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Abstract 
We consider seismic signals as a superposition of waveforms parameterized by their fractional-
orders. Each waveform models the reflection of a seismic wave at a particular transition between 
two lithological layers in the subsurface. The location of the waveforms in the seismic signal 
corresponds to the depth of the transitions in the subsurface, whereas their fractional-order 
constitutes a measure of the sharpness of the transitions. By considering fractional-order tran
sitions, we generalize the zero-order transition model of the conventional deconvolution problem, 
and aim at capturing the different types of transitions. The goal is to delineate and characterize 
transitions from seismic signals by recovering the locations and fractional-orders of its corre
sponding waveforms. This problem has received increasing interest, and several methods have 
been proposed, including multi- and monoscale analysis based on Mallat's wavelet transform 
modulus maxima, and seismic atomic decomposition. 

We propose a new method based on a two-step approach, which divides the initial problem of 
delineating and characterizing transitions over the whole seismic signal, into two easier sub-
problems. The algorithm first partitions the seismic signal into its major components, and then 
estimates the fractional-orders and locations of each component. Both steps are based on the 
sparse decomposition of seismic signals in overcomplete dictionaries of waveforms parameter
ized by their fractional-orders, and involve i 1 minimizations solved by an iterative thresholding 
algorithm. We present the method and show numerical results on both synthetic and real data. 
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Chapter 1 
Introduction 

The Earth's subsurface consists of layers of different materials separated by interfaces, also called 

transitions. Transitions are characteristic of regions where the Earth's properties (indicated by 

changes in the acoustic properties) vary rapidly compared to the scale of the seismic wavelet. 

These sudden changes in the properties at the transitions create edges in the medium and 

provoke the reflection of seismic waves. These reflections are recorded at the surface, giving rise 

to a seismic signal (seismic trace) which contains the seismic events triggered by the reflection of 

the waves at the different transitions. To a good approximation, a seismic signal can be written 

as the convolution of the seismic reflectivity and the seismic source function (seismic wavelet) 

[5]. Here the reflectivity depends on the transitions in the acoustic impedance, which is the 

product of the compressional wave speed and the density of the materials. Seismic data thus 

carries information on the geometrical relationships between subsurface lithological boundaries, 

which is usually used to build geological models to explain the origin of stratigraphic features. 

Extracting local information about transitions from seismic data has recently received increasing 

interest [6, 7, 9, 11, 12, 18, 22, 23, 34, 35], as accurate knowledge of the subsurface is more and 

more needed. Accurately finding the types of transitions is important because the information 

on the type of transitions complements the information about amplitude and phase already 

used by geologists. Considered together, the type of transition, along with its amplitude and 

phase, can be used in various geophysical applications, ranging from improving the geological 

interpretation of the subsurface, to detecting changes in the lithology and constraining the 

critical points in the percolation model proposed by Herrmann et al. [19]. In this work [19], 
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a bi-compositional mixture model for transport properties (elastic and fluid) of rocks has been 

proposed. At the critical points, where the more permeable of the rock constituents connect, 

the model predicts a multi-scale transition in the transport properties. The exponents of the 

transitions associated to the critical points could explain and characterize the transitions in the 

subsurface. In this study, we are interested in characterizing the transitions in the subsurface, 

as this information may be used to infer the permeability properties of the rocks. 

The diversity of transitions in the subsurface has recently been established by Herrmann et 

al. [7, 14, 16, 22, 27] in their study of seismic and well data using multiscale analysis with 

wavelets. The results of Herrmann, Muller and others, showed that the Earth's subsurface 

behaved like a multifractal, giving rise to a medium consisting of varying order singularities 

[7, 14, 16, 18, 27, 35]. Transitions no longer follow the typical zero-order discontinuity model 

(i.e. step function), but can have any fractional-order discontinuity, that can be obtained by 

fractionally differentiating/integrating a zero-order discontinuity [17, 33]. 

The conventional deconvolution problem (spiky decon) considers seismic transitions in the sub

surface as zero-order discontinuities, and aims at recovering the seismic reflectivity as a spike 

train signal. However, several methods have been proposed to delineate and characterize tran

sitions. Starting in 1972 with Harms and Tackenberg [13], followed by Payton in 1977 [28], and 

later Taner et al. in 1979 [32], attempts were made to characterize transitions using complex 

trace analysis. Complex trace analysis is based on instantaneous phase behavior, where the 

instantaneous phase is seen as a seismic trace attribute giving information on lithological prop

erties. This approach is also based on the non-local Hilbert transform, which makes it noise 

sensitive. In this analysis, transitions are modeled as a combination of several sub-wavelength 

zero and/or first order discontinuities. However, this transition model is still simplistic, as it 

does not incorporate all the different types of transitions. We propose a mathematical model for 

transitions, that incorporates instantaneous phase behavior through any fractional-order dis

continuity [7]. Our model allows for any fractional-order transitions in the subsurface, leading 

to a broader class of reflectivity signals. This makes our model more general, and an exten

sion of the conventional deconvolution model. In the case where transitions are modeled by 
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zero-order discontinuities, our model reduces to the conventional deconvolution model. 

Following their multiscale studies of seismic and well data, Herrmann et al. [16, 17, 20] proposed 

a method to characterize the sharpness of transitions using monoscale analysis. In this method, 

zero-order transitions were generalized to any fractional-order. The key of this method is to frac

tionally integrate/differentiate the seismic signal until the disappearance/appearance of a local 

maximum. The amount of integration/differentiation at the point of disappearance/appearance 

of the local maximum gives the estimate for the fractional-order of the transition. Although 

relatively successful, this method lacks robustness and is highly sensitive to noise and any phase 

rotation of the waveforms in the signal. 

Following the monoscale analysis, Herrmann [18] proposed a parameterization of seismic signals 

with redundant dictionaries. In this framework, the signal is written as a weighted superpo

sition of waveforms parameterized by their fractional-order. These waveforms are taken from 

a suitably chosen collection, called a dictionary [2, 26]. Given a dictionary, the signal can be 

represented by a vector containing the weighting coefficients. Assuming sparse reflectivity, the 

idea is to find the sparsest set of coefficients in the chosen dictionary that represents the signal. 

Under certain conditions, the sparsest representation contains a few large coefficients corre

sponding to the different seismic events in the signal. The problem of finding these coefficients 

(which corresponds to solving an ill-posed problem), was attempted using Matching Pursuit 

[15, 18, 26] and Basis Pursuit [2, 18]. These are two algorithms that approximate the sparsest 

representation. The results of Matching Pursuit and Basis Pursuit showed the ill-posedness of 

the problem and the difficulties in finding the sparsest representation for complicated signals 

in large dictionaries [18]. Even though both algorithms are able to find the sparsest represen

tation for simple configurations, both fail when the dictionary becomes too big or the signal 

too complex. Motivated by the conclusions of these studies [18], we reformulate the problem 

into a more tractable approach. We propose a two-step method that divides the resolution of 

the problem into two subproblems. In the first part, that we call detection, we find the major 

events in the seismic signal. In the second part, that we call estimation, we estimate their 

fractional-orders. 
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By finding the largest sets of coefficients in the approximate sparse representation of the seismic 

signal in a chosen detection dictionary T>d, the detection algorithm locates the major features 

of the seismic signal that correspond to predominant reflectors in the Earth. The detection 

dictionary contains several parameterized waveforms that mimic the behavior of the seismic 

signal. The richness of the detection dictionary accounts for non-stationarity in the seismic 

signal. The approximate representation c of the signal s in is obtained by minimizing 

5l |s-*dc | | l + A d | | c | | i , (1.1) 

with respect to c, where c is the representation of the seismic signal s with respect to the 

dictionary T>^ &d is the matrix of the detection dictionary X ^ , and A<2 is a trade-off parameter 

between the data misfit and the d.1 norm of the coefficient vector c. The columns of <&d are 

the different waveforms in T>d after normalization. The detection step can be viewed as a spiky 

deconvolution problem, where the goal is to find a spike train signal containing the locations 

of the predominant components. The different signal components associated with the largest 

coefficients in the representation c constitute a partitioning of the signal s into its prevailing 

localized components (major reflection events). The extraction of these components is done by 

multiplying the signal with localized windows centered at the different component locations. 

The extracted signals, now localized, are analyzed separately in the estimation part. We denote 

S j , the ith signal component extracted from s. 

The estimation algorithm operates on relatively simple and localized signals Sj assumed to be 

a linear combination of a limited number of waveforms. The estimation process delineates the 

different waveforms in each signal S j , and estimates their fractional-order by finding the sparsest 

representation of the signal in another dictionary of parameterized waveforms, noted Ve for 

estimation dictionary. Each Sj is analyzed in the estimation part through the minimization of 

^ I l i i - S e C j I l i + AellCiHi, (1.2) 

with respect to c i ; where denotes the ith signal component of the seismic signal s, and ct 

its representation with respect to the estimation dictionary T>e. Here, we aim at an exact 

reconstruction, which requires the parameter A e to be very small. When A e —> 0, (1.2) behaves 
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like Basis Pursuit [2] and translates into 

min ||CJ||I subject to s4 = &e£i- (1.3) 

The coefficients in the sparse representation Cj correspond to waveforms in T>e whose parame

ters a constitute estimates for the fractional-orders of S , . The final step collects the different 

waveforms and associated fractional-orders pertaining to each signal component Sj into a global 

vector describing the complete seismic signal s. The global vector contains the fractional-orders 

of all the reflection events of the total seismic signal s. The following figure shows the main 

steps of our detection-estimation method. 
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Figure 1.1: Detection-estimation method. The numbers 4.1, 4.1.4 and 4.2 refer to the sections 
where the particular topic is explained in detail. 

6 



Chapter 2 
Background 

2.1 Model for seismic transitions 

Significant variations in the Earth's properties over the length-scale of the seismic wavelet 

create singularities in the subsurface and make seismic waves reflect. These singularities occur 

at transitions between layers, and are typically modeled by zero-order discontinuities (i.e. step 

discontinuities). However, multiscale analysis on sedimentary records (vertical profiles of the 

broadband fluctuation of the elastic properties) performed by Herrmann et al. [14, 16, 27], 

revealed the existence of accumulations of varying order singularities in the subsurface, which 

give rise to any fractional-order discontinuity. The different types of transitions correspond to 

the different materials in the Earth and to the various ways in which materials are deposited 

and mixed together at the transitions. 

2.1.1 The seismic reflectivity 

The mathematical model 

Following Herrmann et al. [15, 17, 18, 21], we extend the usual zero-order transition model 

to any fractional-order transition, modeled by the causal and anti-causal fractional splines [33] 

(also called fractional onset functions): 

where a > 0, and T is the Gamma function defined as: T(x) — J0°° txe ldt for x € R. When 

a > 1, these functions are differentiable. When a is between 0 and 1, they become non-

7 

(2.1) 



differentiable but remain continuous. For — 1 < a < 0, they are discontinuous (and non-

differentiable). W h e n a < — 1, the fractional splines cease to be local ly integrable, and become 

tempered distr ibutions [17]. Causal and anti-causal fractional splines are l inked together by the 

relationship: Vx € M , X-(x) = X+(~x)- Mathematical ly , the fractional exponents a specify 

the regularity of the fractional splines, as they coincide wi th their Lipschi tz exponent. E a c h of 

these fractional splines [33] is Lipschi tz a, where the Lipschi tz regularity is defined as: 

Definition 2.1.1 (Lipschitz regularity [25]) 

• A function f is pointwise Lipschitz a > 0 at v if 

3K > 0 and a polynomial pv of degree m = \ot\ such that 

V i G R , \f(t)-pv(t)\ <K\t-v\a. 

• A function f is uniformly Lipschitz a over [a,b] if it satisfies the above inequality for all 

v G [a, b], with a constant K that is independent of v. 

• The Lipschitz regularity of f at v or over [a, b] is the supremum of the a such that f is 

Lipschitz a. 

Our choice of fractional splines is motivated by their regularity and scale invariance. Thus we 

can characterize the sharpness of a transi t ion irrespectively of the scale: 

V x G R and V a > 0, a > 0 , X (̂CTX) - < J a

X ± ( x ) . 

A s explained before, each of these functions has a part icular order of singulari ty a. For a > 1 

at v, the function %± has a bounded derivatives and a singularity at v w i t h Lipschi tz exponent 

a. However, when a < 1 at u, x± is not differentiable at v and a characterizes the type of 

singularity. 

Examples of causal,and anti-causal fractional splines are shown i n Figure 2.1. 
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a = 0 a = 0.1 a = 0.3 a = 0.5 

Figure 2.1: Examples of Causal and anti-causal fractional splines with different fractional-
orders. The top two rows show causal fractional splines, and the bottom two rows show anti-
causal fractional splines. 
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Implementation of the x± basis 

We construct the basis B&, made of the family of all translations of x ± f ° r e a c n a - Except for 

a = 0, the family B^, obtained by all the translations of x±> gives a degenerate collection of 

waveforms, as the last basis function is zero everywhere. This is due to the fact that the first 

sample of %± is zero for any a except a = 0. By adding 1 to all the x ± , we ensure all the basis 

functions are non-zero. Here the translations are non circular. If we use circular translations 

(or circular permutations), we create a singularity of order 0 for all the basis functions in all 

the bases B^ • A circular translation Cp , p € Z, of a vector v € M N has the property that 

w i / / * r nv t s , v((n + p) (mod AT)) i f n + p ^ O (mod N) 
VI < n < I\ , C^v(nJ = 

v(N) if n + p = 0 (mod N) 

Let be the length of the the vector Xa a n d define: 

B+ = {xi} , such that VI < n < N , y^n) = x+(n - i + 1) , where x+(n) = 0 Vn < 0 

It is easy to prove that for any a > 0, B£ is a1 basis. See proof in Appendix B . l . A similar 

argument is used to show that B~ is a basis. 

Transitions and reflectivity 

We denote by / the ID vertical earth model that represents the transitions as a superposition 

of fractional splines: 

f(z) = J2^iX±i(z-zi), (2.2) 
i 

where z corresponds to the depth in the subsurface, and Zi to the location of the i t h transition 

in the subsurface. B y differentiating / , given by (2.2), we obtain the seismic reflectivity r, as 

r(z) = K i X T \ z - Zi) - KiX°?-\z - «), (2.3) 

where Ki = > a n d A c and are the sets of indices for the transitions with causal and 

anti-causal discontinuities respectively. 
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2.1.2 The seismic source function 

In most geophysical surveys, and especially those using explosive sources, the seismic source 

function tp is unknown, and is typically modeled by the Ricker/Mexican hat wavelet (opposite 

sign of the second derivative of the Gaussian). In the rest of the paper, we will only use the 

name Ricker wavelet. We relax this model and discuss our assumptions on the seismic source 

function with regard to its smoothness and wiggliness. We first introduce some definitions. 

Following Unser et al. [33], a 7-order causal fractional B-spline, £+> is defined by taking the 

(7 + l ) t h fractional difference of a one-sided power function 

£(*) = Al+1x+(x) = £ ( - ! ) * f 7 t * W - *), (2-4) 
fc>0 \ * / 

where 7 > — 1, x G R, and ( 7 £ ) is the generalization of the binomial coefficients defined as 
T + 1\ Tf'Y + 2) 

' - [33]. The (7 + l ) t h difference of a function g is defined by k J T(k + l ) r ( 7 + 2 - k) 
A ^ + 1 g ( x ) = ^ ( - l ) f e y ^ jg(x - k). In the Fourier domain, (2.4) translates to 

fc>o ^ ' 

with the frequency to € R. The anti-causal and symmetric fractional splines [33] are defined in 

a similar way by 

anti-causal: C - ( W ) — C + ( — w ) > a n d symmetric: C 7 ( C J ) 
sin(ui/2) 7+1 

(2-6) 
w/2 

The fractional B-splines are the extensions of the traditional B-splines to non integer exponents 

7. For further extensions, B lu et al. [1] defined the (7, r)-fractional B-splines 
l + i _ T 

Q{u) - C - 2 » C +

2 H (2.7) 

(2.8) 

where 7 is the usual fractional exponent, and r controls the phase of the function. Unlike the 

traditional B-splines, fractional splines do not have compact support, but are of rapid decay 

with the following decay property [33] 
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The fractional B splines and (7,0)-fractional B-splines converge to the infinitely smooth Gaus

sian function when 7 —> 0 0 . 

We consider the source function as a 8th derivative of an (7, refractional B-spline, parameter

ized by its fractional exponents 7 and 8, and its phase determined by r 

iP(t) = d?Q{t) for 8 < 7 + 1, (2.10) 

where t is the time variable. The conventional Ricker wavelet model for the seismic source 

function ip is a particular case of our model for 8 — 2, r = 0, and 7 —> 0 0 . In addition 

to this model, we discuss two properties of the seismic source function ip: the decay of its 

Fourier spectrum for frequencies going to infinity, as ip G C 7 (R) (ip is an 7-times continuously 

differentiable function on R), 

/ |f/>(u;)||u;|7cLj < 0 0 , 
JM. 

and the differentiability of the Fourier transform of ip at zero frequency [18]: 

/ tqip(t)dt = 0 <S=» n(d^))u=0 = 0 for q G N , and q < M. 
JR 

The first condition limits the high-frequency content of tp by setting the asymptotic decay rate 

for high frequencies, and the second condition requires that ip be orthogonal to some finite 

degree polynomial, hence describing its wiggliness [18]. This latter property defines the number 

of vanishing moments of ip [25], noted q. 

2.1.3 The model for the imaged seismic signal 

We consider the linearized single scattering approximation, where the imaged seismic signal s 

can be written as: 

s(z)cx(r*ipz)(z). (2.11) 

Here r is the imaged travel-time depth converted reflectivity, and ipz is the depth converted 

seismic source function. For clarity purposes, we simplify the notations and refer to the depth 

converted seismic source function ipz as ip. Because we are only interested in the singularity 
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properties of the seismic signal, we simplify the notations and omit the constants. We therefore 

write the seismic signal s as the convolution of the reflectivity and the seismic source function: 

s(z) = (T*II>)(Z) (2.12a) 

= Y2K*+~l(z-*i)*iKz)- £ t f i X - < _ 1 ( * ( 2 . 1 2 b ) 
i e A c J 6 A A 

where r is given by equation (2.3). The seismic signal s can also be written as a superposition 

of fractional derivatives/integrations of the seismic wavelet ip, where the definition of fractional 

differentiation is given by Liouville [24] in his generalization of differentiation for fractional-

orders: 

Definition 2.1.2 (Fractional Derivatives [24]) Let f be a tempered distribution in «S(R) 

and X + _ 1 be the causal fractional spline: 

The fractional derivative of f of order a is defined as 

Daf = * /, 

where the convolution has to be taken in the sense of distributions. 

Under the condition that the orders OJJ given in equation (2.12b) are all non integers, and that 

the seismic wavelet tp is either even or odd, we can write: 

X T \ Z - zi) * iP(z) = QD-^iz - Zi) (2.13) 

and 

I dD-^fzi - z) if t\> is odd, 
XaJ~1(z-Zi)*iP(z) = l , (2-14) 

-dD~°'i'ip(zi - z) if tp is even, 

which gives a seismic signal s of the form 

8(Z) = Y CiD-ai*P(z - Zi) ± J2 CiD~a^(z - zi), (2.15) 
i e A c i e A A 
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(a) Transitions:a between 0 and 1 (b) Seismic signals with Ricker 

L o c a t i o n s L o c a t i o n s 

Figure 2.2: Varying order transitions and their associated seismic signals obtained with a Ricker 
wavelet. The transitions are set to continuously interpolate between a zero-order discontinuity 
(step function) and a first-order discontinuity (ramp function). One can clearly see that different 
order transitions create seismic signals that not only differ in amplitudes, but also in waveform. 

where G, - V̂ /) - rfo+i) • 

In Figure 2.2, we present an example of varying order transitions and their corresponding seis

mic signals. The seismic source function is a Ricker wavelet. Figure 2.2a shows the different 

transitions with fractional-orders ranging from 0 to 1 and Figure 2.2b shows the seismic signals 

obtained by convolving the reflectivity associated to these transitions with the Ricker wavelet. 

By interpolating the fractional-order of the transitions between 0 and 1, we obtain seismic sig

nals going from the Ricker wavelet (associated to the zero-order transition) to the antiderivative 

of the Ricker wavelet (associated to the first-order transition). 
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order transitions create seismic signals that not only differ in amplitudes, but also in waveform. 
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transitions with fractional-orders ranging from 0 to 1 and Figure 2.2b shows the seismic signals 

obtained by convolving the reflectivity associated to these transitions with the Ricker wavelet. 

By interpolating the fractional-order of the transitions between 0 and 1, we obtain seismic sig

nals going from the Ricker wavelet (associated to the zero-order transition) to the antiderivative 

of the Ricker wavelet (associated to the first-order transition). 
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2.2 Previous work 

2.2.1 Complex seismic trace analysis 

Beginning with Harms and Tackenberg [13] in 1972, followed by Payton in 1977 [28], and later 

Taner et al. [32] in 1977 and 1979, many attempts have been made to characterize transitions 

using complex trace analysis. Complex seismic trace analysis calculates attributes from a 

seismic trace. Attributes are defined as specific information characterizing seismic traces that 

can be computed or extracted from them. For complex trace analysis, the attributes are the 

amplitude, phase, instantaneous frequency, weighted average frequency and apparent polarity 

[32]. This analysis considers a seismic trace s(t) as the real part of a complex signal S(t) [32], 

where S is defined as: 

S(t) = s(t)+is*(t) , Vt > 0. 

s* is called the quadrature component and is uniquely determined by the following two condi

tions 

1. s* is calculated from s by a convolution 

2. If s(t) = Acos{ut + 9) for A, 9 € R and to > 0, then s*(t) = Asin(ut + 9) (s* is the Hilbert 

transform of s) 

s, considered as a complex signal, can be written as S(t) = A(t)el6^\ where s(t) is the real part 

of S, and s*(t) the imaginary part. From this, we refer to the amplitude \A(t)\ as the reflection 

strength, and to the phase 9(t) as the instantaneous phase [32]. The instantaneous frequency u 

can be computed by calculating 
/ x d9(t) 

- - r -

Using the reflection strength, the instantaneous phase and instantaneous frequency, we deduce 

the weighted average frequency as [32] 

_ J ^ A ( t - T M * - T ) L ( T ) d T 
j^A{t-T)L{T)dT 

and apparent polarity. The apparent polarity is defined as the sign of s{t) when A(t) has a 

local maximum [32]. 
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Taner et al. [32] interpreted these attributes as information on geological and lithological 

features. For instance, they interpreted high reflection strength as "major lithological changes 

between adjacent rock layers, such as uncomformities and boundaries associated with sharp 

changes in sea level or depositional environments", and showed that "phase displays are effective 

in showing discontinuities ... and events with different dip attitudes which interfere with each 

other" [32]. 

