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‘Abstract

We consider Schrédinger Operators with periodic electric and magnetic field
with zero flux through a fundamental cell of the periodic lattice with dimension
d. We show that, for a generic small electric/magnetic field and a generic small
Fermi energy, the corresponding Fermi surface is at most dimension d-2, convex
and not invariant under inversion at any point.
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Chapter 1

Preliminaries

Definition : Let f(z) be a function in R%. Then the vector + is called a period
of fif flz +v) = f(zx) Vo € RL If 1,--- , 74 € R are independent vectors
then T’ = {n1y1 + ngy2 + -+ ngvd | nj € Z} is called a non-degenerate lattice.
Let T" be such a lattice. Suppose there is a crystal lattice with ions at I" that
generate electric and magnetic potentials V(x) and A(x) periodic with respect
to I'. Then the Hamiltonian for a single electron moving in the crystal is

1

H =
- 2m

(iV + A(z))? + V()
This Hamiltonian commutes with all of the translation operators

(Ty9)(z) = ¢z + ) vel

Suppose for now H and T, were matrices, then we could find an orthonormal
basis of simultaneous eigenvectors for both H and T and these eigenvectors obey

H¢o = €ata .
Tyv¢o = Aoy Py vVyel

As T, is unitary, all its eigenvalues must be complex numbers of modulus one.
So there must exist real numbers (3, such that Ay = €Pov. Now because
T,T, = Tty , we have

g'Pavtv ba = Tty Pa = Ty Ty ¢ = T’yew""’/ o = e'for gthay bo = ei('gu"’_’_ﬁ""”)(pa
which gives

ﬂa;y + ,Ba"y’ = ﬁa"y+fyl mOd 27T v'y;’)’l 1S F

Then given any d numbers 1, , B4 the system of linear equations (with un-
knowns ky, - - - kq)
Y-k =P 1<i<d
d
that is » 7,k = B; 1<i<d

=1

(where 1; ; is the 4t component of ;) has a unique solution because the linear
independence of 7, - - - 74 implies that the matrix [y; ;]1<:j<a is invertible. So
for each «, there exists a ko, € R? with

Bayy = ko -y mod 27 VyeTl
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Notice that, for each «, k, is not uniquely determined. Because
Ba,y = ka -y mod 21 and B4,y = k' -y mod 27 Vyel
(ko —k'a) v E€27L Vyel
ko — ko €T#

where T# = {b € R% | b-~v € 2rZ Vv € T}, the dual lattice. For example,
if ' = Z% then I'# = 27Z% Now relabel the eigenvalues and eigenvectors,
replacing the index « by the corresponding value of k € R¢/T# and another
index n. The index n is needed because many k,’s with different values of «
can be equal. With the new labelling, the equations are now

H¢n1k = en(k)¢n,k
Tybng = €57 i Vyel (P.1)
Now fix any k and observe that “Ty¢n 1 = e* V¢, . for all ¥ € I'” means that
ez +7) = €T pn k()

for all x¢ R? and v € T'. If the e** were not there, this would mean that
®n,k is periodic with respect to I'. We can make a simple change of variables to
eliminate the e**. Define

Ynk(z) = € F ¢ k()
Then subbing it into (P.1) gives

1

iV + A= k)" + Vi = 5—(iV + A= k)7 o+ Ve * gn

2m
- '2’1777(N + A= E)(e (Y + A)bnp) + e H TV oy
= TV + APk + € G = enlky A,V )b
Denote by Ny, the set of values of n that appear in pairs a = (k,n) and define
Hi = span{¢n i | n € Ni}
Then, formally, ignoring that k runs over an uncountable set,
L?(RY) = span{¢y, k. | k € RY/T#, nE Ni} = ®rera/r# Hi

Set

Hi = span{thnx | n € Ni}

As multiplication by e is a unitary operator, Hy_is unitarily equivalent to
Hy and L2(R%) is unitarily equivalent to ©gege sr#Hg. The restriction of the
Schrédinger operator H to Hy, is 7= (iV + A—k)? +V applied to functions that




Chapter 1. Preliminaries 4

are periodic with respect to I'. Therefore, at least formally, we know that in
order to find the spectrum of H = 5-(iV+ A)?+V acting on L?(R%), it suffices
to find, for each k € RY/T# the spectrum of Hy = 7= (iV + A — k)2 + V.

