
Perfect Matchings After Vertex Deletions in
n-dimensional Lattice Graphs

by

Hangjun Yang

B . S c , Zhejiang University, China, 2003

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M a s t e r o f Sc i ence

in

T H E F A C U L T Y O F G R A D U A T E STUDIES

Mathematics

The University of British Columbia
August 2005

© Hangjun Yang, 2005

Abstract

This thesis studies lattice graphs which are readily seen to have many perfect
matchings and considers whether if we delete vertices the resulting graphs continue
to have perfect matchings. It is clear that one can destroy the property of hav
ing a perfect matching by deleting an odd number of vertices, by deleting all the
neighbours of a given vertex, etc. Besides these trivial "destructions", in order to
guarantee the resulting graph still have perfect matchings, we require the deleted
vertices to be mutually far apart. In this thesis, we consider an n-dimensional lattice
graph Q(m, n) with bipartition of black and white vertices, where m is even. If the
distance of any two deleted black (or white) vertices is greater than 4n(n + l)y/m,
then the resulting graph (after vertex deletions) continues to have a perfect match
ing.

Contents

Abstract ii

Contents iii

List of Tables v

List of Figures vi

Acknowledgements vii

1 Background 1

1.1 Basic Concepts 1

1.2 Matchings 3

1.2.1. Matchings in Bipartite Graphs 3

1.2.2 Matchings in General Graphs 5

1.3 Networks and Flows 6

1.4 Capacitated Perfect 6-matchings and Bidirected Flows 8

2 Applications of Matchings 12

2.1 Applications of Matchings in Bipartite Graphs 12

2.1.1 The Assignment Problem 12

iii

\

2.1.2 The Dimer Problem 14

2.2 Applications of Matchings in General Graphs 16

2.2.1 The Chinese Postman Problem 16

2.2.2 Quadrilateral Mesh Generation in Computer-Aided Design . 17

3 Introduction of the Problem 19

3.1 Robustness 19

3.2 Motivation 20

3.3 Definitions and Notations 21

3.4 A Result in the 2-D Case 23

4 Main Result for n-dimensional Lattice Graphs 25

4.1 Statement of Theorem 4.1 25

4.2 Proof of Theorem 4.1 29

Bibliography 36

iv

List of Tables

2.1 Tableau F o r m of the K a b u k i Electronics Assignment Problem 13

2.2 T h e Opt imal Assignment of the K a b u k i Electronics Assignment Prob

lem 14

v '

List of Figures

1.1 A pictorial representation of a graph 2

1.2 A matching M i and a perfect matching M^. 3

3.1 Q(m,2) gives an m x m lattice graph, here m = 20 22

4.1 A 2-D diamond with d = 8 in the checkerboard with m — 20 27

4.2 A sketch of a 3-D diamond 28

vi

>

Acknowledgements

This thesis was conducted under the supervision of Dr. Richard Anstee. I
would like to thank him for his guidance, advice and encouragement.

H A N G J U N Y A N G

The University of British Columbia

August 2005

vii

Chapter 1

Background

This chapter mostly follows the terminology in the textbook Introduction to

Graph Theory by West [31].

1.1 Basic Concepts ,

When speaking of graphs we might think about pictures of some kind that

are used to represent information such as bar graphs, flow charts and graphs of

functions. But the graphs we shall discuss' are quite different. They correspond

more closely with the objects which, in everyday language that we call "networks".

A graph G with n vertices and m edges consists of a vertex set V(G) —

{v\,... ,vn} and an edge set E(G) — { e i , . . . , e m } , where each edge consists of

two (possibly equal) vertices in V(G) called its endpoints. We usually write G =

(V(G), E(G)), or simply G — (V, E). A directed graph or digraph G consists of a

vertex set V(G) and an edge set E(G), where each edge is an ordered pair of vertices.

A loop is an edge whose endpoints are equal. Parallel edges or multiple edges

are edges that have the same pair of endpoints. A simple graph is a graph having

1

a

d c
Figure 1.1: A pictorial representation of a graph

no loops or multiple edges. A complete graph is a simple graph in which every pair

of vertices is an edge. Denote a complete graph with n vertices by Kn.

A graph is finite if its vertex set and edge set are finite. We emphasize here

that every graph mentioned in this paper is finite.

A typical example of a simple graph G = (V, E) is given by the sets

V = {a, b, c, d, z}, E = {(a, b), (a, d), (b, z), (c, d), (d, z)}.

We represent the vertices as points, and join two points by a line whenever the

corresponding pair of vertices is an edge. Thus Figure 1.1 is a pictorial (or graphical)

representation of the graph given in the example above.

A walk of length k is a sequence VQ, e i , V\, e2, . • . , e ,̂ of vertices and edges

such that e{ — Vi-\Vi for all i. A path is a walk with no repeated vertex. A trail

is a walk with no repeated edge. A walk (or trail) is closed if it has length at least

one and its endpoints are equal. A walk vo, e\, v\, ei-, • • • > 6fc, vk whose vertices are

all distinct except that VQ = is called a cycle. We call a cycle odd if it has an odd

number of distinct vertices (and an odd number of edges).

A walk specifies a route in G which proceeds through a sequence of vertices

joined by edges. A walk may visit any vertex an arbitrary number of times. In a

path, each vertex is visited at most once. A u,v-path is a path whose first vertex is

2

u and last vertex is v.

A graph G is bipartite if V(G) is the union of two disjoint sets X and Y such

that each edge consists of one vertex from X and one vertex from Y. We say G is

a bipartite graph with bipartition X, Y.

Here is an important fact about bipartite graphs.

T h e o r e m 1.1 A graph G is bipartite if and only if it contains no odd cycles.

Theorem 1.1 implies that whenever a graph G is not bipartite, we can prove

this statement by presenting an odd cycle in G.

1.2 Matchings

1.2.1 Matchings in Bipartite Graphs

A matching of size A; in a graph G is a set of k pairwise disjoint edges. The

vertices belonging to the edges of a matching are saturated by the matching; the

others are unsaturated. If a matching saturates every vertex of G, then it is a perfect

matching. A maximum matching is a matching of maximum size.

Figure 1.2: A matching Mi and a perfect matching Mi.

In Figure 1.2 two matchings M\ and Mi in the same bipartite graph are

3

illustrated; the edges which belong to the matchings are indicated by dashed lines.

In particular, My is a perfect matching.

Given a matching M , an M-alternating path is a path that alternates between

edges in M and edges not in M. A n M-alternating path P that begins and ends at

M-unsaturated vertices is an M-augmenting path; replacing MC\E(P) by E(P) — M

produces a new matching M' with one more edge that M. Maximum matchings are

characterized by the absence of augmenting path, which was proven by in 1957.