This analysis is based on instantaneous phase behavior, where the instantaneous phase is seen 

as a seismic trace attribute giving information on lithological properties. The complex trace 

analysis approach is also noise sensitive, as it has the disadvantage of being based on the non

local Hilbert transform. The complex analysis transition model is also quite simplistic. In this 

paper, we propose a mathematical model for transitions that incorporates any instantaneous 

phase behavior of the form (iuS)a = e l 2 a through fractional-order transition, as fractional 

differentiations/integrations yield phase rotations [7]. 

2.2.2 Multiscale analysis 

Herrmann et al. [14, 16, 21] performed a multiscale analysis of seismic data using wavelets. 

Theorems and Definitions 

Given a mother wavelet ip, where ip is a normalized function in L2(U) with zero average, we 

can create a family of wavelets through translations and dilations of the mother wavelet 

where a > 0 is the position of the wavelets and a > 0 their scale. The wavelet coefficients of a 

function / are computed by taking the inner product of / with the different wavelets ipatCT 

Vt € R , V(a,a) 6 (R+)Va,a(*) = A=1> 

W{f,iP}(a,o-) = (f,ipa,a). (2.16) 

See Appendix A for more details on wavelets. 
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T h e o r e m 2.2.1 [JAFFARD] [25] [Relation between Lipschitz exponent and the decay rate of 

the wavelet coefficients] 

If f € L 2 ( R ) is Lipschitz a <n at v, then there exists A > 0 such that 

V ( « , s ) 6 l x K + , \Wf(u,s)\ <Asa+1^(l + \—-\a). 
s 

Conversely, if a < n is not an integer and there exist A > 0 and a' < a such that 

V(«, s ) e l x l + , \Wf(u, a) | < ^ s Q + 1 / 2 ( l + \ ^ — ^ \ a ' ) , 
s 

then f is Lipschitz a at v. 

This theorem proves that the local Lipschitz regularity of / at v depends on the decay rate at 

fine scales of \Wf(u, s)\ in the neighborhood of v and that the decay can be controlled from its 

local maximal values. [25] 

Definition 2.2.1 [Modulus Maximum and Maxima Lines] A modulus maximum is a point 

(UQ, S O ) where \Wf(u, so)| is maximum at u = UQ. This implies 

dWf(u0,SQ) = Q 

du 

This local maximum should be a strict local maximum in either the right or the left neighborhood 

of UQ, to avoid having any local maxima when \Wf(u, so)I is constant. We define a maxima 

line to be any connected curve s(u) in the scale-space plane (u, s) along which all points are 

modulus maxima. 

The Wavelet Transform Modulus Maxima Lines are referred to as W T M M L . Singularities are 

detected by finding the abscissa where the wavelet modulus maxima converge at fine scale i.e., 

when s —* 0. 

Definition 2.2.2 (Self-similarity [25]) A set S C R™ is said to be self-similar if it is the 

union of disjoint subsets Si, S2, Sk that can be obtained from S by a scaling, translation 
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and rotation. This self-similarity often implies an infinite multiplication of details, that creates 

irregular structures. 

Definition 2.2.3 (Capacity dimension [25]) The capacity dimension is a simplification of 

the Hausdorff dimension that is easier to compute numerically. Let S be a bounded set in M.n. 

We count the minimum number j\f(s) of balls of radius s required to cover S. If S is a set of 

dimension D with a finite length(D=l), surface(D=2) or volume(D=3) then 

N ( s ) ~ ^ 

so 

s-*0 log S 

The capacity dimension D of S generalizes this result and is defined by 

D = l i m i n f ^ l . 
s->0 log S 

The Hausdorff dimension is a refined fractal measure that considers all covers of S with balls 

of radius smaller than s. It is most often equal to the capacity dimension, but not always. 

Definition 2.2.4 [Singularity Spectrum [25]] Let Sa be the set of all the points t € R where 

the pointwise Lipschitz regularity of f is equal to a. The spectrum of singularity D(a) of f is 

the fractal dimension of Sa. The support of D(a) is the set of a such that Sa is not empty. 

The singularity spectrum gives the proportion of Lipschitz a singularities that appear at any 

scale s. A multifractal is said to be homogeneous if all singularities have the same Lipschitz 

exponent ao, which means that the support of D(a) is restricted to {ao}. 

Definition 2.2.5 [Partition function [25]] Let {up(s)}p^z be the position of all local maxima 

of \Wg(u, s)\ at a fixed scale s. The partition function Z measures the sum at a power q of all 

these wavelet modulus maxima 

Z(q,s) = J2\Wf(uP>s^-
v 
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For each g G M , the scaling exponent r(q) measures the asymptotic decay of Z(q, s) at fine scales 

s 
\og(Z(q,s)) 

Tig) = l im mf ^—- —. 
v ' s-+o logs 

This typically means that Z(q,s) ~ sT(q\ 

Theorem 2 . 2 . 2 [ARNEODO, BACRY, JAFFARD, MUZYJ [25] Let A = [amin,amax] be the 

support of D(a>). Let ip be a wavelet with n > a m a x vanishing moments. If f is a self-similar 

signal then 

r(q) = min(g(a + 1/2) — 73(a)). (Legendre transform) 

Proposition 2 . 2 . 1 • The scaling exponent r(q) is a convex and increasing function of q. 

• The Legendre transform is invertible if and only if D{a) is convex, in which case 

D(a) = min(g(a + 1/2) - r{q)). 

The spectrum D(a) of self-similar signals is convex. 

We have the relations | ^ = a(q) + 1/2, where 1/2 is due to the I? normalization of the wavelets. 

Numerical calculations [25] 

1. Maxima: compute Wf(u, s) and the modulus maxima at each scale s. Chain the wavelet 

maxima across scales. 

2. Partition function: compute 

Z (g , s ) = ^ | W / ( u p , s ) | « . 
p 

3. Scaling: compute T(g) with a linear regression of log 2 Z(q, s) w r(q) log 2 s + C(q). 

4. Spectrum: compute 

D{a) = mm(g(a + l / 2 ) - T ( g ) ) . 
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L o c a l analysis 

Herrmann [14] applied the result of theorem 2.2.1 to well data, and was able to find their local 

exponents a by estimating the slope of the wavelet coefficients in the log-log plane. In the 

log-log plane, the relationship between the wavelet coefficients and the local exponent a at 

position a and scale a is 

log(|W{o, a}\) < \og(A) + a log(a), (2.17) 

where A is a positive constant. From equation (2.17), the estimate for the local exponent a 

is computed via linear regression. In Figure 2.3 and Figure 2.4, we show the local multiscale 

analysis performed on a simple synthetic signal and on a sonic well-log measurement [16]. 

In Figure 2.3, the top plot shows the data with the different singularities, the middle plot 

shows the continuous wavelet transform with the W T M M L superimposed, and the bottom 

plots show the local multiscale analysis associated to each singularity. In Figure 2.4, the top 

plot shows the sonic well-log, the middle plot shows the continuous wavelet transform with the 

W T M M L superimposed, and the bottom plots present the local multiscale analysis for selected 

singularities. We can clearly see that the well-log contains singularities everywhere, as the 

W T M M L converge everywhere. This property therefore shows that the Earth behaves like a 

multifractal. 

The method is appropriate for functions with isolated singularities because it is based on a local 

analysis. However, for functions with accumulated singularities (which is the case for seismic 

data), it is difficult to detect and characterize the singularities using a local analysis. 

G l o b a l analysis 

Global analysis yields an estimate for the singularity spectrum f(a) (defined in definition 2.2.4), 

which gives the "rate of occurrence" [14] of a particular singularity a in the analyzed signal. 

Theorem 2.2.2 and Proposition 2.2.1 link the singularity spectrum f(a) to the scaling exponent 

r(q) (defined in Definition 2.2.5) through the following relation 

r(q) = mm(q(a + 1/2) - f(a)) , and / (a) = mm(q(a + 1/2) - r(q)). 
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1.5 F 

Figure 2.3: Regularity analysis through local analysis. The top plot shows the data with 
different singularities. The second plot shows the continuous wavelet transform with the location 
of the W T M M L L (Wavelet Transform Modulus Maxima Lines) superimposed. The bottom 
plots show the local multiscale analysis for each singularity. The slope of these different lines 
gives an estimate for the singularity order. Taken from [16]. 
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Figure 2.4: Local analysis of a sonic well-log measurement. The top plot shows the sonic 
well-log (compressional wave speed). The middle plot shows the continuous wavelet transform 
with the W T M M L (Wavelet Transform Modulus Maxima Lines) superimposed. The bottom 
plot presents the local multiscale analysis for selected singularities. We can clearly see that 
the well-logs are singular everywhere, and therefore present multifractal characteristics. Taken 
from [16]. 
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"/(a) and r(q) contain information on the global integrability and differentiability of the signal 

s " [14]. The minimum exponent amin refers to the strongest singularity associated to the less 

regular regions, whereas a m a x refers to the weakest singularity associated to the most regular 

regions. Figure 2.5 [16] shows the result of the global multiscale analysis on three different 

well-logs associated to the compressional wave speed, the shear wave speed and the density. 

The top three plot present the well-logs, the bottom left plot shows the function r(q) for all 

three logs, and the bottom right plot shows the singularity spectra f(a) for the three logs as 

well. Note the similarity between the three logs. 
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Figure 2.5: Comparison between three different well-logs. The top plot presents the compres
sional wave speed well-log, the second plot the shear wave well-log, and the third plot the 
density well-log. The bottom left figure shows the r(q) function for all three logs, and the 
bottom right plot shows the singularity spectra f(a). Taken from [16]. 

The results of Herrmann [14] after applying the global analysis on seismic data showed that the 

scale exponent a was different at every point, which is one of the characteristics of multifractals. 

One of the explanation for the multifractality of seismic data was given by Herrmann [14]: "The 

multifractality of the Earth's sedimentary deposits can be understood because the sedimentation 
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process if closely linked to the hydrodynamics of the atmosphere. Hydrodynamic turbulence 

is one of the classical examples of a process showing evidence of multifractal behavior across a 

large inertial scale range. Hence the variability in the sedimentary deposits can be considered 

as a frozen state of turbulence." The results of the global multiscale analysis on seismic data 

provide the geophysicist with information on its global scaling exponents, but not about its 

localization in the data. In full band data, it is possible to estimate the local exponent a from 

/ (a ) . However, because seismic data is bandwidth limited, this is more difficult. Indeed, the 

multiscale method needs all the scales (or frequencies) in order to derive the asymptotic results, 

which are not available in bandwidth limited data. Multiscale analysis is therefore not the best 

method to obtain information about the local scale exponent, albeit several attempts have been 

made [14, 35]. 

2.2.3 Monoscale analysis 

Herrmann et al. [14, 16, 20] proposed a monoscale analysis method to analyze seismic data 

and unravel its singularities. In this method, they generalize the zero-order transitions to 

any fractional-order. The key of the method is to fractionally integrate/differentiate the seis

mic signal until the disappearance/appearance of a local maximum. The amount of integra

tion/differentiation at the point of disappearance/appearance of the local maximum gives the 

estimate for the fractional-order of the transition. 

The monoscale analysis method is based on the generalization of the standard continuous 

wavelet transform. The continuous wavelet transform of / , defined in equation (2.16), can 

be rewritten as a function of the scale a and differentiability M [16]: 

W { / , ^}(a, a) = o M ^ { f * 4>0)(a) = aM (f * ^0 , ) (<O = (/ * V ' f ) (« ) , (2-18) 

where <pa is a 2 M differentiable, real and symmetric smoothing function with support propor

tional to a, and tpjf is the wavelet generated by dilations of ipM defined as Vx € K , tpM(x) = 

( - l ) w ^ 0 ( x ) [16]. 

Herrmann et al. [14, 16, 20] generalized the wavelet transform to any fractional-order derivatives 
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8-

W{f, ifi}{a, a) = <r?-rj(f * <t>c){a), (2.19) 

with 0 € R. When 3 is negative, is a fractional integration, and when 3 is positive, is a 

fractional differentiation [16, 20, 21]. Instead of varying the scale a like the multiscale method, 

3 is the varying parameter, changing the fractional number of differentiations or integrations 

[16]. Modulus Maxima lines are defined in the same way as for the standard wavelet transform, 

defined in Definition 2.2.1. 

For fractional differentiation (0 >0), the local estimate for the fractional exponent a is given 

by the minimum value of 0 for which a local maximum appears along these 0 maxima lines 

a(a,a) = i n f { d a | W { / , ^ } ( < 7 , a ) | = 0}. (2.20) 

For fractional integration (8 < 0), the estimate for a is given by 

a(a,a) = sup{da\W{f,^(3}(o,a)\=0}. (2.21) 

In Figure 2.6 we present the result of the monoscale analysis method on sedimentary records 

[17]. The top plot shows a well data set, and the second plot the singularity orders of the well 

data found by the monoscale analysis. The third plot shows an ice core measurement, and the 

bottom plot presents the singularity orders of the ice core measurement. The color defines the 

singularity order, and the size of the dots their magnitude. 

This method gives quite good results. However, it doesn't always maintain the lateral continuity 

of the exponents along the reflectors, lacks robustness, and is highly sensitive to noise and any 

phase rotation of the waveforms in the signal. 

2.2.4 Seismic Atomic Decomposition 

Following the monoscale analysis, Herrmann proposed in 2005 [18] a parameterization of seismic 

signals using redundant dictionaries. In this framework, the signal is decomposed in a dictio

nary of waveforms parameterized by their fractional-order, and represented by its coefficients. 

Assuming sparse reflectivity, the idea is to find the sparsest set of coefficients that represents 
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Figure 2.6: Application of the monoscale method. The top plot shows the smoothed acoustic 
impedance, and the second plot displays the singularity orders of the impedance found by the 
monoscale analysis. The third plot shows an ice core measurement, and the bottom plot displays 
the singularity characterization of the ice core measurement. The color defines the singularity 
order, and the size of the dots their magnitude. Taken from [17]. 

the signal in the chosen dictionary. The sparsest representation contains a few large coefficients 

pertaining to the different seismic events in the signal. This problem was tackled using Match

ing Pursuit [15, 18, 26] and Basis Pursuit [2, 18], which are two algorithms that approximate the 

sparsest representation. The results show the ill-posedness of the problem and the difficulties 

in finding the sparsest representation for complicated signals in large dictionaries. For simple 

configurations, both algorithms are able to find the sparsest representation, but fail when the 

signal becomes too complex or the dictionary too large. A dictionary is defined in Chapter 3, 

along with a brief explanation of the Matching Pursuit and Basis Pursuit methods. 
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Chapter 3 
Problem Statement 

Characterizing transitions in the Earth involves finding their locations, amplitudes, and frac

tional exponents. In particular, given the seismic signal 

as given in (2.15), the goal is to estimate the locations Zi, the amplitudes Ci and fractional 

exponents Q j . One of the methods proposed to solve this problem is atomic decomposition [18], 

whose results constitute the starting point of our detection-estimation method. 

3.1 Dictionaries and Decomposition 

In the atomic decomposition method, the aim is to uniquely decompose the whole seismic 

signal with respect to a dictionary and to represent it by its coefficients. We use terminology 

introduced by Mallat and Zhang [26]. In R n , a dictionary V is a collection of parameterized 

waveforms (</?7)7Gr> where the waveforms </?7 are discrete-time signals of finite length n, called 

atoms, and V is the set of the indexing parameter 7. In the case of a frequency or Fourier 

dictionary, 7 is the indexing frequency, whereas for a time/scale dictionary, 7 is the indexing 

time/scale jointly. A dictionary is called complete if it contains exactly n linearly independent 

atoms, or overcomplete if it is full rank and contains more than n atoms. 

Given an overcomplete dictionary V of normalized atoms, we consider the decomposition c = 

( c 7 ) 7 e r of a signal s as 

s(z) = Y, CiD-aiiP(z -Zi)±Y^ CiD-a^{z - Zi) 

(3-1) 
7er 
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where the representation of the signal s is given by the vector c = ( c 7 ) 7 G r - For discrete signals, 

we can consider the atoms of T> as columns of a matrix 3> and write equation (3.1) in the matrix 

form 

where $ is an n x m (m > n) matrix representing the dictionary V, s € Rn and c G Rm. We 

also use the adjoint of <& denoted by 3?*. 3> and satisfy the relation: 

We adopt terminology used by Chen et al. [2]. The matrix 3? represents the synthesis operator, 

which consists of building up a signal s by superposing atoms of V. The matrix 3>* represents the 

analysis operator, whose action is to find a vector of coefficients c that correspond to the atoms 

in s. The normalization of the dictionary, leading to | |$ | | = 1, is crucial for the convergence 

of any minimization involving dictionary decompositions. In the rest of the paper, we will use 

normalized dictionaries and will refer to $ as the matrix of T>. Finding the solution c of (3.2) 

in an overcomplete dictionary is an underdetermined problem, and thus has an infinite number 

of solutions [2, 26]. 

3.1.1 Basis Pursuit 

The nonuniqueness of c enables us to choose the representation c that is most suited to our 

problem. Even though seismic reflectivity yielded by sedimentary records is a non sparse signal 

as it reflects everywhere, we can still treat it as a sparse signal by only considering the few large 

outlying reflectors. Seismic reflectivity is therefore assumed to be a sparse signal. Given sparse 

reflectivity, and assuming the dictionary is chosen to give a sparse representation of seismic 

signals, it is natural to impose sparsity on the representation c and choose the sparsest c that 

represents s. We define an event to be any localized waveform in R n . 

The sparsest representation is the representation with minimum £° norm (i.e. the fewest num

ber of non-zero entries), which is referred to as the solution of the (PQ) problem [8]: 

s = 3>c, (3.2) 

Vx G Rm, Vy_ G K " , ($x,y.) = (x, 

(Po) min ||c||o subject to s = 3>c. (3.3) 
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For the remainder of this paper, we will describe the sparsest solution as the solution of the (Po) 

problem. Solving the (Po) problem is NP-hard, because its computational complexity increases 

exponentially with the number of atoms in V [2]. Basis Pursuit (BP) [2, 8] approximates the 

sparsest representation by convexifying the (Po) problem into the following problem: 

(Pi) rrnn | |c | | i subject to s = <&c. (3.4) 

For seismic signals, the decomposition involves a dictionary of waveforms parameterized by 

their fractional-order a, as opposed to a single wavelet in the spiky deconvolution problem. 

Examples of atoms chosen for seismic applications are fractional B splines and fractional spline 

wavelets [18]. The idea is to find the few atoms in V that best match the different events in 

s, and deduce the fractional-order of the events from these atoms. Herrmann [18] proposed 

an atomic decomposition of seismic signals with BP, and showed that B P manages to find the 

sparsest representation when the dictionary is small or the signal simple. However, as shown by 

Herrmann [18], the larger the dictionary, the more similar the atoms in V, so if the dictionary 

gets too large, B P will have difficulties distinguishing between similar waveforms and hence not 

find the sparsest solution. 

3.2 Uniqueness condition and equivalence between (Po) and 
(Pi) 

Herrmann [18] showed empirically that for certain configurations of signals and dictionaries, 

the solution to the (Pi) problem was the solution to the (Po) problem, which, in general, is not 

the case. There exist some conditions [8] under which a representation c is the unique sparsest 

representation, and stronger conditions under which the (Po) and (Pi) problems are equivalent. 

To discuss these conditions, we need to introduce the following definitions. 

Definition 3.2.1 (Spark [8]) Let & be a matrix of size n by m, with m > n. The Spark of 

3> is defined as the smallest possible number a, such that there exists a subgroup of a columns 

from <& that are linearly dependent. 
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Definition 3.2.2 ( / /^ (G) [8]) For G a symmetric matrix, Mi/2(G) denotes the smallest in

teger k such that some collection of k off-diagonal magnitudes arising in a single row or column 

of G sums at least to \. 

Although Spark and rank of a matrix are in some ways similar [8], they remain two separate 

concepts: 

Example 3.2.1 We show a full rank matrix B with a Spark 2. 

1 0 0 0 1 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

Clearly B is full rank as it has 4 independent columns (rank(B) = 4:), but B also has two 

identical columns which reduces its Spark to 2. 

The Spark is an important concept that measures the similarity between any two columns of 

which for dictionaries, translates to the similarity between any two atoms in V. The uniqueness 

condition involves the Spark of T>, and is given in the following theorem: 

Theorem 3.2.1 (Uniqueness [8]) Consider a dictionary V with matrix If there exists a 

representation c0 of s , such that s— &CQ and ||c0||o < cr/2 , then CQ is the sparsest solution 

possible, i.e. c 0 solves the (PQ) problem. 

Given a signal s and dictionary V, Theorem 3.2.1 states the sparsity condition under which 

a representation c is the unique sparsest representation of s in V. If a representation c has 

strictly less than cr/2 non-zero entries, it is the sparsest representation. However, this theorem 

doesn't show whether this sparsest representation can be the solution to an ll minimization, 

which is stated in Theorem 3.2.2. 
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The equivalence between the (Po) and (Pi) problems involves the quantity u-i/2(G) ( ^ i / 2 ( G ) < 

a), where G is the Gram matrix of $ defined by G = <&*<!>. (<1>* denotes the adjoint of <&.) 

The following theorem gives the equivalence condition [8]: 

Theorem 3.2.2 [8] Consider a dictionary V with matrix <& and Gram matrix G. If there exists 

a representation c 0 such that s = $ C Q and ||c0||o < Pi/2(C), then c 0 is the unique solution of 

(Pi) and is the sparsest solution. 

