
Multivariate Analysis and Reverse Engineering of Signal
Transduction Pathways

by

Amy Norris

B.Math., University of Waterloo, 2000

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T OF

T H E R E Q U I R E M E N T S FOR T H E D E G R E E OF

Master of Science

in

T H E F A C U L T Y OF G R A D U A T E STUDIES

(Department of Mathematics, Institute of Applied Mathematics)

We accept this thesis as conforming
to the required standard

The University of British Columbia
April 2002

© Amy Norris, 2002

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of MfldO^WdnCS
The University of British Columbia
Vancouver, Canada

DE-6 (2/88)

Abstract

This thesis presents mathematical and computational approaches to studying signal trans
duction pathways. The biology.of cellular signalling is introduced, highlighting the impor
tance of signalling pathways in regulating the processes of cell division and proliferation. A
brief history of mathematical approaches to such systems is presented. Two multivariate
analysis methods, principal component analysis and clustering, are introduced and applied
to both gene expression and simulated protein concentration data. Several recent reverse
engineering methods that have been used to study genetic networks are introduced. Fi
nally, a reverse engineering method intended to elucidate the structure of genetic networks
is adapted to the study of signal transduction systems.

Contents

A b s t r a c t i i

C o n t e n t s i i i

L i s t o f T a b l e s v i

L i s t o f F i g u r e s v i i i

A c k n o w l e d g e m e n t s x i

D e d i c a t i o n x i i

1 A n i n t r o d u c t i o n t o t h e s t u d y of s i g n a l t r a n s d u c t i o n s y s t e m s 1

1.1 Signal transduction 1

1.2 Epidermal growth factor signaling 7

1.3 Modeling the EGF pathway 9

. 1.4 The mathematical study of signal transduction 11

2 M u l t i v a r i a t e A n a l y s i s 14

2.1 Introduction to multivariate covariance and correlation 14

2.2 Principal Component Analysis 16

2.2.1 Mathematical background for PCA 17

2.2.2 Singular Value Decomposition " 19

2.2.3 Recent applications to studies of gene expression 19

2.3 Clustering 21

2.3.1 Measuring distance or similarity 21

2.3.2 Hierarchical clustering 23

iii

2.3.3 Self-organizing maps (SOMs) 24

2.3.4 Recent applications of clustering to studies of gene expression 28

2.4 Applications of multivariate analysis techniques to published and simulated

data 30

2.4.1 Application of principal component analysis 31

2.4.2 Application of SOMs 41

2.5 Discussion of multivariate analysis results 45

3 R e v e r s e E n g i n e e r i n g o f G e n e t i c N e t w o r k s 48

3.1 Discrete Boolean Networks 49

3.1.1 Shannon Entropy and REVEAL 50

3.1.2 Recognizing dependence between genes 52

3.1.3 The REVEAL method 53

3.1.4 Difficulties with REVEAL Implementation 55

3.2 Continuous expression and regulation 56

3.3 Bayesian networks 59

3.3.1 The structure of Bayesian networks 61

3.3.2 Training Bayesian networks 64

3.3.3 Hartemink case study 66

3.3.4 Annotated edges 67

3.3.5 Dynamic Bayesian networks 69

3.3.6 Comments on the study of gene expression data using Bayesian networks 69

3.4 Discussion 70

4 A R e v e r s e E n g i n e e r i n g A p p l i c a t i o n 72

4.1 A system of inference of large-scale genetic networks 72

4.2 Part One: Static Boolean network 73

4.3 Part Two: Determination of subnetworks 76

4.3.1 S-systems 76

4.3.2 Genetic algorithm optimization 78

4.4 Application of Part One" to the EGF simulation 80

4.5 Genetic algorithm toolbox for MATLAB 85

4.5.1 The evaluation function . . . 85

iv

4.5.2 Selection and reproduction

4.5.3 Termination

87

89

4.6 Modifications to the method 89

4.6.1 Adapting the genetic algorithm toolbox 91

4.6.2 Initiation of the population 94

4.6.3 Mutations 96

4.6.4 Crossovers 97

4.6.5 The Comet-Strike feature 98

4.7 Results of Part Two 99

4.7.1 Crossover tests 99

4.7.2 Application to the test system 100

4.8 Discussion 106

5 C o n c l u d i n g R e m a r k s 110

B i b l i o g r a p h y 112

A p p e n d i x A F i n d i n g t h e m a x i m u m o f a q u a d r a t i c f o r m u n d e r a q u a d r a t i c

c o n s t r a i n t 116

A p p e n d i x B M o d i f i c a t i o n s t o t h e genet ic a l g o r i t h m t o o l b o x 119

v

List of Tables

2.1 Data sets analysed using principal components and self-organizing maps in
Section 2.4 31

2.2 Eigenvalues and the proportion of the variance of the entire data set from
the first five principal components of gene datasetl 32

2.3 From Study 2: Eigenvalues and the proportion of the variance of the entire
data set from the first five out of 676 principal components for gene dataset2 33

2.4 Eigenvalues and percentage of total variance for the first five principal com
ponents from the correlation matrix of EGF dataset3 40

2.5 A numbered list of the proteins and protein complexes involved in the early
events of the EGF signal transduction pathway 41

3.1 Compiled binary data for the three genes at time points t and t + 1 51

4.1 Maximum and minimum relative intensities for each protein in the EGF
simulation 81

4.2 The binary matrix, R, corresponding to a threshold of 5. The rows corre
spond to the proteins that have been deleted to produce the given effect on
the protein in each column. The numbers correspond to the proteins listed
in Table 2.5 82

4.3 Manual grouping of proteins into equivalence sets based on matrix R with 5
threshold 85

4.4 Kinetic constants for the test network, Equation (4.12) 92
4.5 Contents of the termbank for a network of 4 proteins. For example, row 3

of the table corresponds to the term X3X4. The termbank has been sorted
for insertion of a term into the differential equation of proteinl (the term is
randomly chosen from the first 7 terms of the termbank). Notice that the
term of all zeros is eliminated from the bank 95

4.6 A list of all the possible mutations and the action taken to perform the
mutation in order to yield a valid solution. The Current Parameter column
lists the type and the sign of parameter selected for mutation. New Parameter
designates the sign of the value that is to replace the current parameter. For
the mutations of the sign of the OHJ for the term that the exponent
appears in is also listed. Recall that the subscripts refer to the kth protein
in the jth term in the differential equation for protein i 96

4.7 The first four operators created for performing the crossover for the adapted
genetic algorithm optimization 98

4.8 Results of tests of the crossover operators amyXoverl-4 with population size
10 and 100 iterations 99

vi

4.9 A comparison of the kinetic constants from a successful run of the genetic
algorithm to the actual values for the test case. This run consisted of 1000
iterations of a population of 20 101

4.10 Proteins belonging to two of the equivalence sets from Part One, listed in
Table 4.3 104

vii

List of Figures

1.1 A simple picture of the components of the EGF signaling pathway. EGF
molecules bind to the extracellular domains of receptors in the cell membrane.
The binding causes dimerization of the receptor and subsequent initiation of
a series of intracellular responses. The signal is transduced, through a series
of phosphorylation reactions, to the cell nucleus. Here gene transcription is
initiated by transcription factors 3

1.2 The early events of the EGF signaling pathway that are included in the model
of Kholodenko et al [29]. The proteins corresponding to the abbreviations
used in this figure and throughout the thesis are listed in Table 2.5 8

2.1 A tree visualization of the results of the hierarchical clustering of a group
of British Columbian trees based on height. The scale on the left represents
the distance between the two clusters being joined by a given branch. The
figures that appear under the tree names along the bottom are the heights of
each tree, and the numbers in the graph represent the average tree heights of
each newly formed cluster. This is an example of agglomerative hierarchical
clustering.(Tree data from www.bcadventure.com) 23

2.2 An illustration of different linkage methods used to determine the most sim
ilar clusters at each step of a hierarchical clustering. The circles represent
clusters and the dots inside each circle represent the items contained in each
cluster. The darker line(s) indicate the shortest of the compared distances
in the pairwise comparison between the diagonally hatched cluster and each
cluster beneath. The cluster with the shortest distance to the diagonally
hatched cluster is combined with that cluster for the next step of the cluster
ing, (a) Single linkage also known as nearest neighbor. The shortest distance
between items in each pair of clusters is compared, (b) Complete linkage or
farthest neighbor. The largest distance between items in the two clusters are
compared to find the shortest of these, (c) Average linkage. The average of
all the distances between items in the pair of clusters are used for comparison. 25

viii

http://www.bcadventure.com

2.3 The training of a S O M . The small dots represent data points. The larger
circles represent the nodes of the network arranged in a (3 x 2) rectangular
lattice and located at the position in the data space given by their reference
vectors, (a) Da ta point A is chosen randomly. Node C is the closest node
to A. The dotted circle, Nc represents the neighborhood of node C. (b)
Node C and the other two nodes that lie wi th in Nc are moved toward A
as dictated by the learning function. The next data point, B, is randomly
chosen and the new closest node C and its neighborhood Nc are shown, (c)
Node C and the two nodes lying within Nc are moved toward B. (d) After
many such iterations, the nodes settle at clusters of data points 27

2.4 From Study 2: Behavior of the first five principal components over time from
the covariance matrix for the cdcl5 data 34

2.5 Plot of the coefficients of the first two components from the covariance matrix
of gene dataset2 35

2.6 Plot of the coefficients of the first two components from the correlation matrix
of gene dataset2 36

2.7 Plot of the coefficients of the first and third components from the correlation
matr ix of gene dataset2 37

2.8 Time courses for the first four components from the correlation matrix of
E G F dataset4 (top) and E G F dataset3 (bottom) 39

2.9 The concentrations of each protein in the network from E G F dataset4 . . . 40
2.10 Plots of the coefficients of the first two components from the correlation

matrix of E G F dataset4 (top) and E G F dataset 3 (bottom) 42
2.11 Centroid time courses for the 4 cluster S O M of E G F dataset5. 43
2.12 Centroid time courses for the 6 cluster S O M of E G F dataset5 44
2.13 Centroid time courses for the 4 cluster S O M of E G F dataset4 44
2.14 Clustering of the proteins of the E G F pathway. The results are from a 6

cluster S O M of E G F dataset5. The circles represent the nodes of the network
and are arranged in the lattice shape used for the creation of the S O M . The
numbers correspond to the proteins listed in Table 2.5 45

2.15 Proteins in the pathway are hatched according to their cluster membership.
The results are for a 6 node clustering of E G F dataset5 46

3.1 The evolution of a three component discrete network according to the rules
given below 50

3.2 Several possible dose response functions wi th different parameter values, (a)
a = 2,B = 0.5, (b) a = 0.4, B = 0.5, (c) a = 2, B = - 2 58

3.3 A n example of the graphical structure of a Bayesian network 63
3.4 The two hypotheses being compared using Bayesian scoring. The model on

the left represents an outdated hypothesis and that on the right represents
the currently accepted system. The genes, whose values are measurable, are
shown in boxes, while the gene products are included in the model as latent
variables 67

3.5 Three possible annotated Bayesian models. The question raised in the text
is whether (a) would receive a worse score than (b), given that (c) is the true
model 68

ix

4.1 Part One of the method of Maki et al for a system of 4 proteins. Proceeding
clockwise from the top-left: Each column of the data matrix D is divided by
the normal steady-state value for that protein- to yield the relative intensity
matrix E. E is quantized to binary values with a threshold of 2. The closure
of R yields R*. The equivalence relations are determined: proteins B and D
show the same behavior (in R*) to all other proteins in the network and are
therefore grouped together in [2]. Replacing columns B and D by [2], and
relabeling A as [1] and C as [3] (single protein equivalence sets) gives us R* .
Finally, the topological sort gives us the skeleton matrix S containing only
direct connections between equivalence sets. This determines the shape of
the graph, shown in the center 77

4.2 The proteins in each equivalence set and the graph of the equivalence sets. . 83
4.3 Proteins in the EGF pathway are coloured according to their equivalence sets. 84
4.4 Grouping of the EGF pathway proteins according to the equivalence sets

listed in Table 4.3 86
4.5 Demonstration of mutation and crossover operators using LEGO, (a) In mu

tation, a single block from one tower is randomly selected (small arrow) and
replaced with a different block in the child, (b) In arithmetic crossover, a de
tachment position along the tower is randomly selected (small arrow). Both
parent towers are broken at that position, and the top halves of the tower
are interchanged to yield the two children 88

4.6 The organization of the genome of an individual. All a parameters appear
first, followed by all g parameters, cxij is the rate constant for the jth term
in the differential equation of the ith protein, gijk is the power of the kth

protein in the jth term in the differential equation of the ith protein 91
4.7 A plot showing the relationship between the number of individuals in a pop

ulation and the fitness value of the optimal solution. The results are for a 50
iteration optimization of the test system (Equation(4.12)) 108

4.8 A plot showing the relationship between the number of individuals in a pop
ulation and the run time of the algorithm. The results are for a 50 iteration
optimization of the test system (Equation(4.12)) 109

x

Acknowledgements

I would like to thank Leah Keshet for her support and guidance, both in leading me to this
very interesting topic and in helping me to get to the point where hopefully I can express
my ideas clearly enough to interest others.

I would like to thank my parents and Cath for always being supportive and for
listening to me babble on about proteins and DNA, among other things. I love you very
much.

I would also like to thank Adrian Secord for many discussions about the material
presented here and for helping me improve the speed of the computations. Without his
undying support this thesis would not have been possible.

A M Y N O R R I S

The University of British Columbia
April 2002

x i

To my Gram, who thought that if anyone would know why there's a moose on the quarter,

that it would be me. Well, I didn't know that, but I guess this proves that I know a little

about something. Thanks for your confidence in me Gram.

xii

C h a p t e r 1

A n introduction to the study of

signal transduction systems

Our bodies are composed of myriads of molecules that interact in a very complex, sometimes

seemingly random fashion and yet are capable of carrying out the development of a new-

being from a single cell. The puzzle of how all these pieces work together to produce a

functioning organism is one of the scientific challenges of this century and spans disciplines

from psychology to physics, from ecology to biochemistry. Mathematics may play a role in

interpreting and organizing this huge research effort.

Each cell division and differentiation, each immune response, each synaptic trans

mission throughout development and through the life span of an individual is instigated by

a biological signal communicated between cells. The receipt and intracellular propagation

of such a signal and its interpretation by the cell and subsequent response, is referred to as

signal transduction and forms the biological motivation for this thesis.

1.1 Signal transduction

The molecular components involved in cellular signaling form signal transduction pathways.

A signal transduction pathway affecting a cell is composed of the following events:

• A signaling molecule arrives outside the cell

• A receptor on the extracellular surface of the cell membrane interacts with the signal

ing molecule

1

• The receptor interacts with intracellular pathway components, starting a cascade of

protein interactions that propagates the signal inside the cell

• The signal arrives at its destined location or molecular target and elicits a functional

response in the cell.

A simplified example of these steps is shown in Figure 1.1.

Important biotechnological advances in recent years have allowed increasingly de

tailed studies of a variety of signalling pathways. These advances include production of

recombinant DNA, the Polymerase Chain Reaction (PCR) [3], gel electrophoresis [54], mi-

croarrays [10], and the serial analysis of gene expression (SAGE) technique [53]. Devel

opment of such techniques is ongoing, and large-scale assays of peptides and protein-DNA

binding activity are becoming more feasible [2].

S i g n a l o r i g i n a n d r e c o g n i t i o n b y t h e c e l l

A signaling molecule may be a protein, small peptide, amino acid, nucleotide, steroid,

retinoid, fatty acid derivative or a dissolved gas [3]. Where does a signal come from?

There are different types of signaling systems and the signal origin differs among them. For

paracrine signaling, the signal originates from a nearby cell and, thus, the signal causes

only localized effects. In endocrine signaling, hormones are secreted into the bloodstream

and thus may be received by a cell some distance from the origin of the signal. In synaptic

signaling, a signaling molecule is released into a synaptic cleft from one neuron and received

by another neuron. And finally, a cell may send a signal to itself, which is known as autocrine

signaling [3].

There are many types of signaling molecules and also many different receptors that

may be present on a given cell at a given time. The set of receptors and the density and

location of each receptor on the cell surface depend on cell type and on the current state and

environment of the cell. The same stimulus will often cause different responses in different

cells.

Two important types of cell surface receptors involved in cellular signal transduction

are G-Protein coupled receptors and receptor tyrosine kinases [27]. Rhodopsin, the light

receptor in the eye, is an example of a G-Protein coupled receptor. The receptor that will

most concern this study, the epidermal growth factor (EGF) receptor, is an example of a

2

Receptor

Figure 1.1: A simple picture of the components of the EGF signaling pathway. EGF
molecules bind to the extracellular domains of receptors in the cell membrane. The binding
causes dimerization of the receptor and subsequent initiation of a series of intracellular
responses. The signal is transduced, through a series of phosphorylation reactions, to the
cell nucleus. Here gene transcription is initiated by transcription factors.

3

receptor tyrosine kinase and will be discussed in further detail below. All receptor tyrosine

kinases have certain structural features in common: an extracellular domain for binding

polypeptide ligands, a single transmembrane region (in contrast to the seven transmembrane

structure of a G-protein coupled receptor), a juxtamembrane domain possibly involved

in regulating receptor function, and a cytoplasmic domain with tyrosine kinase catalytic

regions [27].

All the structural details of a receptor are essential to the specific response and

propagation of a set of signals. The sequences of the extracellular domain and of the

intracellular catalytic regions determine what molecules can bind to the receptor. Thus,

determining the structure and amino acid sequence of a protein is important in elucidating

that protein's possible partners in a signal transduction pathway.

P r o p a g a t i o n o f t h e s i g n a l i n t h e c e l l

The main method of signal transduction occurs through structural changes of pathway com

ponents. A given protein will affect the conformation of one or several other proteins, acti

vating or inhibiting those proteins and thus propagating the signal down the pathway [27].

The trigger for signal propagation often occurs with the binding of the signaling molecule

to the receptor, which causes a conformational change in the receptor. Subsequently, cy-

tosolic regions of the receptor are activated, making them active targets for intracellular

and membrane associated proteins.

Within the cell, signal propagation depends heavily on the action of protein kinases

and protein phosphatases. The discovery of the role of kinases in the propagation of cellular

signals was made during experiments studying the reaction of skeletal muscle to epinephrine

and involved cyclic adenosine monophosphate (cAMP), an important second messenger for

G-Protein coupled signaling [3]. Protein kinases and phosphatases catalyze the transfer of

a phosphate group of adenosine triphosphate (ATP) to and from target proteins respec

tively. The transfer of the phosphate group occurs only at specific amino acids of the

target protein. Tyrosine protein kinases catalyze the phosphorylation of tyrosine residues,

while serine/threonine protein kinases catalyze the phosphorylation of serine or threonine

residues. Some protein kinases (such as MAPK, which will be discussed below) can act as

both tyrosine and serine/threonine kinases [3]. Protein kinases and phosphatases are useful

signaling molecules because they affect rapid and reversible changes [27].

4

Most of the intracellular portion of the signaling pathway is a cascade of protein

phosphorylations and dephosphorylations. Each step leads to activation or inhibition of

further, downstream events or feeds back on upstream events. The traditional view of signal

transduction has been as a linear sequence of phosphorylation events proceeding from the

cell surface to the ultimate intracellular target. However, it has become increasingly clear

that the propagation of signals in the cell is not a simple chain of events, but a complex and

combinatorial process involving switches, integrating centres, feedback loops and crosstalk

between pathways [29].

R e s p o n s e s i n i t i a t e d b y s i g n a l i n g

The responses to signaling can include activation of enzyme activity, changes in cytoskeleton

organization, changes in ion permeability, activation of DNA and/or RNA synthesis and

many other aspects of cell function [3]. Through such changes, signaling pathways can

control cellular function such as growth, maturation, proliferation, and differentiation.

These vital functions suggest the importance of studying signal transduction path

ways. It is not a coincidence that many of the components of such pathways were first

discovered as oncogenes: abnormal versions of a protein that are implicated in transforming

a normal cell into a tumor cell. Cancer is a disease of uncontrolled, abnormal cell prolifera

tion. The regulation of the processes of cell division and apoptosis occurs through signaling

pathways. Thus it is in the dynamics and among the components of these pathways that

some researchers are looking for causes and cures for this disease.

R e g u l a t i o n o f t h e c e l l c y c l e

Let us trace backwards along a set of signaling events from the observed response, such as

unchecked cell proliferation, to the entry of the signal into the cell and to the origin of the

signal. One set of proteins, called cyclins, act as key regulators of the transitions between

phases of the cell cycle by activating cyclin-dependent kinases (CDKs). CDKs phosphorylate

proteins needed for each phase transition. The cyclins themselves are regulated by protein

complexes involved in protein degradation, such as adenomatous polyposis coli (APC), and

the CDKs are regulated by 2 families of CDK-inhibitors [50]. All these proteins are thus

important targets of signaling pathways aimed at controlling cell proliferation [33].

5

R e g u l a t i o n o f t r a n s c r i p t i o n

There are several levels at which a cell can control the set of proteins expressed at a given

time. The most important is transcriptional control, that is, the control of when and how

often a gene is transcribed [3]. Other controls exist at the level of RNA processing (such

as alternate splicing), RNA transport, RNA translation, RNA degradation, and at the

post-translational level such as protein inactivation and compartmentalization [3].

The transcriptional control of gene expression was first investigated for the lac operon

by Jacob and Monod in the 1950s [23]. It was found that gene expression depended on

a region of DNA upstream of the gene and a set of gene regulatory proteins that are

capable of binding to that sequence. In bacteria, this sequence of DNA, called the operator,

may be subject to negative or positive control through repressor and activator proteins,

respectively [3]. In negative control, a repressor protein binds to the operator which prevents

RNA polymerase from accessing the promoter, a process needed to initiate transcription.

Positive control occurs when an activator protein binds to a DNA site near the promoter to

allow RNA polymerase to start transcription. Sets of these repressors and activators exert

combinatorial control over the transcription of a bacterial gene.

In eukaryotes, the process of regulating transcription is still more complicated. A set

of proteins known as transcription factors must bind to the DNA before RNA polymerase

can begin transcription. As well, activators and repressors in eukaryotes are capable of

influencing transcription from thousands of nucleotide base pairs away from the start site

of transcription. These regulatory proteins also usually act as complexes, the formation

of which sometimes depends on the correct proteins arriving in the proximity of a specific

DNA sequence [3]. Given this level of complexity and the number of possible combinations

of all these molecules, it is not surprising that the mechanism of transcriptional control for

most eukaryotic genes is not well understood.

There has been some progress in deciphering the mechanism of control of the cyclins

and.associated proteins outlined above. Transcription factors from the Fos and Jun families

form complexes known as AP-1 which regulate, among other things, the transcription of

other transcription factors such as myc [50], which turns on the transcription of the genes

that encode the regulators of the cell cycle transitions mentioned above. So, the next

question is, what controls the transcription of these genes?

6

At this point, there are two major pathway types implicated in mitogenic regulation:

one involves Ras proteins (Ras, Rho, cdc42, etc) and proteins aiding their signaling to

each other; the second involves the mitogen activated protein kinase (MAPK) cascade [50].

These two families are important players in transducing the signal as it travels from the

cell membrane to the target molecules. Thus, it is important to determine the interaction

of these proteins with other potential pathway members to fully map out the network of

intracellular interactions.

Other points of interest in pathways regulating cell proliferation are the signal that

initiates the cellular response and the receptor with which it interacts at the cell surface.

The protein hormones known as growth factors, which include EGF, platelet-derived growth

factor (PDGF), fibroblast growth factor, and insulin, control growth, division, and matu

ration of cells [3].

In the search for the mechanism of the development of a disease such as cancer,

one needs to consider the roles played by all the parts of such a network, from the sig

naling molecules through the receptors, enzymes and intracellular components, cell-contact

components, down to the regulatory machinery for transcription. It is indeed a complex

problem.

1.2 Epidermal growth factor signaling

In order to experiment with some of the different computational techniques in this thesis, a

biological case study was needed, along with the ability to gather the specific data required

for different techniques. This thesis began as an effort to analyse real data about kinase

activation patterns. Our partner, Kinetek, was unable to carry out challenging experiments

to supply the needed data. Therefore, we decided to produce data using a computer sim

ulation. In 1999, Kholodenko et al published a quantitative study of the dynamics of the

early events of the EGF signaling pathway, including estimates of rate constants for all

reactions under consideration [29]. Subsequently, Chaudhry implemented the model in a

simulation [7] using the Gepasi software. With the components of the early pathway events

relatively well defined, reasonable rate constants published, and the ability to create data

sets easily, this system is an ideal choice for a case study.

This said, it is acknowledged that the use of simulated data for testing the methods

7

Figure 1.2: The early events of the EGF signaling pathway that are included in the model
of Kholodenko et al [29]. The proteins corresponding to the abbreviations used in this figure
and throughout the thesis are listed in Table 2.5

herein is not the ideal choice. The hope for these methods is that they may prove useful

in analysing real experimental results, despite the noise and imperfections inherent in bi

ological assays. These considerations are taken into account when evaluating the different

computational approaches described here.

