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Abstract 

We compute the local Gromov-Witten invariants of certain configurations of rational 
curves in a Calabi-Yau threefold. We first transform this from a problem involving 
local Gromov-Witten invariants to one involving global or ordinary invariants. We 
do so by expressing the local invariants of a configuration of curves in terms of 
ordinary Gromov-Witten invariants of a blowup of C P 3 at points. The Gromov-
Witten invariants of a blowup of C P 3 along points have a symmetry, which arises 
from the geometry of the Cremona transformation, and transforms some difficult 
to compute invariants into others that are less difficult or already known. This 
symmetry is then used to compute the global invariants. 
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Chapter 1 

Introduction 

1.1 Motivation 

The relationship between contemporary physics and mathematics is exciting and 
deep. String theory, conformal and topological field theories and mirror symmetry 
have become tremendously important in representation theory, combinatorics, low-
dimensional topology, knot theory and symplectic and algebraic geometry. 

Gromov-Witten theory is an example of a particularly rich interaction be
tween these two disciplines. The subject arose from the study of string theory on 
Calabi-Yau threefolds. It was noticed that the coefficients of certain correlation 
functions correspond to the number of holomorphic maps from the worldsheet of 
the string to the Calabi-Yau threefold. Thus, Gromov-Witten theory was seen to 
predict answers to questions in enumerative geometry. Of particular significance, for 
instance, was the prediction of the number of rational curves on the quintic threefold 
[9]-

One main reason that one may be motivated to study the local Gromov-
Witten invariants of configuration of rational curves is related to the topological 
vertex. The Gromov-Witten invariants of any toric Calabi-Yau threefold can in 
principle be computed by the virtual localization of Graber and Pandharipande 
[16], which reduces the invariants to Hodge integrals, which can then be computed 
recursively [12, 20, 24]. However this method is impractical for higher genus invari
ants. 

A more efficient algorithm to compute the all genus Gromov-Witten invari
ants of any toric Calabi-Yau threefold was proposed by Aganagic, Klemm, Marino 
and Vafa [1]. The basic ingredients are the topological vertex, which is a generating 
function for certain open Gromov-Witten invariants, and a gluing algorithm which 
expresses the Gromov-Witten invariants of any toric Calabi-Yau threefold in terms 
of the topological vertex. The topological vertex itself is computed using duality be-
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tween Chern-Simons theory and Gromov-Witten theory. This work is conjectural, as 
neither open Gromov-Witten invariants nor Chern-Simons/Gromov-Witten duality 
are well defined mathematically. 

In an attempt to overcome these difficulties, J. L i , K. Liu, C.-C. Liu, and J. 
Zhou [21] introduce formal relative Gromov-Witten invariants and degeneration as 
an alternative to open invariants and gluing, and they define an alternate generating 
function. It is shown that the degeneration formula agrees with the gluing formula. 
To show that the two algorithms are in complete agreement, it remains to show 
that the generating functions are equal. In order to prove equality, it is necessary 
to compute so called one-, two-, and three-partition Hodge integrals. The proof has 
been completed in case one of the partitions is empty, and the full three-partition 
case remains open. 

Consequently, the local Gromov-Witten invariants of configurations of ratio
nal curves, in case the configuration is not contained in a surface in a Calabi-Yau 
threefold, are conjectured but not proved using the vertex technology. Thus, com
putations of these local invariants provide a check of the conjecture in that case. For 
example, the closed topological vertex is defined to be a configuration of three IP-'-'s 
meeting in a single triple point in a Calabi-Yau threefold, with some mild assump
tions about the formal neighborhood. In general it is not contained in a surface and 
its local invariants were computed by Bryan and Karp [5], which appears as Theo
rem 1 here. Theorem 2 provides another infinite family of potential verifications of 
the vertex conjecture. 

In addition to the above motivation, local Gromov-Witten invariants of ra
tional curves are interesting in and of themselves. The local invariants of curves have 
been studied in [5, 7, 8, 11, 23]. Also, the local invariants of ADE configurations of 
rational curves were computed by Bryan, Katz and Leung in [6]. Our computations 
are new and add to this list. 

1.2 Background and Notation 

1.2.1 Gromov-Witten invariants 
We now recall the central objects in the Gromov-Witten theory of (local) Calabi-Yau 
threefolds and establish notation. 

Let X be a smooth complex projective algebraic variety of dimension three. 
We may identify H* (X, Z) with H* (X, Z) as rings via Poincare duality, where in
tersection product is dual to cup product. 

We use the convention that curve classes (and not necessarily curves them
selves) will be denoted by lower case letters, and divisor classes will be denoted by 
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the upper case. For example, we may denote the class of a hyperplane in P 3 by 
H E # 4(P 3, Z) and the class of a line by h € # 2(P 3, Z). And we may denote a curve 
by C C X, but we will specify its class by [C] e H*(X,Z). 

We denote the canonical bundle of X by Kx • We say that X is Calabi- Yau 
if it has trivial canonical bundle, Kx — Ox, and we say that X is locally Calabi-Yau 
near the curve C C X, or that C is a locally Calabi-Yau curve in X , if Kx • [C] — 0. 

Let X be locally Calabi-Yau near C C X and let [C] = B e #2(X, Z). Then, 
we let 

Mg(X,B) 

denote the moduli space of stable genus g maps to X representing 8. It is constructed 
and shown to be a proper algebraic stack by Fulton and Pandharipande in [13]. L i , 
Tian, Behrend and Fantechi [2, 3, 22] showed that this moduli space comes equipped 
with a perfect obstruction theory, which defines a virtual fundamental zero cycle. 
The genus g Gromov-Witten invariant of X in class 8 is defined to be the degree of 
this virtual fundamental class; we denote it as follows. 

<)^:=deg[Mp(X,/?)r = /_ 1 € Q 
J[Mg{XM™ 

For a general reference on Gromov-Witten theory, see the excellent books [10, 18]. 

1.2.2 Loca l G r o m o v - W i t t e n invariants 

Let t : Z ^ X be a closed subvariety of the smooth complex projective threefold 
X, and suppose that X is a local Calabi-Yau threefold near Z. Let 8 be the class 
of a curve class in Z, and let Mz denote the substack of Mg(X, i*B) consisting of 
stable maps with image in Z. If Mz is a union of path connected components, then 
it inherits a virtual 0-cycle (by restricting [M 9(x, t H,^)] v i r to HQ(MZ,Q))- The local 
Gromov-Witten invariant of Z C X is defined to be the degree of this 0-cycle; we 
denote it by 

N9

p(Z C X) 
Note that in general N^(Z C X) depends on a formal neighborhood of Z C X, 
and in some cases it only depends on the normal bundle. If the neighborhood 
is understood, we write Np(Z). For a wonderful expository article on the issues 
surrounding local invariants, see [4]. 
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Figure 1.1: The minimal trivalent tree 
• • I ' • 

1.2.3 Trees of rational curves 

Let T be a connected graph consisting of vertices V(F) and edges £(T). An edge is 
specified by an unordered pair of vertices: 

£ ( r ) c S y m ( V ( r ) , V ( r ) ) 

Furthermore, we assume throughout that T is a tree. 
For any vertex v, the valence of v is defined to be the number of distinct 

edges containing v. We denote the valence of v by 

| v | = \ { v ' € V(T) : {v,v'} € £(T)}\ 

We say that the tree V is trivalent if 

(i) M < 3 for all v € V(T) • 

(ii) \VQ\ = 3 for some VQ € V(T) 

Thus there is a unique infinite trivalent tree T 3 ^ such that 

{3 ii v — VQ 

2 otherwise 

We call it the minimal trivalent tree, and it is shown in Figure 1.1. When there is 
no chance of confusion, we will also refer to a finite trivalent subtree of the minimal 
trivalent tree as the minimal trivalent tree. 

Also, there is a unique infinite tree rf^^ such that 

\v\ = 3 for all v € V ( r f n a x ) 
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Figure 1.2: The maximal trivalent tree 

We call ( F ; ^ ) the maximal trivalent tree. It is depicted in Figure 1.2. 
A configuration of rational curves C is by definition a union along points of 

non-singular rational curves. 

j€J 

Here J is some indexing set. We specify these points below and we specify the local 
geometry of the intersection points for the configurations of interest in Assumption 1. 

We say that a configuration of rational curves corresponds to the graph V 
if there is a one to one correspondence between edges of the graph and irreducible 
components of C. 

{ C ] C C } ^ f t . ^ ( r ) } 

Additionally, it is required that there is a one to one correspondence between vertices 
v with valence greater than one in T and intersection points pv of the corresponding 
components of C: 

v G £j f l £k pv £ Cj n Cfc 

Here the components are necessarily distinct, i.e. j ^ k. The above union is then 
defined to be the union along these intersection points. 

C=\JCj 
{Pv} 
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1.2.4 The blowup of C P 3 at points 

We briefly review the properties of the blowup of P 3 at points used here for com
pleteness and to set notation. This material can be found in much greater detail in, 
for instance, [17]. 

Let X —> P 3 be the blowup of P 3 along M distinct points {pi,... ,PM}- We 
describe the homology of X. All (co)homology is taken with integer coefficients. 
Note that we may identify homology and cohomology as rings via Poincare duality, 
where cup product is dual to intersection product. 