To make this rigorous, we shall make L?(R%) unitarily equivalent to ®cge JT# Hi
by constructing a unitary operator U from the space of L? functions f(z),z € R¢
to the space of L? functions 9(k, ),k € RY/T# z € R*/T with the property

that
Now define
S(R*/T# x RY/T) = {¢h € C®(R% x RY) | Pk, z +v) = ¥k, z) VyeT
ek + b, z) = ¢(k, z) Vb e T#}
and l
S@®Y) = {f € C°(® | sup|(1+>") (][ :ii f@)| <co  Vmino i€ N)
‘ 3=19%;

With the inner product on S(R4/T# x R¢/T") given by

) .
= — d
(¥, d)r ] s dk /md/r z Pk, 2)p(k, x)

S(R¢/T# x R4/T") is almost a Hilbert space. The only missing axiom is com-
pleteness. Call the completion L?(R4/T# x R%/T") Now set

u z) = 1 dy, ik-x
( ’d’)( ) |F#| Rd/r#d ke ¢(k7$)
(@f)(k,x) =Y e F @ f(z 4 )
yerl

Then notice u : S(RY/T# x RY/T") — S(R9)
Proof: Let o € N and denote z® = Z}i:l 2}, ol = ijl a;. Then
e %y (k, z) is periodic in k
ek + b,z) = Y(k,2) Vb e T#
o o

ib-x ¥ _ #
et ok +b,2) = (k) VOET

A (43
’k'zb—];&—w(k, x) is periodic in k
Therefore using integration by parts with periodic boundary conditions, we

get

e

z® / e 2y (k, z)dk = / (—i)'al%(eik'z)zp(k,x)ddk = / e"’“'%lal(%)aw(k,m)ddk
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And also because 1(k,z) and all its derivatives are bounded,
B .. ik-x d B ( ik-z ;lal o* d
|67 (:1: e TPk, z)d k>| = ’ 98 (e = il ——y(k, z))d k‘ < o0
R/ T# Re/T# Ok«
Now the operator
Oxhf =atdlf + > Co gzl f
IQI<|5|:ais6i1|:@|<lp‘|7ﬁisui 3 O‘,ﬁEN‘l »

So by induction we have the desired result.

i : S(RY) — S(R?/T# x RY/T),
Proof: Fix f € S(R?) and set

Ylk,z) = 3 e H O f(g 4 )
yerl

As f(z) and all of its derivatives are bounded by 1%;"3% the series

d

D) | [ R

iy Je
byt Oz, Ok,

converges absolutely and uniformly in k and x (on any compact set) for all
i1, yid,J1, - - ja- Consequently 1(k,z) exists and is C*°. As for the period-
icity conditions, if v € T, :

ko) =30 e FET @ 4y 4 )
y'er
= Z e"ik'(”+7u)f(a: +4") where v/ =y 47/
,.y/ler
= (k,z)
and if b € T'#
ei(k+b)-m¢(k + b,\x) — Z ei(k:+b)-ace—i(k+b)-(z+'y)f(m ) = Z e—i(k-}—b).’yf(m +9)
el ver
— Z e—ik-’yf(x +4) = etke Z e—ik-(w—f-’y)f(x +7)
vyel ~el
\ = eik.zw(k’m)
So by proofs similar to the lecture notes [FN] we have propositions that state:

Proposition P.1 Let A and V be C* functions that are periodic with respect
to [' and set

H=(iV+A(2))? + V(z)
Hp = (iV + A(z) — k)? + V()
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with domains 8 and S(RY/T# x R%/T) respectively. Then,

for all ¢ € S(RY/T# x R4/T)

Proposition P.2

i) The operators u and 4 have unique bounded extensions U : L?(Re/T# x

R%/T) — L*(R%) and U : L3(R?) — L(RY/T# x R%/T') and
0U:]1L2(]R"'/F#XIR‘1/FI) Uﬁ:]le(Rd) 0=U* Uzﬁ*

Proof: with similar treatment in the study of Fourier series, with the periodicity
condition, we get

awp = ¢ for all Y € S(RY/T# xRYT) (P.2)

uinf = f for all f € S(RY) (P.3)

(iif,iig) = (f, g) for all f,g € S(R?) (P4)
Set f = uy and g = u¢. Then by (P.2), 4f = 1 and Gg = ¢, so that by (P.4)
Next set g = u¢. Then by (P.2), 4g = ¢ so that by (P.4)

(fiud) = (f,9) = (af, dg)r = (@f, $)r (P.6)

So now @ and u are bounded by (P.4) and (P.5) respectively. As S(RY/T# x
R¢/T') and S(R?) is dense in L*(R?), @ and u have unique bounded extensions
U and U. The remaining claims follow from (P.2), (P.3), (P.6) and (P.6) respec-
tively by continuity.

ii) The operators H(defined on S(R%)) and Hy, (defined on S(R?/T# x R¢/T))
have some unique self-adjoint extensions to L*(R%) and L*(R¢/T# x R%/T).
Call these extension H and Hy, then they obey U*HU = Hj. [FN]

This gives the unitary equivalence we needed.




