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Abstract 

This thesis presents mathematical and computational approaches to studying signal trans­
duction pathways. The biology.of cellular signalling is introduced, highlighting the impor­
tance of signalling pathways in regulating the processes of cell division and proliferation. A 
brief history of mathematical approaches to such systems is presented. Two multivariate 
analysis methods, principal component analysis and clustering, are introduced and applied 
to both gene expression and simulated protein concentration data. Several recent reverse 
engineering methods that have been used to study genetic networks are introduced. Fi­
nally, a reverse engineering method intended to elucidate the structure of genetic networks 
is adapted to the study of signal transduction systems. 
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C h a p t e r 1 

A n introduction to the study of 

signal transduction systems 

Our bodies are composed of myriads of molecules that interact in a very complex, sometimes 

seemingly random fashion and yet are capable of carrying out the development of a new-

being from a single cell. The puzzle of how all these pieces work together to produce a 

functioning organism is one of the scientific challenges of this century and spans disciplines 

from psychology to physics, from ecology to biochemistry. Mathematics may play a role in 

interpreting and organizing this huge research effort. 

Each cell division and differentiation, each immune response, each synaptic trans­

mission throughout development and through the life span of an individual is instigated by 

a biological signal communicated between cells. The receipt and intracellular propagation 

of such a signal and its interpretation by the cell and subsequent response, is referred to as 

signal transduction and forms the biological motivation for this thesis. 

1.1 Signal transduction 

The molecular components involved in cellular signaling form signal transduction pathways. 

A signal transduction pathway affecting a cell is composed of the following events: 

• A signaling molecule arrives outside the cell 

• A receptor on the extracellular surface of the cell membrane interacts with the signal­

ing molecule 
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• The receptor interacts with intracellular pathway components, starting a cascade of 

protein interactions that propagates the signal inside the cell 

• The signal arrives at its destined location or molecular target and elicits a functional 

response in the cell. 

A simplified example of these steps is shown in Figure 1.1. 

Important biotechnological advances in recent years have allowed increasingly de­

tailed studies of a variety of signalling pathways. These advances include production of 

recombinant DNA, the Polymerase Chain Reaction (PCR) [3], gel electrophoresis [54], mi-

croarrays [10], and the serial analysis of gene expression (SAGE) technique [53]. Devel­

opment of such techniques is ongoing, and large-scale assays of peptides and protein-DNA 

binding activity are becoming more feasible [2]. 

S i g n a l o r i g i n a n d r e c o g n i t i o n b y t h e c e l l 

A signaling molecule may be a protein, small peptide, amino acid, nucleotide, steroid, 

retinoid, fatty acid derivative or a dissolved gas [3]. Where does a signal come from? 

There are different types of signaling systems and the signal origin differs among them. For 

paracrine signaling, the signal originates from a nearby cell and, thus, the signal causes 

only localized effects. In endocrine signaling, hormones are secreted into the bloodstream 

and thus may be received by a cell some distance from the origin of the signal. In synaptic 

signaling, a signaling molecule is released into a synaptic cleft from one neuron and received 

by another neuron. And finally, a cell may send a signal to itself, which is known as autocrine 

signaling [3]. 

There are many types of signaling molecules and also many different receptors that 

may be present on a given cell at a given time. The set of receptors and the density and 

location of each receptor on the cell surface depend on cell type and on the current state and 

environment of the cell. The same stimulus will often cause different responses in different 

cells. 

Two important types of cell surface receptors involved in cellular signal transduction 

are G-Protein coupled receptors and receptor tyrosine kinases [27]. Rhodopsin, the light 

receptor in the eye, is an example of a G-Protein coupled receptor. The receptor that will 

most concern this study, the epidermal growth factor (EGF) receptor, is an example of a 
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Receptor 

Figure 1.1: A simple picture of the components of the EGF signaling pathway. EGF 
molecules bind to the extracellular domains of receptors in the cell membrane. The binding 
causes dimerization of the receptor and subsequent initiation of a series of intracellular 
responses. The signal is transduced, through a series of phosphorylation reactions, to the 
cell nucleus. Here gene transcription is initiated by transcription factors. 
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receptor tyrosine kinase and will be discussed in further detail below. All receptor tyrosine 

kinases have certain structural features in common: an extracellular domain for binding 

polypeptide ligands, a single transmembrane region (in contrast to the seven transmembrane 

structure of a G-protein coupled receptor), a juxtamembrane domain possibly involved 

in regulating receptor function, and a cytoplasmic domain with tyrosine kinase catalytic 

regions [27]. 

All the structural details of a receptor are essential to the specific response and 

propagation of a set of signals. The sequences of the extracellular domain and of the 

intracellular catalytic regions determine what molecules can bind to the receptor. Thus, 

determining the structure and amino acid sequence of a protein is important in elucidating 

that protein's possible partners in a signal transduction pathway. 

P r o p a g a t i o n o f t h e s i g n a l i n t h e c e l l 

The main method of signal transduction occurs through structural changes of pathway com­

ponents. A given protein will affect the conformation of one or several other proteins, acti­

vating or inhibiting those proteins and thus propagating the signal down the pathway [27]. 

The trigger for signal propagation often occurs with the binding of the signaling molecule 

to the receptor, which causes a conformational change in the receptor. Subsequently, cy-

tosolic regions of the receptor are activated, making them active targets for intracellular 

and membrane associated proteins. 

Within the cell, signal propagation depends heavily on the action of protein kinases 

and protein phosphatases. The discovery of the role of kinases in the propagation of cellular 

signals was made during experiments studying the reaction of skeletal muscle to epinephrine 

and involved cyclic adenosine monophosphate (cAMP), an important second messenger for 

G-Protein coupled signaling [3]. Protein kinases and phosphatases catalyze the transfer of 

a phosphate group of adenosine triphosphate (ATP) to and from target proteins respec­

tively. The transfer of the phosphate group occurs only at specific amino acids of the 

target protein. Tyrosine protein kinases catalyze the phosphorylation of tyrosine residues, 

while serine/threonine protein kinases catalyze the phosphorylation of serine or threonine 

residues. Some protein kinases (such as MAPK, which will be discussed below) can act as 

both tyrosine and serine/threonine kinases [3]. Protein kinases and phosphatases are useful 

signaling molecules because they affect rapid and reversible changes [27]. 
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Most of the intracellular portion of the signaling pathway is a cascade of protein 

phosphorylations and dephosphorylations. Each step leads to activation or inhibition of 

further, downstream events or feeds back on upstream events. The traditional view of signal 

transduction has been as a linear sequence of phosphorylation events proceeding from the 

cell surface to the ultimate intracellular target. However, it has become increasingly clear 

that the propagation of signals in the cell is not a simple chain of events, but a complex and 

combinatorial process involving switches, integrating centres, feedback loops and crosstalk 

between pathways [29]. 

R e s p o n s e s i n i t i a t e d b y s i g n a l i n g 

The responses to signaling can include activation of enzyme activity, changes in cytoskeleton 

organization, changes in ion permeability, activation of DNA and/or RNA synthesis and 

many other aspects of cell function [3]. Through such changes, signaling pathways can 

control cellular function such as growth, maturation, proliferation, and differentiation. 

These vital functions suggest the importance of studying signal transduction path­

ways. It is not a coincidence that many of the components of such pathways were first 

discovered as oncogenes: abnormal versions of a protein that are implicated in transforming 

a normal cell into a tumor cell. Cancer is a disease of uncontrolled, abnormal cell prolifera­

tion. The regulation of the processes of cell division and apoptosis occurs through signaling 

pathways. Thus it is in the dynamics and among the components of these pathways that 

some researchers are looking for causes and cures for this disease. 

R e g u l a t i o n o f t h e c e l l c y c l e 

Let us trace backwards along a set of signaling events from the observed response, such as 

unchecked cell proliferation, to the entry of the signal into the cell and to the origin of the 

signal. One set of proteins, called cyclins, act as key regulators of the transitions between 

phases of the cell cycle by activating cyclin-dependent kinases (CDKs). CDKs phosphorylate 

proteins needed for each phase transition. The cyclins themselves are regulated by protein 

complexes involved in protein degradation, such as adenomatous polyposis coli (APC), and 

the CDKs are regulated by 2 families of CDK-inhibitors [50]. All these proteins are thus 

important targets of signaling pathways aimed at controlling cell proliferation [33]. 
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R e g u l a t i o n o f t r a n s c r i p t i o n 

There are several levels at which a cell can control the set of proteins expressed at a given 

time. The most important is transcriptional control, that is, the control of when and how 

often a gene is transcribed [3]. Other controls exist at the level of RNA processing (such 

as alternate splicing), RNA transport, RNA translation, RNA degradation, and at the 

post-translational level such as protein inactivation and compartmentalization [3]. 

The transcriptional control of gene expression was first investigated for the lac operon 

by Jacob and Monod in the 1950s [23]. It was found that gene expression depended on 

a region of DNA upstream of the gene and a set of gene regulatory proteins that are 

capable of binding to that sequence. In bacteria, this sequence of DNA, called the operator, 

may be subject to negative or positive control through repressor and activator proteins, 

respectively [3]. In negative control, a repressor protein binds to the operator which prevents 

RNA polymerase from accessing the promoter, a process needed to initiate transcription. 

Positive control occurs when an activator protein binds to a DNA site near the promoter to 

allow RNA polymerase to start transcription. Sets of these repressors and activators exert 

combinatorial control over the transcription of a bacterial gene. 

In eukaryotes, the process of regulating transcription is still more complicated. A set 

of proteins known as transcription factors must bind to the DNA before RNA polymerase 

can begin transcription. As well, activators and repressors in eukaryotes are capable of 

influencing transcription from thousands of nucleotide base pairs away from the start site 

of transcription. These regulatory proteins also usually act as complexes, the formation 

of which sometimes depends on the correct proteins arriving in the proximity of a specific 

DNA sequence [3]. Given this level of complexity and the number of possible combinations 

of all these molecules, it is not surprising that the mechanism of transcriptional control for 

most eukaryotic genes is not well understood. 

There has been some progress in deciphering the mechanism of control of the cyclins 

and.associated proteins outlined above. Transcription factors from the Fos and Jun families 

form complexes known as AP-1 which regulate, among other things, the transcription of 

other transcription factors such as myc [50], which turns on the transcription of the genes 

that encode the regulators of the cell cycle transitions mentioned above. So, the next 

question is, what controls the transcription of these genes? 
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At this point, there are two major pathway types implicated in mitogenic regulation: 

one involves Ras proteins (Ras, Rho, cdc42, etc) and proteins aiding their signaling to 

each other; the second involves the mitogen activated protein kinase (MAPK) cascade [50]. 

These two families are important players in transducing the signal as it travels from the 

cell membrane to the target molecules. Thus, it is important to determine the interaction 

of these proteins with other potential pathway members to fully map out the network of 

intracellular interactions. 

Other points of interest in pathways regulating cell proliferation are the signal that 

initiates the cellular response and the receptor with which it interacts at the cell surface. 

The protein hormones known as growth factors, which include EGF, platelet-derived growth 

factor (PDGF), fibroblast growth factor, and insulin, control growth, division, and matu­

ration of cells [3]. 

In the search for the mechanism of the development of a disease such as cancer, 

one needs to consider the roles played by all the parts of such a network, from the sig­

naling molecules through the receptors, enzymes and intracellular components, cell-contact 

components, down to the regulatory machinery for transcription. It is indeed a complex 

problem. 

1.2 Epidermal growth factor signaling 

In order to experiment with some of the different computational techniques in this thesis, a 

biological case study was needed, along with the ability to gather the specific data required 

for different techniques. This thesis began as an effort to analyse real data about kinase 

activation patterns. Our partner, Kinetek, was unable to carry out challenging experiments 

to supply the needed data. Therefore, we decided to produce data using a computer sim­

ulation. In 1999, Kholodenko et al published a quantitative study of the dynamics of the 

early events of the EGF signaling pathway, including estimates of rate constants for all 

reactions under consideration [29]. Subsequently, Chaudhry implemented the model in a 

simulation [7] using the Gepasi software. With the components of the early pathway events 

relatively well defined, reasonable rate constants published, and the ability to create data 

sets easily, this system is an ideal choice for a case study. 

This said, it is acknowledged that the use of simulated data for testing the methods 
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Figure 1.2: The early events of the EGF signaling pathway that are included in the model 
of Kholodenko et al [29]. The proteins corresponding to the abbreviations used in this figure 
and throughout the thesis are listed in Table 2.5 

herein is not the ideal choice. The hope for these methods is that they may prove useful 

in analysing real experimental results, despite the noise and imperfections inherent in bi­

ological assays. These considerations are taken into account when evaluating the different 

computational approaches described here. 

What are the biological features of the EGF pathway? EGF is a polypeptide con­

sisting of 53 amino acids that is known to stimulate the proliferation of many cells in vitro 

and epithelial cells in vivo [27]. In addition to proliferation, the EGF pathway is implicated 

in the control of cell differentiation, growth, and survival. 

The EGF signaling pathway begins with the binding of EGF to a single EGF re­

ceptor (EGFR). The EGFR is, as mentioned above, a member of the family of receptor 
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tyrosine kinases and binds several signaling molecules related to EGF [29]. The binding of 

EGF causes the EGF-EGFR complex to dimerize, which precipitates the autophosphory­

lation of intracellular tyrosine residues of the receptor [27]. This phosphorylation attracts 

cytoplasmic proteins containing specific sequences of amino acids called binding domains. 

Important binding domains include the Src Homology 2 (SH2) domain and phosphotyrosine 

binding domains [29]. 

Three of the proteins that bind to the activated receptor are growth factor-binding 

protein 2 (Grb2), the Src homology and collagen domain protein (She), and phospholipase 

C-7 ( P L C 7 ) [29]. These initial binding events precipitate the transduction of the signal 

along several paths to initiate different responses from the cell. An important feature of the 

pathway from the perspective of cell division is the activation of membrane-bound Ras by 

a complex of Grb2 and son of sevenless (SOS) protein formed following the binding of Grb2 

to the activated EGFR. This activation occurs in the form of the catalysis of the GTP-ase 

activity of Ras (converting GDP to GTP). This action causes the recruitment of the Raf 

protein and the subsequent initiation of the MAPK cascade [27]. 

1.3 Modeling the E G F pathway 

The simulation of the early events of the EGF pathway includes the following events: 

• EGF binding, EGFR-EGF dimerization and phosphorylation 

• recruitment of Grb2, P L C 7 , and She 

• Grb2-SOS complex formation and dissociation 

• She phosphorylation and recruitment of Grb2 and SOS separately to the Shc-EGFR 

complex and dissociation of the Shc-Grb2-SOS complex from the receptor 

• phosphorylation at two tyrosine residues of P L C 7 and its translocation to cytoskeletal 

or membrane structures 

These events are shown in Figure 1.2. 

Note that all reactions in the pathway are reversible, more or less favorably. The 

final three points above describe three coupled reaction cycles. The model considers only 

a limited number of the potential cytoplasmic signaling targets, and does not take into 
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account the possibility of competition among molecules for phosphorylation sites or adaptor 

or scaffolding proteins that may be involved [41]. (This is a simplification acknowledged by 

the authors. However, the fact that many such details are not yet confirmed for comparison, 

is also a valid consideration for this initial model.) 

I simulated these events with the software Gepasi [36], to create artificial data for the 

"reverse engineering" process. Gepasi provides a convenient interface for numerically solving 

systems of differential equations describing a set of chemical reactions. The simulation is 

created by entering chemical equations into the program and specifying the kinetics and 

corresponding kinetic constants for each equation. For example, the first step of the pathway 

is the binding of EGF to EGFR, which is entered as 

EGF + R^Ra 

where R represents the receptor and Ra represents the activated EGF-receptor complex. 

Similarly, phosphorylated and nonphosphorylated forms of proteins are represented as sep­

arate quantities. 

All kinetics used for the simulation are generalized mass action equations, with 

the exception of the phosphorylation events, which are specified using Michaelis-Menten 

kinetics. The rate equation for EGF corresponding to the chemical equation above is: 

= -h[R}[EGF] + k.^Ra] 

where k\ and are the forwards and backwards rate constants for the reaction, respec­

tively, and [A] represents the concentration of protein A. 

In total the simplified EGF model consists of 22 differential equations that describe 

the rate of change in time of the concentrations of the 22 protein conformations due to the 25 

reactions between them. It should be noted that the only kinase included in the simulation 

is the receptor tyrosine kinase, with the action of other kinases and phosphatases being 

implicitly included in rate constants between phosphorylation states of proteins. In future, 

it would be desirable to include other kinases and phosphatases explicitly, since parts of the 

pathway further downstream, specifically the MAPK cascade, are composed only of these 

proteins. 

10 



With the Gepasi simulation, it is possible to generate concentration data for each 

of the protein conformations at any desired time points. In reality, obtaining this sort 

of information at a suitable resolution for quantitative studies is a daunting experimental 

challenge. In order to maintain some connection to real experimental results, I have chosen 

time scales according to the time scales used in assaying the real biological system, as 

published by Kholodenko [29]. Given this resolution, it should be noted that the time 

scales for some reactions in a signaling system such as the EGF pathway can be too fast to 

be adequately measured. That is, a series of reactions may occur between time steps, which 

would make the determination of the order of events very difficult using the computational 

methods presented below. 

1.4 The mathematical study of signal transduction 

There is an ever increasing amount of biological data being produced from research labs 

around the world. The problems of how to store, access, annotate and interpret this data 

are each major research problems in their own right. Ironically, for the purpose of sim­

ulations and reverse engineering of biological systems, there is usually not enough useful 

data. This outlines the importance of collaboration between biologists, mathematicians, 

and statisticians: the latter two to help analyse and interpret the data and to suggest new 

experiments that will allow better results to be obtained by the biologist and subsequently 

allow better models to be created. 

In addressing the problem of modeling biochemical reactions, one can consider two 

different approaches: forward and reverse. Forward modeling implies the construction of 

models from collected biological information about the structure of the system, which can 

then be used to study the dynamics of the system and to predict future behavior. The 

reverse problem involves working from a set of data about a system, but without detailed 

knowledge about the structure of the system being modeled. The goal with the reverse 

problem is to find out as much information as possible about the structure and the dynamics 

of the system in question from observations of the system. It is this reverse methodology 

that is addressed in this thesis. 

A second key difference between modeling methodologies is that between a logi­

cal/binary model and a kinetic model with differential equations. Further, whether time 
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and molecule interactions are modeled as discrete or continuous. These three considerations 

are important in judging how representative of the underlying biological system and how 

computationally expensive a given model will be. 

Important early mathematical research in biological regulation was done by Glass, 

Kauffman, and Savageau in the early 1970's. Glass and Kauffman [15] investigated the 

dynamics of discrete systems of two- and four-"component" binary networks to compare 

with biological results of the previous decade indicating the existence of biological switches 

and feedback loops. Other important studies modeling metabolic pathways include those 

of Palsson and Lightfoot (1984) on metabolic networks [40] and of Shea and Ackers (1985) 

on the A bacteriophage [48]. 

As for the reverse engineering of biochemical networks, many of the important works 

in this newer field will be reviewed in detail in subsequent chapters. However, the work in 

1995 by Reinitz and Sharp [45] deserves a mention here as one of the early introductions of 

the reverse methodology (being applied at the time to electrical systems) to the world of 

biology. This publication, based on work by the same authors in 1991 with Mjolsness [38], 

introduces the "connectionist" model of gene regulation: in this model, a genetic network is 

represented by a matrix whose values represent the "connection strength" between genes, i.e. 

the amount that one gene influences the expression of another gene. This matrix is then 

incorporated into a set of differential equations that model the change in concentration 

of each protein resulting from the change in gene expression. The parameters are fit to 

experimental data. In other words, this paper starts with a general framework that permits 

all connections between genes and the connections are then defined such that the best fit 

to the data is obtained. 

In addition to both the forward and reverse modeling of biochemical data, many 

attempts have been made to find key features in the data that may lead to further knowledge 

of the system. For instance, clustering and other multivariate analysis techniques have 

been used to reduce the dimensionality of microarray data and to pick out genes encoding 

proteins with similar functionality ([18], [4], [12]) . These methods can be coupled with 

reverse engineering in an attempt to reduce the number of different types of interactions 

that need to be defined. The question of whether biological systems do in fact use some 

sort of modularity is still an open problem. 

The application of multivariate analysis and reverse modeling to the study of signal 
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transduction pathways is interesting for several reasons. First of al l , despite the technologi­

cal advances described earlier, these systems are still not well understood. Not only are the 

specific interactions between molecules not all determined, but the molecular components 

themselves are not all known. Obviously then, chemical kinetic data is not available for the 

majority of the reactions involved in signal transduction pathways. These facts preclude 

the use of complete models and simulations for most pathways. 

This thesis is organized as follows: in Chapter 2 an overview of multivariate analysis 

and its application to the study of genetic regulation are covered; in Chapter 3 several 

approaches to reverse engineering are discussed; Chapter 4 describes the implementation 

of a two-step reverse engineering method to study the early events of the EGF pathway; 

Chapter 5 consists of a discussion and concluding remarks. 
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C h a p t e r 2 

Multivariate Analysis 

Multivariate analysis is the qualitative and quantitative study of populations that depend 

on many variables. Given that most natural phenomena depend on more than one variable, 

the development of such techniques is an ongoing process that touches many fields. Mul­

tivariate analysis is specifically concerned with mathematical approaches to studying data 

sets consisting of a set of observations on a set of variables. 

Before looking at several multivariate analysis techniques below, the organization of 

the data set and a few introductory statistical concepts are described. 

2.1 Introduction to multivariate covariance and correlation 

Throughout this chapter I shall denote the ith variable observed on the jth item or trial as 

Xij. For example, the variables in a study might be height, weight, and age and the items 

or trials might be the different individuals in the study. So, X13 would be the height of the 

third person in the study. 

Organize a set of n trials measuring p variables in the (p x n) matrix, X. Since one 

is most likely interested in statistics for the variables over the set of individuals (say average 

height), the data is thought of as a set of p n-dimensional vectors. That is, x\ = [xn,..., Xj n ] 

and so X* — [xi,..., xp], where t denotes the transpose and Xj is a vector containing values 

of one of the variables for all n trials. 

Given this organization, one can define: 

• The mean, taken to be the mean of each variable over all the trials, is X* — [xi, x~2,... ,xp] 

• Sample covariance (measure of linear association between pairs of variables i and k) 
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given by the matrix Cov(X) — S with elements 

1 " 
ik = ~ ^ 2-i)(̂ fcj 2-fc)> 2 = 1,...,P, & = l , . . . ,p 

i=i 
(2.1) 

A negative covariance implies that most trials with large values for variable i have 

small values for variable k or vice versa. A positive covariance implies that either large 

or small values are obtained for both variables, and a zero covariance implies that there 

is no particular association between the variables over the course of the trials. Given 

the covariance matrix S with elements Sij, the generalized sample variance is given 

by det(S). 