For a given signal s and dictionary V, solving the (Pi) problem gives the unique sparsest 

solution, only if its solution is sparse enough in V (i.e. its £° norm is strictly less than the 

quantity ^ i / 2 ( G ) ) . The choice of V is hence very important as it determines the sparsity 

condition under which the solution of (Pi) is also solution of (Po)- However, the condition 

stated in theorem 3.2.2 is necessary, but not sufficient, as solutions to (Pi) with £° norm larger 

than A*i/2(G) may still be solutions to (Po)- When solutions to (Pi) do not satisfy the condition 

of theorem 3.2.2, the situation is less clear, as such solutions may or may not be solutions to 

(Po). In our case and for the type of dictionaries we use, solutions to (Pi) often do not satisfy 

the condition of theorem 3.2.2. However, Starck et al. [30] empirically demonstrated the gap 

between theoretical results (based on worst-case analysis), and the empirical evidence of BP 's 

performance. The goal of our new detection-estimation method is to increase the empirical 

bounds shown for Basis Pursuit. 

3.2.1 Empirical studies for the performance of BP 

In many theoretical and practical applications, it is necessary to know the value of the Spark 

and Hi/2(G) for a given dictionary V. However, computing these quantities involves several 

£° minimizations, and requires enumerating subsets of columns of which is computationally 

intractable as the algorithm complexity grows exponentially with the size of V [8]. Donoho et al. 

[8] proposed a numerical scheme for computing an upper bound on the Spark, by replacing the 

1° minimizations by lx minimizations. However, although the scheme is now computationally 

tractable, its numerical results are very difficult to interpret [8]. Due to this computational 

barrier, the performance of B P must be evaluated through numerical experiments. 
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Probability of success of BP 
1 I l l i i i i i i i r 

1 2 3 4 5 6 7 8 9 10 

# of nonzero entries in the coefficient vector 

Figure 3.1: Probability of success of B P for different number of non-zero entries in the repre
sentation c. We used a fractional spline wavelet dictionary with ten different fractional-orders 
(a) ranging from 0.5 to 2. One can clearly see that the probability of success of B P decreases 
very fast with the number of non-zero entries in the coefficient vector. 

We performed simulations with fractional spline wavelet dictionaries used to decompose seismic 

signals [18], and showed that, as soon as the representation c had more than two non-zero 

entries, the probability of success of B P was very low. This is illustrated in Figure 3.1. These 

results explain the failure of Herrmann's atomic decomposition [18] for large dictionaries and 

complicated signals, and show that for large seismic dictionaries, the representation of the 

signal must be highly sparse (its representation c must satisfy ||c||o < 2) in order to be the 

unique solution of an i1 minimization. 

3.3 Detection-Estimation approach 

We address the above issues through a two-step approach: we first partition the seismic signal 

s into its major features, and then analyze each of them separately by performing their I1 

decomposition in a large dictionary of waveforms parameterized by their fractional-order. Each 

major feature, containing only a few events, is now a simple and localized signal that can be 
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successfully decomposed with respect to large dictionaries. We consider dictionaries made with 

all translations of parameterized waveforms. For example, a dictionary containing waveforms 

parameterized by two different fractional-orders a\ and a 2 will be written as 

V=[Vai,Va2], (3.5) 

where T>ai contains all the translations of a waveform parameterized by O J I , and T>a2 contains 

all the translations of a waveform parameterized by a 2 . In a matrix form, equation (3.5) can 

be written as 

* = (3.6) 

Due to this construction, the synthesis operator associated to <& acts as a convolution, and the 

analysis operator associated to 3>* as a correlation. 
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Chapter 4 
Detection-Estimation Method 

We now discuss our approach to the problem of delineating and characterizing transitions from 

seismic data. Studies on sedimentary records have shown that seismic reflectivity is made of 

accumulation of varying order singularities [14, 16, 27], leading to a non sparse signal. However, 

unlike white noise, sedimentary records clearly contain distinct large outlying reflectors with 

strong singularities evidenced by small fractional-orders, giving rise to a few large "spiky" events 

in the reflectivity. Currently, we are only interested in finding these outlying reflectors, and 

consider the reflectivity as a function of these large outliers. We therefore assume that the 

reflectivity contains a few events and denote the seismic signal s. 

The principle of our method is to divide the original problem into two easier subproblems. We 

start by partitioning the signal s into its major features (pertaining to the predominant reflectors 

in the Earth), and then proceed by analyzing and characterizing each feature separately. We 

name these two steps detection and estimation respectively. 

4.1 Detection 

The purpose of the detection is to find the locations and characteristic scales of the major 

features in the signal s. In particular, the detection step answers two specific questions: 

1. What is the partition of the signal s into its prevailing components? 

2. What is the characteristic scale of each detected component? 
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This information is then used to build windowing functions to extract the major components 

from the signal s. The principle of the detection is to find an approximate sparse representation 

of the seismic signal s in an appropriate dictionary, and select the largest sets of coefficients 

that correspond to the predominant features in s. 

4.1.1 Detection dictionary 

Like any matched-filter approach, it is important to choose atoms that best correlate with the 

events in s in order to guarantee the sparsity of its representation. To satisfy this condition, 

we choose to estimate the average waveform of s, by finding the waveform tpa whose Fourier 

spectrum best fits the Fourier spectrum of the signal s. Because we work with waveforms 

parameterized by their fractional-order (and implicitly or explicitly parameterized by their 

frequency), we estimate the average waveform in terms of its fractional-order a, and central 

frequency / . We construct a larger detection dictionary T>d by selecting the estimated average 

waveform </?a and some neighboring ones. By neighboring waveforms, we refer to waveforms 

whose parameter a and frequency / are close to the parameter a and frequency / of the 

average waveform. We choose a and / such that 

/ 
\a — a\ < T) and ei < -= < e2. 

From experiments we choose 77 = 1, ei = \ a n ( f £2 — 2. The choices we made for 77, ei and 

e2 are not fixed, and can be modified, as long as the neighboring waveforms obtained from 

these changes still correlate well with the seismic signal. Adding more fractional-orders and 

more frequency content in the detection dictionary accounts for the non-stationary properties 

of the seismic signal, and ensures the sparsity of its representation with respect to Vd (multiple 

spiky deconvolutions). The detection dictionary Vd is therefore made of the selected waveforms 

(average waveforms and neighboring ones) and all their translations, and can be seen as the 

concatenation of several dictionaries. 

For clarification, consider a detection dictionary Vd made of p selected waveforms and their 

translations. Vd can be written as 

Vd = [Ddl,...,Vdp], (4.1) 
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where is the detection dictionary made of the i waveform and all its translations. For 

discrete signals, T>d can be represented by its matrix <&d, which can also be written as a 

concatenation of p matrices 

* d = [ * d l , . . . , * ^ ] , (4.2) 

where is the matrix of • 

4.1.2 Decomposition in Detection 

We envision an approximate sparse decomposition 

M 

5 = E c^^+ r ( M ) ' (4-3) 
i=l 

where is the residual and c = (c0li)^Ll the representation of s with respect to the detection 

dictionary. This approximation selects the M largest coefficients cai, which correspond to the 

M main features of the signal s, and approximately represent s in a sparse solution c. Because 

the aim of the detection step is to extract only the major features of the signal s, it is sufficient 

to approximately reconstruct the signal s and consider the above approximate decomposition. 

Equation (4.3) can be written in a matrix form as 

s = * d £ + r, (4.4) 

where 3? a is the matrix of T>d of size n x m (m > n), s and r 6 W1 and c € M m . 

c refers to the solution of 

min i | |s - *dc | | l + A d | | c | | i , (4.5) 

where > 0 is a trade-off parameter between the I1 norm of c and the data misfit, $ d = 

[3>di) *dp]i a n d c = [cj, . . . , c p ] T . The size of the residual and hence the number of selected 

atoms M in the representation c, is controlled by A^. The residual goes to zero as A^ —> 0, 

leading to an exact reconstruction. On the other hand, if A^ —> oo, the residual gets large, with 

lim r = s, and lim c = 0. For noisy data, (4.5) becomes a denoising problem, where the 
\d—•+oo Ad—>+oo 

value of A<2 has to be set according to the noise level. Chen et al. [2] proposed to set 

\ d = ans/21og(p), (4.6) 
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where an is the noise level, and p the cardinality of the dictionary. Chen et al. [2] refer to 

(4.5) as Basis Pursuit De-Noising (BPDN) [2]. Similarly to BP , B P D N can be rewritten as 

a perturbed Linear Programming problem, and is solved using the Simplex algorithm or an 

Interior-Point scheme [2]. 

4.1.3 Algorithm 

Because of limitations associated with the Basis Pursuit and Matching Pursuit methods that 

we will discuss later, we propose to solve (4.5) using an iterative thresholding algorithm [4] on 

each coefficient C j . The resulting algorithm amounts to a Block Coordinate Relaxation Method 

[29, 30] performed on c, with a Landweber iteration with thresholding applied at each iteration 

step on each ĉ  [4]. At each iteration k we minimize the functional 

^ | | s - * d c | | i + A f c | | c | | i , (4.7) 

with respect to the coefficient c, where A& > 0 is a decreasing parameter. We start with a 

large A& and then decrease it to some predetermined minimum value \min- The choice of A m j n 

depends on how small we want the data misfit to be and is specified at the beginning of the 

algorithm. A small A m j n will give a small data misfit and an exact reconstruction, whereas 

a large A m j „ will contribute to a large data misfit and an approximate reconstruction. For 

normalized signals, and to a good approximation, we choose A m j n = 1 0 - 4 . 

At each iteration k, we solve for the vector ck = [ c j , c * ] , by separately solving for its different 

components c^, and assuming the other components c^, j / i, are fixed. The representation cf 

is updated according to the rule [4, 30] 

<*+l = SXk(cf + < M R i - *d*cf)), (4.8) 

where &ck* denotes the adjoint operator of and R f = s — Ylj^i &dj*Cj- S\k is the compo

nentwise soft thresholding operator by Afc, defined by S\k(x) = sign(x)(\x\ — Xk)+ , for x G M, 

where y+ = max(0, y) for y G R. 

The choice of the iterative thresholding algorithm to solve (4.5) is motivated by the algorithm's 

flexibility and control over the decrease of the parameter Afc and choice of Xmin- The way 
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the parameter A& decreases determines the accuracy of the algorithm: the slower the decrease, 

the more accurate the solution c. In our case, we are only interested in the major features 

in s, which correspond to the larger coefficients in c. For that reason, we choose to use an 

exponential decrease of the parameter Afc which will make the algorithm slowly capture the 

large coefficients at the beginning of the iterations, and then move on faster on the small 

coefficients. The expression for the exponential decrease of Afc is given by: 

where A = 1 + Ao and s is a predetermined speed parameter. 

The representation c, obtained by iteratively minimizing (4.5), is numerically not sparse, as none 

of its entries is strictly zero. However, most of them are within a tolerance of 1 0 - 6 >C \min, 

which is negligible. We now present our approach to detect the major events in s. 

According to the notations introduced in equation (4.2), the representation c obtained by 

minimizing (4.5) is a vector of length m (m = pn) that can be written as 

where each C j € R n . In order to incorporate the contribution of each dictionary £>j in the 

detection process, we consider the different vectors ĉ  as columns of a matrix C. Each row k 

in C , corresponding to the location k in s, contains the coefficients of s with respect to the 

different dictionaries T>{ at the location k. B y taking the largest entry in the magnitude of each 

row, we construct another vector c T 

where cT € R™ and C € n x p. cT describes the best contribution of the dictionaries Vi at the 

different locations in s, and the largest entries in c T correspond to the major features in s. 

We now select the largest entries of c T , by only considering those larger than a threshold \i. 

The choice of n depends on the type of signals involved, and is very important, especially when 

dealing with noisy data, p is chosen to be a percentage of the £ 2 norm of c r , written as 

Afc = A - e —ks (4.9) 

c = [ c i , - . , c p ] , cj 6 Vi 

38 



where p is the percentage. From experimental results, we choose to set p = 0.1, but this value 

can be modified. For noisy data for example, p should be set at a large enough value in order 

to be above the noise level. Note that for noisy data, A m ; n can also be set to a larger value 

depending on the noise level, as stated in (4.6). We call c^f the thresholded vector c T with 

threshold level p. For clarity purposes, we omit the index T and denote the thresholded vector 

4.1.4 Windowing 

The next step in the detection is the analysis of the thresholded vector ct , and the selection 

of the major features in s. The representation ĉ  contains localized sets of nonzero entries 

corresponding to the main components of s, and can be written as 

M 

1=1 

„-th where M is the number of sets in ctfl, cJ is a vector of length n containing the i set of largest 

nonzero entries in c t / i , and Vz ^ j , sup(c^) n sup(cj ) = 0. 

A n example of such a partition is given below: 

c i M = (0 ,1 ,2 ,0 ,0 , -1 , -2 ,0 ) (4.11a) 

4, = (0,1,2,0,0,0,0,0) (4.11b) 

4, - (0 ,0 ,0 ,0 ,0 , -1 , -2 ,0 ) . (4.11c) 

We now define as the largest entry in the modulus of cj^ 

mi = max |4, (01, ( 4- 1 2) 

and denote by ipat the atom in V that corresponds to the entry 77V Each vector cj^ describes 

a particular feature in s which does not overlap with the other ones, as stated by the condition 

Vz 7^ j, sup(c^) fl sup(4J = 0. The location U and frequency / , of each atom (pai determine 

the location and characteristic scale of the ith main feature in s. 

In order to extract these detected features from the signal s, we adopt the methodology of 
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multiplying ct by localized windows centered at the locations l{. To facilitate the discussion, 

we introduce the following notation. 

Let Wj be the window associated to the ith selected atom ipai, centered at l{. Each window 

is chosen to be a discrete function given by 

0 X0<k<li-(B + 6)<Ti 

e x p ( - ( n - ( ^ - 1 ) ) 2 ) \i-Bo-i<k-k< {(3 + 5)0-1 

WiW = { 1 Xlk-hl^Bai (4.13) 

exp( -vM*gf < + 1 > ) 2 ) if Bori<k-li<(B + Sfa 

0 if U + (3 + 5)ai <k<n, 

where CTJ is the standard deviation of <pai, and a9i is the standard deviation of the Gaussian 

function used for the decay of the window at the tips. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.I 

Figure 4.1: The i window and its associated parameters (3 and 5. The function plotted is 
multiplied to the signal to extract the z t h detected signal component. The parameters B and 5 
are as given in equation (4.13). 

The parameters 3 and 5 specify the width of the window. We provide an illustration of the 

window in figure 4.1. We choose default values 3 — 2, <5" = 2, leading to a window width of 8crj, 

which gives a good approximation of the width of (pai • The window is equal to 1 over the width 

1Bo~i centered at k. The window ends at both tips with a Gaussian decay with a width equal to 

40 



<5<7j for each decay. Both Q and 8 depend on the data and should be modified accordingly. Our 

current choices for these parameters come from numerical experiments, and seem well suited to 

our type of data. 

By multiplying the signal s by each window W,, we partition s into its prevailing components 

S j , where Sj £ W1. The multiplication between the signal s and the window Wj is done compo

nentwise, such that 

V 1 < k < n , Sj(lfe) = s(fc)Wi(fc). (4.14) 

Signal with the window 
1.5r 1 1 1 1 1 1 1 r 

_1 51 1 1 I I I l I 1 1 1 
' 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Windowed signal part 
1.51 1 1 i 1 1 1 1 1 1 

1 -

_1 51 l l l l l l l l i 1 
' 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 4.2: The top plot shows the signal and the window applied to one detected event. The 
bottom plot shows the windowed event. 

Each signal Sj is now a simple and localized signal assumed to be a superposition of a small 

number of atoms. We show an example of a windowing in Figure 4.2. The top plot shows the 

signal and the window applied to one detected event. The bottom plot shows the windowed 

event. 
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4.2 Estimation 

We now treat each windowed signal Si as a generic signal s. The estimation algorithm oper

ates with simple and localized signals s assumed to be a superposition of a small number of 

waveforms parameterized by their fractional-order. The purpose of the estimation step is to 

unravel and approximate the fractional-order of these waveforms through the decomposition of 

the localized signal with respect to a large dictionary. In particular, the estimation step answers 

two quantitative questions: 

1. How many waveforms does s contain? 

2. What is the fractional-order of each of these waveforms? 

4.2.1 Decomposition in Estimation 

We consider a signal s: 
K 

s = Y2,aon<t>oci> (4.15) i=i 
where <fiai is a localized waveform parameterized by its fractional-order ai, and K a small in

teger, leading to a very sparse representation a = (aai)f_x. We denote T>K the dictionary con

taining the waveforms (4>ai)iLi- The principle of the estimation step is to find the K waveforms 

that make up the signal s (or an approximation of these waveforms), through the decomposition 

of s in a large estimation dictionary of waveforms parameterized by their fractional-order. 

The signal s can be decomposed as 
N 

s = ^2caiipai, (4.16) 
i=i 

where (fai)iLi a r e waveforms taken from an overcomplete estimation dictionary VE, and c = 

[cai)iLi is a very sparse representation of s. Equation (4.16) can be written in a matrix form: 

s = * e c , (4.17) 

where 3> e is the matrix of VE of size n x m (m > n), s G R n and c G M m . In the ideal case, where 

the estimation dictionary T>E contains the waveforms (̂ aJfiLi ( i- e - T>K Q T>E), equation (4.15) 
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is identical to (4.16), and the representation a coincides with the representation c. When Ve 

contains a subset Vp of T>K, T>P = (^>aa.)f-i, P < K and Oj € { 1 , i ^ } , both representations 

a and c coincide on the subset of coefficients that correspond to the waveforms (<f>a)a€S- Because 

T>K is unknown, Ve does not in general contain the waveforms (<f>ai)iLi- However, if a subset 

of waveforms in Ve converges to the waveforms in T>x, we hope to have the representation c 

converge to a. As stated in section 3.1, there is no unique solution c to the underdetermined 

problem (4.17), and we cannot guarantee that the representation c will converge to a. However, 

following the sparsity of a, and by imposing sparsity on the representation c, we hope to find 

the representation c that will converge to a in the case where a subset of waveforms in Ve 

converges to the waveforms in T>x- The sparsity assumption of c naturally leads to solving the 

(Po) problem. However, the (Po) problem is in general computationally intractable [2, 8], so 

we consider the easier (Pi) problem: 

min | |c | | i subject to s = * e c , (4.18) 

The result of Theorem 3.2.2 given in section 3.2, describes the sparsity condition under which 

the solution to (Po) is also solution to (Pi) : 

If there exists a representation CQ such that s = 3>c0 and \\c0\\o < / X i / 2 ( G ) ; then CQ is the unique 

solution of (Pi) and is the sparsest solution. 

For large dictionaries, the above condition requires a high sparsity of the solution of (Po), 

in order to guarantee its being solution to (Pi) as well. Theorem 3.2.2 reveals the trade-off 

between the size of the dictionary and the complexity of the signal. The larger the dictionary, 

the smaller /x i / 2 (G) , and the sparser c 0 needs to be in order to also be solution of (Pi) . On the 

other hand, pi/2(G) increases as the size of the dictionary decreases, which relaxes the sparsity 

of c 0 . The choice of the dictionary T>E is thus very important. 

4.2.2 Dictionary in estimation 

We now discuss our choice of dictionary Ve. Based on the strong sparsity of c assumed in 

equation (4.17), we can relax the size of the dictionary and allow for a large one. Following 
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the argument developed in section 4.1.1, it is necessary to select atoms that best correlate 

with the signal s. In particular, we choose atoms that are waveforms parameterized by their 

fractional-order a, leading to 

where A is the indexing set of fractional-orders taken from the singularity spectrum f(a) given 

by a multiscale analysis [14, 25] on the seismic signal. In the estimation, it is crucial to obtain 

an accurate estimate of the fractional-orders contained in the signal s we analyze. For that 

purpose, it is necessary that the estimation dictionary contains a large number of fractional-

orders a sufficiently close. There is a trade-off between the size of the dictionary and the 

accuracy of the estimation algorithm. When the fractional-orders in the dictionary are too far 

apart, we lose accuracy. On the other hand, if we choose the fractional-orders of the dictionary 

too close together, the dictionary becomes too large and the algorithm prohibitively slow. For 

our purposes, we choose the distance between two consecutive fractional-orders in the dictionary 

T>e to be 0.2, as it gives a good compromise between accuracy and speed. Figure 4.3 shows two 

waveforms with fractional-orders differing by 0.2. The waveforms are fractional derivatives of 

the Gaussian, whose fractional-orders are the fractional amounts of differentiation performed 

on the Gaussian. The top plot shows a waveform with fractional-order 2.2 and the bottom plot 

shows a waveform with fractional-order 2.4. Visually, these waveforms look similar, but our 

algorithm can still distinguish between them. Waveforms with closer fractional-orders will not 

be distinguished by the algorithm, but this is sufficient for our purposes. 

The same argument applies to dictionaries explicitly parameterized by their fractional-orders 

and frequencies. 

4.2.3 Resolution 

We propose to solve (4.18) using the iterative thresholding algorithm [4] described in section 

4.1.3. Recall the iterative thresholding algorithm, whose solution c is given by 

T>e = (<Pa)aeA (4.19) 

c = argnun (-||s - * e c | | | + A e | | c | | i ) , (4.20) 
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Figure 4.3: Fractional derivatives of the Gaussian with similar fractional-orders. Here we see 
almost two identical waveforms with fractional-orders differing by 0.2. The top plot shows a 
waveform with fractional-order 2.2, and the bottom plot displays a waveform with fractional-
order 2.4. We choose the estimation dictionary so that our algorithm can distinguish two 
waveforms with fractional-order differing at least by 0.2. If the fractional-orders are closer than 
0.2, our method will not distinguish them. 

where s = 3>ec + r. In the estimation step, the signal s is decomposed with respect to a large 

dictionary. Unlike the detection, where we consider an approximate decomposition, the signal 

s is entirely decomposed, leading to an exact decomposition of s. This is very important as we 

want to estimate the fractional-orders of s. We can solve (4.18) using the iterative thresholding 

algorithm, because, when A e —> 0, the residual r goes to zero and the solution c behaves exactly 

like B P applied to s. From experiments, we choose Xmin = A e = 1 0 - 1 0 . 