Let H be the total transform of a hyperplane in P3, and let Ei be the excep
tional divisor over p%. Then Hi(X,Z) has a basis 

H±(X) — (H, Ei,..., EM) 

Furthermore, let h G H2(X) be the class of a line in H, and let be the 
class of a line in Ei. The collection of all such classes form a basis of H2(X). 

H2(X) = (h,ei,.. .,eM) 

The intersection ring structure is given as follows. Let pt G HQ(X) denote 
the class of a point. Two general hyperplanes meet in a line, so H • H = h. A 
general hyperplane and line intersect in a point, so H • h — pt. Also, a general 
hyperplane is far from the center of a blowup, so all other products involving H or 
h vanish. The restriction of Ox(Ei) to Ei = P 2 is the dual of the bundle 0 P2(1), 
so .Ei • Ei is represented by minus a hyperplane in Ei, i.e. Ei • Ei = —ej, and 
Ef = (—l)3~1pt = pt ([14]). Furthermore, the centers of the blowups are far away 
from each other, so all other intersections vanish. In summary, the following are the 
only non-zero intersection products. 

H • H = h H-h = pt 

Ei- Ei = -ei Ei-ei = -pt 

Also, we point out the important fact that the canonical bundle is easy to 
describe in this basis. Let Kx denote the canonical bundle of X. Then we have 

M 
KX = 4H -2j2Ei 

i=l 
Finally, we introduce a notational convenience for the Gromov-Witten in

variants of P 3 blown up at points in a Calabi-Yau class. Any curve class is of the 
form 

M 
P = dh — ^ cnei 

i=i 
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Ai 

A2 

Figure 1.3: The minimal trivalent configuration 

for some integers d, ai where d is non-negative. Thus K\ • B = 0 if and only if 
2d = Y,T=i ai- I n t h a t 

case, ( i s determinedby the discrete data {d, a^,..., a^}. 
Then, we may use the shorthand notation 

Og,p = (d;ai,...,aM)f. 

For example, 
( )g ,6/i-ei-e2-2e 3-3e5-3e6 = >̂ 0, 3, 3)* . 

Furthermore, the Gromov-Witten invariants of X do not depend on ordering of the 
points pi, and thus for any permutation a of M points, 

(d;ai,.., ,ciM)g = (d; aCT(i), • . . , aa{M))^ • 

1.3 Main results 

Our main results determine the local Gromov-Witten invariants of certain config
urations of rational curves C C X inside a local Calabi-Yau threefold. Al l of the 
configurations considered correspond to connected subtrees of the minimal trivalent 
tree. The infinite minimal trivalent configuration is depicted in Figure 1.3. Fix a 
non-negative integer N. As indicated, we label the components of C by 

N 

C = ( J Ai U Bi U d , 
i = i 

where Ai = Bi = Ci = P1, reflecting the nature of the configuration. 
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We denote the genus-<? local Gromov-Witten invariants of C C X by N^.b (C) 
where 

a = ai,... ,aN 

b = bi,...,bN 

C = C I , . . . , C J V 

and bi, Cj is the degree of the map to the component Ai, Bi, Ci respectively. 
In order for N^.h.c(C) to be well defined, we need to specify the formal neigh

borhood C C X and the local geometry of the intersection points in C. 

Assumption 1. We assume that the local geometry of C C X is as explicitly con
structed in section 2.1. In particular, C is embedded in X such that the normal 
bundle of each component of C is given as follows. 

N A T / X = NB./X = NCi/x 
0(- l)©0(- l) ifi = l 
0@0(-2) ifl<i<N 

Additionally, for the case of a\,b\, C\ > 0, we assume the formal neighborhood of the 
triple point has the geometry of the coordinate axes in C 3 with respect to the local 
coordinates defined by the normal bundles. We assume all other intersections are 
nodal singularities. 

We now state the main results. 

1.3.1 The closed topological vertex 

We now define the closed topological vertex. Let 

C = Ai U Bi U Ci C X 

be a locally Calabi-Yau configuration corresponding to a minimal trivalent configu
ration satisfying Assumption 1. Then we call C the closed topological vertex. 

Theorem 1 (Bryan-Karp). Assume a\,b\,c\ > 0. Then the local invariants of 
the closed topological vertex are. well defined and given as follows. 

if {ai, bi, ci} contains two distinct non-zero values, otherwise 

^ 1 ; a l i a 1 ( C ) = < ; 0 ; 0 ( C ) -
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Note that N% 0Q(C) is the contribution to the genus g Gromov-Witten in
variant from a single P 1 smoothly embedded by a degree-ai map to a Calabi-Yau 
threefold with normal bundle 0(—\) © O ( - l ) . These were computed by Faber-
Pandharipande [11] to be 

1.3.2 The minimal trivalent configuration 

Theorem 2. Let 
N 

C = ( J {Ai U Bi U Q) 
i=i 

6e a configuration of rational curves in a local Calabi- Yau threefold X which corre

sponds to the minimal trivalent tree and satisfies Assumption. 1. Let cii,bi,Ci denote 

the degree of the map onto the'component Ai,Bi,Ci respectively. Assume 

a\ = bi — c\ — 1. 

The local invariants of C are well defined and given as follows. 

unless a, b, c satisfy 

1 = CLl > • • • > <2/v > 0 
1 = &i > • • • > bN > 0 
1 = ci > • • • > cN > 0 

In that case, for any 1 < n, m, I < N, we have 

• ^ : b : c ( ^ " ,:! I (C) 

n N—n • m N—m I N—l 

= *f;l;l(C)-

Note that Nf.^C) is the genus g, degree (1,1,1) local invariant of the closed 
topological vertex. This is a special case of Theorem 1. 

N 9 ( C ) \B29(2g-l)\ 

* l i l : l ( C ) " m 
where B2g is the 2gth Bernoulli number. 
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1.3.3 A chain of rational curves 

Now consider the case that C = A \ U- • -Li AN is a chain of rational curves; it is shown 
in Figure 1.4. Note that a chain is of course a subtree of the minimal trivalent tree. 

Figure 1.4: A chain of rational curves 

Theorem 3. Let 
C = AiU---UAN 

be a chain of rational curves satisfying Assumption 1. Let denote the degree of-
the map onto the ith component (here bi = Ci = 0). Assume a\ > 0. Then the local 
invariants of C are well defined and given as follows. 

Ni(C) = 0 

unless 

a\ = ai = • • • = a,j = a aj+i = aj+2 = • • • = fljv = 0 

for some a > 0 and 1 < j < N. Otherwise 

Ni(C) = K_a(C) = i V X . . A 0 ( C ) = • • • = N%(C). 

Note that N£(C) is again the contribution to the genus g Gromov-Witten 
invariant from a single P 1 smoothly embedded by a degree-a map to a Calabi-Yau 
threefold with normal bundle C ( - l ) © C ( - l ) . Thus 

K(0 -

1.4 Br ief overview 

We now give a brief description of the organization of this work and the techniques 
used to obtain the main results. 

In chapter 2 we construct the configurations C of rational curves that are the 
study of this work. They are constructed as locally Calabi-Yau configurations in 
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a blowup space which is deformation equivalent to the blowup of P 3 along distinct 
points. 

We next show that the local invariants of the configurations are equal to 
certain ordinary invariants of the blowup space; this takes place in chapter 3. In 
order to relate the local invariants to global ones, we first show that inside the 
blowup space lives a configuration with the correct formal neighborhood. Then, it 
is left to show that the only contributions to the global invariants in the class of 
interest come from maps whose image lies in the specified configuration. We do so 
by using the toric nature of blowup space and using a homological argument. 

In chapter 4 we study the properties of the Gromov-Witten invariants of the 
blowup of P 3 along points. This material provides the tools necessary to complete 
the proofs of the main theorems. In particular, we prove a lemma showing that a 
large class of invariants of the blowup space vanish. Finally, we make crucial use of 
the geometry of the Cremona transformation. 

The Cremona transformation admits a resolution on a space which is the 
blowup of P 3 along points and lines. The resolved map acts on (co)homology and 
preserves Gromov-Witten invariants, because it is an isomorphism. This results in 
a symmetry of the invariants on the resolution space. In order to use this symmetry, 
we show that for a Calabi-Yau class 8, the invariants of the resolved space descend 
to invariants of a blowup of P 3 along only points, and not points and lines. This 
results in a symmetry of the Gromov-Witten invariants of P 3 blown up at points. 
This study of the Cremona transformation first appeared in [5], was inspired by the 
beautiful work of Gathmann [15], and is joint work with Jim Bryan. 

In chapter 5 we use the previous results to first relate the local invariants of 
the configuration to certain ordinary invariants of the blowup of P 3 at points. Then, 
we use the tools of chapter 4 to compute the ordinary invariants. 

As discussed above, the configurations we study are all finite subtrees of the 
minimal trivalent tree. And what's more, for the most general subtrees we restrict 
the degree of the invariants. However, in the appendix we construct Calabi-Yau 
configurations of curves corresponding to any finite subtree of the maximal trivalent 
tree. We do not compute the invariants of these general configurations or for general 
degree minimally trivalent configurations because our method fails in those cases. 
For counter examples, see remark 10. Specifically, it is not the case that the only 
contributions to the global invariants of the blowup space in the correct class come 
from maps whose image is the desired configuration. 
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Chapter 2 

Configurations of rational 
curves 

2.1 A geometric construction 

We now construct configurations of rational curves, whose local Gromov-Witten 
invariants are the study of this work. These configurations correspond to finite sub 
trees of the minimal trivalent tree. We construct these configurations as subvarieties 
of a locally Calabi-Yau space X, which is obtained via a sequence of toric blowups 
ofP 3 : 

x = x N + 1 7rjv+1> xN nN> • • • X1 —X° = P 3 

In fact, Xl+1 will be the blowup of X1 along three points. Our rational curves will 
be labeled by Ai, Bi, Ci, where 1 < i < N, reflecting the nature of the configuration. 
Curves and in intermediary spaces will have super-scripts, and their corresponding 
proper transforms in X will not. 

