The Local Gromov-Witten Invariants of Configurations of Rational Curves

by
Dagan Karp
M.Sc., Tulane University, 2001
B.Sc., Tulane University, 1999
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy
in
THE FACULTY OF GRADUATE STUDIES
Mathematics

The University of British Columbia

April 2005
(C) Dagan Karp, 2005

Abstract

We compute the local Gromov-Witten invariants of certain configurations of rational curves in a Calabi-Yau threefold. We first transform this from a problem involving local Gromov-Witten invariants to one involving global or ordinary invariants. We do so by expressing the local invariants of a configuration of curves in terms of ordinary Gromov-Witten invariants of a blowup of $\mathbb{C P}^{3}$ at points. The GromovWitten invariants of a blowup of $\mathbb{C P}^{3}$ along points have a symmetry, which arises from the geometry of the Cremona transformation, and transforms some difficult to compute invariants into others that are less difficult or already known. This symmetry is then used to compute the global invariants.

Contents

Abstract ii
Contents iii
Acknowledgements v
Dedication vi
1 Introduction 1
1.1 Motivation 1
1.2 Background and Notation 2
1.2.1 Gromov-Witten invariants 2
1.2.2 Local Gromov-Witten invariants 3
1.2.3 Trees of rational curves 4
1.2.4 The blowup of $\mathbb{C P}^{3}$ at points 6
1.3 Main results 7
1.3.1 The closed topological vertex 8
1.3.2 The minimal trivalent configuration 9
1.3.3 A chain of rational curves 10
1.4 Brief overview 10
2 Configurations of rational curves 12
2.1 A geometric construction 12
2.2 Intersection products and normal bundles 14
3 From local to global invariants 20
3.1 The closed topological vertex 20
3.2 The minimal trivalent configuration 23
3.3 A chain of rational curves 28
4 Properties of the invariants of the blowup of \mathbb{P}^{3} at points 32
4.1 A vanishing Lemma 32
4.2 The geometry of the Cremona transformation 36
5 Proofs of the main theorems 42
5.1 Proof of Theorem 1 42
5.2 Proof of Theorem 2 42
5.3 Proof of Theorem 3 43
Appendix A Calabi-Yau configurations in blowups of \mathbb{P}^{3} 45
A. 1 Another geometric construction 45
A. 2 Intersection products and normal bundles 47
A.2.1 The Calabi-Yau condition 47
A.2.2 Normal bundles 50
Bibliography 52

Acknowledgements

First and foremost I thank my adviser, Jim Bryan, for his unsurpassed generosity, unwavering support, unfailing optimism and his unmistakable intuition and style.

In addition, I wish to thank Kai Behrend, Jim Carrell, Kalle Karu, Sergiy Koshkin, Melissa Chiu-Chu Liu, Herbert Medina, Maciej Mizerski, Victor Moll, Christoph Müller, Jim Rogers, Ivelisse Rubio, Jim Voytas and Liam Watson.

Also, this work would not have been possible without my supporting family, especially all four of my wonderful parents. Finally, I thank Legier Biederman, the love of my life.

Dagan Karp

The University of British Columbia
April 2005

To my grandparents, Berna and Gabe Allen, and in loving memory, Sanford and Helen Karp.

And to Juan Carlos Fontanive.

Chapter 1

Introduction

1.1 Motivation

The relationship between contemporary physics and mathematics is exciting and deep. String theory, conformal and topological field theories and mirror symmetry have become tremendously important in representation theory, combinatorics, lowdimensional topology, knot theory and symplectic and algebraic geometry.

Gromov-Witten theory is an example of a particularly rich interaction between these two disciplines. The subject arose from the study of string theory on Calabi-Yau threefolds. It was noticed that the coefficients of certain correlation functions correspond to the number of holomorphic maps from the worldsheet of the string to the Calabi-Yau threefold. Thus, Gromov-Witten theory was seen to predict answers to questions in enumerative geometry. Of particular significance, for instance, was the prediction of the number of rational curves on the quintic threefold [9].

One main reason that one may be motivated to study the local GromovWitten invariants of configuration of rational curves is related to the topological vertex. The Gromov-Witten invariants of any toric Calabi-Yau threefold can in principle be computed by the virtual localization of Graber and Pandharipande [16], which reduces the invariants to Hodge integrals, which can then be computed recursively $[12,20,24]$. However this method is impractical for higher genus invariants.

A more efficient algorithm to compute the all genus Gromov-Witten invariants of any toric Calabi-Yau threefold was proposed by Aganagic, Klemm, Mariño and Vafa [1]. The basic ingredients are the topological vertex, which is a generating function for certain open Gromov-Witten invariants, and a gluing algorithm which expresses the Gromov-Witten invariants of any toric Calabi-Yau threefold in terms of the topological vertex. The topological vertex itself is computed using duality be-
tween Chern-Simons theory and Gromov-Witten theory. This work is conjectural, as neither open Gromov-Witten invariants nor Chern-Simons/Gromov-Witten duality are well defined mathematically.

In an attempt to overcome these difficulties, J. Li, K. Liu, C.-C. Liu, and J. Zhou [21] introduce formal relative Gromov-Witten invariants and degeneration as an alternative to open invariants and gluing, and they define an alternate generating function. It is shown that the degeneration formula agrees with the gluing formula. To show that the two algorithms are in complete agreement, it remains to show that the generating functions are equal. In order to prove equality, it is necessary to compute so called one-, two-, and three-partition Hodge integrals. The proof has been completed in case one of the partitions is empty, and the full three-partition case remains open.

Consequently, the local Gromov-Witten invariants of configurations of rational curves, in case the configuration is not contained in a surface in a Calabi-Yau threefold, are conjectured but not proved using the vertex technology. Thus, computations of these local invariants provide a check of the conjecture in that case. For example, the closed topological vertex is defined to be a configuration of three \mathbb{P}^{1} 's meeting in a single triple point in a Calabi-Yau threefold, with some mild assumptions about the formal neighborhood. In general it is not contained in a surface and its local invariants were computed by Bryan and Karp [5], which appears as Theorem 1 here. Theorem 2 provides another infinite family of potential verifications of the vertex conjecture.

In addition to the above motivation, local Gromov-Witten invariants of rational curves are interesting in and of themselves. The local invariants of curves have been studied in $[5,7,8,11,23]$. Also, the local invariants of ADE configurations of rational curves were computed by Bryan, Katz and Leung in [6]. Our computations are new and add to this list.

1.2 Background and Notation

1.2.1 Gromov-Witten invariants

We now recall the central objects in the Gromov-Witten theory of (local) Calabi-Yau threefolds and establish notation.

Let X be a smooth complex projective algebraic variety of dimension three. We may identify $H^{*}(X, \mathbb{Z})$ with $H_{*}(X, \mathbb{Z})$ as rings via Poincaré duality, where intersection product is dual to cup product.

We use the convention that curve classes (and not necessarily curves themselves) will be denoted by lower case letters, and divisor classes will be denoted by
the upper case. For example, we may denote the class of a hyperplane in \mathbb{P}^{3} by $H \in H_{4}\left(\mathbb{P}^{3}, \mathbb{Z}\right)$ and the class of a line by $h \in H_{2}\left(\mathbb{P}^{3}, \mathbb{Z}\right)$. And we may denote a curve by $C \subset X$, but we will specify its class by $[C] \in H_{*}(X, \mathbb{Z})$.

We denote the canonical bundle of X by K_{X}. We say that X is Calabi-Yau if it has trivial canonical bundle, $K_{X} \cong \mathcal{O}_{X}$, and we say that X is locally Calabi-Yau near the curve $C \subset X$, or that C is a locally Calabi-Yau curve in X, if $K_{X} \cdot[C]=0$.

Let X be locally Calabi-Yau nèar $C \subset X$ and let $[C]=\beta \in H_{2}(X, \mathbb{Z})$. Then, we let

$$
\bar{M}_{g}(X, \beta)
$$

denote the moduli space of stable genus g maps to X representing β. It is constructed and shown to be a proper algebraic stack by Fulton and Pandharipande in [13]. Li, Tian, Behrend and Fantechi $[2,3,22]$ showed that this moduli space comes equipped with a perfect obstruction theory, which defines a virtual fundamental zero cycle. The genus g Gromov-Witten invariant of X in class β is defined to be the degree of this virtual fundamental class; we denote it as follows.

$$
\left\rangle_{g, \beta}^{X}:=\operatorname{deg}\left[\bar{M}_{g}(X, \beta)\right]^{\mathrm{vir}}=\int_{\left[\bar{M}_{g}(X, \beta)\right]^{\mathrm{vir}}} 1 \in \mathbb{Q}\right.
$$

For a general reference on Gromov-Witten theory, see the excellent books [10, 18].

1.2.2 Local Gromov-Witten invariants

Let $\iota: Z \hookrightarrow X$ be a closed subvariety of the smooth complex projective threefold X, and suppose that X is a local Calabi-Yau threefold near Z. Let β be the class of a curve class in Z, and let M_{Z} denote the substack of $\bar{M}_{g}\left(X, \iota_{*} \beta\right)$ consisting of stable maps with image in Z. If M_{Z} is a union of path connected components, then it inherits a virtual 0 -cycle (by restricting $\left[\bar{M}_{g\left(X, \iota_{*} \beta\right)}\right]^{\text {vir }}$ to $H_{0}\left(M_{Z}, \mathbb{Q}\right)$). The local Gromov-Witten invariant of $Z \subset X$ is defined to be the degree of this 0 -cycle; we denote it by

$$
N_{\beta}^{g}(Z \subset X)
$$

Note that in general $N_{\beta}^{g}(Z \subset X)$ depends on a formal neighborhood of $Z \subset X$, and in some cases it only depends on the normal bundle. If the neighborhood is understood, we write $N_{\beta}^{g}(Z)$. For a wonderful expository article on the issues surrounding local invariants, see [4].

Figure 1.1: The minimal trivalent tree

1.2.3 Trees of rational curves

Let Γ be a connected graph consisting of vertices $\mathcal{V}(\Gamma)$ and edges $\mathcal{E}(\Gamma)$. An edge is specified by an unordered pair of vertices:

$$
\mathcal{E}(\Gamma) \subset \operatorname{Sym}(\mathcal{V}(\Gamma), \mathcal{V}(\Gamma))
$$

Furthermore, we assume throughout that Γ is a tree.
For any vertex v, the valence of v is defined to be the number of distinct edges containing v. We denote the valence of v by

$$
|v|=\left|\left\{v^{\prime} \in \mathcal{V}(\Gamma):\left\{v, v^{\prime}\right\} \in \mathcal{E}(\Gamma)\right\}\right|
$$

We say that the tree Γ is trivalent if
(i) $|v| \leq 3$ for all $v \in \mathcal{V}(\Gamma)$
(ii) $\left|v_{0}\right|=3$ for some $v_{0} \in \mathcal{V}(\Gamma)$

Thus there is a unique infinite trivalent tree $\Gamma_{\min }^{3}$ such that

$$
|v|= \begin{cases}3 & \text { if } v=v_{0} \\ 2 & \text { otherwise }\end{cases}
$$

We call it the minimal trivalent tree, and it is shown in Figure 1.1. When there is no chance of confusion, we will also refer to a finite trivalent subtree of the minimal trivalent tree as the minimal trivalent tree.

Also, there is a unique infinite tree $\Gamma_{\max }^{3}$ such that

$$
|v|=3 \text { for all } v \in \mathcal{V}\left(\Gamma_{\max }^{3}\right)
$$

Figure 1.2: The maximal trivalent tree
We call ($\Gamma_{\max }^{3}$) the maximal trivalent tree. It is depicted in Figure 1.2.
A configuration of rational curves \mathcal{C} is by definition a union along points of non-singular rational curves.

$$
\mathcal{C}=\bigcup_{j \in J} C_{j} \quad C_{j} \cong \mathbb{P}^{1}
$$

Here J is some indexing set. We specify these points below and we specify the local geometry of the intersection points for the configurations of interest in Assumption 1.

We say that a configuration of rational curves corresponds to the graph Γ if there is a one to one correspondence between edges of the graph and irreducible components of \mathcal{C}.

$$
\left\{C_{j} \subset \mathcal{C}\right\} \longleftrightarrow\left\{\mathcal{E}_{j} \in \mathcal{E}(\Gamma)\right\}
$$

Additionally, it is required that there is a one to one correspondence between vertices v with valence greater than one in Γ and intersection points p_{v} of the corresponding components of \mathcal{C} :

$$
v \in \mathcal{E}_{j} \cap \mathcal{E}_{k} \Longleftrightarrow p_{v} \in C_{j} \cap C_{k}
$$

Here the components are necessarily distinct, i.e. $j \neq k$. The above union is then defined to be the union along these intersection points.

$$
\mathcal{C}=\bigcup_{\left\{p_{v}\right\}} C_{j}
$$

1.2.4 The blowup of $\mathbb{C P}^{3}$ at points

We briefly review the properties of the blowup of \mathbb{P}^{3} at points used here for completeness and to set notation. This material can be found in much greater detail in, for instance, [17].

Let $X \rightarrow \mathbb{P}^{3}$ be the blowup of \mathbb{P}^{3} along M distinct points $\left\{p_{1}, \ldots, p_{M}\right\}$. We describe the homology of X. All (co)homology is taken with integer coefficients. Note that we may identify homology and cohomology as rings via Poincaré duality, where cup product is dual to intersection product.

Let H be the total transform of a hyperplane in \mathbb{P}^{3}, and let E_{i} be the exceptional divisor over p_{i}. Then $H_{4}(X, \mathbb{Z})$ has a basis

$$
H_{4}(X)=\left\langle H, E_{1}, \ldots, E_{M}\right\rangle
$$

Furthermore, let $h \in H_{2}(X)$ be the class of a line in H, and let e_{i} be the class of a line in E_{i}. The collection of all such classes form a basis of $H_{2}(X)$.

$$
H_{2}(X)=\left\langle h, e_{1}, \ldots, e_{M}\right\rangle
$$

The intersection ring structure is given as follows. Let $p t \in H_{0}(X)$ denote the class of a point. Two general hyperplanes meet in a line, so $H \cdot H=h$. A general hyperplane and line intersect in a point, so $H \cdot h=p t$. Also, a general hyperplane is far from the center of a blowup, so all other products involving H or h vanish. The restriction of $\mathcal{O}_{X}\left(E_{i}\right)$ to $E_{i} \cong \mathbb{P}^{2}$ is the dual of the bundle $\mathcal{O}_{\mathbb{P}^{2}}(1)$, so $E_{i} \cdot E_{i}$ is represented by minus a hyperplane in E_{i}, i.e. $E_{i} \cdot E_{i}=-e_{i}$, and $E_{i}^{3}=(-1)^{3-1} p t=p t([14])$. Furthermore, the centers of the blowups are far away from each other, so all other intersections vanish. In summary, the following are the only non-zero intersection products.

$$
\begin{array}{|cc|}
\hline H: H=h & H \cdot h=p t \\
E_{i} \cdot E_{i}=-e_{i} & E_{i} \cdot e_{i}=-p t \\
\hline
\end{array}
$$

Also, we point out the important fact that the canonical bundle is easy to describe in this basis. Let K_{X} denote the canonical bundle of X. Then we have

$$
K_{X}=4 H-2 \sum_{i=1}^{M} E_{i}
$$

Finally, we introduce a notational convenience for the Gromov-Witten invariants of \mathbb{P}^{3} blown up at points in a Calabi-Yau class. Any curve class is of the form

$$
\beta=d h-\sum_{i=1}^{M} a_{i} e_{i}
$$

Figure 1.3: The minimal trivalent configuration
for some integers d, a_{i} where d is non-negative. Thus $K_{X} \cdot \beta=0$ if and only if $2 d=\sum_{i=1}^{M} a_{i}$. In that case, $\left\rangle_{g, \beta}^{X}\right.$ is determined.by the discrete data $\left\{d, a_{i}, \ldots, a_{M}\right\}$. Then, we may use the shorthand notation

$$
\left\rangle_{g, \beta}^{X}=\left\langle d ; a_{1}, \ldots, a_{M}\right\rangle_{g}^{X} .\right.
$$

For example,

$$
\left\rangle_{g, 6 h-e_{1}-e_{2}-2 e_{3}-3 e_{5}-3 e_{6}}^{X}=\langle 6 ; 1,1,2,0,3,3\rangle_{g}^{X} .\right.
$$

Furthermore, the Gromov-Witten invariants of X do not depend on ordering of the points p_{i}, and thus for any permutation σ of M points,

$$
\left\langle d ; a_{1}, \ldots, a_{M}\right\rangle_{g}^{X}=\left\langle d ; a_{\sigma(1)}, \ldots, a_{\sigma(M)}\right\rangle_{g}^{X}
$$

1.3 Main results

Our main results determine the local Gromov-Witten invariants of certain configurations of rational curves $\mathcal{C} \subset X$ inside a local Calabi-Yau threefold. All of the configurations considered correspond to connected subtrees of the minimal trivalent tree. The infinite minimal trivalent configuration is depicted in Figure 1.3. Fix a non-negative integer N. As indicated, we label the components of \mathcal{C} by

$$
\mathcal{C}=\bigcup_{i=1}^{N} A_{i} \cup B_{i} \cup C_{i}
$$

where $A_{i} \cong B_{i} \cong C_{i} \cong \mathbb{P}^{1}$, reflecting the nature of the configuration.

