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Abstract 

In this thesis, computational interface capturing methods for mathematical 
models related to fluid phase change processes in porous media are stud
ied. The mathematical models are often singular and degenerate, which 
contributes to the computational difficulty. 

A n analysis of a smoothing method applied to a one dimensional free 
interface problem is presented. A n asymptotic analysis shows the dependence 
of the error in the computed interface location on the chosen small smoothing 
radius. 

Numerical convergence studies are performed for existing capturing meth
ods applied to simple, scalar, moving interface problems, for later comparison 
with convergence rates for a new capturing method applied to a coupled, vec
tor model problem. 

A model problem for two-phase fluid flow and heat transfer with phase 
change in a porous medium is described. The model is based on a steam-
water mixture in sand. Under certain conditions, a two-phase zone, in which 
liquid and vapour coexist, is separated from a region of only vapour by an 
interface. Two numerical methods are described for locating the interface 
in the one-dimensional, steady-state problem; one of these is based on an 
existing method, while the other uses the method of Residual Velocities. 
Agreement between solutions from these two methods is demonstrated, and 
the results from the steady-state computations are used as benchmarks for 
the numerical results for the transient problem. 

It is shown that methods such as front-tracking and the level-set method 
are not practical for the solution of the transient problem, due to the indeter
minate nature of the interface velocity, in common with similar degenerate 
diffusion problems. A n interface-capturing method, based on a two-phase 
mixture formulation, is presented. A finite volume method is developed, and 
numerical results show evolution to the correct steady-state. Furthermore, 
similarity solutions are found, and the interface is shown to propagate at the 
correct velocity, by way of a numerical convergence study. Numerical results 
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for the two-dimensional problem are also presented. 
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Chapter 1 

Introduction and Background 

Accurate numerical prediction tools and simulations are required for many 
physical processes which arise in industrial and environmental applications. 
The starting point for developing such numerical methods is the mathemat
ical statement of the physical laws which must be obeyed. This typically 
involves one or more partial differential equations, which must be satisfied 
on the domain of interest. The mathematical model is completed by the 
specification of conditions on the boundaries of the domain and on any inter
faces between regions inside the domain, and the initial state of the system. 
The solution of the mathematical model for its dependent variables forms 
the basis for a numerical simulation. 

It is very rare that a mathematical model for a complex physical process 
yields a closed form solution. As such, a numerical approximation to the 
exact solution is usually sought. The development of an algorithm to find a 
good approximation relies in part on the careful implementation of the cor
rect boundary and interface conditions. This can be a nontrivial task for a 
problem which is posed on a domain with fixed, known boundaries. Clearly, 
both the correct statement of a mathematical model, and the subsequent nu
merical procedure, become more complicated if there are moving boundaries 
or interfaces. The location of any free or moving boundary becomes an extra 
unknown in the model, and an extra condition is required. 

Free and moving boundary problems have attracted an enormous amount 
of interest in recent years. In this chapter, we give a brief introduction to free 
and moving boundary problems, and methods available for their numerical 
solution. We then discuss applications and model problems arising in the 
study of phase change, and in particular, two-phase flow with phase change 
in porous media, which is the focus of the work in this thesis. 

In this thesis, we formulate model problems for phase change in porous 
media, and develop numerical methods for the solution of such problems. 
These models and methods represent a contribution to the literature, in that 
they avoid many of the simplifying assumptions and computational regulari-
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sations that we wil l describe along the way, and we have demonstrated their 
validity by way of convergence studies using analytical solutions which we 
have constructed. 

1.1 Free and moving interface problems 
Many problems from applied science involve interfaces which separate do
mains in which different physical processes or flow regimes occur. The prob
lem of a liquid droplet spreading under gravity concerns the interface between 
the liquid and the surrounding air, and the moving contact line which sep
arates the wetted area beneath the droplet and the dry substrate ahead of 
it. Nonlinear hyperbolic equations represent gas dynamic quantities such 
as the gas velocity in a tube, where a region of moving gas and a region 
of stationary gas are separated by a moving interface, or shock. A melting 
block of ice contains both a region of liquid water, and a region of solid ice, 
and we conceive of a sharp interface between the two regions. We wil l refer 
to the problem of locating such an interface, which is stationary, as a free 
boundary problem or free interface problem. Correspondingly, we refer 
to the problem of finding a moving interface as a moving boundary prob
lem, or moving interface problem. Many heat transfer and fluid dynamic 
processes result in free and moving boundary problems, and as such, these 
problems have generated much interest through industrial applications. A n 
alytical progress in the study of these complex industrial problems is often 
limited to asymptotic results and similarity solutions for idealised physical 
situations. As such, the primary tool for solution of these nonlinear problems 
is usually numerical computation. However, the analysis of certain free and 
moving boundary problems has received attention, and is well understood. 
The prototype Stefan problem for phase change is well documented in the 
literature, in particular in [3, 20]. Further, the development of existing nu
merical methods for free and moving boundary problems has often relied on 
the mathematical insight into such problems. 

Classical solutions to free boundary problems are not usually available. 
In models where physical parameters are discontinuous across an interface, 
solutions wil l lack regularity at the interface. Consider, for example, the 
one-dimensional, steady-state, free interface problem for a partially melted 
block of ice. Suppose the ice-water system occupies a domain z € [0, D], and 
that an interface z = s lies between a region of ice (0 < z < s) and a region 
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of liquid water (s < z < D). Assuming that the liquid is stationary, the 
temperature T throughout the system is given by the mathematical model: 

T(0 ) 
T(s-) 

{.KwaterTz) z 
T(s+) . 
T(D) 

0 0 < z < s, \ 
To (<0), 

°> 

0 s <z <D, 
0, 
Tx (>0) , 

(1.1) 

together with the heat balance at the interface 

8+ / . 

KTZ ^waterT? K T -) = 0. (1.2) 

The problem of locating the phase-change interface, and determining the 
temperature throughout the domain, is commonly referred to as a Stefan 
problem, and so we shall call the system (1.3)-(1.4) the mathematical for
mulation of a S teady-Sta te Stefan P r o b l e m . Here, the known melting 
temperature is zero, and K is a thermal conductivity. The steady-state po
sition, s, of the melting interface is given by 

s = 
T0Ki( 

T()Kice T\Kwater 

D. (1.3) 

Then the temperature profile is given by 

0<z<s, 
T(z) 

^ ( Z - D ) + T x s<z<D. 
(1.4) 

In Figure 1.1, we show a temperature profile for the solution with T 0 = 
—1, T i = 1, Kice = 2.2, Kwater = 0.55, and D = 1. While the temperature 
is continuous throughout the entire domain 0 < z < D, it is clear that its 
derivative is not continuous across the interface z = s. For the correspond
ing time-dependent Stefan problem, the temperature profile may evolve with 
a discontinuous derivative at the interface. As such, if we are able to re
formulate such a problem as a P D E for temperature over the fixed domain 
0 < z < D, then classical solutions wil l , in general, be unavailable. That 
is, we wil l not be able to find solutions, with continuous derivatives up to 
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Steady-state temperature profile for 10, two-phase Stefan problem 

Figure 1.1: The temperature profile for the solution of the steady-state Ste
fan problem (1.3)-(1.4). Here, we have taken T 0 = —1, T i = 1, Kice = 
2.2, and Kwater = 0.55. 

the order of the P D E , which satisfy the P D E at all points in the domain. 
If the conditions under which a "solution" is defined are weakened, then we 
may admit solutions with discontinuous derivatives, as so-called weak, or 
generalised solutions. Such solutions need only satisfy an integral form of 
the original P D E . We wil l discuss this concept in detail in Chapter 2, in our 
treatment of the so-called enthalpy method for numerical solution of phase-
change problems. Weak formulations for free and moving boundary problems 
are presented in detail by Elliott and Ockendon [23], as well as others [3, 20]. 
In fact, it is the weak formulation of the Stefan problem which provides a 
basis for the mathematical justification of the enthalpy method. 

Another moving interface problem of physical interest may be described 
mathematically by the P o r o u s M e d i u m E q u a t i o n . This is a nonlinear 
diffusion equation whose diffusion coefficient is a power of the dependent 
variable. Mathematically, we have 

ut = V . (unVu), (1.5) 

where n > 0, and t is time. Isothermal, ideal gas transport through porous 
media results in (1.5) with n = 1, where u represents the gas density (see, 
for example, [74]). The spreading of a thin liquid droplet on a solid substrate 
under the effect of gravity is described by (1.5) with n = 3 [23]. In this case, 
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u is the height of the free surface of the droplet. 
The behaviour of solutions to equation (1.5) is significantly different to 

that of linear diffusion equations. A solution of the equation (1.5) is said to 
have compact support if u(x, t) vanishes outside a region of x , which varies 
with t. The region for which the solution is non-zero is called the support of u. 

In contrast with solutions of linear diffusion equations, equation (1.5) has the 
property that, for an initial condition it(x, 0) with compact support, the so
lution i/(x,t) also has compact support, for t > 0. The "interface", which 
is the boundary of the support of « (x , t), will move with finite speed. Also, 
this speed may be zero until the solution at the interface has adjusted to a 
particular structure required for motion, giving so-called "waiting-time" solu
tions [32, 43]. Again, any interface-type solutions that we construct for (1.5) 
are understood to be weak, or generalised, solutions. The equation wil l not, 
in general, be satisfied by a constructed solution at the interface. Further
more, singular gradients may appear at the interface, where the diffusion 
coefficient vanishes, and the equation degenerates. That is, equation (1.5) 
ceases to be parabolic at the boundary of its support. We wil l discuss some 
implications of the singularity and degeneracy of such problems further in 
Chapter 2. 

There is an enormous number of other free and moving boundary prob
lems which we wil l not describe here. The interface between liquid and the 
surrounding air in Hele-Shaw flow [53], and the free liquid-air surface created 
by seepage of liquid through a porous dam are two well-studied examples, 
which bear some relation to our work. Crank's book [20] presents a variety 
of other free and moving boundary problems. However, our discussion wil l 
largely concentrate on the two prototype examples of Stefan problems and 
the Porous Medium Equation, which provide a good starting point for the 
mathematical detail of the interface problems discussed in this thesis. These 
problems may be extended, generalised and combined to model the more 
complex physical problems in which we are particularly interested here. 

While the few analytical solutions which are available for free and moving 
boundary problems may only be applicable to a narrow range of physical 
problems, the insight gained from them is often valuable. Furthermore, the 
performance of the numerical methods which'are developed for the solution 
of such problems is typically evaluated by way of convergence study using 
test cases with analytical solutions. 
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1.2 Numerical methods for interface 
problems 

The formulation of an initial-boundary value problem requires the specifica
tion of boundary conditions. In a free or moving interface problem, one or 
more conditions are therefore required on the interface, whose position is an 
unknown in the problem. In particular, in a moving interface problem, at 
least one of these conditions wil l be on the interface velocity, and a success
ful numerical scheme must accurately capture this velocity. Front-tracking 
methods (see [20], Ch . 4) are those which explicitly compute the interface 
velocity at each time step, and use this velocity to advance the interface. 
The use of fixed, uniform grids is not possible for such methods, since special 
difference formulae are required in the vicinity of the interface, as the inter
face wil l not, in general, coincide conveniently with a grid point. Crank [20] 
describes various approaches to solving this problem, including the modified 
difference formulae, and adaptive time-stepping to ensure the coincidence of 
the interface with grid nodes. He also presents the related approach of front-
fixing. Here, a coordinate transformation is performed after each update of 
the interface location, to ensure that the interface falls at a fixed coordinate 
value. Therefore, this method involves not only the implementation of the 
interface velocity at each time step, but also remeshing at each time step. 

Certain computational challenges become apparent when considering front-
tracking and front-fixing methods. Both of these approaches require a numer
ical implementation of the interface velocity. In degenerate diffusion prob
lems such as the porous medium equation, the interface velocity is often seen 
to be the limit of an indeterminate form (see [43], and [54] C h 7 ). Numerical 
methods are available for such scalar problems [25], which avoid the need for 
explicit implementation of the interface velocity, but in more complex prob
lems to which these methods do not extend, front-tracking type methods 
would be impractical unless the indeterminate velocity could be accurately 
computed. Also, in greater than one dimension, the solution of boundary 
value problems on either side of the interface requires consideration of the 
interface geometry, and hence, unstructured grids and coordinate transfor
mations are common. Donaldson [22] presents a front-tracking approach to 
a generalised Stefan problem using the finite element method in two dimen
sions. Representation of the interface as a spline contributes to a lengthy 
computation. For many Stefan-type problems, front-tracking methods have 
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been avoided. 
There has been much activity in recent years in developing methods for 

moving interface problems which avoid the need for explicit tracking of the 
interface. A method which computes the solution to a free or moving inter
face problem without explicitly computing the interface location, but rather 
recovers the interface location from the numerical solution to a reformulated 
problem, is generally referred to as a front-capturing method. The en
thalpy method for the Stefan problem is described in detail by a number 
of authors [3,. 20, 23, 54], due to its wide applicability. The method takes 
a reformulation of the problem based on a transformation of the dependent 
variable from temperature to enthalpy, leaving a problem for the enthalpy 
and Kirchoff temperature over a f ixed d o m a i n which contains the phase-
change interface. The Stefan condition for the interface velocity is implicitly 
absorbed into the fixed domain formulation. Finite difference and finite vol
ume schemes for the enthalpy method typically result in a lower order of ac
curacy than corresponding front-tracking schemes [24, 31], but the enthalpy 
method is widely used in practice, due to its ease of implementation (see, for 
example, [11, 24]). Since the method does not require any explicit handling 
of the interface, its extension from one to two or more dimensions is straight
forward. In Chapter 2, we wil l describe the enthalpy method for the Stefan 
problem in detail. 

A n alternative method which has been developed more recently is the 
Level Set Method [55, 61]. This is also a capturing method which results from 
a reformulation over a fixed domain containing an interface. Rather than 
the interface velocity being implicitly absorbed into the new formulation, it 
appears explicitly in a Hamilton-Jacobi type equation. While the Level Set 
Method does not require a calculation of the interface location at each time 
step, as in front-tracking methods, it does require an accurate implementation 
of the interface speed function. In [18], Chen et al present a Level Set method 
for solving a Stefan problem. Their computation is more expensive than 
an enthalpy method for the same problem, but higher order of accuracy is 
achieved. 

The Immersed Interface Method is a modern numerical method which 
may be used for certain moving interface problems. Like the enthalpy method, 
it is a fixed grid method, but one which explicitly incorporates the interface 
conditions into the discrete scheme. Correction terms are added to the dis
cretization in the neighbourhood of the interface, and interface conditions 
may be implemented by way of a smoothed delta function centered on the 
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interface. L i [46] describes the method in some detail, and presents nu
merical convergence studies for several example problems. In particular, he 
demonstrates second order accuracy when the method is applied to a two-
phase Stefan problem. Careful choices for the correction terms and smoothed 
delta function can result in second order accuracy, in cases where the cor
responding implementation of the enthalpy method can only achieve first 
order accuracy. Hou et al [36] present a hybrid method which combines the 
Immersed Interface and Level Set methods for interface problems, paying 
particular attention to achieving second order accuracy. However, for rela
tive ease of implementation, the enthalpy method often appears to be the 
preferred method of solution for simple Stefan problems. 

