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Abstract 
This thesis examines a hybrid asymptotic-numerical method for treating two-dimensional sin
gular perturbation problems whose asymptotic solution involves reciprocal logarithms of the 
small perturbation parameter, e, in the form 

The purpose of this hybrid asymptotic-numerical method is to treat the slow convergence prob
lems of asymptotic expansions of this form. For the applications that we consider in this thesis, 
we believe there is sufficient evidence of convergence of these expansions for small enough e. 
The hybrid method uses the method of matched asymptotic expansions to exploit the asymp
totic structure to reduce the problem to one that is asymptotically related to the original. In 
general, one must solve this related problem numerically. 

The hybrid related problem contains the entire infinite logarithmic expansion in its solution, 
thus removing the necessity of obtaining each coefficient in successive terms individually, as one 
would have to do using only the method of matched asymptotic expansions. The hybrid solution 
essentially sums the infinite expansion of reciprocal logarithms and in so doing, improves the 
accuracy of the solution since the error of the approximation is smaller than any power of 
( —1/loge). A n important feature of the hybrid related problem is that it is non-stiff. Thus, it 
does not suffer from the difficulty in solving the original problem numerically of resolving the 
rapidly varying scale structure. Another advantage of the hybrid method solution is that the 
parameter dependence of the problem is reduced from that of the original. The reduction in 
parameter dependence means that the hybrid method solution is less computationally intensive 
than a full numerical solution. 

We show that singular perturbation problems containing infinite logarithmic expansions arise in 
a wide variety of contexts. Four chapters of this thesis are dedicated to the detailed application 
of the hybrid method to such singular perturbation problems occurring in fluid flow in a straight 
pipe with a core, skeletal tissue oxygenation from capillary systems, heat transfer convected 
from small cylindrical objects, and low Reynolds number fluid flow past a cylinder that is 
asymmetric to the uniform free-stream. Following the detailed analysis of these four problems, 
we remark on possible extensions to the general framework of applicable problems. For example, 
we discuss applications in black body radiation, multi-body low Reynolds number fluid flow, 
vibration of thin plates with small holes or concentrated masses, localized non-linear reactions 
on catalytic surfaces, low frequency scattering of light, diffusion of a chemical species out of an 
almost impervious container, and steady-state current flow from microelectrodes. 
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Chapter 1 
Introduction and Background 

This thesis explores applications of a method combining techniques of asymptotic analysis and 
numerical analysis, which we call the hybrid asymptotic-numerical method, or simply, 
the hybrid method, to improve the accuracy of approximate solutions to certain singular 
perturbation problems in two dimensions. 

We construct mathematical problems that model certain physical processes, such as fluid flow 
or heat conduction, in an attempt to further our understanding of the world around us. Often 
these mathematical problems are extremely difficult (or even impossible) to solve exactly and 
in these circumstances, approximate solutions are necessary. 

In certain mathematical problems, the governing equations contain dimensionless parameters, 
such as the Reynolds number or the Peclet number, that can be either large or small. In these 
limits of extreme values of the dimensionless parameters, one can obtain an approximate solution 
through the use of perturbation methods. The basic idea of these methods is to begin with 
the solution to a simpler problem (as a first approximation) and then to obtain systematically 
better and better approximations. In this way, one finds an asymptotic solution to the problem 
as an expansion of these successive approximations. 

A specific type of mathematical problem that one can solve using these approximation tech
niques is a singular perturbation problem. This is a problem for which no single expansion is 
valid in the entire solution domain: it is necessary to construct more than one perturbation 
expansion, each valid in a certain subregion of the whole solution region. 

The singular perturbation problems that we consider in this thesis are two-dimensional prob
lems with strongly localized perturbations whose solutions involve infinite expansions in powers 
of ( — 1/loge), where s is the small perturbation parameter. (The negative sign is present 
merely for future notational convenience.) The removal of a small subdomain from a given 
solution domain is an example of a strongly localized perturbation. These are unusual singular 
perturbation problems in the sense that the small parameter does not multiply the highest 
derivative in the governing equation. Thus, the non-uniformity is not due to a reduction in 
order of the differential operator as in the more familiar singular perturbation problems. The 
non-uniformity of the singular perturbation problems considered in this thesis is due to a near 
singularity resulting from the removal of a small subdomain or from a region degenerating to a 
point in one of the solution domains. In their text on multiple scale and singular perturbation 
methods, Kevorkian & Cole [26] refer to this type of problem as a "singular boundary problem". 

A n analytic technique available to treat singular perturbation problems is the method of 
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Chapter 1. Introduction and Background 

matched asymptotic expansions: the asymptotic expansions in the various solution domains 
are required to match in some overlap domain of validity, thereby creating an approximate 
solution that is uniformly valid over the entire solution region. In his text on perturbation 
methods in fluid mechanics, Van Dyke [56] provides a brief historical account of the method 
of matched asymptotic expansions. He describes the evolution of the technique from its be
ginning as a generalization of the boundary layer theory of Prandtl in 1905 [43], through to 
its widespread use in the 1950's in studying viscous flows. In particular, Kaplun [24] used the 
method of matched asymptotic expansions in resolving the Stokes paradox in low Reynolds 
number fluid flow in two dimensions. We will revisit this classic problem in a subsequent chap
ter. The method of matched asymptotic expansions is limited in practicality due to the often 
increasing level of difficulty of obtaining the unknown coefficients at each subsequent order in 
an infinite recursive set of problems. 

Another approach to finding an approximate solution has been by solving these mathematical 
problems numerically. Specifically, numerical analysis of singular perturbation problems began 
receiving significant attention in the 1970's, with the first conference on the subject in 1978 [16]. 
More recently, Roos et al. [47] produced a text of numerical methods for singularly perturbed 
differential equations in convection-diffusion and flow applications. However, neither that text 
nor the papers in the conference proceedings consider any "singular boundary problems", which 
is indicative of the lack of a systematic numerical study of problems of this type. Although 
there has been significant development in computer codes for solving a wide variety of singularly 
perturbed partial differential equations, using finite difference methods or finite element meth
ods, for example, one should never use any computational package without first being aware 
of the potential difficulties of the equations to solve. In particular, the full numerical approach 
has limitations since it is difficult, without extensive computation, to isolate the parameter 
dependence and to resolve the rapidly varying scale structure that is inherent in the problems 
that we consider in this thesis. 

One of many methods that combines techniques from both of the major approaches to find
ing approximate solutions is the hybrid asymptotic-numerical method of Ward, Henshaw &: 
Keller [57], which they used to treat certain classes of eigenvalue problems in a bounded, 
two-dimensional domain with small perforations and with certain boundary conditions on the 
resulting holes. These types of problems are examples of strongly localized perturbation prob
lems. Using the method of matched asymptotic expansions, they demonstrated that in some 
cases the eigenvalue expansion for the singularly perturbed problems begins with an infinite 
logarithmic series in powers of (-1/ log(£c/)) . Here, e represents the size of the domain perfo
ration, and the constant d depends on the shape of the hole and on the boundary condition 
of the hole. Their hybrid method used asymptotic analysis to formulate a related problem, 
whose solution contained the entire infinite logarithmic series. The related problem was non-
stiff and straightforward to solve numerically. By summing all the logarithmic terms in the 
series, the approximation gave accurate results since the error was smaller than any power of 
( - l / log(ed)) . 

In 1995, Kropinski, Ward & Keller [29] appropriately modified the hybrid method to treat 
steady, two-dimensional, incompressible fluid flow at low Reynolds number past a symmet
ric, cylindrical body. The asymptotic expansions for the drag coefficient and for the velocity 
field in the limit of low Reynolds number also commence with infinite logarithmic series. They 
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implemented a straightforward finite difference scheme to solve the asymptotically related prob
lem, which was independent of the cross-sectional shape of the cylindrical body. This exploited 
Kaplun's equivalence principle [24], which established an asymptotic equivalence between cylin
ders of different cross-sectional shape, based on an "effective" radius of the cylinder. 

The crux of applying the hybrid method to strongly localized perturbation problems is to use 
the method of matched asymptotic expansions to formulate an asymptotically related problem, 
in which a singularity structure replaces the localized perturbation. The resulting related 
problem turns out to be quite easy to solve numerically. In solving this related problem, it is 
then possible to determine the asymptotic solution of the original problem that is correct to all 
logarithmic terms. 

The hybrid method has been successful in improving the approximate solution in the area of 
strongly localized perturbation problems that contain an infinite expansion S(e) of logarithmic 
terms for the quantity of interest of the form 

The traditional difficulty of asymptotic solutions containing infinite logarithmic expansions is 
that these solutions converge very slowly, which means that one must retain a great number 
of terms of the expansion in order to obtain sufficient accuracy at moderately small values of 
the perturbation parameter. The hybrid method applies techniques of asymptotic analysis and 
simple numerical analysis to circumvent the slow convergence difficulty and thus, to improve 
the accuracy of the approximate solution. 

In general, asymptotic expansions need not converge. By definition, the error made in truncat
ing the asymptotic solution is of the order of the first neglected term. Even when the expansions 
do converge, if they are of the form S(e), the slow convergence throws the usefulness of the 
asymptotic solution into question. The infinite series appearing in the solutions to the problems 
that we consider in this thesis are not only asymptotic but we believe also converge for small e. 
We will demonstrate the convergence problem of the reciprocal logarithmic asymptotic series 
by contrasting it to the more familiar type in powers of e. We define P(s) to be the power 
series in s of the form 

£ 0. (1.1) 

CO 

P(e) ~ ^ T a j e ' - 1 , £ -»• 0. 

We will take cij = 2 1 J in both S(e) and P(e). For s less than approximately 0.6, S(e) with 
aj = 2 1 _ J is a convergent infinite geometric series, which has the exact sum of 

Similarly, the exact sum of P(s), for the same cij, is 

P(£) = 
2 

2 - e 

3 



Chapter 1. Introduction and Background 

In the top graph of Figure 1.1, we plot the five-term partial sum, S5(e), and the exact sum S(e) 
versus e for the reciprocal logarithmic series. In the lower graph, we show the corresponding 
plots for the power series in e. One can see that the truncated reciprocal logarithmic series 
only compares well to the exact sum for small values of e, whereas the truncated power series 
is virtually indistinguishable from the corresponding exact sum curve. 

co 3 -

2 -

0 1 1 1 1 1 1 1 1 i i i I 
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e 

Figure 1.1: Five-term partial sum of a convergent asymptotic series and the exact sum of the 
series versus e. Top graph: reciprocal logarithmic series S(e). Bottom graph: power series 
P(e). 

One may wonder if the hybrid method could be extended to treat three-dimensional singular 
perturbation problems. The answer is no. This is not due to a shortcoming of the method, but 
rather due to an important difference between two-dimensional and three-dimensional problems. 
The hybrid method was designed to overcome the slow convergence difficulties of asymptotic 
solutions containing infinite reciprocal logarithmic series in the small perturbation parame
ter. For example, the singularity structure of certain problems that we consider calls for a 
free-space Green's function representation of the Laplacian operator in the solution. In the 
two-dimensional case, the free-space Green's function for the Laplacian operator has the form 
log r, where r is the distance measured from the singularity, which allows for the reciprocal 
logarithmic form of the asymptotic expansion of the solution. In contrast, the corresponding 
three-dimensional free-space Green's function is of the form 1/r, which will not generate a re
ciprocal logarithmic expansion with its inherent convergence difficulties and hence, the hybrid 
method is not necessary. 

It also may seem that singular perturbation problems whose solutions involve infinite expansions 
in powers of (—1/loge) are uncommon, but we will see that such problems arise in a variety 
of contexts. The types of strongly localized perturbation problems involving infinite reciprocal 
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Chapter 1. Introduction and Background 

logarithmic expansions that comprise the bulk of this thesis fall into four categories: low Peclet 
number convective heat transfer, low Reynolds number fluid flow, oxygen diffusion in muscle 
tissue from capillaries, and fully developed laminar fluid flow in a straight pipe. 

This thesis continues the development of the hybrid method by applying it to singular per
turbation problems that arise in a wide range of disciplines. In Chapter 2, we elaborate on 
the class of applicable singular perturbations problems and describe the steps of the hybrid 
method using an illustrative example. In Chapters 3 and 4, we apply the hybrid method to 
certain problems on bounded domains. In Chapters 5 and 6, we apply the hybrid method to 
certain problems on unbounded domains. In Chapter 7, we outline extensions of the hybrid 
method applications to problems in scattering theory, plate vibration and others, and finish 
with conclusions in Chapter 8. 

Chapter 2 provides information on the hybrid asymptotic-numerical method. In particular, 
we state conditions that a singular perturbation problem must satisfy in order to produce the 
asymptotic structure of the solution that the hybrid method requires. We offer a common 
framework for the governing equations and boundary conditions for a second-order, steady, 
singular perturbation problem to which one may apply the hybrid method. We outline the 
steps of the hybrid method on a linear version of this framework on a bounded domain, with 
small detours to explain how to modify the method for non-linear problems. We explore the 
effect on the asymptotic solution structure of relaxing the necessary conditions on the singular 
perturbation problem. The hybrid method treats strongly localized singular perturbation prob
lems whose asymptotic solution contains an infinite series in terms of reciprocal logarithms of 
the form in (1.1). The subdomains that are removed from the solution domain are of arbitrary 
cross-sectional shape, with a unique shape-dependent parameter d for a particular shape. In 
the chapter describing the hybrid method, we introduce this parameter d more formally, and 
show how to determine its value. We distinguish the asymptotic and the numerical portions 
of the method, and describe its advantages over using only the method of matched asymptotic 
expansions or only a direct numerical computation. 

Chapter 3 entails the application of the hybrid method to fully developed laminar flow in a 
straight pipe containing a thin core. The small parameter e in this problem is a measure of 
the size of the core cross-section. We derive the pipe flow equations from the Navier-Stokes 
equations and apply the hybrid method to obtain an approximate solution for the axial velocity 
of the fluid in a pipe with a core that are both of constant but arbitrary cross-sectional shape. 
Since this application has a direct link to the linear, second-order singular perturbation problem 
on a bounded domain that we use in Chapter 2 to outline the hybrid method, we only repeat 
certain key details of the application. For the special pipe-core geometries of a concentric 
annulus and an eccentric annulus, we compare the hybrid solution results to those of an exact 
or fully numerical solution in terms of the mean flow velocity or the friction coefficient. 

Chapter 4 describes in detail the application of oxygen transport from multiple capillaries 
to skeletal muscle tissue. A mathematical model of the transport of oxygen from capillaries 
to skeletal muscle tissue is a diffusion problem in a two-dimensional, bounded domain with 
Neumann and mixed boundary conditions. We consider N capillaries of small but arbitrary 
cross-sectional shape and demonstrate that, for N > 1, this is a singular perturbation prob
lem that involves an infinite expansion of logarithmic terms of the small parameter £, which 
characterizes the size of the capillary cross-sections. We apply the hybrid method to solve ap-
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proximately for the steady-state oxygen partial pressure in the tissue. In general, our oxygen 
transport model incorporates the effects of tissue heterogeneities such as mitochondria, variable 
permeability of the capillary walls and the facilitation of oxygen transport by the presence of 
myoglobin. We demonstrate the asymptotic results with some specific examples to illustrate 
these and other effects, and in certain cases, compare with the exact or numerical solution. 

Chapter 5 shows the hybrid method applied to a convective heat transfer problem past multiple, 
arbitrarily shaped bodies. Convective heat transfer from an array of small, cylindrical bodies of 
arbitrary shape in an unbounded, two-dimensional domain is a singular perturbation problem 
involving an infinite logarithmic expansion in the small parameter e, representing the order of 
magnitude of the size of the bodies. Using the hybrid method, we formulate a related problem to 
solve for an approximate solution for the dimensionless, steady-state temperature. We assume 
that the velocity field of the fluid surrounding the bodies is arbitrary but known. From our 
asymptotic solution for an arbitrary velocity field, we present the results for two special cases: 
a uniform flow field and a simple shear flow field. We demonstrate the asymptotic results of 
the hybrid method through a number of examples and, in a particular case, we compare to an 
exact analytical solution. 

Chapter 6 describes the hybrid method applied to the non-linear problem of low Reynolds 
number fluid flow past a body asymmetric to the uniform free-stream. Low Reynolds number 
fluid flow past a small, cylindrical body of arbitrary shape in an unbounded, two-dimensional 
domain is a singular perturbation problem involving an infinite logarithmic expansion in the 
small parameter e, representing the Reynolds number. Using the hybrid method, we construct 
a related problem that we solve to obtain an asymptotic solution for the dimensionless, steady-
state velocity field and for the coefficients of lift and drag. This application extends the work 
of Kropinski et al. [29] of low Reynolds number fluid flow past a symmetric, but otherwise ar
bitrarily shaped, cylinder. We modify their finite difference code to incorporate the asymmetry 
in the flow field, which we use to compute an asymptotic solution for the coefficient of lift that 
is correct to all logarithmic terms. 

Chapter 7 suggests possible extensions of the hybrid method to other applications that include 
unsteady problems, non-linear problems and fourth-order eigenvalue problems. One application 
is a non-linear problem that extends the convective heat transfer analysis of Chapter 5 and is 
also a rough model for steady viscous incompressible fluid flow. We describe an extension 
of the low Reynolds number problem of Chapter 6 to fluid flow past an array of cylindrical 
bodies that are symmetric to the free-stream. We provide some details of the analysis on a 
biharmonic eigenvalue problem that is a linear, fourth-order problem on a bounded domain 
which models the vibration of thin plates with small holes. To close the chapter on possible 
extended applications, we touch on problems that model such physical processes as non-linear 
reactions on catalytic surfaces and low frequency scattering of light. 

In the final chapter, Chapter 8, we reflect on the hybrid asymptotic-numerical method as a 
powerful tool in treating singular perturbation problems involving infinite reciprocal logarithmic 
expansions. We comment on the advantages of applying the hybrid method to these problems 
over using only the method of matched asymptotic expansions or only a full numerical approach. 
Finally, we summarize the wide variety of contexts in which singular perturbation problems of 
this type occur. 
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Chapter 2 
The Hybr id Asymptotic-Numerical Method 

In this chapter, we answer certain questions about the hybrid asymptotic-numerical method. 
What conditions on singular perturbation problems are essential for the hybrid method to 
be of use? What happens to the asymptotic structure of the solution if we relax any of these 
conditions? What are the basic steps of the hybrid method? To aid in answering these questions, 
we provide a framework for the governing equation and boundary conditions of applicable 
singular perturbation problems. This framework includes steady, second-order, two-dimensional 
problems that are linear or non-linear, and that are on bounded or unbounded domains. We 
touch on some generalizations to the framework in this chapter but we leave the detailed 
discussion for later in Chapter 7. We state the necessary conditions on a strongly localized 
singular perturbation problem to produce certain features in the asymptotic structure of the 
solution. By enumerating the basic steps of the hybrid method on a second-order linear problem, 
we illustrate how the hybrid method exploits this asymptotic solution structure. Throughout 
the illustration, we discuss any modifications to the steps of the hybrid method for non-linear 
problems. After, we explore what happens when we relax any of the conditions on applicable 
singular perturbation problems. 

2.1 Conditions on Applicable Singular Perturbation Problems 

We describe necessary conditions on singular perturbation problems to produce the asymptotic 
solution structure that makes the hybrid method useful. Firstly, applicable singular pertur
bation problems are two-dimensional whose governing equation involves an operator with a 
logarithmic fundamental solution (eg. the two-dimensional Laplacian operator). The problems 
must also be strongly localized singular perturbation problems, such as those on a solution 
domain with the removal of a small subdomain. A second condition is that the boundary 
condition on the subdomain border must contain a Dirichlet component. Finally, the unper
turbed solution of the global expansion in the singular perturbation problem must satisfy a 
non-degeneracy condition. 

These conditions are necessary to produce certain features in the asymptotic solution for which 
the hybrid method is applicable. One such feature is that the asymptotic solution must involve 
reciprocal logarithmic gauge functions of the form ( —1/loge), where e is the perturbation 
parameter. The other feature is that the local solutions, valid in a region close to the removed 
subdomain, must be constant multiples of a canonical local solution. In the next section, we 
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introduce a framework for applicable second-order steady problems. Then, we explain how the 
necessary conditions give rise to the essential features of the asymptotic solution structure on 
a linear version of the general framework. 

2.2 Framework for Applicable Second-Order Steady Problems 

We present a second-order, steady singular perturbation problem for which we want to obtain 
an approximate solution for the unknown $(x; e), where s is the small perturbation parameter. 
A framework for the governing equation and boundary conditions of $(x;e) — , x-i\s), on 
a bounded or unbounded domain Q, is 

x G Q\Q,0 C TZ 2, (2.1a) 

xe<9ft 0, & # 0 , (2.1b) 

x e dil, (2.1c) 

|x| —> oo. (2.Id) 

First, we describe the structure of the governing equation. In (2.1a), 7V(x,$, V $ ) is a scalar 
linear or non-linear function and c is of one sign. Of course, one would impose certain conditions 
(on A ( x , $ , V $ ) , for example) to guarantee the existence of a solution. To illustrate the 
hybrid method, we will simply assume that a solution exists to (2.1). The domain Q is a two-
dimensional domain that is bounded or unbounded, from which we remove f i 0 , a finite collection 
of k subdomains whose distance apart is 0(1). If ft is a bounded domain, then the distance 
from the boundary of to each of the k subdomains is also 0(1). Unless we specify otherwise, 
boldface variables (eg. the spatial variable x = (x\,X2)) represent vectors in two dimensions. 
This framework of applicable singular perturbation problems is by no means fully general. For 
instance, we can modify this form to include eigenvalue problems (for example, the original 
application in Ward et al. [57] in 1993), and also extend it to include unsteady problems. We 
discuss these and other extensions to the general framework of applicable problems, including 
a fourth-order eigenvalue problem, in Chapter 7. 

Now, we move to the form of the boundary conditions on the subdomain border, <90o, of £ir> 
A requirement of the boundary condition in (2.1b) is that the Dirichlet component must be 
present, i.e. 6 ^ 0 . To describe a purely Dirichlet boundary condition, we would set b = oo. 
Also, in (2.1b), the function 3>o may depend on the spatial variable x and d/dn represents 
the outward normal derivative to the domain. In Section 2.4, we will demonstrate that the 
asymptotic solution structure cannot contain reciprocal logarithmic gauge functions if we relax 
the requirement of the Dirichlet component in the boundary condition on <9$7o- We will also 
explore the ramifications of relaxing the other conditions on applicable singular perturbation 
problems. 

If the solution domain fi is bounded, the problem to solve is (2.1a) with (2.1b) and the boundary 
condition on its outer boundary d£l in (2.1c). Again, d/dn is the outward normal derivative to 
the domain. The outer boundary condition could be purely Neumann with B = oo, or purely 
Dirichlet with B = 0, or a combination of both. 

V - [ c V $ ] + A ( x , $ , V $ ) = 0, 
— 

e— + fc($ - $ 0 ) = 0, 
on 

ft Bounded - r - + 5 $ = 0, 
an 

or, Q. Unbounded $ ~ $co, 
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If Q, is unbounded, we would solve (2.1a) with (2.1b) and we impose a far-field condition of the 
form in (2.Id), in which may depend on x. 

In the next four chapters, we delve into applications of the hybrid method on specific strongly 
localized singular perturbation problems. In Chapter 3, we solve for the axial velocity, w, of 
fully developed laminar flow in a straight pipe with a core. For this special case, the governing 
equation is linear and the solution domain is bounded. The problem to solve is (2.1a)-(2.1c), 
in which 

Also, for the pipe flow application, c = 1 in (2.1a) and $ 0 = 0 in (2.1b). 

Chapter 4 contains our detailed examination of a second application on a bounded domain that 
is also linear. In this application, we examine the oxygen partial pressure in a transverse section 
of skeletal muscle tissue that is supplied by multiple capillaries. We solve for the oxygen partial 
pressure, p, in the tissue and the corresponding variables of (2.1a)-(2.1c) for this problem are 

In (2.1b) for the oxygen transport application, and $ 0 = Pck are specified constants. 

Our first application on an unbounded domain is in Chapter 5, which is a linear convective heat 
transfer problem about an array of cylindrical bodies. We solve for the temperature, u(x;e), 
in (2.1a), (2.1b) and (2.Id) with 

For the convective heat transfer application, c = 1 in (2.1a). As well, in (2.1b), b = Kk and 
$ 0 = a f c are specified constants, and in (2.Id), = 1 represents the ambient temperature in 
the unbounded solution domain. 

The three problems that we have just mentioned are linear and second-order. In Chapter 6, 
we study low Reynolds number fluid flow past an asymmetric cylindrical body. This problem 

$(x; e) = w(x; e) (axial velocity component) 
N — (3 (positive constant) 

= D (bounded domain of the pipe) 
i7o = De (k — 1 small subdomain, the pipe core) 
b = oo (Dirichlet condition on subdomain border) 
B = oo (Dirichlet outer boundary condition). 

$(x; e) — p(x; e) (oxygen partial pressure) 
c = 'P(x) (spatially dependent) 
iV(x, V$) = -Ai(x) (spatially dependent) 
f i = D (bounded domain of tissue) 
Oo = U/Jfe (k small subdomains, the capillaries) 

b = K f c / ^ ( x ) (mixed boundary conditions on capillary walls) 
B — 0 (Neumann outer boundary condition). 

<fr(x; e) = M ( X ; e) 
JV(x,$, V$) = -v • V« 
Q = n 2  

fio = y/j>£ 

(temperature) 
(linear function with v known) 
(unbounded domain) 

(k small subdomains, the cylindrical bodies) 

(mixed boundary condition on cylindrical bodies). b = Kk 
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is non-linear and on an unbounded domain. We present the low Reynolds number problem 
as a fourth-order non-linear problem to solve for the stream function, although it is possible 
to formulate it as a second-order non-linear system in terms of velocity and pressure. In this 
way, we extend the general framework of applicable singular perturbation problems to include 
the fourth-order biharmonic operator. Later in this chapter, we elaborate on how to apply the 
hybrid method to non-linear problems. Much later in this thesis, in Chapter 7, we outline a 
biharmonic eigenvalue problem that models the vibration of a thin plate with small cutouts or 
concentrated masses. 

So far, we have provided a general framework for possible applicable singular perturbation 
problems. We mentioned that the problems must be two-dimensional and must contain a 
Dirichlet component in the boundary condition on the collection of subdomain boundaries. Also, 
we require that the unperturbed problem satisfy a non-degeneracy condition. We illustrate the 
necessity of these conditions on the asymptotic solution structure of the perturbation problems 
by stepping through the hybrid method on a linear version of (2.1) on a bounded domain. 

2.3 Outline of the Hybrid Method on a Second-order Linear 
Problem 

Since three of the four major applications of the hybrid method in this thesis are second-order 
linear problems, we outline the steps of the method on a general strongly localized singular 
perturbation problem of a similar form. We illustrate the steps of the hybrid method by 
applying it to a second-order, linear problem involving the Laplacian operator on a bounded 
domain. In so doing, we clarify the role of the conditions on the singular perturbation problems 
that the hybrid method can treat. Also, we comment on necessary modifications for non-linear 
problems. 

We can basically summarize the hybrid method in five steps. The first step of the hybrid 
method is to apply the method of matched asymptotic expansions to the singular perturbation 
problem to obtain the asymptotic structure of the solution. In particular, this step determines 
if the asymptotic solution involves reciprocal logarithmic gauge functions. It also determines if 
the local solutions, valid close to the removed subdomain, are constant multiples of a canonical 
solution. These two features of the asymptotic solution are essential for applying the remaining 
steps of the hybrid method. 

We consider a linear version of (2.1a), where N is now a linear function (which we will henceforth 
refer to as L) and O is a bounded domain D. Also in (2.1a), we set c = 1, which means that 
the first term involves the two-dimensional Laplacian. Although in general fio represents a 
collection of k subdomains that are removed from Q, we will take k = 1 for ease of illustration, 
and call the small subdomain Also, we take 3>o m (2.1b) to be a constant C. 

Thus, the second-order, linear, singularly perturbed problem for our illustration of the hybrid 
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method is 

0, x e D\D£ C V, 2, (2.2a) 

0, xedD£, b^O, (2.2b) 

0, x e dD. (2.2c) 

Here and throughout, unless otherwise specified, A represents the two-dimensional Laplacian 
operator, A = d 2 jdx\ + d 2 jdx\. In (2.2a), L(x,u,v) is linear in u and v. 

We describe the five steps of the hybrid method in determining an asymptotic solution to (2.2). 
For the asymptotic solution, we define two solution regions. One is the global (outer) region, 
that is valid away from the removed subdomain, D£, located at £, where |x - £| = 0(1). 
The second is the local (inner) region, that is valid close to the removed subdomain, where 
|x — £| = 0(e). For an arbitrarily shaped subdomain, £ is the location of its centroid. At times, 
we will refer to the removed subdomain D£ as the "hole" in the domain D. 
Step 1. Apply the method of matched asymptotic expansions to ensure two features of the 
asymptotic solution structure. One feature is that the local problems are the same, so that 
each local solution is a multiple of a canonical local solution. The second feature is that the 
gauge functions of the asymptotic expansion are reciprocal logarithms of the form ( —1/loge), 
where £ is the perturbation parameter. 

This asymptotic solution structure allows us to define an effective radius of the subdomain D£ 

and to establish an asymptotic equivalence between solutions on subdomains of arbitrary and 
circular cross-sectional shape. We refer to this as Kaplun's equivalence principle, since he first 
remarked on it in his study of steady viscous flow past a stationary body [24]. 

In the global region, away from the removed subdomain D£, we expand the solution in a general 
asymptotic series as 

CO 

$(x; e) = $0(x) + ^ ( ^ ( x ) + £ ^ ( ^ ( x ) + • • • . (2.3) 

Here, <J?o(x) is the solution to the unperturbed problem, that is, the problem on the domain D 
without the removal of the subdomain D£ (and, of course, without the boundary condition on 
dD£). By definition, the gauge functions Fj(e) in an asymptotic expansion like (2.3) are such 
that 

Fj+1{e) = oitye)], or lim = 0. (2.4) 

In the local region, close to the hole at x = £, we define the local variables 

y = ^ 7 ^ > <t>(y;s) = <S>(ey + C,£). (2.5) 

We substitute these variables into the governing equation (2.2a) and the boundary condition 
on the hole (2.2b) and obtain 

0, y £ A > , (2.6a) 

0, y G dD0, b ± 0. (2.6b) 

A $ + Z ( x , $ , V $ ) = 

+ 6 ( $ - C) = 
dr 

+ 5 $ = 

A ^ + £ 2 i ( £ y + C , 0 , £ _ 1 V ^ ) 

on 
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Here, the subscript y indicates that differentiation is with respect to the local variables. In 
(2.6a), we assume that we obtain the region D£ by shrinking the distance from every point on 
the boundary of a fixed domain Do to the centre by the factor e, and so we write D£ = EDQ. 
Also, dD0 is the boundary of D0. 
We expand the local solution in a general asymptotic series as 

CO 

<Ky; e) = My) + h{e)My) + £ f^)My) + • • • , • (2.7) 

where we take </>o(y) = C and where the gauge functions fj(s) also satisfy (2.4). We substitute 
this expansion into (2.6). Provided that the gauge functions fj(e) also satisfy fj(e) > £ 2L(ey + 
£, </>, £ -1Vj,c/>), then the second term on the left-hand side of (2.6a) is a higher-order correction. 
For now, we assume that fj(s), for j > 1, satisfy this condition. Later, once we choose the 
form of the gauge functions, we will return to verify that this condition holds. Thus, the local 
functions 4>j(y) in (2.7) satisfy 

Ay<f>j = 0, y^D0, (2.8a) 

^ + 6 ^ = 0, y e ^ o , b^O. (2.8b) 
on 

In addition, a matching condition replaces the missing boundary condition. Looking at (2.8), 
we see that the local problems for 4>j(y), where j > 1, are the same. That is, we can write each 
local solution as a constant multiple of some canonical local solution 

My) = a3My)- (2.9) 

We determine the constants, a,j, for j > 1, through the matching procedure. In (2.9), c/>c(y) is 
the canonical local solution satisfying 

(2.10a) 

b^O, (2.10b) 

(2.10c) 

Since <f>c satisfies Laplace's equation in two dimensions, the far-field behaviour of <f>c is that it 
grows at worst logarithmically plus some constant. In the far-field behaviour in (2.10c), we have 
written this constant in the form of (— log cZ) for notational convenience later on. Here, d is a 
constant that depends on b and on the shape of the hole D0. The solution to (2.10) uniquely 
determines the constant d for a given shape of Do. For general subdomain shapes, we must 
solve (2.10) numerically to determine d. In Section 2.5, we describe the numerical procedure to 
solve (2.10), and for certain subdomain shapes, such as a circle or an ellipse, we show how to 
determine d analytically. 