We denote the genus- g local Gromov-Witten invariants of $\mathcal{C} \subset X$ by $N_{\mathbf{a} ; \mathbf{b} ; \mathbf{c}}^{g}(\mathcal{C})$ where

$$
\begin{aligned}
\mathbf{a} & =a_{1}, \ldots, a_{N} \\
\mathbf{b} & =b_{1}, \ldots, b_{N} \\
\mathbf{c} & =c_{1}, \ldots, c_{N}
\end{aligned}
$$

and a_{i}, b_{i}, c_{i} is the degree of the map to the component A_{i}, B_{i}, C_{i} respectively.
In order for $N_{\mathrm{a} ; \mathbf{b} ; \mathbf{c}}^{g}(\mathcal{C})$ to be well defined, we need to specify the formal neighborhood $\mathcal{C} \subset X$ and the local geometry of the intersection points in \mathcal{C}.

Assumption 1. We assume that the local geometry of $\mathcal{C} \subset X$ is as explicitly constructed in section 2.1. In particular, \mathcal{C} is embedded in X such that the normal bundle of each component of \mathcal{C} is given as follows.

$$
N_{A_{i} / X}=N_{B_{i} / X}=N_{C_{i} / X}= \begin{cases}\mathcal{O}(-1) \oplus \mathcal{O}(-1) & \text { if } i=1 \\ \mathcal{O} \oplus \mathcal{O}(-2) & \text { if } 1<i \leq N\end{cases}
$$

Additionally, for the case of $a_{1}, b_{1}, c_{1}>0$, we assume the formal neighborhood of the triple point has the geometry of the coordinate axes in \mathbb{C}^{3} with respect to the local coordinates defined by the normal bundles. We assume all other intersections are nodal singularities.

We now state the main results.

1.3.1 The closed topological vertex

We now define the closed topological vertex. Let

$$
\mathcal{C}=A_{1} \cup B_{1} \cup C_{1} \subset X
$$

be a locally Calabi-Yau configuration corresponding to a minimal trivalent configuration satisfying Assumption 1. Then we call \mathcal{C} the closed topological vertex.

Theorem 1 (Bryan-Karp). Assume $a_{1}, b_{1}, c_{1}>0$. Then the local invariants of the closed topological vertex are well defined and given as follows.

$$
N_{a_{1} ; b_{1} ; c_{1}}^{g}(\mathcal{C})=0
$$

if $\left\{a_{1}, b_{1}, c_{1}\right\}$ contains two distinct non-zero values, otherwise

$$
N_{a_{1} ; a_{1} ; a_{1}}^{g}(\mathcal{C})=N_{a_{1} ; 0 ; 0}^{g}(\mathcal{C}) .
$$

Note that $N_{a_{1} ; 0 ; 0}^{g}(\mathcal{C})$ is the contribution to the genus g Gromov-Witten invariant from a single \mathbb{P}^{1} smoothly embedded by a degree- a_{1} map to a Calabi-Yau threefold with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$. These were computed by FaberPandharipande [11] to be

$$
N_{a_{1} ; 0 ; 0}^{g}(\mathcal{C})=\frac{\left|B_{2 g}(2 g-1)\right|}{(2 g)!} a_{1}^{2 g-3}
$$

1.3.2 The minimal trivalent configuration

Theorem 2. Let

$$
\mathcal{C}=\bigcup_{i=1}^{N}\left(A_{i} \cup B_{i} \cup C_{i}\right)
$$

be a configuration of rational curves in a local Calabi-Yau threefold X which corresponds to the minimal trivalent tree and satisfies Assumption.1. Let a_{i}, b_{i}, c_{i} denote the degree of the map onto the component A_{i}, B_{i}, C_{i} respectively. Assume

$$
a_{1}=b_{1}=c_{1}=1
$$

The local invariants of \mathcal{C} are well defined and given as follows.

$$
N_{\mathbf{a} ; \mathbf{b} ; \mathbf{c}}^{g}(\mathcal{C})=0
$$

unless $\mathbf{a}, \mathbf{b}, \mathbf{c}$ satisfy

$$
\begin{aligned}
& 1=a_{1} \geq \cdots \geq a_{N} \geq 0 \\
& 1=b_{1} \geq \cdots \geq b_{N} \geq 0 \\
& 1=c_{1} \geq \cdots \geq c_{N} \geq 0
\end{aligned}
$$

In that case, for any $1 \leq n, m, l \leq N$, we have

$$
\begin{aligned}
N_{\mathbf{a} ; \mathbf{b} ; \mathbf{c}}^{g}(\mathcal{C}) & =N_{1, \ldots, 1 ; 1, \ldots, 1 ; 1, \ldots, 1}(\mathcal{C}) \\
& =N_{1, \ldots,}^{1, \ldots,} \underbrace{0, \ldots, 0}_{N-n} \underbrace{1, \ldots,}_{m}, \underbrace{0, \ldots, 0}_{N-m} \underbrace{1, \ldots, 1,}_{l} \underbrace{0, \ldots, 0}_{N-l}(\mathcal{C}) \\
& =N_{1 ; 1 ; 1}^{g}(\mathcal{C}) .
\end{aligned}
$$

Note that $N_{1 ; 1 ; 1}^{g}(\mathcal{C})$ is the genus g, degree $(1,1,1)$ local invariant of the closed topological vertex. This is a special case of Theorem 1.

$$
N_{1 ; 1 ; 1}^{g}(\mathcal{C})=\frac{\left|B_{2 g}(2 g-1)\right|}{(2 g)!}
$$

where $B_{2 g}$ is the $2 g$ th Bernoulli number.

1.3.3 A chain of rational curves

Now consider the case that $\mathcal{C}=A_{1} \cup \cdots \cup A_{N}$ is a chain of rational curves; it is shown in Figure 1.4. Note that a chain is of course a subtree of the minimal trivalent tree.

Figure 1.4: A chain of rational curves

Theorem 3. Let

$$
\mathcal{C}=A_{1} \cup \cdots \cup A_{N}
$$

be a chain of rational curves satisfying Assumption 1. Let a_{i} denote the degree of the map onto the $i^{\text {th }}$ component (here $b_{i}=c_{i}=0$). Assume $a_{1}>0$. Then the local invariants of \mathcal{C} are well defined and given as follows.

$$
N_{\mathrm{a}}^{g}(\mathcal{C})=0
$$

unless

$$
a_{1}=a_{2}=\cdots=a_{j}=a \quad a_{j+1}=a_{j+2}=\cdots=a_{N}=0
$$

for some $a>0$ and $1 \leq j \leq N$. Otherwise

$$
N_{\mathrm{a}}^{g}(\mathcal{C})=N_{a, \ldots, a}^{g}(\mathcal{C})=N_{a, \ldots, a, 0}^{g}(\mathcal{C})=\cdots=N_{a}^{g}(\mathcal{C})
$$

Note that $N_{a}^{g}(\mathcal{C})$ is again the contribution to the genus g Gromov-Witten invariant from a single \mathbb{P}^{1} smoothly embedded by a degree-a map to a Calabi-Yau threefold with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$. Thus

$$
N_{a}^{g}(\mathcal{C})=\frac{\left|B_{2 g}(2 g-1)\right|}{(2 g)!} a^{2 g-3}
$$

1.4 Brief overview

We now give a brief description of the organization of this work and the techniques used to obtain the main results.

In chapter 2 we construct the configurations \mathcal{C} of rational curves that are the study of this work. They are constructed as locally Calabi-Yau configurations in
a blowup space which is deformation equivalent to the blowup of \mathbb{P}^{3} along distinct points.

We next show that the local invariants of the configurations are equal to certain ordinary invariants of the blowup space; this takes place in chapter 3. In order to relate the local invariants to global ones, we first show that inside the blowup space lives a configuration with the correct formal neighborhood. Then, it is left to show that the only contributions to the global invariants in the class of interest come from maps whose image lies in the specified configuration. We do so by using the toric nature of blowup space and using a homological argument.

In chapter 4 we study the properties of the Gromov-Witten invariants of the blowup of \mathbb{P}^{3} along points. This material provides the tools necessary to complete the proofs of the main theorems. In particular, we prove a lemma showing that a large class of invariants of the blowup space vanish. Finally, we make crucial use of the geometry of the Cremona transformation.

The Cremona transformation admits a resolution on a space which is the blowup of \mathbb{P}^{3} along points and lines. The resolved map acts on (co)homology and preserves Gromov-Witten invariants, because it is an isomorphism. This results in a symmetry of the invariants on the resolution space. In order to use this symmetry, we show that for a Calabi-Yau class β, the invariants of the resolved space descend to invariants of a blowup of \mathbb{P}^{3} along only points, and not points and lines. This results in a symmetry of the Gromov-Witten invariants of \mathbb{P}^{3} blown up at points. This study of the Cremona transformation first appeared in [5], was inspired by the beautiful work of Gathmann [15], and is joint work with Jim Bryan.

In chapter 5 we use the previous results to first relate the local invariants of the configuration to certain ordinary invariants of the blowup of \mathbb{P}^{3} at points. Then, we use the tools of chapter 4 to compute the ordinary invariants.

As discussed above, the configurations we study are all finite subtrees of the minimal trivalent tree. And what's more, for the most general subtrees we restrict the degree of the invariants. However, in the appendix we construct Calabi-Yau configurations of curves corresponding to any finite subtree of the maximal trivalent tree. We do not compute the invariants of these general configurations or for general degree minimally trivalent configurations because our method fails in those cases. For counter examples, see remark 10 . Specifically, it is not the case that the only contributions to the global invariants of the blowup space in the correct class come from maps whose image is the desired configuration.

Chapter 2

Configurations of rational
 curves

2.1 A geometric construction

We now construct configurations of rational curves, whose local Gromov-Witten invariants are the study of this work. These configurations correspond to finite sub trees of the minimal trivalent tree. We construct these configurations as subvarieties of a locally Calabi-Yau space X, which is obtained via a sequence of toric blowups of \mathbb{P}^{3} :

$$
X=X^{N+1} \xrightarrow{\pi_{N+1}} X^{N} \xrightarrow{\pi_{N}} \cdots \xrightarrow{\pi_{2}} X^{1} \xrightarrow{\pi_{1}} X^{0}=\mathbb{P}^{3}
$$

In fact, X^{i+1} will be the blowup of X^{i} along three points. Our rational curves will be labeled by A_{i}, B_{i}, C_{i}, where $1 \leq i \leq N$, reflecting the nature of the configuration. Curves and in intermediary spaces will have super-scripts, and their corresponding proper transforms in X will not.

The standard torus $\mathbb{T}=\left(\mathbb{C}^{\times}\right)^{3}$ action on \mathbb{P}^{3} is given by

$$
\left(t_{1}, t_{2}, t_{3}\right) \cdot\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \mapsto\left(x_{0}: t_{1} x_{1}: t_{2} x_{2}: t_{3} x_{3}\right) .
$$

There are four \mathbb{T}-fixed points in $X^{0}:=\mathbb{P}^{3}$; we label them $p_{0}=(1: 0: 0: 0)$, $q_{0}=(0: 1: 0: 0), r_{0}=(0: 0: 1: 0)$ and $s_{0}=(0: 0: 0: 1)$. Let A^{0}, B^{0} and C^{0} denote the (unique, \mathbb{T}-invariant) line in X^{0} through the two points $\left\{p_{0}, s_{0}\right\},\left\{q_{0}, s_{0}\right\}$ and $\left\{r_{0}, s_{0}\right\}$, respectively.

Define

$$
X^{1} \xrightarrow{\pi_{1}} X^{0}
$$

to be the blowup of X^{0} at the three points $\left\{p_{0}, q_{0}, r_{0}\right\}$, and let $A^{1}, B^{1}, C^{1} \subset X^{1}$ be the proper transforms of A^{0}, B^{0} and C^{0}. The exceptional divisor in X^{1} over p_{0} intersects A^{1} in a unique fixed point; call it $p_{1} \in X^{1}$. Similarly, the exceptional

Figure 2.1: The \mathbb{T}-invariant curves in X^{2}
divisor in X^{1} also intersects each of B^{1} and C^{1} in unique fixed points; call them q_{1} and r_{1}.

Now define

$$
X^{2} \xrightarrow{\pi_{2}} X^{1}
$$

to be the blowup of X^{1} at the three points $\left\{p_{1}, q_{1}, r_{1}\right\}$, and let $A_{1}^{2}, B_{1}^{2}, C_{1}^{2} \subset X^{2}$ be the proper transforms of A^{1}, B^{1}, C^{1}. The exceptional divisor over p_{1} contains two \mathbb{T} fixed points disjoint from A_{1}^{2}. Choose one of them, and call it p_{2}; this choice is arbitrary. Similarly, there are two fixed points in the exceptional divisors above q_{1}, r_{1} disjoint from B_{1}^{2}, C_{1}^{2}. Choose one in each pair consistent with the choice of p_{2} and call them q_{2} and r_{2}. This choice is indicated in Figure 2.1. Let A_{2}^{2} denote the (unique, \mathbb{T} invariant) line intersecting A_{1}^{2} and p_{2}. Define B_{2}^{2}, C_{2}^{2} analogously.

Clearly X^{2} is deformation equivalent to a blowup of \mathbb{P}^{3} at six distinct points. The \mathbb{T}-invariant curves in X^{1} are depicted in Figure 2.1, where each edge corresponds to a \mathbb{T}-invariant curve in X^{1}, and each vertex corresponds to a fixed point. For simplicity, at this time we only label those curves in the configuration. The remaining \mathbb{T}-invariant curves will be discussed in Chapter 3.

We now define a sequence of blowups beginning with X^{2}. Fix an integer $N \geq 2$. For each $1<i \leq N$, define

$$
X^{i+1} \xrightarrow{\pi_{i+1}} X^{i}
$$

to be the blowup of X^{i} along the three points p_{i}, q_{i}, r_{i}. Let $A_{j}^{i+1} \subset X^{i+1}$ denote the proper transform of A_{j}^{i} for each $1 \leq j \leq i$. The exceptional divisor in X^{i+1} above p_{i} contains two \mathbb{T} fixed points, choose one of them and call it p_{i+1}. Similarly choose

Figure 2.2: The \mathbb{T}-invariant curves in X^{3}
q_{i+1}, \dot{r}_{i+1}, and define $A_{i+1}^{i+1} \subset X^{i+1}$ to be the line intersecting A_{i}^{i+1} and p_{i+1}, with $B_{i+1}^{i+1}, C_{i+1}^{i+1}$ defined similarly.