A related concept is Pearson's correlation coefficients. Here the covariance is normal­

ized by the standard deviations of the two variables, thus down-playing the impact of 

the range and units of the measurements [25]. The correlation takes on values between 

negative and positive one inclusive. These values are given by: 

(2.2) 

Given a system of q linear combinations of p random variables 

Y = 

an an • • • a\P 

0,21 &22 • • • a 2 P 

yq\ \aqi aq2 
Iqpj \_XpJ 

Xi 

X2 

AX (2.3) 

where â - are scalar constants, the variance of the ith linear combination is 

Var(j/i) = Var(a*a;) = a'Var^i)^ (2.4) 

It is important to note that the quantities above deal with linear relationships in the data. 

As was mentioned in Chapter 1 gene and protein interactions in signal transduction and 

genetic regulation can be nonlinear. Thus some relationships between variables may be 
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misconstrued using these linear statistical measures. 

2.2 Principal Component Analysis 

The goal of principal component analysis (PCA) is to reduce dimensionality and aid in the 

interpretation of a large data set. This goal is accomplished by finding a smaller set of basis 

vectors that still describe the data well (i.e. that capture major sources of variance over the 

trials in the study). For this reason, PCA is also often applied to a large data set before 

further processing using regression or clustering techniques. 

There are several ways in which one may try to understand the role of the principal 

components. They are linear combinations of the original variables, [x\,..., xp]. Thus they 

can be thought of as a new set of axes that have been rotated from the original axes to 

fit the data better (in particular, that one can find the important relationships between 

variables by examining a smaller number of dimensions). 

One can also think of the principal components as the decomposition of the origi­

nal signal into a set of distinct patterns over the set of trials or time points that can be 

recombined to recreate the original data. Thus one can examine the properties of the most 

prevalent patterns in the data, both over the set of experiments or the time course and in 

comparison to each other. 

Before proceeding with the application of PCA, the problem must be formulated. 

One must distinguish between the "trials" and the "variables" for the study. Determining 

the principal components will allow us to examine the influence of a given variable on the 

most influential components and also to visualize each variable's position in the reduced 

component space relative to other variables. 

If one uses PCA to study large-scale gene expression data, it is important to first 

determine the aim of the study. Are we interested in comparing different arrays or different 

genes? Another important consideration is the dimension of the data matrix: in gene 

expression studies, one will usually have a much larger number of genes than arrays. This 

means that a choice to use the genes as variables means a far greater computational cost, 

as can be seen from the dimensions of the covariance and correlation matrices listed in 

Section 2.1. Despite the costs, I believe that it is most useful to set the genes as the 

variables and the trials as the arrays. 
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2.2.1 Mathematical background for P C A 

This section serves as a brief, intuitive introduction to principal component analysis. As 

stated in Section 2.1, the data set is organized into a (p x n) matrix, where p is the number of 

variables (genes), and n the number of trials (arrays) over which the value of each variable 

is measured. In looking for the principal components of the data, one is looking for p 

uncorrelated, linear combinations of the vectors x\,..., xp with the maximum variance [26]. 

That is, given the data matrix 

X* = [x1,...,xp], (2.5) 

one wishes to find the p-dimensional vectors a\ that result in the p principal components 

2/1 = 011^1 + 021^2 + • • • + ap\xp = a\X 

2/2 = a\2Xi + CL22X2 + • • • + ap2Xp = a\X 

(2.6) 

Up = aipXi + a2px2 H h appxp = apX 

whose variances are maximized. 

Let the covariance matrix of the variables be the (p x p) matrix Cov(X) = S. Prom 

Equation (2.4), the variance of the ith principal component is given by Varijji) = a\Scn. 

Since the variance can always be increased by increasing ai, the condition a-a; = 1 is 

imposed. So, to find the principal components one must solve the problem: 

M a x i m i z e a\Sai s u b j e c t t o a*a; = 1 (2-7) 

The details of the maximization are included in Appendix A. The results are that 

the coefficients of the principal components are given by the eigenvectors of the covariance 

matrix, that is 

2/1 — e n z i + e 2 i x 2 H h ev\xp — e\X 

2/2 = e i 2£i + e 2 2 X 2 H h ep2Xp = e\X 

(2.8) 

yP — eipXi + e2Px2 H h eppxp — elX 
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where is the eigenvector corresponding to the ith largest eigenvalue, Ai, of the covariance 

matrix, S. The spectral decomposition of S is: 

p 

i=i 

From Equation (2.4) then, the variance of the ith principal component is 

Var(yi) = VariejSei) = A4 (2.10) 

It follows [25] that the total variance is: 

p p 
£ Var(Xi) = \ 1 + X2 + ... + Xp = J2 Var (ft). (2.11) 
i=i i=i 

Thus one can compute the proportion of the total variance of the data that is captured by 

the ith principal component: 

_Ai 
YH=I Ai 

proportion of variance = p

 1 (2-12) 

At this point, we have a method of computing the principal components and of 

assigning each component a rank in terms of explaining the variance in the data. Examining 

the coefficients of the principal components, that is, the eigenvectors of the covariance 

matrix, the correlation between the kth variable and the ith principal component is computed 

as: 
6fci\/Ai 

Pvuxk = / — - • (2.13) 

This provides us with a manner of quantifying the importance of the kth variable to the ith 

principal component. 

The results presented in this section can also be obtained using the matrix of corre­

lation coefficients rather than the covariance. This is equivalent to performing the analysis 

with the covariance matrix after having normalized the variables by removing the mean 

and dividing by the standard deviation of each variable. Note, however, that the principal 

components and the corresponding variances will differ depending on whether the covari­

ance or correlation matrix is used. It is recommended that the correlation matrix be used 
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if the variables are measured on very different scales [25]. In Section 2.4 I compare the use 

of the covariance and the correlation matrices in studying the EGF pathway data. 

2.2.2 Singular Value Decomposition 

The Singular Value Decomposition (SVD) theorem for matrices provides a powerful method 

for finding the eigenvalues and eigenvectors of a matrix and is useful for dealing with certain 

types of systems of equations [44]. MATLAB has functions for performing the SVD. The 

results of the decomposition are as follows: Any (m x n) matrix A, where m > n, can be 

written as 
A — U • W • V1 

(2.14) 
(m x n) (m x n) (n x n) (n x n) 

where 

• U is column orthogonal and whose columns are given by Ui — (^)AVi 

• W is a diagonal matrix with wu > 0 called the singular values. 

• V is an orthogonal matrix whose columns, Vi, are the eigenvectors of AtA. 

The decomposition can also be done on a matrix with m < n, but in this case wu — 0 for 

i — m + 1,..., n and the corresponding columns of U are zero. 

2.2.3 Recent applications to studies of gene expression 

Two studies published in 2000, one by Holter et al and the second by Alter, Brown and 

Botstein, perform a principal component analysis of sets of gene expression data. Both 

papers apply the technique to previously published yeast (Saccharomyces cerevisiae) gene 

expression data [49] and Holter et al also use data from human fibroblasts (cells found in 

connective tissues) [21]. 

The Alter paper is complicated and suffers from unfortunate typographical errors 

that make the interpretation of the method difficult. The authors coin the terms "eigen-

genes" and "eigenarrays" to represent the variables of the new "reduced space". The mea­

surements in this new space are organized in a diagonalized matrix whose diagonal elements 

are the "eigenexpression" of the ith "eigengene" in the ith "eigenarray", all other values be­

ing zero. 
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Some of my confusion with both the Alter and the Holter paper arises from their 

use of the Singular Value Decomposition theorem to find the eigenvalues. The advantage of 

using singular value decomposition is that the principal components of both the variables 

and the trials can be obtained easily and without having to calculate the covariance matrices. 

The confusion is that in the reported papers the singular values of the arrays are reported 

rather that those of the genes, while the subsequent analysis uses the principal components 

of the genes. This underemphasises the most useful aspect of principal component analysis, 

which is the reduction of the size of the data set. A reduction from 15 to 5 variables is not 

nearly as impressive as a reduction from 676 to 5. 

Despite these problems, there are some interesting ideas presented. One is that the 

elimination of modes or components can be used to eliminate patterns in the data that may 

stem from noise or experimental artifacts. The key to this idea is that one need not eliminate 

variables or trials to be able to concentrate on the important features of the data. Rather, 

one can dissect the entire data set into modes, pick out those that are of interest, and reject 

others that are not. This represents an alternative to the common practice in large-scale 

gene expression analysis of choosing only a subset of genes whose level of expression exceeds 

some (fixed) multiple of normal expression level. 

Another idea suggested by Alter that seems promising is to compare the expression 

patterns of principal components from two sets of microarray experiments (say two time 

courses or two sets of repeated experiments). In one set of experiments a key gene, such 

as a regulator, is over expressed, while the other set has normal or low activity. The pat­

terns can then be compared for differences, and the genes that are important to (have a 

high correlation with) the components that differ can be singled out. Note that a similar 

multivariate analysis technique, canonical correlation analysis, might also be suited to such 

an analysis (for an introduction to this method see [25]). 

In the Holter paper, a key finding is that the principal component analysis suggests 

some temporal connections between previously determined clusters of the genes. A plot of 

the coefficients of the first two principal components against each other (for each gene) shows 

that clustered genes appear grouped together around the perimeter of an ellipse. The fact 

that most of the genes appear on an ellipse is a property of principal component analysis. 

(From Equation[2.8], a multivariate normal distribution yields a set of level curves in the 

form of ellipses of constant density with axes given by the principal components [25]). The 
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fact that the genes are grouped together is reassuring. Further, the fact that the order that 

the groups appear around the circle mirrors the order of the genes' temporal progression 

in the cell cycle is very interesting. It would be good to examine whether this behavior is 

repeated for other well understood systems. If so, then PCA might be used to order clusters 

in less well understood systems. 

2.3 Clustering 

Clustering is a process of grouping variables based on their similarity over trials or grouping 

trials based on their similarity over variables. For instance, in a study of gene expression, 

genes that show a similar pattern of expression over all the arrays are grouped together in 

a cluster. On the other hand, one could perform a clustering that groups arrays according 

to the similarity of the pattern of expression of all the genes in the array. 

There are several important questions that one should address with respect to ap­

plying a clustering technique to gene expression or protein concentration data: 

• What sort of patterns can be found, i.e. how are genes or proteins within a cluster 

related and how do they differ from elements outside that cluster? 

• Are these repeatable, robust methods? Are they intended to and do they give a 

concrete statistical measure of the success or failure of a given grouping? 

• What clustering method and what measure of similarity are best for understanding 

relationships between genes or proteins in a network? 

I will address some of these issues in this section and present a general overview of several 

important clustering methods. 

2.3.1 Measuring distance or similarity 

An important issue when trying to find similarities between variables or trials in the data, 

is answering the question: what exactly does "similar" mean? Results of any comparison 

would be defined by the answer to this question. For example, perhaps one wants to divide 

a selection of tree species into different categories. There are many possible divisions: for 

instance, the grouping could be made on the basis of average height, whether the trees 

are coniferous or deciduous, geographic location, average lifespan, the common uses of the 
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wood, or some combination of these factors. Thus the choice of a measure of similarity 

must be based upon knowledge of the type of the grouping that one wishes to achieve. 

Similarity of two items can be quantified by defining a "measure of distance" (or 

distance metric) between the two items. There are several different distance metrics that 

are common in practice and they are described below. A distance measure between two 

points x and y should satisfy the following criteria [25]: 

• d(x,y) = d(y,x) 

• d(x, y) > 0 if x ^ y 

• d{x, y) — 0 if x = y 

• d(x,y) < d(x,z) + d(z,y) 

The Euclidean distance is the most common measure of distance. The Euclidean 

distance between two points x and y is given by 

A statistical drawback to the Euclidean measure is that all the differences between compo­

nents are equally weighted. If some variables naturally have a wider range, they will tend 

to dominate the metric. This is a concern for gene expression values, as a small change in 

the expression of some genes may be significant. An option in this case is to standardize 

the variables by dividing measurements by the standard deviation if the Euclidean metric 

is to be used. 

A common measure of similarity is the dot product or correlation coefficient de­

scribed in Section 2.1. Other similarity measures include the Minkowski Metric and com­

parison by operations of continuous-valued logic [31]. For comparing strings of characters, 

rather than numerical data, Hamming or Levenshtein distances can be used (these are im­

portant, for instance, in comparison of gene or protein sequences). Mutual Information is 

a similarity measure based on Shannon entropy (see Section 3.1.1) that has been used for 

clustering gene expression data [11]. 

Alternatively, one can compare pairs of items based on the presence or absence 

of certain characteristics, with similar items having more characteristics in common than 

(2.15) 
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Figure 2.1: A tree visualization of the results of the hierarchical clustering of a group of 
British Columbian trees based on height. The scale on the left represents the distance 
between the two clusters being joined by a given branch. The figures that appear under the 
tree names along the bottom are the heights of each tree, and the numbers in the graph 
represent the average tree heights of each newly formed cluster. This is an example of 
agglomerative hierarchical clustering. (Tree data from www.bcadventure.com) 

dissimilar items. For example, one could define a set of binary characteristics such as 

whether a given gene's expression is above or below a threshold for a given array. The 

similarity score could then be computed using a weighted sum of the matches between pairs 

over the characteristics. 

All in all, for a successful clustering application, the choice of the distance measure 

for a particular problem should be based on features of the data being compared and the 

specific qualities that constitute similarities between variables for that application. 

2.3.2 Hierarchical clustering 

The most common visualization of a hierarchical clustering is a tree such that the similarities 

of the items or variables being clustered are reflected by branch lengths and relative positions 

in the tree. For instance, consider Figure 2.1, which shows the hypothetical output of the 

clustering of British Columbian tree species based on height. 
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Hierarchical clustering can be agglomerative or divisive. In the former, each item to 

be clustered begins as its own cluster. The two most similar clusters are then joined so that 

there is one less cluster than previously. This process is repeated until there remains only 

one cluster containing all the items. This can be seen in Figure 2.1, where Red Alder and 

Balsam Poplar join to form a cluster in the first step of agglomeration because they have 

the most similar tree heights. Divisive hierarchical clustering proceeds in the same fashion 

but in the reverse direction: all items start in one cluster that divides until each item rests 

in its own.cluster. 

The determination of which pair of clusters are closest can be made using linkage 

methods. Three linkage methods are shown in Figure 2.2. A distance metric must be chosen 

to measure the distance between items in each pair. 

As for the other clustering methods discussed here, hierarchical clustering is sensitive 

to noisy data and outliers because error and variation are not taken into account [25]. 

Another drawback, specific to hierarchical clustering, is that a poor clustering choice at a 

given step during the process cannot be fixed and will affect all subsequent results. 

2.3.3 Self-organizing maps (SOMs) 

A self organizing map is an unsupervised, competitive neural network used to cluster large 

data sets into a specified number of groups. The classification "unsupervised" differentiates 

this method from supervised and reinforced learning methods. A supervised method is more 

of a classification than a clustering, as the criteria for inclusion in a cluster is predetermined. 

In unsupervised methods, the classes of items are not known before the clustering is per­

formed, but the data is suspected to contain some natural division. Thus an unsupervised 

clustering reveals both the form and the contents of each grouping. 

There are many different types of artificial neural networks, and I will not go into 

details about them here. In competitive networks, the neural cells receive input data on 

which they compete: based on some competition criteria, a winner amongst the cells is 

chosen for a given input point. The winner attains full activity and suppresses other cells 

in the network to varying extents. The next input is then introduced, the fight begins anew 

and a new winner is chosen [31]. 

Let us consider the details of the SOM itself. A SOM is a mapping from the input 

data space onto a two-dimensional array of nodes. These nodes represent the clusters to 
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( b ) 

(c) 
Figure 2.2: A n il lustration of different linkage methods used to determine the most similar 
clusters at each step of a hierarchical clustering. The circles represent clusters and the dots 
inside each circle represent the items contained in each cluster. The darker line(s) indicate 
the shortest of the compared distances in the pairwise comparison between the diagonally 
hatched cluster and each cluster beneath. The cluster w i th the shortest distance to the 
diagonally hatched cluster is combined with that cluster for the next step of the clustering, 
(a) Single linkage also known as nearest neighbor. The shortest distance between items in 
each pair of clusters is compared, (b) Complete linkage or farthest neighbor. The largest 
distance between items in the two clusters are compared to find the shortest of these, (c) 
Average linkage. The average of all the distances between items in the pair of clusters are 
used for comparison. 
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be determined. To construct the map, the number of nodes (clusters) is chosen and these 

nodes are arranged in a lattice. The shape of the lattice may be hexagonal, rectangular, or 

even irregular. There are also some instances of three-dimensional lattices [30], though the 

two-dimensional lattice is much more common. 

Recall the formulation of a (p x n) data matrix. Choose to cluster the variables, 

so each of the p data inputs is an n-dimensional vector. The SOM algorithm proceeds as 

follows: . 

1. Initialize the network by assigning each node its own n-dimensional reference vector. 

2. Choose an input point. This selection may be done randomly or using a randomly 

ordered list that is repeated as necessary. 

3. Find the closest network node to the input datum. The closeness is calculated using 

the chosen distance measure. 

4. Change the reference vectors of the nodes based on each node's proximity to the 

closest node. 

5. Repeat steps 2 through 4 until the desired number of iterations is reached. 

Changing the reference vectors in step 3 constitutes the learning step of the network. As 

Kohonen suggests, one may think of the SOM as an "elastic net" of nodes that are stretched 

over the input data points in an orderly way with the goal of approximating their distribution 

in the input space. That is, the changing of the reference vector represents the stretching of 

the nodes toward the current input point. This is demonstrated in Figure 2.3. The learning 

function has the form 

mi{t+l)=mi{t) + hci(t)[x{t)-mi{tj\, i = l,...,p (2.16) 

where t is an integer representing the current iteration number and hdit) is a "smoothing 

kernel" defined over the nodes. The smoothing kernel determines how much each node moves 

at each step, t. Thus hci(t) must tend to zero as t —> oo so that the nodes eventually settle 

to a given point. One example of a smoothing kernel is as follows: define a neighborhood, 

Nc around the node, C, that is closest to the current data point. Then hci(t) is denned so 

that the nodes falling within the neighborhood are moved a distance given by a learning 
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(d) (c) 

Figure 2.3: The training of a SOM. The small dots represent data points. The larger circles 
represent the nodes of the network arranged in a (3 x 2) rectangular lattice and located 
at the position in the data space given by their reference vectors, (a) Data point A is 
chosen randomly. Node C is the closest node to A. The dotted circle, Nc represents the 
neighborhood of node C. (b) Node C and the other two nodes that lie within Nc are moved 
toward A as dictated by the learning function. The next data point, B, is randomly chosen 
and the new closest node C and its neighborhood Nc are shown, (c) Node C and the two 
nodes lying within Nc are moved toward B. (d) After many such iterations, the nodes 
settle at clusters of data points. 
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rate, while those that lie outside of Nc remain stationary. For instance, one could define 

where a(t) is a learning rate factor that takes values between zero and one and decreases in 

time [31]. A modification of this learning method is to have the neighborhood size decrease 

with t as well, so that toward the end of learning, the adjustments are made primarily to 

the node of the cluster to which the current datum belongs [51]. 

From the discussion above it is apparent that, although the form of the clusters is 

not specified, there are many decisions to be made in constructing a SOM. These decisions 

include the learning rate factor, the smoothing kernel, the number of nodes, the lattice 

shape, the number of iterations, the neighborhood size, and the distance metric. In addition 

to these factors, any statistical processing of the data before the creation of the SOM begins 

will affect the results. This is true for all of the multivariate analysis techniques presented 

in this chapter. 

The careful selection of parameters such as the learning factor and the form of the 

smoothing kernel is more important for larger networks (over 100 nodes) [31]. Both the 

number of clusters and the number of iterations chosen for a SOM are rather arbitrary. 

Kohonen suggests the following "rule of thumb" for the number of iterations: 

The choice of lattice shape appears to be based mainly on ease of interpretation and 

best fit to the range of the data points. The number of nodes in the network seems to be 

the most difficult choice to make and one which has a strong impact on the results. Some 

preliminary research into the number of groups one expects to find in the data and some 

trial-and-error are needed to determine a suitable network size. 

2.3.4 Recent applications of clustering to studies of gene expression 

Many clustering studies of gene expression have been carried out in the last five years by 

groups at Stanford University led by Pat Brown and David Botstein. The majority of 

these studies have been aimed at identifying patterns in the gene expression of various 

(2.17) 

number of steps = 500 x number of network units (2.18) 
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cell types and cellular states (for example, tumor vs. normal cells). Examples include the 

investigation of transcriptional programs of sporulation [8] and responses to stimulants [21]. 

The website for the Pat Brown laboratory (http://cmgm.stanford.edu/pbrown/) is a good 

source for information related to large-scale gene expression. 

The study by Eisen (1998) [12] is an early example of using hierarchical clustering to 

address the recent flood of gene expression data. The aim of this clustering is basically to 

organize and present a vast quantity of expression data in a format that is both agreeable and 

useful to a biologist who needs to interpret the data. The Eisen study applies hierarchical 

clustering with pairwise average-linkage to two sets of data: a single time course and a set 

of unrelated data from several experiments on the budding yeast, S. cerevisiae. This paper 

is an early example addressing the flood of gene expression data. The most important result 

of the paper is the conclusion that genes of similar function cluster together. Also, genes 

with high sequence homology are found to cluster near each other. Altogether, the results 

indicate that exploring similarity in patterns of gene expression with clustering methods is 

a reasonable preliminary method to survey functionality in large gene expression data sets 

such as those obtained with DNA microarrays. This is an important result that has paved 

the way for a plethora of clustering studies of large-scale gene expression data. 

Another point of note about this study is its method of presenting the clustered data. 

An image of a gene array in its native form is not highly informative without a spreadsheet 

of data values and, even then, the size of the dataset can be overwhelming. The visual 

presentation in this study is enhanced by colouring the reordered data points according to 

the expression reading: genes with no expression for a time point or single experiment are 

black; positive expression is coloured in red; negative expression is coloured in green. Thus 

patterns in the data can be more easily identified by inspection of the images. 

Pablo Tamayo et al (1999) use Self Organizing Maps(SOMs) to study patterns of 

gene expression in three separate case studies [51]. The first study is of the yeast cell 

cycle. This data was chosen since it has been well studied using other methods and, thus, 

is an ideal system on which to test the ability of SOMs to identify patterns. The yeast 

data follows gene-expression at 10-minute intervals over two cell cycles. The second study 

uses the myeloid leukemia cell line HL-60 and expression monitoring Affymetrix arrays to 

investigate hematopoietic differentiation using gene expression data for over 6000 genes. 

The data is a time series of samples collected at 0, 0.5, 4, and 24 hours following the 
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beginning of macrophage differentiation. The final study is similar to the second study 

but with increased complexity due to the use of multiple cell lines, namely HL-60, U937 (a 

myeloid cell line), Jurkat (a T cell line), and NB4 (an acute promyelocytic leukemia cell 

line). 

The SOMs were carried out using GeneCluster: a publicly available computer pack­

age created by the Whitehead/MIT Center for Genome Research [1]. Genes whose expres­

sion does not change sufficiently over the cycles are removed. The data from the remaining 

genes is normalized to a mean of zero and variance of 1 (within each cycle for the yeast 

data and within time points for each cell line). The filtered data is then used to create a 

SOM. The geometry, number of iterations and various other options are set and then the 

SOM trains and produces a graph of the centroid and a list of the genes in each cluster. 