Chapter 2

The Main Result

Let T be a lattice in R%, d > 2 and let 7 > d. Define

A= (A= (A Ad) € CREDY [ Al)dz =0)

V={V e Li/*R/T)| /W/F V(z)dz = 0}

For (4,V) € AxV set
Ho(A, V) = (iV + Az) — k)2 + V(2)

When d = 2,3, this operator Hi(A, V') describes an electron in R? with quasimo- |
mentum k moving under the influence of the magnetic field with periodic vector
potential A(z) = (Ai(z), -, Aq(z)) and electric field with periodic potential
V(x). Later we shall show that '

el(k,A,V) < 62(k,A, V) <.

are the eigenvalues of the operator Hy(A,V) on L"(R¢/T"). The restriction of
en(k, A, V) to the first Brillouin zone B of I is called the n-th band function of
A. Observe that Hy(0,0) = (iV — k)? and so the eigenvalues are (b — k)2, with
the corresponding eigenvectors e~*% b € T'#. In particular,

e1(k,0,0) = [k[*
The Fermi surface of (A,V) with energy A is defined as
F\(A,V)={k € B|en(k,A V)= for some n}

Because H has real eigenvalues, let Hg(A, V)¢, = en(k, A, V)dn

en(k7 A’ V)d)_n = en(ka A? V)¢n = Hk:(Aa V)¢n = ((—'LV + A("E) - k)2 + V(x))¢n
= ((iV — A(z) + k)2 + V(2))pn = H_(—A, V)@

Therefore
6n(—k, —Aa V) = en(ka A7 V)

for all n > 1. In particular, when A = 0,

en(—k,0,V) = e, (k,0,V)
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for all n > 1, so that F\(0,V) = —F,(0,V) for all XA and V. For all (4,V) €
AxV, AeR and p € RY, define

p—F\(AV)={p—-k| ke F\(AV)}

The main result of the paper is:

Theorem There is a neighbourhood Ao X Vo of the origin in Ax VY and Ao > 0
such that ' :

(i) for all (A, A, V) € (—00, Ag) X Ag X Vo, FA(A,V) is either a strictly convezr
(d-1)-dimensional real anaylytic submanifold of B, or consists of one point, or
18 empty

(ii)there is an open dense subset S of Ag x Vo of the origin in A X V such that
for all (A\,A,V) € S and all p € R?

F)\(Aa V)ﬂ (p - F/\(A’ V))

has dimension at most d-2. Furthermore SN ((—00, o) X Ao % {0}) is open and
dense in (—o00, Ag) x Ag x {0}

The theorem shows that for generic small periodic magnetic fields of mean zero
and generic small Fermi energies, the Fermi surface is strictly convex and does
not have inversion symmetry about any point. In particular, when d=2, the
intersection of the Fermi surface and its inversion in any point is generically a
finite set of points. Similar statements will hold if electric fields are also added
into the formula.
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Analyticity of the Fermi
surfaces

Let

Ac = {A= (A1, -, Ag) € (LR(R/T))Y| i A(z)dz = 0}

Ve={Ve L;/Z(R/m/ V(z)dz = 0}
Re/T
be the complexifications for A and V

Theorem : There exists an analytic function F on CixCx AC x Ve such
that for k, A,V real,

- X € Spec(H(A,V)) <= F(k,\, A, V) =0

Corollary Fiz an open ball D in the first Brillouin zone B that contains 0 such
that D C B°.
There is a neighbourhood U of the origin in A XV and there is Ao > 0 such that
i) The map

DxU—R, (kAV)— e (k AYV)

is real analytic
i) For all (A,V) €U and allk € D
ek A V) <e(k, A, V)

i) For each fived (A,V) € U the Hessian of the map k — e1(k, A, V') is posi-
tive definite. Furthermore infyepei(k, A, V) < Xg

iv) For each (A,V) € U and each A < Ao the Fermi surface F\(A,V) is ei-
ther empty, or consists of one point only, or is a real analytic smooth strictly
convex (d-1)-dimensional real analytic manifold that is completely contained in
D.

Proof of the Corollary : First we state the Implicit Function Theorem be-
low.[L]
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The Implicit Function Theorem let U, V be open sets in complex Banach
spaces E, F respectively and let

f:UxV -G

be analytic, and let (a,;c) € U x V. If the partial derivative of f at (a,c) with
respect to c,
O.f: F—-G

is a linear isomorphism, then there exists an open neighbourhood A of a and a
unique analytic map u: A — V such that

f(z,u(2)) = f(a,c), u(a) = ¢
on A.

Proof of the Corollary : i) This is the direct application of the Implicit Func-
tion Theorem with a = (k,A,V) = (k,0,0) and ¢ = A = k%. Now to check linear
isomorphism, with the F(k, A, A, V) and u(k, A) we construct later, we have

d d 4 (-1 1 1
d)\F|>\:k2,A=V=0 d/\[emp(; ; tr ( ,———H_Au(ka/\) ]]—A))
1 1
det(1 + ——u(k, \) ———=)]|r=
e( +\/mu( )m)”A k2
d .
_d (-1)t 2k -b+k2—A—1,
= Q= ()
=1 bel#
2% -b+k2—A—1
ITa+ T 5 )) =2
ber#
d % b+ k2 =A=1, rapan
:_A(.H(1+ T ) ef@RADY| o
bel'#
d 2k-b+k2P—-A—1 2k-b—1 * rldk kb
=1+ 3 a=k2 p=0 H 1+ =) H ef Rk
dA 1 + b bel'# ,b#£0 1+ b bel'#
‘ 2k b+ k2 —A-1 d
+(1+ —a=kzp=o ([ 9(di kX 0))Iamkz p=o
149 dA
bET# b#0
- 1I (1+M) I] &/@re0 20
1+52
bel'# b£0 ber#

