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Abstract

In this thesis we derive, analyze and devise a method of numerical solution for a Hele-Shaw
model of displacement flow of non-Newtonian fluids in an eccentric annulus. “The physical
problem stems from an industrial process of oil well cementing during the well’s construction
and successful mathematical modelling and solution of the problem allows for optimization of
the process resulting in economic and environmental benefits. Here we outline derivation of
the model based on using the long-thin geometry of the annular domain to reduce the flow
equations to two spatial dimensions together with the Hershel-Bukley constitutive equations
and time evolution equation. :

Therefrom we obtain analytical solution for the form of the interface in cases of concentric
annulus and small annular eccentricity. We proceed to put the problem into its variational and
minimization formulation from which we show the existence and uniqueness of a weak solution
to the original model. We apply an iterative augmented Lagrangian method to obtain this
solution. together with a Flux Corrected Transport method for time evolution to arrive at a
fully 2-D numerical simulation of the flow. We derive another model using ideas of thin-film
and lubrication flows which allows for a quicker prediction of the displacement flow type. We
compare the predictions for the flow type based on the lubrication model to those obtained
using the 2-D flow simulations. We conclude with a discussion on the significance of results
achieved 'in this work together with relative merits and limitations of the derived models and
solutions. ‘
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Chapter 1

Introduction

1.1 Process description

In construction of oil and gas wells it is necessary to cement a series of steel casings into the well
as the depth increases. This is done both to support the wellbore and to provide zonal isolation
throughout the length of the well, ensuring a hydraulic seal on the outside of the casing. The
primary cementing process proceeds as follows. After a new section of the well is drilled, the
drill pipe is removed from the wellbore, leaving the drilling mud behind. A section of the steel
casing is then inserted into the hole, leaving a gap of ~2 cm between the outside of the casing
and the rock, i.e. the annulus. Although centralizers are sometimes fitted to the outside of the
casing to prevent the steel tubing from slumping to the lower side of the wellbore, it is Ivery
common that this annular gap is eccentred. After the casing is in place, a sequence of fluids
is pumped down the inside of the tubing, reaching the bottom of the well and coming back
up through the annular gap. Typically, é wash or spacer fluid is pumped first, displacing the
drilling mud left over both on the inside of the tubing and outside in the annulus, followed by
one or mofe cement slurries. Drilling mud follows the final cement slurry pumped and circula-
tion is stopped with a few meters of cement left at the bottom inside the casing. The cement is
then allowed to set. Finally the drilling resumes through the remaining part of cement inside

the casing and further into the underlying rock.

A successful cement job results in removal of mud and spacer fluid from the annulus by the

cement slurry. Unfortunately, mud is sometimes left behind in parts of the annulus and as the
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cement sets, water is removed from it, producing a porous channel along which liquids and
gasses from the surrounding rock formations can migrate upwards. This may result in negative
safety and environmental consequences as well as loss of productivity. To rectify the problem,

expensive squeeze cement jobs are required.

A primary cement job design, in the context of this thesis, consists .of a sequence of fluids,
volumes and flow rates, with specified fluid densities and rheologies. To aid annular displace-
ment during cementing, the rheologies and densities of the spacer fluid and the cement slurry can
be modified within the constraints of maintaining well security. The pump schedule regulating

the rate of flow through the gap can also be varied.

1.2 Existing literature review

An overview of primary cementing and a description of common industrial practices used is
presented in [18, 41]. Methodology for cementation described there is primarily based on expe-
rience and several "rules of thumb” for improving the mud displacement are given, supported
by i)hysical considerations. Important feature of the displacement flow such as possible presence
of a mud channel on the narrow side of the annulus has been identified and examined in [30],
where a hydraulic approach is adopted and in [19, 20] together with field evidence. Techniques
derived from field experience and supported by large-scale experiments for detection and re- -

moval of the mud channels and unyielded cement slurries are outlined in [3, 36, 37].

Hydraulic reasoning has been used in the majority of the industrial literature on the subject,
leading to several syétems of design rules for a successful cementing job as in [23, 27, 28, 38].
Generally, these rules are applicable to near-vertical wells and state that the flow must be suf-
ficiently high to avoid a mud channel on the narrow side of the annulus and there should be
a positive gradient of rheological parafneters and densities (so that each fluid generates higher .

frictional pressure at the wall and is heavier than its predecessor). One such system of rules

currently used in well construction is the WELLCLEAN system, developed by Schlumberger-
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Dowell, [8, 14, 18] with examples of application given in [6, 25].

Whilst these approaches are based on a number of physical truths and have been successfully
applied to a variety of cementing jobs, their predictions are generally conservative and they
experience problems with predicting flows in highly deviated or horizontal wellbores where new
problems arise [9, 24]. More comprehensive and detailed solutions fully modelling the flow in
3-D have been computed recently [2, 44]. It is noted however that computational requirements
for simulating 3-D flow over the scale of the wellbore are prohibitive and only an annular cross-

section of the domain is usually considered.

Here we follow the derivation of the model given in [15] that allows for generality in terms
of well geometry and a level of detail that the more restrictive hydraulic design rules do not
provide. At the same time it makes sufficient number of justified simplifications to reduce the
problem to 2-D, thus greatly reducing the computational load required to model displacements
over the scale of the wellbore. The general idea is based on averagi'ng in the radial direction
reducing the problem to 2-D, in axial and azimuthal, directions in a manner similar to that
applied to computing flows in Hele-Shaw cells. The first appearance of this idea, in fact deriv-
ing from a porous media flow analogy is in [29]. The current work is based on [15], which has

evolved from [4, 5, 10, 13]. Limited experimental validation of the approach is given in [42, 43].

The method of numerical solution for the resulting flow equations used in [15] requires a few
assumptions and simplifications additional to those made in derivation of the model. This
is prompted by the requirements of speed and robustness for the flow simulator so that fre-
quent, quick and trouble-free re-runs of cementing displacement simulations can bé made and
a near—opﬁimal cementing job design can be found. Here however, we attempt to solve thé flow
equations without making any additional assumptions or simplifications to the model beyond
putting it into variational formulation. We aécomplish this by using the augmented Lagrangian
method for solution of variational elliptic equations, outlined in [12, 17]. This method has been

applied successfully in a simpler situation of a one Bingham fluid flow in an eccentric annular
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cross-section in [22].

Later in this thesis we derive a simplified model for the flow, allowing for quick determina-
tion of the displacement type based on lubrication-type assumptions. -Essentially we assume
the displacing fluid to be ”shooting up” on the wide side creating an elongated interface and
resulting in several simplifications to the flow equations. By looking at whether the interface
elongates or not we conclude whether or nor the given situation would result in an unstable or
stable displacement. This type of approach is broadly similar to examination of fingering effects
in a non—N_ewtonian Hele-Shaw displacement flow, which has been studied recently in [26, 7]. It
should be noted however that in the case of an eccentric annulus we have an additional effect
of increasing wall friction towards the narrow side when compared to a concentric annulus, or
equivalently to an Héle—ShaW cell with parallel plates. Although not studied extensively in this
thesis, the effect of this seems to prevent fingering at the interface in most situations causing the
flow instabilities to manifest themselves instead by creating one long ”finger” at the wide side of
the annulus. This comment also applies when comparing the lubrication model presented here
to the earlier works on interface instabilities in Hele-Shaw type geometries such as [31, 39, 40]
or to interface instabilities for porous media displacements [21, 32, 33, 34, 35]. Also here we
consider mostly ”stable” displacements, whereas the Hele-Shaw and porous media flow studies

S

listed focus on unstable displacements.

1.3 Outline of the thesis

In this thesis we analyze and obtain solutions for a model of the laminar displacement flow of

Herschel-Bukley fluids in an eccentric annulus. The outline of the thesis is as follows.

In Chapter 2 we proceed to describe the derivation of the model closely following work previ-
ously done in this area. Classical dimensional scaling together with averaging across the annular

gap analogous to that done in a Hele-Shaw displacement model, lead to a system of equations in

two spatial dimensions. These consist of a coupled system of linear advection equations for the
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fluid concentration and a nonlinear Poisson equation for the stream function. Thereafter, we
obtain some preliminary analytic results following directly from the formulation of the model
- such as expressions for the steady-state interface for concentric annulus and a perturbation

solution for small eccentricity.

In Chapter 3 we show existence and uniqueness of the weak solution to the nonlinear stream
function equation. We accomplish this by bﬁtting the problem in variational formulation, con-
verting it to a minimization problem and using standard results of functional analysis. Then
we apply the augmented Lagrangian method to obtain a solution to the minimization problem
through an iterative algorithm. We simplify the steps of the resulting algorithm and state its

convergence properties.

In Chapter 4 we detail the discretisation and numerical solution of the equations derived in
the previous chapter. We examine convergence of the algorithm and compare the results with

analytic and perturbation solutions given in Chapter 2.

In Chapter 5 we derive a simplified model for evolution of the interface using methods ap-
plied to lubrication and thin-film flows. In this way we effectively reduce the process dynamiés
to a one-dimensional model. It allows us to give a criterion for the type of fluid displacement

occurring without actually simulating the entire flow. We give some results based on this model

and compare them with those obtained from the 2-D flow simulation.




Chapter 2
Modelling of the flow

A local cylindrical coordinate system (7, 6, é) is used to describe the well geometry; E measures
distance along the central axis of the casing 7 = 0, (i.e. é is the measured depth, but measured
upwards from the bottom of the well). Wells are typically inclined to the vertical and the
inclination angle is denoted ﬂ(f). The local cross-section of the well, outside the casing, is
assumed to be that of an eccentric annulus, with inner radius #; (é), equal to the outer radius
of the casing and outer radius f‘o(é ) equal to the inner radius of the hole (or previous casing).

At each depth £, the mean radius 7,(€) and the mean half-gap width d(é) are defined by:

[Fo(€) — 74(£)]. (2.1)

D=

Fal) = 2@ + 70, ()=

As well as inner and outer radii, the displacement é(é ), of the two centres of the two cylinders
is given. The following three geometrical assumptions are made: (i) that the cylinders do not
touch, ((€) < 2d(€)); (ii) all variations in the cross-section geometry and inclination, axially
along the wellbore, are slow; (iii) the weight of the casing acts in such a way that the narrow

side of the annulus will be found on the lower side of fhe well.

The flow is assumed to be laminar and incompressible. The Navier-Stokes equations together
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Figure 2.1: Schematic picture and a cross-section of the well.

with the incompressiblilty condition in cylindrical coordinates are:

o L A_10M 10 . 0 . Teg OPp ..
p{af”“ VJ“ = Forl il tGggTet gate = 5 g t b

(2.2)
N TS O N IO 10, J . op ..

(2.3)
NS R 10 0. op ..
p[5—£+u-v]w = Aar[ Er]+7«39 £9+8£ 7 8—£+pg€, (2.4)

0 = 10.... 180 0w (2.5)

Forl Ut it g
where @ = (4, 0,W) is the velocity, p is the pressure and § = (g7, de, Qé) is acceleration due
to gravity. We now assume that a sequence of K fluids is pumped around the flow path
and concentration of each individual fluid component is denoted ¢, which is modelled by an
advection-diffusion equation:

Bck 1

> g[ruck] + Lo bek] + b%[wck] =V - [Dile, @) Veg], (2.6)

7'60[

where Zsz1 ¢k =1; ¢ = (c1,c2, .., ck) and the rheological parameters together with the density

depend upon the concentrations of fluids present.
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2.1 Non-dimensionalisation

Here we non-dimensionalize and scale the equations above with the aim of deriving a two-
dimensional model in azimuthal and axial directions. We eveﬁtually eliminate the radial de-

pendency by averaging across the annular gap.

Scalings: Let the axial coordinate of the top of the well be £ = étz with the bottom of the
well at f = Ebﬁ and thus length of the well in dimensional units Z= étz - ébh- Then define
o 1 étz . n n . 1 étz . . '
fo=—= [ 7a(§) d&, ==/ 4§ d&. : (2.7)
Z Jéu, Z Jéy, :

being the average mean radius and global measure of narrowness of the annulus respectively.