The results of the paper are very encouraging. The yeast cell cycle (6 x 5) SOM 

agrees well with the biological conclusions obtained over a much longer time using visual 

inspection. The results of the SOMs on the human hematopoietic differentiation data are 

also positive. An analysis of one cluster of a (4 x 3) HL-60 SOM reveals several genes that 

would be expected in this cluster in accordance with the graph for the cluster which indicates 

a gradual induction of the genes over time. However the inclusion of several unexpected 

genes in this cluster suggests possible roles for these genes in macrophage differentiation [51]. 

The confirmation of expected patterns and the hints of other unexpected patterns is a very 

promising sign for the use of SOMs in the development of hypotheses and generation of 

suggestions for further experimentation. 

2.4 Applications of multivariate analysis techniques to pub­

lished and simulated data 

In order to gain a greater understanding of these techniques, I first apply the methods to 

publicly available gene expression data from the publications noted above. Following the 

success of these applications, an attempt is made to apply multivariate analysis techniques 

to the EGF simulation data discussed in Chapter 1. The goal of this second effort is mainly 

to see whether the encouraging results of the gene expression studies can be extended 

to the study of protein concentration data. I am interested in what kind of information 

about a signal transduction pathway could be learned from the application of multivariate 
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Dataset Type Size Source 
gene dataset 1 
gene dataset2 
EGF dataset3 
EGF dataset4 
EGF dataset5 

gene expression 
gene expression 

protein concentration 
protein concentration 
protein concentration 

5766 x 14 
676 x 15 
23 x 9 
23 x 61 
23 x 51 

Spellman elutriation synchronized cell cycle 
Spellman cdcl5 data 

EGF simulation 
EGF simulation 
EGF simulation 

Table 2.1: Data sets analysed using principal components and self-organizing maps in Sec­
tion 2.4. 

techniques to protein concentration data. The data sets used in the following sections are 

listed in Table 2.1. 

2.4.1 Application of principal component analysis 

A series of gene expression studies on the S. cerevisiae cell cycle are available from the 

websites associated with the Pat Brown Lab at Stanford. The data used for the application 

of PCA discussed here is from 14 arrays of elutriation (size-based) synchronized cell cycle 

(gene datasetl) and 15 arrays where the cell cycle is synchronized by the arrest of a cdcl5 

temperate-sensitive mutant (gene dataset2) [49]. Both data sets are obtained using the 

same 6179 genes. The sets of arrays are both time courses: gene datasetl spans from 0 to 

390 minutes measured every 30 minutes; gene dataset2 is measured every 20 minutes from 

10 to 290 minutes. 

Due to the confusion mentioned in Section 2.2.3, I have decided against using the 

singular value decomposition as is done in the publications mentioned above. Instead, I 

find the eigenvectors and eigenvalues directly from the covariance or correlation matrix. 

Study 1 

Using the elutriation synchronized cell cycle data (same data set as Alter, Brown and 

Botstein), I eliminate the genes from the data set for which some values are missing. In 

practice, it would be best to develop a method for approximating the missing values or 

statistically accommodating such an occurrence in the analysis. However, given that the 

data used for the analysis was reported to have no missing values [4], I chose the above 

option. The remaining data is organized into a (14 x 5766) matrix (gene datasetl). The 

reader may notice that this arrangement is contrary to the earlier statement that the more 
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covariance correlation 
eigenvalues % variance eigenvalues % variance 

0.6351 39.8765 4.3296 30.9261 
0.3852 24.2163 3.6146 25.8188 
0.1371 8.6078 1.1458 8.1842 
0.0853 5.3555 0.8707 6.2193 
0.0733 4.6019 0.7224 5.1601 

Table 2.2: Eigenvalues and the proportion of the variance of the entire data set from the 
first five principal components of gene datasetl 

useful setup involves having the genes as the variables, which determines the number of rows 

in the matrix. However, given that there are 5766 genes, the available computing space on 

a machine of the Institute of Applied Mathematics lab is less than the approximately 2 

Gigabytes [6] necessary to compute the eigenvalues of the (5766 x 5766) covariance matrix 

in MATLAB. Thus I do the analysis using the arrays as variables. 

I calculate both the covariance and the correlation coefficient matrices, with the aim 

of discovering whether a large difference in principal components is seen between the two. 

The eigenvalues of both matrices are listed in Table 2.2. The first 5 eigenvalues of the co-

variance matrix account for 82.7% of the variance in the data, while the first five eigenvalues 

of the correlation matrix account for 81.0% of the variance. Thus, there is not a large differ­

ence between the two approaches in terms of the proportion of information captured by the 

largest principal components. The covariance principal components do attribute a larger 

portion of the variance to the first principal component, however. The fact that a relatively 

small proportion of the total variance is captured in the first principal components of both 

approaches is perhaps indicative of the complexity of cell cycle regulation: that there are 

many different correlations between the genes whose expression is being monitored. 

Study 2 

The second study yields more interesting results, since gene dataset2 is smaller, allowing us 

to take the genes as the variables of the system. For this study, I use the cdcl5 arrays and 

use only the 797 genes identified by Spellman as those involved in cell cycle regulation [49]. 

Genes with missing expression values are again removed, resulting in a (676 x 15) data 

matrix. The covariance and the correlation coefficient matrices are each used to calculate 
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covariance correlation 
eigenvalues % variance eigenvalues % variance 
100.0816 36.7111 220.1517 32.5668 
65.6441 24.0790 156.9503 23.2175 
43.5826 15.9866 89.0825 13.1779 
17.9742 6.5931 57.7077 8.5366 
14.126 5.1819 48.8233 7.2224 

Table 2.3: Prom Study 2: Eigenvalues and the proportion of the variance of the entire data 
set from the first five out of 676 principal components for gene dataset2 

the 676 principal components. For this example, one begins to appreciate the dimensional­

ity reduction ability of PCA. At this point a perusal of the largest and smallest of the 676 

principal components alone can be fruitful for studying the system. Note that the eigenval­

ues from this study differ from those of Holter et al, in part because they have reported the 

eigenvalues using the time points as variables, i.e. they report 14 eigenvalues, rather than 

676. Another reason for the difference is that no preprocessing of the data is done here, 

while Holter et al have normalized the data by removing the mean of both the genes and 

the arrays and setting the standard deviations to 1. 

The first five eigenvalues are listed in Table 2.3. The first five principal components 

using the covariance matrix capture 88.6% of the variance in the data. Figure 2.4 shows the 

behavior of the first five principal components over the time course of the arrays. Notice 

the clear cyclical behavior, especially of the first two components. Using Equation[2.13] and 

consulting the publication listing the genes in the study, I find that the gene that is most 

correlated with the first principal component is cdc54- cdc54 is essential for the initiation 

of DNA replication and is one of the key targets of the signal transduction pathways that 

regulate the cell cycle mentioned in Chapter 1. 

Figure 2.5 shows the plot of the coefficients of the first two principal components for 

the covariance matrix (the coefficients are simply the eigenvectors of the covariance matrix). 

The elliptical shape is the expected result of such a plot if the distribution of the data is 

approximately multivariate normal [25]. Particularly, all genes that are the same distance 

from the origin in this two dimensional space with the axes given by the eigenvalues fall on 

the perimeter of an ellipse. However, notice that there are a significant number of points 

scattered far outside the core. This indicates that differences in the range of the genes being 
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0.15 

Figure 2.5: Plot of the coefficients of the first two components from the covariance matrix 
of gene dataset2. 
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Coefficients of second principal component 

Figure 2.6: Plot of the coefficients of the first two components from the correlation matrix 
of gene dataset2. 

measured affects the results and that correlation is likely a better choice. Figure 2.6 shows 

the same plot using the correlation matrix and the results are drastically improved. Notice 

that most of the points lie near the perimeter of a single ellipse. 

Contrast these last images with the plot of the first and third components of the 

correlation matrix in Figure 2.7. Here the shape of the ellipse is more elongated so there 

seems to be a much larger range of values along the direction of the first principal component 

than the third. 

Study 3 

I now proceed to an analysis of the data generated from the EGF simulation. Using the EGF 

simulation I create two data sets: one with 61 time points (EGF dataset3) and one with 9 

time points (EGF dataset4) over the same 120 second period. EGF Dataset4 emulates the 

dataset from Kholodenko [29] in order to compare the results from applications using the 
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Figure 2.7: Plot of the coefficients of the first and third components from the correlation 
matrix of gene dataset2. 
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simulated data to those that could be obtained with actual experimental data. The number 

of data points for the larger EGF dataset3 was chosen arbitrarily. 

The principal component analysis is performed on both the 9 and 61 time point 

data sets using the correlation coefficient matrix with the protein states as the variables. 

Thus 23 principal components are obtained. Figure 2.8 shows the behavior of the first four 

principal components over the time course for each data set. There is a greater amount 

of detail revealed in EGF dataset3 as compared to EGF dataset4. Although the behavior 

of the first component is similar in both data sets, the subsequent components show quite 

different results. This is an important observation for experimentalists trying to decide on 

the number of time points to include in a dataset. 

The first component in both graphs of Figure 2.8 show the slow climb and leveling 

off of concentration seen in the experimental results [29]. None of the first four components 

of EGF dataset3 show the peak then decrease in concentration found in the experimental 

results and in components 2 and 4 of EGF dataset4. The fourth component of EGF dataset3, 

however, has a very similar pattern to the rate of EGFR dephosphorylation seen in the 

computational results of Kholodenko. 

One can compare the relative ease of interpreting the overall patterns in the data 

using the principal components as opposed to the plot of the concentration of all the proteins 

over time (Figure 2.9) even for such a small number of proteins. Notice that there are several 

types of behavior visible in this graph: 

• initially high concentration decreases rapidly, then stabilizes 

• slow rise and leveling off of concentration 

• slight rise in concentration followed by a slow decrease. 

These patterns are comparable to the patterns seen in the time courses of the larger principal 

components in Figure 2.8. 

The percentage of the variance explained by each principal component is somewhat 

difficult to interpret for the 9 point time course. Most of the eigenvalues were very small 

or negative, with only the first 5 or 6 being of reasonable size for interpretation. For 

the 61 point time course, however, the first five eigenvalues capture over 99% of the total 

information in the data set. The eigenvalues for the first five principal components are listed 

in Table 2.4. 
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Figure 2.8: Time courses for the first four components from the correlation matrix of EGF 
dataset4 (top) and EGF dataset3 (bottom). 
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Time points 

Figure 2.9: The concentrations of each protein in the network from EGF dataset4 

EGF 
eigenvalues % variance 

15.9357 69.2856 
4.4274 19.2494 
1.8468 8.0297 
0.6364 2.7671 
0.1048 0.4559 

Table 2.4: Eigenvalues and percentage of total variance for the first five principal compo 
nents from the correlation matrix of EGF dataset3. 
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Number Protein Abbr. Actual Protein (Complex) 
1 EGF Epidermal growth factor 
2 R Epidermal growth factor receptor 
3 Ra Activated receptor-EGF complex 
4 R2 Dimerized receptor-EGF complex 
5 RP Phosphorylated, dimerized receptor-EGF complex 
6 PLC Phospholipase C-7 
7 RPL Receptor-PLC complex 
8 RPLP Phosphorylated receptor-PLC complex 
9 PLCP Phosphorylated PLC 
10 PLCP-I Phosphorylated PLC-inositol 
11 GRB Growth factor-binding protein 2 
12 RG Receptor-GRB complex 
13 SOS Son of sevenless protein 
14 RGS Receptor-GRB-SOS complex 
15 GS GRB-SOS complex 
16 SHC Src homology and collagen domain protein 
17 RSH Receptor-SHC complex 
18 RSHP Phosphorylated receptor-SHC complex 
19 SHP Phosphorylated SHC 
20 RSHG Receptor-SHC-GRB complex 
21 SHG SHC-GRB complex 
22 RSHGS Receptor-SHC-GRB-SOS complex 
23 SHGS SHC-GRB-SOS complex 

Table 2.5: A numbered list of the proteins and protein complexes involved in the early 
events of the EGF signal transduction pathway. 

The plots of the coefficients are particularly interesting. As shown in Figure 2.10, 

the proteins all fall around the perimeter of an ellipse. The most pleasing feature, however, 

is the appearance of the proteins in distinct groups around the perimeter. This is the first 

indication that the protein data also appears to contain natural grouping, a fact that I shall 

confirm using clustering. Notice also that EGF dataset3 gives more precise information on 

the location of each protein in the two dimensional space. Thus points that were super­

imposed in the results of EGF dataset4 are now distinguishable. Note that the numbers 

associated with points of the plot designate proteins of the pathway, as listed in Table 2.5. 

2.4.2 Application of SOMs 

Next I create SOMs for the simulated EGF data. All SOMs are created using GeneClus-

ter [1]. This convenience comes at the expense of flexibility in choosing certain aspects of 
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Figure 2.10: Plots of the coefficients of the first two components from the correlation matrix 
of EGF dataset4 (top) and EGF dataset 3 (bottom). 
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Figure 2.11: Centroid time courses for the 4 cluster SOM of EGF dataset5. 

the process such as the lattice shape. All lattices are rectangular, but the number of nodes 

and the number of rows and columns in the lattice are chosen by the user. Note that all 

data sets used for clustering are first normalized using GeneCluster to a zero mean and 

standard deviation of 1. 

The first clustering of the EGF data is done using a data set with 51 time points 

(the default time step for Gepasi, the data simulation software [36]), designated as EGF 

dataset5. The results of the PCA shown in Figure 2.10 lead us to attempt a clustering with 

4 lattice nodes, since the data appears to contain 4 natural groupings. The results of this 

clustering are shown in Figure 2.11. The time courses of the two most populated clusters 

agree with the patterns observed in Kholodenko [29] and seen in Figure 2.9. I also create a 

SOM with 6 nodes, and the results are shown in Figure 2.12. The 6 cluster SOM captures 

more details, especially in the early moments of the reaction. 

I create SOMs for EGF dataset4, which has fewer time points. These SOMs are 

not entirely successful, as some clusters are left blank. That is, in a clustering using 4 

nodes, only 3 nodes actually settle on data points. This is presumably a result of a node 

following one or two data points until those points merge with another cluster. This is 

likely a problem caused by both the small number of proteins and the reduced number of 

time points. Nonetheless, the clusters that do contain proteins show similar results to the 

previous clustering with EGF dataset5: the two main patterns are a gradual increase and 

an early peak followed by a leveling off. These patterns are actually clearer in the SOM of 
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Figure 2.12: Centroid time courses for the 6 cluster SOM of EGF dataset5. 

tO: 10 

0 
i 

f , V \ 

/ X 
I •—*-—* 

i 
J 
1 1 

4 

c3: 7 

\ 
Figure 2.13: Centroid time courses for the 4 cluster SOM of EGF dataset4. 

EGF dataset4. 

I conducted preliminary studies investigating the effect of lattice shape. The ar­

rangement of the nodes does appear to affect the clustering in some cases, however no 

overall "best" shape can be determined based on the results thus far. 

To investigate the effect of changing the initial EGF concentration on the clustering 

results, simulations were created with initial EGF concentrations. Some shuffling between 

clusters is observed. In particular, PLC-P, SHG, SHGS, and PLC move to different clusters 

at different initial concentrations of EGF. None of these shufflings reflects a major change 

in behavior over time (a transient to sustained concentration increase, for example). The 

reasons for the shuffling between clusters are not known. 
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Figure 2.14: Clustering of the proteins of the EGF pathway. The results are from a 6 cluster 
SOM of EGF dataset5. The circles represent the nodes of the network and are arranged in 
the lattice shape used for the creation of the SOM. The numbers correspond to the proteins 
listed in Table 2.5 

2.5 Discussion of multivariate analysis results 

In the study by Holter et al, the grouping of genes in the principal component analysis of 

gene expression data is similar to the clustering of the genes. Is this also the case for the 

analysis of the simulated EGF pathway data? 

Figure 2.14 shows the grouping of proteins from a 6 cluster SOM of EGF dataset5. 

If one compares these results to the results of the principal component analysis shown in 

Figure 2.10, one finds that the groups of proteins in the plot of the component coefficients 

are the same as the clusters of the SOM. 

There are two other questions that I would like to address: 

1. Is the placement of the groupings in Figure 2.10 significant in some way? 

2. What is the connection between proteins in a cluster? 

To investigate these questions, I create Figure 2.15 so that the position in the path­

way of the cluster members can be visualized. There are no obvious similarities in function 

between members of a given cluster. That is, proteins within a cluster share similar patterns 

of activation, but don't appear to share any specific role in the pathway, nor have the pro­

teins been grouped as phosphorylated/nonphosphorylated, say. It does appear that most 

protein complexes involving the EGF receptor are clustered together, with the exception of 

RG and RGS, but this could definitely be specific to this application. 

PCA and clustering should be applied to data from several different pathways to 
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further investigate the relationship of proteins within a cluster. I believe that the identi­

fication of relationships within a cluster is complicated in this case by the fact that the 

members of the pathway are not individual proteins, but are complexes of proteins. Thus 

comparisons of amino acid sequence homology, for example, can not be performed. If the 

clustering could be done on data for individual proteins, then perhaps further similarities 

within clusters could be identified. 

The results of this study do show that there appear to be natural groupings in the 

data and that, multivariate analysis allows an investigator to study the time courses and 

relationships of these groupings. 

One suggestion for future studies of signal transduction pathways using multivariate 

techniques, is that the number of components should be increased. The methods presented 

in this chapter are intended for studying large data sets, such as the gene expression datasets 

obtained from microarrays. Thus, I recommend including more pathway components in 

future studies of this sort. 

47 



C h a p t e r 3 

Reverse Engineering of Genetic 

Networks 

This chapter covers several reverse engineering efforts for investigating networks of genes. 

Although our research is aimed primarily at signal transduction pathways composed of 

reactions between proteins, it is instructive to study genetic network techniques, in the 

hope that they will also be applicable to protein pathways. We first consider some of the 

differences between protein and gene networks. 

A graphical representation of a network consists of a set of nodes and a set of edges 

joining pairs of nodes. Let the nodes represent proteins in the case of a signal transduction 

pathway and genes in the case of a genetic network: what do the edges in each of the 

graphs represent? In the case of a gene network, there does not seem to be a specific 

meaning attributed to these connections. Generally, genes don't affect each other in a 

direct way, that is, they don't interact physically. An edge between two genes in a network 

really represents the idea that a change in the activity of gene A will cause some change in 

the activity of gene B. This change is the result of the transcription and translation of gene 

A and the subsequent activities of its gene product (possibly in a signaling pathway). 

An edge between two protein nodes represents a more direct connection, specifically 

that two proteins are involved in a chemical reaction. The form of this chemical reaction 

(a complex forming, a phosphorylation, a degradation) is not necessarily known, but actual 

physical effects are implied. In Chapter 4 it becomes evident that the fact that the edges 

of the graph have a specific nature affects the adaptation of these gene network methods to 

study protein interactions. 
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Another important difference between gene and protein network determination is 

the available data. Because the effects of gene interactions are not directly transmitted, 

the time scale is much slower. Thus, current technology is capable of capturing adequate 

snapshots of the steps of the interactions. On the other hand, protein reactions occur within 

seconds and so many steps in.a pathway may be carried out between measurements. This 

should also be taken into account when attempting to draw inferences about a series of 

connections between proteins. 

Despite these differences, it is advantageous to study the methods presented here. 

Both gene and protein networks are large, complex biological systems involved in regulating 

cell function. Also, most reverse engineering attempts of the kind described in this chapter 

have only been applied to the more readily available gene expression data and, thus, are our 

only guidelines. This chapter introduces three reverse engineering methods: one for discrete 

Boolean networks, one incorporating continuous gene regulation, and one using Bayesian 

networks. 

3.1 Discrete Boolean Networks 

A discrete Boolean network is a model of a system at specific time points using binary values 

to indicate the state of each component of the network. In the case of a genetic network, 

the state at time t of the network is given by a value of 1, to indicate that the gene is "on" 

or a value of 0, to indicate that the gene is "off", for each gene in the network. Here, "on" 

implies that the gene is expressed above a specified threshold. The network evolves to a 

different state at the next time point based on logical rules that dictate the interactions 

between genes. For example, consider the network of 3 genes A, B, and C, whose rules of 

interaction are: 

A = B 

B = ^{AAC) (3.1) 

C = A A B A - i C 

where T-> denotes the logical "not" and A denotes logical "and" . Given these rules and a 

starting state, the network of genes evolves as shown in Figure 3.1. 

The goal of reverse engineering the network is to determine these logical rules, and 

thus to be able to predict the evolution of the network over time. To find these rules, first 
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Figure 3.1: The evolution of a three component discrete network according to the rules 
given below. 

measure the gene expression of all the genes in the network many times for each state. 

This could correspond, for example, to running different experiments and assaying the gene 

expression of every gene over a series of time points. One then quantizes the data to binary 

data based on some threshold of expression value. A t this point one can attempt to make 

inferences about the logical rules that could produce state (t + 1) from state t. 

The rest of this section describes one algorithm that finds these logical rules that 

define a discrete Boolean genetic network. This Reverse Engineering Algor i thm ( R E V E A L ) , 

was developed by Liang, Fuhrman, and Somogyi and presented at the Pacific Symposium 

on Biocomputing (1999) [34]. 

3.1.1 Shannon Entropy and REVEAL 

A table of binary data is compiled for the activity of each gene (0 ="off", 1 ="on") at 

successive time points t and t + 1, as shown in Table 3.1. The goal is to discover the 

underlying rules of the network that created this data. One might ask the question: given 

that gene A has a value of 0 at time t, what is the probability that gene B has a value of 0 

at time t+11 In some sense, one is asking what level of uncertainty remains in determining 

the value of B once the value of A is known. This provides a measure of the influence of 
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Time t Time t+1 
Assay A B c A B c 

1 0 0 1 0 1 0 
2 1 0 1 0 0 0 
3 1 1 1 1 0 0 
4 0 0 0 0 1 0 
5 1 0 0 0 1 0 
6 0 1 1 1 1 0 
7 1 1 0 1 1 1 
8 0 1 0 1 1 0 
9 1 1 1 1 0 0 
10 0 0 1 0 1 0 

Table 3.1: Compiled binary data for the three genes at time points t and t + 1. 

gene A on gene B . 

The role of uncertainty involved in a choice can be quantified by a measure called 

Shannon entropy, introduced in the landmark work by C.E. Shannon for the study of discrete 

signaling systems, such as telegraphy [47]. Suppose that the random variable X takes the 

value x with probability p(x). The Shannon entropy of X is given by 

tf(X) = - J > ( x ) l o g 2 p ( x ) (3.2) 
X 

One can calculate the probabilities p{x) from Table 3.1. Given the probability p(0) of 

gene A being off and the probability, p(l), of the gene being on (p(l) = 1 — p(0) since 

the probabilities must sum to one), it is possible to calculate H(A) to find the level of 

uncertainty in choosing the state of A. Note from Equation (3.2) that H takes its maximum 

value, equal to one, when all states are equally probable (p(0) = p(l) = 0.5). 

