). Recall that X is the progression X = {a,a+q, ..., a+(m—1)q}.
Then we have '

T I K - Y oenl

zeX ze€X peX
=K|XN Q- logp
peX

= O(N(log N)~°)

by corollary 5.3.3. We can relate G to F and h; as follows:

Y Glz)e(az) = ) (logp - KQ(p)e(az) — K > Qz)e(ax)

zEN p<N z<N,z#p
= (logpe(ap) - K Y Qx)e(ox)
- p<N z<N
= F(a) — hi(a).

Applying lemma 5.3.4 we have F(a) — hi(a) = O(N(log N)=4). O
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Now we are ready to prove Vinogradov’s theorem. We begin by estimating
the number of ways of writing an integer m as the sum of two elements of @
and we obtain an estimate for the number of ways to write m as the sum of
three elements of @ as a corollary. Since we have found that @ behaves like
the weighted primes, we will use these two results to prove that every large
N can be written as the sum of three primes.

Lemma 5.4.2. Let m € Z. Then the number of ways of writing m =z +y
where z,y € Q is at least

k
mH(l —13/pi) + O(m N2 4 N~1/44)

=1

_ | Lifpilm
where r; = { 2 otherwise

Proof: Choose z € {1,2,...,m}. For each 1 <1 < k, let X; be the event
that p;|z or p;|(m — z). Note that if p;/m then we have p;|z if and only

if p;{(m — z). If p; + m then p;|z and p;|(m — z) are mutually exclusive.
Therefore we have

P(X;) =ri/p; + O(m™)
and \
PX;,Nn---NX; )= Hrij/pij +O0(m™).
j=1
The proof then follows directly as in lemma 5.3.2 so we have
1 - PUE X)) = H(l —7i/pi) + O(m ™ (log N)* + (8et™! log log log N)?)

1=1

for t > 16e log log llog N . Takir’fg t ‘=“.,'log N/2Alog loéN the lemma follows.
o

As we approach the final result, we first prove a bound on the number of
ways which we can write a sufficiently large odd integer, N, as the sum of
three elements of (). Then, using this set, which shares properties with the
primes, we will be able to prove Vinogradov’s theorem.
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Corollary 5.4.3. Let N be a large odd integer. Then,

k
> 1> (N /1)K [ [(1 - 2/p:)
N=g1+g2+4¢3,0:€Q =2
> N?/log N
Proof: If z is odd and z < N/2, then we can apply lemma 5.4.2 to N — z.

Then .
> 1= N4 - 2/p) + O,
N—z=z+y,z,y€Q =2

The number of possible z < N/2 and z € @ is given by lemma 5.3.2. Letting
X ={1,2,...,|N/2]}, we have

k
Xnai= (N2 [ - s

> (N/4K™
Therefore,

PR EN 2\ D DI

N=q1+¢2+¢3,0:€Q - N—z=z+y,2,y€Q

> NE ][ -2/p)

=T .

k ko .
>NK [ - [T -ph)
=10 =9
> N?K—3
> N*(loglog N)™
> N?/log N, ,
when N is sufficiently large, we use identity (5.1.1) and the fact that since
pi—12pia, .
1-2/p;
—2/p=(1-1/p;
L=2/pi=(1-1/p)(1= 1/pi)

= =1/

z(1-1/p)(1-1/p;i=r).0
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Finally we are able to prove Vinogradov’s three primes theorem by relat-
ing F(a) and hi(a).

Theorem 5.4.4. If N is a large odd mteger then N can be wmtten as the
sum of three primes.

Proof: As we noted previously, and using lemma 5.4.3 we have -

:A /1 hl(a)3e(;Na)K3 > /1 h(a)Be(—Na)@a
0 ' 0
® Y

N=g1+q92+¢3,¢:€Q
> N?%/log N.

Set A = 4. Recall that in lemma 5.4.1 we proved that for every real
number «,

F(a) — hy(a) = O(N(log N)™).

Therefore, we are able to prove the desired result given in the introduc-
tion. Namely,

|/ (=Na)do — /1 hl(' )}e(~Na)da|
—| / Y = hy(@)%)e(~Na)dal
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< [ 1F(@ - u(@le(-Na)ida

< [ 1F(@) - m(@lIF@) + Fa)hu(a) + h(a)ido
_ O(N(log N)~4/%) /0 *|F(a) 4 ha()Pdo

= O (o N [ () + (e

= OWN(log N ) [ 13 logpe(ap)iida+ [ 1Kh(e)da)

p<N

= O((og M) 4 [ 3 [togpetcn)da+ [ [k Flh(a)de)

p<N

= O(N(log N)™*)(D ~(logp)* + K*|Q|)
= O(N?log N(log N):4)

where we use the estimate from B.0.11 for ) (log p)*. Hence |

/1 F(a)*e(~Na)da > N?/log N — O(N?*(log N)™3)
. Jo L L O

Finally, we have proved Vinogradov’s three-primes theorem .
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Appendix A
A Minor Arcs Lemma

This lemma is in the same spirit as Weyl’s inequality, and to prove it, we use
elements from the proof of Weyl’s inequality. We use this variation in our
estimates of the minor arcs in Vinogradov’s three-primes thoerem.