The standard torus T = ( C x ) 3 action on P 3 is given by 

{h,t2,t3) • Oo :x1:x2: x3) i-> (x0 : tixi : t2x2 : £ 3 X 3 ) . 

There are four T-fixed points in X° := P 3 ; we label them p0 = (1 : 0 : 0 : 0), 
q0 = (0 : 1 : 0 : 0), r 0 = (0 : 0 : 1 : 0) and s0 = (0 : 0 : 0 : 1). Let A0, B° and C° 
denote the (unique, T-invariant) line in X° through the two points {po, SQ}, {qo, SQ} 
and {ro, so}, respectively. 

Define 
Xl^XQ 

to be the blowup of X° at the three points {po,qo,^o}, and let Al,Bl,Cl C X1 

be the proper transforms of A°,B° and C°. The exceptional divisor in X 1 over po 
intersects A1 in a unique fixed point; call it p\ € X1. Similarly, the exceptional 
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Figure 2.1: The T-invariant curves in X2 

divisor in X1 also intersects each of B1 and C 1 in unique fixed points; call them q\ 
and 7*1. 

Now define 
X2 ^ X1 

to be the blowup of X 1 at the three points {pi,q\,ri}, and let A2,B2,C2 C X2 

be the proper transforms of Al,Bl,Cl. The exceptional divisor over p\ contains 
two T fixed points disjoint from A2. Choose one of them, and call it p2; this choice 
is arbitrary. Similarly, there are two fixed points in the exceptional divisors above 
qi, ri disjoint from B2,C2. Choose one in each pair consistent with the choice of p2 

and call them q2 and r2. This choice is indicated in Figure 2.1. Let A\ denote the 
(unique, T invariant) line intersecting A\ and p2. Define B\,C2 analogously. 

Clearly X2 is deformation equivalent to a blowup of P 3 at six distinct points. 
The T-invariant curves in X1 are depicted in Figure 2.1, where each edge corre
sponds to a T-invariant curve in X1, and each vertex corresponds to a fixed point. 
For simplicity, at this time we only label those curves in the configuration. The 
remaining T-invariant curves will be discussed in Chapter 3. 

We now define a sequence of blowups beginning with X2. Fix an integer 
JV > 2. For each 1 < i < N, define 

to be the blowup of X1 along the three points pi, qi, r^. Let A^x c Xl+l denote the 
proper transform of Aj for each 1 < j < i. The exceptional divisor in Xl+1 above 
Pi contains two T fixed points, choose one of them and call it Pi+\. Similarly choose 
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Figure 2.2: The T-invariant curves in X3 

qi+i,ri+i, and define Al^\ c Xt+1 to be the line intersecting A\+1 and Pi+i, with 
BithCt+l defined similarly. 

The T invariant curves in X2 are shown in Figure 2.2. Terminate this process 
after obtaining the space XN+1, and define X = XN+1. 

Finally, define the configuration C c l b y 

C= | J AjUBjUCf, 
l<j<N 

where 

Aj = A?^ 

Q - q v - ! . 

The configuration C is shown in Figure 2.3, along with all other T-invariant curves 
in X. 

2.2 Intersection products and normal bundles 

We now compute H*(X, Z) and identify the class of the configuration [C] £ H2{X, Z). 
Al l (co)homology will be taken with integer coefficients. We denote divisors by 
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Figure 2.3: The T-invariant curves in X 
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upper case letters, and curve classes with the lower case. In addition, we decorate 
homology classes in intermediary spaces with a tilde, and their total transforms in 
X are undecorated. 

Let E\,F\,G\ € H±(Xl) denote the exceptional divisors in X 1 —> X° over 
the points po,qo and ro, and let E\,Fi,G\ € H^(X) denote their total transforms. 
Continuing, for each 1 < % < N + 1, let Ei, Fi, Gi € H^(Xl) denote the exceptional 
divisors over the points Pi-i, qi-\,Ti-\ and let Ei, Fi, Gi € H±(X) denote their total 
transforms. Finally, let H denote the total transform of the hyperplane in X° = P3. 
The collection of all such classes {H, Ei, Fi,Gi}, where 1 < i < N +1, spans H±(X). 

Similarly, for each 1 < i < N + 1, let e.i,fi,g~i 6 H2(Xl+1) denote the class 
of a line in Ei,F,Gi and let ei,fi,gi G denote their total transforms. In 
addition, let h E H2(X) denote the class of a line in H. Then i ^ P O has a basis 
given by {/i,ei,/i,0i}. 

The intersection product ring structure is given as follows. Note that X is 
deformation equivalent to the blowup of P 3 at 3iV distinct points. Therefore, these 

H H = h H •h = pt 

Ei- Ei = -ei Ei- ei = -pt 

F F = -fi Fi- fi = -pt 

Gi • 9i = ~9i Gi- 9i = -pt 

are all of the nonzero intersection products in H*(X). See section 1.2.4 above for 
details. 
Lemma 4. In the above basis, the classes of the components of C are given as 
follows. 

ifi = l 

ifl<i<N + l 

ifi = l 

ifl<i<N + l 

/̂̂  = l 
if I < i < N + 1. 

P R O O F : Recall that A\ is the proper transform of a line in P 3 through the two 
points p\,p2 which are centers of a blowup. Since A\ is in particular a curve, and 
we have the above basis, it must be the case that 

N 
[Ai] = d0h- ^2 dUei + d2,ifi + ditigi 

i=i 

h - ei -&2 
ei - ei+i 

h - f i - h 

fi ~ /i+1 
h - 9 i - 92 
9i ~9i+l 
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for some integers dij with do non-negative. We study the intersection theory of X 
in order to determine the coefficients dij. 

By functoriality of blowups, A\ is isomorphic to a line blown up at the two 
points pi, P2, which of course is also a line. Since a line and a plane generically meet 
in a point, and using the above ring structure, we calculate 

pt = [Ai] • H 
= d0(pt) + 0 

Therefore do = 1. 
Now, to calculate d^i, dit2, note that the exceptional divisor Ei parameterizes 

directions in P 3 of intersection with the point pi. Since A\ is the proper transform 
of a line which intersects (contains) p\ and does so at a unique direction, it must be 
the case that A i and E\ intersect at a point. We calculate 

pt = [Ai] • E1 

= - d i , i ( - p t ) + 0 

Thus di,! — 1- An identical argument also shows that d i ^ = 1. 
To determine d\j for j > 2, note that A i is the proper transform of a line 

which is far from the other centers of the blowups. So we calculate 

0 = [ A i ] - ^ -

= -dij{-pt) 

and thus d\j = 0 for j > 2. Similarly, we see that d2j = d%j = 0 for j > 2. Thus 
we have [Ax] = h — e\ — e2-

Now inspect Ai for i > 1. Its homology class is of the form 
N 

[Ai] = d'0h - J2 d'i,iei + + dki9i 
1=1 

for some integers d\ • where d'0 is non-negative. 
Recall that Ai is the proper transform of a line in Ei C X1 containing the 

point pi, which is subsequently blown up. Since Aj is contained in the total transform 
of an exceptional divisor, it pairs zero with the total transform of the hyperplane 
class: 

0 = [Ai] • H = d'0(pt) 

Therefore d'n = 0. 
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Now note that by the functoriality of blowups, Ei is isomorphic to the blowup 
of P 2 at one point, and the class of a line in Ei is ej and the class of the exceptional 
line is ej+i- Since Ai meets a generic line in Ei in a point, we calculate 

pt = [Ai] • ei 

= -di,i(pt) 

where the product is taken in Ei. Thus d\j — —1. 
Furthermore, Ai intersects Ei+i in a point corresponding to the direction of 

incident with the point pi, as Ei+\ is the exceptional divisor above pi, and so we 
calculate 

pt = [Ai] • Ei+i = -d1}i+1(-pt). 

Therefore d\j = 1. 
Finally, note that Ai is far from the centers of all other blowups, and therefore 

all other coefficients must vanish. Thus [Ai] = e, — ê +i for each i > 2. 
Note that an identical argument works for Bi and Ci for each i, and therefore 

the result holds. • 
We now show that C is a locally Calabi-Yau configuration. Let [/':£—> X] £ 

Mg(X,B) be a stable map with image in C. We show that X is locally Calabi-Yau 
near Im(/) counted with multiplicity: 

Here, 
/*[£] = B = (ai + bi + ci)/i - aiei - - cipi 

i v 

~ ^ { ( a ^ - a i + l ) e * + l + -
 hj+l)fi+l + ( C i - C j + l ) f f i + l } • 

1=1 

where cii,bi,Ci is the degree of the map to the component Ai,Bi,Ci and a/v+i = 
b/v+i = cyv+i = 0. So, we compute 

/ N 

Kx • = [AH - 2 ^ A i + Bi + d 

V i=i 

^(ai + b\ + ci)h - aiei - hfi - cxgi 

~ /~2 i(ai ~ ai+l)ei+l + (bi ~ hi+l)fi+l + - ci+i)gi+i} 
i=l 

=12H • h - 2(2[AL] • [Ai] + 2[Bi) • [Bx] + 2[d] • [d]) 
= 0 
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We now describe the normal bundles of the components of C in X. These 
are given as follows. 
L e m m a 5. 