What are the biological features of the EGF pathway? EGF is a polypeptide con

sisting of 53 amino acids that is known to stimulate the proliferation of many cells in vitro

and epithelial cells in vivo [27]. In addition to proliferation, the EGF pathway is implicated

in the control of cell differentiation, growth, and survival.

The EGF signaling pathway begins with the binding of EGF to a single EGF re

ceptor (EGFR). The EGFR is, as mentioned above, a member of the family of receptor

8

tyrosine kinases and binds several signaling molecules related to EGF [29]. The binding of

EGF causes the EGF-EGFR complex to dimerize, which precipitates the autophosphory

lation of intracellular tyrosine residues of the receptor [27]. This phosphorylation attracts

cytoplasmic proteins containing specific sequences of amino acids called binding domains.

Important binding domains include the Src Homology 2 (SH2) domain and phosphotyrosine

binding domains [29].

Three of the proteins that bind to the activated receptor are growth factor-binding

protein 2 (Grb2), the Src homology and collagen domain protein (She), and phospholipase

C-7 (P L C 7) [29]. These initial binding events precipitate the transduction of the signal

along several paths to initiate different responses from the cell. An important feature of the

pathway from the perspective of cell division is the activation of membrane-bound Ras by

a complex of Grb2 and son of sevenless (SOS) protein formed following the binding of Grb2

to the activated EGFR. This activation occurs in the form of the catalysis of the GTP-ase

activity of Ras (converting GDP to GTP). This action causes the recruitment of the Raf

protein and the subsequent initiation of the MAPK cascade [27].

1.3 Modeling the E G F pathway

The simulation of the early events of the EGF pathway includes the following events:

• EGF binding, EGFR-EGF dimerization and phosphorylation

• recruitment of Grb2, P L C 7 , and She

• Grb2-SOS complex formation and dissociation

• She phosphorylation and recruitment of Grb2 and SOS separately to the Shc-EGFR

complex and dissociation of the Shc-Grb2-SOS complex from the receptor

• phosphorylation at two tyrosine residues of P L C 7 and its translocation to cytoskeletal

or membrane structures

These events are shown in Figure 1.2.

Note that all reactions in the pathway are reversible, more or less favorably. The

final three points above describe three coupled reaction cycles. The model considers only

a limited number of the potential cytoplasmic signaling targets, and does not take into

9

account the possibility of competition among molecules for phosphorylation sites or adaptor

or scaffolding proteins that may be involved [41]. (This is a simplification acknowledged by

the authors. However, the fact that many such details are not yet confirmed for comparison,

is also a valid consideration for this initial model.)

I simulated these events with the software Gepasi [36], to create artificial data for the

"reverse engineering" process. Gepasi provides a convenient interface for numerically solving

systems of differential equations describing a set of chemical reactions. The simulation is

created by entering chemical equations into the program and specifying the kinetics and

corresponding kinetic constants for each equation. For example, the first step of the pathway

is the binding of EGF to EGFR, which is entered as

EGF + R^Ra

where R represents the receptor and Ra represents the activated EGF-receptor complex.

Similarly, phosphorylated and nonphosphorylated forms of proteins are represented as sep

arate quantities.

All kinetics used for the simulation are generalized mass action equations, with

the exception of the phosphorylation events, which are specified using Michaelis-Menten

kinetics. The rate equation for EGF corresponding to the chemical equation above is:

= -h[R}[EGF] + k.^Ra]

where k\ and are the forwards and backwards rate constants for the reaction, respec

tively, and [A] represents the concentration of protein A.

In total the simplified EGF model consists of 22 differential equations that describe

the rate of change in time of the concentrations of the 22 protein conformations due to the 25

reactions between them. It should be noted that the only kinase included in the simulation

is the receptor tyrosine kinase, with the action of other kinases and phosphatases being

implicitly included in rate constants between phosphorylation states of proteins. In future,

it would be desirable to include other kinases and phosphatases explicitly, since parts of the

pathway further downstream, specifically the MAPK cascade, are composed only of these

proteins.

10

With the Gepasi simulation, it is possible to generate concentration data for each

of the protein conformations at any desired time points. In reality, obtaining this sort

of information at a suitable resolution for quantitative studies is a daunting experimental

challenge. In order to maintain some connection to real experimental results, I have chosen

time scales according to the time scales used in assaying the real biological system, as

published by Kholodenko [29]. Given this resolution, it should be noted that the time

scales for some reactions in a signaling system such as the EGF pathway can be too fast to

be adequately measured. That is, a series of reactions may occur between time steps, which

would make the determination of the order of events very difficult using the computational

methods presented below.

1.4 The mathematical study of signal transduction

There is an ever increasing amount of biological data being produced from research labs

around the world. The problems of how to store, access, annotate and interpret this data

are each major research problems in their own right. Ironically, for the purpose of sim

ulations and reverse engineering of biological systems, there is usually not enough useful

data. This outlines the importance of collaboration between biologists, mathematicians,

and statisticians: the latter two to help analyse and interpret the data and to suggest new

experiments that will allow better results to be obtained by the biologist and subsequently

allow better models to be created.

In addressing the problem of modeling biochemical reactions, one can consider two

different approaches: forward and reverse. Forward modeling implies the construction of

models from collected biological information about the structure of the system, which can

then be used to study the dynamics of the system and to predict future behavior. The

reverse problem involves working from a set of data about a system, but without detailed

knowledge about the structure of the system being modeled. The goal with the reverse

problem is to find out as much information as possible about the structure and the dynamics

of the system in question from observations of the system. It is this reverse methodology

that is addressed in this thesis.

A second key difference between modeling methodologies is that between a logi

cal/binary model and a kinetic model with differential equations. Further, whether time

11

and molecule interactions are modeled as discrete or continuous. These three considerations

are important in judging how representative of the underlying biological system and how

computationally expensive a given model will be.

Important early mathematical research in biological regulation was done by Glass,

Kauffman, and Savageau in the early 1970's. Glass and Kauffman [15] investigated the

dynamics of discrete systems of two- and four-"component" binary networks to compare

with biological results of the previous decade indicating the existence of biological switches

and feedback loops. Other important studies modeling metabolic pathways include those

of Palsson and Lightfoot (1984) on metabolic networks [40] and of Shea and Ackers (1985)

on the A bacteriophage [48].

As for the reverse engineering of biochemical networks, many of the important works

in this newer field will be reviewed in detail in subsequent chapters. However, the work in

1995 by Reinitz and Sharp [45] deserves a mention here as one of the early introductions of

the reverse methodology (being applied at the time to electrical systems) to the world of

biology. This publication, based on work by the same authors in 1991 with Mjolsness [38],

introduces the "connectionist" model of gene regulation: in this model, a genetic network is

represented by a matrix whose values represent the "connection strength" between genes, i.e.

the amount that one gene influences the expression of another gene. This matrix is then

incorporated into a set of differential equations that model the change in concentration

of each protein resulting from the change in gene expression. The parameters are fit to

experimental data. In other words, this paper starts with a general framework that permits

all connections between genes and the connections are then defined such that the best fit

to the data is obtained.

In addition to both the forward and reverse modeling of biochemical data, many

attempts have been made to find key features in the data that may lead to further knowledge

of the system. For instance, clustering and other multivariate analysis techniques have

been used to reduce the dimensionality of microarray data and to pick out genes encoding

proteins with similar functionality ([18], [4], [12]) . These methods can be coupled with

reverse engineering in an attempt to reduce the number of different types of interactions

that need to be defined. The question of whether biological systems do in fact use some

sort of modularity is still an open problem.

The application of multivariate analysis and reverse modeling to the study of signal

12

transduction pathways is interesting for several reasons. First of al l , despite the technologi

cal advances described earlier, these systems are still not well understood. Not only are the

specific interactions between molecules not all determined, but the molecular components

themselves are not all known. Obviously then, chemical kinetic data is not available for the

majority of the reactions involved in signal transduction pathways. These facts preclude

the use of complete models and simulations for most pathways.

This thesis is organized as follows: in Chapter 2 an overview of multivariate analysis

and its application to the study of genetic regulation are covered; in Chapter 3 several

approaches to reverse engineering are discussed; Chapter 4 describes the implementation

of a two-step reverse engineering method to study the early events of the EGF pathway;

Chapter 5 consists of a discussion and concluding remarks.

13

C h a p t e r 2

Multivariate Analysis

Multivariate analysis is the qualitative and quantitative study of populations that depend

on many variables. Given that most natural phenomena depend on more than one variable,

the development of such techniques is an ongoing process that touches many fields. Mul

tivariate analysis is specifically concerned with mathematical approaches to studying data

sets consisting of a set of observations on a set of variables.

Before looking at several multivariate analysis techniques below, the organization of

the data set and a few introductory statistical concepts are described.

2.1 Introduction to multivariate covariance and correlation

Throughout this chapter I shall denote the ith variable observed on the jth item or trial as

Xij. For example, the variables in a study might be height, weight, and age and the items

or trials might be the different individuals in the study. So, X13 would be the height of the

third person in the study.

Organize a set of n trials measuring p variables in the (p x n) matrix, X. Since one

is most likely interested in statistics for the variables over the set of individuals (say average

height), the data is thought of as a set of p n-dimensional vectors. That is, x\ = [xn,..., Xj n]

and so X* — [xi,..., xp], where t denotes the transpose and Xj is a vector containing values

of one of the variables for all n trials.

Given this organization, one can define:

• The mean, taken to be the mean of each variable over all the trials, is X* — [xi, x~2,... ,xp]

• Sample covariance (measure of linear association between pairs of variables i and k)

14

given by the matrix Cov(X) — S with elements

1 "
ik = ~ ^ 2-i)(̂ fcj 2-fc)> 2 = 1,...,P, & = l , . . . ,p

i=i
(2.1)

A negative covariance implies that most trials with large values for variable i have

small values for variable k or vice versa. A positive covariance implies that either large

or small values are obtained for both variables, and a zero covariance implies that there

is no particular association between the variables over the course of the trials. Given

the covariance matrix S with elements Sij, the generalized sample variance is given

by det(S).

A related concept is Pearson's correlation coefficients. Here the covariance is normal

ized by the standard deviations of the two variables, thus down-playing the impact of

the range and units of the measurements [25]. The correlation takes on values between

negative and positive one inclusive. These values are given by:

(2.2)

Given a system of q linear combinations of p random variables

Y =

an an • • • a\P

0,21 &22 • • • a 2 P

yq\ \aqi aq2
Iqpj _XpJ

Xi

X2

AX (2.3)

where â - are scalar constants, the variance of the ith linear combination is

Var(j/i) = Var(a*a;) = a'Var^i)^ (2.4)

It is important to note that the quantities above deal with linear relationships in the data.

As was mentioned in Chapter 1 gene and protein interactions in signal transduction and

genetic regulation can be nonlinear. Thus some relationships between variables may be

15

file:///_XpJ

misconstrued using these linear statistical measures.

2.2 Principal Component Analysis

The goal of principal component analysis (PCA) is to reduce dimensionality and aid in the

interpretation of a large data set. This goal is accomplished by finding a smaller set of basis

vectors that still describe the data well (i.e. that capture major sources of variance over the

trials in the study). For this reason, PCA is also often applied to a large data set before

further processing using regression or clustering techniques.

There are several ways in which one may try to understand the role of the principal

components. They are linear combinations of the original variables, [x\,..., xp]. Thus they

can be thought of as a new set of axes that have been rotated from the original axes to

fit the data better (in particular, that one can find the important relationships between

variables by examining a smaller number of dimensions).

One can also think of the principal components as the decomposition of the origi

nal signal into a set of distinct patterns over the set of trials or time points that can be

recombined to recreate the original data. Thus one can examine the properties of the most

prevalent patterns in the data, both over the set of experiments or the time course and in

comparison to each other.

Before proceeding with the application of PCA, the problem must be formulated.

One must distinguish between the "trials" and the "variables" for the study. Determining

the principal components will allow us to examine the influence of a given variable on the

most influential components and also to visualize each variable's position in the reduced

component space relative to other variables.

If one uses PCA to study large-scale gene expression data, it is important to first

determine the aim of the study. Are we interested in comparing different arrays or different

genes? Another important consideration is the dimension of the data matrix: in gene

expression studies, one will usually have a much larger number of genes than arrays. This

means that a choice to use the genes as variables means a far greater computational cost,

as can be seen from the dimensions of the covariance and correlation matrices listed in

Section 2.1. Despite the costs, I believe that it is most useful to set the genes as the

variables and the trials as the arrays.

16

2.2.1 Mathematical background for P C A

This section serves as a brief, intuitive introduction to principal component analysis. As

stated in Section 2.1, the data set is organized into a (p x n) matrix, where p is the number of

variables (genes), and n the number of trials (arrays) over which the value of each variable

is measured. In looking for the principal components of the data, one is looking for p

uncorrelated, linear combinations of the vectors x\,..., xp with the maximum variance [26].

That is, given the data matrix

X* = [x1,...,xp], (2.5)

one wishes to find the p-dimensional vectors a\ that result in the p principal components

2/1 = 011^1 + 021^2 + • • • + ap\xp = a\X

2/2 = a\2Xi + CL22X2 + • • • + ap2Xp = a\X

(2.6)

Up = aipXi + a2px2 H h appxp = apX

whose variances are maximized.

Let the covariance matrix of the variables be the (p x p) matrix Cov(X) = S. Prom

Equation (2.4), the variance of the ith principal component is given by Varijji) = a\Scn.

Since the variance can always be increased by increasing ai, the condition a-a; = 1 is

imposed. So, to find the principal components one must solve the problem:

M a x i m i z e a\Sai s u b j e c t t o a*a; = 1 (2-7)

The details of the maximization are included in Appendix A. The results are that

the coefficients of the principal components are given by the eigenvectors of the covariance

matrix, that is

2/1 — e n z i + e 2 i x 2 H h ev\xp — e\X

2/2 = e i 2£i + e 2 2 X 2 H h ep2Xp = e\X

(2.8)

yP — eipXi + e2Px2 H h eppxp — elX

17

where is the eigenvector corresponding to the ith largest eigenvalue, Ai, of the covariance

matrix, S. The spectral decomposition of S is:

p

i=i

From Equation (2.4) then, the variance of the ith principal component is

Var(yi) = VariejSei) = A4 (2.10)

It follows [25] that the total variance is:

p p
£ Var(Xi) = \ 1 + X2 + ... + Xp = J2 Var (ft). (2.11)
i=i i=i

Thus one can compute the proportion of the total variance of the data that is captured by

the ith principal component:

_Ai
YH=I Ai

proportion of variance = p

 1 (2-12)

At this point, we have a method of computing the principal components and of

assigning each component a rank in terms of explaining the variance in the data. Examining

the coefficients of the principal components, that is, the eigenvectors of the covariance

matrix, the correlation between the kth variable and the ith principal component is computed

as:
6fci\/Ai

Pvuxk = / — - • (2.13)

This provides us with a manner of quantifying the importance of the kth variable to the ith

principal component.

The results presented in this section can also be obtained using the matrix of corre

lation coefficients rather than the covariance. This is equivalent to performing the analysis

with the covariance matrix after having normalized the variables by removing the mean

and dividing by the standard deviation of each variable. Note, however, that the principal

components and the corresponding variances will differ depending on whether the covari

ance or correlation matrix is used. It is recommended that the correlation matrix be used

18

if the variables are measured on very different scales [25]. In Section 2.4 I compare the use

of the covariance and the correlation matrices in studying the EGF pathway data.

2.2.2 Singular Value Decomposition

The Singular Value Decomposition (SVD) theorem for matrices provides a powerful method

for finding the eigenvalues and eigenvectors of a matrix and is useful for dealing with certain

types of systems of equations [44]. MATLAB has functions for performing the SVD. The

results of the decomposition are as follows: Any (m x n) matrix A, where m > n, can be

written as
A — U • W • V1

(2.14)
(m x n) (m x n) (n x n) (n x n)

where

• U is column orthogonal and whose columns are given by Ui — (^)AVi

• W is a diagonal matrix with wu > 0 called the singular values.

• V is an orthogonal matrix whose columns, Vi, are the eigenvectors of AtA.

The decomposition can also be done on a matrix with m < n, but in this case wu — 0 for

i — m + 1,..., n and the corresponding columns of U are zero.

2.2.3 Recent applications to studies of gene expression

Two studies published in 2000, one by Holter et al and the second by Alter, Brown and

Botstein, perform a principal component analysis of sets of gene expression data. Both

papers apply the technique to previously published yeast (Saccharomyces cerevisiae) gene

expression data [49] and Holter et al also use data from human fibroblasts (cells found in

connective tissues) [21].

The Alter paper is complicated and suffers from unfortunate typographical errors

that make the interpretation of the method difficult. The authors coin the terms "eigen-

genes" and "eigenarrays" to represent the variables of the new "reduced space". The mea

surements in this new space are organized in a diagonalized matrix whose diagonal elements

are the "eigenexpression" of the ith "eigengene" in the ith "eigenarray", all other values be

ing zero.

19

Some of my confusion with both the Alter and the Holter paper arises from their

use of the Singular Value Decomposition theorem to find the eigenvalues. The advantage of

using singular value decomposition is that the principal components of both the variables

and the trials can be obtained easily and without having to calculate the covariance matrices.

The confusion is that in the reported papers the singular values of the arrays are reported

rather that those of the genes, while the subsequent analysis uses the principal components

of the genes. This underemphasises the most useful aspect of principal component analysis,

which is the reduction of the size of the data set. A reduction from 15 to 5 variables is not

nearly as impressive as a reduction from 676 to 5.

Despite these problems, there are some interesting ideas presented. One is that the

elimination of modes or components can be used to eliminate patterns in the data that may

stem from noise or experimental artifacts. The key to this idea is that one need not eliminate

variables or trials to be able to concentrate on the important features of the data. Rather,

one can dissect the entire data set into modes, pick out those that are of interest, and reject

others that are not. This represents an alternative to the common practice in large-scale

gene expression analysis of choosing only a subset of genes whose level of expression exceeds

some (fixed) multiple of normal expression level.

Another idea suggested by Alter that seems promising is to compare the expression

patterns of principal components from two sets of microarray experiments (say two time

courses or two sets of repeated experiments). In one set of experiments a key gene, such

as a regulator, is over expressed, while the other set has normal or low activity. The pat

terns can then be compared for differences, and the genes that are important to (have a

high correlation with) the components that differ can be singled out. Note that a similar

multivariate analysis technique, canonical correlation analysis, might also be suited to such

an analysis (for an introduction to this method see [25]).

In the Holter paper, a key finding is that the principal component analysis suggests

some temporal connections between previously determined clusters of the genes. A plot of

the coefficients of the first two principal components against each other (for each gene) shows

that clustered genes appear grouped together around the perimeter of an ellipse. The fact

that most of the genes appear on an ellipse is a property of principal component analysis.

(From Equation[2.8], a multivariate normal distribution yields a set of level curves in the

form of ellipses of constant density with axes given by the principal components [25]). The

20

fact that the genes are grouped together is reassuring. Further, the fact that the order that

the groups appear around the circle mirrors the order of the genes' temporal progression

in the cell cycle is very interesting. It would be good to examine whether this behavior is

repeated for other well understood systems. If so, then PCA might be used to order clusters

in less well understood systems.

2.3 Clustering

Clustering is a process of grouping variables based on their similarity over trials or grouping

trials based on their similarity over variables. For instance, in a study of gene expression,

genes that show a similar pattern of expression over all the arrays are grouped together in

a cluster. On the other hand, one could perform a clustering that groups arrays according

to the similarity of the pattern of expression of all the genes in the array.

There are several important questions that one should address with respect to ap

plying a clustering technique to gene expression or protein concentration data:

• What sort of patterns can be found, i.e. how are genes or proteins within a cluster

related and how do they differ from elements outside that cluster?

• Are these repeatable, robust methods? Are they intended to and do they give a

concrete statistical measure of the success or failure of a given grouping?

• What clustering method and what measure of similarity are best for understanding

relationships between genes or proteins in a network?

I will address some of these issues in this section and present a general overview of several

important clustering methods.

2.3.1 Measuring distance or similarity

An important issue when trying to find similarities between variables or trials in the data,

is answering the question: what exactly does "similar" mean? Results of any comparison

would be defined by the answer to this question. For example, perhaps one wants to divide

a selection of tree species into different categories. There are many possible divisions: for

instance, the grouping could be made on the basis of average height, whether the trees

are coniferous or deciduous, geographic location, average lifespan, the common uses of the

21

wood, or some combination of these factors. Thus the choice of a measure of similarity

must be based upon knowledge of the type of the grouping that one wishes to achieve.

Similarity of two items can be quantified by defining a "measure of distance" (or

distance metric) between the two items. There are several different distance metrics that

are common in practice and they are described below. A distance measure between two

points x and y should satisfy the following criteria [25]:

• d(x,y) = d(y,x)

• d(x, y) > 0 if x ^ y

• d{x, y) — 0 if x = y

• d(x,y) < d(x,z) + d(z,y)

The Euclidean distance is the most common measure of distance. The Euclidean

distance between two points x and y is given by

A statistical drawback to the Euclidean measure is that all the differences between compo

nents are equally weighted. If some variables naturally have a wider range, they will tend

to dominate the metric. This is a concern for gene expression values, as a small change in

the expression of some genes may be significant. An option in this case is to standardize

the variables by dividing measurements by the standard deviation if the Euclidean metric

is to be used.

A common measure of similarity is the dot product or correlation coefficient de

scribed in Section 2.1. Other similarity measures include the Minkowski Metric and com

parison by operations of continuous-valued logic [31]. For comparing strings of characters,

rather than numerical data, Hamming or Levenshtein distances can be used (these are im

portant, for instance, in comparison of gene or protein sequences). Mutual Information is

a similarity measure based on Shannon entropy (see Section 3.1.1) that has been used for

clustering gene expression data [11].

Alternatively, one can compare pairs of items based on the presence or absence

of certain characteristics, with similar items having more characteristics in common than

(2.15)

22

a=Choke Cherry
b=Rocky Mountain

Juniper
c=Red Alder
d=Balsa.Ti Poplar
e=Black Spruce
g=Big Leaf Maple
h=White Spruce
k=Alpine F i r

(2 9 . 6 9)

(1 5 . 3 8)

(8 . 5)

(44)

(4)

a
(13)

b

| (2 2 . 2 5)

| (24 -5) |

(24) (25) (20)

c d e

r (38)

(36)

g
(40)

h

(50)

k

Figure 2.1: A tree visualization of the results of the hierarchical clustering of a group of
British Columbian trees based on height. The scale on the left represents the distance
between the two clusters being joined by a given branch. The figures that appear under the
tree names along the bottom are the heights of each tree, and the numbers in the graph
represent the average tree heights of each newly formed cluster. This is an example of
agglomerative hierarchical clustering. (Tree data from www.bcadventure.com)

dissimilar items. For example, one could define a set of binary characteristics such as

whether a given gene's expression is above or below a threshold for a given array. The

similarity score could then be computed using a weighted sum of the matches between pairs

over the characteristics.

All in all, for a successful clustering application, the choice of the distance measure

for a particular problem should be based on features of the data being compared and the

specific qualities that constitute similarities between variables for that application.

2.3.2 Hierarchical clustering

The most common visualization of a hierarchical clustering is a tree such that the similarities

of the items or variables being clustered are reflected by branch lengths and relative positions

in the tree. For instance, consider Figure 2.1, which shows the hypothetical output of the

clustering of British Columbian tree species based on height.

23

http://www.bcadventure.com

Hierarchical clustering can be agglomerative or divisive. In the former, each item to

be clustered begins as its own cluster. The two most similar clusters are then joined so that

there is one less cluster than previously. This process is repeated until there remains only

one cluster containing all the items. This can be seen in Figure 2.1, where Red Alder and

Balsam Poplar join to form a cluster in the first step of agglomeration because they have

the most similar tree heights. Divisive hierarchical clustering proceeds in the same fashion

but in the reverse direction: all items start in one cluster that divides until each item rests

in its own.cluster.

The determination of which pair of clusters are closest can be made using linkage

methods. Three linkage methods are shown in Figure 2.2. A distance metric must be chosen

to measure the distance between items in each pair.

As for the other clustering methods discussed here, hierarchical clustering is sensitive

to noisy data and outliers because error and variation are not taken into account [25].

Another drawback, specific to hierarchical clustering, is that a poor clustering choice at a

given step during the process cannot be fixed and will affect all subsequent results.

2.3.3 Self-organizing maps (SOMs)

A self organizing map is an unsupervised, competitive neural network used to cluster large

data sets into a specified number of groups. The classification "unsupervised" differentiates

this method from supervised and reinforced learning methods. A supervised method is more

of a classification than a clustering, as the criteria for inclusion in a cluster is predetermined.

In unsupervised methods, the classes of items are not known before the clustering is per

formed, but the data is suspected to contain some natural division. Thus an unsupervised

clustering reveals both the form and the contents of each grouping.

There are many different types of artificial neural networks, and I will not go into

details about them here. In competitive networks, the neural cells receive input data on

which they compete: based on some competition criteria, a winner amongst the cells is

chosen for a given input point. The winner attains full activity and suppresses other cells

in the network to varying extents. The next input is then introduced, the fight begins anew

and a new winner is chosen [31].