Theorem 1.2 (Berge [5])A matching M in a graph (not necessarily bipartite) G is

a maximum matching in G if and only if G has no M-augmenting path.

A vertex cover of G is a set S of vertices such that S contains at least

one endpoint of every edge of G. The vertices in S "cover" the edges of G. The

Konig-Egervary Theorem states an equality relation between maximum matching

and minimum vertex covering in bipartite graphs.

Theorem 1.3 (Konig [20], Egervdry [10]) If G is a bipartite graph, then the max

imum size of a matching in G equals the minimum size of a vertex cover of G.

For any S C I , let N(S) denote the set of vertices having a neighbor in 5.

If a matching M saturates X, it must be true that | iV(S)| > \S\. This is known as

Hall's condition. In 1935, the mathematician Philip Hall proved that this obvious

necessary condition is also sufficient.

Theorem 1.4 (Hall [16]) If G is a bipartite graph with bipartition X,Y, then G

has a matching M that saturates X if and only if | iV(5)| > \S\ for all S C X.

When the sets of the bipartition have the same size, i.e., \X\ — \Y\, then G

has a perfect matching under Hall's condition.

4

C o r o l l a r y 1.5 If G is a bipartite graph with bipartition X,Y and \X\ = \Y\, then

G has a perfect matching if and only if | i V (S) | > |5| for all S C I .

The degree of a vertex v in a graph G, written da(v) or d(v), is the number

of non-loop edges containing v plus twice the number of loops containing v. The

maximum degree is A(G) ; the minimum degree is 6(G). A graph G is regular if

A(G) = 6(G); k-regular if A(G) = 6(G) = k. The "first" Theorem of graph theory

tells us the sum of vertex degrees is twice the number of edges. Thus every graph

has an even number of vertices of odd degree.

If G is a A;-regular bipartite graph, then it is easy to show that G satisfies

Hall's condition, i.e. \N(S)\ > \S\ for all 5 C X.

C o r o l l a r y 1.6 For k > 0, every k-regular bipartite graph has a perfect matching.

1.2.2 Matchings in General Graphs

A graph G is connected if it has a path for each pair u, v € V(G); otherwise

it is disconnected. A subgraph of a graph G is a graph H such that V(H) C V(G)

and E(H) C E(G). A n induced subgraph of G is a subgraph H of G such that

E(H) consists of all edges of G whose endpoints belong to V(H). For any subset

S C V(G) , G — S denotes the induced subgraph on V(G) — S. The components of

a graph G are its maximal connected subgraphs.

A cut-edge or cut-vertex of a graph is an edge or vertex whose deletion

increases the number of components. The order of a graph G, written n(G), is the

number of vertices in G. A n odd component of a graph is a component of odd order;

the number of odd components of H is o(H).

Now we shall expand our discussion of matchings to general graphs. Tutte

5

found a necessary and sufficient condition for an arbitrary graph to have a perfect

matching.

T h e o r e m 1.7 (Tutte [SO]) A graph G has a perfect matching if and only if o(G —

S) < \S\ for every S QY(G).

Most applications of Tutte's Theorem involve showing that some other con

dition implies Tutte's condition, which then guarantees a perfect matching. Here is

an example.

C o r o l l a r y 1.8 (Petersen [27]) Every ^-regular graph with no cut-edge has a perfect

matching.

In this thesis, we will be examining bipartite graphs and will not be using

Tutte's Theorem.

1.3 Networks and Flows

A network is a digraph with a nonnegative capacity c(e) on each edge e and

a distinguished source vertex s and sink vertex t. Vertices are also called nodes. A

flow f assigning a value /(e) to each edge e. We write f+(v) or f+(S) for the total

flow on edges exiting a node v or a set of nodes S; the total flow on entering edges

i s / - (t ;) o r / - (5) . In terms of/(e) , / >) = £ /(e) a n d / " («) = £ /(e);
e=(v,u) e=(u,v)

f+(S)= £ / (e) a n d / - (5) = £ /(e).
e=(v,u) e=(u,v)

A feasible flow satisfies the capacity constraints 0 < /(e) < c(e) for each

edge and the conservation constraints f+(v) = f~{v) for each node v £ {s,t}. The

value val(f) of a flow / is the net flow f~(t) — f+{t) into the sink (or the net flow

6

/ + (s) — f~(s) out of the source). A maximum flow is a feasible flow of maximum

value.

A source/sink cut partitions the nodes of a network into a source set S

containing s and a sink set T containing t. The elements of the cut [S,T] are the

edges from S to T; every s,t-path uses at least one edge of [S,T]. The capacity of

the cut [S, T], written cap(S,T), is the total of the capacities on the edges of [S,T].

The most important result in network flows is the Max-flow Min-cut Theo

rem, proved by Ford and Fulkerson [12]. This result can be viewed as a special case

of the strong duality property in Linear Programming.

T h e o r e m 1.9 (Max-flow Min-cut Theorem) In every network, the maximum value

of a feasible flow equals the minimum capacity of a source/sink cut.

Let us now apply the Max-flow Min-cut Theorem to get a quick proof of

the Konig-Egervary Theorem. Let G be a bipartite graph with bipartition X, Y.

Build a network G' by directing all edges of G from X to Y, adding a new point s

(the "source") joined to all points of X and a new point t (the "sink") to which all

points of Y are joined. Assign capacity oo to all edges of G and capacity of 1 to all

new edges of G'. It is easy to see that a maximum matching in G corresponds to a

maximum flow in G', and so the maximum size of a matching equals the maximum

value of a feasible flow. We need to show that the minimum size vertex cover in

G equals the minimum capacity of a source/sink cut in G'. Assume I U J is a

minimum vertex cover in G, where I C X and J C Y. Let S — {s} U (X — I) U J

and T = {t} U I U (Y - J). Then cap{S,T) = \I U Jj = \I\ + | J | . We claim that

[S,T] is a minimum source/sink cut in G'. Otherwise, there exists some cut [S',T'}

such that cap(S',T') < cap{S,T). We may write S' = {s} U (X - V) U J' and

7

T = {t} Ul'u'Y- J') for some vertex cover V U J ' , where I' CX and J' C y .

Then |7'| + \J'\ = cap(S',T') < cap(S,T) = \I\ + | J | . This leads to a contradiction.

In combinatorial applications, we typically have integer capacities and want

a solution in which the flow on each edge is an integer.

C o r o l l a r y 1.10 (Integrality Theorem) If all capacities in a network are integers,

then there is a maximum flow assigning integral flow to each edge.

In Fulkerson, Hoffman and McAndrew [14], and Anstee.[3], there is an ex

ploration of how network flow techniques can assist in finding general matchings.

