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Abstract 
In this thesis we derive, analyze and devise a method of numerical solution for a Hele-Shaw 
model of displacement flow of non-Newtonian fluids in an eccentric annulus. The physical 
problem stems from an industrial process of oil well cementing during the well's construction 
and successful mathematical modelling and solution of the problem allows for optimization of 
the process resulting in economic and environmental benefits. Here we outline derivation of 
the model based on using the long-thin geometry of the annular domain to reduce the flow 
equations to two spatial dimensions together with the Hershel-Bukley constitutive equations 
and time evolution equation. 

Therefrom we obtain analytical solution for the form of the interface in cases of concentric 
annulus and small annular eccentricity. We proceed to put the problem into its variational and 
minimization formulation from which we show the existence and uniqueness of a weak solution 
to the original model. We apply an iterative augmented Lagrangian method to obtain this 
solution together with a Flux Corrected Transport method for time evolution to arrive at a 
fully 2-D numerical simulation of the flow. We derive another model using ideas of thin-film 
and lubrication flows which allows for a quicker prediction of the displacement flow type. We 
compare the predictions for the flow type based on the lubrication model to those obtained 
using the 2-D flow simulations. We conclude with a discussion on the significance of results 
achieved in this work together with relative merits and limitations of the derived models and 
solutions. 
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Chapter 1 
I n t r o d u c t i o n 

1.1 Process description 

In construction of oil and gas wells it is necessary to cement a series of steel casings into the well 

as the depth increases. This is done both to support the wellbore and to provide zonal isolation 

throughout the length of the well, ensuring a hydraulic seal on the outside of the casing. The 

primary cementing process proceeds as follows. After a new section of the well is drilled, the 

drill pipe is removed from the wellbore, leaving the drilling mud behind. A section of the steel 

casing is then inserted into the hole, leaving a gap of ~2 cm between the outside of the casing 

and the rock, i.e. the annulus. Although centralizers are sometimes fitted to the outside of the 

casing to prevent the steel tubing from slumping to the lower side of the wellbore, it is very 

common that this annular gap is eccentred. After the casing is in place, a sequence of fluids 

is pumped down the inside of the tubing, reaching the bottom of the well and coming back 

up through the annular gap. Typically, a wash or spacer fluid is pumped first, displacing the 

drilling mud left over both on the inside of the tubing and outside in the annulus, followed by 

one or more cement slurries. Drilling mud follows the final cement slurry pumped and circula

tion is stopped with a few meters of cement left at the bottom inside the casing. The cement is 

then allowed to set. Finally the drilling resumes through the remaining part of cement inside 

the casing and further into the underlying rock. 

A successful cement job results in removal of mud and spacer fluid from the annulus by the 

cement slurry. Unfortunately, mud is sometimes left behind in parts of the annulus and as the 
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Chapter 1. Introduction 

cement sets, water is removed from it, producing a porous channel along which liquids and 

gasses from the surrounding rock formations can migrate upwards. This may result in negative 

safety and environmental consequences as well as loss of productivity. To rectify the problem, 

expensive squeeze cement jobs are required. 

A primary cement job design, in the context of this thesis, consists of a sequence of fluids, 

volumes and flow rates, with specified fluid densities and rheologies. To aid annular displace

ment during cementing, the rheologies and densities of the spacer fluid and the cement slurry can 

be modified within the constraints of maintaining well security. The pump schedule regulating 

the rate of flow through the gap can also be varied. 

1.2 Ex i s t ing literature review 

A n overview of primary cementing and a description of common industrial practices used is 

presented in [18, 41]. Methodology for cementation described there is primarily based on expe

rience and several "rules of thumb" for improving the mud displacement are given, supported 

by physical considerations. Important feature of the displacement flow such as possible presence 

of a mud channel on the narrow side of the annulus has been identified and examined in [30], 

where a hydraulic approach is adopted and in [19, 20] together with field evidence. Techniques 

derived from field experience and supported by large-scale experiments for detection and re

moval of the mud channels and unyielded cement slurries are outlined in [3, 36, 37]. 

Hydraulic reasoning has been used in the majority of the industrial literature on the subject, 

leading to several systems of design rules for a successful cementing job as in [23, 27, 28, 38]. 

Generally, these rules are applicable to near-vertical wells and state that the flow must be suf

ficiently high to avoid a mud channel on the narrow side of the annulus and there should be 

a positive gradient of Theological parameters and densities (so that each fluid generates higher 

factional pressure at the wall and is heavier than its predecessor). One such system of rules 

currently used in well construction is the W E L L C L E A N system, developed by Schlumberger-
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Chapter 1. Introduction 

Dowell, [8, 14, 18] with examples of application given in [6, 25]. 

Whilst these approaches are based on a number of physical truths and have been successfully 

applied to a variety of cementing jobs, their predictions are generally conservative and they 

experience problems with predicting flows in highly deviated or horizontal wellbores where new 

problems arise [9, 24]. More comprehensive and detailed solutions fully modelling the flow in 

3-D have been computed recently [2, 44]. It is noted however that computational requirements 

for simulating 3-D flow over the scale of the wellbore are prohibitive and only an annular cross-

section of the domain is usually considered. 

Here we follow the derivation of the model given in [15] that allows for generality in terms 

of well geometry and a level of detail that the more restrictive hydraulic design rules do not 

provide. At the same time it makes sufficient number of justified simplifications to reduce the 

problem to 2-D, thus greatly reducing the computational load required to model displacements 

over the scale of the wellbore. The general idea is based on averaging in the radial direction 

reducing the problem to 2-D, in axial and azimuthal, directions in a manner similar to that 

applied to computing flows in Hele-Shaw cells. The first appearance of this idea, in fact deriv

ing from a porous media flow analogy is in [29]. The current work is based on [15], which has 

evolved from [4, 5, 10, 13]. Limited experimental validation of the approach is given in [42, 43]. 

The method of numerical solution for the resulting flow equations used in [15] requires a few 

assumptions and simplifications additional to those made in derivation of the model. This 

is prompted by the requirements of speed and robustness for the flow simulator so that fre

quent, quick and trouble-free re-runs of cementing displacement simulations can be made and 

a near-optimal cementing job design can be found. Here however, we attempt to solve the flow 

equations without making any additional assumptions or simplifications to the model beyond 

putting it into variational formulation. We accomplish this by using the augmented Lagrangian 

method for solution of variational elliptic equations, outlined in [12, 17]. This method has been 

applied successfully in a simpler situation of a one Bingham fluid flow in an eccentric annular 
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Chapter 1. Introduction 

cross-section in [22]. 

Later in this thesis we derive a simplified model for the flow, allowing for quick determina

tion of the displacement type based on lubrication-type assumptions. Essentially we assume 

the displacing fluid to be "shooting up" on the wide side creating an elongated interface and 

resulting in several simplifications to the flow equations. By looking at whether the interface 

elongates or not we conclude whether or nor the given situation would result in an unstable or 

stable displacement. This type of approach is broadly similar to examination of fingering effects 

in a non-Newtonian Hele-Shaw displacement flow, which has been studied recently in [26, 7]. It 

should be noted however that in the case of an eccentric annulus we. have an additional effect 

of increasing wall friction towards the narrow side when compared to a concentric annulus, or 

equivalently to an Hele-Shaw cell with parallel plates. Although not studied extensively in this 

thesis, the effect of this seems to prevent fingering at the interface in most situations causing the 

flow instabilities to manifest themselves instead by creating one long "finger" at the wide side of 

the annulus. This comment also applies when comparing the lubrication model presented here 

to the earlier works on interface instabilities in Hele-Shaw type geometries such as [31, 39, 40] 

or to interface instabilities for porous media displacements [21, 32, 33, 34, 35]. Also here we 

consider mostly "stable" displacements, whereas the Hele-Shaw and porous media flow studies 

listed focus on unstable displacements. 

1.3 Outline of the thesis 

In this thesis we analyze and obtain solutions for a model of the laminar displacement flow of 

Herschel-Bukley fluids in an eccentric annulus. The outline of the thesis is as follows. 

In Chapter 2 we proceed to describe the derivation of the model closely following work previ

ously done in this area. Classical dimensional scaling together with averaging across the annular 

gap analogous to that done in a Hele-Shaw displacement model, lead to a system of equations in 

two spatial dimensions. These consist of a coupled system of linear advection equations for the 
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fluid concentration and a nonlinear Poisson equation for the stream function. Thereafter, we 

obtain some preliminary analytic results following directly from the formulation of the model 

- such as expressions for the steady-state interface for concentric annulus and a perturbation 

solution for small eccentricity. 

In Chapter 3 we show existence and uniqueness of the weak solution to the nonlinear stream 

function equation. We accomplish this by putting the problem in variational formulation, con

verting it to a minimization problem and using standard results of functional analysis. Then 

we apply the augmented Lagrangian method to obtain a solution to the minimization problem 

through an iterative algorithm. We simplify the steps of the resulting algorithm and state its 

convergence properties. 

In Chapter 4 we detail the discretisation and numerical solution of the equations derived in 

the previous chapter. We examine convergence of the algorithm and compare the results with 

analytic and perturbation solutions given in Chapter 2. 

In Chapter 5 we derive a simplified model for evolution of the interface using methods ap

plied to lubrication and thin-film flows. In this way we effectively reduce the process dynamics 

to a one-dimensional model. It allows us to give a criterion for the type of fluid displacement 

occurring without actually simulating the entire flow. We give some results based on this model 

and compare them with those obtained from the 2-D flow simulation. 

5 



Chapter 2 
M o d e l l i n g o f t h e f l o w 

A local cylindrical coordinate system (r, 0, £) is used to describe the well geometry; £ measures 

distance along the central axis of the casing r = 0, (i.e. £ is the measured depth, but measured 

upwards from the bottom of the well). Wells are typically inclined to the vertical and the 

inclination angle is denoted /?(£)• The local cross-section of the well, outside the casing, is 

assumed to be that of an eccentric annulus, with inner radius f j ( £ ) , equal to the outer radius 

of the casing and outer radius r 0 (£) equal to the inner radius of the hole (or previous casing). 

At each depth £, the mean radius r a (£) and the mean half-gap width d(£) are denned by: 

ra(0 = \[ro(i) + m)}, d(£) = \[ro(i)-h(0}- (2.1) 

As well as inner and outer radii, the displacement e(£), of the two centres of the two cylinders 

is given. The following three geometrical assumptions are made: (i) that the cylinders do not 

touch, (e(£) < 2ci(£)); (ii) all variations in the cross-section geometry and inclination, axially 

along the wellbore, are slow; (iii) the weight of the casing acts in such a way that the narrow 

side of the annulus will be found on the lower side of the well. 

The flow is assumed to be laminar and incompressible. The Navier-Stokes equations together 
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Figure 2.1: Schematic picture and a cross-section of the well. 

with the incompressiblilty condition in cylindrical coordinates are 

P 
lot j 

I d , . 1 d . d 

1 d... . 1 d . d . f e e c9p 

v = 

at 

r 2 c9r 

1 (9 

1 dp 

, 1 0 . 0 . dp 

_ 1 <9 r _ . 1 dv dw 
rdr 1' r d6 Qf 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where u = (u,v,w) is the velocity, p is the pressure and g = (gr,go,gg) is acceleration due 

to gravity. We now assume that a sequence of K fluids is pumped around the flow path 

and concentration of each individual fluid component is denoted ck, which is modelled by an 

advection-diffusion equation: 

~o4  + ~r ~dr[™Cfcl +  + ~^Ck^ = V • [Dk(c,u)Vck], (2.6) 
rd6l dC 

where 2~2k=i Cfc = 1; C = ( c i , c 2 , . . , c#) a n d the rheologica l parameters together w i t h the dens i ty 

d e p e n d u p o n the concent ra t ions o f f luids present. 
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Chapter 2. Modelling of the flow 

2.1 Non-dimensionalisation 

Here we non-dimensionalize and scale the equations above with the aim of deriving a two-

dimensional model in azimuthal and axial directions. We eventually eliminate the radial de

pendency by averaging across the annular gap. 

Scalings: Let the axial coordinate of the top of the well be £ = £<z with the bottom of the 

well at £ = t^bh and thus length of the well in dimensional units Z = t\tz — tbh- Then define 

1 f&z , „ i ritz 
rl = ^ ra(0 d£, 5* = -r I 5(0 d£. (2.7) 

being the average mean radius and global measure of narrowness of the annulus respectively. 