Matching the global and local solutions requires that the expression for $(x;e) a s x - + ( agree 
with the expression for <j>(y;e) as |y | —> oo in some region of overlap. For the global solution 
as x —• £, we use a Taylor expansion in (2.3) and obtain 

$ ~ MO + V $ o ( x ) | x = < : • (x - C) + • • • + i 7 , i (£)$ i (x -> 0 + • • • • (2.11) 

Ay(j>c = 0, y 0 D 0 , 

^p- + b<f>c = 0, y e 8D0, 
on 

4>c ~ log |y | - logci, |y | -* oo. 
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Here, the notation 3>i(x —• C) refers to the behaviour of the solution $ i ( x ) as x (. We 
mentioned at the beginning of the chapter that the unperturbed solution must satisfy a non-
degeneracy condition. We will see that this condition on the unperturbed solution is 

MO ± C. (2.12) 

For the local solution behaviour as |y | —»• oo, in terms of global variables, we use (2.9) and 
(2.10c) in (2.7) and obtain 

<t> ~ C + / i (£ )a i [ log |y | - l o g d ] + f2(e)ci2[log |y | - log cl] + ••• 

~ C + /i(£)ai[log |x - C| - log(ed)] + / 2 a 2 [ log |x - C| - log(ed)] + • • • . ( ' " ' 

Here, the (— log d) form of the constant in the far-field behaviour of 4>c from (2.10c) conveniently 
allows us to form the (log(£ci)) term. 

The matching proceeds without difficulty if we choose the gauge functions as 

Wi th this choice, at the 0(1) level, the matching requirement is 

M0 = C + a1. (2.15) 

Thus, the solution to the unperturbed problem determines the constant a\. Then, with ci\ 
known, we obtain ci2 from the solution to the problem for $ i ( x ) which is of the form 

A $ i + X ( x , $ 1 , V $ i ) = 0, x £ D \ { ( } , (2.16a) 

^ + 5 $ i = 0, x G c l D , (2.16b) 
on 

$ x ~ a x l o g | x - C| + a 2 , x C- (2.16c) 

At this stage, we see the necessity for the form of the non-degeneracy condition on the unper
turbed solution in (2.12): without it, (2.15) would require that a\ = 0, which would eliminate 
the logarithmic behaviour of $ i as x ^ C- The matching procedure continues in this manner 
and we obtain an infinite recursive set of global problems to solve to determine the unknown 
coefficients cij in (2.9). At the 0{v 3) level in the matching, the behaviour of the solution $ j (x) , 
for j > 1, as x —> C> is 

$j ~ a j l o g | x - C | + aj+i, x - * C - (2-17) 

Although the choice of gauge functions is not unique, it is only the reciprocal logarithmic form 
of gauge functions that would permit us to determine all the free constants in the asymptotic 
expansions. Also, this choice of local gauge functions, fj(e), satisfy the condition fj(s) ~> e 2L 
that allowed us to neglect the second term on the left-hand side of (2.6a). Thus, we have 
ensured that the gauge functions are reciprocal logarithms of the small perturbation parameter 
£. Since we will see this reciprocal logarithmic form often in the applications of the hybrid 
method, we define 

log(ed) 
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In Chapter 1, we described the apparent difficulty of the method of matched asymptotic expan
sions in that the asymptotic solution containing such infinite logarithmic series converges very 
slowly unless e is very small. Thus, truncating the series is in general not very accurate even for 
moderately small e. As well, to determine the coefficients cij in (2.9), the method of matched 
asymptotic expansions requires that we solve an infinite set of problems for $ j (x) , for j > 1. 
In linear systems, with one hole in the domain, these calculations may not be so difficult. How
ever, for linear problems with multiple holes or for non-linear problems, there is an increasing 
degree of complexity in calculating each successive coefficient in the infinite expansion. For this 
reason, using the hybrid method to circumvent these recursive calculations is of great benefit. 
The subsequent steps reveal how the hybrid method exploits the asymptotic structure of the 
original problem to reduce it to an asymptotically related problem that is non-stiff and easier 
to solve than the original. We will show how the related problem also avoids having to calculate 
the coefficients Oj individually. In general, one must solve this related problem numerically. 

Step 2. Write the local solution expansion (2.7) from Step 1 in terms of an asymptotic 
expression A(ed) and the canonical local solution c/>c(y). The asymptotic expression A(ed) is 

A M ~ | > , ^ — J , e-+0. (2.19) 

We remark that v 4 ~ 0 ( l ) a s £ — > 0. A(ed) is an asymptotic expression for the infinite 
expansion of reciprocal logarithms of the small perturbation parameter e, and involves the 
subdomain shape-dependent parameter d. As we saw in Step 1, c/>c(y) is the canonical local 
solution to (2.10), which uniquely determines the parameter d for a given b in (2.10b) and for 
a specific shape of the subdomain DQ. 

We require the far-field behaviour of the local solution to determine the singularity structure 
of the hybrid method related problem. We will formulate this related problem in Step 3. 

To begin, we extend the local solution expansion in (2.7) to 

<*(y; e) = ¥>o(y; v) + evi(y; v) + eVa(y; v) + • • • • (2.20) 

Here, cpo(y; v) incorporates all of the logarithmic terms of the local solution, and the remaining 
terms are beyond all orders of reciprocal logarithms. In (2.20), <po(y; v) is 

¥>o(y; v) = C + v{ed)ai<f>c(y) + [v(ed)] 2a2<f>c(y) + • • • , (2.21) 

which we obtained by substituting (2.9) and (2.14) into (2.7), using the definition for v(ed) in 
(2.18). Again, </>c(y) is the canonical local solution to (2.10). Then, using the definition for 
A(ed) in (2.19), we write the local solution expansion of Step 1 as 

0(y;£) =  (Po(y;v) + ••• 

= C + <^c(y)z>(£(i){a1 + a2v(ed) + a3[u(ed)}2 + •••} (2.22) 

= C + A{ed)v{ed)4>c{y) + ••• . 

Now, we determine the far-field behaviour of the local solution in terms of global variables. We 

14 



Chapter 2. The Hybrid Asymptotic-Numerical Method 

substitute (2.10c) into (2.22), and use (2.5) and (2.18), to obtain 

<f> ~ C + A(ed)i/(ed)[log\y\- log d] H 

~ t 7 + A(ed)u(sd)[log |x - C| - log(ed)} + ••• (2.23) 

~ C + A(ed)z/(£d)[log |x - C| + f - 1 ( £ d ) ] + • • • , |y | oo. 

In the next step, we use the far-field behaviour of the local solution to determine the singularity 
structure of the asymptotically related problem that we formulate with the hybrid method. 

Step 3. Write the global expansion for <5(x; e) in terms of a function $o ( x ! u ) t n a t incorporates 
all of the logarithmic terms of the asymptotic solution and formulate a related problem for this 
function. 

For Step 3, we write the global expansion as 

$(x; £) = $5(x; v) + £$*(x; v) + £2<3>*(x; »)+••• . (2.24) 

Here, $o(x> v ) incorporates all of the logarithmic terms of the asymptotic solution and the 
remaining terms are beyond all orders of reciprocal logarithms. We will formulate a problem to 
solve for <I>Q that is asymptotically related to the original problem (2.2) for $(x; e). This related 
problem will contain the asymptotic expression, A(ed) from (2.19), in its solution. The solution 
of the.related problem for $Q then determines the value of A(sd), which essentially sums the 
entire infinite logarithmic series without having to determine each aj in (2.9) individually. 

To formulate a related problem for $ Q , valid in the global region, we substitute (2.24) into 
(2.2a) and (2.2c), and require that, as x —> £, the solution agree with the far-field behaviour of 
the local solution in (2.23). We obtain that the global related problem for <J>Q is 

A $ $ + Z ( x , $ $ , V $ $ ) = 0, x e D \ { C } , (2.25a) 
f9d>* 

^ + £ $ * = 0, x G dD, (2.25b) 

$ 5 ~ C + A ( e d ) - r A ( e d ) i / ( £ d ) l o g | x - C | , x ->• C (2.25c) 
The governing equation and outer boundary condition for $ o ( x i v ) a r e °f ^ n e s a m e form as the 
original problem, except that the subdomain D£ has been shrunk to the point {£}. Also, the 
localized perturbation in (2.2b) has been replaced by the singularity structure (2.25c), which 
we determined from matching to the far-field behaviour of the local solution. The condition 
in (2.25c) specifies the form of both the singular part and the regular part of the singularity 
structure. In the final steps of the hybrid method, we use this over-determination in the 
singularity condition to find A(ed). 

Step 4. Decompose the global related problem solution $5(x>  v) m * ° a regular part (satisfying 
the unperturbed problem) and a singular part (involving a Green's function). The behaviour 
of this decomposition provides a second expression for the singularity structure of the global 
solution. The first expression for the singularity structure of $Q is in (2.25c). 

For Step 4, we decompose the first term on the right-hand side of the global related problem 
solution in (2.24) as 

$*(x; v) = $5 f f (x) + 27rA(£ci>(£ci)G*(x; Q- (2.26) 
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Here, ( x ) 1 S a regular function that satisfies the unperturbed problem and G'(x; £) is a 
Green's function with the singularity structure 

G ~ i - l o g | x - C | + GH(C), x ^ C ( 2 - 2 7 ) 

Here, GR(C) is the regular part of the Green's function. For the oxygen transport application 
on a bounded domain that we discuss in Chapter 4, G is a modified Green's function. Wi th 
the decomposition in (2.26), we can write another expression for the singularity structure of 
the global related solution. We substitute (2.27) into (2.26), and let x —• C , to obtain 

$o ~ nH(0 + 2TTAUGr(C) + Av log |x - C | , x -> C- (2-28) 

Again, we require that the unperturbed solution satisfy the non-degeneracy condition, that is, 

nH(0 # c. 
In the corresponding Step 4 for a non-linear problem, where a non-linear function N(x,u,v) 
would replace £ ( x , u, v), we seek a singular solution to the global related problem in the form 

$o ~ R + 5 1 o g | x - C I - (2.29) 

Here, R is the regular part and a S is the coefficient of the singular part. The singular solution 
defines a function R = R(S). Comparing (2.25c) with (2.29), we find that in this case, 

R = C + A , S = Av. (2.30) 

In the next, and final, step of the hybrid method, we obtain an expression for A(ed) by com
paring the two forms of singularity structure for the global related problem solution. 

Step 5. Compare the two expressions for the singularity structure of the global related problem 
solution, from Steps 3 and 4 to determine an expression for A(ed). Once we obtain A(ed), then 
we have determined the global solution $(x;e) in (2.24) correct to all logarithmic terms. 

This final matching step requires that the two expressions for the singularity structure of the 
global solution in (2.25c) and (2.28) agree. The log |x — C | terms automatically agree and 
comparison of the remaining terms gives an expression for A(ed), 

Here, this procedure is valid provided that <&QH(C) 7̂  C and that the denominator is non-zero. 
To ensure that the denominator does not vanish, we insist that the denominator be of one sign, 
which then gives a range of validity for the small parameter e. For the expression in (2.31) to 
be valid, we require that 

0 < e < ecr = f r V 2 7 r G « ( c ) , (2.32) 

where d is the subdomain shape-dependent parameter in (2.10). As well, (ed) ^ 1 so that v(ed) 
in (2.18) is defined. In this linear case with one hole in the solution domain, the expression for 
A(ed) is in the form of a geometric series in powers of u(ed). However, this would not be true 
for non-linear problems or for problems with multiple holes in the domain. We examine two 
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multiple hole problems in the oxygen transport application of Chapter 4 and the convective 
heat transfer application of Chapter 5. 

For the non-linear version for Step 5, if a non-linear function N(x,u,v) replaces L(x.,u,v), we 
must assume that a solution exists to 

x£D\{C}, (2.33a) 

x e dD, (2.33b) 

x - > C - (2.33c) 

We can subtract off the singular part of QH and write the regular part R as 

R(S) = lim [$„(x ; S) - Slog |x - C|] • (2.34) 

From (2.30), we have S = Av = v(R-C). Thus, v = S/(R(S) - C) and A = Sjv. We compute 
solutions to (2.33a)-(2.33b) and then from (2.34), we obtain R(S) for various values of .5', which 
gives us v(S) and A(S) also. To obtain A(ed), we use v = — l/log(eci). In determining A(ed) 
through this process, we have essentially summed the infinite logarithmic expansion in (2.19). 
We employ a technique of this form in Chapter 6 when we examine the non-linear application 
of low Reynolds number fluid flow past an asymmetric cylindrical body. 

This completes the outline of the hybrid method on a linear, steady, second-order singular 
perturbation problem. The hybrid method exploits the asymptotic structure of the original 
problem to reduce it to an asymptotically related problem. This related problem is non-stiff 
and contains the infinite logarithmic expansion A(ed) from (2.19) in its solution. The specific 
asymptotic structure of the solution that the hybrid method requires is that it involves reciprocal 
logarithmic gauge functions and that the local problems are all the same. We stated necessary 
conditions on applicable singular perturbation problems to produce this asymptotic solution 
structure. In the next section, we investigate the effect on the asymptotic solution of relaxing 
these conditions. 

A $ „ + J V ( x , $ H , V $ „ ) = 0, 

- T
! L + B$H = 0, 

on 
$ H ~ S l o g l x - C|, 

2.4 Effect on the Asymptotic Solution Structure of Relaxing 
Certain Conditions 

Now, we explore the effect on the asymptotic solution structure of a singular perturbation 
problem of relaxing the conditions that we claimed were essential for the hybrid method to be 
useful. The main purpose of the hybrid method is to improve the accuracy of approximation 
in the asymptotic solution of singular perturbation problems that involve reciprocal logarithms 
of e. We stated that an applicable singular perturbation problem must be two-dimensional, 
with a Dirichlet component in the boundary condition on the removed subdomain, and whose 
unperturbed solution satisfies a non-degeneracy condition. Without these conditions, we assert 
that the singular perturbation problem will not possess an asymptotic solution structure with 
reciprocal logarithms. 

First, we consider the effect of relaxing the Dirichlet condition on the subdomain boundary, 
i.e. setting b = 0 in (2.1b). For ease of illustration, we take c = 1 in (2.1a) on a bounded 
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domain with one removed subdomain D£. After reseating to the local variables in (2.5), the 
local problems for </>j(y), j > 1, in (2.7) are 

Av<f>j = °> y i A ) , (2.35a) 

dn 
9 ^ J - 0, y G dD0. (2.35b) 

Here, D0 is the scaled subdomain, with D0 = e  1D£. If we impose a logarithmic growth in the 
far-field behaviour of the local solution of the form 

<My) ~  CJ l o § |y | + • • • , |yI oo, (2.36) 

then we show that Cj must be zero. By the Divergence theorem, we have 

A ^ d x = tim [ ^i-dS+ . [ ^dS. (2.37) 
R-*co J d\y\ J dn  v  ;  

y£Do \y\=R yedDo 

Here, R is the radius of a large circle surrounding Do and d/dn is the outward normal derivative 
to the solution domain. Using (2.35a) and (2.35b) in this expression, only the first term on the 
right-hand side remains. We use the form of (2.36) to obtain 

tim / ?pdS= tim %2%R = 0. (2.38) 
ft^co J d\y\ R-+co R  y ' 

|y|=# 

Thus, the constant Cj must be zero. Without a logarithmic form to the local solutions, the 
gauge functions cannot be reciprocal logarithms of e. We see that the effect of relaxing the 
Dirichlet condition the subdomain boundary is that we cannot generate reciprocal logarithms 
in the asymptotic solution structure. 

Next, we show that it is impossible to have reciprocal logarithmic gauge functions in the asymp
totic solution of a singular perturbation problem that is not two-dimensional. We use the linear, 
second-order problem of Section 2.3 in three dimensions for this illustration. The matching con
dition is that the behaviour of the global solution as x £ in (2.11) agree with the behaviour 
of the local solution in (2.7) as |y| —> oo. 

The local problem for (f>o(y) satisfies 

A„c6o = 0, ygDo, (2.39a) 

^ + ^ o - C ) = 0, yedDo. (2.39b) 

From the matching, <f>o(y) has the far-field behaviour 

<t>o - $o(C), |y| -* oo. (2.40) 

We write the solution to (2.39) in the form 

MY) = MO + (c - MO)Mv), ( 2-4i) 
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where vo(y) satisfies 

A„w 0 = 0, y £ D0, (2.42a) 

~ + b(v0 - 1) = 0, y e dD0. (2.42b) 
on  y  

Since Do is three-dimensional in this illustration, the solution t>o(y) has the asymptotic form 

t>o~(C-*o(0)j^r, | y H o o , (2.43) 

for some constant ao that we determine from the shape of D0 and the value of b. Since this 
solution is of order e in the global region, we set the gauge function Fi(e) = e in the global 
expansion and require that 

$ i ~ (C-$0 (0 )7 -371 , x ^ C (2.44) 
l x s I 

We see that since the local solution does not have a logarithmic form, the gauge functions 
cannot be reciprocal logarithms of e. 
We emphasize this point by considering the special case of a small subdomain of radius e. In 
two dimensions, if D£ = sDo is a circle of radius e, then the solution for (f>(y; s) is of the form 

c/> = log |y | + C + i . (2.45) 

Here, we remark that the Dirichlet component of the boundary condition must be present, 
i.e. 6 / 0. Since the fundamental solution of the Laplacian operator in two dimensions is 
logarithmic in form, the gauge functions in the expansion (2.7) will be reciprocal logarithms 
in terms of e. In contrast, if D£ = eDo is a sphere of radius e in three dimensions, their the 
solution for <6(y; e) is of the form 

<f>= -rK + C (2.46) 
|y | b 

The fundamental solution for the Laplacian operator in three dimensions is not logarithmic 
in form. Hence, the local solution will not grow logarithmically in the far-field and the gauge 
functions of the asymptotic solution cannot be reciprocal logarithms. We have shown here that 
the singular perturbation problem must be two-dimensional to produce the asymptotic solution 
structure required by the hybrid method. 

Finally, we consider the effect of relaxing the non-degeneracy condition in (2.12) on the un
perturbed solution on the asymptotic solution. We use the second-order, linear problem of 
Section 2.3 and now allow 

*o(C) = C. (2.47) 

The matching condition is that the behaviour of the global solution as x —> £ in (2.11) agree 
with the behaviour of the local solution in (2.7), with <f>o = C, as |y | —> 0 0 . Writing the global 
solution in terms of the local variable, |x — £| = ey, then we set f\(e) = e and match 

& ~ v$o(C)U=c • y , |y | -> oo- (2-48) 
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Tims, the local problem for 4>i(y) satisfies (2.8) and has the far-field behaviour of (2.48). Thus, 
the local solutions do not have a logarithmic form if we relax the non-degeneracy condition in 
(2.12), and so the asymptotic solution will not contain reciprocal logarithms. In fact, if we look 
at the hybrid method solution to the second-order linear problem in Section 2.3, we see this effect 
right away. If the unperturbed solution $ Q h equals the constant C at the subdomain location 
£, then in (2.31), A(ed) would be identically zero. This would mean that the infinite sum of 
the product of coefficients and reciprocal logarithmic gauge functions cancels out completely, 
which means that the effect of the domain perturbation is extremely weak, being smaller than 
0((—1/log(ed)) J) for any j. Hence, it is a necessary condition on the singular perturbation 
problem that its unperturbed solution satisfy the non-degeneracy condition $o K (C) / C. 

In the next section, we describe how to determine the subdomain shape-dependent parameter 
d from the solution to (2.10). 

2.5 Subdomain Shape-Dependent Parameter d 

We determine the solution to (2.10) when b = oo for a specific subdomain profile Do in terms of 
polar coordinates (p,0). A one-to-one mapping z = / ( £ ) , where z = pel°, transforms the profile 
Do in the z-plane to the unit circle in the £-plane where the two exterior planes correspond. 
Under the transformation, <f>c satisfies 

AoSc = 0, |£| > 1, 

<Pc = 0, |£| = 1. 

This problem has the solution <f>c — log|£ | . For |z| large (and thus, |£| large), 

z ~ PL |£| oo. 

Since the mapping is unique for each profile Do, this fixes the value of f3. Writing the solution 
as (f>c = log(|z|/|/3|) = log |z| - log \/3\ and matching to the far-field structure of the canonical 
local solution in (2.10c), we obtain that 

d=\P\. 

When b ^ oo, we cannot determine d using / (£ ) and instead we must compute it numerically. 
Ward el al. [57] and Kropinski et al. [29] describe a numerical procedure for determining d = 
d(b), in which they map the exterior of Do to the interior of a unit disc, and then use a finite 
difference scheme on a uniform polar grid to solve for the stream function, which is modified 
to remove its singular behaviour. They obtain d by matching the behaviour of the modified 
stream function near the origin. 

We can analytically derive d for a cylinder of elliptic shape and circular shape. First, for one 
elliptic cylinder with definition 

© 2 + © 2 ^ . ••>'•• 
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the solution to (2.10a)-(2.10b) with b = oo is <f>c(y) = i]i - n®. Here, (771,772) are elliptic 
coordinates defined by 

7/1 = c cosh 771 cos 772, 7/2 = c sinh 771 sin 772, c— Va* 2 — b* 2. 

Also, 771 = 77° = tanh - 1(6*/a*) is the level line of the elliptic boundary. Matching this solution 
to the far-field structure of the inner solution in (2.10c), requires that that 77° = log(2d/c). 
Solving for d, we obtain that 

, a* + b* 
d — , 

2 ' 
for an elliptic cross-section with major semi-axis a* and minor semi-axis b*. 
Next, for one circular cylinder with radius po£, the solution to (2.10a)-(2.10b) with b > 0 is 
4>c{y) — log IyI + a. To satisfy (2.10b) at p = \y\ = p0, the constant must be a = - l o g / 9 0 + 
l/(bp0). Matching this to the far-field structure of the inner solution in (2.10c) requires that 
a = — log d, giving 

d = poe- 1^ 0, 

for a circular cross-section of radius p0e. 
For the particular case of b = 0 0 , Ransford [45] provides a table of the shape-dependent param
eter d, which we have reproduced in Table 2.1 for certain cross-sectional shapes. 

D0 d 
circle, radius r r 

ellipse, semi-axes a and b a + b 
2 

equilateral triangle, side h a 0.422/1 
871"̂  

isosceles right triangle, short side h 3 3 / 4 r m 2 / i 

square, side h ; 4 L « 0.5902* 

Table 2.1: Shape-dependent parameter d (capacity) for cross-sectional shape Do — e  1D£, for 
b = 00 in (2.10b), (adapted from Ransford [45]). 

The subdomain shape-dependent parameter d is part of the canonical local solution for the 
second-order singular perturbation problems in Chapters 3, 4 and 5. In the low Reynolds 
number fluid flow application in Chapter 6, the canonical local problem involves a body shape-
dependent matrix M for flow past an asymmetric body. In the case of low Reynolds number 
fluid flow past a symmetric body, the fourth-order canonical local problem involves an analogous 
parameter d. 
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2.6 Advantages of the Hybrid Method 

As its name suggests, the hybrid asymptotic-numerical method combines techniques of asymp
totic analysis and numerical analysis. We describe the advantages of the hybrid method for 
treating certain, two-dimensional, strongly localized singular perturbation problems over using 
the two traditional techniques for approximate solutions: the method of matched asymptotic 
expansions and full numerics. For the asymptotic part, the hybrid method uses the method of 
matched asymptotic expansions as a means to reduce the original strongly localized singular 
perturbation problem to an asymptotically related problem. The related problem has a speci
fied singularity structure instead of the localized perturbation on the subdomain boundary that 
occurs in the original problem. The hybrid method exploits the asymptotic solution structure 
of the original problem, which must involve reciprocal logarithmic gauge functions of the per
turbation parameter e and must have local problems that are the same, so that their solutions 
are multiples of a canonical solution. From the solution to this canonical solution, we determine 
a parameter d that depends on the shape of the subdomain and on the constant b in the subdo
main boundary condition. In some problems, due to the conditions on the asymptotic solution 
structure, the gauge functions involve d and e only in terms of their product, ed. This feature 
allows for an asymptotic equivalence between cylinders of different cross-sectional shape, based 
on an "effective" radius of the cylinder, which is known as Kaplun's equivalence principle. 

To determine the unknown coefficients in the asymptotic solution, the method of matched 
asymptotic expansions requires the solution of an infinite recursive set of problems. Often, 
the problems increase in analytical complexity at each order in the expansion. For non-linear 
problems, it may be too difficult to determine analytically more than a few of these coefficients. 
We have seen in Chapter 1 that infinite reciprocal logarithmic expansions, if they converge, 
converge very slowly and so any truncation of the infinite series may sacrifice the desired 
accuracy. We also mentioned in Chapter 1 that we believe that these series do converge for 
small e. The fact that we are able to compute values of A(ed), which is asymptotic to the 
infinite reciprocal logarithmic series, provides evidence of such convergence. The hybrid method 
circumvents this slow convergence difficulty by formulating a related problem whose solution 
actually contains the infinite logarithmic expansion. Thus, by solving this related problem which 
is easier than for the original, we obtain the asymptotic solution correct to all logarithmic terms. 

The numerical part of the hybrid method involves solving the related problem, which is non-stiff 
and has a smaller parameter space than the original problem. For linear problems, we wrote the 
related problem solution in terms of the unperturbed solution, $Q h (x) , and a Green's function, 
G(x; £). Computing the unperturbed solution and the Green's function involves numerical 
techniques for solving partial differential equations such as the finite element method or the 
finite difference method. For a given domain and locations of the removed subdomains, 
we only need to compute the Green's function, G'(x;£), and its regular part, GR(Q, once. 
Then, for a given subdomain shape, Do, we compute a single value d from the solution to the 
canonical local problem in (2.10). The remaining part of the numerics for a linear problem is 
to compute the expression for A(ed) and hence, obtain the solution correct to all logarithmic 
terms, as a function of e. We note that for linear problems with N holes in the domain, we must 
numerically solve a linear system for Ai(ed), i = 1,... , N, which is the multiple-hole version 
of the asymptotic infinite sum in (2.19). For non-linear problems, we compute solutions to 
the related problem depending on a parameter that represents the strength of the singularity. 
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Again, in general, this would involve finite element or finite differences techniques. 

For both linear and non-linear problems, changing the shape of the removed subdomain or the 
measure of its size is very easy in the hybrid method solution. However, in the full numerical 
computation of the original problem, such a change would require a new definition of the 
geometry and of the solution grid. As well, full numerics often have difficulty resolving the rapid 
change in scale of singular perturbation problems with small holes in the solution domain. Using 
the hybrid method, it is possible to obtain asymptotic accuracy with less restrictive storage and 
processor time requirements than numerical solvers. 

We will demonstrate the advantages of the hybrid method through its detailed application 
to four problems. The problems that we have chosen as applications for the hybrid method 
are models in: fully developed steady laminar flow in a straight pipe, oxygen transport from 
capillaries to skeletal muscle tissue, convective heat transfer, and low Reynolds number fluid 
flow. The first two models are applications on bounded domains, and the last two on unbounded 
domains. In the following chapters, we discuss each application in more detail, all the while 
underlining the features that fink them together. 
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Chapter 3 
Viscous F lu id Flow in a Straight Pipe wi th 
a T h i n Core 

We consider steady, incompressible, laminar flow in a straight pipe containing a thin core. Both 
the pipe and thin core have a constant cross-section of arbitrary shape. This problem is the 
first of two applications of the hybrid method on a bounded domain. The second application, 
which we describe in the next chapter, is that of oxygen transport from multiple capillaries to 
skeletal muscle tissue. 

Using the hybrid method, we determine an asymptotic solution for the flow velocity between 
the walls of the pipe and the pipe core. Due to our assumptions about the geometry and 
about the flow, the problem possesses the essential feature for the hybrid method of being 
two-dimensional. With an approximate solution for the flow velocity, we can compute such 
qualitative measures as the mean flow rate and the friction coefficient. Some special cases of 
the straight pipe-core geometry are a concentric annulus and an eccentric annulus. For these 
special cases, we compare our hybrid results to those contained in the account of fully developed 
flow in a straight pipe of constant cross-section by Ward-Smith [58]. 

To derive the equations for this pipe flow problem, we begin with the Navier-Stokes equations 
for steady, incompressible flow in three dimensions 

We show how the assumptions of the problem reduce the problem to its two-dimensional frame
work. In (3.1), u = (u, v, w) is the velocity vector and p is the pressure of the fluid, where both 
u and p are functions of the spatial variable x = (x,y, z). In (3.1a), p is the density and p is the 
dynamic viscosity of the fluid. The boundary conditions are that u = 0 on the pipe wall and on 
the core wall. We orient the reference frame so that the positive ^-direction is along the axis of 
the pipe in the direction of the flow. With our assumptions, the pipe flow is unidirectional and 
hence, the velocity vector has only the component in the axial direction, u = (0,0, if) . Then, 
the continuity equation (3.1b) gives that dw/dz = 0 and so we write w = w(x, y). From the x-
and i/-momentum equations, the first and second equations of the vector equation (3.1a), we 
obtain that p = p(z). The ^-momentum equation of the Navier-Stokes equations their reduces 

p(u • V)u + V p = pAu, 

V • u = 0. 

(3.1a) 

(3.1b) 
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to a two-dimensional equation 

1 dp d 2w 3 2w 
udz dx 2 dy 2  

(3.2) 

Since the left-hand side of this equation is a function of z only and the right-hand side is a 
function of (x,y) only, we can equate both sides to a constant. Thus, we define the positive 
constant 

P = --^, (3-3) / i dz 

involving the dynamic viscosity \x and dp/dz, the constant negative pressure gradient in the 
axial direction. 

The equation for w in (3.2) and the conditions that the axial velocity w vanish at the pipe and 
core walls comprise a two-dimensional singular perturbation problem on a bounded domain 
that we will solve approximately using the hybrid method in the next section. 

3.1 Hybrid Method Solution for a Pipe and Core of Arbitrary 
Shape 

We define D to be the pipe cross-section, from which is removed a small subdomain, D£, 
representing the cross-section of the thin core. The small parameter £ is a measure of the size 
of the removed subdomain D£. The problem to solve for the axial component of the velocity, 
w = w(x; e), is 

Aw = - /3, x = (x1,x2) G D\D£, (3.4a) 

w = 0, x G 3D, (3.4b) 
w = 0, x G c9.De, (3.4c) 

where A is the two-dimensional Laplacian operator, and dD and dD£ are the boundaries of D 
and D£, respectively. 

In Chapter 2, we linked this pipe flow problem to the framework in (2.1) of applicable second-
order, steady, singular perturbation problems. For the pipe flow problem, the governing equa
tion is linear and the solution domain is bounded. In (2.1a), we set c = 1 and the function 
N = j3, a positive constant. As well, both boundary conditions of the pipe flow problem are 
Dirichlet, for which we set b = oo and $ 0 = 0 in (2.1b) and B = oo in (2.1c). 

If we were to make a naive attempt at a regular perturbation expansion of (3.4), we would have 
difficulties at order e. We will briefly outline how a regular perturbation fails for the special 
case of an annular pipe-core geometry with /? = 1, and then return to the general pipe flow 
problem to proceed with the singular perturbation approach of the hybrid method. 

For the special case of an annular pipe-core geometry, with e < r < 1 and j3 = 1, suppose that 
we expand the solution to (3.4) in a regular perturbation expansion of the form 

w{r\e) - w0(r) + ewi(r) + e 2w2(r) + ••• . (3.5) 
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Here, r = |x | . The function wo(r) satisfies the unperturbed problem, that is, the pipe flow 
problem on a pipe without a core. The unperturbed problem for this special case, whose 
solution is a regular function as r —> 0, is 

A w 0 = - 1 , r < 1, (3.6a) 
w0 = 0, r = 1, (3.6b) 

which has the solution 

Mr) =  Y- Z^-- (3.7) 

At the next order of the problem, which is order e, w\(r) must satisfy A w i = 0 with w\(e) — 
w\(l) = 0. The only solution to this problem is the trivial solution, Wi(r) = 0. Hence, at order 
e, we see that we cannot satisfy the condition w(e) = 0 using a regular perturbation approach. 