Because we are restricting ourselves within the first Brillouin zone.

ii) The spectrum of Hx(0,0) is {|k + b]* | b € I*#}. Hence for k € D, e1(k,0,0) =
|k|* and ez (k,0,0) > e1(k,0,0). Since (k, A, V) — ey (k, A, V) is real analytic,
we just have to choose U sufficiently small and by continuity e;(k, A, V) <
ea(k, A, V)V (A, V)eU




iii) Here we define the Hessian to be the matrix of the 2nd derivatives of the
the mapping k — e1(k, A, V). For (4,V) = (0,0), the Hessian at any point is
given by 2 - 1 and therefore is positive definite. Here by continuity, for U small
. enough, the Hessian is positive definite for all (4,V) e U.
iv) For U sufficiently small the Hessian is positive definite and therefore by [M],
we may write ej(k, A, V) as ¢+ Ei:lp ;50 if A < ¢ then F)\(A4,V) is empty,
if A\ = c then F)(A4,V) is one point and if A > ¢ then F\(A4,V) is real analytic
smooth strictly convex (d-1)-dimensional real analytic manifold that is com-
pletely contained in D. But because the mapping is diffeomorphic, we have the
desired results in the original k co-ordinates.
Before we proceed to prove the theorem, we present some lemmas first.

Lemmal. Let ||B||, = [tr (B*B)™/2]Y/" where tr denotes the trace defined on
trace class operators on L*(RY/T). If B is a compact operator on L2(R%/T") and
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i
|

r > 2, then
a) |B| < ||Bl,
5) 1Bl = I1B"|,

Proof of the Lemma 1: a) Since B is compact, we can write
. oo
B=> M(tn,")n
n=1

with (A}, € RY, A, — 0,{¢n}32, and {¢n}o2, orthonormal sets being
the singular value decomposition. Then B*B = 300 | A2(¢n, ) ¢n, (B*B)"/? =

Z;oz A% (¢n7 )¢na 50

1Bl < maz{\, |neN} < (3" an)" =|B],

n=1
b) From the singular value decomposition we see that BB* = Y 2| A2(¢), )¢
* oo r 1
and so | B*ll, = (272, )"/ = |8,

n=1"n
Lemma2. Write

(GV+A@) —k)2+V(z)-A=1-A+uk,A)+w(k,AYV)
with

u(k,\) = —2ik -V + k2 - A -1
wk, A,V)=iV-A+iA-V—-2k- A+ A*+V

Then there is a constant constr 4 such that

1 1

v AV E=R
1

i-a

< constr,ra((1 + k) | All - + 1AL, + VL2 )

T

a)

A)

< constr . a(1 + |k|* + |A])

r

Hm ulk
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c) Let 0 €< Tz_rd. There is a constant constr r.dk A,y such that

{(ulk, \) +w(k, A, V)b, )| < constrrapaav( H(n - A)<1—f>/2¢H H(n - A)1/2¢H
= ayrf - a0

for all ¢, ¢ € L>(R¢/T)
Proof of the Lemma 2: a) we repeatedly apply the result that, for any r > 2
and any f € ¢"(T'#) and g € L"(R%/T)

1£(V)g(@)]| < volRY/D) ™ fllgr oy 9]l ey (%)

This is proven just as in [S] Theorem 4.1, except with the periodic domain.
One first proves that the Hilbert-Schmidt norm of f(iV)g(z) is bounded by
vol(R?/T) 2 || f1l g2 r#) 191l 12 (ma/ry and that the operator norm of f(iV)g(z) is
bounded by || fllgeo(r#) |9/l oo (ma/r)- One then interpolate using [S], Theorem

2.9.
As the operator norms ”\/__v” <1 H\/_k“ < |K], ||BB’]| < 1Bl 1B,
and with lemma 1b, we have
H T
1- A 11 A V11— A VI-A
H - r
V1- A A 1- A
— 1
< - (VA ——
= ll—A +”\/]1—A( ) 11— A,
1 2
SR (R S
1-A “\/H—A r
<( ) ——A +H L \/\72
- 1-A 1-A |, VvI—A T
Write
1 ) 1 ifb=20
JI—A f(ZV), with HOES 1:-b if b0

This f € ¢7(I'#) for all 7 > d because by the integral test

1 r/2 / 1 d /00 54 /
1 V2 < const T ai-C — % 4 dQ <
Z (1 + b2) = constra (1 +z2)r/2 ’ o W22 ’ solid angle >

, so the desired result follows from (*) with g = A,,--- , Aq, \/—
b) With the eigenfunctions ", b € I'#, the spectrum of \/_-_ u(k, A) === \/—K is

- 2_. —
{Qk b+k?—A-1 |ber#}

1+b2
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For any r > d, the £"(T'#)-norm of MJr—k?—;ﬂ, which is also the ||-]|,. norm of
14+b r