1.4 Capacitated Perfect 6-matchings and Bidirected Flows

Let G = (V, E) be a graph representing a communication network, i.e. the

nodes v can be viewed as terminals and there is an edge {v, w} if two terminals

can directly communicate. Every node v has capacity/demand bv € N of possible

information exchange operations. Now the task is to find an intersection of the

terminals such that the demand is fulfilled.

We denote the number of uses of edge e by xe and the set of edges having

a node v G V as one of their endnodes by 5(v). A mapping x : E H-> N is called a

6-matching if

x{S(v)) := x* ^ bv V v€V.
eeS(v)

These conditions are called node constraints if x(5(v)) = bv for all v and a mapping

fulfilling all these conditions is called a perfect b-matching on G: When bv = 1 for

all vertices in G, then (perfect) 6-matchings are the usual (perfect) matchings. Now

the problem is complicated by "capacity constraints" and "lower bounds" on the

8

edges, i.e. for every edge e G E there are two numbers le,ue with ue > le > 0, which

give the maximal necessary usage and minimal possible usage of a single edge in the

graph. Then a mapping x is called a capacitated perfect b-matching if it is a perfect

6-matching on G and

le < %e < Ue V e £ E.

Now the optimization problem occurs when a cost function c : E i—> R is introduced

giving for every edge e E E the cost for exchanging one unit from the tail node of e

to the head node of e. Then we want to find a capacitated perfect 6-matching which

minimizes total cost c(x) where

eeE

The above introduced capacitated perfect b-matching problem can be formu

lated as an integer linear programming problem.

v min ^T^ cexe

eeE

s.t. x(5{v)) = bv V v e V

le < xe < uey e € E

x e N.

A bidirected graph G = (V, E) is a graph in which some edges (called loops)

may have both ends incident with the same node, some edges (called lobes) may have

only one end, and in which each edge has a direction associated with each node with

which it is incident. Thus each edge has either one or two (not necessarily distinct)

ends, and each of these ends is either a tail end or a head end.

For any vertex v G V, we define for bidirected graphs

9

S(v) := the set of edges having exactly one end at v,

j(v) := the set of edges having both ends at v,

S+(v) := the set of edges in 5(v) whose single end at v is a head end,

6 (v) :— the set of edges in 6(v) whose single end at v is a tail end,

7 (v) := the set of loops having two head ends at v,

7~(i>) := the set of loops having two tail ends at v.

Similarly, if we denote by x ethe number of units assigned to edge e, then we have

to find a mapping I : £ H N such that

These conditions are called flow conservation constraints and a mapping fulfilling

all these conditions is called a bidirected flow on G. Now the problem may again be

complicated by "capacity constraint" and "lower bounds" on the edges, i.e. for every

edge e € E there are two numbers le,ue with ue > le > 0, which give the maximal

necessary usage arid minimal possible usage of a single edge in the network. Then

a mapping x is called a feasible bidirected flow if it is a bidirected flow on G and

As in the 6-matching problem we assume a cost function c : E i-> R giving for

every edge e the cost for "transporting" one unit. Then the optimization problem

is to find a feasible bidirected flow x which minimizes total cost c(x) where

eeE

The above introduced bidirected flow problem can also be formulated as an

integer linear programming problem.

x(5+(v)) - x{S-(v)) + 2x('y+(v)) - 2xia~(v)) = bv V v € V.

V e € E.

10

min c e x e

eeE

s.t. x(S+(v)) - x(5~(v)) + 2x(>y+(v)) - 2x(-y~ (v)) = bv V v € V

le < %e < uey e € E

x e l .

The bidirected flow problem looks quite similar to the capacitated b-matching

problem. In fact a bidirected flow in a bidirected graph G = (V, E) can be reduced

to a capacitated 6-matching in the undirected graph G' = (V U V, E) — with

V = {i' : i e V} and E — {e : e € E}, where e are given below — by doing the

following (Derigs [6] and Edmonds [8]). Let e = be an edge in E.

• If e has 1 head for i and 1 head for j, then we construct one corresponding

edge e = In particular, when i — j, i.e., e has 2 heads for i, then

e = i.e., a loop at i'.

• If e has 1 tail for i and 1 tail for j, then we construct e = (i, j). In particular,

when i = j, i.e., e has 2 tails for i, then e — i.e., a loop at i.

• If e has 1 head for i and 1 tail for j, then we construct e = (i', j) . In particular,

when i — j, i.e., e has 1 head and 1 tail for i, then e = (i', i).

Thus a capacitated b-matching in a bidirected graph G = (V, E) is an assignment of

nonnegative integers xe to the edges e of G such that xe fulfills the "lower bound" and

"capacity" conditions and the capacity/demand bv at each node v S V is fulfilled, in

the sense that edge e contributes — 2xe, —xe,0, xe, 2xe units to the capacity/demand

at v according to whether e has 2 tails, 1 tail, 0 ends, 1 head, 2 heads at v.

11

Chapter 2

Applications of Matchings

There are many applications of matchings in both bipartite and non-bipartite

graphs, such as the Assignment Problem, the Chinese Postman Problem, etc.

2.1 Applications of Matchings in Bipartite Graphs

2.1.1 The Assignment Problem

Assignment of people or other resources' to various workstations or certain

equipment to accomplish certain tasks while minimizing the total cost is a frequent

management decision problem. For example, assigning employees to various tasks,

teachers to different classes, crews to projects, and ambulances to first-aid stations

are good real-wold examples of assignment problems. The basic goal of the assign

ment problem is either to minimize the total cost of completing all the required tasks

or to maximize the total payoff (or benefits) from the assignments. The following

example is from Lee and Shim [22].

E x a m p l e

Kabuki Electronics specializes in producing electronic scanners. The com-

12

parry received a special order from a large cash-register company for optical scanners.

To produce important components required for the scanner, the company has se

lected four employees for assignment to four different machines to complete the

necessary tasks. Because of different individual training and experience, the cost

of successful completion of the given task to each machine is different for the four

employees.

Only one employee can be assigned to each machine. Also, each task is

completed independently by one employee on one machine. The assignment problem

at Kabuki along with the cost involved for each employee to complete each task on

each machine, is presented in Table 2.1. Notice that there are the same number of

rows (employees) and columns (machines). Also, the amount of supply and demand

for each row and each column is exactly one.

Employee \ Machine A . B C D Supply
1 20 10 14 13 1
2 18 10 22 18 1
3 28 14 20 28 1
4 6 10 22 8 1

Demand 1 1 1 1 4

Table 2.1: Tableau Form of the Kabuki Electronics Assignment Problem

In Table 2.1, we can easily see that it costs $20 for employee 1 to complete

the task using machine A, $10 using machine B, and so on. The cost required for

each employee to complete each task may be determined by the amount of time

required and the amount of other resources (i.e., materials) used to complete the

task. The objective of this assignment problem is to find the employee's optimum

assignment schedule to each machine to minimize the total cost to complete the

tasks.

