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Abstract 
The present paper is concerned with the study of the L2 cohomology spaces of negatively 
curved manifolds. The first half presents a fmiteness and vanishing result obtained un
der some curvature assumptions, while the second half identifies a large class of metrics 
having the same L 2 cohomology as the Hyperbolic space. For the second part we rely on 
the Heat-Flow method initiated by M.Gafmey. 
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Introduction 
The study of L2 harmonic forms on a complete Riemannian manifold is a very interesting 
and important subject; it also has numerous applications in the field of Mathematical 
Physics (see for example [22], [16]). For topological applications of L 2 harmonic forms 
on noncompact manifolds see [5], [24]. It is well known that on the Hyperbolic space 
the harmonic L2 forms are zero, except in the case of forms of degree equal to the half 
dimension. A possible generalization of this is the following conjecture of Dodziuk & 
Singer [9], [23]: 

Conjecture: Let Mn be a complete Riemannian manifold with sectional curvature K < 
—5 < 0. Then M has the same L2 cohomology as E P . 

There is another, probably more compelling reason for considering the conjecture above. 
Namely, it can be used to obtain topological information about compact quotients of M, 
as we shall now explain following Atiyah [2]. 

Let r be a discrete cocompact group of isometries acting freely on our noncompact 
manifold M. "Cocompact" means that the quotient M/T is compact. As the action 
of T is free, M/T is thus a compact Riemannian manifold. Since T commutes with 
the Laplace operator, the Hilbert spaces Hk are T-modules. Atiyah defines real valued 
L 2 -Bet t i numbers 

^ = dim r7Y f c , 

satisfying Poincare duality, i.e B$ = J3'^imM~k

) a n d the corresponding 1? -Euler charac
teristic 

x(M,r) = £ ( - l ) f c B * . 
k 

Atiyah shows that x ( M , T) equals the ordinary Euler characteristic of M/T which is 
an integer, and this is the basis of the relation between L2-cohomology of M and the 
topology of M/T alluded to above. 

More precisely, Hopf asked whether the sign of the sectional curvature determines the 
Euler characteristic of a compact Riemannian manifold. For example, if i V 2 n is a compact 
manifold of dimension In with negative sectional curvature, one should have 

(-irx(jv2n) > o. 
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Since the sign of the sectional curvature does not determine the sign of the Gauss-Bonnet 
integrand, this cannot be deduced from algebraic considerations alone. 

Hopf conjecture is implied by the above mentioned conjecture as Dodziuck [8] and Singer 
[22] show by proving 

B£ = 0 if and only if 7ik = 0. 

However, Anderson [1] constructed simply connected, complete, negatively curved man
ifolds for which the Dodziuck-Singer conjecture does not hold. This difficulty might be 
of a purely technical nature as Anderson's examples do not admit compact quotients. 

Having in mind the examples produced by Anderson we should obviously modify the 
conjecture of Dodzmk & Singer to the following: 

Conjecture: Let Mn be the universal cover of a oriented Riemannian manifold with 
negative sectional curvature. Then M has the same I? cohomology as EP\ 

It is now easy to see, although not very interesting from the point of view of Hopf's 
original conjecture, that in the two dimensional case the conjecture holds. Let us sketch 
the proof of this conjecture for covers of compact surfaces: 

Let ijj : ( M , g) —> ( M , g) represent the cover map of the negatively curved two dimen
sional manifold M 2 . Since the sectional curvature is negative, it follows the genus of the 
surface M is strictly larger than one. Consequently M admits a metric h of constant 
sectional curvature equal to — 1 . Consider now the pullback of this metric on the univer
sal cover of M. Let us denote this metric by h = tp*h. According to Cartan-Hadamard 
theorem [7] the Riemannian manifold (M, h) is isometric to the hyperbolic plane, hence 
they have the same L2 cohomology. Moreover, since M is compact it is obvious that g 
and h are quasi-isometric. This also implies that "upstairs" on the universal cover, h and 
g are also quasi-isometric. Hence the conjecture in dimension two holds. 

As we see from the considerations above there are serious reasons to belive the conjecture 
will probably hold only in the case of universal covers of compact manifolds. Also we 
think it is very important that such metrics should be compared pointwise with the 
standard hyperbolic metric. A small step in this direction is done in the last chapter of 
this paper. 

In a positive direction there is the following result of Donnelly and Xavier [11], 
Theorem (Donnelly & Xavier): Let M be a complete, simply connected manifold, with 



pinched sectional curvatures -1 < K < -1 + e for 0 < e < 1. Ifp<~=- then 

Hp = 0, for e<l-—?—2. 
(n — ly 

A more recent refinement of their result is due to Jost and X i n [18], 

Theorem (Jost & Xin): Let M be a Cartan-Hadamard manifold of dimension m > 2 
whose sectional curvature satisfies —a2 < K < 0 and whose Ricci curvature is bounded 
from above by —b2, where a,b are positive constants. If b > 2pa, then W — 0, provided 
p ̂  m/2. 

A more complete statement was made by Gromov [14], which settles the conjecture in 
the case of d-bounded Kahler manifolds, 

Theorem (Gromov): If M2n is a complete d-bounded Kahler manifold (in the sense 
that dn = to; LU being the Kahler form of M and n is bounded in the supremum norm) 
then Hk = 0 iffk^n andHn ^ 0. 

Also a very interesting result in this direction is due to J.Dodziuk [10], 
Theorem (Dodziuk): Suppose M is diffeomorphfic with M n and has a metric which 
in terms of geodesic polar coordinates centered at some point of M can be written as 

ds2 = dr2 + f{r)2d92. 

Then Hk = 0 if k ^ n/2 and fn~ldr = oo. If n is even and J^°l/fdr < oo then 
rlnl2 is infinite dimensional. 