We now proceed with the singular perturbation approach for the asymptotic solution to the 
general pipe flow problem in (3.4) using the hybrid method. In Section 2.3 of the previous 
chapter, we outlined the hybrid method on a second-order, linear problem on a bounded domain, 
which is precisely the form of this pipe flow problem. To avoid repetition, we reiterate only 
certain details of the hybrid method, formulation. 

In the local (inner) region, close to the subdomain D£ located at x = £, we use the local 
variables in (2.5), with v(y;e) as the local axial velocity, to write the solution expansion as 

v(y, e) = V0(y; u) + eV1(y;v) + e2V2(y; »)+•••, (3.8) 

where the leading-order local solution is Vo(y;v) = v(ed)A(ed)vc(y), following the form in 
(2.22) with C - 0. The definitions for v(ed) and A(ed) are in (2.18) and (2.19), and. vc(y) is a 
canonical local solution that satisfies (2.10) with b = oo. 

Substituting (2.10c) into (3.8), and using (2.5) and (2.18), we obtain that the far-field behaviour 
of the leading-order local solution, in terms of global variables, is 

F 0 ( y ; ^ ) - ^ A [ l o g | x - C I + ^" 1] + - - - , |y | ->oo. (3.9) 

This equation has the same form as (2.23) with C = 0. 

Following (2.24), we write the expansion in the global region in the form 

w(x; e) = W0(x; u) + eWi(x; v) + s 2W2(x; v) + • • - . (3.10) 

The function Wo(x; v) will incorporate all of the logarithmic terms through A(ed), which is the 
asymptotic infinite sum that we defined in (2.19). To formulate a related problem, for Wo, we 
substitute (3.10) into (3.4a) and (3.4b), and require that it match via (3.9). Thus, we obtain 
that the related problem for Wo is 

AW0 = -P, x G D\{C}, (3.11a) 

Wo = 0, x G 3D, (3.11b) 

W 0 ~ A ( e d ) + A(ed) i / (ed) log |x-C | , x -»• C (3.11c) 
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We decompose the solution for W 0 , which is correct to all logarithmic terms, as 

W0(x; v) = W O H ( X ) + 2irA(ed)v(ed)G(x; C). (3.12) 

This follows the form of (2.26), where W0H(x) is a regular function that satisfies the unperturbed 
problem, 

AW0H = -P, x € D, (3.13a) 

W0H = 0, x e dD, (3.13b) 

and where G(x; C) is the Green's function satisfying 

A G = 0, x e ^ j C } , (3.14a) 
G = 0, x G c9D, (3.14b) 

G ' ~ ^ l o g | x - CI + R(Q, x - > C - (3.14c) 

In (3.14c), R(C) is the regular part of the Green's function. 

For the final matching step of the hybrid method, we substitute (3.14c) into (3.12) and compare 
with (3.11c)'. This provides an expression for A(ed), which is 

A ( £ d ) ~ l-2xu(ed)R(C)' (3'i5) 

This expression for A(sd) is valid provided that neither the numerator nor the denominator 
vanish. Since (5 is a positive constant, we are guaranteed that WQH(£) / 0 by a maximum 
principle. Requiring that the denominator is non-zero gives us the range of validity for £ in 
(2.32). 

Wi th (3.15) and the solutions to (3.13) and (3.14) in (3.12), we have the asymptotic solution 
for the axial flow velocity, w(x;e), correct to all logarithmic terms. For a given, cross-sectional 
shape of the pipe and location C of the thin core, we obtain the Green's function (S'(x; C) &ird 
its regular part R(C) from (3.14); and with a specified constant /?, we find the unperturbed 
solution WoH(x) from (3.13). Obtaining the Green's function is independent of the shape of the 
thin core and of the measure e of its size. Then, for a given cross-sectional shape of the thin 
core, we determine the value of the subdomain shape-dependent parameter d. In general, we 
determine d from the solution to (2.10), but for b = oo, Table 2.1 in the previous chapter fists 
values of d for certain regular cross-sectional shapes of the small subdomain. Thus, for a given 
constant (3 and pipe-core geometry, we easily compute the asymptotic solution as a function of 
£, where e lies within the range of validity in (2.32). In the next section, we demonstrate the 
hybrid method results on certain special cases of the pipe flow problem in (3.4) for which we 
can obtain an exact solution. For cases where obtaining an exact solution is impossible, or too 
difficult, we compare the hybrid solution with the results from a direct numerical solution. 

3.2 Comparison of Hybrid Method Results to Exact and Nu
merical Solutions 

We compare the results of the hybrid method to those special cases where it is possible to find 
an exact solution. Otherwise, we compare the hybrid method results with those of a direct 
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numerical solution of the original problem. We have used Matlab and its Partial Differential 
Equations Toolbox [36] for the numerics of the hybrid method and for the direct numerical 
computations. We indicate the direct numerical results as discrete points in the plots. 

We draw our comparisons in terms of the mean flow velocity, W, and the friction coefficient, 
/ . The mean flow velocity is 

W = ̂ - I wdx. (3.16) 

D\D£ 

Here, A D is the area of the cross-section of the pipe-core geometry, which we also call the duct 
cross-section. For laminar flow in ducts of non-circular cross-section, with or without cores, one 
can express the friction coefficient / as 

f=^C\ = fcsC\, (3.17) 

where Re = WLp/p is the Reynolds number. Laminar flow, for which there is no significant 
mixing between adjacent layers of the fluid, occurs for Reynolds numbers in the approximate 
range 0 < Re < 2000. In (3.17), fcs = 16/Re is the friction coefficient for a pipe of circular 
cross-section without a core, and C\ is a constant that depends on the pipe-core geometry. A 
collection of values of C\ for various non-circular duct geometries appears in Table C5 of Ward-
Smith [58], a portion of which we reproduce in Table 3.1. In the definition for the Reynolds 
number, L is a characteristic diameter defined as L = 4AD/PD, where PD is the wetted perimeter 
of the pipe and core. 

One can also express the friction coefficient, / , in the form 

L (-%• 
/ = A z ^ - . (3-18) 

2pW 
Substituting this expression into (3.17), with the definition of (3 in (3.3), we can express the 
constant C\ as a function of the mean flow velocity, W, and the characteristic diameter, L, as 

C i = ±U=. (3.19) 
Z2W  V ' 

Thus, with the mean flow velocity that we obtain using the hybrid method, we will compute 
this constant C\ and compare to tabulated values in [58] for a special case of the pipe-core 
geometry. 

Example: Concentric annulus. We consider flow between the walls of a circular pipe 
of radius r 0 , ro ^ 1, and a concentric thin core of radius e. Since the geometry is radially 
symmetric, we solve for w(r; e) in 

Aiv — -/3, e < r = |x| < r0, (3.20a) 
w = 0, r = £, (3.20b) 

w = 0, r = r0. (3.20c) 
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Figure 3.1: Mean flow velocity W versus pipe core radius e for a concentric annulus £ < r < 2. 

This has an exact solution of 

P 
4 77, - T - TV, 

logv>0/r) 
log(ro/e) 

(3.21) 

Now, we consider the asymptotic solution for w(r;e) from the hybrid method. From. (3.14), 
with a circular pipe of radius TTJ and the location of the core at £ = 0, the Green's function is 

G = - ^ ( log r - logrr j ) . (3.22) 

Thus, its regular part is R = — (l/27r) log?'o, a constant. For a circular pipe of radius 7"o, the 
solution to the unperturbed problem in (3.13) is 

W0H(r) = t{rl - r 2 ) (3.23) 

Thus, we have that WOH(0) = Prl/4. In the case of a circular core, D£, of radius e, the solution 
to the canonical local problem in (2.10) with b = oo gives that the shape-dependent parameter 
is d = 1. Substituting all of this information into (3.15) gives that 

From (3.12), we get that the hybrid solution, valid for |x| >• 0(e), and correct to all logarithmic 
terms, is 

U>(X;E) = - rn-r - r, 
, log(r 0 / r) 
log (T-o/e) 

(3.24) 
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Hybrid d Tabulated C\ 
0.0001 1.1216 1.1216 
0.001 1.1669 1.1669 
0.01 1.2518 1.2518 
0.05 1.3496 1.3480 
0.1 1.4065 1.3964 
0.15 1.4554 1.4244 

Table 3.1: Constant C\ in (3.19), from the hybrid method solution, and tabulated values of C\ 
from Ward-Smith [58] for laminar flow through ducts of concentric annular section. 

Comparing the exact solution in (3.21) with the hybrid solution in (3.24), we see that the hybrid 
method solution agrees well with the exact solution. We note that the hybrid solution does not 
capture the 0(e2) term. 

We compare the hybrid method results to those of the exact solution in terms of the mean flow 
velocity W in (3.16). Using (3.21) in (3.16), the exact mean flow velocity is 

l o g ( V £ ) 
(3.25) 

Again, A D in (3.16) is the area of the pipe-core cross-section, which in this special case is 
AD = Tr(r2-£2). 

In Figure 3.1, for a concentric annulus with ?'o = 2 and (3 = 1, we have plotted the mean flow 
velocity W from (3.16) versus the core radius e using the exact solution in (3.21) and using 
the hybrid solution in (3.24). The range of e in our plot lies well within the range of validity 
in (2.32). The plot indicates that the hybrid method results agree very well with the exact 
solution, with an error that is 0(e2). 

Figure 3.2: Geometry of the eccentric annular section of pipe and core. 

Using the mean flow velocity that we obtained from the hybrid method, we calculate the 
constant C\ in (3.19) and compare to tabulated values of this constant for laminar flow through 
ducts of concentric annular section in Ward-Smith [58]. Table 3.1 contains the hybrid method 
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values and tabulated values of C\ for several ratios of radii, S/TQ. We see that for ratios of the 
radii of the pipe and core up to 0.01, the values of C\ from the hybrid method are exactly the 
four-digit accurate tabulated values. 

Example: Eccentric Annulus. We consider flow between the walls of a circular pipe D of 
radius 7 -

0 = 2, containing a circular core D£ of radius s located at £ = (—1,0) and with (3 — 1. 
The offset of the centre of the subdomain D £ from the centre of D is the eccentricity e (see 
Figure 3.2). In our computation, e = 1.0. 

0.45 

0.44 

: 0.42 r 

0.41 

Figure 3.3: Mean flow velocity W versus pipe core radius e for an eccentric annulus, with pipe 
radius TQ — 2 and eccentricity e = 1. 

From Ward-Smith [58] and from Piercy et al. [40], using our notation, the mean flow velocity, 
W, for an eccentric annulus in terms of the volume flow rate, Q, is 

Q=WAD = f 
o 

4 e 2 M 2 

b — a 1 n - £ -

where 

M = (N 2 - r 2Y< 

1, N + M 
a = — log . 

2 N - M' 

Again, e is the eccentricity. 

- 8 e 2 M 2 V  n e M ~ n ( b +  a)) 
^ sinh n(b — a) 
n=l v ' . 

N 
TV2, - £ 2 -(- e 2 

2e  :  

1, N + M - e 
b = — log . 

2 N - M - e 

(3.26) 

(3.27a) 

(3.27b) 

Using the hybrid method, we obtain the asymptotic solution to (3.4) and compare these results 
to the exact results of the mean flow velocity. The unperturbed solution is in (3.23), since it is 
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the same as in the concentric annulus example. For the solution to (3.14), we let 

G(x;C) = - ^ l o g | x - C | + fl(x;C)- (3-28) 

Thus, the function i2(x;£) is regular as x —> £ and satisfies 

AR = 0, xeD, (3.29a) 

R = - ^ - l o g | x - C | , xedD. (3.29b) 

We compute -ft(x; Q from (3.29) on a circle of radius ?-o = 2, with £ = ( —1, 0), and the value of 
R at x = £, using the Partial Differential Equations Toolbox [36] on a mesh of 4064 elements. 
We use this information, and the unperturbed solution from (3.23) evaluated at £, to compute 
the value of A(sd) = A(e) from (3.15). The value of £ corresponds to an eccentricity of e = 1. 
Since the core cross-section is circular, the shape-dependent parameter is d = 1. Thus, with all 
of this substituted into (3.12), we have the hybrid method solution for the axial velocity in an 
eccentric annular pipe section correct to all logarithmic terms, which we then use in (3.16) to 
compute an approximate value for the mean flow velocity. 

e 

Figure 3.4: Hybrid method and direct numerical results for the mean flow velocity W versus 
measure of size e of cross-sectional shape for a circular pipe of radius ro = 2 with a concentric 
core of three different cross-sectional shapes. 

In Figure 3.3, for an eccentric annulus with pipe radius r 0 = 2, (3 = 1 and eccentricity e — 1, 
we have plotted the mean flow velocity W versus the core radius £ from the exact solution and 
from the hybrid solution. For this example, the plot indicates that the hybrid method results 
compares reasonably well with the exact mean flow velocity. 
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Example: Annulus with Various Core Cross-sectional Shapes. We consider flow be
tween the walls of a circular pipe D of radius ?"o = 2 containing a concentric core Dc of various 
cross-sectional shapes and with f5 = 1. We use Table 2.1 for the shape-dependent parameter d 
for a square core, an elliptic core, and an equilateral triangular core. Using the notation in the 
table, we set the major and minor semi-axes of the ellipse as a — 2 and b = 1, and both the side 
of the square and the equilateral triangle as h = 1. To compute the hybrid method solution, 
we use the Green's function in (3.22) and unperturbed solution in (3.23) from the concentric 
annulus example since these solutions are independent of the shape and size of the core. We 
use this information in (3.15) to obtain A(ed). 

For a circular pipe of radius TQ — 2 containing a concentric core, Figure 3.4 contains curves 
of mean flow velocity, W, versus e, a measure of the size of the core, for three different cross-
sectional shapes of the core. In the hybrid method, the change in shape and size of the core 
requires only that we vary the product ed, which allows us to compute the entire e curve very 
easily. In contrast, for each change of shape and size of the core in the direct numerical solution, 
we had to recreate the solution geometry and remesh the solution grid. For a core of elliptic 
cross-section, the figure shows that the hybrid method results agree very well with those of the 
direct numerical solution. The slight discrepancy in comparing the results for the other two 
core cross-sectional shapes, the square and equilateral triangle, could be due to the inability of 
the numerical method to resolve the corners of the core. 

In the next chapter, we explore a second application of the hybrid method on a bounded 
domain but with an array of removed subdomains. The application of Chapter 4 models oxygen 
transport from multiple capillaries to skeletal muscle tissue. 
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Chapter 4 
Oxygen Transport from Capillaries to 
Skeletal Muscle Tissue 

We apply the hybrid asymptotic-numerical method to an oxygen transport problem in a bounded, 
two-dimensional domain representing a transverse section of skeletal muscle tissue that receives 
oxygen from an array of capillaries of small but arbitrary cross-sectional shape (Figure 4.1). 
Outside of the capillaries, we obtain an asymptotic solution for the oxygen partial pressure 
(i.e. pressure due to unbound oxygen molecules) in the tissue domain. This is the second of 
two major applications in this thesis of the hybrid method on a bounded domain. 

In the oxygen distribution process of the micro-circulation, oxygen binds to its carrier, haemo
globin, in red blood cells, which transports it through the arterioles, branching to the capillary 
networks, to the collecting venules. In the capillaries, the oxygen is released from its carrier 
and diffuses into the surrounding tissue. The oxygen transport model that we present in this 
chapter is an idealization of this full transport process, in which we retain its overall features 
while producing a mathematically tractable problem. 

The analytical study of tissue oxygenation from capillaries has been the focus of considerable 
research since the original work of August Krogh [28] in 1919. The reviews of Popel [42] and 
Fletcher [10] and references therein provide substantial information on the approaches and 
advancements of the theoretical work in this area. Hoofd [17] reviews extensions to the Krogh 
cylinder model of a single circular capillary surrounded by a concentric circular tissue domain 

(a) Actual skeletal muscle tissue (b) Mathematical idealization 

Figure 4.1: Capillary blood supply in skeletal muscle tissue. 
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Chapter 4. Oxygen Transport from Capillaries to Skeletal Muscle Tissue 

(Figure 4.2). Following much of this groundwork, we adopt the approach that oxygen transport 
from capillaries to tissue is a passive process, driven by diffusion rather than by the consumption 
of energy. Assuming Fick's law, J = —Wc, relating the oxygen flux J to the gradient of oxygen 
concentration c, and Henry's law, c = ap, and that there is a balance of mass in the tissue, the 
equation governing the oxygen partial pressure p is 

a~ - V • [aWp] - M. (4.1) 

Here, a is the oxygen solubility coefficient, V is the oxygen diffusion coefficient and M is the 
oxygen consumption rate in the tissue. By balance of mass in the tissue, we mean that the time 
rate of change of the amount of oxygen per unit volume equals the net diffusion flux through 
the tissue boundaries plus the rate of chemical reaction within the volume minus the rate of 
consumption of oxygen. In addition to satisfying the governing equation, the oxygen partial 
pressure p must satisfy appropriate conditions at the capillary walls and on the outer tissue 
boundary. 

We demonstrate that, for N > 1 capillaries in the tissue domain, this is a singular perturba
tion problem whose solution contains an infinite expansion of logarithmic terms of the small 
parameter e, which characterizes the size of the capillary cross-sections. 

Figure 4.2: The Krogh cylinder: a capillary of radius, Rc, surrounded by tissue of radius, R. 

In Section 4.1, we present our mathematical model of oxygen transport from capillaries to 
skeletal muscle tissue and elaborate on the assumptions behind our model. In particular, 
we discuss how to include in the model the effects of tissue heterogeneities, such as oxygen-
consuming mitochondria, and of enhancement or facilitation of oxygen transport to the tissue 
by the presence of myoglobin, an iron-protein compound that can reversibly bind up to one 
oxygen molecule. In Section 4.2, we examine a simple version of the full model problem, of one 
circular capillary contained in a circular tissue domain as in the original Krogh model cross-
section (Figure 4.2), to reveal the form of the asymptotic solution. In Section 4.3, for the special 
case of capillaries with circular cross-sectional shape, we construct an asymptotic solution for 
the oxygen partial pressure in the tissue using the method of matched asymptotic expansions. 
In Section 4.4, for arbitrarily shaped capillary cross-sections, we apply the hybrid method to 
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construct an asymptotic solution for the oxygen partial pressure that is correct to all logarithmic 
terms. In Section 4.5, we compute a time estimate to reach steady state to justify our time-
independent model and in Section 4.6, we show how to compute the modified Green's function 
that occurs in the hybrid solution. In Section 4.7, we demonstrate the asymptotic results 
with some specific examples that illustrate important physiological effects such as capillary 
interaction; the cross-sectional shape of the capillaries; variable permeability of the capillary 
wall; tissue heterogeneities and myoglobin facilitation. 

4.1 Oxygen Transport Model and Assumptions 

We are interested in the steady-state solution to (4.1) in a bounded, two-dimensional domain. 
One reason that we can view the oxygenation process from capillaries in a two-dimensional 
domain is the regular longitudinal geometry of skeletal muscle tissue: the arrangement of the 
capillaries is, for the most part, parallel to the surrounding muscle fibres (Figure 4.3). In 
this type of muscle tissue, one can orient the £3-axis in the axial direction, running along 
the capillaries, and the .Ti.x-2-plane in a transverse cut perpendicular to the direction of the 
capillaries, which we have shown in Figure 4.1(b). We describe another reason for the two-
dimensional framework shortly after we state our general mathematical model for the oxygen 
transport problem corresponding to Figure 4.4. 

j 1 . 41 

»;: § 
f II ^ mi 
| 1 ; j] pjj*| 

H a »: "I ;! 

Figure 4.3: Photomicrograph of a longitudinally sectioned skeletal muscle, displaying the par
allel arrangement of the capillaries (arrows) between the fibres (reproduced from "Histology: A 
Text and Atlas" [48]). 

For our model, we assume that the process has reached steady state. In Section 4.5, we de
scribe the details of determining a lower bound for the time necessary to reach steady-state 
conditions. This bound depends on the size and shape of the capillary cross-section, the area 
of the surrounding tissue domain and the diffusivity, V. 
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Figure 4.4: Our general model for i = 1,... , N capillaries of arbitrary shape of magnitude of 
order e in a tissue domain D with boundary dD. 

Now, we state the general, steady-state, dimensionless model of oxygenation of a two-dimensional 
skeletal muscle tissue domain D from N small capillaries Df of arbitrary cross-sectional shape 
(see Figure 4.4). The mathematical model to solve for the steady-state, dimensionless oxygen 
partial pressure p(x; e), where x = (xi,x2), including the boundary conditions at each capillary 
wall dDf and at the outer tissue boundary dD, is 

x G D\ U Df, (4.2a) j=i 

x G dDf, i = 1,.. . ,N, (4.2b) 

x G dD. (4.2c) 

Here, we rendered the quantities in our model dimensionless with respect to a characteristic 
length scale of the tissue domain, L*; a characteristic oxygen partial pressure, p*; and the 
transverse diffusivity, V*. With these scalings, the dimensionless oxygen consumption rate is 
M = L* 2M* I (V£p*). The small, dimensionless parameter, e, represents the order of magnitude 
of the capillary cross-sections, which we assume to be independent of the axial position £ 3 . Our 
model problem can be viewed as the leading-order problem of a perturbation analysis of (4.3) 
in terms of the small perturbation parameter, fi, in (4.4). Following researchers like Hoofd [18], 
we have decoupled the capillary-tissue diffusion process of oxygen from the transport of oxygen 
within the capillaries. As we will describe shortly, the generality of our model allows us to 
analyze more fully the diffusive process in two dimensions before potentially embedding it in a 
more complex coupled process. 

In addition to the regular geometry of skeletal muscle tissue, another reason for the two-
dimensional framework is that the axial diffusion term is small relative to the other terms 
in the governing equation. For simplicity, we illustrate the balance of terms for the special case 
of a tissue cylinder of radius 1 with constant diffusivity enclosing a single concentric capillary 
whose cross-sectional shape depends only on the axial variable, £ 3 = z. We can write the gov
erning equation for the oxygen partial pressure p(r, z; fi,e) in the tissue volume, which includes 

V • [VVp] = M, 

dp 
Z^TT +  Ki(P - Pa) = 0, on 

^ = 0 
dn ' 
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the axial diffusion term, as 

dz 2  
ef(z) <r <1, 0 < z <1. (4.3) 

Here, n is a small parameter defined by 

) 
2 

(4.4) 

Typically, in skeletal muscle tissue, the intercapillary separation, i * , is a few microns whereas 
the capillary length, L*, is on the order of a thousand microns. As well, diffusivity in the axial 
direction, V*, is small relative to that in a transverse cut, V*. The diffusivity, V = oD, is the 
product of the oxygen solubility and diffusion coefficients. The capillary has a radius of sf(z), 
where e is a measure of the size of the capillary cross-section. For the analysis that we show in 
Sections 4.3 and 4.4 to be valid, we require that u 2 <C ( — l / l o g £ ) a , for any a. 

The boundary condition (4.2b) models the capillary wall as a finitely-permeable membrane, 
where Ki is the permeability coefficient of the ith capillary and pci is the oxygen partial pres
sure within the ith capillary (assumed constant). The limit —s- oo represents an infinitely-
permeable capillary wall for the ith capillary, or equivalently, that the oxygen partial pressure 
p at the boundary of the ith capillary is equal to the constant capillary pressure, pci, of that 
capillary. In contrast, the limit K{ —> 0 leads to the case of a perfectly-insulating capillary. This 
limit is physically-unreasonable since such capillaries would not contribute to the transport of 
oxygen in the tissue. In (4.2b) and (4.2c), d/dn is the directional derivative along the outward 
normal to the tissue domain. 

We incorporate skeletal muscle tissue heterogeneities, such as oxygen-consuming mitochondria, 
through the oxygen diffusivity V in (4.2a) and (4.2b) and the consumption rate of oxygen A4 
in (4.2a) in the tissue. In homogeneous tissue models, both V and A4 are assumed constant, 
which one can interpret as meaning that the mitochondria are regularly distributed throughout 
the tissue. The assumption that the rate of irreversible oxygen consumption in tissue is constant, 
i.e. M. = Mo, is known as zero-order kinetics. First-order kinetics involve a linear dependence 
of the consumption rate on the oxygen partial pressure, M. = M.{p) = cp for some constant 
c > 0. A piecewise-linear expression for such an oxygen consumption rate, known as mixed 
zero- and first-order kinetics, is 

for some positive constant c. The mixed-order kinetics is a piecewise-linear approximation to 
Michaelis-Menten kinetics, in which the oxygen consumption rate has the form 

Here, pM is the value at which the consumption rate M is half its maximum. For small values of 
oxygen partial pressure p, the Michaelis-Menten kinetics approach first-order kinetics, whereas 
for large p, they approach zero-order kinetics. 

(4.5) 

M = 
Mop 

(4.6) 
P + PM 
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We can also model the local oxygen consumption by mitochondria with a spatially-dependent 
M. For example, a particular model for the oxygen consumption rate in a cell with m mito
chondria is 

m / I /* I 2 \ 
M = M0 + Y , M < E X P [ - J )• (4-7) 

Here, we model each mitochondrion by a Gaussian distribution superimposed on a constant 
background consumption rate Mo- In this way, there is freedom for varying the form of the 
heterogeneous tissue through the parameters, which are: the location, the amplitude, M i 
(where M i > Mo); and the variance, cr; (for o~{ reasonably small), of the i th mitochondrion 
for i = 1,.. . , 7 n . One could also combine this Gaussian distribution form of the mitochondria 
with Michaelis-Menten kinetics, as in 

K A Mop ^ Mjp ( |x - d 
M = h > exp 5— 

P + PM ' f-f P + PM ' V cr'f 

The oxygen diffusivity V within the skeletal muscle tissue can vary with location, whether in 
cells or in the extracellular phase of the tissue, and within the cells, whether at discrete oxygen-
consuming mitochondria. Certain theoretical models consider that the tissue is a two-phase 
medium (eg. [7] [52]), having a constant specified diffusivity within each phase. We incorporate 
this approach in defining 'P(x) to have a similar Gaussian distribution form as in 

where VQ is the diffusivity outside of the m mitochondria and V{ is the diffusivity within the 
zth oxygen-consuming mitochondrial region. 

The fact that myoglobin is able to bind reversibly to one oxygen molecule can enhance, or 
facilitate, the diffusion of oxygen into the tissue. To incorporate myoglobin facilitation into our 
model, we follow Fletcher [11] and define the myoglobin-facilitated pressure p* as 

p* = p + pF[s(pc)-s(?)}. (4.8) 

Here, pc is an average of the capillary oxygen partial pressures, and pF is the facilitation pressure, 
which is constant for constant diffusivity V and is zero if no myoglobin is present in the tissue. 
When oxygen and myoglobin are in equilibrium, the myoglobin saturation s(p) has the form 

- - P (4.9) 
P0.5 + P 

where po.s is the myoglobin half-saturation pressure. To obtain the myoglobin-facilitated oxygen 
partial pressure, p*(x; e), we solve for p in the absence of myoglobin from (4.2) and substitute 
into (4.8). 

There have been recent efforts in extending the single capillary Krogh model to a multiple 
capillary system (eg. [41], [5], and [18]), and of those, Clark et al. [5] and Hoofd [18] include 
myoglobin facilitation in their models. With greater freedom in the physical parameters, our 
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multiple capillary model aims to eliminate certain restrictions of previous multiple capillary 
models, such as circular cross-sectional shapes, periodicity in the capillary bed, and homoge
neous tissue properties. We will find an approximate solution to our model using the hybrid 
method, which is based on a systematic asymptotic analysis that provides a measure of the 
error in the approximation. As well, the hybrid method is computationally faster and has a 
smaller physical parameter space than a direct numerical method. 

In the next section, we consider a simple version of (4.2), having one concentric capillary of 
radius e in a circular tissue domain of radius 1, with a constant diffusivity V — 1. We note 
that the annular capillary-tissue geometry is that of the original Krogh model in Figure 4.2, 
with R — 1 and Rc = e. The solution to the one-capillary problem contains a finite number of 
terms, and not an infinite logarithmic expansion in £. Nevertheless, the basic form of the gauge 
functions in the asymptotic solution is the same, which gives us insight into the structure of 
the solution of the problem with N > 1 capillaries, which does involve an infinite logarithmic 
expansion. 

4.2 One Circular Capillary in a Circular Tissue Domain 

We reveal the structure of the asymptotic solution to (4.2) by considering the simple model 
problem 

A p = M, £ < r < l , (4,10a) 

e^--K(p-Pc) = 0, r = e, (4.10b) 

dp 
„ = 0, r = 1. (4.10c) 
or 

Here, A4 > 0, K > 0 and pc > 0 are constants. We remark that the capillary boundary condition 
gives a negative radial pressure gradient so that the capillary acts as an oxygen source. 

In this special case, we compare the asymptotic approximation to (4.10) with the exact solution, 
pE{r)i which is 

M 

PE{r) = PC + Y 

r 2 - e 2 e 2 - 1 
+ l o g ( -

This solution tends to negative infinity as K —> 0 in (4.11). This is to be expected from (4.10b) 
since in this limit, the capillary wall becomes perfectly insulating. 

From (4.11), we can see that the dominant term as £ —> 0 is (9(log£). The dominant term in 
the exact solution suggests that, in the global (outer) region away from the capillary where 
r £, we expand the asymptotic solution to (4.10) in the form 

p(r;e) = (log e)po(»0 + P i (>) + ••• • (4.12) 

Substituting (4.12) into (4.10a) and (4.10c), we find that the global region problems to solve 
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are 

A p 0 = 0, £ < r < 1, (4.13a) 

T^T = 0, r = l, (4.13b) 

and 

A p i = M, e < r < 1, (4.14a) 

7 J 7 = 0, r = 1, (4.14b) 

such that pi(r) is singular and po(r) is regular as r 0. From (4.13) and requiring that po(r) 
is bounded as r —> 0, we have that 

Po(r) = po = constant. (4.15) 

In the local (inner) region near the capillary, we introduce the local variables p = r/e and 
q(p;e) = p(ep;e). These are the radial version of the local variables in (2.5). Substituting the 
local variables into (4.10a) and (4.10b), to leading order, we get that q satisfies 

A p q = 0, p>l, (4.16a) 
da 
^ - « ( ? - P c ) = 0, p=l. (4.16b) 

Here, A p indicates that the Laplacian operator is with respect to the local radial variable p. To 
match between the local and global region solutions, we require also that q grow logarithmically 
as p —T oo. We expand the local region solution as 

w here qo(p) satisfies 

The solution to (4.18) is 

q{p;e)=pc + q0(p) + o(l), (4.17) 

Apq0 = 0, p>l, (4.18a) 

^ - K 9 O = 0, p = l, (4.18b) 

q0~a0logp, p-^oo. (4.18c) 

qo(p) = aologp + — • (4.19) 

Using (4.18c) in (4.17) as p —> oo, and comparing to (4.12) as r —>• 0, we find that po = —ao 
and that 

Pi ~ a 0 l o g r + pc + —, as r -> 0. (4.20) 
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We need to solve (4.14) together with (4.20) for pi. Or, equivalently, we can solve 

Ap1 = M + 2wa06(r), \r\ < 1, 

97 = °' r = L 

(4.21a) 

(4,21b) 

In (4.21a), S(r) is the Dirac delta function. We determine the value of a0 by integrating (4.21a) 
over the region D, which is a circle of radius 1, and applying the Divergence theorem with the 
use of (4.21b). We get that 

MTT = M J dA= -2i:a0. 

D 

(4.22) 

Thus, a 0 = - M / 2 and so from (4.20), 

M, M 
Pi ~ - - y log r + pc - — , as r 0. 

The solution to (4.14) together with (4.23) is 

Mr 2 M , M 
Pi = — + P c - T l o g r - - . 