Let us consider the details of the SOM itself. A SOM is a mapping from the input

data space onto a two-dimensional array of nodes. These nodes represent the clusters to

24

(b)

(c)
Figure 2.2: A n il lustration of different linkage methods used to determine the most similar
clusters at each step of a hierarchical clustering. The circles represent clusters and the dots
inside each circle represent the items contained in each cluster. The darker line(s) indicate
the shortest of the compared distances in the pairwise comparison between the diagonally
hatched cluster and each cluster beneath. The cluster w i th the shortest distance to the
diagonally hatched cluster is combined with that cluster for the next step of the clustering,
(a) Single linkage also known as nearest neighbor. The shortest distance between items in
each pair of clusters is compared, (b) Complete linkage or farthest neighbor. The largest
distance between items in the two clusters are compared to find the shortest of these, (c)
Average linkage. The average of all the distances between items in the pair of clusters are
used for comparison.

25

be determined. To construct the map, the number of nodes (clusters) is chosen and these

nodes are arranged in a lattice. The shape of the lattice may be hexagonal, rectangular, or

even irregular. There are also some instances of three-dimensional lattices [30], though the

two-dimensional lattice is much more common.

Recall the formulation of a (p x n) data matrix. Choose to cluster the variables,

so each of the p data inputs is an n-dimensional vector. The SOM algorithm proceeds as

follows: .

1. Initialize the network by assigning each node its own n-dimensional reference vector.

2. Choose an input point. This selection may be done randomly or using a randomly

ordered list that is repeated as necessary.

3. Find the closest network node to the input datum. The closeness is calculated using

the chosen distance measure.

4. Change the reference vectors of the nodes based on each node's proximity to the

closest node.

5. Repeat steps 2 through 4 until the desired number of iterations is reached.

Changing the reference vectors in step 3 constitutes the learning step of the network. As

Kohonen suggests, one may think of the SOM as an "elastic net" of nodes that are stretched

over the input data points in an orderly way with the goal of approximating their distribution

in the input space. That is, the changing of the reference vector represents the stretching of

the nodes toward the current input point. This is demonstrated in Figure 2.3. The learning

function has the form

mi{t+l)=mi{t) + hci(t)[x{t)-mi{tj\, i = l,...,p (2.16)

where t is an integer representing the current iteration number and hdit) is a "smoothing

kernel" defined over the nodes. The smoothing kernel determines how much each node moves

at each step, t. Thus hci(t) must tend to zero as t —> oo so that the nodes eventually settle

to a given point. One example of a smoothing kernel is as follows: define a neighborhood,

Nc around the node, C, that is closest to the current data point. Then hci(t) is denned so

that the nodes falling within the neighborhood are moved a distance given by a learning

26

(d) (c)

Figure 2.3: The training of a SOM. The small dots represent data points. The larger circles
represent the nodes of the network arranged in a (3 x 2) rectangular lattice and located
at the position in the data space given by their reference vectors, (a) Data point A is
chosen randomly. Node C is the closest node to A. The dotted circle, Nc represents the
neighborhood of node C. (b) Node C and the other two nodes that lie within Nc are moved
toward A as dictated by the learning function. The next data point, B, is randomly chosen
and the new closest node C and its neighborhood Nc are shown, (c) Node C and the two
nodes lying within Nc are moved toward B. (d) After many such iterations, the nodes
settle at clusters of data points.

27

rate, while those that lie outside of Nc remain stationary. For instance, one could define

where a(t) is a learning rate factor that takes values between zero and one and decreases in

time [31]. A modification of this learning method is to have the neighborhood size decrease

with t as well, so that toward the end of learning, the adjustments are made primarily to

the node of the cluster to which the current datum belongs [51].

From the discussion above it is apparent that, although the form of the clusters is

not specified, there are many decisions to be made in constructing a SOM. These decisions

include the learning rate factor, the smoothing kernel, the number of nodes, the lattice

shape, the number of iterations, the neighborhood size, and the distance metric. In addition

to these factors, any statistical processing of the data before the creation of the SOM begins

will affect the results. This is true for all of the multivariate analysis techniques presented

in this chapter.

The careful selection of parameters such as the learning factor and the form of the

smoothing kernel is more important for larger networks (over 100 nodes) [31]. Both the

number of clusters and the number of iterations chosen for a SOM are rather arbitrary.

Kohonen suggests the following "rule of thumb" for the number of iterations:

The choice of lattice shape appears to be based mainly on ease of interpretation and

best fit to the range of the data points. The number of nodes in the network seems to be

the most difficult choice to make and one which has a strong impact on the results. Some

preliminary research into the number of groups one expects to find in the data and some

trial-and-error are needed to determine a suitable network size.

2.3.4 Recent applications of clustering to studies of gene expression

Many clustering studies of gene expression have been carried out in the last five years by

groups at Stanford University led by Pat Brown and David Botstein. The majority of

these studies have been aimed at identifying patterns in the gene expression of various

(2.17)

number of steps = 500 x number of network units (2.18)

28

cell types and cellular states (for example, tumor vs. normal cells). Examples include the

investigation of transcriptional programs of sporulation [8] and responses to stimulants [21].

The website for the Pat Brown laboratory (http://cmgm.stanford.edu/pbrown/) is a good

source for information related to large-scale gene expression.

The study by Eisen (1998) [12] is an early example of using hierarchical clustering to

address the recent flood of gene expression data. The aim of this clustering is basically to

organize and present a vast quantity of expression data in a format that is both agreeable and

useful to a biologist who needs to interpret the data. The Eisen study applies hierarchical

clustering with pairwise average-linkage to two sets of data: a single time course and a set

of unrelated data from several experiments on the budding yeast, S. cerevisiae. This paper

is an early example addressing the flood of gene expression data. The most important result

of the paper is the conclusion that genes of similar function cluster together. Also, genes

with high sequence homology are found to cluster near each other. Altogether, the results

indicate that exploring similarity in patterns of gene expression with clustering methods is

a reasonable preliminary method to survey functionality in large gene expression data sets

such as those obtained with DNA microarrays. This is an important result that has paved

the way for a plethora of clustering studies of large-scale gene expression data.

Another point of note about this study is its method of presenting the clustered data.

An image of a gene array in its native form is not highly informative without a spreadsheet

of data values and, even then, the size of the dataset can be overwhelming. The visual

presentation in this study is enhanced by colouring the reordered data points according to

the expression reading: genes with no expression for a time point or single experiment are

black; positive expression is coloured in red; negative expression is coloured in green. Thus

patterns in the data can be more easily identified by inspection of the images.

Pablo Tamayo et al (1999) use Self Organizing Maps(SOMs) to study patterns of

gene expression in three separate case studies [51]. The first study is of the yeast cell

cycle. This data was chosen since it has been well studied using other methods and, thus,

is an ideal system on which to test the ability of SOMs to identify patterns. The yeast

data follows gene-expression at 10-minute intervals over two cell cycles. The second study

uses the myeloid leukemia cell line HL-60 and expression monitoring Affymetrix arrays to

investigate hematopoietic differentiation using gene expression data for over 6000 genes.

The data is a time series of samples collected at 0, 0.5, 4, and 24 hours following the

29

http://cmgm.stanford.edu/pbrown/

beginning of macrophage differentiation. The final study is similar to the second study

but with increased complexity due to the use of multiple cell lines, namely HL-60, U937 (a

myeloid cell line), Jurkat (a T cell line), and NB4 (an acute promyelocytic leukemia cell

line).

The SOMs were carried out using GeneCluster: a publicly available computer pack

age created by the Whitehead/MIT Center for Genome Research [1]. Genes whose expres

sion does not change sufficiently over the cycles are removed. The data from the remaining

genes is normalized to a mean of zero and variance of 1 (within each cycle for the yeast

data and within time points for each cell line). The filtered data is then used to create a

SOM. The geometry, number of iterations and various other options are set and then the

SOM trains and produces a graph of the centroid and a list of the genes in each cluster.

The results of the paper are very encouraging. The yeast cell cycle (6 x 5) SOM

agrees well with the biological conclusions obtained over a much longer time using visual

inspection. The results of the SOMs on the human hematopoietic differentiation data are

also positive. An analysis of one cluster of a (4 x 3) HL-60 SOM reveals several genes that

would be expected in this cluster in accordance with the graph for the cluster which indicates

a gradual induction of the genes over time. However the inclusion of several unexpected

genes in this cluster suggests possible roles for these genes in macrophage differentiation [51].

The confirmation of expected patterns and the hints of other unexpected patterns is a very

promising sign for the use of SOMs in the development of hypotheses and generation of

suggestions for further experimentation.

2.4 Applications of multivariate analysis techniques to pub

lished and simulated data

In order to gain a greater understanding of these techniques, I first apply the methods to

publicly available gene expression data from the publications noted above. Following the

success of these applications, an attempt is made to apply multivariate analysis techniques

to the EGF simulation data discussed in Chapter 1. The goal of this second effort is mainly

to see whether the encouraging results of the gene expression studies can be extended

to the study of protein concentration data. I am interested in what kind of information

about a signal transduction pathway could be learned from the application of multivariate

30

Dataset Type Size Source
gene dataset 1
gene dataset2
EGF dataset3
EGF dataset4
EGF dataset5

gene expression
gene expression

protein concentration
protein concentration
protein concentration

5766 x 14
676 x 15
23 x 9
23 x 61
23 x 51

Spellman elutriation synchronized cell cycle
Spellman cdcl5 data

EGF simulation
EGF simulation
EGF simulation

Table 2.1: Data sets analysed using principal components and self-organizing maps in Sec
tion 2.4.

techniques to protein concentration data. The data sets used in the following sections are

listed in Table 2.1.

2.4.1 Application of principal component analysis

A series of gene expression studies on the S. cerevisiae cell cycle are available from the

websites associated with the Pat Brown Lab at Stanford. The data used for the application

of PCA discussed here is from 14 arrays of elutriation (size-based) synchronized cell cycle

(gene datasetl) and 15 arrays where the cell cycle is synchronized by the arrest of a cdcl5

temperate-sensitive mutant (gene dataset2) [49]. Both data sets are obtained using the

same 6179 genes. The sets of arrays are both time courses: gene datasetl spans from 0 to

390 minutes measured every 30 minutes; gene dataset2 is measured every 20 minutes from

10 to 290 minutes.

Due to the confusion mentioned in Section 2.2.3, I have decided against using the

singular value decomposition as is done in the publications mentioned above. Instead, I

find the eigenvectors and eigenvalues directly from the covariance or correlation matrix.

Study 1

Using the elutriation synchronized cell cycle data (same data set as Alter, Brown and

Botstein), I eliminate the genes from the data set for which some values are missing. In

practice, it would be best to develop a method for approximating the missing values or

statistically accommodating such an occurrence in the analysis. However, given that the

data used for the analysis was reported to have no missing values [4], I chose the above

option. The remaining data is organized into a (14 x 5766) matrix (gene datasetl). The

reader may notice that this arrangement is contrary to the earlier statement that the more

31

covariance correlation
eigenvalues % variance eigenvalues % variance

0.6351 39.8765 4.3296 30.9261
0.3852 24.2163 3.6146 25.8188
0.1371 8.6078 1.1458 8.1842
0.0853 5.3555 0.8707 6.2193
0.0733 4.6019 0.7224 5.1601

Table 2.2: Eigenvalues and the proportion of the variance of the entire data set from the
first five principal components of gene datasetl

useful setup involves having the genes as the variables, which determines the number of rows

in the matrix. However, given that there are 5766 genes, the available computing space on

a machine of the Institute of Applied Mathematics lab is less than the approximately 2

Gigabytes [6] necessary to compute the eigenvalues of the (5766 x 5766) covariance matrix

in MATLAB. Thus I do the analysis using the arrays as variables.

I calculate both the covariance and the correlation coefficient matrices, with the aim

of discovering whether a large difference in principal components is seen between the two.

The eigenvalues of both matrices are listed in Table 2.2. The first 5 eigenvalues of the co-

variance matrix account for 82.7% of the variance in the data, while the first five eigenvalues

of the correlation matrix account for 81.0% of the variance. Thus, there is not a large differ

ence between the two approaches in terms of the proportion of information captured by the

largest principal components. The covariance principal components do attribute a larger

portion of the variance to the first principal component, however. The fact that a relatively

small proportion of the total variance is captured in the first principal components of both

approaches is perhaps indicative of the complexity of cell cycle regulation: that there are

many different correlations between the genes whose expression is being monitored.

Study 2

The second study yields more interesting results, since gene dataset2 is smaller, allowing us

to take the genes as the variables of the system. For this study, I use the cdcl5 arrays and

use only the 797 genes identified by Spellman as those involved in cell cycle regulation [49].

Genes with missing expression values are again removed, resulting in a (676 x 15) data

matrix. The covariance and the correlation coefficient matrices are each used to calculate

32

covariance correlation
eigenvalues % variance eigenvalues % variance
100.0816 36.7111 220.1517 32.5668
65.6441 24.0790 156.9503 23.2175
43.5826 15.9866 89.0825 13.1779
17.9742 6.5931 57.7077 8.5366
14.126 5.1819 48.8233 7.2224

Table 2.3: Prom Study 2: Eigenvalues and the proportion of the variance of the entire data
set from the first five out of 676 principal components for gene dataset2

the 676 principal components. For this example, one begins to appreciate the dimensional

ity reduction ability of PCA. At this point a perusal of the largest and smallest of the 676

principal components alone can be fruitful for studying the system. Note that the eigenval

ues from this study differ from those of Holter et al, in part because they have reported the

eigenvalues using the time points as variables, i.e. they report 14 eigenvalues, rather than

676. Another reason for the difference is that no preprocessing of the data is done here,

while Holter et al have normalized the data by removing the mean of both the genes and

the arrays and setting the standard deviations to 1.

The first five eigenvalues are listed in Table 2.3. The first five principal components

using the covariance matrix capture 88.6% of the variance in the data. Figure 2.4 shows the

behavior of the first five principal components over the time course of the arrays. Notice

the clear cyclical behavior, especially of the first two components. Using Equation[2.13] and

consulting the publication listing the genes in the study, I find that the gene that is most

correlated with the first principal component is cdc54- cdc54 is essential for the initiation

of DNA replication and is one of the key targets of the signal transduction pathways that

regulate the cell cycle mentioned in Chapter 1.

Figure 2.5 shows the plot of the coefficients of the first two principal components for

the covariance matrix (the coefficients are simply the eigenvectors of the covariance matrix).

The elliptical shape is the expected result of such a plot if the distribution of the data is

approximately multivariate normal [25]. Particularly, all genes that are the same distance

from the origin in this two dimensional space with the axes given by the eigenvalues fall on

the perimeter of an ellipse. However, notice that there are a significant number of points

scattered far outside the core. This indicates that differences in the range of the genes being

33

34

0.15

-0.15 -0.1 -0.05 0 0.05
Coefficients of second principal component

0.15

Figure 2.5: Plot of the coefficients of the first two components from the covariance matrix
of gene dataset2.

35

0-081 1 1 1 1 1 1 r

Coefficients of second principal component

Figure 2.6: Plot of the coefficients of the first two components from the correlation matrix
of gene dataset2.

measured affects the results and that correlation is likely a better choice. Figure 2.6 shows

the same plot using the correlation matrix and the results are drastically improved. Notice

that most of the points lie near the perimeter of a single ellipse.

Contrast these last images with the plot of the first and third components of the

correlation matrix in Figure 2.7. Here the shape of the ellipse is more elongated so there

seems to be a much larger range of values along the direction of the first principal component

than the third.

Study 3

I now proceed to an analysis of the data generated from the EGF simulation. Using the EGF

simulation I create two data sets: one with 61 time points (EGF dataset3) and one with 9

time points (EGF dataset4) over the same 120 second period. EGF Dataset4 emulates the

dataset from Kholodenko [29] in order to compare the results from applications using the

36

0.08

-0.08 1 1 • • 1

0
Coefficients of third prind pal component

Figure 2.7: Plot of the coefficients of the first and third components from the correlation
matrix of gene dataset2.

37

simulated data to those that could be obtained with actual experimental data. The number

of data points for the larger EGF dataset3 was chosen arbitrarily.

The principal component analysis is performed on both the 9 and 61 time point

data sets using the correlation coefficient matrix with the protein states as the variables.

Thus 23 principal components are obtained. Figure 2.8 shows the behavior of the first four

principal components over the time course for each data set. There is a greater amount

of detail revealed in EGF dataset3 as compared to EGF dataset4. Although the behavior

of the first component is similar in both data sets, the subsequent components show quite

different results. This is an important observation for experimentalists trying to decide on

the number of time points to include in a dataset.

The first component in both graphs of Figure 2.8 show the slow climb and leveling

off of concentration seen in the experimental results [29]. None of the first four components

of EGF dataset3 show the peak then decrease in concentration found in the experimental

results and in components 2 and 4 of EGF dataset4. The fourth component of EGF dataset3,

however, has a very similar pattern to the rate of EGFR dephosphorylation seen in the

computational results of Kholodenko.

One can compare the relative ease of interpreting the overall patterns in the data

using the principal components as opposed to the plot of the concentration of all the proteins

over time (Figure 2.9) even for such a small number of proteins. Notice that there are several

types of behavior visible in this graph:

• initially high concentration decreases rapidly, then stabilizes

• slow rise and leveling off of concentration

• slight rise in concentration followed by a slow decrease.

These patterns are comparable to the patterns seen in the time courses of the larger principal

components in Figure 2.8.

The percentage of the variance explained by each principal component is somewhat

difficult to interpret for the 9 point time course. Most of the eigenvalues were very small

or negative, with only the first 5 or 6 being of reasonable size for interpretation. For

the 61 point time course, however, the first five eigenvalues capture over 99% of the total

information in the data set. The eigenvalues for the first five principal components are listed

in Table 2.4.

38

o
re
D.

'g
a.

-300

-100
I

350

300

250

200

0

-20

-40

A

10

10

20

20

30 40

30 40

time points

50

50

f ^ i
i

— . : : : : : : _ _

1

Figure 2.8: Time courses for the first four components from the correlation matrix of EGF
dataset4 (top) and EGF dataset3 (bottom).

39

Time points

Figure 2.9: The concentrations of each protein in the network from EGF dataset4

EGF
eigenvalues % variance

15.9357 69.2856
4.4274 19.2494
1.8468 8.0297
0.6364 2.7671
0.1048 0.4559

Table 2.4: Eigenvalues and percentage of total variance for the first five principal compo
nents from the correlation matrix of EGF dataset3.

40

Number Protein Abbr. Actual Protein (Complex)
1 EGF Epidermal growth factor
2 R Epidermal growth factor receptor
3 Ra Activated receptor-EGF complex
4 R2 Dimerized receptor-EGF complex
5 RP Phosphorylated, dimerized receptor-EGF complex
6 PLC Phospholipase C-7
7 RPL Receptor-PLC complex
8 RPLP Phosphorylated receptor-PLC complex
9 PLCP Phosphorylated PLC
10 PLCP-I Phosphorylated PLC-inositol
11 GRB Growth factor-binding protein 2
12 RG Receptor-GRB complex
13 SOS Son of sevenless protein
14 RGS Receptor-GRB-SOS complex
15 GS GRB-SOS complex
16 SHC Src homology and collagen domain protein
17 RSH Receptor-SHC complex
18 RSHP Phosphorylated receptor-SHC complex
19 SHP Phosphorylated SHC
20 RSHG Receptor-SHC-GRB complex
21 SHG SHC-GRB complex
22 RSHGS Receptor-SHC-GRB-SOS complex
23 SHGS SHC-GRB-SOS complex

Table 2.5: A numbered list of the proteins and protein complexes involved in the early
events of the EGF signal transduction pathway.

The plots of the coefficients are particularly interesting. As shown in Figure 2.10,

the proteins all fall around the perimeter of an ellipse. The most pleasing feature, however,

is the appearance of the proteins in distinct groups around the perimeter. This is the first

indication that the protein data also appears to contain natural grouping, a fact that I shall

confirm using clustering. Notice also that EGF dataset3 gives more precise information on

the location of each protein in the two dimensional space. Thus points that were super

imposed in the results of EGF dataset4 are now distinguishable. Note that the numbers

associated with points of the plot designate proteins of the pathway, as listed in Table 2.5.

2.4.2 Application of SOMs

Next I create SOMs for the simulated EGF data. All SOMs are created using GeneClus-

ter [1]. This convenience comes at the expense of flexibility in choosing certain aspects of

41

0.3

0.2

0.1

•S -o.i

-0.2

1 0 1 9 3 : 2 1 2 3
€ ° a ° i
12 14

° 9

8

2 ° r>
15 P 13

11
O
16

O
6

-0.3 1 —
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

Coefficients of second principal component
0.3 0.4 0.5

0.3 r

0.2 \

0.1

-0.1

-0.2 \

-0.3 1 —
-0.5

1
<©

2-

as
•O 11

° 1 «

10

Q6

d 9
 2 1

O
•14-

23

O 17

„ 20
4 . ^ 1 : 8

0 8

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2
Coefficients of second principal component

0.3 0.4 0.5

Figure 2.10: Plots of the coefficients of the first two components from the correlation matrix
of EGF dataset4 (top) and EGF dataset 3 (bottom).

42

cO: 9

k

u l : 2 cO: 9

k

e2: 1 c3: 11

\

1 \
Figure 2.11: Centroid time courses for the 4 cluster SOM of EGF dataset5.

the process such as the lattice shape. All lattices are rectangular, but the number of nodes

and the number of rows and columns in the lattice are chosen by the user. Note that all

data sets used for clustering are first normalized using GeneCluster to a zero mean and

standard deviation of 1.

The first clustering of the EGF data is done using a data set with 51 time points

(the default time step for Gepasi, the data simulation software [36]), designated as EGF

dataset5. The results of the PCA shown in Figure 2.10 lead us to attempt a clustering with

4 lattice nodes, since the data appears to contain 4 natural groupings. The results of this

clustering are shown in Figure 2.11. The time courses of the two most populated clusters

agree with the patterns observed in Kholodenko [29] and seen in Figure 2.9. I also create a

SOM with 6 nodes, and the results are shown in Figure 2.12. The 6 cluster SOM captures

more details, especially in the early moments of the reaction.

I create SOMs for EGF dataset4, which has fewer time points. These SOMs are

not entirely successful, as some clusters are left blank. That is, in a clustering using 4

nodes, only 3 nodes actually settle on data points. This is presumably a result of a node

following one or two data points until those points merge with another cluster. This is

likely a problem caused by both the small number of proteins and the reduced number of

time points. Nonetheless, the clusters that do contain proteins show similar results to the

previous clustering with EGF dataset5: the two main patterns are a gradual increase and

an early peak followed by a leveling off. These patterns are actually clearer in the SOM of

43

to: 7 c i : 1

r

C2. 6

c3: 2

^^^^^^

!

c l : 2

I
C5. 5
ll

V
Figure 2.12: Centroid time courses for the 6 cluster SOM of EGF dataset5.

tO: 10

0
i

f , V \

/ X
I •—*-—*

i
J
1 1

4

c3: 7

\
Figure 2.13: Centroid time courses for the 4 cluster SOM of EGF dataset4.

EGF dataset4.

I conducted preliminary studies investigating the effect of lattice shape. The ar

rangement of the nodes does appear to affect the clustering in some cases, however no

overall "best" shape can be determined based on the results thus far.

To investigate the effect of changing the initial EGF concentration on the clustering

results, simulations were created with initial EGF concentrations. Some shuffling between

clusters is observed. In particular, PLC-P, SHG, SHGS, and PLC move to different clusters

at different initial concentrations of EGF. None of these shufflings reflects a major change

in behavior over time (a transient to sustained concentration increase, for example). The

reasons for the shuffling between clusters are not known.

44

Figure 2.14: Clustering of the proteins of the EGF pathway. The results are from a 6 cluster
SOM of EGF dataset5. The circles represent the nodes of the network and are arranged in
the lattice shape used for the creation of the SOM. The numbers correspond to the proteins
listed in Table 2.5

2.5 Discussion of multivariate analysis results

In the study by Holter et al, the grouping of genes in the principal component analysis of

gene expression data is similar to the clustering of the genes. Is this also the case for the

analysis of the simulated EGF pathway data?

Figure 2.14 shows the grouping of proteins from a 6 cluster SOM of EGF dataset5.

If one compares these results to the results of the principal component analysis shown in

Figure 2.10, one finds that the groups of proteins in the plot of the component coefficients

are the same as the clusters of the SOM.

There are two other questions that I would like to address:

1. Is the placement of the groupings in Figure 2.10 significant in some way?

2. What is the connection between proteins in a cluster?

To investigate these questions, I create Figure 2.15 so that the position in the path

way of the cluster members can be visualized. There are no obvious similarities in function

between members of a given cluster. That is, proteins within a cluster share similar patterns

of activation, but don't appear to share any specific role in the pathway, nor have the pro

teins been grouped as phosphorylated/nonphosphorylated, say. It does appear that most

protein complexes involving the EGF receptor are clustered together, with the exception of

RG and RGS, but this could definitely be specific to this application.

PCA and clustering should be applied to data from several different pathways to

45

further investigate the relationship of proteins within a cluster. I believe that the identi

fication of relationships within a cluster is complicated in this case by the fact that the

members of the pathway are not individual proteins, but are complexes of proteins. Thus

comparisons of amino acid sequence homology, for example, can not be performed. If the

clustering could be done on data for individual proteins, then perhaps further similarities

within clusters could be identified.