Although numerically non sparse, most of the coefficients of the representation c are within a 

tolerance of 10~ 1 0 <gi Xmin- It is then necessary to threshold c. As in the detection step, we 
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where p' is the percentage. From experiments, we choose p' = 0.1. We note the thresholded 

vector ct ,. The nonzero entries of the solution ct , determine the different events in s. In par

ticular, each nonzero entry in c t , corresponds to a particular atom (pa in V, whose parameter 

a gives the fractional exponent of the corresponding event. In the case of dictionaries parame

terized by fractional exponents and frequencies, the nonzero entries in ct , correspond to atoms 

<P(a,f), whose parameters a and / give the fractional-orders and frequencies of the estimated 

events. 

4.3 Numerical scheme 

We present the numerical scheme for our algorithm. We use the abbreviation B C R (Block 

Coordinate Relaxation) for the iterative thresholding algorithm, as our thresholding algorithm 

is based on the Block Coordinate Relaxation Method [29, 31]. T M denotes the hard thresholding 

operator by p. The function Es t ima te approximates the fractional-orders of the different win

dowed signals S j . The function G l o b a l gathers the estimated fractional-orders of the windowed 

signals into a global vector a. The vector a contains the fractional-orders of the different events 

in s. 

The algorithm is given in Figure 4.4. 
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B u i l d t h e d e t e c t i o n d i c t i o n a r y T>d 

B u i l d t h e e s t i m a t i o n d i c t i o n a r y Ve 

• P e r f o r m f o r each t r a c e s 

DETECTION 

1. Decompose s w i t h r e s p e c t t o T>d u s i n g I t e r a t i v e 

T h r e s h o l d i n g : c = B C R ( s ) 

2. T h r e s h o l d c w i t h t h r e s h o l d l e v e l U-: ct^ = T M ( c ) 

3. S e l e c t t h e p s e t s of l a r g e s t c o e f f i c i e n t s : (cJ ) ? = 1 

4. Window out t h e p d e t e c t e d p a r t s i n s : (§i)iLi 
c o r r e s p o n d i n g t o (cJ ) ? = 1 

ESTIMATION 

— F o r each p a r t s, 

1. Decompose w i t h r e s p e c t t o T>e: c, = B C R ^ ) 

2. S e l e c t t h e waveforms and e s t i m a t e t h e i r 

f r a c t i o n a l - o r d e r : = E s t i m a t e ( C j ) 

— end 

• G l o b a l v e c t o r f o r f r a c t i o n a l - o r d e r s a = Global(a,j) 

• end 

Figure 4.4: Detection Estimation A l g o r i t h m 
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Chapter 5 
Numerical Experiments 

We now present the results of our detection-estimation method on both synthetic and real data. 

We consider dictionaries made with fractional derivatives of a centered Gaussian. The atoms of 

the dictionaries are thus parameterized by their fractional-order a and their standard deviation 

a (equivalent to the scale and the frequency). The dictionaries can be written as 

V = (</'a,(T)(Q,(T)e(R+) 2> 

where a and a are the indexing fractional-orders and standard deviations. The fractional-order 

a of the waveform <pa,o- l s given by the fractional amount of differentiation a performed on the 

Gaussian: 

Va > 0 Vx e R , y>a,a(x) = Daga(x), (5.1) 

where ga is the centered Gaussian function with standard deviation cr, defined by g<T(x) = 

e zT3', for x € R. Our choice of dictionary made with fractional derivatives of the Gaussian is 

motivated by several factors. First, dictionaries made with fractional derivatives of the Gaussian 

provide flexibility over the choice of both the fractional-orders and the frequencies of the atoms. 

They hence provide adaptable dictionaries and in particular, allow for the construction of 

bandwidth limited dictionaries containing atoms with very localized frequencies. Bandwidth 

limited dictionaries are particularly well suited for seismic data, as seismic data is bandwidth 

limited. Second, we noticed that fractional derivatives of the Gaussian showed good correlation 

with seismic data, both in the time and frequency domain. In particular, their Fourier spectrum 

fits quite well the Fourier spectrum of seismic data. We show an example of the Fourier fitting 

in Figure 5.1. 
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Average waveform in the data 
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Fourier Transform of the average waveform and of the data 

-20 0 
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Figure 5.1: Fourier Spectrum Fit : the top plot shows the average waveform in the data that 
was found by fitting the Fourier spectrum of the data with the Fourier spectrum of a fractional 
derivative of the Gaussian. The bottom plot shows the Fourier transform of the data (in red) 
and the average waveform (in blue). 

The results displayed in Figure 5.1 have been made on real seismic data gratefully received from 

ChevronTexaco. The top plot shows the average waveform of the data, whereas the bottom plot 

displays the superposition of the Fourier Transform of the average waveform and the Fourier 

Transform of the first trace of the data (see appendix D). 

5.1 A p p l i c a t i o n t o s y n t h e t i c d a t a 

5.1.1 Simple ID synthetic data 

We start by presenting the results of our detection-estimation algorithm on simple synthetic 

signals. We consider synthetic signals s as superpositions of fractional derivatives of the Gaus

sian: 

j=i i=i 
m 

where k = i + (j — l)Na, and the waveforms ipai,o-j are taken from an overcomplete synthesis 

dictionary Vs = {^>a,a)(a,a)e(U+)2- The synthesis dictionary refers to the dictionary we use to 
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synthesize the signal s. 

We apply our detection-estimation algorithm to two different synthetic signals: one with 20 

events (N = 20), and one with 30 events (N = 30). We choose a synthesis dictionary Vs with 

30 different fractional-orders a ranging from 1 to 4, and 25 standard deviations between 0.007 

and 0.013. We choose A m j n = 1 0 - 3 for the iterative thresholding algorithm of the detection part, 

and Xmin = 1 0 - 9 for the iterative thresholding algorithm of the estimation part. The detection 

decomposition is performed with a dictionary of size 3, and the estimation decomposition with 

a dictionary of size 48: the estimation dictionary contains 16 different fractional-orders between 

1 and 4, and 3 different standard deviations. The frequencies of the waveforms contained in the 

estimation dictionary can be chosen to be close to the frequency of the windowed event, which 

makes the estimation dictionary scale- or /regency-adaptable. This property of our algorithm 

enables us to reduce the number of standard deviations, and hence the size of the estimation 

dictionary. This reduction increases the speed of the estimation decompositions performed on 

each windowed event. We use this adaptability property in the analysis of the two synthetic 

signals. The results obtained with our detection-estimation algorithm are shown in Figures 5.2 

and 5.3. 

Figure 5.2a shows the signal with 20 events, Figure 5.2b presents the original fractional ex

ponents at their locations in the signal, and Figure 5.2c shows the fractional exponents found 

by the algorithm. In this simple example, the locations and fractional-orders of the different 

events in s are correctly found. 

Figure 5.3a shows the synthetic signal s containing 30 events, Figure 5.3b shows the original 

fractional exponents a at their location in the signal, and Figure 5.3c shows the fractional 

exponents found by the algorithm. A l l the events in s are found and have the correct locations, 

and most of the fractional-orders are correct. However, some of the fractional-orders found 

by the algorithm are far from the original ones. We explain these few errors in the estimated 

fractional-orders to be due to an erroneous windowing. A n incorrect windowing will not capture 

the whole event and therefore not extract it entirely, providing the estimation algorithm with 
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Figure 5.2: Analysis of a synthetic signal with 20 events. 

the wrong waveform. A poor windowing is more likely to happen when the signal s contains 

closely-spaced events relative to the scale of the seismic wavelet. 

5.1.2 Comparison with Basis Pursuit and Matching Pursuit 

In this section, we compare the performance of our detection-estimation algorithm with the 

performance of Basis Pursuit (BP) and Matching Pursuit (MP). We consider a signal s with 

25 events (N = 25) and synthesize it with a synthesis dictionary Vs made with 30 fractional-

orders a between 1 and 4, and 17 standard deviations between 0.09 and 0.011. We set the 

parameters of our algorithm to be \min = 1 0 - 3 for the iterative thresholding algorithm of the 

detection part, and A m j n = 1 0 - 9 for the iterative thresholding algorithm of the estimation part. 

We choose a detection dictionary of size 3 and an estimation dictionary of size 54. In this 

experiment we do not use the adaptability property of the algorithm in order to have a fixed 

estimation dictionary for all windowed event. In that way, we can use the estimation dictionary 

as the analysis dictionary for B P and M P . 
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Figure 5.3: Analysis of a synthetic signal with 30 events. 

Both B P and M P decompose the signal s in an analysis dictionary Va, and try to approximate 

the sparsest representation c, such that, s = <&ac, where 3>a is the matrix of the dictionary T>a. 

We compare the results of our algorithm with the results of B P and M P , and use the estimation 

dictionary of our method as the analysis dictionary Va for B P and M P . Each algorithm gives 

a representation of the signal s in the dictionary <fra. For simple signals and small dictionaries, 

M P , B P and our algorithm (that we call S E E D E for Scale Exponent Estimation) gives the 

same representation. However, when the signal complexity is high and the dictionary large, 

each algorithm provides different representations of the same signal s. The results of our 

comparison are shown in Figure 5.4. 

The first top plot shows the original fractional exponents at their location in the signal s, the 

second top plot shows the fractional exponents found by our algorithm S E E D E , the third plot 

shows the fractional exponents found by B P and the bottom plot shows the fractional exponents 

found by M P . We can see that for this simple signal s, B P and M P globally find the correct 
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events at the correct locations but find other events as well. B P still find more events than 

M P because of its super-resolution property [2]. However, neither B P nor M P find the events 

located at abscissa 300 because too many events are closely-spaced in the vector. 

For each event in the original vector, B P and M P also find multiple events with different 

fractional-orders. B P is nevertheless better than M P , because for most of the events in the 

original vector, and among the multiple fractional-orders found by BP, there is often the correct 

fractional-order. 

Unlike B P and M P , our method doesn't resolve closely-spaced events, and its resolution prop

erty is lower than the resolution property of B P and M P . However, for each recovered event, 

our method finds only one fractional-order. We can see that most of the fractional-orders recov

ered by our method are correct. The incorrect fractional-orders are those belonging to events 

influenced by other neighboring events. This is due to the windowing which extracts a part 

of the signal, and prevents the estimation analysis to "see" the complete signal. Information 

is therefore "cut" by the windowing. As long as the events are not too closely-spaced, and no 

matter how many events the signal contain, our method will find and correctly estimate all 

the fractional-orders. However, as soon as the events start to interfere with each other, our 

method starts to have some difficulties in finding the correct fractional-orders and then the 

events themselves. One great advantage of our method compared to M P and BP , is that it 

gives only one estimated fractional-order for each event found. We feel that further work is 

required to get an optimal windowing and improve the resolution of our algorithm. 

The numerical complexities of BP , M P and our method S E E D E are quite different. Table 

5.1 displays the C P U times in seconds spent in running different decomposition techniques on 

signals with various lengths. A l l computation was done on a Macintosh G5 workstation. M P 

is the fastest decomposition. M P has a quasi-linear complexity, depending on the number of 

chosen atoms [2, 26]. B P on the other hand, is very slow. The complexity of B P depends on the 

complexity of the conjugate gradient solver and the complexity of the primal-dual logarithmic 

barrier interior-point algorithm. The complexity of B P is also affected by the size of the 
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Problem Size: 512 C P U Running Time in Seconds 

Dictionary Size B P M P S E E D E 

18 22630.68 7.1450 10.4283 

30 66605.47 11.0123 33.4668 

42 5902.68 9.4068 56.5617 

54 44589.83 12.4648 71.5451 

Table 5.1: C P U Running Times of BP , M P and our method S E E D E . 

dictionary and the complexity of the signal. The numerical complexity of B P can nonetheless 

be modified by using different parameter settings. Our algorithm finds a compromise between 

B P and M P . 

One should note that all our experiments were done in Matlab. The speed of these algorithms 

can therefore be largely increased by using C++ or Fortran. 

5.1.3 Realistic synthetic data 

We now present our result on more realistic synthetic data. Seismic data is usually stored in 

seismic cubes or a seismic matrices, where each column is a seismic trace. We use synthetic 

data of size 512 x 100. Figures 5.5, 5.6, 5.7 and 5.8 present the results of our algorithm on a 

synthetic slice (or matrix) with 16 events. 

Figure 5.5 displays the synthetic slice, Figure 5.6 shows the detected reflectors, Figure 5.7 

presents the original fractional-orders at their location in the different traces, and Figure 5.8 

shows the fractional-orders found by our algorithm. We used a synthesis dictionary made with 

20 different fractional-orders ranging from 1 to 4, and 3 standard deviations (scales) between 

0.005 and 0.04. In the algorithm, we used a detection dictionary of size 2 (2 standard deviations) 

made with the average waveform estimated from the synthetic data. We chose the adaptive 

estimation dictionary. 

In this example, the events are quite well separated so the algorithm can detect them. This 
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Figure 5.5: Synthetic slice with 16 reflectors. 
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Figure 5.6: Detected reflectors. 
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Figure 5.8: Recovered fractional-orders. 

57 



example shows that if the events are well separated, the algorithm detects all of them and 

correctly estimates most of them. The lateral continuity of the recovered fractional-orders 

along the different reflectors shown in Figure 5.8 is overall quite well preserved. This property 

is very important for seismic data, as fractional-orders should remain laterally continuous along 

reflectors. However, although most of the recovered fractional-orders recovered are correct 

and lateral continuous along the reflectors, we can clearly see that three distinct reflectors 

have fluctuating fractional-orders. The fractional-orders oscillate between the correct value and 

the maximum value of the fractional-orders in the dictionary. This phenomenon is due to an 

incorrect estimation of the frequency in the detection part. The frequency of the analyzed 

event in the estimation part is indeed very important for a correct estimation. If the estimated 

frequency of the atom is incorrect, the estimation will be unable to find the correct fractional-

order, as the largest inner product between the event and the atoms in the estimation dictionary 

will not correspond to the atom with the correct fractional-order. In this example, we clearly see 

that sometimes, the detection outputs an incorrect frequency. The reason for that happening 

is not well understood at present, and we feel that further work is required to fully understand 

the whole algorithm. 

We now show the results of our algorithm on a different synthetic slice containing 24 events. 

In Figures 5.9, 5.10, 5.11 and 5.12, we show the results of our algorithm on a synthetic slice 

containing 24 events. Figure 5.9 shows the synthetic data, Figure 5.10 shows the output of the 

detected reflectors, Figure 5.11 displays the original fractional-orders of the different reflectors, 

and Figure 5.12 presents the fractional-orders found by our algorithm. Like the previous ex

ample, we used a synthesis dictionary made with 20 fractional-orders between 1 and 4, and 3 

standard deviations between 0.005 and 0.04. In the algorithm, we used a detection dictionary 

of size 3 containing 3 different standard deviations, and made with the average waveform. We 

chose the adaptive estimation dictionary. 

In this example, the events start interfering with each other, although not extremely close. One 

can clearly notice that the second event was not found by the algorithm, because it was too close 

to the first one. The algorithm lacks the super-resolution property of B P and does not resolve 
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Figure 5.9: Synthetic slice with 24 reflectors. 
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Figure 5.10: Detected reflectors. 
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two closely-spaced events. The two first reflectors represent a thin layer in the subsurface, 

but the algorithm considers it as only one reflector. In theory, this is not a problem, as the 

estimation algorithm should be able to detect closely-spaced events as well. However, due 

to numerical complexities, the current implementation of the algorithm does not yet resolve 

closely-spaced events. Incorporating the super-resolution property in our implementation of 

our algorithm is still ongoing research. Oscillating fractional-orders along certain reflectors can 

also clearly be seen in this example. One of the solution would be to increase the size of the 

detection dictionary and incorporate many frequencies and possibly different fractional-orders. 

However,the use of large detection dictionaries leads to denser coefficients that are hard to 

analyze. 

Despite these flaws, we can see that most of the fractional-orders found by our algorithm have 

the correct values, and remain overall laterally continuous along the different reflectors. Further 

work is still required to precisely understand the role of the different parameters involved in 

the algorithm. The algorithm can be largely improved by the adequate choice of dictionaries, 

minimization parameters and efficient minimization solvers. The choice of the iterative thresh

olding algorithm is a first step in the implementation of our method, and will be replaced by 

more efficient solvers in the future. 
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Figure 5.12: Recovered fractional-orders. 
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5.2 Application to real data 

We now present the results of our algorithm on real seismic data. We used a detection dictionary 

of size 1 made with the average waveform estimated through a Fourier spectrum fitting. The 

Fourier spectrum fitting was shown in Figure 5.1. We chose a detection dictionary of size 1 

made with the average waveform in order to have a sparser and clearer detection coefficient c. 

As stated in section 5.1.3, the larger the detection dictionary, the denser the output coefficient 

of the detection minimization, which makes it hard to detect the events and therefore defeats 

the purpose of the detection. In theory and for very clean data, the larger the dictionary, 

the better, as larger dictionaries give more information than smaller dictionaries. However, 

in practice and for real data, the output of the detection algorithm gives a noisy coefficient 

that is difficult to analyze. We noticed from experiments on real data, that the efficiency of 

the detection algorithm is increased by using a smaller dictionary. The optimal performance 

of the detection algorithm was obtained with a detection dictionary of size 1. We used an 

estimation dictionary of size 54, with 18 fractional-orders, and 3 standard deviations. The 

fractional-orders and standard deviations of the estimation dictionary are chosen according to 

the fractional-order and standard deviation of the average waveform. In that sense, both the 

detection and estimation dictionaries are adaptable to the data. In the detection minimization, 

we used A m j n = 1 0 - 4 , and \ m i n = 10~ 1 0 for the estimation minimization. 
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We present the result of our algorithm in Figures 5.13, 5.14 and 5.15. 

Real data 

X Locat ions 

Figure 5.13: Real data. 

Figure 5.13 shows the first slice of a real seismic data cube, Figure 5.14 presents the detected 

reflectors, and Figure 5.15 displays the results of our algorithm on the first slice of the real 

seismic data. In Figure 5.15, we can clearly distinguish most of the different reflectors contained 

in the data, which shows a good performance of the detection algorithm. Some reflectors remain 

hard to discern, in particular at the bottom of the seismic slice, which is also the case in the real 

data shown in Figure 5.13. Overall, the results of our algorithm is coherent with the real data, 

and the reflectors detected follow the reflectors present in the real data. The lateral continuity 

of the fractional-orders along the different reflectors is quite well preserved for certain reflectors 

that are isolated and easy to detect. For general setting of reflectors, we can notice some 

fluctuations in the fractional-orders, which can be due to a wrong estimation in the frequency 

of the detected event, which is the phenomenon mentioned earlier, and/or to the choice of 

fractional-orders in the estimation dictionary. The changes in the fractional-orders can also be 

due to actual changes in the nature of the transitions in the subsurface. 
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Figure 5.14: Detected reflectors. 
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Figure 5.15: Recovered fractional-orders. 
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Despite limitations in our current implementation of the method, we feel that our preliminary 

results are encouraging with respect to detecting the reflectors and estimating their fractional-

orders. 

Figures 5.16 presents the superposition of the real data with the fractional-orders recovered by 

our algorithm. 

Real Data with recovered fract ional -orders 

50 100 150 200 250 300 350 400 
X L o c a t i o n s 

Figure 5.16: The real data is presented by the grey scale and the recovered fractional-orders 
are displayed in colors. 
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Chapter 6 
Discussion 

6.1 Summary and Conclusions 

In this paper, we have presented a new method for characterizing and delineating transitions in 

the subsurface. Our method is based on optimal decompositions of the data [2], with respect to 

overcomplete dictionaries of waveforms parameterized by their fractional-orders. We propose 

a two-step approach that divides the initial i 1 decomposition problem into a detection step 

followed by an estimation step. The detection part locates the predominant events in the data, 

and partitions the data into its prevailing components. The estimation part approximates the 

fractional-orders of each detected component. The detection and estimation algorithms both 

exploit the sparsity property of the representation of the data with respect to the dictionaries, by 

minimizing the £ l norm of the data representation. We use an iterative thresholding algorithm 

[4] with a Block Coordinate Relaxation method [29, 30] to solve the minimization. 

We show that by first partitioning the data, and then analyzing each detected event separately, 

we improve the performance of B P with respect to finding the original coefficient. The probabil

ity of success in finding the original representation of the data with respect to a given dictionary 

T>, is increased by our new technique. In particular, the probability of detecting the events in 

the data with our new method is quite large. We show that our method achieves quite good 

performance in detecting events, provided the events are not too closely-spaced. The method 

also gives encouraging results with respect to the estimation of the fractional-order of the events, 

and provide an increased probability of correctly detecting and estimating the fractional-orders 

of the events than B P . 
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Unlike BP , where the use of large dictionaries is prohibitive, our new method can give good 

and accurate results in fairly large dictionaries. Besides, the computational complexity of our 

method can be reduced by changing the speed parameters of both the detection and estimation 

decomposition algorithms. However, the complexity of our algorithm is still significant, and 

increases with the size of the dictionaries. In comparison to BP, our method achieves lower 

computational cost, but is computationally more expensive than M P . In that respect, our 

method seems to give a compromise between M P and BP. In order to improve the resolution of 

our method, we proposed to replace the iterative thresholding algorithm of the estimation step 

by BP . However, incorporating B P into the estimation part made it prohibitively expensive 

when dealing with large dictionaries. We therefore feel that further work is still required to 

achieve super-resolution of thin layers with our new method. 

We propose a fast and efficient detection algorithm by using a small dictionary. The goal of the 

detection algorithm is to both detect the major events in the data and estimate their frequency 

through an approximate I1 decomposition in a small dictionary. The estimated frequency of 

the events is indeed very important, as it constitutes the base of the frequency contents of 

the estimation dictionary. In the case where the estimation dictionary contains the wrong 

frequencies, the largest inner product between the atoms in the dictionary and the analyzed 

event will pertain to an atom with an incorrect fractional-order. It is therefore crucial that the 

detection algorithm gives a good approximation of the correct frequency of the events. There is 

a trade-off between the optimal performance of the detection, which requires a small detection 

dictionary (especially for real and noisy data), and a good approximation of the frequency of 

the detected events, which requires a larger detection dictionary with a wide frequency content. 