Conservation of mass is an important concept in the development of nu
merical schemes for moving interface problems. It is well known that finite 
difference schemes for hyperbolic conservation laws with shock-type solutions 
must be derived in conservative form in order for the shock to propagate at 
the correct speed (see [44], for example). It is not enough for a scheme simply 
to be consistent with the governing P D E , when non-unique weak solutions 
exist. Critically, the conserved "mass" in the continuous physical problem 
must also be conserved in time in the discrete approximation. The necessity 
for discrete conservation is also a feature of numerical methods for equations 
of degenerate parabolic type [25, 26], which model moving interfaces which 
are not necessarily shocks. 

1.3 Two-phase flow with phase change in 
porous media 

A n understanding of heat transfer and fluid flow through porous media is 
central to the analysis of many environmental and technological processes. 
Soil is one of many geological materials that is both porous and permeable 
for the liquids and gases with which it naturally interacts. Waste disposal of
ten requires fluid transport through a porous structure, as does oil recovery, 
where thermal effects may also be significant. The design of porous insu
lation clearly raises issues of heat transfer and the migration of moisture. 
The modelling of these and other such processes must take into account the 
geometry of the porous solid, which impedes the flow of the fluid through 
the medium. 
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The problem of modelling heat and mass transfer of a single-phase fluid 
flowing through a porous medium is somewhat challenging. A significantly 
more complicated modelling problem concerns the heat and mass transfer, 
and phase change, of a fluid which flows through a porous structure. Two-
phase flow and transport with phase change in porous media has attracted 
much interest in recent years, from researchers in such diverse fields as mi
crowave heating of foods and biomaterials [52], geothermal energy recov
ery [59, 74], and fuel cell technology [58, 21]. The process of wood drying 
is examined in detail by Whitaker [72]. In these examples, it is important 
to consider not only the flow and heat transfer, but also the effect of phase 
change, which further complicates the modelling and numerical effort. In con
figurations involving condensation and evaporation, regions of single-phase 
fluid and two-phase fluid often coexist within the porous medium. The lo
cation of interfaces between single-phase and two-phase zones are often of 
primary interest. 

Woods [73] analyzes the processes involved in liquid injection into a hot 
porous medium, as related to models of geothermal reservoirs. Typically, 
cool liquid water is pumped into a porous superheated reservoir below the 
Earth's surface. The injected water boils at a front, and the resulting water 
vapour is extracted by a well in order to drive turbines for the generation of 
electricity (see Figure 1.2). In [73], the flow of vapour ahead of the boiling 
front is analyzed, and also the flow of liquid behind the front. The rate of 
vapour recovery through the well depends on the rate of migration of the 
boiling front, which in turn depends on the liquid temperature and injection 
rate. 

While two-phase flow and phase change in geothermal reservoirs arise 
through the injection of cold liquid into a hot porous solid, similar flow phe
nomena arise in certain oil recovery processes. Typically, a displacing fluid 
is pumped into an underground reservoir, in order to extract oil from the 
porous rock. Allen et al [5] look in detail at the mathematical modelling of 
such flows, with particular emphasis on reservoir simulation. Peaceman [57] 
presents a comprehensive introduction to modelling and numerical methods 
for reservoir simulation, and Allen [4] reviews numerical methods for isother
mal flows in natural porous media. A number of reductions to the mathemat
ical model of multiphase flow in porous media are made under assumptions 
specific to reservoir flow. Flows are typically taken as isothermal, with no 
phase change throughout the reservoir, and capillary effects are assumed to 
be negligible. Under such assumptions, the fluids are incompressible, and 
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Pump Turbine power station 

cool liquid 
pumped down 

hot vapour extracted 
through well 

hot porous reservoir 

Figure 1.2: Geothermal power generation. 

the system of P D E s governing the flow decouples, and reduces to an elliptic 
equation for the total pressure, and a hyperbolic equation for the saturation 
of the wetting phase. These simplified problems may be solved numerically 
by a well established sequential Implicit Pressure, Explicit Saturation ( IM-
PES) time-stepping method (see [57]). Karlsen et al [38] take an alternative 
approach, by using a fast marching Level Set method for the saturation equa
tion. The same assumptions of isothermal, incompressible flow without phase 
change are key to their formulation. 

Oi l recovery processes can be thermally enhanced, whereby the injected 
fluid is a hot vapour such as steam. This acts to transfer heat to the oil, low
ering its viscosity, which increases its mobility. Clearly, thermal and phase 
change effects become important in modelling such processes, as the injected 
steam wil l eventually condense at sites in the reservoir. Hanamura and K a -
viany [33] describe such a situation, where the injected steam condenses at a 
front, which then propagates through the porous medium. Bruining et al [16] 
formulate a model problem for steam injection into hot porous rocks, neglect
ing capillary effects, but including the effects of phase change, at a known 
phase change temperature. Wi th the thermal and phase change effects, the 
assumptions behind the I M P E S method are no longer valid, and alternative 
computational strategies must be devised. Furthermore, the modelling of 
two-phase flow and phase change in porous media on smaller scales is often 
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domina ted by cap i l la ry effects, wh ich alter the structure of the mathemat
ica l model . In par t icular , where capi l la ry effects are impor tan t , sa turat ion 
equations are often of degenerate parabol ic type. 

T h e development of P r o t o n Exchange Membrane ( P E M ) fuel cells is a 
technological advance prompted by environmental concerns. Fue l cell tech
nology has recently received much interest as the automotive indus t ry has 
recognized the need for low emission power supplies as an alternative to the 
internal combust ion engine. A s w i t h steam injection processes i n o i l recov
ery, condensation of s team is also observed to occur i n the porous electrodes 
of P r o t o n Exchange Membrane ( P E M ) fuel cells, and has received at tent ion 
from a number of authors, for example, [12, 21, 56, 58, 70]. Consider the 

Graphite Gas Porous 
plates channels electrodes 

Figure 1.3: A P E M fuel cel l . 

s implif ied fuel cell configurat ion i l lus t ra ted i n F igure 1.3. T h e two electrodes 
indica ted consist of a porous mater ia l . Hydrogen and oxygen diffuse through 
the electrodes to the membrane, where they react, p roduc ing water vapour, 
wh ich is then t ranspor ted back through the cathode. Condensa t ion of this 
water vapour is observed to occur at certain locations w i t h i n the cel l , result
i ng i n l i qu id water w i t h i n the cathode, or emerging into the oxygen channel. 
T h e accumula t ion of l i q u i d water i n the gas flow channels impairs the efficient 
del ivery of reactant gas to the electrode, while flooding of a porous electrode 
inhib i t s the diffusion of gas through the medium, thereby reducing the supply 
of reactant to the membrane. However, the membrane must remain hydrated 
for the react ion to occur, and the topic of "water management" draws on the 
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effects of water in many inter-related processes inside the cell. The effects of 
water condensation can clearly be detrimental to the efficiency of operation 
of the fuel cell, and as such, a mathematical investigation of phase change 
in a porous medium is of interest to fuel cell manufacturers. In particular, a 
model problem amenable to computational study is desired. 

Models of two-phase flow with phase change in porous fuel cell electrodes 
are seen to include thermal and capillary effects, resulting in degenerate 
parabolic equations as described above. A number of recent studies have 
used simplifications and regularisations of the model problems in order to 
deal with the numerical difficulties presented by their singular, degenerate 
nature. Bradean et al [12] identify regions of water vapour oversaturation 
within a dry fuel cell electrode, where condensation is likely to occur, but 
do not include phase change effects in their model. He et al [35] present 
a steady-state model problem, in which the liquid saturation dependence is 
removed from the capillary pressure and relative permeability terms. There
fore, the degeneracy and singularity in the problem as the liquid saturation 
vanishes is avoided. In [70], another steady-state model problem is described, 
for two-phase, multicomponent flow in porous electrodes, but neglecting ther
mal variations and phase change effects. Natarajan and Nguyen [51] solve 
numerically a time-dependent problem which includes phase-change effects. 
Saturation dependence in the relative permeability is included in their model, 
but regularised in order to simplify the computation. The same regularisa-
tion is used by Mazumder and Cole [50]. The effect of such regularisations is, 
in general, to smear out sharp interfaces. A time-dependent problem which 
makes no mention of any such regularisation, but which assumes isother
mal conditions and does not include phase change, appears in [56]. A more 
recent study by Birgersson et al [10] considers the steady-state flow and 
phase-change with no apparent artificial regularisation added to the prob
lem. In this thesis, we are primarily concerned with model problems for 
phase change in porous media which encompass all the mathematical diffi
culty of those appearing in the reservoir and fuel cell literature, but with a 
view to developing methods which may be applied in quite general, rather 
than specific, settings. W i t h this in mind, we note here that we shall only 
consider single component, two-phase flow, rather than the multicomponent 
flows described in the fuel cell literature, where oxygen, nitrogen and water 
may all coexist in the porous media. Multiphase, multicomponent compu
tations wi l l , in general, be more expensive than the computations which we 
describe here. However, the issues of singularity and degeneracy which we 
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tackle here will not be further complicated by adding extra components to 
our model. 

More theoretical and general studies have been presented by other au
thors. A steady-state, one-dimensional study by Udell [64] investigates the 
effects on a sand pack, which contains water, of heating the layer at the 
top and cooling the layer from below. Experimental results indicate that, 
at steady state, there may be three distinct zones within the porous pack: 
a vapour zone at the top, a liquid zone at the bottom, and a two-phase 
zone in between. The basic set up is shown in Figure 1.4. In the two-phase 
zone there is a counterflow of liquid, driven upwards by capillary forces, and 
vapour, driven downwards by a pressure gradient. Udell presents a model 
of the two-phase zone that assumes a constant temperature throughout this 
zone, with condensation and evaporation occurring at the lower and upper 
interfaces, respectively. The vapour in the two-phase zone is assumed to be 
fully saturated. The model problem is solved to give a saturation profile, 
which indicates the length of the two phase zone. A similar study is per
formed by Torrance [63], with heating from the bottom, and similar results 
are obtained. 

tw>-phase 

liquid 

Figure 1.4: A three-zone system for Udell's experiment. 

The isothermal two-phase assumption made by Udell [64] appears to be 
popular throughout the literature. Temperature variation throughout a two-
phase zone may be critical in applications such as fuel cell design. A recent 
study by Wang and Wang [71] specifically examines the fuel cell setting 
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under nonisothermal conditions, and shows numerical results for a two-phase 
zone. Also, a more complete steady-state model for Udell's problem [64] is 
presented in [14]. Temperature effects are included in this model, and phase 
change is allowed to occur throughout the two-phase zone. A numerical 
method is developed for locating interfaces between the single-phase and 
two-phase regions, and is described algorithmically in [15]. 

Now we consider the time-dependent Udell problem. Specifically, we con
sider the problem bf locating the interface between a single-phase region and 
a two-phase region in a single component, two-phase mixture, before the 
system has reached a steady-state. Such problems are of interest to fuel cell 
manufacturers when considering the effects of start-up and shut-down of cells. 
For the numerical solution of such a problem, fixed-domain, front capturing 
methods appeal. A method, based on mixture quantities, and using the same 
saturation assumption as Udell, is described by Wang and Beckermann [68], 
and implemented in [66]. Another model which has been used in the fuel cell 
literature penalizes any vapour not at saturation pressure into condensing at 
a large rate (see, for example, [21, 50]). Both of these methods require the 
solution of a fixed-domain problem, from which the interface location can 
be recovered. Computations using these methods have often been performed 
under the various simplifying assumptions which we have described above. 
Due to these assumptions, and the lack of analytical solutions to the cou
pled model problems, the challenge remains to show, either analytically or 
numerically, that such a computational capturing method for nonisothermal, 
two-phase flow with phase change in porous media yields an accurate solu
tion in time. We aim to formulate model problems and develop capturing 
methods for their solution, for which we can show that the interface evolves 
with the correct location and velocity. 

1.4 Thesis overview , 
In this thesis, we formulate mathematical models for phase change in porous 
media, and related model problems, and develop numerical methods for the 
solution of these problems, both steady-state and time-dependent. Through
out the thesis, we highlight points of particular mathematical interest. These 
are intended simply to aid the motivation for and understanding of our work, 
as well as to suggest directions of further interest. Most of our mathematical 
discussion wil l be illustrated using one-dimensional model problems. The 
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emphasis throughout is on developing understandable, reproducible solution 
methods, rather than rigorous mathematical analysis. 

The remainder of this thesis is organised as follows. In Chapter 2, we 
discuss in some detail two prototype interface problems, which are related 
to the process of phase change in porous media. We describe formulations 
of the Stefan problem of phase change, and the Porous Medium Equation, 
and discuss numerical capturing and tracking methods to approximate their 
solutions. A new asymptotic analysis of commonly used smoothing strate
gies is presented for a smoothed, steady-state Stefan problem. Also, careful 
numerical convergence studies are presented, in preparation for a comparison 
with the results of Chapter 4. 

In Chapter 3, the steady-state, one-dimensional problem of phase change 
in porous media is described. This is an extension of an existing model, allow
ing for compressible vapour. Two numerical methods are described for the 
solution of this free interface problem, and numerical results are presented, 
showing good agreement between the two methods. These results are used 
as benchmark solutions for the time-dependent and two-dimensional compu
tations in Chapter 4. 

In Chapter 4, the phase change in porous media problem is extended to 
include time-dependence, and reformulated as a fixed-domain problem. A 
numerical capturing method is developed for the solution of this problem, 
avoiding several simplifications which have commonly appeared in the liter
ature. Computational solutions are shown to evolve to the correct steady-
states predicted by the methods of Chapter 3. A n analytical solution is 
found for a reduced model problem, and numerical convergence studies us
ing this exact solution show that solutions from our capturing method are 
indeed convergent. Furthermore, the convergence rates are comparable with 
the methods used for much simpler scalar problems, as described in Chap
ter 2. The implementation is extended to two dimensions, and computational 
results are shown. * 

In Chapter 5, we summarize our findings, describe ongoing work, and 
suggest directions for future work. 
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Chapter 2 

Solutions to prototype interface 
problems 

In this chapter, we study two prototype free and moving interface problems 
of particular relevance, namely the two-phase Stefan problem and the Porous 
Medium Equation. We will formulate these problems mathematically, and 
discuss some analytical and numerical solution techniques for them. In par
ticular, one-dimensional model problems are used for illustration. Much of 
this chapter is a review, intended as a mathematical background to accom
pany and guide the applied work in later chapters. We also present a new 
asymptotic analysis of smoothing strategies applied to interface problems, 
and suggest further work. 