\/— u(k, A)m,ls bounded by
% b+k2—\—1 b ) 1
<2 — Al+ D) ||—
H 1+ 02 o |k|“1 b2 e,+(|k| N+ )H1+b2 o
. © o 1
< 2 T.d / 2 r.d
= (1+|k| )CI’#,T/O (1+82) 8 ds+CF#,r(|k1 +|/\!+1)/0 (1+82) s%ds

< constr ra(1 + [k]* +|A)

¢) Denote D = +/1 — A. The condition on € implies that (1 —¢) > d+ %i >d
so that —)(1_—37— is still summable. So as in part a),

1+b2
1
‘Dl—eA S HDl—e

1 1 <
Dl—e B - Dl—e

AH < constr, | Al
T

' 1
vV VY 5

< constr,y [Vl g2
T

T

u=—|| < constr (1 + |k|* + |A])

Consequently,

((iVA)g, )| = [{(iVA)$, D~ Dy)| = (D™ (iVA), DY)
< |D=1 VA8 1Dyl = D~ (VDI DI=g | Dy|
< ||D7*@vA) D¢ [0 <4 | Dy
< |[D7hv|| |AD= || | D¢l 1D ]
< 1-constr, Al | D] DYl
|((4iV)$, )] = |((A4iV)D™'Dg, D1+ D'"<y))
< ||p7*<(4iv)D™H|| [ D] || D |
< constr » | All .- | D] | D'~

A

(2K - A)¢, ¥)| < constr,[k| | Al . || D o] ]

(A A)p, )| < constr | All7. || D*~<¢|| | D*~¥|]
((Ve,9)| < constry |V w2 | D*0|| | Dyl
[((us, )| < constr (1 +[k[* + [A) 18]l | DY

Putting all these together we get the desired expression for part c).

Proof of the Theorem: Because L#(R?/T) > L* (R/T) forall 1 < s < ¢,
we may assume without loss of generality that » < d + 1. Then the lemma
implies that

1 1 1

+ k, AV
s e A =S

Fk, A\ A, V) = detgpr (14 u(k, \)

1
Vvi-A
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is a well-defined analytic function on C% x C x Ac x Ve. Here, detgy;(1+ B)
is the regularised determinant which, for matrices , is defined by

d
detgr1(1+ B) = exp Z

i=1

trB’ ) det(1 + B)

This regularised determinant is defined for B with || B| ;. , finite. See [S], The-
orem 9.2. It is analytic since one can take limits of finite rank approximations
of B.

Let D be the domain of VI—A. Andlet ¢: DxD — C,q(¢,¢) = (¢,(H—=N)p)
be the form, then by the lemma,

GA+ A(z) — D)2+ V(z) = A=1—A+uk, ) +w(k, A, V)

gives a well-defined quadratic form on D x D. | Furthermore, for ¢ € D, by
lemma c)

<(]l - A + u(k’ ’\) + w(kv Av V))¢7 ¢)> = <(]] - A)¢7 ¢> - <(u(k’ ’\) + w(k, Aa V))¢a ¢)>
1-A

1-A

For any 6 > 0 there is a constant ¢s such that
@ - a)0-972|| < 5 |VI=Dg]| + s gl
This is so because

|a-mye-926 = 3= 4094w

ber# ) .
_ ~ 1 2\ (] 2 1
- ¥ (1+b2)|¢(b)|2——(1+b2)6 + Y +D)) A+
] e <o) {1 pizye>9%) -
<& (14O +5 Y 1)
bel'# bel#

= 5 [VI— | + 16l < 6 |[VT= T8 + es ol
Choosing 6 = Wlnst then \
(1= Atu(k, N) +w(k, A, V))é, 6)) %”\/n—&pu —const ¢s ||¢|] Hﬂq&”

However notice (a %+ 8)2 >0, so |af| < 1(a? + 82) and so

‘constca ol ”\/1——¢|H < -—const2c 612 + = H\/Tl——AqﬁHQ

Therefore

(1= A+ u(k, ) + w(k, 4, V)),6)) >~ (const cs )
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And the form is semibounded. Again since

V2 const cs ||| % H\/n——&s” < 2 const?c? ||g)|> + i H\/II——AQSHZ

We have |
% |[vi= A¢H2—c0nst 16112 < [{(1=Arulk, N +w(k, A, V))é, ¢))] < const H‘/ﬂ—_&bH?

In order to show that 1 — A + u(k, A) + w(k, A, V) is closed, we must show it
is complete under the norm ||<;5||2+1 = ((1 - A + ulk,\) + wk,A,V))p,0)) +

const, ||¢||>. From above we then have
1 - 12 9 2
LA < 68, <75
Now if ¢, are Cauchy with respect to ||¢|| ., then

¢n = $mllyy "5 0 = H\/n_—A(% _ ¢m)“‘_, 0
= |VI=B(@n - 9)|| — 0= lI60 = ¢ll.s — 0

Here we used the fact that +/1 — A is complete. Hence there is a unique asso-
ciated self-adjoint semibounded operator Hy{A, V)
The resolvent of (1—A)~1 at i is given by 11—+A+i’ which is compact because the

eigenvalues {mlm | b € T#} converges to zero. Then by the resolvent identity

1 1 1 1
Ho(AV)—A+i 1-A+i+tu+k 1-A+i 1-A+itu+tw

1
()3 =R 717

and lemma 2 a), b), the resolvent of Hi(A,V) at i is also compact. Hence the
spectrum of Hy(A,V) is discrete. Then A € Spec(Hx(A,V)) if and only if there
exists 9 € Dy, (a,vy C D such that '