Returning to the earlier network example: for time t we can calculate the sample 

probabilities of a gene begin "on" or "off' from Table 3.1. For gene A , for example, the 

gene is "on" (has an activity level of 1) 5 times out of a total 10 measurements. Thus 

p(l) — 0.5 for gene A at time t. Using these probabilities, we can calculate the entropies 
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from Equation 3.2: 

H(A) = H(B) = -0 .5 log 2 (0 .5) - 0.51og2(0.5) = 1 

H(C) = -0.41og 2(0.6) - 0.61og2(0.6) « 0.97 (3.3) 

There is a high degree of uncertainty as to what the state of each gene will be in this example. 

If, on the other hand, p(0) = 0.9 and p(l) = 0.1 for some gene X , then H(X) « 0.47, which 

reflects the fact that one would expect X to be in the off state with high probability. (Thus 

there is not a lot of choice involved in determining the state of X.) This feature characterizes 

Shannon entropy. 

We are interested in determining relationships between sets of genes in a system 

where, potentially, many genes play a role in regulating a single gene. Thus, one would also 

like to quantify the entropies of combinations of elements of a network. The joint Shannon 

entropy of two random variables, X and Y , is 

H(x,Y) = -52Y,p(x>y)l°tep(x>y) (3-4) 
x y 

This definition can be extended to find the combined entropy of n random variables: 

H(X1,X2,... ,Xn) = -'JT^ - • •'JPp(x1,x2,... ,xn)log2p(xi,x2,... ,xn) (3.5) 
X \ X2 I n 

A definition of conditional entropy follows from the previous results: H(X\Y) mea­

sures the uncertainty left in the determination of X once information about the value of Y 

is known. The conditional and joint entropies are related by: 

H(X, Y) = H(Y\X) + H{X) = H(X\Y) + H(Y) (3.6) 

3.1.2 R e c o g n i z i n g dependence be tween genes 

The motivation of R E V E A L is to discover what combination of input elements of the genetic 

network determines the output expression of each gene. The key to accomplishing this goal 

for a given element, Y, using Shannon entropies is to find the set of elements X\,..., Xk 

such that 

H(Y,X1,...,Xk) = H(X1,...,Xk) (3.7) 
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To describe the above statement in the language of the previous section, the uncertainty in 

choosing the states of all of Y, X\,..., Xk is the same as the uncertainty in the choice of 

X\,..., Xk- So, no new information is needed, no uncertainty added, in determining Y in 

addition to this set of elements. Thus, the state of Y must be completely determined by 

this set of elements. 

Once this set of genes is found, it remains only to find the logical rule that specifies 

the state of Y given a combination of input states for the set. This rule is determined by 

examining the table of values (drawn from the data used to determine the probabilities p(x) 

initially) of the input values from X\,..., Xk and the output of Y. 

3.1.3 The REVEAL method 

Now that the dependence of a gene on a given set of genes can be recognized, a systematic 

method for finding such a match needs to be determined. R E V E A L proceeds as follows: 

Test 1: On ly one other gene determines the state of gene Y : Search for matches 

using single input rules. Such a match involves either the relationship 

t t + 1 

X Y 

1 1 

0 0 

or 

t t + 1 

X Y 

1 0 

0 1 

that is, equality or inequality. Thus, for a given gene, Y, test each gene Xi to see 

whether H(Y,Xi) — H(Xi). If such an Xi is found, then we have identified the gene 

that completely determines the output of Y . At this point, construct a table of values 

with input (t) values of X-L and output (t + 1) values of Y from Table 3.1 to determine 

the rule that governs the output for Y. If no such Xi is found, then Y is not completely 

determined by any one single gene in the network. 

Test 2: Two genes determine the state of gene Y : A l l combinations X i , are tested 

as inputs determining the output of each gene that has not yet been assigned a one-

input rule. So, for each remaining gene Y , test H(Y,Xi,Xj) — H(Xi,Xj) for all 

combinations (i,j) where i ^ j. 
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Test k: k genes d e t e r m i n e t h e s ta te o f gene Y : This process is continued until ei­

ther the rule for each gene is determined or a specified maximum number of allowed in­

puts is reached (the reason for this upper limit is discussed below). Thus, at step k, all 

fc-tuples of genes are tested to determine whether H(Y, X\,... \ Xk) = H(X\,... ,Xk). 

Consider the example network: At denotes the input value of gene A and At+i 

denotes the output value of gene A. Calculate the entropy of each genes at time t and the 

joint entropies at time t + 1 for each gene with respect to all input genes: 

H(At) = l H(At+1,Bt) = l H{Bt+l,At) = lA9 H(Ct+i,At) = 1.36 

H(Bt) = l H(At+1,Ct) = 1.97 H(Bt+1,Bt) = 1.85 H(Ct+i,Bt) = 1.36 

H(Ct) = 0.97 H(At+l, At) = 1.97 H{Bt+1, Ct) = 1.57 H(Ct+1, Ct) = 1.30 

The only match for H(Y,X) = H(X) is H(At+i,Bt) = H(Bt). Thus the output of B 

depends on A. To determine the rule describing this dependence, a table of values is 

extracted from Table 3.1: 

Bt At+i 

0 0 

0 0 

1 1 

0 0 

0 0 

1 1 

1 1 

1 1 

1 1 

0 0 

So the rule is At+\ = Bt. 

Proceeding in the same way, one can determine all the 2-input-gene rules. A match 

is obtained for H(Bt+i, At,Ct) = H(At,Ct). Looking at the table of values: 
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At ct Bt+i 

0 1 1 

1 1 0 

1 1 0 

0 0 1 

1 0 1 

0 1 1 

1 0 1 

0 0 1 

1 1 0 

0 1 1 

the rule is Bt+\ — (A A C)'. The 3-input-gene rule for C is determined in a similar way. 

3.1.4 Dif f icu l t ies w i t h R E V E A L I m p l e m e n t a t i o n 

There are several difficulties involved with the actual implementation of the R E V E A L 

method. On one hand, there is the problem that as k (the number of genes involved 

in input rule) increases, the computational expense involved in determining the Shannon 

entropies for testing each fc-tuple increases quite significantly. Even though the number of 

rules remaining to be determined decreases as successful matches are found, the number of 

combinations to be tested in each iteration increases much more quickly. For a network of 

n genes there are (£) combinations to test in the kth iteration for each remaining gene. 

Also, it seems that even once a match has been made between a set of input genes 

and a given output gene, determining the rule which governs the relationship from a table 

of values would become increasingly difficult as k increases. The creators of R E V E A L have 

also found that the accuracy of the matching decreases as k increases and as the number of 

trials (input-output pairs) decreases. 

Another difficulty in the application of R E V E A L to a real data set obtained, for 

example, from a set of microarrays, is in converting the expression values to binary values. 

The authors of R E V E A L mention the possibility of extending the method from Boolean to 

multiple-state values. This would likely allow more of the fine details of a real biological 

network to be included, although the problem of determining thresholds for the quantization 

of the data remains. 
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However, despite these difficulties, the method has successfully identified connections 

in artificial networks containing rules up to k = 3. The authors suggest that parallelization 

and the use of wiring and rule constraints to limit the search space will improve the efficiency 

and thus the applicability of REVEAL [34]. It has been suggested that methods such as 

clustering may be useful in the identification of wiring constraints by reducing the number 

of components in the network. Also, it would certainly be a great advantage if biological 

information about networks in general as well as a specific network being investigated, could 

be integrated into REVEAL to decrease the size of the search space of possible inputs for 

each step. 

3.2 Continuous expression and regulation 

Some features of gene and protein regulation and interaction are poorly represented using a 

Boolean network. For example, genes may have different regulatory influences at different 

levels of expression, and may regulate other genes to varying degrees. As well, the need 

to specify a fixed number of regulatory inputs with a Boolean network limits the ability to 

fully describe the interactions taking place. 

The models offering continuous expression and regulation fall into two categories: 

discrete and continuous time. I will discuss an example of a discrete method formulated by 

Weaver and Workman. Although the treatment of the problem using a discrete time system 

means a loss of realism in the model, this simplification has the advantage of making the 

problem computationally tractable and also requires fewer data points for the purposes of 

reverse engineering the regulatory networks. 

In the model, a vector, u, represents the expression state of the network at time t. 

The amount of gene i expressed at time t is given by In addition, a weight matrix, 

W, is defined to represent the regulatory interaction between the elements in the network 

(e.g. genes). Each row of the matrix lists all the regulatory inputs for one gene, where 

• Wij > 0 =>• stimulation of transcription of gene i by gene j 

• Wij < 0 =>• repression of transcription of gene i by gene j 

• Wij =()=>• gene j has no effect on the transcription of gene i 

Using these values, the regulatory influence of all other genes on gene i can be 
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quantified by summing the influence of each gene multiplied by the activity level of that 

gene at time t: 

= ( 3- 8) 
3 

In other words, the regulatory control of one gene is a linear superposition of the influences 

of all other genes in the network, weighted by relative "connection strengths" Wij. 

The next step is to calculate the response of each gene to its regulatory input. This 

is done via a nonlinear dose-response (or "squashing") function: 

^ t + 1 ) = l + e-(t<(«)+ft) ^ 
Included in this function are two gene-specific parameters, ai, a positive real number and 

/3j, which can be any real number. These parameters define the shape of the dose-response 

curve for each gene, as pictured in Figure 3.2. 

The output of this function is a number between 0 and 1 for each gene. To convert 

this number into a value comparable to realistic data output from a gene expression assay, 

the number is multiplied by a "maximal expression level", which corresponds to the expected 

or observed maximal expression for each gene. 

Reverse engineering is performed with this model using a neural network approach: 

gene expression data for all the genes in the network are divided into a training set and a 

test set: the trials of the training set will be used to fit the parameters of the weight matrix 

and the test set (of at least one trial) is used to test the accuracy of the results produced 

with these fitted parameters. The gene expression data is ideally obtained from actual 

experiments using microarrays. The expression values of each gene over the set of arrays is 

normalized relative to the given gene's maximal expression value. These normalized values 

are compared to the Xi values during training. 

Once the network is trained and tested, the weight matrix defines the connections 

between all the genes in the network. At this point, the weight matrix can be used to predict 

the effect of perturbations to the system, such as a mutation of a gene of the network. 

Several assumptions are made in order to simplify the process of fitting the weight 

matrix parameters. In order to determine one row of the matrix at a time, it is assumed 

that the regulation of each gene is an independent event. This is not a valid assumption 

for all biochemical systems. The advantage of this simplification is that the fitting problem 
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is divided into smaller cases, and thus a smaller data set can be used to fit a smaller set 

of parameters. Given a larger data set, it would be interesting to compare the results of 

performing the training on the entire weight matrix to those of training each row of the 

matrix under the independence assumption. 

Another problematic assumption is that of a linear regulatory relationship between 

genes. Specifically, it is not obvious that there should be such a direct relationship between 

a gene's expression level and the active amount of it's resultant gene product produced. It 

is the activated protein that would be involved in the regulation of other genes. 

A problem that arises directly from the method is that of the maximal expression 

level. The designation of such a value would likely require a literature search to determine 

what the common expression values for a given gene are. Since the aim of this work is to 

also consider systems for which complete data is not yet available, this could be a difficulty. 

Even assuming that a reasonable estimate for this value could be made for each gene from 

the maximum value observed over the set of assays being used as data, fitting for those genes 

that are being expressed at maximal levels or that are nearly repressed will be subject to 

errors [55]. This can be seen from the squashing function, Equation (3.9), whose tails map a 

fair range of ri(t) values at the extremities to a small range of Xi(t) values. This makes highly 

expressed or repressed genes more sensitive to noise and means that it is more difficult to 

obtain good values when "desquashing" to obtain real expression values for interpretation 

of the model. 

An admirable feature of this model, however, is the ability to include the effects of 

environmental factors on expression using environmental variables added to the input vector 

and weight matrix. That is, by adding an extra column to the weight matrix, the influence 

of an environmental factor on the transcription of all genes in the network can be modeled. 

These influences are important since, as mentioned in Chapter 1, signal transduction is 

sensitive to the current state of the cell and its surroundings. 

3.3 Bayesian networks 

The Bayesian network approach to the problem of recreating biological connections between 

molecules or genes moves away from the rule-based system seen in Section 3.1 and into the 

domain of the probability and decision theory of expert systems. These new elements allow 
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the incorporation of uncertainty in the evaluation of networks. Uncertainty in observations, 

incomplete data, non-deterministic relationships, and other sources of uncertainty are com­

monplace in the study of gene and protein networks. Thus this approach is ideal for the 

study of these systems. 

Expert systems are intended to replace the human "expert" decision maker with a 

computational counterpart. Early expert systems were purely rule-based. Initial attempts 

to use probability theory in expert systems [16] hit a roadblock of limited computational 

power and the idea (and its unmanageable calculations) was abandoned for over 10 years. 

In 1986. Pearl introduced Bayesian networks to expert systems [42] and in 1989 Andreassen 

et al [5] created MUN1N, a real-world expert system which could perform disease diagnoses. 

MUNIN was the first example of Bayesian networks in an expert system. There are two 

early applications of Bayesian networks to gene expression data. Friedman et al (2000) [14], 

the first to use Bayesian networks to study gene expression data, attempt to determine 

connections between genes by identifying salient features in networks that score well against 

the data. Hartemink et al do not begin from merely a set of genes of interest, but from full 

models representing competing hypotheses for a real biological system. These approaches 

encounter some similar problems and some problems unique to their chosen method. The 

focus in this discussion of Bayesian networks is on explaining the nature of such a network, 

its advantages for studying biological systems, and the case study performed by Hartemink. 

There are many problems inherent in the study of gene expression data, some of 

which I have touched upon in earlier sections. For instance, the noisy and often incomplete 

nature of the reported data is sometimes not quantified using statistical measures. The 

amount of data is often limited in size and nonuniform, having been obtained from a series 

of distinct experiments. As well, in many of the analyses that have been discussed thus far, 

the complex nature of the relationships between elements of a biological network has not 

been properly addressed. 

The use of Bayesian networks is advantageous in dealing with several of these issues. 

As opposed to REVEAL, for example, the number of elements controlling the expression of 

a given gene is not fixed. This allows more flexibility in modeling the interactions between 

elements of a network. Because Bayesian networks use probabilities in quantifying the fit 

of a model, they are less sensitive to noisy and incomplete data [17]. As well, Bayesian 

networks allow for the inclusion of unobservable factors in the model, as discussed below. 
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Another advantage of this approach is that the networks are easily interpret able, 

clearly specifying the dependencies between elements of the network. Also, there are by 

now many examples in other fields of training Bayesian networks from actual experimental 

data, and thus many obstacles have already been tackled. 

3.3.1 The structure of Bayesian networks 

Bayesian networks offer flexibility in describing a network. This is a valuable asset when 

considering their use for representing cellular signaling systems, which are widely diverse. A 

Bayesian network accommodates this diversity in the definition of its variables, which repre­

sent events. For example, an event could be a certain expression value of a gene. Variables 

may be either discrete or continuous and can have any number of mutually exclusive states. 

Thus one net could be used to model both proteins and gene expression, say, which are 

measured on quite different time scales. Variables can be information variables, which are 

observable quantities, or latent variables, which are unobservable quantities. This permits 

the inclusion of factors of suspected importance in the model, despite the fact that these 

elements may not be directly measurable. 

Borrowing the notation of Friedman et al, the n nodes of a graph, G, are defined to 

be the set of random variables X\,... ,Xn, where a given random variable Xi takes on a 

value Xi belonging to the state set of Xi. As noted above, this state set may be continuous or 

discrete and of any size (finite or infinite). For all cases considered below, random variables 

take on discrete values from a finite range. 

A Bayesian network is a representation of a joint probability distribution using a 

directed acyclic graph (DAG). A directed graph consists of a set of nodes, as defined in 

the preceding paragraph, as well as a set of directed edges (arrows) connecting the nodes. 

The acyclic property of a DAG requires that no path following the directed edges of the 

graph can return to the starting node of the path. Given that a DAG specifies a directed 

relationship between nodes, a given node X has: 

• a set of parents, pa(X), that point directly to X. 

• a set of children that are pointed to directly from X. 

• a set of descendants that are reachable by traveling on a path starting at X and 

following the directed edges of the graph. 
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So, for example, in Figure 3.3, pa(Xt) = {X2,Xs}. In this same network X2 is 

the only child of X\, since it is the only node pointed to directly from X\. The set of 

descendants of X\ is {X2, X3, X4}, however. 

A DAG that provides the topology of a Bayesian network defines a set of conditional 

independence statements between nodes of the graph based on the following property: 

E a c h v a r i a b l e is c o n d i t i o n a l l y i n d e p e n d e n t o f a l l n o n d e s c e n d e n t 
(3.10) 

v a r i a b l e s g i v e n i t s p a r e n t s 

That is, once the parents of node X are known, information about nodes not descended 

from X can provide no more information about the probability of X begin in a given state. 

The mathematical representation of conditional probability is P(A\B) = x, which 

means that if B is known and everything else known is irrelevant to A, then P(A) = x. 

Now the concept of conditional independence above can be defined. 

D e f i n i t i o n 1 The variables A and C are independent given the variable B if 

P(A\B) = P(A\B,C) (3.11) 

This means that C provides no further information on the state of A. Several other results 

from probability are required to form the basis.of this discussion of Bayesian networks. 

First, 

T h e f u n d a m e n t a l r u l e for p r o b a b i l i t y c a l c u l u s 

P(A,B\C) = P{A\B, C)P(B\C) (3.12) 

One can derive from these rules and definitions Bayes' Rule upon which the Bayesian scoring 

metric is based: 

B a y e s ' r u l e 

(3.13) 

Since a Bayesian network is a DAG whose nodes satisfy condition (3.10), the joint 

probability distribution of a Bayesian network can be written in the product form (also 
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Figure 3.3: An example of the graphical structure of a Bayesian network 

called the chain rule): 
n 

P(Xl,...,Xn) = l[P(Xi\pa(Xl) (3.14) 

Consider an example of a Bayesian network with the structure depicted in Fig (3.3): 

the joint probability in this case, derived from (3.14), is given by 

This joint probability and the graph that it represents are what one is trying to find 

for a given set of genes represented by the nodes (variables) of the graph. 

Consider the three different connections that are present in the example graph: 

S e r i a l C o n n e c t i o n There is a serial connection between X\, X 2 , and X3. Information 

about the state of X\ will affect our knowledge about both X2 and, through X2, 

X3. However, if the state of X 2 is known for certain, then information about X% no 

longer has an influence on our knowledge of X3 and vice versa. That is, when X2 is 

instantiated, X\ and X3 are conditionally independent. Thus, in a serial connection 

such as this, X\ and X3 are said to be d-separated given X2-

D i v e r g i n g C o n n e c t i o n In a diverging connection, two children are d-separated given a 

common parent node. There is a diverging' connection between nodes X2, X3, and 

X4. That is, knowledge is transmitted through X2 between X4 and X3 unless X2 is 

P{Xi . . . ,X5) = P ( X 1 ) P ( X 2 | X 1 ) P ( X 3 | X 2 ) P ( X 4 | X 2 , X 5 ) P ( X 5 ) (3.15) 
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instantiated. 

C o n v e r g i n g C o n n e c t i o n Nodes X$, X4, and X2 form a converging connection. In the 

case of a converging connection, there is no transferal of information between parents 

through a node until that node is instantiated. In this type of connection, the parents 

of the hub are conditionally dependent. 

It is now possible to outline the properties of the example Bayesian Network of 

Fig (3.3). Let I(A;B\C) denote that A is conditionally independent of B given C. Then, 

keeping property (3.10) in mind: 

• The joint probability of the network is given by Equation (3.14). 

• The independencies of the network are 

/ ( X i ; X 5 ) I(X2;X5\X1) 

I(X3;X$,X4, X\\X2) I(X/L\X\, X 3 I X 2 , X$) 

I{X5',Xi,X2,Xs) 

With these two points, one can describe the interactions between nodes in the network. For 

the application considered in this study then, these describe the connections between genes 

in a genetic network model. 

A final point about independence statements in Bayesian networks: if two graphs 

have the same set of independencies, then they are said to be equivalent. This point 

is important in that equivalent networks are indistinguishable using the scoring method 

described below. Thus the search for a model is actually the search for an equivalence 

class of models. The correct graph within the class would still need to be determined 

subsequently. 

3.3.2 Training Bayesian networks 

The goal of training a Bayesian network to experimental data is to find a model whose 

structure and set of probabilities are best able to reproduce the data. It must also be kept 

in mind that the collected data represents just a sample of the actual distribution of data 

that must be modeled by the chosen network. Mathematically, the problem is to search 

for the model, M, with the highest probability of being correct given the data, D. Thus 

P(M\D) must be maximized. P(M\D) is evaluated using Bayes' rule. The Bayesian score 
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is obtained by taking the logarithm of both sides of Equation (3.13) to get: 

Score(M) = log(P(M\D)) 

. l o g ( ™ p } ( 3 , 6 , 
= log(P(£>|M)) + log(P(M)) - log(P(D)) 

The third term of the righthand side of Equation (3.16) is the log of the prior 

distribution of the data. Since this value is independent of the model, it plays no role in the 

search for an optimal M. Also, one may assume at this stage that all models are equally 

probable, which means that P(M) are all equal. Thus, the key to the scoring metric is the 

term log(P(7J>|M)) which represents the logarithm of the likelihood of a model given the 

data [24]. 

The task of calculating the likelihood is less than straightforward and the method 

chosen to perform this task depends on the state of the available information about the 

network. Keep in mind that in order to define the model, both the structure of the graph 

and the probability distribution, as in Equation (3.14) must be chosen. For example, if the 

structure of the graph is already known and the experimental data set is complete (that is, 

there are no latent variables or missing data points in the data set), then a maximization 

of the likelihood is relatively straightforward. However, if the graph is unknown or there 

are latent variables included, then graph fitting or estimation-maximization (EM) methods 

respectively are attempted [39]. 

In the most difficult case (the case of interest here), where both the structure is 

unknown and the data incomplete, several approaches may be attempted. In a fairly small 

network, EM methods combined with graph searches may be sufficient, possibly with the 

help of some stochastic sampling, as described below. For larger networks, the exact solution 

of such a problem is not a feasible option computationally. There are examples of networks 

where exact inference is indeed possible, but for which the calculation time of such a solution 

is prohibitive on today's computers. [22] Several methods of finding an approximate solution 

exist. These methods fall mainly into three categories: 

P a r t i a l e x a c t e v a l u a t i o n In this method, the exact inference is calculated, but some 

variables are held fixed. 
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V a r i a t i o n a l a p p r o x i m a t i o n This method applies the Law of Large Numbers to dense 

graphs. Probabilities that are difficult to calculate are approximated using the means 

of the distributions. This method is recommended by Hartemink [17] as a good 

choice for large biological networks. However, I question whether large networks are 

sufficiently dense for the approximation to be valid, since it seems that an increase 

in the number of nodes (for a protein network at least), would not correspond to a 

significant increase in the number of parents and children for each node. 

S t o c h a s t i c s a m p l i n g Stochastic methods such as Importance sampling and Markov Chain 

Monte Carlo methods [13] involve random sampling from a simpler distribution to ap­

proximate the results of using the actual distribution. These methods tend to be slow 

for larger networks, but generally yield good results. 