2.1 The steady-state, two-phase Stefan 
problem 

2.1.1 The one-dimensional problem 
First of all, consider the steady-state, one-dimensional ice/water problem 
which we briefly discussed in Chapter 1 (see (1.1), ff.). We suppose that ice 
occupies a region 0 < z < s, and that liquid water occupies a region s < 
z < D. A t z = s, there is a melting/freezing interface which separates 
the two regions. In each of the two distinct regions, the temperature is 
governed by a steady-state heat equation. At z = 0, suppose we have a given 
temperature, T 0 , which is below the melting temperature. At z = D, suppose 
we have a given temperature, T i , which is above the melting temperature. 
Also, take the melting temperature to be zero (This is for ease of illustration, 
and temperature is measured in degrees Celsius in the physical problems in 
this chapter. In later chapters, where phase change temperatures are not 
fixed, and the ideal gas law is important, we revert to temperature measured 
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in Kelvins). Then a mathematical model for the temperature throughout the 
system consists of two boundary value problems in each of the two regions, 
as follows: 

(KiceTz)z = 0 0<z<s, 
T(0) = T 0 (<0), 

T(s-) = 0, 
(KwaterTz)z = 0 s < z < D, 

T(s+) = 0, 
T{D) = Tx (>0) . 

(2.1) 

Now, since the interface position s is an unknown in the problem, we require 
one more condition. Energy should be conserved across the interface. In 
other words, the heat flux should be continuous across the interface, giving 

KT, = 0. (2.2) 

It is a straightforward matter to solve the problem by calculating s using 
the three interface conditions, and then finding the temperature T(z) in 
the ice and the liquid water regions. Let us also consider an alternative 
formulation, to show how we may "capture" the interface from the solution 
of a transformed problem. 

We can reformulate the disjoint domain problem (2.1)-(2.2) as a linear 
problem for a transformed variable over the domain [0,D]. Let 

v{T)= fK(0di, (2.3) 
JTo 

where the conductivity K is given by 

K(T) = | 

or equivalently 

^ Kice T < 0 
Kwater T > 0 

K(T) = Kice + (Kwater - Kice)H(T), 

where H is the Heaviside function. In the context of the time-dependent 
problem, which we shall discuss in the next section, (2.3) is known as the 
K i r c h o f f t r ans fo rmat ion . Then (2.1)-(2.2) becomes 

HT))ZZ = o, 
(2.4) 

v\z=o = 0, v\z=D = v(Ti) 
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Trivially, this has solution 

(2.5) 

and the temperature T(z) can then be recovered using (2.3). The interface 
z = s is then "captured" using the condition that T(s) = 0. For the steady-
state problem here, an exact solution is available. The steady-state position, 
s, of the freezing/melting interface is given by 

O-'Mee D. 
\ToKice ~ TiKwater J 

Then the temperature profile is given by 

( -^z + T0 0<z<s, 

(2.6) 

T(z) = { 
[ ^ ( z - £ > ) + T i s<z<D. 

(2.7) 

It appears that the discontinuity in the conductivity function K at the in
terface does not hinder us analytically, or indeed, numerically. 

2.1.2 The two-dimensional problem 
Now let us consider how the problem is solved in two dimensions. 

Consider the problem shown in Figure 2.1. Liquid water and ice occupy 
regions Q i , respectively, and are separated by a freezing/melting inter
face T. We now simply extend the mathematical model (2.1)-(2.2) to two 
dimensions, giving 

V.(KiceVT) = 0 (x,y) G f t 2 

T(x,0) = T0(x) (<0), 
T = 0 on r ~ , 

V.(KwaterVT) = 0 ( x , y ) 6 n i , \ (2-8) 
T = 0 o n T V 

T{x,D2) = Tx{x) (>0) , 
T(0 ,y) = TuMv), T(D2,y) = Tright(y), J 

together with the heat balance across the interface: 

(KVT).n = 0. (2.9) 

file:///ToKice
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A 

0 

T = Tj 

WATER 

\ r 

ICE 

0 T = To A 

Figure 2.1: The steady-state, two-phase Stefan problem in two dimensions. 

Here, n is the unit normal to the interface T. Once again, we may solve for 
the temperature and interface location by a change of variables which leaves 
a fixed-domain problem. Making the change of variables (2.3) 

v(T)= fT K(Od£, 

for a chosen reference temperature Tref, the problem reduces to 

Av = . 0, (x ,y )e (0 ,A)x(0 ,A) } 
v{x,0) .= v(T0(x)), 

v(x,D2) = v(Ti(x)), 
v{0,y) = v{Tuft(y)), 

v (A.y) = v{Tright(y)). 

(2.10) 

That is, we may solve for the interface location and the temperature in the 
disjoint regions by first solving Laplace's equation for v on the fixed domain. 
Given the solution v, the temperature T is easily recovered from the following: 

v+KiceT, fsirsi if v < —KiceTref, 
P- ice 

^fs^sl if v > -KiceTref. 
* i water 

(2-11) 
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Analytical solutions to the problem (2.10) may be found using Fourier series 
methods. For illustration here, consider a problem where we take To to be 
constant, using Tref = T 0 , Di = D2 = 1, take Ti(x) to be 1-periodic, and 
give periodic conditions in the x-direction. Then the solution v of the fixed 
domain problem is given by 

v(x, v) = —V + ^ I — — cos 2mrx + , , " — sin 2n7ra; ) sinh 2n7ry, \ ,»/ 2y Z ^ \ s i n h 2 n 7 r sinh2n7r J 
n=l x 

(2.12) 
where the Fourier coefficients are given by 

f = ft viTtii)) dx, 
an = 2 fQ v(Ti(x)) cos2n7rx dx, n = 1,2,... 
bn = 2 JQ1 V(TI(X)) sin 2rwnr dx, n = 1, 2,... 

(2.13) 

In Figure 2.2, we plot the steady-state solution to the problem (2.8), using 

Temperature profiles 

Temperature contours 

1 

Figure 2.2: Temperature profile and contours for steady-state two-phase Ste
fan problem. 

periodic conditions in x, with Kice = 2.2, Kwater = 0.55, T 0 = —2 and 
T\(x) = 3 + 3cos27T2;. This two-dimensional problem is simply a sinusoidal 
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perturbation to the one-dimensional problem (2.1), with Xi = 3, which, 
by (2.6), has the interface at s = 8/11 ~ 0.73. This average interface position 
is clear in Figure 2.2. 

It is worth noting here that our solution method, namely solving the 
fixed-domain problem (2.10) for the transformed variable v, then recover
ing temperature using (2.11), is valid for more general problems than (2.8). 
Since v has continuous derivatives everywhere, the heat balance (2.9) will 
hold across any interface. The temperature recovery relies only on the value 
off, and does not require explicit knowledge of the location of any interfaces. 
Therefore, this method may be applied in general to problems where there are 
no interfaces, a single interface, or multiple interfaces. This idea extends to 
capturing methods for time-dependent problems, which gives these methods 
a particular appeal over front-tracking, as we shall see in the next section. In 
Figure 2.3, we plot the steady-state solution to a two-phase Stefan problem 
using periodic conditions in x, with Kice = 2.2, Kwater = 0.55, X 0 = —2 and 
T\{x) = 3 + 3.5cos2vra;. Clearly, there are two interfaces, which separate 
the liquid water from two regions containing ice - one near the cold interval 
along the upper boundary, and one near towards the lower boundary. 

Temperature contours with two interfaces 

0.6 

» 0 5 M 

0.41 

0.31 

0.21 

0.11 

o " 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

x 

Figure 2.3: Temperature profile and contours for a steady-state two-phase 
Stefan problem with multiple interfaces. 
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2.1.3 A smoothing method and asymptotic results 
The two-phase Stefan problem which we have described here has been illus
trated by examples for which exact solutions are available. Such analytical 
solutions are not generally available for problems on irregular domains, prob
lems with different boundary data, generalized Stefan problems with extra 
heat sources, for example, and for time dependent problems. In these cases, 
we inevitably resort to numerical solution methods. Any code which involves 
the step of temperature recovery from the transformed variable wil l require 
"if" statements, and discretizations may be.hindered by the discontinuous 
temperature gradients. One approach to take is to smooth the discontinuous 
conductivity function K(T) over some radius in T , and solve the resulting 
smoothed problem. While some implementations of the enthalpy method 
for the transient problem, which we will describe in the next section, often 
make use of the exact conductivity, some degree of smoothing is often ap
plied in order to aid computations (see, for example, [3, 20]). It appears that 
little analysis of such smoothing methods has been presented in the litera
ture. Here, we present a brief analysis of a smoothing strategy applied to 
our one-dimensional, steady-state Stefan problem. 

We aim to give a regularization of the problem 2.1 by smoothing the 
conductivity function, leaving a smooth, fixed-domain problem. Let us write 

K£(T) = Kice + (Kwat^-kice)He(T), (2.14) 

where H£ is a C°° symmetric regularization of the Heaviside function, with 
smoothing radius e. Then the problem 

v(T) = ffoK£(Od^ 

(v(T))zz = 0, (2-15) 

^U> = 0, v\z=D = v(T1) 

has a C°° solution T(z) which should tend to the exact solution of the Stefan 
problem as e —» 0. We do not prove this here, but observe this numerically. 
Of particular interest is the difference in the location of the interface where 
T = 0 between the exact and smooth solutions, and the dependence of this 
error on e. We see from (2.5) that the interface location z = s is given by 

* = ^ U (2-16) 
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Since the smooth solution satisfies 

v(T) = Kice(T - To) + (KwateT - Kice) fT He{0 d4, (2.17) 
JTQ 

we see that the value of s for this smooth solution can be found approximately 
by considering the asymptotic evaluation of the integrals 

f°H£(Od(, and P He{£) d£, 
JTn JTa 

with T 0 < 0, T i > 0 and e | T 0 | , T i , for our choice of smoothed Heavi-
side He. We illustrate this for two common choices in the examples below. 

Example 2.1 

Let 

Then 

where 

He(X) = J + - t a n - 1 f - ) . (2.18) 
2 7T \ e ' 

'THe(0dt = hT-To) + -I(T), (2-19) 
To 2 7T 

I(T) = T t an" 1 T- - T0 tan" 11 - \ log (J^) • (2-20) 

Recalling the identity 

_ i 1 A - i v f - T / 2 X < 0 tan - + tan X = | ^ X > Q , 

and the expansions 

t a n - 1 X = X - ^ + ..., log(l + X) = l - ^ + ..., 

we find 

1(0) ~ | T o + ( l + l o g | T 0 | ) e - e l o g £ , / (T i ) - ^(Tt+To)-(loge. 

(2.21) 
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J T 0 

(0# [(l + l o g | r 0 | ) £ - e l o g e ] , 
7T 

[TlH£(Odt ~ r i - f ^ l o g ^ y j e . 

v(0) -KiceT0 + E(Fe-eloge), 

Hence, 

and 

So we have 

where 

and also 

where 
A - KwoterEl KiceTo-

Finally, substituting into (2.16), recalling the exact interface location (2.6), 

Smooth approximations as e -> 0, withTO=-3 T1=7 1̂ =0.8 kwJBr=0.25 N=80 

E = 
IT 

and F = l + log |T 0 | , 

~ A-E\og-^-e, 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

Figure 2.4: Smooth approximations converging to exact, nonsmooth steady-
state temperature (dots) as e —• 0, for Example 2.1. 
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and noting that l/v(T\) ~ \ (l + f log j ^ e ) , we find the interface location 

to the smoothed problem is given by 

E 
S ~ Sexact " t " e — e log e D. (2.22) 

Clearly, s —* s e xact as e —> 0. In Figure 2.4, we show the convergence of 
the smooth approximations to the nonsmooth steady-state temperature. In 
Figure 2.5, we show a close-up of the computed smooth solution, showing 
good agreement with the asymptotic interface location (2.22). • 

e=0.01 wlthT0=~3 T W 1^=0.8 *-„ m =°- 2 5 N = 4 0 0 

• exact solution 
computed smooth solution 

O asymptotic interface position 

0.11 0.112 0.114 0.116 0.118 

Figure 2.5: Computed smooth approximation and asymptotic form, for Ex
ample 2.1. 

Example 2.2 

Let 

tfe(20 = - < | l + tanh §)} ' (2.23) 

Here, we use the fact that 

1*1 log I cosh ~ ^ - log 2 for e < | X | , 
e l e 
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to obtain 
r-0 

/ U f T « ( O d e ~ and 
J To IT0 * JT0 

Proceeding as in Example 1, we find that 

/ fe _ r> 
Ii-water 1\ice 

JTo 

ci£ ~ T i+o (e , e loge ) . 

, l?g2 

KwaterTi — KiceTo I 2 
T»£. (2.24) 

We notice the order of error in each of these examples, and conjecture that 
we cannot achieve a higher order error if our choice of smoothed Heaviside 
is monotonic increasing. The reason is due to the fact that the integral 

JTo 

for any monotonic increasing H£, as suggested by Figure 2.6. 

He(X) 

1 

0.5 r 
• 

0(1) 

> 
X 

Figure 2.6: A sketch of a monotonic increasing smoothed Heaviside function, 
He. Clearly, / ° H e ( £ ) d £ = 0(e) , for X < 0. 

The smoothing method presented here can, of course, be applied to higher 
dimensional problems, and time-dependent problems. We suggest further in
vestigation of smoothing methods and a more formal analysis of our technique 
for the steady-state Stefan problem as open problems. 
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2.1.4 The method of residual velocities 
Recent work by Donaldson [22] presents a trial method for solving free inter
face problems, with a view to solving more complex problems for which fixed 
domain methods may not be straightforward to formulate or implement. For 
illustration of the method, particular attention is paid to the steady-state 
Stefan problem, in two dimensions. Here, we describe the method for the 
one-dimensional problem. Consider again the problem (2.1)-(2.2), as shown 
in Figure 2.7. We can think of the problem as consisting of two boundary 
value problems, one on either side of the interface z ~ s. If the value of s is 
known, then we require only two conditions at the interface, but since s is 
an unknown in the problem, we require three conditions there. 

(KiceTz)z — 0 {KwaterTz)z — 0 
0 s D 
I \ _ 1 • z 
' ICE ' WATER 1 

T Tbot | T — Ttop 

'KTZ]+_ = O (i) 

T+ = 0 (ii) 

T~ = 0 (iii) 

Figure 2.7: The steady-state, one-dimensional Stefan problem (2.1)-(2.2). 

The idea of the Residual Velocity method described in [22] is to make 
an initial guess for s, then to solve the boundary value problems in the ice 
and water regions, using two of the three interface conditions. The third 
condition, in general, wil l not be satisfied, unless the interface is at the exact 
steady-state location. A n interface "velocity" is defined to be equal to the 
computed residual in this third condition, and the interface is subsequently 
moved according to this velocity and the chosen time-stepping scheme. This 
process is repeated until the interface approaches some limit for large "time". 
This is essentially a front-tracking method applied to steady-state problems 
on either side of the front. While the solution method treats the residuals 
as velocities, the evolution of the interface in "time" is completely artificial, 
and only the steady-state is meaningful. 
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For the one-dimensional problem in Figure 2.7, we now demonstrate the 
Residual Velocity method using each of the three conditions as velocities. 
Suppose the initial guess for the interface is s0. 