Rescale the axial and azimuthal coordinates £ and <fi in a natural way: 7 

£ = ^ # , </>=-• (2-8) nr* 7r 

Also, in each cross-section define local average radius, r a (£ ) , local annulus eccentricity, e(£), 

and local measure of the narrowness of annulus, <5(£) by: 

«0 = - % r . ( 0 - ^ , ,(9 = i | . (2.9) 
ra(0 ra 2d(£) 

Then, the centreline of the annular gap is at r = ra(£)rc(c/>, £), inner wall at r = n (</>,£) = 

r a ( O M 0 , O - S(Oh((p,0] and outer wall at r = r*(ci,0 = ra(£)[rc(<M) + <5(OM0,£)], w h e r e 

for small <5(£) the following expressions define rc(cp,c;) and /i(</>,£): 

rc(<M) ~ l + e ^ ^ c o s T T ^ + t e ^ ^ ^ s i n T r ^ + O ^ 3 ) , (2.10) 

/i(0,O ~ l + e(Ocos7r0-[e(O]25(Osin7r</» + [e(Oc5(Osin7r0]2 • 

+0(<53). (2.11) 

Assuming sufficient narrowness and-uniformity of the annular gap so <5(£) ~ S* <C 1 we discard 

terms 0(<5(£)) above, taking: 

• r c ( 0 , £ ) = l , ^ , O = l + e(Ocos7r0. (2.12) 



Chapter 2. Modelling of the flow-

Now scale the radial coordinate relative to distance to the centerline of the gap, as follows: 

r-ra(Z)rc(<l>,Z) r - ra(g) , , 

y = T . = — ^ 7 — I 2 - 1 3 ) 

Thus the outer and inner walls are given by: 

v = ± m ( ) = ± m i M ^ h ^ . p.14) 

To scale the velocities we define a typical cross-section of the annulus A* = 47r<5*[f*]2 and a 

scale for the flow rate Q* = m.a.-x.^Qpump(i). Then, the axial and azimuthal velocities are scaled 

with w* = Q*/A* and radial velocities are scaled with W*5*/-K. Finally, define dimensionless 

flow rate and dimensionless time by 

t = ^i, = (2.15) 
irr* . Q* 

To scale the fluid properties, pressure and deviatoric stress we note that the characteristic scale 

for the rate of strain is 7 * : 

7* = ^ , • (2-16) 

and we use this to define scales for shear stress, viscosity and pressure, as follows: 

f* = m F [ f f c , y + « f c t f T * ] . A* = T ; . P*  =  Ijr> (2-17) 
fc <y* 0 

where for each fluid k f^y is the yield stress, kk is the consistency, rik) is the power law index and 

each fluid is assumed to obey Herschel-Bulkley constitutive laws. A l l shear stress components 

are scaled with f* and dimensionless rheological parameters are defined by: 

Tk,Y=T*TktY, kk(j*)nk = ft*Kk, nk = nk. (2.18) 

The fluid densities are scaled with p*\ 

p* = max[pfc]. (2.19) 
fc 

Scaled equations: Applying the scalings above to the momentum equations (2.2 - 2.4) and 

neglecting terms O(^jr) (where 6*/ir is the ratio of radial to azimuthal length-scales and is 

9 



Chapter 2. Modelling of the How 

assumed to be small): 

dp 
dy' 
1 dp d psin.3 sin ircf) 

st* 
_ _dp d _ pcosd 

U ~ dt + dyT*v St* ' 

(2.20) 

(2.21) 

(2.22) 

where St* is the Stokes number: 

st* = ^ (2.23) 
p*g*[r*6*]2 p*g*f*5*' 

The leading order scaled momentum equations above describe a bidirectional shear flow through 

a slot of width 2H((f),£). Now, the leading order expressions for rates of strain are: 

dw „,5* (2.24) 

where n is the effective viscosity. Substituting this into the scaled equations above and assuming 

that the velocity field is approximated by a slot velocity field s = (vs,ws) symmetric about the 

centreline of the gap we obtain: 

dvs d_ 
dy 
d_ 

dy 

dy 
dws 

dy 

_ 1 dp p sin 3 sin 7r</> 

Tad~4> ST* ' 
_ dp p cos 3 

bX+ St* " 

(2.25) 

(2.26) 

where p = p((j>,€,t) is now independent of the radial coordinate. Scaling the incompressibility 

condition (2.5) and retaining leading order terms again: 

du . 1 dvs . dws 

+ = 0. (2.27) 
dy ra d(f) d£ 

To eliminate the radial velocity u we average across the gap width and use the no-slip condition 

at the walls to give: 
f) Ft 

(2.28) £[ lW| + | [ r . m | - 0 , 

where 
1 fH 1 rH 

= #y v*dv> "tt't'Q= itJQ
 W s d y >  ( 2-29 )  

10 



Chapter 2. Modelling of the flow 

are the slot velocities averaged across the gap. Thus, to satisfy (2.28), we introduce a stream 

function ^ as in an incompressible 2-D flow: 

raHw = 
9 0 ' 

u- ^ (2.30) 

Next, we scale the concentration advection equation (2.6), retain the leading order terms and 

integrate through the gap as above. Noting that the rescaled diffusion terms appearing on the 

right hand side are typically of a negligible magnitude for the dimensions of cementing jobs 

considered, we obtain 

[Hrack] + [Hv cfc] + [Hraw cfc] = 0, (2.31) 

where Cfc denotes the gap-averaged fluid concentration. 

Finally, using the rheology and density scalings above we rescale and reduce the consitutive 

laws: 

T<t>y = T]~bS ^ | r ' > 

T I Y = V 
dws 

dy 
\T\ > Ty(c) 

7 = 0 |r| < ry (c ) , 

(2.32) 

(2.33) 

(2.34) 

dv3 + dws where |r | = [T£, + r 2 / / 2 , 7 = 

the fluid is yielded, the effective viscosity 77 is: 

1/2 
is rate of strain and in the regions where 

77 = 77(0,7) = K ( C ) 7 ( " ( c ) - 1 ) + 
TY(C) 

(2.35) 

2.2 Model Derivation 

By integrating (2.25) & (2.26) three times with respect to y, to extract slot-averaged velocities 

we get: 

1 dp p sin 8 sin 7rc/> 

w 

ra d<f> 

dp p cos 8 

St* 

H r H 

H rH 

H Jo ly 
y ̂  dydy, 

H fo jy v(y) 
dydy, 

(2.36) 

(2.37) 

11 



Chapter 2. Modelling of the Bow-

Note that from (2.20) p is independent of g, and that we have assumed that concentration does 

not vary across that gap. From this it follows that the vector of averaged velocities (v,w) is 

parallel in the (</>,£) plane to the vector G: 

N ( N N N _ ( 1 dp psmBsimrcf) dp pcos8\ 

G = (G+,Ge)=(--^ + ^ . - - - — - J , (2.38) 

which is the vector of modified pressure gradients. 

Hydrau l i c assumption We have from the definition of G, scaled consitutive laws and the 

reduced scaled momentum equations (2.25) &; (2.26): 

| - T = - G , (2.39) 

where r = ( r^ , r^y) satisfies (2.32 - 2.34). This is an equation for a Poiseuille flow between two 

plates distance 2H apart. By integrating this with respect to y, using the no-slip conditions at 

the walls and substituting from the constitutive assumptions, we obtain the following relation 

between the modified pressure gradient G and the rate of flow through the slot H\y2 + I Z J 2 ] 1 / 2 = 

F(G): 

' 0 HG < Ty, 

(HG-Ty)(\m + l]HG + TY) \HG - Ty F(G) = { 

K 

(2.40) 
HG > Ty, 

G2~(m + l)(m + 2) 

where n = 1/m. Now to simplify the notation we introduce the following modified gradient 

and divergence operators: 

V o - f - i - ^ ^] V a - 1 • ^ 
MS)d<t>'dU' ' a * ra(0 dct> ' 6T 

for arbitrary q and q = (q^, q{). We note that H\s\ = | V a * | , so that (2.40) becomes | V a * | = 

F(G). Substituting back into (2.36) & (2.37) we have'when | V a * | ^ 0: • 

_tm I aw 

ZJL _ G± KSS _ <h ( 2 . 4 1 ) | V a * | G ' | V a * | G 

From this we can derive a formulation for the pressure field or the stream function. The pressure 

field is however indeterminate in the unyielded regions where IVa^l = 0, so we proceed with 

deriving the stream function formulation. 

12 



Chapter 2. Modelling of the flow 

Stream function formulation To make explicit the effects of the yield stress on the flow 

and avoid singularity in equations for the stream function at | V a * | = 0 we define x by: 

Ty 
X = G 

H 

substituting into (2.41) for G in terms of x-

dp rapsinBsinir<f> _ rQ(x(|V a*|) + r y / H ) d V 
-raGcj, 

d<t> St* |Va* | 
dp pcosd x( |V 0 *|) + TY/H 1 d% 

(2.42) 

(2.43) 

(2.44) 
d£ St* | V a * | rad<l>' 

valid in the regions where the fluid is yielded. Cross-differentiating to eliminate the pressure 

dependence we finally obtain: 

Va-S = - / , (cj),£) £ (0,1) x (0,Z), (2.45) 

where 

S = (raG^-raGf) = ra 

x(lVq*!) + T y / # 
|Va* | 

raTY 
H ' 

and / is given by: 

| v a * | = o | S | < 

rap(c) cos 3 rap(c) sin 3 sin ir(f) 

rqTy 

H ' 

(2.46) 

(2.47) 

(2.48) 
S t * ' St* 

Finally, substituting for % into the expression for F(G) above we obtain a relation between x 

and I V Q ^ I if required: 

|Va* | = < 
0 

,m+l 

[ Km(m + 2) (x + ry/Hf X + 
(m + 2 ) T y 

(m+l)H\ 

X < 0 , 

x>o. 
(2.49) 

Boundary Condi t ions On the wide and narrow side we have: 

* ( < U , t ) = o, ¥(U,t) = Q(t), (2.50) 

the value of stream function on wide side is taken to be 0 arbitrarily and the condition on the 

narrow side arises thus from the incompressibility of the fluids pumped. For conditions on the 

13 



Chapter 2. Modelling of the flow 

top and the bottom ends of the annulus, we assume the flow there is in the axial direction only, 

so 
d$> 
— (4>,Z,t)=Q, (0,0,0 = 0. (2.51) 

The procedure for this concentration-dependent model is to calculate the stream function 

from the original concentration function by solving the equations above, then extract the slot-

averaged velocities by differentiating the stream function. Thereafter we compute the evolution 

of the concentration from the advection equation (2.31). 

Immiscible fluids model Instead of the concentration-dependent model above we can also 

consider the displacement as that of immiscible fluids without surface tension, i.e. since the 

concentrations are simply advected by (2.31). We show in Chapter 3 that both these models 

lead to the same variational formulation. 

Thus, without loss of generality, if we consider a two fluid displacement (with fluid 1 dis

placing and fluid 2 being displaced) and following identical steps as in the above concentration-

dependent model we obtain: 

V A • S i = 0, for x e t t i (2.52) 

V A • S2 = 0, for x € fi2, (2.53) 

with Si and S2 defined as in (2.46- 2.47) in each of the fluids and £li,£l2 are the regions 

where correspondingly fluid 1 and fluid 2 is present. Denote the interface between two fluids by 

£ = h(<f>, t). Then we require the pressure p and the stream function $ to be continuous across 

the interface, or 

b]? = 0; ml = 0, ' (2.54) 

where denotes the difference in q between fluid 2 and fluid 1 across the interface. The 

kinematic condition at the interface gives 

dh v dh _ ,n . 
dt rad<f> 
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Chapter 2. Modelling of the flow 

which is the equation for the advection of the interface, replacing (2.31). From the continuity 

of p and ^ we have that their directional derivative in the direction tangential to the interface 

t = (1, § | ) is continuous, so: 

[t • V ap]? = 

[t • V a * ] ? = 

1 dp dpdh 
ra d<f> <9£ d<j> 

i_a* av_dh 
ra d<p d£ d(f> 

= 0 

0. 

Substituting for components of pressure gradient from (2.43 & 2.44) we obtain: 
|2 X + ry/H 9* _ ]_d^_dh 

<3£ ra d(j> d(j> 
p sin 0 sin 7r</> p cos 0 dh 0 

(2.56) 

(2.57) 

(2.58) 
| V a * | J \d£ rad4>d4>) ' \ St* St* d4>, 

as the pressure continuity condition (2.56) and note that (2.57) is equivalent to the continuity 

of the normal component of velocity. The latter is required for (2.55) to be valid. 

2.3 Preliminary Results 

It appears that obtaining a solution for the above system of equations for a general case will 

require use of numerical methods - for example by applying the augmented Lagrangian method 

to a finite volume approximation for the weak formulation of the problem as we have done in 

Chapter 3. However, some analytical results for simple cases can be derived and from these, the 

trends of varying model parameters can be deduced. These results can aid both in validating 

the numerical solutions for the general case and provide some insight on the qualitative physical 

level as to the behavior of the flow. 

2.3.1 Properties of x 

The relation between the modified pressure gradient and the rate of flow from (2.49) is given 

implicitly by 

X < 0 , 0 

Ax m+l m + 2 „ 
m + l 

X > 0 , 
(2.59) 

where x — G — ry /H with G being the modulus of the modified pressure gradient defined as 

above and 

(2.60) 
rrm+2 

A = - £ > 0; Km(m + 2) 
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Chapter 2. Modelling of the flow 

1. Asymptotic behavior in the yielded region % > 0: 

As | V a * | - 0, I V a * | ~ ^ 1 X ~ I V ^ I 1 / ^ 1 ) 
- D y 771 T J- / 

As | V a * H oo, | V a * | ~ A x

m =^xHV a t f | 1 / r n (2.61) 

2. Derivatives with respect to | V a * | for x > 0: 

dX H V a * 

0 | V a * | V 

3. Bounds for x 

- l 
> 0 (2.62) 

* A { ^ ) X M > ( 2 - 6 3 ) 

as (x + )B)/(X + B) is decreasing and bounded by (m + 2)/(m + 1). Thus 

/ m + i \ V™ 

| v < , , t | 1 " " ( 2 ' 6 4 ) 

Also, for the upper bound we have: 

A m+l 

| V Q * | > • (2.65) 
X + 5 

f Axm+1/(2B) x<B, 
> I . (2.66) 

[ A X

m / 2 x > B, 

Rearranging, we obtain: 

( ^ i / O + i ) | v ^ | 1 / ( m + 1 ) \va^\<ABm/2, 
X < < (2.67) I (I)17™ | V a * | 1 / ? n | V 0 * | > ABm/2, 

4. Concentric annulus 

In case of a concentric annulus with eccentricity e = 0 and constant unit flow rate Q(t) = 1 

we have X = x(li 1) satisfies: 

16 



Chapter 2. Modelling of the Bow 

in the yielded region. Also differentiating (2.59) with respect to | V a ^ | and H we obtain, 

correspondingly: 

x'(M) = dx 
•(1,1) = 

K T O ( m + 2 ) ( X ( l , l ) + T y ) 3 

dx 
m X ( l , l ) m ( x ( l , I ) 2 + 2^±f X ( l , l)ry + ^ r Y ) 

(m + 2)(x( l , l ) + T y ) 3 • 
XH(U) - d H M - T V m ( x ( 1 ) 1 ) 2 + 2 ^ ± 2 x ( 1 ) 1 ) 7 y + ^ T 2 r 

(2.69) 

x ' ( i , i ) x m ( i , i ) 
Km (2.70) 

thus giving the relation 

X H ( I , I ) - TV = -

which will be used later. 