One of the first results on the vanishing and finite dimensionality of the space of harmonic 
L2 forms were obtained by E.Vesentini in [25]. The main result of the first part of this 
paper follows his ideas closely. This result can be stated as follows: 

Theorem 0.0.1. Let M be a complete manifold of infinite volume. Then we have the 
following: 

a) / / A i > IM(Rk) then Hk = 0, 

b) IfXi > IM\Br(Rk) then dim7^° < oo. 

Here lM(Rk) is a positive quantity depending on the curvature operator acting on k-
forms (see Definition 2.0.17) and Ai is the Poincare constant of the manifold. As a more 
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practical application of Theorem 0.0.1 we also prove vanishing and finiteness of the L2 

spaces if the sectional curvature is appropriately pinched outside some compact set (see 
Corollary 2.0.20). 

Following an observation of Gromov in [14] one can see that the space of I? harmonic 
forms is invariant under bi-Lipschitz homeomorphisms. Using the heat-flow method, 
initiated by Gaffney in [13], the author proves that if M is a noncompact manifold and 
g and g are two complete metrics on M such that L2Q,g C L2Clg then there exist a map 
Hg '• Jig ~~^ H-g which is linear and injective. As an application of this statement the 
author constructs a large class of metrics (which includes the quasi-isometry class of the 
hyperbolic metric) having the same I? cohomology as the Hyperbolic space. The nature 
of this comes from comparing the metric pointwise with the Hyperbolic one. 
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Chapter 1 
Preliminaries 

Let M be a smooth, complete and oriented Riemannian manifold. Let C°°Vtk denote the 

space of smooth forms. The metric on M induces a natural pointwise scalar product 

on forms and let us denote this by (a(x),/3(x)) where x G M and a,(3 G C°°£lk. Thus 

we obtain the square of length at a point x € M of a form a G flk as {a(x), a(x)) > 0. 

This leads to the definition of a norm of a form (if finite) by 

JM 

where dV is the volume form of the manifold and x represents the variable of integration. 

By completing this space with respect to the above mentioned norm we obtain a Hilbert 

space, henceforth denoted by L2Vtk. The inner product in this space will be denoted by 

where a,/3 G L2Vtk. With the help of the metric one could naturally define the Hodge 

Laplacian of the manifold A : C°°O f c -» C°°Qk, A = d6 + 5d. In the above formula 

d is the exterior derivative and 8 the formal adjoint. More details of the definition of A 

can be found in [17], [21]. 

(1 .1 ) 
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One of the goals of this paper is to study the the space of L 2-harmonic forms (i.e Aa = 0 

and a G L2Qk). The heat equation will provide an injection from the space of compactly 

supported de Rham cohomology classes into the space of L2 harmonic forms. This will 

be shown in more detail in what follows. 

The definition of I? cohomology groups is a slight modification of de Rham groups. Next 

we give the precise definition of these groups as well as the definition of the space of I? 

harmonic forms. 

Definition 1.0.2. 

Ek(L2M) = Zk{L2M)/Bk{L2M) 

where 

Zk(L2M) = {a\ae C°°Qk n L2Qk, da = 0}, 

and 

Bk(L2M) = {(3\/3e c°°nknL2nk, 3^ e c00^-1 nL 2 n k - \ p = d^}. 

Bk(L2M) is the closure with respect to the L2 norm. 

Definition 1.0.3. 

7ik = {a I a e C°°Qk n L2ttk, Aa = 0} 

If M is compact, Bk is closed in Zk, i.e. Bk = Bk, and the L2 cohomology is the same as 

the ordinary de Rham cohomology. In the compact case, in turn we have Hodge theory 

representinig each de Rham cohomology class by a harmonic form. In this sense, L2-

cohomology is the appropriate extension to the noncompact case inasmuch as here every 

L2-cohomology class can be represented by an L 2-harmonic form. In the noncompact 

case, Bk need not be closed in Zk, essentially because the spectrum of the Laplacian 
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need not have a positive lower bound, or equivalently, the Poincare inequality need not 

hold. A n example is the euclidean space R N . For hyperbolic spaces, however, we do have 

such inequalities, and consequently Bk is closed. In any case, however, in order to have 

a uniform theory, one considers Bk in place of Bk. 

Examples: 

i) H*{Rn) = 0. 

ii) W{W) = 0 if n is odd, and Hk{M.2n) = 0 for every k ^ n. The dimension of 

Hn(U2n) is infinite. 

The following decomposition theorem due to de Rham is well known , 

Theorem (de Rham): Let M be a complete Riemannian manifold then we have the 

following decomposition: 

L2nk = dL2^'1 ®Hk® 8L2Qk+1. 

A n easy corollary of this is: 

Corollary 1.0.4. If M is a complete Riemannian manifold then Hk ^ Hk(L2M). 

It is well known ( cf. [14]) that for the hyperbolic space H 2 n , UJ1 is nonzero. Since H 2 n 

is diffeomorphic to R2n ,on which 7in = 0, the Hk,s are not topological invariants. As we 

have already seen, the 7-^'s usually depend on the metric. 

What is also known is that in the compact case a form is harmonic (Aa = 0) if and only if 

da = 0 and 5 a = 0, and this is a consequence of Stoke's Theorem and the very definition 

of S operator. The same result remains valid for an L 2-harmonic form (possibly an IP 

form) on a complete manifold. The next proposition is due to Andreotti and Vesentini: 

3 



Propos i t ion 1.0.5. Let a be an L2 harmonic form on a complete Riemannian manifold. 

Then da = 0 and 8a = 0. 

P R O O F . We want to justify the integral identity 

We consider a family of cutoff functions ae satisfying the following conditions: 

i) ae is smooth and takes values in the interval [0,1] ; furthermore, ae has compact 

support. 

ii) The subsets ajl(l) C M exhaust M as e -» 0 . 

iii) \dae\2 < eae everywhere on M 

The construction of such a function is always possible on a complete Riemanian manifold 

and it is a standard technicality. A simple computation will give us 

(Aa , a) = (da, da) + (8a, 8a). 

