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Abstract

In this thesis, computational interface capturing methods for mathematical
models related to fluid phase change processes in porous media are stud-
ied. The mathematical models are often singular and degenerate, which
contributes to the computational difficulty.

An analysis of a smoothing method applied to a one d1men31onal free
interface problem is presented. An asymptotic analysis shows the dependence
-of the error in the computed interface location on the chosen small smoothing
radius. »

Numerical convergence studies are performed for existing capturing meth-
ods applied to simple, scalar, moving interface problems, for later comparison
with convergence rates for a new capturlng method applied to a coupled, vec-
tor model problem. :

A model problem for two-phase fluid flow and heat transfer with phase
change in a porous medium is described. The model is based on a steam-
water mixture in sand. Under certain conditions, a two-phase zone, in which
liquid and vapour coexist, is separated from a region of only vapour by an
interface. Two numerical methods are described for locating the interface
in the one-dimensional, steady-state problem; one of these is based on an
existing method, while the other uses the method of Residual Velocities.
Agreement between solutions from these two methods is demonstrated, and
the results from the steady-state computations are used as benchmarks for
the numerical results for the transient problem. :

It is shown that methods such as front-tracking and the level-set method
are not practical for the solution of the transient problem, due to the indeter-
minate nature of the interface velocity, in common with similar degenerate
diffusion problems. An interface-capturing method, based on a two-phase
mixture formulation, is presented. A finite volume method is developed, and
numerical results show evolution to the correct steady-state. Furthermore,
similarity solutions are found, and the interface is shown to propagate at the
correct velocity, by way of a numerical convergence study. Numerical results
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for the two-dimensional problem are also presented'.
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Chapter 1

Introduction and Background

Accurate numerical prediction tools and simulations are required for many
physical processes which arise in industrial and environmental applications.
The starting point for developing such numerical methods is the mathemat- .
ical statement of the physical laws which must be obeyed. This typically
involves one or more partial differential equations, which must be satisfied
on the domain of interest. The mathematical model is completed by the
specification of conditions on the boundaries of the domain and on any inter-
faces between regions inside the domain, and the initial state of the system.
The solution of the mathematical model for its dependent variables forms
. the basis for a numerical simulation.

It is very rare that a mathematical model for a complex physical process
yields a closed form solution. As such, a numerical approximation to the
exact solution is usually sought. The development of an algorithm to find a
- good approximation relies in part on the careful implementation of the cor-
rect boundary and interface conditions. This can be a nontrivial task for a
problem which is posed on a domain with fixed, known boundaries. Clearly, -
both the correct statement of a mathematical model, and the subsequent nu-
merical procedure, become more complicated if there are moving boundaries
or interfaces. The location of any free or moving boundary becomes an extra
unknown in the model, and an extra condition is required. ’

Free and moving boundary problems have attracted an enormous amount
of interest in recent years. In this chapter, we give a brief introduction to free
and moving boundary problems, and methods available for their numerical
solution. We then discuss applications and model problems arising in the
study of phase change, and in particular, two-phase flow with phase change
in porous media, which is the focus of the work in this thesis.

In this thesis, we formulate model problems for phase change in porous
media, and develop numerical methods for the solution of such problems.
These models and methods represent a contribution to the literature, in that
they avoid many of the simplifying assumptions and computational regulari-
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sations that we will describe along the way, and we have demonstrated their
validity by way of convergence studies using analytlcal solutions which we
have constructed.

1.1 Free and moving ,interface problems

Many problems from applied science involve interfaces which separate do-
mains in which different physical processes or flow regimes occur. The prob-
lem of a liquid droplet spreading under gravity concerns the interface between
the liquid and the surrounding air, and the moving contact line which sep-
arates the wetted area beneath the droplet and the dry substrate ahead of
it. Nonlinear hyperbolic equations represent gas dynamic quantities such
as the gas velocity in a tube, where a region of moving gas and a region
of stationary gas are separated by a moving interface, or shock. A melting
block of ice contains both a region of liquid water, and a region of solid ice,
and we conceive of a sharp interface between the two regions. We will refer
to the problem of locating such an interface, which is stationary, as a free
boundary problem or free interface problem. Correspondingly, we refer
to the problem of finding a moving interface as a moving boundary prob-
lem, or moving interface problem. Many heat transfer and fluid dynamic
processes result in free and moving boundary problems, and as such, these
problems have generated much interest through industrial applications. An-
alytical progress in the study of these complex industrial problems is often
limited to asymptotic results.and similarity solutions for idealised physical
situations. As such, the primary tool for solution of these nonlinear problems
is usually numerical computation. However, the analysis of certain free and
moving boundary problems has received attention, and-is well understood.
The prototype Stefan problem for phase change is well documented in the
literature, in particular in [3, 20]. Further, the development of existing nu-
merical methods for free and moving boundary problems has often relied on
the mathematical insight into such problems.

Classical solutions to free boundary problems are not usually available.
- In models where physical parameters are discontinuous across an interface,
solutions will lack regularity at the interface. Consider, for example, the
one-dimensional, steady-state, free interface problem for a partially melted
block of ice. Suppose the ice-water system occupies a domain z € [0, D}, and
that an interface 2 = s lies between a region of ice (0 < z < s) and a region
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of liquid water (s < z < D). Assuming that the liquid is stationary, the
temperature T’ throughout the system is given by the mathematical model:

(KT, = 0 0<z<s, )
T() = T (<0),
T(s") = 0, '
. : 1.1
(KwaterTz)z = 0 s<z2< D, ( : ( )
T(S+) .= .0’ : o
T(D) = Tl (> 0)7 J
together with the heat balahce at the interface
N st - .
- [KTz]s_ =T (KwaterTz sast iced z _) = 0. (12)

The problem of locating the phase-change interface, and determining the
temperature throughout the domain, is commonly referred to as a Stefan
problem, and so we shall call the system (1.3)-(1.4) the mathematical for-
mulation of a Steady-State Stefan Problem. Here, the known melting
temperature is zero, and K is a thermal conductivity.- The steady-state po-
s1t10n s, of the melting interface is given by :

ToKiee = . -
5= O e D. (1.3)
TOKice - Tleater

Then the temperature profile is given by

—%z+To _ 0<2<s, S
T(z) = ‘ B (1.4)
%(_z—D)+T1 s§<z<D. :

In Figure 1.1, we show a temperature profile for the solution with Ty =
-1, 77 =1, Kwe = 2.2, Kwater = 0.55, and D = 1. While the temperature
is continuous throughout the entire domain 0 < 2 < D, it is clear that its
derivative is not continuous across the interface z = s. For the correspond-
ing time-dependent Stefan problem, the temperature profile may evolve with
a discontinuous derivative at the interface. As such, if we are able to re-
formulate such a problem as a PDE for temperature over the fixed domain
0 < z < D, then classical solutions will, in general, be unavailable. That
s, we will not be able to find solutions, with continuous derivatives up to
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Steady-state temperature profile for 10, two-phase Stefan probiem
T T T v v T T

o8l : uQuiD
: | WATER

intertace s=0.8

Temperature, T

[ 0.9 0.2 0.3 0.4 05 [oX-] o 08 [02-] 1
: .z : .

Figure 1.1: The temperature profile for the solutioﬁ of the steady-state Ste-
fan problem (1.3)-(1.4). Here, we have taken To = —1, T1 = 1, Kie =
2.2,and Kyater = 0.55. oo ‘

the order of the PDE, which satisfy the PDE at all points in the domain.
'If the conditions under which a “solution” is defined are weakened, then we
may admit solutions with discontinuous derivatives, as so-called weak, or
generalised solutions. Such solutions need only satisfy an integral form of
the original PDE. We will discuss this concept in detail in Chapter 2, in our
treatment of the so-called enthalpy method for numerical solution of phase-
change problems. Weak formulations for free and moving boundary problems
are presented in detail by Elliott and Ockendon [23], as well as others [3, 20].
In fact, it is the weak formulation of the Stefan problem which provides a
basis for the mathematical justification of the enthalpy method.

Another moving interface problem of physical interest may be descrlbed e

mathematically by the Porous Medium Equation. This is a nonlinear
diffusion equation whose diffusion coefficient is a power of the dependent
variable. Mathematically, we have

= V. (u"Vu), (1.5)

where n > 0, and t is time. Isothermal, ideal gas transport through porous
media results in (1.5) with n = 1, where u represents the gas density (see,
for example, [74]). The spreading of a thin liquid droplet on a solid substrate
under the effect of gravity is described by (1.5) with n = 3 [23]. In this case,
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u is the height of the free surface of the droplet.

The behaviour of solutions to equation (1.5) is 51gn1f1cantly different to
that of linear diffusion equations. A solution of the equation (1.5) is said to
have compact support if u(x,t) vanishes outside a region of x, which varies -
with ¢. The region for which the solution is non-zero is called the support of u.
In contrast with solutions of linear diffusion equations, equation (1.5) has the
property that, for an initial condition u(x,0) with compact support, the so-
lution u(x,t) also has compact support, for ¢ > 0. The “interface”, which
is the boundary of the support of u(x,t), will move with finite speed. Also,
this speed may be zero until the solution at the interface has adjusted to a
particular structure required for motion, giving so-called “waiting-time” solu-
tions [32, 43]. Again, any interface-type solutions that we construct for (1.5)
are understood to be weak, or generalised, solutions. The equation will not,
in general, be satisfied by a constructed solution at the interface. Further-
more, singular gradients may appear at the interface, where the diffusion
coefficient vanishes, and the equation degenerates. That is, equation (1.5)
ceases to be parabolic at the-boundary of its support. We will discuss some
implications of the singularity and degeneracy of such problems further in
Chapter 2. »

There is an enormous number of other free and moving boundary prob-
lems which we will not describe here. The interface between liquid and the
surrounding air in Hele-Shaw flow [53], and the free liquid-air surface created
by seepage of liquid through a porous dam are two well-studied examples,
which bear some relation to our work. Crank’s book [20] presents a variety
of other free and moving boundary problems. However, our discussion will
largely concentrate on the two prototype examples of Stefan problems and
the Porous Medium Equation,. which provide a good starting point for the
mathematical detail of the interface problems discussed in this thesis. These
problems may be extended, generalised and combined to model the more
complex physical problems in which we are particularly interested here.

While the few analytical solutions which are available for free and moving
boundary problems may only be applicable to a narrow range of physical
problems, the insight gained from them is often valuable. Furthermore, the
performance of the numerical methods which'are developed for the solution
of such problems is typically evaluated by way of convergence study using
test cases with analytical solutions. - )
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1.2 Numerical methods for 1nterface
problems

The formulation of an initial-boundary value problem requires the specifica-
tion of boundary conditions. In a free or moving interface problem, one or : :
more conditions are therefore required on the interface, whose position is an
unknown in the problem. In particular, in a moving interface problem, at
least one of these conditions will be on the interface velocity, and a success-
ful numerical scheme must accurately capture this velocity. Front-tracking
methods (see [20], Ch. 4) are those which explicitly compute the interface
velocity at each time step, and use this velocity to advance the interface.
The use of fixed, uniform grids is not possible for such methods, since special
difference formulae are required in the vicinity of the interface, as the inter-
face will not, in general, coincide conveniently with a grid point. Crank [20]
describes various approaches to solving this problem, including the modified
difference formulae, and adaptive time-stepping to ensure the coincidence of
the interface with grid nodes. He also presents the related approach of front-
fixing. Here, a coordinate transformation is performed after each update of
the interface location, to ensure that the interface falls at a fixed coordinate
value. Therefore, this method involves not only the implementation of the
interface velocity at each time step, but also remeshing at each time step.
Certain computational challenges become apparent when considering front-
tracking and front-fixing methods. Both of these approaches require a numer-
ical implementation of the interface velocity. In degenerate diffusion prob-
lems such as the porous medium equation, the interface velocity is often seen
to be the limit of an indeterminate form (see [43], and [54] Ch 7 ). Numerical
methods are available for such scalar problems [25], which avoid the need for
explicit implementation of the interface velocity, but in more complex prob-
lems to which these methods do not extend, front-tracking type methods
would be impractical unless the indeterminate velocity could be accurately
computed. Also, in greater than one dimension, the solution of boundary
value problems on either side of the interface requires consideration of the
interface geometry, and hence, unstructured grids and coordinate transfor-
mations are common. Donaldson [22] presents a front-tracking approach to
a generalised Stefan problem using the finite element method in two dimen-
sions. - Representation of the interface as a spline contributes to a lengthy
computation. For many Stefan-type problems, front-tracking methods have
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been avoided.

There has been much activity in recent years in developmg methods for
moving interface problems which avoid the need for explicit trackmg of the
interface. A method which computes the solution to a free or moving inter-
face problem without explicitly computing the interface location, but rather
recovers the interface location from the numerical solution to a reformulated
problem, is generally referred to as a front-capturing method. The en-
thalpy method for the Stefan problem is described in detail by a number
of authors (3, 20, 23, 54], due to its wide applicability. The method takes
a reformulation of the problem based on a transformation of the dependent
variable from temperature to enthalpy, leaving a problem for the enthalpy
and Kirchoff temperature over a fixed domain which contains the phase-
change interface. The Stefan condition for the interface velocity is implicitly
absorbed into the fixed domain formulation. Finite difference and finite vol-
ume schemes for the enthalpy method typically result in a lower order of ac-
curacy than corresponding front-tracking schemes {24, 31], but the enthalpy
method is widely used in practice, due to its ease of implementation (see, for
example, {11, 24]). Since the method does not require any explicit handling
of the interface, its extension from one to two or more dimensions is straight-
forward. In Chapter 2, we will describe the enthalpy method for the Stefan
problem in detail.

An alternative method Wthh has been developed more recently is the
Level Set Method [55, 61]. This is also a capturing method which results from
a reformulation over a fixed domain containing an interface. Rather than
the interface velocity being implicitly absorbed into the new formulation, it
appears explicitly in a Hamilton-Jacobi type equation. While the Level Set
Method does not require a calculation of the interface location at each time
step, as in front-tracking methods, it does require an accurate implementation
of the interface speed function. In {18}, Chen et al present a Level Set method
for solving a Stefan problem. Their computation is more expensive than
an enthalpy method for the same problem, but higher order of accuracy is
achieved.

The Immersed Interface Method is a modern numerical method which
may be used for certain moving interface problems. Like the enthalpy method,
it is a fixed grid method, but one which explicitly incorporates the interface
conditions into the discrete scheme. Correction terms are added to the dis-
cretization in the neighbourhood of the interface, and interface conditions
may be implemented by way of a smoothed delta function centered on the
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interface. Li [46] describes the method in some detail, and presents nu-
merical convergence studies for several example problems. In particular, he
demonstrates second order accuracy when the method is applied to a two-
phase Stefan problem. Careful choices for the correction terms and smoothed
delta function can result in second order accuracy, in cases where the cor-
responding implementation of the enthalpy method can only achieve first
order accuracy. Hou et al [36] present a hybrid method which combines the
Immersed Interface and Level Set methods for interface problems, paying
particular attention to achieving second order accuracy. However, for rela-
tive ease of implementation, the enthalpy method often appears to be the
preferred method of solution for simple Stefan problems.

Conservation of mass is an important concept in the development of nu-
merical schemes for moving interface problems. It is well known that finite
difference schemes for hyperbolic conservation laws with shock-type solutions
must be derived in conservative form in order for the shock to propagate at
the correct speed (see [44], for example). It is not enough for a scheme simply
to be consistent with the governing PDE, when non-unique weak solutions
exist. Critically, the conserved “mass” in the continuous physical problem
must also be conserved in time in the discrete approximation. The necessity
for discrete conservation is also a feature of numerical methods for equations
of degenerate parabolic type [25, 26], which model movmg interfaces which
are not necessarily shocks.

1. 3 Two-phase flow Wlth phase change in
porous medla

An understanding of heat transfer and fluid flow through porous media is
central to the analysis of many environmental and technological processes.
Soil is one of many geological materials that is both porous and permeable
for the liquids and gases with which it naturally interacts. Waste disposal of-
ten requires fluid transport through a porous structure, as does oil recovery,
where thermal effects may also be significant. The design of porous insu-
- lation clearly raises issues of heat transfer and the migration of moisture.
The modelling of these and other such processes must take into account the
geometry of the porous solid, which impedes the flow of the fluid through
the medium.
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The problem of modelling heat and mass transfer of a single-phase fluid

flowing through a porous medium is somewhat challenging. A significantly
more complicated modelling problem concerns the heat and mass transfer,
and phase change, of a fluid which flows through a porous structure. Two-
phase flow and transport with phase change in porous media has attracted
much interest in recent years, from researchers in such diverse fields as mi-
crowave heating of foods and biomaterials [52], geothermal energy recov- .
ery [59, 74], and fuel cell technology [58, 21]. The process of wood drying
is examined in detail by Whitaker [72]. In these examples, it is important
to consider not only the flow and heat transfer, but also the effect of phase
change, which further complicates the modelling and numerical effort. In con-
figurations involving condensation and evaporation, regions of single-phase
fluid and two-phase fluid often coexist within the porous medium. The lo-
cation of interfaces between s1ngle—phase and two-phase zones are often of
primary interest. ‘
' Woods (73] analyzes the processes involved in liquid injection into a hot
porous medium, as related to models of geothermal reservoirs. Typically,
cool liquid water is pumped into a porous superheated reservoir below the
Earth’s surface. The injected water boils at a front, and the resul’cmg water
vapour is extracted by a well in order to drive turbines for the generation of
electricity (see Figure 1.2). .In [73], the flow of vapour ahead of the boiling
front is analyzed, and also the flow of liquid behind the front. The rate of
vapour recovery through the well depends on the rate of migration of the
boiling front, which in turn depends on the liquid temperature and injection
rate.

While two-phase flow and phase change in geothermal reservoirs arise

through the injection of cold liquid into a hot porous solid, similar flow phe-
nomena arise in certain oil recovery processes. Typically, a dlsplacmg fluid
is pumped into an underground reservoir, in order to extract oil from the
porous rock. Allen et al [5] look in detail at the mathematical modelling of
such flows, with particular emphasis on reservoir simulation. Peaceman [57]
presents a comprehensive introduction to modelling and numerical methods
for reservoir simulation, and Allen {4] reviews numerical methods for isother-
mal flows in natural porous media. A number of reductions to the mathemat-
ical model of multiphase flow in porous media are made under assumptions
specific to reservoir flow. - Flows are typically taken as isothermal, with no
phase change throughout the reservoir, and capillary effects are assumed to
‘be negligible. Under such assumptions, the fluids are incompressible, and

/




Chapter 1. Introduction and Background

Pump Turbine power station

Figure 1.2: Geothermal power generation.

the system of PDEs governing the flow decouples, and reduces to an elliptic
equation for the total pressure, and a hyperbolic equation for the saturation
of the wetting phase. These simplified problems may be solved numerically
by a well established sequential Implicit Pressure, Explicit Saturation (IM-
PES) time-stepping method (see [57]). Karlsen et al [38] take an alternative
approach, by using a fast marching Level Set method for the saturation equa-
tion. The same assumptions of isothermal, incompressible flow without phase
change are key to their formulation.

Oil recovery processes can be thermally enhanced, whereby the injected
fluid is a hot vapour such as steam. This acts to transfer heat to the oil, low-
ering its viscosity, which increases its mobility. Clearly, thermal and phase
change effects become important in modelling such processes, as the injected
steam will eventually condense at sites in the reservoir. Hanamura and Ka-
viany [33] describe such a situation, where the injected steam condenses at a
front, which then propagates through the porous medium. Bruining et al [16]
formulate a model problem for steam injection into hot porous rocks, neglect-
ing capillary effects, but including the effects of phase change, at a known
phase change temperature. With the thermal and phase change effects, the
assumptions behind the IMPES method are no longer valid, and alternative
computational strategies must be devised. Furthermore, the modelling of
two-phase flow and phase change in porous media on smaller scales is often
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dominated by capillary effects, which alter the structure of the mathemat-
ical model. In particular, where capillary effects are important, saturation
equations are often of degenerate parabolic type.

The development of Proton Exchange Membrane (PEM) fuel cells is a
technological advance prompted by environmental concerns. Fuel cell tech-
nology has recently received much interest as the automotive industry has
recognized the need for low emission power supplies as an alternative to the
internal combustion engine. As with steam injection processes in oil recov-
ery, condensation of steam is also observed to occur in the porous electrodes
of Proton Exchange Membrane (PEM) fuel cells, and has received attention
from a number of authors, for example, [12, 21, 56, 58, 70]. Consider the

Catalyst +
Membrane

/
Graphite Gas Porous
plates channels electrodes

Figure 1.3: A PEM fuel cell.

simplified fuel cell configuration illustrated in Figure 1.3. The two electrodes
indicated consist of a porous material. Hydrogen and oxygen diffuse through
the electrodes to the membrane, where they react, producing water vapour,
which is then transported back through the cathode. Condensation of this
water vapour is observed to occur at certain locations within the cell, result-
ing in liquid water within the cathode, or emerging into the oxygen channel.
The accumulation of liquid water in the gas flow channels impairs the efficient
delivery of reactant gas to the electrode, while flooding of a porous electrode
inhibits the diffusion of gas through the medium, thereby reducing the supply
of reactant to the membrane. However, the membrane must remain hydrated
for the reaction to occur, and the topic of “water management” draws on the
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effects of water in many inter-related processes inside the cell. The effects of
water condensation can clearly be detrimental to the efficiency of operation
of the fuel cell, and as such, a mathematical investigation of phase change
in a porous medium is of interest to fuel cell manufacturers. In particular, a
model problem amenable to computational study is desired.