2.3.2 Solution for concentric annulus j 

Here we obtain a solution for the case of zero eccentricity and constant rate of flow, so e = 0, 

H = 1 and without loss of generality Q(t) = 1. We consider a problem with only two fluids and 

adopt the immiscible fluids model with continuity conditions at the interface described in (2.55 

- 2.58). First, introduce frame of reference (z,<j>) where z == £ — t is moving with the average 

speed of the flow. Then, writing z = g((j>,t) = h(</>,t) — t for the position of the interface, the 

continuity conditions (2.56 - 2.58) become: 

|2 
d$ d§_dg_ 
d<j) dz d<f> 

= 0 

X + TY 
( h D — 

dz (dcp 'dcp + 
p sin 3 sin ir(j) p cos 3 dg 

= 0, 

(2.71) 

(2.72) 
J V a ( * + 0)iy \dz v<90 'd<t>J \ St* St* d<f>, 

at the interface, where $ = \& — </> is the stream function in the moving coordinates. Now, 

$ = 0 clearly satisfies the first interface condition above. It also satisfies the field equations as 

S =  X^V^^'TY V a \ I / is then constant in each fluid. The second interface condition is satisfied 

if 
pcos/31 

X ( l ) + r y + 
St* 

] 2dg psin 3 

. 1 0 0 St* 
sin(7r</>), (2.73) 

which gives the shape of the interface. So, for a vertical well we have 3 = 0 giving g constant 

in (f>, so the steady-state interface is horizontal as we would expect. For a horizontal well, 
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Chapter 2. Modelling of the flow 

integrating the equation above we obtain 

# ) = - , t o , , : " h

 l 2cos(7r0) (+const.) (2.74) i w?. 
*sr [X(l) + Ty\j 

Note that if the two fluids have identical rheologies in the case of horizontal well we can only 

obtain a steady state if they also have identical densities, i.e. are the same fluid from the point 

of view of our model, in which case the position of the interface is essentially undefined. One 

other case we may consider is that of an inclined well with two fluids with same rheologies but 

different densities. Then, the steady-state interface is given by 

g((f,) = -itan/3cos(7rtA) (2.75) 
7T 

Remark In Chapter 3 we show that both the concentration-based model and the immiscible 

fluids model have the same weak formulation and that formulation has a unique solution. Thus, 

since we have showed above that $ = 0 satisfies the equations of the immiscible fluids model 

for a concentric annulus, we can conclude that it is also a unique solution and would satisfy the 

corresponding concentration formulation, i.e. without any intermediate concentrations. 

2.3.3 Perturbation Solution For Small Eccentricity 

Here we use standard perturbation methods to find the stream functions and shape of the 

steady-state interface in case of small eccentricity 0 < e << 1 of the annulus. As in the case 

above of a concentric annulus, we assume a constant flow-rate Q(t) = 1 as well as small constant 

eccentricity e « 1 and constant mean radius ra — 1 (thus we have V a = V ) . Also, for the 

sake of simplicity we assume the top and bottom of the well are at z = ±L. 

We assume that the unperturbed steady-state interface is z = ego((p) in the moving frame 

of reference with go((f>) = 0(1). Note that from the interface condition (2.73) this requires 

d<f> [St*X(l) + St*TY + p cos 0\\ W 

so we need either a nearly-vertical well with the angle of inclination (3 small, or the rheological 

difference much greater than the density difference between the two fluids, to support the 

nearly-azimuthal interface. 
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Field Equations From the above we have that the concentric (unperturbed) steady state 

solution is given by <I> = 0, g = ego(4>), where $ is the stream function in the moving frame 

and z = g(4>) is the position of the interface in the moving frame of reference. In case of small 

eccentricity we seek a perturbed solution of the form 

$(z,c/>) = 0 + e$i(z,</>) + e 2$2{z,<t>) + -

g(<j)) = eg0{4)) + egi{<f>) + e2 g2{(j>) + ... 

From this we obtain: 

V * = V$ + V$* = (1 + eCOS(TT0) + e$i^ + e$i,z + •••), 

where <£* = </!> + (e/ir) sin7r0. Using the binomial expansion: , 

|V$ + V$*| ~ 1 + e(cos(-K(f>) + + 0(e2) 

giving 

X ( | V $ + V**| , H) + ry/H ~ 1) + e(cos(7r</>) + $i,^)x'(l, 1) 

+ecos(7r</))xH(l, 1) + TY(1 — ecos(ir(j))) + 0(e2). 

Thus 

X + TY/H 

|V$ +V$* 
(V$ + V<T) ~ ([x(l, 1) + TV] + e{(cos7T0 + 1) 

+ COS7T(/>XH(1,1) -TycosTT^} , [x(l,l)+ r y ] $ i i 2 ) . 

Substituting into the field equations, at 0(e) in each fluid we obtain 

X ' ( l , + (x(l, 1) + 7 Y ) $ M * = (x'(l, 1) + XH(h 1) - Ty)7rsin7f(/> 

in each of the fluid domains Q\, Q2. 

(2.77) 

(2.78) 

(2.79) 

(2.80) 

(2.81) 

(2.82) 

(2.83) 

Boundary and Interface conditions At <f> = 0,1 we have $ i = 0 by the choice of \&*. At 

z = ± L we have = 0. The continuity conditions at the interface become: 
l 2 

+ e$i = 0 

(X + 7 V ) ( * 1 , 2 

0(0o + S i h , psin/3sin7rc/) pcos/3 d(go + 51) 
.90 5t* St* <9(/> Ji 

(2.84) 

(2.85) 
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on z = 0. Note that in deriving (2.84) and (2.85) we linearize both about about the same 

solution and with respect to the unperturbed domains Q i , f22- Note that from the interface 

advection equation it follows that ^ = 0 only if $i^(c/>, 0) = 0 in both fluids. Thus for steady 

states we impose $(0,0) = 0. 

Solut ion of the F i e ld Equations First homogenize the field equation (2.83) by letting 

U(4>,z) = c h ( < M + - (1 - **(M)-M sinTr^ (2.86) 
V X (1,1) / 

Then we have 

x ' ( M ) 
in each of the domains (0,1) x (-L',0) and (0,1) x (0,L). The boundary conditions are 

Xtf ( l , l ) sin7rc/> 

(2.87) 

(2.88) 

(2.89) 

(2.90) 

xiu) r — * { 2 m ) 

in top and bottom domains correspondingly (with a2 = (x(l,l) + Ty ) /x ' ( l , 1) > 0). Using 

trigonometric formulas to simplify and substituting for <&j: 

[7(0, z) = (7(1,2) =0 

Uz{<t>,-L) = Uz{<t>,L)=G. 

Seeking a separable solution in each of the domains we obtain by standard methods 

Ufa z)=(l- X H { 1

I \ ] ) ~ T Y ) (coshaz T tanhaLsinhaz) ^ 

§L(4>,z)=[l-
XH(1,1) - Ty 

-1 + 
cosh a (X T z)\ sin7rc/> 

(2.92) 
X ' ( l , l ) J V coshaL y 7T 

Substituting this into the second continuity condition at the interface (2.85) and integrating: 

:(X(1,1) + TY) ( l - X h ( ^ ; y ) t a n h o L ] ' 
9o + 9i = 

7T" x ( i , i ) + ^y + ^ ] 1 

[psin/?]2 

• COS 7Tc/> 

• COS 7TC 
[St*x(l,l) + S t *Ty + pcos/?]2 

Note, however, that from (2.76) the last term is O(e), and so as g\ is O(l) we have 

:(X(1,1) + TY) ( l - ^ ( ' j ^ ) t a n h a i ' 

(2.93) 

9i -90 + 
X ( l , l ) + T y + ^ 

20 
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Chapter 2. Modelling of the flow 

using the relation (2.70) between x ' ( l , 1) and XH(1> 1) to simplify: 

9i -90 + 
=F(X(1,1) + TY) ( l + ^ ^ ) t a n h a J ^ 

X ( l , l ) + ry + ^ l2 - COS 7T<j) 

Jl 

with the perturbed stream function in the moving frame of reference 

$i(<f>,z)= 1 + x
m ( M ) 

Km - 1 + 
cosha(L=f z)\ sinrrci 

cosh OLL TT 

and as L —> oo-

9i 

$ i ( < M 

-90 + 

1 + 

T(X(1,1) + 7 V ) ( 1 - ^ ) ] " 

7T X ( l , l ) + r y + ^ 

x m ( i , i ) 

2 
J 1 

(—1 + cosh az ± sinh az 

- COS 7T(/) 

sinTf(/) 

(2.95) 

(2.96) 

(2.97) 

(2.98) 

In Figs. 2.2-2.4 we show main trends of these solutions, as we vary key physical parameters. 

In Fig. 2.2 we vary density of the displaced fluid pi and fix all other parameters at the values 

given. In Fig. 2.3 we vary the yield stress T y 2 and in Fig. 2.4 the consistency k2 of the displaced 

fluid. In each case the more elongated perturbation function g\ corresponds to the greater value 

of the varied parameter as we would expect. Note that for perturbation solution we require 

g\ = O(l ) << 1/e. A contour plot of the perturbed stream function $\(<j>,z) in the moving 

frame of reference is given in Fig. 2.5. 
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-10.0 
Figure 2.2: Plots of the interface perturbation function g\ for varying density of the displaced 
fluid p2- Least elongated to most elongated: p2 — 0.5, p2 = 0.6, p2 = 0.7, p2 = 0.8, p2 = 0.9, 
p2 = 1.0, p2 = 1.1. Other parameters fixed at: k\ = 1.0; fc2 = 0.9; m\ = m2 = 1.1; ryj = 1.0; 
7V2 = 0.9; pi = 1; /? = 0; L = 10. 

Cn 

-10.0 
Figure 2.3: Plots of the interface perturbation function g\ for varying yield stress of the displaced 
fluid Tyi- Least elongated to most elongated: T Y 2 = 0.6, Ty2 = 0.7, ry2 = 0.8, T Y 2 = 0.9, 
7V2 = 1.0, TYI = 1-1- Other parameters fixed at: &i = 1.0; k2 = 0.9; m i = mo, = 1.1; r y i = 1.0; 
Pi = 1; P2 = 0.9; /? = 0; L = 10. 
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Cn 

- 1 0 . 0 

Figure 2.4: Plots of the interface perturbation function g\ for varying consistency of the dis
placed fluid k2. Least elongated to most elongated: k2 = 0.6, k2 = 0.7, k2 = 0.8, k2 = 0.9, 
k2 = 1.0, k2 = 1.1. Other parameters fixed at: k\ = 0.9; m i = m2 — 1.1; TYI = 1.0; T y 2 = 0.9; 
Pi = 1; Pi = 0.9;-/? = 0; L = 10. 

0 .4 0 .8 

Figure 2.5: Contour plots of the perturbed stream function $i(c/>, z) in a moving frame of 
reference. Parameters fixed at: k\ — 0.8; k2 = 1; m i = m2 = 1.1; Ty i = 1.0; Ty2 = 0.9; pi = 1; 
p 2 = 0.9; 3 = 0;L=10. 
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Chapter 3 
A n a l y t i c a l r e s u l t s 

In the previous chapter we derived the following differential equation for the stream function 

* : 

V a • S = - / , (3.1) 

where 

"~ T" n raTY 
S = 

faX( |V a t f |) raTY V a t f <==> \S\ > 
| V a * | H\Va*\ 

| V a * | = 0 <=>' | 5 | < 

H  :  

raTY 

H ' 

Subject to boundary conditions 

*(0 ,£ , i ) = 0 

,9* 
0,0,*) = 0 

tf(U,i) = Q(i), 

<9# 

and constitutive assumption 

0 
jjm+2 y 

K"l(m + 2) {x + ry/Hf 

,m+l 

X + 
(m + 2)ry 

(m + l)H 

X < 0 , 

X > 0 , 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

which implicitly defines x(|V a\IJ|). Here we show that there exists a solution to this equation 

and it is unique. For that we convert the problem to a minimization problem via a variational 

formulation, prove existence and uniqueness of a solution to the minimization problem and 

thus deduce the same for a weak solution of the original formulation. Thereafter we apply 

the augmented Lagrangian method to obtain an iterative algorithm that solves the variational 

formulation of the problem. 
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3.1 Variational Formulation 

We note that the classical formulation (3.1 - 3.5) is not necessarily well-defined, due to the 

yield surface position x = 0 being initially undetermined. Therefore, we proceed to derive 

a formulation that is more open to analysis. The derivation is purely formal and we assume 

sufficient regularity of our solution and test function. So for the classical solution we assume 

* G CQ(O) and that * satisfies boundary conditions (3.4) with = (0,1) x (0,Z). 