The \mathbb{T} invariant curves in X^{2} are shown in Figure 2.2. Terminate this process after obtaining the space X^{N+1}, and define $X=X^{N+1}$.

Finally, define the configuration $\mathcal{C} \subset X$ by

$$
\mathcal{C}=\bigcup_{1 \leq j \leq N} A_{j} \cup B_{j} \cup C_{j}
$$

where

$$
\begin{aligned}
A_{j} & =A_{j}^{N+1} \\
B_{j} & =B_{j}^{N+1} \\
C_{j} & =C_{j}^{N+1}
\end{aligned}
$$

The configuration \mathcal{C} is shown in Figure 2.3, along with all other \mathbb{T}-invariant curves in X.

2.2 Intersection products and normal bundles

We now compute $H_{*}(X, \mathbb{Z})$ and identify the class of the configuration $[\mathcal{C}] \in H_{2}(X, \mathbb{Z})$. All (co)homology will be taken with integer coefficients. We denote divisors by

Figure 2.3: The \mathbb{T}-invariant curves in X
upper case letters, and curve classes with the lower case. In addition, we decorate homology classes in intermediary spaces with a tilde, and their total transforms in X are undecorated.

Let $\tilde{E}_{1}, \tilde{F}_{1}, \tilde{G}_{1} \in H_{4}\left(X^{1}\right)$ denote the exceptional divisors in $X^{1} \rightarrow X^{0}$ over the points p_{0}, q_{0} and r_{0}, and let $E_{1}, F_{1}, G_{1} \in H_{4}(X)$ denote their total transforms. Continuing, for each $1 \leq i \leq N+1$, let $\tilde{E}_{i}, \tilde{F}_{i}, \tilde{G}_{i} \in H_{4}\left(X^{i}\right)$ denote the exceptional divisors over the points $p_{i-1}, q_{i-1}, r_{i-1}$ and let $E_{i}, F_{i}, G_{i} \in H_{4}(X)$ denote their total transforms. Finally, let H denote the total transform of the hyperplane in $X^{0}=\mathbb{P}^{3}$. The collection of all such classes $\left\{H, E_{i}, F_{i}, G_{i}\right\}$, where $1 \leq i \leq N+1$, spans $H_{4}(X)$.

Similarly, for each $1 \leq i \leq N+1$, let $\tilde{e}_{i}, \tilde{f}_{i}, \tilde{g}_{i} \in H_{2}\left(X^{i+1}\right)$ denote the class of a line in $\tilde{E}_{i}, \tilde{F}_{i}, \tilde{G}_{i}$ and let $e_{i}, f_{i}, g_{i} \in H_{2}(X)$ denote their total transforms. In addition, let $h \in H_{2}(X)$ denote the class of a line in H. Then $H_{2}(X)$ has a basis given by $\left\{h, e_{i}, f_{i}, g_{i}\right\}$.

The intersection product ring structure is given as follows. Note that X is deformation equivalent to the blowup of \mathbb{P}^{3} at $3 N$ distinct points. Therefore, these

$$
\begin{array}{cc}
H \cdot H=h & H \cdot h=p t \\
E_{i} \cdot E_{i}=-e_{i} & E_{i} \cdot e_{i}=-p t \\
F_{i} \cdot F_{i}=-f_{i} & F_{i} \cdot f_{i}=-p t \\
G_{i} \cdot g_{i}=-g_{i} & G_{i} \cdot g_{i}=-p t \\
\hline
\end{array}
$$

are all of the nonzero intersection products in $H_{*}(X)$. See section 1.2.4 above for details.

Lemma 4. In the above basis, the classes of the components of \mathcal{C} are given as follows.

$$
\begin{aligned}
& {\left[A_{i}\right]= \begin{cases}h-e_{1}-e_{2} & \text { if } i=1 \\
e_{i}-e_{i+1} & \text { if } 1<i<N+1\end{cases} } \\
& {\left[B_{i}\right]= \begin{cases}h-f_{1}-f_{2} & \text { if } i=1 \\
f_{i}-f_{i+1} & \text { if } 1<i<N+1\end{cases} } \\
& {\left[C_{i}\right]= \begin{cases}h-g_{1}-g_{2} & \text { if } i=1 \\
g_{i}-g_{i+1} & \text { if } 1<i<N+1 .\end{cases} }
\end{aligned}
$$

Proof: Recall that A_{1} is the proper transform of a line in \mathbb{P}^{3} through the two points p_{1}, p_{2} which are centers of a blowup. Since A_{1} is in particular a curve, and we have the above basis, it must be the case that

$$
\left[A_{1}\right]=d_{0} h-\sum_{i=1}^{N} d_{1, i} e_{i}+d_{2, i} f_{i}+d_{3, i} g_{i}
$$

for some integers $d_{i, j}$ with d_{0} non-negative. We study the intersection theory of X in order to determine the coefficients $d_{i, j}$.

By functoriality of blowups, A_{1} is isomorphic to a line blown up at the two points p_{1}, p_{2}, which of course is also a line. Since a line and a plane generically meet in a point, and using the above ring structure, we calculate

$$
\begin{aligned}
p t & =\left[A_{1}\right] \cdot H \\
& =d_{0}(p t)+0
\end{aligned}
$$

Therefore $d_{0}=1$.
Now, to calculate $d_{1,1}, d_{1,2}$, note that the exceptional divisor E_{i} parameterizes directions in \mathbb{P}^{3} of intersection with the point p_{i}. Since A_{1} is the proper transform of a line which intersects (contains) p_{1} and does so at a unique direction, it must be the case that A_{1} and E_{1} intersect at a point. We calculate

$$
\begin{aligned}
p t & =\left[A_{1}\right] \cdot E_{1} \\
& =-d_{1,1}(-p t)+0
\end{aligned}
$$

Thus $d_{1,1}=1$. An identical argument also shows that $d_{1,2}=1$.
To determine $d_{1, j}$ for $j>2$, note that A_{1} is the proper transform of a line which is far from the other centers of the blowups. So we calculate

$$
\begin{aligned}
0 & =\left[A_{1}\right] \cdot E_{j} \\
& =-d_{1, j}(-p t)
\end{aligned}
$$

and thus $d_{1, j}=0$ for $j>2$. Similarly, we see that $d_{2, j}=\dot{d_{3, j}}=0$ for $j>2$. Thus we have $\left[A_{1}\right]=h-e_{1}-e_{2}$.

Now inspect A_{i} for $i>1$. Its homology class is of the form

$$
\left[A_{1}\right]=d_{0}^{\prime} h-\sum_{i=1}^{N} d_{1, i}^{\prime} e_{i}+d_{2, i}^{\prime} f_{i}+d_{3, i}^{\prime} g_{i}
$$

for some integers $d_{i, j}^{\prime}$ where d_{0}^{\prime} is non-negative.
Recall that A_{i} is the proper transform of a line in $\tilde{E}_{i} \subset X^{i}$ containing the point p_{i}, which is subsequently blown up. Since A_{i} is contained in the total transform of an exceptional divisor, it pairs zero with the total transform of the hyperplane class:

$$
0=\left[A_{i}\right] \cdot \dot{H}=d_{0}^{\prime}(p t)
$$

Therefore $d_{0}^{\prime}=0$.

Now note that by the functoriality of blowups, E_{i} is isomorphic to the blowup of \mathbb{P}^{2} at one point, and the class of a line in E_{i} is e_{i} and the class of the exceptional line is e_{i+1}. Since A_{i} meets a generic line in E_{i} in a point, we calculate

$$
\begin{aligned}
p t & =\left[A_{i}\right] \cdot e_{i} \\
& =-d_{1, i}(p t)
\end{aligned}
$$

where the product is taken in E_{i}. Thus $d_{1, i}=-1$.
Furthermore, A_{i} intersects E_{i+1} in a point corresponding to the direction of incident with the point p_{i}, as E_{i+1} is the exceptional divisor above p_{i}, and so we calculate

$$
p t=\left[A_{i}\right] \cdot E_{i+1}=-d_{1, i+1}(-p t)
$$

Therefore $d_{1, i}=1$.
Finally, note that A_{i} is far from the centers of all other blowups, and therefore all other coefficients must vanish. Thus $\left[A_{i}\right]=e_{i}-e_{i+1}$ for each $i>2$.

Note that an identical argument works for B_{i} and C_{i} for each i, and therefore the result holds.

We now show that \mathcal{C} is a locally Calabi-Yau configuration. Let $[f: \Sigma \rightarrow X] \in$ $\bar{M}_{g}(X, \beta)$ be a stable map with image in \mathcal{C}. We show that X is locally Calabi-Yau near $\operatorname{Im}(f)$ counted with multiplicity:

$$
K_{X} \cdot f_{*}[\Sigma]=0
$$

Here,

$$
\begin{aligned}
f_{*}[\Sigma]=\beta & =\left(a_{1}+b_{1}+c_{1}\right) h-a_{1} e_{1}-b_{1} f_{1}-c_{1} g_{1} \\
& -\sum_{i=1}^{N}\left\{\left(a_{i}-a_{i+1}\right) e_{i+1}+\left(b_{i}-b_{i+1}\right) f_{i+1}+\left(c_{i}-c_{i+1}\right) g_{i+1}\right\}
\end{aligned}
$$

where a_{i}, b_{i}, c_{i} is the degree of the map to the component A_{i}, B_{i}, C_{i} and $a_{N+1}=$ $b_{N+1}=c_{N+1}=0$. So, we compute

$$
\begin{aligned}
K_{X} \cdot f_{*}[\Sigma]= & \left(4 H-2 \sum_{i=1}^{N} A_{i}+B_{i}+C_{i}\right) \\
& \left(\left(a_{1}+b_{1}+c_{1}\right) h-a_{1} e_{1}-b_{1} f_{1}-c_{1} g_{1}\right. \\
& \left.-\sum_{i=1}^{N}\left\{\left(a_{i}-a_{i+1}\right) e_{i+1}+\left(b_{i}-b_{i+1}\right) f_{i+1}+\left(c_{i}-c_{i+1}\right) g_{i+1}\right\}\right) \\
= & 12 H \cdot h-2\left(2\left[A_{1}\right] \cdot\left[A_{1}\right]+2\left[B_{1}\right] \cdot\left[B_{1}\right]+2\left[C_{1}\right] \cdot\left[C_{1}\right]\right) \\
= & 0
\end{aligned}
$$

We now describe the normal bundles of the components of \mathcal{C} in X. These are given as follows.

Lemma 5.

$$
N_{A_{i} / X}=N_{B_{i} / X}=N_{C_{i} / X}= \begin{cases}\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1) & \text { if } i=1 \\ \mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-2) & \text { if } i>1\end{cases}
$$

Proof: The equivalence $N_{A_{i} / X} \cong N_{B_{i} / X} \cong N_{C_{i} / X}$ is easily seen by relabeling points. To calculate $N_{A_{1} / X}$, let $D^{0} \subset X^{0}$ be a plane containing the line A^{0}, and let D denote its proper transform in X. Then $A_{1} \subset D$, and $N_{A_{1} / D}$ is a sub bundle of $N_{A_{1} / X}$ of degree $\left[A_{1}\right] \cdot\left[A_{1}\right]$, where the product is taken in D. Note that D is deformation equivalent to the blowup of a plane at two points, and $\left[A_{1}\right]=h-e_{1}-e_{2}$. Thus, the intersection product in D_{1} is given by

$$
\left[A_{1}\right] \cdot\left[A_{1}\right]=\left(h-e_{1}-e_{2}\right) \cdot\left(h-e_{1}-e_{2}\right)=-1 .
$$

The set of planes containing A_{1} span $N_{A_{1} / X}$, and the above argument holds for any such plane, so we conclude $N_{A_{1} / X} \cong \mathcal{O}(-1) \oplus \mathcal{O}(-1)$.

Now consider A_{i}, where $i>1$. Note that $A_{i} \subset E_{i}$. As above, $N_{A_{i} / E_{i}}$ is a sub bundle of $N_{A_{i} / X}$ of degree $\left[A_{i}\right] \cdot\left[A_{i}\right]$, where the product is taken in E_{i}. Recall that, by the functoriality of blowups, E_{i} is the blowup of \mathbb{P}^{2} at a point, and that e_{i} is the class of a line in E_{i}, and e_{i+1} is the exceptional divisor. We compute

$$
\left[A_{i}\right] \cdot\left[A_{i}\right]=\left(e_{i}-e_{i+1}\right) \cdot\left(e_{i}-e_{i+1}\right)=1-1=0 .
$$

We now show that the total degree of the normal bundle is -2 , forcing the result to hold. Inspect the defining exact sequence

$$
0 \rightarrow T_{A_{i}} \rightarrow T_{X} \rightarrow N_{A_{i} / X} \rightarrow 0
$$

This implies

$$
\begin{aligned}
c_{1}\left(N_{A_{i} / X}\right) & =c_{1}\left(T_{X}\right) \cdot\left[A_{i}\right]-c_{1}\left(T_{A_{i}}\right) \\
& =\left(4 H-2 \sum_{j=1}^{N+1} E_{j}+F_{j}+G_{j}\right) \cdot\left(e_{i}-e_{i+1}\right)-2 p t \\
& =0-2(p t-p t)-2 p t \\
& =-2 p t .
\end{aligned}
$$

Thus the total degree of the normal bundle is -2 , and so $N_{A_{i} / X}=\mathcal{O}(a) \oplus \mathcal{O}(b)$, where $a+b=-2$. Since we have already shown that (without loss of generality) $a=0$, we conclude

$$
N_{A_{i} / X} \cong \mathcal{O} \oplus \mathcal{O}(-2)
$$

Chapter 3

From local to global invariants

In this chapter we show that the local Gromov-Witten invariants of the configurations \mathcal{C} of rational curves constructed in Chapter 2 are equal to certain global or ordinary Gromov-Witten invariants of a blowup of \mathbb{P}^{3} along points.

3.1 The closed topological vertex

Let $\mathcal{C}=A \cup B \cup C$ be the closed topological vertex, and let X be the blowup space constructed in section 2.1. Moreover, in this case let $N=1$ so that $X=X^{2}$, and is deformation equivalent to the blowup of \mathbb{P}^{3} along $2 \cdot 3=6$ points. Then the local invariants of the closed topological vertex are equal to certain ordinary invariants of X.

Proposition 6 (Bryan-Karp). Let $\mathcal{C}=A \cup B \cup C$ be the closed topological vertex, and let $X=X^{1}$ be the $N=0$ blowup space constructed in section 2.1. Let

$$
\beta=a\left(h-e_{1}-e_{2}\right)+b\left(h-f_{1}-f_{2}\right)+c\left(h-g_{1}-g_{2}\right)
$$

and assume $a, b, c>0$. Then the local invariants of \mathcal{C} are equal to the ordinary invariants of X in the class β.

$$
N_{a ; ; ; c}^{g}=\langle \rangle_{g, \beta}^{X}
$$

Proof: $\mathcal{C} \subset X$ has the correct local geometry by assumption. So in order to prove the proposition, it suffices to show that the only contributions to $\left\rangle_{g, \beta}^{X}\right.$ are given by maps with image in \mathcal{C}.

Lemma 7. Let X, \mathcal{C} and β be as above. Assume $a, b, c>0$. Then

$$
\operatorname{Im}(f)=\mathcal{C}
$$

for every stable map $[f] \in \bar{M}_{g}(X, \beta)$.

Figure 3.1: The \mathbb{T}-invariant curves in X
Proof: We explicitly use the toric nature of the construction. Note that the torus action on $\dot{X}^{0}=\mathbb{P}^{3}$ lifts to X since the center of each subsequent blowup is \mathbb{T} fixed. Thus there is a \mathbb{T} action on $\bar{M}_{g}(X, \beta)$, simply by composition.