Models of two-phase flow with phase change in porous fuel cell electrodes
are seen to include thermal and capillary effects, resulting in degenerate
parabolic equations as described above. A number of recent studies have
used simplifications and regularisations of the model problems in order to
deal with the numerical difficulties presented by their singular, degenerate
nature. Bradean et al [12] identify regions of water vapour oversaturation
within a dry fuel cell electrode, where condensation is likely to occur, but
do not include phase change effects in their model. He et al [35] present
a steady-state model problem, in which the liquid saturation dependence is
removed from the capillary pressure and relative permeability terms. There-
fore, the degeneracy and singularity in the problem as the liquid saturation
vanishes is avoided. In [70], another steady-state model problem is described,
for two-phase, multicomponent flow in porous electrodes, but neglecting ther-
mal variations and phase change effects. Natarajan and Nguyen [51] solve
numerically a time-dependent problem which includes phase-change effects.
Saturation dependence in the relative permeability is included in their model,
but regularised in order to simplify the computation. The same regularisa-
tion is used by Mazumder and Cole [50]. The effect of such regularisations is,
in general, to smear out sharp interfaces. A time-dependent problem which
makes no mention of any such regularisation, but which assumes isother-
mal conditions and does not include phase change, appears in [56]. A more
recent study by Birgersson et al [10] considers the steady-state flow and
phase-change with no apparent artificial regularisation added to the prob-
lem. In this thesis, we are primarily concerned with model problems for
phase change in porous media which encompass all the mathematical diffi-
culty of those appearing in the reservoir and fuel cell literature, but with a
view to developing methods which may be applied in quite general, rather
than specific, settings. With this in mind, we note here that we shall only
consider single component, two-phase flow, rather than the multicomponent
flows described in the fuel cell literature, where oxygen, nitrogen and water
may all coexist in the porous media. Multiphase, multicomponent compu-
tations will, in general, be more expensive than the computations which we
describe here. However, the issues of singularity and degeneracy which we
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tackle here will not be further complicated by adding extra components to
our model.

More theoretical and general studies have been presented by other au-
thors. A steady-state, one-dimensional study by Udell [64] investigates the
effects on a sand pack, which contains water, of heating the layer at the
top and cooling the layer from below. Experimental results indicate that,
at steady state, there may be three distinct zones within the porous pack:
a vapour zone at the top, a liquid zone at the bottom, and a two-phase
zone in between. The basic set up is shown in Figure 1.4. In the two-phase
zone there is a counterflow of liquid, driven upwards by capillary forces, and
vapour, driven downwards by a pressure gradient. Udell presents a model
of the two-phase zone that assumes a constant temperature throughout this
zone, with condensation and evaporation occurring at the lower and upper
interfaces, respectively. The vapour in the two-phase zone is assumed to be
fully saturated. The model problem is solved to give a saturation profile,
which indicates the length of the two phase zone. A similar study is per-
formed by Torrance [63], with heating from the bottom, and similar results
are obtained.

vapour
z=l

two-phase

liquid

z=0

cool

Figure 1.4: A three-zone system for Udell’s experiment.

The isothermal two-phase assumption made by Udell [64] appears to be
popular throughout the literature. Temperature variation throughout a two-
phase zone may be critical in applications such as fuel cell design. A recent
study by Wang and Wang [71] specifically examines the fuel cell setting
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under nonisothermal conditions, and shows numerical results for a two-phase
zone. Also, a more complete steady-state model for Udell’s problem [64] is
presented in [14]. Temperature effects are included in this model, and phase
change is allowed to occur throughout the two-phase zone. A numerical
method is developed for locating interfaces between the single-phase and
two-phase regions, and is described algorithmically in [15].

Now we consider the time-dependent Udell problem. Specifically, we con-
sider the problem of locating the interface between a single-phase region and
a two-phase region in a single component, two-phase mixture, before the
system has reached a steady-state. Such problems are of interest to fuel cell
manufacturers when considering the effects of start-up-and shut-down of cells.
For the numerical solution of such a problem, fixed-domain, front capturing
methods appeal. A method, based on mixture quantities, and using the same
saturation assumption as Udell, is described by Wang and Beckermann [68],
and implemented in [66]. Another model which has been used in the fuel cell
literature penalizes any vapour not at saturation pressure into condensing at
a large rate (see, for example, [21, 50]). Both of these methods require the
solution of a fixed-domain problem, from which the interface location can
be recovered. Computations using these methods have often been performed
under the various simplifying assumptions which we have described above.
Due to these assumptions, and the lack of analytical solutions to the cou-
pled model problems, the challenge remains to show, either analytically or

‘numerically, that such a computational capturing method for nonisothermal,
two-phase flow with phase change in porous media yields an accurate solu-
tion in time. We aim to formulate model problems and develop capturing
methods for their solution, for which we can show that the interface evolves
with the correct location and velocity.

1.4 Thesis overview e

In this thesis, we formulate mathematical models for phase change in porous
media, and related model problems, and develop numerical methods for the
solution of these problems, both steady-state and time-dependent. Through-
out the thesis, we highlight points of particular mathematical interest. These
are intended simply to aid the motivation for and understanding of our work,
as well as to suggest directions of further interest. Most of our mathematical
discussion will be illustrated using one-dimensional model problems. The
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emphasis throughout is on developing understandable, reproducible solution
methods, rather than rigorous mathematical analysis. _

The remainder of this thesis is organised as follows. In Chapter 2, we
discuss in some detail two prototype interface problems, which are related
to the process of phase change in porous media. We describe formulations
of the Stefan problem of phase change, and the Porous Medium Equation,
and discuss numerical capturing and tracking methods to approximate their
solutions. A new asymptotic analysis of commonly used smoothing strate-
gies is presented for a smoothed, steady-state Stefan problem. Also, careful
numerical convergence studies are presented, in preparation for a comparlson
with the results of Chapter 4.

In Chapter 3, the steady-state, one-dimensional problem of phase change
in porous media is described. This is an extension of an existing model, allow-
ing for compressible vapour. Two numerical methods are described for the
solution of this free interface problem, and numerical results are presented',
showing good agreement between the two methods. These results are used
as benchmark solutions for the time-dependent and two—dimension’al compu-
tations in Chapter 4. ' :

In Chapter 4, the phase change in porous medla problem is extended to
include time-dependence, and reformulated as a fixed-domain problem. A
numerical capturing method is developed for the solution of this problem,
avoiding several simplifications which have commonly appeared in the liter-
ature. Computational solutions are shown to evolve to the correct steady-
states predicted by the methods of Chapter 3. An analytlcal solution is
found for a reduced model problem, and numerical convergence studies us-
ing this exact solution show that solutions from our capturing method are
indeed convergent. Furthermore, the convergence rates are comparable with
the methods used for much simpler scalar problems, as described in Chap- -
ter 2. The 1mplementat10n is extended to two dimensions, and computatlonal
results are shown. B :

In Chapter 5, we summarize our ﬁndlngs describe ongomg work, and
suggest directions for future work.
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Chapterl 2

Solutions to prototype 1nterface |
problems

In this chapter, we study two prototype free and moving interface problems
of particular relevance, namely the two-phase Stefan problem and the Porous
Medium Equation. We will formulate these problems mathematically, and
discuss some analytical and numerical solution techniques for them. In par-
ticular, one-dimensional model problems are used for illustration. Much of
this chapter is a review, intended as a mathematical background to accom-
pany and guide the applied work in later chapters. We also present a new
asymptotic analysis of smoothing strategies apphed to interface problems,
and suggest further work.

2.1 The steady-state, two-phase Stefan
problem

2.1.1 The one-dimensional problem

First of all, consider the steady-state, one-dimensional ice/water problem
which we briefly discussed in Chapter 1 (see (1.1), ff.). We suppose that ice
occupies a region 0 < 2z < s, and that liquid water occupies a region s <
z < D. At z = s, there is a melting/freezing interface which separates
the two regions. In each of the two distinct regions, the temperature is
governed by a steady-state heat equation. At z = 0, suppose we have a given
temperature, T, which is below the melting temperature. At z = D, suppose
we have a given temperature, 73, which is above the melting temperature.
Also, take the melting temperature to be zero (This is for ease of illustration,
and temperature is measured in degrees Celsius in the physical problems in
this chapter. In later chapters, where phase change temperatures are not
fixed, and the ideal gas law is important, we revert to temperature measured
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in Kelvins). Then a mathematical model for the temperature throughout the
system consists of two boundary value problems in each of the two regions,
as follows:

(KiceTz)z' = 0 Oz s, )
T(0) = Tp (<0),
T(S_) 4 0,
; 2.
(KwaterTz)z = 0 s<z< D, ( 1)
T(s*) = 0,
D) = T (> 0). ]

Now, since the interface position s is an unknown in the problem we requlre

one more condition. Energy should be conserved across the interface. In

other words, the heat flux should be continuous across the interface, giving
, o

- [KT] ~_=o. | (2.2)

It is a straightforward matter to solve the problem by calculating s using
the three interface conditions, and then finding the temperature T'(z) in
the ice and the liquid water regions. Let us also consider an alternative
formulation, to show how we may “capture” the interface from the solution
of a transformed problem.
~ We can reformulate the disjoint domain problem (2.1)-(2. 2) as a linear
problem for a transformed variable over the domain [0, D]. Let
. | T .
u(T)= [ K(§) dE, (2.3)

To

where the conductivity K is given by :

o Kie T <0
TY = _ rice -
K(T) { Kyater T >0

or equivalently ) . A
K(T) = Kice + (Kwatgr - Kice)H(T),
where H is the Heaviside function. In the context of the time-dependent

problem, which we shall discuss in the next section, (2.3) is known as the
Kirchoff transformation. Then (2.1)-(2.2) becomes

(v(T)),. =0,
(2.4)

’U|z=0 =0, 'U|z=D_= U(Tl)
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Trivially, this has solution

o(T(2)) = ?(gl) " | (2.5)

and the temperature T'(2) can then be recovered using (2.3). The interface
z = s is then “captured” using the condition that T'(s) = 0. For the steady-
state problem here, an exact solution is available. The steady-state position,
s, of the freezing/melting interface is given by '

T Kice ' :
s= | —— D. (2.6)
TOKice - Tleater . ' :
Then the temperature profile is given by -
, —Zst +Ty 0<2<s,
T(z) = | (2.7)
—7—11-'—(z—-D)+T1 s<z<D.

It appears that the discontinuity in the conductivity function K at the in-
terface does not hinder us analytically, or indeed, numerically.

2.1.2 The two-dimensional problem

Now let us consider how the problem is solved in two dimensions.

Consider the problem shown in Figure 2.1. Liquid water and ice occupy
regions €);, (), respectively, and are separated by a freezing/melting inter-
face . We now simply extend the mathematical model (2.1)-(2.2) to two
dimensions, giving ‘

V.(KieeVT) = 0 (z,y) €0y - )
T(z,0) = To(z) (<0),
T = 0 onI-, o .
v-(KwaterVT) =0 (a:,y)te, b (28)
T = 0 onlT,
T(z,D;) = Ti(z) (>0),

T(an) = 'I'left(y)) T(D2ay)=Trighf(y)’ J 4

together with the heat balance across the interface:

- [(KVT).n]; ~0. N (2.9)
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’ T‘T
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0 T="T, D,

Figure 2.1: The steady_—staté, two-phése Stefan problem in two dimensions.

Here, n is the unit normal to the interface I'. Once again, we may solve for
the temperature and interface location by a change of variables which leaves
a fixed-domain problem. Making the change of variables (2.3)

: ' T
o(T) = /T K(€) de,
ref

for a chosen reference temperature 7.y, the problem reduces to

. Dy =. 0, (w,y) c (0, D1) X (O,Dg)
v(z,0) . v(To(z)), -
),
),

- v(z,Dp) = o(Ti(z
. U(an) = D(Tleft
v(D1,y) = v(Trigns(¥))-
That is, we may solve for the interface location and the temperature in the

disjoint regions by first solving Laplace’s equation for v on the fixed domain.
Given the solution v, the temperature T is easily recovered from the following:

(2.10)

'f'f{iceTret s > .
T B v kice lf v < —_.K’l'CCTTCf’ . 2 11
- 'U'f'kiccTref : 2 : ( : )
% if v Z - zceT're f

K water
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Analytical solutions to the problem (2.10) may be found using Fourier series
methods. For illustration here, consider a problem where we take T to be
constant, using T,y = Tp, D; = Dy = 1, take Ti(z) to be 1-periodic, and
give periodic conditions in the z-direction. Then the solution v of the fixed
domain problem is given by

o0 b )
we,y) = 9233; + ; (EE}% cos 2nmx + m sin 2mrx) sinh 2nmy,

(2.12)
where the Fourier coefficients are given by
g = fo Tl(x
&y = 2f0 cos2n7rz dz, n=1,2,... , (2.13)

by = 2f0 ))sin2nmz dz, n=1,2,... .

In Figure 2.2, we plot the steady-state solution to the problem (2.8), using

Temperature profiles

Temperature contours

temperature T

Figure 2.2: Temperature profile and contours for steady-state two-phase Ste-
fan problem.

periodic conditions in z, with R’,-ce = 2.2, R’water = 0.55, To = —2 and
Ti(z) = 3 + 3cos2rz. This two-dimensional problem is simply a sinusoidal
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perturbation to the one-dimensional problem (2.1), with 7} = 3, which,
by (2.6), has the interface at s = 8/11 ~ 0.73. This average interface position
is clear in Figure 2.2.

It is worth noting here that our solution method, namely solving the
fixed-domain problem (2.10) for the transformed variable v, then recover-
ing temperature using (2.11), is valid for more general problems than (2.8).
Since v has continuous derivatives everywhere, the heat balance (2.9) will
hold across any interface. The temperature recovery relies only on the value
of v, and does not require explicit knowledge of the location of any interfaces.
Therefore, this method may be applied in general to problems where there are
no interfaces, a single interface, or multiple interfaces. This idea extends to
capturing methods for time-dependent problems, which gives these methods
a particular appeal over front-tracking, as we shall see in the next section. In
Figure 2.3, we plot the steady-state solution to a two-phase Stefan problem
using periodic conditions in z, with K'Z-ce = 2.2, K’water = 0.55, Ty = —2 and
Ti(z) = 3 + 3.5cos2mz. Clearly, there are two interfaces, which separate
the liquid water from two regions containing ice - one near the cold interval
along the upper boundary, and one near towards the lower boundary.

Temperature contours with two interfaces
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Figure 2.3: Temperature profile and contours for a steady-state two-phase
Stefan problem with multiple interfaces.
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2.1.3 A smoothing method and asymptotic results

The two-phase Stefan problem which we have described here has been illus-
trated by examples for which exact solutions are available. Such analytical
solutions are not generally available for problems on irregular domains, prob-
lems with different boundary data, generalized Stefan problems with extra
heat sources, for example, and for time dependent problems. In these cases,
we inevitably resort to numerical solution methods. Any code which involves
the step of temperature recovery from the transformed variable will require
“if” statements, and discretizations may be hindered by the discontinuous
temperature gradients. One approach to take is to smooth the discontinuous
conductivity function K (T') over some radius in T, and solve the resulting
smoothed problem. While some implementations of the enthalpy method
for the transient problem, which we will describe in the next section, often
make use of the exact conductivity, some degree of smoothing is often ap-
plied in order to aid computations (see, for example, [3, 20}). It appears that
little analysis of such smoothing methods has been presented in the litera-
ture. Here, we present a brief analysis of a smoothing strategy applied to
our one-dimensional, steady-state Stefan problem.

We aim to give a regularization of the problem 2.1 by smoothing the
conductivity function, leaving a smooth, fixed-domain problem. Let us write

(T) Kice + (Kwat.e'r - Kicé)ﬁe(T), | (214)

where H. is a C™ symmetric regularization of the Heaviside function, with
smoothing radius €. Then the problem ' :

U(T) fT dga
.<‘v<fr.>>u=~o,' e

U|z=0 = 0, Ulz=D = U(Tl)

has a C* solution T'(2) which should tend to the exact solution of the Stefan
problem as € — 0. We do not prove this here, but observe this numerically.
Of particular interest is the difference in the location of the interface where -
T = 0 between the exact and smooth solutions, and the dependence of this
error on £. We see from (2.5) that the interface location z = s is given by

v(0)

(2.16)

- A’U(Tl)
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Since the smooth solution satisﬁés
o(T) = Rieo(T — To) + (Kuater — Kice) / ) de, (217
To )

we see that the value of s for this smooth solution can be found approximately
by considering the asymptotic evaluation of the integrals

0 _ ' Ty
. H.({) d¢, and H,(¢) dg,

To

with T < 0, 77 > 0 and € <& |To|, T3, for our choice of smoothed Heavi-
side H,.. We illustrate this for two common choices in the examples below.

Example 2.1

Let L1 x
~ 1 1 (X
H.(X) = watan (E) | (2.18)
Then , o : ;
T .. 1 1 -
To- T
where T : T TrL 2N
I(T) =T tan ! E - TO tan —6' - 5 og (W) . (220)
Recalling the identity ' .
1, e [ -m2 X<0
tan + tan‘ X { /2 X>0°
and the expansiov.ns |
3 : ‘ 2
,tan_1X=X—.X§—+..., log(1+X)=1—X7+...,
we find
I(0) ~ gTo+(1+log |To|)e —€loge, I(T) ~ g(Tl—i—To)— (log ﬁ) E.
- 0

(2.21)
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Hence, . .
‘ ~ 1
He(€)d¢ ~ —[(1+log|To|)e —eloge],
‘ To . i _
and T ~ T
1 1 1 >
H (& dé ~ Ty — | —-log—— )&
| To (§) d¢ 1 <7r g Tol
So we have R
v(0) ~ —K;Ip+ E(Fe—¢€loge),
where . .
K - K;
E = “’“t”ﬂ ¢ and F=1+Ilog|Ty|,
and also S S |
v(T) A—Flog i 3
1) ~ A— T &
|Tol
where

A= f{watérTl - KiceTO-"-

Finally, substituting into (2.16), recalling the exact interface location (2.6),‘

Smooth approximations as € ~> 0, with 'i'0=-3 T1=7 k=08 k., =025 N=80
T T

water

smooth solutions approaching exact soluti s)
2F ase >0

-1F B

-2F

-3

) L s ) s \ L 1 n
0 0.02 0.04 006 - 008 0.1 0.12 0.14 0.16 0.18 02

Figure 2.4: Smooth approximations converging to exact, nonsmooth steady-
state temperature (dots) as € — 0, for Example 2.1.




Chapter 2. Solutions to prototype interface problems 25

and noting that 1/v(Ty) ~ % (1 + £log %—ls), we find the interface location

to the smoothed problem is given by
E KTy, T '
F—-""""log— |e—e¢loge| D. 2.22

§ ~ Sezact T —

A

Clearly, s — Sezact as € — 0. In Figure 2.4, we show the convergence of
the smooth approximations to the nonsmooth steady-state temperature. In
Figure 2.5, we show a close-up of the computed smooth solution, showing
good agreement with the asymptotic interface location (2.22). [ ]

€=0.01 with T0=-3 T1=7 k =08 k_ =025 N=400

02r

0.5} « exact solution

' | —— computed smooth solution
O _asymptotic interface position

(B ] o

0.05

L 1 L L 1
0.108 0.1 . 0112 0.114 0.1t6 0.118

Figure 2.5: Computed smooth apbroximation and asymptotic form, for Ex-
ample 2.1.

Example 2.2
Let Ll Uy . '
H.(X)= 3 {1 + tanh <?) } . ' (2.23)

Here, we use the fact that

X X
log (cosh?> ~ I—-g—' —log2 = for e < |X]|,
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to obtain

.r0 T

H.(¢)d¢ ~ -1—95—2 e and I?E.(é) dé ~ .'Tl + o(e, e loge).

To To

Proceeding as in Example 1, we find that

f(w T Rice 1 2 . »
S ~ Sepact 4 | Mot — % De. ® (2.24)
- K waterTl - KiceTO 2 .

- We notice the order of error in each of these ekamples, and conjecture that
we cannot achieve a higher order error if our choice of smoothed Heaviside
is monotonic increasing. The reason is due to the fact that the integral

H.(¢) d¢ = O(e),

To

for any monotonic increasing I?[E, as suggested by Figure 2.6.