Contrary to the detection algorithm, the estimation algorithm uses very large dictionaries with 

a wide range of fractional-orders, which provides accuracy in the estimated fractional-orders. 

Unlike the detection decomposition, the estimation decomposition, due to the size of the dic

tionaries involved, is a slow and computationally intensive algorithm. However, many ways are 

possible to increase the speed of the estimation part, including changing the speed parame

ters in the iterative thresholding algorithm, and reducing the size of the estimation dictionary 
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by adapting its frequency to the frequency of the analyzed event. The estimation dictionary 

can therefore be adapted to the event by narrowing its frequency content and selecting only 

a few frequencies around the frequency estimated in the detection. However, in that case, if 

the detection provides an incorrect estimated frequency, the estimation will be unable to find 

the correct fractional-order. One should note that incorporating a very large frequency con

tent in the estimation dictionary, in addition to its wide range of fractional-orders, leads to an 

extremely slow and computationally intensive algorithm. 

The experiments performed on both synthetic and real data nonetheless show promising out

comes. The performance of our algorithm on synthetic data gives very encouraging results as 

the lateral continuity along the different reflectors is quite well preserved. The results on real 

data, although lacking some lateral continuity along reflectors, seem also quite promising. 

6.2 Limitations of our method 

The method suffers from a limitation in the resolution of two closely-spaced events in the data. 

At the current stage, the estimation algorithm doesn't resolve two closely-spaced events. The 

method therefore loses the super-resolution property of BP, but gains in lower computational 

costs. 

Another limitation is the large dependence between the detection algorithm and the estimation 

algorithm. A correct approximation of the frequencies of the detected events is a very important 

element for the estimation algorithm. The approximation of the frequency of the detected 

events indeed constitutes the baseline for the frequency content of the estimation dictionary. 

Besides, there is a large trade-off between the size of the detection dictionary, which should 

contain a wide range of frequency to ensure a correct approximation of the frequency of the 

detected events, and the efficiency of the detection algorithm. The wider the frequency content 

of the detection dictionary, the more accurate the frequency of the detected events, but the 

less efficient the detection of the events, in particular for real and noisy data. The analysis of 

the coefficients obtained in the detection algorithm therefore needs to be improved in order to 
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correctly detect the events in large dictionaries with wide frequency content. 

Although our method achieves a good performance in fairly large dictionaries, its efficiency is 

still limited by the size of the dictionaries, due to computational costs. The estimation dictio

nary cannot incorporate a wide range of frequencies, as its size would lead to a prohibitively 

slow algorithm. 

The windowing of the detected events is also a very sensitive part that plays an important role in 

the estimation algorithm, as it determines the efficiency of the estimation. A wrong windowing 

can lead to the extraction of an incorrect event, and therefore to an incorrect fractional-order. 

If the window is too small, the event will be "cut", and not extracted entirely. On the other 

hand, if the window is too large, the extracted event will contain remnants of other events. In 

those cases, depending on how much the window "cut" the event, or on how much the window 

added to the event, the estimated fractional-order will be correct or incorrect. Further work is 

still required to build an optimal windowing. 

Even with these limitations, our method still performs quite well in the detection of the events, 

and relatively well in the estimation of their fractional-orders. In particular, the results obtained 

on real data, showed that most of the reflectors were detected by our algorithm, and that the 

lateral continuity of the fractional-orders along the reflectors was relatively well preserved, 

taking into account that actual changes in the fractional-orders of the reflectors also exist in 

the data. The goal of our algorithm is to detect these changes, and we feel that our algorithm 

performed quite well with respect to the smooth changes in the fractional-orders of the reflectors 

in the data. 

6.3 F u t u r e w o r k 

In this paper, we developed a new method that demonstrated encouraging results, in particular 

in the detection part. It also showed that, no matter how many events were in data, as long as 

they were not too closely-spaced, our algorithm would detect them, and estimate them quite 

accurately. 
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In the future, it would be beneficial to improve the algorithm by making it faster and more 

efficient. The possible improvements are listed and explained below: 

1. The current method uses an iterative thresholding algorithm with a Block Coordinate 

Relaxation method to solve an ll minimization which enables us to use relatively large 

dictionaries. However, iterative minimizations lead to slow algorithms and therefore limit 

their performance. The numerical complexity of our algorithm, although inferior to the 

numerical complexity of BP , is still significant. It would therefore be good to increase the 

speed of the iterative thresholding solver, and to incorporate, in the future, more efficient 

£ l solvers involving global optimization tools. 

2. Working with large datasets and large dictionaries involves numerous and costly computa

tions, and therefore requires powerful programming languages. Our algorithm, currently 

written in Matlab, would gain in speed if it were programmed in another programming 

language like C++ or Fortran. In the future, it will be necessary to convert our Matlab 

routines into one of these programming languages. 

3. Resolving thin layers in the subsurface is also very important, and constitutes a major issue 

when analyzing seismic data. In order to achieve super-resolution, it would be interesting 

to incorporate B P in our algorithm, but in a way that would not lead to a prohibitively 

slow algorithm. B P is a very powerful solver with respect to its multiresolution property, 

and we feel that it could help our algorithm resolve closely-spaced events. 

4. The efficiency of our method highly depends on the choice of the dictionaries, in particular 

on the choice of their fractional-orders and frequencies. Many questions therefore arise: 

(a) What is the range of fractional-orders and frequencies? 

(b) How finely sampled should the fractional-orders and frequencies be? 

(c) Can we reduce the range of fractional-orders to [0,1] and build any other fractional-

order a > 1 through a linear combination of fractional-orders in [0,1]? 

70 



5. Global multiscale analysis with wavelets performed on seismic data (see section 2.2.2) yield 

an estimate for the singularity spectrum f(a) of the data. The singularity spectrum f(a) 

gives the probability of occurrence of a particular singularity in the data. The singularity 

spectrum therefore provides information on the different fractional-orders contained in 

the data. It would be interesting to use this information as a weighting function for 

the coefficients obtained in the ll minimizations in the algorithm. The i1 norm of the 

decomposition of the data with respect to a dictionary associated to a rare singularity 

should be highly sparse, and therefore should be largely penalized in the minimizations. 

On the other hand, the il norm of the decomposition of the data with respect to a 

dictionary associated to a frequent singularity, should be less sparse, and therefore should 

not be penalized in the minimizations. The weighting function w should behave like 

where f(a) is the singularity spectrum of the data. 

For a signal s of length n, and a dictionary T> of cardinality p, the minimization should 

be: 

min ||s — <J>c||? + A[[wc||i (6.1) 

where w is the weighting vector constructed according to the fractional-orders contained in 

the dictionary <&, c G M m with m = np, and wc denotes the componentwise multiplication: 

VI < k < m, (wc)(k) — w(k)c(k). If we write the dictionary V as: 

* = [ * a i ) . . . , * a f > ] , (6.2) 

w can be obtained by the following computation: 

f(ai) f{ap) 

where 1„ = [ 1 , 1 ] is a vector of ones of length n, and w G R m with m = np. 

6. Because the estimation of the frequencies of the detected events is very important, it would 

be interesting to include in the algorithm another estimation decomposition that would 
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estimate the frequency of each detected event. The global algorithm would then consists 

of a detection, a first estimation for an approximation of the frequency of each detected 

event, and a second estimation directed at finding the fractional-orders of each detected 

event. The first estimation dictionary would contain a wide range of frequencies and a few 

fractional-orders, whereas the second estimation dictionary would contain a wide range 

of fractional-orders and a few frequency centered around the estimated frequency. The 

proposed algorithm aims at improving the estimation of the fractional-orders, but gains 

computational cost. Performing two estimations with two large dictionaries can lead to a 

prohibitively slow algorithm with a high numerical complexity. Further work is therefore 

required to lower its computational cost. Figure 6.1 presents the modified algorithm. 

Figure 6.1: Improved detection-estimation method. 
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Chapter 7 
Atomic decompositions with Redundant 
Dictionaries 

7.1 Problem formulation 

As stated in chapter 2 by equation (2.15), we model seismic signals s as 

s(z) = Y ciD~ai^(z - zi) ± Y ciD~ai^(z - «o. t 7- 1) 
i€Ac 

where Z{ is the location of the ith transition in the subsurface, d = r^^f'i
 — "ffiaf+iT̂  > V' is 

the seismic source function, and D~ai is the Liouville —af1 fractional derivative operator defined 

in Definition 2.1.2. The goal is to estimate the locations Z{ of the reflectors in the subsurface, 

their amplitudes Q, and their fractional exponents a*. For that, we consider seismic signals s 

as a superposition of waveforms (pa parameterized by their fractional-order a: 

s =Y a<x4>a, (7.2) 

and envision their decomposition: 

s = Y caV<x, (7.3) 

with respect to an overcomplete dictionary V — (ipa)aes, where the atoms ipa are waveforms 

parameterized by their fractional-order a, and S is the indexing set of the parameter a. In a 

matrix form, equation (7.3) can be written as: 

s = $c , (7.4) 

where $ is the matrix of the dictionary V. The goal is to find the representation c of the signal 

s which satisfies equation (7.4). However, due to the overcompleteness of T>, there is no unique 
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solution for c, but the nonuniqueness of c provides a flexibility which enables us to choose the 

most suited'representation c to our problem. In the case of seismic signals, assumed to be a 

superposition of a limited number of waveforms, it is natural to try to minimize the number of 

components of c. 

There have been several approaches to solve this problem, including the Method of Frames 

[3], Matching Pursuit [26], Basis Pursuit [2], and the Block Coordinate Relaxation Method 

([29, 30]). We describe those methods in the following sections. 

7.2 Method of Frames 

7.2.1 The algorithm 

The Method of Frames [3] is an algorithm that finds the representation c with minimum I2 

norm, and solves 

rruxi | |c| |2 , subject to s = <I>c. (7.5) 

(7.5) is a quadratic system whose unique solution c} is given by: 

s t = * t a = ' * T ( * * r ) - 1 § . (7.6) 

The matrix & is called the generalized inverse of 3>, and is given by: * f = * T ( * * r ) - 1 . 

In our case, the major disadvantage of this method is the non sparsity of the solution c} [2]. 

The solution cf is indeed not sparse because the I2 norm tends to prefer a large number of 

small nonzero coefficients, rather than a few number of larger ones. The non sparsity of c} 

means that the decomposition of s is spread out on a large number of atoms in V, which 

translates into the fact that we need a large number of atoms to represent s, and contradicts 

our previous assumption. The solution given by the Method of Frames is therefore not suited 

to our application. 

7.2.2 Concept of sparsity 

The concept of sparsity is intrinsically linked to the dictionary we use, as the decomposition of 

a given signal / can be sparse in one dictionary and not in another one. 
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Consider a simple example of a cosine function, denoted g. The representation of g in the 

Discrete Cosine dictionary (Discrete Cosine Transform) is very sparse, as we only need a few 

cosine basis functions to construct g. However, the representation of g in the Haar wavelet 

dictionary is full, as we need a large number of step functions to build g. The Haar wavelet 

basis is a basis made of translations and dilations of a step function. The results are shown in 

Figure 7.1. , 

Signal 

— 1 
0 20 40 60 80 100 120 140 Coefficients using Discrete Cosine Transform 

Coefficients using Haar wavelets 
2| , , 1 , , 

-21 ' ' ' ' ' ' ' 
0 20 40 60 80 100 120 140 

Figure 7.1: Decomposition of a cosine using the Discrete Cosine Transform (DCT) and the 
Haar wavelets. 

The top figure shows the cosine function g, the middle one plots the decomposition of g with 

respect to the Discrete Cosine Transform (DCT) dictionary, and the bottom one gives the 

decomposition of g with respect to the Haar basis. 

7.3 Matching Pursuit 

Contrary to the Method of Frames, Matching Pursuit (MP) [26] approximates the sparsest rep

resentation CQ , where the sparsest representation c 0 refers to the representation with minimum 

£° norm. M P tries to find the decomposition of the signal s in a dictionary V by iteratively 

finding the waveforms that best match the data s. M P is an iterative algorithm that selects, at 

each iteration, the waveform that minimizes the £2-difference between the subsequent reductions 
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and their projection onto a waveform. 

Consider a dictionary V made of atoms g A . The Matching Pursuit algorithm begins by pro

jecting s on a vector gXo G V and computing the residue Rs [25] 

§=<s ,g A o >g A o + ife, (7.7) 

where (s, g A o ) is the inner product between s and g A o . Since Rs is orthogonal to g A o , we can 

write [25] n 

l l s l l ^ l f e g O p + HPsl l 2 . 

To minimize |].Rs||2, we need to choose g A o € T>, such that |(s, g A o ) | is maximum, which is 

computationally done by finding an almost optimal vector g A o that satisfies [25] 

I (S, g A o ) I > « S U P | ( s , g )|, 

where a G [0,1] is an optimality factor [25]. B y setting R°s = s and subdecomposing the residue 

at each iteration with the update rule for the m t h iteration 

choose g A 7 m s.t. | C R m s , g 7 J | > asup | ( i ? m s ,g 7 ) | , (7.8) 

we obtain the following decomposition of the m t h residue at iteration m: 

Rms=(Rms,gxJgXm+Rm+h. (7.9) 

If we stop after M terms, we obtain a sparse approximation of s 

M 

!(*) = E^SA m)gA m(^)- (7-10) 
m = l 

As M —> oo, this decomposition not only becomes exact, but also provides a sparse approximate 

representation if we set M <§; oo. The adaptivity of the dictionary and the subsequent selection 

of the best fitting waveforms concentrate the energy of the data in as few possible waveforms, 

yielding a high non-linear approximation rate. However, this method often fails to locate two 

closely-spaced events in the coefficient vector. Due to the greediness of the algorithm, M P can 

also select the wrong basis function at the beginning (because two events are too close) and 

then spend the rest of the time correcting for its mistake [2]. 
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7.4 Basis Pursuit 

7.4.1 The formulation 

Basis Pursuit (BP) is a method that decomposes a signal s into an optimal superposition of 

dictionary elements, where optimal means having the smallest ll norm among all such decom

positions [2]. B P requires that the decomposition of the signal s in the dictionary V be sparse, 

saying that we only need a few waveforms from V to build s. Basis Pursuit (BP) solves the 

following minimization problem: 

nun | | c | | i subject to s = 3>c, (7-11) 

where 3> is the matrix of the dictionary V. B P tries to find the sparsest solution c by replacing 

the NP-hard £° minimization by the i1 minimization stated above. The constraint imposed on 

the coefficient vector c, requiring a minimization of the number of nonzero components, is very 

well suited to our type of problem. 

7.4.2 Linear Programming (LP) 

B P is a convex and non quadratic optimization problem that can be rewritten as a Linear 

Programming (LP) problem [2]: 

m i n d T x subject to A x = b , x > 0, (7-12) 

where x 6 MP, s 6 M n , and x > 0 requires all components of x to be positive. The reformulation 

of B P into the L P problem comes from the following change of variables [2] 

p = 2 m ; x = ( u , v ) ; d = (1,1) ; A = ( * , - * ) ; b = s, (7.13) 

where u and v refer to the positive and negative components of c respectively ((u, v) € (RJ71)2), 

and d is a vector of ones in W. First, we can write 

Ax = ( * , - * ) ( u , v ) 

= * ( u — v) 

= * c . (7.14) 
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As 3>c = s = b, (7.14) is equivalent to Ax = b. 

Secondly, we can write 

dTx = ( l , l ) r ( u , v ) 

= u + V 

= llfiUl. 

To clarify the notations stated above, consider the following example: 

1 

- 2 
c = 

• 

3 

- 4 

(7.15) 

with u = 

1 0 

0 2 

3 0 

0 4 

and c = u — v. 

We can easily check that d T x = | |c| 11: 

d T x = l , l ) T ( u , v ) 

= U + V 

= 1 + 2 + 3 + 4 

= | | c | | i - (7.16) 

The solution given by B P is obtained by an Interior-Point scheme [2] based on a Primal-Dual 

Log-Barrier method [2, 10]. The algorithm starts by an initial feasible solution yielded by the 

Method Of Frames [3], and proceeds by applying the Log-Barrier algorithm. The speed of the 
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algorithm depends on the data, and the size and implementation of the dictionary, whereas the 

accuracy depends on the Conjugate Gradient solver. 

7.4.3 Basis Pursuit De-Noising 

Like any real data, seismic signals contain noise. If we decompose the entire noisy data d = s+n 

with respect to a dictionary V, we also fit the noise. In order to avoid fitting the noise as well 

as the signal, we need to denoise the data and decompose the denoised data into the dictionary 

T>. In this case, we do not want an exact decomposition of d, but an approximate one. Basis 

Pursuit De-Noising (BPDN) [2] adapts the original Basis Pursuit to the case of noisy data of 

the form d = s + n, where s is the signal and n the noise. The denoising problem can be written 

as 

m u i i | | d - * c | | i +AMclU, (7.17) 

where we minimize the i1 norm of the representation of the signal s that should be sparse in the 

dictionary V, as well as the data misfit. B P D N can be rewritten as a perturbed L P ([2, 10]), 

and is solved using a Simplex and an Interior-Point method. 

7.5 Basis Pursuit versus Matching Pursuit 

7.5.1 Results 

In this section, I present a comparison between Basis Pursuit and Matching Pursuit with 

respect to decomposing a signal s in a particular dictionary T>. The aim of the numerical 

experiments I made was to see whether the method involving the decomposition of the signal s 

using redundant dictionaries could find the right decomposition c and hence accurately localize 

the right waveforms in s. For each dictionary V, I started with a known coefficient vector c, 

synthesized a signal x = <f>c, where <fr was the matrix of T> containing the different fractional-

orders a, and then decomposed x using B P or M P . In my experiments I worked with the 

following parameters: 

• The size of the dictionaries (number of different fractional-orders a) 

• The number of nonzero components in the representation c (sparsity of c) 
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• The distance between two different fractional-orders a 

In all my experiments, I considered a signal x of length n = 128. In this section, I only 

present the results for the decimated fractional spline wavelet dictionary, abbreviated M D W T , 

as the results are the same for the fractional spline and undecimated fractional spline wavelet 

dictionaries. 

Decimated Fractional Spline Wavelets 

In the eight following figures, the top two plots show the superposition of the original signal s 

and the recovered signal. The top left figure shows the result by B P and the top right figure the 

result by M P . The two middle plots show the coefficient c found by B P (left) and M P (right). 

The two bottom plots show the original coefficient c. 
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1. Coefficient c with only four nonzero components 

• Comparison between two dictionaries (small with two a and large with ten a) 

BP 
2 o 2 

1 1 + 1 

0 si
gn

al
 

0 

-1 V p 1/ ig
in

al
 

-1 

-2 
o -? 

50 100 150 150 

Q- n 

50 100 150 200 250 
-5 

50 100 150 200 250 

50 100 150 200 250 
-5 

50 100 150 200 250 

Figure 7.2: Analysis of a very sparse coefficient with an M D W T dictionary with 2 a. 

Figure 7.2 compares the efficiency of B P with the efficiency of M P for a dictionary 

containing only two different a (a\ — 0 and a<i = 5). The difference in a in V 

assures a certain dissimilarity between the atoms, and hence prevents V from being 

too badly conditioned. As we see in Figure 7.2, both B P and M P recover the right 

coefficient c, first because there are very few nonzero entries in the original c, and 

second because the dictionary T> is small. 
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ure 7.3: Analysis of a very sparse coefficient with an M D W T dictionary with 10 a. 

Figure 7.3 compares the efficiency of B P and M P for a larger dictionary T> containing 

ten different a between 0 and 5. Because the different fractional-orders are closer to 

each other than in the previous example, the atoms in T> are more similar. As we see 

in Figure 7.3, B P doesn't recover exactly the right coefficient c, whereas M P does. 

The reason why B P doesn't, is because T> is now much larger and c not sparse enough 

for V. In fact, for this particular example, B P finds exactly the right coefficient c 

with a nonzero probability less than 1 (empirically found around 0.75) and we need 

less than four nonzero entries in c in order that B P finds exactly the right coefficient 

with probability 1. 
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• Comparison between two dictionaries (one with two very different a and one with 

two similar a) 

50 100 150 200 250 50 100 150 200 250 

Figure 7.4: Analysis of a very sparse coefficient with an M D W T dictionary with 2 very different 
a. 

In Figure 7.4, the original coefficient vector c has only four nonzero entries, and both 

M P and B P find it exactly. In this case, the dictionary V is very small and contains 

dissimilar atoms. For this specific dictionary, c is sparse enough so B P and M P can 

find it. 
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Figure 7.5: Analysis of a very sparse coefficient with an M D W T dictionary with 2 similar a. 

In Figure 7.5 however, only M P finds the original coefficient exactly. B P finds the 

nonzero entries of the original c, but adds another nonzero one. B P has more trouble 

finding the right coefficient because the atoms in T> are much more similar. In this 

case, the original c is not sparse enough for B P to find it with probability 1. Like 

in Figure 7.3, B P finds the right coefficient c exactly with a nonzero probability 

less than 1 (empirically found around 0.75). The more similar the a, the lower the 

probability that B P finds the right coefficient c for a given original c with a fixed 

number of nonzero entries. M P has the same problem, but seems to be able to 

recover coefficients that are less sparse than the coefficients B P can recover. 
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2. Coefficient c with ten nonzero components 

• Comparison between two dictionaries (small with two a and large with ten a) 

BP MP 
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Figure 7.6: Analysis of a less sparse coefficient with an M D W T dictionary with 2 a. 

Figure 7.6 shows the efficiency of B P and M P in a small dictionary for a given original 

coefficient c. In this case, both B P and M P find the original coefficient exactly. The 

original coefficient, although containing 10 nonzero entries, is sparse enough for M P 

and B P to find it in this dictionary T>. 
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Figure 7.7: Analysis of a less sparse coefficient with an M D W T dictionary with 10 a. 