Assume that there exists a stable map

$$
[f: \Sigma \rightarrow X] \in \bar{M}_{g}(X, \beta)
$$

such that $\operatorname{Im}(f) \not \subset \mathcal{C}$. Then there exists a point $x \in \operatorname{Im}(f)$ such that $x \notin \mathcal{C}$. Recall that a one parameter family ψ of \mathbb{T} is defined to be an element $\psi \in \operatorname{Hom}\left(\mathbb{C}^{\times}, \mathbb{T}\right) \cong$ \mathbb{Z}^{3}, where the isomorphism is given by

$$
\begin{aligned}
\left(n_{1}, n_{2}, n_{3}\right) \mapsto \psi_{n_{1}, n_{2}, n_{3}}: \mathbb{C}^{\times} & \rightarrow \mathbb{T} \\
t & \mapsto\left(t^{n_{1}}, t^{n_{2}}, t^{n_{3}}\right)
\end{aligned}
$$

Moreover, recall that \mathbb{T}-invariant subvarieties of X are given precisely by orbitclosures of limit points of one parameter subgroups of T.

$$
\{\mathbb{T} \text {-invariant subvarieties }\} \longleftrightarrow\left\{\overline{\mathbb{T} \cdot \lim _{t \rightarrow 0} \psi(t)}\right\}
$$

So, in particular, the limit of the point x under the action of ψ is a fixed point. Moreover, since $x \notin \mathcal{C}$ and every fixed point is the limit of some one parameter subgroup, there exists ψ such that

$$
\lim _{t \rightarrow 0} \psi(t) \cdot x=q,
$$

$$
\frac{h-f_{1}-g_{1}}{g_{1}-g_{2} \quad f_{1}-f_{2}}
$$

Figure 3.2: The remaining possible curves in $\operatorname{Im}\left(f^{\prime \prime}\right)$
where q is \mathbb{T} fixed and $q \notin \mathcal{C}$. So, the limit of ψ acting on $[f]$ is a stable map f^{\prime} such that $q \in \operatorname{Im}\left(f^{\prime}\right)$. It follows that q is in image of all stable maps in the orbit closure of $\left[f^{\prime}\right]$. Thus, there must exist a stable map $\left[f^{\prime \prime}: \Sigma \rightarrow X\right] \in \bar{M}_{g}(X, \beta)$ such that $\operatorname{Im}\left(f^{\prime \prime}\right)$ is \mathbb{T} invariant and $\operatorname{Im}\left(f^{\prime \prime}\right) \not \subset \mathcal{C}$.

We show that this leads to a contradiction. Let I denote the union of the \mathbb{T} invariant curves in X; it is shown in Figure 3.1.

Inspect the class $f_{*}^{\prime \prime}[\Sigma]$. Note that the total multiplicity of the e 's is $a+b+c$. Also note that every component of I whose class contains h also contains two $-e$ terms. Therefore the total multiplicity of the terms not containing h must be zero. The same is true for the f and g terms. The curves in I whose class does not contain h either contribute nothing to the multiplicity of the e, f, g 's, or they contribute a strictly positive amount. Therefore, the curves whose classes contribute positively to the total multiplicity of the e, f, g 's must not be contained in the image of $f^{\prime \prime}$. Therefore, the curves in class e_{i}, f_{i}, g_{i} are not in $\operatorname{Im}\left(f^{\prime \prime}\right)$. The remaining possible curves in the image of $f^{\prime \prime}$ are shown in Figure 3.2.

Recall that $\operatorname{Im}\left(f^{\prime \prime}\right) \not \subset \mathcal{C}$ by assumption. Therefore the image of $f^{\prime \prime}$ is contained in the outer components in Figure 3.2. But the image of $f^{\prime \prime}$ is connected and must and $\left[\operatorname{Im}\left(f^{\prime \prime}\right)\right]$ contains strictly positive multiples of each of e_{1}, f_{1}, g_{1}, since $a, b, c>0$. Therefore the image of $f^{\prime \prime}$ is a union of the outer components components. Therefore the image of $f^{\prime \prime}$ is not connected. This contradiction shows that our original assumption is incorrect. Therefore the result holds.

3.2 The minimal trivalent configuration

We now consider the case when \mathcal{C} is a minimal trivalent configuration.
Proposition 8. Let

$$
\mathcal{C}=\bigcup_{i=1}^{N}\left(A_{i} \cup B_{i} \cup C_{i}\right)
$$

be a minimal trivalent configuration of rational curves satisfying Assumptions 1. Let a_{i}, b_{i}, c_{i} denote the degree of the map onto the component A_{i}, B_{i}, C_{i} respectively, and let $\mathbf{a}=\left(a_{1}, \ldots, a_{N}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{N}\right), \mathbf{c}=\left(c_{1}, \ldots, c_{N}\right)$. Also, let X continue to denote the blowup space constructed in Chapter 2. Assume

$$
a_{1}=b_{1}=c_{1}=1
$$

Then the local invariants of \mathcal{C} are equal to the global Gromov-Witten invariants of X in the class β,

$$
N_{\mathbf{a}, \mathbf{b}, \mathbf{c}}^{g}(\mathcal{C})=\langle \rangle_{g, \beta}^{X},
$$

where

$$
\begin{aligned}
\beta & =\left(a_{1}+b_{1}+c_{1}\right) h-a_{1} e_{1}-b_{1} f_{1}-c_{1} g_{1} \\
& -\sum_{i=1}^{N}\left\{\left(a_{i}-a_{i+1}\right) e_{i+1}+\left(b_{i}-b_{i+1}\right) f_{i+1}+\left(c_{i}-c_{i+1}\right) g_{i+1}\right\} .
\end{aligned}
$$

and $a_{N+1}=b_{N+1}=c_{N+1}=0$.
Proof: By assumption, the formal neighborhood of \mathcal{C} agrees with the construction in X. Thus, in order to prove the Proposition it suffices to show that the only contributions to $\left\rangle_{g, \beta}^{X}\right.$ are from maps to \mathcal{C}.

Lemma 9. Let X, \mathcal{C} and β be as above, where we assume that

$$
a_{1}=b_{1}=c_{1}=1
$$

Then every stable map $[f] \in \bar{M}_{g}(X, \beta)$ has image \mathcal{C}.
Proof: Assume that there exists a stable map $[f: \Sigma \rightarrow X] \in \bar{M}_{g}(X, \beta)$ such that $\operatorname{Im}\left(f^{\prime \prime}\right) \not \subset \mathcal{C}$. Then by the proof of Lemma 7 , there exists a stable map $\left[f^{\prime \prime}\right] \in$ $\bar{M}_{g}(X, \beta)$ such that $\operatorname{Im}\left(f^{\prime \prime}\right)$ is \mathbb{T} invariant but $\operatorname{Im}\left(f^{\prime \prime}\right) \not \subset \mathcal{C}$.

We show that this is a contradiction. Let $F \subset X$ denote the union of the \mathbb{T}-invariant curves in X; it's shown in Figure 2.3. We study the possible components of F contained in the image of $f^{\prime \prime}$.

Figure 3.3: The possible curves in $\operatorname{Im}\left(f^{\prime \prime}\right)$

Suppose that $A_{1} \cup B_{1} \cup C_{1} \subset \operatorname{Im}\left(f^{\prime \prime}\right)$. Then $f_{*}^{\prime \prime}[\Sigma]$ contains (at least) $3 h$. Note that $[F]$ has no $-h$ terms. Therefore $\operatorname{Im}\left(f^{\prime \prime}\right)$ does not contain any of the curves $h-e_{1}-f_{1}, h-e_{1}-g_{1}, h-f_{1}-g_{1}$. And furthermore each of A_{1}, B_{1} and C_{1} must have multiplicity one.

There are no remaining terms that contain $-e_{1},-f_{1}$ or $-g_{1}$. Also, since the image of $f^{\prime \prime}$ contains precisely one of A_{1}, B_{1}, C_{1}, we conclude that the multiplicity of terms contain positive e_{1}, f_{1}, g_{1} must be zero. Thus, $\operatorname{Im}\left(f^{\prime \prime}\right)$ is contained in the configuration shown in Figure 3.3.

Now, note that in β the sum of the multiplicities of the e_{i} 's is -2 . This is true of the curve A_{1} as well. Therefore the total multiplicity of all other e terms must vanish. But all other e terms are of the form $e_{i}-e_{i+1}$ or e_{j}. Since, the former

$\overline{e_{2}-e_{3}} \quad e_{3}-e_{4} \quad e_{5}-e_{6} \cdots \cdots \cdots \cdots \overline{e_{N}-e_{N+1}}$

Figure 3.4: The remaining possible curves in $\operatorname{Im}\left(f^{\prime \prime}\right)$
contribute nothing to the total multiplicity, we conclude that there are no e_{j} terms in the image of $f^{\prime \prime}$. Therefore $\operatorname{Im}\left(f^{\prime \prime}\right)$ must be contained in the configuration shown in Figure 3.4.

But $\operatorname{Im}\left(f^{\prime \prime}\right)$ is connected, and contains h terms. Therefore it can not contain nor be contained in any of the three outer parts of Figure 3.4. Therefore $\operatorname{Im}\left(f^{\prime \prime}\right) \subset \mathcal{C}$ and thus $\operatorname{Im}\left(f^{\prime \prime}\right)=\mathcal{C}$. This contradicts our assumption, and therefore at least one of A_{1}, B_{1}, C_{1} is not in $\operatorname{Im}\left(f^{\prime \prime}\right)$.

Without loss of generality, suppose $A_{1} \not \subset \operatorname{Im}\left(f^{\prime \prime}\right)$. Let $d_{e, f}, d_{e, g}, d_{f, g}$ denote the degree of $f^{\prime \prime}$ on the components $h-e_{1}-f_{1}, h-e_{1}-g_{1}, h-f_{1}-g_{1}$ respectively.

Since A_{1} is not contained in the image of $f^{\prime \prime}$, we must have

$$
d_{e, f}+d_{e, g}>0
$$

Furthermore, in order for $\operatorname{Im}\left(f^{\prime \prime}\right)$ to simultaneously be connected and contain $-e_{i}$ terms for $i>1$, it must be the case that $\operatorname{Im}\left(f^{\prime \prime}\right)$ contains two of

$$
\left\{e_{1}, e_{1}-e_{2}, e_{1}-\cdots-e_{N+1}\right\}
$$

Thus

$$
\begin{aligned}
d_{e, f}+d_{e, g} & =3 \\
d_{f, g} & =0
\end{aligned}
$$

and $B_{1}, C_{1} \not \subset \operatorname{Im}\left(f^{\prime \prime}\right)$. This forces $\operatorname{Im}\left(f^{\prime \prime}\right)$ to be contained in the configuration shown in Figure 3.5.

Again we have that $\operatorname{Im}\left(f^{\prime \prime}\right)$ is connected and contains $-f_{i},-g_{j}$ for some $i, j>1$. Therefore $\operatorname{Im}\left(f^{\prime \prime}\right)$ contains at least one of $f_{1}-f_{2}, f_{1}-\cdots-f_{N+1}$ and also at least one of $g_{1}-g_{2}, g_{1}-\cdots-g_{N+1}$. But the multiplicity of f_{1} and g_{1} in β is -1 . Therefore

$$
d_{e, f}, d_{e, g} \geq 2
$$

This contradictions shows that our assumption $A_{1} \not \subset \operatorname{Im}\left(f^{\prime \prime}\right)$ is incorrect. Therefore $A_{1} \subset \operatorname{Im}\left(f^{\prime \prime}\right)$. An identical argument also shows that $B_{1}, C_{1} \subset \operatorname{Im}\left(f^{\prime \prime}\right)$. However we showed above that $A_{1}, B_{1}, C_{1} \not \subset \operatorname{Im}\left(f^{\prime \prime}\right)$.

This contradiction shows that our original assumption is incorrect. Therefore there does not exist a point $x \in \operatorname{Im}\left(f^{\prime \prime}\right)$ such that $x \notin \mathcal{C}$, and $\operatorname{Im}\left(f^{\prime \prime}\right) \subset \mathcal{C}$. Therefore $\operatorname{Im}\left(f^{\prime \prime}\right)=\mathcal{C}$, and the result holds.

Remark 10. Note that this argument does not hold for general a_{1}, b_{1}, c_{1}. For instance, it is a fun exercise to show that there is more than one \mathbb{T} invariant configuration of curves in X in the following classes.

$$
\begin{aligned}
\beta_{1}= & 2\left(h-e_{1}-e_{2}\right)+\left(e_{2}-e_{3}\right) \\
& +2\left(h-f_{1}-f_{2}\right)+\left(f_{2}-f_{3}\right) \\
& +2\left(h-g_{1}-g_{2}\right)+\left(g_{2}-g_{3}\right) \\
\beta_{2}= & 4\left(h-e_{1}-e_{2}\right)+\left(e_{2}-e_{3}\right)+2\left(h-f_{1}-f_{2}\right)+2\left(h-g_{1}-g_{2}\right)+\left(g_{2}-g_{3}\right) \\
\beta_{3}= & 4\left(h-e_{1}-e_{2}\right)+4\left(e_{2}-e_{3}\right) \\
& +4\left(h-f_{1}-f_{2}\right)+4\left(f_{2}-f_{3}\right) \\
& +4\left(h-g_{1}-g_{2}\right)+4\left(g_{2}-g_{3}\right) .
\end{aligned}
$$

Figure 3.5: The other possibility for curves in $\operatorname{Im}\left(f^{\prime \prime}\right)$

3.3 A chain of rational curves

Next consider the case when \mathcal{C} is a chain of rational curves. More precisely, let

$$
\mathcal{C}=A_{1} \cup \cdots \cup A_{N+1} \subset X
$$

Since \mathcal{C} does not contain any of the curves B_{i}, C_{i}, the blowups with centers p_{i} and q_{i} in the construction of X are extraneous. In order to simplify the argument in this case, consider the space

$$
Y=Y^{N+1} \xrightarrow{\pi_{N+1}} Y^{N} \xrightarrow{\pi_{N}} \cdots \xrightarrow{\pi_{1}} \mathbb{P}^{3}
$$

where the construction of Y follows that of X, without the extraneous blowups. So $Y^{i+1} \rightarrow Y^{i}$ is the blowup of Y^{i} along the point p_{i}, where p_{i} is defined in Section 2.1. Thus, Y is deformation equivalent to the blowup of \mathbb{P}^{3} at $N+1$ points. Since \mathcal{C} does not contain the curves B_{i}, C_{i}, clearly the formal neighborhood of \mathcal{C} in Y agrees with the construction in X.

We continue to let E_{i} be the total transform of the exceptional divisor over p_{i}, and e_{i} be the class of a line in E_{i}. Furthermore, we continue to let H denote the pullback of the class of a hyperplane in \mathbb{P}^{3}, and h be the class of a line in H. Then, $\left\{H, E_{i}\right\}$ is a basis for $H_{4}(Y)$ and $\left\{h, e_{i}\right\}$ is a basis for $H_{2}(Y)$. The non-zero intersection pairings are given as follows.

$$
\begin{array}{|cc|}
\hline H \cdot H=h & H \cdot h=p t \\
E_{i} \cdot E_{i}=-e_{i} & E_{i} \cdot e_{i}=-p t \\
\hline
\end{array}
$$

The \mathbb{T}-invariant curves in Y are shown together with their homology classes in Figure 3.6

Proposition 11. Let the blowup space Y and the chain of rational curves $\mathcal{C}=$ $A_{1} \cup \cdots \cup A_{N}$ be as constructed above. Let $\mathbf{a}=a_{1}, \ldots, a_{N}$ where a_{i} is the degree of the map to A_{i}. Assume $a_{1}>0$. Then the local invariants of \mathcal{C} are equal to the global invariants of Y in the class β,

$$
N_{\mathbf{a}}^{g}(\mathcal{C})=\langle \rangle_{g, \beta}^{Y},
$$

where

$$
\beta=a_{1} h-a_{1} e_{1}-\sum_{i=2}^{N+1}\left(a_{i-1}-a_{i}\right) e_{i}
$$

and $a_{N+1}=0$.

Figure 3.6: The \mathbb{T}-invariant curves in Y
Proof: $\mathcal{C} \subset Y$ has the desired geometry by construction, in order to prove the proposition it suffices to show that the only contributions to the Gromov-Witten invariants of Y in class β are from maps to \mathcal{C}.