Rescale the axial and azimuthal coordinates £ and ¢ in a natural way:

- _9

%
T,

Also, in each cross-section define local average radius, rq (), local annulus eccéntricity, e(),
and local measure of the narrowness of annulus, §(€) by:
d(é) _ fa(d)

7al@) C 9Ty 9

Then, the centreline of the annular gap is at r = r,(£)re(#,£), inner wall at r = ri(¢,§) =

ra(&)[re(#,€) — 8(€)h(4,€)] and outer wall at r = 1i(8,£) = ra(§)[re(s, &) + 6(£)R(¢, £)], where

for small §(&) the following expressions define 7.(¢,£) and h(¢,§):

5(¢) =

ro($,€) ~ 1+e(€)d(€)cosme + [e(€)8(€) sinmg) + O(6%), (2.10)
h(#,€) ~ 1+ e(€)cosmd - [e(€)]*6(€)sine + [e(€)(¢) sinmg]’ |
+0(8%). : (2.11)

Assuming sufficient narrowness and -uniformity of the annular gap so §(§) ~ 6* <« 1 we discard

terms O(6(€)) above, taking:

re(,€) =1, ' M, &) = 1 + (&) cos . (2.12)
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Now scale the radial coordinate relative to distance to the centerline of the gap, as follows:

y = r—= ra(gzrc((b;g) - r _(;"*a(g) . (213)

Thus the outer and inner walls are given by:

y= :tH(¢, é) — ié(g)"‘a(g)[l ;;e(é‘) COSW¢] . (214)

To scale the velocities we define a typical cross-section of the annulus A* = 476*[#]? and a
scale for the flow rate Q* = max; Qpump(f). Then, the axial and azimuthal velocities are scaled
with @* = Q* //1* and radial velocities are scaled with @*6* /7. Finally, define dimensionless

flow rate and dimensionless time by

t=2¢ f =90
_ Q(t) o

To scale the fluid properties, pressure and deviatoric stress we note that the characteristic scale

(2.15)

for the rate of strain is 4*:

a*

¥t = : 2.16
Uialy> (2.16)
and we use this to define scales for shear stress, viscosity and pressure, as follows:
~% I A 2 x\N, ~ % 7* % 7t
* = max|fry + Re(¥")™], o= =, P* = , (2.17)
k ’ A 6*

~ where for each fluid k 7 y is the yield stress, &y, is the consistency, ny) is the power law index and
each fluid is assumed to obey Herschel-Bulkley constitutive laws. All shear stress components
are scaled with 7* and dimensionless rheological parameters are defined by:

’f‘k’y = ’f'*Tky, fik(;y*)nk = kg, N = Nk. (2.18)

The fluid densities are scaled with p*:

p" = max(py]. (2.19)

Scaled equations: Applying the scalings above to the momentum equations (2.2 - 2.4) and

neglecting terms O(%) (where §*/m is the ratio of radial to azimuthal length-scales and is
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assumed to be small):

0 — _g_z, (2.20)
0 - _:_ag% + 6%% @g:_m@ (2.21)

where St* is the Stokes number:
P ~ (2.23)

- ﬁ*g*[,r’:za*]Q - ﬁ*g*,f.;é* :
The leading order scaled momentum equations above describe a bidirectional shear flow through

a slot of width 2H (¢, £). Now, the leading order expressions for rates of strain are:

Ov éi ow §:

Toy ™~ Ny +O(—), Tey ™~ Mg, +O0(—) - (2.24)

™ ™

where 7 is the effective viscosity. Substituting this into the scaled equations above and assuming
that the velocity field is approximated by a slot velocity field s = (vs, w,) symmetric about the

centreline of the gap we obtain:

0| Ovs| l@ _ psin Bsin g

o l15) = e e -
0 | dws] _ Op  pcosf
By [n By ] = % + - (2.26)

where p = p(¢,&,t) is now independent of the radial coordinate. Scaling the incompressibility

condition (2.5) and retaining leading order terms again:

Ou , 1 0vs  Ows
8_y+Ea_¢+ D€ =0. (2.27)

To eliminate the radial velocity u we average across the gap width and use the no-slip condition
at the walls to give:
O 1br9) + Ljrobm] = 0 (2.28)
0¢ oet Y '

where

H H
Woe =g [ v we6o=g [ wa (229)

10




Chapter 2. Modelling of the flow

are the slot velocities averaged across the gap. Thus, to satisfy (2.28), we introduce a stream

function ¥ as in an incompressible 2-D flow:

ro H = g—z, Ho = —Z—? (2.30)

Next, we scale the concentration advection équation (2.6), retain the leading order terms and
integrate through the gap as above. Noting that the rescaled diffusion terms appearing on the
right hand side are typically of a negligible magnitude for the dimensions of cementing jobs

considered, we obtain
0 0 0
e [Hrqck] + 3% [HT T + % [Hr,w ¢] =0, (2.31)

where ¢ denotes the gap-averaged fluid concentration.

Finally, using the rheology and density scalings above we rescale and reduce the consitutive

laws:
ov
Ty = 5 I > (@)
(2.32)
Owg
Tey = 7 B9 < |7| > 1v(T)
(2.33)
¥ = 0|7 <7v(Q), (2.34)

9 9\ 1/2
where |7| = [Tgy + T?y]l/Q, A= ([%ﬁf] + [‘96—“;}] ) is rate of strain and in the regions where
the fluid is yielded, the effective viscosity 7 is: '
@©

n=n(E,%) = k@O + —T—Yry— (2.35)

2.2 Model Dérivation

By integrating (2.25) & (2.26) three times - with respect to y, to extract slot-averaged velocities

we get:
_ 1 8p psinﬂsinmﬁ] 1 /H/H T
- _|LOp psmpsinme) 1 Y dgdy, 2.36
v |:7'a 0¢ St* H 0 y U(y) v ( )
i Op pcosﬂ] I/H/H [T
Gt m [ at e (237
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Note that from (2.20) p is independent of g, and that we have assumed that concentration does
not vary across that gap. From this it follows that the vector of averaged velocities (T,W) is

parallel in the (¢, ) plane to the vector G:

_ _(_10p psinfsin7é _a_p_pcosﬂ
G”(G“”Gf)“( =06 s+ e St )

which is the vector of modified pressure gradients.

(2.38)

Hydraulic assumption We have from the definition of G, scaled consitutive laws and the

reduced scaled momentum equations (2.25) & (2.26):

)
57 =G (2.39)

where T = (74, T¢y) satisfies (2.32 - 2.34). This is an equation for a Poiseuille low between two
plates distance 2H apart. By integrating this with respect to y, using the no-slip conditions at
the walls and substituting from the constitutive assumptions, we obtain the following relation
between the modified pressure gradient G and the rate of flow through the slot H[72 + w2}/ =
F(G):

0 4 HG < 1y,

FG) =3 (HG - n)(m+ HG + 1) [HG -~y |™ (2.40)
o+ 1) 79 W[ P ] HG >y,

where n = 1/m. Now to simplify the notation we introduce the following modified gradient

and divergence operators:

1 0Oq 8q> 1 0Oqsp Oge
VG. = TN AL ae |0 V : = N AL e ?

(ra(f) 99’ ¢ * T 00 T o
for arbitrary q and g = (gg,g¢). We note that H|3| = |V, ¥|, so that (2.40) becomes |V,¥| =

F(QG). Substituting back into (2.36) & (2.37) we have when |V, ¥| # 0:

o 1 oV
% _Gs ro(£) 8¢ _ Ge
T TS (2.41)

From this we can derive a formulation for the pressure field or the stream function. The pressure

field is however indeterminate in the unyielded regions where |V,¥| = 0, so we proceed with

deriving the stream function formulation.
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Stream function formulation To make explicit the effects of the yield stress on the flow

and avoid singularity in equations for the stream function at |V,¥| = 0 we define x by:

ATy ’
x=G & (2.42)

substituting into (2.41) for G in terms of x:

9p , rapsinBsinmg _ ra((|Vall) +v/H) 0¥

—raGs = o+ LT T 5 (2.43)
_ _0p pcosB _ x(IVa¥|) +1v/H 1 0¥
Ge = o9c S+ AT Te 09’ (2:44)

valid in the regions where the fluid is yielded. Cross-differentiating to eliminate the pressure

dependence we finally obtain:

V.S = -f, ($0€0,1)x(0,2),  a)
where
5 = (raGe, oG = v [V N g g s> T
(2.46)
IVal| =0 <= |S| < ’”‘?’, (2.47)
and f is given by: ' v
f=v,. (rap(g)tfos,ﬁ, _1ap(e) S;r;ﬂ sin 7r¢) . (2.48)

Finally, substituting for x into the expression for F(G) above we obtain a relation between x

and |V, ¥| if required:

0 x<0,
IV, 0| = 2 L L (m+2)ry 0 (2.49)
' KT (m+2) (x + 1y /H)? (m+1)H '
Boundary Conditions On the wide and narrow side we have:
v(0,£,t) =0, U(1,&,t) = Q(1), (2.50)

the value of stream function on wide side is taken to be 0 arbitrarily and the condition on the

narrow side arises thus from the incompressibility of the fluids pumped. For conditions on fhe

13
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top and the bottom ends of the annulus, we assume the flow there is in the axial direction only,
SO
ov ov

The procedure for this concéntration—depéndent model is to calculate the stream function
from the original concentration function by solving the equations above, then extract the slot-
averaged velocities by differentiating the stream function. Thereafter we compute the evolution

of the concentration from the advection equation (2.31).

Immiscible fluids model Instead of the concentration-dependent model above we can also
consider the displacement as that of immiscible fluids without surface tension, i.e. since the
concentrations are simply advected by (2.31). We show in Chapter 3 that both these models

lead to the same variational formulation.

Thus, without loss of generality, if we consider a two fluid displacement (with fluid 1 dis-
placing and fluid 2 being displaced) and following identical steps as in the above concentration-

dependent model we obtain:

Ve'S1 = 0, forxzey (2.52)

VoS82 = 0, for z €y, (2.53)

with S; and Sy defined as in (2.46- 2.47) in each of the fluids and {31,y are the regiohs
where correspondingly fluid 1 and fluid 2 is present. Denote the interface between two fluids by
& = h(¢,t). Then we require the pressure p and the stream function \Il to be continuous across -
the interface, or

Ip? = 0; ]2 =0, (2.54)

where [g]4 denotes the difference in ¢ between fluid 2 and fluid 1 across the interface. The

kinematic condition at the interface gives

oh oo
ot 1,090

= o, (2.55)




Chapter 2. Modelling of the flow

which is the equation for the advection of the interface, replacing (2.31). .From the continuity
of p and ¥ we have that their directional derivative in the direction tangential to the interface

t=(1, g—g) is continuous, so:

o [10p  dpon]®
[t Vapl; = [Ea—qb 6_§B_¢] = (2.56)
» [10¥  8¥on]* ,

Substituting for components of pressure gradient from (2.43 & 2.44) we obtain:

X+7v/H\ (0¥ 19¥0h psinfBsintg pcosBO\]?
[( V¥ )(BE‘E%%)*( S¢St a—¢>]1—0 (2.58)

as the pressure continuity condition (2.56) and note that (2.57) is equivalent to the continuity

of the normal component of velocity. The latter is required for (2.55) to be valid.
2.3 Preliminary Results

It appears that obtaining a solution for the above system of equations for a general case will
require use of numerical methods - for example by applying the augmented Lagrangian method
to a finite volume approximation for the weak formulation of the problem as we have done in
Chapter 3. However, some analytical results for simple cases can be derived and from these, the
trends of varying model parameters can be deduced. These results can aid both in validating
the numerical solutions for the general case and provide some insight on the qualitative physical

level as to the behavior of the flow.
2.3.1 Properties of x

The relation between the modified pressure gradient and the rate of flow from (2.49) is giveh

implicitly by

0 x <0,
|Va\1’| = AXm+1 I:  om+ 2B >0 (2.59)
(x + B)? X mr1 X5
where x = G — 7v/H with G being the modulus of the modified pressure gradient defined as
above and ‘
Hm+2 v

15
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1. Asymptotic behavior in the yielded region x > 0:
Ayt fm+2

B

As [V, 0| = 00, |Val| ~ Ax™ = x ~ |V /™ (2.61)

As |V, ¥ — 0, |V ¥ ~

2. Derivatives with respect to |V,¥| for x > 0:

OVLI|  Ax™ \ (m +2) ,
5 Ot B° (mx +2m(m+1)Bx+(m+2)B >0
ax _ _ (9VaT\ 7
VAT ( dx >0 , (262)

3. Bounds for x

+2
VU] < Ay (ﬁ@)

x+B
(m+2
< — X" 2.
< (222 (2.63)
as (x + (%%)B)/(X + B) is decreasing and bounded by (m + 2)/(m +1). Thus
m+1 \Y™ ,
< (ghmzg) T 269
Also, for the upper bound we have:
' A m+1 /
Vo¥| > XX+ = (2.65)
Ax™1 /(2B <B,
X /(2B) X < (2.66)
Ax™/2 x > B,
Rearranging, we obtain:
_ &Y w9, < AB7 2, (2.67)
Xz .
(2)/™ |V, u|/m IV, T| > AB™/2,

4. Concentric annulus

In case of a concentric annulus with eccentricity e = 0 and constant unit flow rate Q(t) = 1

we have x = x(1, 1) satisfies:

_ 1 x(L,1) m+ 2
L= ot ) XD+~ (X(l’l) + m_-i—lTY> (2.68)

16
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in the yielded region. Also differentiating (2.59) with respect to |V,¥| and H we obtain,

correspondingly:

N GRS K™(m+2)(x(1,1) +7v)°
XD = Fe gt Y = D, 1 + 22X (1, Dy + )

X . (m+2)(x(1 1)+7y)
thus giving the relation
' X' (1, 1)x™(1, 1
xu(1,1) =1y = —(—;(‘;;L(—'2 (2.70)

which will be used later.
2.3.2° Solution for concentric annulus

Here we obtain a solution for the case of zero éccentricity and constant rate of flow, so e = 0,
H =1 and without loss of generality Q(¢t) = 1. We consider a problem with only two fluids and
adopt the immiscible fluids model with continuity conditions at the interface described in (2.55
- 2.58). First, introduce frame of reference (z,¢) where z = € — ¢ is mox;ing with the average
speed of the flow. Then, writing z = g(,t) = h(,t) — t for the position of the interface, the

continuity conditions (2.56 - 2.58) become:

[3@ 8@89} _g

5+ 5294, (2.71)

X+ 7v o 09 g psinBsinTg  pcosB Og 2'_ _
() (2o nl2) o (2oisnms _pemdn)' o (o

at the interface, where ® = ¥ — ¢ is the stream function in the moving coordinates. Now,
® = 0 clearly satisfies the first interface condition above. It also satisfies the field equations as
S = %V ¥ is then constant in each fluid. The second interface condition is satisfied

if

2
x(1)+7v + Pcsziﬂ] 1 g—z = [p?;ﬂ] 1 sin(r¢), -£2.73)

which gives the shape of the interface. So, for a vertical well we have 3 = 0 giving g constant

in ¢, so the steady-state interface is horizontal as we would expect. For a horizontal well,

17
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integrating the equation above we obtain
2
1 [pl1
TSt [x(1) + 1y

Note that if the two fluids have identical rheologies in the case of horizontal well we can only

g(¢) = 5 cos(m@)  (+const.) (2.74)

obtain a steady state if they also have identical densities, i.e. are the same fluid from the point
of view of our model, in which case the position of the interface is essentially undefined. One
other case we may consider is that of an inclined well with two fluids with same rheologies but

different densities. Then, the steady-state interface is given by

g(¢p) = —% tan 3 cos(m¢) _ (2.75)

Remark In Chapter 3 we show that both the concentration-based model and fhe immiscible
fluids model have the same weak formulation and that formulation has a unique solution. Thus,
since we have showed above that ® = 0 satisfies the equations of the immiscible fluids model
for a cbncentric annulus, we can conclude that it is also a unique solution and would satisfy the

corresponding concentration formulation, i.e. without any intermediate concentrations.
2.3.3 Perturbation Solution For Small Eccentricity

Here we use standard perturbation methods to find the stream functions and shape of the
steady-state interface in case of small eccentricity 0 < e << 1 of the annulus. As in the case
above of a concentric.annulus, we assume a constant flow-rate Q(t) = 1 as well as small constant
ecéentricity e << 1 and constant‘ mean radius r, = 1 (thus-we have V, = V). Also, for the

sake of simplicity we assume the top and bottom of the well are at z = £L.

We assume that the unperturbed steady-state interface is z = ego(¢) in the moving frame

of reference with go(¢) = O(1). Note that from the interface condition (2.73) this requires

99 _ [psin )7 . ~
06 [St*x(1) + St*1y + pcos ﬂ]% sin(mg) = O(e) (2.76)

so we need either a nearly-vertical well with the angle of inclination @ small, or the rheological

difference much greater than the density difference between the two fluids, to support the

nearly-azimuthal interface.

18
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Field Equations From the above we have that the concentric (unperturbed) steady state

solution is given by ® = 0, g = ego(¢), where ® is the stream function in the moving frame

and z = g(¢) is the position of the interface in the moving frame of reference. In case of small

eccentricity we seek a perturbed solution of the form

B(z,4) = 0+ edi(z8) +e2da(z, ) + ...

9(¢)

ego(®) + egi () + €°g2(¢) + ...
From this we obtain:

VI =VP®+ VP = (1+ecos(nd) +ePrg+.., eP1,+..),
where ®* = ¢ + (e/m) sinm¢. Using the binomial expansion: |

[V® + V@*| ~ 1+ e(cos(m) + P1,4) + O(e?)

giving
x(IV® + V|, H) +}y/H ~ x(1,1) + e(cos(m) + @1 4)x’(1,1)
+ecos(rd)xr(1,1) + 7y (L.— ecos(md)) + O(e?). |
Thus |
AT (904 90) ~ (1L 1) + 7]+ effcosm + 81,00 (1)

+eosmoxn(1,1) = ry cos g}, [x(1,1) + 1v]@1.).

Substituting into the field equations, at O(e) in each fluid we obtain

X (L1169 + (x(1,1) + 7v) @102 = (}'(1,1) + xa(1,1) — 7v)msinmé

in each of the fluid domains Oy, Q.

(2.77)

(2.78)

(2.79)

- (2.80)

(2.81)

(2.82)

(2.83)

Boundary and Interface conditions At ¢ = 0,1 we have ®; = 0 by the choice of I*. At

z = +L we have %%l = 0. The continuity conditions at the interface become:

0(go + 91) 2

2 ————— ==

e“®q, 3 + ¢<I>1,¢ 1 0
(g0 + 1) psin@sinwg  pcos B d(go + g1) 2

Gt )@ = ==557) St St 06

19
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on z = 0. Note that in deriving (2.84) and (2.85) we linearize both about about the same
solution and with respect to the unperturbed domains 21, Q. Note that from the interface
advection equation it follows that %‘% = 0 only if ®; 4(¢,0) = 0 in both fluids. Thus for steady

states we impose ®(¢,0) = 0.

Solution of the Field Equations First homogenize the field equation (2.83) by letting

- L _xa@LD—1v)
U(p,2) = ®1(0,2) + - (1 ZT) ) sinmg (2.86)
Then we have
U¢¢ + ,(1’ 1) Uzz = 0 (2.87)
in each of the domains (0,1) x (—L,0) and (0,1) x (0, L). The boundary conditions are
_(, _xu(1,1) -7y sinmé
U(s,0) = (1 Y1) ) - (2.88)
U@,2)=U(1,2) =0 (2.89)
U.(¢,—L) = U(¢,L) =0. | (2.90)

Seeking a separable solution in each of the domains we obtain by standard methods

sin e

U(g,z) = (1 - w) (cosh oz FF tanh oL sinh az) (2.91)

x'(1,1)
in top and bottom domains correspondingly (with o? = (x(1,1) + 7v)/x/(1,1) > 0). Using

trigonometric formulas to simplify and substituting for ®;:

_ xa(1,1) — 1y cosha(L F 2)\ sinmg
P1(9:2) = <1 XD > <__1 T oshal ) ™ (2.92)

Substituting this into the second continuity condition at the interface (2.85) and integrating:
_ 2
[:F(X(l, 1) +1y) (1 - %) tanh aL]

5 L cosmo
™ [x(1,1) + v + e8]

_ [psin B]?
[St*x(1,1) + St*ry + pcos G]? cos g (2.93)

Note, however, that from (2.76) the last term is O(e), and so as g; is O(1) we have
_ 12
[q:(x(l, 1) +71y) (1 ~ %) tanh aL]

5 L cos e (2.94)
n [x(1,1) + 7y + e8|

go+ g1 =

g1 = —go+

20
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using the relation (2.70) between x'(1,1) and xg(1,1) to simplify:

[Fx(1,1) +7v) (1 + 2552) tanhaL]2

2
g
m [x(1,1) + 7y + 28]

1

g1 = —go + cos T

with the perturbed stream function in the moving frame of reference

x™(1,1) 14 cosha(L F 2)\ sinme
Km coshalL T

l<I>1(¢,z)= <1+

and as L — oo )

[Fot, )+ ) (1 - 2552)]
g1 — —go+ 5L cosmg
2 [X(l,l) 1y + %@]

21(¢,2) — (H%

1

sin g

) (=1 + cosh az + sinh az)

(2.95)

(2.96)

(2.97)

(2.98)

In Figs. 2.2-2.4 we show main trends of these solutions, as we vary key physical parameters.

In Fig. 2.2 we vary density of the displaced fluid po and fix all other parameters at the values

given. In Fig. 2.3 we vary the yield stress Ty and in Fig. 2.4 the consistency ko of the displaced

fluid. In each case the more elongated perturbation function g; corresponds to the greater value

of the varied parameter as we would expect. Note that for perturbation solution we require

g1 = O(1) << 1/e. A contour plot of the perturbed stream function ®1(¢, z) in the moving .

frame of reference is given in Fig. 2.5.
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10.0

gl

-10.0
Figure 2.2: Plots of the interface perturbation function g; for varying density of the displaced
fluid ps. Least elongated to most elongated: pa = 0.5, p2 = 0.6, p2 = 0.7, po = 0.8, p2 = 0.9,
pa = 1.0, po = 1.1. Other parameters fixed at: k1 = 1.0; ko = 0.9; m1 = mo = 1.1; 7v1 = 1.0;
vo=09;p1=1;,6=0; L =10. . :

10.0

gl

-10.0
Figure 2.3: Plots of the interface perturbation function g; for varying yield stress of the displaced
fluid 1y9. Least elongated to most elongated: 7y4 = 0.6, 7vo = 0.7, 7v9 = 0.8, 7v2 = 0.9,
Tyve = 1.0, 7yo = 1.1. Other parameters fixed at: ky = 1.0; ko = 0.9; m; = mo = 1.1; 7v1 = 1.0;
p1=1;p2=09; =0; L=10.
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10.0

gl

-10.0
Figure 2.4: Plots of the interface perturbation function g; for varying consistency of the dis-
placed fluid k3. Least elongated to most elongated: ko = 0.6, ko = 0.7, ko = 0.8, ko = 0.9,
ks = 1.0, ko = 1.1. Other parameters fixed at: k; = 0.9; m; = mg = 1.1; 7y1 = 1.0; 7y = 0.9;
=1 p2=09;0=0; L=10.

20.0
17.5

15.0

12.5

10.0

Figure 2.5: Contour plots of the perturbed stream function ®;(¢,z) in a moving frame of
reference. Parameters fixed at: k1 =08, ks =1, m; =mg =11, 7v1 = 1.0; 7y9 =0.9; p1 = 1;
pa=10.9; 8=0; L =10. -
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Chapter 3

Analytical results

In the previous chapter we derived the following differential equation for the stream function

v
Va'S=—f7

where

rx(Va¥l) | _rary

S=1T N T EV.Y

V. P =0 < |9|<
.Sub ject to boundary conditions

\P(O,f,t) =0 \I/(l,f,t) = Q(t),

V¥ <= |5]>

ov ov :
—— = —_— 7 =
a{ (¢7 0’ t) O a&- (¢’ ? t) 01
and constitutive assumption
0
|Va\l/| = Hm+2 Xm+1 X
£ (m+2) (x + 1y /H)?

H

)

x <0,

x > 0,

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

which implicitly defines x(|V,¥|). Here we show that there exists a solution to this equation

and it is unique. For that we convert the problem to a minimization problem via a variational

formulation, prove existence and uniqueness of a solution to the minimization problem and

thus deduce the same for a weak solution of the original formulation. Thereafter we apply

the augmented Lagrangian method to obtain an iterative algorithm that solves the variational

formulation of the problem.
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3.1 Variational Formulation

We note that the classical formulation (3.1 - 3.5) is not necessarily well-defined, due to the
yield surface position x = 0 being initially undetermined. Therefore, we proceed to derive

a formulation that is more open to analysis. The derivation is purely formal and we assume

sufficient regularity of our solution and test function. So for the classical solution we assume

¥ € C%(Q) and that ¥ satisfies boundary conditions (3.4) with Q = (0,1) x (0, Z).

First let us homogenize the boundary conditions by setting
U =T*4u, ueCaQ). (3.6)

Note that ¥* can be determined by taking a linear combination of stream functions at £ = 0
and £ = Z. So in case of two fluids we can take U* = (1 — ¢)¥g + c¥z, where U, is the stream
function at € = a and c is the concentration with ¢ = 0 for the displacing fluid and ¢ = 1 for

the displaced fluid.