First let us homogenize the boundary conditions by setting 

Note that can be determined by taking a linear combination of stream functions at £ = 0 

and £ = Z. So in case of two fluids we can take = (1 — c)*o + c^z, where * a is the stream 

function at '£ = a and c is the concentration with c = 0 for the displacing fluid and c = 1 for 

the displaced fluid. 

Now let v, w G CQ(O) with w = v — u. Then from (3.1): 

# = u G CQ •0

2(fi). (3.6) 

wS • n ds 

(3.7) 

Substituting for w and S we have for |S | > Tyra/H: 

+ 
ryrg ( V a * * + Vau) • {Vav - Vau) 

H | V a * * + Vau\ dCt 

+ H (|va#* + vav\ - | v f l * * + vau|) dn (3.8) 
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Note that if \S\ < TyrA/H we have V a # = V a ^ * + Vau = 0, so 

S-Va(v-U) = S • ( V a r + V a « - (V a t t* + V 0 U ) ) 

= S • ( V f l * * + V a v ) 

< \S\\VA$>* + Vav\ 

< Z ^ | V a * * + V a w| . (3.9) 

Therefore (3.8) is valid for all S. Thus, a solution of (3.1 - 3.5) will also satisfy 

/ | V a # * + V a u | 
- ( V a * * + V Q u) - ( V a « - V a u ) 

+ ^ ( | V a * * + V a v | - | V a * * + V a u | ) + / ( 7 ; - w ) d Q > 0 (3.10) 

We now take (3.10) as the definition of our problem. In place of C2(Q) and C$(Q,) we assume 

that € V with M £ Vo (with VQ being the closed subspace of V with u = 0 on dVL). We 

determine the spaces V and Vb later. 

3.J.l Immiscible fluids with no surface tension 

As shown in Chapter 2, if we wish to dispense with the concentration equation formulation, 

then the interface between two fluids is advected according to the averaged kinematic equation 

(2.55) and the following two conditions are satisfied at the interface between fluids 1 and 2 

(respectively, the displacing and the displaced fluids): 

a* i a* 1 2 

= 0 (3.11) 
l 

i.e. continuity of normal velocity. Also by continuity of pressure across the interface: 

[p]? = 0 (3-12) 

Additionally, ^ is assumed continuous across the interface. To derive the variational formulation 

in this case we proceed as above in section 2.1. So in each of the fluids instead of (3.1) we have: 

V a • S i = 0, for x e fii (3.13) 

V a • S2 = 0, for x e 0 2 , , (3.14) 
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with S i and S2 defined as in (3.2 - 3.5) in each of the fluids and Q,i,Q2 C ft are the regions 

where correspondingly fluid 1 or fluid 2 are present. Multiplying by a test function w € CQ(Q) 

and integrating over each subdomain: 

/ S\ • Vaw dfti + / S2 • V a u ; dCl2 = <p wSi • n\ ds + f wS2-n2ds (3.15) 

corresponding to (3.7) in the variational formulation with the concentration equation above. 

Here the boundary integral terms on the right hand side vanish, except along the interface T, 

so we have 

f wSi-nids+f wS2-n2ds= / w(Si - S2) • n\ ds. (3.16) 

Substituting for S from derivation in Chapter 2: 

Sj = (raG^,-raG^) 

Thus 

where 

_ , dp p cos Brg dp rap sin B sin TT<J>\ 
~ 1 r a ~ h i st* 'd<f> st* )j

 { 6 - U ) 

(S i - S 2 ) • m = ra [ti • V a ( p i - Pi)] - (fi - f2) • n i (3.18) 

* i = -ni,t) (3-19) 

is the tangent vector to the interface F and 

^ = ^pco^ ^ ^ s M s i n ^ ^ ( 3 2 0 ) 

The first term in (3.18) is the difference in tangential derivatives of the pressure along the 

interface, which is zero by differentiating (3.12). Therefore, we have: 

J w(Si - S2) • ni ds = - J w ( / i - f2) • ni ds 

= — i> wfi • ni ds — f wf2 • n2 ds 

= ~ fi- V o ^ dfh - / f2 • Vaw d£l2 

(3.21) 
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using integration by parts and since V a • fj = 0. Substituting this back into (3.16) and letting 

w = v — u: 

•r«x(|V atf* + V a u | ) , 
a . | V a # * + Vau\ 

- ( V a * * + Vau) • (VaV - V 0 U ) 

+ ^ ( | V a * * + Vav\ - | V a # * + V a « | ) + /,• • Va(v - u) dQj > 0 
H 

V u € C g , « e C g . (3.22) 

which is in fact equivalent to the variational formulation (3.10) since / = V 0 / and the term 

/ f(v — u) dfi can be integrated by parts. Thus, working with either the concentration depen

dent formulation or considering the two fluid domains separately with continuity conditions on 

the interface as we have done here, leads to the same variational setting. The existence and 

uniqueness results together with the iterative solution algorithm that follow are thus applicable 

to both approaches. 

3.1.2 Minimization Problem 

Consider the functional: 

v) = Jj I ^rjr- d s + ^ K * * + Va^ | - fv da (3.23) 

Equivalently, integrating the last term by parts and using the fact that v = 0 on SCI: 

J(v) = / y /  X\j2-L ^ + ^ | V a * * + Vav\ + f-Vav dfl, (3.24) 

where V a • / = / is as in (3.20). Let us show that the minimization problem 

J(u)< J(v),\/veV0, ueV0; (3.25) 

has a unique solution u G VQ, which solves the original problem in its variational formula

tion (3.10). 
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3.1.3 E x i s t e n c e & Uniqueness Resu l t s 

Proposition 2.1. Let 

= / d s , r ( 3 2 6 ) 

with x as above. Then $ is strictly convex in R 2 . 

Proof. The Hessian matrix of is 

. &xx ®xv • 
H = ( " I , (3.27) 

with eigenvalues A i i 2 

Ai,2 = \ + &vv) ± + * W ) 2 - 4($xx*yy ~ *ly)) ^ 

= ±(($xx + %y)±(($xx-%y)2 + 4$ 2
xy) 1 / 2) 

+ X ' M 
r 

(4JZ4)2(^ - X'(r)) 2 + (^) 2(^ - X/(r)) x 2 + j / 2 r v / ; Kx2 + y2' K r 

= (^l+xir)^ ± *M_ x/( r) , where r = (x 2 + y 2 ) 1 / 2 . 

So A = 2 ^ ^ or 2%/(r) both of which are strictly positive. Thus $(x, y) is strictly convex in '. 

Proposition 2.2 J(v) as defined in (3.23) is strictly convex. 

Proof. We have for u,v G IR2; a € (0,1); 8 = 1 - a: 

-|Va**+Va(cm+/3u)|2

 x ( s l / 2 ) 
ds dfi = 

ds dfi 

Jo 

+ p [ r a [ ±1^-1 dsdQ, 
Jn Jo 

<a I ra I ds dfi 
In Jo s v . 

HVa**+V a^| 2

 x ( s l / 2 ) 

29 



Chapter 3. Analytical results 

by Proposition 2.1. Also 

< 

f ^\Va** + Va{au + 0v)\dSl = 
Jo. n 

[ ^ | « ( V Q * * + Vau) + /?(V«tf* + Vav)\ dfi 
Jo. tt 

[ ^(a\(Va** + Vau)\ + 8\Va** + Vav\) dfi 
Jo. tt 

and, trivially, 

/ /(cm + 8v) dD,< [ afu + Bfv dQ 
Jn Jo. 

Thus J(v) is a sum of two convex functions and a strictly convex function and is therefore itself 

strictly convex in R 2 . 

Now let us show that lim^v^+0OJ(v) = +00. Let 

K(x) = Jr-± j f d s + ^ \ x \ + f-(x-Vatf*) d n , (3.28) 

where x : K 2 -> R2 so that J(v) = K(VaV* + Vav). 

Proposition 2.3. K(x) —> 00 as Jn \x\1+1/m dQ, —> 00. 

Proof. From the constitutive relation (3.5) we have if x > TY/H: 

Hm+2 xm+l , (m + 2 )7y. 
V„\Tr = ± (Y+- i — M 

1 a 1 km{m + 2)(x + rY/H)2^ {m + l)H! 

Hm+2 m+1 + 2 

< (Y-\ '—Y) 

~ km{m + 2) x2 m + lX' 

Xm(l + ̂4) (3.29) fcm(m + 2) A ' v m + 1 

Also, for 0 < x < T y / ^ : 

| V * | < ^ ^ ( - V + . ( m + ^ -
km(m + 2)2TYx/H H (m + l)H' 

Hm+2 m + 2 

- 2fcm(m + 2 ) A v m + r 

< ^ Xmd \ m + 2) (3 30) ~ fc™(m + 2 ) X { L + m + lh [ 6 ' 6 [ ) ) 

30 



Chapter 3. Analytical results 

Thus, we have for % > 0 

X > - a | V a ^ | 1 / r n , where 

Hm+ 2 , m + 2 A _ 1 / m

 n a = max | — ~ ^ ( H r) > 0. km(m + 2)K m + 1' 

Using this we have: 

Jn 1 Jo 

\X\2 „l/(2m) 

,1/2 da - | / | | x | + / - V a * * dQ 

(3.31) 

(3.32) 

(3.33) 

where 5 = — f^f • Va<J/* dQ. Now, using Holder's inequality: 

- IVP 
f \f\\x\ dQ < c* / \x\p dQ 

Jn Un 
(3.34) 

I/P' 
where 1 < p < oo and c* = ^ / Q | / | p ' dQj with 1/p+l/p' = 1. Applying this with p = 1+1/m 

to (3.33): 

K{x) > & [ \x\1+1/m dQ - c* f \x\1+1^ 
Jn Un 

dQ 
l + l / n 

(3.35) 

where a = min( r a )a / ( l + 1/m) > 0. Rearranging, 

i f (a:) > a f 
Un 

\x\1+1/m dQ 
l + l / m 

/" | a ; | 1 + 1 / n 

Jn dQ + 5, (3.36) 

Thus K(x) —> oo as ( / n l a ; ^ 1 /™ d Q ) 1 / ( 1 + 1 / m ) -> oo. 

Theorem 2.4. J(v) —> oo as | | t » | | w i , i + i / m —> oo. 

Proof. First note that for x, y G R, with p = 1 + 1/m (1 < p < oo) and assuming 0 < x < y 

x p + yp< 2yp = 2(y2fl2 < 2(x2 + y 2fl 2  

Thus, for a, b G L P (Q) we have 

H I L P + 
l i P < 2 | | ( a 2 + 6 2 ) 1 /2 | |P p 
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Now, by Poincare inequality we have that if w G L P (Q) and Vw G L p ( f i ) x LP{il) then 

| | W | | L P < i ^ | | V i y | | L P x L P , for some K > 0 (3.39) 

Thus, if v G W lv{Q) we have: 

IMIvpi.p =
 II^IILP + I I ^ ^ I I L P X L P 

< {l + K)\\Vv\\lPxLP 

< 2{l + K)\\{\Wv\)\\lP, (3.40) 

by above. Thus 

IMIiyi,i+i/m(n) -»• oo => | | ( | V v | ) | | i 1 + 1 / r o ( n) -» oo (3.41) 

Moreover, as ra is bounded and greater than zero we have 

IM I w i . i + i / m ( n ) ^ oo ^ | | ( | V a u | ) | | L l + 1 / m ( n ) oo (3.42) 

And as 

|V„** + Vav\ > \Vav\ - |V t ttf*|, (3.43) 

we have 

\ \ v \ \ w i , i + i / m { n ) -> oo =» HGVatf* + V a u|) |U 1 + 1 / m (n) -> oo. (3.44) 

And, finally by Proposition 2.3 we have 

\\v\\wi,i+i/m{n) * oo =y- tf(Vatf* + V 0 u ) = J(y) -+ oo, (3.45) 

as required. 

Summarizing, J(i>) is continuous, strictly convex and J(v) —• oo as I M I j y i . i + i / m ^ ) —> oo. 

Thus as W o M + 1 / m ( Q ) is a closed convex nonempty subset of W 1 , 1 + 1 / m ( S l ) , from standard opti

mization theory in Banach spaces it follows that the minimization problem (3.25) has a unique 

solution u G W 0

1 , 1 + 1 / m ( f i ) . 

Remark. In the preceding paragraph we in fact take m as the maximal m in Q. In case 
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of the concentration formulation this will be maxm(c(a:)), and for the immiscible fluids 

formulation it will be max{mi ,m2}. 