Lemma 12. Let $Y, \mathcal{C}=A \cup \cdots \cup A_{N}$ and β be as above. Then

$$
\operatorname{Im}(f)=\mathcal{C}
$$

for any stable map $[f] \in \bar{M}_{g}(Y, \beta)$.
As shown in Proposition 8, we may use the toric nature of Y to construct a stable map $\left[f^{\prime \prime}: \Sigma \rightarrow Y\right] \in \bar{M}_{g}(Y, \beta)$ such that $\operatorname{Im}\left(f^{\prime \prime}\right)$ is \mathbb{T} invariant, but $\operatorname{Im}\left(f^{\prime \prime}\right) \not \subset$ \mathcal{C}. We show that this leads to a contradiction.

We study the class $f_{*}^{\prime \prime}[\Sigma]=\beta$. Note that the multiplicity of the $-e_{1}$ term is the same as that of h : Furthermore, each $-e_{1}$ occurs along with h, and there are no $-h$ terms. Therefore $\operatorname{Im}\left(f^{\prime \prime}\right)$ can not contain any terms containing positive e_{1}, nor can it contain any of the curves in class h. Thus, the image of $f^{\prime \prime}$ is contained in the configuration of curves shown in Figure 3.7.

Since $a_{1}>0$, it must be that $f_{*}^{\prime \prime}[\Sigma]$ contains at least one e_{i} term with nonzero multiplicity for $i>1$. Also, $\operatorname{Im}\left(f^{\prime \prime}\right)$ is connected and so we conclude that the image of f must not contain either of the curves of class $h-e_{1}$ in Figure 3.7.

Figure 3.7: The possible curves in $\operatorname{Im}\left(f^{\prime \prime}\right)$

Now, note that the total multiplicity of the e terms is $-2 a_{1}$, and that the curve A_{1} must also have this property. Therefore the sum of all other e terms must be zero. Since the other e terms are of the form $e_{i}-e_{i+1}$ or e_{j}, we conclude that $\operatorname{Im}\left(f^{\prime \prime}\right)$ does not contain any of the curves e_{j}. Thus $\operatorname{Im}\left(f^{\prime \prime}\right)$ is contained in the configuration depicted in Figure 3.8.

Figure 3.8: The remaining possible curves in $\operatorname{Im}\left(f^{\prime \prime}\right)$

However, since Y is connected and contains h, we conclude that $\operatorname{Im}\left(f^{\prime \prime}\right) \subset \mathcal{C}$, and therefore $\operatorname{Im}\left(f^{\prime \prime}\right)=\mathcal{C}$. This contradiction shows that our original assumption is incorrect, and the result holds.

Chapter 4

Properties of the invariants of the blowup of \mathbb{P}^{3} at points

In this chapter we prove results needed for the proofs of the main theorems.

4.1 A vanishing Lemma

We use the notation of subsection 1.2.4.
Lemma 13. Let X be the blowup of \mathbb{P}^{3} at n distinct generic points $\left\{x_{1}, \ldots, x_{n}\right\}$, and $\beta=d h-\sum_{i=1}^{n} a_{i} e_{i}$ with $2 d=\sum_{i=1}^{n} a_{i}$, and assume that $d>0$ and $a_{i}<0$ for some i. Then

$$
\bar{M}_{g}(X, \beta)=\emptyset .
$$

Corollary 14. For any n points $\left\{x_{1}, \ldots, x_{n}\right\}$ and X and β as above the corresponding invariant vanishes;

$$
\left\rangle_{g, \beta}^{X}=0 .\right.
$$

This follows immediately from the deformation invariance of Gromov-Witten invariants and Lemma 13.

Lemma 15. Let \widetilde{X} be the blowup of \mathbb{P}^{3} at \widetilde{n} distinct generic points $\left\{\tilde{x}_{1}, \ldots, \tilde{x}_{\tilde{n}}\right\}$ and let $\widetilde{\beta}=\sum_{i=1}^{\tilde{n}} d h-\widetilde{a}_{i} e_{i}$, with $2 d<\sum_{i=1}^{\tilde{n}} \widetilde{a}_{i}$, and assume that $\widetilde{a}_{i}>0$ for all i. Then

$$
\bar{M}_{g}(\widetilde{X}, \widetilde{\beta})=\emptyset .
$$

Proposition 16. For each $d>0$, Lemma 13 is equivalent to Lemma 15.
To prove Lemma 13 or Lemma 15, it suffices to prove the Lemmas for some particular choice of $\left\{x_{1}, \ldots, x_{n}\right\}$ or $\left\{\tilde{x}_{1}, \ldots, \tilde{x}_{\tilde{n}}\right\}$, since if $\bar{M}_{g}(X, \beta)$ (or $\bar{M}_{g}(\widetilde{X}, \widetilde{\beta})$) is empty for a specific choice of points, then it is empty for the generic choice.

Proof: We prove that Lemma 13 is false if and only if Lemma 15 is false. First, without loss of generality, we may reorder the centers of the blowup so that $a_{1} \leq$ $\cdots \leq a_{m}<0 \leq a_{m+1} \leq \cdots \leq a_{n}$ for some $1 \leq m<n$.

Choose $\left\{x_{1}, \ldots, x_{n}\right\}$ so that $\left\{x_{1}, \ldots, x_{m}\right\}$ are coplanar, as are $\left\{x_{m+1}, \ldots, x_{n}\right\}$. Let D^{\prime} and $D^{\prime \prime}$ be the classes of the proper transforms of those planes, respectively, so that

$$
\begin{aligned}
D^{\prime} & =H-E_{1}-\cdots-E_{m} \\
D^{\prime \prime} & =H-E_{m+1}-\cdots-E_{n} .
\end{aligned}
$$

Assume that Lemma 13 is false. Then there exists $[f] \in \bar{M}_{g}(X, \beta)$. We show that Lemma 15 fails by studying the image of $f . \operatorname{Im}(f)$ decomposes into several components. Note that $\beta \cdot E_{1}=a_{1}<0$. Thus $\operatorname{Im}(f)$ has a component(s) contained in E_{1}. Denote the union of these components by C_{1}. $\operatorname{If} \operatorname{Im}(f)$ has any components contained in E_{j} we denote them by C_{j} as well. As e_{j} is the class of a line in $E_{j} \cong \mathbb{P}^{2}$, it must be that

$$
\left[C_{j}\right]=b_{j} e_{j}
$$

for some $b_{j}>0$. Let $J \subset\{1, \ldots, n\}$ be the indexing set of these components,

$$
J=\left\{1 \leq j \leq n \mid \text { There exists a component of } \operatorname{Im}(f) \subset E_{j}\right\},
$$

and let C_{E} be the union,

$$
\left[C_{E}\right]=\sum_{j \in J} C_{j} .
$$

$\operatorname{Im}(f)$ decomposes further. As $2 d=\sum_{i=1}^{n} a_{i}$, we have $\beta \cdot\left(D^{\prime}+D^{\prime \prime}\right)=$ $2 d-\sum_{i=1}^{n} a_{i}=0$ and, because $a_{1} \leq \cdots \leq a_{m}<0 \leq a_{m+1} \leq \cdots \leq a_{n}$,

$$
\beta \cdot D^{\prime \prime}=\left(d-\sum_{i=m+1}^{n} a_{i}\right)<\left(d-\sum_{i=1}^{m} a_{i}\right)=\beta \cdot D^{\prime}
$$

so

$$
d-\sum_{i=m+1}^{n} a_{i}<0
$$

Thus

$$
\left(\beta-\left[C_{E}\right]\right) \cdot D^{\prime \prime}=d-\sum_{i=1}^{n} a_{i}-\sum_{\substack{j>m \\ j \in J}} b_{j}<0 .
$$

Therefore there exists a nonempty closed subscheme of $\operatorname{Im}(f) \cap D^{\prime \prime}$ which does not have components in the exceptional divisors. Denote it by $C^{\prime \prime}$:

Let $[\operatorname{Im}(f)]$ denote the class of $\operatorname{Im}(f)$. Then in summary, we have

$$
[\operatorname{Im}(f)]=\left[C_{E}\right]+\left[C^{\prime}\right]+\left[C^{\prime \prime}\right],
$$

where

$$
\begin{aligned}
& {\left[C_{E}\right]=\sum_{j \in J} b_{j} e_{j}} \\
& {\left[C^{\prime \prime}\right]=d^{\prime \prime} h-\sum_{i=m+1}^{n} a_{i}^{\prime \prime} e_{i}} \\
& {\left[C^{\prime}\right]=\left(d-d^{\prime \prime}\right) h-\sum_{i=1}^{n} a_{i} e_{i}+\sum_{i=m+1}^{n} a_{i}^{\prime \prime} e_{i}-\sum_{j \in J} b_{j} e_{j} .}
\end{aligned}
$$

Here $b_{j}>0$ as noted above. Also $d^{\prime \prime}>0$, as $C^{\prime \prime}$ is not contained in the exceptional divisors E_{j}, and $d-d^{\prime \prime}>0$, since $\operatorname{Im}(f)$ is connected. For later use, we point out that $b_{1}>0$ and as a result

$$
\sum_{j \in J} b_{j}>0
$$

We now show this implies Lemma 15 could not be true. Consider the curve C which consists of the components of $\operatorname{Im}(f)$ which are not contained in the exceptional divisors E_{j}. It is of class

$$
\widetilde{\beta}:=[\operatorname{Im}(f)]-\left[C_{E}\right]=\left[C^{\prime}\right]+\left[C^{\prime \prime}\right]=d h-\sum_{i=1}^{n} a_{i} e_{i}-\sum_{j \in J} b_{j} e_{j} .
$$

Note that

$$
2 d=\sum_{i=1}^{n} a_{i}<\sum_{i=1}^{n} a_{i}+\sum_{j \in J} b_{j} .
$$

Also $\widetilde{\beta} \cdot E_{i} \geqq 0$ as C has no component in the exceptional divisors E_{j}. Thus the pair $(X, \widetilde{\beta})$ are as in Lemma 15. Clearly there is a stable map \widetilde{g} such that $[\operatorname{Im}(\widetilde{g})]=\left[C^{\prime}\right]+\left[C^{\prime \prime}\right]$ and consequently

$$
[\widetilde{g}] \in \bar{M}_{g}(X, \widetilde{\beta}),
$$

which contradicts Lemma 15.
Conversely, assume that Lemma 15 is false, so that there exists $[\widetilde{f}] \in \bar{M}_{g}(\widetilde{X}, \widetilde{\beta})$. Let X be the blowup of \widetilde{X} at $\tilde{x}_{*} \in \operatorname{Im}(\widetilde{f})$ where \tilde{x}_{*} is not contained in the exceptional divisor. Such a point exists as $\widetilde{\beta} \cdot E_{i}>0$ and $\operatorname{Im}(\widetilde{f})$ is connected. Let $\widetilde{a}_{*}=-\sum_{i=1}^{\tilde{n}} \widetilde{a}_{i}$. There is a curve $C_{*} \subset E_{*}$ in the exceptional divisor over \tilde{x}_{*} of class $\left[C_{*}\right]=-\widetilde{a}_{*} e_{*}$ such that $C_{*} \cap \operatorname{Im}(f) \neq \emptyset$, where e_{*} is the class of a line in E_{*}. Then

Define $\beta:=\left[C_{*} \cup \operatorname{Im}(f)\right]=d h-\widetilde{a}_{*} e_{*}-\widetilde{a}_{1} e_{1}-\cdots-\widetilde{a}_{\tilde{n}} e_{\tilde{n}}$. Evidently the pair (X, β) are as in Lemma 13, and as before it is clear that there exists a stable map f with $\operatorname{Im}(f)=C_{*}$ and

$$
[f] \in \bar{M}_{g}(X, \beta)
$$

which contradicts Lemma 15.

Proof (of Lemma 13): Suppose there exists $[f] \in \bar{M}_{g}(X, \beta)$. Then with the above choice of $\left\{x_{1}, \ldots, x_{n}\right\}$ we have the above decomposition of $\operatorname{Im}(f)$. We use induction on d. Suppose $d=1$, then we have $1-d^{\prime \prime}>0$ and $d^{\prime \prime}>0$, which is a contradiction.

We now proceed inductively. Consider the curves C^{\prime} and $C^{\prime \prime}$ defined above. Suppose $2 d^{\prime \prime} \geq \sum_{i=m+1}^{n} a_{i}^{\prime \prime}$ and $2\left(d-d^{\prime \prime}\right) \geq \sum_{i=1}^{n} a_{i}-\sum_{i=m+1}^{n} a_{i}^{\prime \prime}+\sum_{j \in J} b_{j}$. Then

$$
\sum_{i=m+1}^{n} a_{i}^{\prime \prime} \leq 2 d^{\prime \prime} \leq \sum_{i=m+1}^{n} a_{i}^{\prime \prime}-\sum_{j \in J} b_{j}
$$

This is impossible. Therefore either $2 d^{\prime \prime}<\sum_{i=m+1}^{n} a_{i}^{\prime \prime}$ or $2\left(d-d^{\prime \prime}\right)<\sum_{i=1}^{n} a_{i}-$ $\sum_{i-m+1}^{n} a_{i}^{\prime \prime}+\sum_{j \in J} b_{j}$. Therefore by Lemma 15 and the inductive hypothesis there is no decomposition of $[\operatorname{Im}(f)]$ involving either C^{\prime} or $C^{\prime \prime}$, and therefore there is no $[f] \in \bar{M}_{g}(X, \beta)$.

Corollary 17. Let X be the blowup of \mathbb{P}^{3} along points and define $\beta=d h-\sum_{i=1}^{n} a_{i} e_{i}$ where $2 d=\sum_{i=1}^{n} a_{i}$ and $d>0$. Also define

$$
X^{\prime} \xrightarrow{\pi} X
$$

to be the blowup of X at a generic point p, so that X^{\prime} is deformation deformation equivalent to the blowup of \mathbb{P}^{3} at $n+1$ distinct points. Let $\left\{h^{\prime}, e_{1}^{\prime}, \ldots, e_{n+1}^{\prime}\right\}$ be a basis of $H_{2}\left(X^{\prime}\right)$, and let $\beta^{\prime}=d h^{\prime}-\sum_{i=1}^{n} a_{i} e_{i}^{\prime}$. Then

$$
\left\langle d ; a_{1}, \ldots a_{n}, 0\right\rangle_{g}^{X^{\prime}}=\left\langle d ; a_{1}, \ldots, a_{n}\right\rangle_{g}^{X}
$$

Proof: This follows from Lemma 15 (or equivalently Lemma 13). The method of proof used here was used in [5] to prove what is included as Lemma 20 here. This result also follows from the more general results of Hu in [19], but the proof is easy in this case, so we include it in order for our results to be more self contained.

We will show that any $\left[f^{\prime}\right] \in \bar{M}_{g}\left(X^{\prime}, \beta^{\prime}\right)$ has an image disjoint from E_{n+1}^{\prime}, the exceptional divisor over p. Note that any $[f] \in \bar{M}_{g}(X, \beta)$ has an image disjoint from p. It follows that the natural map $\bar{M}_{g}\left(X^{\prime}, \beta^{\prime}\right) \rightarrow \bar{M}_{g}(X, \beta)$ induced by π is an isomorphism of the moduli space and their virtual classes. Indeed, it will follow that both $\bar{M}_{g}\left(X^{\prime}, \beta^{\prime}\right)$ and $\bar{M}_{g}(X, \beta)$ are canonically identified with $\bar{M}_{g}\left(X^{\prime} \backslash E_{n+1}^{\prime}, \beta^{\prime}\right)$.