Example 2.3 

Using the residual in condition (i) as the velocity (ie. solving the boundary 
value problems using conditions (ii) and (iii)), the interface velocity is given 
by 

. = - [ K w a t e r - ^ - + K i c e ^ \ , 5(0) = a o . . (i) 
dt \ D — s s J 

Example 2.4 

Using the residual in condition (ii) as the velocity (ie. solving the boundary 
value problems using conditions (i) and (iii)), the interface velocity is given 
by 

KiceTbot s — D 

K, 
8(0) = s0. (h) 

water 

Using the residual in condition (iii) as the velocity (ie. solving the boundary 
value problems using conditions (i) and (ii)), the interface velocity is given 
by . . 

ds I m KyjaterTfap S \ . . ..... 

In Figure 2.8, we plot solutions of the O D E ' s from Examples 2.3-2.5. We 
take D = 1, Tbot = - 1 , Ttop = 1, Kice = 2.2, Kwater = 0.55, and compute 
solutions given two different initial conditions, s0 = 0.5, and s 0 = 0.97. In 
both cases, we see that all three velocity choices give an interface which 
evolves and converges to the correct steady-state solution s = 0.8. 

For the one-dimensional problem considered here, the analytical solu
tion of the boundary value problems is trivial. In higher dimensions, where 
the interface geometry must be taken into account, solution of these prob
lems requires numerical methods. Also, the choice of residual velocity is not 
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Steady-state interface location, using Residual Velocity method 
11 1 1 1 1 1 1 1 1 r 

"time" t 

Figure 2.8: Convergence to steady-state interface location, using Residual 
Velocity computations. 

limited to the three shown here. The interface conditions used in the compu
tations may be constructed using linear combinations of the three physical 
conditions (i)-(iii), and the interface should evolve to the same steady-state. 
In [22], a discretization of the interface for a two-dimensional problem is de
scribed, and the numerical properties of various choices of velocity applied 
with certain time-stepping schemes are analyzed. 

2.2 The time-dependent, two-phase Stefan 
problem 

In this section, we discuss the extension of the model two-phase Stefan prob
lem to include time-dependence. W i t h a view to solving the phase change 
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problems in porous media described in later chapters, we look in particular 
at the formulation of the problem, exact solutions, and the capturing meth
ods which have been developed for numerical solution. The contents of this 
section are largely drawn from well established work, which is particularly 
well described in detail by Crank [20] and Alexiades & Solomon [3]. 

2.2.1 Mathematical formulation 
Let us consider the extension of the problem (2.1) to the time-dependent 
problem. Conceptually, we imagine a partially melted block of ice, with a 
moving freezing front, before a steady-state has been reached. Mathemati
cally, we have 

pCiceTt = (KiceTz)z 0<z<s(t), 
T(0) = -Tbot (< 0), 

T(s-) = 0^ 
(KwaterTz)z s(t) < z < D, ( 

T(s+) = 0, 
T{D) = Ttop (> 0). 

Here, p represents density, which we assume is the same in both liquid and 
solid phase, and c^water are the specific heat capacities of ice and liquid 
water respectively. Once again, we require an extra condition at the interface, 
which represents conservation of energy across the interface. Consider the 
diagram shown in Figure 2.9. 

Suppose that the interface is moving to the right, so that it is a freezing 
front. In small time St, the front moves a small distance Sz. During this 
time interval, the heat which flows out (per unit area) into the ice region is 
approximately KiceTz St. This must equal the heat which flows in from the 
water region, plus the heat released upon freezing the mass (per unit area) 
pSz. Thus we have 

where L is the specific latent heat of freezing. Taking the limit Sz, St —• 0, 
we find 

l water pLs(t) = - KTZ 
(2.26) 

J ice 
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W A T E R 

Figure 2.9: Heat balance at the freezing interface - the Stefan condition. 

where s is the interface velocity. This condition for the interface velocity is 
generally referred to as the Stefan cond i t ion . It is worth noting that we 
wil l arrive at this same condition regardless of whether we consider a melting 
or freezing process. 

In order to complete the specification of the time-dependent problem, we 
also add an initial temperature distribution, and an initial interface location. 
That is, we also give 

T(z,0) = Tinit(z), 0<z<D, s(0) = s 0. 
Now, defining 

Ot-ice. — 
Kice Kwater 

&water — 
ce PCwater 

our two-phase Stefan problem becomes 

Tt = aiceTzz 0<z.<s(t), 
T(0) = Tbot (< 0), 

T( s - ) = 0, 
Tt = awaterTzz s{t) < z <D, 

T(s+) = 0, 
T(D) = Ttop (> 0), 

r ^ -j water 
pLs(t) = - KTZ 

L J ice 

T(z,0) = Tinit(z), 0<z<D, 
s(0) = s 0. 

(2.27) 

(2.28) 
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2 . 2 . 2 Analytical solutions 
Exact, analytical solutions to two-phase Stefan problems such as (2.28) are 
not generally available. The two most common types of solution, namely the 
Neumann similarity solution and the travelling wave solution, appear to have 
limited application in real world problems, but such solutions are valuable in 
giving mathematical insights into the Stefan problem, providing useful ap
proximations, and evaluating the performance of numerical schemes. Here, 
with a view to constructing analytical solutions to the moving interface prob
lems which we wil l encounter in later chapters, we describe both a Neumann 
and travelling wave solution. 

The Neumann solution 

A Neumann similarity solution is available for a problem on a semi-infinite 
domain, with an initial condition of all liquid water or all ice, thus with a 
freezing or melting interface moving from one throughout the domain, start
ing at the fixed boundary. Here, we consider the problem (2.28), with D = oo 
and Tinit = Ttop. That is, we have a freezing problem, with the freezing in
terface moving through the domain from z = 0. We follow similar analyses 
for melting problems by Alexiades and Solomon [3], and Zwillinger [75]. 

Guided by the heat equations either side of the interface, we seek solutions 
for t > 0 of the form 

T(z,t) = f(ri) in ice, T(z,t) = g{n) in water, where V = A=- (2-29) 
vt 

For such solutions to exist, we require 

for some constant (3 to be determined as part of the solution. The Stefan 
problem (2.28) then becomes 

s{t) = f3>/i, (2.30) 

/(0) = TboU 

0 0<n<p, 

f(P) = o, 

Ciwaterg". + | W 

9iP) = o, 
0 f3<T) <00, 

g(oo) = Ttop, 
> (2.31) 

\pLl3 Kicef'(f3)-Kwaterg'(f3). ) 

file:///pLl3
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The solution of this system is given by 

erf (5 

erfGr7==) 

( e r f ( 5 ^ = ) \ 
f(V) = Tbot 1 - J^A 0<v<P, (2.32) 

and 

g(y) = Ttop ( l . - ^ H H ) / 3 < » 7 < o o . (2.33) 
er ' / 

where the functions erf and erfc are the error function and complementary 
error function respectively. The value of /?, which gives the interface location, 
satisfies the equation 

V^r : _ KwaterTtop e i a ^ r ^ KiceTbot e 4 ° » c e 

2 P Jb-^r e r f c ( 2 ^ ^ ) evi(^=Y 

In order to construct the Neumann solution given above, we must first 
solve (2.34) for (3. This may be achieved using a Newton iteration, or bi
section method, for example. A typical solution is shown in Figure 2.10. 

Travelling wave solutions 
When seeking an analytical solution to a two-phase Stefan problem, it is 
sometimes more straightforward to construct a travelling wave solution rather 
than a Neumann solution. A travelling wave solution is one whose profile 
remains unchanged in a reference frame moving with constant speed. 

For the following problem, 

Tt = aiceTzz z<s(t), 
T(s-) = 0, 

Tt = OiwaterTzz z > s(t), 
T{a+) = 0, 

PLs(t) = -[KT^ 
water 

ice 

(2.35) 

we seek solutions of the form 

T = for f < 0 (ice), T = F 2 (£ ) for £ > 0 (water), £ = z - ct. • 
(2.36) 



Chapter 2. Solutions to prototype interface problems 34 

Neumann freezing problem, p=1000 L=3.3e+005 c m t > =42000̂ =2000 =0.55 KBe=2.2 T =5 Ttot=-10 .... p=0.000342 

Figure 2.10: A typical Neumann solution to the freezing problem (2.32)-
(2.34). 

Here, c is a constant, which is the speed of the interface. So s(t) = ct, and 
for c > 0, we have an interface moving to the right. We have deliberately 
not specified boundary or far-field conditions. Now, with parabolic problems 
either side of an interface on which we give three conditions, we expect to 
generate a one-parameter family of solutions. The system becomes 

-cF{ = aiceF{' £<0, 
F}(0) = 0, 

- c F 2 ' = awaterF% £ > 0 , > 
F 2 (0) = 0, 

PL = - %±?Aa, J 

which has solution 

F j ( 0 = Ax(l-e -euJ) £ < 0 , 
F2(£) = A2{1 - e ~ ^ ^ 4 ) £ > 0, 

(2.37) 

(2.38) 
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where 
. ®ice I T i water A 

iCire \ ®water 
(2.39) 

We indeed have a one-parameter family of solutions; that is, a family of solu
tions parameterized by A2. Such travelling wave solutions can be constructed 
on finite domains by specifying the appropriate boundary conditions. On an 
infinite or semi-infinite domain, notice that F 2 (£ ) —> A2 as £ —* oo, and 
so A2 is seen to be the far-field temperature. However, F\{£) is exponen
tially large as £ --> — o o , and this we note again that this analytical solution 
serves mainly as a mathematical tool rather than having any physical mean
ing. Furzeland [31], for example, uses exact solutions such as those presented 
here for evaluating the performance of numerical methods applied to Stefan 
problems. A typical profile is shown in Figure 2.11. 

Travelling wave profile with c=l. Â=3 

Figure 2.11: A typical travelling wave solution to the freezing problem (2.37). 
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2.2.3 Formulation of the enthalpy method 
In most cases requiring the solution of a two-phase Stefan problem, a numer
ical solution is sought. Let us consider strategies for the numerical solution 
of the problem 2.1. One option, as discussed in Chapter 1, is to employ a 
front tracking method. This is a method which explicitly moves the interface 
at each time step. We consider a finite difference method which updates 
the temperature, and moves the interface between two time levels, which we 
denote n and n + l , and outline this method in Algorithm 2.1. 

Algorithm 2.1 (Front tracking) 
Given an interface location sn and temperature at a time level n. 

1. Discretize the interval 0 < z < sn, and solve the heat equation in the 
ice, subject to T = 0 at the interface. 

2. Discretize the interval sn < z < D, and solve the heat equation in the 
water, subject to T = 0 at the interface. 

3. Use the Stefan condition (2.26) to calculate the velocity s. 

4- Move the interface according to s n + 1 = sn + ks. 

5. Go back to step 1. 

Here, k is the size of the time step between time levels n and n+l. No
tice that with each time step, remeshing takes place in steps 1 and 2. A 
uniform grid on (0, D) wil l not suffice for front-tracking, since the interface 
wil l , in general, not move by exactly one grid point with each time step. A n 
alternative is to reselect the size of the time step each time the interface is 
moved, in order that it wi l l move by exactly one grid point. Details of such 
approaches to front-tracking are described by Crank [20]. Clearly, in terms 
of ease of implementation, a front-capturing method is preferable. Further 
advantages arise in higher dimensional problems, where tracking methods 
would encounter additional complication due to the interface geometry. 

Now we consider how we may reformulate the model problem (2.25) over 
the fixed domain (0,D). Since the heat equation in each of the disjoint ice 
and water regions describes energy conservation, we aim to write an equation 
for energy conservation throughout the entire domain. A measure of energy 
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over the fixed domain must take into account the specific latent heat of phase 
change. We define the en tha lpy (per unit volume), E, by 

E(T) = e[0,pL] 
pCwaterT + pL 

for T < 0 (ice), 
for T = 0 ("mushy"), 
for T > 0 (water). 

(2.40) 

At a temperature T = 0, the ice or water may be undergoing phase change, so 
we refer to it as "mushy". Notice the jump in the enthalpy function at T = 
0, as shown in Figure 2.12. To deal with the discontinuous conductivity 

Enthalpy versus temperature 

-100 - 6 0 - 6 0 - 4 0 -20 0 2 0 4 0 8 0 8 0 100 
temperature T 

Figure 2.12: Enthalpy as a function of temperature, 

function, we once again make the familiar transformation 

. _v = f r Y ( ( ) i (2.41) 
Jo 

which, in this context, is known as the Kirchoff transformation; the vari
able v is often referred to as the Kirchoff temperature. Then the interface 
problem has now been reduced to the following fixed-domain problem for the 
enthalpy E: 

Et = vzz 0 < z < D, t> 0 . 
E(0,t) = pCiceTbot, 

E(D,t) = pCwaterTtop + PL, . 
E(z,0) = Einil(z). • . 
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The challenge now is to devise an algorithm for solving (2.42) numerically, 
which carefully implements mappings between E, v and T. After giving an 
initial temperature, we wil l step in time to solve (2.42), and then the location 
of the interface wil l be recovered from the solution E (or v). 

Let us consider a finite difference method. Suppose we have a grid Zj = 
(j - l)h for j = 1 , N + 1, where h = D/N. Let VJ1 be the approximate 
value of v((j — l)h,nk), where k is the time step to be used in the finite 
difference scheme. Then an algorithm for the solution of (2.42) is given below 
in Algorithm 2.2. Firstly, let us write explicitly the relationship between E 
and v: 

v < 0, 

E(v) 

Kice 

Sister y + pjj 

{ e [ o , P L ] 

v(E) 

PCice 

v>0, 

v = 0; 

E < 0, 

(2.43) 

^i^(E-pL) E>pL, (2.44) 

0 0 < E < pL . 

Algorithm 2.2 (Enthalpy method) 
Given Vn: 

1. Compute En using (2.43). 

2. Update Ej for j = 2 , N by using finite differences for (2.42). Obtain 

3. Recover V3

n+1 using (2.44). 

The algorithm shown solves (2.42). In order to solve the original problem for 
temperature and interface position, we can simply recover T from the solution 
V , and then interpolate to find the interface location s(t). It remains to 
decide on the scheme to use for Stage 2 of the algorithm. A n explicit scheme 
is easy to implement as follows 

(2.45) 
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for j = 2 , N , where fi = j^. However, we have the time step restriction 

k<h2 - mml-^-,-^-—). (2.46) 
\ "ice water / 

In situations where this is too restrictive , we may prefer an implicit scheme. 
However, an implicit scheme wil l require some clever way of deciding which 
enthalpy range each grid point should be in at the next time step. We now 
describe two ways of achieving this. 