Moreover, writing J(v) = Jo(v) + Ji(v) where 

Mv) = J y J ^rj^1 ds - fv dfi (3.46) 

is strictly convex and Gateaux-differentiable on W 0

1 , 1 + 1 / m ( Q ) and 

Ji(v) = f ^ | V a * * + Va«| dfi (3.47) 
Jn tt 

is convex and continuous, we have (see Chapter V in Glowinski [17]) that the unique solution 

of the minimization problem is characterized by 

(Jo(u),v- u) + Ji(u) - Ji(V) > 0, Vt; G W o ' 1 + 1 / m ( f i ) , u G W o ' 1 + 1 / m ( 0 ) (3.48) 

where (JQ(V),W) is the Gateaux derivative of Jo: 

(Jo(v),w) = Jim-
t->o t 

Jn | v a w + vav\ 

substituting into (3.48) we extract the variational formulation (3.10). Thus we conclude that 

the variational formulation has a unique solution in WQ

l'1+l/m(Q). 

3.2 Solution by augmented Lagrangian method 

Above we have shown that the problem in its variational formulation has a unique solution. 

Here we consider a method for obtaining this solution through application of an iterative algo

rithm described in Glowinski [17]. 

For that we consider the minimization formulation of the variational problem defined above 

(see (3.25)): 

Minv€Vo{J{v)}, (3.50) 
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where 

J(v) = F(Vav) +G(v), with (3.51) 

F(q) = F0(q) + F^q), q £ H, where (3.52) 

Fo(q) = J-±J X^dsdn, qeH (3.53) 

Fi(q) = / ^ | V a # * + <?| dQ, q £ (3.54) 

G(v) = - f fv dn, v € V (3.55) 

Summarizing ,the results above we showed that Fo(q) is strictly convex and differentiable, 

Fi(q) is convex and continuous and G(v) is convex and continuous. Moreover, the min

imization problem has a unique solution in W 0

1 ' 1 + 1 / / m ( Q ) , so with VQ = WQ' 1 + 1 ^ m (Q) and 

H = L 1 + 1/m(n) x L1+1'm{n). 

Note that for m < 1 we have that W 0

1 , 1 + 1 ^ m ( O ) is a subset of H^fl) which is a Hilbert space. 

However it is more common for the fluids used in the cementation process to be shear-thinning 

giving m = 1/n > 1. In that case we have WQ , l + 1^m(n) 0 H^n) and so the solution doesn't 

necessarily lie in a Hilbert space. Application of the augmented Lagrangian method however 

requires the solution space to be a Hilbert space in order to obtain the convergence results. 

Nevertheless, once the variational problem has been approximated by some finite dimensional 

numerical method - finite element or, as we have done below, by a finite volume method, the 

approximate solution space Vh is finite dimensional - and thus is a Hilbert space. We hence 

take V = i?Q (Q) (so that Vh C V) and H = L2(n) x L 2 ( 0 ) , making it possible to apply the 

existence and convergence theorems to the iterative solution of the approximate problem. 

3.2.1 Principle of the method 

We define a Lagrangian functional C associated with (3.51), by 

C(v,q,p)=F{q)+G(v) + {p,Vav-q), (3.56) 
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and for r > 0 an Augmented Lagrangian £ r defined by 

. £r(v,q,p) = £(v,q,p)+ ^\Vav - q\2 (3.57) 

Then, following Chapter VI in Glowinski [17] it is true that {u,p, A} is a saddle point of £ if 

and only if it is a saddle point of £r, Vr > 0. Moreover such u is a solution of (3.51) and 

p = S7au. Thus the original variational problem (3.10) is equivalent to finding saddle point of 

£ r which is accomplished by an application of an algorithm of Uzawa type. 

The resulting iterative algorithm is: 

\° e H given; 

then, A n known, we define un,pn,Xn+1 by 

£r(un, pn, Xn) < £(v, q, Xn), \/{v, q}eVxH, {un,pn} G V x H 

Xn+1 = \ n + pn{Vau n-p n), pn>0. 

The problem (3.59) is equivalent to solving two coupled variational inequalities: 

G(v) - G(un) + (A", Va(v - un)) + r (V . t t n - pn, V > - u 1 1)) > 0, 

W G V > " G V , 

F(q) - F{pn) - (Xn, q-pn) + r(pn - Vaun, q~p n)> 0, Vq G H,pn G H 

The main drawback of this algorithm is that it requires solution of coupled variational inequal

ities at each step. To overcome this we uncouple the two inequalities in the natural way to 

obtain the following modified algorithm: 

p ^ A 1 G # given; (3.63) 

then p71"1, Xn known, we define un,pn, Xn+1 by 
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G(v) - G{un) + (Xn, Va(v - un)) + r(Vau n - p n~\Va{v - un)) > 0, 

Mv £ V, un £ V, (3.64) 

F(q) - F(pn) -(X n,q- pn) + r(pn - Vaun, q - pn) > 0, Vg € H, pn G H. (3.65) 

Xn+1 = x n + pn(yaUn _ pn^ ^ > g ( 3 6 6 ) 

In fact the first step (solving (3.64)) corresponds to minimizing Cr(v,pn~ l, Xn) with respect to 

v to get un and the second (solving (3.65)) to minimizing £r(un, q, A") with respect to q to 

obtain pn. 

3.2.2 Application of the Algorithm 

In application to our particular problem with F and G as in (3.51 - 3.55) above we obtain: 

G(v)-G(u n) + (X n,Va(v-u n)) + r(Vau n-p n-\Va(v-u n)) • 

= [ -f(v - un) + Xn • Va(v - un) + r(Vau n - pn) • Va(v - un) dQ, (3.67) 

Integrating second and third terms by parts and noting that v, un = 0 on 8Cl we obtain 

G(v) - G(un) + (Xn, Va(v - un)) + r(Vau n - p n-\Va(v - un)) 

= / " ( - / - V a A n - r V a • (Vau n -p n))(v - un) dfi, (3.68) 

Thus the first step of the algorithm (3.64) is to solve 

f(f + V a A n + r V a • (Vau n - pn))(un - v) dfi > 0, v £ V, un £ V. (3.69) 
Jn 

This equation is satisfied by the solution to: 

rVa • Vaun = rVa • pn - VaXn - f, un £ V, (3.70) 

which is a Poisson equation on Cl, with the right hand side known at each iteration. 
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Going back to formulation of the second step of the algorithm we mentioned that finding 

p n at each step was in fact equivalent to minimizing Cr(un,q,X n) with respect to q. So: 

pn = mi{Cr(un,q,Xn)} 

= m{{F(q) + G(un) + (Xn,Vaun-q)+r-\Vaun-q\2} 

+  rf\q\2-(Xn + rVaun)-q)c\n}, (3.71) 

Equation (3.71) is minimized when pn is given locally by: 

+ y | V a # * + q\2 - (A™ + rVau n + r V Q * * ) • (q + V a * * ) } . (3.72) 

The expression above is minimized when (A n + rVau n + rVa**) is parallel to q + V a * * , since 

apart from the last term, the rest of the expression is a function of \q + V a * * | only, i.e. 

independent of its direction. So, letting 

q + VaV* = 9(Xn + rVau n + rVa**), (3.73) 

x = \Xn + rVau n + rV a.tf*| (3.74) 

we have to find the minimizer of 

M(6) = £ j f ( t e ) 2
 ds + ?£\0\x + ^{Bx) 2 - Ox (3.75) 

Now if x < s g * then 

^\6\x-0x>0 (3.76) 
H 

and so with the rest of terms in (3.75) non-negative that implies 6 = 0 minimizes M, giving 

p n = - V a * * . 

If x > then we find 6 by setting ^ = 0, so 

raX(6x) + 2g£ + r ^ - x = 0 (3.77) 

which can be solved by. numerical inversion and thus giving 

p" = 8(Xn + rVau n + r V a * * ) - V Q * * . (3.78) 
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3.2.3 Summary and convergence 

So, summarizing, the Augmented Lagrangian method applied to our particular variational 

problem results in the following algorithm: 

p°,\l eH given; (3.79) 

then p n _ 1 , A n known, we find un,pn, A n + 1 from 

rVa • Vaun = r V a • pn - V a A " - / , un G V, (3.80) 

f - V a * * • if x < 2t> 
p n = < (3.81) 

[ 0(A" + r V a u n + r V a * *) - V a # * if x > ^ 

A ^ 1 = A" + pn(S7aun - pn), P n > 0. (3.82) 

where 

x = |A" + r V a u " + r V Q * * | , and (3.83) 

TaXiOx) + ^ + rQx - x = 0. (3.84) 

Following Glowinski [17] this algorithm has the following convergence properties if 0 < pn < 

(1 + V5>/2: 

un -> u strongly in V (3.85) 

pn -* p strongly in H (3.86) 

An+i _ A n ^ o strongly in H . (3.87) 

where u is the solution of the minimization problem (3.23) and thus the variational formulation 

(3.10) for the approximate discretized problem. 
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Chapter 4 
N u m e r i c a l R e s u l t s 

In the previous chapter we derived existence and uniqueness results for the model of the flow 

described in Chapter 1. Additionally, we applied the augmented Lagrangian method to the 

variational formulation of the equations for the stream function of the flow to obtain an itera

tive algorithm resulting in a sequence of functions converging to the solution of that formulation. 

In this chapter we outline the numerical solution of the equations of the algorithm and compare 

the results with the analytic solutions, in the case of concentric annulus, and with the perturba

tion solutions for small annular eccentricity. We apply a shock-capturing time-advance scheme 

to the concentration advance equation to arrive at a complete numerical simulation of the flow 

as described by the model given in Chapter 2. 

4.1 Discretization and method of solution 

The algorithm resulting from the application of the augmented Lagrangian method to the weak 

formulation of the equations for the stream function of the flow is: 

P »°, A 1 G H given; (4.1) 

then pn  1,Xn known, we find un,pn, Xn+1 from 

,n = rVa-p n-VaX n- /, un G V, (4.2) 

d(X n + rVau n + rVa^*) - V a * * if x > 9g* 

- V a * * 
(4.3) 
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= \ n + pn(Vaun-pn), P n > 0 . (4.4) 

where 

x = \Xn + rVaun + r V a * * | , and 

rax(Ox) + + r6x - x = 0, 

(4.5) 

(4.6) 

where V = H&(Q) and H = L2(fl) x L2(Cl), fl = (0,1) x (0,Z) and the relation between the 

modified pressure gradient % and the modulus of the stream function | * | is given from the 

constitutive assumption 

|V«* | = < 
0 

[ Km(m + 2) (x + ry/H)2 

.m+1 
x-

(m + 2)TY 

X<0, 

X>0. 
(4.7) 

(m + l)H 

The result of solution of the algorithm is a sequence of functions un converging to u € HQ(Q) 

where the stream function * = \ F + u. Also we obtain pn £ L2(Q) x L2(Cl) converging to 

p = Vau from which the components of the velocity vector to be used in the concentration-

advance equation can be easily calculated. 

We descretize the equations by 'applying a finite volume discretization with a staggered regular 

rectangular mesh, i.e we divide the domain Cl into Ni x Nj control volumes with each control 

volume being a rectangle of width A</> = 1/JVj in the ^-direction and height A£ = 1/Nj in 

the ^-direction. Denoting by CVij the control volume with its lower left-hand corner at coor

dinates ( iA0, jA£) we define the discretized functions v%, ^ at * n e corners of CVij and the 

discretized functions AJJ,p^ and concentration ch at its center - see Fig 4.1. This allows sim

plified calculation of gradients arising in the above equations as well as smaller spatial support 

of the numerical schemes for the chosen second degree of accuracy in each of the numerical 

calculations of the flux between the control volumes. 

We let the discretized concentration function ch be defined at the centre of each control volume 

and take values between 0 and 1 with ch = 0 in the displacing fluid (cement) and ch = 1 in 

the displaced fluid (mud). The density and rheological parameters are then also defined at the 
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Figure 4.1: Schematic picture of the control volume CVij 

centers of the control volumes using linear mixing laws. So for example pfj = (l — cfj)po + cfjpi 

where po is the density of the cement and p\ is the density of mud. 

At the start of each run we first determine the "homogenizing" stream function Wh by set

ting = (1 — c h)^Q + Ch^z as in 2.1. Here * Q and ^ are the discretized stream functions at 

£ = 0 and £ = Z correspondingly. They in turn are determined from the boundary conditions 

which give the modified pressure gradient G = % + T y / H constant in the 0-direction at the top 

and bottom of the well. Thus, x at £ = 0 and £ = Z can be calculated by numerically inverting 

the' expression for the total rate of flow through the well. 

At each iteration of the algorithm we first solve the u1^ advance equation (4.2). We applied 

the standard point Gauss-Seidel method with second-order accurate spatial fluxes to solve this 

modified Poisson's equation. This seems especially appropriate as v% converges after some it

erations of the algorithm and so taking as starting point of Gauss-Seidel iterations each 

time improves the convergence time. The same is true after application of the time-advance 

scheme: we then take the final value of v% at the previous time-step as the starting point for 

Gauss-Seidel iterations. Over-relaxation was also used to improve the speed of convergence 

even further in individual cases. 
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The second step in the algorithm is the advance of p\. We achieve this by first calculating 

x from (4.5), determining if the fluid is yielded at that point and if so performing the numerical 

inversion in (4.6) to determine 0 and thus p\. Note that (4.6) can be differentiated analytically 

and a Newton-Raphson method used in its inversion converges in few iterations to the desired 

tolerance. 

4.2 Convergence 

We take the norm of Ap\ =pl + l-pl as the measure of convergence of the numerical algorithm. 

This appears appropriate as it is the velocity field obtained directly from p\ that is used in 

the subsequent concentration advance step. Here we consider two norms of Ap 1^: L 2 (Q) and 

L°°(0). While the first provides an adequate measure of convergence to the solution over the 

whole domain, the second gives a better impression about the convergence near the interface 

and yield boundaries - where it is the slowest. 