NAi/X = NBi/X = NCi/X = 
O p i ( - l ) © 0 P i ( - l ) ifi = l 
0 P i © O P I(-2) ifi>l. 

PROOF: The equivalence NA./X — N

B . / X — N

c . / X is easily seen by relabeling 
points. To calculate NAl/x, let D° C X° be a plane containing the line A0, and 
let D denote its proper transform in X. Then A\ c D, and NAl/£> is a sub bundle 
of NAl/x of degree [A\] • [Ai], where the product is taken in D. Note that D is 
deformation equivalent to the blowup of a plane at two points, ahd [Ai] = h — e\ — e2-
Thus, the intersection product in D% is given by 

[Ai] • [Ai] = (h-e±- e2) • (/i - ei - e2) = -1. 

The set of planes containing A\ span NAl/x, and the above argument holds for any 
such plane, so we conclude NAl/x — 0(-l) © 0{-\). 

Now consider Aj, where i > 1. Note that Aj C Sj. As above, NA./E. is a sub 
bundle of NA./X of degree [Aj] • [Ai], where the product is taken in Ei. Recall that, 
by the functoriality of blowups, Ei is the blowup of P 2 at a point, and that a is the 
class of a line in Ei, and ê +i is the exceptional divisor. We compute 

[Ai] • [Ai] = (ei - ei+i) • (ei - ei+1) = 1-1 = 0. 

We now show that the total degree of the normal bundle is -2, forcing the 
result to hold. Inspect the defining exact sequence 

0 -> TAi -> Tx N A i / x - 0. 

This implies 
ci {NAi/x) = ci (TX) • [Ai] - C l (T A i) 

/ J V + l \ 

= I 4tf - 2 + Fj + Gj J - (ei- e H i ) - 2pt 

= 0 - 2(pi - pt) - 2pt 
= -2pt. 

Thus the total degree of the normal bundle is -2, and so NA./X = 0(a) © 0(h), 
where a + b = —2. Since we have already shown that (without loss of generality) 
a = 0, we conclude 

NAi/x^O®0(-2). 

• 
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Chapter 3 

From local to global invariants 

In this chapter we show that the local Gromov-Witten invariants of the configura
tions C of rational curves constructed in Chapter 2 are equal to certain global or 
ordinary Gromov-Witten invariants of a blowup of P 3 along points. 

3.1 The closed topological vertex 

Let C = AU B U C be the closed topological vertex, and let X be the blowup space 
constructed in section 2.1. Moreover, in this case let N = 1 so that X = X2, and is 
deformation equivalent to the blowup of P 3 along 2-3 = 6 points. Then the local 
invariants of the closed topological vertex are equal to certain ordinary invariants 
of X. 

Proposition 6 (Bryan-Karp). Let C = AuBlSC be the closed topological vertex, 
and let X = X1 be the N = 0 blowup space constructed in section 2.1. Let 

(3 = a(h-ei- e2) + b(h - / i - /2) + c(h - g1 - g2) 

and assume a,b,c > 0. Then the local invariants of C are equal to the ordinary 
invariants of X in the class (3. 

KMC = ( & 

PROOF: C C X has the correct local geometry by assumption. So in order to prove 
the proposition, it suffices to show that the only contributions to ( ) ̂  are given by 
maps with image in C. 

Lemma 7. Let X,C and.(3 be as above. Assume a,b,c> 0. Then 

Im(/) = C 

for every stable map [/] 6 Mg(X,(3). 
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h - f i - g i 

e i 

Figure 3.1: The T-invariant curves in X 

P R O O F : We explicitly use the toric nature of the construction. Note that the torus 
action on X° = P3 lifts to X since the center of each subsequent blowup is T fixed. 
Thus there is a T action on Mg(X,B), simply by composition. 

Assume that there exists a stable map 

[f:E^X]EMg(X,p) 

such that Im(/) <f_ C. Then there exists a point x G Im(/) such that x £ C. Recall 
that a one parameter family ip of T is defined to be an element ip G Hom(CX, T) = 
Z3, where the isomorphism is given by 

O i , n 2 , n 3 ) i-> ipni,n2,n3 • CX -> T 
* i—»• (tn\tn\tn3). 

Moreover, recall that T-invariant subvarieties of X are given precisely by orbit-
closures of limit points of one parameter subgroups of T. 

{T-invariant subvarieties} <—• |T • l i m ^ ( i ) | 

So, in particular, the limit of the point x under the action of ip is a fixed point. 
Moreover, since x g1 C and every fixed point is the limit of some one parameter 
subgroup, there exists ip such that 

lim ib(t) • x = q, 
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h - f \ - 9 \ 

'l -92 / i - f2 

h-gi-g2 h-h-h 
\h — ei — e2 / 1 - / 2 

. 7 
h - ei - / ] / 

'ei — e2 ei - ei 

Figure 3.2: The remaining possible curves in Im(/") 

where q is T fixed and q $ C. So, the limit of ip acting on [/] is a stable map /' such 
that q G Im(/'). It follows that q is in image of all stable maps in the orbit closure 
of [/']. Thus, there must exist a stable map [/" : S —> X] £ Mg(X:3) such that 
Im(/") is T invariant and Im(/") cf C. 

We show that this leads to a contradiction. Let I denote the union of the T 
invariant curves in X; it is shown in Figure 3.1. 

Inspect the class /"[£]. Note that the total multiplicity of the e's is a + b + c. 
Also note that every component of I whose class contains h also contains two —e 
terms. Therefore the total multiplicity of the terms not containing h must be zero. 
The same is true for the / and g terms. The curves in I whose class does not contain 
h either contribute nothing to the multiplicity of the e, /, g's, or they contribute a 
strictly positive amount. Therefore, the curves whose classes contribute positively 
to the total multiplicity of the e, /, p's must not be contained in the image of /". 
Therefore, the curves in class ei,fi,gi are not in Im(/"). The remaining possible 
curves in the image of /" are shown in Figure 3.2. 

Recall that Im(/") (L~ C by assumption. Therefore the image of /" is con
tained in the outer components in Figure 3.2. But the image of /" is connected 
and must and [Im(/")] contains strictly positive multiples of each of e\,f\,gi, since 
a,b,c > 0. Therefore the image of /" is a union of the outer components compo
nents. Therefore the image of /" is not connected. This contradiction shows that 
our original assumption is incorrect. Therefore the result holds. 
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3.2 The minimal trivalent configuration 

We now consider the case when C is a minimal trivalent configuration. 

Proposition 8. Let 
N 

C = [ J (Ai U Bi U d ) 
i=i 

be a minimal trivalent configuration of rational curves satisfying Assumptions 1. 
Let a-i,bi, Ci denote the degree of the map onto the component Ai,Bi, Ci respectively, 
and let a = (a\,..., ayv), b = (b\,..., 6/v), c = ( c i , . . . , C A T ) . Also, let X continue to 
denote the blowup space constructed in Chapter 2. Assume 

a\ = b\ = c\ = 1. 

Then the local invariants of C are equal to the global Gromov-Witten invariants of 
X in the class (3, 

tf£b,c(C) = < > ^ , 

where 

(3=(ai + bi+ ci)h - aie x - 61/1 - cigx 

N 

~ {(ai ~ ai+i)ei+i + (Pi - bi+i)fi+i + (ci - ci+1)gi+1} . 
i=l 

and a A r + i = b^+i = C J V + I = 0. 

P R O O F : By assumption, the formal neighborhood of C agrees with the construction 
in X. Thus, in order to prove the Proposition it suffices to show that the only 
contributions to ( ) ^ are from maps to C. 

L e m m a 9. Let X,C and (3 be as above, where we assume that 

a-i = bi = c\ = 1. 

Then every stable map [/] € Mg(X,(3) has image C. 

P R O O F : Assume that there exists a stable map [/ : E —> X] € Mg(X,(3) such 
that Im(/") <f_ C. Then by the proof of Lemma 7, there exists a stable map [/"] € 
Mg(X,B) such that Im(/") is T invariant but Im(/") £ C. 

We show that this is a contradiction. Let F C X denote the union of the 
T-invariant curves in X; it's shown in Figure 2.3. We study the possible components 
of F contained in the image of / " . 
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Figure 3.3: The possible curves in Im(/") 

Suppose that Ax U Bx U C\ C Im(/"). Then /"[£] contains (at least) 3/x. 
Note that [F] has no. —h terms. Therefore Im(/") does not contain any of the 
curves h — e\ — fi, h — e\ — gi, h — fi — g\. And furthermore each of A±, B\ and C\ 
must have multiplicity one. 

There are no remaining terms that contain —e\, —j\ or — g\. Also, since the 
image of / " contains precisely one of A\,B\,C\, we conclude that the multiplicity 
of terms contain positive e\,f\,g\ must be zero. Thus, Im(/") is contained in the 
configuration shown in Figure 3.3. 

Now, note that in B the sum of the multiplicities of the ê 's is -2. This is 
true of the curve A\ as well. Therefore the total multiplicity of all other e terms 
must vanish. But all other e terms are of the form — ei+\ or ej. Since, the former 
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contribute nothing to the total multiplicity, we conclude that there are no ej terms 
in the image of /". Therefore Im(/") must be contained in the configuration shown 
in Figure 3.4. 