Unlike Figure 7.6, Figure 7.7 shows that neither B P nor M P exactly finds the right 

coefficient back, although M P seems a little bit better. In this case, the dictionary 

is too large for B P and M P to find the original coefficient back. For this particular 

dictionary with ten different a, the original c is not sparse enough for B P and M P to 

find it exactly. The reason for this result is explained by the Spark of the dictionary. 

The larger T>, the smaller its Spark, and hence the sparser c needs to be in order to be 

found by B P and M P . This condition is given in the equivalence theorem mentioned 

in section 3.2 of Chapter 3, and the definition of the Spark is given in section 3.2 of 

Chapter 3. 
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• Comparison between two dictionaries (one with two very different a and one with 

two similar ones) 
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Figure 7.8: Analysis of a less sparse coefficient with an M D W T dictionary with 2 close a. 

In Figure 7.8, s is decomposed in a small dictionary V with two very similar a (0.5 

and 1). When the a are similar however, neither B P nor M P recovers exactly the 

right coefficient. In fact, both recover the initial coefficient with a nonzero probability 

strictly less than 1. The original coefficient c is not sparse enough. 
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Figure 7.9: Analysis of a less sparse coefficient with an M D W T dictionary with 2 different a. 

In Figure 7.9, s is decomposed in a small dictionary V with two very different a (0 

and 5). When the a are very different, B P and M P can recover the right coefficient, 

B P doesn't recover it exactly but is very close to the right coefficient. 
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3. Coefficients c with two very close components 
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Figure 7.10: Analysis of two close components in an M D W T dictionary with two different a. 

Figures 7.10 and 7.11 compare the efficiency of B P and M P in resolving two close com

ponents in c. In Figure 7.10, the dictionary V is small and contains only two different a. 

In this case, both B P and M P recover exactly the right coefficient c, no matter how close 

the components are. 
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gure 7.11: Analysis of two close components in an M D W T dictionary with ten different a. 

In Figure 7.11, V is large and contains ten different a between 0 and 5. In this case, B P 

finds exactly the right coefficient (multiresolution), but M P cannot resolve the two close 

components. In small enough dictionaries M P can resolve two close components, but fails 

to do so in larger ones. B P is more sensitive to the number of nonzero entries than to 

how close the events in the original coefficient c are. 
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7.5.2 Discussion 

I showed some results for dictionaries made with decimated fractional spline wavelets and got 

similar results for fractional spline and undecimated fractional spline wavelet dictionaries. The 

results revealed the importance of the size of the dictionary (its redundancy), the orders a and 

the number of nonzero entries in the coefficient c. There is a trade off between the redundancy 

of the dictionary T> and the sparsity of c. For a given dictionary V, there is a maximum number 

of nonzero components in c that guarantees its being the unique solution of (Pi) (and hence 

(Po)). The definitions of the (Po) and (Pi) problems are given in section 3.1.1 of Chapter 3. 

For our type of dictionaries (fractional B splines, decimated and undecimated fractional spline 

wavelets), the results are as follows: 

1. If V is small (e.g. made of only 2 different a) and the a very different, the maximum 

number of nonzero entries in c is around 10. 

2. If V is small (e.g. made of only 2 different a) and the a more similar, the maximum 

number of nonzero entries in c is close to 10. B P and M P find the correct coefficient back 

with a high probability. 

3. If V is large (e.g. made of 10 different a or more), the maximum number of nonzero 

entries in c is very small (around 1 or 2 depending on T>). 

From our results, we can infer two major problems: 

1. Seismic data is made of two many different events for our type of dictionaries. 

2. Seismic data contains a wide variety of fractional-orders, which requires large dictionaries. 

We therefore cannot rely on B P or M P to decompose and find the fractional-orders a of a 

seismic trace. Another way of tackling the problem is to consider s as a sum of different signals 

S j , each having a different fractional-order « j . Using the Block Coordinate Relaxation Method 

(BCR) which is an iterative algorithm, we hope to be able to separate the different signals. 
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7.6 Block Coordinate Relaxation Method 

7.6.1 Problem statement 

We consider the seismic signal s as 

s = s Q l + ... + s Q n + r, 

where S Q is an af* order signal, and r is the residual containing the rest of the orders of s that 

we didn't include in our model s_,, + ... + s~, . r can also contain the noise if we work with 
—Oil —<Xn — 

noisy data. Given s, we would like to find its different components s^., and in particular its 

associated orders aj. Like BP , we will try to find the representation c of the signal s with respect 

to an overcomplete dictionary V made of waveforms parameterized by their fractional-orders 

a. Examples of such dictionaries include fractional B spline, and decimated and undecimated 

fractional spline wavelet dictionaries. 

We consider a dictionary V as 

V= [Vai,...,Van], 

and its matrix <&: 

where 3>Q i is a the matrix of Vai containing the different translations of af1 order waveforms. 

A representation c in P is of the form c = [ c a i , c Q J . Following these notations, we can write 

our model as 

s = * c + r. (7.18) 

In the rest of the paper, we will use the following notations: 

S a 4 = §i , = Cj and $ Q i = 

Our main assumption here, is that the representation of each is sparse in the dictionary T>i, 

so that we only need a few atoms in T>i to build S j . This is the same idea as BP , because we 

would like each a\h order event of the signal s to be described with as few atoms as possible. 
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Ideally, each event would be described by only one atom and hence the order OJJ of this event 

would be read on its associated atom. 

We propose to solve the following minimization problem 

min (ftUcJIi + ... + ^ H c J l ! + ||s - *c||!), (7.19) 

where 6i > 0, for 0 < i < n. The parameters 3i are trade-off parameters between the different 

£ 1 norms and the data misfit. 

1. The first part of the functional minimizes the representation of each signal s_j in the 

corresponding dictionary XV 

2. The second part minimizes the data misfit. This second part relaxes the constraint. If an 

additional content existing in the signal s is not represented sparsely by the dictionaries 

T>i, the above formulation will tend to allocate this content in the residual [30]. 

Remark: What makes the minimization (7.19) succeed in separating the different signals S j , is 

that each dictionary Vi is very good in representing s4 and bad in representing the other Sj, for 

j j£ i. The better this assumption is verified, the more accurate the algorithm. 

7.6.2 Algorithm 

I solved the minimization (7.19) using a slightly modified version of the Block Coordinate 

Relaxation Method (BCR) implemented by Starck et al. [30]. If 3>*3>i = / , the previous 

minimization can be solved by Soft Thresholding [30]. 

If we fix every coefficient vector c4 except c i o , we can solve for c i o with 

min /3 i o | | ** 0 c i o | | i + | | S i o - * i o c i o | | i , (7.20) 

where S i o = s - I f*** , i = I , (7.20) is equivalent to 

minAollCiolli + I I H S i o - C i o l l i . (7.21) 
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which can be written as 
N 

J2(ki0(k)\ + X(cio(k)-Zio(k))% 
k=i 

where Z{0(k) is the kth component of 3>j0Sio and A = This is equivalent to N scalar, 

convex and independent minimization problems that are solved by Soft Thresholding applied 

componentwise to c i o [4]. The minimization can still be solved by Soft Thresholding [29] when 

the matrices are a concatenation of matrices Ai that satisfy A*Ai — I. See Appendix C for the 

derivation of the soft thresholding solution. The undecimated orthonormal wavelet transform 

consists of all shifted versions of the decimated orthonormal wavelet transform. The matrix of 

the decimated orthonormal wavelet transform is unitary, and the matrix of the undecimated 

wavelet transform is a concatenation (modulus a reordering) of unitary matrices. We can hence 

use Soft Thresholding to solve the minimization problem when using undecimated orthonormal 

wavelet transforms. 

7.6.3 Numerical scheme 

In Figure 7.12, I present the basic numerical scheme for separating two signals ŝ  and s 2, 

assuming s is of the form s = ŝ  + s 2 + r, where sx is an a*h order signal, s 2 is an a 2

h order 

signal and r is the residual which can contain other aj-th order signals and/or noise. The 

dictionary we use can be written as: <& = [$i, $ 2 ] , where 3>i is adapted to s x , and 3>2 to s 2. 

The algorithm given in Figure 7.12 is for two signals, but I programmed a general algorithm 

for any number of signals and any dictionaries. 
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I n i t i a l i z e Lmax, number of i t e r a t i o n s , and t h r e s h o l d s 5i = 0 i - L m a x and 

82 = 02-Lmax-
Perform L m a x times 
P a r t A: Update c 2 assuming c x i s f i x e d 
nold „ 

• S y n t h e s i z e t h e s i g n a l = ^ i c x 

• C a l c u l a t e t h e r e s i d u a l R 2 = s—sx 

• C a l c u l a t e c 2 = c%ld + * 2 (R 2 - * 2 £ § ' d ) 

• S o f t t h r e s h o l d c 2 w i t h <52, i . e . s o l v e s t h e f o l l o w i n g m i n i m i z a t i o n 

p r o b l e m : 

m i n f o l l & l l i + ||Ba -S2II2 
£2 

Update t h e t h r e s h o l d 62 = S2 — 02 

P a r t B: Update c x assuming c 2 i s f i x e d 
„old „ 

£l — £l 

• S y n t h e s i z e t h e s i g n a l s 2 = <fr2£2 

• C a l c u l a t e t h e r e s i d u a l R i = s — s 2 

• C a l c u l a t e c x = c f d + * f (R x - $cfd) 

• S o f t t h r e s h o l d c x w i t h 8\, i . e . s o l v e s t h e f o l l o w i n g m i n i m i z a t i o n 

p r o b l e m : 
mm81\\c1\\1 + \\R1-s1\\2

2 £1 

Update t h e t h r e s h o l d 81 = 5i — 0\ 

end ; 

Figure 7.12: Block Coordinate Relaxation (BCR) Algorithm 
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7.6.4 Simple examples 

I applied the B C R algorithm to two examples: one that I made myself and one taken from 

Starck et al. [31]. In both examples we are dealing with data d of the form d = f\ + / 2 + n, 

where f\ and / 2 are two different signals, and n is the noise. 

1. In the first example, f\ is a cosine function and / 2 is a step function. I used the Discrete 

Cosine Transform as the dictionary 3>i adapted to f\ and the Haar wavelet basis as the 

dictionary <F>2 adapted to / 2 . The results are shown in Figure 7.13. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

residual 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 7.13: B C R algorithm: separating the noise, a cosine function and a step function. 

In Figure 7.13, the top plot shows the original cosine function (blue line) and the recovered 

cosine function (red line), the second plot shows the original step function (blue line) and 

the recovered step function (red line), the third plot displays the sum of the original 

signals (blue line) superimposed with the sum of the recovered signals (red line), and the 

bottom plot shows the residual. 
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2. In Starck's example [30], f\ is a cosine function and fa consists of bumps (Gaussians). I 

used the Discrete Cosine Transform as the dictionary 4>i and the ATrou wavelet basis as 

the dictionary <&2- The results are shown in Figure 7.14. 

cosine 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

I i i i i i i i i i I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

I 1 1 1 1 

| — residual |_ 

1 1 1 1 1 i i i 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 7.14: B C R algorithm: separating the noise, a cosine function and bumps. 

In Figure 7.14, the top plot shows the original cosine function (blue line) and the recovered 

cosine function (red line), the second plot shows the original bumps (blue line) and the recovered 

bumps (red line), the third plot displays the sum of the original signals (blue line) superimposed 

with the sum of the recovered signals (red line), and the bottom plot shows the residual. 

7.6.5 Multiple Block Coordinate Relaxation Method 

The multiple B C R iteratively performs a B C R decomposition on each of the separated signals 

resulting from a previous B C R decomposition. The idea is to run the B C R iteratively on the 

different signal contents, until we separate them. I empirically noticed that running the B C R 

more than three times does not really improve the results. I therefore limited the iterations to 

three. 
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7.6.6 Results 

I present here some results on the performance of the B C R algorithm for the decimated frac

tional spline wavelet dictionary. The results are similar for fractional B splines and undecimated 

fractional spline wavelet dictionaries. I tested the B C R algorithm for different settings and dif

ferent synthetic seismic signals that I generated randomly in order to avoid the creation of 

patterns. The experiments test the following cases: 

1. The analyzing dictionary V exactly contains the waveforms in s 

2. The analyzing dictionary V contains the waveforms in s as well as other ones 

3. The analyzing dictionary T> doesn't contain the waveforms in s 

The synthetic signal s was built as a real seismic signal by randomly building its different 

coefficients. By hypotheses, s is a summation of signals Sj with different fractional-orders a^. In 

order to construct s, I created each coefficient Cj with random position and number of nonzero 

entries, and synthesized s, by computing Sj = * i C j , where <f>j is the matrix of the dictionary T>i 

associated to the order OJJ . Given s, the B C R algorithm tries to separate the different content 

types of s in the analyzing dictionary T>. 
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T h e analyzing dictionary V exactly contains the waveforms in s 

• Dictionary V made of 4 different a between 0 and 5 

Original (in red) and recovered (in blue) signals 
51 1 1 1 1 1 1 1 

. 5 ! 1 1 1 1 1 1 1 1 L 
0 0.1 0.2 0.3 0.4 0.5 0.6 "0.7 0.8 0.9 1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

_ 5 i i i i i i i i i i I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 7.15: Original and recovered signals. 

In this example, s is synthesized and analyzed with the same dictionary V and the 

coefficient c of the signal s in V has 27 nonzero entries. Figures 7.15 shows that 

the different content types in s are successfully separated and the coefficients exactly 

recovered. Wi th 27 nonzero entries in c, the B C R algorithm is able to separate 

the different content types in s and finds the right coefficient back. This is an 

improvement over B P and M P . 
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Figure 7.16: Original and recovered coefficients. 

Figure 7.16 shows the superposition of the original coefficients and the coefficients 

Cj found by the B C R algorithm. The original coefficient has 27 nonzero entries. 

The different coefficients of the different content types are perfectly recovered by the 

algorithm. 
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Dictionary made of 10 different a between 0 and 1 

Original (In blue) and recovered (in red) signals Original (In blue) and recovered (in red) signals 

_ n _ n , n, _ flH 

' \=7] 
n _ 

2 1 1 1 

J A 
v J U Li *- 0 Mfv^y-

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 
. f l l P L • 

I 0.11111 I 5 

. 1 „ . 
i i i i i i 

A 1 0.66667 | 

Ir 
y 

i i i 

0 *—yv* • s . ^ ~ yr—• — 
) 0.1 0.2 

1 1 -

0.3 0.4 0.5 0.6 0.7 
1 1 r-

0.8 0.9 - 5 

5 
) 0.1 0.2 0.3 

i 1 1 
0.4 0.5 0.6 0.7 0.8 0.9 

1 1 1 1 1 1 1 

j 0.22227] | 0.7777F1 

_i 1 1 __i 1 1 1 i_ 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

—i 1 -

| —- 0.33333~l 

_j t_ 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

A A 

- - vl' 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 7.17: Five first original and recovered sig- Figure 7.18: Five last original and recovered sig
nals, nals. 

The original coefficient c has 33 nonzero entries. In Figures 7.17 and 7.18, we can 

see that the separation of the different signals is not very successful. Because the 

dictionary is large and the waveforms very similar (the fractional-orders are much 

closer), the dictionaries become more similar. In particular, one dictionary 3>i is not 

bad in representing the other signals ŝ- for j ^ i, which is why the separation is not 

perfect. The more similar the dictionaries, the less the B C R algorithm will be able 

to separate the different content types of s. 
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Original (in blue) and recovered (in red) coeffs Original (in blue) and recovered (in red) coeffs 

3 

-n r 

40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 
201 , , p 

j U l l 

20 40 60 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 
i r -

_ / A _ _ L A I 

J j J L 

—i 1 r~ 

J ^ 

I 0.33333] 
J U L 

_i i_ 

| Q.44444 | 

__l L_ 

A L 

100 120 140 160 180 200 

I 0.888891 

100 120 140 160 180 200 

20 40 60 100 1 20 1 40 1 60 1 60 200 0 20 40 60 80 1 00 1 20 1 40 160 1 80 200 

Figure 7.19: Five first original and recovered co- Figure 7.20: Five last original and recovered co
efficients, efficients. 

Figures 7.19 and 7.20 illustrate the performance of the B C R algorithm on the coef

ficients. 
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T h e analyzing dictionary V contains the waveforms in s, as well as other ones 

• Synthesizing dictionary made of two a between 0 and 1 and analyzing dictionary 

made of four a between 0 and 3 

Recovered signals 

-2 

n 1 1 r n r 

.j I i_ _J j I i i_ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

~\ 1 1 1 1—; 1 r 

_i i_ 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

-1 

~ r~ n 1 1 r 

.j I I I I I I I i_ 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

n 1 1 1 1 1 r - 3 

_i I I I I i_ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 7.21: Original and recovered signals. 

In this example, the synthetic signal s is only made of two different content types: 

one with order 0 and one with order 1, and the original coefficient has only five 

nonzero entries. The analyzing dictionary is made of four different a (0,1,2 and 3). 

s is decomposed into four signals with order 0,1,2 and 3 respectively. Figure 7.21 

shows the original signals in blue (top two plots) and the separated ones in dashed 

red (in the four plots). The separation is perfect. 
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0 20 40 60 80 100 120 140 160 180 200 

Figure 7.22: Original and recovered coefficients 

Figure 7.22 shows the original and recovered coefficients of the different signals in 

the same order as for the signals shown in Figure 7.21. They are perfectly recovered. 
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Synthesizing dictionary made of two a between 0 and 1 and analyzing dictionary 

0.02 

-0.02 

; of four a between 0 and 1 

Recovered signals 
i i i i i i i i — 0| r r 

ll 
i i i i i 

u 
i i i 

0 x 1 0 - 3 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

~i 1 1 r 
0.33333 

_i i i i i i 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

~\ 1 1 1 1 1 i r 
- - 0.66667 

0 

_i i i i i i i i_ 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

— i 1 1 1 1 1 1 1 1 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 7.23: Original and recovered signals. 

In this case, a similar synthetic signal s with four events is decomposed with respect 

to a different analyzing dictionary. The analyzing dictionary contains four different 

fractional-orders a ranging from 0 and 1 (0,̂ ,1 and 1). Figure 7.23 shows the 

original signals in blue (top and bottom plots) and the separated ones in dashed red 

(in the four plots). The separation is not perfect because the waveforms in V are 

too similar. However, the separation is still quite good, as the amplitudes of the 

signals with Orders \ and | are very small (these amplitudes should in theory be 

zero). The non optimal choice of V for the B C R algorithm affects the performance 

of the separation. 

106 



20 r 

10 

Recovered coeffs 

-10L 

0.01, 

-0.01 h 

20 40 60 80 100 120 140 160 180 200 

-0.02L 

0.05 h 

200 

200 

200 

Figure 7.24: Original and recovered coefficients. 

Figure 7.24 shows the coefficients of the different signals. 
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3. T h e analyzing dictionary V doesn't contain the waveforms in s 

• Synthesizing dictionary made of five a between 0 and 3 and analyzing dictionary 

made of thirty a between 0 and 3 

Original signals Recovered signals 

Figure 7.25: Original signals. Figure 7.26: Recovered signals. 

Figures 7.25 and 7.26 illustrate the decomposition of a signal s containing 30 events, 

and show the original signals and the recovered ones. Figure 7.26 shows that s is 

separated in many more content types than it actually has, which implies that the 

events are not found appropriately. Not only can wrong events be selected, but new 

events can be created in the reconstructed signals. 
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Original coeffs Recovered coeffs 
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Figure 7.27: Original coefficients. Figure 7.28: Recovered coefficients. 

Figures 7.27 and 7.28 show the same results for the coefficients. 
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T h e analyzing dictionary V doesn't contain the waveforms in s 

„0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
I 0.72414 

.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0. 

.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
- 2.2759 | 

,0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 7.29: B C R separation with decimated fractional spline wavelets. 

Figure 7.29 shows the decomposition of the signal s with respect to a large dictionary 

whose fractional-orders are different from the fractional-orders contained in s. Figure 

7.29 shows the superposition of the original content types of s and the reconstructed 

ones with closest fractional-order. The four top plots show the original signals (in 

blue) and the recovered signals (in red), and the bottom plot shows the residual. 

Except for the zero-order signal (first plot) which is well recovered, and the third 

order signal (fourth plot) which is partially recovered, the other content types of 

s aren't. The residual seems to contain most of the events. The failure of the 

decomposition is most probably due to the size of the analyzing dictionary I used, 

as well as the fact that the waveforms in s were not in the analyzing dictionary. The 

analyzing dictionary was fairly large and contained very similar waveforms, which 

reduced the efficiency of the B C R algorithm. 
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7.6.7 Discussion 

The above results show the efficiency of the B C R algorithm in separating a signal s into different 

content types described by their singularity order o^. As explained earlier in this paper, the 

B C R algorithm can be very efficient if each dictionary used for each content type are very good 

in representing one content type and bad in representing the other ones. In that sense, the more 

similar the atoms in the dictionaries, the less efficient the B C R algorithm. The decomposition 

we envision is badly conditioned because the dictionaries we need to use for seismic signals 

contain similar atoms. However, in certain cases, the B C R algorithm succeeds in separating s 

into the correct content types. 

First, there is a great importance in the decrease of the parameters Si in the B C R algorithm 

presented in Figure 7.12. The slower the decrease, the better the separation, because in this 

case, the algorithm has time to make the difference between the various content types. The 

B C R algorithm looks at the successive inner products between the signal s and the waveforms 

(fi in and puts the largest inner products (larger than the threshold Si) into the content 

type of order o^. If Si decreases too fast, a large number of inner products corresponding to 

various orders will be larger than Si, and thus will be put wrongly into the content type of order 

aj. There is also a concern about the dictionary. If the dictionary contains waveforms that 

are too similar, or if the dictionary is too large (which also triggers very similar waveforms), 

it will be more difficult to distinguish between the different inner products, because they will 

have similar values. One solution could be to make the parameters Si decrease very slowly but 

that would make the algorithm prohibitively slow, and moreover would only work optimally if 

the analyzing and synthesizing dictionaries are the same. There is also a trade-off between the 

size of the dictionary and the fractional-orders a that we choose in V. The number of nonzero 

entries in the original coefficient c is not important here, because it is the dissimilarity between 

the different content types of s, and the adequate choice of the dictionaries <f>j that make the 

B C R algorithm succeed. 