The assignment problem is a weighted bipartite matching problem, where

13

the costs are the weights. In particular, the sets of the bipartition have the same

size, i.e., there are equal numbers of employees and machines. Our Goal is to find

the perfect matching between employees and machines such that the total cost is

minimized. The best known method to solve assignment problems is the Hungarian

Method. For details, please refer to Kuhn [21] or Munkres [25].

The optimal assignment and total cost of the Kabuki Electronics Assignment

Problem are as follows:

O p t i m a l Ass ignment
Employee Machine Cost

1 D 13
2 B 10
3 C 20
4 A 6

To ta l Cos t = $49

Table 2.2: The Optimal Assignment of the Kabuki Electronics Assignment Problem

2.1.2 The Dimer Problem

The close-packed dimer model of statistical mechanics can be stated as fol

lows. One considers a set of sites and a set of bonds connecting certain pairs of'

sites. Each bond b can absorb a "dimer" (which represents a diatomic molecule)

with corresponding energy E^. It is required that each site is occupied exactly once

by one the atoms of a dimer. A state s is an arrangement of dimers which meets

this requirement, and its energy E(s) is E\> where the sum is taken over all bonds

b which absorb a dimer. Then the partition function of the dimer model may be

viewed as a density function of energy levels.

The dimer model was first considered by Roberts [29] in 1935, and by Fowler

and Rushbrook [13]. The dimer model for 2-dimensional lattice graphs appears in

14

calculations of the thermodynamic properties of a system of diatomic molecules-

dimers arranged in a planar sheet. The partition function can be evaluated in

polynomial time using Kasteleyn's method [18] for enumerating perfect matchings

in planar graphs.

One special type of graph for which enumeration of perfect matchings is

of considerable "real-world" interest is the class of rectangular lattice graphs or

chessboards (perhaps more accurately "go boards"). Consider an m x n chessboard

with mn even. In how many ways can this board be covered by dominoes (dimers)?

In graph theoretic terms, the dimer problem for 2-dimensional lattice graphs

can be formulated as follows. Let L(m, n) denote the graph whose vertices are the

squares (think of them as the centers of the squares) of an m x n chessboard with

ran even, two being adjacent if and only if they have a boundary line in common.

L(m,n) is a bipartite graph, which means that its vertices may be partitioned into

two sets Zi,Z2 such that if e is an edge of L(m,n) then |e fl Z\\ — |e n Z2I = 1.

Moreover, we have also that \Z\ \ = IZ2I = mn/2. Now, the problem is to determine

the number $ (L(m, n)) of perfect matchings in L(m,n). Kasteleyn [18] gave the

answer:

m n / , , \ 1 / 4

* (L (m , » » = v * n n (r o s 2 (^ T » + » s 2 (^ i ») •

But the same problem for 3-dimensional lattices remains an important open problem

of statistical physics (see Kasteleyn [19] for references).

15

2.2 Applications of Matchings in General Graphs

2.2.1 The Chinese Postman Problem

A postman has to leave a post office and traverse a number of streets at least

once for delivering and picking up mails, then return to the post office to do his

job. How should he plan his walk to minimize his walking distance or time? We

can phrase it as a graph problem as follows: A postman traverses all edges in a

road network, starting and ending at the same vertex. The edges have nonnegative

weights representing distance or time. We seek a closed walk of minimum total

length that covers each edge at least once. This is called the Chinese Postman

Problem in honor of the Chinese mathematician Meigu Guan [15], who proposed it.

Recall that a closed trail is a trail whose length is at least one and its end-

points are equal. We say that a graph whose edges comprise a single closed trail

is Eulerian. We use the term circuit as another name for "closed trail"; a circuit

containing every edge of G is an Eulerian circuit. We also use odd vertex or even

vertex to indicate the parity of a vertex degree.

If every vertex in the road network is even, then we can show that the graph

G is Eulerian and so the minimum total length is the sum of the weights. Otherwise,

we must repeat edges. If there are only two odd vertices, then we can use Dijkstra's

Algorithm [7] to find the shortest path between them and solve the problem. If there

are 2k (k > 2) odd vertices, then we can use the shortest path algorithm to find

the shortest paths connecting each pair of odd vertices. We can use these lengths

as weights on the edges of Kik, and then our problem is to find the minimum total

weight of k edges that pair up these 2k vertices. This is a weighted version of the

maximum matching problem. Edmonds and Johnson [9] described a way to solve

16

this Problem.

A n interesting application of the Chinese Postman Problem is the Plotter

Problem which was introduced by Asano, Edahiro, Imai, Iri and Murota [4]. The

problem is the plotting of a large figure on a computer controlled plotter. They draw

straight line segments between points to draw a piecewise linear curve then lift the

pen up and travel to the next curve to be drawn. We may think of the plotter as a

postman with a pen. In the Chinese Postman Problem we form an auxiliary complete

graph defined on the vertices of odd degree. Each edge has a weight, namely the

distance between the vertices in the original graph. In the Plotter Problem this

weight is the distance, d((x\,yi), (2 2 , 2 / 2)) = max{|a:i — x%\ + \y\ — yiW- It is

worth pointing out that the graph G in the Chinese Postman Problem must be

connected (since the postman can only walk) while the graph G' in the Plotter

Problem may be disconnected. If G' is connected, the solution is then the same as

the that for the Chinese Postman Problem. Otherwise, we need first to add some

extra edges carefully to make it connected. In fact, a minimal number of edges

required to join components will correspond to the Travelling Salesman Problem

(TSP).

2.2.2 Quadrilateral Mesh Generation in Computer-Aided Design

Muller-Hannemann [26] considered the following definition of polygon for

use in mesh generation. A polygon is a region in the plane or, more generally, of

a smooth surface in the 3-dimensional space, bounded by a finite, closed sequence

of straight line segments or curves (edges). A polygon is simple if its edges do not

cross each other, and convex if the internal angle at each vertex is at most n. A

mesh is a set of openly disjoint, convex and simple polygons.

i
17

Miiller-Hannemann [26] has considered a mesh refinement problem arising in

the computer-aided design (CAD) of motor vehicle parts, for example, bodyworks

or chassis or their components: a coarse mesh of curved polygons, which approxi

mates the surface of a workpiece, has to be refined into quadrilaterals such that the

resulting mesh can be used for a numerical analysis.

Originating from a concrete application, [26] has described the difficult mod

eling process, analyze the computational complexity of the mesh refinement problem

in various forms, and develop a new algorithmic approach. In [26], we see an original

application of network flow and matching techniques in a mesh refinement problem.

The experiments in [26] showed that this approach usually leads to meshes with a

very good quality.