But Im(/") is connected, and contains h terms. Therefore it can not contain 
nor be contained in any of the three outer parts of Figure 3.4. Therefore Im(/") C C 
and thus Im(/") = C. This contradicts our assumption, and therefore at least one 
of Ai,B1, Ci is not in Im(/"). 

Without loss of generality, suppose A\ (t Im(/"). Let detf,detg,dftg denote 
the degree of /" on the components h — e\ — f\, h — e± — g\, h — f\ — g\ respectively. 
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Since A\ is not contained in the image of /" , we must have 

de,f + de,g > 0. 

Furthermore, in order for Im(/") to simultaneously be connected and contain 
—ei terms for i > 1, it must be the case that Im(/") contains two of 

{ei,ei-e 2,ei eN+1}. 

Thus 

de,f + de^g = 3 

df,9 = 0 

and B i , C i (/L Im(/"). This forces Im(/") to be contained in the configuration shown 
in Figure 3.5. 

Again we have that Im(/") is connected and contains —/j, —gj for some 
i,j > 1. Therefore Im(/") contains at least one of f\ — / 2 , / i — • • • — / J V + I and also 
at least one of g\ — g2, g\ — gw+i- But the multiplicity of f\ and g\ in /3 is — 1. 
Therefore 

de,f, detg > 2. 

This contradictions shows that our assumption A i (£_ Im(/") is incorrect. 
Therefore A i C Im(/"). An identical• argument also shows that B i , C i C Im(/"). 
However we showed above that A\,Bi,Ci <f. Im(/"). 

This contradiction shows that our original assumption is incorrect. Therefore 
there does not exist a point x G Im(/") such that x G" C, and Im(/") c C, Therefore 
Im(/") = C, and the result holds. • 

Remark 10. Note that this argument does not hold for general ai,6i,ci. For 
instance, it is a fun exercise to show that there is more than one T invariant config
uration of curves in X in the following classes. 

/?i =2(h - ex - e2) + (e2 - e3) 
+ 2 0 - / 1 - / 2 ) + ( / 2 - / 3 ) 

+ 2(h - 5i - g2) + ($2 - 93) 

#2 =4(h - ei - e2) + (e2 - e 3 ) + 2(fc - /1 - / 2 ) + 2(h - g i - g2) + (52 - £3) 

/33 =40 - ei - e2) + 4(e2 - e3) 
+ 4 0 - /1 - / 2 ) + 4(/ 2 - / 3 ) 

+ 4(/i - gi - 92) + 4(52 - gi)-
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Figure 3.5: The other possibility for curves in Im(/") 
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3.3 A chain of rational curves 

Next consider the case when C is a chain of rational curves. More precisely, let 

C = AiU---(JAN+i cX. 

Since C does not contain any of the curves P>i,Ci, the blowups with centers 
Pi and qi in the construction of X are extraneous. In order to simplify the argument 
in this case, consider the space 

Y = YN+1 *N+1> YN 771) P 3 

where the construction of Y follows that of X, without the extraneous blowups. So 
Yl+1 —• Yl is the blowup of Yl along the point pi, where pi is defined in Section 2.1. 
Thus, Y is deformation equivalent to the blowup of P 3 at N + 1 points. Since C 
does not contain the curves Bi, Ci, clearly the formal neighborhood of C in Y agrees 
with the construction in X. 

We continue to let Ei be the total transform of the exceptional divisor over 
Pi, and ei be the class of a line in Ei. Furthermore, we continue to let H denote 
the pullback of the class of a hyperplane in P3, and h be the class of a line in H. 
Then, {H, Ei} is. a basis for H$(Y) &n<^ {h, e%} is a basis for H2(Y). The non-zero 
intersection pairings are given as follows. 

H • H — h H-h = pt 
Ei- Ei = -ei Ei-ei = -pt 

The T-invariant curves in Y are shown together with their homology classes in 
Figure 3.6 

Proposition 11. Let the blowup space Y and the chain of rational curves C — 
A\ U • • • U AN be as constructed above. Let a = ai,..., a# .where ai is the degree 
of the map to Ai. Assume a\ > 0. Then the local invariants of C are equal to the 
global invariants of Y in the class B, 

where 
N+l 

8 = a\h - aiei - ^ ((H-x - a,i)Ci 
2=2 

and aN+x — 0. 
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h 

e i 

Figure 3.6: The T-invariant curves in Y 

P R O O F : C C Y has the desired geometry by construction, in order to prove the 
proposition it suffices to show that the only contributions to the Gromov-Witten 
invariants of Y in class 8 are from maps to C. 

Lemma 12. Let Y, C = A \ U • • • U AN and be as above. Then 

Im(/) = C 

for any stable map [/] E Mg(Y, /?).. 

As shown in Proposition 8, we may use the toric nature of Y to construct a 
stable map [/" : S Y] E Mg(Y,8) such that Im(/") is T invariant, but Im(/") (t 
C. We show that this leads to a contradiction. 

We study the class = 8. Note that the multiplicity of the — e± term is 
the same as that of h: Furthermore, each —e\ occurs along with h, and there are 
no —h terms. Therefore Im(/") can not contain any terms containing positive e\, 
nor can it contain any of the curves in class h. Thus, the image of /" is contained 
in the configuration of curves shown in Figure 3.7. 

Since a\ > 0, it must be that contains at least one ej term with non
zero multiplicity for i > 1. Also, Im(/") is connected and so we conclude that the 
image of / must not contain either of the curves of class h — e\ in Figure 3.7. 
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[Ai] = h - e i - e 2 

h — ei 

e2 — e3 e3 — e$ es — eg 

Figure 3.7: The possible curves in Im(/") 

Now, note that the total multiplicity of the e terms is —2ai, and that the 
curve A\ must also have this property. Therefore the sum of all other e terms must 
be zero. Since the other e terms are of the form a — e$+i or ej, we conclude that 
Im(/") does not contain any of the curves ej. Thus Im(/") is contained in the 
configuration depicted in Figure 3.8. 

[Ai] = h - e i - ei 

ei — ez ez — e^ e$ — ee &N — e j v + i 

Figure 3.8: The remaining possible curves in Im(/") 
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However, since Y is connected and contains h, we conclude that Im(/") C C, 
and therefore Im(/") = C. This contradiction shows that our original assumption is 
incorrect, and the result holds. • 
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Chapter 4 

Properties of the invariants of 
the blowup of P 3 at points 

In this chapter we prove results needed for the proofs of the main theorems. 

4.1 A vanishing Lemma 

We use the notation of subsection 1.2.4. 
Lemma 13. Let X be the blowup o/P 3 at n distinct generic points {x\,..., xn}, 
and (3 — dh — aiei w ^ = 2~2i=i ai> a n d assume that d > 0 and ai < 0 for 
some i. Then 

Mg(X,8) = Hi. 

Corollary 14. For any n points {xi,..., xn} and X and (3 as above the correspond
ing invariant vanishes; 

• < & = °-

This follows immediately from the deformation invariance of Gromov-Witten 
invariants and Lemma 13. 
Lemma 15. Let X be the blowup o/P 3 at n distinct generic points {xi,...,x^} 
and let (3 = 2~2i=i ~ a^i, with 2d < YA^I^' a n c ^ assume that ai > 0 for all i. 
Then 

Proposition 16. For each d > 0, Lemma 13 is equivalent to Lemma 15. 

To prove Lemma 13 or Lemma 15, it suffices to prove the Lemmas for some 
particular choice of {x\,... ,xn} or {xi,... ,Xfi}, since if Mg(X, 8) (or Mg(X,B)) is 
empty for a specific choice of points, then it is empty for the generic choice. 
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P R O O F : We prove that Lemma 1 3 is false if and only if Lemma 1 5 is false. First, 
without loss of generality, we may reorder the centers of the blowup so that ci\ < 
• • • < o-m < 0 < a m + i < • • • < an for some 1 < m < n. 

Choose {x\,... ,xn} so that {x\,... ,xm} are coplanar, as are {xm+i, , xn}. 
Let D' and D" be the classes of the proper transforms of those planes, respectively, 
so that 

D' — H — E\ — • • • — Em 

D" = H — Em+i — • • • — En. 

Assume that Lemma 1 3 is false. Then there exists [/] G Mg(X,3). We show 
that Lemma 1 5 fails by studying the image of /. Im(/) decomposes into several 
components. Note that 8 • E\ = a\ < 0 . Thus Im(/) has a component(s) contained 
in Ei. Denote the union of these components by Ci. If Im(/) has any components 
contained in Ej we denote them by Cj as well. As ej is the class of a line in Ej = P2, 
it must be that 

[Cj] = I'jtj 

for some bj > 0 . Let J C { 1 , . . . ,n} be the indexing set of these components, 

J = { 1 < j < n\ There exists a component of'Im(/) c Ej}, 

and let CE be the union, 
[CE} = /ZCJ. 