0=(Aa,aea) = I1(e) + I2(e) 

where 

and 

By Schwarz inequality this yields 

and hence I^(e) —> 0 for e —> 0 . • 
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The following proposition will be used in the following sections and it essentially asserts 

that d and * are adjoint operators on I? forms on a complete manifold. The proof is a 

typical application of a cut-off function argument. We give the proof in detail. 

P ropos i t ion 1.0.6. Let M be a complete Riemannian manifold and a, (3, da, 5(3 be square 

integrable forms. Then 

PROOF. Let a and (3 as above and let 0 < ipn < 1 be a sequence of cut-off functions with 

the following two properties: \dipn\ < £ for some positive constant C > 0 and ipn(x) —»• 1 

for every x E M. 

We have the pointwise identity 

(da, (3) = (a, 5(3). 

(d(ipna),(3) = (dipn Aa + i\)nda,(3) (1.2) 

and integrating the left hand side we get 

Since ip., n 1 pointwise we have, according to the Lebesque Dominated Convergence 

Theorem 

(1.3) 

Now integrating the right hand side of (1.2) and using the pointwise estimate 

(diPnAa,(3) < \di)n\\a\\(3\ <-\a\\(3\ 

toghether with Lebesque' theorem, we get 

(1.4) 

Using (1.2), (1.3) and (1.4) we get the desired result. • 

5 



As we have already seen, the L2 cohomology spaces are not topological invariants, yet one 

recaptures the invariance if one restricts to bi-Lipschitz homeomorphism. More generally, 

let / : M —-> N be a Lipschitz map between Riemannian manifolds, i.e., 

distN(f(xi),f(x2)) < CdistM(x1,x2) 

for all pairs of points X\ and x2 in M. (If / is a smooth map, this is equivalent to|\df \\L<* < 

const.) Then the induced map on forms, called f° sends L 2-forms on N to M. The 

composition of f° on 7i*(N) with the orthogonal projection h : L2Vt*(M) -+ H*{M) 

defines a linear map, between the harmonic spaces 

/* :H*(N) -*H*{M). 

It is well known that / * is Lipschitz homotopy invariant. That is, if / i and/2 can be 

joined by a homotopy F : M x [0,1] —>• N, which is a Lipschitz map for the product 

metric in M x [0,1] , then / j* - / 2 * . 

Remark . If M an N are compact one gets this way the usual homotopy invariance of 

7i* as all maps can be approximated by Lipschitz maps. A more interesting case is that 

where M and N are infinite coverings of compact manifolds, say MQ and Â o respectively, 

and pertinent maps / : M —> N are lifts of continuous maps / 0 : M 0 —-> AT0. Here again 

we may assume /o and / are Lipschitz, and then we can see that if /o is a homotopy 

equivalence, then the induced map 

/* : H*(N) H*(M) 

is an isomorphism. } 

Before stating the following useful theorems we need to make a few definitions. In what 

6 



follows H is a separable Hilbert space and A is a linear operator defined on a dense subset 

V c H. 

Definition 1.0.7. Let A and H be as above. We say the operator A is closed, if and 

only if its grapf is a closed subset of H x H. 

Let A,D and H as before. We call the operator A having domain D an extension of A if 

and only if the following hold 

i) D c D 

ii) Ax = Ax for any x E D 

Definition 1.0.8. We say the operator A is closable if and only if there exist A a closed 

extension of A. 

The smallest ( with respect to the inclusion of the domain) closed extension of an operator 

A is called the closure of A and is usually denoted by A. 

Let us denote now by A(D) the range of the operator A . Here again we assume that 

D — H, i.e. D is dense in H. We shall define the operator A* by the identity 

(Au, v) — (u, w), for every u E D, A*v = w (1.5) 

More precisely, the domain of the operator A*, here denoted by D*, is the set of all v for 

which there exist w E H such that (1.5) holds. If the vector w exists, for a given v, then 

it is unique by the classical Riesz Theorem. 

Definition 1.0.9. We call A a self adjoint operator if and only if A = A*. 
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Essential in the proof of the existence of the solution of the Heat Equation for forms 

is the Spectral Theory of Self-Adjoint operators, namely the Spectral Theorem of Von-

Neumann and the Friedrichs extension result. A n excellent reference for this is [19]. 

In what follows we state the existence and regularity of the solution to the (abstract) 

heat equation. This result is mainly due to F. Browder [3]. We consider A as being a 

second order elliptic operator acting on smooth sections of a fiber bundle endowed with 

a smooth scalar product. 

Suppose the operator fulfills the following conditions: 

i) (Aa, (3) = (a, A(5) for any compactly supported a, (5, 

ii) (Act, a) > 0 for any compactly supported a. 

We are interested in finding a regular solution to the Cauchy problem: 

da 
9t (1.6) 

a(0) = a0 £ L2. 

More precisely we are interested in finding a path a: [0, oo) —>L2T such that the two con

ditions within the accolade are fulfilled. Here T denotes the space of sections of the fiber 

bundle. The most important result is contained in the following theorem of Browder, [3]: 

Theorem(Browder): There is always a C°° solution to the Cauchy problem if A 

satisfies conditions (i) and (ii) above. Also lim^oo a(t) G ker A 
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Sketch of Proof: Since under this assumptions, A is a semibounded operator, there 

exist a semibounded self-adjoint extension A. Let \x be the spectral measure associated 

to A. Then the solution to the Cauchy problem( 1.6 )is given by 

poo 

a(x,t) = / e~Xtdfi\ao(x). 
Jo 

Formally we may write the solution above as 

a = e~tAa0 

and by the spectral theorem we have 

poo 

Ama= / \me-xtdiixa0(x) 
Jo 

hence 

Ama e L2. 

The above inclusion implies 

a{-,t) E Wm'2 

for an arbitrarly m. Hence by the Sobolev Imbedding Theorem we get spatial regularity. 