The mesh generation problem can be reduced to a bidirected flow problem on

a bidirected graph G with capacity constraints and lower bounds on the edges and

some additional node balance conditions (Muller-Hannemann [26]). We have shown

in section 1.4 that the bidirected flow problem can be reduced to the capacitated

perfect 6-matching problem. There are several polynomial algorithms for 6-matching

problems (see Pulleyblank [28], Anstee [2], and Miller and Pekny [24]).

18

Chapter 3

Introduction of the Problem

3.1 Robustness

Network robustness measures how well a network can continue to perform

its function after node or arc failures. There are several different ways and method

ologies to measure robustness of networks, e.g., resilience to random node failures

(fragility), resilience to attacks (vulnerability), or number of alternative paths.

The idea of "robustness" considered here is very different from network ro

bustness. We study the robustness of a graph with respect to the property of having

a perfect matching under the operations of vertex deletion.

This thesis studies lattice graphs which are readily seen to have many perfect

matchings and considers whether if we delete vertices the resulting graphs continue

to have perfect matchings. In order to guarantee the resulting graphs still have

perfect matchings, we require some constraints on the deleted vertices. We will

impose the constraint that the deleted vertices are at a certain distance from each

other.

19

3.2 Motivation

This thesis was motivated by a result of Jamison and Lochner [17]. T h e y

studied a problem about tiling fringed chessboards with dominoes. A fringe on a

p x q chessboard is a set of additional nonadjacent squares added above the top

row. T h e squares may be considered as colored black and white consistently with

the board. If the fringed board is to be tiled by dominoes, then the total number

of black squares must equal the total number of white squares. In general, this

parity condition is not sufficient. However, if the board is deep enough, i.e., p is big

enough, then this parity condition does suffice to guarantee a tiling.

A balanced fringe is a fringe that contains an equal number of black and

white squares. T h e depth of a fringe X is defined as A(X) — max \Bi — Wj|, where
l<i<q

Bi is the number of black squares up to and including i and Wi is the number of

white squares up to and including i. We state the main result of [17] without proof.

Theorem 3.1 Let B be a fringed board with a balanced fringe X obtained from a

p x q chessboard by adjoining X above the top row. If p = 2A(X), then B has a

domino tiling.

In order to tile a fringed board by dominoes, we first need to pair the squares

in the fringe with their adjacent squares in the p x q chessboard. Now, we delete these

pairs (i.e., the fringe and its adjacent squares) from the fringed board. Note that to

cover a fringed board by dominoes is equivalent to cover the resulting board after

deletion. F r o m the point of view of tiling with dominoes, adding some nonadjacent

squares (i.e., a fringe) above the top row to a p x q chessboard is equivalent to

deleting their adjacent squares from the top row of the chessboard.

In graph theoretic terms, given a p x q (pq even) lattice graph, we delete

2 0

an equal number of black and white vertices from the top row. Theorem 3.1 says

that if p is big enough then the resulting graph still has a perfect matching. In

particular, q = p (p even) will work. Now, we consider a more general version of

vertex deletion. A p x p lattice graph (p even) is easily seen to have many perfect

matchings. Consider deleting an equal number of black and white vertices in this

lattice graph (not restricted to the top row). We want the resulting graph continues
\

to have a perfect matching. In order to avoid local problems (e.g. deleting all

neighbors of a given vertex will result in a graph that has no perfect matching), we

require that the deleted vertices to be mutually far apart. We will be more specific

in Lemma 4.3.

3.3 Definitions and Notations

The n-dimensional lattice graph Q(m,n) is the following graph: Q(m,n)

has vertices (x\, X 2 , . . . , x n) , where Xj G {1,2,... ,m} for i — 1,2, . . . , m , and

edges ((xi,...,x;_i,Xj,xi+i,.. .,xn), (x i , . . . , X j _ i , X j + 1,x i+1,.. . , x n)) , where Xj G

{ 1 , 2 , . . . , m} for j = 1,2,. . . , n and x, ̂ m.

For example, Q(m,n = 2) gives an m x m lattice graph divided into m 2

vertices of two alternating colors — black and white. Figure 3.1 illustrates a 2-

dimensional lattice graph with m = 20.

To be precise, let's say the vertex (1,1,... ,1) is a white vertex. Then

(x i , X 2 , • • •, xn) is a white vertex if and only if

n

x, = n (mod 2).
i=l ,

Then Q(m,n) is a bipartite graph with bipartition W and B, where W is the set of

all white vertices and B is the set of all black vertices.

21

16

11

6

1

1 6 11 16

Figure 3.1: Q{m, 2) gives an m x m lattice graph, here m = 20.

If m is odd, then the total number of vertices in Q(m, n) is mn, which is

also odd and so there is no perfect matching for Q(m, n). In order to have a perfect

\Q(m,n)\ mn

matching in Q(m, n), we may assume m is even. T h e n | W | — \B\ — —- = —-.

For any S C W, the neighbor set of S in Q(m,n), denoted by N(S), is the

set of all vertices adjacent to the vertices in S. Since all the vertices adjacent to S

are black, then N{S) C B. T h e surplus of S is 1̂ (5)1 - |5 | .

Given S U N(S) is connected, the side lengths of S U N(S) are

di = max{xi : (xi,x2,... ,xn) G Sl)N(S)} - min{xj : (xi,X2,, • • ,xn) G S U N(S)},

where i = 1,2, , n . We define the distance of two vertices (x\,X2, • • • ,xn) and

- 22

(x'\i x2i • • • ' X'n) a S

n

d{(xi,X2, • • •, xn), (x'i,x2, • • •,a;')) = \xi — x[\.
1=1

Choose k £ {1,2,..., m}. Then fix Xi — k and define a complete plane by

^{xi=k} = {(xi,x2,... ,Xi-i,k,xi+i,... ,xn) : Xj = 1,2,... ,m for j ^ i}.

A complete plane 7r / x . = f c j contains all the points where X{ = k. Otherwise, we say a

plane is incomplete. In particular, when n — 2, fix i, the set

-K{Xl=i} = {(i,x2) :x2 = l,2,...,m}

gives a complete column C{ (we use the word column as it is more appropriate in

2 dimensions). Similarly, we can define a complete row. We define the surplus of

column C (not necessarily complete) as | C f l N(S) \ — \C f l S\.

Let B' be the set of deleted black vertices in B, and W be the set of deleted

white vertices in W.

3.4 A Result in the 2-D Case

The following Theorem is a result of Aldred, Anstee and Locke [1].

Theorem 3.2 Assume m is an even integer. Let Q(m, 2) be a 2-dimensional lattice

graph with bipartition B,W. Choose any sets B' C B,W C W. If B',W have the

following three properties:

(a) \B'\ = \W'\,

(b) d((xi,x2),(x[,x'2)) > d, for (xi,X2),(x'1,x'2) e B',

(c) d((x1,x2),{x'l,x2)) > d, for (xi,x2),(x'1,x2) G W,

23

where d — 4\^/m} + 8, then the graph Q(m,2) - (B' U W) has a perfect matching.