Nonlinear Gauss-Seidel iteration 

Consider the P D E 

where 

and so 

Et = vzz, 

V/Kice V < 0 
E(v)={ e(0,pL) v = 0 , (2.47) 

V/Kwater + PL V>0 

KiceE E < 0 
v(E) = { 0 E e [0, pL] . (2.48) 

Kwater(E - pL) E > pL 

Suppose we seek an iterative solve for the implicit scheme 

Ej+1 - ii (v^ - 2v]+1 + v £ } ) = Ef: (2.49) 

A Gauss-Seidel solver will solve the jth equation for the jth unknown using 
the latest available values of all other unknowns. Let us rewrite (2.49) as 

EJ-+1 + 2»vj

+1 = E? + p(vpl+v?£).. (2.50) 

So if we solve for each j in order, we can iterate to find v™+1 using Gauss-
Seidel as follows: 

E"1 + 2 ^ f 1 = E? + ii « J + , (2.51) 

at the pth iteration. Now the right hand side contains only known terms. 
However, we still have the nonlinear dependence E(v) given by (2 .47) . Now 
let 

V? = ^ + M « i 1 + ^+i)- (2-52) 
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So ip? is known at the jth equation of the pth iteration for vj+ . So (2.51) is 
just 

Ej

+l + 2pvj

+1=^. 

Now examine the three possibilities for vy : ice, mushy or water. 

Ice 

V f 1 < o 1 = vfl/kice < o, 

and then (2.53) gives 

vJ

+1/Kice + 2p^+l = ^<0 ,P+I 

and hence 

Mushy 

and then (2.53) gives 

Water 

"3 2p + l/kice 

0 < iff = 1 < pL. 

^ p + 1 > 0 1 = v]+1/kwater + pL, 

and then (2.53) gives 

^hP = Vj+1/Kwater + pL + 2pVj

+1 > pL, 

and hence 

2p + \j Kwater 

Thus, the sign of and size of ip? determines v?+1. That is 

o <e[o,pL] 

e r 
^ > pL 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

(2.59) 
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This Gauss-Seidel idea is widely used, since it avoids the need for computing 
derivatives. The convergence of such a scheme may be accelerated using 
successive over-relaxation (see [3, 20], for example). 

Smoothing methods arid Newton iteration 

A n alternative to the trial-and-error methods for temperature recovery is to 
make use of smoothed functions again. That is, we replace the discontinuous 
functions E and v from (2.40) and (2.41) with 

E£(T) = (1 - He(T))pciceT + HeiTXpcvotcr + pL), (2.60) 

and _ 
v„(T) = (1 - Ha(T))KiceT + Ha(T)Kwater(T), (2.61) 

where H is a smoothed Heaviside, such as those in Examples 2.1 and 2.2, 
and e, a are smoothing radii in temperature. We then solve (2.42), for E, 
and the temperature recovery may then be achieved using a Newton iter
ation. This idea is particularly helpful for implicit time-stepping schemes, 
where Newton methods are commonly employed. In Figure 2.13, we plot a 
smoothed enthalpy function, taking e — 5, and using the smoothed Heaviside 
from Example 2.2. 

Enthalpy versus temperature 

Figure 2.13: Enthalpy and smoothed enthalpy as functions of temperature. 
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We leave the investigation of the effect of such smoothing strategies on 
solutions to the enthalpy formulation of the Stefan problem as an open prob
lem. 

2.2.4 Mathematical justification for the enthalpy 
method 

Here we follow Alexiades [3] and Crank [20] to show that the Stefan condition 
at the interface is satisfied by the weak solution to the enthalpy problem 

Et = vzz z € (0,D), t € (0,r) , 
v(0,t)=v0, v(D,t) = vu (2.62) 
E\T=Q = E(Tinit). 

Here, if T is temperature, then E(T) is the enthalpy, and v(T) is the Kirchoff 
variable. Now consider the diagram shown in Figure 2.14. 

t 
A 

0 = 0 

0 (f> = <t>(z,0) 

Figure 2.14: The (z,t)-plane for the enthalpy formulation. 

The curve V has z = s(t) being single-valued, and T = 0 with T continu
ous across the interface. First consider the whole region G = (0, D) x (0,r) , 
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and test functions </>(z,t) € C°°{G), with 0(0,t) = </>(D,t) = (/>(Z,T) = 0. 
Then we define a weak solution to (2.62) to be a pair of functions E, v which 
satisfy 

J J (j)Et - (pvzz dz dt = 0, 

Now, integrating by parts, or simply noting that 

<j>Et = (<j>E)t - E<f>t and <fyv„ = {^>vz - vcj)z)z + v<j)zz, (2.63) 

we see that 

. J J E<pt + v(j)zz dzdt = J J {<j)E)t - {(j>vz - v<j)z)z dz dt. (2.64) 

Applying the boundary and initial conditions, we find 

j LE4>t + v<bzzdzdt - - f° <j){z,0)E{Tinit) dz 
(2.65) 

+ Jc]v1<t>z{D,t)-v0<t)z(^t)dt, 
and work with this as our weak formulation. It remains to show that a so
lution of (2.65) satisfies the Stefan condition on the moving interface. To do 
this, we integrate in a similar fashion over the two domains G\, G2, shown in 
Figure 2.14. The curve F divides G into Gi and G2, which we consider to be 
ice and water respectively. 

In G i , we have 

f f E<}>t + v<t)zzdzdt= f f {<f>E)t-(4>vz-v<l>z)z dzdt. ' (2.66) 
J JGi J JGi 

Now, the integration this time requires use of Green's Theorem in the Plane 
(or, for higher dimensions, the divergence theorem). Recall 

Lpdx+Qdv=IL9^-9idxdy-
where dTZ is positively oriented in the ( x , y ) plane. So the right hand side 
of (2.66) is given by 

R H S = - §Ci <t>E dz + {(j>vz - v<f)z) dt, 

= -tfo)<t>(z,0)E(TinU)dz-j:vQ<t>z(0,t)dt 

- fT.(<f>E)dz + {<{>vz) dt, 
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since v = 0 on T. Thus we have, for G\, 

/ /Gi E<Pt + v<j)zz dzdt . = - / 0

S ( 0 ) <f>(z, 0)E(Tinit) dz 

-fivoM0,t) dt -fr-((j>E) dz + (4>vz) dt. 
(2.67) 

Now, for the water region G 2 . Arguing in the same way, we get 

/ JG2 E<j>t + v<f>„ dzdt = - f°Q) <j)(z, 0)E(Tinit) dz 

+ Jlvx<t>g(D,t) dt + jr+{(j>E) dz + {(j)vz) dt. 
(2.68) 

Now, adding (2.67) and (2.68), and letting r~, T+ -» F, we see that 

JJGlUGaE<lH + v<l>zzdzdf = -J0

D <f>(z,0)E(Tinit) dz 

+ JTv1(f)2(D,t)-vo<f>z(Q,t)dt (2.69) 

+ fT[<l>E]+ dz + [<j)vz)t dt. 

Now, comparing (2.65) and (2.69), we have 

[((>E]t dz + [</njz]Z dt = 0, 

and hence, since <j> and its derivatives are continuous across the interface, 

dz + [vz}+ dt)-=0. (2.70) L 
Finally, since <j> is an arbitrary test function, and since z = s(t) on T, we 
have that 

fc-J*£' • (271) 

dt~ [£]+' { l ) 

which is precisely the Stefan condition. 
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2.2.5 Numerical results and convergence study 
Now, we illustrate some interesting and important features of the enthalpy 
solution to the Stefan problem, which will help us to explain the behaviour 
of capturing methods for more complex problems. Firstly, we consider the 
problem (2.28) with initially all liquid at T = 3, and subject to tempera
tures T = — 2 at z = 0 and T = = 3 a t z = D = l . Thus, a freezing front 
propagates through the domain. That is, our boundary and initial conditions 
are 

Tbot — ~2; Ttop — 3, Tinit - Ttop, s (0) = 0. 

The physical parameters we use are shown in Table 2.1. 

Table 2.1: Constants for the Stefan problem 

S y m b o l In t e rp re t a t ion T y p i c a l value U n i t s (SI) 

P density 1000 kg/m? 
Cwater specific heat capacity of water 4200 JK^kg-1 

specific heat capacity of ice 2000 JK^kg-1 

Kwater thermal conductivity of water 0.55 

Rice thermal conductivity of ice 2.2 Wm^K-1 

L specific latent heat of freezing 3.3 x 10 5 Jkg-1 

For the results shown here, we have used Forward Euler time-stepping, 
with N = 20 grid points. In Figure 2.15, we plot a succession of temperature 
profiles in increasing time, together with the steady-state solution to the 
problem, which has the interface at s = 8/11 « 0.73. Evolution towards 
the steady-state (the dots) is apparent. In Figure 2.16, we plot the interface 
location as a function of time. The stepwise behaviour of the location is due 
to the definition that we choose. For simplicity, we take the interface location 
to be the grid point to the left of the first positive value of temperature. So 
each jump is by precisely one grid point. We have also plotted the interface 
location for the associated Neumann freezing problem. While our problem 
is on a finite domain, we expect the influence of the boundary condition at 
z = D to be small for small times, and thus the interface location to behave 
like that of.the Neumann solution for small times. Indeed, Figure 2.16 shows 
good agreement between our computed s(t) and the Neumann solution s(t) = 
/3^/i, for small t. 
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Temperature profiles with increasing time 

"0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 2.15: Evolution of numerical results using the enthalpy method. 

In Figure 2.17, we show an important feature of enthalpy method so
lutions to Stefan problems, namely the stepwise temperature history at a 
point. This an non-physical effect introduced by the rapid adjustments and 
subsequent relaxations of the temperature each time the interface advances 
by one grid point. This is explained in more detail in [3] (Chapter 4). 

Finally, in Figure 2.18, we plot the interface location versus time for 
two travelling wave solutions to the Stefan problem. For ,each of the two 
wave speeds c = 1,3, we plot solutions obtained using N = 80,160 grid 
points, with num — 400,1600 time-steps, respectively. Convergence to the 
correct travelling wave solution is suggested by the diagram, but a numerical 
convergence study is necessary to demonstrate this convincingly. 

In Tables 2.2-2.3, we plot the computed errors between exact travelling 
wave solutions with speeds c = 1,3, and the enthalpy method solution, and 
denote the errors in temperature and interface location by H-ETHI and \\Es\\i 
respectively. In each case, we use explicit time-stepping, with p = k/h2 

fixed, as we use a second order scheme. The number of grid points is N, and 
num is the number of time steps. We quantify the errors by calculating 
numerically the norms of the errors made in the temperature T , and the 
interface location s. Specifically, we compute the time-averaged quantities 
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Interlace position calculated using enthalpy method 
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Figure 2.16: Evolution of the interface using the enthalpy method, together 
with associated Neumann result. 

Table 2.2: Errors for the enthalpy method, Forward Euler time-stepping, 
with c = 1. 

N num H3rl l i factor \\Es\\l factor 

20 25 0.8604 6.3693E-8 
40 100 0.4259 2.02 2.7862E-8 2.29 
80 400 0.2057 2.07 1.3431E-8 2.07 
160 1600 0.1011 2.04 6.3753E-9 2.11 

defined by 

1 1 num N 
] l E T h = ^ N £ E l T ( * * * » ) - T^(zj,tn)\, 

n=l j=l 
^ num 

\\Es\\i = V \s(tn) - ctn\. 
num f 

n=l 

We notice that, despite a second order spatial discretization, the we do not 
have second order accuracy. The errors decrease by a factor of about 2 
each time the grid spacing is halved, rather than a factor of 4. This is to be 
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Temperature history at a point, by the enthalpy method 
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Figure 2.17: Temperature history at the point z = 0.5. 

Table 2.3: Errors for the enthalpy method, Forward Euler time-stepping, 
with c = 3. 

N num II-fir Hi factor l l ^ l l i factor 

20 25 1.4917 4.2443E-8 
40 100 0.7783 1.92 2.0526E-8 2.06 
80 400 0.4283 1.82 1.0002E-8 2.05 
160 1600 0.2264 1.89 4.8610E-9 2.06 

expected; due to the stepwise temperature histories, and the fact that we have 
not dealt with the interface explicitly, lower order errors are introduced near 
the interface. Further details are available in [3]. Methods are available for 
improving the accuracy of the computed interface location [65], based upon 
the known phase-change temperature, and extrapolation methods. Second 
order accuracy in the interface location may be achieved, but not in the 
temperature. 

In our final convergence study in Table 2.4, we show the errors calculated 
using the enthalpy method for the Neumann freezing problem, where we 
compute on z 6 (0,1), giving the exact Neumann solution as the boundary 
condition at z = 1. The factor by which the temperature error decreases is 
now around 2.6. 
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x iQ-7 Interface location versus time for exact and numerical travelling waves 
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Figure 2.18: Computed interface location for travelling wave conditions, with 
c = 1 and c = 3. 

Table 2.4: Errors for the enthalpy method, Forward Euler time-stepping, for 
a Neumann problem. 

N num II ET | |I factor | |-E's | | i factor 

20 200 0.0595 0.0145 
40 800 0.0229 2.60 0.0068 2.13 
80 3200 0.0087 2.63 0.0033 2.06 
160 12800 0.0034 2.56 0.0016 2.06 

2.3 The Porous Medium Equation 
In this section, we discuss some results and features of the Porous Medium 
Equation. This is a nonlinear diffusion equation which arises in fluid flow and 
other applications, which may result in the appearance of a moving interface. 

2.3.1 Examples and applications 
Consider the flow of an isothermal, ideal gas through a porous medium. The 
flow obeys Darcy's Law (see, for example [8]), which says that the volumetric 
flow rate of the gas through the medium is proportional to the pressure 
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gradient in the gas. Specifically, the volumetric flow rate, known as the 
D a r c y ve loc i ty , is given by 

U = _ - V p , (2.72) 
A* 

where p is the gas pressure, K is the permeability of the porous medium, and 
fi is the viscosity of the gas. For illustration in this section, we shall only be 
concerned with one-dimensional problems, so that 

u = --pz, (2.73) 

where z is the space variable. Now, conservation of mass requires that 

{<t>p)t + (pu)z = 0, (2.74) 

where <fi is the porosity of the medium, which we will assume to be constant, 
and p is the density of the gas. Now, the ideal gas law relates pressure and 
density such that 

P = ^ ° T ' (2-75) 

where R and M are the universal gas constant and the molar mass of the 
gas respectively, and T is the temperature. Thus, for isothermal gas flow 
through a porous medium, we find that 

Pt = c(ppz)z, (2.76) 

for a constant c. This is a nonlinear diffusion equation with a variable diffu
sion coefficient p. Notice that it wil l be of parabolic type, provided that p > 0. 
Next, we consider problems where the diffusion coefficient may vanish. 

Consider the motion of a thin liquid droplet on a solid substrate, shown in 
Figure 2.19. In the absence of any air flow driving the motion, and assuming 
that surface tension effects are negligible, then the droplet wil l spread under 
the effect of gravity alone. The free surface of the droplet is denoted y = 
h(x,t), and this surface meets the substrate at x = L(t) on the right hand 
side. The thin film approximation of the Navier-Stokes equations gives an 
equation for the height h of the droplet (see [53]): 

ht - {h3hx)x = 0. (2.77) 
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y 

y = h(x,t) 

x - L(t) 

Figure 2.19: A thin droplet spreading under gravity over a solid substrate. 