3.3.3 Hartemink case study 

Hartemink et al (2001) [17] use Bayesian networks to study genes regulating galactose 

metabolism in S. cerevisiae. The application involves using the Bayesian scoring metric to 

compare two competing hypotheses of regulation. The two hypotheses concern the causal 

relationship between the gene Gal4 and its gene product and the product of the gene 

Gal80. The issue that differentiates the hypotheses is whether Gal80 regulates Gal4 at the 

transcription stage or posttranslationally. In the former case, there would be a causal link 

between Gal80 protein and the Gal4 expression, while in the latter case Gal80 would affect 

the Gal4 protein. 

For the network formulation of the hypotheses, the genes are information variables 

since expression values are available from 52 Affymetrix GeneChip oligonucleotide arrays. 

It is notable that none of the gene expression assays were initially performed to target 

the specific problem being posed. This means that although the data is not selected or 

biased towards finding a specific result, the Bayesian network is capable of determining the 

underlying model. The state of the protein products in this example are included as latent 

variables in the network. 

The gene expression data is converted to binary values. Although the use of variables 

that take on continuous values is possible with Bayesian networks, quantization is more in 

cases where only a small number of data sets are available. 
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Gal80p GalSOp 

GaHp » Gal2m 

Gal4m 

Gal4p >j Gal2m 

GaHrn 

Figure 3.4: The two hypotheses being compared using Bayesian scoring. The model on 
the left represents an outdated hypothesis and that on the right represents the currently 
accepted system. The genes, whose values are measurable, are shown in boxes, while the 
gene products are included in the model as latent variables. 

The results of the model scoring are positive: the currently accepted hypothesis, that 

Gal80 acts on Gal4 posttranslationally, is calculated to be more likely than the previously 

accepted hypothesis. Both hypotheses are shown in Figure 3.4. To support these results, all 

possible nonequivalent models of the connections between Gal80, Gal4, and another gene, 

Gal2 are compared. Those models with a link between Gal80 and Gal2 score higher than 

those without, which suggests that Gal80 and Gal2 are not conditionally independent given 

Gal4. This is in keeping with the successful hypothesis. 

3.3.4 Annotated edges 

With the method outlined above, it is possible to obtain information on likely dependencies 

between elements of the system. A direction is associated with each edge of the net, however 

there is no further clue as to the type of dependency the edge between the two variables 

represents. Thus, annotations are assigned to each edge as follows: 

• X —» Y =>• arbitrary dependence of Y on X. 

• X —>(+) Y the probability of Y being "on" is greater when X is "on" than when X 

is "off", independent of the values of other parents of Y. 

• X —»(~) Y =>- the probability of Y being "on" is greater when X is "off" than when 

X is "on". 

67 



(a) (b) 

(c) 

Figure 3.5: Three possible annotated Bayesian models. The question raised in the text is 
whether (a) would receive a worse score than (b), given that (c) is the true model. 

• X — Y =4> the dependence between X and Y is not arbitrary, but the correct 

designation is undetermined. 

The modifications to the scoring method to accommodate the annotations involve con­

sidering only those distributions that satisfy the annotation constraints in calculating the 

likelihood of the model. 

The results of adding annotations are not completely positive. In fact, the annotation 

(-) of the edge between Gal80 and Gal2 resulted in very poor scores, despite the fact that 

this annotation correctly describes the true biological nature of the relationship. However, 

these results are explained by the authors by the fact that a protein, that is responsible for 

neutralizing the repressive role of Gal80, whose identity is not currently known, is missing 

from the network. This example clearly presents the danger in making detailed conclusions 

about the nature of the dependencies between components of a system without all the 

components being present. 

The method of adding annotations to a graph is not explicitly defined. For a rel­

atively large graph, this task could mean a significant addition to an already expensive 
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procedure. It is suggested that an unannotated graph could be used as a starting point 

and annotations added incrementally. It is not immediately obvious that the addition of a 

correct annotation wi l l receive a higher score. This fact is reinforced by the results of the 

case presented above. For example, in the figure below, would (a) receive a worse score than 

(b) if the true system corresponds to graph (c)? That is, is it better to have an annotation 

added which is correct, but may result in a negative score from the lack of a balancing 

effect that has not yet been annotated? The answer to such a question would impact the 

effectiveness of adding annotations incrementally. 

In short, the idea of being able to represent more detail is an admirable one, but 

the best way to achieve this end, if it can be achieved in a Bayesian network framework, is 

debatable. 

3.3.5 Dynamic Bayesian networks 

Biological systems are not static systems, but are changing constantly in time. Modeling 

methods for studying these systems that include this temporal component are needed. 

Dynamic Bayesian network ( D B N ) is a general term for a class of models that include 

Hidden Markov Models ( H M M ) and linear dynamical systems. The idea of a D B N is to 

follow a given graphical structure through different time points. 

To get a picture of the concept of a D B N , imagine folding a piece of paper several 

times and cutting the folded paper into the shape of a gingerbread man to get a chain of 

paper figures. Unfolding the chain one figure at a time is analogous to "unrolling" a D B N 

model. Each figure is a "slice" or graphical representation of the system at a given point 

in time, but the structure of the graph in each slice is identical. It is the manner in which 

the figures of the chain are connected to each other (holding hands, say) and the template 

structure of al l of the figures that define the differences between various models. 

3.3.6 Comments on the study of gene expression data using Bayesian 

networks 

As noted above, there are many features of biological systems and the experimental data 

that is collected from these systems, that recommends the use of Bayesian networks in their 

study. In the case study by Hartemink et al of the regulation of galactose metabolism, 

the data used to fit the model was not collected wi th the purpose of differentiating the 
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competing hypotheses considered. However, it is possible that data collected wi th this 

purpose in mind would provide more conclusive results, because the data set could be 

targeted to provide a better representation of the actual distribution of data. If this is 

the case, then an agreeable system could be established of running experiments, using the 

Bayesian networks to elucidate portions of the system and subsequently to perform more 

assays suggested by the results of the analysis to gain more conclusive results. Hopefully, 

this would facilitate faster convergence to a realistic network model of the real biological 

system. 

There are s t i l l several problems to overcome. New methods of computing the likeli­

hood are being researched. The problem of the loss of information due to the quantization 

of the gene expression values is a recurring theme of this report. The systematic generation 

of a comprehensive and significant set of models to score is a necessity, and some progress 

in this regard has been made [56]. A s well, one needs to address the evaluation of models 

containing cycles, since such models are common to biological systems. 

3.4 Discussion 

The methods presented in this chapter have different strengths and weaknesses. R E V E A L 

is relatively easy to understand and to implement. Unfortunately, at this stage in its 

development it uses a binary quantization of the data, which results in a less detailed 

description of the nature of the interaction between genes. Also , the choice of a threshold 

for the quantization is not a simple task and if done correctly requires expert knowledge of 

the system under study. This is definitely a drawback considering the nature of the problem 

and the size of genetic networks. 

The weighted matrix method improves on R E V E A L in that it does not require 

quantization of the data and does not place a l imit on the number of genes that determine 

a given gene's expression. Further, it can be trained on a relatively small data set [55]. 

However the method is not as clear in determining the connections between specific network 

components, since the network of interactions is ultimately represented by a large matrix 

of real numbers. This makes the interpretation of results much more difficult. 

The Bayesian method seems very promising. Its flexibility and probabilistic nature 

are definite advantages over the other two methods. The main problem wi th the Bayesian 
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method is that, in my opinion, it would be difficult to apply to a network of the size 

encountered in signal transduction pathways or genetic networks. However, if parts of the 

graph structure or probability distribution are known in advance, perhaps the difficulty of 

the task of training the networks can be reduced. 

71 



C h a p t e r 4 

A Reverse Engineering Appl icat ion 

This chapter outlines the application of a reverse engineering method to the data created 

from the EGF simulation described in Section 1. The method is based on an approach used 

by Maki et al (2001) [35] for the elucidation of genetic networks. The particular appeal of 

this method is its "divide and conquer" methodology, which appears to be a useful approach 

for studying large systems such as signal transduction pathways. 

The work of Maki et al is discussed in Section 4.1. The next two sections each 

present one of the steps of the reverse engineering. Sections 4-7 cover the application of the 

method to the EGF simulation data. The chapter ends with a discussion of the results. 

4.1 A system of inference of large-scale genetic networks 

The application discussed in this chapter is derived from work by Maki et al that has been 

presented in several conferences in the past few years ( [35], [52]). Its intended application 

is the inference of the structure of genetic networks from DNA microarray data. The aim of 

this application is to extend the principals of the approach to the series of chemical reactions 

that form a signal transduction network. 

Before the method is applied, a specific set of data must be collected: a deletion1 of 

each component of the network is made and the resulting steady-state and time-series data 

collected for the rest of the network components. At this point, the following analysis is 

performed: 

1 The deletion of a gene is the removal of the part of the chromosome corresponding to that gene. Thus the action 
of the system without that genetic component (and its gene product) can be studied. 
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P a r t O n e : S t a t i c B o o l e a n N e t w o r k 

The steady-state data is quantized to binary data to reflect the interactions between com­

ponents in the network. This data is used to place the network components into strongly 

connected groups. Each group is treated as a node in a directed graph whose structure is 

then determined. 

P a r t T w o : D e t e r m i n a t i o n of S u b n e t w o r k s 

The components wi th in a group have been so grouped because the fast Boolean approach 

of Part One is not sufficient to identify connections between these components. The second 

stage involves determining the network structure within each group. A slower but more 

powerful method is used to determine the structure of the graph wi thin each group using 

a best fit of a differential equation model to the time series data. The parameter fit is 

accomplished by minimizing the squared errors between the experimental and calculated 

values of components using a genetic algorithm optimization. 

Neither of the above steps would be sufficient on its own, but each has specific 

advantages for solving parts of the overall problem. The Boolean method does not have the 

level of detail needed to determine connections between all the components of the network, 

but it is fast enough to deal wi th a large network. The optimization of parameters of a 

differential equation model is capable of deciphering feedback loops and other connections 

that can't be determined by the static network approach, but it is too detailed a method 

to apply to the entire network for a problem of this size. Thus, the combination of these 

methods allows the positive qualities of each method to shine. 

4.2 Part One: Static Boolean network 

Before beginning the reverse engineering of the E G F pathway, the steady-state and time 

series data need to be simulated. Since the goal of this data set is to determine which 

proteins are affected by the removal of a specific protein from the system, I simulate the 

data set by fixing the specific protein's concentration to a very small value (1 x 10~ 5 ) . 

Experimentally, the deletion of a protein would likely be accomplished by deleting the 

corresponding gene. The deletion of a protein complex might be accomplished by the 

specific inhibit ion of the complex. The plausibility of generating this data experimentally 

is debatable, especiialy since the deletion of some proteins wi l l k i l l a cell. 
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Consider a network of p proteins whose network structure is to be found. The goal 

is to represent the network by a directed graph. The nodes of the graph are the p proteins 

of the system. The edges between nodes represent chemical reactions between the proteins. 

For instance, if there is a directed edge between nodes A and B, then protein A is a reactant 

in a reaction that produces protein B. With each edge there are one or two kinetic constants 

associated that determine the rate of the reaction. For instance, if the reaction between A 

and B is A =± B, then there are first order rate constants associated with the production 

of B and of A (the forward and reverse reactions respectively). In this first step, the aim 

is specifically to determine the structure of connections between specific groups of proteins 

and not the determination of the kinetic constants. 

The following steps in Part One of the method are illustrated in Figure: 4.1. 

S t e p 1: The steady-state data is organized into a matrix D such that a\j is the steady-

state concentration of the j th protein due to the deletion of the i th protein. 

S t e p 2: The relative concentrations of the deletion runs to the normal concentration levels 

are calculated for each protein. This is done by dividing each column, i, of D by the 

normal steady-state level for protein i. These values are compiled in a {p x p) relative 

intensity matrix, E. , 

S t e p 3: The next step is the quantization of the data in E to create a binary matrix, 

R. A value of 1 in the matrix means that the expression of a protein changed more 

than a specified threshold in response to the deletion of another protein. For a chosen 

threshold value 9 the matrix R is defined by 

At this point, there are two things to accomplish: 

1. Identify strongly connected groups 

2. Remove indirect connections 

S t e p 4: The first task above is to find the groups of proteins that are indistinguishable 

from each other based on the binary matrix. First, take the transitive closure, R*, of 

1 if (eij > 9 or < 1/9) and i ^ j 
(4.1) 

0 otherwise 
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the binary matrix, R. R* is defined by 

oo 

R* (4.2) 
n=0 

where 
1 if i = j 

and R n + 1 = RnoR (4.3) 
0 if i ? j 

Here 

( i 2 " 0 j R ) y = m i n ( l , ^ ; r ? f c . r f c i ) (4.4) 

fc 

So, i?* is a matrix that has filled out al l the possible pathways in the graph. That is, 

if the deletion of Protein A affects Protein B , then the deletion of Protein A affects 

all the proteins affected by Protein B as well. So, R* has values of 1 in row A for not 

only Protein B , but all the proteins affected by Protein B . In effect, R* captures all 

reaction cascades in the network. Notice in Figure 4.1 that i ? 1 3 has been changed to 

a value of 1 since R\i = 1 and R23 = 1. 

Now find the strongly connected groups (or equivalent sets) in the graph as follows: 

construct a matrix of "equivalence relation", ER, such that an equivalence relation 

exists between components A and B if A affects B and B affects A [35]. That is 

A n equivalence set of the i t h protein, denoted [i], is then defined by the set {j\erij = 1}, 

imposing the restriction that each protein can belong only to one equivalence set. From 

this definition of the equivalence sets, notice that any cycles in the graph w i l l appear 

wi th in the same equivalence set. These are the features of the graph that the Static 

Boolean step is unable to distinguish. 

A t this stage, matrix R* is reduced to represent the graph between the equivalence 

sets, rather than the individual proteins. In Figure 4.1, notice that proteins B and 

D are in the same equivalence set. Therefore, the column and row of the matrix 

corresponding to Protein D are eliminated, since they are identical to those of Protein 

(4.5) 
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B wi th respect to all proteins outside of the equivalence set. In other words, all 

redundancies of the binary matrix are eliminated. 

Step 5: The second task listed above is to eliminate values in the binary matrix that 

represent indirect connections in the graph. This is the final step shown in Figure 4.1. 

Notice that [1] affects [2] and [3] but that [2] affects [3] as well. This means that 

[1] affects [3] indirectly through [2]. Therefore, R^3 is set to zero. Repeating this 

reasoning for al l the proteins in the network results in the skeleton matrix, S, that 

contains only first degree connections. 

To accomplish this result, perform a topological sort of the graph. A topological sort 

orders the nodes of a directed acyclic graph according to the degree of each node [44]. 

So, if node X has no parents, it has the lowest degree and is first in the ordering. 

Of all the descendants of X , the node(s) wi th the next lowest degree (those that are 

directly connected to X ) appear next in the ordering. Thus al l the direct connections 

in the graph can be determined. 

This ordered graph represented by S is the output of Part One. A t this point we 

have identified the connectivity in the graph of equivalence sets. 

4.3 Part Two: Determination of subnetworks 

In this step, the goal is to identify the connections between network components that have 

been grouped into equivalence sets. This section describes the method used by M a k i et 

al. Section 4.6 describes departures from this method that are made i n order to apply the 

method specifically to systems of chemical reactions among proteins. 

4.3.1 S-systems 

M a k i et al represent the network of proteins wi th in an equivalence set using a canonical 

nonlinear form of differential equations known as an S-system [20]. A n S-system has the 

form 

where Xi is the ith reactant or state variable among a total of n variables. The exponents 

gij and hij are real numbers representing "interactive effectivity" in S-system language or 
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[1]= A 

[2] = B, D 

[3]= C 

Figure 4 .1 : Part One of the method of Maki et al for a system of 4 proteins. Proceeding 
clockwise from the top-left: Each column of the data matrix D is divided by the normal 
steady-state value for that protein to yield the relative intensity matrix E. E is quantized 
to binary values with a threshold of 2. The closure of R yields R*. The equivalence relations 
are determined: proteins B and D show the same behavior (in R*) to all other proteins in 
the network and are therefore grouped together in [2]. Replacing columns B and D by [2], 
and relabeling A as [1] and C as [3] (single protein equivalence sets) gives us R* . Finally, the 
topological sort gives us the skeleton matrix S containing only direct connections between 
equivalence sets. This determines the shape of the graph, shown in the center. 
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"interrelated coefficients" with respect to genetic networks [35]. In a protein setting, one-

would compare them to the order of the reaction of Xj to produce Xi as in a mass action 

equation. The parameters a,t and /?,• are used to denote the relative inflow and outflow of 

gene Xj [35], For proteins these constants represent some sort of combined rate constant 

for all the reactions contributing (both positively and negatively) to the concentration of 

protein /. 

Many differential equations can be "recast" as S-systems, including equations of 

elementary functions and compositions of elementary functions [46]. The advantage of 

recasting a system into this form is that there are efficient methods of solving S-systems 

using Taylor polynomials [20]. 

The main disadvantage of the S-system is that there are a large number of param­

eters: for a system of n state variables, there are 2n(n + 1) parameters. Given that the 

goal is to fit these parameters to experimental data, this could be a significant problem, 

depending on the size of the equivalence set. 

The strategy is as follows: each protein is represented by one of the variables in 

the S-system. The parameters arc fit to the experimental data by minimizing the squared 

differences between data and output of the S-system. In the course of the minimization, if 

a given parameter becomes smaller than a designated threshold, the parameter value is set 

to zero. This corresponds to the loss of an edge, in the graph of the protein interactions. 

Thus, the resulting parameter set defines the optimal network fit to the data. The method 

of optimization is described in the next section. 

4.3.2 Genetic algorithm optimization 

Genetic algorithms are a class of stochastic optimization techniques used in solving a wide 

range of problems. The stochastic nature of a genetic algorithm makes it a good choice 

for problems wi th many local maxima and minima, as the process is less likely to become 

trapped in a local extrenium. 

The conceptual basis of genetic algorithms is drawn from genetics and evolution. 

The idea is to create a population of individuals and evolve the population while applying 

the principles of natural selection. The parameters to be optimized constitute the genome 

of the individual and the objective function evaluated for those parameters defines the 

fitness of that individual . At each iteration (generation) of the algorithm, the fitness of all 
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individuals in the population is evaluated. This fitness value determines the probability of a 

given individual reproducing and thus propagating its genetic makeup through to the next 

generation. The final population is then theoretically the most fit population for survival 

in its mathematical environment. 

The basic steps of the algorithm are as follows: 

1. C r e a t e a n i n i t i a l p o p u l a t i o n 

• The parameter values that represent individuals are usually randomly chosen to 

create an initial population. However, given that subsequent generations will 

evolve from this initial generation, it can be useful to start with some reasonable 

guesses amongst the randomly generated ones [19]. 

• Representation for individuals is chosen. The structure and alphabet used to code 

the genome influences the genetic algorithm implementation. For a discussion of 

binary versus float representation and efficiency see [37]. 

2. E v a l u a t e t h e f i tness o f each, i n d i v i d u a l i n t h e p o p u l a t i o n 

• The fitness is the value of the objective function (the function to be optimized) 

given the set of parameters that constitute that individual. 

3. B r e e d t h e m e m b e r s o f t h e c u r r e n t p o p u l a t i o n t o c r e a t e t h e n e x t g e n e r a t i o n 

• The selection of parents from the current population and their subsequent repro­

duction are the aspects of genetic algorithms that vary most. 

• The selection is a probabilistic method based on the principles of natural selec­

tion: the higher the fitness of an individual, the more likely it is to survive and 

propagate. 

• The reproduction can involve many different operators, most of which also have a 

probabilistic element. For example, a simple reproduction function would involve 

a crossover rate to create new individuals with parts of their chromosome taken 

from each parent and a (generally smaller) mutation rate to randomly alter parts 

of a progeny's genetic code [9] 

4. R e p e a t s teps 2-3 u n t i l a t e r m i n a t i o n c r i t e r i a is s a t i s f i e d 
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• Common termination criteria include reaching a maximum number of iterations 

or finding a solution within a given threshold. (This threshold could be the 

change from the previous generation's solutions or a projected optimal fitness 

level, say). 

There are many variations within this common framework for a genetic algorithm. 

For the application of the method of Maki et al to the EGF simulation data, we use a pub­

licly available MATLAB implementation, called the Genetic Algorithms for Optimization 

Toolbox (GAOT) [19]. The specifics of the algorithm used in this toolbox are described in 

Section 4.5. 

4.4 Application of Part One to the EGF simulation 

All programs used for this application have been created in MATLAB and are included in 

Appendix B. Using Gepasi, the steady-state concentrations for the proteins in the full EGF 

system (see Chapter 1) and for each deletion in that system are recorded. The relative 

intensity matrix, E is calculated as described in Section 4.2. 

The next step is the calculation of the binary matrix, R. The range of values for each 

protein are shown in Table 4.1. From the table, it is evident that the range of values is very 

large, even when considering the values from only one protein. This fact makes it difficult 

to chose an appropriate concentration threshold value. After some experimentation with 

different threshold values, I carried out Part One using thresholds of 2 and 5. (Note that the 

thresholds have no associated units since the relative intensity values are dimensionless). 

An example of the binary matrix corresponding to a threshold of 5 is shown in 

Table 4.2. However, when the equivalence sets are calculated using programs created in 

MATLAB (according to the procedure described in Section 4.2), the results indicate that 

there are only 3 equivalence sets. The proteins in each equivalence set are shown in Fig­

ure 4.2. The equivalence sets are shown in their place in the EGF pathway in Figure 4.3. 

The groupings do not seem to correspond to any of the cycles in the system and seem to 

group too many proteins together by comparison to the groups found in Table 4.3. Similarly, 

a threshold of 2 resulted in only 2 equivalence sets. 

I believe that the origin of the problem may be in taking the closure of matrix R to 

get R* (Step 4). The EGF test case has coupled cycles, and they are likely causing some 
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Protein Maximum relative intensity Minimum relative intensity (xlO 6 ) 
1 1.17 0.02 
2 167.22 0.57 
3 1,06 0.57 
4 1.13 0.00 
5 1.14 0.00 
6 600.00 0.10 
7 1.04 0.00 
8 1.10 0.00 
9 1.0000 0.00 
10 1.0000 0.00 
11 4.1206 0.37 
12 2.6355 0.00 
13 19.1011 0.36 
14 8.9479 0.00 
15 15.9763 0.35 
16 132.4561 0.20 
17 1.6238 0.00 
18 1.8656 0.00 
19 1.7718 0.00 
20 1.6446 0.00 
21 1.6449 0.00 
22 1.0147 0.00 
23 1.0000 0.00 

Table 4.1: Maximum and minimum relative intensities for each protein in the E G F simula­
tion. 
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Table 4.2: The binary matrix, R, corresponding to a threshold of 5. The rows correspond 
to the proteins that have been deleted to produce the given effect on the protein in each 
column. The numbers correspond to the proteins listed in Table 2.5 
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Figure 4.2: The proteins in each equivalence set and the graph of the equivalence sets. 
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Figure 4.3: Proteins in the E G F pathway are coloured according to their equivalence sets. 
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Proteins in Group 
1 EGF 
2 R Ra R2 RP 
3 PLC RPL PLCP RPLP PLC-I 
4 GRB 
5 RG 
6 SOS 
7 RGS GS 
8 SHC RSH RSHP SHP 
9 RSHG SHG 

10 RSHGS SHGS 

Table 4.3: Manual grouping of proteins into equivalence sets based on matrix R with 5 
threshold. 

problems in Part One that were not seen in previous applications of this method. That 

is, too many connections exist between proteins in the pathway, so that upon taking the 

closure of R too many proteins are grouped into the same equivalence set. 