*

Theorem 3.2 gives a result for the 2-dimensional case. We try to get some similar

results in higher dimensions in next chapter.

24

Chapter 4

Main Result for n-dimensional

Lattice Graphs

4.1 Statement of Theorem 4.1

Theorem 4.1 is a nontrivial analogue of Theorem 3.2 for higher dimensions.

We will use some proof ideas from the proof of Themreom 3.2 [1], but the overall

proof of Theorem 4.1 is quite different from that of Theorem 3.2.

In this whole chapter, we assume m,n are natural numbers and m is even,

n > 2.

Theorem 4.1 Let Let Q(m,n) be an n-dimensional lattice graph with bipartition

B,W. Choose any sets B' C B,W C W. If B',W have the following three

properties:

(a) \B'\ = \W'\,

(b) d^x^xi,... ,xn),(x[,x'2,... ,x'n)) > dn,y (xi,x2,. •.,xn), (x[,x'2,... ,x'n) G B',

(c) d((xi,X2t...,xn),(x'ltx'2,...,x'n)) > dn,V (xi,x2,...,xn), (x'1,x'2,...,x'n) G W,

25

where dn — 4n(n + l)\y/m~\, then the graph Q(m,n) — (B' U W) has a perfect

Before proving the theorem, we will prove 4 lemmas. The proofs of Lemma

4.2 and 4.3 are loosely based on arguments in [1]. The results of Lemma 4.4 and 4.5

are original, and the proofs are quite different from those of Lemma 4.2 and 4.3.

Recall that if S U N(S) is connected, the side lengths of S U N(S) are

ai = max{x; : (xi ,£2, • • • ,xn) € SliN(S)} - min{a:; : (x\,X2, • • • ,xn) G S U N(S)},

where i = 1, 2 , . . . , n. Without loss of generality, we may assume a\ > a2 > • • • > an.

We first expand the region S U N(S) to an a\ x 02 x • • • x an grid. Then we expand

the a i x 02 x • • • x an grid to an (ai + dn) x (02 + dn) x • • • x (a„ + dn) grid by adding

dn/2 at each of 2n directions, where dn is even. For any x in the a\ x 02 x • • • x an

grid, we define

Then Bn(x, dn/2) is contained in the (a\ + dn) x (02 + dn) x • • • x (an + dn) grid

since any point of Bn(x,dn/2) is at most dn/2 from x and hence at most dn/2 from

the ai x a2 x • • • x an grid.

Lemma 4.2 For any vertex x in Q(m,n), we have

Proof: We prove it by induction. When n = 2, 2̂(̂ ,̂ 2/2) gives a 2-dimensional

"diamond". See Figure 4.1, the vertices which belong to the diamond are indicated

by thick dots. The number of vertices in such a diamond is

matching.

Bn(x,d) = {y e Q(m,n) : d(x,y) < d}.

26

16

11

6

1 6 11 16

Figure 4.1: A 2-D diamond with d = 8 in the checkerboard with m = 20.

When n = 3, B^(x, d 3/2) gives a 3-dimensional "diamond". We may consider

the origin point as the center and d as the diameter of the diamond in 3 dimensions.

See Figure 4.2 for a sketch of a 3-dimensional diamond. We only count vertices in

the upper half of the diamond. So,

Bs(x,d3/2)\ > i | s 2 (M 3 / 2) | (d 3 / 2 + l) > ± 2 (^) ^ 3 / 2 + 1) > 2 (|) 3 . l - / d 3 \ 2

For general n, we have

1
Bn(x,dn/2) >

>

Bn-i(x,dn/2)|(dn/2 + 1) only count the upper half

n - l dn
n \2(n-l)

> 2

(dn/2 + 1) by induction

,(dny
\2nJ '

27

Figure 4.2: A sketch of a 3-D diamond.

The result \Bn(x,dn/2)\ > 2 ^ ^) is enough to prove Theorem 4.1, where

dn — 4n(n+1)[\ /m] . Actually, we can count \Bn(x,dn/2)\ exactly for small n, e.g.,

B a (x , |) = - 2 - + d2 + l > - 2 i -

and

5 s (x , |)

It is easy to see that

Bn(x, y) B » - i (i , y) | + 2 £ | i ? „ - i (x , i)
i=0

i i s even

Thus approximately, dn/2)\ > However, even if we could show \Bn(x, dn/2)\ >

^ V , this would only improve dn by a constant factor in Theorem 4.1.

28

4.2 Proof of Theorem 4.1

We first consider a special case in 2 dimensions when |5u7V(5)| < \m2. The

main proof idea of Lemma 4.3 is from the proof of Theorem 3.2 [1].

Lemma 4.3 Let Q(m,2) be a 2-dimensional lattice graph with bipartition B,W.

Choose any sets S C W, B' C B. If B',W have the following two properties:

(a) \SUN(S)\ < lm2,

(b) d{{xi,x2), {x'x,x'2)) > d2 = 24 [v /m] , for (x1}x2), (x'x,x'2) G B',

then

l -B'n N(S)\ < \N(S)\ - \S\. (4.1)

Proof: First we consider the case when S U N(S) is connected. Then we can

construct the (a\ + d2) x (a2 + d2) grid as described earlier.

If a2 < m, then there is no complete column. Note that the surplus of every

column is at least 0 since in any column the number of black vertices is > the number

of white vertices. Every two adjacent incomplete nonempty columns have a surplus

of at least 1, since in only these two columns, the number of black vertices is more

than the number of white vertices at least by 1. Now we pair all the columns from

left to right. If a\ is even, we have totally a\/2 pairs and so the surplus is at least

a i /2 ; if a\ is odd, we have (a\ — l) / 2 pairs (1 column left) and so the surplus is at

least (ai — l) / 2 . Hence, the surplus of the a\ incomplete nonempty columns is at

least L ai/2J-

If a 2 = m, then ax = a2 = m. Since | S U i V (S) | < | m 2 , SUN(S) has at most

[| m 2 / m j = [3m/4j complete columns. Hence, there are at least m — [3m/4j =

[m/4] incomplete nonempty columns. Again, pair all the columns from left to

29

right and we obtain a\/2 = m/2 pairs. There are 3 different types of pairs: a

pair of two complete columns, a pair of one complete column with one incomplete

nonempty columns and a pair of two incomplete nonempty columns. The first type

pair has a surplus at least 0; the second type has a surplus at least 1 and the third

type has a surplus at least 1. Since we have at least fm/4] incomplete nonempty

columns, then the surplus is at least [\m/^ j > |_^y^J = L m / 8 J = L a i / ^ J - Therefore,

| t f (S) | - | S | > L a i / 8 j .