Here, finding the position of the wetting front L(t) wil l be part of the problem. 
We wil l see similar equations for conservation of liquid mass flowing through 
porous media in later chapters. Notice here that the equation ceases to be of 
parabolic type at the point x = L(t), where h = 0. This type of degenerate 
diffusion problem can lead to solutions with singular gradients. 

Both (2.76) and (2.77) are examples of the P o r o u s M e d i u m E q u a t i o n , 
the general form for which is 

where n > 0. In this thesis, we are particularly interested in problems 
with n = 3. The spreading droplet example above suggests that equations 
of this type admit solutions with compact support. Next, we wil l describe 
some well known analytical solutions. 

2.3.2 Analytical solutions 
Here, we will mostly concentrate on the Porous Medium Equation (2.78) with 
n = 3. First of all, let us consider the steady-state problem. That is, 

Ut = (unux) Xl (2.78) 

0. (2.79) 

Writ ing this as 

0, 

we readily obtain a general solution 

u(x) = A(L 
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for constants A and L. Further, the solution 

u(x) = | 
A(L-x 

0 
f'A x<L, 

x > L, 
(2.80) 

satisfies (2.79) in a classical sense everywhere except the free interface x = 
L. A sketch is shown in Figure 2.20. The derivative ux is undefined at 
x = L, and we regard this solution as a weak, or generalized solution. Weak 
solutions satisfy an integral form of the equation, in the same way as weak 
solutions to the Stefan problem. We wil l define a weak solution of the time-
dependent problem shortly. For now, suppose we want to satisfy a boundary 
condition u(0) = UQ, and that we must have a total "mass" W in the system. 
That is, 

rL 
u(x) dx = W. I 

Jo Then the constants A and L are easily found: 

L = 
5W 
4 M 0 

1/4 

Figure 2.20: A solution of the steady-state Porous Medium Equation. 

Now let us consider the time-dependent problem, 

ut = {u3ux)x, (2.81) 

and the sketch of a solution profile in Figure 2.21. Again, we seek solutions 
with compact support. Any such solutions with discontinuous derivatives 
at the moving interface must be regarded as weak solutions. Such weak 
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u(x,t) 

x = L(t) 

Figure 2.21: A solution of the time-dependent Porous Medium Equation. 

solutions are discussed in detail by Elliott and Ockendon [23], and we wil l 
not reproduce their work here. We simply state, following the summary 
given in [43], that a weak solution of the problem (2.81) is a continuous, 
non-negative function u(x, t) for all £ > 0 and for all x, such that 

rT r°° uz f°° 
/ / - + wpt dx dt + / ip(x, 0)u(x, 0) dx = 0, (2.82) 

for all test functions ip which vanish at infinity and £ = T , and which have 
continuous first derivatives. We shall not discuss the theory of weak solutions 
further. Rather, we now seek to construct solutions. 

Assuming that we can find a solution with compact support, such as that 
shown in Figure 2.21, what structure will it have near the moving inter
face x = L(£)? One way to answer this is to suppose that the solution to 
equation (2.81) takes the form 

u~f{t)(x-L)r, r > 0 , as i - > L ( t ) " . (2.83) 

Substituting, we have 

f'.{x - L)r + f.r{x - LY'1 L(t) ~ / 4 . r ( 4 r - l)(x - L ) 4 r ~ 2 . 

Then, for a nonzero, finite speed L(t), we require the balance 

r — 1 = 4r — 2, r =]-. 

Alternatively, a more formal approach considers conservation of "mass" at 
the interface (see [54], for example), which gives 

L(t) = - l im (u%. (2.84) 
x—>L(t)~ 
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Substituting the form (2.83) again gives r = | for a nonzero, finite speed. So 
the solution needs to have this certain singularity structure in order for the 
interface to move. 

Barenblatt-Pattle "Spreading blob" solutions 
The Barenblatt-Pattle solution of the Porous Medium Equation is a similarity 
solution of the form 

u(x,t)=taF(V), V = ^. ' 

A . number of authors have investigated the behaviour of such solutions; here, 
we follow the introduction given by Lacey et al [43]. The values of a and fi are 
found by the conditions that the solution be self-similar, and that the total 
mass contained within a "blob" is conserved. For the general equation (2.78), 
we find . ' ' ^ 

For the case n = 3, the solution is 

„ ( x , t ) = ( ^ ) " 3 ' - , / 5 ( « 2 - * ) , / S - W < « ( 1 / 5 . (2.85) 

I 0, \x\ > at1?5, 
where a is a constant depending on the total mass in the system. In Fig
ure 2.22, we show some solutions with a = 1, for various times, and the 
spreading blob shape is clear. 

Travelling wave solutions 
As for the Stefan problem, we can also construct a travelling wave solution. 
For a travelling wave speed c, we seek solutions to (2.81) of the form 

u(x ,i) = / ( 0 , i = x-ct. 

The problem reduces to the O D E 

-of = (fry, 
which has a solution 

/ ( 0 = ( " 3 c £ ) 1 / 3 . 
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Barenttatt-Paltle "spreading blob" solutions oJ the PME. with a=l 

Figure 2.22: Barenblatt-Pattle solutions of the Porous Medium Equation. 

Thus, our travelling wave solution is 

{-Zc(x - ct)f'z , x < ct, 
«.<*•*)-{o7 X > ct. 

(2.86) 

Now, as before, we continue by describing numerical methods for the solu
tion of Porous Medium Equation interface problems, and wil l return to our 
analytical solutions to evaluate the performance of these methods. 

2.3.3 Numerical methods 
The moving interface problems arising from the Porous Medium Equation re
quire special care when developing numerical schemes for their solution. The 
singular gradients at the interface may introduce problems, while conserva
tive schemes are key to finding a solution with the correct interface velocity. 
Consider the equation (2.81). The gradient ux becomes singular at the inter
face where u = 0. To resolve the sharp interface, adaptive gridding may be 
employed to add resolution near the interface. However, we aim to develop 
a capturing method which, like the enthalpy method for the Stefan problem, 
does not require any explicit handling of the interface. One approach, which 
has appeared for similar problems in the fuel cell literature (see [50, 51], 
for example), is a computational regularisation. This amounts to replacing 
equation (2.81) with 

ut = {{v? + rf)ux)x , (2.87) 
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where rj > 0 is a computational parameter. The effect of this is to remove 
the degeneracy and singularity from the problem at u = 0, as the diffusion 
coefficient remains positive. Thus, the problem remains strictly parabolic, 
and the sharp interface is smeared out. As an alternative, we consider the 
method described by Evje and Karlsen [25]. 

Consider the problem 

ut'=(u3ux)x, 0<x<l,t>0, 
u(x,0) = u0(x), . , 2 g g , 
~usux\{0tt) = Q L , 
- u 3 u x | ( M ) = QR, 

where Q L , R are fluxes at the left and right hand end points. Now consider 
a finite difference discretization of the problem, with time-step A;, h = 1/N 
and Uj is the approximation for u((j — l)h, (n — l)k), for j = 1, ..,N + 1. 
In [25], it is stated that a naive discretization of the kind 

(2.89) 

j = 2,..,N, 

will not necessarily result in a conservative scheme. The alternative idea 
presented in [25] is to rewrite the problem as 

ut = \{u%x, 0 < x < 1, t>0, 
u(x,0) = u0(x), , 2 g o . 

—^C"4)*l(o,*) = Q L , 
~i(u4)x\{i,t) = Q R , 

and then discretize, using standard centered differencing for {u4)xx. We now 
show how a conservative scheme results, using a ghost point method for the 
boundary fluxes. For illustration, we use Forward Euler time-stepping, but 
the same argument wil l follow for implicit schemes. 

Step in time using the following scheme: 

t^+i = V» + t {{U^Y - 2(C/;) 4 + (U^f) , j = 2,.., N, (2.91) 

where fi = k/h2. Now derive discrete boundary conditions, using a ghost 
point method: 
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massn+1 

U?+1 = U» + % ((t/2")4 - (£/») 4) + 2 | g L 

(2.92) 

f f t i = ^ + i + f ( ( ^ ) 4 - ( ^ + i ) 4 ) - 2 ! Q « . 
The scheme must conserve "mass" at each time step. That is, we must satisfy 

/ u(x,nk) dx = / u(x, (n + l)fc) dx, 
Jo Jo 

in a discrete sense. Suppose we require that our scheme conserves mass using 
trapezoidal approximation for the integral. Then we have 

= I K + 2 ^ + 1 m)4-(u?)*)} 

{v? + i {(u?-i)A ~
 2 ( t 7 " ) 4 + (^JVi) 4)} 

+7^ {(C/?) 4 - ( l ? ) 4 + E f = 2 ((^"-i) 4
 - 2 ( £ / ; ) 4 + ( t ^ ) 4 ) 

+ r a 4 - ( ^ + l ) 4 } -

That is, 

massn+1 \v? + h(j2 Uij + + - Q*j+S, (2-93) 

where 

5 = hi { (C/2")4 - ([/?) ,4 

+ E f = 2 ( ( f ^ i ) 4 - m f + ( ^ i ) 4 ) + ( ^ ) 4 - (^+i ) 4 } • 
(2.94) 
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We recognize the sum in (2.94) as a telescoping sum, and find that 5 = 0. 
Hence, equation (2.93) gives 

massn+1 =. massn + k(QL - Q R ) , (2.95) 

which says that mass is conserved. 

Profiles obtained using conservative and nonconservative schemes for u,=(u3u ) 

= 0.5 
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Figure 2.23: Evolution of profiles given by conservative and non-conservative 
schemes applied to ut = (u3ux)x. 

In Figure 2.23, we show a succession of profiles obtained numerically using 
a conservative scheme, and a non-conservative scheme, applied to the same 
problem. While both give solutions with compact support which "look rea
sonable" , the solution obtained using the non-conservative scheme is clearly 
wrong. For problems with degenerate diffusion-type terms in later chapters, 
we shall use Eyje's spatial discretiaztion to help ensure conservative schemes. 

2.3.4 Numerical results and convergence study 
In Tables 2.5-2.6, we show numerical convergence studies for solutions to (2.81) 
on —0.5 < x < 0.5, with travelling wave solutions from (2.86) as initial and 
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boundary conditions. We use Evje's discretization (2.91). Specifically, we 
compute the time-averaged errors in computed values of u, and the interface 
location L, defined by 

^ ^ num N 

l l - ^ u l l l = jTT / . / ^\u(zj,tn) — Uexact(Zj,tn)\ , 
num N ' *r-i 

n=l ]=1 

1 num 

\\EL\\I =—y;iL(in)-cin|. 
num f 

n=l 

As with the solutions of the Stefan problem, we have used a second order 
capturing scheme to approximate solutions of a moving interface problem, 
in which we do not treat the interface explicitly at all. Again, we do not 
achieve second order accuracy, but a factor of around 2.4-2.6 decrease for 
each halving of the grid space is clear. 
Table 2.5: Errors for Evje's method, Forward Euler time-stepping, for the 
Porous Medium Equation on —0.5 < x < 0.5, with p = 0.1 and c = 3 N num IlKlli factor I I ^L I I I factor 

20 50 1.348E-2 2.122E-2 
40 200 5.217E-3 2.58 1.165E-2 1.82 
80 800 2.034E-3 2.56 5.689E-3 2.05 
160 3200 8.297E-4 2.45 3.087E-3 1.84 

Table 2.6: Errors for Evje's method, Forward Euler time-stepping, for the 
Porous Medium Equation on —0.5 < x < 0.5, with p = 0.5 and c = 0.5 

N num l l ^ l l i factor l l ^ i l l i factor 

20 100 7.058E-3 2.071E-2 
40 400 2.855E-3 2.47 1.151E-2 1.80 
80 1600 1.140E-3 2.50 5.723-3 2.01 
160 6400 4.652E-4 2.45 3.040E-3 1.88 
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Chapter 3 

Nonisothermal, steady-state 
phase change in porous media 

In this chapter, we describe the steady-state model problem of phase change 
in a sand pack, as presented by Udell [64]. His experimental results are ob
tained by partially saturating a sand-filled tube with water, and then heating 
from the top, while cooling from the bottom, and measuring temperatures 
along the height of the pack. At steady-state, the system supports fluid in 

Z = D 4-

two-phase 

liquid 

Figure 3.1: Udell's experiment. 

the pore space in one of three configurations: 

1. Only vapour throughout the entire pack. 

2. A vapour-only zone above a two-phase zone in which both liquid and 
vapour exist. 

3. A vapour-only zone above a two-phase zone, with a liquid-only zone 
underneath. 
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A three-zone system is shown in Figure 3.1. Udell [64] presents experimen
tal results for the three-zone system, where the two-phase zone is identified 
as the almost isothermal region between two single-phase regions with l in
ear temperature profiles. He then presents an analysis of the two-phase 
zone only, under the assumption that it is isothermal. We can use Udell's 
steady-state two-phase zone model as a starting point, which can then be 
extended to the free interface problem for a two or three zone system. A 
disjoint-domain computational method for locating the interfaces in a one-
dimensional, steady-state, three-zone (vapour/two-phase/liquid) system is 
described by Bridge et al [15]. It is worth noting that their model relaxes 
the popular assumptions of isothermal two-phase zones and phase change 
only at the boundaries, and we wish to keep temperature and condensation 
rate effects in this work. 

Motivated by the fuel cell setting, where regions of liquid water only do 
not occur [12, 21, 56, 58, 70], we will concentrate here on a two-zone system 
which consists of a two-phase zone and a vapour-only zone. We present 
a computational method, based on that in [15], to compute the interface 
location in such a steady two-zone system. The numerical results obtained 
from this method wil l be used as benchmarks with which we wil l compare the 
results from the unsteady computations to be described in the next chapter. 

Also in this chapter, we consider the method of Residual Velocities, pro
posed by Donaldson [22] for the steady-state Stefan problem and described 
briefly here in Chapter 2, and show how this method may be used to compute 
steady-state solutions to our model phase-change problem. 

3.1 Mathematical formulation of the model 
problem 

In Figure 3.2, we show a schematic of the basic setup, as used by Udell [64]. 
The porous layer is initially saturated with a certain amount of liquid water, 
then heated from above and cooled from below. A steady-state is realised, 
with two distinct zones appearing. In the two-phase zone, z G (0,1/), liquid 
and vapour coexist in the pore space. In this region, the liquid is driven 
upwards by capillary pressure, while the vapour is driven downwards by a 
vapour pressure gradient. In the vapour-only region, z G (L,D), the water 
vapour is stationary. A primary goal of the works by Udell [64] and Bridge 
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Figure 3.2: A two-zone system for Udell's experiment. 

et al [15] is to locate the interface z = L. We note that the model presented 
in [15] assumes a constant vapour density throughout the two-phase and 
vapour-only regions. Here, we allow for compressible vapour, in accordance 
with the Ideal Gas Law. The method we use is then adapted from that 
used in [15]. A list of physical constants and parameters used in our model 
appears in Table 3.1. 