The results of this study do show that there appear to be natural groupings in the

data and that, multivariate analysis allows an investigator to study the time courses and

relationships of these groupings.

One suggestion for future studies of signal transduction pathways using multivariate

techniques, is that the number of components should be increased. The methods presented

in this chapter are intended for studying large data sets, such as the gene expression datasets

obtained from microarrays. Thus, I recommend including more pathway components in

future studies of this sort.

47

C h a p t e r 3

Reverse Engineering of Genetic

Networks

This chapter covers several reverse engineering efforts for investigating networks of genes.

Although our research is aimed primarily at signal transduction pathways composed of

reactions between proteins, it is instructive to study genetic network techniques, in the

hope that they will also be applicable to protein pathways. We first consider some of the

differences between protein and gene networks.

A graphical representation of a network consists of a set of nodes and a set of edges

joining pairs of nodes. Let the nodes represent proteins in the case of a signal transduction

pathway and genes in the case of a genetic network: what do the edges in each of the

graphs represent? In the case of a gene network, there does not seem to be a specific

meaning attributed to these connections. Generally, genes don't affect each other in a

direct way, that is, they don't interact physically. An edge between two genes in a network

really represents the idea that a change in the activity of gene A will cause some change in

the activity of gene B. This change is the result of the transcription and translation of gene

A and the subsequent activities of its gene product (possibly in a signaling pathway).

An edge between two protein nodes represents a more direct connection, specifically

that two proteins are involved in a chemical reaction. The form of this chemical reaction

(a complex forming, a phosphorylation, a degradation) is not necessarily known, but actual

physical effects are implied. In Chapter 4 it becomes evident that the fact that the edges

of the graph have a specific nature affects the adaptation of these gene network methods to

study protein interactions.

48

Another important difference between gene and protein network determination is

the available data. Because the effects of gene interactions are not directly transmitted,

the time scale is much slower. Thus, current technology is capable of capturing adequate

snapshots of the steps of the interactions. On the other hand, protein reactions occur within

seconds and so many steps in.a pathway may be carried out between measurements. This

should also be taken into account when attempting to draw inferences about a series of

connections between proteins.

Despite these differences, it is advantageous to study the methods presented here.

Both gene and protein networks are large, complex biological systems involved in regulating

cell function. Also, most reverse engineering attempts of the kind described in this chapter

have only been applied to the more readily available gene expression data and, thus, are our

only guidelines. This chapter introduces three reverse engineering methods: one for discrete

Boolean networks, one incorporating continuous gene regulation, and one using Bayesian

networks.

3.1 Discrete Boolean Networks

A discrete Boolean network is a model of a system at specific time points using binary values

to indicate the state of each component of the network. In the case of a genetic network,

the state at time t of the network is given by a value of 1, to indicate that the gene is "on"

or a value of 0, to indicate that the gene is "off", for each gene in the network. Here, "on"

implies that the gene is expressed above a specified threshold. The network evolves to a

different state at the next time point based on logical rules that dictate the interactions

between genes. For example, consider the network of 3 genes A, B, and C, whose rules of

interaction are:

A = B

B = ^{AAC) (3.1)

C = A A B A - i C

where T-> denotes the logical "not" and A denotes logical "and" . Given these rules and a

starting state, the network of genes evolves as shown in Figure 3.1.

The goal of reverse engineering the network is to determine these logical rules, and

thus to be able to predict the evolution of the network over time. To find these rules, first

49

B c
0 0 1

0 1 0

I
1 1 0

1
1 1 1

I
1 0 0

1
Figure 3.1: The evolution of a three component discrete network according to the rules
given below.

measure the gene expression of all the genes in the network many times for each state.

This could correspond, for example, to running different experiments and assaying the gene

expression of every gene over a series of time points. One then quantizes the data to binary

data based on some threshold of expression value. A t this point one can attempt to make

inferences about the logical rules that could produce state (t + 1) from state t.

The rest of this section describes one algorithm that finds these logical rules that

define a discrete Boolean genetic network. This Reverse Engineering Algor i thm (R E V E A L) ,

was developed by Liang, Fuhrman, and Somogyi and presented at the Pacific Symposium

on Biocomputing (1999) [34].

3.1.1 Shannon Entropy and REVEAL

A table of binary data is compiled for the activity of each gene (0 ="off", 1 ="on") at

successive time points t and t + 1, as shown in Table 3.1. The goal is to discover the

underlying rules of the network that created this data. One might ask the question: given

that gene A has a value of 0 at time t, what is the probability that gene B has a value of 0

at time t+11 In some sense, one is asking what level of uncertainty remains in determining

the value of B once the value of A is known. This provides a measure of the influence of

50

Time t Time t+1
Assay A B c A B c

1 0 0 1 0 1 0
2 1 0 1 0 0 0
3 1 1 1 1 0 0
4 0 0 0 0 1 0
5 1 0 0 0 1 0
6 0 1 1 1 1 0
7 1 1 0 1 1 1
8 0 1 0 1 1 0
9 1 1 1 1 0 0
10 0 0 1 0 1 0

Table 3.1: Compiled binary data for the three genes at time points t and t + 1.

gene A on gene B .

The role of uncertainty involved in a choice can be quantified by a measure called

Shannon entropy, introduced in the landmark work by C.E. Shannon for the study of discrete

signaling systems, such as telegraphy [47]. Suppose that the random variable X takes the

value x with probability p(x). The Shannon entropy of X is given by

tf(X) = - J > (x) l o g 2 p (x) (3.2)
X

One can calculate the probabilities p{x) from Table 3.1. Given the probability p(0) of

gene A being off and the probability, p(l), of the gene being on (p(l) = 1 — p(0) since

the probabilities must sum to one), it is possible to calculate H(A) to find the level of

uncertainty in choosing the state of A. Note from Equation (3.2) that H takes its maximum

value, equal to one, when all states are equally probable (p(0) = p(l) = 0.5).

Returning to the earlier network example: for time t we can calculate the sample

probabilities of a gene begin "on" or "off' from Table 3.1. For gene A , for example, the

gene is "on" (has an activity level of 1) 5 times out of a total 10 measurements. Thus

p(l) — 0.5 for gene A at time t. Using these probabilities, we can calculate the entropies

51

from Equation 3.2:

H(A) = H(B) = -0 .5 log 2 (0 .5) - 0.51og2(0.5) = 1

H(C) = -0.41og 2(0.6) - 0.61og2(0.6) « 0.97 (3.3)

There is a high degree of uncertainty as to what the state of each gene will be in this example.

If, on the other hand, p(0) = 0.9 and p(l) = 0.1 for some gene X , then H(X) « 0.47, which

reflects the fact that one would expect X to be in the off state with high probability. (Thus

there is not a lot of choice involved in determining the state of X.) This feature characterizes

Shannon entropy.

We are interested in determining relationships between sets of genes in a system

where, potentially, many genes play a role in regulating a single gene. Thus, one would also

like to quantify the entropies of combinations of elements of a network. The joint Shannon

entropy of two random variables, X and Y , is

H(x,Y) = -52Y,p(x>y)l°tep(x>y) (3-4)
x y

This definition can be extended to find the combined entropy of n random variables:

H(X1,X2,... ,Xn) = -'JT^ - • •'JPp(x1,x2,... ,xn)log2p(xi,x2,... ,xn) (3.5)
X \ X2 I n

A definition of conditional entropy follows from the previous results: H(X\Y) mea

sures the uncertainty left in the determination of X once information about the value of Y

is known. The conditional and joint entropies are related by:

H(X, Y) = H(Y\X) + H{X) = H(X\Y) + H(Y) (3.6)

3.1.2 R e c o g n i z i n g dependence be tween genes

The motivation of R E V E A L is to discover what combination of input elements of the genetic

network determines the output expression of each gene. The key to accomplishing this goal

for a given element, Y, using Shannon entropies is to find the set of elements X\,..., Xk

such that

H(Y,X1,...,Xk) = H(X1,...,Xk) (3.7)

52

To describe the above statement in the language of the previous section, the uncertainty in

choosing the states of all of Y, X\,..., Xk is the same as the uncertainty in the choice of

X\,..., Xk- So, no new information is needed, no uncertainty added, in determining Y in

addition to this set of elements. Thus, the state of Y must be completely determined by

this set of elements.

Once this set of genes is found, it remains only to find the logical rule that specifies

the state of Y given a combination of input states for the set. This rule is determined by

examining the table of values (drawn from the data used to determine the probabilities p(x)

initially) of the input values from X\,..., Xk and the output of Y.

3.1.3 The REVEAL method

Now that the dependence of a gene on a given set of genes can be recognized, a systematic

method for finding such a match needs to be determined. R E V E A L proceeds as follows:

Test 1: On ly one other gene determines the state of gene Y : Search for matches

using single input rules. Such a match involves either the relationship

t t + 1

X Y

1 1

0 0

or

t t + 1

X Y

1 0

0 1

that is, equality or inequality. Thus, for a given gene, Y, test each gene Xi to see

whether H(Y,Xi) — H(Xi). If such an Xi is found, then we have identified the gene

that completely determines the output of Y . At this point, construct a table of values

with input (t) values of X-L and output (t + 1) values of Y from Table 3.1 to determine

the rule that governs the output for Y. If no such Xi is found, then Y is not completely

determined by any one single gene in the network.

Test 2: Two genes determine the state of gene Y : A l l combinations X i , are tested

as inputs determining the output of each gene that has not yet been assigned a one-

input rule. So, for each remaining gene Y , test H(Y,Xi,Xj) — H(Xi,Xj) for all

combinations (i,j) where i ^ j.

53

Test k: k genes d e t e r m i n e t h e s ta te o f gene Y : This process is continued until ei

ther the rule for each gene is determined or a specified maximum number of allowed in

puts is reached (the reason for this upper limit is discussed below). Thus, at step k, all

fc-tuples of genes are tested to determine whether H(Y, X\,... \ Xk) = H(X\,... ,Xk).

Consider the example network: At denotes the input value of gene A and At+i

denotes the output value of gene A. Calculate the entropy of each genes at time t and the

joint entropies at time t + 1 for each gene with respect to all input genes:

H(At) = l H(At+1,Bt) = l H{Bt+l,At) = lA9 H(Ct+i,At) = 1.36

H(Bt) = l H(At+1,Ct) = 1.97 H(Bt+1,Bt) = 1.85 H(Ct+i,Bt) = 1.36

H(Ct) = 0.97 H(At+l, At) = 1.97 H{Bt+1, Ct) = 1.57 H(Ct+1, Ct) = 1.30

The only match for H(Y,X) = H(X) is H(At+i,Bt) = H(Bt). Thus the output of B

depends on A. To determine the rule describing this dependence, a table of values is

extracted from Table 3.1:

Bt At+i

0 0

0 0

1 1

0 0

0 0

1 1

1 1

1 1

1 1

0 0

So the rule is At+\ = Bt.

Proceeding in the same way, one can determine all the 2-input-gene rules. A match

is obtained for H(Bt+i, At,Ct) = H(At,Ct). Looking at the table of values:

54

At ct Bt+i

0 1 1

1 1 0

1 1 0

0 0 1

1 0 1

0 1 1

1 0 1

0 0 1

1 1 0

0 1 1

the rule is Bt+\ — (A A C)'. The 3-input-gene rule for C is determined in a similar way.

3.1.4 Dif f icu l t ies w i t h R E V E A L I m p l e m e n t a t i o n

There are several difficulties involved with the actual implementation of the R E V E A L

method. On one hand, there is the problem that as k (the number of genes involved

in input rule) increases, the computational expense involved in determining the Shannon

entropies for testing each fc-tuple increases quite significantly. Even though the number of

rules remaining to be determined decreases as successful matches are found, the number of

combinations to be tested in each iteration increases much more quickly. For a network of

n genes there are (£) combinations to test in the kth iteration for each remaining gene.

Also, it seems that even once a match has been made between a set of input genes

and a given output gene, determining the rule which governs the relationship from a table

of values would become increasingly difficult as k increases. The creators of R E V E A L have

also found that the accuracy of the matching decreases as k increases and as the number of

trials (input-output pairs) decreases.

Another difficulty in the application of R E V E A L to a real data set obtained, for

example, from a set of microarrays, is in converting the expression values to binary values.

The authors of R E V E A L mention the possibility of extending the method from Boolean to

multiple-state values. This would likely allow more of the fine details of a real biological

network to be included, although the problem of determining thresholds for the quantization

of the data remains.

55

However, despite these difficulties, the method has successfully identified connections

in artificial networks containing rules up to k = 3. The authors suggest that parallelization

and the use of wiring and rule constraints to limit the search space will improve the efficiency

and thus the applicability of REVEAL [34]. It has been suggested that methods such as

clustering may be useful in the identification of wiring constraints by reducing the number

of components in the network. Also, it would certainly be a great advantage if biological

information about networks in general as well as a specific network being investigated, could

be integrated into REVEAL to decrease the size of the search space of possible inputs for

each step.

3.2 Continuous expression and regulation

Some features of gene and protein regulation and interaction are poorly represented using a

Boolean network. For example, genes may have different regulatory influences at different

levels of expression, and may regulate other genes to varying degrees. As well, the need

to specify a fixed number of regulatory inputs with a Boolean network limits the ability to

fully describe the interactions taking place.

The models offering continuous expression and regulation fall into two categories:

discrete and continuous time. I will discuss an example of a discrete method formulated by

Weaver and Workman. Although the treatment of the problem using a discrete time system

means a loss of realism in the model, this simplification has the advantage of making the

problem computationally tractable and also requires fewer data points for the purposes of

reverse engineering the regulatory networks.

In the model, a vector, u, represents the expression state of the network at time t.

The amount of gene i expressed at time t is given by In addition, a weight matrix,

W, is defined to represent the regulatory interaction between the elements in the network

(e.g. genes). Each row of the matrix lists all the regulatory inputs for one gene, where

• Wij > 0 =>• stimulation of transcription of gene i by gene j

• Wij < 0 =>• repression of transcription of gene i by gene j

• Wij =()=>• gene j has no effect on the transcription of gene i

Using these values, the regulatory influence of all other genes on gene i can be

56

quantified by summing the influence of each gene multiplied by the activity level of that

gene at time t:

= (3- 8)
3

In other words, the regulatory control of one gene is a linear superposition of the influences

of all other genes in the network, weighted by relative "connection strengths" Wij.

The next step is to calculate the response of each gene to its regulatory input. This

is done via a nonlinear dose-response (or "squashing") function:

^ t + 1) = l + e-(t<(«)+ft) ^
Included in this function are two gene-specific parameters, ai, a positive real number and

/3j, which can be any real number. These parameters define the shape of the dose-response

curve for each gene, as pictured in Figure 3.2.

The output of this function is a number between 0 and 1 for each gene. To convert

this number into a value comparable to realistic data output from a gene expression assay,

the number is multiplied by a "maximal expression level", which corresponds to the expected

or observed maximal expression for each gene.

Reverse engineering is performed with this model using a neural network approach:

gene expression data for all the genes in the network are divided into a training set and a

test set: the trials of the training set will be used to fit the parameters of the weight matrix

and the test set (of at least one trial) is used to test the accuracy of the results produced

with these fitted parameters. The gene expression data is ideally obtained from actual

experiments using microarrays. The expression values of each gene over the set of arrays is

normalized relative to the given gene's maximal expression value. These normalized values

are compared to the Xi values during training.

Once the network is trained and tested, the weight matrix defines the connections

between all the genes in the network. At this point, the weight matrix can be used to predict

the effect of perturbations to the system, such as a mutation of a gene of the network.

Several assumptions are made in order to simplify the process of fitting the weight

matrix parameters. In order to determine one row of the matrix at a time, it is assumed

that the regulation of each gene is an independent event. This is not a valid assumption

for all biochemical systems. The advantage of this simplification is that the fitting problem

57

58

is divided into smaller cases, and thus a smaller data set can be used to fit a smaller set

of parameters. Given a larger data set, it would be interesting to compare the results of

performing the training on the entire weight matrix to those of training each row of the

matrix under the independence assumption.

Another problematic assumption is that of a linear regulatory relationship between

genes. Specifically, it is not obvious that there should be such a direct relationship between

a gene's expression level and the active amount of it's resultant gene product produced. It

is the activated protein that would be involved in the regulation of other genes.

A problem that arises directly from the method is that of the maximal expression

level. The designation of such a value would likely require a literature search to determine

what the common expression values for a given gene are. Since the aim of this work is to

also consider systems for which complete data is not yet available, this could be a difficulty.

Even assuming that a reasonable estimate for this value could be made for each gene from

the maximum value observed over the set of assays being used as data, fitting for those genes

that are being expressed at maximal levels or that are nearly repressed will be subject to

errors [55]. This can be seen from the squashing function, Equation (3.9), whose tails map a

fair range of ri(t) values at the extremities to a small range of Xi(t) values. This makes highly

expressed or repressed genes more sensitive to noise and means that it is more difficult to

obtain good values when "desquashing" to obtain real expression values for interpretation

of the model.

An admirable feature of this model, however, is the ability to include the effects of

environmental factors on expression using environmental variables added to the input vector

and weight matrix. That is, by adding an extra column to the weight matrix, the influence

of an environmental factor on the transcription of all genes in the network can be modeled.

These influences are important since, as mentioned in Chapter 1, signal transduction is

sensitive to the current state of the cell and its surroundings.

3.3 Bayesian networks

The Bayesian network approach to the problem of recreating biological connections between

molecules or genes moves away from the rule-based system seen in Section 3.1 and into the

domain of the probability and decision theory of expert systems. These new elements allow

59

the incorporation of uncertainty in the evaluation of networks. Uncertainty in observations,

incomplete data, non-deterministic relationships, and other sources of uncertainty are com

monplace in the study of gene and protein networks. Thus this approach is ideal for the

study of these systems.

Expert systems are intended to replace the human "expert" decision maker with a

computational counterpart. Early expert systems were purely rule-based. Initial attempts

to use probability theory in expert systems [16] hit a roadblock of limited computational

power and the idea (and its unmanageable calculations) was abandoned for over 10 years.

In 1986. Pearl introduced Bayesian networks to expert systems [42] and in 1989 Andreassen

et al [5] created MUN1N, a real-world expert system which could perform disease diagnoses.

MUNIN was the first example of Bayesian networks in an expert system. There are two

early applications of Bayesian networks to gene expression data. Friedman et al (2000) [14],

the first to use Bayesian networks to study gene expression data, attempt to determine

connections between genes by identifying salient features in networks that score well against

the data. Hartemink et al do not begin from merely a set of genes of interest, but from full

models representing competing hypotheses for a real biological system. These approaches

encounter some similar problems and some problems unique to their chosen method. The

focus in this discussion of Bayesian networks is on explaining the nature of such a network,

its advantages for studying biological systems, and the case study performed by Hartemink.

There are many problems inherent in the study of gene expression data, some of

which I have touched upon in earlier sections. For instance, the noisy and often incomplete

nature of the reported data is sometimes not quantified using statistical measures. The

amount of data is often limited in size and nonuniform, having been obtained from a series

of distinct experiments. As well, in many of the analyses that have been discussed thus far,

the complex nature of the relationships between elements of a biological network has not

been properly addressed.

The use of Bayesian networks is advantageous in dealing with several of these issues.

As opposed to REVEAL, for example, the number of elements controlling the expression of

a given gene is not fixed. This allows more flexibility in modeling the interactions between

elements of a network. Because Bayesian networks use probabilities in quantifying the fit

of a model, they are less sensitive to noisy and incomplete data [17]. As well, Bayesian

networks allow for the inclusion of unobservable factors in the model, as discussed below.

60

Another advantage of this approach is that the networks are easily interpret able,

clearly specifying the dependencies between elements of the network. Also, there are by

now many examples in other fields of training Bayesian networks from actual experimental

data, and thus many obstacles have already been tackled.

3.3.1 The structure of Bayesian networks

Bayesian networks offer flexibility in describing a network. This is a valuable asset when

considering their use for representing cellular signaling systems, which are widely diverse. A

Bayesian network accommodates this diversity in the definition of its variables, which repre

sent events. For example, an event could be a certain expression value of a gene. Variables

may be either discrete or continuous and can have any number of mutually exclusive states.

Thus one net could be used to model both proteins and gene expression, say, which are

measured on quite different time scales. Variables can be information variables, which are

observable quantities, or latent variables, which are unobservable quantities. This permits

the inclusion of factors of suspected importance in the model, despite the fact that these

elements may not be directly measurable.

Borrowing the notation of Friedman et al, the n nodes of a graph, G, are defined to

be the set of random variables X\,... ,Xn, where a given random variable Xi takes on a

value Xi belonging to the state set of Xi. As noted above, this state set may be continuous or

discrete and of any size (finite or infinite). For all cases considered below, random variables

take on discrete values from a finite range.

A Bayesian network is a representation of a joint probability distribution using a

directed acyclic graph (DAG). A directed graph consists of a set of nodes, as defined in

the preceding paragraph, as well as a set of directed edges (arrows) connecting the nodes.

The acyclic property of a DAG requires that no path following the directed edges of the

graph can return to the starting node of the path. Given that a DAG specifies a directed

relationship between nodes, a given node X has:

• a set of parents, pa(X), that point directly to X.

• a set of children that are pointed to directly from X.

• a set of descendants that are reachable by traveling on a path starting at X and

following the directed edges of the graph.

61

So, for example, in Figure 3.3, pa(Xt) = {X2,Xs}. In this same network X2 is

the only child of X\, since it is the only node pointed to directly from X\. The set of

descendants of X\ is {X2, X3, X4}, however.

A DAG that provides the topology of a Bayesian network defines a set of conditional

independence statements between nodes of the graph based on the following property:

E a c h v a r i a b l e is c o n d i t i o n a l l y i n d e p e n d e n t o f a l l n o n d e s c e n d e n t
(3.10)

v a r i a b l e s g i v e n i t s p a r e n t s

That is, once the parents of node X are known, information about nodes not descended

from X can provide no more information about the probability of X begin in a given state.

The mathematical representation of conditional probability is P(A\B) = x, which

means that if B is known and everything else known is irrelevant to A, then P(A) = x.

Now the concept of conditional independence above can be defined.

D e f i n i t i o n 1 The variables A and C are independent given the variable B if

P(A\B) = P(A\B,C) (3.11)

This means that C provides no further information on the state of A. Several other results

from probability are required to form the basis.of this discussion of Bayesian networks.

First,

T h e f u n d a m e n t a l r u l e for p r o b a b i l i t y c a l c u l u s

P(A,B\C) = P{A\B, C)P(B\C) (3.12)

One can derive from these rules and definitions Bayes' Rule upon which the Bayesian scoring

metric is based:

B a y e s ' r u l e

(3.13)

Since a Bayesian network is a DAG whose nodes satisfy condition (3.10), the joint

probability distribution of a Bayesian network can be written in the product form (also

62

Figure 3.3: An example of the graphical structure of a Bayesian network

called the chain rule):
n

P(Xl,...,Xn) = l[P(Xi\pa(Xl) (3.14)

Consider an example of a Bayesian network with the structure depicted in Fig (3.3):

the joint probability in this case, derived from (3.14), is given by

This joint probability and the graph that it represents are what one is trying to find

for a given set of genes represented by the nodes (variables) of the graph.

Consider the three different connections that are present in the example graph:

S e r i a l C o n n e c t i o n There is a serial connection between X\, X 2 , and X3. Information

about the state of X\ will affect our knowledge about both X2 and, through X2,

X3. However, if the state of X 2 is known for certain, then information about X% no

longer has an influence on our knowledge of X3 and vice versa. That is, when X2 is

instantiated, X\ and X3 are conditionally independent. Thus, in a serial connection

such as this, X\ and X3 are said to be d-separated given X2-

D i v e r g i n g C o n n e c t i o n In a diverging connection, two children are d-separated given a

common parent node. There is a diverging' connection between nodes X2, X3, and

X4. That is, knowledge is transmitted through X2 between X4 and X3 unless X2 is

P{Xi . . . ,X5) = P (X 1) P (X 2 | X 1) P (X 3 | X 2) P (X 4 | X 2 , X 5) P (X 5) (3.15)

63

instantiated.

C o n v e r g i n g C o n n e c t i o n Nodes X$, X4, and X2 form a converging connection. In the

case of a converging connection, there is no transferal of information between parents

through a node until that node is instantiated. In this type of connection, the parents

of the hub are conditionally dependent.

It is now possible to outline the properties of the example Bayesian Network of

Fig (3.3). Let I(A;B\C) denote that A is conditionally independent of B given C. Then,

keeping property (3.10) in mind:

• The joint probability of the network is given by Equation (3.14).

• The independencies of the network are

/ (X i ; X 5) I(X2;X5\X1)

I(X3;X$,X4, X\\X2) I(X/L\X\, X 3 I X 2 , X$)

I{X5',Xi,X2,Xs)

With these two points, one can describe the interactions between nodes in the network. For

the application considered in this study then, these describe the connections between genes

in a genetic network model.

A final point about independence statements in Bayesian networks: if two graphs

have the same set of independencies, then they are said to be equivalent. This point

is important in that equivalent networks are indistinguishable using the scoring method

described below. Thus the search for a model is actually the search for an equivalence

class of models. The correct graph within the class would still need to be determined

subsequently.