Now let v, w € C3(Q) with w = v — u. Then from (3.1):
/—fwdQ = /(Va'S)wdQ
Q Q
- /Va-(Sw)—S-VawdQ
Q
= —/S-Vawdﬂ—i-f wS -nds
Q - Jan
= —/s.vaw dQ. (3.7
Q

Substituting for w and S we have for |S| > ryr,/H:

/Qf(v—-u)dQ - /QS-Va(v—u)dQ

_ [ rax(IVa¥* + Vaul) ,
- /n Voo s v Vel Ver) (Vav = Vau)
7v7a (Va¥" + Vat) - (Vv = Vat)
T H |Vo¥* + Vaul dQ

/ raX(|Va¥* + Vaul)
T Ja  |VoU*+ V|

+ (VT + Vo] = [Vo¥* + Voul) O (38)

(Vo U + Vau) - (Vau — Vau)
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Note that if |S| < 7yry/H we have V,¥ = V,¥* + V,u =0, so

S8 - Vov—u) = S (VoU*+ Vv — (Vo ¥* + Vou))

= 8- (VU* + Va0

< S|V T* + Vo
< —TZ”“ Vo T* + V. (3.9)

Therefore (3.8) is valid for all S. Thus, a solution of (3.1 - 3.5) will also satisfy

raX(|Va¥* + Vaul) . )
/n [Va®* + Voul (Va¥* + Vou) - (Vav = Vau)

TYTq

TH

(IVal* + Vau| — [Va¥* + Vou|) + f(v —u) d2 >0 (3.10)

We now take (3.10) as the definition of our problem. In place of C?(Q2) and C2(f2) we assume
that U*, ¥ € V with u € V, (with Vj being the closed subspace of V' with u = 0 on 0). We

determine the spaces V and Vj later.
3.1.1 Immiscible fluids with no surface tension

As shown in Chapter 2, if we wish to dispense with the concentration equation formulation,
then the interface between two fluids is advected according to the averaged kinematic equation
(2.55) and the following two conditions are satisfied at the interface between fluids 1 and 2

(respectively, the displacing and the displaced fluids):

oV 1 092
_n¢3_§ —+ ngaa—(ﬁ ) =0 (3.11)

ie. contimiity of normal velocity. Also by continuity of pressure across the interface:
2 ' ‘
[pl; =0 (3.12)

Additionally, ¥ is assumed continuous across the interface. To derive the variational formulation

in this case we proceed as above in section 2.1. So in each of the fluids instead of (3.1) we have:

Ve-S1 = 0, forzey (3.13)

Vae-Sy = 0, for x € Qo, ) (3.14)
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with S1 and S5 defined as in (3.2 - 3.5) in each of the fluids and Q4,09 C 2 are the regions
where correspondingly fluid 1 or fluid 2 are present. Multiplying by a test function w € C2(Q)
and integrating over each subdomain:

S1-Vow dQ + Sy - Vew d)y = f

wS1-m ds—}-% w89 - ng ds (3.15)
(931 Qs #1931 ’

(2,93
corresponding to (3.7) in the variational formulation with the concentration equation above.
Here the boundary integral terms on the right hand side vanish, except along the interface I,

so we have
?{ wSy-n ds +f w8y -mgy ds = / w(S1— S2) -n; ds. (3.16)
s a0 r

Substituting for S from derivation in Chapter 2:

Sj = (T‘aGg,—’r‘aG¢)j

Thus |
(81— 82) - m1 =7t Va(pr —p2)] = (F1 - fz) -y (3.18)
where
t1 = (n1,g, ~m1¢) - (319)
is the tangent vector to the interface I' and
7, = (Pofe rinpent) o0

The first term in (3.18) is the difference in tangential derivatives of the pressure along the

interface, which is zero by differentiating (3.12). Therefore, we have: -
/U)(Sl'—SQ)'nl ds = —~/w(fl——f2)-'n1 ds
r r

—?{ wfl-nlds—f wfy-ng ds
891 892

- fl'va"ﬂdgl_ fg‘va’wdﬂg
Ql Q2

(3.21)
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using integration by parts and since V, - fj = 0. Substituting this back into (3.16) and letting

w=v—u

Vo ¥* + Vaul

TYTq
H

Z/ TaX(|Va¥™ + Vaul) (Vo ¥* 4+ Vau) - (Vev — Vau)
G S

+—2(|Val* + Vou| = [Vo¥* + Vau|) + f; - Va(v — u) dQ; > 0

Vv e C2,ue C3. (3.22)

which is in fact equivalent to the variational formulation (3.10) since f = V.f and the term
J f(v—u) d§2 can be integrated by parts. Thus, working with either the concentration depen-
dent formulation or considering the two fluid domains separately with continuity conditions on
the ihterface as we have done here, leads to the same variational setting. The existence and
uniqueness results together with the iterative solution algorithm that follow are thus applicable

to both approaches.
3.1.2 Minimization Problem

Consider the functional:

|VaT*+Vau|? 1/2
_[Ta x(s/%) Ty Tq . B
J(v) = /Q 5 /0 7 s+ Vel + Vao| - fo d2 (3.23)

Equivalently, integrating the last term by parts and using the fact that v = 0 on 62

IVaT*+Vaul2 o 1/2
T X\s TYT * .
=[5 S G+ PRV 4 Vol 4] Ve a0, @28)

where V- f = f is as in (3.20). Let us show that the minimization problem
Ju) < JWw),VveW, ue Vy; (3.25)

has a unique solution u € Vg, which solves the original problem in its variational formula-

tion (3.10).
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3.1.3 Existence & Uniqueness Results

Proposition 2.1. Let

2 2

’ T4y 1/2
x(s™) -
q)(CE,y) = /0 31/2 dS,

with ¥ as above. Then @ is strictly convex in R

H = 2% q)xy‘ ’
CI)?/:C q)yy

Proof. The Hessian matrix of ® is

with eigenvalues Aj 2

Mo = 5 ((@en+ Bpy) & (B + B)° — 4(Brayy, — 82,))°)
= 5 (@ea+ @) & (@ — 2)° + 482)")
- () |
e (G e+ LA o)
- (Q i )) ’X( ") _ o(r)], where r = (a2 + y2)/2,

(3.26)

(3.27)

So A= 2@ or 2x/(r) both of which are strictly positive. Thus ®(z,y) is strictly convex in R2.

Proposition 2.2 J(v) as defined in (3.23) is strictly convex.
Proof. We have for u,v € R}, o € (0,1); 8=1- o

|VoU*+V o (au+pv)|? 1/2
/ra/ —X(Sm) ds 40 =
Q 0 s

[o(VaU* 4V ou) +B(Va T* +V,40) |2 1/2
/ r / % ds dQ

|VeU*4+Vu|? 1/2
<a/ra/ : x(s )dsdQ

5172

Ve \II*+Vav|2 1/2)
+,3/ra/ ds d©,

31/2
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by Proposition 2.1. Also

/Q Tg“ Vo 0" + Va(au + fv)| dQ =

Q

< [ D2 (@(Va¥" + V)| + BVaT" + Varl) dO
Q .

and, trivially,
/ flou+ pv) dQ2 < / afu+ Gfv dQ
Q Q

Thus J(v) is a sum of two convex functions and a strictly convex function and is therefore itself

strictly convex in R2.

Now let us show that limjy||—4c0J (v) = +00. Let

K(z) = / Ta /'ml2 X% F DXTa 10+ F oz — Vo T*) dO (3.28)
a2 Jo s1/2 H N b '

where x : R? — R? so that J(v) = K(V,U* + V).

Proposition 2.3. K(z) — oo as [, |z|'TY/™ dQ — co.

Proof. From the constitutive relation (3.5) we have if x > 7v/H:

Hm+2 Xm-i—l (m 4 2)7'}’
km(m+2) (x +7v/H)? e+ (m+ l)H)

Hm+2 Xm-H m+2
km(m+2) x? (X+m+1

H™t2 m+2

—_ m
T Emmt o)~ ( m+1

Vo ¥

X)

) (3.29)

Also, for 0 < x < 7v/H:

< Hm™+2  ymitl (7y N (m+2)

= km(m+2)27yx/H H  (m+1)
Hmt2 m -+ 2

< = "  ma4te
S Smmrnl LTy

Hm™2 m+2

Va9 )

| <
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Thus, we have for x > 0

X > o]V U™, where 4 (3.31)
Hm 2 m+2\ "™
= . 32
o max(km(m+2)(l+m+l)> >0 (3.32)
Using this we have: .
K@) > [ %e = gy/em ds — |f f Vo T* dQ
(x) = /QT/O ~iE 8—|.f||$|+f' a
Qrg 1+1/m _ | F
> [ el Fllzl 0 + 6, (3.33)

where 6 = — fQ F - Vo ¥* dQ. Now, using Holder’s inequality:

/Q|}||m| <e [/Q P dQ] " | (3.34)

/

., 1 .
wherel < p<ocandec, = [fQ | FIP dQ] & with 1/p+1/p’ = 1. Applying this withp = 1+1/m
to (3.33):

1
S
K(z) > a/ | 1FY/™ 4 — ¢, [/ || L/m dQ] s (3.35)
Q Q
‘where & = min(r,)a/(1 + 1/m) > 0. Rearranging,
1 1 .
/m +m «
K(z) > & [/ |mll+1/m dQ:| i l(/ |:B|1+1/m dQ) o CE + 4, (3.36)
Q Q

Thus K(z) — o as ([, |zt dQ)V/A+1/m) - o

Theorem 2.4. J(v) — 00 as ||v||y1.141/m — 00.

Proof. First note that for z,y € R, withp=1+1/m (1 <p < o0) and assuming 0 <z <y
P + P < 2P = 2(°)P/% < 2(a + y* )P/ (3.37)
Thus, for a,b € LP(Q2) we have
llallZs + [1l75 < 2[[(a® + %), (3.38)
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Now, by Poincare inequality we have that if w € LP(Q) and Vw € LP(Q) x LP(Q2) then
|w||r < K||Vw||LrxLe, for some K >0 : (3.39)

Thus, if v € WHP(Q) we have:

olfyis = ol + IVOllToy e

1+ E)IVl[Zp o

AN

IA

21+ K)||(IVoD)I5s, C (3.40)

by above. Thus

lollwrasimgy = 00 = I(IVUDI L1y m

Moreover, as 7, is bounded and greater than zero we have

[ollwratrmig) = 00 = [(IVav DLy 41 /m@) = 00 (3.42)

And“ as
[Va¥* + Vav| 2 |[Vav| — [V ¥, (3.43)

we have
ollwrasi/mi@) = 00 = [[(IVa¥" + Vo)L, jmi) = o0 (3.44)

And, finally by Proposition 2.3 we have

lollyrssaimey — 00 = K(Vall* +Vav) = J(o) = oo, (3.45)
as required.

Summarizing, .J(v) is continuous, strictly convex and J(v) — oo as ||v|[1141/mgy — oo
Thus as W(} A+1/ "™(Q) is a closed convex nonempty subset of Wwhit+l/ m(Q), from standard opti-

mization theory in Banach spaces it follows that the minimization problem (3.25) has a unique

solution u € W(}’Hl/m(Q).

Remark. In the preceding paragraph we in fact take m as the maximal m in Q. In case
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of the concentration formulation this will be maxm(é(x)), = € 2 and for the immiscible fluids

formulation it will be max{m1, ma}.

Moreover, writing J(v) = Jo(v) + J1(v) where

(Vo T*+V o2 1/2
Jo(v) = / Ta / X(; = ) ds — fv dQ (3.46)

is strictly convex and Gateaux-differentiable on WO1 A+ ™(Q) and

Ji(v) = / Tg“wa\ywvam an (3.47)
Q

of the minimization problem is characterized by

is convex and continuous, we have (see Chapter V in Glowinski [17]) that the unique solution
(Jo(u), v — u) + Ji(v) = Ji(w) > 0, Yo € Wo ™), ue Wy tV™ () (3.48)

where (J}(v), w) is the Gateaux derivative of Jy:

(Jo(v),w) = %1_1% Jo(v + t“;) — Jo(v)

_/ raX(|Va¥* + Vovl)
T Ja VU + Vo

(VU + Vov) - Vow — fw dS. (3.49)

substituting into (3.48) we extract the variational formulation (3.10). Thus we conclude that

the variational formulation has a unique solution in W1 ¥/ ().

3.2 Solution by augmented Lagrangian method

v

Above we have shown that the problem in its variational formulation has a unique solution.
Here we consider a method for obtaining this solution through application of an iterative algo-

rithm described in Glowinski [17].

For that we consider the minimization formulation of the variational problem defined above
(see (3.25)): ' ‘
Minyev,{J(v)}, (3.50)

33




Chapter 3. Analytical results

where

Jw) = F(Vav)+G(v), with (3.51)
F(g) = q) + Fi(q), g € H, where (3.52)
|V ¥*+q|2 X(31/2)
Folq) = / / Sl dsde, ge H (3.53)
Fi(g) = /Q D2V, +q 40, g€ H (3.54)
Gv) = -/ fodQ, veV (3.55)
Q .

Summarizing the results above we showed that Fy(g) is strictly convex and differentiable,
Fi(q) is convex and continuous and G(v') is convex and continuous. Moreover, the min-
imization problem has a unique solution in W1 ¥/ ™(Q), so with Vp = 1 A+ ™(Q) and

H = L1+1/m(Q) % L1+l/m(Q)_

Note that for m < 1 we have that W(} A1/ "™(9) is a subset of H () which is a Hilbert space.
However it is more common for the fluids used in the cementation process to be shear-thinning
giving m = 1/n > 1. In that case we have W01’1+1/m(Q) ¢ H} (Q) and so the solution doesn’t
necessarily lie in a Hilbert space. Application of the augmeﬁted Lagrangian method however

requires the solution space to be a Hilbert space in order to obtain the convergence results.