In order to locate the interface, we consider the saturation s through the 
porous layer. The saturation is defined by 

s 
volume of pore space occupied by liquid water 

volume of pore space 
(3.1) 

Therefore, a liquid-only region (which we do not consider here) has s = 1, a 
vapour-only region has s = 0, and a two-phase region of vapour and liquid 
has 0 < s < 1. In this model, we assume that s is continuous throughout the 
porous layer, and that at the interface z = L, we have s —• 0 + as z —* L~. 
Now, we formulate a model for the saturation s (the liquid volume fraction), 
and the temperature T , and their variations in z, the height up the porous 
layer. We need to consider energy conservation and mass conservation in 
each of the two zones. First, we consider the two-phase region 0 < z <,L. 
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Table 3.1: Constants for Udell problem 

S y m b o l In t e rp re t a t ion T y p i c a l value U n i t s (SI) 

0 porosity 0.38 - . 
K permeability 6.4 x 1 0 - 1 2 m2 

Pl liquid density 10 3 kg/m3 

Cy specific heat of vapor 10 3 J/kgK 
specific heat of liquid water 4.2 x 10 3 J/kgK 

Pv viscosity of water vapour 2.2 x 10~ 5 kg/ms 
tie viscosity of liquid water 2.5 x 10~ 4 kg/ms 

kv thermal conductivity of 
vapor saturated medium 1.0 W/mK 

pc mass averaged 
density heat capacity product 10 5 J/Km3 

latent heat (water liquid-vapor) 2.5 x 10 6 J/kg 
5 capillary pressure scaling 1.7642 x 10 4 Pa 
R universal gas constant 8.31 J/mole K 
M molar mass of water 18 x 10 - 3 kg/mole 
a characteristic vapour pressure 0.19743 Pa 
b characteristic temperature 0.03525 K'1 

Q heat flux ~ 1 0 3 W/m2 

Conservation of liquid mass gives 

(AW)z = r. (3.2) 

Here, p is density, u is the superficial Darcy velocity, and the subscript I 
denotes liquid. The source term T is the rate of production of liquid water, so 
we shall refer to this as the condensation rate. In the same way, conservation 
of vapour mass in the two-phase zone reads 

(pvuv)z = - r , (3-3) 
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where subscript v now denotes vapour. The term on the right hand side is 
the rate at which vapour mass is produced. That is, — T is the evaporation 
rate. Now, conservation of energy, neglecting convective effects as in [15], is 
given by 

0 = (kT^ + KapY, (3.4) 

where K is the effective thermal conductivity of the liquid-vapour saturated 
porous medium, and hvap is the specific heat of vaporization of water. As 
in [15], we wil l neglect saturation effects on the thermal conductivity, and 
assume a value for this mass-averaged quantity. 

The Darcy velocities ui, uv are the average volumetric flow rates of liquid 
and vapour, respectively, through the pore space. Darcy's law gives relations 
between the velocities and the pressure gradients in the two fluid phases as 
follows: 

Ul 

uv 

Here, K is the permeability of the porous medium, pi is the liquid pres
sure, p is the vapour pressure, and g is the acceleration due to gravity. The 
quantities Kri and Krv are the relative permeabilities of liquid and vapour 
respectively. These relative permeabilities account for the decrease in mo
bility of one phase due to the presence of another, and hence depend on the 
saturation s. In particular, we require that Kri is unity when only liquid is 
present, and zero in pore space occupied by vapour only. That is, KTI should 
be an increasing function of s. B y similar reasoning, we require that nrv is 
a decreasing function of s. Here, we will use the cubic forms suggested by 
Udell [64], following the empirical results of Fatt and Klickoff [28]: 

Kri  = ^ , 

Krl = (1 ~ S f 

We now seek relationships between between the pressures and the primary 
variables s and T . A major assumption of the model presented in [15] is that 
the vapour in the two-phase region is fully saturated. In keeping with this 
model, we wil l assume here that the vapour is fully saturated, and that the 

P>i 

A V 

{(Pi)z + Pi9), 

(pz + Pv9). 

(3.5) 

(3.6) 

(3.7) 

(3-8) 
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temperature and saturation pressure, psat approximately obey the exponen
tial relation 

p3at(T) = aebT, (3.9) 

where the constants a and b are fitted to data from saturated steam tables 
in [1], for example. Then, in the two-phase zone, we take p = psat(T), as 
explained by Baggio et al [7]. Now we present a constitutive Jaw for the 
liquid pressure. A t the pore scale, the interfacial tension between liquid and 
vapour phases gives rise to capillary effects. The capillary pressure, pc, is 
defined as the difference between the vapour and liquid pressures, 

Pc = P~Pi- (3-10) 

As shown by Leverett [45], the capillary pressure is found to be a function of 
the saturation. The functional form for the capillary pressure, pc = pc(s) is 
known as the Leverett function. Udell [64] correlates this Leverett function 
to write the capillary pressure as 

pc(s) = <5 J(s), (3.11) 

where J(s) is given by 

J(s) = 1.417(1 - s) - 2.120(1 - s)2 + 1.263(1 - s)3, (3.12) 

and 

'"iff-
where o is the vapour-liquid interfacial tension, and (fi is the porosity of the 
porous medium. Also, we should note that the function J(s) given in (3.11) is 
an empirical relationship which will depend on the particular porous medium 
being used. The correlation given in [64] is for a particular type of sand. 
However, in the absence of another model, and to allow comparison with our 
results, we wil l continue to use this model. 

Finally, in the two-phase zone (and indeed throughout the entire system), 
we assume that the water vapour obeys the ideal gas law, namely 

P=?fPvT, (3.13) 

where R and M are the universal gas constant and the molar mass of water 
respectively. The work presented by Bridge et al [15] assumes a constant 
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vapour density, but we wish to include compressibility due to thermal effects 
here. In summary, the two-phase zone conservation equations (3.2)-(3.4), 
together with all the constitutive relations and empirical laws, form a second 
order system in three unknowns s, T and T. Furthermore, we can eliminate 
the condensation rate T by summing (3.2) and (3.3), arriving at the system 

(f/{j-z{Psat{T)-5J(s)) + Plg) 

(3.14) 

[ K - + ^ — - ^ - ( l _ 8) (Psat(T)) + r ^ — j r - ) ) = * • 

(3.15) 
Equations (3.14) and (3.15), form a coupled, second order, nonlinear system 
for the two-phase zone variables s and T, in the region 0 < z < L. The 
system clearly has a singularity and degeneracy at s = 0. In the case of 
constant vapour density, Bridge [14] shows that s = 0(L — z ) 1 / 4 as z L~, 
and as such, the degenerate diffusion type term requires careful treatment 
when constructing a numerical solution. 

The vapour-only zone L < z < D is more simple. The temperature is 
harmonic, and the saturation is zero everywhere in this zone. Conservation 
of mass reads 

{pvUy)z = 0, (3.16) 

while conservation of energy reads 

0 = Tzz, (3.17) 

since there is no phase change in the vapour-only region. Again, we assume 
that the vapour is ideal, and the system (3.16)-(3.17) can be cast as a system 
for the temperature T and vapour density pv in the region L < z < D. 
For this one-dimensional problem, exact solutions are available in terms of 
the interface location L, the fixed boundary temperature T(D) = -T i , and 
the temperature and pressure at z = L+, which we wil l denote T+ and p+ 

respectively. The temperature in the vapour region is given by 

T i - T+ 

T(z)=T+ + 1-^-T(z-L), 

or 
T(z)=T+ + 4-(z-L), (3.18) 
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where Kv is the thermal conductivity of the vapour-saturated porous medium, 
and q is the constant heat flux through the porous layer. Notice that, if the 
vapour in this zone is stationary, then the vapour pressure in the vapour-only 
region is the solution of a separable first order equation, and is given by 

p(z)=P+[^-j • (3.19) 

The vapour density in this region may be written 

_ . . x f t j Makv\ 

Pv(z) = P+[^J • -(3.20) 

These exact solutions will be useful when implementing both the disjoint 
domain method described in [15], and the Residual Velocity Method proposed 
by Donaldson [22], where we can iteratively solve problems parameterized by 
heat flux. 

Now we examine the boundary and interface conditions required to close 
the model problem. We have elliptic problems in two variables in the two 
regions, so we shall specify two conditions on the two physical boundaries z = 
0 and z = D, and four conditions on the interface z = L. Since the interface 
location L is also an unknown in the problem, we require a fifth condition at 
the interface. 

A t the boundary z = D, we impose a temperature T i , say. Also, since 
we consider a closed porous pack, there can be no mass flux across z = D. 
Hence, at z = D, we have 

T = T i , (3.21) 

uv = 0. (3.22) 

Now, at the free interface, we require five conditions. First of all, the sat
uration s is zero. Temperature and vapour pressure should be continuous. 
Finally, mass and energy should both be conserved across the interface, so 
that the heat flux is continuous, and there is no mass flux across the interface. 
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In summary, at z = L, we have the following five conditions: 

s = 0, (3.23) 
[T]+ = 0 , (3.24) 
]p]t = 0, (3.25) 

(piui + pvuv)r = (pvuv)+ , (3.26) 

(kTz-hvapPvuvY = (KTxy . (3.27) 

We note here that condition (3.27) corresponds to a singular evaporation rate 
at the interface. A t the boundary z = 0, we have an imposed temperature 
and zero mass flux, which give 

T — Jo, (3.28) 
Piui + pvuv = 0. (3.29) 

We have specified five conditions at the interface, but we see that a unique 
solution wil l not be available. Imposing the boundary condition (3.29) leaves 
the interface condition (3.26) redundant, and a further condition is required. 
In order to determine the vapour pressure uniquely throughout the porous 
layer, we now impose a global integral constraint on the system. Experi
mentally, the total water mass in the system can be controlled, and wil l be 
known. Suppose that the fixed water mass per cross sectional area of the 
saturated porous pack is W. Then we have the integral constraint 

/ (s-pi + (1 - s)pv) dz + / pv dz =.W,\ (3.30) 
Jo J L 

which closes the system. It is clear that the three control parameters for 
the experiment are the temperatures To, T i and the water mass W. In the 
next section, we wil l describe a numerical method which, given these three 
parameters, wil l calculate the location of the free interface z = L. 

3.2 An iterative disjoint-domain method 
The system we are trying to solve is summarized in Figure 3.3. In [15], an 
algorithm is described for solution of the steady-state problem with a liquid 
zone, a two-phase zone, and a vapour zone, where there are two interfaces 
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to find. Here, there is just one interface. There is an additional nonlinearity 
in the model here, as we have allowed for compressible vapour. Now we wil l 
describe an adaptation of the existing method to solve our problem for the 
interface location L. 

= D S 

vapour, (p, T) 

z = L 

two-phase, (s, T) 

T = T i , piui + pvuv = 0 

mass equation (3.16) 

energy equation (3.17) 

interface conditions 
3.23), (3.24), (3.25), 
3.27) 

mass equation (3.14) 

energy equation (3.15) 

z = 0 J_ 

T = T 0 , piui + pvuv = 0 

W i t h integral constraint (3.30). 

Figure 3.3: System for steady-state solution of the free interface problem. 

Our solution method is parameterized by a heat flux q and the saturation 
at z = 0, which we denote s0. Now, if the heat flux across the boundary 2 = 0 
is q, then we have . 

KTZ - hvapPvuv = q, at z = 0. 

Notice that this then allows us to integrate the energy equation (3.15) once, 
leaving 

KTZ — hvappvuv = q, for 0 < z < L. ' (3.31) 

Also, taking the zero mass flux condition at z — 0 allows us to integrate the 
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mass equation (3.14) once, leaving 

Pm + pvuv = 0, for 0 < z < L. (3.32) 

Thus, given q, we reduce the problem in the two-phase zone to a coupled 
system of ordinary differential equations, 

f / (j-(psat(T)-5J{s)) + Plg) 

(3.33) 

irdTM.h M P**22h 0\*(d

(n ^ , MgPsat(T)\ 

(3.34) 
which wil l be solved as an initial value problem for 5 and T , with initial 
values So, T 0 . This initial value problem in z is solved numerically until s = 0. 
This requires some care, since the coefficient s 3 in the first term of (3.33) 
makes the problem singular at s = 0. One approach is to reformulate and 
solve for z(s) rather than s(z), which is the method we have used here. 
Another approach is to make the change of variables w = s 4, which leaves a 
regular problem for w. This idea has already been discussed with respect to 
numerical methods for degenerate diffusion problems, and wil l feature again 
in the next chapter. 

Once we have solved until s = 0, then we stop, and we have found the 
interface location L. Then it remains to solve the problem for pressure and 
temperature in the vapour region, subject to the remaining boundary, in
terface and global conditions. Given continuity of temperature (3.24) and 
pressure (3.25), we find the values of temperature and pressure just above 
the interface, namely T + and p+. Also applying the heat balance (3.27) at the 
interface, and no mass flux at z = D, we find that the problem (3.16)-(3.17) 
has the analytical solution (3.18)-(3.19). 

So, given q and So, it is relatively straightforward to solve the system of 
equations and find the interface L. However, the condition T = T i at z = 0, 
and the global integral constraint on the mass W (3.30) have yet to be 
satisfied. The idea is to iterate on q and So until these two conditions are 
satisfied. Suppose that, for given q and SQ, we have computed a solution 
using the algorithm described here, which has T = T at z = D, and which 
has a total water mass (per unit area) of W. Then, defining 
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we seek zeros of the function Q. Following [15], we compute the zeros using 
a quasi-Newton method which uses centered differences for the numerical 
derivatives. 

3.2.1 Numerical results and discussion 
Our Newton iteration is seen to be quite sensitive to initial guesses. That is, 
we require a good initial guess in order for the iterations to converge. Good 
initial guesses in many of our computations have been generated by a method 
of continuation, similar to that described by Zwillinger in [75] (Chapter 168). 
Suppose we have base values of the control parameters T 0 , T i and W, for 
which we have a numerical solution with a two-zone system, and "target" 
values of these parameters, for which we wish to solve a new problem. We 
take the values of q and SQ corresponding to the base values as initial guesses 
for a problem with slightly adjusted values of the control parameters. The 
numerical solution of the resultant problem generates new values of q and SQ, 
which are then used as initial guesses for the next slightly adjusted problem. 
This process is repeated as we gradually adjust the control parameters to 
their target values. In practice, we have adjusted the control parameters 
one at a time. That is, we have continued in the parameters TQ,T\ and W 
independently. 