3.3.2 Training Bayesian networks

The goal of training a Bayesian network to experimental data is to find a model whose

structure and set of probabilities are best able to reproduce the data. It must also be kept

in mind that the collected data represents just a sample of the actual distribution of data

that must be modeled by the chosen network. Mathematically, the problem is to search

for the model, M, with the highest probability of being correct given the data, D. Thus

P(M\D) must be maximized. P(M\D) is evaluated using Bayes' rule. The Bayesian score

64

is obtained by taking the logarithm of both sides of Equation (3.13) to get:

Score(M) = log(P(M\D))

. l o g (™ p } (3 , 6 ,
= log(P(£>|M)) + log(P(M)) - log(P(D))

The third term of the righthand side of Equation (3.16) is the log of the prior

distribution of the data. Since this value is independent of the model, it plays no role in the

search for an optimal M. Also, one may assume at this stage that all models are equally

probable, which means that P(M) are all equal. Thus, the key to the scoring metric is the

term log(P(7J>|M)) which represents the logarithm of the likelihood of a model given the

data [24].

The task of calculating the likelihood is less than straightforward and the method

chosen to perform this task depends on the state of the available information about the

network. Keep in mind that in order to define the model, both the structure of the graph

and the probability distribution, as in Equation (3.14) must be chosen. For example, if the

structure of the graph is already known and the experimental data set is complete (that is,

there are no latent variables or missing data points in the data set), then a maximization

of the likelihood is relatively straightforward. However, if the graph is unknown or there

are latent variables included, then graph fitting or estimation-maximization (EM) methods

respectively are attempted [39].

In the most difficult case (the case of interest here), where both the structure is

unknown and the data incomplete, several approaches may be attempted. In a fairly small

network, EM methods combined with graph searches may be sufficient, possibly with the

help of some stochastic sampling, as described below. For larger networks, the exact solution

of such a problem is not a feasible option computationally. There are examples of networks

where exact inference is indeed possible, but for which the calculation time of such a solution

is prohibitive on today's computers. [22] Several methods of finding an approximate solution

exist. These methods fall mainly into three categories:

P a r t i a l e x a c t e v a l u a t i o n In this method, the exact inference is calculated, but some

variables are held fixed.

65

V a r i a t i o n a l a p p r o x i m a t i o n This method applies the Law of Large Numbers to dense

graphs. Probabilities that are difficult to calculate are approximated using the means

of the distributions. This method is recommended by Hartemink [17] as a good

choice for large biological networks. However, I question whether large networks are

sufficiently dense for the approximation to be valid, since it seems that an increase

in the number of nodes (for a protein network at least), would not correspond to a

significant increase in the number of parents and children for each node.

S t o c h a s t i c s a m p l i n g Stochastic methods such as Importance sampling and Markov Chain

Monte Carlo methods [13] involve random sampling from a simpler distribution to ap

proximate the results of using the actual distribution. These methods tend to be slow

for larger networks, but generally yield good results.

3.3.3 Hartemink case study

Hartemink et al (2001) [17] use Bayesian networks to study genes regulating galactose

metabolism in S. cerevisiae. The application involves using the Bayesian scoring metric to

compare two competing hypotheses of regulation. The two hypotheses concern the causal

relationship between the gene Gal4 and its gene product and the product of the gene

Gal80. The issue that differentiates the hypotheses is whether Gal80 regulates Gal4 at the

transcription stage or posttranslationally. In the former case, there would be a causal link

between Gal80 protein and the Gal4 expression, while in the latter case Gal80 would affect

the Gal4 protein.

For the network formulation of the hypotheses, the genes are information variables

since expression values are available from 52 Affymetrix GeneChip oligonucleotide arrays.

It is notable that none of the gene expression assays were initially performed to target

the specific problem being posed. This means that although the data is not selected or

biased towards finding a specific result, the Bayesian network is capable of determining the

underlying model. The state of the protein products in this example are included as latent

variables in the network.

The gene expression data is converted to binary values. Although the use of variables

that take on continuous values is possible with Bayesian networks, quantization is more in

cases where only a small number of data sets are available.

66

Gal80p GalSOp

GaHp » Gal2m

Gal4m

Gal4p >j Gal2m

GaHrn

Figure 3.4: The two hypotheses being compared using Bayesian scoring. The model on
the left represents an outdated hypothesis and that on the right represents the currently
accepted system. The genes, whose values are measurable, are shown in boxes, while the
gene products are included in the model as latent variables.

The results of the model scoring are positive: the currently accepted hypothesis, that

Gal80 acts on Gal4 posttranslationally, is calculated to be more likely than the previously

accepted hypothesis. Both hypotheses are shown in Figure 3.4. To support these results, all

possible nonequivalent models of the connections between Gal80, Gal4, and another gene,

Gal2 are compared. Those models with a link between Gal80 and Gal2 score higher than

those without, which suggests that Gal80 and Gal2 are not conditionally independent given

Gal4. This is in keeping with the successful hypothesis.

3.3.4 Annotated edges

With the method outlined above, it is possible to obtain information on likely dependencies

between elements of the system. A direction is associated with each edge of the net, however

there is no further clue as to the type of dependency the edge between the two variables

represents. Thus, annotations are assigned to each edge as follows:

• X —» Y =>• arbitrary dependence of Y on X.

• X —>(+) Y the probability of Y being "on" is greater when X is "on" than when X

is "off", independent of the values of other parents of Y.

• X —»(~) Y =>- the probability of Y being "on" is greater when X is "off" than when

X is "on".

67

(a) (b)

(c)

Figure 3.5: Three possible annotated Bayesian models. The question raised in the text is
whether (a) would receive a worse score than (b), given that (c) is the true model.

• X — Y =4> the dependence between X and Y is not arbitrary, but the correct

designation is undetermined.

The modifications to the scoring method to accommodate the annotations involve con

sidering only those distributions that satisfy the annotation constraints in calculating the

likelihood of the model.

The results of adding annotations are not completely positive. In fact, the annotation

(-) of the edge between Gal80 and Gal2 resulted in very poor scores, despite the fact that

this annotation correctly describes the true biological nature of the relationship. However,

these results are explained by the authors by the fact that a protein, that is responsible for

neutralizing the repressive role of Gal80, whose identity is not currently known, is missing

from the network. This example clearly presents the danger in making detailed conclusions

about the nature of the dependencies between components of a system without all the

components being present.

The method of adding annotations to a graph is not explicitly defined. For a rel

atively large graph, this task could mean a significant addition to an already expensive

68

procedure. It is suggested that an unannotated graph could be used as a starting point

and annotations added incrementally. It is not immediately obvious that the addition of a

correct annotation wi l l receive a higher score. This fact is reinforced by the results of the

case presented above. For example, in the figure below, would (a) receive a worse score than

(b) if the true system corresponds to graph (c)? That is, is it better to have an annotation

added which is correct, but may result in a negative score from the lack of a balancing

effect that has not yet been annotated? The answer to such a question would impact the

effectiveness of adding annotations incrementally.

In short, the idea of being able to represent more detail is an admirable one, but

the best way to achieve this end, if it can be achieved in a Bayesian network framework, is

debatable.

3.3.5 Dynamic Bayesian networks

Biological systems are not static systems, but are changing constantly in time. Modeling

methods for studying these systems that include this temporal component are needed.

Dynamic Bayesian network (D B N) is a general term for a class of models that include

Hidden Markov Models (H M M) and linear dynamical systems. The idea of a D B N is to

follow a given graphical structure through different time points.

To get a picture of the concept of a D B N , imagine folding a piece of paper several

times and cutting the folded paper into the shape of a gingerbread man to get a chain of

paper figures. Unfolding the chain one figure at a time is analogous to "unrolling" a D B N

model. Each figure is a "slice" or graphical representation of the system at a given point

in time, but the structure of the graph in each slice is identical. It is the manner in which

the figures of the chain are connected to each other (holding hands, say) and the template

structure of al l of the figures that define the differences between various models.

3.3.6 Comments on the study of gene expression data using Bayesian

networks

As noted above, there are many features of biological systems and the experimental data

that is collected from these systems, that recommends the use of Bayesian networks in their

study. In the case study by Hartemink et al of the regulation of galactose metabolism,

the data used to fit the model was not collected wi th the purpose of differentiating the

69

competing hypotheses considered. However, it is possible that data collected wi th this

purpose in mind would provide more conclusive results, because the data set could be

targeted to provide a better representation of the actual distribution of data. If this is

the case, then an agreeable system could be established of running experiments, using the

Bayesian networks to elucidate portions of the system and subsequently to perform more

assays suggested by the results of the analysis to gain more conclusive results. Hopefully,

this would facilitate faster convergence to a realistic network model of the real biological

system.

There are s t i l l several problems to overcome. New methods of computing the likeli

hood are being researched. The problem of the loss of information due to the quantization

of the gene expression values is a recurring theme of this report. The systematic generation

of a comprehensive and significant set of models to score is a necessity, and some progress

in this regard has been made [56]. A s well, one needs to address the evaluation of models

containing cycles, since such models are common to biological systems.

3.4 Discussion

The methods presented in this chapter have different strengths and weaknesses. R E V E A L

is relatively easy to understand and to implement. Unfortunately, at this stage in its

development it uses a binary quantization of the data, which results in a less detailed

description of the nature of the interaction between genes. Also , the choice of a threshold

for the quantization is not a simple task and if done correctly requires expert knowledge of

the system under study. This is definitely a drawback considering the nature of the problem

and the size of genetic networks.

The weighted matrix method improves on R E V E A L in that it does not require

quantization of the data and does not place a l imit on the number of genes that determine

a given gene's expression. Further, it can be trained on a relatively small data set [55].

However the method is not as clear in determining the connections between specific network

components, since the network of interactions is ultimately represented by a large matrix

of real numbers. This makes the interpretation of results much more difficult.

The Bayesian method seems very promising. Its flexibility and probabilistic nature

are definite advantages over the other two methods. The main problem wi th the Bayesian

70

method is that, in my opinion, it would be difficult to apply to a network of the size

encountered in signal transduction pathways or genetic networks. However, if parts of the

graph structure or probability distribution are known in advance, perhaps the difficulty of

the task of training the networks can be reduced.

71

C h a p t e r 4

A Reverse Engineering Appl icat ion

This chapter outlines the application of a reverse engineering method to the data created

from the EGF simulation described in Section 1. The method is based on an approach used

by Maki et al (2001) [35] for the elucidation of genetic networks. The particular appeal of

this method is its "divide and conquer" methodology, which appears to be a useful approach

for studying large systems such as signal transduction pathways.

The work of Maki et al is discussed in Section 4.1. The next two sections each

present one of the steps of the reverse engineering. Sections 4-7 cover the application of the

method to the EGF simulation data. The chapter ends with a discussion of the results.

4.1 A system of inference of large-scale genetic networks

The application discussed in this chapter is derived from work by Maki et al that has been

presented in several conferences in the past few years ([35], [52]). Its intended application

is the inference of the structure of genetic networks from DNA microarray data. The aim of

this application is to extend the principals of the approach to the series of chemical reactions

that form a signal transduction network.

Before the method is applied, a specific set of data must be collected: a deletion1 of

each component of the network is made and the resulting steady-state and time-series data

collected for the rest of the network components. At this point, the following analysis is

performed:

1 The deletion of a gene is the removal of the part of the chromosome corresponding to that gene. Thus the action
of the system without that genetic component (and its gene product) can be studied.

72

P a r t O n e : S t a t i c B o o l e a n N e t w o r k

The steady-state data is quantized to binary data to reflect the interactions between com

ponents in the network. This data is used to place the network components into strongly

connected groups. Each group is treated as a node in a directed graph whose structure is

then determined.

P a r t T w o : D e t e r m i n a t i o n of S u b n e t w o r k s

The components wi th in a group have been so grouped because the fast Boolean approach

of Part One is not sufficient to identify connections between these components. The second

stage involves determining the network structure within each group. A slower but more

powerful method is used to determine the structure of the graph wi thin each group using

a best fit of a differential equation model to the time series data. The parameter fit is

accomplished by minimizing the squared errors between the experimental and calculated

values of components using a genetic algorithm optimization.

Neither of the above steps would be sufficient on its own, but each has specific

advantages for solving parts of the overall problem. The Boolean method does not have the

level of detail needed to determine connections between all the components of the network,

but it is fast enough to deal wi th a large network. The optimization of parameters of a

differential equation model is capable of deciphering feedback loops and other connections

that can't be determined by the static network approach, but it is too detailed a method

to apply to the entire network for a problem of this size. Thus, the combination of these

methods allows the positive qualities of each method to shine.

4.2 Part One: Static Boolean network

Before beginning the reverse engineering of the E G F pathway, the steady-state and time

series data need to be simulated. Since the goal of this data set is to determine which

proteins are affected by the removal of a specific protein from the system, I simulate the

data set by fixing the specific protein's concentration to a very small value (1 x 10~ 5) .

Experimentally, the deletion of a protein would likely be accomplished by deleting the

corresponding gene. The deletion of a protein complex might be accomplished by the

specific inhibit ion of the complex. The plausibility of generating this data experimentally

is debatable, especiialy since the deletion of some proteins wi l l k i l l a cell.

73

Consider a network of p proteins whose network structure is to be found. The goal

is to represent the network by a directed graph. The nodes of the graph are the p proteins

of the system. The edges between nodes represent chemical reactions between the proteins.

For instance, if there is a directed edge between nodes A and B, then protein A is a reactant

in a reaction that produces protein B. With each edge there are one or two kinetic constants

associated that determine the rate of the reaction. For instance, if the reaction between A

and B is A =± B, then there are first order rate constants associated with the production

of B and of A (the forward and reverse reactions respectively). In this first step, the aim

is specifically to determine the structure of connections between specific groups of proteins

and not the determination of the kinetic constants.

The following steps in Part One of the method are illustrated in Figure: 4.1.

S t e p 1: The steady-state data is organized into a matrix D such that a\j is the steady-

state concentration of the j th protein due to the deletion of the i th protein.

S t e p 2: The relative concentrations of the deletion runs to the normal concentration levels

are calculated for each protein. This is done by dividing each column, i, of D by the

normal steady-state level for protein i. These values are compiled in a {p x p) relative

intensity matrix, E. ,

S t e p 3: The next step is the quantization of the data in E to create a binary matrix,

R. A value of 1 in the matrix means that the expression of a protein changed more

than a specified threshold in response to the deletion of another protein. For a chosen

threshold value 9 the matrix R is defined by

At this point, there are two things to accomplish:

1. Identify strongly connected groups

2. Remove indirect connections

S t e p 4: The first task above is to find the groups of proteins that are indistinguishable

from each other based on the binary matrix. First, take the transitive closure, R*, of

1 if (eij > 9 or < 1/9) and i ^ j
(4.1)

0 otherwise

74

the binary matrix, R. R* is defined by

oo

R* (4.2)
n=0

where
1 if i = j

and R n + 1 = RnoR (4.3)
0 if i ? j

Here

(i 2 " 0 j R) y = m i n (l , ^ ; r ? f c . r f c i) (4.4)

fc

So, i?* is a matrix that has filled out al l the possible pathways in the graph. That is,

if the deletion of Protein A affects Protein B , then the deletion of Protein A affects

all the proteins affected by Protein B as well. So, R* has values of 1 in row A for not

only Protein B , but all the proteins affected by Protein B . In effect, R* captures all

reaction cascades in the network. Notice in Figure 4.1 that i ? 1 3 has been changed to

a value of 1 since R\i = 1 and R23 = 1.

Now find the strongly connected groups (or equivalent sets) in the graph as follows:

construct a matrix of "equivalence relation", ER, such that an equivalence relation

exists between components A and B if A affects B and B affects A [35]. That is

A n equivalence set of the i t h protein, denoted [i], is then defined by the set {j\erij = 1},

imposing the restriction that each protein can belong only to one equivalence set. From

this definition of the equivalence sets, notice that any cycles in the graph w i l l appear

wi th in the same equivalence set. These are the features of the graph that the Static

Boolean step is unable to distinguish.

A t this stage, matrix R* is reduced to represent the graph between the equivalence

sets, rather than the individual proteins. In Figure 4.1, notice that proteins B and

D are in the same equivalence set. Therefore, the column and row of the matrix

corresponding to Protein D are eliminated, since they are identical to those of Protein

(4.5)

75

B wi th respect to all proteins outside of the equivalence set. In other words, all

redundancies of the binary matrix are eliminated.

Step 5: The second task listed above is to eliminate values in the binary matrix that

represent indirect connections in the graph. This is the final step shown in Figure 4.1.

Notice that [1] affects [2] and [3] but that [2] affects [3] as well. This means that

[1] affects [3] indirectly through [2]. Therefore, R^3 is set to zero. Repeating this

reasoning for al l the proteins in the network results in the skeleton matrix, S, that

contains only first degree connections.

To accomplish this result, perform a topological sort of the graph. A topological sort

orders the nodes of a directed acyclic graph according to the degree of each node [44].

So, if node X has no parents, it has the lowest degree and is first in the ordering.

Of all the descendants of X , the node(s) wi th the next lowest degree (those that are

directly connected to X) appear next in the ordering. Thus al l the direct connections

in the graph can be determined.

This ordered graph represented by S is the output of Part One. A t this point we

have identified the connectivity in the graph of equivalence sets.

4.3 Part Two: Determination of subnetworks

In this step, the goal is to identify the connections between network components that have

been grouped into equivalence sets. This section describes the method used by M a k i et

al. Section 4.6 describes departures from this method that are made i n order to apply the

method specifically to systems of chemical reactions among proteins.

4.3.1 S-systems

M a k i et al represent the network of proteins wi th in an equivalence set using a canonical

nonlinear form of differential equations known as an S-system [20]. A n S-system has the

form

where Xi is the ith reactant or state variable among a total of n variables. The exponents

gij and hij are real numbers representing "interactive effectivity" in S-system language or

76

D
A B C D
0.0 0.2 .05 0.6"

3.9 0.0 0.132.4)

3.6 1.4 0.0 6.6

4.2 10 .08 0.0

•

Normal
A B C D

3 2 0.03 6

s
[1] [2] [3]

[1] 0 1 0

[2] 0 0 1

[3] 0 0 0

E
A B C D
0.0 0.1 1.70.1

1.3 0.0 3.3 5.4

1.2 0.7 0.01.1

1.4 5.2 2.70.0

R*'
[1] [2] [3]

m 1 1

[2] • 0 1

[3] 0 0

A

B
C
D

R
A B C D
"0 1 0 1~

0 0 1 1

0 0 0 0

0 1 1 0

R*
A B c D

A " 0 1 1 1~

B 0 0 1 1

C 0 0 0 0
D 0 1 1 0

E Q SETS

[1]= A

[2] = B, D

[3]= C

Figure 4 .1 : Part One of the method of Maki et al for a system of 4 proteins. Proceeding
clockwise from the top-left: Each column of the data matrix D is divided by the normal
steady-state value for that protein to yield the relative intensity matrix E. E is quantized
to binary values with a threshold of 2. The closure of R yields R*. The equivalence relations
are determined: proteins B and D show the same behavior (in R*) to all other proteins in
the network and are therefore grouped together in [2]. Replacing columns B and D by [2],
and relabeling A as [1] and C as [3] (single protein equivalence sets) gives us R* . Finally, the
topological sort gives us the skeleton matrix S containing only direct connections between
equivalence sets. This determines the shape of the graph, shown in the center.

77

"interrelated coefficients" with respect to genetic networks [35]. In a protein setting, one-

would compare them to the order of the reaction of Xj to produce Xi as in a mass action

equation. The parameters a,t and /?,• are used to denote the relative inflow and outflow of

gene Xj [35], For proteins these constants represent some sort of combined rate constant

for all the reactions contributing (both positively and negatively) to the concentration of

protein /.

Many differential equations can be "recast" as S-systems, including equations of

elementary functions and compositions of elementary functions [46]. The advantage of

recasting a system into this form is that there are efficient methods of solving S-systems

using Taylor polynomials [20].

The main disadvantage of the S-system is that there are a large number of param

eters: for a system of n state variables, there are 2n(n + 1) parameters. Given that the

goal is to fit these parameters to experimental data, this could be a significant problem,

depending on the size of the equivalence set.

The strategy is as follows: each protein is represented by one of the variables in

the S-system. The parameters arc fit to the experimental data by minimizing the squared

differences between data and output of the S-system. In the course of the minimization, if

a given parameter becomes smaller than a designated threshold, the parameter value is set

to zero. This corresponds to the loss of an edge, in the graph of the protein interactions.

Thus, the resulting parameter set defines the optimal network fit to the data. The method

of optimization is described in the next section.

4.3.2 Genetic algorithm optimization

Genetic algorithms are a class of stochastic optimization techniques used in solving a wide

range of problems. The stochastic nature of a genetic algorithm makes it a good choice

for problems wi th many local maxima and minima, as the process is less likely to become

trapped in a local extrenium.

The conceptual basis of genetic algorithms is drawn from genetics and evolution.

The idea is to create a population of individuals and evolve the population while applying

the principles of natural selection. The parameters to be optimized constitute the genome

of the individual and the objective function evaluated for those parameters defines the

fitness of that individual . At each iteration (generation) of the algorithm, the fitness of all

78

individuals in the population is evaluated. This fitness value determines the probability of a

given individual reproducing and thus propagating its genetic makeup through to the next

generation. The final population is then theoretically the most fit population for survival

in its mathematical environment.

The basic steps of the algorithm are as follows:

1. C r e a t e a n i n i t i a l p o p u l a t i o n

• The parameter values that represent individuals are usually randomly chosen to

create an initial population. However, given that subsequent generations will

evolve from this initial generation, it can be useful to start with some reasonable

guesses amongst the randomly generated ones [19].

• Representation for individuals is chosen. The structure and alphabet used to code

the genome influences the genetic algorithm implementation. For a discussion of

binary versus float representation and efficiency see [37].

2. E v a l u a t e t h e f i tness o f each, i n d i v i d u a l i n t h e p o p u l a t i o n

• The fitness is the value of the objective function (the function to be optimized)

given the set of parameters that constitute that individual.

3. B r e e d t h e m e m b e r s o f t h e c u r r e n t p o p u l a t i o n t o c r e a t e t h e n e x t g e n e r a t i o n

• The selection of parents from the current population and their subsequent repro

duction are the aspects of genetic algorithms that vary most.

• The selection is a probabilistic method based on the principles of natural selec

tion: the higher the fitness of an individual, the more likely it is to survive and

propagate.

• The reproduction can involve many different operators, most of which also have a

probabilistic element. For example, a simple reproduction function would involve

a crossover rate to create new individuals with parts of their chromosome taken

from each parent and a (generally smaller) mutation rate to randomly alter parts

of a progeny's genetic code [9]

4. R e p e a t s teps 2-3 u n t i l a t e r m i n a t i o n c r i t e r i a is s a t i s f i e d

79

• Common termination criteria include reaching a maximum number of iterations

or finding a solution within a given threshold. (This threshold could be the

change from the previous generation's solutions or a projected optimal fitness

level, say).

There are many variations within this common framework for a genetic algorithm.

For the application of the method of Maki et al to the EGF simulation data, we use a pub

licly available MATLAB implementation, called the Genetic Algorithms for Optimization

Toolbox (GAOT) [19]. The specifics of the algorithm used in this toolbox are described in

Section 4.5.

4.4 Application of Part One to the EGF simulation

All programs used for this application have been created in MATLAB and are included in

Appendix B. Using Gepasi, the steady-state concentrations for the proteins in the full EGF

system (see Chapter 1) and for each deletion in that system are recorded. The relative

intensity matrix, E is calculated as described in Section 4.2.

The next step is the calculation of the binary matrix, R. The range of values for each

protein are shown in Table 4.1. From the table, it is evident that the range of values is very

large, even when considering the values from only one protein. This fact makes it difficult

to chose an appropriate concentration threshold value. After some experimentation with

different threshold values, I carried out Part One using thresholds of 2 and 5. (Note that the

thresholds have no associated units since the relative intensity values are dimensionless).

An example of the binary matrix corresponding to a threshold of 5 is shown in

Table 4.2. However, when the equivalence sets are calculated using programs created in

MATLAB (according to the procedure described in Section 4.2), the results indicate that

there are only 3 equivalence sets. The proteins in each equivalence set are shown in Fig

ure 4.2. The equivalence sets are shown in their place in the EGF pathway in Figure 4.3.

The groupings do not seem to correspond to any of the cycles in the system and seem to

group too many proteins together by comparison to the groups found in Table 4.3. Similarly,

a threshold of 2 resulted in only 2 equivalence sets.

I believe that the origin of the problem may be in taking the closure of matrix R to

get R* (Step 4). The EGF test case has coupled cycles, and they are likely causing some

80

Protein Maximum relative intensity Minimum relative intensity (xlO 6)
1 1.17 0.02
2 167.22 0.57
3 1,06 0.57
4 1.13 0.00
5 1.14 0.00
6 600.00 0.10
7 1.04 0.00
8 1.10 0.00
9 1.0000 0.00
10 1.0000 0.00
11 4.1206 0.37
12 2.6355 0.00
13 19.1011 0.36
14 8.9479 0.00
15 15.9763 0.35
16 132.4561 0.20
17 1.6238 0.00
18 1.8656 0.00
19 1.7718 0.00
20 1.6446 0.00
21 1.6449 0.00
22 1.0147 0.00
23 1.0000 0.00

Table 4.1: Maximum and minimum relative intensities for each protein in the E G F simula
tion.