Nevertheless, once the variational problem has been approximated by some finite dimensiénal
numerical method - finite element or, as we have done below, by a finite volume method, the
approximate solution space V}, is finite dimensional - and thus is a Hilbert space. We hence
take V = H}(f) (so that V;, ¢ V) and H = L?(Q) x L%(2), making it possible to apply the

existence and convergence theorems to the iterative solution of the approximate problem.
3.2.1 Principle of the method
We define a Lagrangian functional £ associated with (3.51), by

L(v,q,1) = F(g) + G(v) + (1, Vov — g), (3.56)
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and for r > 0 an Augmented Lagrangian L, defined by
) T
Lr(v,0,m) = L(v,, ) + 5[Vav — g (3.57)

Then, following Chapter VI in Glowinski [17] it is true that {u,p, A} is a saddle point of £ if

and only if it is a saddle point of £, Vr > 0. Moreover such u is a solution of (3.51) and

‘ p = Vgu. Thus the original variational problem (3.10) is equivalent to finding saddle point of

L, which is accomplished by an application of an algorithm of Uzawa type.

The resulting iterative algorithm is:
A0 e H given; ' | (3.58)
then, A" knov%m, we define u™, p?, A"t by
Lo(u™, p", ") < L(v,q, \"), Y{v,q} €V x H,{u",p"} €V x H (3.59)
| AL = AP (V™ — p™), pp > 0. (3.60)
The problem (3.59) is equivalent to solving two coupled variational inequalities:

G(v) = Gu™) + (A", Vo(v — u™)) +r(Vou™ — p", V(v — u™)) 2 0,

YveV,um eV, (3.61)

Fl@Q)—-F@®") - (A, q-p")+r("-Vuu",q-p") 20, Vge H,p" € H. (3.62)

The main drawback of this algorithm is that it requires solution of coupled variational inequal-

ities at each step. To overcome this we uncouple the two inequalities in the natural way to

- obtain the following modified algorithm:

p°, A\ € H given; (3.63)

then p”~1, \ known, we define u”, p”, \"*1 by
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G(v) = G(u™) + (\", Va(v — u™)) + r(Veu" - p*}, Va(v — u™)) 20,

YoeV,u" eV, (3.64)
Fl@)—F@®™) — (A" q—p")+r(p" —Veu",q—p") >0, Vg€ H,p" € H. (3.65)
AL = AP 4 oo (Vo™ — p™), pn > 0. (3.66)

In fact the first step (solving (3.64)) corresponds to minimizing £, (v, p"~1, A\") with respect to

v to get u™ and the second (solving (3.65)) to minimizing £,(u", ¢, \") with respect to q to

obtain p".

3.2.2 Application of the Algorithm

In application to our particular problem with F' and G as in (3:51 - 3.55) above we obtain:

G’(v) - Gu"™) + (A", Va(v —u™)) +r(Vou™ — p" L V(v —u™)) -

= / —flv—u™) + A" Va(v —u™) + r(Vaeu™ — p") - V(v — o) d9, (3.67)
Jo
Integrating second and third terms by parts and noting that v,u™ = 0 on 62 we obtain

G(v) — G™) + (W, Vo (v — u™)) + r(Veu™ — p" 1, V(v — u™))

- /Q (~f = V' =19, (Tt = ")) (v — ") 49, (3.68)
Thus the first step of the algorithm (3.64) is to solve |
/Q(f + VA" +1rV, - (Vau™ — p))(u? —v) dQ2 >0, v e V,u” € V. (3.69)
This equation is satisfied by thé solution to:

TV, Vo =7V, - p" =V A" - f, u" €V, (3.70)

which is a Poisson equation on (2, with the right hand side known at each iteration.
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Going back to formulation of the second step of the algorithm we mentioned that finding
p™ at each step was in fact equivalent to minimizing £,(u", ¢, \™) with respect to ¢. So:
p" = inf{L.(u", q,A")}
q

= i%f{F(q) + Gu™) + (A", Vou" — q) + -glvau" —q|*}

|V T*+q? 1/2
) Tq x(s'7%) Ty Ta .
1rt}f{/n(7/0 S ds+ v, 4 g

+ 22— (V) g ), (3.71)

Equation (3.71) is minimized when p” is given locally by:

sl/?
+%|Va‘1’* +ql* = (\" +rVau + 1V, 0%) - (g + Vo )} (3.72)

| Vo T*4q|? 1/2
T, . Ta X(S ) Ty Tq *
= —= d ¥
P 1r(;f{2/0 - s+ = (Val* +q|

The expression above is minimized when (N + rVau™ + 1V, ¥*) is parallel to ¢ + VU™, since
apart from the last term, the rest of the expression is a function of |¢ + V,U*| only, i.e.

independent of its direction. So, letting

g+ VoO* = 00" + rVou" + 1V, %), | (3.73)
T = |\ 4 rVu" + rV, 0| | (3.74)
we have to find the minimizer of |
M(§) = %“ /0 o X(Ssll/f) ds + T’g" 16z + %"(em)Q — 9z (3.75)
Now if & < Dze then
TZ“ 16z — 6z > 0 (3.76)

and so with the rest of terms in (3.75) non-negative that implies § = 0 minimizes M, giving

pt = -V U™

If z > T¥7e then we find 6 by setting 86—1;’[ =0, so
rox(02) + % +rz—z=0 (3.77)
which can be solved by. numerical inversion and thus giving

P = 00" + rVu" + 1V, U*) — VU, (3.78)
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3.2.3 Summary and convergence

So, summarizing, the Augmented Lagrangian method applied to our particular variational

problem results in the following algorithm:
p°, A\l € H given; ‘ (3.79)

then p™~1, X known, we find u™, p", A\**! from

rVa -Vou =rVy -p" =V A" — f, 4" €V, (3.80)
-V, U* : ifr < De

_ a - " (3.81)

BA® + 1Vt + TV, T*) = V, 0% if g > DT |
AP = M 4 (Vgu™ — p*), pp > 0. (3.82)

where

z=|A"+7rVau"™ +rV,U*, and (3.83)
rox(0z) + nga +rfz — 2z =0. (3.84)

Following Glowinski [17] this algorithm has the following convergence properties if 0 < p, <

(1 + V5)r/2:

u® — ustrongly in V (3.85) -
p" — pstrongly in H : (3.86)
AL _ A" 0 strongly in H . (3.87)

where u is the solution of the minimization problem (3.23) and thus the variational formulation

(3.10) for the approximate discretized problem.




Chapter 4

Numerical Results

In the previous chapter we derived existence and uniqueness results for the model of the flow
described in Chapter 1. Additionally, we applied the augmented Lagrangian method to the
variational formulation of the equations for the stream function of the flow to obtain an itera-

tive algorithm resulting in a sequence of functions converging to the solution of that formulation.

In this chapter we outline the numerical solution of the equations of the algorithm and compare
the results with the analytic solutions, in the case of concentric annulus, and with the perturba-
tion solutions for small annular eccentricity. We apply a shock-capturing time-advance scheme
to the concentration advance equation to arrive at a complete numerical simulation of the flow

as described by the model given in Chapter 2.

4.1 Discretization and method of solution

The algorithm resulting from the application of the augmented Lagrangian method to the weak

formulation of the equations for the stream function of the flow is:
0 41 A
p-, A" € H given, (4.1)
then p"~1, A" known, we find u™, p”, A"t from

rVe Vau' =1V, - p" =V A" = f, «" €V, (4.2)

—V Ut if ¢ < Do

BA™ 4 rVout + 1V, U%) — V0% if z > Tifa
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AL = A" 4 o (V™ — p™), pn > 0. (4.4)

where
z = |A"+7rVu" +rV,¥*, and (4.5)
rox(0z) + W—JE +rfz — 2z =0, (4.6)

where V = H}(Q) and H = L?(Q) x L%(Q), @ = (0,1) x (0,Z) and the relation between the
modified pressure gradient y and the modulus of the stream function |¥| is given from the

constitutive assumption

0 x <0,
Iva\pl = Hm+2 X'm+1 [ (m + 2)7-Y] (47)

St D ocr /Y X mrna] X7
The result of solution of the algorithm is a sequence of functions 4" converging to u € HE(Q)
. where the stream function ¥ = ¥* + u. Also we obtain p" € L?(Q2) x L*(Q) converging to
p = Veu from which the components of the velocity vector to be used in the concentration-

advance equation can be easily calculated.

We descretize the equations by ‘applying a finite volume discretization with a staggered regular
rectangular mesh, i.e we divide the domain 2 into IV; x IV; coﬁtrol volumes with each control
volume being a rectangle of width A¢ = 1/N; in the ¢-direction and height A{ = 1/N; in
Athe f;direction. Denoting by C'V; ; the control volume with its lower left-hand corner at coor-
dinates (iA¢, jAE) we define the discrefized functions u, ¥} at the corners of C'V;; and the
discretized functions A}, p} and concentration c? at its center - see Fig 4.1. This allows sim-
plified calculation of gradients arising in the above equations as well as snialler spatial support
of the numerical schemes for the chosen second degree of accuracy in each of the numerical

calculations of the flux between the control volumes.

We let the discretized concentration function ¢” be defined at the centre of each control volume
and take values between 0 and 1 with ¢* = 0 in the displacing fluid (cement) and c* = 1 in

the displaced fluid (mud). The density and rheological parameters are then also defined at the
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(t+1/2)A¢,
(U +<1>/2)A5)

n *
o -ul ¥y

O - A%, PR, ct, V¥,
3
¢

Figure 4.1: Schematic picture of the control volume C'V; ;.

(z‘A;T_jAs) r

centers of the control volumes using linear mixing laws. So for example pij = (1— cg‘,j) po+c£" P

where pg is the density of the cement and p; is the density of mud.

At the start of each run we first determine the "homogenizing” stream function ¥} by set-
ting U5 = (1— YUR + ¢, UR as in 2.1. Here T} and T% are the discretized stream functions at
£ =0 and { = Z correspondingly. They in turn are determined from the boundary conditions
which give the modified pressure gradient G = x + 7y /H constant in the ¢-direction at the top
and bottom of the well. Thus, x at £ = 0 and £ = Z can be calculated by numerically inverting

the expression for the total rate of flow through the well.

At each iteration of the algorithm we first solve the u} aludvance equation (4.2). We applied
the standard point Gauss-Seidel method with second-order accurate spatial fluxes to solve this -
modified Poisson’s equation. This seems especially appropriate as u} converges after some it-
erations of the algorithm and so taking u”_; as starting point of Gauss-Seidel iterations each
time improves the convergence time. The same is true after application of the time-advance
scheme: we then take the final value of u} at the previous time-step as the starting point for
Gauss-Seidel iterations. Over-relaxation was also used to improve the speed of convergehce

even further in individual cases.
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The second step in the algorithm is the advance of pj}. We achieve this by first calculating
x ﬁom (4.5), determining if the fluid is yielded at that point and if so performing the numerical
inversion in (4.6) to determine 6 and thus pj. Note that (4.6) can be differentiated analytically
and a Newton-Raphson method used in its inversion converges in few iterations to the desired

tolerance.

4.2 Convergence

We take the norm of Ap? = pP+t! —p? as the measure of convergence of the numerical algorithm.
h R h g

This appears appropriate as it is the velocity field obtained directly from p} that is used in
the subsequent concentration advance step. Here we consider two norms of Ap}: L?(f) and
L*>(92). While the first provides an adequate measure of convergence to the solution over the
whole domain, the second gives a better impression about the convergence near the interface

and yield boundaries - where it is the slowest.

The plots given in Fig.(4.2) are of the logarithm base 10 of the L? and L*® norms of Ap}
versus the number of iterations together with surface plots of a component of Ap’,}_ after 100
iterations. Different interface configurations and situétions are presented. It can be noted that
absence of a yield boundary within the flow (so that both of the fluids are fully yielded in the
annulus) and lower eccentricity improve the convergence dramatically. In Fig.(4.2) this can be
seen from the difference in the convergence histories between cases a) and b). The rheological
parameters, densities and the interfaces between fluids are the same in both cases - however b)

has a higher eccentricity.