Let $\left[f^{\prime}: \Sigma \rightarrow X^{\prime}\right] \in \bar{M}_{g}\left(X^{\prime}, \beta^{\prime}\right)$. Suppose $\operatorname{Im}\left(f^{\prime}\right) \cap E_{i+1}^{\prime} \neq \emptyset$. Note that $f_{*}^{\prime}[\Sigma] \cdot E_{i+1}^{\prime}=0$. Therefore $\operatorname{Im}\left(f^{\prime}\right)$ has a component C^{\prime} contained in E_{i+1}^{\prime}. Since $d>0, \operatorname{Im}\left(f^{\prime}\right)$ also has a (union of) component(s) C not contained in E_{i+1}^{\prime}. The classes of these components are given by

$$
[C]=d h-\sum_{i=1}^{n} a_{i} e_{i}^{\prime}-m e_{i+1}^{\prime} \quad\left[C^{\prime}\right]=m e_{i+1}^{\prime}
$$

where $m>0$. Note that $2 d=\sum_{i=1}^{n} a_{i}$. Therefore

$$
2 d<\sum_{i=1}^{n} a_{i}+m
$$

Therefore the component C does not exist by Lemma 15. This contradiction shows that our assumption was incorrect. Therefore $\operatorname{Im}\left(f^{\prime}\right) \cap E_{i+1}^{\prime}=\emptyset$, and the corollary is proved.

4.2 The geometry of the Cremona transformation

This section consists essentially of section 5 from Bryan-Karp [5]. In particular, every result in this section is joint with Jim Bryan. It is included so that this document may be self contained.

Theorem 18. Let $\beta=d h-\sum_{i=1}^{n} a_{i} e_{i}$ with $2 d=\sum_{i=1}^{n} a_{i}$ and assume that $a_{i} \neq 0$ for some $i>4$. Then we have the following equality of Gromov-Witten invariants:

$$
\left\rangle_{g, \beta}^{X}=\langle \rangle_{g, \beta^{\prime}}^{X}\right.
$$

where $\beta^{\prime}=d^{\prime} h-\sum_{i=1}^{n} a_{i}^{\prime} e_{i}$ has coefficients given by

$$
\begin{aligned}
d^{\prime} & =3 d-2\left(a_{1}+a_{2}+a_{3}+a_{4}\right) \\
a_{1}^{\prime} & =d-\left(a_{2}+a_{3}+a_{4}\right) \\
a_{2}^{\prime} & =d-\left(a_{1}+a_{3}+a_{4}\right) \\
a_{3}^{\prime} & =d-\left(a_{1}+a_{2}+a_{4}\right) \\
a_{4}^{\prime} & =d-\left(a_{1}+a_{2}+a_{3}\right) \\
a_{5}^{\prime} & =a_{5} \\
& \vdots \\
a_{n}^{\prime} & =a_{n} .
\end{aligned}
$$

In this section, we prove Theorem 18 by studying the geometry of X, the blowup of \mathbb{P}^{3} at n points, and \hat{X}, the blowup of X along a certain configuration of six lines.

Let X be the blowup of \mathbb{P}^{3} at n distinct points x_{1}, \ldots, x_{n} where $n>4$. We take the first four points to be the fixed points of the standard torus action on \mathbb{P}^{3} and we take the remaining points to be any fixed points of the Cremona transformation:

$$
\begin{gathered}
\mathbb{P}^{3} \longrightarrow \mathbb{P}^{3} \\
\left(z_{0}: z_{1}: z_{2}: z_{3}\right) \mapsto\left(\frac{1}{z_{0}}: \frac{1}{z_{1}}: \frac{1}{z_{2}}: \frac{1}{z_{3}}\right) .
\end{gathered}
$$

Remark 19. The case where $n-4$ is greater than the number of fixed points is easily handled by including in the blowup locus pairs of points exchanged by the Cremona transformation. However, for notational convenience we will assume that the points x_{1}, \ldots, x_{n} are fixed.

Let $l_{j k}, 1 \leq j<k \leq 4$ be the proper transform of the line through x_{j} and x_{k}. Let

$$
\pi \vdots \hat{X} \rightarrow X
$$

be the blowup of X along the six (disjoint) lines $l_{j k}$.
\hat{X} admits an involution $\tau: \hat{X} \rightarrow \hat{X}$ which resolves the Cremona transformation. The map τ is discussed in more detail by Gathmann in [15], although note that our \hat{X} has the additional blowups at x_{5}, \ldots, x_{n} whose corresponding exceptional divisors are simply fixed by τ, or possibly exchanged if the points $x_{5} \ldots x_{n}$ include non-trivial orbits (c.f. Remark 19).

We briefly describe the divisors and the curves on X and \hat{X} and their intersections. Generally, we denote divisor classes with upper case letters and curve classes with lower case letters. Classes on \hat{X} will have a hat, and classes on X will not.

The homology groups $H_{4}(X ; \mathbb{Z})$ and $H_{2}(X ; \mathbb{Z})$ are spanned by the divisor and curve classes respectively:

$$
H_{4}(X ; \mathbb{Z})=\left\langle H, E_{1}, \ldots, E_{n}\right\rangle, \quad H_{2}(X ; \mathbb{Z})=\left\langle h, e_{1}, \ldots, e_{n}\right\rangle .
$$

Here H is the pullback of the hyperplane in \mathbb{P}^{3}, h is the class of the line in H, E_{i} is the exceptional divisor over x_{i}, and e_{i} is the class of a line in E_{i}.

The intersection pairing on X is given by:

$$
\begin{aligned}
H \cdot H & =h, & E_{i} \cdot E_{i} & =-e_{i}, \\
H \cdot h & =p, & E_{i} \cdot e_{i} & =-p
\end{aligned}
$$

where $p \in H_{0}(X ; \mathbb{Z})$ is the class of the point and all other pairings are zero.
The homology groups $H_{4}(\hat{X} ; \mathbb{Z})$ and $H_{2}(\hat{X} ; \mathbb{Z})$ are also spanned by divisor and curve classes:

$$
H_{4}(\hat{X} ; \mathbb{Z})=\left\langle\hat{H}, \hat{E}_{i}, \hat{F}_{j k}\right\rangle, \quad H_{2}(\hat{X} ; \mathbb{Z})=\left\langle\hat{h}, \hat{e}_{i}, \hat{f}_{j k}\right\rangle
$$

where $1 \leq i \leq n$ and $1 \leq j<k \leq 4$. Here \hat{H} is the proper transform of H and \hat{h} is the generic line in $\hat{H} . \hat{E}_{i}$ is the proper transform of E_{i} and \hat{e}_{i} is the class of the generic line in $\hat{E}_{i} . \hat{F}_{j k}$ is the component of the exceptional divisor of $\hat{X} \rightarrow X$ lying over $l_{j k}$, and $\hat{f}_{j k}$ is the fiber class of $\pi: \hat{F}_{j k} \rightarrow l_{j k}$.

Note that $\hat{F}_{j k} \rightarrow l_{j k}$ is the trivial fibration and the class of the section $\hat{s}_{j k}$ is given by

$$
\hat{s}_{j k}=\hat{h}-\hat{e}_{j}-\hat{e}_{k}+\hat{f}_{j k} .
$$

The intersections are given as follows:

$$
\begin{array}{lll}
\hat{H} \cdot \hat{H}=\hat{h}, & \hat{E}_{i} \cdot \hat{E}_{i}=-\hat{e}_{i}, & \hat{F}_{j k} \cdot \hat{F}_{j k}=-\hat{s}_{j k}-\hat{f}_{j k}, \\
\hat{H} \cdot \hat{F}_{j k}=\hat{f}_{j k}, & \hat{E}_{j} \cdot \hat{F}_{j k}=\hat{f}_{j k}, & \\
\hat{H} \cdot \hat{h}=\hat{p}, & \hat{E}_{i} \cdot \hat{e}_{i}=-\hat{p}, & \hat{F}_{j k} \cdot \hat{f}_{j k}=-\hat{p},
\end{array}
$$

where $\hat{p} \in H_{0}(\hat{X} ; \mathbb{Z})$ is the class of the point and all other intersections are zero.
The action of τ on divisors is described by Gathmann [15] in section 6. The action of τ on the curve classes of \hat{X} is then easily obtained using Poincaré duality and is given as follows:

$$
\begin{aligned}
\tau_{*} \hat{h} & =3 \hat{h}-\left(\hat{e}_{1}+\hat{e}_{2}+\hat{e}_{3}+\hat{e}_{4}\right) \\
\tau_{*} \hat{e}_{1} & =2 \hat{h}-\left(\hat{e}_{2}+\hat{e}_{3}+\hat{e}_{4}\right), \\
\tau_{*} \hat{e}_{2} & =2 \hat{h}-\left(\hat{e}_{1}+\hat{e}_{3}+\hat{e}_{4}\right), \\
\tau_{*} \hat{e}_{3} & =2 \hat{h}-\left(\hat{e}_{1}+\hat{e}_{2}+\hat{e}_{4}\right) \\
\tau_{*} \hat{e}_{4} & =2 \hat{h}-\left(\hat{e}_{1}+\hat{e}_{2}+\hat{e}_{3}\right), \\
\tau_{*} \hat{e}_{5} & =\hat{e}_{5} \\
\quad & \\
\tau_{*} \hat{e}_{n} & =\hat{e}_{n} \\
\tau_{*} \hat{f}_{j k} & =\hat{s}_{j^{\prime} k^{\prime}}
\end{aligned}
$$

where $\left\{j^{\prime}, k^{\prime}\right\}$ is defined by the condition $\{j, k\} \cup\left\{j^{\prime}, k^{\prime}\right\}=\{1,2,3,4\}$.
For a class $\hat{\beta}=d \hat{h}-\sum_{i=1}^{n} a_{i} \hat{e}_{i}$ with $2 d=\sum_{i=1}^{n} a_{i}$, we have $-K_{\hat{X}} \cdot \hat{\beta}=0$ and so the degree $\hat{\beta}$ Gromov-Witten invariants have no insertions. Since τ is an isomorphism, it preserves the Gromov-Witten invariants of \hat{X} so in particular,

$$
\left\rangle_{g, \hat{\beta}}^{\hat{X}}=\langle \rangle_{g, \tau_{\alpha} \hat{\beta}}^{\hat{X}}\right.
$$

where

$$
\tau_{*} \hat{\beta}=d^{\prime} \hat{h}-\sum_{i=1}^{n} a_{i}^{\prime} \hat{e}_{i}
$$

has coefficients $d^{\prime}, a_{1}^{\prime}, \ldots, a_{n}^{\prime}$ given by the equations of Theorem 18.
To prove Theorem 18 then, it suffices to prove the following
Lemma 20. Let d, a_{1}, \ldots, a_{n} be such that $2 d=\sum_{i=1}^{n} a_{i}$ and $a_{i} \neq 0$ for some $i>4$. Then

$$
\left\rangle_{g, \beta}^{X}=\langle \rangle_{g, \hat{\beta}}^{\hat{X}}\right.
$$

where $\beta=d h-\sum_{i=1}^{n} a_{i} e_{i}$ and $\hat{\beta}=d \hat{h}-\sum_{i=1}^{n} a_{i} \hat{e}_{i}$.
Remark 21. The condition that $a_{i} \neq 0$ for some $i>4$ is necessary. For example,

$$
1=\langle \rangle_{0, h-e_{1}-e_{2}}^{X} \neq\langle \rangle_{0, \hat{h}-\hat{e}_{1}-\hat{e}_{2}}^{\hat{X}}=0 .
$$

Proof: The lemma follows from the general results of Hu [19]. We warn the reader that the theorems in [19] are incorrect as stated; the above example provides a counterexample. However, the author has informed us that a crucial hypothesis is missing in the main theorems of [19]. Namely, in Hu's notation, he must additionally assume that the class $p_{!}(A)$ is not exceptional.

The paper [19] uses the machinery of relative Gromov-Witten invariants and gluing. To make our paper self-contained, we provide below an independent proof of Lemma 20 in the case of $n=6$ which is what is needed for the closed topological vertex in [5].

Assume that $n=6$. Without loss of generality we may assume that $a_{5} \neq$ 0 . We will show that any $[\hat{f}] \in \bar{M}_{g}(\hat{X}, \hat{\beta})$ has an image which is disjoint from $\hat{F}=\cup_{j<k} \hat{F}_{j k}$, and any $[f] \in \bar{M}_{g}(X, \beta)$ has an image which is disjoint from $l=$ $\cup_{j<k} l_{j k}$. It follows that the natural map $\bar{M}_{g}(\hat{X}, \hat{\beta}) \rightarrow \bar{M}_{g}(X, \beta)$ induced by π is an isomorphism of the moduli spaces and their virtual fundamental classes. Indeed, if both $\operatorname{Im}(\hat{f}) \cap \hat{F}=\emptyset$ and $\operatorname{Im}(f) \cap l=\emptyset$ for all stable maps $[\hat{f}] \in \bar{M}_{g}(\hat{X}, \hat{\beta})$ and $[f] \in \bar{M}_{g}(X, \beta)$, then both $\bar{M}_{g}(\hat{X}, \hat{\beta})$ and $\bar{M}_{g}(X, \beta)$ are canonically identified with $\bar{M}_{g}(\hat{X} \backslash \hat{F}, \hat{\beta})$.

Let $[f: C \rightarrow X] \in \bar{M}_{g}(X, \beta)$ and suppose that $\operatorname{Im}(f) \cap l_{j k} \neq \emptyset$ for some j and $k . \operatorname{Im}(f) \not \subset l_{j k}$ since $a_{5} \neq 0$ and so

$$
f_{*}(C)=C^{\prime}+b l_{j k}
$$

where C^{\prime} meets $l_{j k}$ in a finite set of points (b can be zero here). Let \hat{C}^{\prime} be the proper transform of C^{\prime}. Since $C^{\prime} \cap l_{j k} \neq \emptyset$, we have $\hat{C}^{\prime} \cdot \hat{F}_{j k}=m>0$. Therefore we have

$$
\hat{C}^{\prime}=d \hat{h}-\sum_{i=1}^{6} a_{i} \hat{e}_{i}-b\left(\hat{h}-\hat{e}_{j}-\hat{e}_{k}\right)-m \hat{f}_{j k}
$$

Define $\left\{j^{\prime}, k^{\prime}\right\}$ by the condition $\left\{j^{\prime}, k^{\prime}\right\} \cup\{j, k\}=\{1,2,3,4\}$ and let

$$
\hat{D}_{j k}=2 \hat{H}-\left(\hat{E}_{1}+\cdots+\hat{E}_{6}\right)-\hat{F}_{j k}-\hat{F}_{j^{\prime} k^{\prime}}
$$

Then

$$
\hat{D}_{j k} \cdot \hat{C}^{\prime}=-m<0
$$

However, this contradicts Lemma 22 which states that $\hat{D}_{j k}$ is nef.
Lemma 22. Let $1 \leq j<k \leq 4$ and define j^{\prime}, k^{\prime} by the condition $\{j, k\} \cup\left\{j^{\prime}, k^{\prime}\right\}=$ $\{1,2,3,4\}$. Then the divisor

$$
\hat{D}_{j k}=2 \hat{H}-\left(\hat{E}_{1}+\cdots+\hat{E}_{6}\right)-\hat{F}_{j k}-\hat{F}_{j^{\prime} k^{\prime}}
$$

is nef in \hat{X}.
Proof: Let \hat{D}^{\prime} and $\hat{D}^{\prime \prime}$ be the proper transforms of the planes through $\left\{x_{j} ; x_{k}, x_{5}\right\}$ and $\left\{x_{j^{\prime}}, x_{k^{\prime}}, x_{6}\right\}$ respectively. Then

$$
\begin{aligned}
& \hat{D}^{\prime}=\hat{H}-\hat{E}_{j}-\hat{E}_{k}-\hat{E}_{5}-\hat{F}_{j k} \\
& \hat{D}^{\prime \prime}=\hat{H}-\hat{E}_{j^{\prime}}-\hat{E}_{k^{\prime}}-\hat{E}_{6}-\hat{F}_{j^{\prime} k^{\prime}}
\end{aligned}
$$

so $\hat{D}_{j k}=\hat{D}^{\prime}+\hat{D}^{\prime \prime}$.
To see that $\hat{D}_{j k}$ is nef, it suffices to check that $\hat{D}_{j k} \cdot C \geq 0$ for any curve $C \subset \hat{D}^{\prime}$.
\hat{D}^{\prime} is isomorphic to the blowup of \mathbb{P}^{2} at three points. Under this identification, the classes of the line and the three exceptional divisors are

$$
' h^{\prime}=\hat{h}-\hat{f}_{j k}, \quad e_{j}^{\prime}=\hat{e}_{j}-\hat{f}_{j k}, \quad e_{k}^{\prime}=\hat{e}_{k}-\hat{f}_{j k}, \quad e_{5}^{\prime}=\hat{e}_{5}
$$