From these studies on the performance of the B C R algorithm, we can conclude that if the 
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analyzing dictionary V consists of waveforms that are in s, the B C R algorithm will succeed or 

partially succeed in separating s into the correct content types, provided V is not too large, and 

the fractional-orders in V not too close. However, when the dictionary contains atoms that are 

not in s, the B C R algorithm starts having trouble in finding the correct decomposition. 

The last issue of the B C R is its computational cost. Depending on the dictionary and its 

implementation, the normalization of the dictionary can become computationally intensive, 

and the B C R algorithm prohibitively slow. This is for example the case for the undecimated 

fractional spline wavelet dictionary. 

7.7 Conclusion 

The studies of M P , B P and the B C R algorithm show that it is very difficult to estimate the 

fractional-orders of seismic signals by computing their representation in an overcomplete dic

tionary parameterized by their fractional-orders a. These algorithms work for very particular 

coefficients and well conditioned dictionaries. As soon as the dictionary gets too large, and/or 

the waveforms too similar, and/or the coefficient vector not sparse enough, none of the above 

algorithms are able to find the right representation c. 

Real data falls under these considerations, as we need a large enough dictionary (thus with 

similar waveforms) to find the fractional-orders contained in s. The estimated fractional-orders 

are limited by the fractional-orders contained in the dictionary, and the maximal error between 

the fractional-orders a found and the real ones in s is given by the largest distance between two 

consecutive fractional-orders contained in V. To avoid large errors, it is therefore necessary to 

decompose s into a large dictionary containing many different fractional-orders, triggering the 

failure of M P , B P and the B C R algorithm. The representation c of seismic signals is not sparse 

enough for the type of dictionary we need. 
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Appendix A 
Wavelets 

A . l Overview 

Definition A.1.1 (Wavelet ,[25]) A wavelet is a function tp E L 2 ( R ) of zero average 

/ ip(t)dt = 0, 
JM. 

which, is dilated with a scale parameter a > 0, and, translated, by a > 0 

1 , f t - a \ 

Definition A.1.2 (Continuous Wavelet Transform, [25]) The wavelet transform of a func
tion f G L2(W) at the scale a and position a, W / ( a , a) , is computed by correlating f with the 
wavelet at position a and scale a: 

/

+oo 

-oo 

Any signal f € L 2 ( R ) can be written as a continuous summation of wavelets: 

VteR,f(t)=K / Wf{a,a)i>M(t) , 
J—oo J— oo ®~ 

where K is a constant. 

This representation is very redundant and the coefficients VVf(a, a) are highly correlated. In 

order to reduce this redundancy, we can limit ourselves to dyadic wavelets and hence obtain a 

basis of L2{R). 
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Definit ion A . l . 3 (Orthonormal Wavelet Bases, [26]) Dyadic wavelets 

|V(j,fe) = (^~W^J }^ ^ 2 9 e n e r a ^ e a n orthonormal basis ofL2(R). 

Because the basis is orthonormal, the wavelet coefficients Wf(j,k) of a function f € L2(R) are 
simply computed by taking the inner product between f and each wavelet: 

W/(j,fe) = </,%*)) 

/

+oo 
f(Wlk)dt 

- O O 

— oc 

Any signal f can be represented uniquely as 

+oo +oo 

V t £ K , /(*) ^ (f,^(j,k))^U,k)-
j ——oo k= — oo 
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Appendix B 
Bases 

B . l Fractional Splines 

Proposi t ion B . l . l Let a = 0, and let <po = <pa=o be a vector ofW , such that 

V 1 < n < N , ip0(n) = 1 , and V n < 0 , <p0(n) = 0. 

Define 

D0 = 
i<k<N 

G RN , 1 < k < N , s.t. V 1 < n < N , ug(n) = </>o(n - k + 1) 

"Do is a basis of M.^. 

P R O O F : 

VQ consists of N vectors of R N , so we only need to show that the vectors of £>o are either 

linearly independent, or that VQ can represent any vector of M . N . We show that the vectors v® 

are linearly independent. 

Suppose there exists iV nonzero numbers /3i, ...,/3/v, such that 

N 
(B.l) 

i = l 

Equation (B.l) is equivalent to: 

0 (B.2) 
t=i 

(B.3) 
i=l 
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We prove recursively that all the 3% are zero. Define the following property for an integer p, 

l<p<N: 

Vl<J<P,Pj=0. (B.4) 

1. Let's show that this property is true for p = 1. 

If we evaluate equation (B.3) at n = 1, we obtain 

N 

J2&M2-i) = 0, (B.5) 
t=i 

which is equivalent to 

/3i^o(l) = 0, (B.6) 

as <̂ o(2 — i) is only nonzero for i = 1. 

As V'o(l) = 1, we deduce that 3\ = 0, which is property (B.4) for p = 1. 

2. Now, we show that if property (B.4) is satisfied for an integer p between 1 and N, it is 

also satisfied for p + 1. Let p be an integer, 1 < p < N and suppose that property (B.4) 

is true for p: 

V 1 < j < p , 3j = 0. 

We have 

E M ° = o 
i=p+l 

« V 1 < n < Af , E 3m{n -i + l) = 0. (B.7) 
i=p+l 

If we evaluate equation (B.7) at n = p + 1, we obtain 

Af 

£ A v o O - i + 2) = 0, (B.8) 
i=p+l 

which is equivalent to 

/3P+i<A)(p + 1) = 0, (B.9) 

as <fio{P ~ i + 2) is only nonzero for i = p + 1. 

As <̂ o(p + 1) = 1, w e deduce that 3p+i = 0, which is property (B.4) for p + 
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3. Property (B.4) is true for p = 1. If it is true for p, it is also true for p + 1, so it is true for 

all 1 < n < N , i.e. V 1 < n < N , 0n = 0. 

Conclusion: 

v® for 1 < k < N, are linearly 

independent and VQ is a basis of I 

Proposi t ion B . l . 2 Let a > 0, and let ipa be a vector ofRN, such that 

V 1 < n < N , <fa(n) = na + 1 , and V n < 0 , = 1. 

Define 

Va = { v k } 1 < k < N = {v% €RN , l<k<N , s.t. V 1 < n < N , v%(n) = <pa(n - k + 1)}. 

VA is a basis of] 

P R O O F : 

This proof is very similar to the previous one. VA has N vectors in RN so it is sufficient to 

prove that the vectors v% are linearly independent. 

Suppose there exists N nonzero numbers d\, •••,0N, such that 

N 

t=i 

» V l < n < J V , £ / 3 t < ( n ) = 0 

N 

&Vl<n<N , Y Sixain-i + = 0. 

N 

(B.10) 

( B . l l ) 

(B.12) 

t=i 

If we evaluate equation (B.12) at n = 1, n = 2 , n = N, we obtain the following N equations: 
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N 

= 0 (B.13a) 
i=i 
N 

tfcMPi + YlPi = 0 (B.13b) 
i=2 
N 

M2)Pi+<Pa(.3)02J23i = 0 (B.13c) 
i=3 

^Q(2)0l + <fa{3)02 + ... + ipa(N)0N_1+0N = 0. (B.13d) 

We wil l also use a recursive argument using property (B.4). 

1. Let's show that property (B.4) is true for p = 1. 

Combining equations (B.13a) and (B.13b), we obtain: (ipa(2) — l)0i = 0, which implies 

0i = 0 because <pa(2) ̂  1. So property (B.4) is true for p = 1. 

2. Now, let p be an integer, 1 < p < N and suppose that property (B.4) is true for p: 

v i < i < P , f t = o. 

W i t h this property, the set of N equations becomes 

N 

J f t = 0 (B.14a) 
i=p+l 

N 

+z)Pp+i + & = 0 (R14b) 
i=p+2 

N 

<pa(p + 2)0p+1 + ipa(p + 3)0p+2 E ̂  = 0 (R14c) 
z=p+3 

lPa(p + 2)0p+1 + <pol(p + 3)Pp+2 + -+tpa(N)0N-\+0N = 0. (B.14d) 

As for p — 1, combining equations (B.14a) and (B.14b) gives us (<pa(p + 2) — l)0p+\ = 0, 

which implies that 0p+\ = 0 because (fa(p + 2) =fi 1. So property (B.4) is true for p + 1. 
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3. V l < n < / V , / ? n = 0. 

Conclusion: 

v% for 1 < k < N, are linearly-

independent and Va is a basis of IR 

B.2 Fractional Derivatives of the Gaussian 

Let a be a positive fractional number, and let ga be the ath derivative of the Gaussian. A 

Gaussian doesn't have a compact support, but if it decays fast enough, we can approximate it 

by a function that has a compact support. If we sample ga, we obtain a vector of length N 

that we call ua. Now let's define S as the set of integers m where the vector ua is less than a 

tolerance (tol = 10~3, but this can be changed depending on the applications): 

Define the vector (pa, as the first circular shifted vector v, such that v(l) ^ 0 but v(0) = v(N) = 

0: 

-Pa — yue RN , such that 3 / 6 N , V 1 < n < JV , v(n) = Slua , v(l) ^ 0 and v(N) = 0 

where S is the circular shift operator. By construction, V n > N and n < 0 , <pa{n) = 0. 

Proposi t ion B . 2 . 1 Define 

5 = | m e N , such that for 1 < m < N , \ua(m)\ < tol 

and let's put these coefficients to zero: 

V n 6 S , ua(n) = 0. 

Kk<N 

Va is a basis ofiRN. 
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P R O O F : 

The proof is similar to the proof of the fractional splines for a. = 0, because, for 2 < k < N, 

each vector has one more zero component than the previous vector v^_v Similarly to the 

fractional splines, we only need to prove that the vectors v% are linearly independent, and we 

prove it recursively. 

We suppose there exists N nonzero numbers @\,...,8N, such that 

N 

•YPiV? = 0 (B.15) 
i=l 

N 

1 < n < N , £ & v ? ( n ) = 0 (B.16) 
i=l 

N 

< = > V l < n < J V , £ / 3 i ¥ J a ( n - i + l ) = 0. (B.17) 
i=i 

1. Property for p = 1. 

If we evaluate equation (B.17) at n = 1, we get 

N 

£ A v o ( 2 - i ) = 0, (B.18) 
i=l 

which is equivalent to: 

/?iyo(l) = 0, (B.19) 

as t/?o(2 — 0 is only nonzero for i = 1. As v?o(l) 7^ 0, we deduce that 0\ — 0, which is 

property (B.4) for p = 1. 

2. Now, we show that if property (B.4) is satisfied for an integer p between 1 and N, it is 

also satisfied for p + 1. Let p be an integer, 1 < p < N and suppose that property (B.4) 

is true for p: 

Vl<J<P,0j=O. 
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So we have 

£ A " ? = 0 (B.20) 
i=p+l 

N 

•&\/l<n<N, £ PiMn-i+l) = °- (B-21) 
t=p+i 

If we evaluate equation (B.21) at n = p + 1 we obtain 

N 
£ ft</?o(p-i + 2) =0, (B.22) 

t=p+i 

which is equivalent to: 

)f3p+iVo(p + l ) = 0 ) (B.23) 

as <po{p — i + 2) is only nonzero for i = p + 1. As </?o(p + 1 ) ^ 0 , we deduce that 0v+\ = 0, 

which is property (B.4) for p+ 1. 

3. Property (B.4) is true for p = 1. If it is true for p, it is also true for p + 1, so it is true for 

all 1 < n < N , i.e. V 1 < n < N , 0n = 0. 

Conclusion: 

v% for 1 < k < N, are linearly 

independent and Va is a basis of RN , 
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Appendix C 
Soft Thresholding 

C . l Derivation of the formula 

Proposi t ion C . l . l (Soft Thresholding) Let (a,y) e R 2 and A e R+, then 

sign(a)(\a\ - -^)+ = argmm(X(a - x ) 2 + \x\), 

where y+ — max(0, y), for y £ M.. 

P R O O F : 

Let f(x) = \x\ + A(a — x)2, and let's call x = argm\i\x f(x). 

We have: 
x + \(a - x)2 if x > 0 

Aa 2 if x = 0 

- x + A(a - x)2 if x < 0, 

and 

/'(*) = 
l-2X(a-x) i f x > 0 

- l - 2 A ( a - x ) i f x < 0 . 

/ is not differentiable at 0 because /'(0+) = 1 - 2Aa, and /'(0_) = -1 - 2Aa. 

Let x ^ 0. 

f'(x)=0 
x = a — ^ if x > 0 i.e. a > 2A 

x = a+ 7 ^ i f x < 0 i.e. a < 

(C.l) 
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Equation (C . l ) can be rewritten as 

x = sign{a)(\a\ - - ^ ) if \a\ > ~ . (C.2) 

Now, if \a\ < 7 ^ , / ' can never be zero, and hence the minimum of / cannot happen when the 

derivative is zero. Now, consider \a\ < ^ and note that 

, , 1 1 1 
a < — •<=> < a < — 

1 1 " 2A 2A " " 2A 
- 1 < - 2 A a < 1 

1 - 2Aa > 0 and - 1 - 2Aa < 0. 

Recall the expression of / ' : 

l-2Xa + 2Xx if x > 0 

- l - 2 A a + 2A:r if x < 0. 

• On R+, f'(x) = 1 — 2Aa + 2Xx, where 1 - 2Aa > 0 and 2Aa; > 0. In this case, the sign 

of / ' is given by the y-intercept (1 — 2A), which is a positive quantity. f'(x is therefore 

positive on M.+ . 

• In the same way, on M I , f'(x) = — 1 - 2Aa + 2Xx, where —1 — 2Aa < 0 and 2Xx > 0. In 

this case, the sign of / ' is given by the y-intercept ( — 1 —2A), which is a negative quantity. 

f'(x) is therefore negative on E l 

We can then conclude that / , defined on K , is decreasing on M l , and increasing on , which 

means that the minimum of / is at zero. Summarizing the results, we get 

If \a\ > ji- then x = sign(a)(\a\ — jr 

If M < ^ then x = 0, 

which can be written as one equation 

x = sign{a)(\a\ - ^)+ 

(C.3) 
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Appendix D 
Fourier Transform and Fast Fourier 
Transform 

This appendix explains how to compute the Fourier Transform of a function via the Fast Fourier 
Transform (FFT). 

D . l Theoretical results 

D . l . l Definitions 

Definit ion D . l . l (Fourier Transform) Let f e L ^ I R ) . The Fourier Transform of f is 

Definit ion D . l . 2 (Fourier Series) Let f be a T-periodic function. The Fourier coefficients 

(cn{f))n€Z are defined by 

Definit ion D . l . 3 (Fast Fourier Transform (FFT)) Let f be a T-periodic function. The 
Fourier coefficients of f, {an(f))n=o computed by the F F T are given by 

The Fourier Transform (FT) of f is the map defined on M. by 

1 W _ 1 kT 
VI < n < N , an(f) = TfJ2 ^ lv~> \L0 —nk 

N 
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D.1.2 Approximation of the Fourier coefficients with the F F T 

Let / be a T-periodic function. The Fourier coefficients c n ( / ) are given by 

-in e l , Cn(f) = ±J f(t)e-2i™$ dt. (D . l ) 

We can approximate (D . l ) using the lower Riemann sum 

k=0 k=0 

where LON = is the Nth root of unity. 

A n approximate value for the Fourier coefficients c „ ( / ) is therefore given by 

1 i Y _ 1 kT 

k=0 

Therefore c „ ( / ) « an(f). 

D . l . 3 Fourier coefficients and Fourier Transform 

Let / G V(R). We set 

<p(t)=T^2f(t + nT), 

where ip £ L 1 (R/TZ). Computing the Fourier coefficients of <p gives 

C n M = [ryZf(t + kT)e-2i™$dt= [ f{t)e-*™$ dt = F T / ( £ ) . 

The sampling is obtained by calculating the Fourier Transform of the function tp. We can 
therefore interpret the sequence ( F T / ( ^ ) ) z as a sampling of the Fourier Transform of / . 

D . l . 4 Fourier Transform and Fast Fourier Transform 

To approximate the Fourier Transform of a function / with the F F T , / must be a continuous 
function with compact support [36]: 

/ G C*°(R) and V |x | > T0 , f(x) = 0. 

Choose T i > To, and consider the function / as the restriction of a function / to [—Ti, Ti] 

/ = / t [ - T , , T , ] . 
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where / is 2T\ periodic. Since / is 2T\ periodic, we can compute its Fourier coefficients [36] 

rTi 
C k = k IZ / ( « ) « P ( - - W T i ) = ^ F T ( A ) . ( D . 2 ) 

When T i 3> To, the sampling defined above is sufficiently precise for our purposes. When / 
does not have compact support, its Fourier Transform can be approximated by the Discrete 
Cosine Transform. 

D.2 Fourier Transform and Fast Fourier Transform in Matlab 

D .2.1 Approximation of the Fourier Transform in Mat lab 

In Matlab, the F F T of a vector v (noted u) of length N, is defined as 

N 

FFT(v) (k ) = u(k) = Y v ( n ) ) e - i 2 ^ k - 1 ^ n - 1 ) / N , for 1 < k < N . 
n = l 

The inverse F F T is given by 

N 

IFFT(u)(n) =y (n ) = £ u ( k ) ) e i 2 w ( k - 1 ) ( n - 1 ) / N , for 1 < n < N . 
k=i 

Let / be a continuous function with compact support [—To, To], i.e. f(x) = 0 for |x| > To. Let 
T i > T0. From equation (D.2) [36], we have 

cn(f) = ^ F T (Jl) for „ e z. 

We can also approximate the Fourier coefficients of / by 

cn(f) = ̂  x>e_27r(fc~1)(n_1)/iV'for n e z> 
k=l 

where Xk = / ( — ^ r ^ - ) for 1 < k < N, and / is 2Ti-periodic. The Fourier coefficients are 
iV-periodic (i.e. cn+pN = c/v for p £ Z) . If we take N large enough, we obtain a good 
approximation of the Fourier coefficients, and can write 

Cn(f) « ^FFT ( f ) . 

Now, c n ( / ) « ^ F F T ( f ) and cn(f) = ^ F T ^ ) , which leads to c „ ( / ) = ^ F T ^ ) « 

^ F F T ( f ) . 
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We can therefore write 

2Ti 

~N~ 

for 1 < n < N or -N/2 + 1 < n < N/2. 

The above formula gives an approximation of the Fourier Transform of a function / wi th the 
F F T . The Matlab code for finding the Fourier Transform using the F F T is given on the next 
page. 

D . 2 . 2 Mat lab code for the Fourier Transform 

function[N.xi,ft,XI,F] = FT(f,Tl_x,FLAG) 

'/. f unction [N.xi, f t , XI ,F] = FT(f ,Tl_x,FLAG) 

7, Compute the COMPLEX Fourier Transform of the sampled f u n c t i o n f. 
7. BE CAREFUL! f has to have a COMPACT SUPPORT! 
7. 
'/. INPUTS: 
'/. Mandatory 
'/, f : Function f 
'/, Tl_x: Half period i n x 
•/, Optional 
"/, FLAG: i f 1 -> normalizes 
'/, 0 -> no normalization 

y, (c) Catherine Dupuis, January 2005 

i f nargin <3 
FLAG = 0; 

end 

n = l e n g t h ( f ) ; 
a = -1; 
b = 1; 
stepx = ( b - a ) / ( n - l ) ; 
x = a:stepx:b; 

'/, OUTPUTS: 
'/. N: 
'/. x i : 
'/. f t 
1 

Length of the Fourier Transform F, and XI 
Frequencies on which f t i s evaluated 
Fourier Transform of f 
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•/.•/.y. ,/. ,/.y. 1/.7.'/.y.7. ,/.7.7.7. ,/. ,/.7,y.'/.'/ ,/.y. 1/. t/.7.7.7. 1/.7. ZERO PADDING 7 , 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 

7 . Period 
7 . Tl_x = 60; 7 . i n x 
kpts = fl o o r ( ( T l _ x - x ( e n d ) ) / s t e p x ) ; 7 . we added kpts points on the r i g h t to 
7 . zero padd the s i g n a l up to the cl o s e s t to the l e f t to Tl_x 
T l _ s = n/2+kpts; 7 . i n samples 
N = 2*Tl_s; 7 . always even 
y< 

k = [1:N] ; 
ind = [-Tl_x + ( 2 * T l _ x * ( k - l ) ) / ( N - l ) ] ; 7 . indices where the fun c t i o n s i g i s 

7 , evaluated 
s i g = [zeros ((N-n)/2,1) ; f ; zeros ((N-n)/2,1)] ; 7 . zero padding 
xN = [x(n/2) - (N/2-l)*stepx:stepx:x(n/2+l) + (N/2-1)*stepx];7 . whole x 
7 . a f t e r zero padding 
/o /o /o /o / . /o /o /o /o /o / . /o /o /o /o /o /o /o /o /o / .A 

7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 , 7 . FOURIER TRANSFORM 7 . 7 . 7 . 7 , 7 . 7 . 7 . 7 . 7 . 7 , 7 . 7 . 7 . 7 . 7 . 7 . 7 , 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 

F = f f t s h i f t ( f f t ( f f t s h i f t ( s i g ) ) ) ; 
ind = [(N-n)/2+l:(N-n)/2+n]; 
f t = F( i n d ) ; 7 . r e s t r i c t i o n of F 

nn = [-(N-2)/2-l:(N-2)/2] ; 
XI = nn./(2*Tl_x); 
x i = XI([(N-n)/2+l:(N-n)/2+n]); 
o/ y y y y y o/ y y y oy y y QI y y y y y y y y y y y y y y y y y y y y y yy y y oi y y y y y y ot y y y y y y y oi at y y y y y y y y y y y y y y y y y y 
/o/o/o/o/o/o/o /a/o/.>/o/o/o/o/oA^ 

vut%%%%%^%%%%%%%%%vM%m.%%% NORMALIZATION 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 , 7 . 7 . 7 . 7 . 7 . 

i f FLAG==1 
F = F./max(abs(F)); 
f t = ft./max(abs(ft)); 

end 
o y o / o / 0/ y 0/ 0/ y °/w V W W W V V W W W W V W W W W W W W W W ' / ' / ' / W V w0/v°/°/ °/wv W W V W V 

/o /o/o /o /o/o /o /o /o /o /o/o /o/o/o /o/o /o /«/o /o/o/o /o /o/o / o / o / o / o /o/o/o /o/o /o/o /o /o/o/o /o/o /o/o /o/o /o/o /o/o/o /o/o /o /o/o /o/o/o / o / o / o / o /o/o/o /o/o/o /o/o /o/o 
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Appendix E 
Explanation of the software 

R E A D M E 

SeisCharacl_4 .m is the program that locates the reflectors and estimates their fractional-orders. 
The program works for any size of the data (matrix or cube). 