H,(X)
A

O(e)

Ao'

Figure 2.6: A sketch of a monotonic increasing smoothed Heaviside function,
H.. Clearly, f; H.(€) d¢ = O(e), for X < 0.

The smoothing method presented here can, of course, be applied to higher
dimensional problems, and time-dependent problems. We suggest further in-
vestigation of smoothing methods and a more formal analysis of our technique
for the steady-state Stefan problem as open problems.
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2.1.4 The method of residual vélocities

Recent work by Donaldson [22] presents a trial method for solving free inter-
face problems, with a view to solving more complex problems for which fixed -
domain methods may not be straightforward to formulate or implement. For
illustration of the method, particular attention is paid to the steady-state
~ Stefan problem, in two dimensions. Here, we describe the method for the
one-dimensional problem. Consider again the problem (2.1)-(2.2), as shown
in Figure 2.7. We can think of the problem as consisting of two boundary
value problems, one on éither side of the interface z = s. If the value of s is
known, then we require only two conditions at the interface, but since s is
an unknown in the problem, we require three conditions there.

(XiceTz)z =0 (KwaterTz)z =0
0 8 : . ‘ D
I ICE i WATER : — \ > 2
T = Tbot T T = T;:op
~ +

[KTZ] =0 (i)
TH=0 (i)
T-=0 (i)

Figure 2.7: The steady-state, one-dimensional Stefan problem (2.1)-(2.2).

The idea of the Residual Velocity method described in [22] is to make
an initial guess for s, then to solve the boundary value problems in the ice
and water regions, using two of the three interface conditions. The third
condition, in general, will not be satisfied, unless the interface is at the exact
steady-state location. An interface “velocity” is defined to be equal to the
computed residual in this third condition, and the interface is subsequently
moved according to this velocity and the chosen time-stepping scheme. This
process is repeated until the interface approaches some limit for large “time”.
This is essentially a front-tracking method applied to steady-state problems
on either side of the front. While the solution method treats the residuals
as velocities, the evolution of the interface in “time” is completely artificial,
and only the steady-state is meaningful. '
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For the one-dimensional problem in Figure 2.7, we now dembnstrate.the_
Residual Velocity method using each of the three conditions as velocities.
Suppose the initial guess for the interface is s.

Example 2.3 |

Using the residual in condition (i) as the velocity (ie. solving the boundary
value problems using conditions (ii) and (iii)), the interface velocity is given
by : '

ds (=  Tp 5 Tt B .
E— (KwaterD_S""Ache 3 )’ 5(0’)—30- : (1)

Example 2.4

Using the residual in condition (ii) as the velocity (ie. solving the boundary
value problems using conditions (i) and (iii)), the interface velocity is given
by ' ' o

$iceTbot S — D
gd—i— = — (Ttop — ——‘K}ce bot —8 ) 5 3(0) = 8p. ' (11)

water S

Example 2.5

Using the residual in condition (iii) as the velocity (ie. solving the boundary
value problems using conditions (i) and (ii)), the interface velocity is given

by o .
dS ’ R’w" rT -8 ™
7= — (Tbot = ' ;:oe t(fp B 3) ,  s(0) = so. (iii)

In Figure 2.8, we plot solutions of the ODE’s from Examples 2.3-2.5. We
take D = 1, Ty = —1, Tiop = 1, Kie = 2.2, Koyater = (.55, and compute
solutions given two different initial conditions, s = 0.5, and so = 0.97. In
both cases, we see that all three velocity choices give an interface which
evolves and converges to the correct steady-state solution s = 0.8.

For. the one-dimensional problem considered here, the analytical solu-
tion of the boundary value problems is trivial. In higher dimensions, where
the interface geometry must be taken into account, solution of these prob-
lems requires numerical methods. Also, the choice of residual velocity is not




Chapter 2. Solutions to prototype interface problems 29

Steady-state interface location, using Residual Velocity method
1 T T T T T T T T T

095,
osf

0.85

interface location, s
o
~
(¢}

0.7 . B
g S
R4 : .-+« residual velocity (i)
0.65}F S - —- residual velocity (i) |. 4
T4 . | — residual velocity (iii)
0.6 .
d
0557 ' ' . -
] .
0~5 1 1 1 1 i 1 1 1 : 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
"time" t .

Figure 2.8: Convergence to steady-state interface location, using Residual
Velocity computations. '

limited to the three shown here. The interface conditions used in the compu-
tations may be constructed using linear combinations of the three physical
conditions (i)-(iii), and the interface should evolve to the same steady-state.
In [22], a discretization of the interface for a two-dimensional problem is de-
scribed, and the numerical properties of various choices of velocity applied
with certain time-stepping schemes are analyzed.

2.2 The time-dependent, two-phase Stefan
problem

In this section, we discuss the extension of the model two-phase Stefan prob-
lem to include time-dependence. With a view to solving the phase change
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problems in porous media described in later chapters, we look in particular
at the formulation of the problem, exact solutions, and the capturing meth-
ods which have been developed for numerical solution. The contents of this
-section are largely drawn from well established work, which is particularly
well described in detail by Crank [20] and Alexiades & Solomon [3].

2.2.1 Mathematical fbrrhulation _

Let us consider the extension of the problem (2.1) to the time-dependent
problem. Conceptually, we imagine a partially melted block of ice, with a
moving freezing front, before a steady-state has been reached Mathematl—
cally, we have

(KieeT,), 0<z<s(t), )

Plicelt =
T(O) = ‘Tbot (< 0),
T(s) = 0
. 2.25
pc'wate'r{rt = (KwaterTz)z S(t) <z < D, ( ( )
T(st) = 0,
T(D) = Tip (>0). J

Here, p represents density, which we assume is the same in both liquid and
solid phase, and cCice water are the specific heat capacities of ice and liquid
water respectively. Once again, we require an extra condition at the interface,
which represents conservation of energy across the mterface Consider the
diagram shown in Figure 2.9. -

Suppose that the interface is moving to the right, so that it is a freezing
front. In small time dt, the front moves a small distance §z. During this
time interval, the heat which flows out (per unit area) into the ice region is
approximately K., T, 6t. This must equal the heat which flows in from the
water region, plus the heat released upon freezing the mass (per unit area)
péz. Thus we have ' '

(KTZ)ice 5t zl(KT;)water 8t -+ Lpoz,

where L is the specific latent heat of freezihg. Taking the limit 62, 6t — 0,
we find

pLs‘(t)z—[I‘{Tz]W”, o (2.26)

ice-
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vd
//

ICE

e

WATER

<>
0z, Ot

> s(t)

Figure 2.9: Heat balance at the freezing interface - the Stefan condition.

where § is the interface velocity. This condition for the interface velocity is
generally referred to as the Stefan condition. It is worth noting that we
will arrive at this same condition regardless of whether we consider a melting

or freezing process.

In order to complete the specification of the time-dependent problem, we
also add an initial temperature distribution, and an initial interface location.

That is, we also give

T(Z,O) = T’im’t(z)a 0<2< D7

(0) = so.
Now, defining o R
Kice . Kwate’r.
Qice = y  Qwater = )
PCice PCuwater
our two-phase Stefan problem becomes
T, = aiely, 0 <z<s(t), )
T(O) = ‘Tbot (< 0))
T’t = awate.rTzz S(t) <z< D;
T(st) = 0, : \
T(D) = Tiwp (>0),
T A water
pLi(t) = — KT
T(2,0) = Tinu(z), 0<2z< D,
8(0) , = 8p- y

(2.27)

(2.28)
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2.2.2 Analytical solutions

Exact, analytical solutions to two-phase Stefan problems such as (2.28) are
not generally available. The two most common types of solution, namely the
Neumann similarity solution and the travelling wave solution, appear to have
limited application in real world problems, but such solutions are valuable in
giving mathematical insights into the Stefan problem, providing useful ap-
proximations, and evaluating the performance of numerical schemes. Here,
with a view to constructing analytical solutions to the moving interface prob-
lems which we will encounter in later chapters, we describe both a Neumann
and travelling wave solution. ‘

The Neumann solution"

A Neumann similarity solution is avallable for a problem on a semi-infinite
domain, with an initial condition of all liquid water or all ice, thus with a
freezing or melting interface moving from one throughout the domain, start-
ing at the fixed boundary. Here, we consider the problem (2.28), with D = oo
and Ty, = Ti,p. That is, we have a freezing problem, with the freezing in-
terface moving through the domain from z = 0. We follow similar analyses
for melting problems by Alexiades and Solomon [3], and Zwillinger [75].

Guided by the heat equations either side of the interface, we seek solutions
for t > 0 of the form

T(z,t) = f(n) inice, T(zt)=g(n) in water, where n= - (2.29)

Sl

For such sélutions to exist, we require
s(t) = BV, ~ (2.30)

for some constant 3 to be determined as part of the solution. The Stefan
problem (2.28) then becomes

dieef"+50f = 0 0<n<p, )
.f(O) = Tbot’ f(ﬂ) = 0)
: ‘awamg”.‘ +3n9 =0 B <n<oo, L (2.31)
9(B)=0, . g(c0) = Tep,
| %pLﬂ = kicefl(ﬁ) - Kwaterg’(ﬁ)' y
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The solution of this system is given by

. ’ erf(Q—\/—Z:) :
f)=Tw|1-—"F<] 0<n<p, (2.32)
erf(5= m) _ :
and | : . ,
9(n) = Tiop (1 _ olazma)
A\ erfc(—L2m)
where the functions erf and erfc are the error function and complementary

“error function respectively. The value of 8, which gives the interface location,
satisfies the equation

) B <n<oo. (2.33)

- ___B - _. 8%
K water ,Ttop e *owater K iceTbot e *%ice

\/awaterr erfc(z\/:;lﬂ) v Uice erf(-—L2M).

In order to construct the Neumann solution given above, we must first
solve (2.34) for 8. This may be achieved using a Newton iteration, or bi-
section method, for example." A typical solution is shown in Figure 2.10.

(2.34)

Travelling wave solutions

When seeking an analytical solution to a two-phase Stefan problem, it is
sometimes more straightforward to construct a travelling wave solution rather
than a Neumann solution. A travelling wave solution is one whose profile
remains unchanged in a reference frame moving with constant speed.

For the following problem,

Tt = aiceTzz' " z < S(t),. )
T(s) = 0, - | |
i Tt = awaterTz;z z > S(t), | | 2.35
T(s*) = 0, ( (239
. n water
: ice /

we seek solutions of the form

T =F (&) for £ <0(ice), T - Fy(¢) fér § > 0 (Wa;cer), E=z—ct. .
| | (2.36)
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Neumann freezing problem, p=1000 L=3.3e+005 cmm=4200 €, ,=2000 K m°'=0.55 Km=2.2 Tmp=5 Too=—10" woee B=0.000342
T T

5 T T

|
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|
: gn) -

|
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!
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& |
8 !
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f(m) i
i
!
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ICE |
)
i
10 A - : L . .
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n

x10°

Figure 2.10:" A typical Neumann solution to the freezing problem (2.32)-

(2.34).

Here, c is a constant, which is the speed of the interface. So s(t) = ct, and
for ¢ > 0, we have an interface moving to the right. We have deliberately
not specified boundary or far-field conditions. Now, with parabolic problems
either side of an interface on which we give three conditions, we expect to
generate a one-parameter family of solutions. The system becomes

—cF| =
F(0) =

—cFy =
F(0) =

pL =

which has solution

aice'Fl” 6 <0,
0,

awateerﬂ £ > 07 .

0,

IA(,‘QEA . f(wgt;_v:A

1

Qice Qiyater

2y

\ .

> o (237)

/

R = Al(l—e_cheg)l £<0, 15
Foe) = Ag(l— e i) €>0,} e
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where

Al = aAice (,OL+ EEMAQ) - (239)
ice Qyater

We indeed have a one-parameter family of solutions; that is, a family of solu-
tions parameterized by A;. Such travelling wave solutions can be constructed
on finite domains by specifying the appropriate boundary conditions. On an
infinite or semi-infinite domain, notice that F3(§) — A as & — oo, and
so A, is seen to be the far-field temperature. However, Fi(§) is exponen-
tially large as £ — —oc, and this we note again that this analytical solution
serves mainly as a mathematical tool rather than having any physical mean-
ing. Furzeland [31], for example, uses exact solutions such as those presented
here for evaluating the performance of numerical methods applied to Stefan

problems. A typical profile is shown in Figure 2.11.

Travelling wave profile with c=1, A=3

F,8)

WATER

temperature

Figure 2.11: A typical travelling wave solution to the freezing problem (2.37).
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2.2.3 Formulation of the enthalpy method

In most cases requiring the solution of a two-phase Stefan problem, a numer-
ical solution is sought. Let us consider strategies for the numerical solution
of the problem 2.1. One option, as discussed in Chapter 1, is to employ a
front tracking method. This is a method which explicitly moves the interface
at each time step. We consider a finite difference method which updates
the temperature, and moves the interface between two time levels, which we
denote n and n + 1, and outline this method in Algorithm 2.1.

Algorithm 2.1 (Front tracking)
Given an interface location s™ and temperature at a time level n.

1. Discretize the interval 0 < z < s™, and solve the heat equation in the
ice, subject to T = 0 at the interface.

2. Discretize the interval s™ < z < D, and solve the heat equatzon n the
water, subject to T = 0 at the interface.

3. Use the Stefan condition (2.26) to calculate the velocity .
4. Move the interface according to s"*! = s™ + ks.

5. Go back to step 1.

Here, k is the Size of the time step between time levels n and n + 1. No-
tice that with each time step, remeshing takes place in steps 1 and 2. A
uniform grid on (0, D) will not suffice for front-tracking, since the interface
will, in general, not move by exactly one grid point with each time step. An
alternative is to reselect the size of the time step each time the interface is
moved, in order that it will move by exactly one grid point. Details of such
approaches to front-tracking are described by Crank [20]. Clearly, in terms
of ease of implementation, a front-capturing method is preferable. Further
advantages arise in higher dimensional problems, where tracking methods
would encounter additional complication due to the interface geometry.

- Now we consider how we may reformulate the model problem (2.25) over
the fixed domain (0, D). Since the heat equation in each of the disjoint ice
and water regions describes energy conservation, we aim to write an equation
for energy conservation throughout the entire domain. A measure of energy
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over the fixed domain must take into account the specific latent heat of phase
change. We define the enthalpy (per unit volume), £, by

PCiceT + for T < 0 (ice), ,
E(T)=1< €]0,pl] for T =0 (“mushy”), (2.40)
PCwater] + pL  for T > 0 (water).

Ata témperature T = 0, the ice or water may be undergoing phase change, so
we refer to it as “mushy”. Notice the jump in the enthalpy function at T' =
0, as shown in Figure 2.12. To deal with the discontinuous conductivity

x10° Enthalpy versus temperature
a T T T T

-1

2 L L L L
-100 -80 -60 -40 -20

s 2 s s
] 20 40 - 60 80 100
temperature T

Figure 2.12: Enthalpy as a function of temperature.

function, we once again make the familiar transformation

. T . :
v= /0 K(€) d, (2.41)

which, in this context, is known as the Kirchoff transformation; the vari-
able v is often referred to as the Kirchoff temperature. Then the interface
problem has now been reduced to the following fixed-domain problem for the
enthalpy E: ' : '
E. = v, 0<2<D,t>0.

E( ’t) = pc'iceTbot, ‘
E(D,t) = pcwaterTiop + L, . (2.42)
E(2,0) = Eju(z).
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The challenge now is to devise an algorithm for solving (2.42) numerically,
which carefully implements mappings between E, v and T. After giving an
initial temperature, we will step in time to solve (2.42), and then the location
of the interface will be recovered from the solution E (or v).

Let us consider a finite difference method. Suppose we have a grid z; =
(j—1)hfor j=1,.,N +1, where h = D/N. Let V be the approximate
value of v((j — 1)h,nk), where k is the time step to be used in the finite
difference scheme. Then an algorithm for the solution of (2.42) is given below
in Algorithm 2.2. Firstly, let us write explicitly the relationship between E
and v: :

%’—Zjv _ 'v<0,
E(v)={ &= yipl v>0, (2.43)
€ [0,pL) v=0;
Bap . E<0,
v(E) = %(E— pL) ’E>‘pLA,‘ | (2.44)
0 0<E<pL.

Algorithm 2.2 (Enthalpy meth'od)
Given V™:

1. Compute E™ using (2.:43).

2. Update E; for j =2,...,N by using ﬁm'te differences for (2.42). Obtain
E™L _ :
J

3. Recover V)" using (2.44).

The algorithm shown solves (2.42). In order to solve the original problem for
temperature and interface position, we can simply recover T from the solution
V, and then interpolate to find the interface location s(t). It remains to
decide on the scheme to use for Stage 2 of the algorithm. An explicit scheme
is easy to implement as follows '

Ept =Ef+p(Vii - 2vy" + Vi), - (2.45)
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for j =2,...,N, where y = % However, we have the time step restriction

k < h? g min ( Cice  Cuater ) L (2.46)
’ ice K. water .

In situations where this is too restrictive , we may prefer an implicit scheme.

However, an implicit scheme will require some clever way of deciding which

enthalpy range each grid point should be in at the next time step. We now

describe two ways of achieving this.

Nonlinear Gauss-Seidel iteration

Consider the PDE

E; = v,,,
where -
v/ Kice v<0 _
"E(w)=7X €(0,pL) v=0, - . (2.47)
U/Kwater + pL v>0 ’ '
and so. )
K;..E E <0
v(E)=< 0  Eec|o,pL] . -(2.48)

Kwater(E - pL) - E> pL -

Suppose we seek an iterative solve for the impliéit scheme

EpY - p (3 - 200 ) = B (2.49)
A Gauss-Seidel solver will solve the j®* equation for the j** unknown using
the latest available values of all other unknowns. Let us rewrite (2.49) as

E;H_l + 2/.LU?+1 = E;" + u ('U;ljll + v?_tll) . o (250)

So if we solve for each j in order, we can iterate to find v;-’“ using Gauss-

Seidel as follows:

EP 2l = BT+ p (V81 +00,) ,b -~ (2.51)

at the p™® iteration. Now the right hand side contains only known terms.
However, we still have the nonlinear dependence E(v) given by (2.47). Now
let '

w;.’ = E]" + (v;’fll + v;.’H) ) | | (2.52)
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So 9§ is known at the jt equation of the p** iteration for v;-’“. So (2.51) is
just _ ‘

+1 +1 _
EFT 4 2u0f = F. (2.53)

Now examine the three possibilities for 'u;-’+ : ice, mushy or water.
Ice

: ’U;-H.; S 0 = E;-H-l = U?+l/kice S. Oa
and then (2.53) gives ' |

vf“/f(ice +omftt = ¢f<o, (2.54)
and hence ' - : ' o
(A o '
v = — (2.55)
2# +~1/Kice
Mushy |

=0 = 0<E" <)L,
‘and then (2.53) gives’ o ' S
‘ 0<yf=E"" <pL. (2.56)
Water

W20 5 B = R+ 9L
and then (2.53) gives ’ o

i = Ruaer + pL+2u0]" 2 pL, (2.57)
and hence - d)"’ .
AR £ Rk el (2.58)
2:“’ + 1/I{wa.ter g
Thus, the sign of and size of 97 determines v;.’“.' That is
(P . P ’
2M+1/Rice wj < 0
=40 Y2 € [0,0L] . (2.59)
1/;”2. —pL p
\‘ 2ﬂ+1/kwatcr . 1[)] > pL
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This Gauss-Seidel idea is widely used, since it avoids the need for computing
derivatives. The convergence of such a scheme may be accelerated using
“successive over-relaxation (see [3, 20], for example).

Smoothing methods and Newton iteration

An alternative to the trial-and-error methods for temperature recovery is to
make use of smoothed functions again. That is, we replace the dlscontlnuous
functions E and v from (2.40) and (2.41) with

B(T) = (1 = Bu(T))peweT + Fo(T) (puater + L), (2.60)
and ‘ . . : _
To(T) = (1 = Ho(T)) KieeT + Ho (T) Kowaer (T), (2.61)

where H is a smoothed Heaviside, such as those in Examples 2.1 and 2.2,
and €, o are smoothing radii in temperature. We then solve (2.42), for E,
and the temperature recovery may then be achieved using a Newton iter-
ation: This idea is particularly helpful for implicit time-stepping schemes,
where Newton methods are commonly employed. In Figure 2.13, we plot a
smoothed enthalpy function, taking ¢ = 5, and using the smoothed Heaviside
from Example 2.2.

x10° Enthalpy versus temperature
8 T T T T

ar -+« exact enthalpy E(T)
— smoothed enthalpy

enthalpy E
©

2 s " L . " 2 " L L
=100 -80 -80 -40 -20 0 20 40 80 80 100
temperature T .