The plots given in Fig.(4.2) are of the logarithm base 10 of the I? and L°° norms of Ap% 

versus the number of iterations together with surface plots of a component of Ap^ after 100 

iterations. Different interface configurations and situations are presented. It can be noted that 

absence of a yield boundary within the flow (so that both of the fluids are fully yielded in the 

annulus) and lower eccentricity improve the convergence dramatically. In Fig.(4.2) this can be 

seen from the difference in the convergence histories between cases a) and b). The rheological 

parameters, densities and the interfaces between fluids are the same in both cases - however b) 

has a higher eccentricity. 

From the AJJ-advance equation (4.4) we see that as AJJ converges, we should have p\ —> V a w ^ . 

The convergence history of the L 2 and L°° norms of APU = p\ — V a w ^ = ( A ^ + 1 — A^) /p n for 

the same set of conditions as for A p \ above, is shown in Fig.(4.3). The convergence mirrors 

that of ApJJ with the notable exception of the behavior in the unyielded region (this can be 

seen in case c). The reason for this seems to be that whereas in this algorithm vfi converges to 
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Figure 4.2: Plot of Logio of the l? (solid line) and L°° (broken line) norms of ApJJ against the 
number of iterations together with surface plots of the ^-component of Ap^ after 100 iterations 
(top to bottom): a) horizontal interface with e = 0.1, b) horizontal interface with e = 0.6, c) 
slanted interface with e = 0.8 and high yield stress of the displaced fluid. The mesh size here 
as well as in all of the subsequent examples was taken to be 20 x 80. 
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a modified stream function and p\ converges to the modified velocity field correspondingly, Xfc 

converges to the modified pressure gradient field by virtue of the u^-advance equation (4.2) and 

in our model the pressure gradient is undefined in the unyielded region. This implies that in 

the "unyielded" region (i.e. where |A£ + rVau^ + r V a \ ] / * J < Tyra/H) at each step of the algo

rithm we set p\ = - V B * j , solve V a • V a W / J = V a - p \ = - V a • V a * ^ and advance as before. 

Lastly we show that the original field equations are satisfied by the iterative solution with 

an increasing degree of accuracy. For that we set = p1^ + *£ and substitute into the field 

equations (3.1 - 3.3) to obtain S^. Below in Fig. (4.4) are the plots of the L2 and L°° norms 

of the residual Res = V a • + fh with fh being the discretisation of the function appearing 

on the right-hand side of the field equation as defined in (2.48). The geometric, rheological and 

density parameters are the same in each case as in the plots for APU and Apfc. The residual 

.decreases in the fashion similar to the convergence of the algorithm's functions examined above. 

It should be noted that in the more extreme case c) where the eccentricity and yield stresses 

are set high and the yield boundary runs through the domain, the residual plotted is large in 

the control volumes adjacent to the yield boundary. This is a numerical artifact arising from 

the fact that in order to compute V a • numerically second order accurate in space from 

the functions in the algorithm, we take a larger spatial support than we do to calculate fh-

Thus, near the yield boundary part of the support for V a • S1^ lies inside the unyielded part 

of the domain where it does not converge to — fh by the virtue of the underlying model. This 

should not be a problem for the overall solution as we feed back only the velocity field into the 

concentration advance equation which, in turn, is extracted from p\ that has the same spatial 

support as fh and converges numerically on the entire domain as we illustrated above in Fig. 

(4.2). The norms of the residual Res in this case are calculated over the control volumes away 

from the yield boundary. 
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5 

4 

Figure 4.3: Plot of Logic, of the L2 (solid line) and L°° (broken line) norms of APU against 
the number of iterations together with surface plots of the (/(-component of APU after 100 
iterations (top to bottom): a) horizontal interface with e = 0.1, b) horizontal interface with 
e = 0.6, c) slanted interface with e = 0.8 and high yield stress of the displaced fluid. 
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14 

Figure 4.4: Plot of Logw of the L2 (solid line) and L°° (broken line) norms of the filed equations 
residual Res = V a • + fh against the number of iterations together with surface plots after 
100 iterations (top to bottom): a) horizontal interface with e = 0.1, b) horizontal interface with 
e = 0.6, c) slanted interface with e = 0.8 and high yield stress of the displaced fluid. 
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4.3 Time advance scheme 

The concentration advection equation 

| [Hrack] + ^ [Hv cfc] + ^ [Hraw ck] = 0, (4.8) 

is used to calculate the advance of the concentration and thus the interface after solving the 

field equations and extracting the velocity field (v, w). To simplify the notation we rewrite this 

equation as: 
8U dF OG n , . 
-bJ + ^ + ^ = ° ( 4 - 9 ) 

where 

U = Hrack F = Hvck G — Hraw ck (4.10) 

This is a hyperbolic conservation law and different methods for obtaining its numerical solution 

exist. In our specific situation we have a large concentration gradient at the interface between 

the fluids so a time advance scheme must be chosen which captures propagation of this interface 

accurately. 

High order time advance schemes (second order accurate and above) such as Lax Wendroff 

are known to suffer numerical dispersion near discontinuities and regions of high gradient. This 

results in unphysical oscillations producing under- and overshoots in the conserved quantity U 

near the interface. Conversely low order order schemes (first order accurate) such as donor cell 

or upwind Euler don't produce dispersion but, because of their low accuracy, numerical diffu

sion is introduced. This has an effect of "smoothing out" the interface which is much greater 

than is present physically. 

The schemes which effectively minimize both the numerical diffusion and dispersion by hy

bridizing upwind low-order schemes and higher order schemes while limiting the total numerical 

flux functions F and G are known as Total Variation Diminishing (TVD) and Flux Corrected 

Transport (FCT) schemes. They have been used extensively for the solution of the hyperbolic 

conservation problems such as those of shock and signal propagation. 
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For the examples following we used an F C T scheme with donor-cell upwind discretisation for 

the low order scheme and central difference discretisation for high order scheme. This was found 

to produce good results in previous applications to the concentration advance equation above 

and is used currently in industrial applications. A two-step MacCormack T V D scheme with 

different limiters was also tried out and found to produce similar results varying slightly with 

the types of limiters used. 

A brief outline of the F C T scheme used is as follows. First, low order fluxes FL and GL 

and high order fluxes FH and GH are computed using a donor-cell upwind and central differ

ence discretisations correspondingly. From those we compute antidiffusive fluxes A1 = FH — FL, 

Ai = GH — GL and the low-order time advance solution Utd from the low-order fluxes FL and 

GL. Secondly, we limit the antidiffusive fluxes by setting AiC = Ai C* and AiC = A1 CK Here 

the limiting functions 0 < C\ C J < 1 are chosen to limit U(t + At) so that it does not exceed 

some maximum Umax(t) or fall below some minimum Umm(t). In turn we choose Umax(t) 

to inhibit the overshoots in ck as the maximum value of U(t) over the neighboring cells and 

analogously for Umm(t). Lastly, we apply the limited antidiffusive fluxes to the low order time 

advanced solution to get the final time advanced solution: 

U(t + At) = U t d - - ^ \AiC - A ^ c + Ai° - A ^ " 1 * 0 ] (4.11) 

where AV = A0A£. 

The procedure used for each of the following simulations was to first set up an initial con

centration field (usually corresponding to a horizontal interface in the middle of domain) and 

then run the augmented Lagrangian solver followed by the time advance scheme above a desired 

number of times. To limit the size of domain (and thus drastically reduce the computational 

time) we "followed the interface" by shifting the concentration field down each time after a 

certain number of time steps by effectively adding a fresh row of control cells at the top of 

the domain and removing a row from the bottom. The number of time steps between each 
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adjustment was chosen so as match the average speed of the flow. This has the effect of always 

placing the interface near the middle of the domain and allowing us to restrict the vertical size 

of computational domain to just a few units either side of the interface. 

4.4 Simulation results 

Here we give several results from the simulation of the displacement flow using the ideas de

scribed above for solving the flow equation and the concentration advection equation. For the 

record, we use a 20 x 80 mesh with rectangular control volumes of width A(f> = 0.05 in the 

(^-direction and of height A£ = 0.1 in the ^-direction. We pick the length of a time-step A i 

from the Courant-Friedrichs-Lewy (CFL) stability condition: 

A t = — ~~i > (4-12) 
-^-V -v- -1-W vmax T w max 

where Co(< 1) is the Courant number and Vmax, Wmax are the maximum absolute values of 

numerical velocities in the <f> and £ directions respectively extracted from the the solution of 

the <£-field equation. A common procedure in such cases is fixing Co and adjusting the time 

step after each time advance accordingly. However it can be noted that in our case both Vmax 

and Wmax vary little (typically by less than 5%) throughout the length of the simulation. Thus 

we fix A t based on the above formula at the beginning of each simulation run which addition

ally allows us to easily " follow the interface" by periodically shifting the concentration field as 

described above. Typical values for a medium-eccentricity "unstable" displacement situation 

were Vmax = 0.5, Wmax = 4 so with Co = 0.5 we would take A i = 0.01 in this case. 

First we examine the evolution of the interface in the case of a concentric annulus with e = 0. 

The analytical solution for the interface in this case was'obtained in 2.3.2. Here, as in most of 

the simulations following, we set the interface to be initially horizontal and positioned in the 

middle of computational domain. The results for three different situations are given in Fig. 4.5. 

Plot of the projected interface position after 30 time units is given together with the time track 

of the interface position on the side 0 = 0. The "interface" is taken to be the contour .c^ = 0.5. 
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The situations considered are those described in Chapter 1. The first is that of a vertical 

well where the interface stays horizontal. The second is for a horizontal well, where the steady-

state interface is given by g(<f>) = - ^(/j+Vy]2
 cos(7T0)/(7r5t*). The third is for an inclined well 

(8 = 5TT/12 was taken) with fluids of identical rheologies but a non-zero density difference, 

where the steady-state interface is given by g(<f>) = - tan/? cos (TT<P)/T. In all cases the simu

lated interface converges to that predicted analytically, they coincide on the plots shown and 

the average of the position of the interface on the wide side at the end of each simulation agrees 

with analytical result. Note that from the mass conservation considerations if the interface on 

the wide side becomes steady then the interface on the narrow side is also steady. 

Secondly, we compare the results of the flow simulation in case of small annular eccentricity 

to those obtained though perturbation methods in Chapter 1 with the formula for perturbed 

interface given by (2.95). Numerical simulation of such small perturbations is somewhat prob

lematic as the smaller mesh size we use to achieve sufficient resolution in the ^-direction not 

only increases the overall grid size but also necessitates a smaller time step by the C F L con

dition (4.12). Results for two different sets of parameters are given in Fig. 4.6 together with 

track of the simulated interface position (in frame of reference moving with the average speed 

of the flow) on the wide side. In the flow simulations we start with a horizontal interface as 

before and the mesh size is 80 x 20 with grid spacing of 0.05 in both 4> and £ directions. The 

computed solution at t = 30 is within 0.02 of the analytic solution in each case, note that the 

vertical scale on Fig. 4.6 is smaller than that in Fig. 4.5. 
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Figure 4.5: Plot of interface in a concentric annulus at t = 30 together with interface track at 
0 = 0 (top to bottom): a) vertical well /3 = 0 (e = 0; p\ = 1; p 2 = 0.6; T y i = 1; T y 2 = 0.8; 
k\ = 1; A;2 = 0.8), b) horizontal well /? = n/2 (e = 0; p\ = 1; p 2 = 0.6; T y i = 1; T y 2 = 0.8; 
fci = 1; fc2 = 0.8), c) inclined well with angle of inclination 8 = 5?T/12 and identical rheologies 
(e = 0; pi = 1; p 2 = 0.8; T y i = 1; T y 2 = 1; k\ = 1; fc2 = 1)- Inverse power index mi = m 2 = 1.0 
throughout. 
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. 0 0 • 3 . 0 

Figure 4.6: Plot of the interface position given by the flow simulation (solid line) and pertur
bation solution (broken line) together with the track of the interface position on the wide side 
of the annulus (top to bottom): a) e = 0.1; p\ = 1; pi — 0.8; ry\ = 1; ry2 = 0.9; k\ = 1; 
k2 = 0.9, b) e = 0.2; pi = 1; p 2 = 0.8; Tyi = 1; ry2 = 0.8; k\ = 1; fc2 = 0.8. Inverse power 
index m i = = 1.1 and angle on inclination /3 = 0 throughout. 
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Chapter 5 
L u b r i c a t i o n m o d e l 

One of the main objectives of modelling the annular flow considered here is to simulate behavior 

of the interface between fluids so as to determine the type of displacement that occurs given 

the specific fluid rheologies, densities and geometry of the well. From physical considerations 

and numerical simulations of the flow, such as those described above and in [15] it is evident 

that one of three main situations can occur: 

1. a " steady displacement" with both fluids fully yielded and the interface stationary in the 

frame of reference moving with the average speed of the flow; 

2. an "unsteady displacement" with both fluids fully yielded and the displacing fluid shooting 

up on the wide side of the annulus with the interface elongating; 

3. a "partially unyielded displacement" with either the displaced fluid or both fluids un-

yielded (stationary) on the narrow side of the annulus and the interface between them 

elongating. 