From the Aj-advance equation (4.4) we see that as A} converges, vwe should have pp — V,uf.
The convergence history of the L2 and L® norms of APU = P} — Voul = (AP — A% /p,, for
the same set of conditions as for Ap} above, is shown in Fig.(4.3). The convergence mirrors
that of Apy with the notable exception of th.evbehavior in the unyielded region (this can be

seen in case c). The reason for this seems to be that whereas in this algorithm u} converges to
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- Figure 4.2: Plot of Logig of the L? (solid line) and L™ (broken line) norms of Ap? against the
number of iterations together with surface plots of the ¢-component of Ap} after 100 iterations
(top to bottom): a) horizontal interface with e = 0.1, b) horizontal interface with e = 0.6, c)
slanted interface with e = 0.8 and high yield stress of the displaced fluid. The mesh size here
as well as in all of the subsequent examples was taken to be 20 x 80.
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a modified stféam function and pj; converges to the modified velocity field correspondingly, A}
converges to the modified pressure gradient field by virtue of the u}-advance equation (4.2) and
in our model the pressure gradient is undefined in the unyielded region. This implies that in
the "unyielded” region (i.e. where |} +rVouf +rV,U;| < 1yr,/H) at each step of the algo-

rithm we set pf = —V,¥3, solve V4 -V,uf = V,-pp = —V,-V, ¥} and advance A} as before.

Lastly we show that the original field equations are satisfied by the iteratvive solution with
an increasing degree of accuracy. For that we set ¥} = p? 4+ ¥} and substitute into the field
equations (3.1 - 3.3) to obtain S}. Below in Fig. (4.4) are the plots of the L? and L™ norms
of the residual Res = V, - 8% + f5 with f; being the discretisation of the function appearing
on the right-hand side of the field equation as defined in (2.48). The geometric, rheological and
density parameters are the same in each case as in the plots for APU and Ap}. The residual

.decreases in the fashion similar to the convergence of the algorithm’s functions examined above.

It should be noted that in the more extreme case ¢) where the eccentricity and yield stresses
are set high and the yield boundary runs through the‘ domain, the residual plotted is large in
the control volumes adjacent to the yield boundary. This-is a numerical artifact arising from
the fact that in order to compute V, - S} numerically second order accurate in space from |
the functions in the algorithm, we take a larger spatial support than we do to calculate fj.
Thus, near the yield boundary part of‘ the support for V, - S} lies inside the unyielded part
of the domain where it does not converge to — fj, by the virtue of the underlying model. This
should nc;t be a problem for the overall solution as we feed back only the velocity field into the
concentration advance equation which, in turn, is extracted from p} that has the same spatial
support as f and converges numerically on the entire domain as we illustrated above in Fig.
(4.2). The norms of the residual Res in this case are calculated over the control volumes away

from the yield boundary.
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the number of iterations together with surface plots of the ¢-component of APU after 100
iterations (top to bottom): a) horizontal interface with e = 0.1, b) horizontal interface with
e = 0.6, ¢) slanted interface with e = 0.8 and high yield stress of the displaced fluid.
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4.3 Time advance scheme

The concentration advection equation

% (o] + a% [H 5] + a% [Hry® %) = 0, (4.8)

is used to calculate the advance of the concentration and thus the interface after solving the
field equations and extracting the velocity field (¥, w). To simplify the notation we rewrite this

equation as:
U, OF  9G _

o 56 " 9 =" (4.9)

where

U = Hr,c F=Hv¢ G = Hr,w ¢ (4.10)

This is a hyperbolic conservation law and different methods for obtaining its numerical solution
exist. In our specific situation we have a large concentration gradient at the interface between
the fluids so a time advance scheme must be chosen which captures propagation of this interface

accurately.

High order time advance schemes (second order accurate and above) such as Lax Wendroff
are known to suffer numerical dispersion near discontinuities and regions of high gradient. This
results in unphysical oscillations producing under- and overshoots in the cbnserved quantity U
near the interface. Conversely low order order schemes (first order accurate) such as donor cell
or upwind Euler don’t produce dispersion but, because of their low accuracy, numerical diffu-
sion is introduced. This has an effect of "smoothing out” the interface which is much greater

than is present physically.

The schemes which effectively minimize both the numerical diffusion and dispersion by hy-
bridizing upwind low-order schemes and higher order schemes while limiting the total numerical
flux functions F' and G are known as Total Variation Diminishing (TVD) and Flux Corrected
Transport (FCT) schemes. They have been used extensively for the solution of the hyperbolic

conservation problems such as those of shock and signal propagation.

47




Chapter 4. Numerical Results

For the examples following we used an FCT scheme with donor-cell upwind discretisation for
the low order scheme and central difference discretisation for high order scheme. This was found
to produce good results in previous applications to the concentration advance equation above
and is ﬁsed currently in industrial applications. A two-step MacCormack TVD scheme with
different limiters was also tried out and found to produce similar results varying slightly with

the types of limiters used.

A brief outline 6f the FCT scheme used is as follows. First, low order fluxes FL and G%
and high order fluxes F¥ and GH are computed using a donor-cell upwind and. central differ-
ence discretisations correspondingly. From those we compute antidiffusive fluxes A* = F# — FL
Al = GH — GL and the low-order time advance solution U*® from the low-order fluxes FZ and
GEL. Secondly, we limit the antidiffusive fluxes by setting AC = A* C* and A®C = A* CJ. Here
the limiting functions 0 < C%, C7 < 1 are chosen to limit U(t 4+ At) so that it does not exceed
some maximum U™ (t) or fall below some minimum U™"(t). In turn we choose U™3%(t)
to inhibit the overshoots in ¢ as the maximum value of U(t) over the neighboring cells and
analogously for.U™"(t). Lastly, we apply the limited antidiffusive fluxes to the low order time
advanced solution to get the final time advanced solution:

1

_rtd _
U+AY=U" - =

[ AIC _ Ai-1)C | 43C _ A(j—l)C] (4.11)

where AV = ApAE.

The procedure used for each of the following simulations was to first set up an initial con-
centration field (usually corresponding to a horizontal interface in the middle of domain) and
then run the augmented Lagrangian solver followed by the time advance scheme ébove a desired
number of times. To limit the size of domain (and thus drastically reduce the computational
time) we "followed the interface” by shifting the concentration field down each time after a
certain number of time steps by effectively adding a fresh row of control cells at the top of

the domain and removing a row from the bottom. The number of time steps between each
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“adjustment was chosen so as match the average speed of the flow. This has the effect of always
placing the interface near the middle of the domain and allowing us to restrict the vertical size

of computational domain to just a few units either side of the interface.

4.4 Simulation results

Here we give several results from the simulation of the displacement flow using the ideas de-
scribed above for solving the flow equation and the concentration advection equation. For the
record, we use a 20 x -80 mesh with rectangular control volumes of width A¢ = 0.05 in the
¢-direction and of height A¢ = 0.1 in the ¢-direction. We pick the length of a time-step At
from the Courant-Friedrichs-Lewy (CFL) stability condition:

C
At = — 9. :
Ad Vimaz + AL Winaz

(4.12)

where Co(< 1) is the Courant number and Vinaz, Wimaz are the maximum absolute values of
numerical velocities in the ¢ and & directions respectively extracted from the the solution _of
the ®-field equation. A common procedure in such cases is fixing Co and adjusting the time
step after each time advance accordingly. However it can be noted that in our case both Viaz
and W,y vary little (typically by less than 5%) throughout the length ‘of the simulation. Thus
we fix At based on the above formula at the beginning of each simulation run which addition-
ally allows us to easily ”follow the interface” by periodically shifting the concentration field as
described above. Typical values for a medium-eccentricity ”unstable” displacement situation

were Viazr = 0.5, Wiae = 4 so with Cp = 0.5 we would take At = 0.01 in this case.

First we examine the evolution of the interface in the case of a concentric annulus with e = 0.
The analytical solution for the interface in this case was'obtained in 2.3.2. Here, as in most of
the simulations following, we set the interface to be initially horizontal and positioned in the
middle of computational domain. The results for three different situations are given in Fig. 4.5.
Plot of the projected interface position after 30 time units is given together with the time track

of the interface position on the side ¢ = 0. The ”interface” is taken to be the contour ¢, = 0.5.
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The situations considered are those described in Chapter 1. The first is that of a vertical
well where the interface stays horizontal. The seéond is for a horizontal well, where the steady-
state interface is given by g(¢) = —[x(%—i'_y_]? cos(m@)/(mwSt*). The third is for an inclined well
(8 = 57/12 was taken) with fluids of identical rheologies but a non-zero density difference,
where the steady-state interface is given by g(¢) = — tanBcos (w¢)/7. In all cases the simu-
lated interface converges to that predicted analytically, they coincide on the plots shown and
the average of the position of the interface on the wide side at the end of each simulation agrees

with analytical result. Note that from the mass conservation considerations if the interface on

the wide side becomes steady then the interface on the narrow side is also steady.

Secondly, we compare the results of the flow simulation in case of small annuiar eccentricity
to those obtained though perturbation methods in Chapter 1 with the formula for perturbed
interface given by (2.95). Numerical simulation of such small perturbations is somewhat prob-
lematic as the smaller mesh size we. use to achieve sufficient resolution in the £-direction not
" only increases the overall grid size but also necessitates a smaller time step by the CFL con-
dition (4.12). Results for two different sets of parameters are given in Fig. 4.6 together with
track of the simulated interface position (in frame of reference moving with the average speed
of the flow) on the wide side. In the flow simulations we start with a horizontal interface as
before and the mesh size is 80 x 20 with grid spacing of 0.05 in both ¢ and & directions. The
computed solution at ¢t = 30 is within 0.02 of the analytic solution in each case. note that the

vertical scale on Fig. 4.6 is smallef than that in Fig. 4.5.
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Figure 4.5: Plot of interface in a concentric annulus at t = 30 together with interface track at
¢ = 0 (top to bottom): a) vertical well 3 =0 (e = 0; p1 = 1; p2 = 0.6; 7v1 = 1; 7v2 = 0.8;
ki1 = 1; ko = 0.8), b) horizontal well = 7/2 (e = 0; p1 = 1; pp = 0.6; 7v1 = 1; 7v2 = 0.8;
k1 = 1; kp = 0.8), c) inclined well with angle of inclination 8 = 57/12 and identical rheologies
(e=0;p1=1;p0=038; 7v1 =1; 7v9 =1; k1 = 1; ko = 1). Inverse power index m; = my = 1.0
throughout.

51




Chapter 4. Numerical Results

3.00 3.0
2.75] 2.8
2 50_ 2 6-
2 .
) o~2.4
W2 I
s 2
1. o
2.
1.50] _
1.8
1.25 i
1.6
T T T T 1 T T T T 1
0.2 0.4 0.6 0.8 1.0 2 4 6 8 10
@ t
3.00] 3.0
2.75] 2.8]
5 eo]
2
Awn

Figure 4.6: Plot of the interface position given by the flow simulation (solid line) and pertur-
bation solution (broken line) together with the track of the interface position on the wide side
of the annulus (top to bottom): a) e = 0.1; p1 = 1; po = 0.8; 7v1 = 1; 7v2 = 0.9; k1 = 1;
ky =09,b)e=02,p1=1;,p0=08 7v1 =1, 7v2 =08; k&; = 1; ky = 0.8. Inversepower
index mq; = mo = 1.1 and angle on inclination 8 = 0 throughout.
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Lubrication model

One of the main objectives of modelling the annular flow considered here is to simulate behavior
of the interfacg between fluids so as to determine the type of displacement that occurs given
the specific fluid rheologies, densities and geometry of the well. From physical considerations
and numerical simulations of the flow, such as those described above and in {15] it is- evident

that one of three main situations can occur:

1. a ”steady displacement” with both fluids fully yielded and the interface stationary in the

frame of reference moving with the average speed of the flow;

2. an "unsteady displacement” with both fluids fully yielded and the displacing fluid shooting

up on the wide side of the annulus with the interface elongating;

3. a ”partially unyielded displacement” with either the displaced fluid or both fluids un-
yielded (stationary) on the narrow side of the annulus and the interface between them

elongating.

In previous chapters we developed an iterative numerical method of solution for the flow model
and showed its functionality. Although the computational speed of the resulting simulations is
much faster than that of a fully 3-D flow simulation, it should be noted that for larger domains
with smaller mesh spacings, highly eccentric annuli or ldng simulation times, the computational
time can be significant. This could be improved for example by employing faster algorithms
for solution of the Poisson equation for advance of 4™ above or a more extensive exploitation
of the over-relaxation constants p, and r. Nevertheless, solution-of the 2-D model is slow and

it would be advantageous to determine which of the three types of displacement occurs in a
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particular situation without the lengthly process of simulating the 2-D flow.

In this chapter we employ techniques used in modelling of lubrication and thin film flows to

_ derive a criteria for determination of the type of annular displacement occurring and compare

these with results of numerical simulations performed using the algorithm for the 2-D flow,

described in the previous. chapter.