1. BCRDaubechiesl_2.m Version 1.2 
Iterative thresholding algorithm with Coordinate Relaxation Method 

f u n c t i o n [ s i g n o i s e , c o e f f r e c ] = BCRDaubechiesl_2(s,NameOfDiet,pari,par2,par3, 
beta,czero,Lmax,limit,expl,speedl,speed2)} 

Solve the following minimization problem: 
min b e t a l l | c l | I 1 + ... + betanl IcnI 11 + ( I l s - s l - . . . - s n l I 2)"2 
using the Block Coordinate Relaxation Method with respect 
to the c o e f f i c i e n t s 

Block Relaxation Coordinate method 

INPUTS: 
s : 
NameOfDiet: 
parl,par2,par3: 
beta : 
Lmax: 
czero: 
l i m i t : 
expl: 

speedl: 
speed2: 

Signal we want to decompose 
Name of the merged d i c t i o n a r y 
Parameter of the merged d i c t i o n a r y 
Parameter of the minimization (vector) 
Max. # of i t e r a t i o n s 
I n i t a l guess f o r the c o e f f i c i e n t s 
Stopping c r i t e r i o n f o r the algorithm 
0 -> l i n e a r decrease 
1 -> exponential decrease 
Speed of linear/exponential decrease 
Speed of the power decrease (for exponential 
decrease only) 

OUTPUTS: 
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Matrix whose columns contain the d i f f e r e n t content 
parts as well as the r e s i d u a l i n the l a s t column 
Matrix whose column contain the c o e f f i c i e n t s of the 
d i f f e r e n t content parts 
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BuildDicl-3 .m Version 1.3 

Build the detection and estimation dictionaries 

function[] = BuildDicl_3(whichdic,n,pardic_ave,savedetectest,nb_alpha, 
nb_sigma,dist_alpha,percent_sigma) 

B u i l d the d i c t i o n a r i e s f o r the estimation and detection and saves i t 
i n t o : 

INPUTS: 
whichdic: 

n: 
pardic_ave: 

savedetectest 
nb_alpha: 

nb_sigma: 

di s t _ a l p h a : 

percent_sigma: 

S t r i n g : values -> 'detection' or 'both' 
1- i f whichdic = 'detection' -> only computes the 
detection d i c t i o n a r y 
1- i f whichdic = 'both' >̂ computes the detection & 
estimation d i c t i o n a r i e s 
Length of the s i g n a l 
Average parameters of the d i f f e r e n t traces 
1- pardic_ave(l) contains the average f r a c t i o n a l 
order of the traces 
2- pardic_ave(2) contains the average s t d d e v i a t i o n 
of the traces 
Name of the detection or both d i c t i o n a r i e s 
Vector of length 2 containing the # of f r a c orders 
i n the detection and estimation d i c t i o n a r i e s 
1- nb_alpha(l): # of f r a c orders i n the detection die 
2- nb_alpha(2): # of f r a c orders i n the estimation die 
Vector of length 2 containing the # of s t d deviations 
i n the detection and estimation d i c t i o n a r i e s 
1- nb_sigma(l): # of s t d deviations i n the detection die 
2- nb_sigma(2): # of s t d deviations i n the estimation die 
Vector of length 2 containing the distances betweent 
the f r a c t i o n a l orders f o r the detection and 
estimation d i c t i o n a r i e s 
1- d i s t _ a l p h a ( l ) : f o r the detection die 
2- dist_alpha(2): f o r the estimation die 
Maximum percentage of the average s t d d e v i a t i o n added 
to the average std deviation. sigma_ave(1+/-
percent_sigma) w i l l be the f u r t h e s t std d e v i a t i o n 
allowed i n the d i c t i o n a r y 
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BuildFracGauss_dicl_2 Version 1.2 

Build a dictionary with fractional derivatives of the Gaussian 

functio n [diet,par1,par2,par3,norm_dic,alpha_dic,sigma_dic,loopsigma] = 
BuildFracGauss_dicl_2(n,alpha_ave,sigma_ave,dist_alpha,percentage, 
nb_alpha,nb_sigma) 

B u i l d a merged d i c t i o n a r y with f r a c t i o n a l d e r i v a t i v e s of gaussians 

INPUTS: 
n: 
alpha_ave: 
sigma_ave: 
d i s t _ a l p h a : 
percentage: 

nb_alpha: 
nb_sigma: 

Length of the s i g n a l 
Average alpha i n the s i g n a l 
Average sigma i n the s i g n a l 
Distance between the alphas i n the d i c t i o n a r y 
Maximum percentage of the average sigma (" frequency) 
added or subtracted from the average sigma 
Nb of alphas i n the d i c t i o n a r y 
Nb of sigmas i n the d i c t i o n a r y 

OUTPUTS: 
d i e t : 
pari,par2,par3: 
norm_dic: 
alpha_dic: 
sigma_dic: 
loopsigma: 

Name of the d i c t i o n a r y (merged d i c t i o n a r y ) 
Parameters of the d i c t i o n a r y 
Norm of the matrix of the d i c t i o n a r y 
Vector of alphas i n the d i c t i o n a r y 
Vector of sigmas i n the d i c t i o n a r y 
Flag: 
= 1 i f loop on sigma to b u i l d the d i c t i o n a r y 

i s the 1st one 
= 0 otherwise 

See also MakeFracGaussl_2.m, MakeDic.m, NormFracGauss.m, 
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chunkl_l.m Version 1.1 

Process and analyze the output of the iterative thresholding algorithm 

function[chunks_c,chunks_index,nbchunk,NbOfChunks,ind] = chunkl_l(c,tol) 

Chunks the coefficient vector c into subgroups of events 

INPUTS: 
c: 
t o l : 

OUTPUT: 
chunks_c: 

chunks_index: 

nbchunk: 

NbOfChunks: 
ind 

Coefficient vector c 
Threshold level (keep moduli of c that are larger than 
to l ) . to l is called mu in the paper. 

Ce l l array containing the different chunks of c (has 
NbOfChunks cells) 
Ce l l array containing the different chunks of indices 
of c (has NbOfChunks cells) 
Vector that keeps track of which chunk the indices 
are put in . 
Usage: nbchunk(find(ind==index)) gives the nb 
of the chunk index is in . 
# of chunks found 
Indices of the moduli of c larger than t o l 
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E s t i m a t e l _ l .m Version 1.1 

Estimate the fractional-orders of the detected events 

function[v_alpha] = Estimatel_l(s,cmat,cfold,tolchunk,distblob, 
alpha.dic,sigma_dic,loopalpha,table) 

Estimate the f r a c t i o n a l order alpha of the d i f f e r e n t events 

INPUTS: 
s: Signal analyzed 
cmat: Matrix of the c o e f f i c i e n t (output of BCRDaubechies) 
c f o l d : Vector of the folded c o e f f i c i e n t cmat (length(cfold)=n) 
tolchunk: Tolerance f o r the functi o n chunk (keep the moduli -

la r g e r than tolchunk) 
d i s t b l o b : Minimum distance between the chunks allowed ( i n GetBlob 
alpha_dic: Vector of the f r a c t i o n a l orders f o r the d i c t i o n a r y i n 

which cmat i s decomposed i n 
sigma_dic: Vector of the frequencies f o r the d i c t i o n a r y i n which 

cmat i s decomposed i n 
loopalpha: Flag: 

= 1 i f loop on alpha to b u i l d the d i c t i o n a r y i s the 1st 
= 0 otherwise 

t a b l e : Vector g i v i n g the lo c a t i o n s i n the s i g n a l of 
the c o e f f i c i e n t corresponding to a p a r t i c u l a r 
atom i n FracGauss d i c t i o n a r i e s 

OUTPUT: 
v_alpha: Vector whose nonzero en t r i e s give the 

f r a c t i o n a l order of the s i g n a l at t h i s 
p a r t i c u l a r l o c a t i o n . I t s length i s the length 
of the s i g n a l 

See also chunkl_l.m, Getblobl.l.m, TableFracGaussl_2.m, whichalphal_l 
BCRDaubechiesl_2.m 
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Foldl-l .m Version 1.1 

Reshape the output of the iterative thresholding algorithm 

f u n c t i o n [ c f o l d ] = Foldl_l(c,n,NameOfDiet,pari,par2,par3) 

Fold the vector c unto the vector c f o l d ' 

INPUTS: 
c: Vector c of length NumberOfDicts*n 
n: Length of the s i g n a l 
NameOfDiet: Name of the merged d i c t i o n a r y 
pari,par 1 ,par3: Parameters of the d i c t i o n a r y 

OUTPUT: 
c f o l d : Folded vector of length n by 1 obtained by summing the 

absolute value of the d i f f e r e n t c o e f f i c i e n t s obtained 
with the d i f f e r e n t wavelets i n NameOfDict 

See also SeisCharacl_4.m 
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Getblobl.l .m Version 1.1 

Process the output of chunkl_l .m for the analysis of the coefficient vector obtained from 
the iterative thresholding algorithm 

function[blobs_c,blobs_index,nbblob,NbOfBlobs,indblob] = 
Getblobl_l(c,chunks_c,chunks_index,nbchunk,NbOfChunks,dist) 

Get the coefficients and put them into blobs 

INPUTS: 
c: 

chunks_c: 

chunks_index: 

nbchunk: 

NbOfChunks: 
dist: 

Coefficient vector 
Ce l l array containing the different chunks of c 
(has NbOfChunks cells) 
Ce l l array containing the different chunks of 
indices of c (has NbOfChunks cells) 
Vector that keeps track of which chunk the indices 
are put in 
Usage: nbchunk(find(ind==index)) gives the nb 
of the chunk index is in . 
# of chunks found 
Minimum distance between the chunks allowed 

OUTPUTS: 
blobs_c: 

blobs_index: 

nbblob: 

NbOfBlobs: 
indblob: 

Ce l l array containing the different blobs (merged 
chunks) of c (has NbOfBlobs cells) 
Ce l l array containing the different blobs of indices 
of c (has NbOfBlobs cells) 
Vector that keeps track of which blob the indices 
are put in 
Usage: nbblob(find(ind==index)) gives the nb 
of the blob index is in . 
# of blobs found 
Indices of the entries of c which are in the 
different blobs 

See also chunkl_l.m 
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I n i t S e i s C h a r a c . m 

Give examples of parameters for the algorithm 

function[par_detect ion,par_window,par_est imation,nb_alpha,nb_sigma, 

d i s t . a l p h a , p e r c e n t _ s i g m a , p a r _ b c r _ d , p a r _ b c r _ e ] = I n i t S e i s C h a r a c ( n , r a t i o ) 

I n i t i a l i z e the d e f a u l t parameters f o r SeisCharacl_ 3 .m 

INPUTS: 

n : 

r a t i o : 

Length of the s i g n a l 

R a t i o between the i n i t i a l l e n g t h of the t r a c e s and 

the l e n g t h of the t r a c e s c u r r e n t l y analyzed 

OUTPUTS: 

p a r . d e t e c t i o n : 

par_window: 

p a r _ e s t i m a t i o n : 

p a r _ b c r ( _ d ; _ e ) : 

Vector of l e n g t h 2 c o n t a i n i n g the parameters f o r the 

d e t e c t i o n 

1- p a r _ d e t e c t i o n ( l ) : percentage of the norm 

of the c o e f f i c i e n t => p a r _ d e t e c t i o n ( l ) * m a x v a l i s the 

t h r e s h o l d l e v e l f o r the d e t e c t i o n 

2- par_detection (2 ) : minimum width of the s e t s of 

c o e f f i c i e n t s a s s o c i a t e d to one event 

Vector of l e n g t h 2 c o n t a i n i n g the parameters f o r the 

windowing 

1- par_window(l): # of sigma we want f o r h a l f the 

width of the window 

2- par_window(2): # of sigma we want f o r the width of 

the decay of the window 

Vector of l e n g t h 2 c o n t a i n i n g the parameters f o r the 

e s t i m a t i o n (see par_detect ion) 

Vector of l e n g t h 3 c o n t a i n i n g the parameters f o r the 

BCR f o r d e t e c t i o n and e s t i m a t i o n (_d or _e) 

1- p a r _ b c r ( l ) : beta 

2- par_bcr(2): i f =1 -> e x p o n e n t i a l decrease 

=0 -> l i n e a r decrease 

3- par_bcr (3): speedl f o r Block S o l v e r 

(BCRDaubechiesl_2.m) 

4- par_bcr(4): speed2 f o r Block S o l v e r 

(BCRDaubechiesl_2.m) 

See a l s o SeisCharacl_4 .m 
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9. NormFracGauss.m 
Compute the norm of the dictionary made of fractional derivatives of the Gaussian. 

function[norme] = NormFracGauss(n,dict,parl,par2,par3) 

Computes the norm of the FracGauss dictionary 

INPUTS: 
n: Length of the signal 
diet: Name Of the dictionary 
pari,par2,par3: Parameters of the dictionary 

OUTPUT: 
norme: Norm of the matrix of the dictionaray 

See also SeisCharacl_4.m, SizeOfDiet.m, FastS.m, 
FastA.m 
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10. PrecomputeDictl_2.m Version 1.2 
Precompute a table of estimation dictionaries 

function[dict_P,par1_P,par2_P,par3_P,no_P,alpha_dic_P,sigma_dic_P] 
= PrecomputeDict1_2(n,savedict,alpha_dic_P,sigma_P) 

Computes the different dictionaries for the estimation 

INPUTS 
Mandatory 
n: 
savedict: 

Optional 
alpha_dic_P: 

Length of the signal 
Name of the mat f i l e where the precomputed 
dictionary i s stored 

Vector of the different f r a c t i o n a l orders 

sigma_P Vector of different standard deviations for 
the start of the computation of the estimation 
dictionaries 

OUTPUTS 
dict_P C e l l array containing the name of the different 

estimation dictonaries corresponding to the 
different sigmas i n the vector sigma 

parl_P,par2_P,par3_P C e l l arrays: parameters of the dictionaries 
no_P Vector of the norms of the different 

dictionaries 
alpha_dic_P: Vector of the fr a c t i o n a l orders. A l l the 

fra c t i o n a l orders are i n each dictionary 
sigma_dic_P: C e l l array of the different sigma vectors 

for each dictionary 

See also MakeFracGaussl_2.nl, NormFracGauss.m, MakeDic.m, SeisCharacl_4. 
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SeisCharacl_4.m Version 1.4 
Delineate and characterize transitions from seismic events 

function[v_detection,v_alpha] = SeisCharacl_3(data,ratio.whichdic, 
savedetectest,savedict, trace_nb,par_detection,par_window, 
par_estimation,par_bcr_d,par_bcr_e,FLAG) 

Find the locations and fr a c t i o n a l orders of seismic events 

INPUTS: 
data: 
r a t i o : 

whichdic: 

savedetectest 
savedict: 
trace_nb: 

par_detection: 

par_window: 

par_estimation: 

par_bcr(_d;_e): 

Seismic data (matrix or cube) 
Ratio between the i n i t i a l length of the traces and 
the length of the traces currently analyzed 
String: values -> 'detection', 'estimation' or 'both' 
1- i f whichdic = 'detection' -> only computes the 
detection dictionary 
2- i f whichdic = 'both' -> computes the detection & 
estimation dictionaries 
Name of the detection dictionary 
Name of the precomputed estimation dictionary 
Vector of length 2 containing the # of the 1st trace 
to be processed and the # of the la s t trace to be 
processed. 
1- trace_nb(l): # of the 1st trace 
2- trace_nb(2): # of the la s t trace 
Vector of length 2 containing the parameters for the 
detection 
1- par_detection(l): percentage of the norm 
of the coefficient => par_detection(l)*maxval i s the 
threshold l e v e l for the detection 
2- par_detection(2): minimum width of the sets of 
coefficients associated to one event 
Vector of length 2 containing the parameters for the 
windowing 
1- par_window(l): # of sigma we want for half the 
width of the window 
2- par_window(2): # of sigma we want for the width of 
the decay of the window 
Vector of length 2 containing the parameters for the 
estimation (see par_detection) 
Vector of length 3 containing the parameters for the 
BCR for detection and estimation (_d or _e) 
1- par_bcr(l): beta 
2- par_bcr(2): i f =1 -> exponential decrease 

=0 -> linear decrease 
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FLAG: 

3- par_bcr(3): speedl for Block Solver 
(BCRDaubechiesl_2.m) 

4- par_bcr(4): speed2 for Block Solver 
(BCRDaubechiesl_2.m) 

= 1 -> only detection performed (default 0) 

OUTPUT: 
v_detection: 

v_alpha: 

Vector containing the locations of the events 
detected i n the Detection part 
Vector containing the f r a c t i o n a l orders of the 
d i f ferent events at t h e i r locat ion . v_alpha(k) = 
alphal means that at the locat ion k, the f r a c t i o n a l 
order i s alphal 

See also Bui ldDicl_3.m, BCRDaubechiesl_2.m, BP_Interior.m, F o l d l _ l . m , 
Windowl_3.m,Estimatel_l.m, TableFracGaussl_2.m 

12. whichalphal_l .m Version 1.1 

Give the fractional-order of a specific atom in a dictionary made with fractional derivatives 
of the Gaussian 

function[alpha_answer] = whichalphal_l( ind,n,sigma,alpha,loopalpha) 

ONLY FOR FRACGAUSS DICTIONARY! 

Gives the alpha corresponding to the index ind i n the long coef f ic ient 
vector i n the merged dict ionary made of the d i f ferent sigmas in the 
vector sigma and the di f ferent alphas i n the vector alpha 

INPUTS: 
ind: Index i n the coeff ic ient vector 
n: Length of the s ignal 
sigma: Vector of the d i f ferent sigmas for the 

merged dict ionary 
alpha: Vector of the d i f ferent alphas for the 

merged dict ionary 
loopalpha: F lag: 

= 1 i f loop on alpha to b u i l d the dict ionary 
i s the 1st one 

= 0 otherwise 

OUTPUTS: 

alpha_answer: Alpha corresponding to ind 

See also chunkl_l.m, Estimatel_l .m 
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whichsigmal_l .m Version 1.1 

Give the standard deviation of a specific atom in a dictionary made with fractional deriva
tives of the Gaussian 

function[sigma_answer_sample,sigma_answer] = whichsigmal_l(ind,n,sigma, 
alpha,loopsigma) 

ONLY FOR FRACGAUSS DICTIONARY! 
Gives the sigma corresponding to the index ind i n the long coef f ic ient 
vector i n the merged dict ionary made of the d i f ferent sigmas in the 
vector sigma and the di f ferent alphas i n the vector alpha 

INPUTS: 
ind: Index i n the coeff ic ient vector 

Length of the s ignal 
Vector of the d i f ferent sigmas for 
the merged dict ionary 
Vector of the di f ferent alphas for 
the merged dict ionary 
= 1 i f loop on sigma to b u i l d the d ic t ionary 

n: 
sigma: 

alpha: 

loopsigma: 

Flag: 

i s the 1st one 
= 0 otherwise 
= 1 of loop on sigma to b u i l d the d ic t ionary 

i s the 1st one 
= 0 otherwise 

OUTPUTS: 
sigma_answer_sample: Sigma i n # of samples 
sigma_answer: Sigma corresponding to ind 

See also chunkl_l.ni, Est imatel_l .m 
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14. Windowl_3.m Version 1.3 

Window out the detected events 

function[M,sigma_blob_sample,alpha_blob,sigma_blob,v_detection] = 
Windowl_3(s,cmat,cfold,tolchunk,distblob,alpha_dic,sigma_dic, 
loopsigma,table,halfnb_sigma_width,nb_sigma_decay) 

Window out the s ignal s 

INPUTS: 
s: 

cmat: 

c fo ld: 

tolchunk: 

d i s tb lob: 

alpha_dic: 

sigma_dic: 

loopsigma: 

table: 

halfnb_sigma_width: 

nb_sigma_decay: 

OUTPUTS: 
M: 

sigma_blob_sample: 

alpha_blob: 

sigma_blob: 

Signal we analyze 
Matrix of the coeff ic ient 
(output of BCRDaubechies) 
Vector of the folded coef f ic ient cmat 
(length(cfold)=n) 
Tolerance for the function chunk 
(keep the moduli larger than tolchunk) 
Minimum distance between the chunks allowed 
( in GetBlob.m) 
Vector of the f r a c t i o n a l orders for the 
dict ionary i n which cmat i s decomposed i n 
Vector of the frequencies for the d ic t ionary 
i n which cmat i s decomposed i n 
Flag: 
= 1 i f loop on sigma to b u i l d the dict ionary 

i s the 1st one 
= 0 otherwise 
Vector giving the locations i n the s ignal of 
the coeff ic ient corresponding to a p a r t i c u l a r 
atom i n FracGauss d ic t ionar ies 
How many times sigma for half the width of the 
1 window 
How many times sigma for the width of the 
gaussian decay 

Matrix whose columns contain the di f ferent 
windowed signals from s 
Vector containing the std deviations of 
the atoms corre lat ing the best with each 
of the windowed s ignal ( in # of samples) 
Vector containing the alphas of the atoms 
corre lat ing the best with each of the windowed 
signals 
Vector containing std deviations of the atoms 
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corre lat ing the best with each of the windowed 
s ignal 
Vector containing the locations of the events 
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