To recapitulate, the asymptotic solution is 

, , M 
p(r;e) = pc + — r 2 1 , /£ 

(4.23) 

(4.24) 

(4.25) 

Comparing (4.25) to (4.11), we see that the asymptotic solution agrees with the exact solution 
up to the 0(1) terms and is missing the 0(e 2) correction. 

From the solution, we can see the role of the parameter K, the permeability coefficient of the cap
illary wall. As K —*• oo, we obtain the asymptotic solution for the Dirichlet boundary condition 
at the capillary, p — pc. As K —>• 0, the physically-unreasonable case of a perfectly-insulating 
capillary wall, we notice that the solution becomes increasingly negative. In Section 4.5, we 
determine an estimate for the minimum time necessary tcr for the diffusion process to reach 
steady state. In this time scale estimate, tcr —> oo as K —• 0, meaning that the steady-state 
condition would take forever to occur. 

The asymptotics of this simple model problem provide us with the approach for attacking the 
more complicated general problem in (4.2). In the next two sections, we consider multiple cap
illaries in an arbitrarily shaped tissue domain. First, we use the method of matched asymptotic 
expansions to show that for N > 1 capillaries, the asymptotic solution contains an infinite 
logarithmic expansion in e, the measure of the magnitude of the capillary cross-sections. Sec
ond, we use the hybrid method on the multiple capillary problem to sum essentially the entire 
logarithmic series in the asymptotic solution. 
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4.3 Solution using the Method of Matched Asymptotic Expan
sions 

In this section, we obtain the asymptotic solution to (4.2) for the special case of N capillaries 
with equal, circular cross-sections of radius e. In the next section, we will apply the hybrid 
method to (4.2) with arbitrarily shaped capillary cross-sections. 

As in the simple model problem for one capillary of the previous section, we expand the global 
(outer) region solution in the form 

CO 

p(x;£) = ^- 1(e)p ( 0 )(x) + p(1)(x) + £ ^ - 1 ( £ ) p W ( x ) + -- - , (4.26) 

where we define v(e) = — 1/loge. 
In the local (inner) region, near the ith capillary located at x = we define the local variables 

x - £ 
y.- = — ^ - L , » (y ; ; e) = Key,- + £ ) - ( 4 - 2 7 ) 

The local variables in (4.27) are the extension of those in (2.5) for multiple subdomains located 
at , for i — 1,.. . , N. 

We expand the solution in the local region near the ith capillary as 

ft(y<; e) = Pd + ql 1\yl) + "(e)q?\yi) + •••. (4.28) 

Here, pci is a specified constant that represents the oxygen partial pressure within the ith 
capillary, for i = 1,... ,N. 

Substituting the local variables into (4.2a)-(4.2b) and using V(eyi + £,•) ~ *P(£i) + 0(e), we 

Yi\ > 1, (4.29a) 

y i | = 1. (4.29b) 

To allow for matching to the global region solution, it is necessary for each qi to grow logarith
mically as |y;| —• oo, for i = 1,... , N. 

Substituting (4.28) into (4.29), we find that all the local region problems for qf^ are the same, so 
(?) (?) (c) (?) 

we can write q\ — a\ 'q\ for j > 1. Here, a\ are unknown constants that we will determine 
through the matching process, and q\C\yi) is the canonical local solution satisfying 

= 0» M > ! . (4-30a) 

da ( c ) i \ 

m ) d n ~  +  K i q<  = °'  | y i 1  =  X'  ( 4 ' 3 0 b )  

9 J c ) ~ l o g | y i | + ^ , | y 4 | - o o . (4.30c) 

find that, to leading order in e, qi(yf,s) satisfies 

Ayqi = 0, 

'P(ti)-^ 1 + Ki(qi - Pci) = 0, 
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This is the multiple hole version of the canonical local problem that we first introduced in 
(2.10). 

In the global region, far from the capillaries, we substitute (4.26) into (4.2a) and (4.2c) to obtain 
the problems for p^\x.) for j > 0. The problem to solve for p(° '(x) is 

V • [PVpW] = 0, x e D\ U {&}, (4.31a) 

dpW 
-j— = 0, x G 3D. (4.31b) 

As well, we require that p( 0 ' is regular as x —> for i — 1,... , N. The solution to this problem 
is that p(°) is a constant. We will show later how to determine this constant. The remaining 
global region problems for p( J)(x), j > 1, are 

V-[PVpW] = ejlM(x), x e £ \ U { & } , (4.32a) 
i=i 

^ — = 0, x e 3D. (4.32b) 
on 

In (4.32a), eik is the Kronecker delta function defined as 

elk = {  l ~ k . (4.33) 
k \ 0, otherwise. v ' 

As well as satisfying (4.32), p^(x) must be singular as x —> for i = 1,.. . , N. 
In anticipation of matching the local and global region expansions, we write the global region 
expansion a s x - > £ i ? for i = 1,... , N, and the local region expansion as |y;| —> oo. As x — £ j , 
for i = 1,.. . , N, the global region expansion has the form 

CO 

p(x - fc; e) ~ + P ( 1 ) (x -» &) + v]-\e)v ( 3 ){* - Ci) + • • • • (4.34) 

Using (4.30c), we find that as |y,-| —» oo, the ith local region expansion, in terms of global region 
variables, is of the form 

9i(y,-; e) ~Pct + af '{ log |x - &| + v-l{e) + P(C,-)/«i} + 

K £ ) a ! 2 ) { l o g |x - £.| 4- „ - ! (£ ) + 7>(&)/K,-} + • • • . (4.35) 

Once again, u(e) = —1/ loge; the constants p c;, V(£j) and K J , for i = 1,.. . , A , are known; and 
aa- are unknowns that we will determine through matching to the global region solution. 

Comparing the 0(v~ v) terms in (4.34) and (4.35), we see that matching requires 

a ( i ) = 4 D = ... = o ( J ) = p ( 0 ) . (4.36) 

As well, the matching procedure provides the behaviour of the global region solution p^\x) for 
j > 1, which is 

~ (log |x - £,| + ̂ ) + a p 1 ' + e j l P c i + •••, x -> i = 1,.. . , N. (4.37) 
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Using (4.32) and (4.37), we can write the global region problems for p(J')(x), j > 1, as 

V - [ P V p W ] = e i T A4(x) , x e / J \ . U { 6 } , (4.38a) 

dpti) 

= 0, x G 3D, (4,38b) 

~ aj j )(log |x - fc| + V^i)/Ki) + a J J + 1 ) + e j l P c i , x - i = 1 , . . . , N. (4.38c) 
Combining (4.38a) with (4.38c), we can write 

N 

V-[PVp<'>] = e , i ^ W + 2 7 r ^ a t

a V ( ^ ) ^ ( x - ^ ) , x E D . (4.39) 

Here, <5(x — £ J is the Dirac delta function. 

The solution to (4.39) together with (4.38b) is not unique. To address this point, we consider 
the corresponding eigenvalue problem 

V • [PVfa] = -Xk<f>k, x£D, (4.40a) 

d<j>k 
On 

= 0, x G 3D. (4.40b) 

The first eigenpair for this problem is (0 O ,A O ) = ( 1 , 0 ) , and the remaining eigenvalues, A&, are 
such that 0 < Ai < A2 < . . . < Afc < oo. 

We expand the solution p^ ' (x) , for j > 1, as a sum of the eigenfunctions 

CO . , 

^ A/t < 4>k, 9k > 

Here, b3 = enM(x) + 2ir J^Li ^ ' ^ ( ^ ( x - & ) i s t h e right-hand side of (4.39) and < f,g > 
is the inner product of the functions / and g defined by < / , g >= JD f(x)g(x) dx. In (4.41), 
since A 0 = 0, we require that < bj,(f>0 > = < bj,l >= 0 for a solution to exist, and. so the 
solvability condition for pW(x), for J > 1, is 

x—> m , •, f — — f A f ( x ) d x , 7 = 1 Eo?)p(w= 27ri^ (4-42) 

i = i [ 0, j > 2. 

If (4.42) is satisfied, then we can write the solution p^\x), j > 1, as 

CO 

for any constant C j . We need to fix the constant Cj in order to obtain a unique solution p(-»')(x). 
Requiring that < p^\(pQ >= 0, where <J>Q = 1, is equivalent to 

< b;,<f>k > 

jp^\x)dx=Q. (4.44) 
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Using < pti\<t>o >= 0 in (4.43) and applying the orthogonality condition of the eigenfunctions, 
we get that Cj = 0 for j > 1. Thus we can decompose the solution p^\x), for j > 1, as 

pW(x) =p(f)(x) + f4 j ). (4.45) 

In this decomposition, a^' for j > 1 are global constants, and pl J ' (x) is the unique solution to 

V • [PVpW] = ejlM(K), x £ j ) \ U {£•}, (4.46a) 

Q7p) 
= 0, x 6 3 D , (4.46b) 

C m 

2#> - aJ j ) ( log |x - £ | + V(ti)/Ki) + ap ' + 1 ) + ejlPci, x - i = 1,... , N, (4.46c) 

j p (£ )(x)dx = 0. (4.46d) 

In (4.45) and (4.46c), the unknowns are a^' and of+1^ for i = 1,... , JV, which we will determine 
at each level j for j > 1. 

We decompose the unique solution p{P(x) as 

N 
j#>(x) = 27T ] T a p V ( ^ ) C ( x ; £ ) + e ^ M - (4.47) 

i=i 
In (4.47), G(x; £) is the modified Green's function satisfying 

1 
V . p > V G ] = - - L x G D \ { C } , (4.48a) 

dc - 7 — = 0, x G 3 D , (4.48b) 
an 

G ~ 2^(0 1 O S | X~ C I + jR (C )' X " C ' (4'48C) 

y G(x; 0 rfx = 0. (4.48d) 

D 

In (4.48a), A D is the area of the region D and in (4.48c), R(C) is the regular part of the 
modified Green's function. We determine R(C) uniquely from the solution to (4.48). Also in 
(4.47), Pft\x) is a regular function, as x —> z = 1,... , JV, that satisfies 

V •[VVp (k )] = M{x)-^- [ M(x)dx, x G D , (4.49a) 
A-D J D 

(1) 
= 0, x G 3 D , (4.49b) 

Or 

Jp (k\x)dx= 0. (4.49c) 

D 
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In (4.49a), we used (4.42) in the right-hand side. Substituting (4.47) into (4.45) and using 
(4.48c), we obtain an expression for the behaviour of p(J')(x) as x —* £j which is 

~ a j j ) log |x - & | + 27raS JV(fc)ii(&) + 

2 7 r £ 4 ^ ( 6 ^ ; + w k 1 ^ ) + 4 J ) + o(l). (4.50) 
k=l 
kjti 

Comparing (4.38c) and (4.50), we find that the log |x — £J terms automatically agree. From 
the remaining terms, we see that 

N 

2*a (
i
j )V(ti)R(ti) + 2TT £ "PntkMti; tk) + ejlP^\d) + = 

k=i 

+ eHPd + oiJ)̂ (^-)/«.-. (4-51) 

for i = 1,. . . , JV and j > 1. To determine the constant p(°\ and hence the constants a j 1 ' for 
i = 1,. . . , JV, we use (4.42) with j = 1 and (4.36) to obtain 

/ A*(x)dx 
p(°) = - - o . (4.52) 

2 * E £ i P ( f c ) 

Thus, the constants aj1^ for i = 1,... ,7V are known, and (4.51) provides JV equations for the 
(JV + 1) unknowns: a^) and a - J + 1 ' for i — 1,... , JV and j > 1. The solvability condition in 
(4.42) for flj-J+1^ provides the last equation for these unknowns. 

In summary, with the known, we solve (4.51) and (4.42) recursively to find a\ J\ for 
i = 1,.. . , JV, and for each j > 2. The parameters to specify in the problem are 

£ order of magnitude of the capillary cross-sections 
JV number of capillaries 
pci oxygen partial pressure within the i th capillary 
K i permeability coefficient of the ith capillary wall 

location of the ith capillary ^ ' 
"P(x) diffusivity in the tissue 
A4(x) consumption rate of oxygen in the tissue 
D geometry of the tissue domain. 

For a given number and location of the capillaries in the tissue domain, we use (4.48) once only 
to compute the modified Green's function G(x ;£) and its regular part R(Q- We use (4.52) 
to compute the constant p( 0 ' and (4.49) to compute the regular function p^ ' (x ) . Then, we 
evaluate these expressions at the capillary locations In general, we must perform these 
computations numerically. For certain special cases, such as a circular tissue domain D with 
one concentric capillary, it is possible to solve for the modified Green's function G and the 
function p Q analytically (see Section 4.6). 
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Thus, we have an infinite set of recursive problems for the global region function coefficients 
a t-7'. To obtain the global solution for p(x;e) in (4.26) for a given e, the order of magnitude 
of the capillary cross-sections, we would use the expressions in (4.45), (4.47) and (4.52), which 
require these coefficients for j > 1. In the next section, we examine the solution to the problem 
via the hybrid method which avoids the daunting task of determining each set of coefficients at 
each j'-level. 

4.4 Solution using the Hybrid Method 

We now apply the hybrid method to solving (4.2) with N capillaries of arbitrary cross-sectional 
shape. 

Using (4.28) together with q\^ = q\ c\ we expand the solution in the local region, near the 
zth capillary, as 

ft(y*;e) = Pet + Q\ 0 )(yuVi,... ,uN) + £ O j 1 }(y ; ; ' A , . . . , vN) + • • • . (4.54) 

Here, we define V{ = — 1/log(£c(;) where di depends on the shape of the cross-section of the ith 
capillary. We take Q\0^ — A,g- C ' (y) , where A; = Ai(v\,... , 7>>/v), for i — 1,... ,JV, are to be 
determined. Also, q\°\y) is the canonical local solution satisfying 

y, g* A 0 , (4.55a) 

y, G 8D°, (4.55b) 

|y;| -> oo. (4.55c) 

Here, di is the shape-dependent parameter that is also known as the logarithmic capacity (see 
Garabedian [14]), and is the scaled ith capillary, such that Df = eD®, and 8D® is its 
boundary. This canonical local problem is a multiple subdomain version of (2.10). 

For the case of capillaries with circular cross-sectional shape of radius e from the previous 
section, A{ is asymptotic to the infinite logarithmic expansion 

(4.56) 

This expression is the multiple subdomain version of A{ed) in (2.19). We note that each 
A{ ~ 0(1) as £ —> 0 for i = 1,... , N. We recall that in the previous section the constants 
di are all the same and are unknown coefficients that are determined through matching 
for each j > 1. For capillaries of arbitrary cross-sectional shape, the d{ are not all the same 
but each A{ = Ai(v\,... , VN), for i = 1,... , A , sums a similar infinite logarithmic series. The 
hybrid method will exploit the asymptotic structure of the solution to sum essentially the entire 
logarithmic series. 

For a specific cross-sectional shape of the i th capillary, we compute the shape-dependent pa
rameter di uniquely from the solution to (4.55). In some cases, like for a circular or elliptic 

Ayq\ c ) = 0, 

(lf] ~log|y,- | - logd , - - - - , 
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cross-sectional shape, it is possible to determine d{ analytically (see Section 2.5). For a circular 
capillary of radius e, di = e x p ( - - P ( £ J ) / K ; ) . For the particular case of K,- = oo, we find di from 
the table of capacities from Ransford [45], which we reproduced in Table 2.1 in Chapter 2. 

Using QJ 0 ' = Aitif* and (4.55c) in (4.54), we have that the far-field behaviour of the i th local 
region solution, in terms of global region variables, is 

qiiYi^) ~ Pd + A;[log |x - & | + v-^edi)] + • • • , |y;| oo. (4.57) 

In the global region, we expand the solution as 

p (x ; £ ) = 7 Ĝ + P ( ° ) ( x ; , ; / 7 V ) + £ P ( 1 ) ( x ; ^ , . . . ,zv w )+ . . - . (4.58) 

Here, pG is a global constant that we will determine along with A ; , for i = 1,.. . , N, and again, 
Vi = -1/log(edj). We will see that pG ~ O(logs) as £ —> 0. Substituting (4.58) into (4.2a) and 
(4.2c), and requiring that the global region solution match to the local region solution, we get 
that P(° ) (x ; v\,... , VN) is the unique solution to 

V • [PVPW] = Af (x), x G D\ U (4.59a) 
i=l 

—z— = 0, x e dD, (4.59b) 
On 

P ( ° ) ~ Ailog\x-tl\ + A t v ^ + P c i - p G , x ^ ^ , i = l,...,N, (4.59c) 

y P ( 0 ) ( x ) r / x = 0. (4.59d) 

D 

There is a solution to (4.59) provided that 

N 

E A^') = - ^ / M(x)dx. (4.60) 

i = 1 D 

This condition is analogous to the solvability condition (4.42) of the previous section. 

We write the solution P(°) (x ; v\,... , VN) in the form 

N 

P(°) (x ; vt,... , vN) = 2TT Y M(yx, • • • , uN)V^)G^ fc) + P £ 0 ) ( X ) . (4.61) 
»=i 

Here, G' is the modified Green's function that satisfies (4.48). As well, P^° ' (x ) is a regular 
function, as x -> for i = 1,... , A , that satisfies (4.49). 

Using (4.48c) in (4.61), we obtain that the near-field behaviour of P ^ 0 ' is 

N 

P ( ° ) ~ Ailog |x - & | + 2 7 r A 1 P ( & ) P ( & ) + 2 7 r AkV(tk)G(ti-, £k) + P £ 0 ) ( £ ) , 

k^i 

x - & , i = l , . . . , A . (4.62) 
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Comparing (4.59c) and (4.62), we see that the log |x - £J terms automatically agree. From the 
remaining terms, we obtain a set of N equations 

N 

2wAlV(^)R(L) + 2nJ2 AkP^k)G(^; tk) + PR°\^) = A^f1 + pcl - pG. (4.63) 
k = l k^i 

Thus, (4.60) together with (4.63) provide (N + 1) conditions for the unknowns: pG and Ai, for 
i = l,...,N. 

We let e — 0 in (4.63) and find that, for a non-trivial solution for A,- in (4.63) to exist, we 
require that pG balance with A{V~X. This means that pG ~ O(log£) as e —» 0 since A,- ~ 0(1) 
as £ —> 0. If we neglect the off-diagonal terms in (4.63), that represent capillary interaction, 
then we obtain an expression for pG from the diagonal entries, 

1 N 

(Pa)diag = (pd + Aiur1 - 2KAlV{Zi)R{Zi) - PR°XZi)) • (4.64) 
i=i 

In summary, (4.60) and (4.63) provide (JV + 1) equations for the unknowns pG and A i , for 
i = 1,.. . ,N. As in Section 4.3, we must specify the parameters in (4.53), as well as the 
cross-sectional shapes of the A r capillaries. For a given tissue geometry for which we specify the 
locations and the number of capillaries, we compute the modified Green's function G'(x; C) and 
its regular part R(C) once only from (4.48), and compute the function PJ^(x) from (4.49); and 
evaluate these expressions at the capillary locations For each specified cross-sectional shape 
and permeability coefficient K{ of the ith capillary, we determine the unique shape-dependent 
parameter di from (4.55), for i = 1,... , N. 

4.5 Time Estimate to Reach Steady State 

Our goal here is to obtain an asymptotic estimate when £ <C 1 for the length of time necessary 
for the oxygen diffusion process to attain steady state. For simplicity, we consider only one 
capillary in the tissue domain. We consider the unsteady version of (4.2) with N = 1 for 
p(x,rj;e), in which we replace (4.2a) with 

^ = y.[Wp]-M, xeD\D£. (4.65) 

We also include an initial condition, p(x, 0;e) = Po(x). We assume that the diffusivity V 
depends only on the spatial variable x, but we allow the oxygen consumption rate M. to be a 
function of the oxygen partial pressure, p(x,£;£) , such that dM/dp > 0. We will compare the 
steady-state time estimates for the case with M = A4(x), independent of p, versus the case 
with M = M{p). 

We substitute 

p(x, t; e) = p a t (x ; e) + e~Xtv(x; e) (4,66) 
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into (4.65), where v <C 1 and pst(x;e) satisfies the steady-state problem (4.2) with N = 1. 
Linearizing (4.65), with boundary conditions (4.2b) and (4.2c), we obtain that v(x; e) satisfies 
the eigenvalue problem 

V-[PVv]-M'(pst)v = -\v, x£D\D£, (4.67a) 

dn 
S V ^ - + KV = 0, xedD£, (4,67b) 

dv 
0^ = 0, xedD, (4.67c) 

together with the normalization condition 

v 2dx = 1. (4.68) 

D\D£ 

There are infinitely many eigenvalues A of (4.67). We are interested in an estimate for the 
smallest such eigenvalue, \Q{S) as e -> 0, which will provide us with the time scale necessary to 
reach steady-state conditions. 

First, let us consider the case with M = A4(x), independent of p. In this case, (4,67a) reduces 
to 

V • [Wv] = -Xv, x e D\D£. (4.69) 

We will determine the first eigenpair, v^°\x;e) and A(°'(£), of (4.67) with (4.67a) replaced by 
(4.69), as £ —> 0. Since the first eigenvalue for the unperturbed problem (i.e., with no capillary) 
is AQ°' = 0, we expect that the first eigenvalue for the corresponding perturbed problem will 
tend to zero as £ —> 0. Based on this, we expand v^°\x;s) and the smallest eigenvalue \(°\e) 
as 

v(°\x;e) ~ v (
0°\x) + v(ed)v[°\x) + ••• , (4.70a) 

A<°)(£) ~ A 0

0 ) + v(ed)\ {° ) + . . - , (4,70b) 

as £ —> 0. Here, u(ed) is some unknown gauge function. We will construct global region and 
local region expansions for the eigenfunction v^°\x; e), corresponding to regions away from and 
near to the capillary respectively. Through the procedure of matching the solutions in the global 
and local regions, we will show that the gauge function, u(ed), has the reciprocal logarithmic 
form of (2.18). Our interest in constructing the matched asymptotic solution lies in obtaining 
A^ 0 ' , which we will use in (4.66) to calculate the steady-state time estimate. 

In the global region, away from the capillary, we substitute (4.70) into (4.69), (4.67c) and (4.68) 
and obtain that the global region functions v^°\ for j > 0, satisfy 

V • [PVvf] = -J2 A S ° - W ° \ x G D\{£0}, (4,71a) 
«=o 

5 r ( o ) 

dn 
0, x G dD, (4.71b) 

4 0 M 0 ) dx=\ 1 , * = J = 0 ' (4.71c) 
0, otherwise. 

D 
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In the local region, near the capillary located at x = £, we define the variables y = £ _ 1 ( x - C) 
and w(°\y;e) = v(°\ey + C;e). We expand the local region solution w(°\y;e) as 

w ( 0 ) (y; e) = a0is(ed)wc(y) + • • •, (4.72) 

where a0 is a constant that we will determine through the matching procedure. We substitute 
(4.72) and the local variables into (4.69) and (4.67b) and find that wc(y) satisfies the canonical 
local problem in (4.55), to leading order in e. 
For the matching procedure, we compare the global region expansion of v(°) in (4.70a) as x —> £ 
with the local region expansion of in (4.72) as |y | —*• oo, using the far-field behaviour from 
(4.55c) in terms of the global region variables. The matching procedure requires that the gauge 
function is v{ed) = — l/log(ed) as in (2.18), and that 

v^ 0 ) = a 0 , (4.73a) 

i ; i 0 ) ( x ) ~ ^ 0 ) l o g | x - C | + - - - , x - C - (4.73b) 

Combining (4.71a) for j = 1 with (4.73b), and given that A{, 0 ) = 0, we can write 

V • [TS7v[ 0 )] = -A< 0 ) t ;J 0 ) + 2TTV(0)V{C)S(X - C), X £ D. (4.74) 

Here, 6(x — Q is the Dirac delta function. Using (4.71b) and Green's identity, we obtain 
< Lv[°\v^ 0 ) >=< Lv(°\v{ 0 ) >, where L is the operator L = V • [PV]. Since Lv^ 0 ) = 0, and 
with Lv[°^ given above, we obtain 

A f = ^ . (4-75) 

Here, A D is the area of the domain D. We determine the value of the constant (and hence 
ao) from the normalization condition in (4.71c) with i = j = 0, which gives us that 

40) = ( ^ ) - 1 / 2 - (4-76) 

Now, we construct the estimate for the time necessary for the process to reach steady state. 
The oxygen partial pressure is approximately the steady-state value, p(x,t) « p st(x) for t > 
(Af 0 ) )" 1 . Using v(ed) = -l/\og(ed) and (4.75) in (4.70b), with A^ 0 ) = 0, we can express the 
minimum time required to reach steady state as 

log(ed)AD 

1  > - ~ t v k f  { " T )  

From this expression, we see that the time estimate to reach steady state is O(loge). This gives 
a slow decay to steady state, yet one that is more rapid than an 0{e~ 1) decay. 

Next, let us consider the case with M = M(p). The first eigenvalue, Ap°^, of the unperturbed 
problem of (4.67) is 

dx 

D 
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For M independent of p, the first eigenvalue A(°) is 0 ( —1/log(£eQ), which is smaller than Ap 0 ' , 
the first eigenvalue for the case with M — M(p), whose leading order is in (4.78). In (4.66), 
we see that for a larger first eigenvalue A ' 0 ) , there is a faster decay to steady state. Thus, the 
process in the case with M = M(p) decays to steady state more rapidly than in the case with 
M = .A4(x), independent of p. 

Example: Krogh Cylinder Geometry. We consider the special case of a circular cross-
section of tissue of radius 1 containing a concentric circular capillary of radius £, with uniform 
diffusivity V = 1 in the tissue. For a circular capillary with constant diffusivity, A D = w and the 
solution to (4.55) gives that the shape-dependent parameter is (1(K) = exp( —1/K ) . Substituting 
these expressions into (4.77), we obtain that 

i » i ^ - l o g e + ^ , £ < 1 . (4.79) 

In the next section, we provide details of the numerical procedure for finding the modified 
Green's function solution to (4.48). 

4.6 Finding the Modified Green's Function 

For certain special cases, it is possible to solve analytically (4.48) for the modified Green's 
function. One such special case is that of a circular cross-section of tissue having radius a, with 
constant diffusivity V = Vo in the tissue, and with a concentric capillary (singularity) located 
at the origin. In this case, the solution to (4.48) is 

^ ) = 2 ^ 1 o g r + I ^ Q - 2 1 o g a - ^ ) . (4.80) 

The regular part evaluated at the capillary centre is 

^ = * k i l - 2 ] c s a ) - (4'81) 

When it is not possible to obtain an analytic solution, we discuss how to numerically solve 
(4.48) for the modified Green's function, G (x ;£ ) , and its regular part, R(C)- We used the 
Partial Differential Equation Toolbox [36], a finite element code for solving for w(x) in elliptic 
partial differential equations of the form 

- V • [cVu] + au = f, x <E D, (4.82a) 
On 

c— + qu = g, x e dD. (4.82b) 
on 

We employ a regularization procedure to compute G in (4.48) by introducing a regularization 
parameter 6. To implement the guarantee of uniqueness in (4.48d), we solve (4.48) for G$(x; £, 6) 
with (4.48b) replaced by 

^ + SGs = 0, xedD, (4.83) 
on 
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which has a unique solution for non-zero 8, where 8 < 1. We impose the singularity structure 
from (4.48c) by seeking a solution of the form 

Gs(x;C,S) = 2itV{Q l og |x -C | + i?5(x;C,<5). (4.84) 

Substituting (4.84) into (4.48), with (4.48b) replaced by (4.83), we obtain that Rs(x; £,8) is a 
regular function as x —• C that satisfies 

V-[VVRs} = -~, xeD, 

dRs 
m 

+ SR5 = 
1 d 

log |x - C| •logjx- C| L 2TTV(() dn "° > ] 2wV(C) 

J Rs(x; C) dx = - 2 7 r ^ ( f l y lo§ l x - CI dx. 

x e dD, 

(4.85a) 

(4.85b) 

(4.85c) 

We expand the solutions to (4.48), with (4.48b) replaced by (4.83), and (4.85) as 8 0. To 
determine the form of these expansions, we consider the corresponding eigenvalue problem for 
the special case of a circular domain D of radius a, with constant diffusivity V = 1 and with 
the singularity (capillary) located at the origin 

Afa + \s4>s = 0, 0 < r < a, (4.86a) 

^ + 6<f>s = 0, r = a. (4.86b) 

Since A 0 = 0 and (f>0 — C, a constant, form a solution to (4.86), we expand the principal 
eigenvalue and the corresponding eigenfunction as 

Xos(8) ~ 8Xt + 62X2 + ••• , (4.87a) 

4>os(r; 6)~C + 6<h(r) + •••, 6^0. (4.87b) 

Substituting (4.87) into (4.86), and imposing a solvability condition, we find that </3i(r) satisfies 

A4>i = -CXi, 0 < r < a, (4.88a) 

^ 1 = -C, r = a. (4.88b) 
or 

The solution to (4.88) is ^ ( r ) = -Cr 2/(2a), providing that X1 = 2/a. Thus, from (4.87a), we 
can write 

28 
Xos(S) ~ — + • • • • (4-89) 

We express the solution, R$(r), as a sum of eigenfunctions of the homogeneous operator in 
(4.85a). Then, using the orthogonality of eigenfunctions and Green's second identity, we get 

f^0<<l>js,<i>js> f^0 x]5<4>38,(f>38> 
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Here, < u, v > is the integral inner product, and / is the right-hand side of (4.85a) and g is the 
right-hand side of (4.85b). Since A 0s ~ 0(6), and the leading-order eigenfunction is a constant 
C, the solution for Rs(r) would be 0(6~J) providing that the numerator does not vanish as 
5 —> 0. For a circular domain of radius a, with constant diffusivity, the numerator in (4.90) is 

S(-Caloga). (4.91) 

Thus, we can see that for a circular domain of radius a, the numerator does vanish as 6 —> 0. 
Since the numerator vanishes, we expand the solutions for 6 —>• 0 as 

G 5(x; C, S) ~ G 0(x; C) + SG,(x; Q + • • • , (4,92a) 

Rs(x; C, 6) ~ R0(x; C) + W i ( x ; C) + • • • • (4.92b) 

We compute the regular solution to (4.85a)-(4.85b) for two values of 6 and we call the resulting 
regular solutions (Rs^c and (Rs2)c- The size of 6 we choose is bounded below by the tolerance 
6 for our computed solution: e.g. 5 > 6cr = 0.001. We expand the computed solutions as 

(R6l)c~ R0c + 61Rlc+-- - , (4.93a) 

(Rs2)c ~ Roc + hRic + • • • • (4,93b) 

From an. extrapolation of (4.93), we obtain the solution 

^ ^ ^ J c - W c , ( 4 . 9 4 ) 

h - oi 

This is the leading-order solution in the expansion for i2,$(x; £, 6) in (4.92b), although it is 
not unique. We still need to impose (4.85c) to determine the arbitrary additive constant. 
Substituting Rs = Roc + k into (4.85c), we obtain the constant k and thus can express the 
solution as 

Rs(x;C,5) = R0c- -y-
° 

Example: Krogh cylinder geometry. We test this computation technique on a special case 
for which we know the exact solution: a circular tissue domain of radius 1, with diffusivity 
V = 1 and containing a single concentric capillary. For this special case, the exact solution to 
(4.48) for the modified Green's function is the purely-radial solution in (4.80) with a = 1 and 
VQ — 1, which simplifies to 

< ? M = i l o g r + i Q ^ ) . (4.96) 

We compare the regular part of the exact solution in (4.96) as r —• 0 to what we compute 
from (4.48), with (4.48b) replaced with (4.83). We note that, since the singularity (capillary) 
is located at the origin and since the outer boundary is at r = 1, the log |x — £| term vanishes 

2irV(C) log |x — £| dx • Roc dx (4.95) 

D n 
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Maximum absolute error L2 of error Computed R(0) 
{0.025,0.05} 8.42e-04 0.0017 0.1195 
{0.01,0.025}, 8.26e-04 0.0016 0.1194 
{0.01,0.05}, 8.30e-04 0.0016 0.1194 

Table 4.1: Test of (5-dependence on R$(0) using three pairs of 8 values: maximum absolute error 
and L2 norm of the error between Rs(0) in (4.95) and the exact R(0) in (4.97). 

in (4.85b) and so the exact solution to the problem for the regular part, R$, is independent of 
8. The regular part of the modified Green's function evaluated at the capillary location is 

3 
R(0) = — « 0.1194. (4.97) 

We test the dependence on 8 of our computed solution (Rs)c for three pairs of 8\ and 82. 
Table 4.1 contains the maximum absolute error, the Z 2 -norm of the error and the computed 
value of R(0) for each of the <5-pairs, on a computational mesh containing 4,088 elements. The 
values in the table indicate that that the computed solution is essentially independent of 8. 
In the final section of this chapter, we display the results of the hybrid solution for the oxygen 
transport application. 