Lemma A.0.5. Let a, g, N € N. Assume a € [0,1], (a,q) = 1 such that
o —a/q| <q2q< X and X = N?*/5. Then

> min{|jad|| ™, N/d} < (log2¢X)(N/q + X + q).

d<X

Proof: The first observation that we make is that one can write d uniquely
asd=kqg+r where 1 <r <gand 0 <k < X/q. Therefore we can bound
the sum we wish to estimate as

q
S minllad| 7, N/dy < Y7 S mingllalhg + )17, N/ (kg + 1)}
d<X 0<k<X/qr=1 =
(A.0.1)
We will estimate the right hand side of equation in two steps. In the
first case, we assume k = 0 and r < ¢/2. Then we would like to bound

S min{{lar|| 7%, N/r}

We have @ = ¢ + 4 e where —1 < u < 1 since |« —%] < q“Q. Thus
. ar = —@qf + % Note that we can bound the magnitude of the second term
14| < & < % = q Also, since ar € Z we can write ar = jq + s for

0 < s < g and s unique for eacli 7. Therefore, we have the following estimate
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for |jar||.
ar ur
llar|] = {|— + |
| q ¢
=i + 2+
q ¢
= ||l- 4+ —
Ilq q2I|
S ur
> — ==
> Ilqll ||q2||
5 1
2 -l =5
2

Therefore we are able to pair each number ||ar|| with a unique number
Bl -5==2-4 - since s < ¢/2 implies that s/q < 1/2. Therefore, we have

S min{jlar| LN < Y (lar] !

r<q/2 r<g/2

Now We will estimate the sum for 1 <k or k=0and ¢/2 <r <gq. Then
kq+r < (k+1) since if 1 < k then kq+7 > kq > (k+1 ¢ and otherwise
kq+r = =7 > q/2 = (k+1)q. We would like to bound Zq , min{{|a(kq +

™I~ 1, (k+1 }. Although our summation runs from r = 1tor = ¢, the (kg+7)
translates the sum and places us in the case of Weyl’s inequality (4.2.1).

we have ——

Therefore, we have Y ~7_ min{{|a(kq + r)||7}, (kfl)q} < (kivnq +qloggq.
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Hence,

Zmln{lladll - N/d}<<q10gq+ > Zmln{lla(kQ+"‘)ll 1( ) }
d<X 0<k<X/qr=1 q
<qlogq+ > +qlogq)
. ' O<k<X/q (k + 1)q Ll
—qlogq+— Z ———i— Z qlogq
O<Ic<X/q 0<k<X/q

N
< qlogg+ Elog(X/q%—l) + Xlogg+qlogg
< (log2¢X)(N/q+ X +q)

since X/q+1< X + ¢ < 2max(q, X) < 2¢X. O
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Appendix B

Theorems from Analytic
Number Theory

Here we list a few estimates that we have used in the above proofs. I have
found Nathanson’s ”Elementary Methods in Number Theory” [11] and Apos-
tol’s ”Introduction to Analytic Number Theory”[1] to be good sources for
the following material.

Lemma B.0.6.

Z A(d) =logzx

diz

Proof: Write £ = pi* - - - pp*. Then we have the sum of logp;, a; times,
log ps, as times and so on. a

Lemma B.0.7. Let d(n) denote the number of divisors of n € N.pThen

Zd < 2n (logn)?
3 ‘ ) z<n. ! : . )
Theorem B.0.8. Chebyshev: [11] Let n{z) = Zp<x1 Wz) =3, logp
and Y(z) = ZPRI logp. Then there exist positive constants A and B such

that
Az < ¥(z) < 9Y(z) < 7(z)logz < Br.

The following two theorems are due to Mertens. The proofs can be found
in Nathanson [11].

Theorem B.0.9. There exists a constant by such that

1
logx)

Zl/pzloglogm+b1 + O(

p<z

forx > 2.
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Theorem B.0.10. Mertens’ formula: There ezists a constant v such that
forxz > 2, '

H(l —p )t =¢€"logz + O(1).

p<z

Here «y is Euler’s constant which is defined by v = limy 0o (3 7_; 1/k —
log N).

Lemma B.0.11.
Z(log;p)2 <« Nlog N

p<N

Proof: Define £(z) to be logx if z is prime and 0 otherwise. Then

Z log p)? ZE )logx

p<N z<N

=9%(N)log N — /

< NlogN

where we use Chebyshev’s theorem B.0.8 and partial summation. O

Theorem B.0.12. The Euler ¢-function has the identity

n) = nH(l ~pt
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