The temporal regularity is obvious. • 

The next theorem is due to M . Gaffney : 

Theorem(Gaffney): Let Mn be a complete Riemannian manifold. Then the closure 

of the Laplacian on forms is self-adjoint. 

For the proof of this fact see [13]. As a result of these two theorems we have the following: 
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Propos i t ion 1.0.10. There is always a unique solution to the Cauchy problem of the 

heat equation for forms and the solution has the following properties: 

a) l im t ^oo a(t) 6 Hk, 

b) a, 8a, da, Aa are all in I? at any time t > 0, 

c) the solution is C°° for all t > 0, 

d) if the initial data ao is closed then a is closed for all t > 0, 

e) the cohomology class is preserved by the flow. 

Sketch of Proof: We shall only prove parts (d) and (e), since all the others are con

sequences of the previous two theorems. Let ao G L? be a closed initial data for the 

Cauchy problem (1.6). First we need to prove that ct(t) is closed for all t > 0. To see 

this let us consider the following scalar quantity 

Differentiating with respect to t we obtain 

dt 

Since a is the solution to the problem (1.6), we get 

and furthermore using the fact that d and 5 are self-adjoint 
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It follows that I(t) is decreasing with respect to t. But obviously I(t) > 0 and 1(0) = 0, 

hence l(t)=0 for all time t. This obviously means da(t) = 0, or equivalently a(t) is closed 

at any instant. 

To see that [a(t)] — [ao], where [a] denotes the DeRham cohomology class of a, we shall 

consider an arbitrarly closed orientable submanifold of dimension equal to the degree of 

the form. Let us denote this submanifold by X. As before let us consider the following 

scalar quantity 

Q(t) = f a(t). 
Jx 

Differentiating with respect to t, we get 

dQ t da f 
dt Jx dt Jx 

or equivalently 

dQ 
dt 

= - f (d5 + 5d)a. 
Jx 

Now using the fact that a is closed at all times we get 

dQ 
, d5a = 0. dt Jx 

Here above we have made use of Stokes' Theorem and the fact that X has empty bound

ary. In conclusion 

Jx Jx 
a0. 

x 

• 
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Chapter 2 
The Finite Dimensionality of 7ik^s 
and Some Vanishing Results 

This section is concerned with finding sufficient geometric conditions on the manifold 

M which will guarantee the finite dimensionality of the L2 cohomology spaces. The 

techniques are based on the classical Weitzenbock formula and a few standard P D E tech

niques. 

Proposition(Weitzenb6ck formula): Let M be a Riemannian manifold (not necessarily 

complete). Let e; be a local orthonormal frame and rf the associated coframe. Then we 

have the following pointwise identity 

Aa = V*Va + K(a), 

where V represents the covariant derivative acting on forms, V* represents its formal 

adjoint and 71(a) — rf A (iejR(ti, ej)a). 

For a proof of this formula see [17]. 

Def ini t ion 2.0.11. The 71(a) operator defined by the identity in the previous proposition 

is called the Weitzenbock curvature term. We say 7Z is positive (negative) if and only if 

g (71(a), a) > 0 (< 0) for all a ^ O where g is the Riemannian metric of M. 
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We also need the following simple lemma. 

L e m m a 2.0.12. Let M be as above and (a n)n>i be a bounded sequence in Wl'2£l and tp 

be a cut-off function. Then the following sequence ipn = tpan is bounded in W1,2fl and is 

compactly supported. 

P R O O F . We have \ijjan\ = \ip\\an\ which in turn implies JM \il)n\2dV < A fM \an\dV where 

the constant A = sup\xp\2. This takes care of the L2 part of the norm. For the derivative 

part we have the following pointwise identity: 

d(ipan) — dip A an + ifjdan. 

Therefore 

\d(il>an)\ < | # | | a n | + l ^ l l ^ n l -

Integrating and applying an elementary inequality we get 

/ \d(il>an)\2dV < C i H ^ H 2 , +C,\\dan\\2

L,. 
JM 

Where the positive constants C\, C2, depend only on ip. Next we have 

\5(lpan)\ = I * d * C0OJn)| = \d * (l/HXn)\ = \d(^ * O J „ ) | . 

Hence 

\6(ipan)\ = \dijj A *an + ipd* an\ < \dip\\an\ + \tp\\8an\, 

now integrating and applying the same inequality again we get: 

/ \S(i;an)\2dV < dWonW2^ + C2\\5an\\2

L2. 
JM 

This concludes the proof of the lemma. • 

The following proposition is essential in proving the main result of this section. 

13 
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Propos i t ion 2.0.13. On a complete manifold M, dimHk < oo if and only if there exist 

R > 0 and C > 0 such that 

f \a\2dV >C f \a\2dV 
JBR JM 

for every a e Hk (here the positive scalar C > 0 may depend on R) . 

P R O O F . For the "only if" part we observe that both the quantities involved in the above 

mentioned inequality are norms on a finite dimensional vector space, hence, equivalent. 

For the "if" part, let R > 0 and C > 0 as in the hypothesis. Let ift be a cut-off function 

such that ip = 1 on BR and ip = 0 on B 2 R . Assume dimHk = oo and let an be a countable 

L 2-orthonormal sequence of harmonic forms in Hk. Then according to Lemma 2.0.12 the 

sequence ipn = ijxxn satisfies the conditions of Rellich theorem, hence we can extract a 

subsequence convergent in L2. We will use the same notation for the subsequence ipn-

Let us now estimate the distance between members of this sequence, namely d(ipn, tpm) 

(here d( , )denotes the I? distance). We have 

d{lpn, ll>m) = (i>n~ ^ m , Ipn ~ ^m)dV 
JM 

= f ( | ^ n | 2 + W 2 ) < ^ - 2 / {Mm)dV. 
JM JM 

Hence 

d(tpn,ipm)> I (\an\2 + \am\2)dV - 2 [ (^n,ipm)dV. 
JBR JM 

Now applying the inequality from hypothesis we can estimate the first term of right-hand 

side as follows: 

/ ( | a n | 2 + K | 2 ) ^ > 2 C . 
JBR 

So finally we get 

d{lpn, 1pm)>2C-2 f (V>„, 1pm)dV. 
JM 
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But the sequence i/jn is obtained by multiplying an orthonormal sequence in L2 by a 

cut-off function, so it is weakly convergent to zero in L2 and using a diagonal argument 

we can see that the second term on the right-hand side of the inequality above can be 

made arbitrarily small (as n, m —• oo). By the Rellich theorem so is the left-hand side. 