The curve $C \subset \hat{D}^{\prime}$ has class

$$
d h^{\prime}-a_{j} e_{j}^{\prime}-a_{k} e_{k}^{\prime}-a_{5} e_{5}^{\prime}
$$

and since $h^{\prime}-e_{5}^{\prime}$ is a nef divisor in \hat{D}^{\prime}, we have

$$
d \geq a_{5} .
$$

The first Chern class of the normal bundle of $\hat{D}^{\prime} \subset \hat{X}$ is

$$
\left(\hat{H}-\hat{E}_{j}-\hat{E}_{k}-\hat{E}_{5}-\hat{F}_{j k}\right)^{2}=-\hat{e}_{5}=-e_{5}^{\prime}
$$

and so

$$
\hat{D}^{\prime} \cdot C=-e_{5}^{\prime} \cdot\left(d h^{\prime}-a_{j} e_{j}^{\prime}-a_{k} e_{k}^{\prime}-a_{5} e_{5}^{\prime}\right)=-a_{5}
$$

where the intersection product on the right hand side is on \hat{D}^{\prime}.
Therefore

$$
\begin{aligned}
\hat{D}_{j k} \cdot C & =\hat{D}^{\prime} \cdot C+\hat{D}^{\prime \prime} \cdot C \\
& =-a_{5}+d \\
& \geq 0 .
\end{aligned}
$$

Thus $\operatorname{Im}(f) \cap l=\emptyset$ for all $[f] \in \bar{M}_{g}(X, \beta)$.
We argue in a similar fashion for $\bar{M}_{g}(\hat{X}, \hat{\beta})$. Let $[\hat{f}: C \rightarrow \hat{X}] \in \bar{M}_{g}(\hat{X}, \hat{\beta})$ and suppose that $\operatorname{Im}(\hat{f}) \cap \cdot \hat{F}_{j k} \neq \emptyset$ for some j and k. Since $\hat{\beta} \cdot \hat{F}_{j k}=0, \hat{f}_{*}(C)$ must have a component $C^{\prime \prime}$ contained in $\hat{F}_{j k}$. We then have

$$
\hat{\beta}=\hat{f}_{*}(C)=C^{\prime}+C^{\prime \prime}
$$

where C^{\prime} is non-empty since $\hat{\beta} \cdot \hat{E}_{5}=a_{5}>0$.
Since $C^{\prime \prime} \subset \hat{F}_{j k}$ is an effective class in $\hat{F}_{j k} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$, it is of the form $a \hat{s}_{j k}+b \hat{f}_{j k}$ with $a, b \geq 0$ and $a+b>0$.

Define $\hat{D}_{j k}$ as above. Then $\hat{D}_{j k} \cdot \hat{\beta}=0$ and $\hat{D}_{j k} \cdot C^{\prime \prime}=a+b>0$ and so $\hat{D}_{j k} \cdot C^{\prime}<0$, contradicting the fact that $\hat{D}_{j k}$ is nef.

This proves that $\operatorname{Im}(\hat{f}) \cap \hat{F}=\emptyset$ for all $[\hat{f}] \in \bar{M}_{g}(\hat{X}, \hat{\beta})$ and Lemma 20 is proved.

This then completes the proof of Theorem 18.

Chapter 5

Proofs of the main theorems

5.1 Proof of Theorem 1

Let $X=X^{2}$ be as constructed in section 2.1 and let $Y=Y^{2}$ be as constructed in section 3.3. By Proposition 6, we have

$$
N_{a ; ; ; c}^{g}(\mathcal{C})=\langle \rangle_{g, \beta}^{X}
$$

where

$$
\beta=a\left(h-e_{1}-e_{2}\right)+b\left(h-f_{1}-f_{2}\right)+c\left(h-g_{1}-g_{2}\right) .
$$

So, we inspect the invariant

$$
\left\rangle_{g, \beta}^{X}=\langle a+b+c ; a, a, b, b, c, c\rangle_{g}^{X} .\right.
$$

By Theorem 18, we have

$$
\langle a+b+c ; a, a, b, b, c, c\rangle_{g}^{X}=\langle 3 c-a-b ; c-b, c-b, c-a, c-a, c, c\rangle_{g}^{X}
$$

Thus, by Corollary $14, N_{a, b, c}^{g}(\mathcal{C})=0$ unless $a=b=c$. In that case,

$$
\begin{aligned}
\langle 3 c-a-b ; c-b, \dot{c}-b, c-a, \dot{c}-a, c, c\rangle_{g}^{X} & =\langle a ; 0,0,0,0, a, a\rangle_{g}^{X} \\
& =\langle a ; a, a\rangle_{g}^{Y}
\end{aligned}
$$

where the last equality follows from Corollary 17.

5.2 Proof of Theorem 2

Let $X=X^{N+1}$ be as constructed in section 2.1 By Proposition 8, we have

$$
N_{\mathbf{a} ; \mathbf{b} ; \mathbf{c}}^{g}(\mathcal{C})=\langle \rangle_{g, \beta}^{X}
$$

where

$$
\begin{aligned}
\beta & =3 h-e_{1}-f_{1}-g_{1} \\
& -\sum_{i=1}^{N+1}\left\{\left(a_{i}-a_{i+1}\right) e_{i+1}+\left(b_{i}-b_{i+1}\right) f_{i+1}+\left(c_{i}-c_{i+1}\right) g_{i+1}\right\}
\end{aligned}
$$

where $a_{1}=b_{1}=c_{1}=1$ and $a_{N+1}=b_{N+1}=c_{N+1}=0$.
Assume that the invariant is non-zero:

$$
\begin{aligned}
\left\rangle_{g, \beta}^{X}=\right. & \left\langle 3 ; 1,1-a_{2}, \ldots, a_{N-1}-a_{N}, a_{N}\right. \\
& 1,1-b_{2}, \ldots, b_{N-1}-b_{N}, b_{N} \\
& \left.1,1-c_{2}, \ldots, c_{N-1}-c_{N}, c_{N}\right\rangle_{g}^{X} \\
& \neq 0
\end{aligned}
$$

Then, by Lemma 13, the coefficient of each e_{i}, f_{i}, g_{i} is non-negative. Thus

$$
\begin{aligned}
& 1 \geq a_{2} \geq \cdots \geq a_{N} \geq 0 \\
& 1 \geq b_{2} \geq \cdots \geq b_{N} \geq 0 \\
& 1 \geq c_{2} \geq \cdots \geq c_{N} \geq 0
\end{aligned}
$$

Therefore we compute

$$
\begin{aligned}
\left\rangle_{g, \beta}^{X}=\right. & \langle 3 ; 1,0, \ldots, 0,1 \\
& 1,0, \ldots, 0,1 \\
& 1,0, \ldots, 0,1\rangle_{g}^{X} \\
= & \langle 3 ; 1 ; 1,1,1,1,1\rangle_{g}^{X^{2}},
\end{aligned}
$$

where again the last equality follows from Corollary 17.

5.3 Proof of Theorem 3

Assume that the invariant is non-zero:

$$
\begin{aligned}
N_{\mathbf{a} ; \mathbf{b} \mathbf{c} \mathbf{c}}^{g}(\mathcal{C}) & =\langle \rangle_{g, \beta}^{Y} \\
& =\left\langle a_{1} ; a_{1}, a_{1}-a_{2}, \ldots, a_{N-1}-a_{N}, a_{N}\right\rangle_{g}^{Y} \\
& \neq 0
\end{aligned}
$$

Here Y continues to denote the space constructed in section 3.3.

By Corollary 14 the multiplicities are decreasing.

$$
a_{1} \geq a_{2} \geq \cdots \geq a_{N} \geq 0
$$

Therefore, as $a_{1}>0$, there exists some $1<j \leq N$ such that

$$
a_{1} \geq a_{2} \geq \cdots \geq a_{j}>0 . \quad a_{j+1}=\cdots=a_{N}=0
$$

Then by Corollary 17 we compute

$$
\begin{aligned}
N_{\mathbf{a} ; \mathbf{b} ; \mathbf{c}}^{g}(\mathcal{C}) & =\left\langle a_{1} ; a_{1}, a_{1}-a_{2}, \ldots, a_{j-1}-a_{j}, a_{j}, 0, \ldots, 0\right\rangle_{g}^{Y} \\
& =\left\langle a_{1} ; a_{1}, a_{1}-a_{2}, \ldots, a_{j-1}-a_{j}, a_{j}\right\rangle_{g}^{Y^{j+1}}
\end{aligned}
$$

Note that, for any $1 \leq i \leq j+1$, we may reorder

$$
\begin{aligned}
& \quad\left\langle a_{1} ; a_{1}, a_{1}-a_{2}, \ldots, a_{j-1}-a_{j}, a_{j}\right\rangle_{g}^{Y_{j+1}}= \\
& \left\langle a_{1} ; a_{1}, a_{i}-a_{i+1}, 0,0, a_{1}-a_{2}, \ldots, a_{i-2}-a_{i-1}, a_{i+1}-a_{i+2}, \ldots, a_{j-1}-a_{j}, a_{j}\right\rangle_{g}^{Y^{j+1}}
\end{aligned}
$$

Applying Cremona invariance (Theorem 18) we compute

$$
\begin{aligned}
\left\rangle_{g, \beta}^{Y+1}=\left\langle a_{1}-2\left(a_{i}-a_{i+1}\right) ; a_{1}-\left(a_{i}-a_{i+1}\right), 0,\right.\right. & a_{i+1}-a_{i}, a_{i+1}-a_{i} \\
\vdots & \left.a_{1}-a_{2}, \ldots, a_{j-1}-a_{j}, a_{j}\right\rangle_{g}^{Y_{j+1}^{j+1}}
\end{aligned}
$$

Then by Lemma $13, a_{i+1} \geq a_{i}$. Since this holds for all $1 \leq i \leq j$ we have $a_{1} \leq \cdots \leq$ a_{j}. Therefore

$$
a_{1}=\cdots=a_{j}
$$

Thus the invariant reduces to

$$
\begin{aligned}
\left\rangle_{g, \beta}^{Y}\right. & =\langle a ; a, 0, \cdots, 0, a\rangle_{g}^{Y^{j+1}} \\
& =\langle a ; a, a\rangle_{g}^{Y^{2}}
\end{aligned}
$$

Appendix A

Calabi-Yau configurations in blowups of \mathbb{P}^{3}

A. 1 Another geometric construction

In this appendix we construct a locally Calabi-Yau configuration of rational curves \mathcal{C} corresponding to any arbitrary finite subtree of the maximal trivalent tree.

We construct these configurations as subvarieties of a space X, which is obtained via a sequence of toric blowups of \mathbb{P}^{3}.

$$
X=X^{N} \xrightarrow{\pi_{N}} X^{N-1} \xrightarrow{-\pi_{N-1}} \cdots \xrightarrow{\pi_{2}} X^{1} \xrightarrow{\pi_{1}} X^{0} \xrightarrow{\pi_{0}} X^{\prime} \xrightarrow{\pi^{\prime}} X^{\prime \prime}=\mathbb{P}^{3}
$$

Our rational curves will be labeled by $A_{\alpha}, B_{\alpha}, C_{\alpha}$, where α is a binary number, reflecting the trivalent nature of the configuration. Curves and homology classes in intermediary spaces will have super-scripts, and their corresponding proper transforms in X will not.

As above, the standard torus $\mathbb{T}=\left(\mathbb{C}^{\times}\right)^{3}$ action on \mathbb{P}^{3} has four fixed points; we now label the four \mathbb{T}-fixed points in $X^{\prime \prime}:=\mathbb{P}^{3}$ by $p^{\prime}=(1: 0: 0: 0), q^{\prime}=(0: 1: 0: 0)$, $r^{\prime}=(0: 0: 1: 0)$ and $s^{\prime}=(0: 0: 0: 1)$. Let $A^{\prime \prime}, B^{\prime \prime}$ and $C^{\prime \prime}$ denote the (unique, \mathbb{T} invariant) line in $X^{\prime \prime}$ through the two points $\left\{p^{\prime}, s^{\prime}\right\},\left\{q^{\prime}, s^{\prime}\right\}$ and $\left\{r^{\prime}, s^{\prime}\right\}$, respectively.

Define

$$
X^{\prime} \xrightarrow{\pi^{\prime}} X^{\prime \prime}
$$

to be the blowup of $X^{\prime \prime}$ at the three points $\left\{p^{\prime}, q^{\prime}, r^{\prime}\right\}$, and let $A^{\prime}, B^{\prime}, C^{\prime} \subset X^{\prime}$ be the proper transforms of $A^{\prime \prime}, B^{\prime \prime}$ and C^{\prime}. The exceptional divisor in X^{\prime} over p^{\prime} intersects A^{\prime} in a unique fixed point; call it p. Similarly, the exceptional divisor in X^{\prime} also intersects each of B^{\prime} and C^{\prime} in unique fixed points; call them q and r. Now define

$$
X^{0} \xrightarrow{\pi_{0}} X^{\prime}
$$

Figure A.1: The \mathbb{T}-invariant curves in X^{0}
to be the blowup of X^{\prime} at the three points $\{p, q, r\}$, and let $A^{0}, B^{0}, C^{0} \subset X^{0}$ be the . proper transforms of $A^{\prime}, B^{\prime}, C^{\prime}$. Clearly X^{0} is deformation equivalent to a blowup of \mathbb{P}^{3} at six distinct points. The \mathbb{T}-invariant curves in X^{0} are depicted in Figure A.1, where each edge corresponds to a \mathbb{T}-invariant curve in X^{0}, and each vertex corresponds to a fixed point.

We now construct a sequence of blowups, beginning with X^{0}. Define $p_{0}, p_{1} \in$ X^{0} to be the two fixed points of the exceptional divisor over p which are not contained in A^{0}; let q_{0}, q_{1}, r_{0} and r_{1} be defined similarly, as indicated in Figure A.1. Let $A_{0}^{0}, A_{1}^{0} \subset X^{0}$ denote the \mathbb{T}-invariants curve intersecting the pairs $\left\{A^{0}, p_{0}\right\}$ and $\left\{A^{0}, p_{1}\right\}$, and define $B_{0}^{0}, B_{1}^{0}, C_{0}^{0}$ and C_{1}^{0} analogously. Define

$$
X^{1} \xrightarrow{\pi_{1}} X^{0}
$$

to be the blowup of X^{0} at the six points $\left\{p_{0}, p_{1}, q_{0}, q_{1}, r_{0}, r_{1}\right\}$. Let $A^{1}, B^{1}, C^{1} \subset X^{1}$ be the proper transforms of A^{0}, B^{0}, and C^{0}.