In previous chapters we developed an iterative numerical method of solution for the flow model 

and showed its functionality. Although the computational speed of the resulting simulations is 

much faster than that of a fully 3-D flow simulation, it should be noted that for larger domains 

with smaller mesh spacings, highly eccentric annuli or long simulation times, the computational 

time can be significant. This could be improved for example by employing faster algorithms 

for solution of the Poisson equation for advance of un above or a more extensive exploitation 

of the over-relaxation constants pn and r. Nevertheless, solution of the 2-D model is slow and 

it would be advantageous to determine which of the three types of displacement occurs in a 
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particular situation without the lengthly process of simulating the 2-D flow. 

In this chapter we employ techniques used in modelling of lubrication and thin film flows to 

derive a criteria for determination of the type of annular displacement occurring and compare 

these with results of numerical simulations performed using the algorithm for the. 2-D flow, 

described in the previous chapter. 

5.1 M o d e l D e r i v a t i o n 

As a starting point we take the model equations for immiscible fluids with no surface tension 

described in Chapter 2. This is given by the field equations (2.52 - 2.53) 

V a • Si = 0, for x e flu (5.1) 

continuity conditions (2.54, 2.56 & 2.57) on the interface £ = h((f>,t): 

bl? = 0; = 0, (5.2) 

which lead to: 

[* • Vop]?"= 

[t • V a * ] ? 

l_dp dpdh 1 2  

ra dcf) <9£ d4> 

J _ d * dVdh 
ra d4> d£ dcj) 

= 0 (5.3) 
I 

2 

= 0 (5.4) 

with t = (1, | | ) being tangent to the interface and the kinematic condition at the interface 

(2.55): 
dh v dh 
dt rad(j) 

The overall idea here is to assume a highly elongated interface which results in several simplifi

cations to these equations. From there we can deduce that if, based on the simplified equations, 

the interface elongates further it indicates that the situation would lead to an unsteady dis

placement to start off with. Whereas if the interface "levels off" it would indicate that a steady 

displacement would normally take place. Finally, we are also able to determine whether or not 

a mud layer (fluid 2) on the narrow side would be mobile in the simplified model. Thus, we can 

distinguish the 3 cases listed in the beginning of this chapter. 
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5.1.1 Lubrication assumptions 

In order to apply the lubrication approximation we assume the following: 

Streamlines are pseudo-parallel so that the main velocity component is in the ^-direction. 

Thus we have 

«W (5"6) 

Interface is pseudo-parallel i.e. is highly elongated in the ̂ -direction. Denoting the inter

face by (j) = this translates into 

| | | < 1 . (5-7) 

Modified pressure gradient S has its main component in' the ^-direction: 

\S(-\< 1̂ 1, (5.8) 

as follows directly from the first assumption and the definition of S in the case the fluids are 

yielded. When either of fluids is unyielded this is in fact an additional assumption. 

Intermediate scaling. In the derivation of the flow model we assumed that although the 

angle of inclination of the well 8 and the mean half-gap ra vary with £ though the length of the 

well, they do so gradually and on a length scale of many annular diameters. When performing 

most numerical simulations here we also assume for simplicity that 8 and ra are fixed in the 

computational domain. This would correspond to considering a length of the well a few annular 

diameters long where they can be assumed to be constant. Here we use a similar argument to 

fix 8 and ra. To make it more rigorous, introduce an "intermediate" length scaling factor e 

such that 

rrr* 

and e << 1 where in the notation of Chapter 2, £tz — ^ is the total dimensional length of 

the well and r* is the global average mean radius of the annulus. Typical values for these are 
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itz — £bh ~ 500 meters and rrr* « 0.3 meters so we consider e « 10 to be a suitable intermediate 

length scale allowing that. 

5.1.2 Scalings and approximation derivation 

Using the intermediate scale described above we re-scale the axial and time variables by setting 

( = eZ; t = et (5.10) 

also set 

W = w; V = ev; P = ep (5.11) 

for the components of the velocity vector and the pressure correspondingly and write *(</>, £) 

for the stream function as before. For C = 0(1) we have by the argument above, 3 is constant, 

ra = 1 and H = l + ecos7rc/>. Under these scalings the kinematic equation (5.5) for the interface 

4> = <&(C>*) becomes: 

% + W%-V ( M 2 ) 

at the interface. Using the lubrication assumptions for the stream function * and modified 

pressure gradient S, the field equations (5.1) become: 

&(s*O)=0 ("3) 

to leading order in each fluid. Thus is constant in each fluid domain and so from the 

derivation of the field equations given in Chapter 2 we have 

_ dP pcosd 
* = ~~cX~^F= • ( } 

and by lubrication assumption 

1 dP psm6smir<t> 
S< = -edj + St* < < X ( 5 ' 1 5 ) 

thus ^ = ep sin 0 sin IT(f)/St* to leading order. Now consider the continuity condition (5.3) for 

the tangential derivative of p at the interface: 

dP_ dP d(f>il2 

= 0. (5.16) 
l • 
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Thus, as 4? = 0(e) from above we have 

dP 
= 0 (5.17) 

at the interface. Thus ^ = Pc(C) is constant for fixed £ for all </> 6 [0,1]. From the lubrication 

assumption we have 

• \G\ = \S\ = \S+\ = \P< + 

p cos (3. 
St* ' 

(5.18) 

to highest order in each fluid. We can find P^(C) from inverting the flow-rate equation 

I ^< G '» d * + lw ( G 2 ) d * = 1 (5-19) 

for fixed £ and a unit flow rate through the annulus, where 

Pi cos P. 
G i = |P< + 

G2 = \Pr + 

St*  1  

P2 cos (3 
St*  1  

(5.20) 

(5.21) 

and the relation between G and | | - is given from the constitutive assumptions by function 

F(G) as in (2.40). Thereafter we can obtain the stream function * from P^ by integrating 

^ = F(G) with respect to (f> and using the boundary condition *(0 = 0) = 0. From there we 

can obtain the velocity field 

W 
_ T 0 * 

Tllty' 
V 

HOC 
(5.22) 

5.2 Kinematic equation and interface stability 

Now we examine the evolution of the elongated interface from the approximation derived. The 

kinematic condition at the interface (5.12) gives 

Rewriting first term and grouping the second and third together we have: 

(5.23) 

d_ 
dt 

r4>i 
/ H(4>) 

Jo 
dcf) (5.24) 
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write 

$i(C,t) = / H(4>)dct>, (5.25) 
Jo 

g($4) = ViMMCt))) (5.26) 

Using this notation we obtain a hyperbolic equation for propagation of the "interface": 

f + ! , ( * , ) = », (5.27) 

with boundary conditions 

q(0) =0; 9(1) = 1- (5-28) 

Nota that <I>; is actually a "volumetric" position of the interface, i.e. the volume fraction of fluid 

1 at depth £. From this we obtain the speed of propagation of the interface in the (- direction: 

d^dq dq_ 
1 d^dC d * i ' K ' 

provided no shocks occur. Due to hyperbolicity of (5.27) shocks can occur. They correspond to 

patches of the interface where | ^ | becomes large and the interface becomes near-azimuthal. 

In order to calculate the speed of propagation of the interface at such a shock we use mass 

conservation considerations (effectively Rankine-Huguenot conditions) . Dividing shocks into 

three types depending on their azimuthal position in the domain: 

Shock on wide side occurring for $ G [0, $i,w]. Denoting the speed of propagation of the 

interface in the (-direction as WitW we should have the following holding true for the flux 

function q: 

q(* = **,«) = $i,wWi,w (5.30) 

• so as to the right of the shock we have Wj($ = $i ) l u) = q'{$i,w) and Wj should be continuous 

we have: 

WitW = q'($i,w), where (5.31) 

q(*i,w) = $i,wq'($i,w)- (5.32) 
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Shock i n central region occurring for $ G [$+"c, ̂  ]. Denoting the speed of propagation in 

the ^-direction by Wj ) C we have analogously to the above: 

g(* = <E>+ ) - <?(* = ) = ($+ - * r (5.33) 

and also 

wi,c = 9 , « c ) = 9'(<&r;c). (5.34) 

Shock on narrow side occurring for $ G 1]. Denoting the speed of propagation by 

Witn we obtain as before 

5.2.1 Determining the displacement type 

Now we are able to classify the displacements according to the behavior of the flux function 

- which is the stream function at the interface. Our classification will be based on the 

wide and narrow side interface velocities, which me must determine from q. The behavior is 

complicated by the presence of shocks. After computing q for given fluid densities, rheologies, 

angle of inclination and eccentricity, we can conclude the following: 

If q'(l) = 0 then a mud channel occurs on the narrow side of the annulus and the displaced 

fluid is unyielded there. The displacement is thus not steady and the interface continues to 

elongate. A graph of such q with its derivative is given in Fig.5.1 (a). If q'(l) ^ 0 then the fluid 

is yielded everywhere. In this case we first have to check if any shocks such as described above 

occur and determine their location. 

No shocks occur if q" is of one sign - so it is either strictly positive or strictly negative ev

erywhere. If q" > 0 everywhere (Fig.5.1 (b)), then q' is increasing and q is strictly convex then 

the speed of propagation of the interface in the (^-direction on the wide side of the annulus is 

WitW = q'{0) and is less then the speed at the the narrow side W^n = c/(l). Thus the interface 

Wi,n = q'($i,n), where (5.35) 

1 - ? ($ i ,n ) = </($i,n)(l - $ i ,n ) . (5.36) 
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becomes less elongated in the ^-direction and we can conclude that the displacement would be 

steady. If q" < 0 everywhere (Fig.5.1 (c)), then q' is decreasing and q is strictly concave then 

WiiTl = q'(0) > q'(l) = Witn- Thus in this case the interface comes increasingly elongated and 

we can conclude that the displacement would be unsteady with displaced fluid slumping on the 

narrow side and the displacing fluid "shooting up" on the wide side. 

Shocks do occur if q" — 0 for some $ € (0,1) (Fig.5.2 (a)&(b)). We determine their po

sition and boundaries from (5.32) & (5.36) and speed of propagation from (5.31) & (5.35). 

Comparing speed of the shocks on the wide and narrow side, if present, we conclude that the 

displacement is steady if W^w < W^n and unsteady otherwise. 

One other situation of note that can arise is that of a slumping flow - if the density differ

ence between the two fluids is too great then we can have the stream function q decreasing for 

some values of $ i (Fig 5.3). This corresponds to parts of the interface moving in the negative 

^-direction opposite the average velocity of the flow due to significant buoyancy effects. For 

example in case of the displacing fluid having a much greater density than the displaced fluid 

we observe q'($i) < 0 for small - thus the interface moves downwards on the wide side of the 

annulus, indicating a stable displacement as we would expect. To summarize, the behavior of 

q for different rheologies and physical parameters is quite rich. We have shown only a selection 

of the potential behavior. 

5.2.2 Numerical results 

Here we provide some results numerically obtained from the lubrication model. Apart from de

termining the type of fluid displacement in a particular situation with given rheologies, densities 

and well configuration, it is of interest to examine the change in the displacement type as we 

vary several parameters. To demonstrate the trends we plot the differential velocity Wj i W — W j i n 

at the sides of the annulus together with the displacement type we thus expect for a range of 

varying parameters. 
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Figure 5.1: Plots of the stream function q and its derivative with respect to <& versus the 
interface position 4> for different situations. Top to bottom: a) mud channel on the narrow side 
(e = 0.8; p\ = p2 = 1; TYI — 1; T y 2 — 1-8; k\ = 0.8; fc2 = 1); b) steady displacement, no shocks 
(e = 0.1; p\ — 1; p2 = 0.8; T y i = 1; TYI = 0.8; k\ = 1; fc2 = 0.8); c) unsteady displacement, 
no shocks (e = 0.1; p\ = 0.8; p 2 = 1; T y i = 0.8; T y 2 = 1; k\ = 0.8; fc2 = 1). Power index 
mi = m 2 =4.0, angle of inclination [3 = 0 throughout. 
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Figure 5.2: Plots of the stream function q and its derivative with respect to <& versus the 
interface position <f> for different situations. Top to bottom: a) shock on the wide side (e = 0.6; 
px = l ; p2 = 0.8; T y i = 1; Ty2 •= 0.8; fo = 1; = 0.8); b) shocks on wide and narrow 
sides (e = 0.1; P l = 0.9; p2 = 1; T y i = 1.2; T y 2 = 0.8; fo = 1.2; fo = 0.8). Power index 
m i = m2 = 1.0, angle of inclination /3 = 0 throughout. 

- i . o 

Figure 5.3: Plots of the stream function q and its derivative with respect to $ versus the 
interface position 4> for a slumping flow situation (e = 0.6; p\ = 1.2; p2 = 0.6; T y i = 1.2; 
T Y 2 = 0.6; fo = 1.2; fo = 0.6). Power index m i = m2 = 1.0, angle of inclination /3 = 0. 
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Figure 5.4: Contour and relief plots of the differential velocity Wi<w — Wi,n for varying density 
p2 and yield stress Ty2 of the displaced fluid and other parameters fixed (given in text above). 
On the left plot, darker shaded region corresponds to predicted unsteady flow and lighter to 
predicted steady flow. 

For Fig. 5.4 we fix the angle of inclination j3 = 0, the eccentricity e = 0.2, the inverse power 

index of both fluids mi = m2 = 1.1, their consistencies fo = 1.1, fo = 0.8, density of the 

displacing fluid p\ = 1 and yield stress of the displacing fluid Tyi = 1.1. We vary the density 

of the displaced fluid p2 between 0.6 and 1.2 and yield stress of the displaced fluid ry2 between 

0.6 and 1.4. As expected we see that with increasing p 2 and ry2 the flow becomes unsteady. 