81

< O i H i H O O < H . H O O O <

H O ^ t W O O ^ H i H O O O ^ i H r - t ^ H O ^ H O O

L _ , ^) ^ (^ i ^ 1 0 ' - H i - i o O O ' - ' O O C i ^ ' - ' i - « 0 ^ - i O O O

< O r - t , - t O O O . H O O O . - t . H O . - t . - t O O O

H O O O - - ' 0 0 0 0 ' - ' ' - « - H ^ - ' 0 0 0

r - (, - t , - t , - t r H O . - < . - I O O r

O O O O O O O O O O '

< O i - H i - H O O r - . 0 0 0 0 0 ' i O w o o

O i - t O O

H o o <-* o o o o -

<0--«a'-iOOOO-

H . - . ^ H O O - H i - H O O O -

< O O O O f

< o o o o •

< O O O O '

, _ i l _ t O i - (^ i O i H t H O O O - - i O O O O .

, 0 ^ l r H r H O ' - H ^ - (0 0 0 ' - ' 0 0 0 0 '

< O O O O

4 O H O O O

t O - H o o o
< O .-t o o o

H O i-t o o o

H O .-I O O O

< O -~f O O O

< O 1-1 o o o
H O O O O

p o

co CC U co CC
w „ a o a o
cc co CC co CC co

Table 4.2: The binary matrix, R, corresponding to a threshold of 5. The rows correspond
to the proteins that have been deleted to produce the given effect on the protein in each
column. The numbers correspond to the proteins listed in Table 2.5

82

Figure 4.2: The proteins in each equivalence set and the graph of the equivalence sets.

83

Figure 4.3: Proteins in the E G F pathway are coloured according to their equivalence sets.

84

Proteins in Group
1 EGF
2 R Ra R2 RP
3 PLC RPL PLCP RPLP PLC-I
4 GRB
5 RG
6 SOS
7 RGS GS
8 SHC RSH RSHP SHP
9 RSHG SHG

10 RSHGS SHGS

Table 4.3: Manual grouping of proteins into equivalence sets based on matrix R with 5
threshold.

problems in Part One that were not seen in previous applications of this method. That

is, too many connections exist between proteins in the pathway, so that upon taking the

closure of R too many proteins are grouped into the same equivalence set.

If the equivalence sets of the binary matrix R (Table 4.2) are found, rather than the

equivalence sets of R*, the outcome better. The equivalence sets can be found by grouping

together proteins that have the same sequence of responses, with the exception of their

behaviour towards other members of the set. The resulting 10 equivalence sets are shown

in Table 4.3. If I colour the proteins in the pathway based on the equivalence sets found by

inspection of matrix R the results make much more sense, as seen in Figure 4.4.

4.5 Genetic algorithm toolbox for M A T L A B

Part Two is a genetic algorithm minimization. The source files for the Genetic Algorithm

Toolbox are available publicly, so these are the starting point for the genetic algorithm

implementation.

4.5.1 T h e eva lua t ion func t ion

To use the toolbox, an evaluation function must be provided to calculate the fitness of

individuals. The objective function for this particular application is the squared difference

between the experimental (simulated) protein concentrations and the protein concentrations

85

Figure 4.4: Grouping of the E G F pathway proteins according to the equivalence sets listed
in Table 4.3

86

predicted from the differential equations with the specific individual's parameter set:

where i sums over the number of proteins, n, in the network (equivalence set) and t sums

over the time series.

Due to the decision not to use the S-system form of the differential equations (dis

cussed in Section 4.6) I cannot use the same method of solving the differential equations

as Maki et al [35]. Instead, I use the MATLAB function ode23, a low order Runga-Kutta

numerical differential equation solver, to calculate the protein concentration values, XcaiCiitt,

The evaluation function takes the parameter set of an individual as input and outputs

that same parameter set and the value of the objective function for that parameter set. The

evaluation function carries out the following steps:

1. Read the file with the simulation data.

2. Solve the system of differential equations for the parameter set using ode23. The

simulated protein concentrations at time t = 0 are used as the initial conditions for

the numerical solution^

3. Calculate the value of the objective function using Equation (4.7).

4.5.2 Selection and reproduction

The genetic algorithm toolbox (GAOT) offers several different options for selection and

reproduction. This application uses the default normalized geometric selection. In this

type of selection, each individual in the population is ranked using a geometric distribution

normalized according to the probability of choosing the most fit individual. An individual's

ranking determines the probability that they are chosen as a parent.

Given the decision to use a real number representation rather than a binary repre

sentation for the genome of an individual, the genetic algorithm toolbox offers a plethora of

reproduction operators: uniform mutation, non-uniform mutation, simple crossover, arith

metic crossover, and others [19]. The mutation operators have in common the feature that

a parameter is randomly selected from among all the parameters of all the individuals. The

difference lies in how the parameter is changed. For instance, the new value could be a

n
(4.7)

t=l t

87

I 1

(a) (b)

Figure 4.5: Demonstration of mutation and crossover operators using L E G O , (a) In muta
tion, a single block from one tower is randomly selected (small arrow) and replaced with
a different block in the child, (b) In arithmetic crossover, a detachment position along the
tower is randomly selected (small arrow). Both parent towers are broken at that position,
and the top halves of the tower are interchanged to yield the two children.

number randomly chosen within the bounds for that parameter (uniform mutation) or set

equal to the upper or lower bound (boundary mutation) or chosen from wi th in the bounds

wi th a non-uniform probability (nonuniform mutation).

The crossover operation involves an exchange of values between two individuals to

produce two offspring who partition the genomes of their parents between them. To picture

this process, imagine the set of parameters that make up an individual as a tower of L E G O

blocks of different colours. A mutation involves randomly choosing one block from a tower

and replacing it wi th another block (possibly of a different colour). The different mutation

operators describe the manner in which this new block is chosen and inserted in the tower.

A common crossover operation would be analogous to breaking the two L E G O towers at

the same point along the tower and interchanging the pieces of same length between the

two towers. (Thus, each of the resulting towers contains a section from each parent tower.)

88

For this application to protein networks, each block is a biochemical parameter value and

a tower is a parameter set. Reproduction involves exchange of values between hypothetical

sets of parameters.

4.5.3 Termination

The toolbox also offers several options for termination. One can stop at a specified maximum

number of generations or when the fitness value is within a given epsilon of a known optimal

fitness value. For this implementation, I specify a maximum number of generations and

an optimal error value. The optimal error value was determined by using the evaluation

function to determine the fitness of the parameter set corresponding to the actual solution.

In all runs, however, the maximum number of iterations was reached before the optimal

fitness value. I experimented with the number of generations to find the most successful

number for the application to the EGF pathway, typically using between 1000 and 10,000

iterations.

4.6 Modifications to the method

In this application of the method of Maki et al to signal transduction pathways, I have made

several changes. The first major change is the decision to not use the S-system formulation

and instead to use a generalized mass action form:

where the parameter â - is the real number rate constant (whose order is determined by the

associated product) for the jth term contributing to the rate of change of the concentration

of the ith protein. The parameter g^ is the positive integer exponent for the kth protein

of the jth term. These powers are derived from the stoichiometry of the rate-determining

step of the reaction in which the term is involved.

The main differences between Equation (4.8) and the S-system form are:

• The summation of terms of products of proteins and their associated rate constants.

• The second decay term is absorbed into the one term by not restricting to positive

real numbers.

89

• The powers are restricted to integers less than or equal to 2, since here they represent

kinetic orders.

It is known that the S-system is a feasible representation for a system of generalized

mass action equations that describe a set of chemical reactions [46]. However, we question

the use of the protein concentration data as the values of the state variables in the S-system

for fitting the parameters. Consider: if one knew the structure of a network of chemical

reactions one could write out the mass action equation describing the rates of change of the

concentration of each protein.

At this point, one could recast this system of equations into an S-system format.

However, the recasting of the mass action equations into S-system format requires the

introduction of extra variables to account for the sums in the mass action equations [46].

For example, consider the equation

~ - = kiXz - k2X1X2.

As it is, the equation is not in S-system form because of the sum of terms. This equation

is recast as follows: let X\ = Z\Z\, X2 = Z2, and X3 — Z3. Then,

at

zz>Z2—— + Zi—— = k\Zj, - k2ZiZ4,Z2 dt dt

and the terms on the left are arbitrarily assigned to terms on the right:

dZx j
— = hZ3Z2

= kiZ^Zi.
dt

(4.9)

(4.10)

Thus, there are actually more state variables in the S-system recast of the mass

action equations for a given set of reactions. However, in the method set forth by Maki

et al, there are the same number of state variables as network components. How then to

interpret the fitting of the protein concentration data to the state variables? What do the

parameters of the S-system represent?

I believe that despite an increase in the number of parameters, the generalized mass

action equation is a more natural choice for a network of chemical reactions among proteins.

90

• gLLL gl!2 g!13 gU4
dXl/dt = a u X l X2 X3 X 4 + a i 2 * « *

Figure 4.6: The organization of the genome of an individual . A l l a parameters appear first,
followed by a l l g parameters, is the rate constant for the jth term in the differential
equation of the ith protein, g^ is the power of the kth protein in the jth term in the
differential equation of the ith protein.

This choice also leaves us wi th a set of biochemically relevant kinetic constants for the signal

transduction pathway after the optimization, an improvement over the original method.

Given the decision to use Equation (4.8), the parameters that constitute an individ

ual of the population are organized as shown in Figure 4.6. The ordering of the parameters

in the genome is as follows:

[ai

where m is the maximum number of terms and n is the number of proteins.

For the remainder of the discussion, I shall refer to a term of the summation on

the righthand side of one of the differential equations describing the rate of change of a

protein's concentration simply as a term. The j term for protein i is defined by the

kinetic constant, and n exponents j/yfc. The number of nonzero a^s tells us the number

of terms for protein i, that is, the number of reactions that protein i is involved in (where

forward and reverse reactions are separate reactions). In the application discussed here,

we set an upper l imit m = n on the number of nonzero a. The index k of the nonzero

exponents g^ tells us which proteins are included in the term.

4.6.1 Adapting the genetic algorithm toolbox

In order to incorporate the changes described in the previous section, substantial changes to

the Genetic Algor i thm toolbox are required. The strategy of fitting the system of differential

equations to the simulation data remains essentially the same. However, there are several

91

Parameter Value
0.01

k2 0.02
h 0.2
k4 0.03

Table 4.4: Kinetic constants for the test network, Equation (4.12)

problems that arise in trying to use a genetic algorithm optimization with the mass action

equations. Specifically, the resulting optimal network must be biologically feasible.

To study this problem I create a test system of chemical reactions:

X l + x2 ^ x3 (4 n)

Xz ^= X4

for which I simulate the time series data in Gepasi. Immediately, the large number of

possible terms becomes obvious: for each protein, there are 2" possible combinations of

proteins that could contribute to the change in concentration when terms up to bimolecular

kinetics are considered. A limit needs to be placed on the number of reactions in which

each protein can participate to avoid huge computational expense as n increases. This is

biologically reasonable, since most proteins in a pathway carry out a specific function with

a specific set of substrates.

Another problem that becomes apparent after a few runs of the genetic algorithm, is

that the basic features of mass action kinetics need to be incorporated into the optimization

routine for the results to correspond to a series of chemical reactions. Consider the test

case above: the mass action equations corresponding to the network in actual fact are

-kyXyXi + k2X3 dt
dX2 -k\X\X2 + k2X3

dX3

 (4 J 2)

—7— = hXiX2 - k3X3 - k2X3 + k4X4 dt
dX4

dt
k3X3 - k4XA

and the rate constants are listed in Table 4.4.

Ideally, the algorithm should reconstruct these terms. In practice however, we have

92

found that these are not the terms that the optimization yields. This is not entirely sur

prising, since the parameter space is very large and there are doubtless many differential

equations that can reproduce the simulated concentration values wi th in a reasonable error.

The need to include further restrictions on the form of the solution could be an indication

that another optimization method wi th specified constraints is needed to define the struc

ture of the system. However, the genetic algorithm is st i l l a very good optimization method

for large search spaces and is reasonably flexible. Therefore, I have chosen to adapt the

original genetic algorithm so that it can only output solutions corresponding to networks

of chemical reactions.

To accomplish this task, the rules that dictate what terms appear in the equations

must be identified and individuals of the population of possible solutions that don't obey

these rules must be punished. The main difficulty in doing so, is that the form of the

equations is determined by the chemical reactions. This present attempt, on the other

hand, is to try to create differential equations that can represent a feasible set of chemical

reactions without knowing even the specific reactants and products involved in each reaction.

The main principle that must be satisfied by the equations is that if a term kXj

appears in the differential equation for the rate of change of protein i, then the complemen

tary term —kXj must appear in the differential equation for the rate of change of protein

j. This ensures that the equations for both proteins register the fact that the reaction

Xj —> Xi

exists. If only one of these terms appears, then the differential equation does not actually

represent a chemical reaction and is not a valid solution. 2

A n additional requirement for a valid solution is that a negative term in the differ

ential equation for the ith protein must include that protein in the product. This comes

directly from chemical kinetics.

Having identified these requirements, how can they be implemented? A t each it

eration of the genetic algorithm, new individuals are bred from the current population

according to the selection and reproduction operators discussed in Section 4.5.2. So, in the

2 In future, we would like to consider enzymes explicitly as components of a signaling network. Therefore, we do not
wish to make assumptions about relative concentrations of network components that would lead to a Michaelis-Menten
law formulation and provide an exception to the above rule.

93

case that a population of individuals can be generated that represent valid solutions accord

ing to the requirements above, a way must be found to ensure that the next generation of

individuals are also valid. Given the stochastic nature of the reproduction operators, this

is not an easy task.

The crux of the problem is this: when a crossover occurs, there is a fair probability

that the crossover point wi l l lie within one of the terms of the summation on the righthand

side of the differential equation. Similarly, if a mutation occurs, it w i l l alter a term. These

changes must be reflected in the complementary terms appearing in the differential equations

of the other affected proteins. Thus, the complementary terms must be located and changed

to reflect the crossover or mutation.

Attempts to simply punish non valid solutions did not work, since the percentage

of solutions that are valid out of al l possible parameter combinations is extremely tiny. In

other words, without further intervention, the genetic algorithm never really gets started

because the randomly generated ini t ia l population doesn't contain any valid solutions from

which to breed better solutions. Thus, the first task was to create a valid ini t ia l population.

4.6.2 Initiation of the population

In creating the ini t ia l population, some randomness must be retained, but the basic structure

of each individual must also satisfy the mass action requirements. M y solution is to create a

bank of al l the possible terms, given the number of proteins in the network and the integer

bounds on gijk, and to distribute these terms randomly among the differential equations for

each protein. A n example of the contents of the termbank for the network of 4 proteins is

shown in Table 4.5.

The process of constructing the ini t ia l population is implemented in the program

i n i t p o p as follows:

for each individual
while al l differential equations have less than n terms

randomly select one of the n proteins
randomly select a positive a wi th in the specified bounds
randomly select a valid term from the termbank
add the term to the current protein's differential equation
determine which complementary terms need to be added and add them

arrange the parameters from the differential equations into the parameter solution
for the individual in the form of Figure 4.6

94

Termbank
0 0 0 1
0 0 10
0 0 11
0 10 0
0 10 1
0 110
0 111
10 0 0
10 0 1
10 10
10 11
110 0
110 1
1110
1111

Table 4.5: Contents of the termbank for a network of 4 proteins. For example, row 3 of
the table corresponds to the term X3X4. The termbank has been sorted for insertion of a
term into the differential equation of proteinl (the term is randomly chosen from the first
7 terms of the termbank). Notice that the term of all zeros is eliminated from the bank.

To obtain a valid selection from the termbank, I restrict the random selection to only

those terms that have a zero exponent for the protein to which the term is being added.

This restriction is necessary because the rate constant for the,term is positive. Why are

only terms with a positive rate constant added? Consider the first reaction of the test case:

X\ + X2 —> Xz

The negative terms that appear in the differential equations for X\ and X2 (Equation (4.12))

do not tell us to which protein the arrow is pointing, which means that the placement of

the complementary term is a mystery. However, if the positive term k\XiX2 appears in

the differential equation of X 3 , then the negative complementary terms must appear in

the differential equations of X\ and X2. This is the basis of the addition and deletion of

complementary terms in initpop and also in the mutation and crossover operators discussed

in the next two sections.

An additional feature in initpop is the ability to accept previously generated so

lutions as individuals in the population being created. This means that the best solution

95

Current New Act ion
Parameter Parameter Taken

a ctij > 0 > 0 change a in term and in complementary terms
< 0 no change
= 0 delete current term and complementary terms

ctij = 0 > 0 if there is room, create the new term and
complementary terms

< 0 no change
(Xij < 0 > 0 no change

< 0 change a in term and in complementary terms
= 0 delete current term and complementary terms

9 9ijk = 0, = 0 > 0 no change
9ijk = 0, a^ ^ 0 > 0 add new term to protein k if there is room,

change current term and complementary terms
9ijk > 0, any a{j > 0 change current term and complementary terms
gijk > 0, a^ > 0 = 0 if 9ijk = 0 Vfc, delete term and complementary

terms. Otherwise change the term and
complementary terms and delete the comple
mentary term for protein k

9ijk > 0, « i j < 0 = 0 same as previous, but change is made only \ik^%

Table 4.6: A list of al l the possible mutations and the action taken to perform the mutation
in order to yield a valid solution. The Current Parameter column lists the type and the
sign of parameter selected for mutation. New Parameter designates the sign of the value
that is to replace the current parameter. For the mutations of g^k, the sign of the for
the term that the exponent appears in is also listed. Recall that the subscripts refer to the
kth protein in the jth term in the differential equation for protein i.

from a previous run of the genetic algorithm can be used to seed another run, and possibly

to increase the fitness of the new population more quickly.

4.6.3 Mutations

Table 4.6 describes the different cases that result from a mutation and the action taken to

ensure that the new solution remains valid. This action depends on the value, type, and

sign of the current parameter and on the sign of the parameter value to be inserted in its

place. Consider the term 0 .1X 2 X 2 - li, for example, the a value, 0.1, is chosen for mutation

to a value of 0, then by row 3 of Table 4.6 the term is deleted (a^ and g^k are set to zero)

and the complementary terms in the differential equations of protein 1 and 2 are deleted.

In the case g^k > 0, a^ > 0, if the powers of all other proteins in the term are

zero, then the term is deleted. This is done so that there is no "floating" kinetic constant

96

without a term attached. Otherwise the kinetic constant would appear on its own as a term

contributing to the differential equation of protein i.

4 .6 .4 Crossovers

Crossovers present a special challenge. The probability that a traditional crossover will

produce two valid offspring is virtually nil. However, crossover is an essential component

of the genetic algorithm. Thus, an entirely new crossover operator is needed. The aim of

the crossover operation is to exchange genetic material between parents to create .offspring

that are potentially better solutions than the parents. The crossover operator must still

contain a stochastic element so that the search space is well covered, however the fact that

the children are built from parts of the more fit members of the current generation means

that there is a better than random chance that the next generation's individuals are closer

to an optimal solution. Any new crossover operator should have these goals in mind.

Four crossover operators were initially created: amyXoverl-4. A l l four crossover

operators function in a similar fashion to ini tpop. The difference is that the valid terms

for creating the two children are chosen from a bank of terms collected from the two selected

parents. This is accomplished as follows:

• compile a list of unique terms from the two parents

• randomly distribute the terms and their complements to one child until the child is

full

• fill the second child by picking from the remaining terms and creating the comple

mentary terms

Thus the output is two valid children that have the parent's terms distributed among them.

The specific characteristics of each crossover operator are listed in Table 4.7. The

two main differences between operators are their treatment of the kinetic constants, otij, and

their renewal of the bank of terms. For instance, amyXoverl creates two separate banks:

one for the kinetic constants and one for the terms. Thus the OLIJ are shuffled separately

from the terms. This causes quite a disruption, and the resulting children may be quite

different from their parents. In contrast, amyXover2 distributes the kinetic constants with

their terms.

97

Operator otij and gijk together Replacement
amyXoverl no yes, between children
amyXover2 yes no
amyXover3 yes yes, between children
amyXover4 yes yes, no terms are deleted

Table 4.7: The first four operators created for performing the crossover for the adapted
genetic algorithm optimization.

Replacement refers to whether or not the bank of terms is replenished. amyXoverl

and amyXover3 both renew the bank of terms such that both children are assigned terms

chosen from a full bank of parental terms. amyXover4 does not delete terms from the bank,

thus the probability of choosing a given term is always the same. Distributing terms without

replacement is most in keeping with traditional crossover operators.

One problem with these crossover operators is that there is no ability to exchange

material between terms. Currently, any changes to terms occur from the random mutations

described in the previous section. However, mutation rates are generally kept low, since

they are more likely to be destructive than helpful in bringing the current solution closer

to an optimal solution.

4.6.5 The Comet-Strike feature

In addition to the basic operators discussed above, I add a "comet-strike" feature [28].

The idea behind the comet-strike is to introduce new individuals to increase the gene pool,

renewing the population and thus avoiding stagnation. The comet-strike is implemented by

wiping out the entire population except for the current best individual. This best solution

is included in an otherwise completely new population- and breeding resumes.

The comet-strike is used to combat the "inbreeding" witnessed .with the new crossover

operators. That is, as a population converges toward a minimum, the best terms appear in

an increasing portion of the population. This means that the bank of unique parental terms

to choose from can become too small to add enough terms to the differential equations of

both children.

98

Test Run Operator Error Comments
Run 1 amyXoverl

amyXover2

amyXover3

amyXover4

0.2676

0.3900

0.3900

0.3920

Equations for 2 proteins have no terms
2 unique constants
All equations have terms, but they are the same
2 unique constants
All equations have terms, but they are the same
2 unique constants
All equations have terms, well distributed
2 unique constants

Run 2 amyXoverl
amyXover2
amyXover3
amyXover4

0.3906
0.2239
0.3920
0.0550

2 different terms, 3 different constants
4 different terms, 4 different constants
3 different terms, 3 different constants
2 different terms, 2 different constants

Table 4.8: Results of tests of the crossover operators amyXoverl-4 with population size 10
and 100 iterations.

4.7 Results of Part Two

The adapted genetic algorithm described in the previous sections was applied to both the

test system (Equation (4.12)) and the simulated EGF protein concentration time course

data. Tests were also performed to assess the success of the four crossover operators de

scribed in Section 4.6.4.

4.7.1 Crossover tests

The four crossover operators were tested using runs of 100 iterations and a population of

10 individuals. The results are presented in Table 4.8. The first run of tests started all

crossover operators with the same initial population (by starting with the same seed for

MATLAB's random number generator). The second run started each crossover operator

with a different initial population. In the first run, amyXover2 and amyXover3 yielded

differential equations that all contained the same terms but with different constants. In the

second run, however, amyXover2 yielded the best results. The results are inconclusive. It

appears, from longer runs using combinations of the crossover operators at different rates,

that no single crossover works best. Rather, a combination of two or more of the current

operators provides the best solution.

99

4.7.2 A p p l i c a t i o n to the test sys t em

The results from the genetic algorithm fitting of the test system of chemical reactions are

promising, but indicate that there are sti l l problems to tackle. The implementation of Part

Two has gone through several incarnations. Init ial runs yielded results for the system such

as:
d X - = - O . 3 5 5 X 1 X 3 + 0 . 4 8 6 X 2 X 4 - 0 . 3 9 6 X i X 4 - 0 . 3 8 8 X i X 2 dt
dX2

I . I 3 X 1 X 3 X 4 - 0 . 3 5 2 X 2 X 3 - 1 . 0 6 X i X 2 X 3 X 4 - 0 . 2 9 2 X i X 2 X 4

dX (4J3)
— - = 0 . 9 6 4 X i X 2 - 0 . 9 1 5 X 2 X 3 - 0 . 2 9 3 X i X 2 X 3 dt

= 1.31 • 1 0 " 5 X 3 - 0 . 0 0 4 7 X 2 X 4 + 0 .854X 3 - 1 . 5 5 X 3 X 4

dt

This result produces a low value for the squared difference, but is very far from the model

differential equation solution (Equation(4.12)). This early result underlines the need for

the alterations to the optimization described in Section 4.6.1. Specifically, the structure of

the differential equations does not correspond to a possible set of chemical reactions. For

example, the first term in the equation for proteinl : —0.355X1X3 does not appear in the

equation for protein3. Further, this term does not appear in any of the other differential

equations. Essentially, proteinl loses mass without any of the other components gaining

that mass, which means that mass isn't conserved. This solution cannot correspond to a

real physical system.