1
Hi (A V)= A VI-Ay =0
This is the case if and only if —z—=(H(4,V) —)\)ﬁ has a non-trivial kernel.

By [S] Theorem 9.2e), this is the case if and only if F'(k,\,A,V) =10
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Chapter 4

Proof of the Main Theorem

For simplicity we write e(k,A,V) = ej(k, A,V). By part (iii) of the corollary

_in secion 1II, for each (A,V) € U the function e(-,A,V) has a unique extremum

kmin(A,V). This extremum is a non-degenerate minimum. From the implicit
function we know that knin(A,V) depends analytically on (A,V). The same is
true for the corresponding value Apin(A,V) = e(kmin(A,V), A, V). From part
(iii) of the corollary in section II we have Apmin(A,V) < Ag. Now let P = {(A,
A, V) € Rx U | Apnin(A,V) < X < Ao}. Then for each (A, A, V) € P the Fermi
surface F)\(A,V) is a smooth, real analytic, strictly convex (d-1)-dimensional
manifold which is not empty. For k € Fy(A,V) denote the outward unit normal
vector to F(A,V) at k by n(k). If (A\,A,V) € P then for each £ on the unit sphere
S4=1 there is a unique point kx(£, A, V) € F) (A, V)such that n(kx(§,A,V)) =
.

Again it follows from the implicit function theorem that
S41 x P— D, (6,\ A V) — k(6,4 V)

is a real analytic map.

To prove the theorem stated in the Introduction we have to show that for
(A, A, V) in an open dense subset of P and all p € R? the intersection F)(4, V)N
(p—Fx(A, V) has dimension at most d-2. Since for all (A, A, V) € P the manifold
is real analytic smooth and strictly convex, one has either

dim(F)\(A,V) N(p— Fr(A4, V)) <d-2o0r Fx(A,V)=(p— £ (AV)

If the first case is true then we’re done. If F)\(A,V) = (p — FA(A,V)) then the
inversion in the point p/2 maps the point of Fi(A,V) with norml vector £ to
the point with —&. i.e.

FA(A, V) = (p—=FA(A, V) = ka(&, A, V)+ka (£, A, V)+ka(—€, A, V) =pV £ € §41

Therefore the set of all (A, A,) € P for which there is a point p € R such that
dim(Fy\ (A4, V)N (p— FA(4,V))) > d — 2 is contained in the set

8 ={(NAV) e P Ve(ka(§, A V) +ka(=£,AV)) =0V £ §471)
Observe that S’ is the interection of the analytic hypersurfaces

() {XAV)€P| Ve(ka(6, A V) +ka(—£,A4,V)) =0}
gegd-t



Hence to show that the complement of &’ is open and dense it suffices to find
one (A, A,V) € P that does not lie in §’. We can do this by choosing V = 0
and a particular vector potential A which is only 2 dimensional, and showing
that for small t and some A the triple (), ¢- A,0) does not in S’. This then also
shows that the complement of S’ N {(\, 4,V) € P |V = 0} is open and dense
in {(\,4,V)e P|V =0}
Hence in the following calculation we will only consider the points (A, ¢ - A,0)
of P with a suitably choosen two dimensional vector potential A. Therefore we
restrict ourselves to the case d = 2 and delete the V-variable in the notation.
We begin by computing the first 3 derivatives of e(k,t - A) at the origin for
arbitrary A. We use notation f(k) = & f(k,t)i=o

Lemma. Let A € A. Denote e(k,t) = e(k,t-A). Then there exists a constant
C such that for all k € D

. . Chapter 4. Proof of the Main Theorem 17
|

é(k) =0 :
iy=c-2 3 m|(2k+b) L AQ)P2
bel#\{0}
1 " o N
¢(k)=12Re > o A=) Ale- b)[(2k + b) - A(b)]
b,ceT#\ {0} N )
—6 3 [(chji)g';(;c)] [(2k +b+c) - a(c — b) ———[(2Z2++b;]'€ ’_4 ;b)]
b,ceT#\ {0}

Here A(z) = D pers A(b)et®® with A(b) = (A;(b), A2(b)) being its Fourier co-
efficients. Also, for each X € (0, Xo) and every £ € S? :

d
—_ Al =
dtk)\(é.at )It—O 0

2

WA k(6 ¢ Ao = (VA
3

2VRE - Sha(6 8 Allimo = ~E(VAE)

Proof : Let 9« (t) be the eigenfunction with eigenvalue e(k,t) for the operator
H(t- A) normalised by