4.7 Computed Results and Discussion 

We present our results demonstrating the effect of homogeneous versus heterogeneous tissue 
with respect to oxygen diffusivity and consumption rate, and the effects of capillary inter
action, the cross-sectional shape of the capillaries, variable capillary wall permeability, and 
myoglobin-facilitated oxygen transport. Although we can consider tissue domains and capillar
ies of arbitrary shape in our model, we choose simple geometries in the examples to highlight 
certain effects that are unrelated to the tissue geometry. In certain cases, where possible, we 
compare to the exact solution or a direct numerical solution of (4.2). We have used Matlab, in 
particular the Partial Differential Equations Toolbox [36], for the simple numerics of the hybrid 
method and for the direct numerical computations. Unless otherwise specified, the discrete 
points in the plots below are the direct numerical results. 

In Table 4.2, we list ranges of dimensional parameter values for use in our computations that 
we obtained from a number of references. The dimensionless diffusivity V and dimensionless 
capillary pressure pc are measured relative to their dimensional counterparts (indicated with *). 
In the examples below, we choose values for our dimensionless parameters, such as the dimen
sionless oxygen consumption rate M. = L*2 M*/(p* T3*), that correspond to typical dimensional 
quantities. 

Example: Homogeneous versus heterogeneous tissue. For the special case of one circular 
capillary of radius e that is concentric with a circular tissue domain D of radius 1 with diffusivity 
V = 1, the exact solution of (4.2) for the oxygen partial pressure in the tissue is (4.11). In 
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Dimensional Parameter Range of Values Units 
O2 consumption rate M* 3.3 X l f r 5 -> 3.1 x 10" 2 mL-02 /cm 3 -s 

Tissue diffusivity -p* 3.9 x 1CT 1 0 -> 4.8 x 1 (T 1 0 mL-02/cm-s-mm Hg 
Tissue O2 partial pressure P* 26 -* 30 mm Hg 
Tissue domain length scale L* 1.5 x 1 0 - 3 -> 1.8 x 1 0 - 2 cm 

Table 4.2: Range of dimensional parameter values; compiling data from Clark et al. [5], 
Ellsworth et al. [9], Hoofd [17], Hsu et al. [21] and Popel [42]. 

Exact 
Hybrid 
Numerical 
4 Mitochondria 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Figure 4.5: Minimum oxygen partial pressure pmin versus e, the capillary radius, for a circular 
tissue domain of radius 1 with one concentric circular capillary. Parameter values: pc = 5, 
M = 0.5, K = 0 0 , V — 1. Mitochondria parameter values: Ci = (±0 .5 , ±0.5) , M o — 0.5, 
Mi = 50, V0 =l,Vi = 4, and cr; = 0.05, for i = 1,... , 4. 

Figure 4.5, we have plotted the minimum oxygen partial pressure pmin versus the capillary 
radius e to compare the hybrid method solution with the exact solution, and for certain values 
of e, with the direct numerical solution of (4.2). The (dimensionless) parameter values for 
this example are: capillary pressure pc = 5, oxygen consumption rate M = 0.5, and capillary 
permeability coefficient K = 00 (an infinitely-permeable capillary wall). In homogeneous tissue 
models, the oxygen diffusivity and oxygen consumption rate are constant. 

Also in Figure 4.5, we have included the corresponding pmin(e) curve for a heterogeneous 
tissue domain of the same geometry but containing 4 oxygen-consuming mitochondria. We 
incorporate the mitochondria using the Gaussian distribution form in (4.7) for both M(x.) 
and 7 3(x) with parameter values: mitochondria locations (̂  = (±0 .5 , ±0.5); variance CT,- = 
0.05; background oxygen consumption rate and diffusivity, M o = 0.5 and Vo = 1 (the same 
as for the homogeneous tissue); and oxygen consumption rate and diffusivity within the ith 
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mitochondria, Mi = 50 and Vi = 4, for i = 1,.. . ,4. The pmin{£) curves in Figure 4.5 are 
increasing functions of e, indicating that the larger the capillary radius, the more oxygen the 
tissue receives. The heterogeneous tissue p m ; n ( £ ) curve lies below that of the homogeneous 
tissue, given the same background oxygen consumption rate and diffusivity, showing that the 
presence of the mitochondria lowers the oxygenation in the tissue. The figure also reveals that 
the hybrid solution agrees well with the exact solution for values of £ up to approximately 0.2. 
Table 4.3 contains the time to compute a single point of the homogeneous tissue pmin(e) curve 
of Figure 4.5. The table shows that the direct numerical solution took approximately 13 times 
as long to compute as the hybrid method solution using meshes of comparable refinement. 

Pmm(0.05) 
Mesh size 
(elements) 

Time/point 
(seconds) 

Exact 4.3758 
Hybrid 4.3760 7680 2.99 

Numerical 4.3765 7424 40.49 
4.3759 29696 187.88 

Table 4,3: C P U time to compute one point, pmin(e) — p m i„ (0 .05) , for the homogeneous tissue 
case of Figure 4.5: hybrid method solution versus the direct numerical solution. 

Example: Capillary interaction. We consider JV = 4 capillaries of circular cross-section 
with radius e in a circular tissue domain D of radius 1, and vary the intercapillary spacing to 
display the effect of interaction on oxygenation of the tissue. Figure 4.6(a) shows the locations 
at £ j

{ = ( ± J / 4 C O S ( T T / 4 ) , ±j74sin(7r/4)), for j = 1,2,3 of the i = 1,.. . ,4 capillaries. The 
parameter values for this example are: diffusivity V = 1 and oxygen consumption rate M = 0.3; 
capillary permeability coefficients K , - = oo; and intracapillary oxygen partial, pressure p c ; = 5, 
for i = 1,.. . ,4. With circular cross-sectional shapes of radius £ and with «;,• = oo, the shape-
dependent parameters are cZ; = 1, for i — 1,... ,4. 

In the top graph of Figure 4.6(b), we have plotted the minimum oxygen partial pressure pmin 
versus s, the radius of the capillary cross-sections. For certain values of e, we have included the 
results from a direct numerical solution of (4.2). Of the -p m ; n (£ ) curves that include interaction 
effects, the j = 2 curve lies uppermost, showing that the tissue receives more oxygen when 
the capillaries are in this position, than in the other capillary spacings we considered. The 
hybrid method results compare well with those of the direct numerical computation. Again, 
the direct numerical solution was significantly more time-consuming since it involved redefining 
the geometry and the grid for each e and for each set of capillary locations. 

There are two ways in which we can test the no-interaction limit of the hybrid method solu
tion. One way is to include only the first term on the right-hand side in (4.58), that neglects 
the capillary interaction term in (4.61). The other way is to neglect the off-diagonal terms, 
representing interaction, in (4.63), which results in (4.64). For the J = 2 case, we included 
the corresponding pmin(£) curves of pG, the first term on the right-hand side of (4.58), and of 
(Pa)diag from (4.64). We see that the pmin(£) curve corresponding to pG lies above the other 
curves, indicating that the global effect of capillary interaction is to lower the oxygenation in 
the tissue. In their multiple capillary oxygen transport model, Clark et al. [5] found a reduction 
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Figure 4.6: (a) Locations of 4 circular capillaries at ( ± j / 4 cos(7r/4), ± j / 4 sin(7r/4)), for j = 
1,2,3, within a circular tissue domain of radius 1. (b) Minimum oxygen partial pressure pm%n 

versus capillary radius £ for the tissue geometry shown in (a). Parameter values: pc = 5, 
M = 0.3, K = oo, V = 1. Top graph: j = 1,2,3 cases from hybrid solution (curves) and from 
numerical solution (discrete points). Bottom graph: for j = 2 case, hybrid solution including 
interaction; and hybrid solution excluding interaction by using only the first term in (4.58) and 
by using the diagonal term approximation in (4.64). 

in oxygen partial pressure levels in the tissue due to capillary interaction. On the other hand, 
the Pmin(s) curve corresponding to (pG)diag lies below all of the other curves, which is what 
one would expect for the effect of capillary interaction. Figure 4.6(b) is similar in spirit to 
that of Ward et al. [57] for the interaction of four circular perfectly-absorbing obstacles in an 
absorption time distribution problem. 

For the particular case of four capillaries of radius e = 0.04, Figure 4.7 displays the minimum 
oxygen partial pressure pmin for specific values of r, the radial spacing of the capillaries, that 
we computed using the hybrid method. Figure 4.7 shows that maximum oxygenation occurs 
when the radial spacing of the capillaries is approximately 0.6 in the tissue domain of radius 1. 

Example: Capillary cross-sectional shape. We demonstrate the effect of capillary cross-
sectional shape for one capillary that is concentric with the rectangular tissue domain, 

- 2 < xx < 2, -1.5 <x2< 1.5. 

We assume that K — oo so that the capillary is infinitely permeable. Then, from Rans-
ford [45], we have d; for five cross-sectional shapes: (i) circle, (ii) ellipse, (iii) equilateral triangle, 
(iv) isosceles triangle, and (v) square. With e as the radius of the circular cross-section, we 
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4.95 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

(a) (b) 

Figure 4.7: (a) Radial spacing r of the 4 capillaries, (b) Minimum oxygen partial pressure pmin 
versus r of 4 circular capillaries of radius e = 0.04 in a circular tissue domain of radius 1, using 
the hybrid method. Parameter values: pc = 5, M = 0.3, K = oo, V — 1. 

choose the side length scales for the remaining four shapes so that each of the five bound
aries enclose the same area. As in the previous example, we consider homogeneous tissue with 
diffusivity V = 1 and oxygen consumption rate M = 0.5, and the capillary pressure pc = 5. 

In Figure 4.8, we have plotted the minimum oxygen partial pressure pmin versus £ and see that 
the pmin(£) curve for the circular cross-sectional shape lies below all the other curves. This 
illustrates the isoperimetric inequality (see Garabedian [14]) that for various cross-sectional 
shapes enclosing the same area, the minimum d; occurs for a circular cross-section. Actual 
capillary cross-sectional shapes range from circular to somewhat triangular with rounded edges. 
The figure suggests that a slight variation from the circular cross-section will increase the 
oxygenation of the tissue. 

Example: Variable capillary wall permeability. To illustrate the effect of variable cap
illary wall permeability, we consider one circular capillary concentric with an elliptic tissue 
domain with semi-axes a = 2 and 6 = 1 . 

For a circular capillary cross-section, the shape-dependent parameter is di = exp(—V(£i)/ni), 
where £ t is the location and K 8- is the capillary wall permeability of the i th capillary. The 
parameters are: constant diffusivity V — 1, oxygen consumption rate A4 = 0.3, and. capillary 
pressure pc = 5. Figure 4.9 shows the minimum oxygen partial pressure pmin as a function of 
n for the capillary cross-section of radius £ = 0.1. 

There is a dramatic variation in minimum pressure for K up to approximately 10, above which, 
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0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.1 

Figure 4.8: Minimum oxygen partial pressure pmin versus e, a measure of the capillary cross-
sectional size, for various capillary shapes that all enclose an area of we 2, of one capillary 
concentric with a rectangular tissue domain with —2 < x\ < 2 and —1.5 < x2 < 1.5. Parameter 
values: p c = 5, M. = 0.5, K — oo, V = 1. 

Figure 4.9: Minimum oxygen partial pressure pm%n versus K for an elliptic tissue domain with 
semi-axes a = 2 and 6 = 1 , containing one concentric, circular capillary of radius e = 0.1. 
Parameter values: pc = 5, M = 0.3, V = 1. 

the capillary wall is essentially infinitely permeable. We note that as K - > 0, this solution 
approaches the physically unreasonable case of a fully insulated capillary wall. 
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X 

Figure 4.10: Effect of myoglobin (Mb) facilitation on the oxygen partial pressure p(x, 0) versus 
radial position x in a circular tissue domain of radius 1 containing a concentric circular capillary 
of radius £ = 0.05. Parameter values: A4 = 0.3, pc = 5, pF = 0.5, po.5 = 1, K = oo, V = 1. 

Example: Myoglobin facilitation. To demonstrate the effect of myoglobin, whose presence 
in the tissue can enhance or facilitate oxygen transport from the capillaries, we have plotted in 
Figure 4.10 the oxygen partial pressure p(x,0) along the positive a;-axis radius of the circular 
tissue domain of radius 1 containing one concentric circular capillary of radius e = 0.05 in 
the presence or absence of myoglobin in the tissue. When myoglobin is present, we use (4.8) 
and (4.9) with facilitation pressure pF — 0.5 and myoglobin half-saturation pressure p0,5 = 1. 
For both cases, we use the parameters: oxygen consumption rate M — 0.3, diffusivity V = 1, 
capillary pressure pc — 5, and capillary permeability coefficient K = oo. The plot indicates that 
there is more oxygen in the tissue with myoglobin present than without. 

This oxygen transport problem was the second of two applications of the hybrid method to prob
lems on bounded domains. In the next two chapters, we consider two problems on unbounded 
domains. 
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Chapter 5 
Convective 
Cyl indr ical 

Heat Transfer Past Small 
Bodies 

We present asymptotic solutions to a convective heat transfer problem in an unbounded, two-
dimensional domain. We consider an array of small, cylindrical bodies of arbitrary shape in a 
fluid with a known velocity field and constant ambient temperature. Outside of these bodies, 
we solve for the temperature field. This is the first of two applications of the hybrid method on 
an unbounded domain. The second application on an unbounded domain involves low Reynolds 
number fluid flow past an asymmetric cylindrical body, which we discuss in Chapter 6. 

We assume that the surrounding fluid is incompressible and that we can neglect any effects of 
natural convection and viscous dissipation. With these assumptions, the equation governing 
the temperature T is 

where we have treated the thermal conductivity k, the density p, and the heat capacity at 
constant pressure cv as constants. We assume that we already have the solution to the Navier-
Stokes equations for the velocity field u, completely independent of the temperature. 

We illustrate that this is a singular perturbation problem involving an infinite logarithmic 
expansion in the small parameter £, the order of magnitude of the size of the cylindrical bodies. 

The convective heat transfer problem is analogous to the problem of low Reynolds number 
flow past an array of cylindrical bodies. Both problems have the infinite logarithmic expansion 
structure in their asymptotic solutions, but the heat transfer problem is easier to analyze than 
the low Reynolds number problem for multiple bodies. In Chapter 7, we discuss an extended 
application of the hybrid method on low Reynolds number fluid flow past an array of symmetric 
cylindrical bodies. 

In Section 5.1, for a single cylindrical body, we illustrate the singular nature of the convective 
heat transfer problem and outline the hybrid asymptotic-numerical method that we use to con
struct an asymptotic solution for the steady-state, dimensionless temperature. In Section 5.2, 
for an array of cylindrical bodies, we generalize the convective heat transfer problem and con
struct an asymptotic solution to the temperature for an arbitrary velocity field. In Section 5.3, 
we derive a further term in the asymptotic solution expansion that reveals the asymmetry of 
the temperature field near each cylindrical body. In Section 5.4, we derive asymptotic solutions 

(5.1) 
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for two specific cases of the velocity field: a uniform flow field and a simple shear flow field. 
Finally, in Section 5.5, we present examples to illustrate the asymptotic results. 

5.1 Singular Nature of the Problem 

We seek the steady-state solution to (5.1) that we non-dimensionalize with respect to the 
magnitude of the free-stream velocity, the ambient temperature and a characteristic length 
scale of the cylindrical bodies. The dimensionless and steady-state form of (5.1) is 

Aw = Pe(v • Vw), (5.2) 

where iv and v are the dimensionless temperature and velocity field respectively, and Pe = 
UoolpCp/k is the Peclet number. Here, is the magnitude of the free-stream velocity and / 
is the length scale of the bodies. We also note that the differentiation is now with respect to 
dimensionless variables. 

We will demonstrate the singular nature of the problem by attempting a regular perturbation 
expansion in the asymptotic limit Pe —> 0. For simplicity, we consider only one body of circular 
cross-section and radius 1 with a constant temperature a on its boundary. The problem to 
solve for w, with appropriate boundary conditions, is 

Aw = e(v-Vw), |y| > 1, (5.3a) 
w = a, |y| = 1, (5.3b) 
w ~ 1, |y| —»• oo, (5.3c) 

where e = Pe <C 1 and |y| is 0(1) in the Stokes region near the body. Leal [32] and Romero [46] 
examined the three-dimensional analogue of this problem in their studies of flow past a sphere. 

We assume a regular perturbation expansion for w(y; e) of the form 

w(y; e) = W^(y) + eW^(y) + •••. (5.4) 

To leading order in e, the problem to solve is 

AWW = 0, 

iy(°) ~ 1, 

y| > 1, (5.5a) 

y| = 1, (5.5b) 

y| —>• oo. (5.5c) 

The general solution to (5.5a) is = a + 6 log |y | , where we apply the boundary conditions 
to specify the constants a and b. However, in setting a = a to satisfy (5.5b), we find that it 
is not possible to satisfy (5.5c). Hence, a regular perturbation expansion fails. This difficulty 
is analogous to the Stokes paradox in fluid dynamics: no solution exists in an unbounded, 
two-dimensional domain that satisfies the condition at infinity. To circumvent this difficulty, 
we adopt a singular perturbation approach and construct local (inner) and global (outer) ex
pansions with appropriate length scales in each subdomain to resolve the non-uniformity at 
infinity. 

64 



Chapter 5. Convective Heat Transfer Past Small Cylindrical Bodies 

We declare y to be the local variable and w(y;e) the local solution. In the global region, far 
from the body, we rescale the variables as x = ey and u(x;e) = w ( £ _ 1 x ; e ) and expand the 
local and global solutions as 

w(y; e) = a + fi{e)W^\y) + / 2 ( e ) ^ 2 ) ( y ) + • • • , (5.6) 

u(x; e) = 1 + P 1(e)^( 1)(x) + F2(s)U^ 2\x) + •••. (5.7) 

The logarithmic growth in W^(y) as |y| —>• oo requires that we choose the gauge functions, fj 
and Fj, as 

fJ{s) = F3{s)= [~^-£) , i = l , 2 , . . . . . (5.8) 

This reciprocal logarithmic form of the gauge functions, as in (2.14) with d = 1, enables us to 
match the local and global expansions without difficulty. In particular, since ( —1/loge}7' > £ 
for any j = 1,2,. . . , we can obtain from (5.3a) and (5.3b) that the local solution for the 
temperature is of the form 

°° / 1 V 
lu(y;e) = a + w^(y)J2^[-l—-) +••• 

' = 1 V 8 J (5.9) 

Here, w^ c\y) is a canonical local solution with a logarithmic far-field structure, 

w ( c ) ( y ) ~ l o g | y | + --- , | y | - » oo. (5.10) 

Also in (5.9), the cij for j > 1 are constant and A(e) is asymptotic to an infinite logarithmic 
series of the form 

A<e> ~ f> h ^ y (5-n) 

This asymptotic expression is the same as (2.19) with d = 1. Thus, we have shown that the 
problem in (5.3) is singular in nature and that its solution contains an infinite logarithmic 
expansion in terms of the small parameter e. Our goal is to avoid calculating the individual 
coefficients aj in (5.11) by formulating a problem that determines A(e) directly. 

We outline here the hybrid asymptotic-numerical method for this single body case, which we 
will extend in detail to the case of many bodies in the next section. 

Rescaling to the global variables in (5.3a) and (5.3c), and using (5.8), we can write the global 
solution as 

°° / 1 V ,(x;e) = ! + $ > ( - — j G(x) 

G(x)A(£) + 

i = i 

1 
log£ 

(5.12) 

65 



Chapter 5. Convective Heat Transfer Past Small Cylindrical Bodies 

Here, G(x) is the Green's function that satisfies 

AG = v-VG, x e f t 2\{0}, (5.13a) 

G -+ 0, |x | -> oo, (5.13b) 

G = log |x | + i2 + o(l), x ^ O , (5.13c) 

where R is the regular part of the Green's function. We define i/(e) = — l / l o g £ and, from the 
second term of the global expansion (5.12), we set 

u-l = u* where u* ~ u(e)G(x)A(e), £ 0. (5.14) 

We will formulate a related problem for u*, one that is straightforward to solve, and show that 
its solution contains the infinite logarithmic expansion A(e). 
Using (5.13c) in (5.14), we obtain, as x —s- 0, that the leading-order form for u* is 

u* ~ v(e)A(e) log |x| + v(e)A{e)R. (5.15) 

Using (5.10), the far-field form of the local solution, in terms of the global variable, is 

w(y;e) ~ a + i/(e)A(e)[log|x|+ i / - 1 (£ ) ] +••• , |y |-»• oo. (5.16) 

We require that the global solution as x —> 0 match to this far-field form of the local solution. 
Hence, we get that u* satisfies 

A u * = v W , x £ U 2\{0}, (5.17a) 
u* -»• 0, |x| -> oo, (5.17b) 

u* - y(e)A(£) log |x | + a + A{e) - 1 + o(l), x -+ 0. (5.17c) 

The first term in the right-hand sides of (5.15) and (5.17c) automatically agree, and the re
maining terms gives us the expression for A(s), 

w s 1 — ct . 

The expression for A(e) in this unbounded-domain problem is similar in form to the expression in 
(2.31) for a bounded domain. In formulating this related problem, we have avoided calculating 
the individual coefficients cij in (5.9) and (5.12) and, instead, have determined A(e) directly. 

5.2 Matched Asymptotics for an Arbitrary Flow Field 

We now formulate the general convective heat transfer problem for an array of N small, cylin
drical bodies Df of arbitrary cross-sectional shape. The surrounding fluid has a known velocity 
field v = v(x) where x is the Oseen variable. The governing equation for the temperature 
u(x;e), the boundary condition at each body surface and the condition at infinity are 

A« - v • Vu = 0, x e TZ 2\ U Df, (5.19a) 

£—- + Ki(u- cti) = 0, x e dDf, i = 1,... ,N, (5.19b) 
on 

u ~ 1, |x | = (x\ + 3 , - 2 )2 0 0 . (5.19c) 
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Here, Df is the cross-section of the ith cylindrical body of "radius" 0(e) for i = 1,.. . , TV and 
Df is the scaled ith body, such that Df = eDf. Also, d/dn is the inward normal derivative to 
the body and dDf is the boundary of Df. In the boundary condition (5.19b), which represents 
imperfect Newtonian cooling on the body surfaces, a; > 0 and K ; > 0 are constants, where 
a; and K ; represent the temperature on the boundary and the surface heat transfer coefficient 
respectively. The condition at infinity in (5.19c) represents the ambient state of the temperature 
far from the bodies. 

In contrast to the approach of Leal [32], we study the convective heat transfer problem in the 
Oseen region where x is 0(1) far from the bodies of size 0(e). Although the small parameter 
e now appears as the measure of the body cross-section size and not in the governing equation 
as in the one body case of Section 5.1, the singular nature of the problem remains the same. 

We use the method of matched asymptotic expansions to construct a hybrid asymptotic-
numerical method to solve (5.19) in the limit e 0. In the local region, close to the ith 

body located at £ i 5 we rescale the variables as y; = £ _ 1 ( x - £t-) and u>i(yi;e) = u(eyi + £,•;£)• 
These local variables_have the same form as (4.27). From (5.19a) and (5.19b), the temperature, 
Wi(yf,e), about the i t h body satisfies 

Aywt - ev(eyi + £ ) -VyWi = 0, yt- £ D°, (5.20a) 

+ Kt(Wi - ai) = 0, Yi € dD°i, (5.20b) 

where the subscript y indicates differentiation with respect to the local variable. 

We expand the local solution as 

w,-(yt-;e) = a< + W^0)(yl; vu ... ,vN) + eW^)(yl;v1,... ,vN) + ••• , (5.21) 

and take w/°^(y;; z^,... , vN) = AiViw\°\yi). Here, A,- = Ai(v\,... , vN) is arbitrary and 
analogous to the infinite logarithmic series that we defined in (5.11), V{ = Vi(edi) = — l/log(ed,-) 
and w\c\yi) is the canonical local solution that satisfies 

y, i A° , (5.22a) 

y,- G dDQi, (5.22b) 

|y,-| -> <x>. (5.22c) 

This, is a multi-body version of the canonical local problem in (2.10). In (5.22c), d; = di(ni) is 
a positive constant that depends on the shape of the ith body. When K,- = oo, d8- represents the 
logarithmic capacity (see Garabedian [14]) of Df. Section 2.5 in Chapter 2 contains details on 
the computation of d;. Also in (5.22c), p is a vector that depends on K{ and on the shape of 
the ith body. The far-field form of the local solution, to leading order in e and in terms of the 
global variable, is 

Wi(yt;e) ~ a; + A^-flog |x - &| + v'1} + • • • , |y,-| -+ oo. (5.23) 

Ayw\c) = 0, 

w i c ) ~ log |y«l 

dn 
- log di + p 

KiW] ' = 0, 

y«-
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In the global region, far from the bodies, we expand the solution as 

«(x; e) = 1 + c7(°)(x; vx, ...,vN) + £t / ( 1 ) (x; vN) + e 2U^{x; vu ... , vN) + • • •. (5.24) 

We substitute (5.24) into (5.19a) and (5.19c) and require that match to the far-field, form 
of the local solution in (5.23) as x —> £{ for each i = 1,... , N. Hence, we get that f/t0) satisfies 

AUW - v • v*7(0) = 0, x e n2\ u {&} , (5.25a) 

i=l 

£/(°) -* 0, |x| -»• 0 0 , (5.25b) 

U { 0 ) = Aji/.-log |x - &| + ai + A l - l + o(l) , x -» i = l,...,N. (5.25c) 
To solve for in (5.25), it is convenient to introduce the Green's function G'(x; £ ) that 
satisfies 

A G ' - v - V G = 0, x G K 2 \ { ( } , (5.26a) 

G - > 0 , |x | —* oo, (5.26b) 

G = l o g | x - C | + P + o(l), x ^ C - (5.26c) 

Here, R = R(C) is a constant that we determine from the solution to (5.26). If the velocity 
field v is independent of x, then by translational invariance R is independent of the location, 
£, of the singularity. 

Now, using the principle of superposition, the solution for is 

N 

(°>(x; « * , . . . , „ „ ) = £ AkvkG{x; (5.27) 
fc=i 

As x —» the leading-order form of C/(0' is 

AT 

[/(°) - A ^ t log |x - & | + A ^ + AkukG(£i, £fe). (5.28) 

Comparing the first term in the right-hand sides of (5.28) and (5.25c), we observe that they 
automatically agree. Comparison of the remaining terms in these expressions gives us the linear 
system of N equations for A ; , 

N 

[ViRi - l]Ai + AkukG(ti;Zk) = a, - 1. (5.29) 
k=l 
k^i 

In (5.28) and (5.29), Ri = R(£i) is the regular part of the Green's function that we can obtain 
from the solution to (5.26). We can also obtain the constants d,-, for i — 1,. . . , N, from the 
solution to the canonical local problem in (5.22). In some cases we can determine dt- analytically 
(see Section 2.5). Since z/,- = — l/Tog(£d;) —>• 0 as e —> 0, the system (5.29) is asymptotically 
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diagonally dominant and so is non-singular in this limit. To leading order, as e —*• 0, we have 
from (5.29) that 

Ai~l- a,. (5.30) 

This leading-order approximation, which is just the difference between the temperature at 
infinity and at the bodies, ignores the off-diagonal terms in (5.29) that represent the interaction 
between the bodies. In Section 5.5, we examine the asymptotic results for the special cases of 
N = 1 and N = 2 cylindrical bodies. 

The hybrid method that we have just described combines asymptotic analysis and simple nu
merics to solve (5.19). Using the hybrid method, a change in the cross-sectional shape of the 
i t h cylindrical body requires only the computation of the shape-dependent parameter cZ; from 
(5.22). This process is independent of e, the order of magnitude of the size of the bodies. 
However, in a direct numerical solution to (5.19), restructuring the solution grid is necessary 
for a change in cross-sectional shape as well as for a change in e. Thus, the hybrid method has 
the advantage of avoiding such a computationally intensive procedure. 

In summary, after specifying the parameters: 

£ order of magnitude of the size of the bodies 
N number of bodies 
ai temperature on the ith body 
£j location of the ith body 
di body shape-dependent parameters 
Ri regular part of the Green's function, 

one can solve (5.29) for Ai and hence determine the global solution C/(°). Recall that Ai is 
analogous to the infinite logarithmic series in the small parameter e that we stated in (5.11). 
Hence, the hybrid method essentially sums the entire logarithmic expansion of the solution 
with an error \u — (1 + U^)\ = 0(e) away from the bodies. We calculate a further term in the 
asymptotic expansion in the next section. 

5.3 A Higher-Order Term in the Expansion 

In Section 5.1, we showed that the solution for convective heat transfer from a small, cylindrical 
body involves an infinite sum of powers of l / l o g £ , where e represents the order of magnitude 
of the size of the bodies. Then in Section 5.2, we showed how the solution to a hybrid problem 
that is asymptotic to the desired solution essentially sums the entire infinite logarithmic series. 

In this section, for the special case of N cylinders of circular cross-section with radii p,-e for 
i = 1,.. . , /V, we show how to continue the asymptotic expansion of the solution to include 
the first term that is smaller than all positive powers of l / l o g £ . We will demonstrate how this 
term reveals the asymmetry of the solution near each cylindrical body of circular cross-section. 

In the local region, we substitute the expansion (5.21) into (5.20a) and (5.20b). As in Section 5.2, 
we take wf^ = AiUiw\°\ where w\ c^ is the canonical local solution to (5.22). For bodies of 

69 



Chapter 5. Convective Heat Transfer Past Small Cylindrical Bodies 

circular cross-section, the vector p in (5.22c) vanishes and we can express analytically as 

W$ 0 ) = A ^ U o g \yt\ - log di). (5.31) 

Here, the coefficient Ai is the solution to (5.29) and the body shape-dependent parameter di 
(see Section 2.5) is 

di=-pie- 1/ K i ( , i. (5.32) 

Continuing to the next order in the expansion and using v ( £ + eyi) = v ( £ J + 0(e), we find 
that the solution W--1^ to the 0(e) local problem satisfies 

A „ w f > = v (&) • Vywl°\ yt £ A° , (5.33a) 

+ nlWy ) = 0, yt- G dDl (5.33b) 

Substituting (5.31) into the right-hand side of (5.33a), we obtain that the solution w\ 1^ is 

=B,Vi[log |y,-| - logdt] + Q • (yt- - A y , / | y i | 2 ) 
( \ \ (5.34) 

+ AiViviti) • ( -y.-log |y,-| + E i y M * • 

To satisfy the boundary condition (5.33b), the constants Di and Ei are 

Di = pi ( , 2* = f ( ( l - ^ ) l ° 6 f t + l ) . (5.35) 
V KiPi + 1J 2 V 1 + KiPi ) 

In (5.34), we will determine the unknown constant vector C,- through a leading-order matching 
condition and the unknown Bi through a higher-order matching condition. Substituting (5.31) 
and (5.34) into (5.21), we obtain that the far-field form of the local solution, to leading order 
in e and in terms of the global variable, is 

u>i =cti + AiVi log |x - £,| + Ai + Ci • (x - f,•) 

+ ^ [ l o g |x - £.| - loge] v (&) • (x - + • • • , ( 5 " 3 6 ) 

as |y;| —r oo. 