5.1 Model Derivation

As a starting point we take the model equations for immiscible fluids with no surface tension

described in Chapter 2. This is given by the field equations (2.52 - 2.53)
V. S; =0, for x € Q, (5.1)

continuity conditions (2.54, 2.56 & 2.57) on the interface £ = h(¢,t):

pi=0; . [i=0, (5.2)
which lead to:
2._[1 00, OpOR])*_
[t-Vapli= [ra6¢+8§8¢ = (5.3)
, [18T 8¥on]>
. =4+ = 5.4
[t va\Il]l |:7'a 8¢ + ag 8¢ ) ( )
- with t = (1, g—g) being tangent to the interface and the kinematic condition at the interface
(2.55):
oh ©Oh  _

The overall idea here is to assume a highly elongated interface which results in several simplifi-
cations to these equations. ‘From there we can deduce that if, based on the simplified equations,
the interface elongates further it indicates that the situation would lead to an unsteady dis-
placement to start off with. Whereas if the interface ”levels off” it would indicate that a steady
displacement would normally take place. Finally, we are also able to determine whether or not
a mud layer (fluid 2) on the narrow side would be mobile in the simplified model. Thus, we can

distinguish the 3 cases listed in the beginning of this chapter.
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5.1.1 Lubrication assumptions

In order to apply the lubrication approximation we assume the following:

Streamlines are pseudo-parallel so that the main velocity component is in the £-direction.

Thus we have
ov ov

|8_§l < lb—qﬁ;l (5.6)

Interface is pseudo-parallel i.e. is highly elongated in the £-direction. Denoting the inter-

face by ¢ = ¢;(£,t) this translates into

9¢i
23

| =] <« 1. (5.7

Modified pressure gradient S has its main component in' the ¢-direction:
|Sel < |Sgl, , (5.8)

as follows directly from the first assumption and the definition of S in the case the fluids are

yielded. When either of fluids is unyielded this is in fact an additional assumption.

Intermediate scaling. In the derivation of the flow model we assumed that although the
angle of inclination of the well § and the mean half-gap r, vary with £ though the length of the
well, they do so gradually and on a length scale of many annular diameters. When performing
most numerical simulations here we also assume for simplicity that 8 and r, are fixed in the
" computational domain. This would correspond to considering a length of the well a few annular
diameters long where they can be assumed to be constant. Here we use a similar argument to
fix 3 and r,. To make it more rigorous, introduce an "intermediate” length scaling factor &

such that
' ez — Ebn

-1 i
e K - (5.9)

and £ << 1 where in the notation of Chapter 2, Etz - ébh is the total dimensional length of

the well and 7} is the global average mean radius of the annulus. Typical values for these are
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¢

étz - Abh ~ 500 meters and 77 =~ 0.3 meters so we consider € ~ 10 to be a suitable intermediate

length scale allowing that.

5.1.2 Scalings and approximation derivation

Using the intermediate scale described above we re-scale the axial and time variables by setting
¢ = &¢; t=et ' (5.10)

also set

W =w; V = ev; P=e¢p - (5.11)

for the components of the velocity vector and the pressure correspondingly and write ¥(¢, ()
for the stream function as before. For ¢ = O(1) we have by the argument above, 3 is constant,
ro = 1 and H = 1+ecosmd. Under these scalings the kinematic equation (5.5) for the interface

¢ = ¢:(¢,t) becomes:
0¢;

0d;
o 1% (5.12)

+Woae =

at the interface. Using the lubrication assumptions for the stream function ¥ and modified

pressure gradient S, the field equations (5.1) become:

55 (Se15gh) =0 (5.13)

to leading order in each fluid. Thus Sy is constant in each fluid domain and so from the

derivation of the field equations given in Chapter 2 we have

g __8_P_pcosﬁ
*T T8¢ T S

= const. (5.14)

and by lubrication assumption

_ IB_P psin Gsin g

SC"E&p S+

<1 (5.15)

thus %% = epsinFsinm¢/St* to leading order. Now consider the continuity condition (5.3) for

the tangential derivative of p at the interface:

[8_P 6_P%],.2 (5.16)

ac " agac),
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Thus, as 2Z& = O(e) from above we have

¢
6P] 2 | |
-1 =0 ‘ 5.17
[64' . (5.17)
at the interface. Thus = P;(¢) is constant for fixed ¢ for all ¢ € [0,1]. From the lubrication
assumption we have
Cos
|G| = |S| = |Sy| = |P; + pSt*ﬁl (5.18)

to highest order in each fluid. We can find P;({) from inverting the flow-rate equation

’g—i(an ag+ | W T (Gr) do =1 (5.19)

for fixed ¢ and a unit flow rate through the annulus, where

Gy =P + ”‘Sci’fﬂl (5.20)
_ p2 cos 3
=|P; + =5 | (5.21)

and the relation between G and %% is given from the constitutive assumptions by function
F(G) as in (2.4()); Thereafter we can obtain the stream function ¥ from F; by integrating
g—i = F(G) with respect to ¢ and using the boundary condition ¥(¢ = 0) = 0. From there we
can obtain the velocity field

190 1 0% ' o
W= 55 V=t (5.22)

5.2 Kinematic equation and interface stability

Now we examine the evolution of the elongated interface from the approximation derived. The

kinematic condition at the interface (5.12) gives

3@ <9¢>z
Rewriting first term and grouping the second and third together we have:
3[ ¢iH()d] 9 W, 0) =0 5.24
ot 0 ¢) do +5C' (Cbz;C)— ( )
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write

g

~

=
I

i(¢,t)
/0 H(#) do, (5.25)
(@) = Y(oi(2:(¢,1))) | (5.26)

Using this notation we obtain a hyperbolic equation for propagatioh of the "interface”:

0%, 0 _
B + 8—CQ(‘I%) =0, (5.27)

with boundary conditions

q(0) = 0; g(1) =1. (5.28)
Nota that ®; is actually a ”volumetric” position of the interface, i.e. the volume fraction of ﬂuid
1 at depth ¢. From this we obtain the speed of propagation of the interface in the ¢- direction:

- d¢dg _ dg
YU dde;d¢ de;’

(5.29)

provided no shocks occur. Due to hyperbolicity of (5.27) shocks can occur. They correspond to
patches of the interface where |%%[ beéomes large and the interface becomes near-azimuthal.
In order to calculate the speed of propagation of the interface at such a shock we use mass
conservation considerations (effectively Rankine-Huguenot conditions) . Dividing shocks into

three types depending on their azimuthal position in the domain:

Shock on wide side occurring for ® € [0, ®;,,]. Denoting the speed of propagation of the
interface in the (-direction as W;, we should have the following holding true for the flux
function ¢:

Q((I> = q)i,w) = Qi,wVVi,'w ) (5'30)

-s0 as to the right of the shock we have Wi(® = ®;,,) = ¢'(®;,) and W; should be continuous
we have:

Wiw = ¢ (®iw), where (5.31)

Q(q’i,w) = q)i,wq,(q)i,w)- (5.32)
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Shock in central region occurring for ® € [@;fc, @, .- Denoting the speed of propagation in

the (-direction by W; . we have analogously to the above:
4@ = 8F,) - g(@ = B7) = (¥}, — 27 Wi, | (5.39)

and also

Wie=q(27,) = ¢'(2;)- (5.34)

Shock on narrow side occurring for ® € [®;,,1]. Denoting the speed of propagation by
W, »n we obtain as before

Win = ¢ (®in), where - (5.35)
1—q(®in) = ¢ (Pin)(1 — Pin). (5.36)
5.2.1 Determining the displacement type

Now we are able to classify the displacements according to the behavior of the flux function
q(®;) - which is the stream function é,t the interface. Our classification will be based on the
wide and narrow side interface velocities, which me must determine from q. The behavior is
complicated by the presence of shocks. After computing ¢ for given fluid densities, rheologies,

angle of inclination and eccentricity, we can conclude the following:

If ¢ (1) = 0 then a mud channel occurs on the narrow side of the annulus and the displaced
fluid is unyielded there. The displacement is thus not steady and the interface continues to
elongate. A graph of such g with its derivative is given in Fig.5.1 (a). If ¢’ (1) # 0 then the fluid
is yielded everywhere. In this case we first have to check if any shocks such as déscrib_ed above

occur and determine their location.

No shocks occur if ¢” is of one sign - so it is either strictly positive or strictly negative ev-
erywhere. If ¢’ > 0 everywhere (Fig.5.1 (b)), then ¢’ is increasing and g is strictly convex then
the speed of propagation of the interface in the (-direction on the wide side of the annulus is

Wiw = ¢'(0) and is less then the speed at the the narrow side W; , = ¢'(1). Thus the interface
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becomes less elongated in the (-direction and we can conclude that the displacement would be
steady. If ¢” < 0 everywhere (Fig.5.1 (c)), then ¢’ is decreasing and q is strictly concave then
Win = ¢'(0) > ¢/(1) = Wi . Thus in this case the interface comes increasingly elongated and
we can conclude that the displacement would be unsteady with displaced fluid slumping on the
narrow side and the displacing fluid ”shooting up” on the wide side. -

Shocks do occur if ¢” = 0 for some & € (0,1) (Fig.5.2 (a)&(b)). We determine their po-
sition and boundaries from (5.32) & (5.36) and speed of propagation from (5.31) & (5.35).
Comparing speed of the shocks on the wide and narrow side, if present, we conclude that the

displacement is steady if W; , < W;, and unsteady otherwise.

One other% sitﬁation of note that can arise is thét of a slumping flow - if - the density-differ-
ence between the two fluids is too great then we can have the stream function ¢ decreasing for
some values of ®; (Fig 5.3). This corresponds to parts of the interface moving in the negative
(-direction opposite the average velocity of the flow due to significant buoyancy effects. For
example in case of the displacing fluid having' a much greater density than the displaced fluid
we observe ¢'(®;) < 0 for small ; - thus the interface moves downwards on the wide side of the
annulus, indicating a stable displacement as we would expect. To summarize, the behavior of
g for different rheologies and physical parameters is quite rich. We have shown only a selection

of the potential behavior.
5.2.2 Numerical results

Here we provide some results numerically obtained from the lubrication model. Apart from de-
termining the type of fluid displacement in a particular situation with given rheologies, densities
and well configuration, it is of interest to examine the change in the displacement type as we
vary several parameters. To demonstrate the trends we p'lot‘the differential velocity W, — W
at the sides of the annulus together with the displacement type we thus expect for a range of

varying parameters.
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Figure 5.1: Plots of the stream function ¢ and its derivative with respect to ® versus the
interface position ¢ for different situations. Top to bottom: a) mud channel on the narrow side
(e=0.8; p1 =p2=1;17v1 =1; 7va = 1.8; k1 = 0.8; k2 = 1); b) steady displacement, no shocks
(e=0.1;p1 =1; po =038; 7v1 = 1; 7v2 = 0.8; ky = 1; ko = 0.8); c) unsteady displacement,
no shocks (e = 0.1; p1 = 0.8; p2 = 1; 7v1 = 0.8; 7v2 = 1; k1 = 0.8; ko = 1). Power index
my = mg ='1.0, angle of inclination § = 0 throughout.
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- Figure 5.2: Plots of the stream function ¢ and its derivative with respect to ® versus the

interface position ¢ for different situations. Top to bottom: a) shock on the wide side (e = 0.6;
p1 = 1; po = 0.8; 7v1 = 1; 7vo = 0.8; k1 = 1; ko = 0.8); b) shocks on wide and narrow
sides (e =01; p1 =0.9; po = 1; 7v1 = 1.2; 7v9 = 0.8; k1 = 1.2; ko —08) Power index
my = meo = 1.0, angle of 1nchnat10n B = 0 throughout.

1.0
i 2.0]
0.8
0.6l 1.5]
. 0.4 ~ 1.0]
S 2
O—l - - -
0.2 0.5
T T T T T
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
-0.2] ¢ ] @
-0.5
-0.4] |
-1.0

Figure 5.3: Plots of the stream function ¢ and its derivative with respect to ® versus the
interface position ¢ for a slumping flow situation (e = 0.6; p1 = 1.2; p2 = 0.6; 7v1 = 1.2;
Tye = 0.6; k1 = 1.2; k2 = 0.6). Power index m; = mo = 1.0, angle of inclination 8 = 0.
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Figure 5.4: Contour and relief plots of the differential velocity W; o, — W; ,, for varying density
p2 and yield stress 7y2 of the displaced fluid and other parameters fixed (given in text above).
On the left plot, darker shaded region corresponds to predicted unsteady flow and lighter to
predicted steady flow.

For Fig. 5.4 we fix the angle of inclination 8 = 0, the eccentricity e = 0.2, the inverse power
index of both fluids m; = ma = 1.1, their consistencies k1 = 1.1, ko = 0.8, density of the
displacing fluid p; = 1 and yield stress of the displacing fluid 7v; = 1.1. We vary the density
of the displaced fluid ps between 0.6 and 1.2 and yield stress of the displaced fluid 7v9 between

0.6 and 1.4. As expected we see that with increasing ps and 7yo the flow becomes unsteady.