Yi(0) = \/——11)_.—07 and < ¥ (0), Yr(t) >=1

f , where vol is the volume of R?/I. The constant function is an acceptable
eigenfunction since at t = 0, Hx(0 - A) = (iV — k)2. Then for small t and k €
D, 9« (t) is an analytic function of t and k, so we may differentiate

Hy=c¢
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and get
Hy + Ho = ép + e (4.1)
Hep + 2H + Hp = & + 260 + ey (4.2)
Hep + 3Hy + 3HY + Hp = € + 36 + 3¢ + ey
Next we can take the inner product of these with 1¥(0) to get
¢ =< Hy,y > ‘ (4.4)
=< Ho, o > +2 < Hip, ¢ > (4.5

=< Hy,o > +3 < HY,op > +3 < Hop, 9 >

Since we have < ¥ (0), ¥ (t) >= 1, differentiate and we will get % < i (t), ¥, (0) >

=< x(t),¥e(0) >= 0. So similarly < (t), ¥ (0) >=< P(t), ¥ (0) >= 0
and < Hyi(t), ¥r(0) > =< Heg(t), ¥r(0) > =< Hiy(8), 9 (0) >=
But now
EEHk(t A=A -(iV+t-A-k)+(GEV+t-A-k)-A
o DAL | 94
—2A-(’Lv+t'A—k)+7,(axl+a—$2) (47)
» So at t = 0, we have
) A, 0OA;
Hyyp = \/_Hk].— \/_._( 2k-A+1 (8.’L‘1 +(9_£L'2)) (48)
Now form the inner product with ¥(0) = ﬁ -1 we will get
e Lo 04, , oy
¢ =< HY, ¢ >= ol < (—2k- A"H(@ o + 33:2))’1 >

‘But recall in the beginning of the paper we specified A = {A = (A, -, Aq) €
(Lg(R?/T))
| Jga/r A(z)dz = 0}, so

<kA1l>=< klAl(iE), 1>+ < k:zAQ(:L'), 1>= / klAl(m)dx—i—/ szz(x)d.’L‘ =0
RZ/T Re/T

Now < $21,1 >= < 6.7: 2201 >= fIRd/l" D2 Ledy = A2( )|eualuatedatboundaries =0
because A( ) is periodic. Hence we have

From (4) we have
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Here we define (H — ¢)~! to be 0 on (0) and the inverse of (H — ¢) on the
orthogonal complement of 1(0). Plugging into (8)

i=< Hp, v > -2 < H(H — ) Hyp, 9 >

From (7) )
= 2(A2 + A2) .

so that < H, 9 > is a constant C = 2. < (A? + A%),1 > independent of k.
Using (8) we get
. 2 0A:1 0A; A,  OA,

=0-= _ -9 922\ ok, A4 q( 2L L Y22
E=C ’UOl<(Hk €)~1(— kA+(8I1+(9$2))’ 2k +(61+0$2))>
Since we can write A(x) as Y per# A(b)e?®®, we have

6A1 BAZ _ A ib-x
(=2k-A+i (am1 + 6x2))_— > (2k+b)- A(b)e

ber#
Also because H(0, 0) (iV — k)%, H(0,0)1 = €(0) 1, €(0) = k2. So
(H(0,0) — €(0))e®? = (b? + 2k - b)e’>®

We finally get

e=0-l 2 (k4 ) AB)e?, 3 (2K + ) - AB)®7)

2 .
ber#\ {0} b +2k-b ' ber#

— 1 A 2
=Cc-2 > b2+2k_b|(2k+b).A(b)|
bel#\{0}

Now, from (2) we get
P =—(H — €)Y (Hp — & — 260 + 2H1))
—(H— )" THyp+ é(H — €)"1(0) —2-0-p — 2(H — ) L H(H — ¢) " Hy)
—(H —€) " Hep+ 2(H — €)' H(H — ¢)"'Hy (4.10)
Now combine (6),(9),(10) and the fact that H = 0, we get

t=-3<HH-¢) "Hy,p > -3 < H(H —e) L Hp, ) >

+6<H(H —¢) YH(H —¢) " Hyp, ¢ >
=—6Re < (H—¢)""Hy, HY > +6 < H(H —¢) *H(H — &) 'Hep, 9 >
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Since
. 1 . )
H—e) 'Hp = ——=(H—¢)" D (2k+b)- A(B)e™?
(H —e) r—vol< ) beZF#< )- A(v)
I IR e (CRDRY (O) oy
2
vol ber#\ {0} + 2k b
Hy = 2 4 A2) = z I Jeilb)e
bel# ceT#
Z A _ C ) ib-x
b cel#
and
L pete e > = Lo [~2A- (b+k) +iV - Ale*?, % >
vol vol
- L [—24 - (b+ k) +1iV - Ale"®=9%dy
vol Jga/r
- —2(b+k) - A(c—b) +ii(c—b)A(c — b)dz
vol Jre/r
—(2k +b+c)- A(c—b)
we get
1 ) .
E=12Re Y. [k +8)- ABIAG o) (o)
b,c€T#\ {0}
_ (2K +b) - A®B)] : (2K + c) - A(c)]
6 D prgpy (@Etbte) Ale-bTm

b,ceT#\{0}

The above completes the statement about the derivatives of .
We now prove the statement about the derivatives of t — kx(&,t - A) for
fixed A € (0, o) and ¢ € S*. To simplify notation put