Figure 2.13: Enthalpy and smoothed enthalpy as functions of temperature.
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We leave the investigation of the effect of such ‘smoothing strategiés on
solutions to the enthalpy formulation of the Stefan problem as an open prob-
lem. :

2.2.4 Mathematical justification for the enthalpy '
method :

Here we follow Alexiades [3] and Crank [20] to show that the Stefan condition
at the interface is satisfied by the weak solution to the enthalpy problem

E,=v, 2€(0,D),te(0,7), o

v(0,t) = vo, v(D,t) = vy, ' (2.62)
Elt=0 = E(T"init)v

Here, if T is temperature, then E(T') is the enthalpy, and v(T') is the Kirchoff

variable. Now consider the diagram shown in Figure 2.14. '

t
A
T >
Co
y C1
¢= oh 07
V=1 V=11
. C
0 ;1 > 2
0 ¢ = 4(2,0)

Figure 2.14: The (z,t)-plane for the enthalpy formulation.

The curve I" has 2 = s(t) being single-valued, and T = 0 with T continu-
ous across the interface. First consider the whole region G = (0, D) x (0,7),
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and test functions ¢(z,t) € C®(G), with ¢(0,t) = ¢(D,t) = ¢(z,7) = 0.
Then we define a weak solution to (2.62) to be a pair of functions £, v which

satisfy v
// OF; — ¢v,, dz dt =
G .

Now, integrating by parts, or simply noting that
OFE, = (pE), — E¢y and ¢v,, = (v, — v¢,), + vP.., (2.63)

we see that

// E¢+vo,, dz dt = // (¢E qf)vz vp,), dz dt. (2.64)
Applying the boundary and initial conditions, we find
f fG E¢t + U(,bzz dzdt = — ng ¢(Z, O)E(T:Lm.t) dz

. ' . (2.65)

=+ fOT v1¢z(D7 t) - ’UO'(;ZSZ (07 t) dta

and work with this as our weak formulation. It remains to show that a so-
lution of (2.65) satisfies the Stefan condition on the moving interface. To do
this, we integrate in a similar fashion over the two domains G, Gz, shown in

Figure 2.14. The curve I divides G into G; and Gg, which we consider to be
ice and water respectively.

In G,, we have

// E¢; +vg,, dz dt = / (pE), — (¢v, —ve,), dzdt.  (2.66)
G . Gy :

Now, the integration this time requires use of Green’s Theorem in the Plane
(or, for higher dimensions, the divergence theorem). Recall

[REECLE //@_@hd

where R is positively oriented in the (z,y) plane. So the right hand side
of (2.66) is given by )

RES = —§, 0B dz + ($u, —vg,) dt,

= — [ (2,00 E(Tie) dz — [ v06:(0, 1) dt

— [o-(¢E) dz + (¢v,) dt,
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.since v =0 on I'. Thus we have, for G1,
[ o, Bou+vpdzdt = =[5 6(2,0)B(Tinsr) d2

T v0gs(0,8) dt — [._(E) dz + (¢v.) dt.
(2.67)

Now, for the water region Go. Arguing in the same way, we get
[ Jo, Edetvbssdzdt = — [ &2 0)E(Tini) dz -
+f v1¢z(b,t) dt + [, (¢E) dz + (¢v,) dt. |
' : (2.68)
Now, adding (2.67) and (2.68), and letting I'",I'* — I', we see that
f fG'1U02 E¢; + U¢zzi dz dt = —-.foD &(2,0)E(Tinie) dz'
+ fy v16:(D, 1) — v, (0,2) dt | (2.69)
+ Jp [BEIT dz + [pu.]L dt.
Now, comparing (2.65) and (2.69), we have

/ [PE]T dz + [¢v,]T dt =0,
- Jr .

and hence, since ¢ and its derivatives are continuous across the interface,

/F ¢ (BT dz v+’[vz]t dt) = 0. (2.70)

Finally, since ¢ is an arbitrary test function, and since z = s(t) on I', we
have that

ds _ [t
dt (BT’

which is precisély the Stefan condition.

(2.71)
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2.2.5 Numerical results and convergence study

Now, we illustrate some interesting and important features of the enthalpy
solution to the Stefan problem, which will help us to explain the behaviour
of capturing methods for more complex problems. Firstly, we consider the
problem (2.28) with initially all liquid at 7" = 3, and subject to tempera-
tures T = —2 at z =0and T = 3 at 2 = D = 1. Thus, a freezing front
propagates through the domain. That is, our boundary and initial conditions
are ' ‘
Tyot = —2, Ttop =3, Tinit = T;Eop, 3(0) =0.

The physical parameters we use are shown in Table 2.1.

Table 2.1: Constants for the Stefan problem

| Symbol | Interpretation | Typical value | Units (S7) |

P) density ‘ 1000 kg/m3
Cwater specific heat capacity of water | 4200 JK kgt
Cice specific heat capacity of ice 2000 JK kg™t
Koyater thermal conductivity of water | 0.55 Wm tK™1
Kice thermal conductivity of ice 2.2 Wm 1K1
L specific latent heat of freezing | 3.3 x 10° Jkg™t

For the results shown here, we have used Forward Euler time-stepping,
with NV = 20 grid points. In Figure 2.15, we plot a succession of temperature
profiles in increasing time, together with the steady-state solution to the
problem, which has the interface at s = 8/11 ~ 0.73. Evolution towards
the steady-state (the dots) is apparent. In Figure 2.16, we plot the interface
location as a function of time. The stepwise behaviour of the location is due
to the definition that we choose. For simplicity, we take the interface location
to be the grid point to the left of the first positive value of temperature. So
each jump is by precisely one grid point. We have also plotted the interface
location for the associated Neumann freezing problem. While our problem
is on a finite domain, we expect the influence of the boundary condition at
z = D to be small for small times, and thus the interface location to behave
like that of the Neumann solution for small times. Indeed, Figure 2.16 shows
good agreement between our computed s(t) and the Neumann solution s(t) =
BV/t, for small ¢. : :
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Figure 2.15: Evolution of numerical results using the enthalpy method.

In Figure 2.17, we show an important feature of enthalpy method so-
lutions to Stefan problems, namely the stepwise temperature history at a
point. This an non-physical effect introduced by the rapid adjustments and
subsequent relaxations of the temperature each time the interface advances
by one grid point. This is explained in more detail in [3] (Chapter 4).

Finally, in Figure 2.18, we plot the interface location versus time for
two travelling wave solutions to the Stefan problem. For each of the two
wave speeds ¢ = 1,3, we plot solutions obtained using N = 80,160 grid
points, with num = 400, 1600 time-steps, respectively. Convergence to the
correct travelling wave solution is suggested by the diagram, but a numerical
convergence study is necessary to demonstrate this convincingly.

In Tables 2.2-2.3, we plot the computed errors between exact travelling
wave solutions with speeds ¢ = 1,3, and the enthalpy method solution, and
* denote the errors in temperature and interface location by ||Er||: and || E, ||1
respectively. In each case, we use explicit time-stepping, with u = k/ h?
fixed, as we use a second order scheme. The number of grid points is N, and
num is the number of time steps. ~We quantify the errors by calculating
numerically the norms of the errors made in the temperature T, and the
interface location s. Specifically, we compute the time-averaged quantities
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Figure 2.16: Evolutlon of the 1nterface using the enthalpy method, together
with associated Neumann result.

Table 2.2: Errors for the enthalpy method, Forward Euler time-stepping,
with ¢ = 1.

| N [ num | |Er|: | Factor | |E]li | factor ]
20 | 25 | 0.8604 6.3693E-8
40 | 100 | 0.4259 | 2.02 | 2.7862E-8 | 2.29
80 | 400 | 0.2057 | 2.07 | 1.3431E-8 | 2.07
160 | 1600 | 0.1011 | 2.04 | 6.3753E-9 | 2.11

defined by

num

N V . .
ZZ Zya ezact(zj>t )| »

|Erll: =

Zl’-‘

L
um

num

[1Eslls = -——ZIS ) = ctnl.

We notice that, despite a second order spatial discretization, the we do not
have second order accuracy. T he errors decrease by a factor of about 2
each time the grid spacing is halved rather than a factor of 4. This is to be
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Temperature history at a point, by the enthalpy method
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Figure 2.17: Temperature history at the point 2z = 0.5.

Table 2.3: Errors for the enthalpy method Forward Euler time-stepping,
with ¢ = 3.

[ N [num | ||Er| | factor | [[El; | factor
20 | 25 | 1.4917 . 4.2443E-8 .
40 | 100 | 0.7783 | 1.92 | 2.0526E-8 | 2.06
80 | 400 | 0.4283 | 1.82 | 1.0002E-8.| 2.05
160 | 1600 | 0.2264 | 1.89 | 4.8610E-9 | 2.06

expected; due to the stepwise temperature histories, and the fact that we have
not dealt with the interface explicitly, lower order errors are introduced near
the interface. Further details are available in [3]. Methods are available for
improving the accuracy of the computed interface location [65], based upon
the known phase-change temperature, and extrapolation methods. Second
order accuracy 1n the 1nterface locatlon may be achieved, but not in the
temperature. :

- Inour ﬁnal convergence study in Table 2. 4 we show the errors calculated
- using the enthalpy method for the Neumann freezing problem, where we
compute on 2z € (0,1), giving the exact Neumann solution as the boundary
condition at z = 1. The factor by Wthh the temperature error decreases is
now around 2.6.
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x |0'7 Interface location versus time for exact and numerical travelling waves
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Figure 2.18: Computed interface ]ocatlon for travelling wave conditions, with
c=1and c=3.

Table 2.4: Errors for the enthalpy method Forward Euler tlme-steppmg, for
a Neumann problem.

N | num [ [[Er] [ factor | [|Es|l | factor ]
20 | 200 | 0.0595 0.0145
40 | 800 | 0.0229 | 2.60 | 0.0068 | 2.13
80 | 3200 | 0.0087 | 2.63 | 0.0033 | 2.06
160 | 12800 | 0.0034 | 2.56 | 0.0016 | 2.06

2.3 The Porous Medium Equation
In this secﬁion, we discuss some results and features of the Porous Medium

Equation. This is a nonlinear diffusion equation which arises in fluid flow and-
other applications, which may result in the appearance of a moving interface.

2.3.1 Examples and applications

Consider the flow of an isothermal, ideal gas through a porous medium. The
flow obeys Darcy’s Law (see, for example [8]), which says that the volumetric
flow rate of the gas through the medium is proportional to the pressure
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gradient in the gas. Spe(nfically, the volumetnc flow rate, known as the
Darcy ve10c1ty, is given by

w=-2vp, (27
1

where p is the gas pressure, « is the permeability of the porous medium, and
u is the viscosity of the gas. For illustration in this section, we shall only be
concerned with one-dimensional problems, so that

ok : v
U= ——p,, (2.73)
M .
where z is the space variable. Now, conservation of mass requires that

(99 + (pu), =0, (2.74)

where ¢ is the porosity of the medium, which we will assume to be constant,
and p is the density of the gas. Now, the ideal gas law relates pressure and
density such that

R _ =

where R and M are the universal gas constant and the molar mass of the
gas respectively, and T is the temperature. Thus, for isothermal gas flow
through a porous medium, we find that -

pr = c(ppz)z, (2.76)

for a constant c. This is a nonlinear diffusion equation with a variable diffu-
sion coefficient p. Notice that it will be of parabolic type, provided that p > 0.
Next, we consider problems where the diffusion coefficient may vanish.

Consider the motion of a thin liquid droplet on a solid substrate, shown in
Figure 2.19. In the absence of any air flow driving the motion, and assuming
that surface tension effects are negligible, then the droplet will spread under
the effect of gravity alone. The free surface of the droplet is denoted y =
h(z,t), and this surface meets the substrate at z = L(t) on the right hand
side. The thin film approximation of the Navier-Stokes equations gives an
equation for the height h of the droplet (see [53]):

ht—(h3hz)z=0. - . - (2.17)
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Figure 2.19: A thin droplet spreading under gravity over a solid substrate.

Here, finding the position of the wetting front L(t) will be part of the problem.
We will see similar equations for conservation of liquid mass flowing through
porous media in later chapters. Notice here that the equation ceases to be of
parabolic type at the point z = L(t), where h = 0. This type of degenerate
. diffusion problem can lead to solutions with singular gradients.

Both (2.76) and (2.77) are examples of the Porous Medium Equatlon
the general form for which is

% (u"uy)z, ‘ (2.78)

where n > 0. In this thesis, we are particularly interested in problems
with n = 3. The spreading droplet example above suggests that equations
of this type admit solutions with compact support. Next, we will describe
some well known analytical solutions.

2.3.2 Analytical solutions

Here, we will mostly concentrate on the Porous Medium Equation (2.78) with
n = 3. First of all, let us consider the steady-state problem. That is,

(WCug)e=0. : (2.79)
Writing this as .

we readily obtain a general solution

u(z) = A(L - 2)'/%,
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for constants A and L. Further, the solution

u(z) = { A(L Bx)” ! ° ; i: (2.80)

satisfies (2.79) in a classical sense everywhere except the free interface z =
L. A sketch is shown in Figure 2.20. The derivative u, is undefined at
x = L, and we regard this solution as a weak, or generalized solution. Weak
solutions satisfy an integral form of the equation, in the same way as weak
solutions to the Stefan problem. We will define a weak solution of the time-
dependent problem shortly. For now, suppose we want to satisfy a boundary
condition u(0) = uo, and that we must have a total “mass” W in the system.
That is,

/OLu(:c) dw-é Ww.

Then the constants A and L are easily found:

o 5\ 1/4
“ L= §KV_, P A
. - 4ug 5W

u(z) = A(L — x)'/

T » T

Figure 2.20: A solution of the steady-state Porous Medium Equation.

Now let us consider the time-dependent problem,

uy = (udg)s, | | (2.81)

and the sketch of a solution profile in Figure 2.21. Again, we seek solutions
with compact support. Any such solutions with discontinuous derivatives
at the moving interface must be regarded as weak solutions. Such weak
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»

Figure 2.21: A solution of the time-dependent Porous Medium Equation.

solutions are discussed in detail by Elliott and Ockendon [23], and we will
not reproduce their work here. We simply state, 'followiﬁg the summary
given in [43], that a weak solution of the problem (2.81) is a continuous,
non-negative function u(z,t) for all ¢ > 0 and for all z, such that

T oo ,,3 00
/ / %—wm + wy); dx dt +/ Y(z,0)u(x,0) dz = 0, (2.82)
/0 —00 —00

for all test functions ¢ which vanish at infinity and ¢ = T', and which have
continuous first derivatives. We shall not discuss the theory of weak solutions
further. Rather, we now seek to construct solutions.

Assuming that we can find a solution with compact support, such as that
shown in Figure 2.21, what structure will it have near the moving inter-
face © = L(t)? One way to answer this is to suppose that the solution to
equation (2.81) takes the form ' ‘

un~ f(t)(z—-L), r>0, as z— L(t)". (2.83)
Substituting, we have
fllz=L) 4+ fr(x— LY L(t) ~ fir@dr-1)(z - L)4f‘2.

Then, for a nonzero, finite speed L(t), we require the balance

. 1
r—1=4r-2, = r=§.

Alternatively, a more formal approach considers co_nservation'of “mass” at
the interface (see [54], for example), which gives

L) =— lim (), | | (2.84)

z—L(t)~
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Substituting the form (2.83) again gives r = % for a nonzero, finite speed; So
the solution needs to have this certain singularity structure in order for the
interface to move. :

Barenblatt-Pattle “Spreéding blob” solutions

The Barenblatt-Pattle solution of the Porous Medlum Equation is a 31m11ar1ty

solution of the form z

U(Q?, t) = taF(n), n= t_ﬁ
A number of authors have investigafed the behaviour of such solufions; here,
we follow the introduction given by Lacey et al [43]. The values of « and 3 are
- found by the conditions that the solution be self-similar, and that the total
mass contained within a “blob” is conserved. For the general equation (2.78),
we find

—1 1
T A= 2+4n
For the case n = 3, the solution is
3\1/3 ,_ _1;2 1/3 .
u(z,t) = () "8 (az - tm) , el < at?/s, (2.85)
0, x| > at,

where a is a constant depending on the total mass in the system. In Fig-
ure 2.22, we show some solutions with a = 1, for various times, and the
spreading blob shape is clear. =

Travelling wave solutions

As for the Stefan problem, we can also construct a travelhng wave solution.
For a travelling wave speed ¢, we seek solutions to (2.81) of the form

’LL(.’I?,t) = f(g), §=z—ct
The problem reduces to the ODE
__cf/ = (foI)/,

which has a solution

F(&) = (=3c§)"%.
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Barenbiatt-Pattle “spreading biob” solutions of the PME, with a=1
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Figure 2.22: Bar_enbla’ct-Patfle sQlutions of the Porous Medium Equation.

Thus, our travelling wave solution is

‘ —3c(x — ct’))l/3 r<ct
z,t) = ( 2 ’ 2.
we={ § pose (2.86)
Now, as before, we continue by describing numerical methods for the solu-
tion of Porous Medium Equation interface problems, and will return to our
analytical solutions to evaluate the performance of these methods.

2.3.3 'Numerical methods-

The moving interface problems arising from the Porous Medium Equation re-
quire special care when developing numerical schemes for their solution. The
singular gradients at the interface may introduce problems, while conserva-
tive schemes are key to finding a solution with the correct interface velocity.
- Consider the equation (2.81). The gradient u, becomes singular at the inter-
face where u = 0. To resolve the sharp interface, adaptive gridding may be
employed to add resolution near the interface. However, we aim to develop
a capturing method which, like the enthalpy method for the Stefan problem,
does not require any explicit handling of the interface. One approach, which
has appeared for similar problems in the fuel cell literature (see [50, 51},
for example), is a computational regularisation. This amounts to replacing
equation (2.81) with

up = ((u3+n)ux)z, - B (2.87)
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where 7 > 0 is a computational parameter. The effect of this is to remove
the degeneracy and singularity from the problem at u = 0, as the diffusion
coefficient remains positive. Thus, the problem remains strictly parabolic,
and the sharp interface is smeared out. As an alternative, we consider the
method described by Evje and Karlsen [25]. '

Consider the problem

uy = (udug),, 0<z<1,t>0,
u(x 0) = uo(z),
~uug|(0,) = Qr,

—Uu Uz| 1y = @R,

(2.88)

where Q1 g are fluxes at the left and right hand end points. Now consider
_ a finite difference discretization of the problem, with time-step k, h = 1/N -
and U} is the approximation for u((j — 1)h, (n — 1)k), for j = 1,..,N + 1.
In [25], it is stated that a naive discretization of the kind

_U;H-l _ U]n-{- % {(U +Uy+1)’3 (U}‘flh—UJT'l)
- (Y’ (U?_f?"l)}, i=2.N,

will not necessarlly result in a conservative scheme. The alternative idea
presented in [25] is to rewrlte the problem as ' '

(2.89)

= Z(u Yoz, 0<z<1,t>0,
U(Q?,O) = ’U,O(QI), '
, A 2.90
~Hu)af 0 = Q. (2.90)
—:(ala,n = Qr,

and then discretize, using standard centered differencing for (u*).,. We now
show how a conservative scheine results, using a ghost point method for the
boundary fluxes. For illustration, we use Forward Euler tlme—steppmg, but
the same argument will follow for implicit schemes. =

Step in time using the following scheme:

Upt = U7+ 5 (U - 20D+ OR)Y), G=2 N, (29))

where p = k/ h?. Now derive discrete boundary conditions, using a ghost
point method: ‘
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Urtt = Ur+ 5 (U - () )+2hQL
» (2.92)
L URS = U+ 8 (UR) - U)*) - 25Qn
The scheme must conserve “mass” at each time step. That is, we must satisty

/01 u(z,nk) dz = /01 u(z, (n+ l)k) d:v,

in a discrete sense. Suppose we require that our scheme conserves mass using
trapezoidal approximation for the integral. Then we have

mass™t! = AUt 4 h (Z;V:2 U;’“) AUNEL,
= {Ur+2pQu+ (U - (U;%)‘*)}
+h Y00, {U" + & ((Upy)* = 2(Up +1)4)}

+2 {8 ((UR)* = (UR 1)) + URis — 25Qr}

MID‘

+h(Sh,U7) + EUR + k(Qr — Qr)
+hY {(US‘)“ — (U + 9L () = 2Up) + (UR)Y)

U = (UR )4}
That is,

mass™t EU" +h (Z U") + hUN+1 + k(QL -Qr)+S, (293

where

S = hi{ (Ué‘)“—(Ui‘)“

(U = 2U7) + (U)Y) + (UR)* — (UR) ).
. ~ (2.94)
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We recognize the sum in (2.94) as a telescoping sum, and find that S = 0.
Hence, equation (2.93) gives

‘mass™t! = mass” + k(QL — Qr), (2.95)
which says that mass is conserved.