It then follows that 2C < 0. Contradiction. • 

As this proposition shows, in proving the finite dimensionality of 7ik one could try to 

get an estimate as above. In fact Vesentini in [25] obtained the first result of this kind. 

More precisely he proved that if the curvature operator is positive outside some compact 

subset of the manifold then the desired inequality holds. In a similar fashion he also 

proved that if the curvature operator is nonnegative then Hk = 0. 

A related result was recently obtained by G.Carron in [4]. To state his result we need to 

make the following definition, 

Definition 2.0.14. The Gauss-Bonnet operator d+5 of a complete Riemannian manifold 

(M, g) is called non-parabolic at infinity when there is a compact set K of M such that 

for any bounded open subset D C M \ K there is a constant C(D) > 0 satisfying the 

inequality 

C{D) f \a\2 < [ \da\2 + \5a\2 for every a e C 0 °°O.*(M \ K). 
JD JM\K 

Observation The condition that the Gauss-Bonnet operator is non-parabolic at infinity 

is similar in nature with the assumption of Proposition 2.0.13. 

Carron's result can now be stated as follows 

Proposition 2.0.15. If the Gauss-Bonnet operator of(M,g) is non-parabolic at infinity 
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then 

dimH* < oo. 

Naturally one should try to express the non-parabolicity of the Gauss-Bonnet operator 

in terms of the curvature operator if possible. Carron proves the following, 

Proposition 2.0.16. If (M,g) is a complete Riemanian manifold whose curvature van

ishes outside some compact set, then the Gauss-Bonnet operator is non-parabolic at in

finity. 

thus giving another proof of a very well known fact. 

In what follows we will give other geometric conditions that imply the required estimate 

and also will obtain another useful vanishing result. Before going to the main result we 

need to make a definition: 

Definition 2.0.17. Let M be a complete manifold and let Rk be the Weitzenbock curva

ture operator acting pointwise on k-forms. Let D C M be a subset. Then 

ID(Rk) = inf{c \c>0and (Rka{p), a(p)) > -c\a{p)\2, a G Qk, p G D}, 

Remark: Obviously if D1 C D2 then IDl{Rk) < IDARk) 

For the proof of the main theorem we will first need to prove one technical lemma. 

Lemma 2.0.18. Let M be a complete manifold whose curvature operator on flk is 

bounded from below. Then for any a G H we have fM | V a | 2 < oo. Hence in this 

case the Weitzenbock formula gives 

f \Va\2dV+ f (Ra,a)dV = 0. 
JM JM 
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P R O O F . Let ip e C ^ Q be a compactly supported form. According to the Weitzenbock 

formula we have 

Aip = V*Vip + Rip. 

Taking inner product of both sides with tp and integrating by parts (we can do this 

because ip is compactly supported) we get 

(Ai;,iP) = \\ViP\\2 + 

We can rewrite the left-hand side of the above identity in terms of d and 5 as follows 

ll#ll 2
 + l l # l l 2 = l|v |̂|2 + W ^ ) . 

In all of the above formulas H^H denotes the I? norm of tp. But the curvature operator 

is bounded from below i.e. (Rip,tp) > — c\tp\2 and this is pointwise, or equivalently 

— {Rip,tp) < c\ip\2. Hence we get 

| |W|| 2= / \V*P\2dV<c[ \iP\2dV+\\diP\\2 + \\6iP\\2 (2.1) 
J M J M 

for any ip compactly supported in M . 

Now let a £ H and <p be a cut-off function such that <p = 1 on BR and zero outside 

B 2 R for arbitrary R > 1 and also < 1. Applying (2.1) (taking into account that 

0 < 0 < 1) to the compactly supported form (pa we get 

/ \S7{cPa)\2dV <c [ |«|W-f- | |^a)| | 2 + ||(5(0cv)||2. (2.2) 
J M J M 

In order to estimate the last two terms of (2.2) we proceed as follows: 

\d(<f>a)\ = \d<p Aa\< \d(p\\a\ < \a\ 

hence, 

I K r f < I M I 2 
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and also 

= | * d* (<f>a)\ = \d{4>{*ot))\ = \d(f) A (*a)| < | * ct\ — \a\ 

Integrating the above inequality yields 

M4>a)\\<\\a\\. 

To get these two estimates we essentially used the fact that a G 7i and * is a pointwise 

isometry. Also taking into account that 

\V(<f>a)\2dV < f \V(<f>a)\2dV 
JM 

\Va\2dV = 
BR JBR JM 

we get 

f | V a | 2 r f y < c | | a | | 2 + 2| |a| | 2 . (2.3) 
JBR 

Since R > 1 was arbitrarily chosen, letting R —> oo we get the desired result. • 

P R O O F . (Theorem 0.0.1) 

As a result of Lemma 2.0.18 we have 

/ \Va\2dV+ f {Ra,a)dV = 0. (2.4) 
JM JM 

By the definition of lM(Rk) we have 

(Ra,a) > -IM{Rk)W? 

or equivalently 

-(Ra,a) < IM(Rk)\a\2. 