If the equivalence sets of the binary matrix R (Table 4.2) are found, rather than the 

equivalence sets of R*, the outcome better. The equivalence sets can be found by grouping 

together proteins that have the same sequence of responses, with the exception of their 

behaviour towards other members of the set. The resulting 10 equivalence sets are shown 

in Table 4.3. If I colour the proteins in the pathway based on the equivalence sets found by 

inspection of matrix R the results make much more sense, as seen in Figure 4.4. 

4.5 Genetic algorithm toolbox for M A T L A B 

Part Two is a genetic algorithm minimization. The source files for the Genetic Algorithm 

Toolbox are available publicly, so these are the starting point for the genetic algorithm 

implementation. 

4.5.1 T h e eva lua t ion func t ion 

To use the toolbox, an evaluation function must be provided to calculate the fitness of 

individuals. The objective function for this particular application is the squared difference 

between the experimental (simulated) protein concentrations and the protein concentrations 
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Figure 4.4: Grouping of the E G F pathway proteins according to the equivalence sets listed 
in Table 4.3 
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predicted from the differential equations with the specific individual's parameter set: 

where i sums over the number of proteins, n, in the network (equivalence set) and t sums 

over the time series. 

Due to the decision not to use the S-system form of the differential equations (dis­

cussed in Section 4.6) I cannot use the same method of solving the differential equations 

as Maki et al [35]. Instead, I use the MATLAB function ode23, a low order Runga-Kutta 

numerical differential equation solver, to calculate the protein concentration values, XcaiCiitt, 

The evaluation function takes the parameter set of an individual as input and outputs 

that same parameter set and the value of the objective function for that parameter set. The 

evaluation function carries out the following steps: 

1. Read the file with the simulation data. 

2. Solve the system of differential equations for the parameter set using ode23. The 

simulated protein concentrations at time t = 0 are used as the initial conditions for 

the numerical solution^ 

3. Calculate the value of the objective function using Equation (4.7). 

4.5.2 Selection and reproduction 

The genetic algorithm toolbox (GAOT) offers several different options for selection and 

reproduction. This application uses the default normalized geometric selection. In this 

type of selection, each individual in the population is ranked using a geometric distribution 

normalized according to the probability of choosing the most fit individual. An individual's 

ranking determines the probability that they are chosen as a parent. 

Given the decision to use a real number representation rather than a binary repre­

sentation for the genome of an individual, the genetic algorithm toolbox offers a plethora of 

reproduction operators: uniform mutation, non-uniform mutation, simple crossover, arith­

metic crossover, and others [19]. The mutation operators have in common the feature that 

a parameter is randomly selected from among all the parameters of all the individuals. The 

difference lies in how the parameter is changed. For instance, the new value could be a 

n 
(4.7) 

t=l t 
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I 1 

(a) (b) 

Figure 4.5: Demonstration of mutation and crossover operators using L E G O , (a) In muta­
tion, a single block from one tower is randomly selected (small arrow) and replaced with 
a different block in the child, (b) In arithmetic crossover, a detachment position along the 
tower is randomly selected (small arrow). Both parent towers are broken at that position, 
and the top halves of the tower are interchanged to yield the two children. 

number randomly chosen within the bounds for that parameter (uniform mutation) or set 

equal to the upper or lower bound (boundary mutation) or chosen from wi th in the bounds 

wi th a non-uniform probability (nonuniform mutation). 

The crossover operation involves an exchange of values between two individuals to 

produce two offspring who partition the genomes of their parents between them. To picture 

this process, imagine the set of parameters that make up an individual as a tower of L E G O 

blocks of different colours. A mutation involves randomly choosing one block from a tower 

and replacing it wi th another block (possibly of a different colour). The different mutation 

operators describe the manner in which this new block is chosen and inserted in the tower. 

A common crossover operation would be analogous to breaking the two L E G O towers at 

the same point along the tower and interchanging the pieces of same length between the 

two towers. (Thus, each of the resulting towers contains a section from each parent tower.) 
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For this application to protein networks, each block is a biochemical parameter value and 

a tower is a parameter set. Reproduction involves exchange of values between hypothetical 

sets of parameters. 

4.5.3 Termination 

The toolbox also offers several options for termination. One can stop at a specified maximum 

number of generations or when the fitness value is within a given epsilon of a known optimal 

fitness value. For this implementation, I specify a maximum number of generations and 

an optimal error value. The optimal error value was determined by using the evaluation 

function to determine the fitness of the parameter set corresponding to the actual solution. 

In all runs, however, the maximum number of iterations was reached before the optimal 

fitness value. I experimented with the number of generations to find the most successful 

number for the application to the EGF pathway, typically using between 1000 and 10,000 

iterations. 

4.6 Modifications to the method 

In this application of the method of Maki et al to signal transduction pathways, I have made 

several changes. The first major change is the decision to not use the S-system formulation 

and instead to use a generalized mass action form: 

where the parameter â - is the real number rate constant (whose order is determined by the 

associated product) for the jth term contributing to the rate of change of the concentration 

of the ith protein. The parameter g^ is the positive integer exponent for the kth protein 

of the jth term. These powers are derived from the stoichiometry of the rate-determining 

step of the reaction in which the term is involved. 

The main differences between Equation (4.8) and the S-system form are: 

• The summation of terms of products of proteins and their associated rate constants. 

• The second decay term is absorbed into the one term by not restricting to positive 

real numbers. 
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• The powers are restricted to integers less than or equal to 2, since here they represent 

kinetic orders. 

It is known that the S-system is a feasible representation for a system of generalized 

mass action equations that describe a set of chemical reactions [46]. However, we question 

the use of the protein concentration data as the values of the state variables in the S-system 

for fitting the parameters. Consider: if one knew the structure of a network of chemical 

reactions one could write out the mass action equation describing the rates of change of the 

concentration of each protein. 

At this point, one could recast this system of equations into an S-system format. 

However, the recasting of the mass action equations into S-system format requires the 

introduction of extra variables to account for the sums in the mass action equations [46]. 

For example, consider the equation 

~ - = kiXz - k2X1X2. 

As it is, the equation is not in S-system form because of the sum of terms. This equation 

is recast as follows: let X\ = Z\Z\, X2 = Z2, and X3 — Z3. Then, 

at 

zz>Z2—— + Zi—— = k\Zj, - k2ZiZ4,Z2 dt dt 

and the terms on the left are arbitrarily assigned to terms on the right: 

dZx j 
— = hZ3Z2 

= kiZ^Zi. 
dt 

(4.9) 

(4.10) 

Thus, there are actually more state variables in the S-system recast of the mass 

action equations for a given set of reactions. However, in the method set forth by Maki 

et al, there are the same number of state variables as network components. How then to 

interpret the fitting of the protein concentration data to the state variables? What do the 

parameters of the S-system represent? 

I believe that despite an increase in the number of parameters, the generalized mass 

action equation is a more natural choice for a network of chemical reactions among proteins. 
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• gLLL gl!2 g!13 gU4 
dXl/dt = a u X l X2 X3 X 4 + a i 2 * « * 

Figure 4.6: The organization of the genome of an individual . A l l a parameters appear first, 
followed by a l l g parameters, is the rate constant for the jth term in the differential 
equation of the ith protein, g^ is the power of the kth protein in the jth term in the 
differential equation of the ith protein. 

This choice also leaves us wi th a set of biochemically relevant kinetic constants for the signal 

transduction pathway after the optimization, an improvement over the original method. 

Given the decision to use Equation (4.8), the parameters that constitute an individ­

ual of the population are organized as shown in Figure 4.6. The ordering of the parameters 

in the genome is as follows: 

[ai 

where m is the maximum number of terms and n is the number of proteins. 

For the remainder of the discussion, I shall refer to a term of the summation on 

the righthand side of one of the differential equations describing the rate of change of a 

protein's concentration simply as a term. The j term for protein i is defined by the 

kinetic constant, and n exponents j/yfc. The number of nonzero a^s tells us the number 

of terms for protein i, that is, the number of reactions that protein i is involved in (where 

forward and reverse reactions are separate reactions). In the application discussed here, 

we set an upper l imit m = n on the number of nonzero a. The index k of the nonzero 

exponents g^ tells us which proteins are included in the term. 

4.6.1 Adapting the genetic algorithm toolbox 

In order to incorporate the changes described in the previous section, substantial changes to 

the Genetic Algor i thm toolbox are required. The strategy of fitting the system of differential 

equations to the simulation data remains essentially the same. However, there are several 
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Parameter Value 
0.01 

k2 0.02 
h 0.2 
k4 0.03 

Table 4.4: Kinetic constants for the test network, Equation (4.12) 

problems that arise in trying to use a genetic algorithm optimization with the mass action 

equations. Specifically, the resulting optimal network must be biologically feasible. 

To study this problem I create a test system of chemical reactions: 

X l + x2 ^ x3 ( 4 n ) 

Xz ^= X4 

for which I simulate the time series data in Gepasi. Immediately, the large number of 

possible terms becomes obvious: for each protein, there are 2" possible combinations of 

proteins that could contribute to the change in concentration when terms up to bimolecular 

kinetics are considered. A limit needs to be placed on the number of reactions in which 

each protein can participate to avoid huge computational expense as n increases. This is 

biologically reasonable, since most proteins in a pathway carry out a specific function with 

a specific set of substrates. 

Another problem that becomes apparent after a few runs of the genetic algorithm, is 

that the basic features of mass action kinetics need to be incorporated into the optimization 

routine for the results to correspond to a series of chemical reactions. Consider the test 

case above: the mass action equations corresponding to the network in actual fact are 

-kyXyXi + k2X3 dt 
dX2 -k\X\X2 + k2X3 

dX3

 ( 4 J 2 ) 

—7— = hXiX2 - k3X3 - k2X3 + k4X4 dt 
dX4 

dt 
k3X3 - k4XA 

and the rate constants are listed in Table 4.4. 

Ideally, the algorithm should reconstruct these terms. In practice however, we have 
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found that these are not the terms that the optimization yields. This is not entirely sur­

prising, since the parameter space is very large and there are doubtless many differential 

equations that can reproduce the simulated concentration values wi th in a reasonable error. 

The need to include further restrictions on the form of the solution could be an indication 

that another optimization method wi th specified constraints is needed to define the struc­

ture of the system. However, the genetic algorithm is st i l l a very good optimization method 

for large search spaces and is reasonably flexible. Therefore, I have chosen to adapt the 

original genetic algorithm so that it can only output solutions corresponding to networks 

of chemical reactions. 

To accomplish this task, the rules that dictate what terms appear in the equations 

must be identified and individuals of the population of possible solutions that don't obey 

these rules must be punished. The main difficulty in doing so, is that the form of the 

equations is determined by the chemical reactions. This present attempt, on the other 

hand, is to try to create differential equations that can represent a feasible set of chemical 

reactions without knowing even the specific reactants and products involved in each reaction. 

The main principle that must be satisfied by the equations is that if a term kXj 

appears in the differential equation for the rate of change of protein i, then the complemen­

tary term —kXj must appear in the differential equation for the rate of change of protein 

j. This ensures that the equations for both proteins register the fact that the reaction 

Xj —> Xi 

exists. If only one of these terms appears, then the differential equation does not actually 

represent a chemical reaction and is not a valid solution. 2 

A n additional requirement for a valid solution is that a negative term in the differ­

ential equation for the ith protein must include that protein in the product. This comes 

directly from chemical kinetics. 

Having identified these requirements, how can they be implemented? A t each it­

eration of the genetic algorithm, new individuals are bred from the current population 

according to the selection and reproduction operators discussed in Section 4.5.2. So, in the 

2 In future, we would like to consider enzymes explicitly as components of a signaling network. Therefore, we do not 
wish to make assumptions about relative concentrations of network components that would lead to a Michaelis-Menten 
law formulation and provide an exception to the above rule. 

93 



case that a population of individuals can be generated that represent valid solutions accord­

ing to the requirements above, a way must be found to ensure that the next generation of 

individuals are also valid. Given the stochastic nature of the reproduction operators, this 

is not an easy task. 

The crux of the problem is this: when a crossover occurs, there is a fair probability 

that the crossover point wi l l lie within one of the terms of the summation on the righthand 

side of the differential equation. Similarly, if a mutation occurs, it w i l l alter a term. These 

changes must be reflected in the complementary terms appearing in the differential equations 

of the other affected proteins. Thus, the complementary terms must be located and changed 

to reflect the crossover or mutation. 

Attempts to simply punish non valid solutions did not work, since the percentage 

of solutions that are valid out of al l possible parameter combinations is extremely tiny. In 

other words, without further intervention, the genetic algorithm never really gets started 

because the randomly generated ini t ia l population doesn't contain any valid solutions from 

which to breed better solutions. Thus, the first task was to create a valid ini t ia l population. 

4.6.2 Initiation of the population 

In creating the ini t ia l population, some randomness must be retained, but the basic structure 

of each individual must also satisfy the mass action requirements. M y solution is to create a 

bank of al l the possible terms, given the number of proteins in the network and the integer 

bounds on gijk, and to distribute these terms randomly among the differential equations for 

each protein. A n example of the contents of the termbank for the network of 4 proteins is 

shown in Table 4.5. 

The process of constructing the ini t ia l population is implemented in the program 

i n i t p o p as follows: 

for each individual 
while al l differential equations have less than n terms 

randomly select one of the n proteins 
randomly select a positive a wi th in the specified bounds 
randomly select a valid term from the termbank 
add the term to the current protein's differential equation 
determine which complementary terms need to be added and add them 

arrange the parameters from the differential equations into the parameter solution 
for the individual in the form of Figure 4.6 
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Termbank 
0 0 0 1 
0 0 10 
0 0 11 
0 10 0 
0 10 1 
0 110 
0 111 
10 0 0 
10 0 1 
10 10 
10 11 
110 0 
110 1 
1110 
1111 

Table 4.5: Contents of the termbank for a network of 4 proteins. For example, row 3 of 
the table corresponds to the term X3X4. The termbank has been sorted for insertion of a 
term into the differential equation of proteinl (the term is randomly chosen from the first 
7 terms of the termbank). Notice that the term of all zeros is eliminated from the bank. 

To obtain a valid selection from the termbank, I restrict the random selection to only 

those terms that have a zero exponent for the protein to which the term is being added. 

This restriction is necessary because the rate constant for the,term is positive. Why are 

only terms with a positive rate constant added? Consider the first reaction of the test case: 

X\ + X2 —> Xz 

The negative terms that appear in the differential equations for X\ and X2 (Equation (4.12)) 

do not tell us to which protein the arrow is pointing, which means that the placement of 

the complementary term is a mystery. However, if the positive term k\XiX2 appears in 

the differential equation of X 3 , then the negative complementary terms must appear in 

the differential equations of X\ and X2. This is the basis of the addition and deletion of 

complementary terms in initpop and also in the mutation and crossover operators discussed 

in the next two sections. 

An additional feature in initpop is the ability to accept previously generated so­

lutions as individuals in the population being created. This means that the best solution 
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Current New Act ion 
Parameter Parameter Taken 

a ctij > 0 > 0 change a in term and in complementary terms 
< 0 no change 
= 0 delete current term and complementary terms 

ctij = 0 > 0 if there is room, create the new term and 
complementary terms 

< 0 no change 
(Xij < 0 > 0 no change 

< 0 change a in term and in complementary terms 
= 0 delete current term and complementary terms 

9 9ijk = 0, = 0 > 0 no change 
9ijk = 0, a^ ^ 0 > 0 add new term to protein k if there is room, 

change current term and complementary terms 
9ijk > 0, any a{j > 0 change current term and complementary terms 
gijk > 0, a^ > 0 = 0 if 9ijk = 0 Vfc, delete term and complementary 

terms. Otherwise change the term and 
complementary terms and delete the comple­
mentary term for protein k 

9ijk > 0, « i j < 0 = 0 same as previous, but change is made only \ik^% 

Table 4.6: A list of al l the possible mutations and the action taken to perform the mutation 
in order to yield a valid solution. The Current Parameter column lists the type and the 
sign of parameter selected for mutation. New Parameter designates the sign of the value 
that is to replace the current parameter. For the mutations of g^k, the sign of the for 
the term that the exponent appears in is also listed. Recall that the subscripts refer to the 
kth protein in the jth term in the differential equation for protein i. 

from a previous run of the genetic algorithm can be used to seed another run, and possibly 

to increase the fitness of the new population more quickly. 

4.6.3 Mutations 

Table 4.6 describes the different cases that result from a mutation and the action taken to 

ensure that the new solution remains valid. This action depends on the value, type, and 

sign of the current parameter and on the sign of the parameter value to be inserted in its 

place. Consider the term 0 .1X 2 X 2 - li, for example, the a value, 0.1, is chosen for mutation 

to a value of 0, then by row 3 of Table 4.6 the term is deleted (a^ and g^k are set to zero) 

and the complementary terms in the differential equations of protein 1 and 2 are deleted. 

In the case g^k > 0, a^ > 0, if the powers of all other proteins in the term are 

zero, then the term is deleted. This is done so that there is no "floating" kinetic constant 
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without a term attached. Otherwise the kinetic constant would appear on its own as a term 

contributing to the differential equation of protein i. 

4 .6 .4 Crossovers 

Crossovers present a special challenge. The probability that a traditional crossover will 

produce two valid offspring is virtually nil. However, crossover is an essential component 

of the genetic algorithm. Thus, an entirely new crossover operator is needed. The aim of 

the crossover operation is to exchange genetic material between parents to create .offspring 

that are potentially better solutions than the parents. The crossover operator must still 

contain a stochastic element so that the search space is well covered, however the fact that 

the children are built from parts of the more fit members of the current generation means 

that there is a better than random chance that the next generation's individuals are closer 

to an optimal solution. Any new crossover operator should have these goals in mind. 

Four crossover operators were initially created: amyXoverl-4. A l l four crossover 

operators function in a similar fashion to ini tpop. The difference is that the valid terms 

for creating the two children are chosen from a bank of terms collected from the two selected 

parents. This is accomplished as follows: 

• compile a list of unique terms from the two parents 

• randomly distribute the terms and their complements to one child until the child is 

full 

• fill the second child by picking from the remaining terms and creating the comple­

mentary terms 

Thus the output is two valid children that have the parent's terms distributed among them. 

The specific characteristics of each crossover operator are listed in Table 4.7. The 

two main differences between operators are their treatment of the kinetic constants, otij, and 

their renewal of the bank of terms. For instance, amyXoverl creates two separate banks: 

one for the kinetic constants and one for the terms. Thus the OLIJ are shuffled separately 

from the terms. This causes quite a disruption, and the resulting children may be quite 

different from their parents. In contrast, amyXover2 distributes the kinetic constants with 

their terms. 

97 



Operator otij and gijk together Replacement 
amyXoverl no yes, between children 
amyXover2 yes no 
amyXover3 yes yes, between children 
amyXover4 yes yes, no terms are deleted 

Table 4.7: The first four operators created for performing the crossover for the adapted 
genetic algorithm optimization. 

Replacement refers to whether or not the bank of terms is replenished. amyXoverl 

and amyXover3 both renew the bank of terms such that both children are assigned terms 

chosen from a full bank of parental terms. amyXover4 does not delete terms from the bank, 

thus the probability of choosing a given term is always the same. Distributing terms without 

replacement is most in keeping with traditional crossover operators. 

One problem with these crossover operators is that there is no ability to exchange 

material between terms. Currently, any changes to terms occur from the random mutations 

described in the previous section. However, mutation rates are generally kept low, since 

they are more likely to be destructive than helpful in bringing the current solution closer 

to an optimal solution. 

4.6.5 The Comet-Strike feature 

In addition to the basic operators discussed above, I add a "comet-strike" feature [28]. 

The idea behind the comet-strike is to introduce new individuals to increase the gene pool, 

renewing the population and thus avoiding stagnation. The comet-strike is implemented by 

wiping out the entire population except for the current best individual. This best solution 

is included in an otherwise completely new population- and breeding resumes. 

The comet-strike is used to combat the "inbreeding" witnessed .with the new crossover 

operators. That is, as a population converges toward a minimum, the best terms appear in 

an increasing portion of the population. This means that the bank of unique parental terms 

to choose from can become too small to add enough terms to the differential equations of 

both children. 
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Test Run Operator Error Comments 
Run 1 amyXoverl 

amyXover2 

amyXover3 

amyXover4 

0.2676 

0.3900 

0.3900 

0.3920 

Equations for 2 proteins have no terms 
2 unique constants 
All equations have terms, but they are the same 
2 unique constants 
All equations have terms, but they are the same 
2 unique constants 
All equations have terms, well distributed 
2 unique constants 

Run 2 amyXoverl 
amyXover2 
amyXover3 
amyXover4 

0.3906 
0.2239 
0.3920 
0.0550 

2 different terms, 3 different constants 
4 different terms, 4 different constants 
3 different terms, 3 different constants 
2 different terms, 2 different constants 

Table 4.8: Results of tests of the crossover operators amyXoverl-4 with population size 10 
and 100 iterations. 

4.7 Results of Part Two 

The adapted genetic algorithm described in the previous sections was applied to both the 

test system (Equation (4.12)) and the simulated EGF protein concentration time course 

data. Tests were also performed to assess the success of the four crossover operators de­

scribed in Section 4.6.4. 

4.7.1 Crossover tests 

The four crossover operators were tested using runs of 100 iterations and a population of 

10 individuals. The results are presented in Table 4.8. The first run of tests started all 

crossover operators with the same initial population (by starting with the same seed for 

MATLAB's random number generator). The second run started each crossover operator 

with a different initial population. In the first run, amyXover2 and amyXover3 yielded 

differential equations that all contained the same terms but with different constants. In the 

second run, however, amyXover2 yielded the best results. The results are inconclusive. It 

appears, from longer runs using combinations of the crossover operators at different rates, 

that no single crossover works best. Rather, a combination of two or more of the current 

operators provides the best solution. 
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4.7.2 A p p l i c a t i o n to the test sys t em 

The results from the genetic algorithm fitting of the test system of chemical reactions are 

promising, but indicate that there are sti l l problems to tackle. The implementation of Part 

Two has gone through several incarnations. Init ial runs yielded results for the system such 

as: 
d X - = - O . 3 5 5 X 1 X 3 + 0 . 4 8 6 X 2 X 4 - 0 . 3 9 6 X i X 4 - 0 . 3 8 8 X i X 2 dt 
dX2 

I . I 3 X 1 X 3 X 4 - 0 . 3 5 2 X 2 X 3 - 1 . 0 6 X i X 2 X 3 X 4 - 0 . 2 9 2 X i X 2 X 4 

dX (4J3) 
— - = 0 . 9 6 4 X i X 2 - 0 . 9 1 5 X 2 X 3 - 0 . 2 9 3 X i X 2 X 3 dt 

= 1.31 • 1 0 " 5 X 3 - 0 . 0 0 4 7 X 2 X 4 + 0 .854X 3 - 1 . 5 5 X 3 X 4 

dt 

This result produces a low value for the squared difference, but is very far from the model 

differential equation solution (Equation( 4.12)). This early result underlines the need for 

the alterations to the optimization described in Section 4.6.1. Specifically, the structure of 

the differential equations does not correspond to a possible set of chemical reactions. For 

example, the first term in the equation for proteinl : —0.355X1X3 does not appear in the 

equation for protein3. Further, this term does not appear in any of the other differential 

equations. Essentially, proteinl loses mass without any of the other components gaining 

that mass, which means that mass isn't conserved. This solution cannot correspond to a 

real physical system. 