Profiles obtained using conservative and nonconservative schemes for q:(u:’ul)x
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Figure 2.23: Evolutlon of proﬁles given by conservatlve and non- conservatlve
schemes applied to u; = (u3uz)

In Figure 2.23, we show a succession of profiles obtained numerically using
a conservative scheme, and a non-conservative scheme, applied to the same
problem. While both give solutions with compact support which “look rea-
sonable”, the solution obtained using the non-conservative scheme is clearly
wrong. For problems with degenerate diffusion-type terms in later chapters,
we shall use Evje’s spatial discretiaztion to help ensure conservative schemes.

2.3.4 Numerical results and convergence study

In Tables 2.5-2.6, we show numerical convergence studies for solutions to (2.81)
on —0.5 < z < 0.5, with travelling wave solutions from (2.86) as initial and
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boundary conditions. We use Evje’s discretization (2.91). Specifically, we
compute the time-averaged errors in computed values of u, and the interface
location L, defined by

num N

11 .
”Eulll = MNZ Z lu(25,tn) — Uezact(25, tn)l ,

n=1 j=1

num

llEL||1 =— z | L(tn) — ctnl .

As with the solutions of the Stefan p_roblem, we have used a second order
capturing scheme to approximate solutions of a moving interface problem,
in which we do not treat the interface explicitly at all. Again, we do not
achieve second order accuracy, but a factor of around 2.4-2. 6 decrease for
each halving of the grid space is clear.

Table 2.5: Errors for Evje’s method, Forward Euler time-stepping, for the
Porous Medium Equation on —0.5 < z < 0.5, with p=0landc=3

[ N [num| [IEJ | factor | |EL||1 | factor
20 50 | 1.348E-2 2.122E-2
40 | 200 | 5.217E-3 | 2.58 | 1. 165E-2 1.82
80 | 800 | 2.034E-3 | 2.56 | 5.689E-3 | 2.05
160 | 3200 | 8.297E-4 | 2.45 | 3.087E-3 | 1.84

Table 2.6: Errors for Evje’s method, Forward Euler time-stepping, for the
Porous Medium Equation on —0.5 < z < 0.5, with 4 = 0.5 and ¢ = 0.5

[ N [num | [EJi [factor | JEL]l: | factor |
20 | 100 | 7.058E-3 2.071E-2 |
40 | 400 | 2.855E-3 | 2.47 | 1.151E-2 | 1.80
80 | 1600 | 1.140E-3 | 2.50 | 5.723-3 | 2.01
160 | 6400 | 4.652E-4 | 2.45 | 3.040E-3 | 1.88
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Chapter 3

Nonisothermal, steady-state
phase change in porous media

In this chapter, we describe the steady-state model problem of phase change
in a sand pack, as presented by Udell [64]. His experimental results are ob-
tained by partially saturating a sand-filled tube with water, and then heating
from the top, while cooling from the bottom, and measuring temperatures
along the height of the pack. At steady-state, the system supports fluid in

z heat

4
z=D

vapour
2=l

two-phase

liquid

z=0

Figure 3.1: Udell’s experiment.

the pore space in one of three configurations:
1. Only vapour throughout the entire pack.

2. A vapour-only zone above a two-phase zone in which both liquid and
vapour exist.

3. A vapour-only zone above a two-phase zone, with a liquid-only zone
underneath.
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A three-zone system is shown in Figure 3.1. Udell [64] presents experimen-
tal results for the three-zone system, where the two-phase zone is identified
as the almost isothermal region between two single-phase regions with lin-
ear temperature profiles. He then presents an analysis of the two-phase
zone only, under the assumption that it is isothermal. We can use Udell’s
steady-state two-phase zone model as a starting point, which can then be
extended to the free interface problem for a two or three zone system. A
disjoint-domain computational method for locating the interfaces in a one-
dimensional, steady-state, three-zone (vapour/two-phase/liquid) system is
described by Bridge et al [15]. It is worth noting that their model relaxes
‘the popular assumptions of isothermal two-phase zones and phase change
only at the boundaries, and we wish to keep temperature and condensation
rate effects in this work.

Motivated by the fuel cell setting, where regions of liquid water only do
not occur [12, 21, 56, 58, 70], we will concentrate here on a two-zone system
which consists of a two-phase zone and a vapour-only zone. We present
a computational method, based on that in [15], to compute the interface
location in such a steady two-zone system. The numerical results obtained
from this method will be used as benchmarks with which we will compare the
results from the unsteady computations to be described in the next chapter.

Also in this chapter, we consider the method of Residual Velocities, pro-
posed by Donaldson [22] for the steady-state Stefan problem and described
briefly here in Chapter 2, and show how this method may be used to compute
steady-state solutions to our model phase-change problem. '

3.1 Mathematlcal formulation of the model
problem

In Figure 3.2, we show a schematic of the basic setup, as used by Udell [64].
The porous layer is initially saturated with a certain amount of liquid water,
then heated from above and cooled from below. A steady-state is realised,
with two distinct zones appearing. In the two-phase zone, z € (0, L), liquid
and vapour coexist in the pore space. In this region, the liquid is driven
upwards by capillary pressure, while the vapour is driven downwards by a
vapour pressure gradient. In the vapour-only region, z € (L, D), the water
vapour is stationary. A primary goal of the works by Udell [64] and Bridge
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heat

vapour only

two-phase

cool

‘Figure 3.2: A two-zone system for Ud_ell’s experiment.

et al [15] is to locate the interface z = L. We note that the model presented
in {15] assumes a constant vapour density throughout the two-phase and -
vapour-only regions. Here, we allow for compressible vapour, in accordance
with the Ideal Gas Law. The method we use is. then adapted from that
used in [15]. A list of physical constants and parameters used in our model
appears in Table 3.1.

In order to locate the interface, we cons1der the saturation s through the
porous layer. The saturation is defined by

s volume of pore space occupied by liquid Water (3.1)
T - volume of pore space ' N

Therefore, a liquid-only region (which we do not consider here) has s = 1, a
vapour-only region has s = 0, and a two-phase region of vapour and liquid
has 0 < s < 1. In this model, we assume that s is continuous throughout the
porous layer, and that at the interface 2 = L, we have s — 07 as 2 — L™.
Now, we formulate a model for the saturation s (the liquid volume fraction),
and the temperature T, and their variations in z, the height up the porous
layer. We need to consider energy conservation and mass conservation in
each of the two zones. First, we consider the two-phase region 0 < z <, L.
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Table 3.1: Constants for Udell problem

| Symbol | Interpretation | Typical value | Units (S]) |
¢ ' porosity 0.38 ' -
K permeability : 6.4 x 10712 m?
Pe liquid density 100 kg /m3
Co specific heat of vapor 103 J/kg K
ce specific heat of liquid water 4.2 x 103 J/kg K
Ly viscosity of water vapour 2.2 x 1075 kg/ms
I, “viscosity of liquid water 2.5 x 1074 kg/ms
K, thermal conductivity of
vapor saturated medium 1.0 - W/mK
pc mass averaged
density heat capacity product 10° J/K m?
Poap latent heat (water liquid-vapor) 2.5 x 108 J/kg
) capillary pressure scaling 1.7642 x 104 Pa
R universal gas constant _ 8.31 J/mole K
M molar mass of water 18 x 1073 kg/mole
a characteristic vapour pressure 0.19743 Pq
b characteristic temperature 0.03525 K-
q heat flux ~ 103 W/m?

Conservation of liquid mass gives

(plul)z =T. : | (32)

Here, p is density, u is the superficial Darcy velocity, and the subscript !
denotes liquid. The source term I' is the rate of production of liquid water, so
we shall refer to this as the condensation rate. In the same way, conservation

of vapour mass in the two-phase zone reads -

(pvu‘v)zzb_r’ ' ‘ o '(3-3)
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where subscript v now denotes vapour. The term on the right hand side is
the rate at which vapour mass is produced. That is, —I" is the evaporation
rate. Now, conservatlon of energy, neglecting convectlve effects as in 15}, is
given by

O;(IA{T;)Z+h_;a,,I‘, - | ’(3.4)

where K is the effective thermal conductivity of the liquid-vapour saturated
porous medium, and A, is the specific heat of vaporization of water. As
in [15], we will neglect saturation effects on the thermal conductivity, and
assume a value for this mass-averaged quantity. -

The Darcy velocities v, u, are the average volumetric flow rates of liquid
and vapour, respectively, through the pore space. Darcy’s law gives relations
between the velocities and the pressure gradlents in the two fluid phases as
follows:

P (@) +pg), o (39)

" (p, +pg). | - (36)

v .

Uy = —

Here, x is the permeability of the porous medium, p; is the liquid pres-
sure, p is the vapour pressure, and g is the acceleration due to gravity. The
quantities x,; and k,, are the relative permeabilities of liquid and vapour
respectively. These relative permeabilities account for the decrease in mo-
bility of one phase due to the presence of another, and hence depend on the
saturation s. In particular, we require that k,; is unity when only liquid is
present, and zero in pore space occupied by vapour only. That is, &,; should
~ be an increasing function of s. By similar reasoning, we require that &, is-
a decreasing function of s. Here, we will use the cubic forms suggested by
Udell [64], following the empirical results of Fatt and Klickoff [28]:

Kl = 53,'. _ | (3.7)
Kot = (1—8)% - (3.8)

We now seek relationships between between the pressures and the primary
variables s and T. A major assumption of the model presented in [15] is that
the vapour in the two- phase region is fully saturated. In keeping with this
model we will assume here that the vapour is fully saturated, and that the
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temperature and saturation pressure, ps,; approximately obey the exponen-
tial relation ' :
Psat(T) = ae”, : : (3.9)

where the constants a and b are fitted to data from saturated steam tables
in [1], for example. Then, in the two-phase zone, we take p = psar(T), as
explained by Baggio et al [7]. Now we present a constitutive law for the
liquid pressure. At the pore scale, the interfacial tension between liquid and
vapour phases gives rise to capillary effects. The capillary pressure, pe, is
defined as the difference between the vapour and liquid pressures,

pe=p-—p. ©(3.10)

As shown by Leverett [45], the capillary pressure is found to be a function of
the saturation. The functional form for the capillary pressure, p. = p.(s) is
known as the Leverett function. Udell [64] correlates this Leverett function
to write the capillary pressure as

pc(s) =4 J(s) L (311)
where J(s) is given by

J(s) = 1417(1 — 5) — 2.120(1 — 5)* + 1.263(1 — 5)°, (3.12)

5=a(?)§,
K

where o is the vapour-liquid interfacial tension, and ¢ is the porosity of the
porous medium. Also, we should note that the function J(s) given in (3.11) is
an empirical relationship which will depend on the particular porous medium
being used. The correlation given in [64] is for a particular type of sand.
However, in the absence of another model, and to allow comparison with our
results, we will continue to use this model. :

Finally, in the two-phase zone (and indeed throughout the entlre system),
we assume that the water vapour obeys the ideal gas law, namely

R
= = Pvi, 1
p=gipls (3.13)

and

where R and M are the universal gas constant and the molar mass of water
respectively. The work presented by Bridge et al [15] assumes a constant
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vapour density, but we w1sh to include compress1b111ty due to thermal effects
here. In summary, the two-phase zone conservation equations (3.2)-(3.4),
together with all the constitutive relations and empirical laws, form a second
order system in three unknowns s, T and I'. Furthermore, we can eliminate
the condensation rate I' by summing (3.2) and (3.3), arriving at the system

(25° (& PoatT) = 87(5)) + p1g)
| +R%—LMTT’<1 o (& (psax ) + MapestD) )

(3. 14)
| - (3.15)

Equations (3.14) and (3.15), form a coupled second order, nonlinear system
for the two-phase zone variables s and T, in the region 0 < z < L. The
_system clearly has a singularity and degeneracy at s = 0. In the case of
constant vapour density, Bridge [14] shows that s = O(L —2)"* as z — L™,
and as such, the degenerate diffusion type term requires careful treatment
when constructing a numerical solution.

The vapour-only zone L < z < D is more simple. The temperature is
harmonic, and the saturation is zero everywhere in this zone. Conservation
of mass reads C : _
(pvtty), =0, (3.16)

while conservation of energy reads
0= Tzz, o (317) .

since there is no phase change in the vapour-only region. Again, we assume
that the vapour is ideal, and the system (3.16)-(3.17) can be cast as a system
for the temperature T and vapour density p, in the region L < z < D.
For this one-dimensional problem, exact solutions are available in terms of
the interface location L, the fixed boundary temperature T(D) = Ty, and
the temperature and pressure at z = L*, which we will denote T+ and p*
respectively. The temperature in the vapour region is given by

=T+

T(z) = Tt + —BTL—(

z‘— L),

or

T(z)"= T++}{g—(z —‘L), o (3.18)

k)
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where K, is the thermal conductivity of the vapour-saturated porous medium,
and g is the constant heat flux through the porous layer. Notice that, if the
vapour in this zone is stationary, then the vapour pressure in the vapour-only
region is the solution of a separable first order equation, and is given by

o : —MgKy/Rq
p(z) =p* (%?) : - (3.19)

The vapour density in this region may be written

= (T

These exact solutions will be useful when implementing both the disjoint
domain method described in [15], and the Residual Velocity Method proposed
by Donaldson [22], where we can iteratively solve problems parameterized by
heat flux.

Now we examine the boundary and interface conditions requlred to close
the model problem. We have elliptic problems in two variables in the two
regions, so we shall specify two conditions on the two physical boundaries z =
0 and z = D, and four conditions on the interface z = L. Since the interface

.location L is also an unknown in the problem, we requlre a fifth condition at
the interface. :

At the boundary z = D, we impose a temperature 73, say. Also, since
we consider a closed porous pack, there can be no mass flux across z = D.
Hence, at z = D, we have |

T =T, | (3.21)
Uy =0. - S (3.22)

Now, at the free interface, we require five conditions. First of all, the sat-
uration s is zero. Temperature and vapour pressure should be continuous.
Finally, mass and energy should both be conserved across the interface, so
that the heat flux is continuous, and there is no mass flux across the interface.
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In summary, at z = L, we have the following five conditions:

. s=0, | (3.23)
[Tt =0, (329
=0, (3.25)
(prwg + Pully)” = (Pvuv)+ ) . - (3.26)
N N\~ ~ + ‘ :
(kT - h,,app,,uv)_ - (KTZ) . (3.27)

We note here that condition (3.27) corresponds to a singular evaporation rate
at the interface. At the boundary z = 0 we have an imposed temperature
and zero mass flux, Wthh give '

T=T, - (3.28)
piruy + PuUy =0. ' . (329)

We have specified five conditions at the interface, but we see that a unique
solution will not be available. Imposing the boundary condition (3.29) leaves
the interface condition (3.26) redundant, and a further condition is required.
In order to determine the vapour pressure uniquely throughout the porous
layer, we now impose a global integral constraint on the system. Experi-
mentally, the total water mass in the system can be controlled, and will be
known. Suppose that the fixed water mass per cross sectional area of the
saturated porous pack is W. Then we have the integral constraint

L - . D : oo
/ (spy+ (1 —8)py) dz + / ppdz = W, (3.30)
Jo - ' L -

which closes the system. It is clear that the three control parameters for
the experiment are the temperatures Ty, Ty and the water mass W. In the
next section, we will describe a numerical method which, given these three
parameters, will calculate the location of the free interface z = L.

3.2 An iterative disjoint-’dorhain method

The system we are trying to solve is summarized in Figure 3.3. In [15], an
algorithm is described for solution of the steady-state problem with a liquid
zone, a two-phase zone and a vapour zone, where there are two interfaces
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to find. Here, there is just one interface. There is an additional nonlinearity
in the model here, as we have allowed for compressible vapour. Now we will
describe an adaptation of the existing method to solve our problem for the
interface location L.

=D _/‘T=T1, quz+Pvuu=0
, , mass equation (3.16)
vapour, (p,T) energy equation (3.17)
z2=L _ <— interface conditions -
3.23), (3.24), (3.25),
3.27 ‘
mass equation (3.14)
two-phase, (s,T') energy equation (3.15)
z=0

O~ T= To, prur + pyuy =0
With integral constraint (330)

Figure 3.3: System for steady-state solution of the free interface problem.

Our solution method is parameterized by a heat flux ¢ and the saturation
at z = 0, which we denote sq. Now, if the heat flux across the boundary z = 0
is q, then we have

RTZ - hvappvuv =q, at z=0.
Notice that this then allows us to integraté the_energy equation (3.15) once,

leaving . :
v KT, = hygppoty =g, for 0<z< L. (3.31)

~ Also, taking the zero mass flux condition at z = 0 allows us to ihtegrate the
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mass equation (3.14) once, leaving
o+ Py, =0, for 0 <z < L. : (3.32)

Thus, given g, we reduce the problem in the two—phase zone to a coupled
system of ordinary differential equations,

25% (& (Psat(T) — 6J(5)) + prg)

AL - (& D) + H2548) = 0
S (3.33)
dT M pyae(T) . d ‘ Mgpsar(T)\ _
Kdz + kh vapR T ( 3) dz (psat(T)) + R | T = 4

(3.34)
which will be solved as an initial value problem for s and T, with initial
values s, Tp. This initial value problem in z is solved numerically until s = 0.
This requires some care, since the coefficient s® in the first term of (3.33)
makes the problem singular at s = 0. One approach is to reformulate and
solve for z(s) rather than s(z), which is the method we have used here.
Another approach is to make the change of variables w = s%, which leaves a
regular problem for w. This idea has already been discussed with respect to
numerical methods for degenerate diffusion problems, and will feature again
in the next chapter.

Once we have solved until s = 0, then we stop, and we have found the
interface location L. Then it remains to solve the problem for pressure and
temperature in the vapour region, subject to the remaining boundary, in-
terface and global conditions. Given continuity of temperature (3.24) and
pressure (3.25), we find the values of temperature and pressure just above
the interface, namely T+ and p*. Also applying the heat balance (3.27) at the .
interface, and no mass flux at z = D, we find that the problem (3.16)-(3.17)
has the analytical solution (3.18)-(3.19).

So, given q and s, it is relatively straightforward to solve the system of
equations and find the interface L. However, the condition T =T} at z = 0,
and the global integral constraint on the mass W (3.30) have yet to be
satisfied. The idea is to iterate on g and sg until these two conditions are
satisfied. Suppose that, for given g and sp, we have computed a solution
using the algorithm descrlbed here, which has T = T at z = D, and which.
has a total water mass (per unit area) of W Then, defining

9@@=(§1%), NCED)
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we seek zeros of the function G. Following [15], we compute the zeros using
a quasi-Newton method which uses centered differences for the numerical
derivatives. ' : ‘

3.2.1 Numerlcal results and dlscussmn

Our Newton 1terat10n is seen to be qul'ce sensitive to initial guesses. That is,
we require a good initial guess in order for the iterations to converge. Good
initial guesses in many of our computations have been generated by a method
of continuation, similar to that described by Zwillinger in {75] (Chapter 168).
Suppose we have base values of the control parameters Tp, Ty and W, for '
which we have a numerical solution with a two-zone system, and ‘“target”
values of these parameters, for which we wish to solve a new problem. We
take the values of ¢ and sq corresponding to the base values as initial guesses
for a problem with slightly adjusted values of the control parameters. The
numerical solution of the resultant problem generates new values of g and sy,
which are then used as initial guesses for the next slightly adjusted problem.
This. process is repeated as we gradually adjust the control parameters to
their target values.” In practice, we have adjusted the control parameters
one at a time. That is, we have continued in the parameters Ty, 77 and W
independently.

In Figure 3.4, we plot the numerlcal solutions obtained using the iterative
method, with Ty = 320, T} = 450 and W = 30. Our computations have used
‘the parameter values given in Table 3.1, together with the height of the sand-
pack used by Udell [64], D = 0.254m. Also, we have neglected gravity effects,
so that g = 0, and we will continue to do so throughout the remainder of
this work. Notice that, by (3.19), this gives a constant pressure throughout
the vapour-only region. The interface L ~0.12 is clear, as is the singularity
in the saturation gradient as we approach the interface z — L~. We make
note of the vivid variation in the vapour density p,, which is a feature not
included in the previous work [15]. Also, the temperature in the two-phase
region is not constant. Two-phase regions in porous media are often modelled
as being isothermal, but we are particularly interested in capturing methods
for nonisothermal phase change problems. To underline the effect of not
making the isothermal assumption, in Figure 3.5, we plot a close-up of the
temperature profile, showing a variation of about 7 K over the two-phase
region. The structure of the temperature profile in this region is the same as
that described in [15].
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. Steady-state, compressible Udell problem T1=450, T0=320, q=928.4, s0=0.78, L=0.12
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Figure 3.4: Solution profiles for free boundary problem using the iterative
disjoint-domain method.