Im(/') decomposes further. As 2d = Y17=i ai-> w e n a v e P ' (D' +' D") — 
2d — 2~27=i a i = 0 &nd, because cii < • • • < am < 0 < am+i < • • • < an, 

8-D"=(d- aA <(d-JTaA =8-D>, 
\ i=m+l J \ i = l / 

SO 
n 

d- « i < 0 . 

i=m+l 

Thus 

(8 - [CE]) -D" = d-YJ*i-Y. bJ < °-
i = l j>m 

Therefore there exists a nonempty closed subscheme of Im(/) n D" which does not 
have components in the exceptional divisors. Denote it by C". 
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Let [Im(/)] denote the class of Im(/). Then in summary, we have 

[Im(/)] = [CE] + [C] + [C'l 

where 

•jeJ 

[C"]=d"h- £ 
i=m+l 

n n 

[C']=(d-d")h-}~2aiei+ }~2 4ei~Y.bier 
i=l i = m + l j£j 

Here bj > 0 as noted above. Also d" > 0, as C" is not contained in the exceptional 
divisors Ej, and d — d" > 0, since Im(/) is connected. For later use, we point out 
that bi > 0 and as a result 

5>>o. 
jeJ 

We now show this implies Lemma 15 could not be true. Consider the curve C 
which consists of the components of Im(/) which are not contained in the exceptional 
divisors Ej. It is of class 

n 
0 := [Im(/)] - [CE] = [C] + [C] = dh~YJ - J _ bjej. ' 

i = i jeJ 
Note that 

n n 

2d = Y<ii <~^rai + ^r bj. 
i=i i=i jeJ 

Also 6 • Ei > 0 as C has no component in the exceptional divisors Ej. Thus 
the pair (X,8) are as in Lemma 15. Clearly there is a stable map g such that 
[Im(<?)] = [C1] + [C"\ and consequently 

[g]eM9(X,P), 

which contradicts Lemma 15. 
Conversely, assume that Lemma 15 is false, so that there exists [/] € Mg(X, 8). 

Let X be the blowup of X at € Im(/) where x* is not contained in the excep
tional divisor. Such a point exists as 8 • Ei > 0 and Im(/) is connected. Let 
a* = — YA=I There is a curve C* C E* in the exceptional divisor over x* of class 
[C*] = —a*e* such that n Im(/) ^ 0, where e* is the class of a line in E*. Then 
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Define 8 := [C* U Im(/)] = dh — a*e* — a\e\ - • • • — a^e^. Evidently the pair (X, 8) 
are as in Lemma 1 3 , and as before it is clear that there exists a stable map / with 
Im(/) = C* and 

[f)€Mg(X,0), 

which contradicts Lemma 1 5 . 
• 

P R O O F (OF L E M M A 1 3 ) : Suppose there exists [/] e Mg(X,8). Then with 
the above choice of {x\,..., xn} we have the above decomposition of Im(/). We use 
induction on d. Suppose d = 1 , then we have 1 — d" > 0 and d" > 0 , which is a 
contradiction. 

We now proceed inductively. Consider the curves C and C" defined above. 
Suppose 2d" > Y:=m+i < ̂ d 2(d - d") > Z7=i <* - Etm+i < + by Then 

n n 
^ a1<2d"< £ <-zZhr 

i=m+l i=m+l j£j 
This is impossible. Therefore either 2d" < E"=m+i ai o r 2(d ~ d") < E?=i ai ~ 
Y^i-m+i a'l + Y^jejbj- Therefore by Lemma 1 5 and the inductive hypothesis there 
is no decomposition of [Im(/)] involving either C' or C", and therefore there is no 
[f)€Mg(X,8). • 

Corollary 17. Let X be the blowup o/P3 along points and define 8 = dh—2~27=i aiei 
where 2d = E i L i ai a n d d > ®- Also define 

X'^X 

to be the blowup of X at a generic point p, so that X' is deformation deformation 
equivalent to the blowup o/P3 at n + 1 distinct points. Let {h1,e[,...,e'n+1} be a 
basis of H2(X'),. and let 8' = dh' - ]T" = 1

 aA-  T hen  

(d;ai,.. .an,0)g = (d;ax,...,an)g 

P R O O F : This follows from Lemma 1 5 (or equivalently Lemma 1 3 ) . The method of 
proof used here was used in [ 5 ] to prove what is included as Lemma 2 0 here. This 
result also follows from the more general results of Hu in [ 1 9 ] , but the proof is easy 
in this case, so we include it in order for our results to be more self contained. 

We will show that any [/'] 6 Mg(X',8') has an image disjoint from E'n+1, 
the exceptional divisor over p. Note that any [/] € Mg(X,8) has an image disjoint 
from p. It follows that the natural map Mg(X', 8') —> Mg(X, 8) induced by ir is an 
isomorphism of the moduli space and their virtual classes. Indeed, it will follow that 
both Mg(X',8') and Mg(X,8) are canonically identified with Mg(X'\E'n+l, 8'). 
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Let [/' : E X'} e Mg(X',B'). Suppose Im(/') n E'i+1 + 0. Note that 
/*[E] • E'i+l = 0. Therefore Im(/') has a component C contained in E[+l. Since 
d > 0, Im(/') also has a (union of) component(s) C not contained in E'i+1. The 
classes of these components are given by ' 

[C] = dh~Y^ ate'i - me'i+l [C'\ = me'i+1 

where m > 0. Note that 2d = X)ILi ai- Therefore 
n 

2d < + ' 
i=i 

Therefore the component C does not exist by Lemma 15. This contradiction shows 
that our assumption was incorrect. Therefore Im(/') n E'i+1 = 0, and the corollary 
is proved. • 

4.2 The geometry of the Cremona transformation 

This section consists essentially of section 5 from Bryan-Karp [5]. In particular, 
every result in this section is joint with Jim Bryan. It is included so that this 
document may be self contained. 

Theorem 18. Let 8 = dh — YA=I a^ei- w ^ = YA=I ai and assume that cu ^ 0 
for some i > 4. Then we have the following equality of Gromov-Witten invariants: 

( )*/3 = ( )*/?' 

where 8' = d'h — Y^l=\ a'iei has coefficients given by 

d' = 3d- 2(ai + a 2 + a 3 + a 4 

a'1 = d- (a 2 + a 3 + a 4) 

a'2 = ' d- (ai + a 3 + a 4) 

a 3 = d- (ai + a 2 + a 4) 

a'4 = d- (ai + a 2 + a 3) 

*6 = a 5 

a n = an. 
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In this section, we prove Theorem 18 by studying the geometry of X, the 
blowup of P 3 at n points, and X, the blowup of X along a certain configuration of 
six lines. 

Let X be the blowup of P 3 at n distinct points xi,... ,xn where n > 4. We 
take the first four points tobe the fixed points of the standard torus action on P 3 and 
we take the remaining points to be any fixed points of the Cremona transformation: 

P 3 —* P 3 

( 2 0 : zi : z2 : z3) *->(—: — : — : —). 
zo zi z2 z3 

Remark 19. The case where n — 4 is greater than the number of fixed points is 
easily handled by including in the blowup locus pairs of points exchanged by the 
Cremona transformation. However, for notational convenience we will assume that 
the points xi,...,xn are fixed. 

Let Ijk, 1 < j < k < 4 be the proper transform of the line through Xj and 
Xk. Let 

Tr : X -» X 

be the blowup of X along the six (disjoint) lines Ijk-
X admits an involution r : X —> X which resolves the Cremona transforma

tion. The map r is discussed in more detail by Gathmann in [15], although note 
that our X has the additional blowups at x§,...,xn whose corresponding excep
tional divisors are simply fixed by r, or possibly exchanged if the points x^...xn 

include non-trivial orbits (c.f. Remark 19). 
We briefly describe the divisors and the curves on X and X and their in

tersections. Generally, we denote divisor classes with upper case letters and curve 
classes with lower case letters. - Classes on X will have a hat, and classes on X will 
not. 

The homology groups H4(X; Z) and H2(X;Z) are spanned by the divisor 
and curve classes respectively: 

HA(X;Z) = {H,E1,...,En), H2(X;Z) = (h,eu ...,en). 

Here H is the pullback of the hyperplane in P3, h is the class of the line in H, Ei is 
the exceptional divisor over X j , and e j is the class of a line in Ei. 

The intersection pairing on X is given by: 

H • H — h, Ei • Ei = — ei, 
H • h = p, Ei-ei = -p 
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where p £ HQ(X; Z) is the class of the point and all other pairings are zero. 
The homology groups H^(X;1) and H2(X;Z) are also spanned by divisor 

and curve classes: 

tf4(X;Z) = (H,Ei,Fjk), H2(X;Z) = (h,eiJjk/, 

where 1 < i < n and 1 < j < k < 4. Here H is the proper transform of H and h 
is the generic line in H. Ei is the proper transform of Ei and ii is the class of the 
generic line in Ej. Fjk is the component of the exceptional divisor of X —> X lying 
over Ijk, and fjk is the fiber class of rr : Fjk —> Zjfc. 