K’(gat) = k)\(fat : A)
Differentiating the identity
e(r(§,1),1) = A

we get .
Vie(s(E,),0) - SR(E 1) + reln(61),1) = @)

Since é = 0 and Ve(k(€,0),0) = 2k = 2VXE, setting t = 0 gives

£-k(E)=0 ' (12.a)
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Let £+ denote the vector (—&,&;) perpendicular to £ = (§1,&2), then by the
definition of ky we have &1 - Vie(k(€,t),t) = 0. Differentiating this identity we
get ‘

&1 . (Hessian(e) - £(€) + Vié) =0

Since for t = 0, we have Hessian(e) = Hessian(2k) = 2 x 1 and ¢ = 0, we get

Lk =0 . _ (12.b)
Combining (12a) and (12b) gives

k=0 (4.12)
Differentiating (11) again and letting t = 0 gives o
K(€)- Hessiang(€) - 4(€) +2Vié(k(€, 0)) - £(€) + Vie(k(€,0)) - £(§) +€(r(€,0)) = 0
Using (12) we have
2VE - K(€) = —&(r(£,0)) = ~E(VAE)

Differentiating (11) twice, we will get

(L k() - Hessiani(e) - (&) +#(6) - (5 Hessmnk( ) K(E)+

2(+(€) - Hessiani(€) - £(€) + Vit(x(£,1)) - )4 alele, ) - R(E))
K(E) - Hessiank(e) - K(€) + Vré(s(,)) - (<>+vke<< £.6)) - R(E)+
ViE(w(€,1)) - A(€) + E(k(£,8)) =0

Setting t= 0 and using & = 0 we get
3VKE(K(E, 0)) - K(€) + 2VAE - () + E(n(€,0)) =

Since é =0
2V R (E) = —E(s(£,0)) = —E (V)
We now proceed to prove the main theorem and consider a fixed vector
potential a and a fixed A € (0, Ao). If
Fy(t- A) = (p(\t) — Fa(t - A)) for all small t
then
k/\(§7t A) + kk(—£7t : A) = p()"t)

for all £ € S'and all small t. Multiplying this equality with 2v/X¢ and take the
third derivative with respect to t and evaluating at t = 0 gives

2VRE - (ks t Aeco + Sk

A=t Alimo) = 2VAE - B(N)
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By the previous lemma, this becomes

¢(=k) — €(k) = 2k - B()) for all k with |k|? = X

or, since e, (—k, —A,V) = en(k, A, V) as mentioned earlier, €(—k) = —€(k), we
have

€(k) = —k - B(N) for all k with |k}> = A . (4.13)
As mentioned above, it suffices to find one vector potential A and one A € (0, \o)
such that (13) fails. Since we have the freedom to limit the size of Ag, we may
also choose it to be less than 3/4 and proceed to present one specific A such
that (13) fails for all A € (0, \o) Fix a non-zero vector d € I'#. Without loss of
generality up to scaling we may set d = (1,0). Let

e=i2Re Y o2k ) ABAG - o) A
b,cel#\ {0}
-6 Z —_—[(2];:21();]; ﬁfb)] [(2k +b+c)- Alc— b)]____[(2122++c;’-€ 1,46(6)]
b,ceT#\{0}

1
_ ppran I,
=24k -d Z b2 +2k-b
b,c€{+d,+2d},b—ce{td,+2d}

1 1
— 48(k - d*+)® > ; :
bee{dd,+2d} b—ce{d,+2d} © +2k-ch?+2k-b
2 + 2 n 1 + 1
1+ 2k 1— 2k, 4(1+k1) . 4(1——k1)
1 2 1

— 48k3 /
8k2(3 + + 2(1 = 2k1)(1 = k1)

=24ks( )

T o)A F) T O 2k~ k) )

If (13) were true, i.e. if the above quantity were of the form —k - H(A) for all k
with |k|2 = X then one must have p()\) = u(\)dt because the right hand side
vanishes for k; = 0. Hence )
2 2 1 1
=—24
M) om0 T 205 a0 R)
2 2 2
B k35 B 4k B k3 ) (4.14)
(14+2k)(1+k)  (1+2k)(1—2ky) (1 —2k1)(1— k1)

If (13) were true, then the right hand side of (14) would have to be constant on
the circle {(k1, ko) € R?|kf-+k% = \}. Since the right hand side is a meromorphic
function of f(k1, kz), it should also be constant on the complex quadric

Qx = {(k1,k2) € C | kI + k5 = A}

On the other hand, f(ki,k2) has a pole with residue 24(1 — 2k3) along the
complex line L = {(k1,k2) € C? | k; = 3}. Consequently f|o, is infinite on
the points of @ N L different from (3, ﬂ:ﬁ) This shows that f|g, cannot be

constant unless Qx N L C {(3, i%)} But since earlier we chose A < 3, this is

not the case and (13) is not true.
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