The development of programs to create a valid ini t ia l population and reproduction 

operators greatly improved results. In a given generation, however, there are some very 

poor individuals being produced. For example, there are sometimes individuals wi th pa­

rameter sets consisting entirely of zeros! Another observation made was that the fitness 

value of individuals appeared to stall around the value 0.39 for many generations. This 

seems to indicate that there is a significant minimum at this value that the algorithm is 

consistently falling into before jumping to a lower value due to a mutation or successful 

crossover. Upon further investigation it was revealed that this local min imum corresponded 

to the empty solution. This means that, for the test system, a constant value for the concen­

tration of all proteins over the time course gives a better fitness than many other randomly 

chosen solutions. This result is likely related to the discrepancy in time scale: most of the 

change in protein concentration occurs quickly, while the time points at which the protein 

concentration is measured are comparatively large. 
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Parameter Actual Value Genetic Algorithm Solution 

fci 0.01 0.0081 
k2 

0.02 0.0108 
k3 0.2 0.0108 (to Xi) 0.0081 (to X 2 ) 
k^ 0.03 0.0210 

Table 4.9: A comparison of the kinetic constants from a successful run of the genetic 
algorithm to the actual values for the test case. This run consisted of 1000 iterations of a 
population of 20. 

On a more positive note, consider the differential equations describing the form of 

the network from one of the more successful genetic algorithm trials (using a range of [—1,1] 

for ctij and gijk = 0 or 1): 

d X l = -0.0081XiX2 + O.OO8IX3 
dt 

dX2 = - O . O O 8 I X 1 X 2 + O.OIO8X3 

Jx ( 4 1 4 ) 

— = O . O O 8 I X 1 X 2 - O.O2IOX3 - O.OIO8X3 + O.OO8IX3 dt 
dX\ 
dt 

O.O2IOX3 

The values of the kinetic constants compare fairly well with those of the test case, as shown 

in Table 4.9. Notice, however, that the constant values are fairly repetitive: for example, in 

the differential equation for X i , the same constant appears twice (as separate rate constants, 

k\ and k2). This is a result of the limited pool of values available for the alpha parameters 

in the crossover operators. 

The reactions included in the above solution network are very close to the actual 

test case reactions. There are a few key differences, however. First of all, notice that the 

rate constants for the reaction X i + X2 *— X 3 are not the same in the differential equations 

for X i and X2. So, although the solution reflects the fact that X 3 is a reactant producing 

both X i and X2, it does not reflect that it is one reaction that produces both proteins. 

Notice, however, that the sum of the constants for these two contributions of X 3 are close 

to the value of k2. 

Another important difference between the actual and the fitted systems are that the 

reaction X 3 <— X 4 is completely missing. Consider the differential equation for X 3 : the 

maximum number of terms has been reached. In the actual system, there are only four 
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terms in the differential equation, but the error noted in the previous paragraph means 

that there is an extra term. At this point, it seemed that perhaps if the limit, n, on the 

number of terms were raised then the missing reaction would be found as well. It is very 

likely that the loss of this reaction has also affected the rate constants of all the reactions. 

This result and the results of the next section motivated a modification of the adapted 

genetic algorithm to allow the maximum number of terms to be chosen at each trial. This 

involved changes to most of the programs used to adapt the original algorithm, since the 

number of parameters in an individual depends on the number of terms allowed in each 

differential equation. A new crossover operator was also created in order to fully take 

advantage of the increase in possible terms and to incorporate some of the insight gained 

from the crossover tests of Section 4.7.1. 

The new crossover, amyXovermax, distributes the parental terms without replace­

ment. However, instead of filling one child until the maximum number of terms is reached 

and then filling the next child with the remaining terms, amyXovermax randomly chooses 

one of the children at each iteration and adds a term to that child. This is an improvement 

in that it avoids the problem of uneven distribution of terms among the children that occurs 

with the previous crossover operators created in this study. 

The results of the optimizations performed with this added functionality are mixed. 

Some solutions comparable to (4.14) were obtained, but poor solutions were also obtained. I 

believe that ultimately this added functionality will improve the results of the optimization, 

since it provides the system with much more flexibility. 

An improvement to this new feature might be to start with a large limit on the 

maximum number of terms and decrease this limit over the course of the optimization. For 

instance, one could define a function, F(gen) that sets the maximum number of terms for 

each variable based on the current generation, gen, where F(0) = mo and F(maxgen) = n. 

Here, mo and maxgen are specified at the start of the optimization, and n is the number of 

proteins in the network. This setup would permit more mistakes in term distribution early 

on, and would also mean a larger parental termbank from which to generate offspring. I 

intend to test this theory in future work. 

A p p l i c a t i o n t o E G F s i m u l a t i o n r e s u l t s o f P a r t O n e 

The third equivalence set found in Part One (Section 4.4) contains the 5 proteins: 

102 



Protein Number Protein Name 

1 SOS 

2 RGS 

3 GS 

4 RSHGS 

5 SHGS 

Despite my reservations about the grouping from Part One, I ran the optimization for this 

equivalence set. A 100 iteration run with a population size of 20 produced the following 

results: 
dXi 
~dT 
dX2 

dt 
dX3 

dt 
dX4 

dt 
dX5 

dt 

= 0 . 7 3 3 X 2 X 4 X 5 + 0.967X2 - 0.63XiX2 - 0 .858XiX 5 

= - 0 . 7 3 3 X 2 X 4 X 5 - 0.967X2 - 0 . 63XiX 2 

= -0 .156X 3 + 0 .63XiX 2 + 0 .858XiX 5 

= - 0 . 7 3 3 X 2 X 4 X 5 

= 0.156X 3 - 0 . 7 3 3 X 2 X 4 X 5 - 0 .858XiX 5 

(4.15) 

These equations correspond to the following series of chemical reactions: 

RGS + RSHGS + GS^ SOS 

RGS -> SOS 

SOS + RGS —> GS (4.16) 

SHGS + SOS -> GS 

GS -> SHGS 

These equations match very badly with the actual E G F pathway. The last equation above 

is the closest match, although the protein SHP is missing from the left hand side. Although 

the algorithm should run for more iterations, this preliminary result is very discouraging. 

In Section 4.4, I discussed the problems with the results of Part One. Since the 

equivalence sets from matrix R seem much more promising, I performed runs of Part Two 

using the two equivalence sets listed in Table 4.10. The 7 reactions that should be found 
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E G F pathway Set 1 E G F pathway Set 2 
Protein Number Protein Name Protein Number Protein Name 

1 RP 1 RP 
2 SHC 2 P L C 
3 RSH 3 R P L 
4 RSHP 4 R P L P 
5 SHP 5 P L C P 

6 P L C P I 

Table 4.10: Proteins belonging to two of the equivalence sets from Part One, listed in 
Table 4.3. 

by the optimization of Set 1 are: 

RP + SHC ^ RSH 

RSH ^ RSHP 
(4.17) 

RSHP ^ SHP + RP 

SHP -> SHC 

and the 9 reactions for Set 2 are: 

RP + PLC ^ RPL 

RPL^ RPLP 

RPLP ^RP + PLCP (4.18) 

PLCP -* PLC 

PLCP PLCP - I 

Again, mixed results were seen. For Set 1, errors between 0.10 and 0.67 were obtained 

for runs varying between 10 and 20 individuals and between 500 and 2000 iterations. The 

solutions obtained were quite varied. An example of a solution obtained after 500 iterations 
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using a population of 10 individuals is: 

RP ^ RSH 

SHC -> RSH 
(4.19) 

RP + RSH -> SHP 

RP + SHC -* RSH 

Some of these reactions match the solutions that we are looking for quite well. For example, 

the last reaction of (4.19) matches the forward reaction of (4.17) exactly. However, there is 

quite a bit of repetition in the terms. RSH appears in all 5 reactions, while RSHP appears 

in none. It appears that, as for the test system, the limit on the maximum number of terms 

restricts both the variety of terms and the number of reactions. 

For Set 2, errors ranged between 0.93 and 0.16 for a similar range of trials. The 

maximum error of 0.93 was obtained for a run with bounds of [—10,10] specified for the 

rate constants, ctij. Subsequently, the range of ctij was restricted to [—6,6], since no rate 

constants used in the simulation for the reactions of Set 2 exceed these bounds. An example 

of results obtained for Set 2 with this reduced range and 1000 iterations is 

RPL ^ RP 

PLC ^ RP 
(4.20) 

PLC + PLCP -» RP 

RPL -> PLCPI 

As seen with Set 1, there are two few reactions resulting from the optimization. 

In Set 1, 4-6 reactions were typically found, while the actual number being sought is 7 

reactions. In Set 2, 7-8 reactions were usually found, rather than 9. Duplicate reactions 

were often seen, and two or three proteins dominating all the reactions was common. This 

seems to be a clear indication that the crossover operators need to be improved so that they 

do not limit the diversity and the number of terms. 
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4.8 Discussion 

The results presented in this chapter show that the method of Maki et al is applicable to 

signal transduction networks, but only after significant modifications. An important issue 

for this application of the method is obtaining the necessary data experimentally. There is 

a large quantity of very specific data required, i.e. time course and steady state data for the 

system after the "deletion" of individual network components. This will not be possible for 

all systems. A change in data set would have the most impact on Part One of the method. 

It would be interesting and useful to study the results from adapting the method to different 

data sets. 

An important consideration for Part One is the determination of the threshold for the 

binary quantization of the data. Different threshold levels resulted in different equivalence 

sets. This is definitely a drawback to the method in the absence of a specific procedure for 

determining the threshold. 

There are many variables to experiment with in Part Two. Unfortunately, in its 

present form, the genetic algorithm optimization is very slow: one 2000 iteration run of 

Set 2 with a population of 20 exceeded 100 hours on a PII/550 SMP Linux PC. This 

is an obstacle to performing the number of trials that should be performed to test the 

modifications to the algorithm, especially given the fact that it is a stochastic optimization 

method. So, improving the speed of the genetic algorithm code is a priority. Given that 

the selection and reproduction must take place, the set of differential equations must be 

solved, and the objective function evaluated for each individual of the population at each 

of thousands of iterations, this is not a simple task. It is, however, a necessary one. 

Several measures were taken to speed up the optimization. The number of crossovers 

at each generation was reduced to 60% of the number of individuals in the population, and 

only one crossover operator was used for most tests. The MATLAB code was compiled to 

C code using the mcc function. This improved the speed significantly (40% improvement 

was seen in a test case). 

One modification that may improve both the efficiency and the layout of the genetic 

algorithm is the use of multiple chromosomes in the genome of an individual. The use 

of multiple chromosomes is not common, but examples do exist [43]. In this application, 

the use of two chromosomes seems like a natural representation of the parameter space, 
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and genetic algorithms generally do best with the most natural representations [32]. For 

example, one chromosome would contain all the otij and another would contain all the g^. 

Then each chromosome would only recombine with the "homologous" chromosome of the 

other parent. This would likely simplify and improve the crossover operators. As well, it 

would eliminate the linear storage of the parameters in one long array and thus improve 

the efficiency of all the operations listed above. 

Another change that could be made would be to store only one version of a term, 

rather than a term and its complementary terms, and indicate the differential equations to 

which that term is assigned. This would decrease the size of the parameter set significantly. 

Assuming that the speed of the program can be improved, many more trials should 

be done. Some things that should be checked are: 

• Fitness function: Right now the fitness of an individual is measured using a least 

squares function. However, the equation 

as in the implementation of Maki et al. This second function is a better choice because, 

in the first equation, proteins with larger concentration values will contribute more to 

the sum than those with smaller concentrations. However, the first equation is used 

in this application because many of the initial experimental concentrations are zero 

or very small. It would be good to test variations of this objective function to find 

the one most suited to this application. 

• Crossover operators: The crossover operators need to be tested much more than they 

have been. This testing needs to include combinations of crossover operators and new 

methods of crossover. The crossover operation is an essential part of the algorithm 

and the outcome is very dependent on its efficient and successful implementation. An 

important point that has emerged from the results is that the current errors in the 

optimal solutions are much too high, even over a large number of iterations. This 

n 

i = l t 

is being used, rather than 

2 
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Figure 4.7: A plot showing the relationship between the number of individuals in a pop­
ulation and the fitness value of the optimal solution. The results are for a 50 iteration 
optimization of the test system (Equation(4.12)). 

means that the crossovers need to be able to operator more effectively. A n option 

may be to combine a traditional crossover with a deterministic search algorithm for 

the real numbered rate constants. 

• Effects of choosing the number of generations, number of individuals in the population, 

and frequency of comet-strikes. Preliminary studies were conducted to determine the 

effect of population size on fitness of the optimal solution and running time of the 

optimization. Figure 4.7 shows that error depends on the population size in a nonlinear 

fashion. Notice that for a population size of 25, a significant minimum in the error is 

seen. The reason for this is not known. 

Figure 4.8 is a plot of run time versus the number of individuals in the population 

for the same runs used for Figure 4.7. The completion time for a run increases in a 

nearly linear fashion with the number of individuals. This is not intuitively obvious, 

since the algorithm involves many loops through the parameter set in the course of the 
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Figure 4.8: A plot showing the relationship between the number of individuals in a popu­
lation and the run time of the algorithm. The results are for a 50 iteration optimization of 
the test system (Equation(4.12)). 

reproduction and evaluation operations. There are several large outliers. The outlier 

at population size 25 corresponds to the low error seen in Figure 4.7, while the outlier 

at population size 40 corresponds to a high error. This latter solution contained only 

one unique term. 

It is important to note that the above figures are for a single run of 50 iterations using 

the test case. The results are not the same for every run nor for different numbers of 

iterations. It is necessary to compile results from many more tests to obtain statistical 

measures for these dependencies. However, the main features of the above figures have 

been seen in all population test runs performed thus far. 
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C h a p t e r 5 

Concluding Remarks 

The preceeding chapters have presented a variety of multivariate and reverse engineering 

methods for analysing biochemical data. In the absence of concrete sources of kinetic con­

stants, these methods are important tools in the effort to decipher the complex interactions 

involved in signal transduction. 

The difficulty of obtaining data has been mentioned, but not emphasized. One im­

portant point is that most of the methods discussed in this study are methods that have 

been applied to either gene expression data or to simulated data. Beyond the statistical 

issues (which are very important and which would be the subject of another major inves­

tigation) of preparing the data for analysis, there is the issue of whether the needed data 

can be obtained for signal transduction studies at all. 

The results of the work presented in this thesis are not entirely positive. The mul­

tivariate techniques discussed in Chapter 2 were able to find natural groupings in the E G F 

pathway simulation data. This is encouraging in that parallel results have been seen for 

gene expression data. This suggests that it should be possible to study patterns in large pro­

tein data sets in a similar fashion to large-scale gene expression data. Unfortunately, I was 

unable to identify similarities between proteins within a cluster (beyond similar patterns 

of concentration change over the time course). Finding this connection among clustered 

proteins is important for making hypotheses about roles for less well known pathway com­

ponents. However, even without this knowledge, multivariate analysis could be used to 

discover proteins that are correlated with patterns in the data using P C A . 

Chapter 3 presented three reverse engineering methods that have been applied to 

gene expression data. Bayesian Networks seem very promising for modeling pathways due 
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to the flexibility in denning variables, flexibility in defining connections between variables, 

and probabilistic nature. The main problem with Bayesian networks arises from the the 

difficulty of scoring networks of the size necessary to study signal transduction pathways. 

Further, if the approach of Hartemink et al is used, then the problem of generating model 

hypotheses for comparison is a difficult task in itself. Despite these problems, it would 

be interesting to study Bayesian Networks that include both gene and protein components 

using both gene expression and protein concentration data to score the models. 

In Part One of the method presented in Chapter 4, there are some unresolved issues 

in the application of the method to a system as complicated as a real signal transduction 

pathway. As it stands, the method creates equivalence sets that are too large and that 

do not represent the actual pathway well. This negates the usefulness of the "divide and 

conquer" strategy and sabotages the results of Part Two. 

Part Two has many problems that have been discussed in Section 4.8. The main 

difficulty with Part Two is that it is very slow to run, which makes it difficult to obtain 

a statistical measure of its success or failure. In order to improve the efficiency of the 

optimization, changes to the data structure of the parameter set (to create two chromosomes, 

for example) may be necessary. Such a change would necessitate changes to all of the 

programs created to modify the genetic algorithm toolbox: a major overhaul. Another 

option for improving the speed is to perform the optimization using a more efficient language 

such as C. [note: I am currently running simulations with a compiled version of the code, 

which appears to be faster. I will note this in the results section of Chapter 4]. 

Despite these setbacks, the application of the method of Maki et al and the multivari­

ate analysis techniques to the EGF pathway has been a useful exercise in adapting methods 

intended for the study of genetic networks to the study of protein networks. Specifically, it 

has become clear that it is important to take into consideration the fact that interactions 

between proteins are more defined and occur on a smaller time scale than interactions in a 

genetic network. Overall, I am hopeful that these methods can be applied successfully once 

these differences are accounted for. 
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Appendix A 

Finding the maximum of a 

quadratic form under a quadratic 

constraint 

We must find the maximum of a matrix a* Sai under the constraint a*ai = 1. In this section 

we look at a more general case of this problem, that of finding a vector u which maximizes 

u*Su such that u ' M u = 1, where S and M are symmetric matrices and M is positive 

definite. 

We find the maximum by setting the derivative of the Lagrangian equation to zero. 

For this problem the equation is 

C = u ' S u * - A ( u * M u - 1) (A.1) 

where A is a Lagrange multiplier. The derivative of u*Su is found using the form 

(A.2) 
i j -

where the derivative of each part is found successively. Thus, in matrix form, we find that 

0(u*Su) „ , 
^ - ^ = 2Su (A.3) 

We can now compute the derivative of the Lagrangian equation, which when set equal to 
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zero gives us the necessary condition for a maximum or minimum. The extrema is found 

by solving for lambda, as follows 

£ = u'Su* - A ( u t M u - 1) (A.4) 

§§ = 2Su - 2 A M u = 0 

=>• Su = A M u 

=>• u*Su = A u ' M u 

=> A = u*Su (A.5) 

The final line being a result of applying the constraint u ' M u = 1. Thus, the maximum is 

given by A — u*Su. 

When M is a positive definite matrix and therefore nonsingular we can write 

M - 1 S u = Au (A.6) 

which implies that the vector u which maximizes u*Su such that u ' M u = 1 is given by 

the eigen vector of M _ 1 S that corresponds to the largest eigenvalue A. 

Let's call this vector u i . Now, we wish to find U2 which maximizes u 2 S u 2 such that 

the conditions u'Mu2 — 0 and u 2 M u 2 = 1 hold. Using the same approach as above, the 

Lagrange equation now reads 

£ = u 2 S u 2 - A 2 ( u 2 M u 2 - 1) - M2U2MU1 (A.7) 

=4> = 2Su 2 - 2 A 2 M u 2 - M2MU1 = 0 (A.8) 
a u 2 

Multiplying in front by u^ we find that fi2 must vanish since the contraints dictate that the 

other two terms in (A.8) are zero. Therefore we have that 

S u 2 = A 2 M u 2 (A.9) 

If we continue this process, we find that the vector ua satisfying uJ,Mu„ = 1 that is 

M-orthogonal to all vectors u^ that are already determined (that is u^Mup = 0 for 3 < a), 
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and maximizes u^Su a satisfies 

S u a = A a M u a 

So, for M nonsingular 

M _ 1 S u Q = Xauc 

where a is not greater than the order of matrix S. 
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A p p e n d i x B 

Modifications to the genetic 

algorithm toolbox 

This appendix contains the main M A T L A B programs that I wrote to carry out Part One 

of the method of Maki et al and to implement the major changes to G A O T (the Genetic 

Algorithm Optimization Toolbox). Also included is the M A T L A B function that evaluates 

the objective function for the optimization, testegf eval. 

******************************************************** 
function [binM]=binaryR(inM,threshold) 

'/. 
% [binM]=binaryR(inM,threshold) 
*/. 
% binM - output binary matrix 
% inM - input matrix 
% threshold - values above threshold or below 1/threshold are set to 1, 
7« a l l other entr ies are 0 

*/. 
*********************************************************************** 

[numrows.numcols]=size(inM); 

for col=l:numcols 
for row=l:numrows 

i f (inM(row,col) > threshold) I (inM(row,col) < 1/threshold) 
i f (inM(row,col) > 0) 

binM(row,col)=l; 
end 
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e l s e 
b i n M ( r o w , c o l ) = 0 ; 

end 
end 

end 
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0 

****************************************************** 
function [Rstar]=UnionR(R) 

'/. 
7. [Rstar] =UnionR(R) 
*/. 
% Rstax - output a c e s s i b i l i t y matrix 
% R - input binary matrix 
% side note: Rn - matrix of a l l the Rn (size msize x msize(msize+1) 
*/. 

*********************************************************************** 

[numrows.numcols]=size(R); 
i f numcols ~= numrows 

error('Need a square matrix') 
end 
msize=numrows; 

% f i r s t block of msize x msize i s RO, ie ones on the diagonal 
for k=l:msize 

Rn(k,k)=l; 
end 

% b u i l d the matrix Rn by tacking on Rl,...,Rn+l 
% a matrix of size msize x msize(msize+1) i s created 

for n=0:msize 

for i=l:msize 
for j=l:msize 

for k=l:msize 
checkit(k)=Rn(i,k+n*msize)*R(k,j); 

end 
Rn(i,j+(n+l)*msize)=min([1 sum(checkit)]); 

end 
end 

end 

7o take the union of a l l the matrices stored i n Rn, coordinate by coordinate 
for j=l:msize 

for i=l:msize 
for n=0:msize+l 

i f Rn(i,j+msize*n) == 1 
R s t a r ( i , j ) = l ; 

end 
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end 

end 

end 
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************************************************ 
function [ER]=eqrel(Rstar) 

7. 
7o [ER]=eqrel(Rstar) 
7. 
7o ER = matrix d e t a i l i n g the equivalence r e l a t i o n between each gene 
7, ER(a,b)= 1 i f Rstar(a,b)=l $ Rstar(b.a) = l 
7o 0 otherwise 
7« Rstar = input binary a c c e s s i b i l i t y matrix 
7. 