For Fig. 5.5 we now vary the density of the displaced fluid p2 between 0.5 and 0.9 and consis

tency of the displaced fluid fo between 0.4 and 1.2. We fix the angle of inclination 8 = 0, the 

eccentricity e = 0.3, the inverse power index of both fluids mi = m 2 = 1.1, their yield stresses 

r y i = 1.2, r y 2 = 0.8, density of the displacing fluid p\ = 1 and consistency of the displacing 

fluid fo = 1.2. Here the flow is slumping for smaller values of p\, fo, steady for intermediate 

values and unsteady for larger values as expected. 

Lastly, illustrated in Fig. 5.6 we vary eccentricity e between 0.2 and 0.8 and density of the 

displaced fluid p2 between 0.4 and 1. The other parameters are fixed at following values: 

fo = 1.0; fo = 0.8; m i = m.2 = 1.1; Tyi = 1-0; r y 2 = 1.2; pi = 1; 8 = 0. The predicted flow is 

steady for smaller eccentricity and density of displaced fluid, unsteady for intermediate values 
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k2 p2 

Figure 5.5: Contour and relief plots of the differential velocity Wi ) 1 f l — Wi, n for varying density 
P2 and consistency k2 of the displaced fluid and other parameters fixed (given in text above). 
On the left plot the darkest shade corresponds to predicted unsteady displacement, the lighter 
shade to predicted steady displacement and the lightest shade to predicted slumping (steady) 
displacement. 

with a mud channel on the narrow side predicted for larger values. 

5.2.3 C o m p a r i s o n w i t h flow s imula t ions 

Now we examine how the results obtained from the lubrication approximation compare with 

those obtained by simulating the full 2-D flow using the methods described in previous chapters. 

First we examine how the prediction of a steady or unsteady flow compares with the results 

produced by flow simulation. Here, we fix all parameters but one and examine where transition 

from steady to unsteady displacement occurs as predicted by each model with variation of that 

parameter. 

In Fig. 5.7 we vary p2 and fix all other parameters at values specified. Plot of differential 

velocity WiiW — Wi^n calculated from the lubrication model is given together with results of 

2-D flow simulation at different values of p2. In the lubrication model we consider negative 

value of WitW - W\,n to indicate a steady displacement and positive an unsteady displacement. 

Each of the 2-D simulations was done on a 16 x 100 mesh with grid spacing 0.0625 and 0.1 in 

the 4> and £ direction, respectively, with initial interface azimuthal. Determination of whether 
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Figure 5.6: Contour and relief plots of the differential velocity W^w — Wi, n for varying density 
of displaced fluid p2 and eccentricity e of the annulus and other parameters fixed (given in text 
above). On the left plot the black region corresponds to predicted mud channel on the narrow, 
the lighter shade to predicted unsteady displacement with fluid yielded on the narrow side and 
the lightest shade to predicted steady displacement. 

displacement is steady or unsteady in a particular simulation run was done by examining the 

interface track on the wide side in a frame of reference moving with the average speed of the 

flow. There are however problems with such determination as shown below taking the particu

lar set of parameters given as an example. 

For small values of p2 - (0.4 or 0.5) the interface track revealed that the interface became 

fully developed within few time units with the position of the interface at the wide side in the 

frame moving with average speed of the fluid g(<f> = 0,t) asymptotically approaching a value 

few units above the starting level. As we increase p2 we can see that the "development time" 

becomes larger with increasing p2 and limiting value which g(0,t approaches becomes larger. 

In order to conclude whether the displacement is steady or not from the flow simulation we 

have to run the simulation for at least the length of this development time. However as this 

time gets increasingly greater and we have to take a larger computational domain in the £ 

direction to accommodate for the greater value to which g{0,t) approaches, the computational 

time increases greatly for larger values of p2. This is best illustrated in Fig. 5.9 d) where we set 

p2 = 0.7 and track the position of the interface for 40 time units (4000 time steps) with g(0, t) 
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Figure 5.7: Top: plot of the differential velocity WiiW — Wi>n calculated using the lubrication 
model versus the density of the displaced fluid pi with other parameters fixed (e = 0.4; k\ = 1.0; 
ki — 0.8; m i = mi = 1.0; TYI = 1-0; Tyi = 0.8; p\ = 1; /3 = 0). On the plot, solid circles 
indicate the values of density for which 2-D flow simulation indicated an unsteady displacement 
and empty circles where a steady displacement was achieved. Below are plots of the interface 
position at the wide side of the annulus (4> = 0) from the simulated flow in frame of reference 
moving with the average speed flow for (to to bottom, left to right): a) pi — 0.4; b) pi = 0.5; 
c) pi = 0.6; d) pi = 0.7; e) p2 = 1.0; f) p2 = 1.1 
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Figure 5.8: Right: plot of the interface position at the wide side of the annulus from the 
simulated flow in frame of reference moving with the average speed of the flow for p2 = 0.7 
with interface evolving from an initially elongated configuration (plotted on the left). Other 
parameters fixed at the same values as in Fig. 5.7. 

steadily increasing at a nearly constant rate as shown. We cannot however conclude that the 

displacement is thus unsteady as running the simulation for 80 time units would reveal that 

g(0, t) does in fact approach a constant value thus indicating a steady displacement. 

In case of p2 = 0.7 we can make the same conclusion by setting the initial interface to be 

elongated so that g(0,0) is greater than eventual value to which g(0,t) converges and observe 

g(0,t) decreases from that value (an idea analogous to that used in lubrication model). Plot of 

an elongated initial interface and the subsequent track of the interface on the wide side is given 

in Fig. 5.8. However, for say p2 = 0.8 guessing this eventual value to which g(0,t) converges 

is not straightforward as well as the dimension of computational domain in the £ direction re

quired would be considerably larger. Evolving interface from an initial horizontal configuration 

as we have done for smaller values of p2 is also not feasible in this case as the "development 

time" would be too long. 

On the other hand, it is clear that for large values of p2 - (1.1 or 1.0) displacement is go

ing to be unsteady with g(0, t) steadily increasing with a large gradient. Thus we can conclude 

that transition between steady and unsteady displacement according to the 2-D flow simulations 

occurs somewhere between p = 0.7 and p2 = 1.0 in this case, however acquisition of a more 

precise bound appears to be problematic. At the very least we can conclude that prediction for 
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Figure 5.9: Top: plot of the differential velocity WitW — Wi,h calculated using the lubrication 
model versus the consistency of the displaced fluid k2 with other parameters fixed (e = 0.3; 
k\ = 1.0; mi = rn.2 = 1-0; Ty\ = 1.0; r y 2 = 0.8; p\ = 1; p2 = 0.95; (3 = 0). On the plot, solid 
circles indicate the values of consistency for which 2-D flow simulation indicated an unsteady 
displacement and empty circles where a steady displacement was achieved. Below are plots of 
the interface position at the wide side of the annulus (4> = 0) from the simulated flow in frame 
of reference moving with the average speed flow for (left to right): a) k2 = 0.4; b) k2 = 0.6; c) 
k2 = 1.2. 

steady displacement based on lubrication model appears to be conservative compared to flow 

simulation results, i.e. flow simulation predicts a steady displacement for a larger range of p2. 

Second example illustrating the same kind of comparison is given in Fig. 5.9. Here we fix 

all parameters at values specified except for the consistency of the displaced fluid k2. Again, 

similar sort of problems as in the previous example arise with a more exact determination of 

the transition from steady to unsteady displacement using the flow simulation. Nevertheless 

we note again that the transition occurs later than predicted by the lubrication model. 
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Figure 5.10: Plots of the velocity at the wide side of the annulus ((f) = 0) as given by the 
lubrication model (solid line) and from 2-D flow simulations (crosses). Left to right: a) density 
of displaced fluid p2 between 0.9 and 1.3 and other parameters fixed at e = 0.4; fci = 1.0; 
k2 = 0.8; m\ = m2 = 1.0; T y i = 1-0; ry2 = 0.8; p\ = 1; 8 = 0 b) consistency of the displaced 
fluid k2 between 1.0 and 1.8 with other parameters fixed at e = 0.3; k\ = 1.0; m\ = m2 = 1.0; 
T y i = 1.0; TV2 = 0.8; p i = 1; p2 = 0.95; 3 = 0. 

Second characteristic on which we compare these two models is the prediction of the veloc

ity on the wide side of the annulus. It is sensible to make this comparison when we expect an 

unsteady displacement - as otherwise, in a case of steady displacement, during a simulation an 

initially elongated interface would level off with velocity on the wide side eventually diminishing 

to zero, making its estimation ambiguous. 

We adopt the same strategy as above: for the first example we fix all parameters except for 

density of the displaced fluid p2. We vary p2 between 0.9 and 1.3 and fix other parameters as 

before at e .= 0.4; h = 1.0; k2 = 0.8; mx = m2 = 1.0; ry\ = 1.0; T y 2 = 0.8; pi = 1; B = 0. 

Results obtained thus from the flow simulation together with ones predicted by the lubrication 

model are given in Fig. 5.10 a). We repeat the procedure by now varying the consistency of 

the displaced fluid k2 between 1.0 and 1.8 with other parameters fixed at e = 0.3; k\ = 1.0; 

mi = m2 = 1.0; TYI = 1.0; ry2 = 0.8; p\ = 1; p2 = 0.95; 8 = 0. Results are plotted in Fig. 5.10 

b). In both cases we note that the estimation of speed on wide side by the lubrication model is 

slightly higher than that obtained from the flow simulations. 
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C o n c l u s i o n a n d D i s c u s s i o n 

In this thesis we have described and analyzed in detail a model of non-Newtonian displacement 

flow in annular geometry. Although building extensively on previously done work in this area 

we have achieved the following main new results of importance: 

1. We derived an immiscible fluids model, with appropriate jump conditions. This model is 

easier to analyze than the concentration equations formulation. The two models lead to 

an equivalent weak formulation. 

2. We obtained an exact solution for the form of the interface and the stream function in 

the case of a concentric annulus from the immiscible fluids formulation. This provided a 

useful validation tool for later results as well as serving as the basis for the perturbation 

solution. 

3. We derived a perturbation solution for the form of the interface and the stream function in 

the case of small eccentricity e << 1 from the immiscible fluids formulation. This allowed 

us to easily demonstrate several important traits of the interface shape, depending on 

variations of parameters such as densities, consistencies and yield stresses of the fluids. 

4. We showed existence and uniqueness of solution * for the stream function equations 

for a given concentration field for the concentration formulation (or equivalently a given 

interface position for the immiscible fluids formulation). 

5. We implemented an iterative algorithm for the solution of the concentration formulation of 

the stream function equations that solves the "exact" problem without making additional 
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simplifying assumptions in the model or regularization of the constitutive equations. We 

examined convergence of the algorithm and validated it against analytic solutions. 

6. We derived a lubrication type model from the immiscible fluids formulation that can 

reliably predict the flow type - differentiating between stable and unstable displacement 

and formation of a mud channel. The associated computations take milliseconds of C P U 

time to complete and compare well with those produced by 2-D flow simulation. 

There are several comments that should be made regarding the material presented here. As 

mentioned earlier, we take the flow model summarized in [15] as the staring point for our 

analysis. As such, limitations of that model all apply here - and one should consult [15] for a 

more comprehensive discussion of these. The primary problems and limitations outlined are 

i) assumption of homogeneity of fluids across the gap; ii) assumption of non-turbulent flow in 

the whole annular domain - in practice some cement jobs are pumped in turbulent regime; iii) 

ignoring via scaling laws what happens close to the interface and concentrating on the bulk flow 

instead; iv) assumption of an imposed flow rate throughout the well, which can break down if 

U-tubing occurs; v) assumption of the casing being stationary - sometimes the casing is slowly 

rotated during the cementing process which has the effect of shear thinning both fluids. Some 

of these can be clearly addressed in the future by expanding the model while the importance 

of others can be examined experimentally. In particular examination of assumption (i) can be 

carried out by extending the current research on displacements in a long axial section of the 

annulus, considered in [1, 16]. 

For the augmented Lagrangian method implemented here for the solution of the stream function, 

the one major limitation appears to be the computational speed. For a 20 x 100 computational 

domain considered here a typical flow simulation involving about 3000 time steps (equivalent 

to 30 time units, with time step ~0.01 obtained from C F L condition) can take several hours on 

current mid-range PCs depending on parameters. This can be remedied by a more extensive 

exploitation of the over-relaxation parameters pn and r, implementation of more efficient nu

merical methods for solution of the algorithm's equations or using a non-regular mesh to reduce 
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the number of control volumes needed. 

Lastly we note the relation of lubrication model to the 2-D flow simulations. The predic

tions made by the lubrication model are, as we would expect, conservative. This can be seen 

in Fig. 5.7 and 5.9 where the domain on which the lubrication model predicts a steady flow is 

in all cases smaller than that on which the 2-D flow simulation predicts a stable displacement. 

Consistently, as shown Fig.5.10 the velocity of the interface at the wide side of the annulus pre

dicted by the lubrication model is greater than that computed from the 2-D flow simulations. 

Determination of just how conservative is the lubrication model is complicated by the difficul

ties in determining the flow type from the 2-D simulations described in 5.2.3 using a particular 

example. Some indication of the order of magnitude of the discrepancy however can be perhaps 

deduced from comparing the predicted speeds at the wide/narrow sides of the annulus. 
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