We iterate this process to construct X, as follows. Fix a non-negative integer N. For any binary number α, let $|\alpha|$ denote its length, i.e. if $\alpha=\alpha_{1} \cdots \alpha_{l}$ where $\alpha_{i} \in\{0,1\}$, then $|\alpha|=l$. Define

$$
X^{j} \xrightarrow{\pi_{j}} X^{j-1}
$$

to be the blowup of X^{j-1} along the 3×2^{j} points $\left\{p_{\alpha}, q_{\alpha}, r_{\alpha}\right\}_{|\alpha|=j}$. Let $A_{\alpha}^{j}, B_{\alpha}^{j}, C_{\alpha}^{j} \subset$ X^{j} denote the proper transforms of $A_{\alpha}^{j-1}, B_{\alpha}^{j-1}$ and C_{α}^{j-1} for all $|\alpha|<j$. Let $p_{\alpha 0}$ and $p_{\alpha 1}$ denote the two fixed points of the exceptional divisor $\left(\pi_{j}\right)^{-1}\left(p_{\alpha}\right)$ not intersecting A_{α}^{j}, and define $q_{\beta 0}, q_{\beta 1}, r_{\gamma 0}, r_{\gamma 1}$ similarly. Now, for each $|\alpha|=j-1$, define $A_{\alpha 0}, A_{\alpha 1}$ to be the unique, \mathbb{T}-invariant lines intersecting $\left\{A_{\alpha}, p_{\alpha 0}\right\},\left\{A_{\alpha, p_{\alpha 1}}\right\}$, and define $B_{\alpha 0}, B_{\alpha 1}, C_{\alpha_{0}, C_{\alpha 1}}$ similarly. The \mathbb{T}-invariant curves of X^{1} are shown

Figure A.2: The \mathbb{T}-invariant curves in X^{1}
in Figure A.2. Terminate this process after obtaining the space X^{N}, and define $X=X^{N}$.

Finally, define the configuration $\mathcal{C} \subset X$ by

$$
\mathcal{C}=\bigcup_{|\alpha| \leq N} A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}
$$

where

$$
\begin{aligned}
A_{\alpha} & =A_{\alpha}^{N} \\
B_{\beta} & =B_{\beta}^{N} \\
C_{\gamma} & =C_{\gamma}^{N}
\end{aligned}
$$

for all $|\alpha|,|\beta|,|\gamma| \leq N+1$. The configuration \mathcal{C} is shown in Figure A.3, along with all other \mathbb{T}-invariant curves in X.

A. 2 Intersection products and normal bundles

A.2.1 The Calabi-Yau condition

We now describe $H_{*}(X, \mathbb{Z})$, identify the class of the configuration $[\mathcal{C}] \in H_{2}(X, \mathbb{Z})$, and show that \mathcal{C} is a locally Calabi-Yau configuration in X. All (co)homology is taken with integer coefficients unless otherwise noted. Let $H^{\prime \prime}$ denote the class of a hyperplane in $X^{\prime \prime}=\mathbb{P}^{3}$, and let $H \in H_{4}(X)$ denote the class of its proper

Figure A.3: The \mathbb{T}-invariant curves in X
transform. We may slightly abuse notation by not distinguishing between a subscheme and its homology class. Let $\tilde{E}^{\prime}, \tilde{F}^{\prime}, \tilde{G}^{\prime} \in H_{2}\left(X^{\prime}\right)$ denote the exceptional divisors in $X^{\prime} \rightarrow X^{\prime \prime}$ over the points p^{\prime}, q^{\prime} and r^{\prime}, and let $E^{\prime}, F^{\prime}, G^{\prime} \in H_{4}(X)$ denote their proper transforms. In addition, let $E_{\alpha}^{|\alpha|}, F_{\alpha}^{|\alpha|}, G_{\alpha}^{|\alpha|^{\circ}} \in H_{4}\left(X^{|\alpha|}\right)$ denote the classes of the exceptional divisors $X^{|\alpha|} \rightarrow X^{|\alpha|-1}$ over the points $p_{\alpha}, q_{\alpha}, r_{\alpha}$, and let $E_{\alpha}, F_{\alpha}, G_{\alpha} \in H_{4}(X)$ denote their proper transforms. The collection of all such classes $\left\{H, E^{\prime}, F^{\prime}, G^{\prime}, E_{\alpha}, F_{\beta}, G_{\gamma}\right\}$ span $H_{4}(X)$.

Similarly, let $h^{\prime \prime} \in H_{2}\left(X^{\prime \prime}\right)$ denote the class of a line in $H^{\prime \prime}$, and let $h \in$ $H_{2}(X)$ denote its proper transform. Also, let $\tilde{e}^{\prime}, \tilde{f}^{\prime}, \tilde{g}^{\prime}$ denote the class of a line in $\tilde{E}^{\prime}, \tilde{F}^{\prime}, \tilde{G}^{\prime}$, and let $e^{\prime}, f^{\prime}, g^{\prime}$ denote the class of their proper transforms in X. Similarly, let $e_{\alpha}^{|\alpha|}, f_{\alpha}^{|\alpha|}, g_{\alpha}^{|\alpha|} \in H_{4}\left(X^{|\alpha|}\right)$ denote the class of a line in $E_{\alpha}^{|\alpha|}, F_{\alpha}^{|\alpha|}, G_{\alpha}^{|\alpha|}$, and denote their proper transforms by $e_{\alpha}, f_{\alpha}, g_{\alpha} \in H_{4}(X)$. Then $H_{2}(X)$ is generated by $\left\{h, e^{\prime}, f^{\prime}, g^{\prime}, e_{\alpha}, f_{\beta}, g_{\gamma}\right\}$.

The intersection product ring structure is given as follows. Note that X is deformation equivalent to the blowup of \mathbb{P}^{3} at $3+\sum_{j=0}^{N} 3 \times 2^{j}=3 \times 2^{N+1}$ distinct points. Therefore, these

$H \cdot H=h$	$H \cdot h=p t$
$E^{\prime} \cdot E^{\prime}=-e^{\prime}$	$E^{\prime} \cdot e=-p t$
$F^{\prime} \cdot F^{\prime}=-f^{\prime}$	$F^{\prime} \cdot f^{\prime}=-p t$
$G^{\prime} \cdot G^{\prime}=-g^{\prime}$	$G^{\prime} \cdot g^{\prime}=-p t$
$E_{\alpha} \cdot E_{\alpha}=-e_{\alpha}$	$E_{\alpha} \cdot e_{\alpha}=-p t$
$F_{\alpha} \cdot F_{\alpha}=-f_{\alpha}$	$F_{\alpha} \cdot f_{\alpha}=-p t$
$G_{\alpha} \cdot g_{\alpha}=-g_{\alpha}$	$G_{\alpha} \cdot g_{\alpha}=-p t$

are all of the nonzero intersection products in $H_{*}(X)$.
In this basis we have, for any $\alpha=\alpha_{1} \cdots \alpha_{l}$,

$$
\begin{aligned}
& {\left[A_{\alpha}\right]= \begin{cases}h-e^{\prime}-e & \text { if } l=0 \\
e_{\alpha_{1} \cdots \alpha_{l-1}}-e_{\alpha} & \text { if } 0<l \leq N\end{cases} } \\
& {\left[B_{\alpha}\right]= \begin{cases}h-f^{\prime}-f & \text { if } l=0 \\
f_{\alpha_{1} \cdots \alpha_{l-1}}-f_{\alpha} & \text { if } 0<l \leq N\end{cases} } \\
& {\left[C_{\alpha}\right]= \begin{cases}h-g^{\prime}-g & \text { if } l=0 \\
g_{\alpha_{1} \cdots \alpha_{l-1}}-g_{\alpha} & \text { if } 0<l \leq N\end{cases} }
\end{aligned}
$$

Thus, we compute

$$
\begin{aligned}
K_{X} \cdot[\mathcal{C}]= & \left(4 H-2\left(E^{\prime}+F^{\prime}+G^{\prime}\right)-2 \sum_{|\alpha| \leq N} E_{\alpha}+F_{\alpha}+G_{\alpha}\right) \\
& \left(\left(h-e^{\prime}-e\right)+\left(h-f^{\prime}-f\right)+\left(h-g^{\prime}-g\right)+\right. \\
& \left.\sum_{0<l \leq N}\left(e_{\alpha_{1} \cdots \alpha_{l-1}}-e_{\alpha}+f_{\alpha_{1} \cdots \alpha_{l-1}}-f_{\alpha}+g_{\alpha_{1} \cdots \alpha_{l-1}}-g_{\alpha}\right)\right) \\
= & (4-2-2)+(4-2-2)+(4-2-2)+ \\
& -2 \sum_{0<l \leq N}((1-1)+(1-1)+(1-1)) \\
= & 0
\end{aligned}
$$

Therefore \mathcal{C} is a locally Calabi-Yau configuration in X.

A.2.2 Normal bundles

We now describe the normal bundles of the components of \mathcal{C} in X. These are given as follows.

$$
N_{A_{\alpha} / X}=N_{B_{\alpha} / X}=N_{C_{\alpha} / X}= \begin{cases}\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1) & \text { if }|\alpha|=0 \\ \mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-2) & \text { if } 0<|\alpha| \leq N\end{cases}
$$

The equivalence $N_{A_{\alpha} / X}=N_{B_{\alpha} / X}=N_{C_{\alpha} / X}$ is easily seen by relabeling points. To calculate $N_{A / X}$, let $D_{1}^{\prime \prime} \subset X^{\prime \prime}$ be a plane containing the line $A^{\prime \prime}$, and let D_{1} denote its proper transform in X. Then $A \subset D_{1}$, and $N_{A / D_{1}}$ is a sub bundle of $N_{A / X}$ of degree $A \cdot A$. Note that D_{1} is deformation equivalent to the blowup of a plane at two points, and $[A]=h-e^{\prime}-e$. Thus, the intersection product in D_{1} is given by

$$
A \cdot A=\left(h-e^{\prime}-e\right) \cdot\left(h-e^{\prime}-e\right)=-1 .
$$

The set of planes D_{1} containing A span $N_{A / X}$, and the above argument holds for any such plane, so we conclude $N_{A / X} \cong \mathcal{O}(-1) \oplus \mathcal{O}(-1)$.

Now consider A_{α}, where $\alpha=\alpha_{1} \cdots \alpha_{l}$ and $l \geq 1$. Note that $A_{\alpha} \subset E_{\alpha_{1} \cdots \alpha_{l-1}}$. As above, $N_{A_{\alpha} / E_{\alpha_{1} \ldots \alpha_{l-1}}}$ is a sub bundle of $N_{A_{\alpha} / X}$ of degree $\cdot A_{\alpha} \cdot A_{\alpha}$, where the product is taken in $E_{\alpha_{1} \cdots \alpha_{l-1}}$. Recall that, by the functoriality of blowups, E_{α} is the blowup of \mathbb{P}^{2} at a point, and that $e_{\alpha_{1} \cdots \alpha_{l-1}}$ is the class of a line in $E_{\alpha_{1} \cdots \alpha_{l-1}}$, and e_{α} is the exceptional divisor. We compute

$$
A_{\alpha} \cdot A_{\alpha}=\left(e_{\alpha_{1} \cdots \alpha_{l-1}}-e_{\alpha}\right) \cdot\left(e_{\alpha_{1} \cdots \alpha_{l-1}}-e_{\alpha}\right)=1-1=0
$$

We now show that the total degree of the normal bundle is -2 , forcing the result to hold. Inspect the defining exact sequence

$$
0 \rightarrow \dot{T}_{A_{\alpha}} \rightarrow T_{X} \rightarrow N_{A_{\alpha} / X} \rightarrow 0
$$

This implies

$$
\begin{aligned}
c_{1}\left(N_{A_{\alpha} / X}\right)= & c_{1}\left(T_{X}\right) \cdot\left[A_{\alpha}\right]-c_{1}\left(T_{A_{\alpha}}\right) \\
= & \left(4 H-2\left(E^{\prime}+F^{\prime}+G^{\prime}\right)-2 \sum_{|\alpha| \leq N} E_{\alpha}+F_{\alpha}+G_{\alpha}\right) . \\
& \left(e_{\alpha_{1} \cdots \alpha_{l-1}}-e_{\alpha}\right)-2 p t \\
= & 0-2(p t-p t)-2 p t \\
= & -2 p t .
\end{aligned}
$$

Thus the total degree of the normal bundle is -2 , and so $N_{A_{\alpha} / X}=\mathcal{O}(a) \oplus \mathcal{O}(b)$, where $a+b=-2$. Since we have already shown that (without loss of generality) $a=0$, we conclude

$$
N_{A_{i} / X} \cong \mathcal{O} \oplus \mathcal{O}(-2)
$$

Bibliography

[1] Mina Aganagic, Albrecht Klemm, Marcos Mariño, and Cumrun Vafa. The topological vertex. Preprint, hep-th/0305132.
[2] K. Behrend. Gromov-Witten invariants in algebraic.geometry. Invent. Math., 127(3):601-617, 1997.
[3] K. Behrend and B. Fantechi. The intrinsic normal cone. Invent. Math., 128(1):45-88, 1997.
[4] Jim Bryan. Multiple cover formulas for Gromov-Witten invariants and BPS states. In Proceedings of the Workshop "Algebraic Geometry and Integrable Systems related to String Theory" (Kyoto, 2000), number 1232, pages 144-159, 2001.
[5] Jim Bryan and Dagan Karp. The closed topological vertex via the cremona transform. J. Algebraic Geom., To appear. Preprint, AG/0311208.
[6] Jim Bryan, Sheldon Katz, and Naichung Conan Leung. Multiple covers and the integrality conjecture for rational curves in Calabi-Yau threefolds. J. Algebraic Geom., 10(3):549-568, 2001.
[7] Jim Bryan and Rahul Pandharipande. Curves in Calabi-Yau 3-folds and topological quantum field theory. Preprint, AG/0306316.
[8] Jim Bryan and Rahul Pandharipande. BPS states of curves in Calabi-Yau 3-folds. Geom. Topol., 5:287-318 (electronic), 2001.
[9] Philip Candelas, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes. A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nuclear Phys. B, 359(1):21-74, 1991.
[10] David A. Cox and Sheldon Katz. Mirror symmetry and algebraic geometry, volume 68 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999.
[11] C. Faber and R. Pandharipande. Hodge integrals and Gromov-Witten theory. Invent. Math., 139(1):173-199, 2000.
[12] Carel Faber. Álgorithms for computing intersection numbers on moduli spaces of curves, with an application to the class of the locus of Jacobians. In New trends in algebraic geometry (Warwick, 1996), volume 264 of London Math. Soc. Lecture Note Ser., pages 93-109. Cambridge Univ. Press, Cambridge, 1999.
[13] W. Fulton and R. Pandharipande. Notes on stable maps and quantum cohomology. In Algebraic geometry-Santa Cruz 1995, volume 62 of Proc. Sympos. Pure Math., pages 45-96. Amer. Math. Soc., Providence, RI, 1997.
[14] William Fulton. Introduction to intersection theory in algebraic geometry, volume 54 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1984.
[15] Andreas Gathmann. Gromov-Witten invariants of blow-ups. J. Algebraic Geom., 10(3):399-432, 2001.
[16] T. Graber and R. Pandharipande. Localization of virtual classes. Invent. Math., 135(2):487-518, 1999.
[17] Phillip Griffiths and Joseph Harris. Principles of algebraic geometry. WileyInterscience [John Wiley \& Sons], New York, 1978. Pure and Applied Mathematics.
[18] Kentaro Hori, Sheldon Katz, Albrecht Klemm, Rahul Pandharipande, Richard Thomas, Cumrun Vafa, Ravi Vakil, and Eric Zaslow. Mirror symmetry, volume 1 of Clay Mathematics Monographs. American Mathematical Society, Providence, RI, 2003. With a preface by Vafa.
[19] J. Hu. Gromov-Witten invariants of blow-ups along points and curves. Math. Z., 233(4):709-739, 2000.
[20] Maxim Kontsevich. Intersection theory on the moduli space of curves and the matrix Airy function. Comm. Math. Phys., 147(1):1-23, 1992.
[21] Jun Li, Melissa Chiu-chu Liu, Kefeng Liu, and Jian Zhou. A mathematical theory of the closed topological vertex. Preprint, AG/0408426.
[22] Jun Li and Gang Tian. Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties. J. Amer. Math. Soc., 11(1):119-174, 1998.
[23] R. Pandharipande. Hodge integrals and degenerate contributions. Comm. Math. Phys., 208(2):489-506, 1999.
[24] Edward Witten. Two-dimensional gravity and intersection theory on moduli space. In Surveys in differential geometry (Cambridge, MA, 1990), pages 243310. Lehigh Univ., Bethlehem, PA, 1991.