In computing the solutions and interface location, we have eliminated the
condensation rate I'. The structure of this function is of interest. Using (3.4),
we calculate the condensation rate for Ty = 320, T; = 450 and W = 30, and
plot T" in the two-phase zone in Figure 3.6. The condensation rate is zero
in the vapour-only region. In the two-phase region, far from the interface,
I is positive, and increasing towards the cold lower boundary, as we would
expect. As we approach the interface L, we know that the condensation rate
becomes singular and negative, signifying an evaporatlon front. The liquid
water that is driven upwards towards the interface evaporates very quickly,
and the resulting vapour is then driven downwards. As in [15], the phase
change is concentrated in a layer near the cold boundary and at a front
at the interface between the two-phase and vapour zones, but is nonzero
throughout the two-phase region. ' '
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' Structure of temperature profile
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Figure 3.5: Close-up of temperature profile for free boundary problem using
the iterative disjoint-domain method. '

In Table 3.2, we show further numerical results for various values of the
control parameters Ty, T1, and W. In the first three rows, we have Ty = 340
and W = 20, while we vary the upper boundary temperature 7. Decreas-
ing Ty corresponds to an decrease in the magnitude of heat flux through
the porous layer. This results in an increase in the length of the two-phase
region, as described in [14].

Table 3.2: The effect of varying boundary temperature.

i' To | T | w q l So L I
340 | 600 | 20 || 1595 | 0.51 | 0.092
340 | 550 | 20 || 1356 | 0.41 | 0.100
340 | 400 | 20 || 542 |{0.21 | 0.145
3751 670 | 36 || 2520 | 0.61 | 0.140
375 | 550 | 36 || 1858 | 0.42 | 0.160
375|500 | 36 | 1541 | 0.35 | 0.174

In Table 3.3, we show results of another numerical experiment. This time,
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Condensation rate in the two-phase zone *
v T T T T

0051

o
2

condensation rate I
o
8

o
Q
]

001k

0.;)| 04:.72 0.83 0.‘04 04.05 Oil)ﬂ 0;)7 0.:)6 04:)9 Of‘ O,II 1
. N . T
Figure 3.6: Condensation rate in the two-phase zone.

we fix the boundary temperatures, and vary the total water mass W. As W
increases, the boundary saturation sq increases, and so does the length L of
‘the two-phase zone, as expected.

Table 3.3: The effect of increasing mass.

(LT (W] g ]| s | L |
320 [ 450 | 15 || 790 | 0.29 | 0.093
320 | 450 | 20 | 848 | 0.42 | 0.105
320 | 450 | 25 | 893 | 0.61 | 0.113
320 | 450 | 30 | 928 | 0.78 | 0.122

Finally, we note that the method may fail, if at the stage of comput-
ing solutions to the two-phase zone initial value problem (3.33)-(3.34), the
computed interface location L is greater than the height of the layer, D.
This signifies that a two-phase zone is supported by the heat flux, without
an accompanying vapour-only region. Indeed, given a heat flux and initial
saturation, (3.33)-(3.34) may be used to easily solve for the saturation and
temperature in a single-zone, two-phase system. Any numerical capturing
method we develop should general enough so that it can deal with both
single and two-zone systems.
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3.3 The method of residual velocities

In this section, we extend the method of residual velocities described in the
previous chapter to our steady-state phase change problem in porous media.
Consider again the problem shown in Figure 3.3. We follow the same idea as
for the Stefan problem, by giving an initial interface position L, and solving
the problem subject to all but one of the interface conditions. The computed
residual in this interface condition will be used as the interface “velocity”,
and we step in “time” to evolve the interface to the correct steady-state
position. There are four interface conditions to satisfy. For illustration here,
we describe the method, using the residual in interface condition (3.24) for
the interface velocity.

For a given L, we solve the boundary value problems on either side of
the interface by using an iterative method which will ensure that the global
constraint (3.30) is satisfied. The method we describe below is again based
on one-dimensional integration which allows us to solve a series of initial
value problems. v

First, make a guess for the heat flux’ g and the temperature just below the
interface T—. Then s and T in the two-phase region come from the solution of
the initial value problem given by the ordinary differential equations (3.33)-
(3.34), together with the 1n1t1al conditions T(L) T, s(L) =0, and solving
on0<z<L.

Using the continuity of pressure (3.25), we have pt = psat(T ), and then
the solution of the vapour—only problem is given by

T(2) =T1+—I€(Z—D), p=p", 0<z<D, . (3.36)

so that q
T =T+ =(L - D).
K

Bearing in mind that we are using (3.24) for the interface velocity, the two
conditions left to satisfy are T(0) = Tpot, and the mass constraint (3.30). So
we iterate on ¢ and T~ until these are satlsﬁed using a quasi-Newton method
again.

Once all the other COIIdlthl’lS are satxsﬁed we define the interface ° ‘veloc-
ity” to be

L)=T"-T", | (3.37)

and step in time using a numerical integrator.
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3.3.1 Numerical results and 'discussion

Evolution to correct steady-state using method of residual velocities
T T T T T

e
@
T

Intertace position L(t)
[
o

e
Figure 3.7: Convergence to correct interface location, using method of resid-
ual velocities, for Ty = 320, T =450, W = 30.

In Figure 3.7, we plot the interface location as a function of “time”, as
given by the numerical solution of equation (3.37), for the problem with
Ty = 320, Ty = 450 and W = 30, for three different initial values of the
interface position. The interface location is seen to evolve and converge to
the correct value L = 0.12, for all three of the initial values. In Figure 3.8,
we plot the computed L(t) for the problem with Tp = 375, Ty = 500 and
W = 36, for which we have previously computed an interface at L = 0.174.

3.3.2 A model problem in higher dimensions

The extension of this method to higher dimensions will require solutions of
boundary value problems on irregular domains, and a consideration of the
interface geometry. As discussed in earlier chapters, front-tracking methods,
even such as this one which solves elliptic problems in the disjoint domains,
often require significant computational effort in remeshing and updating the
interface position. We will not attempt to apply this method to our phase
. change problem in higher dimensions. Instead, we propose a related model
problem which falls into a class of free interface problems which have been
studied by Chen and Wetton [19]. They discuss a class of problems which
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Figure 3.8: Convergence to correct interface location, using method of resid-
ual velocities, for Ty = 375, T = 500, W = 36.

have a free interface which lies between two regions, in each of which a vector
Laplacian type problem must be satisfied.

To start with, consider a generalization of our current model problem
to two dimensions, as shown in Figure 3.9. The five conditions at the free
interface are now '

s=0, (3.38)

71T =0, . (3.39)

It =0, | (3.40)

_(plul + poity)” 0 = (pyuy) T m, ' (3.41)
(RVT ~ huappstes) m= (KVT)+ . (3.42)

where n is the unit normal to the interface.

Now we consider a reduction’ of this model problem, as we seek a prob-
lem of vector Laplacian type in each subdomain €; 5, and interface condi-
tions which are linear in the dependent variables. This class of problems is
amenable to the linear analysis presented by Donaldson [22] for scalar prob-
lems, and extended to vector problems in [19]. In the following reduction of
the physical problem given in Figure 3.9 and (3.38)-(3.42), we replace most
of the physical constants with unity, and remove the nonlinearity in the gov-
erning equations by assumptions and simplifications which leave a related,
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QF (vapour) V.(poits) = 0 '

AT =0

: , . interface
‘conditions

VARVT = hygppyuy) =0 (3:38)-(3.42)

2~ (two — phase)

Figure 3.9: Steady-state system in jhigher dimensions.

but not physical, model. Also, the reduced model lacks the singularity and
degeneracy associated with the physical problem. However, it is with a view
to future work in extending the residual velocity method to our nonlinear
boundary value»problemé‘ that we present this loosely related model.

In the vapour region §2;, we already have Laplace’s equation for the tem-
perature. Furthermore, if we assume that the vapour density is almost con-
stant, then we approximate the mass equation by

Ap=0.

In the two-phase region 2, we seek a saturation equation. Taking a con-
stant relative permeability, assuming a linear function for the Leverett func-
tion J(s), and just keeping the highest order term in s, we replace mass
conservation with . ' ' R

As =0.

Finally, in €2, we replace the energy equation with

AT =0,
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which is equivalent to neglecting phase change effects in this two-phase zone.
We make similar reductions to the interface conditions (3.38)-(3.42), such
that they still loosely represent continuity of saturation, temperature, pres-
sure, mass flux and heat flux. The conditions we propose are:

5=0, S (3.43)

[Tt =0, (3.44)

| pt=T", (3.45)

(VT +Vs)” .n=(Vp)" n, (3.46)
(aVT —Vs)” .n=(VT)* .n. S (3.47) .

A similar model problem has been studied.in [19], and we leave the exten-
sion of this model to include the nonlinear, singular features of the physical
problem as future work.

3.4 Benchmark solutions

The ‘steady-state solutions to the one-dimensional Udell problem that we
have described in this chapter will be useful in validating computed solu-
tions to the time-dependent problem that we will study in the next chapter.
We shall henceforth refer to solutions generated using the disjoint-domain
method here as benchmark solutions. We will check that solutions of time-
dependent problems with the same values of Ty, Ty and W, with no mass
flux across the physical boundaries, evolve to the correct steady-state. The
implementation of the interface capturing method that we develop in the
next chapter benefits from’ a relatively straightforward extension from one
dimension to two dimensions, and our benchmark solutions will also be used
to validate solutions to the two-dimensional problem, in cases where we give
two-dimensional initial data, but one-dimensional boundary data.
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Chapter 4

The M2 mixture method. for
the transient Udell problem

In this chapter, we describe the time-dependent extension of the steady, one-
dimensional phase-change problem presented in Chapter 3. We carefully
derive the conditions on the moving interface, and show that these will be
difficult to implement in disjoint-domain numerical solution methods which
involve front tracking. Clearly, front capturing methods appeal for this type
of problem. We shall describe a reformulation of the problem over a fixed
domain, in which the interface conditions are not explicitly imposed. This
formulation is based in part on the mixture formulation presented by Wang
and Beckermann [68], who implement a numerical solution method for the
case of an isothermal two-phase region. The convergence of such numeri-
cal schemes for nonisothermal phase change in porous media has not been
well demonstrated in the literature; owing to the lack of exact solutions of
such problems. We describe the finite volume solution of the nonisothermal
mixture problem, and demonstrate the validity of this method by establish-
ing exact similarity solutions for reduced model problems, and presenting
a numerical convergence study. We shall name our new reformulation and
solution procedure.a the “M2” mixture method.

4.1 Mathematical formulation of the model
problem. |

Here, we present a model based on the time-dependent extensions to the
steady-state conservation equations (3.2)-(3.4), and (3.16)-(3.17). [Firstly,
- we consider the two-phase zone 0 < z < L(t), where the interface location is
now a function of time. In this region, we have conservation of liquid mass.
The mass (per unit volume) of liquid in a control volume is ¢p;s, where ¢ is
the porosity of the medium, p; is the liquid density, and s is the saturation,
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as before. Then, conservation of liquid mass is given by

(¢pis), + (o), = T, (41)

where, as before, u represents the Darcy velocity, and T is the condensation
rate. Similarly, conservation of mass for the vapour phase is given by

(¢,0v(1 - S))t + (pvi’lv)z = —I. (4.2)
The'énergy equaﬁion is now
(72) Ty = KTy, + hoopl, (4.3).

with a mass averaged product of density and heat capacity appearing. We
assume here that the dominant density-heat capacity product is that of the
porous medium, such that we can neglect variations in this quantity with
saturation. Certainly, this will be true for small values of saturation near the '
interface.

As in the steady-state problem, we can eliminate the condensation rate
between the three conservation equations to give conservation of mass as

6 (015 + po(1 = 5)), + (pr + pyty), =0, - (44)

and R :
(W) Ty = KT, — hyap ( (¢pu(1— 8))e + (Pvuv)z ) (4.5)

Again, we have a coupled system for the two unknowns s and 7' in the two-
phase zone 0 < z < L(t). :

In the vapour-only region L(t) < z < D, there is no condensation, and
conservation of mass gives ’

: (¢pv)t + (pvuv)z =0, (4.6)

and conservation of energy is given by the heat equation with no source term:

(7) T. = KT... e

We now have parabolic systems in two unknowns on either side of the moving
interface z = L(t), and, as such, we require five conditions to be specified
on the interface. The first three conditions are that saturation is zero, the
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temperature is continuous, and the vapour pressure is continuous, giving the
conditions :

s=0, (4.8)
[T =0, S (4.9)
[plf =0, (4.10)

which are exactly the same as conditions (3.23)-(3.25). The two remaining
conditions again come from conservation of mass and energy across the in-
terface. These conditions require careful consideration of the effect of the
nonzero velocity of the interface, and we derive these conditions in the fol-
lowing subsection.

4.1.1 Modified Stefan- conditiOns at the
‘interface z = L(t)

The well known Stefan condition describes conservation of energy across a
freezing/melting interface moving through a body of water, say, separating
regions of liquid and solid. Following Crank [20], we have presented a deriva-
tion of this condition in Chapter 2. The major assumptions which are made
are that the water density is the same in either phase, and that the water in
each phase is stationary. Clearly, the Stefan condition must be modified for
problems in which there is an interface between liquid and vapour phases,
where the fluid on either side of the interface may be moving, and in cases
where additional heat sources or sinks exist. With this in mind, we now pro-
ceed to find conditions for mass and energy conservation across the interface,
in terms of the interface velocity L(t).

Firstly, we consider conservation of mass across a general moving mterface
which separates two fluids, possibly different phases, which may have different
densities and velocities. The argument is presented for a one-dimensional
problem, which is shown in Figure 4.1. The fluid to the left of the interface
has density pr, and is moving with velocity ui, while the fluid to the right of
the interface has density pp, and is moving with velocity uy;. Suppose that
the interface moves a distance ¢z in short time ¢, and that it moves with
velocity L(t). Mass conservation requires that the difference between the
mass in the control volume [L( ), L(t) + 2] over the time interval [t,t + 4t]
is due to the net mass flux into the control volume during that interval. For
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‘ 6z, ot
> L(t)

' : — —> 2
fluid density pr - : . fluid density pni
velocity up velocity uy

z = L(t)

Figure 4.1: Mass conservation at the moving interface.

the problem shown in Figure 4.1, this gives

(o1 = pu)éz = (prur — prrun)6t.

Taking the limit as t — 0, we arrive at a condition on the .velocity of the
interface, that is )
(o1 — pu)L(t) = prur — puun. - (4.11)

Further, in the caée of flow through a porous medium which has porosity ¢,
the interface velocity will be given by

B(or — pu)L(t) = prus — prrun, (4.12)

where uj and uy are now understood to be the Darcy velocities. Now, for the
Udell phase change problem, suppose we take region I to be the two-phase
region, and region II to be the vapour-only region. The condition (4.12)
holds, but we must consider mixture quantities in region I. That is, we
consider quantities associated with the mixture of liquid and vapour in the
two-phase region. Let us define

p = ms+py(1—s), the mixture density,

prur = P+ Pplly, - the mixture mass flux. ' (4.13) ,

Then equation (4.12) gives

/

& (o5 + oL = )i = (o)) E®) = (puas + puw)s — (pwti)s.
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Now, in view of the continuity of temperature (4.9) and of vapour pres-
sure (4 10), we have that (p,)1 — (pv)u = 0, and hence

¢ (o — po)s); L(t) = (pzul+pvuv) — (poUy)1r- (4.14)

To explicitly find the interface velocity, we must be careful. Specifically, the .
saturation condition at the interface (4.8) is s = 0 at z = L™. The velocity
L(t) must be considered as a limit of an indeterminate form. In particular,
the velocity is explicitly given by

L(t = lim (plul+pvuv) (pvuv)II.
=L~ - dlp— pu)is

We note that such an indeterminate form for the veloc1ty of a moving in-
terface, resulting from a mass conservation argument, also arises when con-
sidering the porous medium equation, as we have seen in Chapter 2. The
common feature here is the degeneracy as s — 0.

Now, for the Udell phase-change problem, we also require an energy bal-
ance across the moving interface, which we will also see to be a limit of
an 'indeterminate form. The argument we present here is an extension of
Crank’s [20] derivation of the Stefan condition in one dimension. Our prob-
lem includes an extra term due to motion and phase change in the two-phase
region, and we refer to the energy balance as a Modified Stefan Condition.
Consider the problem shown in Figure 4.2. The interface between the two-
_phase region and the vapour-only region in the Udell problem moves a small
distance 8z in the small time interval §t. The heat which flows into the
control volume during the time interval is -

[ . 8T
(Kﬁz‘)u‘”’

while th,e'heat which flows out of the control volume during the time interval

is - BT
(Kaz> .

Now, the heat required to evaporate the 11qu1d whlch moves up to the inter-
face is :

(4.15)

(hvapplul)ét

These three quantities are exactly the same as for the steady-state problem.
We now consider the extra heat released or required when the interface moves.
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Figure 4.2: Temperature profile and the moving interface.

First consider the case 6z, L > 0. The additional mass which appears
in the two-phase zone after the interface has moved is ¢sp;02." This must
be exactly the amount of mass from region II which has condensed, and the
heat released upon condensation is then

hvapd)spl(SZ .

Given these four terms, we see that the energy balance across the interface

is given by - . '
. . oT1! ‘ o

, [K ——] 0t + Ppap®5p102 = Nyapprurdt.

_ 0z |; o

Now, we take the limit as 62,4t — 0 to give

. Nak ,
hmpqﬁsplL(t) = hwpplul — [K-g;] . . (4.16)
1

To find L(t), we note that s — 0% as z — L(t)™, and evaluate the limit

NS

L) = lim - - (4.17)

z—L(t)~ ' hvap¢3pl
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Now, if we repeat this argument for the case dz, L < 0, we get exactly
the same condition. Notice that, if we take (4. 17) as the indeterminate
modified Stefan condition which determines the interface velocity, then the
mass balance (4.15) becomes -

S o oqll

(P = pu)1 {hmap(plul) [K }?] } /
- : -~ asz— L™, -

: (4.18)

We note here that the indeterminate modified Stefan conditions (4.15) and
(4.17) can be thought of as limiting cases of the Rankine-Hugoniot condi-
tions for our system. The Rankme—Hugomot condition states that, for a
conservation law of the form :

(plul+pvuv)1_(p”u”)ll = h"vappl

At+B =0, . (4.19)

‘where B is the flux of the quantlty A then for any smooth space-time
curve z = L(t), the jumps in A and B are related to the velocity L(t) by

[A]tL(t) = [B]f for z=L(t), ~ (4.20)

which expresses the conservation of A across the curve (see, for example [3]).
For our problem, this may be easier to see after we have reformulated the
systern as a mixture problem, so the careful derivations of (4.15) and (4.17) -
are valuable here. '

4.1.2 Model summary

In summary, we have a two-phase region 0 < z < L(i), in which

¢ (pis + po(1 = 8)), + (i +pywn), =0, (421)
and ' ' ' ‘
(Pc) T, = KT,. - huap ( (¢pv(1 - 3))t + (pvuv)z ) o (422
The vapour-only region L(t) < z < D has -
(¢pv)t -+‘. (pvuv)z =0, : ‘ (4.23)
and . '

[CEE kT, (4.24)
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At the moving interface z = L(t), the five conditions are

s'=0, (4.25)

[T]f =0, » (4.26)

[Pt =0, (4.27)

¢ ((pl - pv)S)I L(t) = (plul + bvuv)l - (pvuv)II: (4'28)
1I ’

hvap¢splL(t) = RygpPrtls — [K%] . (4.29)

At the upper boundary z = D, we impose a temperature T' = T3, and have
no mass flux, so that u, = 0. At the lower boundary z = 0, we impose a
temperature T = Tp (< T1), and have no mass flux, so that pju; + pyu, =
0. Finally, we glve initial profiles of saturation, temperature and pressure
throughout the entire system at time ¢t = 0.

4.2 Fixed domain, mixture formulation

Any numerical method which is based on solutions in the disjoint domains 0 <
z < L(t) and L(t) < z < D will require an implementation of the interface
conditions. A natural approach to take is that of front tracking, which re-
quires that the interface velocity be imposed explicitly. Suppose we were to
take the interface condition (4.28) as the condition which defines the veloc-
ity L(t). Any explicit implementation of this will require evaluation of the
indeterminate form given in (4.15). Thus, any front tracking scheme requires
not only the explicit computation of interface location at each time step, but
an accurate numerical evaluation of this limit. Furthermore, extension of a
front tracking scheme to higher dimensions would also require consideration
of the interface geometry, and solutions to problems on irregular domains.