Note that Fjfc —> Zjfc is the trivial fibration and the class of the section §jk is 
given by 

Sjk
 = h &j &k + fjk-

The intersections are given as follows: 

Fjk ' Fjk — §jk fjki H H = h, Ei Ei = 
H Fjk = fjk.i Ej Fjk = fjk 
H h = P, Ei ei = -P, Fjk ' fjk — Pi 

where p € HQ(X; Z) is the class of the point and all other intersections are zero. 
The action of r on divisors is described by Gathmann [15] in section 6. The 

action of r on the curve classes of X is then easily obtained using Poincare duality 
and is given as follows: 

= 3h- (ei + £2 + e 3 + e4 

T*e i = 2h- ( e 2 + e 3 + e 4 ) , 

T*e2 = 2h- ( e i + e 3 + e 4 ) , 

r * e 3 = 2h- ( e i + e 2 + e 4 ) , 

T*e 4 = 2h- ( e i + e 2 + e 3 ) , 

T*e5 - hi 

T*fjk — Sj'k'i 

where {/, k'} is defined by the condition {j, k} U {f, k'} = {1,2,3,4}. 
For a class 8 = dh — Y^i=i w ^ n ^ = J2i=i a*' w e n a v e ~ ^x ' P = ® 

and so the degree 8 Gromov-Witten invariants have no insertions. Since r is an 
isomorphism, it preserves the Gromov-Witten invariants of X so in particular, 
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where 
n 

T * / ? = d'h - Y^ a'i&i 
i = l 

has coefficients d', a[,..., a'n given by the equations of Theorem 1 8 . 
To prove Theorem 1 8 then, it suffices to prove the following 

Lemma 20. Let d, a i , . . . , an be such that 2d = Y^7=i a *
 a n d

 a i 7 ^ 0 for some i > 4 . 

Then 

where 6 = dh — Yli=i ai&i a n d P = dh — Y%=i ai&i-

Remark 21. The condition that a? ̂  0 for some i > 4 is necessary. For example, 

1 = ( ) o , h - e i - e 2 ^ ( )o,k-ei-e2
 = °" 

P R O O F : The lemma follows from the general results of Hu [ 1 9 ] . We warn the reader 
that the theorems in [ 1 9 ] are incorrect as stated; the above example provides a 
counterexample. However, the author has informed us that a crucial hypothesis is 
missing in the main theorems of [ 1 9 ] . Namely, in Hu's notation, he must additionally 
assume that the class p\(A) is not exceptional. 

The paper [ 1 9 ] uses the machinery of relative Gromov-Witten invariants and 
gluing. To make our paper self-contained, we provide below an independent proof 
of Lemma 2 0 in the case of n = 6 which is what is needed for the closed topological 
vertex in [ 5 ] . 

Assume that n = 6 . Without loss of generality we may assume that as ̂  
0 . We will show that any [/] £ Mg(X,J3) has an image which is disjoint from 
F = Uj^Fjk, and any [/] £ Mg(X,B) has an image which is disjoint from I = 
Uj<kljk- It follows that the natural map Mg(X,(3) —> Mg(X,8) induced by ir is 
an isomorphism of the moduli spaces and their virtual fundamental classes. Indeed, 
if both Im(/) ( I F = U and Im(/) n I = 0 for all stable maps [/] £ Mg{X,(3) and 
[/'] £ Mg(X,P), then both Mg(X,(3) and Mg(X,/3) are canonically identified with 
Mg(X\Fj). _ 

Let [f : C -> X] e Mg(X,3) and suppose that Im(/) n Ijk / 0 for some j 
and k. Im(/) gt Ijk since ^ 0 and so 

MC) = C' + bljk 
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where C meets Ijk in a finite set of points (b can be zero here). Let C' be the proper 
transform of C Since C Pi Ijk ̂  0, we have C' • Fjk = m > 0. Therefore we have 

6 

C' = dh - Y ai&i ~ Hh - ej - e\) - mfjk. 

Define {f, k'} by the condition {f, k'} U {j, k} = {1,2,3,4} and let 

Djk = 2H — (Ei H h EQ) — Fjk — Fjiy-

Then 
Djk • C' = -m < 0. 

However, this contradicts Lemma 22 which states that Djk is nef. 
Lemma 22. Let 1 < j < k < 4 and define j', k' by the condition {j, k} U {j', k'} = 
{1,2,3,4}. Then the divisor 

Djk = 2H — (Ei H h EQ) — Fjk — Fj'k' 

is nef in X. 

P R O O F : Let D' and D" be the proper transforms of the planes through {xj,Xk,xs} 
and {XJ/, Xk>, XQ} respectively. Then 

D' = H — Ej — Ek — E§ — Fjk 
D" = H — Eji — E^ — EQ — Fj^' 

so Djk = D' + D". 
To see that Djk is nef, it suffices to check that Djk • C > 0 for any curve 

Cdb'. 
D' is isomorphic to the blowup of P 2 at three points. Under this identifica

tion, the classes of the line and the three exceptional divisors are 

h'-=h — fjk, e'j = ij - fjk, e'k — ek-fjk, e'5 = e5. 
The curve C c D' has class 

dh! — aje'j — ake'k — 0.5 

and since h! — e'b is a nef divisor in D', we have 

d > a^. 
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The first Chern class of the normal bundle of D' C X is 

(H - Ej - E k - E 5 - Fjk)2 = -eg = -e'5 

and so 
D' • C = —e'5 • (dh! — cije'j — ake'k — 0565) = —a*, 

where the intersection product on the right hand side is on D'. 
Therefore 

Djk • C = D' • C + D" • C 
= - a 5 + d 
> 0. 

• 
Thus Im(/) n I = 0 for all [/] e ~Mg(X, 6). 
We argue in a similar fashion for ~Mg(X,/3). Let [f : C -> X] e ~Mg(X,(3) 

and suppose that Im(/) C\'Fjk ̂  0 for some j and k. Since 8 • Fjk = 0, f*(C) must 
have a component C" contained in Fjk- We then have 

P = U(C) = c' + c" 

where C is non-empty since $ • E§ = a*, > 0. 
Since C" C Fjk is an effective class in Fjk = IP1 x P1, it is of the form 

a§jk + bfjk with a, 6 > 0 and a + b > 0. 
Define as above. Then Djk -(3 = 0 and .Djfc • C" — a + b > 0 and so 

.Djfc • C" < 0, contradicting the fact that Djk is nef. 
This proves that Im(/) D F = 0 for all [/] £ Mg(X,$) and Lemma 20 is 

proved. 
This then completes the proof of Theorem 18. 
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Chapter 5 

Proofs of the main theorems 

5.1 Proof of Theorem 1 

Let X = X2 be as constructed in section 2.1 and let Y = Y2 be as constructed in 
section 3.3. By Proposition 6, we have 

KMCW = ( & 

where 
P = a{h-e1- e2) + b(h - /i - h) + c(h - gx - #2)-

So, we inspect the invariant 

() *p = (« + b +C; A> M ,
 &> c' C)J • 

By Theorem 18, we have 

(a + fe + c; a, a, fe, fe, c, c) J = (3c — a — fe; c — fe, c — fe, c — a, c — a, c, c)* 

Thus, by Corollary 14, N^bc(C) — 0 unless a = fe = c. In that case, 

(3c — a — fe; c — fe, c — fe, c — a, c — a, c, c) J = (a; 0,0,0,0, a, a) J 

= (a;a,a)J 
where the last equality follows from Corollary 17. • 

5.2 Proof of Theorem 2 

Let X = XN+l be as constructed in section 2.1 By Proposition 8, we have 

*£b :c(c) = ( & 
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where 

• 3 = 3/x - ei - / i - 9 1 

J V + l 

_ X] ~ + (bi - + (ci - c i +i ) 9 i+i} , 
i=i 

where a\ — b\ = c\ = 1 and a^+i = 0 J V + I = cyv+i = 0. 
Assume that the invariant is non-zero: 

( )*p =(3; 1,1 — a2,..., aw-i — ajv, fljv, 
1,1 - h, • • • ,bN-i - &/v,&JV, 

1,1 - C 2 , . . • , C A T _ l - C N , C N ) * 

Then, by Lemma 13, the coefficient of each ei,fi,gi is non-negative. Thus 

1 > a,2 > • • • > ClN > 0, 
1 > b2 > ••• > bN > 0, 
1 > c 2 > • • • > C A T > 0. 

Therefore we compute 

1,0,...,0,1, 
1,0,. ..,0,1)* 

= ( 3 ; l , l , l , l , l , l ) f , 

where again the last equality follows from Corollary 17. 

5.3 Proof of Theorem 3 

Assume that the invariant is non-zero: 

. ̂ b ; c ( C ) = ( )lP 

= (ai;ai, a\ - a 2,...,ajv-i - a/v, «N) 
^0 

Here 1" continues to denote the space constructed in section 3.3. 

Y 
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By Corollary 14 the multiplicities are decreasing. 

o-i > 0-2 > • • • > a-N > 0 

Therefore, as ci\ > 0, there exists some 1 < j < N such that 

ax > «2 > • • • > cij > 0 cij+i = • • • = a/v = 0 

Then by Corollary 17 we compute 

Ni,b;c(C) = (ai;ai,ai - a 2 , . . . , a j _ i - a,-, a,, 0,..., 0) 
y j - - i = (ai;ai,ai - a2,..., a^-i -aj,cij) 

Note that, for any 1 < i < j + 1, we may reorder 

/ \Yj+1 

(ar, ax, ai - a2,...., aj-i - aj, a,j)g = 

(ai; cti, a,i — aj+i, 0,0, a\ — a2,..., a j _ 2 — — at+2, • • •, 0,-1 — aj,aj) 

Applying Cremona invariance (Theorem 18) we compute 
( )I/3+ = ~~ 2(°i _ «i - («i - o-i+i), 0, a i + i - aj, a i + i - a*, 

y j + l ' 

ai — a2,..., aj-i — aj, aj) 

Then by Lemma 13, aj+i > aj. Since this holds for all 1 < i < j we have a\ < • • • < 
aj. Therefore 

a\ = • • • — aj 

Thus the invariant reduces to 

< ) ^ = < a ; M , " - , 0 , a ) f + 1 

= {a;a,a)g 

• 
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Appendix A 

Calabi-Yau configurations in 
blowups of P 3 

A . l Another geometric construction 

In this appendix we construct a locally Calabi-Yau configuration of rational curves 
C corresponding to any arbitrary finite subtree of the maximal trivalent tree. 