In the global region, far from the bodies, we expand the solution u as in (5.24), where the 
leading-order global solution is in (5.27) and the Green's function G satisfies (5.26). To 
match the global solution with the (x — ^ ) l o g | x — £j| term in (5.36), G(x;£j ) must have the 
form 

G - log |x - & | - R{ii) = ^ • (x - ii) log |x - t{\ + a(&) • (x - + • • • , (5.37) 

as x —> £ i , for some constant vector a ( £ t ) . As x —> £ i 5 we can decompose the solution to the 
leading-order global problem in (5.27) as the sum of a singular part representing the influence 
of only the i t h body and an analytic part representing the interaction with the other bodies, 

N 

[/(°) = AiViGfrti) + Y,AkVkG(x;tk). (5.38) 
fc=i 
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Substituting (5.38) into (5.24) and using (5.37) and expanding the analytic part in a Taylor 
series, we obtain that the form of the global solution as x —> £ i 5 for i = 1,... , N, is 

u=l + AiVi log |x - £-| + A^R 
, Axv, 

v(&) • (x - &) log |x - &| + AiVi&tfi) • (x -

iV JV 

+ £ A ^ G ( f c ; + £ A ^ V G f o ; £fc) • (x - £,.) + • 

(5.39) 

k=l fe=l 

The leading-order matching condition requires that (5.36) and (5.39) agree. First, we observe 
that the (x — £ 8 ) log | x - £ J and log |x —£ J terms in these expressions automatically agree. Next, 
matching the 0(1) terms, we obtain the linear system for A; in (5.29) as we expect. Finally, in 
matching the (x — terms, we determine the constant vector C,- as 

(1 s N 

^ p v ^ ) + a ( & ) J + £ AkvkVG(ti; £k) 

(5.40) 
k = l kjti 

where G is the solution to (5.26a) and (5.26b) with the singular form in (5.37). In order to 
determine fully the constant vector C,-, we must obtain the constant vector a(£,-). To do so, we 
introduce polar coordinates x = + (i\ cos 0, i\ sin 0) and we compute the Fourier coefficients 
of the left-hand side of (5.37) at r,- = 8 <C 1, 

G\ c )(6) = - I  V[G(rl,0)-logrl-Rl] 
K Jo 

G\S)(S) = - r[G(rl,9)-logrl-Rl 

n Jo 

r{=S 
cos 0 d0, 

Ti=S 
sin 0 d0. 

(5.41) 

(5.42) 

In general, the Fourier coefficients, G\ c\6) and G\ s\s), depend on Using the right-hand 
side of (5.37) in (5.41) and (5.42), we obtain that 

G\C\S),G\ S\S) 

Thus, the constant vector a (£ t ) is 

•Slog 8+ ^ 6 , 0. 

a ( £ i ) = J i m 

(5.43) 

(5.44) 

Next, we describe how to determine the constant B{ in (5.34). Substituting (5.31) and (5.34) 
into (5.21) and taking the far-field expansion up to 0(e), we find that the solution to the 
0(e) global problem satisfies 

AU(1) - v VC/W = 0, x £ ft2\ U { £ } , 

OO, 1 7 ( 1 ) ^ 0 , | x _ 

UM ~ J B ^ [ l o g | x - e 4 | + ^ - 1 ] , x - & , i = l,...,N. 

(5.45a) 

(5.45b) 

(5.45c) 
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Using the principle of superposition, the solution for is 

JV 

UM(x; vu...,vN) = Y, BkVkG(x; 4 ) . (5.46) 
k=i 

In analogy to the linear system for A,- in (5.29), we obtain the N equations for U ; , 

[uiRi - l]Bi + BkVkGfa tk) = 0, i = 1,.. . , N. (5.47) 

Since the system in (5.47) is asymptotically diagonally dominant as e —• 0, it is non-singular in 
this limit. This determines that B{ = 0 for i = 1,... , JV, and thus = 0. 

In summary, the global solution for an array of A circular cylinders is 
JV 

u= l + ^ A f c ^ G ( x ; ^ ) + 0 ( £ 2 ) , (5.48) 
k=i 

and the local solution near the i t h cyUndrical body is 

u>i =oti + A,;/i[log |y;| - log dt] 

+ £ | c , - • ( y i - A - y , 7 | y , f ) + AiUiw(d) • Q y » i o g M + ^ . -y .V ly i l 2 ) } (5-49) 

+ 0(s2). 

Here, A{ is the solution to (5.29), the constant vector C,- is in (5.40) and the constants D{ and 
E{ are in (5.35). We can see that the 0(e) term in (5.49) involves y,- and not just the magnitude 
|y; | . This indicates that the temperature field is asymmetric near each cylindrical body, even 
for a body of circular cross-section. We will illustrate this effect in examples 5.5.2 and 5.5.3 in 
Section 5.5. 

5.4 Two Specific Flow Fields 

5.4.1 A r r a y of C y l i n d r i c a l B o d i e s i n U n i f o r m F l o w 

We examine the special case where the velocity field is a uniform flow in the positive a^-direction 
and where we fix the temperature on the boundary of each cylindrical body. Thus, in the general 
problem (5.19), we set the velocity field to v = (1, 0) and m = oo for i = 1,.. . , A . 

In this case, we determine analytically that the Green's function G(x; £), satisfying (5.26) with 
v = (1,0), is 

Xl - Cl 
A o 

CI 
<2(x; C) = - e x P 

where £ = (C15C2) and R'o(z) is a modified Bessel function. As x 

G(x; C) ~ log |x - C| - log 4 + 7 + • • 

(5.50) 

C, G(x; C) has the form 

(5.51) 

72 



Chapter 5. Convective Heat Transfer Past Small Cylindrical Bodies 

where 7 = 0.5772... is Euler's constant. Comparing (5.51) and (5.26c), we obtain that R is 
independent of £ and is 

# = 7 - l o g 4 . (5.52) 

Substituting (5.50) into (5.27) and using (5.24), we have that the temperature in the global 
region satisfies 

N 
u(x; e) = 1 - £ A{i/i exp 

t=i 

Here, 671 is the a; 1-coordinate of and V{ = — 1/log(edj-). We obtain the coefficients A,-, for 
i = 1,.. . , N, by substituting (5.50) and (5.52) into (5.29) which yields the linear system 

N 

[vi(j - log 4) - l]Ai - 53  Ak"k exp 

x • 0(e). (5.53) 

6,1 - 6c,1 
Kn 

\ti-tk a,- — 1. (5.54) 

The off-diagonal terms in (5.54), containing exp[(£ t )i - &c,i)/2], reflect the asymmetry of the 
temperature field in the global region. To leading order, as e —• 0, we have Ai ~ 1 - a;. 
Thus, to leading order, the A» are independent of the locations of the small, cylindrical bodies 
and hence the asymmetry of the temperature field. In Section 5.5, we test the validity of this 
no-interaction limit for the specific example of two identical cylinders of elliptic cross-section. 

5.4.2 Array of Cylindrical Bodies in Shear Flow 

Next, we consider the special case of N small, cylindrical bodies of arbitrary cross-section in a 
simple shear flow velocity field. Frankel and Acrivos [13] examined the case of one small cylinder 
of circular cross-section in their study of heat and mass transfer from spheres and cylinders in 
shear flow. 

As in Section 5.4.1, we fix the temperatures on the boundaries. In this case, u satisfies (5.19) 
with v = (X2, 0) and = 0 0 for i — 1,... , N. To calculate R, the regular part of the Green's 
function, we introduce the new variables X = x — £ and ip(X.) — G(x; £) into (5.26) with 
v = (^2,0), giving 

AiP - (X2 + (2, = 0, x e ft2\{o}, 
dXi 

^ - > 0 , | X | -> 0 0 , 

^ = l o g | X | + J? + o(l), X ^ O , 

(5.55a) 

(5.55b) 

(5.55c) 

where X = (Xi,X2). We can see from (5.55) that R depends only on ( 2 , the .T2-coordinate of 
£. The solution to (5.55) is (see Bretherton [3]), 

<Kx)=- r 
Jo 

(1 + ^ / 1 2 ) " 
It 

exp 
(Xi - \X2t - Q2tf (X2f 

At(l + t 2/12) At 
dt. (5.56) 
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Thus, in terms of x , the solution to (5.26) with v = (x2,0) is 

( l + i 2 / 1 2 ) - 2 
G(x;C) = -

o 2t 

exp 
[(xi-Cl)-l(x2-C2)t-(2tf • ( 0 . - 2 - C 2 ) 2 

4i(l + t 2/12) At dt. 
(5.57) 

Figure 5.1: The regular part of the Green's function R versus £^2 for the simple shear flow case. 

To determine the form of G(x; C) as x —> C> from (5.26c) we write 

R= l i m { G ( x ; C ) - l o g | x - C | } . 

As in [3], we add the modified Bessel function A'o(|x — CI) a s 

R(C) = lim (G(x; C) + A 0 ( | x - C|) - log 2 + 7 ) . 

This makes the integral in (5.57) converge when x = C- Thus, 

(C 2 ) 2 i 
E ( ° = - r M ( i + i 2 / i 2 ) " e x p ( - 4 ( T + i 2/12) — e dt - log 2 + 7. 

(5.58) 

(5.59) 

(5.60) 

Since the velocity field v = (x2,0) for the simple shear flow depends on spatial position, the 
constant R{ = R(Xi) i s dependent on the location Here, R{ depends only on £ t i 2 , the x2-
coordinate of Figure 5.1 contains the plot of R, that we computed numerically from (5.60), 
versus the x2-coordinate of the location of the ith cylindrical body. 

We obtain the linear system for Ai in the simple shear flow case by substituting the expressions 
for Rt = Rfc) from (5.60) and from (5.57) into (5.29). 
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Figure 5.2: Test of no-interaction limit: A \ and A 2 versus the separation distance 7" for two 
identical, elliptic cylinders aligned with the uniform flow. 

5.5 Results and Discussion 

We present the results of our study through various examples. In one particular example, we 
compare the asymptotic solution with the exact analytical solution. 

E x a m p l e 5.5.1 We consider two identical, elliptic cylinders with constant temperatures on 
the boundaries in a uniform flow with v = (1,0). The inset in Figure 5.2 shows the alignment 
of the cylinders in the uniform flow. The cylinders have semi-axes ea and eb, where a — 1.0 
and b = 0.5, so the body shape-dependent parameter for both cylinders is d = 0.75 (see 
Section 2.5). Since the constant temperature a on each cylinder boundary is greater than that 
of the surrounding fluid, the two cylinders behave as heat sources. In Figure 5.2, for e = 0.02, 
we have plotted the values of Ai and A 2 from (5.54) versus r, the separation distance between 
the two cylinders. The figure indicates that there is still a significant interaction between the 
two bodies even at r — 500. This suggests that the no-interaction limit is not valid at this value 
of £. 

In Figure 5.3, for r — 5, we have plotted A \ , A 2 and the first approximation CLQ versus e. The 
first approximation cto is the solution to (5.54) ignoring the off-diagonal terms, and is 

a — 1 
^(7 - log 4) — 1 

where v = —l/\og(ed) and 7 = 0.5772 . . . is Euler's constant. The results reveal that ao is a 
reasonable approximation for A \ , the coefficient associated with the upstream cylindrical body. 
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However, ao greatly underestimates A 2 , the coefficient for the downstream body that lies in the 
"wake" of the other. 

-0.2 

-0.25 

-0.3 

-0.35 

-0.4 

-0.45 

1 1 1 r 

a = 1.5, d = 0.75 

> £b3—-"l 

i 1 1 r 
Ax ••• 
A2 ••• 
a 0 — 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

Figure 5.3: Test of first approximation: Ai, A 2 and the first approximation ao versus the small 
parameter e for two identical, elliptic cylinders aligned with the uniform flow. 

In Figure 5.4, for e = 0.02 and r = 5, we show plots of A\ and A 2 versus 9, the alignment angle 
between the cylinders (see the inset in Figure 5.4). We observe that the coefficients for the two 
cylinders are equal at 9 = TT/2. This indicates that the first approximation a 0 that we plotted 
in Figure 5.3 would be a reasonable approximation for both A\ and A 2 in this case. 

E x a m p l e 5.5.2 We consider N circular cylinders of radius e with constant temperatures on 
the boundaries in a uniform flow. In this case, p; = 1, Ki — oo and v = (1,0) for i — 1,. . . , JV. 
We use (5.50) and (5.52) in (5.41) and (5.42) to obtain the Fourier sine and cosine coefficients, 

G { s ) = 0, G<c) ~ - ^ ( l o g 4 - 7 ) + i t f l o g t f , S^Q. (5.62) 

Thus, from (5.44), the components of a = (ai , a2) are 

^ = - ^ 4 - 7 ) , «2 = 0. (5.63) 

Note that for a uniform flow, a is independent off,-. Using (5.63) in (5.40), we determine that 
the vectors C ; = (Ct,i, Ci,2), for i = 1,... , N, are 

A  N  

d = -f- (log ! + 7 , 0 ) + £ AkvkVG{^ik). (5.64) 

ft=i 
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Figure 5.4: A \ and A 2 versus the alignment angle 0 for two identical elliptic cylinders. 

The summation term in (5.64) represents the interaction between the cylindrical bodies. 

We compare the local solution W{ in (5.49) for two circular cylinders (JV — 2) to that for one 
circular cylinder (JV = 1) in a uniform flow. We substitute (5.64) into (5.49) in which Di — 1, 
Ei = 0 and Ai is the solution to (5.54). In Figure 5.5, for cylinders of radius e = 0.02, we 
have plotted contour lines of constant temperature 1.3 for each of two circular cylinders a 
distance r — 1.5 apart and the corresponding contour line for one circular cylinder alone. We 
plotted each contour in reference to the origin (^,1,^,2) = (0,0) of the i t h cylindrical body. In 
comparison to the contour for one cylinder alone, the figure indicates a substantial expansion 
of the w2 contour, corresponding to the downstream body, whereas the w\ contour shows that 
the upstream body is relatively insensitive to the presence of the other body. Hence, we can 
see that the main interaction between the two cylinders in the uniform flow is the influence of 
the upstream body on the "wake" of the one downstream. 

E x a m p l e 5.5.3 We show how to calculate even further terms in the asymptotic expansion of 
the solution for one circular cylinder of radius e with a constant temperature on its boundary 
in a uniform flow. In this case, JV = 1, p = 1, v = (1,0) and K — 0 0 , where we have dropped 
the subscript 1 for brevity. Thus, the body shape-dependent parameter in (5.32) simplifies to 
d — 1 and from (5.31), we can write 

Ai/ log |y | . 

Here, A = (1 - a.)/[v (log 4 — 7 ) + 1] is the solution to (5.54) and v = 
we obtain that D = 1 and E = 0. Hence, (5.34) simplifies to 

1\ Av , 

QJ 2 
cos 0, 

(5.65) 

-1/loge. From (5.35), 

(5.66) 
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Figure 5.5: Local solution temperature contours at w = 1.3 for two circular cylinders (wi and 
iu2) and for one circular cylinder (w) of radius £ in a uniform flow. 

where y = (£> cos 0, £> sin 0) and g = |y | . Also, C\ = (a - l ) / 2 from (5.64). We solve for V F ^ 2 \ 
that satisfies (5.33a) and (5.33b) with v = (1,0) and K = 0 0 , and obtain 

T..(o\ (C\ Av\ 2 Av 2 l 7 1 Az/ C i 

^(2) = ( T - T6 j 5 + T e loge" Mog^ + 16 - T 
+ 

(5.67) 
cos 20. 

To determine the constants (5 and 6, we substitute (5.65) and (5.67) into (5.21) and express the 
local solution in terms of the global variable. A leading-order matching condition requires that 
P = (a — 1)/16. Then, retaining only terms of 0(e2), we obtain the singular form for the global 
solution f/(2) of the expansion in (5.24). Thus, the solution to the 0(e 2) global problem 
satisfies (5.45a) and (5.45b) and, as r = |x — f | —> 0, has the singular form 

TT(7\ . , „ cos0 „ cos 20 b Av 
IJW ~ -felogr - C i C i — + — . 

r A v 16 

The form of as r —>• 0 requires that we express the solution as 

U { 2\r,9) = 6 exp 
r cos 9 

K 
C i 

exp 
r cos 0 

A i ( - ) cos 1 

(5.68) 

(5.69) 

Here, Ko{ z)  a n ( 1 Ki( z) a r e modified Bessel functions. As x — f , or as r —> 0, the expression in 
(5.69) has the form 

TTO\
 c o s # ,-1 cos 2 9 ; / 1 . 

/y(2) ~ -fclogr - C i  C l~^2~  + H l o g 4 ~ 7)- (5.70) 
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Matching requires that (5.68) and (5.70) agree. We observe that the first three terms in these 
expressions automatically agree. Comparing the remaining terms, we find that the unknown 
constant b is 

Av2 v2{l-o) 
16[1 + / / ( l o g 4 - 7 ) ] 16[1 + i/(log4 - 7 ) ] 2 ' 

Thus, the global solution is of the form u = 1 + + e 2U^ 2h 

(5.71) 

We can find the exact analytical solution to (5.19) for this special case. Following Philip et 
al. [39], we let 

i(x) = 1 - (1 - a)e X l / 2H(x), (5.72) 

and introduce polar coordinates (x\ - £\,x2 - £2) = (r cos 0, r sin 0). Here, £ = (£1,62) is the 
location of the circular cylinder. Then H satisfies 

AH - i f / 4 = 0, r > £ 

H = e- r cose'2, r = e 

He r c o s 0/ 2^O, r 0 0 . 

The solution for II in terms of the polar coordinates is 

/ / M ) = ̂ ^^/ 2) + 2E(-1)nM^ /̂2)cos,f9, 
n=l 

Kn(e/2) 

(5.73a) 

(5.73b) 

(5.73c) 

(5.74) 

where In(z) and Kn(z) are modified Bessel functions of order n. Changing back to the original 
variables, we obtain that the exact analytical solution uE to (5.19) with K = 0 0 about a circular 
cylinder of radius e in a uniform flow is 

uE(x; e) =1 — (1 — a) exp 
x\ - £1 J 0 (£ /2 ) / - | x - £ | 

^ 0 

2 V r - i r J " ( £ / 2 ) K 

l ) Kn(s/2)A n  

n=l 

K0(e/2)~ v V 2 

^ ^ cos n# 
(5.75) 

where tanfl = (a,-2 - £2)/(a-'i - £i)-

We compare the asymptotic solution with the exact analytical solution in terms of the heat flux 
Q across the boundary. The heat flux is 

JdD on J0 

2ir du 
0|x| 

edO 
|x|=£ 

2*" 0w 
0 5|y| 

d0. 
|y|=i 

(5.76) 

Using the asymptotic solution to compute the heat flux, we substitute the local expansion 
(5.21), using (5.65)-(5.67), into (5.76). To leading order in e, the asymptotic heat flux Q\ is 

Q i = - 2 - K A V . (5.77) 
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Figure 5.6: Asymptotic and exact heat flux Q versus cylinder radius e for one circular cylinder 
in a uniform flow. 

To 0(e 2 ) , the asymptotic heat flux Q2 is 

Q2 = Qi-2we 2(C1/2-b), (5.78) 

where the constant b is in (5.71). The 0(e) term in the local expansion vanishes in the 
integration and hence, does not contribute to the asymptotic heat flux. 

For computing the exact heat flux, we substitute the first three terms of (5.75) into (5.76) and 
use a Taylor expansion to 0(e 4 ) for the exp[(xi — fi)/2] factor. The exact heat flux QE is then 
of the form 

e - ^ - M f ^ M ^ ) ( 5 7 9 ) 

where z = e/2. 

Figure 5.6 displays the leading-order and 0(e 2 ) asymptotic heat flux, Q\ and Q2, versus the 
exact heat flux QE. The leading-order asymptotic heat flux agrees reasonably well with QE 

for values of e, the radius of the cylindrical body, up to approximately 0.14. The agreement 
improves significantly after including the first of the higher-order terms in computing the asymp
totic heat flux. 

In the next chapter, we examine a second application of the hybrid method on an unbounded 
domain, but this time on a non-linear problem. The application of Chapter 6 models low 
Reynolds number fluid flow past a cylindrical body that is asymmetric to the uniform free-
stream flow. In Chapter 7, we touch upon how to apply the hybrid method to a multi-body 
low Reynolds number fluid flow problem. 
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Chapter 6 
Low Reynolds Number F lu id Flow Past an 
Asymmetr ic Cylinder 

In this chapter, we apply the hybrid method to a non-linear problem on an unbounded domain. 
We consider two-dimensional, steady, incompressible, viscous fluid flow at low Reynolds number 
about an arbitrarily shaped cylindrical body with a uniform free-stream velocity of magnitude 
f/co in the positive x\-direction. Low Reynolds number fluid flow can model the locomotion 
of micro-organisms (see Light hill [34]) with a Reynolds number in the range of 10~ 3 to 1. In 
measuring the force that the fluid exerts on the body, the dimensionless lift and drag coefficients 
are of particular interest. 

The equations for the velocity u = (ui, u2) and pressure p of the fluid flow are the Navier-Stokes 
equations, which are 

( u - V ) u = - - V p + i/Au, (6.1a) 

V - u = 0. (6.1b) 

Here, u and p are functions of the spatial variable, x = (xi,X2). Also, p is the density, and v is 
the kinematic viscosity of the fluid. A l l of the quantities above are dimensional. The boundary 
conditions of the problem are 

u = 0, x<E<9D; u - ^ ( C / o o , 0 ) , |x | -* oo. (6.2) 

Here, dD is the boundary of the body. Typically, we express the problem in terms of dimen
sionless variables using a characteristic length scale L of the body and the magnitude of the 
uniform free-stream velocity, Ucx>- With this form of non-dimensionalization, we are able to 
identify the dimensionless quantity known as the Reynolds number, Re = XJ^L/u. 

The problem of slow, steady uniform flow past a stationary body is rich in history. In the mid 
nineteenth century, Stokes considered an approximation of the Navier-Stokes equations in which 
he neglected the effects of inertial forces. The "Stokes paradox" refers to his inability to find 
a solution to the resulting Stokes equations in two dimensions. About sixty years later, Oseen 
determined that the Stokes equations were not valid at infinity and constructed a linear, first 
approximation to the Navier-Stokes equations which he could solve in a region where the flow is 
nearly uniform. We can see that this low Reynolds number problem is a singular perturbation 
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problem, in which the Stokes approximation is valid in a local (inner) region, close to the body, 
and the Oseen approximation is valid in a global (outer) region, far from the body. 

In 1957, Kaplun [24] and Proudman & Pearson [44] used the method of matched asymptotic 
expansions to resolve the Stokes paradox in two-dimensional, steady, viscous flow past a circular 
cylinder. Proudman & Pearson formulated the problem in terms of the dimensionless stream 
function, whereas Kaplun used velocity and pressure in his formulation. In their separate 
studies, each were able to determine analytically the hrst two terms in an asymptotic expansion 
for the drag coefficient and, with some difficulty, Kaplun was able to determine the third term. 
Also, Kaplun remarked on how to obtain the form of an expansion for a cylinder of arbitrary 
cross-sectional geometry. In Chapter 2, we discussed the equivalence principle of Kaplun that 
asymptotically links the drag coefficients of cylinders of any cross-sectional shape. 

Twenty-five years later, Shintani, Umemura & Takano [49] applied the method of matched 
asymptotic expansions to determine the lift and drag coefficients of an elliptic cylinder in low 
Reynolds number fluid flow. They were able to obtain terms up to order (log R e ) - 2 in the inner 
expansion for the lift and drag forces acting on the cylinder. However, the truncated series for 
the drag and lift coefficients are only accurate for moderately small Reynolds number. Thus, 
further terms are necessary to provide reasonable accuracy for a wider range of low Reynolds 
numbers. For the special case of an elliptic .cross-section, we will compare the leading-order 
form of our lift coefficient result to theirs. 

Shortly thereafter, in 1986, Lee & Leal [33] numerically implemented the method of matched 
asymptotic expansions using velocity and pressure as variables in their study of low Reynolds 
number flow past cylinders of arbitrary cross-sectional shape. Like Shintani et al, they were 
able to determine expressions for the lift and drag force on the cylinders that were correct up 
to order ( l o g R e ) - 2 . 

We extend the analysis of Kropinski, Ward & Keller [29] who applied the hybrid method in 
calculating the drag coefficient, correct to all logarithmic terms, of a cylindrical body that is 
symmetric about the direction of the free-stream. We will refer to this as the symmetric case. 
In extending the work of Kropinski et ai, we allow the cylinder cross-section to be asymmetric 
with respect to the free-stream and hence, the body could have a non-zero lift force. For one 
cylindrical body, of arbitrary cross-sectional shape Do and asymmetric with respect to the free-
stream, we construct an asymptotic solution for the lift and drag coefficients in the limit of 
Re —r 0. Applying the hybrid method enables us to sum all the logarithmic terms appearing 
in the expansions for the lift and drag forces, resulting in an error that is 0 (Re p ) instead of 
0((log R e ) - 9 ) for some p and q. 
We introduce the stream function ip, in terms of the dimensionless fluid velocity components 
v = (wi,-y2), as 

Hence, the continuity equation (in dimensional form in (6.1b)) is automatically satisfied. As is 

dip 

dy 
v2 = -

dip 

dx' 
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well-known, in terms of polar coordinates centred in the body, the stream function satisfies 

r £ D0, (6.3a) 

r e 8D0, (6.3b) 

r = (x 2 + x 2) 1! 2 -> oo. (6.3c) 

Here, e = Re = U^L/v <C 1 is the Reynolds number based on the length scale L of the cylinder 
cross-section Do, and Jr is the Jacobian, Jr(f,g) = r~ 1(frgg — grfg). 

In Sections 6.1 and 6.2, we outline the standard singular perturbation, analysis of (6.3) in the 
two regions of the solution domain; the "Stokes" (inner) and "Oseen" (outer) regions. Using 
the asymptotic structure that unfolds in the standard analysis, we apply the hybrid method to 
(6.3) in Section 6.3 and formulate a related problem for the stream function that we will solve 
numerically by extending the finite-difference code of Kropinski et al. [29]. The solution of the 
related problem contains the entire infinite logarithmic expansion of the flow field and the force 
coefficients. In Section 6.4, we describe certain details of numerically solving the hybrid related 
problem, including the necessary modifications to the symmetric case finite-difference code. 
We derive an asymptotic expression for the lift coefficient, CL, in Section 6.5, that is correct 
to all logarithmic terms. For the special case of an inclined elliptic cylinder, in Section 6.6, we 
determine an analytic expression for a body shape-dependent matrix M that is analogous to 
the parameter d of the symmetric case. In Section 6.7, we provide details of certain analytical 
formulae that we require in the numerical solution of the hybrid related problem. Finally, in 
Section 6.8, we illustrate the hybrid method results in terms of the lift coefficient, CL. 

A 2ip + eJr(ip,Aip) = 0, 

on 
ip ~ r sin 0, 

6.1 The Stokes Region 

In the Stokes (inner) region where r — 0(1), the stream function satisfies (6.3a) with e = 0 and 
(6.3b). We declare r and ip to be the Stokes variables and expand the stream function in the 
form 

CO 

iP(r,0;e) = Y,^(z)^(r,0) + ... , (6.4) 

where v(e) = - 1 / l o g e . Substituting (6.4) into (6.3a)-(6.3b), we find that ipj for j — 1,2,.. . 
satisfies 

A 2i>3 = 0, r$ D0, (6.5a) 

^ = <tk = 0, re 8D0. (6.5b) 
on 

The asymptotic form of ipj as r —> oo involves linear combinations of { r 3 , r log r, r, r - 1 } cos# 
and {r 3, rlogr, r, r - 1 } sin 0. To match with the Oseen expansion, the r 3 terms must vanish. 
Thus, we can write the far-field form of ipj as 

ipj ~ a.j • \{r log r cos 0, r log r sin 9) + M ( r cos 0, r sin #)] + • • - , (6-6) 
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as r —r oo. We were inspired in our expression for the far-field form of the stream function ipj 
by the section on viscous flow problems of Hsiao & MacCamy [19]. In (6.6), &j = (acj,asj), 
for j > 1, are constant vectors that are independent of the Reynolds number, e. Also, M is a 
2x2 matrix that depends on the cross-sectional shape of the body and on its orientation with 
respect to the free-stream. The matrix M is analogous to the body shape-dependent parameter 
d of the symmetric case. 

Thus, the Stokes expansion has the far-field behaviour 
CO 

tp ~ f'(e) SLJ • [(?- log ?' cos 9, r log ?' sin 8) 4- M ( r cos 8, r sin 9)], (6-7) 

as r —r oo. We can also write the far-field behaviour of the Stokes expansion as 
CO 

^ ~ E ^ ( £ ) a r [ y l o g | y | + My], (6.8) 
as 7- = |y] —> oo. Here, y = (r cos 0, r sin 9). We compare this to the symmetric case that 
Kropinski et al. [29] studied in which, due to the symmetry of the flow field, it was only 
necessary to include sin 9 terms in the stream function expansion. 

6.2 The Oseen Region 

In the Oseen (outer) region of the solution domain, where r = 0 ( £ _ 1 ) , we introduce new 
variables p = er, x = £y = (p cos9, p sin 9) and $ (p ,# ;£ ) = etp^pe - 1, 9; s), and expand $ as 

CO 

Again, v = — l / l o g £ . 

Substituting (6.9) into (6.3a) and (6.3c) and matching $ as p —> 0 to the far-field form of the 
Stokes expansion in (6.7), we find that a x = (0,1) so that $ i satisfies 

(sin0 d d \ 

- C O S 0 — J A $ ! = 0, p>0, (6.10a) 
*x -> 0, p ^ o o , (6.10b) 

$ i ~ (logp + 7n 2 2 + a ^ p s i n f l + ( m 2 i + ac2)p cos8, p -> 0. (6.10c) 
We will elaborate later on the significance of the form of the first constant vector, a i . In (6.10a), 
Los is the linearized Oseen operator and $ i is the linearized Oseen solution. In (6.10c), m,-j is 
the entry in row i and column j of the matrix M . For j — 2, 3 , . . . , the functions $ j satisfy 

i - i 
Loa^j = -J2jp[^k,^3-k], P > 0 , (6.11a) 

fc=i 
* j -»• 0, p->oo, (6.11b) 

tfj ~ aj • [xlog|x | + M x ] + a j + 1 • x, p = |x | 0. (6.11c) 
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Again, the constant vectors a3 for j = 2 , 3 , . . . are independent of the Reynolds number, £. The 
solution to (6.11) recursively determines these constant vectors. 

For the symmetric body case, all the acj components of a.j vanish. As well for this case, we will 
see in Section 6.6 that the off-diagonal entries of the matrix M are zero. 

For £ —*• 0, the drag CD and lift coefficient CL for a cylinder of arbitrary cross-section are of 
the form [see Section 6.5] 

We begin the infinite sum in the lift coefficient expression at j = 2 since a c l = 0 (recall that 
a-i = (0,1)). At this stage, we see that with u = —1/loge, where £ is the Reynolds number, 
the coefficient of drag is 0 ( (£ log £ ) - 1 ) and the coefficient of lift is O ( £ _ 1 ( l o g £ ) - 2 ) . 

Kropinski et al. [29] noted that Kaplun's three-term expression for the drag coefficient provides 
a poor approximation of the experimental values unless £ is very small (see Van Dyke [56]). It 
is possible to compute numerically further coefficients in the series from the infinite sequence 
of partial differential equations. However, one would still have to truncate the series at some 
finite j. In Chapter 1, we demonstrated the poor accuracy of a five-term reciprocal logarithmic 
expansion at moderate values of the perturbation parameter. Instead of truncating the series 
for the lift and drag coefficients, we show that the hybrid asymptotic-numerical method allows 
us to sum all the terms in the infinite logarithmic series while avoiding the direct and tedious 
calculations of the individual coefficients in the asymptotic expansions. 