Clearly, front tracking is not feasible for this model problem. An alterna-
tive is to reformulate the problem over the fixed domain 0 < z < D, thereby
avoiding the need for explicit consideration of the complex 1nterface physics.
The interface location can be recovered, a posteriori from the solution of the
transient, fixed domain problem. That is, we aim to develop an interface
capturing method. Here, we present a reformulation based in part on the
mixture model described by Wang and Beckermann [68]. -

The reformulation is in terms of a density over the entire pack, rather
than saturation in just the two-phase zone. The main point is that if we
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consider the water anywhere in the porous pack to be a mixture of vapour
and liquid, then the density of this mixture must be continuous, even as we
cross the interface. Suppose we define the mixture density p by

p=ps+p,(1—3). ' (4.30)
Then equations (4.21)-(4.22) reduce to the system

¢Pt = —(plul+pvuv)z o B . :
| . (4.31)

(ﬁ) Tt = KTzz - h"uap( (¢p'u(]- - 3))t + (p'vuv)z )

Now, the variables u,, u;, p, are all functions of s and T, and in particular

= B g3 (9P
Uy = — (1-s) (8z +.pvg)_, (4.32)
w =g —6—(;0 —6J(s)) + g | | (4.33)
I 9z ’ '
and o , » ‘
- J(s) = 1417(1 — 5) — 2.120(1 — ) + 1.263(1 — 5)°, = (4.34)

where p, is the vapour pressure. So if p,,p,, s can be found as functions
of p and T, then (4.31) is a system in the two dependent variables p and
T. Furthermore, given that p is the density of the liquid-vapour mixture,
the system (4.31) is valid over the entire porous pack, rather than just the
two-phase zone. Thus, we seek solutions to (4.31), from which we can recover
the position of the interface between the two-phase zone and the vapour-only
zone. ’ : . C

Now that we are considering a system valid over the entire domain, we
can not take the vapour pressure to be equal to the saturation pressure.
Rather, the vapour pressure at a point will be equal to either the saturation
pressure (in which case, the point is in the two-phase zone) or the pressure
given by the ideal gas law for the vapour-only zone. Given values of p and
T, a comparison of these two pressures, namely

pRT
=
determines whether or not the vapour is fully saturated, and hence the values
of py, py and s. If p* < psar, then the vapour is undérsaturated, so must

Psat (T) = aebT’ p* (p’ T)
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be in the vapour-only region. In this case, the vapour pressure p = p*.
If psar < p*, then the vapour is fully saturated, and hence p = psas. We see
that equations (4.31), together with the algebraic constraint

pRT )

DPv = = min (psat(T) M

(4.35)

form a differential-algebraic system fdr_ the two variables p, T, which is valid
over the entire domain. In the next section, we describe the numerical solu-
tion of this model problem, with p, T as the primary variables.

4. 3 Computatlonal method

Equations (4.30)-(4.35) give a coupled parabohc system on the domain 0 <
z < D. Now we consider the discretization of the problem, written as

0 0
| Pt = IECI (P, T, 52') IR (4.36)
pel +w(p, T): = 2Q T 9 (4.37)
pPCLy P t= 52 Ps - AE , .

where the fluxes ¢, Q) are given by

({0 Tg) =5 (50T orp )+ 50T osto ™)) (439

0N o L Peapk o
Q(n 1.2 ) = KT+ 225 o0 T) SLaclo. D) (4.39)

where

falp,T) = % + 21 =98

v

9a(p,T) =p,
felpT) =2

gB(p7T) = ¢(S)a
fC’(p’ T) = p‘v(l - 3)3,
gc(p,T)=p
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and the function w is given by

w(p,T) = hyap®pu(1 - 8). o (4.40)

The time-dependent terms in the energy equation have been grouped to-
gether, leaving the time derivative of an enthalpy-type quantity. Also, in
keeping with formulations of degenerate diffusion problems for numerical
computation [25], we have rewritten the degenerate liquid velocity as

u = '—ZL—I'(S p. +6(%(s))z2) , ‘ - (4.41)
where the function 1 is given by
. s : o )
P(s) = - / EJ(E)de = 0.24155* — 0.66765° + 0.63155%. (4.42)

‘This change—of—variables idea is used in preference to regularisations of the
type K = s + 7, such as those seen in the fuel cell literature [50, 51]. The
numerical convenience offered by such regularisations is due to the fact that
they smear out the sharp interface.

Also, we have the boundary conditions

qli=0 = @ot(t), Glz=D = Gop(t), Tlz=0 = Tour(t), 'TY|Iz=D = Tiop(t). (4.43)

For the closed sand pack, the boundary fluxes are zero, and we will take the
boundary temperatures to be constant in time. Now we wish to implement

a numerical scheme for the solution of the system (4.36)-(4.43). Two imple-
" mentation options are available for explicit time-stepping. One option is to
use a quasi-enthalpy method. The density p may be explicitly updated from
the mass equation (4.36). Then the enthalpy E, defined by

- E(p, T) =pl +w(p,T), o (444)

may be exphcltly updated from the energy equation (4.37). The tempera-
ture T must then be recovered from the enthalpy by way of a nonlinear solver.
A second option is to form a mass matrix, and write the system (4.31) as

a1 Q12 | p - —(p + P&Uu)z > '
= . , 4.45
( az a22,) ( T >t ( KT, __hvap(pvuv)z (4.45)
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Figure 4.3: Grid and staggered grid.

* where ‘
a1 = ¢, a2=0,

together with

B
az1 — thp¢ ((1 - 8) app - p‘ué%) d

énd

a2z = pc -+ hfvapd’ ((1 - 3) aT pvaT

Either of these two explicit methods requires the computation of derivatives
of all quantities with respect to the primary variables p,T, as would an
implicit method. Given the inherent stiffness in the problem, here we shall
use a fully implicit scheme. Now we discretize the parabolic problem (4.36)-
(4.43) by finite volumes, in order to conserve the total mass, given by

D
/ p(z,t) dz,.
A ,
in a discrete sense.

Given that mass flux is given at the boundaries (4.43), we develop a
scheme which computes a discrete approximation to the solution of (4.36)-
(4.37) with mass fluxes on a grid which coincides with the boundary points,
and density p on the corresponding staggered grid. That is, we use a finite
volume scheme for updating p;, which is the cell average density for cell j.
Also, we use cell averaged temperatures. Consider Figure 4.3. Let 7; and p;
be the average values of temperature, T, and density, p respectively, over grid
cell j. We introduce vectors T and R to represent the interpolated values of
temperature T and density p falling on the grid. So we have

Opw Js )

TJ =Tj+1/2 = Zﬁ%}i | forj =1, aN+ 1, .
< (4.46)

Rj = pj+1/_2 = BJigil‘ fOI‘j = 1,,N+ 1.
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Then a fully implicit (Backward Euler), conservative, finite volume scheme .
-for the mass equation (4.36) is given by the discretization
-

oL n
F}. = __.._EM__J__E(qj—-qj_l) +1 = 0, ]_2, ,N+1 (447)

where the discrete fluxes are given by

4G = g (fA(RJ,T]) (9A(Pj+11“'j+’ll)_9A(Pj:"'j)

. ) s . ]217,N+1,
. +fB(RJ7T7) (QB(PJ+1,TJ+;’) QB(?J, _7)) ) 7

| y (4.48)
Next, we discretize the energy equation (4.37) in a similar manner. We have

i w(p,+1 "*1) w(pJ,T")

G = migt ; . 4.49
A Q=)™ =0, =2 N+, (4.49)
where |
R Tj+1—Tj hvapﬂ gC(Pj+1,Tj+1)~;(]c(ﬁj,Tj)) : )
9 Rusg=t + Je (RJ’T)< R ’ (4.50)

j—l,..,N+1

Here, k, h are the chosen time step and grid spacing, and superscripts denote
the time level. To close the system for the 2N + 4 unknowns, 7;,p;, 7 =1
N + 2, we need four more equations. The boundary conditions give

Fi = i — @ = 0,

Gy =Ti— T = 0,
3 | (4.51)
Fni2 = 41— Gop = 0,

Gryyz = Tt — Tiop = 0,

Note that we cannot find the ghost values p1, P42 explicitly in terms of
interior cell values, so we just include them in the system to be solved.- That
is, we have 2(N + 2) nonlinear equations

F;=0, G;=0, | Jj=1, .‘.,N+'2‘,»
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for the unknowns p;,7;, j =1,.N +2. We use a Newton method with
analytical Jacobian. In order to avoid “if” statements in the code, we replace
the nonsmooth map (4.35) with the smoothed minimum

p‘ = mine(psat:p*) = He(p* - p;sat)psat + (1 - ﬁls(p* - péat))p*, (452)

where the smoothed Heaviside function is given by

ﬁE(X) =%{1+tahh (é)} |  ~(4'53),

for a smoothing radius €, and p* = % pT. In practice, the smoothing radius e
can be taken arbitrarily small, and thus, the singularity and degeneracy in
the saturation equation are retained.

4.4 Numerical results and discussion

In Figure 4.4, we show a typical result, starting from an initial uniform den-
sity, with no mass flux across the boundaries. The initial temperature is
uniform, and the system is subject to sudden heating up to a fixed tem-
perature at the upper boundary. A number of 'denAsi'ty, temperature and
saturation profiles are shown, for increasing time, and we note that the pro-
files shown approach the correct steady-state profiles. The transition to an
interface s = 0 is captured, and the interface between the two-phase and
vapour regions is clearly moving to the left. In Figure 4.5, the interface po-
sition, L(t) is plotted. The stepwise behaviour is due to the discretization,
and the fact that we take L(t) as the first grid point to the right of s = 0.
Also, we plot L(t) for three grid sizes: N = 20,40,80. Convergence to a
base numerical solution is clear as the grid is refined. The question remains,
however, of whether the numerical method indeed computes the interface
velocity accurately. This will be addressed in the next section. Figure 4.6
shows the temperature history at a point. An initial increase in temperature
is numerically the result of the sudden-heating boundary condition. After
this, the temperature history has a wavy, stepwise nature, in common with
the enthalpy-method solution of the Stefan problem [3].

For the results shown in Figures 4.4-4.6, small time steps are initially
. required, in order for the Newton iteration to converge to within the specified
tolerance. In fact, initially, we use Forward Euler time-stepping to get past
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Evolution to correct steady-state profiles, starting with uniform density and temperature

0.05 0.1 0.15 0.2 0.25

0.1

0.05

saturation, s

0 0.05 0.1 0.15 : 0.2 0.25

Figure 4.4: Evolution to correct steady§State.

the initial transients, and then employ the fully implicit scheme. However,
the time step required for convergence to within a fixed tolerance decreases as
the saturation profile steepens before the interface moves by a grid point. In
Figure 4.7, we demonstrate the stiffness in the problem An experiment was
performed using implicit time stepping with adaptive time-step. Whenever
the nonlinear solver is unable to converge to within the required tolerance,
the time-step is halved. The figure clearly shows the relationship between
the time-step and the interface advance.




Chapter 4. The M2 mixture method for the transient Udell problem 95

Moving interface location, with T0=360 T1=367.9727 W=13.8153 L=0.175
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Figure 4.5: Interface location L(t), with grid refinement.

4.5 Similarity solutions and numerical
convergence study - |

Numerical experiments using our mixture-based capturing method for the
time-dependent problem show that initial distributions evolve to the correct
steady-state solutions, as given by the disjoint-domain method of Chapter 3.
In this section, we carefully examine the dynamics of the system to ensure
that the method indeed captures the moving interface accurately in time.
Typically, the convergence of numerical methods for moving boundary prob-
lems is demonstrated using initial and boundary data consistent with known
similarity solutions. Similarity solutions are available for the two-phase Ste-
fan problem and the porous medium equation. In the literature, analytical
convergence studies of numerical schemes have appeared for reduced, scalar
models of two-phase flow in porous media 2, 49]. Also, analytical solutions
have been found for reduced and scalar models of phase change in porous
media [9, 13, 34, 41, 42, 59, 60, 74]. Wang and Cheng [69] summarize analyt-
ical solutions to model problems presented by a number of authors, for both
steady-state and transient problems. These have largely been constructed by
neglecting temperature and capillary effects. Wang and Cheng [69] propose
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. " Temperature history at z=0.218
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Figure 4.6: Temperature history at a poiht.

a similarity solution for a full model including temperature and capillary
effects, and underline the need for further analytical solutions to such prob-
lems. Here, we reduce our model problem only by simplifying the coefficients,
but we retain the full, nonlinear, vector problem, and construct a travelling’
wave solution. ' ' B '

4.5.1 A reduced ‘model problem

Let us consider a model problem with reduced Darcy velocities, and the
majority of coefficients equal to one. Specifically, we consider

liquid flux = —p.'zS3 (p- +:8z) , and vapour flux = —p,p;,

where we have simplified the Leverett function and the relative permeability,
and have taken absolute permeability and viscosity to be unity. We note that
removing the relative permeability of vapour, namely (1 — s)3, will not affect
the singularity structure at s = 0, but it will allow for solutions with satu-
ration s > 1. In this sense, the solutions cease to be physically meaningful.
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M2 interface evolution and timestep )
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~ Figure 4.7: Timestep and interface location.
Conservation of liquid mass reads
.
(pi8)e — (0s*(s: + ), =T. (4.54)

Conservation of vapour mass reads

(Po)t — (Pop2), = —T, B (4.55)

where the weighting (1 —s) has been taken as 1. ‘Again, this will not affect
the structure near s = 0. Conservation of energy is

T,=T,.+I. (4.56)

In the vapour region, we have

I'=0, p=p,T (ideal gas), p < 'ps;at(T) (undersaturated), s=0,
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leaving a problem for p,, T (or p,T). In the two—phasé region, we have
p = p,T (ideal gas), . p= psat(T)l (fully saturatéd),

leaving a problem for s,T and . At the interface z = L(t), we have five
conditions, corresponding to (4.25)-(4.29): '

s=0, | - o (4.57)
[Tt =0, o - (4.58)

plI=0, . (4.59)
| (Mass) pls‘L(t) =- (pl.sg(sz +pz) + pvpz)_ + (p(pT)z)+ ) (460)
(Energy) s~ L(t) = (—pis*(s. +p.))” — [LIF. (4.61)

Note that, in view of the ideal gas law p = va condltlons (4.58)-(4.59)
further 1mply continuity of vapour density

- ]t =0. | (4.62)
Also, for convenience later, we note that (4.60)-(4.61) give
| 0= —(pup:)” + (p(pT):)* + L] . (4.63)

Then, the five conditions (4.57),(4.58),(4.62),(4.61), (4.63) can be used to
solve the problem. =~

For the fixed domain problem on 0<z< D, ﬁrst we deﬁne the mixture
density

, p = s+ pu, L (4.64)
and then use the “M2-map”

p = ._ min(pT, psat(T))7

) p'U. ’_I.“7 (4‘65)

— PP
§ o ?
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leaving the coupled system

Pt — (plsa(sz +pz) + pvpz)z = 07
(4.66)

. (T + pv)t = T..+ (pvpz)z'

Now, we consider forms of the saturation pressure function, psq(7") which
yield semi-analytical travelling wave solutions.

4.5.2 Travelling wave solution for case p,;u(T) = T

Suppose the saturation pressure is a linear function of temperature, such that
Psat(T) = oT. Then p, = « in the two-phase region. Also suppose that we
have an infinite porous medium —oo0 < z < oo, with far-field temperatures
not yet specified. At time ¢, let there be an interface at z = ct separating a
two-phase region z < ct, and a vapour-only region 2z > ct. So the interface
initially is at 2 = 0, that is, L(0) = 0, and we seek travelling wave solutions
with speed c¢. Then, in the two-phase region, mass and energy conservation -
give ' ‘ . o -
. Iy | _
st = (*(s. +aTy)), + ETZZ ' (4.67)

T, = (14 &®)To.. (4.68)

In the vapour region, mass and energy conservation give

pe = (p(eT)z), | , (4.69)

T,=T,. (4.70)

Finally, at the interface z = L(t), the 5 conditions (4.57), (4.58), (4.62),
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(4.61), (4.63) give

s =0 | | (4.71)
[TX =0 | R (472)
]2 =0, (sopy = ), o (4.73)

o= (-psH(se+ L))~ LI, N (4.74)

0=~ (6T.)" +(a(aT).)* + (T (4.75)

We seek travelling wave solutions to the system (4.67)-(4.70), which satiéfy
the interface conditions (4.71)-(4.75). In the two-phase zone, seek solutions

S(Z,t)v= G(E)’ T(z’t) = Fl(f)’ | , (476)
and, in the vapour zone, seek solutions ,
plz,t) = R(E), T(zt) = F3(8), (4.77)
where | .
E=z—ct. . ‘ (4.78)

With ¢ > 0 we have wavefronts moving to the nght with speed c. Solutlons
of the two linear heat equations are

Fy(€) = A1 + Bie™ 7 &, (4.79)
and ' S '
Fg(f) = Ay + Bgefc‘s. (480)

The constants Ay, By, Ay, By must be consistent with the interface conditions.
Continuity of temperature (4.72) gives '

A +Bi = Ay + B, . (4.81)

Now, the saturation equation (4.67) gives

. . 2 .
—cG' = (G}G' +aF))) + %F{’,
_ o
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and hence A 9 .
—cG =G} G’ +aF)) + %F{ + As, (4.82)

: L .
or

GG = — (CG ‘o (03 ; f}) Fl+ Az) | (4.83)
2

The constant A; must be consistent with the 1nterface condltlons Condi-
tion (4.74) gives -

s = — (cs‘» +as’T, + l(T;r - Tz")) ,

P
or o N .
G3C/ cG + aG3( )B1 - l(-_—c)‘Bl - —1—032 .
1+ S ooplt+a? pu

Comparing with (4.83), we find
, . ' |

Then the travelling wave saturation profile G(§) may be found by solving
the ODE (4.83), subject to G(0) = 0, for £ < 0. The constant A3 is given
by (4.84), and (4.79) gives :

1(5)

__c
Ble l-i-oz25

Notice that we can find an analytical solutlon to (4 83) if B, = 0, which
amounts to an isothermal two-phase region, with no variation in vapour
pressure, and hence no vapour flow. In this special case, the exact solution
G(£) is given implicitly by :

+c€ =0, where By = I;Q (4.85)
]

G+ Bs

L BG4 G- B} log‘

and G(£) may be accurately computed using a root finder. In general, though,
an analytical solution to (4.83) will not be available, and we compute G(§) -
using an ODE solver. However, equation (4.83) is smgular at G =.0. Letting
w = G*, we have the regular problem

(4 .
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It remains to find the density p in the vapour—only region. Equation (4.69)

becomes
—cR = (R(RFQ) ) ,

and hénce . o .
' RS —cR R(RF2) +A4 (4.87)

Now to find the constant A4, we usé condition (4.75) to give that, at £ =0,
R(RF) = (14’ )F|—F, = —cBi+cBs,
and condition (4.73) to give —cR = —cd. Substituting in (4.87), we ﬁndl
’ Ay =c(By — By — ). - (4.88)

From (4.87), we can write .

N 1 ' | )

R = - RF)R+ A 4.89
and then solve for R(§), in general usmg an ODE solver.” Also, we note that,
for the special case B; = By + a, then A4 = 0 and the exact solution R(f)
is given exphc1tly by

—c€ + As

G where As = a(A; + By). | (4.90)

R(¢) =

Solution - Summary :
We have constructed the followmg travelhng wave solutlon

Fi(§) = Ay + Bie 5t &, | | (4.91)
Fy() = Ay + By, (49

and G(€) = w'/4(€), where w solves

i—w’ =— (cwl/4 + o <w3/4 + g—) Fl"+ Ag) , ‘.§ <0, w(0)=0,
. [ ‘ . .
. ' (4.93)
and finally, R(¢) solves

R=-— ((c+ RE)R+A), €20 RO )=a.  (4.94)

1
RF;(¢)
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The constants Ay, A3, A4 are given by
Ay= Ay+Bi—By, Az= pﬁ(Bl —By), Ay4=c(Bi—By—a). (4.95)

We have a three-parameter family of solutions to the model Udell problem.’
That is, a family of solutions parameterized by A;, B, B,. These can be
carefully chosen in order to have temperature increasing in both regions, and
the density decreasing to the right of the interface. A typical result is shown
in Figure 4.8. Now we are in a position to compare numerical results with
the travelling wave solution. - '

Travelling wave profiles for a=0.7 p=5 A1=1 B‘=—0.5 Bz=—0.83557
T

ot
T

*density* R(E)

.0.2 0.3 0.4 05

“temperature” F(£)
o
T
1

N

*saturation® G(§)
T

L 1 1 1 L 1
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 04 0.5
=2~Ct :

o

Figure 4.8: Travelling wave proﬁles‘for mixture density, temperature and
saturation. ' '

Note: With B; < 0 to ensure that Fj is increasing, we have F; —
—00 as £ — —oo. Clearly, the temperature in the two-phase region will
become negative for some value of ¢, and remain negative as t increases.
Our code takes the M2 comparison as p, = min(p,a). This gets around
the fact that the vapour pressure becomes negative as temperature does.
So, while comparison with this travelling wave solution serves the purpose
of evaluating the performance of the numerical method, we note that the
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travélling wave solutions to this reduced problem only represent anything
close to the physical problem up to the time at which T and p become

negative. The solution structure of the physical problem at the interface is
retained, though. o :

4.5.3 Numerical results and convergence ls_,tudy

In order to evaluate the performance of our capturing method applied to
the reduced Udell problem, we simply give our code initial conditions and
boundary conditions consistent with the exact travelling wave solution given
by (4.91)-(4.95), for the chosen values of the parameters A;, By, Ba. In Fig-
ure 4.9, we show computed interface location, noting close agreement with the
exact travelling wave solutions, and apparent convergence with grid refine-
ment. Now we will demonstrate the convergence of our schemes numerically.