For Fig. 5.5 we now vary the density of the displaced fluid p between 0.5 and 0.9 and consis-
tency of the displaced fluid k3 between 0.4 and 1.2. We fix the angle of inclination 3 = 0, the
eccentricity e = 0.3, the inverse power index of both fluids m; = me = 1.1, their yield stresses
Tv1 = 1.2, 7v9 = 0.8, density of the displacing fluid p; = 1 and consistency of the displacing
fluid k; = 1.2. Here the flow is slumping for smaller values of pi, ki, steady for intermediate

values and unsteady for larger values as expected.

Lastly, illustrated in Fig. 5.6 we vary eccentricity e between 0.2 and 0.8 and density of the
displaced fluid pa between 0.4 and 1. The other parameters are fixed at following values:
k1 =1.0; ko = 0.8, m1 =mg = 1.1; 7v1 = 1.0; 7v2 = 1.2; p; = 1; 8 = 0. The predicted flow is

steady for smaller eccentricity and density of displaced fluid, unsteady for intermediate values
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Figure 5.5: Contour and relief plots of the differential velocity W; ,, — Wi, n for varying density
p2 and consistency ks of the displaced fluid and other parameters fixed (given in text above).
On the left plot the darkest shade corresponds to predicted unsteady displacement, the lighter
shade to predicted steady displacement and the lightest shade to predicted slumping (steady)
displacement.

with a mud channel on the narrow side predicted for larger values.
5.2.3 Comparison with flow simulations

Now we examine how the results obtained from the lubrication approximation compare with
those obtained by simulating the full 2-D flow using the methods described in previous chapters.
First we examine how the prediction of a steady or unsteady flow compares with the results
produced by flow simulation. Here, we fix all parameters but one and examine where transition
from steady to unsteady displacement occurs as predicted by each model with variation of that

parameter.

In Fig. 5.7 we vary p2 and fix all other parameters at values specified. Plot of differential
velocity W, — W, calculated from the lubrication model is given together with results of
2-D flow simulation at different values of py. In the lubrication model we consider negative
value of W; o, — W5, to indicate a steady displacement and positive an unsteady displacement.
Each of the 2-D simulations was done on a 16 x 100 mesh with grid spacing 0.0625 and 0.1 in

the ¢ and £ direction, respectively, with initial interface azimuthal. Determination of whether
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Figure 5.6: Contour and relief plots of the differential velocity W;,, — Wi, n for varying density
of displaced fluid ps and eccentricity e of the annulus and other parameters fixed (given in text
above). On the left plot the black region corresponds to predicted mud channel on the narrow,
the lighter shade to predicted unsteady displacement with fluid yielded on the narrow side and
the lightest shade to predicted steady displacement.

displacement is steady or unsteady in a particular simulation run was done by examining the
interface track on the wide side in a frame of reference moving with the average speed of the
flow. There are however problems with such determination as shown below taking the particu-

lar set of parameters given as an example.

For small values of ps - (0.4 or 0.5) the interface track revealed that the interface became
fully developed within few time units with the position of the interface at the wide side in the
frame moving with average speed of the fluid g(¢ = 0,t) asymptotically approaching a value
few units above the starting level. As we increase po we can see that the ”development time”
becomes larger with increasing p2 and limiting value which ¢(0,¢ approaches becomes larger.
In order to conclude whether the displacement is steady or not from the flow simulation we
have to run the simulation for at least the length of this development time. However as this
time gets increasingly greater and we have to take a larger computational domain in the £
direction to accommodate for the greater value to which ¢(0,t) approaches, the computational
time increases greatly for larger values of pp. This is best illustrated in Fig. 5.9 d) where we set

p2 = 0.7 and track the position of the interface for 40 time units (4000 time steps) with g(0,t)
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Figure 5.7: Topt: plot of the differential velocit}; Wi w — Wiy calculated using t}tle lubrication
model versus the density of the displaced fluid ps with other parameters fixed (e = 0.4; k; = 1.0;
ko = 0.8, m1 = mo = 1.0; 7yv1 = 1.0; 7v2 = 0.8; p1 = 1; § = 0). On the plot, solid circles
indicate the values of density for which 2-D flow simulation indicated an unsteady displacement
and empty circles where a steéady displacement was achieved. Below are plots of the interface
position at the wide side of the annulus (¢ = 0) from the simulated flow in frame of reference
moving with the average speed flow for (to to bottom, left to right): a) pa = 0.4; b) p2 = 0.5;
c) ppo=06;d) po=0.7;€) pp=1.0;f) po=1.1
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Figure 5.8: Right: plot of the interface position at the wide side of the annulus from the
simulated flow in frame of reference moving with the average speed of the flow for po = 0.7
with interface evolving from an initially elongated configuration (plotted on the left). Other
parameters fixed at the same values as in Fig. 5.7.

steadily increasing at a nearly constant rate as shown. We cannot however conclude that the
displacement is thus unsteady as running the simulation for 80 time units would reveal that

g(0,t) does in fact approach a constant value thus indicating a steady displacement.

In case of p» = 0.7 we can make the same conclusion by setting the initial interface to be
elongated so that ¢(0,0) is greater than eventual value to which g(0,¢) converges and observe
9(0,t) decreases from that value (an idea analogous to that used in lubrication model). Plot of
an elongated initial interface and the subsequent track of the interface on the wide side is given
in Fig. 5.8. However, for say ps = 0.8 guessing this eventual value to which g(O;t) converges
is not straightforward as well as the dimension of computational domain in the £ direction re-
quired would be considerably larger. Evolving interface from an initial horizontal configuration
as we have done for smaller values of p2 is aiso not feasible in this case as the ”development

time” would be too long.

On the other hand, it is clear that for large values of ps - (1.1 or 1.0) displacement is go-
ing to be unsteady with ¢(0, t) steadily increasingv with a large gradient. Thus we can conclude
that transition between steady and unsteady displacement according to the 2-D flow simulations
occurs somewhere between p = 0.7 and ps = 1.0 in this case, however acquisition of a more

precise bound appears to be problematic. At the very least we can conclude that prediction for
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Figure 5.9: Top: plot of the differential velocitchi,w — Wi, n calculated using t}tle lubrication
model versus the consistency of the displaced fluid ks with other parameters fixed (e = 0.3;
ki1 =1.0; m1 = mg = 1.0; 7y1 = 1.0; 7v2 = 0.8; p1 = 1; po = 0.95; 8 = 0). On the plot, solid
circles indicate the values of consistency for which 2-D flow simulation indicated an unsteady
displacement and empty circles where a steady displacement was achieved. Below are plots of
the interface position at the wide side of the annulus (¢ = 0) from the simulated flow in frame
of reference moving with the average speed flow for (left to right): a) ko = 0.4; b) kg = 0.6; c)
ko = 1.2

steady displacement based on lubrication model appears to be conservative compared to flow
simulation results, i.e. flow simulation predicts a steady displacement for a larger range of ps.
Second example illustrating the same kind of comparison is given in Fig. 5.9. Here we fix
. all parameters at values specified except for the consistency of the displaced fluid k. Again,
similar sort of problems as in the previous example arise with a more exact determination of

the transition from steady to unsteady displacement using the flow simulation. Nevertheless

we note again that the transition occurs later than predicted by the lubrication model.
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Figure 5.10: Plots of the velocity at the wide side of the annulus (¢ = 0) as given by the
lubrication model (solid line) and from 2-D flow simulations (crosses). Left to right: a) density
of displaced fluid po between 0.9 and 1.3 and other parameters fixed at e = 0.4; k1 = 1.0;
ks = 0.8; my = mo = 1.0; 7y1 = 1.0; 7vo = 0.8; p1 = 1; 8 = 0 b) consistency of the displaced
fluid ko between 1.0 and 1.8 with other parameters fixed at e = 0.3; k1 = 1.0; m; = mo = 1.0;

1v1 =1.0; 7v2 = 0.8; p1 = 1; p2 = 0.95; 3 = 0.

Second characteristic on which we compare these two models is the prediction of the veloc-

ity on the wide side of the annulus. It is sensible to make this comparison when we expect an

unsteady displacement - as otherwise, in a case of steady displacement, during a simulation an

initially elongated interface would level off with velocity on the wide side eventually diminishing

to zero, making its estimation ambiguous.

v

’

We adopt the same strategy as above: for the first example we fix all parameters except for

density of the displaced fluid p3. We vary ps between 0.9 and 1.3 and fix other parameters as

before at e = 0.4; ky = 1.0; ko = 0.8, m1 = mg = 1.0; 7v1 = 1.0; 7vo = 0.8; ;1 ='1; B8 =0.

Results obtained thus from the flow simulation together with ones predicted by the lubrication

model are given in Fig. 5.10 a). We repeat the procedure by now varying the consistency of

the displaced fluid k2 between 1.0 and 1.8 with other parameters fixed at e = 0.3; ky = 1.0;.

my =ms = 1.0; 7y1 = 1.0; 7yv2 = 0.8; p1 = 1; p2 = 0.95; B = 0. Results are plotted in Fig. 5.10

b). In both cases we note that the estimation of speed on wide side by the lubrication model is

slightly higher than that obtained from the flow simulations.
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Chapter 6

Conclusion and Discussion

In this thesis we have described and analyzed in detail a model of non-Newtonian displacement
flow in annular geometry. Although building extensively on previously done work in this area

we have achieved the following main new results of importance:

1. We derived an immiscible fluids model, with appropriate jump conditions. This model is
easier to analyze than the concentration equations formulation. The two models lead to

an equivalent weak formulation.

2. We obtained an exact solution for the form of the interface and the stream function in
the case of a concentric annulus from the immiscible fluids formulation. This provided a
useful validation tool for later results as well as serving as the basis for the perturbation

solution.

3. We derived a perturbation solution for the form of the interface and the stream function in
the case of small eccentricity e << 1 from the immiscible fluids formulation. This allowed
us to easily demonstrate several important traits of the interface shape, depending on

variations of parameters such as densities, consistencies and yield stresses of the fluids.

4. We showed existence and uniqueness of solution ¥ for the stream function equations
for a given concentration field for the concentration formulation (or equivalently a given

interface position for the immiscible fluids formulation).

5. We implemented an iterative algorithm for the solution of the concentration formulation of

the stream function equations that solves the ”exact” problem without making additional

70



Chapter 6. Conclusion and Discussion

simplifying assumptions in the model or regularization of the constitutive equations. We

examined convergence of the algorithm and validated it against analytic solutions.
k .
6. We derived a lubrication type model from the immiscible fluids formulation that can

reliably predict the flow type - differentiating between stable and unstable displacement
and formation of a mud channel. The associated computations take milliseconds of CPU

time to complete and compare well with those produced by 2-D flow simulation.

There are several comments that should be made regarding the material presented here. As
mentioned earlier, we take the flow model summarized in [15] as the staring point for our
analysis. As such, limitations of that model all apply here - and one should consult‘[15] for a
mdre comprehensive discussion of these. The primary problems and limitations outlined are
i) assumption of homogeneity of fluids across the gap; ii) assumption of non-turbulent flow in
the whole annular domain - in pracfice some cement jobs are pumped in turbulent regime; iii)
ignoring via scaling laws what happens close to the interface and concentrating on the bulk flow
instead; iv) assumption of an imposed flow rate throughout the well, which can break down if
U—tubing occurs; v) assumption of the casing being stationary - sometimes the casing is slowly
rotated during the cementing process which has the effect of shear thinning both fluids. Some
of these can be clearly addressed in the fut_ure by expanding the model while the importance
of others can be examined experimentally. In particular examination of assumption (i) can be
carried out by extending the current research on displacements in a long axial section of the

annulus, considered in [1, 16].

For the augmented Lagrangian method implemented here for the solution of the stream function,
the one major limitation appears to be the computational speed. Fdr a 20 x 100 computational
domain considered here a typical flow simulation involving about 3000 time steps (equivalent
to 30 time units, with time step ~0.01 obtained from CFL condition) can take several hours on
current mid-range PCs depending on parameters. This can be remedied by a more extensive
exploitation of the over-relaxation parameters p, and r, implementation of more efficient nu-

merical methods for solution of the algorithm’s equations or using a non-regular mesh to reduce
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the number of control volumes needed.

Lastly we note the relation of lubrication model to the 2-D flow simulations. The ﬁredic-
tions made by the lubrication model are, as we would expect, conservative. This can be seen
in Fig. 5.7 and 5.9 where the domain on which the lubrication model predicts a steady flow is
in all cases smaller than that on which the 2-D flow simulation predicts a stable displacement.
Consistently, as shown Fig.5.10 the vélocity of the interface at the wide side of the annulus pre-
dicted by the lubrication model is greater than that computed from the 2-D flow simulations.
Determination of just how conservative is the lubrication model is complicated by the difficul-
ties in determining the flow type from the 2-D simulations described in 5.2.3 using a particular
example. Some indication of the order of magnitude of the discrepancy however can be perhaps

deduced from comparing the predicted speeds at the wide/narrow sides of the annulus.
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