6.3 The Hybrid Formulation 

We define the vector function A(e) as asymptotic to the infinite logarithmic series 

CO 

A(£) = ( A c ( £ ) , A s ( £ ) ) ~ ^ a ^ ' 7 " 1 ( £ ) ' £ ^ 0 - ^ 6 - 1 3 ) 

As in the previous section, the &j = (acj,asj) for j > 1 are constant vectors, and v = —1/loge 
where e is the Reynolds number. To obtain these constant vectors, it would be necessary to 
solve a recursive set of linearized, forced Oseen problems. In the symmetric case, Kaplun [24] 
was able to determine asj for j — 1,2,3. However, it is analytically intractable to calculate any 
more of the asj. For this reason, we will apply the hybrid method in order to find A(e) directly. 
We define the vector function ipc(p, 6) to be the canonical inner solution satisfying 

r i D0, (6.14a) 

r e 8D0, (6.14b) 

r = |y | oo. (6.14c) 

Again, M is a 2x2 matrix that depends on the shape of the body and is analogous to the shape-
dependent parameter d in the symmetric case. The solution of the canonical inner problem 

- c - 0, 
dn 

ipc ~ y l o g | y | + M y 
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for a specific cylinder cross-section provides the matrix M for that shape. For certain cross-
sectional shapes, such as an ellipse, it is possible to determine M analytically. In Section 6.6, 
we show how to determine M for an ellipse inclined at an angle a to the free-stream. The 
canonical problem in (6.14) is a vector analogue in terms of polar coordinates of the canonical 
local problem in (2.10). 

Using (6.13) and (6.14) together with (6.6), the Stokes expansion (6.4) is asymptotic to 

1>(r, 8;e) = v(e)A(e) • ^ c ( r , $) + • • • . (6.15) 

Substituting (6.14c) into (6.15) and writing the result in terms of the Oseen variable x = ey, 
we get the far-field form 

ip ~ e _ 1 A ( e ) • [x + i / (£)xlog|x | + ; / (£)Mx] , |y | -» oo. (6.16) 

We now formulate the related problem for the stream function. The related problem for A(e) 
and the auxiliary stream function $ H = H(p,9; s) is 

A 2 $ f f + J P ( $ H , A $ H ) = 0, />= |x |>0 , (6.17a) 

# H ~psin6>, p —• oo, (6.17b) 

$ H ~ A(£) • [x + iv(e)xlog|x| + i / (e)Mx], p 0. (6.17c) 

The solution to the related problem will allow us to compute A(e). 

The related problem is a hybrid asymptotic-numerical formulation of the original problem (6.3) 
but in terms of the Oseen (outer) variables. In the related problem, we have replaced the 
boundary conditions on the cylindrical body in (6.3b) by the singularity structure (6.17c). We 
derived the form of the singularity through the far-field behaviour of the logarithmic expansion 
in the Stokes region. Applying the hybrid method reduces the problem to computing the 
solution to the parameter-dependent problem (6.17) instead of computing the solutions to the 
infinite sequence of outer problems in (6.11). In terms of A , the asymptotic formula for the lift 
and drag coefficients, valid to within all logarithmic terms, is 

(CL,-CD) = -^[v(e)A{e) + •• • ] , !/(£) = - 1 / l o g e . (6.18) 

We found that a i = (0,1), which we substitute into (6.13) to see that A c = 0(v) and that 
A s = 0(1). Thus, we see that the lift coefficient is smaller than the drag coefficient by a factor 
O f O ( ( l o g £ ) - 1 ) . 

6.4 Numerical Solution of the Hybrid Related Problem in the 
Oseen Region 

In numerically solving the parameter-dependent hybrid related problem in (6.17), we first de
compose the solution as 

0;e) = psm.e + v{e)A{e) • ( * o c , * o s ) + **(/»,0)- (6-19) 
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Using this expression, we will construct a problem to solve for that is regular as p —>• 0. In 
(6.19), $ o c and $ o s correspond to the cos n9 and sin?i# parts of the linearized Oseen solution 
respectively. From the form of (6.10), we have that $ o c and $ o s satisfy 

X o s ( * o c , $ o s ) = 0, p > 0 , 
(*oc,* O S)^0, p-±oo, 

$ o c ~./>log/9cos0, \P 0 S ~ plogpsinfl p -s- 0. 

Here, Los is the linearized Oseen operator as defined in (6.10a). 

The solution for tyos, from Proudman & Pearson [44], is 

(6.20a) 

(6.20b) 

(6.20c) 

71 = 1 

sin n9. (6.21) 

In this expression, Kn(z) and In(z) are modified Bessel functions of order n of the first and 
second kind. In a similar manner (see Section 6.7 for details), we determine $o c(/>, 0) to be 

Voc(p, 0) = -4j2 Ko($) U^) cos n9 (6.22) 
n=l 

For small z = p/2, the asymptotic behaviours as z —> 0 of the modified Bessel functions are 

Ii'o(z) ~ - log 7 + Jti(z) ~ - + 

I0(z) -! + •••, h(z) ~ - + 

(6.23a) 

(6.23b) 

In (6.23a), 7 = 0.5772 . . . is Euler's constant. Using (6.23) in (6.21) and (6.22), we obtain that 
the behaviours of \P 0 C and $ o s , as p —*• 0, are 

$oc ~ p log /O cos 6 + (7 — log 4)/9 cos 

$os ~ plogp sin0 + (7 — log 4 — l)/9 sin #, 
(6.24a) 

(6.24b) 

Substituting (6.19) into (6.17), and using (6.24), we have that is regular as p 
satisfies 

Los%* = -Jp[vA • (^oc^os) + uA • ( A * o c , A * o s ) + A $ * ] , 

$* 0, p 0 0 , 

$* - [A c + j / ( m n A c + m i 2 A s - A c ( 7 - log4))]p cosf? + 

[A s + u(m2\ Ac + m22As - A 5 (7 - log 4 - 1)) - l]p sin 0 + • • 

P>0, 

0. 

*• 0 and 

(6.25a) 

(6.25b) 

(6.25c) 

Again, A = ( A c , A s ) and rn-ij is the i j th entry of the matrix M . In Section 6.7, we derive 
the linearized Oseen solution, $ o c , and determine analytical formulae for its various derivatives 
that we require to evaluate numerically the Jacobian Jp in (6.25a). The corresponding formulae 
for $ o s are in the paper of Kropinski et al. [29] for the symmetric case. 
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We can also write (6.25c) in the form 

$* = #( c)(p)cos0-r $ ( s )(p)sin6> + ••• , p ->• 0. (6.26) 

In (6.26), \p(c) and $( s) are the Fourier cosine and sine coefficients respectively, given by 

i r2-w 
$(<=) = _/ y*(p,0) cos 0d8, (6.27a) 

1" Jo 

$(*) = ! / $*(p,fl)sin#d0. (6.27b) 
I" Jo 

Here, \1>'C' and depend on p <C 1 and on the vector parameter K = ( K C , K s ) = v A . We now 
outline how to determine the vector A(e), where £ is the Reynolds number. Comparison of the 
two expressions for as p —*• 0 in (6.25c) and (6.26) results in a 2 X 2 non-linear system for K 
of the form 

m 2 i v~ x + m 2 2 - (7 - l°g 4 - 1) 
y-1 + ?Tlii - (7 - log 4) 77112 

(6.28) 

For various K, we compute the solution from the parameter-dependent problem (6.25a) 
and (6.25b), noting that Ac — V~XKC and As = Z / - 1 K s . We fix p = S <C 1 and using (6.27), 
we compute a "table of values" for the right-hand side of the non-linear system involving the 
Fourier sine and cosine coefficients. In the specific case of low Reynolds number fluid flow past 
an elliptic cylinder, we can find the 7?7;J entries of the matrix M analytically. For a general 
cross-sectional shape, we can employ an integral equation method for biharmonic boundary 
value problems such as the one of Greengard et al. [15] to determine numerically the mt-7-. For 
a given Reynolds number, e, we have the value of v = — l / l o g £ . We can then solve the 2 x 2 
non-linear system in (6.28) for n(e). We use a bi-cubic spline to interpolate values of the right-
hand side of (6.28) at arbitrary n from our "table of values" of the Fourier sine and cosine 
coefficients. To solve (6.28), we employ Newton's method in which we compute the Jacobian 
with centred finite differences. Finally, A(e) = v~1n(e). With A(e) in hand, we calculate the 
coefficients of lift and drag from the asymptotic expression in (6.18). 

To compute the solution $* from (6.25), we extend the finite difference code of Kropinski et 
al. [29]. They based their code for the symmetric case on a stream function/vorticity formula
tion of the problem and solved the resulting non-linear system of equations for the unknowns 
$*(/?, 6) and w*(p, 0) = Aty*(p, 0) using Newton's iterations. They stretched the radial variable 
according to r = log(l-)-p) and applied a second-order centred discretization on a uniform polar 
grid to the equations in terms of the variables (r, 9). Exploiting the symmetry of the flow field, 
they solved for the unknowns $* and w* on the domain 0 < r < r c o , 0 < # < 7 r , where is an 
artificial far-field boundary. 

The main modifications to the symmetric version of the code were: to expand the solution 
domain to 0 < r < r ^ O < 0 < 2vr since the flow field is no longer symmetric in general; to 
determine the solution for various input vector parameters K = (KC,KS) instead of the scalar 

KC 

1 + l i m ^ o 

lim p-»0 
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parameter « in the symmetric case; and using a Fourier cosine and sine expansion to produce 
a 2 x 2 non-linear system to solve for the vector A(s). 

In the symmetric case, Kropinski et al. [29] could exploit the symmetry of the flow field to restrict 
the solution domain to the upper half plane. The corresponding computational domain was then 
0 < T < r o o , 0 < # < 7 r . For flow past an arbitrarily shaped cylinder, the flow field is, in general, 
asymmetric. Thus, we extend the code to solve for $* and w* on 0 < r < TCO?0 < 9 < 2ir and 
impose the periodicity conditions, $*(r, 0) = $*(r, 27r) and w*(r, 0) = OJ*(T, 2TT). We enforce 
periodicity in the computations through the addition of an artificial grid line in the direction. 

We add cos 9 terms to the linearized Oseen solution in the Jacobian term in (6.25a), which were 
not present in the symmetric case version of that equation, and compute the solution for various 
input vector parameters K — (KC, KS) using n values of KC and m values of KS. This is in contrast 
to the symmetric case where the parameter dependence was on a scalar K, corresponding to our 
KS. For a given KC<{, for i = 1,... , n, we compute $* for a range of KSJ, for j = 1,. . . , m, and 
at each stage, use the solution of the previous stage where K = ( K C ) ; , K S J _ I ) as the initial guess. 
When we step to the next value of KC, we use the solution from the stage where K = (KCJ, K S , I ) 
as the initial guess for the stage where K = ( K C I ; + I , K S J I ) . 

Kropinski et al. [29] matched the computed solution to its asymptotic behaviour near the origin 
in terms of its derivative, d^*/dr, which gave them a narrow range for the constants /1(e). In 
contrast, we follow the technique in Keller & Ward [25] of comparing the behaviour of the 
solution at the origin to an expansion in terms of its Fourier cosine and sine coefficients. This 
technique provides us with a 2 x 2 non-linear system to solve for K — vA, and in turn, to find 
A . 

In the next three sections, we present the details of determining the asymptotic expression for 
the lift and drag coefficients in terms of the vector A(e), the matrix M for an inclined ellipse, 
and analytic formulae for various derivatives of the linearized Oseen solution for use in our 
computations. In the last section of this chapter, we present graphical results of our study. 

6.5 Calculating the Lift Coefficient CL 

In this section, we derive an asymptotic expression for the lift coefficient CL in terms of the 
vector A . At the same time, we link this expression to that of the drag coefficient from Kropinski 
et al. [29]. Following Imai [22], we have an expression for the drag force X and lift force Y, 
which is 

Here, p is the density of the surrounding fluid, is the magnitude of the uniform free-stream 
velocity, L is a characteristic length scale of the cylinder cross-section, p is the dynamic viscosity, 
C is a closed contour surrounding the cylinder, ip is the non-dimensional stream function, u 
is the dimensionless vorticity and z = x + iy, where (x,y) are the non-dimensional spatial 
coordinates. 

X-iY = - dz - ipU^L j (6.29) 
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To obtain the drag coefficient CD and the lift coefficient CL, we divide (6.29) by p U ^ L . Then, 
defining the Reynolds number to be 

£ = Re (6.30) 

we get that 

CD — iC'L = —2i / (-7r-\ dz - i i> LOZdtp — - <Jb ^zdz. 
Jc\dzJ Jc £ Jc dz 

(6.31) 

We convert this expression to polar coordinates using z = re and obtain, after a bit of algebra, 
that 

C, 
2TT 

sin 9 

and 

CL 

2TT 

cos 9 

The vorticity u is 

8ip\2 sin9 (djj\2

 + 2cos9dipdi} 
d ?- d9 r dr d9 

2 r2ir 

d9 
2TT f2v dtb rl f'iv dio r + r LO cos 0 - £ d0 / cos9—d9+-l u> cos 9 d8. (6.32) Jo 99 £ J0 dr £ J 0 

(hp 
Ik 

cos9_fdipY 2sm9dipdip 
~r^~ \~d9~ 

r2* _ r 

r I UJ sin 9-— d9 -\ 
/o 99 £ J o 

r dr d9 
,2 /•2TT 

d9 

du> 2TT 

smv—d0 / ush\9d9. (6.33) 
dr e 1 

to = -Aip. (6.34) 

Substituting the asymptotic behaviour of the Stokes (inner) expansion from (6.15) into (6.34), 
we see that the vorticity in the inner region is of the form 

u ~ -v(e)A(e) • Aipc(r, 9) + • (6.35) 

Here, tpc is the vector canonical inner solution satisfying (6.14). Using (6.14c) in (6.35), we get 
the far-field behaviour of the vorticity, which is 

1 
u ~ -2v(e)—(A(e) -y ) , as | y | o o . (6.36) 

Substituting (6.14a) and (6.15) into (6.32) and (6.33), we find that there are no contributions 
from the terms involving derivatives of the stream function tp. Considering only the expression 
for the lift coefficient, we can show that it reduces to 

2 r2ir du r [2* cos9—-d9 + - / ucos9d9. 9r £ Jo (6.37) 
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Substitution of (6.36) into (6.37), gives us that the lift coefficient is 

CL = -^-v(e)Ac(e), (6.38) 

where Ac is the first component of the vector A(e) = (Ac(e), As(e)). Similarly, we obtain that 
the expression for the drag coefficient is 

47T 
CD = —v(e)As(e). (6.39) 

Finally, we can write 

(CL,-CD) = -^-v(e)A(e). (6.40) 

Thus, we have linked the drag and lift coefficient in this asymptotic expression involving the 
vector A . In the next section, we show how to determine analytically the body shape-dependent 
matrix M for a cylinder with an elliptic cross-section, which is analogous to the parameter d of 
the symmetric case. 

6.6 Determining M for an Ellipse 

For certain cross-sectional shapes, such as an ellipse, we can determine analytically the matrix 
M that we first introduced in (6.6). For non-elliptic shapes, we could employ an integral method 
technique such as the one of Greengard et al. [15] to determine numerically M from (6.14). 

We consider a uniform free-stream in the positive x-direction about a cylinder with an elliptic 
cross-section, such that the major axis makes an angle a with the free-stream (see Figure 6.1(a)). 
The ellipse has major semi-axis a and minor semi-axis b, where a > b. We rotate the ellipse in 

u 

(a) (b) 

Figure 6.1: (a) Inclined ellipse in the (x,y) reference frame, with polar coordinates x = rcosO, 
y = r sin 9. (b) Ellipse in the (w, v) reference frame, with polar coordinates u = r cos <fi, 
v = r sin 6. 

the (a;, y) reference frame by a positive angle a, using 

u\ = / cosa - s m a \ x\ 
vj ys ina cos a J \y 1 
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In the new (u, v) reference frame, which we show in Figure 6.1(b), the equation of the ellipse is 
(u/a) 2+ (v/b) 2 = 1. 

We will solve (6.5) for the special case where Do is an ellipse. Then, we will compare the 
far-field behaviour of the solution as r —s- oo with (6.6) to determine the matrix M . To solve 
(6.5) about an ellipse, it is convenient to convert (u, v) to the elliptic coordinates (£, ?/) using 
the definitions 

u = c cosh £ cos ?7, v = c sinh £ sin n, 

where c = (a2 — ft2)1/2. The boundary of the ellipse is the level line £ = £ 0 , where 

The solution ipj to (6.5a) in terms of elliptic coordinates is 

where 

f(0 = (f ~ fo) c o s h £ + sinh £o cosh £o cosh £ - cosh2 £o sinh £, 
= (£ ~~- £o) s m n £ - sinh £o cosh £o sinh £ + sinh 2 £ 0 cosh £. 

(6.42) 

(6.43) 

(6.44) 

(6.45a) 

(6.45b) 

To determine the behaviour of ipj as r —> oo, we first convert ( £ , 7 / ) to the polar coordinates 
(r, (p) in the far field. We note that u — r cos <p and v = r sin As £ —> oo (and hence, as 
?' —* oo), we have that 

cosh£ ~ e^/2, s i n h £ ~ e ^ / 2 , £ ~ log(2p/c), 77 ~ (p. (6.46) 

Using (6.46) and (6.45) in (6.44), we obtain an expression for the far-field form of ipj, as r —> 0 0 , 
which is 

^ ~ c { A j (log r ~ l o g ( ^ T ^ a + b r cos < 

— Bj I log 7' — log 
a + 6 

Now, we revert to the polar coordinates (r, 0) of the original reference frame, where x = r cos 6 
and y = rs in0 , using (6.41). As well, we define 

-(Aj cos a — B3 sin a), 

After a bit of algebra, we obtain that, as r —> 0 0 

V'j ~ a c j r log r cos 0 + asj r log r sin 6 

+ \acj 

isj — —(Aj sin a + B3 cos a) (6.48) 

(b - a) cos2 a — b , fa + b 
log 

+ < a, 

a + b 
(a — b) sin a cos a 

a -f b 

+ asj 

(a - b) sin a cos a 
a + b 

(a — b) cos2 a — a , fa + b 
" T T T l o § 

r cos 0 

rsinfl . (6.49) 

92 



Chapter 6. Low Reynolds Number Fluid Flow Past an Asymmetric Cylinder 

Comparing (6.49) with (6.6), where a.j = (acj,asj) and is the i j th entry of the matrix M , 
we determine, for an ellipse with major semi-axis a and minor semi-axis b at an angle of attack 
a, that 

(b - a) cos2 a - b , fa + b\ 
m^ = -—a-Tb l o gbrJ' (6-50a) 

(a — b) sin a cos a 
m12 = TO2i = '—— , (6.50b) 

a 4 - b 
(a — b) cos2 a- a (a + b\ , m22=^ >— l o g ^ _ J . (6.50c) 

From (6.50), we see that for any angle of incline a, the matrix M for an ellipse is symmetric. 
For a = 0 (no angle of incline), M is diagonal and the 77122 entry must be equal to — log(de 1 / / 2), 
where d is the shape-dependent parameter of the symmetric case, given by 

a + b f b — a \ 
f/ = ^ e x p ( ^ T i o J - (6-5l) 

For no angle of incline (a = 0), 

1 fa + b\ b 
m M = - l o g ( ^ _ J - — . (6.52) 

Indeed, this expression corresponds to — log(de 1 / ' 2) from the symmetric case. 

Thus, we have an analytical expression for the entries of the matrix M for an inclined ellipse. 
In the next section, we derive the linearized Oseen solution $ o c and certain analytical formulae 
of its derivatives that we require for solving the hybrid related problem numerically for the 
stream function. 

6.7 The Linearized Oseen Solution, \& o c , and its Derivatives 

In order to evaluate numerically the Jacobian, Jp, in the hybrid formulation in (6.25a), we 
require analytical formulae for various derivatives of *&oc(p,0), which satisfies (6.20). In partic
ular, we require (i) dp^oc, (ii) <9#$0c, (iii) <9pA\P0C and (iv) deA^oc. At the end of this section, 
we will reproduce the formulae for the corresponding derivatives of $ o s ( / 3 , (?) that appear in the 
paper by Kropinski et al. [29]. 

First, we will outline the derivation of the solution $ o c and then use this solution to find 
the necessary analytical formulae of certain of its derivatives. To obtain the solution $ o c , we 
first define the negative vorticity u>oc — A $ o c , and let cooc be of the form uooc = e^ p c o s eCJOC. 

Thus, (2>oc satisfies AOJOC — \ U J O C = 0. Using the technique of separation of variables, we let 
cooc — AnRc(p) cos nd. Substituting this form into the equation for u>oc gives that Rc(p) satisfies 

dz 1 dz 

where z = p/2. This is the modified Bessel equation of order rt, which has solutions 
Rc(z) = I±n(z),Kn(z). (6.54) 
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To allow us the proper behaviour in the far-field, we choose Kn(z) since Kn{z) —• 0 as z —> oo, 
whereas In(z) —> oo as z —• oo. Therefore, in general, 

LOoc = 53 BnKn C O S (6.55) 
n=0 

Using (6.20c) in the definition tooc = A $ o c , we get that w o c ~ (2/p) cos# as p —>• 0, and so 

p -+0 . (6.56) -cos fle-*'008' 
2 / 1 
- cos 9 1 p cos ( 

We look at the asymptotic behaviour for Kn(z) for small z, which is 

T(n) (z\~n  

Kn{z) n > 0, (6.57) 

as z —• 0. The behaviour for iifo(-z) for small 2 is in (6.23a). Using this behaviour and the fact 
that we will need to integrate u>oc twice in obtaining $ o c , we set B N — 0 for n > 1 in (6.55). 
Wi th this, we have that uoc — BQKQ(P/2) + B\K\(p/2) cos0, and so 

B 0 K 0 ( £ ) cos i (6.58) 

To find $ o c , we need to integrate the previous expression. But first, we will rewrite the expres
sion a bit. Using a Fourier cosine series, we write 

e 2 ' BoKo(^) +B1K1( P-) cos9\ = J2K(p)cosn9, 

where bn(p) is 

bn(p)= - [\kp™t 
Jo 

i = 0 

B 0 K 0 ( £ ) + 5 1iif 1(Q cos( cos n9 d,9. 

Using the identities [1], 

and 

we can write bn(p) as 

2coszi cos22 = cos(zi — z 2 ) + cos(zi + £2), 

/„(*) = I y e z c o s 6 cos n9d9, 

bn(p) = 2B0K0 (0 4 (0 + 5 i K i /n - l ( | )+ /n+ l (^ 

(6.59) 

(6.60) 

(6.61) 

(6.62) 

(6.63) 

Next, we write $ o c(p,#) in the form 

CO 

(6.64) 

n=l 
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Here, we have started the summation at n = 1 since a term that is 0-independent cannot satisfy 
Los^oc — 0. 

From this form, we have that 

n=l 

1 n 2  

y'n(p) + -y'n(p) ~ ~^Vn{p) C O S 710. (6.65) 

Thus, using (6.63), yn(p) satisfies 

1 n 2  

Vn(p) + -V'n(p) ~ -jpVn = 

/„_i(|) + / „ + i ( | n > 0. (6.66) 

We let yn(p) = (p/n)fn(p/2) and z — p/2, and so fn(z) satisfies 

3 1 — T ? 2 2r? 
/"(*) + -f'n(z) + = —{2?ltfl(*)[/n-l(*) + /n+l(*)] + 2B0K0(z)} 

Z z z 

The solution to (6.67), or equivalently (6.66), determines the solution for $ o c . 

We follow Shintani et al. [49] and try fn(z) of the form 
(3n 

fn(z) = —K0(z)In(z). 

Substituting this form into the left-hand side of (6.67), we obtain 
2-^[K0{z)In{z) - Ki(z)I'n(z)}. 

3.67) 

(6.68) 

(6.69) 

To agree with the right-hand side of (6.67), we require that (3 = 2Bo and (3 = —2B\. We 
accomplish this with B \ = 1, (3 = - 2 and BQ = - 1 . Thus, fn(z) = ( - 2 n / z )Ko ( z ) I n ( z ) and so 

^ ( 2 ) ~n f n(2 

Finally, we obtain that 

CO 

OC(/>, 0) = - 4 K0 (0 /„ (0 cos n0. 

(6.70) 

(6.71) 
n=l 

We need to verify that the solution for $ o c satisfies the far-field condition in (6.20b) and the 
behaviour for small p in (6.20c). For large p, the asymptotic behaviour of Ko(p/2) and In(p/2) 
is 

M , / 2 ) . ^ ( 1 _ _ L + ...} (6.72a) 

(6.72b) 
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as p —oo. Thus, we have that 

1 f .3 
~ - < 1 h 

2) p\ 4p  +  
p oo, (6.73) 

which verifies that the solution satisfies the far-field condition in (6.20b). Using the behaviour of 
the modified Bessel functions for small p, in particular, that Ii'o(p/2) ~ - log p+log 4--y + 0(p 2) 
and Ii(p/2) ~ p/4 + 0(p 3), we verify that the solution satisfies the behaviour in (6.20c). 

Using (6.58) and (6.71), we obtain analytical expressions for certain derivatives of $ o c , which 
are 

d^oc = e x> 2  * i ( % cos 6K + ̂ (|)^(l)-^(f)^(f 
dg-$,-ir. = e x / 2K0(^) psmt 

2dpAVc -2K0 ( 0 cos 0 + Kx ( | ) cos2 6 + Kt (| 2T, (P^ 
- A i - ] cos I 
p V2> 

2 0 « A * O C = - W 2 

sm i -pA'o(0+/>A-1(0 cos6> + 2 A ' 1 ( | 

(6.74a) 

(6.74b) 

(6.74c) 

(6.74d) 

Here, x = pcosO. The corresponding analytical formulae for various derivatives of $os, from 
Kropinski et al. [29], are 

Op * OS 

2dpA9os 

2d0AVos 

-e x/ 2K0{'-)sml 

de^os = -pe x/2 + 2, 

exl2 sin i Kx [ - ) cos i 

e x / 2K\^) [2 cos 0 - / 3 sin 2 9]. 

(6.75a) 

(6.75b) 

(6.75c) 

(6.75d) 

Again, x — pcos9. We require these expressions in numerically evaluating the Jacobian, Jp, in 
(6.25a). In the next section, we present the results of this application of the hybrid method in 
terms of the lift coefficient, CL. 

6.8 Results and Discussion 

We present the results of our study through various examples using the specific cross-sectional 
shape of an inclined ellipse. The shape of the cylinder cross-section enters into the hybrid 
method solution through the matrix M , which we can determine analytically for an ellipse 
from (6.50). We use the numerical procedure of Section 6.4 to solve the hybrid related problem 
in (6.25) for the stream function \P* on a 100 X 100 grid with an artificial boundary condition 
corresponding to a radial variable of value p^ = 60. We use the solution for \P* to compute the 
Fourier sine and cosine coefficients in (6.27), which we require for solving the 2 x 2 non-linear 
system in (6.28) for A(e) = K(s)v~ l(e). We then use A(e) in (6.18) to obtain the coefficients 
of lift and drag, correct to all logarithmic terms. 
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C (hybrid) 
C D (Kaplun)| 
C L (hybrid) 

_J u 
.2 0.4 0.6 0.8 1 1.2 

e (Reynolds number) 
1.4 1.6 

Figure 6.2: Drag coefficient, CD from the hybrid results and from Kaplun's three-term ex
pansion, and the lift coefficient, C'L, from the hybrid results, versus Reynolds number, e, of a 
circular cylinder (an ellipse with equal major and minor semi-axes a — b — 1). 

In examining the leading-order form of the asymptotic expansions for the lift and drag coeffi
cients in (6.12), we find that the drag coefficient is 0(vje) and that the lift is 0(u 2/e), where 
v = — l / l o g £ . For an elliptic cylinder with major semi-axis a and minor semi-axis b inclined at 
an angle a to the free-stream at Reynolds number e, the leading-order form of our expression 
for the lift coefficient, CL, is 

s~ 4TT a — b . 
C i = - 7 -T; r s m a cos a. (6.76) 

e( log£)^a + 6 

To obtain this leading-order form from (6.12), we need the first non-zero ac-component of the 
constant vectors, ELJ. In Section 6,2, we found that the first constant vector is a i = (0,1). We 
continue the matching procedure between the Stokes and Oseen regions to determine that the 
component ac2 of the second constant vector, a 2 , is ac2 = —m2\, where m2i is an entry of the 
body shape-dependent matrix M . Substituting the matrix M for an inclined ellipse in (6.50) 
and the form of ac2 into (6.12), we obtain our leading-order form for the lift coefficient of an 
inclined ellipse. 

We confirm the leading-order form of our result by comparing it with the leading-order expres
sion for the lift coefficient of Shintani et al. [49] in their study of low Reynolds number flow past 
an elliptic cylinder. Their expression for the lift coefficient, correct to 0 ( £ _ 1 ( l o g £ ) ~ 2 ) , can be 
written as 

47T 

R(logR- t+)(logR- t-) 
sin 2a, (6.77) 
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where 

t± = - 7 + 41og(2) - log[l + b/a] ± 
1 a — b 

cos 2a 
a + b 

Here, R = 2e and 7 = 0.5772 . . . is Euler's constant. The leading-order expression of Shintani 
et al. [49] in (6.77) is consistent with our leading-order form in (6.76). In their paper on flow 
past cylinders of arbitrary cross-sectional shape, Lee & Leal [33] numerically calculated the lift 
force, correct to 0 ( ( l o g £ ) - 2 ) , which corresponds to a lift coefficient of 0 ( £ - 1 ( l o g £ ) - 2 ) . They 
showed that their numerically calculated values for the lift agree with the analytical results of 
Shintani et al. [49] for an elliptic cross-section. Chester [4] examined the motion of an inclined 
elliptic cylinder at low Reynolds number and obtained an analytic expression for the lift force, 
correct to 0 ( ( l o g £ ) ~ 2 ) , that (once adjusted for the fluid in motion past a stationary body) is 
also consistent with our leading-order form. These results of previous researchers substantiate 
the form of the first term in our asymptotic expression for the lift coefficient as an infinite 
expansion of reciprocal logarithms. With the numerical solution of the hybrid related problem 
that we show in the next two examples, we obtain the lift coefficient correct to all logarithmic 
terms. 

2 0 

0 10 

C L (hybrid) 
C L (Shintani et al.) 
C L (leading-order) 

0.2 0.3 0.4 0.5 0.6 
e (Reynolds number) 

0.7 0.8 

Figure 6.3: Lift coefficient, CL, versus Reynolds number, e, of an elliptic cylinder with major 
semi-axis a = 1 and minor semi-axis b = 0.5 at an angle of inclination, a — TT /4 , comparing 
the hybrid results with the leading-order form in (6.76) and the results from Shintani et al. in 
(6.77). 

Example: Varying Reynolds Number. First, we use the curve for the coefficient of drag 
as a check of the extended asymmetric code, to ensure that we compute the same solution as 
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the original symmetric code of Kropinski et al. [29]. For a circular cross-section of radius 1 
(an ellipse with equal major and minor semi-axes, a = b — 1), Figure 6.2 displays the force 
coefficients versus the Reynolds number, £, showing a constant zero lift coefficient and the same 
coefficient of drag curve as produced in Kropinski et al. [29]. For the drag coefficient curve in 
Figure 6.2, we compare with the three-term expansion of Kaplun [24], which we can write as 

(CD)K ~ 4VTJ>[1 - 0.8669P2], 
1 

v = log 3.7027- log £ 
(6.78) 

In Figure 6.3, we plot the lift coefficient versus Reynolds number, e, for an elliptic cross-section 
with major semi-axis a = 1 and minor semi-axis b = 0.5 and at an angle of inclination of 
a = 7r /4. The figure contains the CL(e) curves from the hybrid method result correct to all 
logarithmic terms in (6.18), from the leading-order expression in (6.76), and from the result 
of Shintani et al. in (6.77). The plot shows reasonable agreement with the result of Shintani 
et al. [49], which is valid up to 0(v 2/e). Figures 6.2 and 6.3 indicate that the three-term, 
expansion for CD in (6.78) and the leading-order expression for CL in (6.76) are valid only for a 
narrow range of e. This is analogous to the poor accuracy of the five-term reciprocal logarithmic 
expansion at moderate values of £ that we demonstrated in Chapter 1. 

Drag Coefficient 

Figure 6.4: Lift coefficient, CL, and drag coefficient, CD, versus angle of incline, a, of an elliptic 
cylinder with major semi-axis a — 1 and minor semi-axis b = {1.0, 0.5,0.2} at Reynolds number 
£ = 0.1. 