This together with (2.4) gives 

/ \Va\2dV < IM{Rk) f M W . (2.5) 
JM JM 

18 



Assume there is a nonzero harmonic L2 form a. Since the volume of M is infinite, it 

follows that |a | is nonconstant so we may apply the Poincare inequality to \a\. Hence 

/ \Va\2dV > A i / \a\2dV, 
JM JM 

here we made use of the pointwise inequality: | V a | 2 > | V | a | | 2 . This together with (2.5) 

implies 

" A i f \a\2dV < IM{Rk) f \a\2dV. 
JM JM 

Since a is nonzero we have 

A i < IM(Rk) 

which contradicts the assumption of part (a) of the theorem. 

For part (b) of the theorem let us observe first that there exists constant C > 0 such 

that 

(Ra(p),a(p))>-C\a(p)\2 (2.6) 

for any a G Qk and p £ BR. To see this, one should consider the continuous function 

f(p, v) = (RpV, v) defined on the unit sphere bundle of £IBR (since this set is compact, / 

attains its infimum). 

Using Lemma 2.0.18 we have 

/ | V a f W + / (Ra,a)dV+ f {Ra,a)dV = Q. 
JM JM\BR JBR 

This together with (2.6) gives 

f \Va\2dV+ [ (Ra,a)dV<cf \a\2dV. 
JM JM\BR JBR 

Using the definition of IM\BR(Rk) we have 

f \Va\2dV - IM\BR(Rk) j \a\2dV<cf \a 
JM JM\BR JBR 

2dV 
M\BR 
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now using the Poincare inequality as in part (1) we get 

Ai / \a\2dV - IM\BR(Rk) f \a\2dV<c[ \a\2dV. 
JM JM\BR JBR 

And finally 

Ai / \a\2dV - IM\BR(Rk) f \a\2dV<C / \a\2dV. 
JM ' M JM JBR 

By the hypothesis of part (b) 

[ W?dV<- ° j \a\2dV (2.7) 
JM A I - lM\BR(nK) J B R 

But this is exactly what Proposition 2.0.13 requires. Hence dim7Yfe < oo. • 

Next we will show that I^(Rk) = nk — k2. This follows easily from the following lemma: 

L e m m a 2.0.19. Let e$ be an orthonormal frame at some point and r\i its associated 

coframe. Then the following formula holds 

k n 

(RW(Vi A % . . . A rik), Vi^V2...Arjk) = J2 K ^ (2-8) 
i=l j=k+l 

For a proof of this formula, one should consult [21]. 

By the homogeneity of H and since K = — 1 we get the desired formula, namely 

Imn(Rk) = nk-k2. 

This together with the well known fact that 

A I ( I T ) -

imply the vanishing of the Hk whenever nk — k2 < ^n~^ . 
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In what follows we shall make use of the estimate obtained by H. McKean in [20], 

Theorem (McKean): Let Mn be a complete manifold of negative sectional curvature 

K < —b, where b > 0. Then the Poincare constant satisfies 

(n - Ifb 
> 

As a direct application of Theorem 0.0.1 we obtain the following result: 

Coro l l a ry 2.0.20. Let Mn be a complete, simply connected, negatively curved manifold 

with sectional curvature K pinched by — 1 < K outside some compact set and K < — 1 + e 

everywhere . Then the following hold: 

i) Ifn>6 and e < 1 — , then dimTY1 < oo, 

ii) Ifn>9 ande< £~^~*^2, then dim ft2 < oo. 

P R O O F . For the proof of the first part we shall use (2.8) to estimate IM^^R1)- Let a 

be a unit length 1-form at a point outside BR where the pinching condition is satisfied. 

There exist a:2)---)0:n € T*M s.t a, a2, • •., otn form an orthonormal coframe. Then 

according to (2.8) we have 

n 
(Rla,ot) = s^K{a,ai)>-{n-l). 

2=2 

It follows that 

IM\BR(R1) < ( n - 1 ) , 

and by McKean's estimate of the Poincare constant of a negatively curved manifold [20] 

we have 
(n - l ) 2 ( l - € ) 

A l > A • 

Hence if e < 1 -̂r we have 
n—1 

IM\BR(R1) < A l , 
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which means, according to Theorem 0.0.1, dimTf 1 < oo. This concludes the proof of 

part one. 

For the proof of part two we have to employ more subtle estimates of the curvature 

operator in terms of the sectional curvature. We shall use the estimates obtained by 

Elworthy, L i , and Rosenberg in [12]. Let a be a unit length 2-form. According to 

Lemma 3.1 in [12] we have 

(R2(a), a) > B — (A - B)(n - 2), 

here 
2 n 

A = s u p { ^ ^ K ( v i , V j ) I vi,...,vn orthonormal frame} 
i=l 3 

and 
2 n 

B = inf ^2 K(vii vJ) I ui> • • • > vn orthonormal frame}. 
i=l 3 

Outside of the compact set the pinching condition is satisfied so we have 

A = 2(n - 2 ) ( - l + e) and B = - 2 (n - 2), 

it follows that, outside BR 

{R2{a),a) > - 2 ( n - 2 ) - 2 e ( n - 2 ) 2 , 

which is equivalent to 
IM\BR(R2) < 2 ( n - 2 ) + 2e (n -2 ) 2 . 

Using the same estimate of McKean [20] and the hypothesis of the second -part of the 

corollary we obtain again 

TM\BRR2 < A i , 
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which by the conclusion of the Theorem 0.0.1 implies dim7Y2 < oo. This concludes the 

proof of the corollary. • 

Remarks: 

a) If in the hypothesis of the Corollary 2.0.20 one asks for the curvature to be pinched 

everywhere, then one gets vanishing of the corresponding spaces. However, the e 

required is much smaller than the one obtained by Donnelly & Xavier. 

b) This result relies heavily on being able to estimate the lower bound of the cur

vature operator in terms of sectional curvature. A better understanding of this 

relationship, not easy in general, may lead to new results for the vanishing or finite 

dimensionality of the L2 cohomology spaces. 
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Chapter 3 
On the Heat-Flow Method of 
Gaffney 

As we have seen before the heat flow takes an L 2-form and transforms it into harmonic 

L2 form preserving the cohomology class. A nice differential-topological result is the 

following corollary: 

Coro l l a ry 3.0.21. Let Mn be an n-dimensional noncompact manifold. Then any n-

degree compactly supported form is exact. 