The development of programs to create a valid ini t ia l population and reproduction

operators greatly improved results. In a given generation, however, there are some very

poor individuals being produced. For example, there are sometimes individuals wi th pa

rameter sets consisting entirely of zeros! Another observation made was that the fitness

value of individuals appeared to stall around the value 0.39 for many generations. This

seems to indicate that there is a significant minimum at this value that the algorithm is

consistently falling into before jumping to a lower value due to a mutation or successful

crossover. Upon further investigation it was revealed that this local min imum corresponded

to the empty solution. This means that, for the test system, a constant value for the concen

tration of all proteins over the time course gives a better fitness than many other randomly

chosen solutions. This result is likely related to the discrepancy in time scale: most of the

change in protein concentration occurs quickly, while the time points at which the protein

concentration is measured are comparatively large.

100

Parameter Actual Value Genetic Algorithm Solution

fci 0.01 0.0081
k2

0.02 0.0108
k3 0.2 0.0108 (to Xi) 0.0081 (to X 2)
k^ 0.03 0.0210

Table 4.9: A comparison of the kinetic constants from a successful run of the genetic
algorithm to the actual values for the test case. This run consisted of 1000 iterations of a
population of 20.

On a more positive note, consider the differential equations describing the form of

the network from one of the more successful genetic algorithm trials (using a range of [—1,1]

for ctij and gijk = 0 or 1):

d X l = -0.0081XiX2 + O.OO8IX3
dt

dX2 = - O . O O 8 I X 1 X 2 + O.OIO8X3

Jx (4 1 4)

— = O . O O 8 I X 1 X 2 - O.O2IOX3 - O.OIO8X3 + O.OO8IX3 dt
dX\
dt

O.O2IOX3

The values of the kinetic constants compare fairly well with those of the test case, as shown

in Table 4.9. Notice, however, that the constant values are fairly repetitive: for example, in

the differential equation for X i , the same constant appears twice (as separate rate constants,

k\ and k2). This is a result of the limited pool of values available for the alpha parameters

in the crossover operators.

The reactions included in the above solution network are very close to the actual

test case reactions. There are a few key differences, however. First of all, notice that the

rate constants for the reaction X i + X2 *— X 3 are not the same in the differential equations

for X i and X2. So, although the solution reflects the fact that X 3 is a reactant producing

both X i and X2, it does not reflect that it is one reaction that produces both proteins.

Notice, however, that the sum of the constants for these two contributions of X 3 are close

to the value of k2.

Another important difference between the actual and the fitted systems are that the

reaction X 3 <— X 4 is completely missing. Consider the differential equation for X 3 : the

maximum number of terms has been reached. In the actual system, there are only four

101

terms in the differential equation, but the error noted in the previous paragraph means

that there is an extra term. At this point, it seemed that perhaps if the limit, n, on the

number of terms were raised then the missing reaction would be found as well. It is very

likely that the loss of this reaction has also affected the rate constants of all the reactions.

This result and the results of the next section motivated a modification of the adapted

genetic algorithm to allow the maximum number of terms to be chosen at each trial. This

involved changes to most of the programs used to adapt the original algorithm, since the

number of parameters in an individual depends on the number of terms allowed in each

differential equation. A new crossover operator was also created in order to fully take

advantage of the increase in possible terms and to incorporate some of the insight gained

from the crossover tests of Section 4.7.1.

The new crossover, amyXovermax, distributes the parental terms without replace

ment. However, instead of filling one child until the maximum number of terms is reached

and then filling the next child with the remaining terms, amyXovermax randomly chooses

one of the children at each iteration and adds a term to that child. This is an improvement

in that it avoids the problem of uneven distribution of terms among the children that occurs

with the previous crossover operators created in this study.

The results of the optimizations performed with this added functionality are mixed.

Some solutions comparable to (4.14) were obtained, but poor solutions were also obtained. I

believe that ultimately this added functionality will improve the results of the optimization,

since it provides the system with much more flexibility.

An improvement to this new feature might be to start with a large limit on the

maximum number of terms and decrease this limit over the course of the optimization. For

instance, one could define a function, F(gen) that sets the maximum number of terms for

each variable based on the current generation, gen, where F(0) = mo and F(maxgen) = n.

Here, mo and maxgen are specified at the start of the optimization, and n is the number of

proteins in the network. This setup would permit more mistakes in term distribution early

on, and would also mean a larger parental termbank from which to generate offspring. I

intend to test this theory in future work.

A p p l i c a t i o n t o E G F s i m u l a t i o n r e s u l t s o f P a r t O n e

The third equivalence set found in Part One (Section 4.4) contains the 5 proteins:

102

Protein Number Protein Name

1 SOS

2 RGS

3 GS

4 RSHGS

5 SHGS

Despite my reservations about the grouping from Part One, I ran the optimization for this

equivalence set. A 100 iteration run with a population size of 20 produced the following

results:
dXi
~dT
dX2

dt
dX3

dt
dX4

dt
dX5

dt

= 0 . 7 3 3 X 2 X 4 X 5 + 0.967X2 - 0.63XiX2 - 0 .858XiX 5

= - 0 . 7 3 3 X 2 X 4 X 5 - 0.967X2 - 0 . 63XiX 2

= -0 .156X 3 + 0 .63XiX 2 + 0 .858XiX 5

= - 0 . 7 3 3 X 2 X 4 X 5

= 0.156X 3 - 0 . 7 3 3 X 2 X 4 X 5 - 0 .858XiX 5

(4.15)

These equations correspond to the following series of chemical reactions:

RGS + RSHGS + GS^ SOS

RGS -> SOS

SOS + RGS —> GS (4.16)

SHGS + SOS -> GS

GS -> SHGS

These equations match very badly with the actual E G F pathway. The last equation above

is the closest match, although the protein SHP is missing from the left hand side. Although

the algorithm should run for more iterations, this preliminary result is very discouraging.

In Section 4.4, I discussed the problems with the results of Part One. Since the

equivalence sets from matrix R seem much more promising, I performed runs of Part Two

using the two equivalence sets listed in Table 4.10. The 7 reactions that should be found

103

E G F pathway Set 1 E G F pathway Set 2
Protein Number Protein Name Protein Number Protein Name

1 RP 1 RP
2 SHC 2 P L C
3 RSH 3 R P L
4 RSHP 4 R P L P
5 SHP 5 P L C P

6 P L C P I

Table 4.10: Proteins belonging to two of the equivalence sets from Part One, listed in
Table 4.3.

by the optimization of Set 1 are:

RP + SHC ^ RSH

RSH ^ RSHP
(4.17)

RSHP ^ SHP + RP

SHP -> SHC

and the 9 reactions for Set 2 are:

RP + PLC ^ RPL

RPL^ RPLP

RPLP ^RP + PLCP (4.18)

PLCP -* PLC

PLCP PLCP - I

Again, mixed results were seen. For Set 1, errors between 0.10 and 0.67 were obtained

for runs varying between 10 and 20 individuals and between 500 and 2000 iterations. The

solutions obtained were quite varied. An example of a solution obtained after 500 iterations

104

using a population of 10 individuals is:

RP ^ RSH

SHC -> RSH
(4.19)

RP + RSH -> SHP

RP + SHC -* RSH

Some of these reactions match the solutions that we are looking for quite well. For example,

the last reaction of (4.19) matches the forward reaction of (4.17) exactly. However, there is

quite a bit of repetition in the terms. RSH appears in all 5 reactions, while RSHP appears

in none. It appears that, as for the test system, the limit on the maximum number of terms

restricts both the variety of terms and the number of reactions.

For Set 2, errors ranged between 0.93 and 0.16 for a similar range of trials. The

maximum error of 0.93 was obtained for a run with bounds of [—10,10] specified for the

rate constants, ctij. Subsequently, the range of ctij was restricted to [—6,6], since no rate

constants used in the simulation for the reactions of Set 2 exceed these bounds. An example

of results obtained for Set 2 with this reduced range and 1000 iterations is

RPL ^ RP

PLC ^ RP
(4.20)

PLC + PLCP -» RP

RPL -> PLCPI

As seen with Set 1, there are two few reactions resulting from the optimization.

In Set 1, 4-6 reactions were typically found, while the actual number being sought is 7

reactions. In Set 2, 7-8 reactions were usually found, rather than 9. Duplicate reactions

were often seen, and two or three proteins dominating all the reactions was common. This

seems to be a clear indication that the crossover operators need to be improved so that they

do not limit the diversity and the number of terms.

105

4.8 Discussion

The results presented in this chapter show that the method of Maki et al is applicable to

signal transduction networks, but only after significant modifications. An important issue

for this application of the method is obtaining the necessary data experimentally. There is

a large quantity of very specific data required, i.e. time course and steady state data for the

system after the "deletion" of individual network components. This will not be possible for

all systems. A change in data set would have the most impact on Part One of the method.

It would be interesting and useful to study the results from adapting the method to different

data sets.

An important consideration for Part One is the determination of the threshold for the

binary quantization of the data. Different threshold levels resulted in different equivalence

sets. This is definitely a drawback to the method in the absence of a specific procedure for

determining the threshold.

There are many variables to experiment with in Part Two. Unfortunately, in its

present form, the genetic algorithm optimization is very slow: one 2000 iteration run of

Set 2 with a population of 20 exceeded 100 hours on a PII/550 SMP Linux PC. This

is an obstacle to performing the number of trials that should be performed to test the

modifications to the algorithm, especially given the fact that it is a stochastic optimization

method. So, improving the speed of the genetic algorithm code is a priority. Given that

the selection and reproduction must take place, the set of differential equations must be

solved, and the objective function evaluated for each individual of the population at each

of thousands of iterations, this is not a simple task. It is, however, a necessary one.

Several measures were taken to speed up the optimization. The number of crossovers

at each generation was reduced to 60% of the number of individuals in the population, and

only one crossover operator was used for most tests. The MATLAB code was compiled to

C code using the mcc function. This improved the speed significantly (40% improvement

was seen in a test case).

One modification that may improve both the efficiency and the layout of the genetic

algorithm is the use of multiple chromosomes in the genome of an individual. The use

of multiple chromosomes is not common, but examples do exist [43]. In this application,

the use of two chromosomes seems like a natural representation of the parameter space,

106

and genetic algorithms generally do best with the most natural representations [32]. For

example, one chromosome would contain all the otij and another would contain all the g^.

Then each chromosome would only recombine with the "homologous" chromosome of the

other parent. This would likely simplify and improve the crossover operators. As well, it

would eliminate the linear storage of the parameters in one long array and thus improve

the efficiency of all the operations listed above.

Another change that could be made would be to store only one version of a term,

rather than a term and its complementary terms, and indicate the differential equations to

which that term is assigned. This would decrease the size of the parameter set significantly.

Assuming that the speed of the program can be improved, many more trials should

be done. Some things that should be checked are:

• Fitness function: Right now the fitness of an individual is measured using a least

squares function. However, the equation

as in the implementation of Maki et al. This second function is a better choice because,

in the first equation, proteins with larger concentration values will contribute more to

the sum than those with smaller concentrations. However, the first equation is used

in this application because many of the initial experimental concentrations are zero

or very small. It would be good to test variations of this objective function to find

the one most suited to this application.

• Crossover operators: The crossover operators need to be tested much more than they

have been. This testing needs to include combinations of crossover operators and new

methods of crossover. The crossover operation is an essential part of the algorithm

and the outcome is very dependent on its efficient and successful implementation. An

important point that has emerged from the results is that the current errors in the

optimal solutions are much too high, even over a large number of iterations. This

n

i = l t

is being used, rather than

2

107

ft.4r

0.2 h

0.1

10 iS 20 ZH 3D 3S
Nuisnder of indrv'riuals in population

40 4S SD

Figure 4.7: A plot showing the relationship between the number of individuals in a pop
ulation and the fitness value of the optimal solution. The results are for a 50 iteration
optimization of the test system (Equation(4.12)).

means that the crossovers need to be able to operator more effectively. A n option

may be to combine a traditional crossover with a deterministic search algorithm for

the real numbered rate constants.

• Effects of choosing the number of generations, number of individuals in the population,

and frequency of comet-strikes. Preliminary studies were conducted to determine the

effect of population size on fitness of the optimal solution and running time of the

optimization. Figure 4.7 shows that error depends on the population size in a nonlinear

fashion. Notice that for a population size of 25, a significant minimum in the error is

seen. The reason for this is not known.

Figure 4.8 is a plot of run time versus the number of individuals in the population

for the same runs used for Figure 4.7. The completion time for a run increases in a

nearly linear fashion with the number of individuals. This is not intuitively obvious,

since the algorithm involves many loops through the parameter set in the course of the

108

1600

1400

£0 25 30 36 40
Number of irtaividuaJs in paptiatitm

55

Figure 4.8: A plot showing the relationship between the number of individuals in a popu
lation and the run time of the algorithm. The results are for a 50 iteration optimization of
the test system (Equation(4.12)).

reproduction and evaluation operations. There are several large outliers. The outlier

at population size 25 corresponds to the low error seen in Figure 4.7, while the outlier

at population size 40 corresponds to a high error. This latter solution contained only

one unique term.

It is important to note that the above figures are for a single run of 50 iterations using

the test case. The results are not the same for every run nor for different numbers of

iterations. It is necessary to compile results from many more tests to obtain statistical

measures for these dependencies. However, the main features of the above figures have

been seen in all population test runs performed thus far.

109

C h a p t e r 5

Concluding Remarks

The preceeding chapters have presented a variety of multivariate and reverse engineering

methods for analysing biochemical data. In the absence of concrete sources of kinetic con

stants, these methods are important tools in the effort to decipher the complex interactions

involved in signal transduction.

The difficulty of obtaining data has been mentioned, but not emphasized. One im

portant point is that most of the methods discussed in this study are methods that have

been applied to either gene expression data or to simulated data. Beyond the statistical

issues (which are very important and which would be the subject of another major inves

tigation) of preparing the data for analysis, there is the issue of whether the needed data

can be obtained for signal transduction studies at all.

The results of the work presented in this thesis are not entirely positive. The mul

tivariate techniques discussed in Chapter 2 were able to find natural groupings in the E G F

pathway simulation data. This is encouraging in that parallel results have been seen for

gene expression data. This suggests that it should be possible to study patterns in large pro

tein data sets in a similar fashion to large-scale gene expression data. Unfortunately, I was

unable to identify similarities between proteins within a cluster (beyond similar patterns

of concentration change over the time course). Finding this connection among clustered

proteins is important for making hypotheses about roles for less well known pathway com

ponents. However, even without this knowledge, multivariate analysis could be used to

discover proteins that are correlated with patterns in the data using P C A .

Chapter 3 presented three reverse engineering methods that have been applied to

gene expression data. Bayesian Networks seem very promising for modeling pathways due

110

to the flexibility in denning variables, flexibility in defining connections between variables,

and probabilistic nature. The main problem with Bayesian networks arises from the the

difficulty of scoring networks of the size necessary to study signal transduction pathways.

Further, if the approach of Hartemink et al is used, then the problem of generating model

hypotheses for comparison is a difficult task in itself. Despite these problems, it would

be interesting to study Bayesian Networks that include both gene and protein components

using both gene expression and protein concentration data to score the models.

In Part One of the method presented in Chapter 4, there are some unresolved issues

in the application of the method to a system as complicated as a real signal transduction

pathway. As it stands, the method creates equivalence sets that are too large and that

do not represent the actual pathway well. This negates the usefulness of the "divide and

conquer" strategy and sabotages the results of Part Two.

Part Two has many problems that have been discussed in Section 4.8. The main

difficulty with Part Two is that it is very slow to run, which makes it difficult to obtain

a statistical measure of its success or failure. In order to improve the efficiency of the

optimization, changes to the data structure of the parameter set (to create two chromosomes,

for example) may be necessary. Such a change would necessitate changes to all of the

programs created to modify the genetic algorithm toolbox: a major overhaul. Another

option for improving the speed is to perform the optimization using a more efficient language

such as C. [note: I am currently running simulations with a compiled version of the code,

which appears to be faster. I will note this in the results section of Chapter 4].

Despite these setbacks, the application of the method of Maki et al and the multivari

ate analysis techniques to the EGF pathway has been a useful exercise in adapting methods

intended for the study of genetic networks to the study of protein networks. Specifically, it

has become clear that it is important to take into consideration the fact that interactions

between proteins are more defined and occur on a smaller time scale than interactions in a

genetic network. Overall, I am hopeful that these methods can be applied successfully once

these differences are accounted for.

I l l

Bibliography

[1] GeneCluster 1.0.

[2] A . Abbot, Betting on tomorrow's chips, Nature 415 (2002), 112-114.

[3] B. Alberts et al., Molecular biology of the cell, Garland Publishing, 1994.

[4] O. Alter, P. O. Brown, and D. Botstein, Singular value decomposition for genome-wide
expression data processing and modeling, PNAS 97 (2000), no. 18, 10101-10106.

[5] S. Andreassen et al., Munin - An expert EMG assistant, Computer-aided electromyo
graphy and expert systems (J. E. Desmedt, ed.), Elsevier Science, 1989, pp. 255-277.

[6] R. Baranowski, personal communication.

[7] A . Chaudhry, Gepasi program modelling early events of the E G F pathway.

[8] S. Chu et al., The transcriptional program of sporulation in budding yeast, Science 282

(1998) , 699-705.

[9] L. Davis, Handbook of genetic algorithms, Van Nostrand Reinhold, 1991.

[10] J . L . DeRisi and V . R. Iyer, Genomics and array technology, Curr Opin Oncol 11
(1999) , no. 1, 76-9.

[11] P. D'Haeseleer, S. Liang, and R. Somogyi, Genetic network inference: From co-
expression clustering to reverse engineering, Bioinformatics 16 (2000), no. 8, 707-726.

[12] M . B. Eisen et al., Cluster analysis and display of genome-wide expression patterns,
PNAS 95 (1998), 14863-14868.

[13] G. S. Fishman, Monte carlo: Concepts, algorithms, and applications, Springer, 1996.

[14] N . Friedman et al., Using Bayesian networks to analyze expression data, R E C O M B
2000 A C M - G I G A C T (2000), 0-1.

[15] L. Glass and S. A . Kauffman, The logical analysis of continuous, nonlinear biochemical
control networks, J Theoretical Biology 39 (1973), 103-129.

[16] G. Gorry and G. Barnett, Experience with a model of sequential diagnosis, Computers
and Biomedical Research 1 (1968), 409-507.

112

A . J . Hartemink, D. K . Gifford, T. S. Jaakola, and R A Young, Using graphical mod
els and genomic expression data to statistically validate models of genetic regulatory
networks, Pac Symp Biocomput 5 (2001), 422-433.

N . S. Holter et al., Fundamental patterns underlying gene expression profiles: Simplicity
from complexity, PNAS 97 (2000), no. 15, 8409-8414.

C. Houck, J. Joines, and M . Kay, A genetic algorithm for function optimization: A
matlab implementation, tech. report, NCSU-IE, 1995.

D. H. Irvine and M . A. Savageau, Efficient solution of nonlinear ordinary differential
equations expressed in S-system canonical form, S IAM J Numerical Analysis 27 (1990),
704-735.

V. R. Iyer et al., The transcriptional program in the response of human fibroblasts to
serum, Science 283 (1999), 83-87.

T. Jaakola and M . Jordan, Variatonal probabilistic inference and the qmr-dt network,
J of Artif Intell Res 10 (1999), 291-322.

F. Jacob et al., L'operon: groupe de genes a I'expression coordonne par un operateur,
Comptes rendus de l'Acadmie des Sciences 245 (1960), 1727-1729.

F. V . Jensen, An introduction to Bayesian networks, Spring-Verlag, 1996.

R. A . Johnson, Applied multivariate statistical analysis, second ed., Prentice-Hall, 1988.

I. T. Jolliffe, Principal component analysis, Springer, 1986.

G. Karp, Cell and molecular biology: Concepts and experiments, John Wiley and Sons,
Inc., 1996.

C. L. Karr and L. M . Freeman, Industrial applications of genetic algorithms, CRC
Press, 1999.

B. N . Kholodenko et al., Quantification of short term signaling by the epidermal growth
factor receptor, J Biol Chem 274 (1999), no. 42, 30169-30181.

T. Kohonen, What generalizations of the self-organizing map make sense?, Proc. of
I C A N N , Springer-Verlag, 1994, pp. 292-297.

, Self-organizing maps, third ed., Springer, 2001.

J . R. Koza, Genetic programming : on the programming of computers by means of
natural selection, MIT Press, 1992.

[33] M . H. Lee and H. Y . Yang, Contributions in the domain of cancer research: Review
negative regulators of cyclin-dependent kinases and their roles in cancers, Cell Mol Life
Sci 58 (2001), no. 12-13, 1907-1922.

113

[34] S. Liang, S. Fuhrman, and R. Somogyi, Reveal, a general reverse engineering algorithm
for inference of genetic network architectures, Pac Symp Biocomput 3 (1999), 18-29.

[35] Y . Maki, D. Tominaga, et al., Development of a system for the inference of large scale
genetic networks, Pac Symp Biocomput 6 (2001), 446-458.

[36] P. Mendes, Gepasi: A software package for modelling the dynamics, steady states and
control of biochemical and other systems, Comput. Applic. Biosci. 9 (1993), 563-571.

[37] Z. Michalewicz, Genetic algorithms + data structures = evolution programs, Springer-
Verlag, 1994.

[38] E. Mjolsness, D. H. Sharp, and J . Reinitz, A connectionist model of development, J
Theor Biol 152 (1991), no. 4, 429-454.

[39] K . Murphy, A brief introduction to graphical models and Bayesian networks,
http://www.cs.berkeley.edu/ murphyk/Bayes/bayes.html.

[40] B . O. Palsson and E. N . Lightfoot, Mathematical modelling of dynamics and control in
metabolic networks, part i. local stability analysis of single biochemical control loops, J
Theor Biol 111 (1984), 273-302.

[41] T. Pawson, G. D. Gish, and P. Nash, SH2 domains, interaction modules and cellular
wiring, Trends Cell Biol 11 (2001), no. 12, 504-511.

[42] J. Pearl, Fusion, propagation, and structuring in belief networks, Artificial Intelligence
29 (1986), no. 3, 241-288.

[43] H. J . Pierrot and R. Hinterding, Using multi-chromosomes to solve a simple mixed
integer problem, Australian Joint Conference on Artificial Intelligence, 1997, pp. 137-
146.

[44] W. H. Press et al., Numerical recipes in C: the art of scientific computing, second ed.,
Cambridge University Press, 1988.

[45] J . Reinitz and D. H. Sharp, Mechanism of eve stripe formation, Mech Dev 49 (1995),
133-158.

[46] M . A. Savageau and E. O. Voit, Recasting nonlinear differential equations as s-systems:
A canonical nonlinear form, Math Biosci 87 (1987), 83-115.

[47] C. E. Shannon and W. Weaver, The mathematical theory of communication, University
of Illinois Press, 1949.

[48] M . A. Shea and G. K . Ackers, The or control system of bacteriophage lambda, a
physical-chemical model for gene regulation, J Mol Biol 181 (1985), no. 2, 211-230.

[49] P. T. Spellman et al., Comprehensive identification of cell cycle-regulated genes of the
yeast saccharomyces cerevisiae by microarray hybridization, Mol Biol Cell 9 (1998),
3273-3297.

114

http://www.cs.berkeley.edu/

[50] G. S. Stein et al., The molecular basis of cell cycle and growth control, Wiley-Liss, Inc.,
1999.

[51] P. Tamayo et al., Interpreting patterns of gene expression using self-organizing maps:
Methods and application to hematopoietic differentiation, PNAS 96 (1999), 2907-2912.

[52] D. Tominaga et al., Nonlinear numerical optimization technique based on a genetic
algorithm for inverse problems: Towards the inference of genetic networks, Computer
Science and Biology (Proc of the German Conf on Bioinformatics), 1999, pp. 127-140.

[53] V . E. Velculescu et al., Serial analysis of gene expression, Science 270 (1995), 484-487.

[54] P. Vincens and P. Tarroux, Two-dimensional electrophoresis computerized processing,
Int J Biochem 20 (1988), no. 5, 499-509.

[55] D. C. Weaver, C. T. Workman, and G. D. Stormo, Modeling regulatory networks with
weight matrices, Pac Symp Biocofnput 3 (1999), 30169-30181.

[56] A . Zien et al., Analysis of gene expression data with pathway scores, Proc Int Conf
Intell Syst Mol Biol, vol. 8, 2000, pp. 407-17.

115

Appendix A

Finding the maximum of a

quadratic form under a quadratic

constraint

We must find the maximum of a matrix a* Sai under the constraint a*ai = 1. In this section

we look at a more general case of this problem, that of finding a vector u which maximizes

u*Su such that u ' M u = 1, where S and M are symmetric matrices and M is positive

definite.

We find the maximum by setting the derivative of the Lagrangian equation to zero.

For this problem the equation is

C = u ' S u * - A (u * M u - 1) (A.1)

where A is a Lagrange multiplier. The derivative of u*Su is found using the form

(A.2)
i j -

where the derivative of each part is found successively. Thus, in matrix form, we find that

0(u*Su) „ ,
^ - ^ = 2Su (A.3)

We can now compute the derivative of the Lagrangian equation, which when set equal to

116

zero gives us the necessary condition for a maximum or minimum. The extrema is found

by solving for lambda, as follows

£ = u'Su* - A (u t M u - 1) (A.4)

§§ = 2Su - 2 A M u = 0

=>• Su = A M u

=>• u*Su = A u ' M u

=> A = u*Su (A.5)

The final line being a result of applying the constraint u ' M u = 1. Thus, the maximum is

given by A — u*Su.