We want to show \B' C\N(S)\ < |_ai/8j. If a\ < 0*2/2 then at most one black

vertex can be deleted. So we only need to consider the cases when ci\ > (I2/2, i.e.

d2 < 2 a i . Note that for x,y £ B', B(x, d2/2) n B(y, d2/2) = 0. Thus the number of

deleted black vertices

\B'nN{S)\ <

<

<

(Qi + d2)(a2 + d2)
B2(x,d2/2)

(a i + d2)2

d2

2/8 _

(3ai) 2 7 2 a i

2

d2

2/8j L d2

2 J

Now d2 = 24[\ /m], so d22 > 576m > 576ai and so
72aV

d2

2
< ax/8. Thus,

\B'nN{S)\ < \N(S)\ - \S\.

Second we consider the case that S U N(S) is disconnected, we may write

Sl)N(S) = JT{Si{JN{Si)), where every SiUN(Si) is connected and (Sil)N(Si))n

(Sj U N(Sj)) = 0 for i ^ j. By the above proof, we get \B' n N(S)\ = £ \B' n
i=i

N(Si)\ < E(\N(Si)\ - \St\) = E WSi)\- E \Si\ = \N(S)\ - \s\.
i=l z=l i = l

We use the complete plane

7T { x „ = i } = {(xi,x2,. • .,xn-i,i) :xj = l,2,...,m for j n}

30

to cut S U N(S). Denote the intersection by layer L^.

Li = (SUN(S))f)n{Xn=i}.

L e m m a 4.4 Let Q(m,n) be an n-dimensional lattice graph with bipartition B, W.

Choose any set S C.W. If S has the following two properties:

(a) \SUN(S)\<^^mn,

(b) there exists some layer Li such that | L j | > 2 " _1[1mn~1,

then

\N(S)\-\S\> 1 m " " 1

2 n + 1

P r o o f : Let a\, a2,. •., an be the side lengths of S U N(S). We may assume a\ >

0,2 > ... > an. If an < m, then we can show that surplus |iV(5)| — \S\ > | _ ^ J =

L 2 " 2 " + l m " ~ 1 J by * n e ^ a c * * n a * * n e number of black vertices > the number of white

vertices in any layer and the following "projection line" idea. Since an < m,

then at least one of the two layers L i - a n d Lm is empty. Assume Lm = 0. F ix

_ 1, the vertex set

{(xi, x°2,..., x°n_1J)J = i, i + 1,.. . , m) n (5 U N(S))

defines a projection line. Any projection line that starts with a black vertex has

surplus > 1; any projection line that starts with a white vertex has surplus > 0.

There are at least [̂ 4] = \2" 2n+lmn~l] black vertices in Li and so the projection

lines which start from Li give surplus > | " 2 " 2 ^ + 1 m n ~ 1] . Note that the number of

black vertices > the number of white vertices in any other layers below Li , so

\N(S)\-\S\>\2-^±±m^].

31

If an = ra, then ai = a2 = ... = an = m. Since \S U iV(5) | < 2*2n+1mn,

then there exists some layer Lj such that \Lj\ < L 2 " 2 l + 1 m " ~ x j . Then we can show

that |AI(5)| - \S\ > \-2-^fImn~1] by the following "projection segment" idea. We

may assume i < j. F ix x\, x®, • • •, a;°_i, the vertex set

{ « xl..., Xn-i,k),i < k<j}D(SU N(S))

defines a projection segment between layer L , and Lj.

Now we first count the surplus between layer Lj and Lj, inclusive. We have

two cases which depend on the parity of i + j.

Case 1: i + j = 0 (mod 2).

1. Every projection segment which starts with a black vertex in Lj (or Lj) has

surplus > 1.

2. Every projection segment which starts with a white vertex in Lj (or Lj) and

ends with a white vertex in Lj (or Lj) has surplus > —1.

3. Every projection segment which starts with a white vertex in Lj (or Lj) and

doesn't reach Lj (or Lj) has surplus > 0.

There are at least [^ l ^ m " ' - 1] black vertices in Lj and at most L ^ n + t 1 " ^ " - 1]

white vertices in Lj . So we have surplus at least

Case 2: i + j = l (mod 2).

1. Every projection segment which starts with a black vertex in Lj (or Lj) and

ends with a white vertex in Lj (or Lj) has surplus > 0.

in—2
1 X

2"
+ 1 n - l in—1

+ (- l) x 2n+l

+ 1 n - l

32

2 . Every projection segment which starts with a white vertex in Lj (or Lj) has

surplus > 0 .

3. Every projection segment which starts with a black vertex in Lj (or Lj) and

doesn't reach Lj (or Lj) has surplus > 1.

So the surplus is

1 x
f o n - 2 + 1

-ra
n - l

i n - 1

2 n + l
+ 1 n - l

2 n + l m
n - l

Therefore, the surplus between layers Lj and Lj inclusive is at least \ 2-^frran~1].

Since the number of black vertices > the number of white vertices in any other layers

above Lj or below Lj , we have at least [o ^ p - m ™ - 1] surplus. •

L e m m a 4.5 Let Q(m,n) be an n-dimensional lattice graph with bipartition B,W.

Choose any set S CW. If S satisfies \SUN(S)\ < 2 " ~ l + 1 m n , then (4.1) holds.

Proof : Note that dn = 4n(n + l) | \ / m l > d n _ i = 4(n — ^ n f y 7 ? ™] . We prove

it by induction. Lemma 4.3 showed the case when n = 2. In the n-dimension, if

\Li\ < ^ n - i ^ r a " " " 1 for a l i i = 1 , 2 , . . . , m, then we are done by induction. Otherwise,

there exists some Lj such that | L , | > 2 ^ ~ ! , t 1 T n " ~ 1 . By Lemma 4.4, we have |iV(S)| —

We want to show \B' n N(S)\ < r ^ F T 7 7 1 " - 1 ! - If m < dn/n then at most one

black vertex can be deleted. So we only need to consider the cases when m > dn/n,

i.e. dn < nm. Note that for x,y € B', B(x,dn/2) n B(y,dn/2) = 0. Thus the

33

number of deleted black vertices

\B'nN(S)\ <

<

<

(ai + dn)(a,2 + dn) • • • (an + dn)

Bn{x,dn/2)

(m + dn)n

2{dn/2n)n

(m + nm)7

. 2(dn/2n)n J

(2n(n+ l))nmn

2d7

Now dn = 4n(n + > 4 n (n + l) N 1 / n] > 4n(n + ^ m 1 / " , so d n

n >

(4n(n + l)) "m and so

(2n(n + l)) n m n (2n(n + l)) n m '
< -m

n - l
2dn

n 24n(n + l) n m ~ 2™+!