Interface position for reduced Udell problem with travelling wave solutions

0.12 - T - T - T T - T
-~ N=160
—= N=320 ) . .
0.1 — exact TW solution 7

0.08F.

0.06

Computed interface position, L(t)

0.02

0 == Y - 1 : L i i L
0 ' 0.005 0.01 0.015 ] 0.02 ‘ 0.025
time, t . - :

Figure 4.9: Computed and exact interface location for the reduced travelling
wave problem. : '
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Although we have a second order scheme and an exact solution, we don’t ex-
pect to be able to show second order accuracy. Firstly, we need an accurate
measure of interface location. As mentioned in Chapter 2, methods are avail-
able for the enthalpy solution of the Stefan problem [65], but are based on
a known phase-change temperature, and will not be applicable here. In the
results shown, the interface location is simply the next grid point to the right
of s = 0. Also, the stepwise behaviour of not only the interface location, but
of the temperature history at a point, introduces errors, which result in less
than second order accuracy (see [3], for example). Even if novel methods are
used to capture the interface position accurately, the stepwise temperature
histories associated with the enthalpy method can give rise to large point-

wise errors in temperature. Indeed, the Lo, norm of the temperature error

is a poor measure of accuracy, and though the L; norm is a better measure,

convergence in this norm is at first order. Bearing in mind these results,
we expect similar, or worse, behaviour for our capturing method applied to
the reduced Udell problem, and no better than first order accuracy in the
solutions.

In the Tables 4.1-4.3, we show the results of a numerical convergence
study for the finite volume, capturmg method, applied to the reduced Udell
problem.

Table 4.1: Errors for reduced Udell problem, 1mphclt (BE) time-stepping
with p =02, c=4.

[ N [num | [[Er[i [factor| [IE,[: [factor | [Elly | factor

20 50 | 5.2534 E-3 9.6053 E-2 1.4120 E-2
40 | 200 | 1.8412 E-3| 2.85 |4.1025 E-2 | 2.34 | 7.3350 E-3 | 1.93
80 | 800 |6.7618 E-4 | 2.72 | 1.7308 E-2 | 2.37 | 3.8450 E-3 | 1.91
160 | 3200 | 2.6595 E-4 | 2.54 |7.2590 E-3 | 2.38 |2.0283 E-3 | 1.90

320 | 12800 | 1.1249 E-4 | 2.36 | 3.0324 E-3 | 2.39 | 1.0625 E-3 | 1.90

We have exact solutions given by the travelling waves, with speeds ¢ =
1, 2 and 4. In each case, we use implicit time-stepping, with u = k/h? fixed.
The number of grid points is N, and num is the number of time steps. We
quantify the errors by calculating numerically the norms of the errors made
in the temperature T', the mixture density p, and the interface location L.
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Table 4.2: Errors: for reduced Udell problem, 1mphc1t (BE) tlme—stepplng
with p=0.2, c=2. : :

[ N[ num [ [Erp [factor| [E,i [factor [ [ELlly | factor |
20 50 1.9986 E-3 8.1047 E-2 -] 1.3620 E-2
40 | 200 | 7.0790 E-4 | 2.82 | 3.3881 E-2| 239 | 73350 E-3| 191
80 800 | 2.5842 E-4| 2.74 |1.4097 E-2| 2.40 | 3.8450 E-3 | 1.90
160 | 3200 | 9.7712 E-5| 2.64 | 5.8601 E-3 | 241 | 2.0283 E-3| 1.89
320 | 12800 | 3.8206 E-5 | 2.56 | 2.4351 E-3 | 2.41 | 1.0625 E-3 | 1.91

Table 4.3: Errors for reduced Udell problem unphut (BE) tlme—steppmg
with 4= 0.2, ¢c= 1.

[N [ num | [Erli [factor | [[Eply [factor | [IE.f | factor |
20 50 1.1646 E-3 5.9305 E-2 3 1.5220 E-2
40 200 | 3.6319 E-4 | 3.21 | 26721 E-2 | 2.22 | 7.0375 E-3| 2.16
80 800 | 1.2909 E-4 | 2.81 | 1.1080 E-2 | 2.41 |3.7072 E-3| 1.90
160 | 3200 | 4.5586 E-5 | 2.83 | 4.6023 E-3 | 2.41 | 19445 E-3| 191
320 | 12800 | 1.6463 E-5 | 2.77 | 1.9151 E-3 | 2.40 | 1.0119E-3| 1.92°

Specifically, we compute the time-averaged quantities defined by

num N

”ETHI - umN ZZ |T Zjatn) exact(z_77 )I,

n=1 j=1

num N

[ ”Hl—ﬁ—u_m—NEZIp Zjrtn) = pezact(z.7> )

n=1 j=1

num

1Bl = — Z Lt

In all three cases, we see convergence at first order. We note here that, when
computing solutions to the two-phase Stefan problem with travelling wave
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solutions, using the enthalpy method described in Chapter 2, we found the
temperature error to decrease by a factor of around 1.9-2.5 as the grid spacing
is halved. Also, applying the discretization used by Evje and Karlsen [25],
applied to the one-dimensional porous medium equation u; = (u3uz)x, we
found the error in u to decrease by a factor of 2.4-2.5 as the grid spacing
is halved. Our capturing method for this coupled, vector, nonlinear prob-
lem clearly gives convergence rates comparable with those for these scalar
prototype problems.

4.5.4 Other choices for psat(T)

We briefly mention two more forms for the saturation pressure Wthh yield
semi-analytical travelling wave solutions which may be of 1nterest

Case psu(T) =T +

The temperature in the two- phase region, F}(£) may be found analytlcally,
but it is given implicitly.

Case pgo:(T) = oT + BT -
In this case, we have p,(T) = o + BT, which is increasing if a B> 0 The
travelling wave solutions in the vapour region remain the same. In the two-
phase region, an analytical solution is again available for the temperature
profile. For T'(2,t) = F\(z — ct), we find that Fi(£) satisfies

—c(1+B)F =1+ (a+BR)a+28R))Fl+A, - (4.96)

with A; yet to be speolﬁed Thus F (f) is given implicitly by

14 :
§(F1 +d)*+ (a - 2d)(F1 +d) +(d* ~ ad+b) log ]Fl +d|+ « 2[326) = By,
, ' (4.97)
for some B;, where the constants a,b,d are given by
3a 1+a? A , .
=, b=_1, d= . 4
= "Tp T (4.98)

4.6 C_ompUtatiohs in vhigh'er dimensions

One of the distinct advantages of a fixed-domain, front-capturing method
~ over front-tracking is that extension to higher dimensions is much more
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straightforward. In this sectlon we return to the full mathematical model
for the physical problem, and present some computatlonal results in two
dimensions.

4.6.1 Mathematical model

If we generalize the governmg equatlons (4. 1) (4.3) to higher dimensions, we
have '

(¢ms), + V.(pw) =T, . (4.99)
where, as before, u represents the Darcy velocity, and T is the condensation
‘rate. Similarly, conservation of mass for the vapour phase is given by.

(¢pv(1 - S))t + V-(pvuv) = "F-_ ' _(4.100)
The energy equation is now . ‘ -
(78) Ty = V.(KVT) + hygl, o (4.101)

where -the Darcy velocities are functions of the saturation and the vapour
pressure and are given by :
K Ky

u, = — -Vp, S (4.102)
Hy ' o
and
K Kpl
w=-—=

(Vp-6J(s)Vs),  (4.103)

where p is viscosity, « is the permeability of the medium, &, are the relative
permeabilities, and J(s) is the Leverett function. - o

For our sample 2D computations, on Q = (0, D) x (0, D), we take periodic
conditions in the z direction. At the bottom boundary y = 0, take a given
temperature, and no mass flux, so that

T =To(z,t), (pw+ pout,)m =0. (4.104)

At the top boundary y = 1, we take a hlgher given temperature and no mass
flux, so that

T= ﬂufn>%en> @mﬁmw0ﬁ=0 © (4.105)

Now, given that there is no mass flux across the boundary, our initial condi-
tion fixes the total water mass W. '

Now, in order to compute solutions to this problem, we 31mply extend
the finite volume scheme descrlbed in Sections 4.2-4.3 to the two d1mens1onal
problem -
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4.6.2 Nu'meriéal results and discussion |

" T1=513.3, T0=360, q=1500, 0=0.5, L=0.15
y .

saturation, s

1 i
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480}
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Figure 4.10: Steady-state, one-dimenéiorial profiles.

The first results we show use the steady-state results for the one-dimensional
problem shown in Figure 4.10. The total water mass (per unit area) in the
system is W = 35.7, and the interface is L = 0.15.

Now, we consider the two-dimensional, transient problem with uniform
boundary temperatures at y = 0, D corresponding to those at z = 0, D for
the one-dimensional problem. Now we give an initial condition with a fixed
water mass (per unit length) of WD. Imposing no mass flux across the lower
and upper boundaries, and giving periodic conditions in z, we expect the
solutions to evolve towards the one-dimensional, steady-state results shown.
Giving a one-dimensional initial condition gives the required result, showing
agreement, with the one-dimensional transient solutions at all times.

In Figures 4.11 and 4.12, we show saturation, temperature and mix-
ture density plots at increasing times, for a two-dimensional initial condition
which has liquid water at a uniform saturation concentrated near the lower
boundary in a block as shown, and vapour in the block above it. The tem-
perature is taken initially uniform, so that T'(z,y,0) = Ty,: = 360, and then
the system is subject to sudden heatlng at y D. A fully implicit scheme is
used, with a 20 x 20 grid.
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t=16

t=16 =215 t=1115

0 0.1 0.2 0.1
X x b3

Figure 4.11: Saturation and temperature evolution. Saturation contours are
in the top row, temperature contours are in the bottom row.

We note the evolution of the system towards the correct steady-state. In
Figure 4.12, we can see that after a time of about 20 minutes, the interface
is approximately at y = 0.15. The influence of the initial condition is still
apparent, but the saturation and temperature plots have roughly the familiar
shape of the steady-state one-dimensional profiles.

In Figure 4.13, we plot the liquid and vapour fluxes at early and long
times, on a saturation contour plot. At ¢ = 16, the liquid fluxes are small
everywhere except near the interface. At the later time, there is a larger
liquid flux at the lower boundary, where the vapour condenses, and then is
driven upwards by the capillary pressure gradient. The vapour flux in the
vapour region is initially large, but decreases in time as a steady-state is ap-
proached. The one-dimensional steady-state solution has stationary vapour
in the vapour region. As a steady-state is approached, the vapour flux be-
comes essentially one-dimensional.

In Figure 4.14, we plot contours of saturation at increasing time, for
an initial condition with a “blob” of two-phase fluid at uniform saturation
in the centre of the domain. Again, we have sudden heating at the top,
closed upper and lower boundaries, and periodic conditions in z. We see
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1=0

Figure 4.12: Saturation and temperature profiles - initial condition and long
time.

the two-phase region spreading, and migrating towards the lower boundary.
There is initially a large downward vapour flux in the vapour region (outside
the blob), and condensation occurs at the cold boundary y = 0. A second
two-phase region thus appears near the lower boundary, creating a second
interface which is clearly visible at ¢t = 189. Liquid accumulates in the lower
two-phase region, and the blob migrates downwards through the surrounding
vapour region, until the two separate two-phase regions coalesce, leaving just
one interface once more. Our capturing method encounters no problems upon
these topological changes.

By t = 6709, it appears that the solution is almost one-dimensional.
The total mass (per unit length) in the system in Figure 4.14 is 3.7425, and
the uniform boundary temperatures are Ty = 360 and T} = 512.7. Thus,
the steady-state to which the system evolves should correspond to the one-
dimensional steady-state with mass (per unit area) W = 3.7425/D = 14.734.
Using our disjoint-domain method from Chapter 3, this gives s = 0.2, ¢ =
1000, and the interface position L = 0.104. In Figure 4.15, we plot satura-
tion and temperature profiles for a fixed z in the two-dimensional problem,
at a large time. Clearly, the system has almost reached the correct one-
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Saturation contours and liquid water flux at time t=16 Saturation contours and vapour water flux at time t=16
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Figure 4.13: Saturation contours with liquid and vapour fluxes.

dimensional steady-state. o

In our final numerical experiment, we again give periodic conditions in z,
no mass flux across the lower and upper boundaries, an initially uniform
temperature distribution, at T, = 360, and sudden heating at the upper
boundary with a uniform temperature 7 = 627.8. This time, we have an
initial condition with total water mass of 7.5466, which corresponds to a one-
dimensional problem with W = 7.5466/D =~ 29.7. The corresponding one-
dimensional steady-state solution has so = 0.58,’q = 2000 and L = 0.12. The
initial condition this time has two two-phase regions at uniform saturation,
one in the shape of a rectangle, and one in a circle.

In Figure 4.16, we plot contours of saturation at increasing time. Our
method again captures the topological changes with no difficulty. The two
two-phase regions spread, while a third two-phase region develops through
condensation at the cold lower b_()undary. The two initial two-phase regions




Chapter 4. The M2 mixture method for the transient Udell problem 113

=0 =64 t=189 t=498

t=1177 t=1435

1=3586

t=4850 t=5612 t=6709

Figure 4.14: Saturation contours for an initial “blob” of two-phase fluid in
the centre of the domain.

coalesce, and also the initially circular region coalesces with the two-phase
region near the lower boundary. Eventually, the remaining vapour region
near the lower right hand corner of the domain disappears, leaving just one
two-phase region, and a one-dimensional steady-state is approached. In Fig-
ure 4.17, we plot the saturation and temperature profiles for a fixed z in
this two-dimensional problem, at a large time. Clearly, this system has also
almost reached its correct one-dimensional steady-state.



Chapter 4. The M2 mixture method for the transient Udell problem 114

Comparison of blob solution after long time, and 1-D steady state )
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Figure 4.15: Long time saturation and temperature profiles at fixed x for
the spreading, migrating blob, together with one-dimensional, steady-state
solution. ' ' ' ' ' S
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t=9 t=49

0 0.1 0.2 0 0.1 0.2
t=160 t=301

0 01 02 01 02
121232 123426

0 0.1 0.2
X

Figure 4.16: Saturation contours for an initial condition with multiple two-
phase regions in the centre of the domain.
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Comparison of circle and rectangle solution after long time, and 1-D steady state
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‘Chapter 5
Conclusions and future Work- |

5.1 Summary of results

In this thesis, we have described a number of free and moving interface
problems, related to phase change processes in porous media. Throughout
the thesis, we have made note of mathematical points of interest, with a view
to motivating further work.

The first result of this work is an asymptotic analysis of smoothing meth-
ods applied to the one-dimensional, steady-state, two-phase Stefan problem.
This appears to be new work. Smoothing techniques are often implemented
in capturing methods for moving interface problems, with little mention of
the effect they have on computational results. In fact, Crank [20] mentioned
that very little analysis of smoothing for the enthalpy function used in the
enthalpy method had appeared in the literature, and this still appears to be
the case. .

Also in Chapter 2, we have presented numerical convergence studies for
the well established enthalpy method for the Stefan problem, as well as a
more recently described method for the Porous Medium Equation [25]. This
has been done with a view to drawing a direct comparison between the con-
vergence rates for the capturing methods for these scalar problems, and the
capturing method that we develop for the vector problem of phase change in
porous media in Chapter 4. : ,

In Chapter 3, we have modified a recently developed method for solving
the one-dimensional, steady-state free boundary problem of a three zone
system to be applied. to a two-zone system of particular interest. The model
problem has been extended to allow for compressible vapour. Numerical
results have been generated using this iterative disjoint-domain method.

Also in Chapter 3, the method of residual velocities [22] for solving steady
free interface problems with linear, scalar elliptic problems on either side of
a free interface, has been extended to solve the nonlinear, vector problem of
phase-change in porous media. Numerical results show agreement with the
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results from the iterative disjoint domain method.
In Chapter 4, we have developed a numerical interface capturing method

~ for a model problem of time-dependent two-phase flow with phase change in

porous media. We have allowed for a nonisothermal two-phase region, rather
than making the popular assumption of an isothermal region. This will allow

~ for computations in particular settings Where thermal effects are important,

such as fuel cell electrodes.

Numerical solutions found using this capturing method are seen to con-
verge in time to the correct steady-state solutions generated using the method
of Chapter 3. These benchmark steady-state solutions have been particularly
useful in validating the results of the capturing method.

We have found similarity solutions to a model vector problem for phase
change in porous media. The singularity, degeneracy and coupling in the
mathematical model have been retained, and we have demonstrated conver-
gence of our numerical results to the exact trav relling wave solutions, thus
showing that the capturing method recovers an interface moving at the cor-
rect velocity. To our knowledge, this is the first such convergence study for a
full, coupled model. Convergence rates are comparable with-those presented
in Chapter 2 for the simpler, scalar problems.

The implementation of the capturing method has been extended to the
two-dimensional problem, and we have demonstrated that-our method can
easily deal with multiple interfaces, and topological changes such as disap-
pearing interfaces. This is a distinct advantage over front-tracking methods.
Also, no grid refinement near the interface is required by our method, which
is an advantage over a recently -described numerical capturing method for
a related problem in the fuel cell literature [10]. Convergence to the cor-
rect steady-state solutions i is once agaln demonstrated using our benchmark
solutions.

5.2 Future work

We suggest using the ideas presented in Chapter 2'as part of an asmymptotlc
analysis of smoothing techniques applied to the time-dependent Stefan prob-
lem. This will involve the analysis of smoothing strategeies applied to the
discontinuous enthalpy functions, and possibly an accompanying analysis of
the relationship between the smoothlng parameters and the computational
grid spacing.
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- In Chapter 3, the method of residual velocities has been used for the one-
dimensional porous medium problem. Future work which we have suggested
includes an implementation of the method applied to the two-dimensional.
The analysis of the residual velocity method has so far been applied to prob-
lems of Laplacian type [19, 22], and we suggest using the model problem
described in Subsection 3.3.2 as a'starting framework for the analysis of the
full Udell problem.

The capturing method that we have developed in Chapter 4 appears to
- be robust, and no grid refinement has been necessary in our computations.
We have, however, used an adaptive time-stepping method.  Future work will
involve looking at strategies for this adaptive time stepping.

Our computational method has been implemented for the so-called Udell
problem of phase change in porous media. The model problem which we
have considered is quite g ocneral and future work will include applying this
capturing method to specific physical and industrial problems of interest.
In particular, we will look at model problems of phase change in fuel cell
electrodes and oil reservoirs.

Also, we will consider modlﬁed models of phase change which relax the
saturation assumption which we have used throughout this thesis. We briefly
describe such a model problem below, and some ideas concerning its solution.

5.2.1 The “Big-H” regularisation

We take this idea from the fuel cell modelling literature (see, for example, [10,
21, 50]), and refer the reader to Wang [67], who discusses the computational
convenience offered by this regularisation. The vapour is not assumed to be
at saturation in order for phase change to occur. Instead, any oversaturated
vapour is supposed to condense at a very large rate, proportional to the
degree of oversaturation. Underdsaturated vapour may not condense. In the
two-phase region, if vapour is undersaturated, then evaporation of liquid
‘water occurs at a large rate, proportional to the degree of undersaturation.
On the other hand, if vapour is undersaturated and no liquid is present, then
no phase change occurs. We take the condensation rate to have the following

form: H¥( (T)) S (T)
' = Dv — Dsat Dy > Dsat |
b= { H=3 (py = Dsat(T)) Do < Dsat(T) ~ (5.1)

Here, H* and H~ are large constants, which account for the large conden-
sation rates. The factor of s precludes the possibility of evaporation if there
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is no liquid present. Now the governing equations for the model problem
are the system (4.31), together with the condensation rate (5.1). These
" constitute three equations for three unknowns s, T and p on the fixed do-
main 0 < z < D, rather than the two equations in two unknowns when we use
the saturation assumption. This idea has been used in the fuel cell literature,
but computations have only been performed under simplifying assumptions,
such as isothermal conditions, or with computational regularisations or local
grid refinement [10]. The method we have described in this thesis does not
require any of these simplifications. The relation between our model and
‘this “Big-H” model in the limit of large H*, H~ is of interest to us, and in
particular, how the size of these parameters affects the computations.

We propose to implement this method for the reduced model problem
described in Subsection 4.5.1. An asymptotic analysis of this method will
appear in future work, where we take H* = H~ = 1/e. Preliminary analysis
looking for travelling wave solutions suggests a corner layer will be introduced
which will smear out the sharp interface, but that the sharp interface solut1on
will be approached as € — 0. This is contmulng work.
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