When M is a positive definite matrix and therefore nonsingular we can write

M - 1 S u = Au (A.6)

which implies that the vector u which maximizes u*Su such that u ' M u = 1 is given by

the eigen vector of M _ 1 S that corresponds to the largest eigenvalue A.

Let's call this vector u i . Now, we wish to find U2 which maximizes u 2 S u 2 such that

the conditions u'Mu2 — 0 and u 2 M u 2 = 1 hold. Using the same approach as above, the

Lagrange equation now reads

£ = u 2 S u 2 - A 2 (u 2 M u 2 - 1) - M2U2MU1 (A.7)

=4> = 2Su 2 - 2 A 2 M u 2 - M2MU1 = 0 (A.8)
a u 2

Multiplying in front by u^ we find that fi2 must vanish since the contraints dictate that the

other two terms in (A.8) are zero. Therefore we have that

S u 2 = A 2 M u 2 (A.9)

If we continue this process, we find that the vector ua satisfying uJ,Mu„ = 1 that is

M-orthogonal to all vectors u^ that are already determined (that is u^Mup = 0 for 3 < a),

117

and maximizes u^Su a satisfies

S u a = A a M u a

So, for M nonsingular

M _ 1 S u Q = Xauc

where a is not greater than the order of matrix S.

118

A p p e n d i x B

Modifications to the genetic

algorithm toolbox

This appendix contains the main M A T L A B programs that I wrote to carry out Part One

of the method of Maki et al and to implement the major changes to G A O T (the Genetic

Algorithm Optimization Toolbox). Also included is the M A T L A B function that evaluates

the objective function for the optimization, testegf eval.

**
function [binM]=binaryR(inM,threshold)

'/.
% [binM]=binaryR(inM,threshold)
*/.
% binM - output binary matrix
% inM - input matrix
% threshold - values above threshold or below 1/threshold are set to 1,
7« a l l other entr ies are 0

*/.

[numrows.numcols]=size(inM);

for col=l:numcols
for row=l:numrows

i f (inM(row,col) > threshold) I (inM(row,col) < 1/threshold)
i f (inM(row,col) > 0)

binM(row,col)=l;
end

119

e l s e
b i n M (r o w , c o l) = 0 ;

end
end

end

120

0

**
function [Rstar]=UnionR(R)

'/.
7. [Rstar] =UnionR(R)
*/.
% Rstax - output a c e s s i b i l i t y matrix
% R - input binary matrix
% side note: Rn - matrix of a l l the Rn (size msize x msize(msize+1)
*/.

[numrows.numcols]=size(R);
i f numcols ~= numrows

error('Need a square matrix')
end
msize=numrows;

% f i r s t block of msize x msize i s RO, ie ones on the diagonal
for k=l:msize

Rn(k,k)=l;
end

% b u i l d the matrix Rn by tacking on Rl,...,Rn+l
% a matrix of size msize x msize(msize+1) i s created

for n=0:msize

for i=l:msize
for j=l:msize

for k=l:msize
checkit(k)=Rn(i,k+n*msize)*R(k,j);

end
Rn(i,j+(n+l)*msize)=min([1 sum(checkit)]);

end
end

end

7o take the union of a l l the matrices stored i n Rn, coordinate by coordinate
for j=l:msize

for i=l:msize
for n=0:msize+l

i f Rn(i,j+msize*n) == 1
R s t a r (i , j) = l ;

end

121

end

end

end

122

**
function [ER]=eqrel(Rstar)

7.
7o [ER]=eqrel(Rstar)
7.
7o ER = matrix d e t a i l i n g the equivalence r e l a t i o n between each gene
7, ER(a,b)= 1 i f Rstar(a,b)=l $ Rstar(b.a) = l
7o 0 otherwise
7« Rstar = input binary a c c e s s i b i l i t y matrix
7.

[numrows.numcols]=size(Rstar);
i f numcols ~= numrows

error('Need a square matrix')
end
msize = numcols;

for i=l:msize
for j=i:msize

i f (Rstar(i,j) = = l) & (Rstar(j,i)== l)
ER(i,j) = l ;
ER(j,i) = l ;

end
end

end

123

f u n c t i o n [E S , R i i] = g e t E Q s e t (E R , R s t a r)

'/.
*/, [E S , R i i] = e q s e t (E R , R s t a r)
'/.
% ES = output v e c t o r g i v i n g number of a l l p r o t s i n the EQ se t
% R i i = output of nonredundant v e r s i o n of R s t a r
% ER = m a t r i x d e t a i l i n g the equ iva l ence r e l a t i o n between each gene
1 ER(a ,b)= 1 i f R s t a r (a , b) = l $ R s t a r (b . a) = l
% 0 o therwise
% R s t a r = i npu t b i n a r y a c c e s s i b i l i t y m a t r i x
*/.

**

[numrows.numcols]=s ize(Rs tar) ;

i f numcols ~= numrows
e r r o r (' N e e d a square m a t r i x ')

end

msize = numcols;

'/. c r ea te a l a b e l e d R s t a r m a t r i x R i so t h a t I w i l l be ab l e
% to i d e n t i f y which genes have been combined i n e q u i v a l e n c e s e t s .

n e w l = [(l : m s i z e) ' R s t a r] ;
R i=[0 :ms ize

newl]

% c rea t e a m a t r i x ES where each row l i s t s the members of
% an equ iva l ence se t

f o r i = l : m s i z e
numeq=l;
f o r j = l : m s i z e

i f E R (i , j) = = l
ES(i ,numeq)=j ;
numeq=numeq+l;

end
end

end

°/0 E l i m i n a t e d u p l i c a t e rows
f o r i = m s i z e : - 1 :1

f o r k = i - l : - l : l
i f E S (i , :) = = E S (k , :)

124

ES(i,:) = [];
break

end
end

end

70 copy only one row from each equivalence set to R i i

eqsetcount = size(ES,l);
maxmem = size (E S , 2) ;
for i=l:eqsetcount
Rii(i,:)=Ri(ES(i,l)+l,:);

end

R i i = [0:msize
Rii] ;

7« set the columns corresponding to numbers identified as other
7» members of the equivalence set to a column of ones to mark
7o for deletion

for i=l:eqsetcount
7ocount the number of members in the equivalence set
eqmem(i) = 0 ;
for j=l:maxmem
i f E S (i , j) _ = 0
eqmem(i) = eqmem(i)+l;

end
end
i f eqmem(i)>l
for k = 2:eqmem(i)
for row = 2 : s i z e (R i i , 1)
Rii(row,ES(i,k)+l) = 2 ;

end
end

end
end

7o get r i d of any columns in R i i that are a l l 2

for j=msize+l:-1:2
i f R i i (2 , j) = = 2

R i i (: , j) = [] ;
end

end

7o set the diagonals to 0

125

f o r k = 1 : s i z e (R i i , 1)
R i i (k . k) = 0;

end

126

function [S,ord]=topsort(Rii)

'/.
°/„ [S,ord]=topsort(Rii)
7.

7o S = topo sorted matrix
7» ord = topological order of columns
7o R i i = input labeled binary matrix
7.

**

[numrows.numcols]=size(Rii);
i f numcols ~= numrows

error('Need a square matrix')
end
7« get r i d of labels on the matrix
R = R i i ;
R(l.:) = [] ;
R (: , D = [] ;

msize = s i z e (R , l) ;

7. create a vector c a l l e d indeg which gives the number of
7o ones i n each column (the indegree for the column's node)

for col=l:msize
onecount = 0 ;
for row = 1 :msize
i f R(row,col) == 1
onecount = onecount + 1 ;

end
end
indeg(col) = onecount;

end

7o create an array holding the indexes of prots with no dependents
7» ie) nodes with zero indegree)
count = 0 ;
nodep = [] ;

for c o l = 1 :msize
i f indeg(col) == 0
nodep = [nodep col] ;

end
end

127

% p i c k p r o t s w i t h no dependents o f f the top of the queue and a s s i g n
% i t the next o rde r and decrement the indeg of the p r o t s a f f e c t e d by
7. t h a t p r o t
w h i l e " isempty(nodep)

v = nodep(1) ;
i f length(nodep) == 1

nodep = [] ;
e l s e

nodep = nodep (2 : l ength (nodep)) ;
end
count = count + 1;
o rd (v) = count ;
f o r c o l = l : m s i z e

i f R (v , c o l) == 1
i n d e g (c o l) = i n d e g (c o l) - 1;
i f i n d e g (c o l) == 0

nodep = [nodep c o l] ;
end

end
end

end

7» I f the s o r t worked w i t h the g i v e n g raph , rea r range the m a t r i x
7o i n t o p o l o g i c a l s o r t o rder
i f count < msize

e r r o r ('Graph i s c y c l i c ')
e l s e

[Y , I] = s o r t (o r d) ;

f o r i = l : m s i z e
f o r j = l : m s i z e

S (i , j) = R (I (i) , I (j)) ;
end

end
end

128

function [S]=skel2(R)

7.
7o function [S] =skeleton(R)
V.
°L S = output skeleton matrix
7. R = input unlabeled binary matrix
7.

[numrows,numcols]=size(R);
i f numcols ~= numrows

error('Need a square matrix')
end
msize = s i ze (R , l) ;

7. created l i s t of effect pairs

l i s t = [] ;
for col = l:msize

for row = l:msize
i f R(row,col) == 1
l i s t= [l i s t

row co l] ;
end

end
end

l i s t s ize= s i z e (l i s t , l) ;

7» remove pairs from the l i s t that represent indirect effects

for i = l : l i s t s i z e
for k = 1: l i s ts ize

i f l i s t (k , l) == l i s t (i , 2)
y = l i s t (k , 2) ;
for k2 = 1: l i s ts ize

i f (l i s t (k 2 , l) == l i s t (i , l)) & (l ist(k2,2) == y)
R (l i s t (k 2 , l) , l i s t (k 2 , 2)) = 0;

end
end

end
end

end

S = R;

129

function [x,endpop]=testegf(numpop,abound,gbound,nvars.maxgen,best)
'/.
'/, [x,endpop] =testegf(numpop,abound,gbound,nvars,maxgen,best)
'/.
% function called from the MATLAB command line to perform the genetic
7» algorithm run for determining the best f i t parameter solution for
% the network of protein chamical reactions
V.
°/0 x - optimal solution
7, endpop - the parameter sets of a l l individuals in the f i n a l generation
7. numpop - number of individuals in the population
7« abound - bounds on the alpha parameters
7o gbound - bounds on the g parameters
7« nvars - number of proteins i n the network
7» maxgen - maximum number of generations (termination c r i t e r i a)
7. best - previous solution to include in the new i n i t i a l population
*/.

npars=nvars"2*(nvars+1);

Vogijk bounds
bounds(1:npars,l)=gbound(l)*ones(npars,1);
bounds(1:npars,2)=gbound(2)*ones(npars,1);

'/,alpha bounds
bounds(1:nvars~2,1) = abound(l)*ones(nvars"2,1);
bounds(1:nvars~2,2) = abound(2)*ones(nvars~2,1);

70set the evaluation function determining the fitness function
evalFN = 'testegfeval';
evalopts= [] ;

'/.create the starting population
i f size(best,l)>l
startpop=best

else
startpop = initpop(numpop,evalFN,abound,gbound,nvars,best)

end
opts=[le-6 1 0];

7 o S e t the termination function and c r i t e r i a
termFN=['optMaxGenTerm'];
term0ps=[maxgen -1.6875e-5 le-4];

'/.set the selection function and options
selectFN=['normGeomSelect'];

130

selectParams= [0.1] ;

°/0set the crossover function and options
nx0ver=[round(npars*0.3) round(npars*0.8)];
x0verFNs=['amyXoverl amyXover2'];
xOverParams=[nxOver(1);nx0ver(2)];

70set the mutation function and c r i t e r i a
nmuts=4;
mutFNs=['amyMutation'] ;
mutParams=[nmuts] ;

%make the c a l l to the genetic algorithm
[x,endpop,bpop,traceinfo]=...
ga(bounds,evalFN,evalopts,startpop,opts.termFN.termOps,selectFN,selectParams,
xOverFNs,xOverParams,mutFNs,mutParams);

131

function pop=initpop(num,evalFN,abound,gbound,n,best)
% pop=initpop(num,evalFN,abound,gbound,n)
7.
7o Creates a new, v a l i d population for the genetic algorithm optimization
7« of series of chemical reactions between proteins
7.

7o num - number of individuals i n the population
7o evalFN - evaluation function determining the f i t n e s s of an i n d i v i d u a l
7o abound - bounds on the alpha parameters i n form [low,high]
7o gbound - bounds on the g parameters i n form [low,high]
7o n - number of components i n the network (proteins)
7. best - option to include a former solution i n the new population
7.

7o Determine the number of values that g _ i j k can take. This determines
7« the number of terms i n the termbank.
p=gbound(2)+l;
tbank=termbank(n,p);

maxpicks=p"n;

for i=l:num 7 f o r each in d i v i d u a l

indiv=zeros(n,n*(n+l) + l) ; 7»initialize the individual's terms

while a l l (i n d i v (: ,end)<n) 7 0while a l l individuals have less than n terms

70randomly add a v a l i d new term
curvar=ceil(rand*n); 7 o r a n d o m l y choose a variable
lastpos=indiv(curvar,end)*(n+l); 7oget pos of f i r s t free spot
indiv(curvar,lastpos+l)=rand*abound (2) ; 7.randomly choose a pos alpha
tbank=sortrows(tbank, curvar); 7 o s o r t tbank to get zero exp for curvar
for t=l:maxpicks
pick=tbank(ceil(rand*p~(n - 1)) , :) ;
i f any(pick~ = 0) 70make sure we don't get any empty terms
indiv(curvar,lastpos+ 2:lastpos+n+ 1)=pick;
break

end
end

7oput the complementary term i n too
compvar=find(indiv(curvar,lastpos+ 2:lastpos+n+ 1) > 0) ;
complastpos=indiv(compvar,end)*(n+1);
for k=l:length(compvar)
indiv(compvar(k),complastpos(k)+l:complastpos(k)+n+l)=[...

-indiv(curvar,lastpos+l) indiv(curvar,lastpos+ 2 :lastpos+n+ 1)] ;
end

132

indiv(curvar,end)=indiv(curvar,end)+1;
indiv(compvar,end)=indiv(compvar,end)+l;

end

' / co l lec t these terms to make i n d i v i d u a l i

pop(i,:)=zeros(l,n~2+n~3+l);
for k=l:n

lastpos=indiv(k,end);
pop(i ,n*(k- l)+l :n*(k- l)+lastpos)=indiv(k,1:(n+1): las tpos*n);
for j=0:lastpos-1
pop(i,n~2+n~2*(k-l)+l+j*n:n"'2+n~2*(k-l)+n+j*n) = . . .

indiv(k,j*(n+l)+2:(j+1)*(n+1));
end

end

°/0if put t ing i n a previous best one
i f "isempty(best)
pop(l , :)=best;

end

%now evaluate each ind iv idua l
estr=[' [pop(i , :) ,pop(i ,end)] = ' , eva lFN ' (p o p (i , :) , []) ; '] ;
eval (es t r)

end

133

function [cl,c2]=amyXoverl(pi,p2.bounds,Opts)
'/.
7„ [c l , c2] =amyXover 1 (p i , p2, bounds, n)
7.

7« A crossover operator producing v a l i d children solutions.
7o Currently both children can choose from the f u l l bank of
7. terms from both parents, though the selection within a c h i l d i s
7« without replacement.
7.

7« p i - one parent parameter set selected for reproduction
7. p2 - the second parent parameter set
7« bounds - vector giving bounds of each parameter
7. Opts - for future options (currently empty)
7.

/{determine the number of variables
n=cubit(size(pi,2) - 1) ;
% Determine the number of values that g _ i j k can take. This determines
7o the number of terms i n the termbank.
gbound=bounds(n~2+l,:);
p=gbound(2)+l;
maxpicks=p~n;
numparents=2;

7«create a bank of terms from the terms of the parents
origbank=[getsolterms(pi,n);getsolterms(p2,n)];
origbank(find(origbank(:, 1) = = 0) , :) = [] ;
origabank=origbank(:,1);
origbank(: , 1) = [] ;

for i = l rnumparents 7» for each c h i l d
abank=origabank; 7» alphas and terms are pulled from the f u l l bank
tbank=origbank;
indiv=zeros(n,n*(n+l)+l);

7«add terms while a l l proteins have less than n terms and there are
7»still terms l e f t i n the bank
while all(indiv(:,end)<n) & "isempty(abank)
bad=[] ;

7«randomly add a v a l i d new term
while isempty(bad)
curvar=ceil(rand*n); 7orandomly choose a variable
lastpos=indiv(curvar,end)*(n+l); 7»get pos of f i r s t free spot
picka=ceil (rand*length (abank)); 7orandomly choose a po s i t i v e alpha
indiv(curvar,lastpos+1)=abank(picka);
tbank=sortrows(tbank, curvar); 7osort tbank so zero exp for curvar

134

bad=find(tbank(:,curvar)==0);
end
for t=l:maxpicks
pickind=ceil(rand*length(bad)) ;
pick=tbank(pickind,:);
i f any(pick~=0) %make sure we don't get any empty terms
indiv(curvar,lastpos+2:lastpos+n+1)=pick;
abank (picka) = [] ;
tbank(pickind,:) = [] ;
break

end
end

%put the complementary term i n too
compvar=find(indiv(curvar,lastpos+2:lastpos+n+1)>0);
complastpos=indiv(compvar,end)*(n+1);
for k=l:length(compvar)
indiv(compvar(k),complastpos(k)+1:complastpos(k)+n+l)=[...

-indiv(curvar,lastpos+l) indiv(curvar,lastpos+2:lastpos+n+1)];
end
indiv(curvar,end)=indiv(curvar,end)+l;
indiv(compvar,end)=indiv(compvar,end)+1;

end

'/collect these terms to make in d i v i d u a l i

pop(i,:)=zeros(l,n~2+n"3+l);
for k=l:n
lastpos=indiv(k,end);
pop(i,n*(k-l)+l:n*(k-l)+lastpos)=indiv(k,l:(n+1):lastpos*n);
f o r j=0:lastpos-1
pop(i,n"2*k+j *n+(1:n))=indiv(k,j *(n+1)+2:(j +1)*(n+1));

end
end

end

cl=pop(l,:);
c2=pop(2,:);

135

function [cl,c2]=amyXover2(pi,p2,bounds,Opts)
7.
%[cl,c2]=amyXover2(pi,p2,bounds,Opts)

70 A crossover operator producing va l id children solutions.
7o amyXoverl distributed alphas and terms separately, while this op
7o distributes the alphas with the terms that they are with in the
7o parents.
7.
7o p i - one parent parameter set selected for reproduction
7, p2 - the second parent parameter set
7o bounds - vector giving bounds of each parameter
7o Opts - for future options (currently empty)
'/.
**

70determine the number of variables
n=cubit(s ize(pl ,2)- l) ;
7o Determine the number of values that g_ijk can take. This determines
7o the number of terms in the termbank.
gbound=bounds(n~2+l,:);
p=gbound(2)+l;
numparents=2;

7oCreate the bank of terms
origbank=[getsolterms(pl,n);getsolterms(p2,n)];
origbank(find(origbank(:,1)==0),:)=[];

for i=l:numparents
tbank=origbank;
indiv=zeros(n,n*(n+l)+l);

while all(indiv(:,end)<n) & "isempty(tbank)
bad=[];

70randomly add a va l id new term
while isempty(bad)

curvar=ceil(rand*n); 7orandomly choose a variable
lastpos=indiv(curvar,end)*(n+l); 7 o g e t pos of f i r s t free spot
tbank=sortrows(tbank, curvar+1); 7«sort tbank so zero exp for curvar
bad=find(tbank(:,curvar+1)==0);

end
pickind=ceil(rand*length(bad));
pick=tbank(pickind,:);
indiv(curvar,lastpos+1:lastpos+n+l)=pick;
tbank(pickind,:)=[];

70put the complementary term in too
compvar=find(indiv(curvar,lastpos+2:lastpos+n+l)>0); 7«pos i t ive exponents

136

complastpos=indiv(compvar,end)*(n+l);
for k=l:length(compvar)
indiv(compvar(k),complastpos(k)+l:complastpos(k)+n+l) = [...

-indiv(curvar,lastpos+1) indiv(curvar,lastpos+2:lastpos+n+1
end
indiv(curvar,end)=indiv(curvar,end)+l;
indiv(compvar,end)=indiv(compvar,end)+1;

end

"/{collect these terms to make ind i v i d u a l i

pop(i,:)=zeros(1,n~2+n~3+l);
for k=l:n
lastpos=indiv(k,end);
pop(i,n*(k-l)+l:n*(k-l)+lastpos)=indiv(k,l:(n+1):lastpos*n);
for j=0:lastpos-1
pop(i,n~2*k+j*n+(l:n))=indiv(k,j*(n+l)+2:(j+l)*(n+l));

end
end

end

cl=pop(l,:);
c2=pop(2,:);

137

function msol=termmut(sol,n,pos,newval)
°/0 msol=termmut(msol,n,pos,newval)
'/.
% termmut implements the mutation cases l i s t e d i n Table 4.6
'/.
7„ msol - the mutated so lu t ion
7o s o l - so lu t ion (parameter set) selected for mutation
7o n - number of proteins i n the network
7o pos - pos i t i on i n parameter set selected for mutation
7, newval - new value to replace the current parameter i n s o l
%

sol=sol (l :end-1) ;

i f pos<=n"2 7o an alpha i s changed
i f (s ign(soKpos))==sign(newval)) & (newval ~=0)

sol=updatemuta(sol,newval,n,pos);
e l s e i f (sol(pos)~=0 & newval ==0)

sol=deleteterms(sol,n,pos);
e l s e i f s o l (pos) ==0 & newval>0 '/.not allowed to change i f newvaKO

sol=newterm(sol,newval,n,pos);
end

else % a g i j k i s changed
newval=round(newval); '/, g i j k are integers
7»f ind i , j ,k
gpos=pos-n~2;
i=ce i l (gpos . /n"2) ;
j=modmod(ceil(gpos./n),n);
k=modmod(gpos,n);
a=(i-l)*n+j;
i f sol((i- l)*n+j)~=0 7» only change i f alpha > 0

i f (sol(pos)==0) & (newval~=0) 7« must add a term-put i n correct a
so l=addx(so l ,newva l ,n , [a , i , j , k]) ;

e l s e i f (sol(pos)>0) & (newval>0)
sol=updatemutg(sol ,newval ,n ,[a , i , j ,k]) ;

e l s e i f (sol(pos)~=0) & (newval==0)
s o l = l o s e x (s o l , n e w v a l , n , [a , i , j , k]) ;

end
end

end

msol(1:end-1)=sol;

138

function [s o l , val] = testegfeval(sol,options)

%function [s o l , val] = testegfeval(sol,options)
%

% Evaluation function for the genetic algorithm s t u f f f o r EGF
% ** Note: t h i s version uses only integers for the g i j k params **
'/ s o l - the current parameter set (individual) being evaluated + value
70 v a l - the least squares score for the given parameter set (sol) ,
7o ie) the f i t n e s s for the in d i v i d u a l under consideration.
*/.

7o set some constants and things s p e c i f i c to t h i s run
const=0.001;
d a t a f i l e = 'gatestt.txt';
TSPAN= [0 15 30 45 60 75 90 105 120];

LP = length(sol)-1; % s o l contains the parameter set plus the value
nvars = cubit(LP);
ntime = length(TSPAN);

7o Read from the f i l e containing the experimental data
f i d = fopen(datafile);
i f f i d == 1
error('uh-oh, not opening the f i l e ')

end

7o data i s read i n from f i l e with time pts along cols but
'/, read i n format has time pts along rows
xexp=f scanf (f i d , ''/g', [ntime,nvars]);
f c l o s e (f i d) ;

'/For when an i n i t i a l pop comes through - set everything to integers
'/, note - should probably just do t h i s i n initpop. . .
for k=(nvars~2+l):LP
i f sol(k)<0.5
sol(k)=0;

e l s e i f sol(k)<1.5
sol(k)=l;

e l s e i f sol(k)<2.5
sol(k)=2;

else
sol(k)=3;

end
end

% get the i n i t i a l value for solving the system of d i f f e r e n t i a l equations

139

i n i t = log(xexp(l,:)+const);
options= [] ;

7. testlogde i s the f i l e that contains the d i f f e r e n t i a l equation - i t
% i s evaluated for the current parameter set by ode23
[timepts,ycalc]=ode23('testlogde',TSPAN,init.options,sol(1:LP));
xcalc=exp(ycalc)-const;

% Calculate the f i t n e s s by finding the d i f f bet calc and expt.
70 on the condition that none of the constraints are vi o l a t e d
v a l = 0;
for i = 1:nvars
for t = l:ntime
v a l = val+(xcalc(t,i) - xexp(t,i))"2;
end

end
end

7« If the ode solver was not able to successfully evaluate the
7o system of d i f f e r e n t i a l equations, then set a value of 1000
7. to punish the solution
i f isnan(val) | i s i n f (v a l)
val=1000;

end

7oWe're doing a minimization so...
val=-val

140