Thus, | B ' n AT(5)| < \N(S)\- \S\. •

From the proof of Lemma 4.5, we see that if there is some layer L j such

that | L j | > 2^7r=T^-m n~ 1, then dn = 4n(n+ l) [m 1 / , n] is sufficient to guarantee (4.1).

However, when every layer is small (< 2-2-^rLrnn~1), we rely on induction. And

we start the induction with n = 2, so we require dn = 4n(n + l) [v

/ m] for every

n. Although we don't know how to prove it, we believe that the best possible

dn — f{n)\'rnlln~\, where f(n) is a function of n. Here is an example to show that

why the bound m 1 / " is best possible.

We choose 5 = E n W, where

E | (x i , x 2 , ••• ,xn) \ xne {1,2, • • • , y } , Xi £ {1,2, • • • , m) for i ^ n j .

Since the number of white vertices = the number of black vertices in E, the only

surplus are those black vertices above E, then |iV(S)| - \S\ = m \ 1 . Every deleted

black vertex takes up a space of size at most dn

n, then the maximum number of

34

black vertices which can be deleted is

\B'nN(S)\>— /dn

n

2 ' " 2dn

n'

Remark that we can choose W in the other half. In order to make the resulting

graph (after deletion) still have a perfect matching, it is necessary that

\B> n N{S)\ < \N(S)\ - |5 | , i.e., ^ < ^ =• dn > m1^

Next, we give the proof of Theorem 4.1.

P r o o f of T h e o r e m 4.1: We prove Theorem 4.1 by using Hall's Theorem on

Q(m, n) — (B' U W). Choose any subset S C W. We need to show that

\N{S)-B'\>\S\, (4.2)

which is equivalent to (4.1).

Lemma 4.5 proves (4.1) for | S U N(S)\ < V 1 " 1 " l t i s e a s y t 0 s e e C4-1)

holds for |5 U N(S)\ < \mn since \mn < 2 " ^ + 1 m n .

Next, we show (4.1) for \S U N(S)\ > \mn. Let T = B - N(S), then

\T U iV(T) | < \mn. Interchanging the roles of W and B, we obtain \W n N(T)\ <

\N(T)\ - \T\. Denote W - S - N(T) = A, Using the facts that \B'\ - \W'\ and

|J3| = \W\, we have

[\B'nN{S)\ < \B'\ = \W'\ = \W n(N(T)l)A)\

= \W C)N(T)\ + \A\

< | iV(T)| — |T | + | W - .S —

'= \N(T)\-\B- N(S)\ + \W\ - \S\ - \N(T)\

- MS)\-\s\.

We have shown (4.1) for any S C W. •

35

Bibliography

[1] R . E . L . Aldred, R.P. Anstee and S.C. Locke, Perfect matchings after vertex

deletions, Preprint.

[2] R.P. Anstee, A polynomial algorithm for 6-matching: A n alternative approach,

Information Processing Letters 24 (1987), 153-157.

[3] R.P. Anstee, Matching theory: fractional to integral, New Zealand J. Math. 21

(1991), 17-32.

[4] T. Asano, M . Edahiro, H . Imai, M . Iri. and K . Murota, Practical use of buck

eting techniques in computational geometry, Computational Geometry (1985),

153-195.

[5] C. Berge, Two theorems in graph theory, Proc. Nat. Acad. Sci. U.S.A. 43

(1957), 842-844.

[6] U . Derigs, Programming in networks and graphs, Lecture Notes in Economics

and Mathematical Systems, Springer-Verlag, 300 (1988).

[7] E . W . Dijkstra, A note on two problems in connexion with graphs, Numer.

Math. 1 (1959), 269-271.

36

[8] J . Edmonds, A n introduction to matching, Lecture notes, University of Michi

gan, Ann Arbor (1967).

[9] J . Edmonds and E . Johnson, Matchings, Euler tours, and the Chinese postman,

Math. Programming 5 (1973), 88-124.

[10] E . Egervary, On combinatorial properties of matrices, Math. Lapok 38 (1931),

16-28.

[11] P. Elias, A . Feinstein and C.E . Shannon, Note on maximum flow through a

network, IRE Trans, on Information Theory IT-2 (1956) 117-119.

[12] L .R . Jr. Ford and D.R. Fulkerson, Maximal flow through a network, Canad. J.

Math. 8 (1956) 399-404.

[13] R . H . Fowler and G.S. Rushbrooke, Trans. Faraday Soc. 33 (1937), 1272.

[14] D.R. Fulkerson, A . J . Hoffman and M . H . McAndrew, Some properties, of graphs

with multiple edges, Canad. J. Math. 17 (1965), 166-177.

[15] M . Guan, Graphic programming using odd and even points, Chinese Math. 1

(1962), 273-277.

[16] P. Hall , On representation of subsets, J. Lond. Math. Soc. 10 (1935), 26-30.

[17] R . E . Jamison, N . Lochner, Tiling fringed chessboards with dominoes, 34th

Southeastern International Conference on Combinatorics, Graph Theory and

Computing.

[18] P .W. Kasteleyn, The statistics of dimers on a lattice, Physica 27 (1961), 1209-,

1225.

37

[19] P.W. Kasteleyn, Graph theory and crystal physics, Graph Theory and Theo

retical Physics, Academcis Press, New York (1967), 43-110.

[20] D. Konig, Graphen und matrizen, Math. Lapok 38 (1931) 116-119.

[21] H.W. Kuhn, The Hungarian method for the assignment problem, Naval Re

search Logistics Quarterly 2 (1955), 83-97.

[22] S.M. Lee and J.P. Shim, Micro Management Science, A l lyn and Bacon, second

edition, 1990, 218-219.

[23] K . Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927), 95-115.

[24] D .L . Miller and J .F. Pekny, A staged primal-dual algorithm for perfect b-

matching with edge capacities, ORSA J. of Computing 7 (1995), 298-320.

[25] J . Munkres, Algorithms for the assignment and transportation problems, J .

Soc. Indust. Appl. Math. 5 (1957), 32-38.

[26] M . Miiller-Hannemann, Quadrilateral Mesh Generation in Computer-Aided De

sign, Cuvillier Verlag Gottingen, 1997.

[27] J . Petersen, Die theorie der regularen graphen, Acta Math. 15 (1891), 193-220.

[28] W.R. Pulleyblank, Faces of matching polyhedra, Ph.D. thesis, Faculty of Math

ematics, University of Waterloo (1973).

[29] J .K . Roberts, Proc. Roy. Soc. (London) A, 161 (1935), 141.

[30] W . T . Tutte, The factorization of linear graphs, J. Lond. Math. Soc. 22 (1947),

107-111.

[31] D .B . West, Introduction to Graph Theory, Prentice Hall , 1996.

38