We construct these configurations as subvarieties of a space X, which is 
obtained via a sequence of toric blowups of P3. 

X — XN ™Ni XN~l 7171,-1 > ... —L> X1 —^ X° X' X" — P 3 

Our rational curves will be labeled by Aa, Ba,Ca, where a is a binary number, 
reflecting the trivalent nature of the configuration. Curves and homology classes in 
intermediary spaces will have super-scripts, and their corresponding proper trans
forms in X will not. 

As above, the standard torus T = (C x ) 3 action on P 3 has four fixed points; we 
now label the four T-fixed points in X" := P 3 by p' = (1 : 0 : 0 : 0), q' = (0 : 1 : 0 : 0), 
r' = (0 : 0 : 1 : 0) and s' = (0 : 0 : 0 : 1). Let A", B" and C" denote the (unique, T-
invariant) line in X" through the two points {p', s'}, {q', s'} and {/•', s'}, respectively. 

Define 
x'^Ux" 

to be the blowup of X" at the three points {p', q', r'}, and let A', B', C C X' be the 
proper transforms of A", B" and C. The exceptional divisor in X' over p' intersects 
A' in a unique fixed point; call it p. Similarly, the exceptional divisor in X' also 
intersects each of B' and C in unique fixed points; call them q and r. Now define 

y0 7TQ, y / 
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Figure A.l: The T-invariant curves in X 1 

to be the blowup of X' at the three points {p, q, r}, and let A 0 , B ° , C° C X° be the 
proper transforms of A',B',C. Clearly X° is deformation equivalent to a blowup 
of P 3 at six distinct points. The T-invariant curves in X° are depicted in Fig
ure A.l, where each edge corresponds to a T-invariant curve in X°, and each vertex 
corresponds to a fixed point. 

We now construct a sequence of blowups, beginning with X°. Define po, Pi € 
X° to be the two fixed points of the exceptional divisor over p which are not con
tained in A 0 ; let qo,qi,ro and r\ be defined similarly, as indicated in Figure A.l. 
Let J 4 Q ' ^ I

 c denote the T-invariants curve intersecting the pairs {A°,po} and 
{A°,pi}, and define BQ,B®,CQ and C® analogously. Define 

XX^X° 

to be the blowup of X° at the six points {po,pi,qo,qi,ro,ri}. Let AL,BL,CL C X1 

be the proper transforms of A°,B°, and C°. 

We iterate this process to construct X, as follows. Fix a non-negative integer 
TV. For any binary number a, let \a\ denote its length, i.e. if a = a\ • • • a\ where 
ai G {0,1}, then |a| = I. Define 

to be the blowup of X 7 - 1 along the 3 x 2J points {pa, qa, ra}\a\=y Let A 3

A , BJ

A, CA C 
X-7 denote the proper transforms of A^^B-JF1 and CA~ for all \a\ < j. Let 
Pad and pai denote the two fixed points of the exceptional divisor ( 7 T j) - 1(p a) not 
intersecting A J

A , and define qpo, qpi, r 7n, r 7 i similarly. Now, for each \a\ = j — 1, 
define Aao, A A \ to be the unique, T-invariant lines intersecting {Aa,pao},{AA^PDL}, 
and define Bao, BA\, Cao,cal similarly. The T-invariant curves of X 1 are shown 
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Figure A.2: The T-invariant curves in X1 

in Figure A.2. Terminate this process after obtaining the space X , and define 
X = XN. 

Finally, define the configuration C c l b y 

C= \J Aal)BaUCa, 
\a\<N 

where 

A - AN 

n — r<N 

for all |a|, \B\, \^\ < N + 1. The configuration C is shown in Figure A.3, along with 
all other T-invariant curves in X. 

A . 2 Intersection products and normal bundles 

A.2.1 The Calabi-Yau condition 

We now describe H*(X,Z), identify the class of the configuration [C] & H2(X,Z), 
and show that C is a locally Calabi-Yau configuration in X. All (co) homology is 
taken with integer coefficients unless otherwise noted. Let H" denote the class 
of a hyperplane in X" = P3, and let H e H^(X) denote the class of its proper 
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/f' h k V 

Figure A.3: The T-invariant curves in X 
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transform. We may slightly abuse notation by not distinguishing between a sub-
scheme and its homology class. Let E',F',G' G H 2 P O denote the exceptional 
divisors in X' —> X" over the points p',q' and r', and let E',F',G' G H±(X) de
note their proper transforms. In addition, let E^, Fa

a\ G$ G ii/"4(Xl al) denote 
the classes of the exceptional divisors X^ —> X l a ' _ 1 over the points pa,Qa,ra, and 
let Ea,Fa,Ga G H$(X) denote their proper transforms. The collection of all such 
classes {H, E', F', G', Ea, Fp, G 7} span HA{X). 

Similarly, let h" G H2(X") denote the class of a line in H", and let h G 
i?2p0 denote its proper transform. Also, let e',f',g' denote the class of a line 
in E',F',G', and let e',f',g' denote the class of their proper transforms in X. 
Similarly, let elal, ft[,9lal G H4{X^) denote the class of a line in E^,Fa

a[,G]S\ 
and denote their proper transforms by ea, fa, ga G H^(X). Then iJ 2(X) is generated 
by {Ke1 J^g1 ,ea,fp,g-,}. 

The intersection product ring structure is given as follows. Note that X is 
deformation equivalent to the blowup of P 3 at 3 + YJJ=O 3 X 2-? = 3 X 2n+1 distinct 
points. Therefore, these 

H •H = h H •h = pt 
E' E' = -e' E' • e = -pt 
F' F' = -f F' r = -pt 
a G' = -9' G' 9' = -pt 

Ea • Ea = Ea • &a = -pt 
Fa- Fa = -fa Fa- fa. = -pt 
Ga • ga = -ga Ga • 9a = -pt 

are all of the nonzero intersection products in H*(X). 

any a = ai-- •011, 

h-e' -- e if I = 0 
&a.\•••a/_ 1 ~~ ea if 0 < I < N 

h-f -/ if I = 0 
fa\--ai_ 1 — fa if 0 < I < N 

h-g'- -9 if I = 0 
9a\-ai- 1 ~9a if 0 < I < N 
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Thus, we compute 

Kx • [C] = UH- 2{E' + F' + G')-2 Y-Ea + Fa + Ga 

\ \a\<N 

{{h-e'-e) + {h-f-f) + (h-g'-g)+ 

'z ], (fiai—ai-i — 6 a + fai-oti_i fa "f~ 9ot\---ai—i 9a) J 
0<KJV / 

= (4 - 2 - 2) + (4 - 2 - 2) + (4 - 2 - 2)+ 
-2 ((1-1) + (1-1) + (1-1)) 

0<1<N 

= 0 

Therefore C is a locally Calabi-Yau configuration in X. 

A . 2 . 2 N o r m a l bundles 

We now describe the normal bundles of the components of C in X. These are given 
as follows. 

NAa/X = NBa/X = NCa/X 
O P I(-1) ©Opi(-l) if|a| = 0 
OPI © C P i ( - 2 ) ifO<|a|<iV. 

The equivalence NAa/X = NBa/x = ^ca/x is easily seen by relabeling points. To 
calculate NA/x, let D'[ c X" be a plane containing the line A", and let D\ denote 
its proper transform in X. Then A c D\, and NA/Dl is a sub bundle of NA/X of 
degree A • A. Note that D\ is deformation equivalent to the blowup of a plane at 
two points, and [A] — h — e' — e. Thus, the intersection product in F)\ is given by 

A • A = (h - e' - e) • (h - e' - e) = -1. 

The set of planes D\ containing A span NA/X, and the above argument holds for 
any such plane, so we conclude NA/X — 0(—1) © 0(—1). 

Now consider Aa, where a = a.\ • • • a.\ and I > 1. Note that Aa C E0il...0ll_1. 
As above, NAa/Eai...ai t *s a S U D bundle of NAajx of degree j4 a • A a, where the 
product is taken in E^...^^. Recall that, by the functoriality of blowups, Ea is the 
blowup of'P2 at a point, and that eai...ai_1 is the class of a line in Eai...ai_1, and ea 

is the exceptional divisor. We compute 

Aa • Aa — (eai--ai—i &a) ' ifiai-ai—i &a) = 1 1 — 0. 
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We now show that the total degree of the normal bundle is -2, forcing the 
result to hold. Inspect the defining exact sequence 

0 - TAa -+ Tx - NAa/x - 0. 

This implies 

ci (NAa/x)=cl (Tx)-[Aa}-Cl (TAa) 
i 
AH- 2{E' + F' + G')-2 ]T Ea + Fa + G0 

\a\<N 

( c a i - a ( _ l — 6 Q ) 2pt 

= 0 - 2{pt - pt) - 2pt 

Thus the total degree of the normal bundle is -2, and so NAa/x = 0(a) © 0(b), 
where a + b = —2. Since we have already shown that (without loss of generality) 
a = 0, we conclude 

NAi/x^O®0{-2). 
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