E x a m p l e : V a r y i n g A n g l e o f Incl ine. In Figure 6.4, we fix the Reynolds number, £ = 0.1, 
and vary the angle of incline, a, of the elliptic cylinder with major semi-axis a = 1 and minor 
semi-axis b = 1,0.5,0.2. In all cases, we see that at a = 0 and a = 7r /2 , when the ellipse 
is symmetric to the free-stream, the coefficient of lift is 0. For the case with minor semi-axis 
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6 = 1 , the cross-sectional shape is a circle, and as we expect, we see that the drag coefficient 
is constant and non-zero, and that the lift coefficient is 0. The figure also displays that the 
drag coefficient increases as the angle of incline increases, and decreases as the minor semi-axis 
6 decreases. 

The graphs in Figure 6.4 are qualitatively similar in nature to those of Lee & Leal [33], in which 
they plotted the contributions to the force on an elliptic cylinder at 0((1/loge)2), where e is 
the Reynolds number, as a function of the angle of inclination, a. 

This low Reynolds number fluid flow problem was the second of two applications of the hybrid 
method on problems with unbounded domains. In the next chapter, we discuss some possible 
directions for future applications of the hybrid method. 
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Chapter 7 
Other Applications of the Hybr id Method 

So far, we have shown the details of four major applications of the hybrid method: fully 
developed laminar flow in a straight pipe with a core (Chapter 3), oxygen transport from 
multiple capillaries to skeletal muscle tissue (Chapter 4), convective heat transfer past an array 
of cylindrical bodies (Chapter 5) and low Reynolds number fluid flow past a cylinder asymmetric 
to the free-stream (Chapter 6). A l l of these problems are independent of time, and, with the 
exception of the application in Chapter 6, linear. It is possible to extend the exploration of this 
thesis to a more general framework that would incorporate singular perturbation problems that 
arise in other disciplines, and that include unsteady problems and more general non-linearity. 

In this chapter, we discuss other possible applications of the hybrid method. One is anon-linear 
problem that could be viewed as an extension to the linear convective heat transfer problem 
of Chapter 5 as well as a rudimentary model of the non-linear low Reynolds number fluid flow 
problem of Chapter 6. We also comment upon extending the low Reynolds number application 
to fluid flow past an array of bodies symmetric to the free-stream. Our formulation of the 
application in Chapter 6 involved the biharmonic operator. We elaborate on another problem 
involving this operator, but this time on an eigenvalue problem that models the vibration of 
thin plates with small cutouts or concentrated masses. To end this chapter, we touch upon 
some possible extensions to the general framework of applicable problems that we presented in 
Chapter 2. 

7.1 A Non-linear Model Problem 

To begin our discussion of future directions for the hybrid method, we describe a problem 
that is an extension to the convective heat transfer problem of Chapter 5. A n analogous 
problem, that we studied in Chapter 6, is low Reynolds number fluid flow past cylindrical 
bodies, although in that case, the governing equation is non-linear. Hsiao [20] considered a 
non-linear exterior Dirichlet problem that was a crude model for a class of problems in two 
dimensions, including stationary viscous incompressible flow past a cylinder. He considered 
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problems for u = u(xi,X2',e) of the form 

On 
Au-eu—— = 0, x e f t 2 \ A ) , (7.1a) 

OXi 

u = a, x G dD0, (7.1b) 

u —> -a, |x| -» oo. (7-lc) 

Here, Do is a domain of radius 0(1) that is independent of e, 8DQ is its boundary, and a and a 
are constants. As a first step in constructing an asymptotic solution for the non-linear problem, 
he examined the singular nature of the linear problem 

0, x e n2\D0, 

a, x G 8D0, 

a, |x | —> oo, 

where b is a constant. In essence, Hsiao's linear problem is the same as the convective heat 
transfer problem for one cylinder in a uniform flow. Hsiao used the linear analysis as a guide 
to construct an asymptotic expansion for the exact solution to (7.1), carrying the solution up 
to order ( l ogg ) - 2 . To this order, he rigorously justified the use of the method of matched 
asymptotic expansions on this problem. 

We could also apply the hybrid method to a class of non-linear model problems that includes 
(7.1) as a special case. This would be an intermediate step between the linear convective heat 
transfer problem of Chapter 5 and the non-linear low Reynolds number problem of Chapter 6. 
In contrast to Hsiao, applying the hybrid method to (7.1) would extend the solution further 
than the ( l oge ) - 2 term, since the method avoids the difficulty of having to calculate analytically 
each individual term in the infinite logarithmic expansion. To obtain an asymptotic solution 
to (7.1), we would employ the hybrid method as we outlined in Chapter 2, with the necessary 
modifications for a non-linear problem. 

Another similar problem is of the form 

x e TZ2\D0, (7.2a) 
x e dD0, (7.2b) 
|x| —oo. (7.2c) 

This is an extension of the analysis of heat convection past a small body to treat non-linear 
source terms to solve for the temperature «(x; e). For example, if F(u) = u4 - U^, this problem 
models radiative heating such as that for black-body radiation. 

7.2 Low Reynolds Number Flow Past an Array of Cylindrical 
Bodies 

We could also consider low Reynolds number fluid flow past an array of N cylindrical bodies. 
In this case, we assume that the cross-sectional shapes are arbitrary although symmetric with 

Au — eb du 
dxx 
u 

u —> 

Au - eVv • V« = F(u), 
u = a, 
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respect to the free-stream. We construct asymptotic expressions for the drag coefficient of each 
body. The governing equations are the steady-state Navier-Stokes equations, which, in terms 
of the dimensionless Stokes variables, are 

A v - V p = £(v • V ) v 
V • v = 0 

^  N  

x £ U Di 

with the boundary conditions 

v = 0, x G dDi, 
v —> i, p —¥ 1, |x | —> oo. 

Here, v(x ; e) is the velocity vector, p(x; e) is the pressure, e = Re is the Reynolds number based 
on a characteristic length L of the cross-section, and dDi is the boundary of the cylinder i, for 
i = 1,.. . A . Here, we have non-dimensionalized with respect to the length L, the magnitude 
of the free-stream velocity UQO and the free-stream pressure p^. 

Applying the hybrid method to these problems would enable us to determine asymptotic ex
pressions for the drag coefficient, correct to all logarithmic terms, and to measure the error in 
the approximation. In the method, we formulate a related problem whose solution contains 
the infinite logarithmic expansion. For this case involving multiple bodies, we would be able to 
examine the effect of the interaction between the bodies. 

Two different limits in terms of the Stokes variables that we may consider are: a "lumped-body" 
limit where the bodies of 0(1) radii are separated by 0(1) distances, and an "unlumped-body" 
limit in which the radii of the bodies have magnitude of 0(1) and are separated by distances 
of 0(1/e) where e <C 1 is the Reynolds number. 

In the first limit, we can lump the bodies together via one parameter d for the entire array 
of cylinders and in such a way, reduce the problem to the previous case that Kropinski et 
al. [29] examined for one cylinder. Greengard, Kropinski & Mayo [15] developed a boundary 
integral solver to perform the sophisticated numerical computation to determine this d. The 
lumped-body problem is analogous to the one-body problem in that one can consider the 
Stokes region containing all of the bodies. This was the approach of Lee & Leal [33] who 
used boundary integral methods to solve for low Reynolds number flow past multiple cylinders, 
assuming that they were close enough together so that the Stokes flow region encompassed both 
cylinders. Even though they were considering cylinders of simple cross-sectional shape, they 
only computed their solution to order ( log£)~ 2 . 

In the second limit, we cannot lump the array of cylinders together. This makes the "unlumped-
body" problem analogous to the multi-body convective heat transfer problem of Chapter 5 
in which we considered the long range interaction of the bodies. Each of the N cylinders 
in the array would have its own body-shape dependent parameter di associated with it, for 
i = 1,. . . , A . To treat the multi-body problem, it would be necessary to formulate the related 
problem of the hybrid method in terms of the velocity and pressure, instead of the stream 
function formulation that was possible in the one-cylinder case. 

There are further possible extensions for the low Reynolds number fluid flow application. One 
extension is to compute the higher-order terms, beyond all logarithmic terms, in the asymptotic 
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expansion for a body of arbitrary cross-sectional shape. These terms, which are transcenden-
tally small compared to the logarithmic terms, are necessary to reveal any asymmetry of the 
near-body flow pattern, such as the emergence of standing eddies, due to inertial terms. Skin
ner [50] showed how to determine a few of the transcendentally small terms for the case of 
a circular cylinder. Also, for one circular cylinder, Keller & Ward [25] extended the hybrid 
method to determine the solution beyond logarithmic orders. Another extension is to apply 
the hybrid method to slender-body theory, with possible applications in biofluiddynamics (see 
Lighthill [34]). Batchelor [2] considered slender-body theory for rigid bodies of arbitrary cross-
section in Stokes flow. Khayat & Cox [27] examined the effect of small inertial terms on the 
motion of slender bodies using asymptotic expansions based on the ratio of cross-sectional ra
dius to body length, that they assumed to be small. They obtained up to three terms in the 
logarithmic series of the asymptotic solutions for the drag, lift and torque on the bodies. The 
slender-body problem can also be related to an extension of the capillary oxygen transport 
problem of Chapter 4 in which we would take into account the slow variation in the axial 
direction of the capillary. 

7.3 A Biharmonic Eigenvalue Problem 

Another application of the hybrid method involves strongly localized perturbations of bihar
monic eigenvalue problems in a bounded, two-dimensional domain D. The strongly localized 
perturbations could be of two types: domain perturbations from the removal of N small sub-
domains Df from D and imposing certain boundary conditions on the resulting holes, and 
domain perturbations from concentrations of mass in N small regions Df of the domain. For 
both problems, we are interested in the effects of the perturbations on the eigenvalue A of the 
biharmonic operator. 

The biharmonic eigenvalue problem models the free vibration of a uniform, thin plate where 
the eigenvalue is proportional to the square of the frequency of vibration. The theory of plate 
vibration has applications in structural engineering, such as the design of flat panels in machines 
and buildings. As well, plate vibration can represent certain percussion instruments that are 
essentially flat, metal plates (see Fletcher & Rossing [12]). We can contrast the biharmonic 
eigenvalue problem to the Laplacian eigenvalue problem, which models the vibration of an 
ideal membrane. The basic difference between a membrane and a plate is that the restoring 
force for a membrane is due primarily to the external applied tension, whereas for a plate the 
main restoring force is due to the stiffness of the material. The equation of motion for the small 
displacement U from equilibrium of a thin material with stiffness is of the form 

Utt = aAU - f3A 2U. (7.3) 

Here, a = T/o~ and j3 = h 2E/[12p(l — u 2)] are positive constants depending on the tension T, 
the mass per unit area cr, the thickness h of the material, the Young's modulus E, the density 
p, and the Poisson's ratio v. For a typical thin plate, a is small, so that to a first approximation 
we can neglect the AU term. Similarly for a typical membrane, (3 is small and so we would 
neglect the A 2U term in this case. 

We sketch out the application of the hybrid method on the first of the two biharmonic eigenvalue 
problems that we mentioned: that is, the perturbation of the domain D by removing N small 
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subdomains Df and setting certain boundary conditions on the resulting holes. In (7.3), setting 
a = 0 and assuming harmonic vibrations with frequency ui so that U(x., t) = u{x)elLjt, we obtain 
that the governing equation for the perturbed linear biharmonic eigenvalue problem is 

o TV c 

A u - Au = 0, x G D\ U Df, (7.4) 
i=l 

where A = co 2 j'(3. We impose boundary conditions that represent clamped edges of the plate: 

u = = 0, x e 3D, x G 0£>f, i = 1,... , JV. (7.5) on 

Swanson [51] established the first few terms in asymptotic formulae for the eigenvalues of the 
biharmonic operator in bounded, two-dimensional domains. He showed a key feature in the 
solution to the clamped vibrating plate problem, (7.4) together with (7.5): in the limit of small 
subdomains, the perturbed eigenvalues do not converge in general to the classical eigenvalues 
for the unperturbed domain. Eastep & Hemmig [8] considered the vibration of a thin, uniform 
plate with a cutout whose boundaries deviated slightly from a circular shape. By approximating 
the boundary as a Fourier cosine series, they solved (7.4) with JV = 1 for the displacement u 
as a regular perturbation expansion and constructed an approximation for the fundamental 
frequency of the vibrating plate. 

The analogous membrane problem is one where the displacement u of the membrane satisfies 

Au + Xu = 0. 

This membrane problem (or Laplacian eigenvalue problem), with appropriate boundary condi
tions, has been the subject of much research. Ozawa [37] rigorously derived the leading-order 
behaviour as e —̂  0 of the eigenvalue X(e) for the Laplacian with a small hole of order e re
moved from a bounded, two-dimensional domain. Lange & Weinitschke [30] used the method 
of matched asymptotic expansions to determine a few terms in the logarithmic series of A(e), 
applying their results to the vibration of a rectangular membrane with one or two circular holes. 
Ward, Henshaw & Keller [57] were able to sum the entire logarithmic series of the eigenvalue 
by applying the hybrid method to the Laplacian eigenvalue problem. 

The second type of strongly localized biharmonic eigenvalue problem, which we will not discuss 
in detail here, involves concentrations of mass in JV small regions Df, each centred at of the 
domain. The problem is of the form 

A2u-Xpu = 0, xeD\uDf, (7.6) 

where p = p(x) satisfies 

K x ) = < 
^ y ^ ) xeDf,i=l,...,N, 

1 x £ D\ U Df. 
i=l 

(7.7) 

The solution of the problem would determine A(e) as e 0 for some range of m > 0 and for 
arbitrary pi. 
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Ingber, Pate & Salazar [23] examined both experimentally and numerically the vibration of 
clamped plates with concentrated masses and spring attachments. It is possible to cast their 
formulation, in which they treated the masses and attachments as point sources, into the 
concentrated mass problem in (7.6) and (7.7). Doherty & Dowell [6] took an experimental 
approach to determine the response of a rectangular plate under an applied force, with and 
without point masses, taking into consideration the interaction between the masses. 

There is also an analogous concentrated mass problem for membranes. Leal k, Sanchez-
Hubert [31] used the method of matched asymptotic expansions to examine the effect of a 
concentrated mass on the eigenmodes of a vibrating membrane in the limit as e —> 0, where e 
measured the size of the region of concentration. 

We now return to the first biharmonic eigenvalue problem. We outline the hybrid method 
applied to the biharmonic eigenvalue problem on a bounded, two-dimensional domain D with 
the removal of one small subdomains D£ from D. Our goal is to formulate an asymptotic 
expression for the eigenvalue A(e) for strongly localized perturbations of the bounded domain 
of the biharmonic eigenvalue problem. In some cases, the biharmonic eigenvalue problem is 
similar in nature to the stream function formulation of low Reynolds number fluid flow past 
one cylindrical body of Chapter 6. In these cases, we are able to apply the hybrid method 
since an infinite logarithmic expansion arises in the expansion for the eigenvalue A as it does 
in the expansion for the drag coefficient, and the canonical inner problem for both involve 
the biharmonic operator. In other cases, the asymptotic expansion does not involve reciprocal 
logarithmic terms and hence, we cannot apply the hybrid method and it would be necessary to 
establish a different asymptotic approach. 

The biharmonic eigenvalue problem to solve for the eigenfunction u(x;e) and eigenvalue A(e) 
is 

A 2u-Xu = 0, xe D\D£ CH 2, (7.8a) 

u = — = 0, x e dD, x G dD£, (7.8b) 
On 

J u 2dx = 1. (7.8c) 

D\D£ 

Here, dD and dD£ are the boundaries of D and D£ respectively, and D£ is a small removed 
subdomain located at a point £ in D. The aim of applying the hybrid method to this problem is 
to determine the change in the simple eigenvalue An as a result of the perturbation. We assume 
that the position £ of the small subdomain lies on a nodal line, that is, the unperturbed solution 
UQ vanishes at x = ( . Without the nodal line assumption, the perturbed problem would have 
to have a point constraint at the centre of the removed subdomain. Although we assume that 
fio(C) = 0, we also require that VUQ does not vanish at £. 

As the first step of the hybrid method, we apply the method of matched asymptotic expansions 
to (7.8). We expand the eigenfunction u and eigenvalue A in the global region, where |x — £| = 
0(1), away from the removed subdomain, in the form 

A(e) ~ A 0 + i/(e)Ai + • • • , (7.9a) 

u(x; e) - UQ(X) + v(s)ui(x) -) . (7.9b) 
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Here, v = —1/ log e. 

In the local region, near the removed subdomain, we use the local variables y = e _ 1 (x - Q and 
v(y; e) = e~1u(ey + £; e), and we expand the solution in the local region as 

v(y; e) = K e > i ( y ) + W)fHy) + •••• (7-10) 

The scaling between the local and global variables in this biharmonic problem has the same form 
as the that between the Stokes and Oseen variables in the low Reynolds number application of 
Chapter 6. The local problems for Vj(y) in the biharmonic eigenvalue problem, where j > 1, 
are analogous to those of the Stokes region problems in (6.5)-(6.6) of the low Reynolds number 
flow application. The problems to solve for Vj(y), where j > 1, are 

A2v3 = 0, y £ D 0 , (7.11a) 

VJ = = 0, y e dD0, . (7.11b) 
o n 

VJ ~ a i • [ylog |y | + M y ] , | y | - » °o. (7.11c) 

Here, Do = z~ xDe and M is the 2 x 2 matrix that we introduced in (6.6). We note again that 
M depends on the shape of Do-
Using (7.11c) in (7.10), we find that the local expansion v(y\ s) has the same far-field, behaviour 
as ip in (6.8), as |y | —> oo. 

In the global region, we substitute (7.9) into (7.8), excluding the boundary condition on dD£. 
Thus, the governing equations and boundary conditions for Uj(x) , j > 0, are 

j — i 

A2UJ - X0Uj = (1 - e3o) Y ^j-kUk, x e -D\{C}) (7.12a) 
k=o 

Oil' 
u3 = —± = 0, x e 3D. (7.12b) 

on • ' 
Here, eik is the Kronecker delta function as defined in (4.33). In addition to the governing 
equations and boundary conditions above, the global functions tt j(x) must satisfy appropriate 
matching conditions to the local expansion and the normalization conditions 

/ Y]ukUj-k «x = ej0. (7-13) 
M f O \f0 J 

For the global solution behaviour as x —> we expand the unperturbed solution uo(x) in a 
Taylor series about x = £ to get 

tto(x) = V 7 i 0 ( x ) | x = c • ( x - C) + • • • - (7.14) 

Here, we used our assumption that wo(C) = 0- To match between the global and local regions, 
we use (7.14) in (7.9b) as x —> £, and compare with the local solution in (7.10) as |y | —> oo 
using (7.11c). Noting that v scales like e^u, matching requires that a i = Vwo( x ) | x =c a n c l that 
the behaviour of ttj(x) as x —> for j > 1, is 

UJ ~ a j • [ ( x - C ) l o g | x - C | + M ( x - C ) ] + a J + 1 - ( x - C ) , x - ^ C - (7-15) 
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This behaviour has the same form as (6.11c) in the low Reynolds number flow application that 
also involved the biharmonic operator. 

Considering only the problem for ^ i (x ) , we can write (7.12a) and (7.15) with j = 1 as 

A 2 « i - A 0 «i = AiUrj + 4-Trai • V<S(x - ( ) + • • • , x € D. (7.16) 

Here, V£(x - Q is the gradient of the Dirac delta function. Using (7.12b) and Green's identity, 
we require that 

< Lui, u0 > = < Lu0, ui >, (7-17) 

where L is the operator L = A 2 - A 0 . Since Lu0 = 0, and with Lu\ = XIUQ + 47rai • V<5(x - £) , 
we obtain the solvability condition 

J «o(x) [A x « 0 (x) + 47r a i • V5(x - Q] dx = 0. (7.18) 
D 

We solve this condition for A i , using that a x = Vuo|x=C: to obtain 

Ai = 47r|V7i0|x=c|2- (7.19) 

Hence, we have determined A i , the leading-order correction for the simple eigenvalue in (7.9a). 
To obtain the further corrections, \j for j > 2, the method of matched asymptotic expansions 
would require us solve an infinite set of such solvability conditions. We now present how the 
hybrid method will avoid determining each Aj individually. We introduce A*(e) as a function 
that is asymptotic to the sum 

A*(e) ~ A 0 + Ke)Ai + [^( £)] 2A 2 + • • • , s - 0. (7.20) 

In applying the hybrid method, we formulate a related problem to the original whose solution 
essentially sums the entire logarithmic series for A*. 

Using (7.11c) in (7.10), we can write the far-field behaviour of the local solution for the eigen
function as 

v(y;e) ~ u(e)A(s) • [ylog|y | + M y ] + ••• , | y | o o . (7.21) 

Here, A(e) is a constant vector that is asymptotic to an infinite sum as in (6.13) for the low 
Reynolds number fluid flow application. As well, we can express the local solution for f(y;e) 
in terms of a canonical local vector function as in (6.15). 

We formulate a related problem to the original perturbation problem. We solve for the auxiliary 
function uH(x.;e) which satisfies 

x G D\{Q, (7.22a) 

x e dD, (7.22b) 

(7.22c) 

D 

uH~ A ( £ ) - K e ) ( x - C ) l o g | x - C | + K £ ) M ( x - C ) + ( x - 0 ] , * - C- (7.22d) 

A 2uH A uH 

dn 

(uH) 2dx 

0, 

0, 

1, 
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Here, the boundary conditions at the removed subdomain are replaced, using the far-field form 
of the local solution, by the singularity structure in (7.22d). This singularity structure imposes 
two conditions; one on the cos# part and the other on the sin 6 part of the solution. We 
determine the matrix M by solving the local canonical problem in (6.14). To solve the related 
problem, it is convenient to remove the logarithmic singularity through a change of variables. 
We let 

% ( x ; e) = 4jri/(e)A(e) • V G ( x ; Q + e). (7.23) 

In (7.23), V G ( x ; C) is the gradient of the Green's function that satisfies 

A2G - XG = 0, x € TZ2\{Q, (7.24a) 

G ~ - ^ - | x - C | 2 l o g | x - C | , x ^ C (7.24b) 

The function t/*(x; v) in (7.23) is regular as x —*• C and satisfies 

A V - X*u* = 0, xeD, (7.25a) 
u* = -\-KVK • VG, x e dD, (7.25b) 

Bv* (9 
— = -47TZ/A- — VG, x £ dD, (7.25c) on on 

u* ~ A(e)v(e) • M ( x - C), x -»• C- (7.25d) 

As well as (7.25), w*(x;i/) must satisfy the normalization condition 

J[u*]2dx=l. (7.26) 

The shape-dependent matrix M in (7.25d) is found from the solution to (6.14) for a given shape 
of Do. In Section 6.6, we showed how to determine M analytically when D0 is an ellipse. 

The Green's function G7(x;C) is 

G(x; 0 = -73^175 [ ^ o ( A 1 / 4 | x - C|) + 2 A 0 ( A 1 / 4 | x - fl)] . (7.27) 

Here, Y0(z) is a Bessel function and KQ(Z) is a modified Bessel function, both of order zero. 

We now outline how to determine u*(x;z/) and A* using the hybrid related problem. To solve 
(7.25), we decompose the solution as 

u* = A i u i + A2u2, A = ( A i , A2). (7.28) 

For /c = 1, 2; Ufc is a regular function as x —• C that satisfies 

A 2 u f e - X*uk = 0, x G D , (7.29a) 

«t = - 4 T T I / | ^ - , x € 51?, (7.29b) 
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We solve for uk numerically, for k = 1,2, as a function of A*. In terms of this solution, we 
compute Ck and Sk, for k = 1,2, which are 

Ck = U m — / uk cos Od0, Sk = U r n — / uksmOdd. (7.30) 
irp J0 P-^O irp J0 

Here, p = |x — CI and we note that Ck and for k = 1,2, depend on A*. Then, as x —• £, we 
have 

= A i (C ipcos0 + S1pslne) + A 2 (C 2 /9cos0 + S2p sin 6). (7.31) 

Comparing (7.31) with (7.25d), we have that 

Ai(C\p cos 0 + sin 0) + A2(C2p cos 0 + S2p sin 0) 

~ Aii/(mii />cos0 + ?72i2/0sin0) -f A2v(m2\p cosO + m22psin 0). 

Then, equating the coefficients of cos# and sin (9, we obtain 

C\ — 7/77211 c 2 - 2/7722i "Ai" "0" 
S\ - 7/77212 5*2 - 7/77222 A 2 0 

(7.32) 

(7.33) 

We require that the determinant of the matrix on the left-hand side is equal to 0, which provides 
the equation for A*. Noting again that Ck and Sk, for k = 1,2, depend on A*, the equation is 

( C i - vmu)(S2 - 7/77222) - ( £ 1 - vf}\X2)(C2 - 7/7722i) = 0. (7.34) 

This equation gives A* as a function of v = — l / l o g £ and in terms of the body shape through 
the m,-j coefficients. We calculate the ratio of A i to A 2 from this system. Without loss of 
generality, we set A i = 1, and then, the normalization condition in (7.26) provides the final 
relation between A i and A 2 . 

In the next, and last section, of this chapter, we continue our description of extended applica
tions for the hybrid method. 

7.4 Extensions to the General Framework 

We present briefly some further possible applications of the hybrid method that extend the 
general framework that we discussed in Chapter 2. 

One could apply the hybrid method to study linear diffusion problems with localized non-linear 
reactions. Peirce & Rabitz [38] considered a problem of this type in their study of the effect 
of defect structures on two-dimensional chemically active surfaces. The governing equation for 
the concentration 7t(x, t; e) of a chemical species on a bounded catalytic surface D is of the form 

fill 
— - Au + e' pV{e- 1\x-<:\)F(u) = 0, x e f l . (7.35) 

Here, V is a potential that measures the finite range of the reaction that is located at x = £ 
(ie. V ( | y | ) —> 0 as |y | —> 0 0 ) and p measures the strength of the reaction. We note that if p — 2 
in two-dimensions, then the reaction has the behaviour of a Dirac delta function. 
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Another application of the hybrid method is to examine low frequency scattering of light by 
small cylindrical bodies Df of arbitrary cross-sectional shape. The scattering of a plane wave 
is modelled by the Helmholtz equation 

A $ + A;2$ = 0, x£D\(J?=1Df, (7.36) 

with boundary conditions and far-field condition of the form 

$ = 0, x E dDf ,i = 1,... , A , (7.37a) 

$ ~ e t k o c , |x| oo. (7.37b) 

Here, $(x;e) is the scattering field and k is the wave number. In the low frequency limit, 
ks <C 1 where £ is a measure of the cross-sectional size of the bodies. The form of the governing 
equation conforms to the second-order framework for applicable problems that we described in 
Chapter 2. In a series of articles (one of which is [55]), Twersky studied this problem, which 
is the optical version of the low Peclet number heat transfer application in a uniform flow of 
Chapter 5. Thus, mathematically, the solution involves reciprocal logarithms and so we can 
apply the hybrid method. 

A n unsteady application of the hybrid method is to consider a perturbed-boundary diffusion 
equation such as the diffusion of a chemical species out of a mostly impervious container. The 
problem to solve for the concentration c(x,t;e) of the chemical species would be of the form 

x E D, (7.38a) 

N C 

x E U dDf, (7.38b) 

x E dD\ U dDf, (7.38c) 
j=i 

with an initial concentration c(x, 0;e) = Co(x;e). The boundary dD is mostly insulating, but 
contains many small regions dDf,... ,dD £

N where the material could leak out. The goal of 
applying the hybrid method would be to calculate the amount of material in the container after 
a large amount of time and to determine how long it takes it to leak out completely. This 
problem has applications in the study of controlled-release drug therapy. To solve this strongly 
localized domain perturbation problem, we would consider an eigenvalue expansion for c(x, t; s) 
of the form 

CO 

c(x,t;e) = Yaie~X j t (f )j(^£)- - (7-39) 
i=o 

To obtain asymptotic estimates for large time t, we need to study the eigenvalues Aj. In 
particular, the resulting eigenvalue problem for the first eigenpair (</>o, Ao) is a slight variation 
on the second-order eigenvalue problem in Ward et al [57]. Thus, we can formulate this leaky 
container problem so that we may apply the hybrid method. 

The last application of the hybrid method that we mention here is in the field of electrochem
istry. Lucas et al. [35] studied a reaction-diffusion problem with a periodic array of circular 
microelectrodes on the surface of a fluid. Their interest was in calculating the steady-state 

c = 0, 

dc 
dn 
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current flow due to chemical processes at the electrodes, which is proportional to the con
centration flux of the chemical species. The governing equation for the concentration of the 
chemical species in their model is the modified Helmholtz equation, having the form of (2.1a) 
with c = 1 and JV(x, $ , V $ ) = a 2 $ , for some positive constant a. The boundary conditions 
are of mixed type, which fit into the framework of (2.1b) and (2.1c). Thus, the hybrid method 
could be applied to a variation of this electrochemistry problem that would allow for arbitrary 
shape and location of the many microelectrodes on the fluid surface. 

We have called attention to some possible applications of the hybrid method to mathematical 
models that occur in many different fields. The problems that we mentioned include models 
of fluid flow at low Reynolds number, vibration of thin plates with small holes, small defect 
structures on chemically active surfaces and low frequency scattering of light. 

112 



Chapter 8 
Conclusions 

The goal of this thesis was to demonstrate a hybrid asymptotic-numerical method for treating 
two-dimensional singular perturbation problems whose asymptotic solution involves reciprocal 
logarithms of the small perturbation parameter, e. In Chapter 1, we illustrated the difficulty 
of slow convergence of an infinite expansion S(e) of the form 

The purpose of this hybrid method is to treat the slow convergence problems of asymptotic 
expansions of this form (since, for the problems that we considered in this thesis, we believe 
there is sufficient evidence of convergence of these expansions for small enough e) and to im
prove the accuracy of approximate solutions. The hybrid method uses the method of matched 
asymptotic expansions to exploit the asymptotic structure to reduce the problem to one that 
is asymptotically related but easier to solve than the original. In general, one must solve this 
related problem numerically. 

The hybrid related problem contains the entire infinite logarithmic expansion in its solution, 
which circumvents the task of obtaining each coefficient in successive terms individually, as 
one would have to do using only the method of matched asymptotic expansions. Since the 
hybrid solution essentially sums the infinite expansion of reciprocal logarithms, the error of the 
approximation is smaller than any power of ( — 1/loge). 

A n important feature of the hybrid related problem is that it is non-stiff, which means that it 
does not suffer from the difficulty of applying full numerics to the original problem of resolving 
the rapidly varying scale structure. Another advantage of the hybrid method solution is that 
the parameter dependence of the problem is reduced from that of the original. Using the hybrid 
method solution, one can compute an e-curve of the solution for a given number and location 
of removed subdomains, where £ is a measure of the subdomain cross-sectional size. The shape 
of the subdomain enters into the hybrid method solution through a single parameter d — d(b), 
where b is the coefficient of the Dirichlet component of the subdomain boundary condition. In 
some problems, the parameter dependence is further reduced with e and d occurring only in 
terms of their product, (ed). This exploits Kaplun's equivalence principle, which states that 
there is an asymptotic equivalence between subdomains of different cross-sectional shape, based 
on an effective radius, (ed), of the cross-section. The reduction in parameter dependence means 
that the hybrid method solution is less computationally intensive than a full numerical solution, 

£ 0. (8.1) 
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in which one would have to restructure the solution grid for each change in size or shape of the 
subdomains. 

We have shown that singular perturbation problems containing infinite logarithmic expansions 
arise in a wide variety of contexts. We dedicated four chapters of this thesis to the detailed 
application of the hybrid method to such singular perturbation problems occurring in fluid flow 
in a straight pipe with a core, skeletal tissue oxygenation from capillary systems, heat transfer 
convected from small cylindrical objects, and low Reynolds number fluid flow past a cylinder 
that is asymmetric to the uniform free-stream. 

In the previous chapter, we remarked on possible extensions to the general framework of ap
plicable problems. We briefly discussed applications in black body radiation, multi-body low 
Reynolds number fluid flow, vibration of thin plates with small holes or concentrated masses, 
localized non-linear reactions on catalytic surfaces, low frequency scattering of light, diffusion 
of a chemical species out of an almost impervious container, and steady-state current flow from 
microelectrodes. A l l told, we have drawn attention to hybrid method applications on problems 
that are steady or unsteady, linear or non-linear, second-order or fourth-order, and eigenvalue 
problems. Although we are at the end of this thesis, there are many more applications of the 
hybrid asymptotic-numerical method for future studies. 
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