The proof relies on the following geometric lemma, which is of independent interest: 

L e m m a 3.0.22. Any noncompact manifold admits a complete metric of infinite volume. 

P R O O F . Embed the manifold into some large Euclidean space RN such that the image 

of the embeding is closed. This is always possible due to Withney's Embe ding theorem. 

We denote this metric by g. If the volume of the manifold with respect to this metric is 

infinite, we are done. If not let us fix a point p E M and let r(x) = d{x,p) be the geodesic 

distance to the fixed point. Since the image of the embeding is closed and noncompact, 

it cannot be bounded, hence r —> oo . 

Now choose 

f(x)n > -—l—~r + 1 for ra < r < ra + 1, / G C°°. (3.1) 
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(In (3.1) Vr denotes the volume of the geodesic ball of radius r = r(x)). This is always 

possible. 

Let us consider now the metric g = pg and denote the corresponding volume elements 

by dV and by dV . Then we have the following identity dV — fndV where n represents 

the dimension of the manifold. 

Now obviously 

/ IdV > / PdV 
JM m = 0 JB(p,m+l)\B(p,m) 

> [ v

 1

 v + 1 ) (Vm+i - Vm) (3.2) 

oo 
> 1 > OO. 

m=0 

In the inequalities above S(p, r) denotes the geodesic ball with respect to the metric 

g. As a conclusion we see that ( M , g) has infinite volume. On the other hand g > g 

which implies that any Cauchy sequence w.r.t. g is Cauchy w.r.t. g, hence a convergent 

sequence. This concludes the proof of the lemma. • 

For the proof of Corollary 3.0.21 let us assume the contrary. Endow the manifold Mn 

with a complete metric of infinite volume. Let a G Co°°^ n and [a] ^ 0, then let a(t) be 

the solution to the heat equation with initial data a and let [o!oo] = l i m t _ + 0 o O ; ( £ ) . Then 

we obtain a harmonic I? n-form which is nontrivial. Contradiction. • 

Observations: 

a) It is well known that on a noncompact manifold every top-degree form must be 

exact. For example see [15]. The proof we offered above makes no use of algebraic-
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topology techniques. 

b) The fact that the existence of a compactly supported nontrivial de Rham class 

induces a nontrivial L2 harmonic form, was used by Segal in [22] and by Hitchin in 

[16]. The method used by Segal to prove this is not based on the heat flow method 

initiated by Gaffney. 

P ropos i t ion 3.0.23. Let M be a complete Riemannian manifold. The following two 

conditions are equivalent: 

ii) closed L2 forms are orthogonal to coclosed L2 forms. 

P R O O F . Suppose Hk ^ 0 then there exists a G TCk and But a G L2,da = 

0,8a = 0 and by assumption (a, a) ^ 0. For the converse let us assume there exist 

a, (3 G L2,da — 0,5(3 = 0 and (a,(3) ^ 0. Let ji denote the solution to the heat flow 

having as initial data ji{0) = a. Now consider Q(t) = (n(t),(3). Due to the properties of 

the solution to the heat equation this is a smooth function in t, for t > 0 and continuous 

for t > 0. 

Differentiating Q we get: 

i) Hk {0}, 

Q(t) = (A, (3) 

Since (i is closed for a l H > 0 it follows 

Q(t) (d5f,,(3) {5^, 5(3) = 0. 

This means Q(t) = Q(0) and (<*«,,/?) ^ 0. Therefore Hk ^ 0. • 

Next we will introduce the concept of the heat-flow map. 
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Propos i t ion 3.0.24. Let M be a manifold as before and a in L2il* a closed form on 

M. Let fi = —Afj, be the solution to the heat equation having initial data a. Then the 

following map H:L2£l* ->H*, H(a) = l i m ^ o o ti{t) = Hoo is well defined and linear. 

P R O O F . Obvious from the uniqueness of the heat flow. • 

Remark : When considering different metrics on the same manifold we will indicate that 

the spaces or operators are taken w.r.t. the metric g by an appropriate index. For ex

ample the space of harmonic L2 forms w.r.t. the metric g will be indicated as Hg, the 

Laplacian w.r.t. the metric g will be denoted by Ag, the Hodge-star operator by * g , etc. 

The next theorem is another immediate application of the principle we used to prove 

Proposition 3.0.23. 

Theorem 3.0.25. Let M be a noncompact manifold and let g and g be two complete 

metrics on M such that L2Clg c L2Vtg. The map Hg:Hg-^Hg is linear and injective. 

P R O O F . A l l we have to prove is that kerHg = 0. Let a G Hg such that Hg(a) = 0. 

Since a G Hg means a is closed and coclosed w.r.t. the g metric. This means *ga is also 

closed, hence *g *g a is coclosed w.r.t. the g metric. A l l the forms here are also L2 since 

the *-operator preserves length. 

Let (3 = *g *g a. We have 

But = ± *g a. In conclusion we have 

Hence a = 0. Therefore Hg is injective. • 
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Remark: Having two conformal metrics g = f2g on M, they are quasi-isometric if and 

only if the conformal factor is bounded (i.e 0 < c < / < C). This easily follows from the 

very definition of quasi-isometric metrics. It also implies that the area of applicability 

of Theorem 3.0.25 is larger than that of the well known.fact that two quasi-isometric 

metrics have the same L2 cohomology. 

A straight forward application of Theorem 3.0.25 is the following: 

Coro l l a ry 3.0.26. Letg = f2g be a conformal deformation of the hyperbolic metric g on 

M2n such that f > c > 0, then the corresponding L2 cohomology spaces are isomorphic. 

P R O O F . It suffices to show that for k < n we have = 0. In mid-dimension degree 

the fact that the space of harmonic 1? forms is conformal invariant is well known. We 

will show that L2Q,g C L2Qg and applying Theorem 3.0.25 we conclude H~ = 0. 