*********************************************************************** 

[numrows.numcols]=size(Rstar); 
i f numcols ~= numrows 

error('Need a square matrix') 
end 
msize = numcols; 

for i=l:msize 
for j=i:msize 

i f (Rstar(i,j ) = = l ) & (Rstar(j,i )== l ) 
ER(i,j ) = l ; 
ER(j,i ) = l ; 

end 
end 

end 
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f u n c t i o n [ E S , R i i ] = g e t E Q s e t ( E R , R s t a r ) 

'/. 
*/, [ E S , R i i ] = e q s e t ( E R , R s t a r ) 
'/. 
% ES = output v e c t o r g i v i n g number of a l l p r o t s i n the EQ se t 
% R i i = output of nonredundant v e r s i o n of R s t a r 
% ER = m a t r i x d e t a i l i n g the equ iva l ence r e l a t i o n between each gene 
1 ER(a ,b)= 1 i f R s t a r ( a , b ) = l $ R s t a r ( b . a ) = l 
% 0 o therwise 
% R s t a r = i npu t b i n a r y a c c e s s i b i l i t y m a t r i x 
*/. 

************************************************** 

[numrows.numcols ]=s ize(Rs tar ) ; 

i f numcols ~= numrows 
e r r o r ( ' N e e d a square m a t r i x ' ) 

end 

msize = numcols; 

'/. c r ea te a l a b e l e d R s t a r m a t r i x R i so t h a t I w i l l be ab l e 
% to i d e n t i f y which genes have been combined i n e q u i v a l e n c e s e t s . 

n e w l = [ ( l : m s i z e ) ' R s t a r ] ; 
R i=[0 :ms ize 

newl] 

% c rea t e a m a t r i x ES where each row l i s t s the members of 
% an equ iva l ence se t 

f o r i = l : m s i z e 
numeq=l; 
f o r j = l : m s i z e 

i f E R ( i , j ) = = l 
ES( i ,numeq)=j ; 
numeq=numeq+l; 

end 
end 

end 

°/0 E l i m i n a t e d u p l i c a t e rows 
f o r i = m s i z e : - 1 :1 

f o r k = i - l : - l : l 
i f E S ( i , : ) = = E S ( k , : ) 
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ES(i,:) = []; 
break 

end 
end 

end 

70 copy only one row from each equivalence set to R i i 

eqsetcount = size(ES,l); 
maxmem = size ( E S , 2 ) ; 
for i=l:eqsetcount 
Rii(i,:)=Ri(ES(i,l)+l,:); 

end 

R i i = [0:msize 
Rii] ; 

7« set the columns corresponding to numbers identified as other 
7» members of the equivalence set to a column of ones to mark 
7o for deletion 

for i=l:eqsetcount 
7ocount the number of members in the equivalence set 
eqmem(i) = 0 ; 
for j=l:maxmem 
i f E S ( i , j ) _ = 0 
eqmem(i) = eqmem(i)+l; 

end 
end 
i f eqmem(i)>l 
for k = 2:eqmem(i) 
for row = 2 : s i z e ( R i i , 1 ) 
Rii(row,ES(i,k)+l) = 2 ; 

end 
end 

end 
end 

7o get r i d of any columns in R i i that are a l l 2 

for j=msize+l:-1:2 
i f R i i ( 2 , j ) = = 2 

R i i ( : , j ) = [] ; 
end 

end 

7o set the diagonals to 0 
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f o r k = 1 : s i z e ( R i i , 1 ) 
R i i ( k . k ) = 0; 

end 

126 



function [S,ord]=topsort(Rii) 

'/. 
°/„ [S,ord]=topsort(Rii) 
7. 

7o S = topo sorted matrix 
7» ord = topological order of columns 
7o R i i = input labeled binary matrix 
7. 

************************************************** 

[numrows.numcols]=size(Rii); 
i f numcols ~= numrows 

error('Need a square matrix') 
end 
7« get r i d of labels on the matrix 
R = R i i ; 
R(l.:) = [ ] ; 
R ( : , D = [ ] ; 

msize = s i z e ( R , l ) ; 

7. create a vector c a l l e d indeg which gives the number of 
7o ones i n each column (the indegree for the column's node) 

for col=l:msize 
onecount = 0 ; 
for row = 1 :msize 
i f R(row,col) == 1 
onecount = onecount + 1 ; 

end 
end 
indeg(col) = onecount; 

end 

7o create an array holding the indexes of prots with no dependents 
7» ie) nodes with zero indegree) 
count = 0 ; 
nodep = [] ; 

for c o l = 1 :msize 
i f indeg(col) == 0 
nodep = [nodep col] ; 

end 
end 
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% p i c k p r o t s w i t h no dependents o f f the top of the queue and a s s i g n 
% i t the next o rde r and decrement the indeg of the p r o t s a f f e c t e d by 
7. t h a t p r o t 
w h i l e " isempty(nodep) 

v = nodep(1) ; 
i f length(nodep) == 1 

nodep = [] ; 
e l s e 

nodep = nodep ( 2 : l ength (nodep) ) ; 
end 
count = count + 1; 
o rd (v ) = count ; 
f o r c o l = l : m s i z e 

i f R ( v , c o l ) == 1 
i n d e g ( c o l ) = i n d e g ( c o l ) - 1; 
i f i n d e g ( c o l ) == 0 

nodep = [nodep c o l ] ; 
end 

end 
end 

end 

7» I f the s o r t worked w i t h the g i v e n g raph , rea r range the m a t r i x 
7o i n t o p o l o g i c a l s o r t o rder 
i f count < msize 

e r r o r ( 'Graph i s c y c l i c ' ) 
e l s e 

[Y , I ] = s o r t ( o r d ) ; 

f o r i = l : m s i z e 
f o r j = l : m s i z e 

S ( i , j ) = R ( I ( i ) , I ( j ) ) ; 
end 

end 
end 
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function [S]=skel2(R) 

7. 
7o function [S] =skeleton(R) 
V. 
°L S = output skeleton matrix 
7. R = input unlabeled binary matrix 
7. 

[numrows,numcols]=size(R); 
i f numcols ~= numrows 

error('Need a square matrix') 
end 
msize = s i ze (R , l ) ; 

7. created l i s t of effect pairs 

l i s t = [] ; 
for col = l:msize 

for row = l:msize 
i f R(row,col) == 1 
l i s t= [ l i s t 

row co l ] ; 
end 

end 
end 

l i s t s ize= s i z e ( l i s t , l ) ; 

7» remove pairs from the l i s t that represent indirect effects 

for i = l : l i s t s i z e 
for k = 1: l i s ts ize 

i f l i s t ( k , l ) == l i s t ( i , 2 ) 
y = l i s t ( k , 2 ) ; 
for k2 = 1: l i s ts ize 

i f ( l i s t ( k 2 , l ) == l i s t ( i , l ) ) & (l ist(k2,2) == y) 
R ( l i s t ( k 2 , l ) , l i s t ( k 2 , 2 ) ) = 0; 

end 
end 

end 
end 

end 

S = R; 
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************************************************* 
function [x,endpop]=testegf(numpop,abound,gbound,nvars.maxgen,best) 
'/. 
'/, [x,endpop] =testegf(numpop,abound,gbound,nvars,maxgen,best) 
'/. 
% function called from the MATLAB command line to perform the genetic 
7» algorithm run for determining the best f i t parameter solution for 
% the network of protein chamical reactions 
V. 
°/0 x - optimal solution 
7, endpop - the parameter sets of a l l individuals in the f i n a l generation 
7. numpop - number of individuals in the population 
7« abound - bounds on the alpha parameters 
7o gbound - bounds on the g parameters 
7« nvars - number of proteins i n the network 
7» maxgen - maximum number of generations (termination c r i t e r i a ) 
7. best - previous solution to include in the new i n i t i a l population 
*/. 
*********************************************************************** 
npars=nvars"2*(nvars+1); 

Vogijk bounds 
bounds(1:npars,l)=gbound(l)*ones(npars,1); 
bounds(1:npars,2)=gbound(2)*ones(npars,1); 

'/,alpha bounds 
bounds(1:nvars~2,1) = abound(l)*ones(nvars"2,1); 
bounds(1:nvars~2,2) = abound(2)*ones(nvars~2,1); 

70set the evaluation function determining the fitness function 
evalFN = 'testegfeval'; 
evalopts= [] ; 

'/.create the starting population 
i f size(best,l)>l 
startpop=best 

else 
startpop = initpop(numpop,evalFN,abound,gbound,nvars,best) 

end 
opts=[le-6 1 0]; 

7 o S e t the termination function and c r i t e r i a 
termFN=['optMaxGenTerm']; 
term0ps=[maxgen -1.6875e-5 le-4]; 

'/.set the selection function and options 
selectFN=['normGeomSelect']; 
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selectParams= [0.1] ; 

°/0set the crossover function and options 
nx0ver=[round(npars*0.3) round(npars*0.8)]; 
x0verFNs=['amyXoverl amyXover2']; 
xOverParams=[nxOver(1);nx0ver(2)]; 

70set the mutation function and c r i t e r i a 
nmuts=4; 
mutFNs=['amyMutation'] ; 
mutParams=[nmuts] ; 

%make the c a l l to the genetic algorithm 
[x,endpop,bpop,traceinfo]=... 
ga(bounds,evalFN,evalopts,startpop,opts.termFN.termOps,selectFN,selectParams, 
xOverFNs,xOverParams,mutFNs,mutParams); 
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function pop=initpop(num,evalFN,abound,gbound,n,best) 
% pop=initpop(num,evalFN,abound,gbound,n) 
7. 
7o Creates a new, v a l i d population for the genetic algorithm optimization 
7« of series of chemical reactions between proteins 
7. 

7o num - number of individuals i n the population 
7o evalFN - evaluation function determining the f i t n e s s of an i n d i v i d u a l 
7o abound - bounds on the alpha parameters i n form [low,high] 
7o gbound - bounds on the g parameters i n form [low,high] 
7o n - number of components i n the network (proteins) 
7. best - option to include a former solution i n the new population 
7. 

7o Determine the number of values that g _ i j k can take. This determines 
7« the number of terms i n the termbank. 
p=gbound(2)+l; 
tbank=termbank(n,p); 

maxpicks=p"n; 

for i=l:num 7 f o r each in d i v i d u a l 

indiv=zeros(n,n*(n+l) + l ) ; 7»initialize the individual's terms 

while a l l ( i n d i v ( : ,end)<n) 7 0while a l l individuals have less than n terms 

70randomly add a v a l i d new term 
curvar=ceil(rand*n); 7 o r a n d o m l y choose a variable 
lastpos=indiv(curvar,end)*(n+l); 7oget pos of f i r s t free spot 
indiv(curvar,lastpos+l)=rand*abound (2) ; 7.randomly choose a pos alpha 
tbank=sortrows(tbank, curvar); 7 o s o r t tbank to get zero exp for curvar 
for t=l:maxpicks 
pick=tbank(ceil(rand*p~(n - 1 ) ) , : ) ; 
i f any(pick~ = 0 ) 70make sure we don't get any empty terms 
indiv(curvar,lastpos+ 2:lastpos+n+ 1)=pick; 
break 

end 
end 

7oput the complementary term i n too 
compvar=find(indiv(curvar,lastpos+ 2:lastpos+n+ 1 ) > 0 ) ; 
complastpos=indiv(compvar,end)*(n+1); 
for k=l:length(compvar) 
indiv(compvar(k),complastpos(k)+l:complastpos(k)+n+l)=[... 

-indiv(curvar,lastpos+l) indiv(curvar,lastpos+ 2 :lastpos+n+ 1 ) ] ; 
end 
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indiv(curvar,end)=indiv(curvar,end)+1; 
indiv(compvar,end)=indiv(compvar,end)+l; 

end 

' / co l lec t these terms to make i n d i v i d u a l i 

pop(i,:)=zeros(l,n~2+n~3+l); 
for k=l:n 

lastpos=indiv(k,end); 
pop(i ,n*(k- l )+l :n*(k- l )+lastpos)=indiv(k,1:(n+1): las tpos*n); 
for j=0:lastpos-1 
pop(i,n~2+n~2*(k-l)+l+j*n:n"'2+n~2*(k-l)+n+j*n) = . . . 

indiv(k,j*(n+l)+2:(j+1)*(n+1)); 
end 

end 

°/0if put t ing i n a previous best one 
i f "isempty(best) 
pop(l , : )=best; 

end 

%now evaluate each ind iv idua l 
estr=[ ' [pop( i , : ) ,pop( i ,end)] = ' , eva lFN ' ( p o p ( i , : ) , [ ] ) ; ' ] ; 
eval (es t r ) 

end 
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function [cl,c2]=amyXoverl(pi,p2.bounds,Opts) 
'/. 
7„ [ c l , c2] =amyXover 1 ( p i , p2, bounds, n) 
7. 

7« A crossover operator producing v a l i d children solutions. 
7o Currently both children can choose from the f u l l bank of 
7. terms from both parents, though the selection within a c h i l d i s 
7« without replacement. 
7. 

7« p i - one parent parameter set selected for reproduction 
7. p2 - the second parent parameter set 
7« bounds - vector giving bounds of each parameter 
7. Opts - for future options (currently empty) 
7. 

/{determine the number of variables 
n=cubit(size(pi,2 ) - 1 ) ; 
% Determine the number of values that g _ i j k can take. This determines 
7o the number of terms i n the termbank. 
gbound=bounds(n~2+l,:); 
p=gbound(2)+l; 
maxpicks=p~n; 
numparents=2; 

7«create a bank of terms from the terms of the parents 
origbank=[getsolterms(pi,n);getsolterms(p2,n)]; 
origbank(find(origbank(:, 1 ) = = 0 ) , : ) = [ ] ; 
origabank=origbank(:,1); 
origbank(: , 1) = [] ; 

for i = l rnumparents 7» for each c h i l d 
abank=origabank; 7» alphas and terms are pulled from the f u l l bank 
tbank=origbank; 
indiv=zeros(n,n*(n+l)+l); 

7«add terms while a l l proteins have less than n terms and there are 
7»still terms l e f t i n the bank 
while all(indiv(:,end)<n) & "isempty(abank) 
bad=[] ; 

7«randomly add a v a l i d new term 
while isempty(bad) 
curvar=ceil(rand*n); 7orandomly choose a variable 
lastpos=indiv(curvar,end)*(n+l); 7»get pos of f i r s t free spot 
picka=ceil (rand*length (abank)); 7orandomly choose a po s i t i v e alpha 
indiv(curvar,lastpos+1)=abank(picka); 
tbank=sortrows(tbank, curvar); 7osort tbank so zero exp for curvar 

134 



bad=find(tbank(:,curvar)==0); 
end 
for t=l:maxpicks 
pickind=ceil(rand*length(bad)) ; 
pick=tbank(pickind,:); 
i f any(pick~=0) %make sure we don't get any empty terms 
indiv(curvar,lastpos+2:lastpos+n+1)=pick; 
abank (picka) = [] ; 
tbank(pickind,:) = [ ] ; 
break 

end 
end 

%put the complementary term i n too 
compvar=find(indiv(curvar,lastpos+2:lastpos+n+1)>0); 
complastpos=indiv(compvar,end)*(n+1); 
for k=l:length(compvar) 
indiv(compvar(k),complastpos(k)+1:complastpos(k)+n+l)=[... 

-indiv(curvar,lastpos+l) indiv(curvar,lastpos+2:lastpos+n+1)]; 
end 
indiv(curvar,end)=indiv(curvar,end)+l; 
indiv(compvar,end)=indiv(compvar,end)+1; 

end 

'/collect these terms to make in d i v i d u a l i 

pop(i,:)=zeros(l,n~2+n"3+l); 
for k=l:n 
lastpos=indiv(k,end); 
pop(i,n*(k-l)+l:n*(k-l)+lastpos)=indiv(k,l:(n+1):lastpos*n); 
f o r j=0:lastpos-1 
pop(i,n"2*k+j *n+(1:n))=indiv(k,j *(n+1)+2:(j +1)*(n+1)); 

end 
end 

end 

cl=pop(l,:); 
c2=pop(2,:); 
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function [cl,c2]=amyXover2(pi,p2,bounds,Opts) 
7. 
%[cl,c2]=amyXover2(pi,p2,bounds,Opts) 

70 A crossover operator producing va l id children solutions. 
7o amyXoverl distributed alphas and terms separately, while this op 
7o distributes the alphas with the terms that they are with in the 
7o parents. 
7. 
7o p i - one parent parameter set selected for reproduction 
7, p2 - the second parent parameter set 
7o bounds - vector giving bounds of each parameter 
7o Opts - for future options (currently empty) 
'/. 
******************************************** 

70determine the number of variables 
n=cubit(s ize(pl ,2)- l ) ; 
7o Determine the number of values that g_ijk can take. This determines 
7o the number of terms in the termbank. 
gbound=bounds(n~2+l,:); 
p=gbound(2)+l; 
numparents=2; 

7oCreate the bank of terms 
origbank=[getsolterms(pl,n);getsolterms(p2,n)]; 
origbank(find(origbank(:,1)==0),:)=[]; 

for i=l:numparents 
tbank=origbank; 
indiv=zeros(n,n*(n+l)+l); 

while all(indiv(:,end)<n) & "isempty(tbank) 
bad=[]; 

70randomly add a va l id new term 
while isempty(bad) 

curvar=ceil(rand*n); 7orandomly choose a variable 
lastpos=indiv(curvar,end)*(n+l); 7 o g e t pos of f i r s t free spot 
tbank=sortrows(tbank, curvar+1); 7«sort tbank so zero exp for curvar 
bad=find(tbank(:,curvar+1)==0); 

end 
pickind=ceil(rand*length(bad)); 
pick=tbank(pickind,:); 
indiv(curvar,lastpos+1:lastpos+n+l)=pick; 
tbank(pickind,:)=[]; 

70put the complementary term in too 
compvar=find(indiv(curvar,lastpos+2:lastpos+n+l)>0); 7«pos i t ive exponents 
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complastpos=indiv(compvar,end)*(n+l); 
for k=l:length(compvar) 
indiv(compvar(k),complastpos(k)+l:complastpos(k)+n+l) = [... 

-indiv(curvar,lastpos+1) indiv(curvar,lastpos+2:lastpos+n+1 
end 
indiv(curvar,end)=indiv(curvar,end)+l; 
indiv(compvar,end)=indiv(compvar,end)+1; 

end 

"/{collect these terms to make ind i v i d u a l i 

pop(i,:)=zeros(1,n~2+n~3+l); 
for k=l:n 
lastpos=indiv(k,end); 
pop(i,n*(k-l)+l:n*(k-l)+lastpos)=indiv(k,l:(n+1):lastpos*n); 
for j=0:lastpos-1 
pop(i,n~2*k+j*n+(l:n))=indiv(k,j*(n+l)+2:(j+l)*(n+l)); 

end 
end 

end 

cl=pop(l,:); 
c2=pop(2,:); 
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function msol=termmut(sol,n,pos,newval) 
°/0 msol=termmut(msol,n,pos,newval) 
'/. 
% termmut implements the mutation cases l i s t e d i n Table 4.6 
'/. 
7„ msol - the mutated so lu t ion 
7o s o l - so lu t ion (parameter set) selected for mutation 
7o n - number of proteins i n the network 
7o pos - pos i t i on i n parameter set selected for mutation 
7, newval - new value to replace the current parameter i n s o l 
% 

sol=sol ( l :end-1) ; 

i f pos<=n"2 7o an alpha i s changed 
i f (s ign(soKpos))==sign(newval)) & (newval ~=0) 

sol=updatemuta(sol,newval,n,pos); 
e l s e i f (sol(pos)~=0 & newval ==0) 

sol=deleteterms(sol,n,pos); 
e l s e i f s o l (pos) ==0 & newval>0 '/.not allowed to change i f newvaKO 

sol=newterm(sol,newval,n,pos); 
end 

else % a g i j k i s changed 
newval=round(newval); '/, g i j k are integers 
7»f ind i , j ,k 
gpos=pos-n~2; 
i=ce i l (gpos . /n"2) ; 
j=modmod(ceil(gpos./n),n); 
k=modmod(gpos,n); 
a=(i-l)*n+j; 
i f sol((i- l)*n+j)~=0 7» only change i f alpha > 0 

i f (sol(pos)==0) & (newval~=0) 7« must add a term-put i n correct a 
so l=addx(so l ,newva l ,n , [ a , i , j , k ] ) ; 

e l s e i f (sol(pos)>0) & (newval>0) 
sol=updatemutg(sol ,newval ,n ,[a , i , j ,k]) ; 

e l s e i f (sol(pos)~=0) & (newval==0) 
s o l = l o s e x ( s o l , n e w v a l , n , [ a , i , j , k ] ) ; 

end 
end 

end 

msol(1:end-1)=sol; 
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function [ s o l , val] = testegfeval(sol,options) 

%function [ s o l , val] = testegfeval(sol,options) 
% 

% Evaluation function for the genetic algorithm s t u f f f o r EGF 
% ** Note: t h i s version uses only integers for the g i j k params ** 
'/ s o l - the current parameter set (individual) being evaluated + value 
70 v a l - the least squares score for the given parameter set (sol) , 
7o ie) the f i t n e s s for the in d i v i d u a l under consideration. 
*/. 

7o set some constants and things s p e c i f i c to t h i s run 
const=0.001; 
d a t a f i l e = 'gatestt.txt'; 
TSPAN= [0 15 30 45 60 75 90 105 120]; 

LP = length(sol)-1; % s o l contains the parameter set plus the value 
nvars = cubit(LP); 
ntime = length(TSPAN); 

7o Read from the f i l e containing the experimental data 
f i d = fopen(datafile); 
i f f i d == 1 
error('uh-oh, not opening the f i l e ' ) 

end 

7o data i s read i n from f i l e with time pts along cols but 
'/, read i n format has time pts along rows 
xexp=f scanf (f i d , ''/g', [ntime,nvars] ); 
f c l o s e ( f i d ) ; 

'/For when an i n i t i a l pop comes through - set everything to integers 
'/, note - should probably just do t h i s i n initpop. . . 
for k=(nvars~2+l):LP 
i f sol(k)<0.5 
sol(k)=0; 

e l s e i f sol(k)<1.5 
sol(k)=l; 

e l s e i f sol(k)<2.5 
sol(k)=2; 

else 
sol(k)=3; 

end 
end 

% get the i n i t i a l value for solving the system of d i f f e r e n t i a l equations 
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i n i t = log(xexp(l,:)+const); 
options= [] ; 

7. testlogde i s the f i l e that contains the d i f f e r e n t i a l equation - i t 
% i s evaluated for the current parameter set by ode23 
[timepts,ycalc]=ode23('testlogde',TSPAN,init.options,sol(1:LP)); 
xcalc=exp(ycalc)-const; 

% Calculate the f i t n e s s by finding the d i f f bet calc and expt. 
70 on the condition that none of the constraints are vi o l a t e d 
v a l = 0; 
for i = 1:nvars 
for t = l:ntime 
v a l = val+(xcalc(t,i) - xexp(t,i))"2; 
end 

end 
end 

7« If the ode solver was not able to successfully evaluate the 
7o system of d i f f e r e n t i a l equations, then set a value of 1000 
7. to punish the solution 
i f isnan(val) | i s i n f ( v a l ) 
val=1000; 

end 

7oWe're doing a minimization so... 
val=-val 
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