Let e i , . . . , e 2 n be a local orthonormal frame w.r.t. the g metric, and r)2n the 

associated dual frame. It follows that / _ 1 e i , . . . , f~1e2n is an orthonormal frame w.r.t. g 

metric and its associated coframe is frji,..., frj2n- Hence if we denote by dV the volume 

element w.r.t. g and by dV the volume of g we have 

d~V = f2ndV. 

Now we need to compare the pointwise length of a /c-form w.r.t. the two metrics. To do 

this we notice as usual that a pointwise-orthonormal frame in £1™ is given by 

Vh Ar?i 2 A . . . /\Vik, 1 < k < h • • • < ik < 2n. 

Also a pointwise orthonormal frame in is given by 

fVii A fVii A . . . A frjik, 1 < i i < i2 • • • < ik < 2n. 

It easily follows that 

MS = r2t\< 
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Integrating and using both identities we get 

IWIJ= f \<d~V = [ r*W\\f*dV><*^a\\\. 
JM JM 

It follows that L2Vtg C I?VLg which in turn implies the conclusion of the corollary. • 

In order to give another interesting application of Theorem 3.0.25 we need to make the 

following definition: 

Def in i t ion 3.0.27. Let V be a finite dimensional real vector space and let g and h be two 

positively defined inner prodoucts on V. Let G : V —> V* and H : V —* V* denote the 

metric isomorfism induced by g and h respectively. Let A : V —» V denote the composition 

A = H~lG. It is well known that A is orthogonally diagonalizable with respect to the 

metric h and let 0 < fj,i < (i2 < • • • < A*n be its eigenvalues. We will call these positive 

numbers the eigenvalues of g w.r.t h. 

Coro l l a ry 3.0.28. Let (Mn,g) be a complete simply connected Riemannian manifold of 

negative sectional curvature . Let h denote the complete metric of constant —1 sectional 

curvature. LetO < \x\ < n2 < • • • < be the eigenvalues of g w.r.t. h as being functions 

on the manifold (i.e /^ = /^(x) ; x G M). The following holds: 

a) if su-pxeM ^ < oo then dim7in/2(M, g) = oo, and 

b) if lnfxeM > 0 fork^ n/2 then dimHk(M, g) = 0. 
Mi 

PROOF. The idea of the proof is to show that the I? norms of a fc-form, when consid

ered with the two different metrics are equivalent. 

Let us fix a point x € M and let ei, e2,..., en be a set of eigenvectors for g which are 

orthonormal w.r.t. h. Let e1, e 2 , . . . , en be the associated dual coframe. It follows that 

1 
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is an orthonormal frame w.r.t. g having associated coframe 

Hence, if we denote by ujh and cug the volume forms for the two metrics respectively, we 

have 

ug = 7]1 A n2 A . . . A rf1 = ŷ i • • • Mn 

Let a be a A;-form expressed at x £ M as 

a = ail...ikeil A . . . A eik = a^...^— 1 rf1 A . . . A rfk, 
V Mil ' ' ' Mifc 

it follows that 

\<*\l=- I] a ? i - « * a n d K = H 4-^ .1 , • 
ii<i2<-<ifc h<ii<-<ik 

Next we compare the L2 norms, we have 

*i<*2<-<i* M i l " "Mi* 

hence 
n/2 n/2 

^-\a\2

huh < \a\2

g ujg < ^laguh (3.3) 
Mn Ml 

Using the hypothesis that s u p x e M ^ < oo and integrating we obtain for a £ C ^ f W 2 

xeM Mi 

hence 

L 2 0 ^ / 2 c L2nnJ2 

and applying the conclusion of Theorem 3.0.25 we get 

dim7Y^ 2 = d i m ^ / 2 = oo. 
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To prove that Hk =.0 for k ^ n/2 we use again (3.3) and the hypothesis that mixeM 

0 for every k ^ n/2 and integrating again we obtain, for any aE C^Vtk, 

> 

X<EM H' 
\a < \\a 2 3' 

hence 

L2nk

g C L2Qk

h for k ± n/2. 

By Theorem 3.0.25 we obtain 

dim ft; = 0 for k ^ n/2. 

This concludes the proof of the corollary. • 

To give a concrete example of an application of the Corollary 3.0.28 we shall construct a 

metric which has the same L2 cohomology as the hyperbolic metric but is not conformal 

nor quasi-isometric to the hyperbolic metric. Let ( ) denote the euclidean coor

dinates on HP, where n is even. With respect to these coordinates the hyperbolic metric 

is: 

Both g and h are diagonal metrics but they are not conformal to each other. In this 

particular case it is easy to see that if , / i n denote the eigenvalues of g w.r.t h then 

Consider now the following metric: 

fii = i + x\. 
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It follows, from the fact that /x/s are not bounded from above, that g is not quasi-isometric 

to h. Since obviously 
»n n + x2 

— = •: k < n 
Hi • l+x( 

it implies d i m f t ^ 2 = oo. On the other hand we have 

tZ12 _ {n + x\yi2 

fA (i + x2)k ' 

hence if A; < n/2 

In conclusion = 0. Now we only need to show that g is a complete metric. We shall 

do this by comparision with h, namely we shall prove that 

gp(X, X) > hp(X, X) for any p e I T and X e TPW. 

Let e i , e n be an orthonormal frame for h at the point p e H n and such that the metric 

g is diagonal. Obviously 

Let X G TpW1 be a vector and X = Xiei be its expresion with respect to the chosen 

frame. Then obviously 
n 

hp(X,X) = J2(X^ 
i=l 

and 
n 

gp(X,X) = Y/^i(Xi)2-
i=l 

Now taking into account that \ii = i + xi we obtain 

gp(X,X)>hp(X,X). 

It is also obvious this metric is not rotationally symmetric in the sense of Dodziuk. 
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