In Figure 3.4, we plot the numerical solutions obtained using the iterative 
method, with T 0 = 320, T i = 450 and W = 30. Our computations have used 
the parameter values given in Table 3.1, together with the height of the sand-
pack used by Udell [64], D = 0.254m. Also, we have neglected gravity effects, 
so that g = 0, and we wil l continue to do so throughout the remainder of 
this work. Notice that, by (3.19), this gives a constant pressure throughout 
the vapour-only region. The interface L « 0.12 is clear, as is the singularity 
in the saturation gradient as we approach the interface z — > L ~ . We make 
note of the vivid variation in the vapour density pv, which is a feature not 
included in the previous work [15]. Also, the temperature in the two-phase 
region is not constant. Two-phase regions in porous media are often modelled 
as being isothermal, but we are particularly interested in capturing methods 
for nonisothermal phase change problems. To underline the effect of not 
making the isothermal assumption, in Figure 3.5, we plot a close-up of the 
temperature profile, showing a variation of about 7 K over the two-phase 
region. The structure of the temperature profile in this region is the same as 
that described in [15]. 
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Steady-state, compressible Udell problem T1=450, T0=320, q=928.4, s0=0.78, L=0.12 

0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25 
z z 

Figure 3.4: Solution profiles for free boundary problem using the iterative 
disjoint-domain method. 

In computing the solutions and interface location, we have eliminated the 
condensation rate T. The structure of this function is of interest. Using (3^4), 
we calculate the condensation rate for To = 320, T\ = 450 and W = 30, and 
plot T in the two-phase zone in Figure 3.6. The condensation rate is zero 
in the vapour-only region. In the two-phase region, far from the interface, 
T is positive, and increasing towards the cold lower boundary, as we would 
expect. As we approach the interface L, we know that the condensation rate 
becomes singular and negative, signifying an evaporation front. The liquid 
water that is driven upwards towards the interface evaporates very quickly, 
and the resulting vapour is then driven downwards. As in [15], the phase 
change is concentrated in a layer near the cold boundary and at a front 
at the interface between the two-phase and vapour zones, but is nonzero 
throughout the two-phase region. 
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Structure of temperature profile 

Figure 3.5: Close-up of temperature profile for free boundary problem using 
the iterative disjoint-domain method. 

In Table 3.2, we show further numerical results for various values of the 
control parameters T 0 , Ti , and W. In the first three rows, we have T 0 = 340 
and W = 20, while we vary the upper boundary temperature Ti . Decreas
ing Tj corresponds to an decrease in the magnitude of heat flux through 
the porous layer. This results in an increase in the length of the two-phase 
region, as described in [14]. 

Table 3.2: The effect of varying boundary temperature. 

To Ti W Q so L 

340 600 20 1595 0.51 0.092 
340 550 20 1356 0.41 0.100 
340 400 20 542 0.21 0.145 
375 670 36 2520 0.61 0.140 
375 550 36 1858 0.42 0.160 
375 500 36 1541 0.35 0.174 

In Table 3.3, we show results of another numerical experiment. This time, 
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Condensation rate In the two-pnase zone 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 

Figure 3.6: Condensation rate in the two-phase zone. 

we fix the boundary temperatures, and vary the total water mass W. As W 
increases, the boundary saturation s0 increases, and so does the length L of 
the two-phase zone, as expected. 

Table 3.3: The effect of increasing mass. 

To T\ W Q so L 
320 450 15 790 0.29 0.093 
320 450 20 848 0.42 0.105 
320 450 25 893 0.61 0.113 
320 450 30 928 0.78 0.122 

Finally, we note that the method may fail, if at the stage of comput
ing solutions to the two-phase zone initial value problem (3.33)-(3.34), the 
computed interface location L is greater than the height of the layer, D. 
This signifies that a two-phase zone is supported by the heat flux, without 
an accompanying vapour-only region. Indeed, given a heat flux and initial 
saturation, (3.33)-(3.34) may be used to easily solve for the saturation and 
temperature in a single-zone, two-phase system. Any numerical capturing 
method we develop should general enough so that it can deal with both 
single and two-zone systems. 



Chapter 3. Nonisothermal, steady-state phase change in porous media 75 

3.3 The method of residual velocities 
In this section, we extend the method of residual velocities described in the 
previous chapter to our steady-state phase change problem in porous media. 
Consider again the problem shown in Figure 3.3. We follow the same idea as 
for the Stefan problem, by giving an initial interface position L, and solving 
the problem subject to all but one of the interface conditions. The computed 
residual in this interface condition wil l be used as the interface "velocity", 
and we step in "time" to evolve the interface to the correct steady-state 
position. There are four interface conditions to satisfy. For illustration here, 
we describe the method, using the residual in interface condition (3.24) for 
the interface velocity. 

For a given L, we solve the boundary value problems on either side of 
the interface by using an iterative method which wil l ensure that the global 
constraint (3.30) is satisfied. The method we describe below is again based 
on one-dimensional integration which allows us to solve a series of initial 
value problems. 

First, make a guess for the heat flux q and the temperature just below the 
interface T~. Then s and T in the two-phase region come from the solution of 
the initial value problem given by the ordinary differential equations (3.33)-
(3.34), together with the initial conditions T ( L ) = T~, s(L) = 0, and solving 
on 0 < z < L. 

Using the continuity of pressure (3.25), we have p+ = pSBtt(T~), and then 
the solution of the vapour-only problem is given by 

Bearing in mind that we are using (3.24) for the interface velocity, the two 
conditions left to satisfy are T(0) = Tbot, and the mass constraint (3.30). So 
we iterate on q and T~ until these are satisfied, using a quasi-Newton method 
again. 

Once all the other conditions are satisfied, we define the interface "veloc
ity" to be 

L(t) = T~-T+, (3.37) 

and step in time using a numerical integrator. 

T ( « ) = T 1 + - | ; ( z - D ) , p p+, 0 < z < D (3.36) 

so that 
D). 
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3.3.1 Numerical results and discussion 

Evolution to correct steady-state using method of residual velocities 

Figure 3.7: Convergence to correct interface location, using method of resid
ual velocities, for T 0 = 320, T i =450, W = 30. 

In Figure 3.7, we plot the interface location as a function of "time", as 
given by the numerical solution of equation (3.37), for the problem with 
T 0 = 320, T i = 450 and W = 30, for three different initial values of the 
interface position. The interface location is seen to evolve and converge to 
the correct value L = 0.12, for all three of the initial values. In Figure 3.8, 
we plot the computed L( i ) for the problem with T 0 = 375, T i = 500 and 
W = 36, for which we have previously computed an interface at L = 0.174. 

3.3.2 A model problem in higher dimensions 
The extension of this method to higher dimensions wil l require solutions of 
boundary value problems on irregular domains, and a consideration of the 
interface geometry. As discussed in earlier chapters, front-tracking methods, 
even such as this one which solves elliptic problems in the disjoint domains, 
often require significant computational effort in remeshing and updating the 
interface position. We wil l not attempt to apply this method to our phase 
change problem in higher dimensions. Instead, we propose a related model 
problem which falls into a class of free interface problems which have been 
studied by Chen and Wetton [19]. They discuss a class of problems which 
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Evolution to correct steady-state using method of residual velocities 
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Figure 3.8: Convergence to correct interface location, using method of resid
ual velocities, for T0 = 375, 7\ = 500, W = 36. 

have a free interface which lies between two regions, in each of which a vector 
Laplacian type problem must be satisfied. 

To start with, consider a generalization of our current model problem 
to two dimensions, as shown in Figure 3.9. The five conditions at the free 
interface are now 

8 = 0, (3.38) 

[T\± = 0, (3.39) 

[p]t = 0, (3.40) 

(piui + pvuv)~ n = (pvuv)+ .n, (3.41) 

(KWT - hvoppviij) . n = ( x V T ) + . n . (3.42) 

where n is the unit normal to the interface. 
Now we consider a reduction' of this model problem, as we seek a prob

lem of vector Laplacian type in each subdomain i l i ) 2 , and interface condi
tions which are linear in the dependent variables. This class of problems is 
amenable to the linear analysis presented by Donaldson [22] for scalar prob
lems, and extended to vector problems in [19]. In the following reduction of 
the physical problem given in Figure 3.9 and (3.38)-(3.42), we replace most 
of the physical constants with unity, and remove the nonlinearity in the gov
erning equations by assumptions and simplifications which leave a related, 
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fl+ (vapour) V.(pvuv) = 0 

AT = 0 

V.(piui + pvuv) = 0 t V.(piui + pvuv) = 0 
interface 
conditions 

V.(KVT -hvappvuv) = 0 (3.38)-(3.42) 

f T (two — phase) 

Figure 3.9: Steady-state system in higher dimensions. 

but not physical, model. Also, the reduced model lacks the singularity and 
degeneracy associated with the physical problem. However, it is with a view 
to future work in extending the residual velocity method to our nonlinear 
boundary value problems that we present this loosely related model. 

In the vapour region f2 1 ( we already have Laplace's equation for the tem
perature. Furthermore, if we assume that the vapour density is almost con
stant, then we approximate the mass equation by 

A p = 0. 

In the two-phase region f i 2 , we seek a saturation equation. Taking a con
stant relative permeability, assuming a linear function for the Leverett func
tion J(s), and just keeping the highest order term in s, we replace mass 
conservation with . 

A s = 0. 

Finally, in f^, we replace the energy equation with 

A T = 0, 
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which is equivalent to neglecting phase change effects in this two-phase zone. 
We make similar reductions to the interface conditions (3.38)-(3.42), such 
that they still loosely represent continuity of saturation, temperature, pres
sure, mass flux and heat flux. The conditions we propose are: 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

A similar model problem has been studied, in [19], and we leave the exten
sion of this model to include the nonlinear, singular features of the physical 
problem as future work. 

3.4 Benchmark solutions 
The steady-state solutions to the one-dimensional Udell problem that we 
have described in this chapter wil l be useful in validating computed solu
tions to the time-dependent problem that we wil l study in the next chapter. 
We shall henceforth refer to solutions generated using the disjoint-domain 
method here as benchmark solutions. We wil l check that solutions of time-
dependent problems with the same values of To, T i and W, with no mass 
flux across the physical boundaries, evolve to the correct steady-state. The 
implementation of the interface capturing method that we develop in the 
next chapter benefits from a relatively straightforward extension from one 
dimension to two dimensions, and our benchmark solutions wil l also be used 
to validate solutions to the two-dimensional problem, in cases where we give 
two-dimensional initial data, but one-dimensional boundary data. 

8 = 0, 
[T]t = 0, 

p+=T~, 

( V T + V s ) - .n = ( V p ) + .n, 

O J V T - V s ) " .n = ( V T ) + .n. 
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Chapter 4 

The M 2 mixture method for 
the transient Udell problem 

In this chapter, we describe the time-dependent extension of the steady, one-
dimensional phase-change problem presented in Chapter 3. We carefully 
derive the conditions on the moving interface, and show that these wil l be 
difficult to implement in disjoint-domain numerical solution methods which 
involve front tracking. Clearly, front capturing methods appeal for this type 
of problem. We shall describe a reformulation of the problem over a fixed 
domain, in which the interface conditions are not explicitly imposed. This 
formulation is based in part on the mixture formulation presented by Wang 
and Beckermann [68], who implement a numerical solution method for the 
case of an isothermal two-phase region. The convergence of such numeri
cal schemes for nonisothermal phase change in porous media has not been 
well demonstrated in the literature, owing to the lack of exact solutions of 
such problems. We describe the finite volume solution of the nonisothermal 
mixture problem, and demonstrate the validity of this method by establish
ing exact similarity solutions for reduced model problems, and presenting 
a numerical convergence study. We shall name our new reformulation and 
solution procedure a the "M2" mixture method. 

4.1 Mathematical formulation of the model 
problem 

Here, we present a model based on the time-dependent extensions to the 
steady-state conservation equations (3.2)-(3.4), and (3.16)-(3.17). Firstly, 
we consider the two-phase zone 0 < z < L(t), where the interface location is 
now a function of time. In this region, we have conservation of liquid mass. 
The mass (per unit volume) of liquid in a control volume is 4>pis, where <j> is 
the porosity of the medium, pi is the liquid density, and 5 is the saturation, 
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as before. Then, conservation of liquid mass is given by 

{4>Pls\ + {Plm)t = r, (4.i) 

where, as before, u represents the Darcy velocity, and T is the condensation 
rate. Similarly, conservation of mass for the vapour phase is given by 

(<j>pv(l-s))t + (pvuv)z = -T. (4.2) 

The energy equation is now 

(pc) Tt = KTZZ + hvapF, (4.3). 

with a mass averaged product of density and heat capacity appearing. We 
assume here that the dominant density-heat capacity product is that of the 
porous medium, such that we can neglect variations in this quantity with 
saturation. Certainly, this wil l be true for small values of saturation near the 
interface. 

As in the steady-state problem, we can eliminate the condensation rate 
between the three conservation equations to give conservation of mass as 

(j)(pis + pv(l-s))t + (piui + pvuv)z = 0, (4.4) 

and 
(pc) Tt = KTZZ - hvap ( (</>pv(l - s))t + (pvuv)z ). (4.5) 

Again, we have a coupled system for the two unknowns s and T in the two-
phase zone 0 < z < L(t). 

In the vapour-only region L(t) < z < D, there is no condensation, and 
conservation of mass gives 

((f>pv)t + (pvuv)z = 0, (4.6) 

and conservation of energy is given by the heat equation with no source term: 

(pc)Tt = KTzz. (4.7) 

We now have parabolic systems in two unknowns on either side of the moving 
interface z = L(t), and, as such, we require five conditions to be specified 
on the interface. The first three conditions are that saturation is zero, the 
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temperature is continuous, and the vapour pressure is continuous, giving the 
conditions 

5 = 0, (4.8) 

[T]t = 0, (4.9) 

[p]i = 0, (4.10) 

which are exactly the same as conditions (3.23)-(3.25). The two remaining 
conditions again come from conservation of mass and energy across the in
terface. These conditions require careful consideration of the effect of the 
nonzero velocity of the interface, and we derive these conditions in the fol
lowing subsection. 

4.1.1 Modified Stefan conditions at the 
interface z = L(t) 

The well known Stefan condition describes conservation of energy across a 
freezing/melting interface moving through a body of water, say, separating 
regions of liquid and solid. Following Crank [20], we have presented a deriva
tion of this condition in Chapter 2. The major assumptions which are made 
are that the water density is the same in either phase, and that the water in 
each phase is stationary. Clearly, the Stefan condition must be modified for 
problems in which there is an interface between liquid and vapour phases, 
where the fluid on either side of the interface may be moving, and in cases 
where additional heat sources or sinks exist. W i t h this in mind, we now pro
ceed to find conditions for mass and energy conservation across the interface, 
in terms of the interface velocity L(t). 

Firstly, we consider conservation of mass across a general moving interface 
which separates two fluids, possibly different phases, which may have different 
densities and velocities. The argument is presented for a one-dimensional 
problem, which is shown in Figure 4.1. The fluid to the left of the interface 
has density pi, and is moving with velocity Ui, while the fluid to the right of 
the interface has density pn, and is moving with velocity un. Suppose that 
the interface moves a distance 5z in short time 5t, and that it moves with 
velocity L(t). Mass conservation requires that the difference between the 
mass in the control volume [L(t),L(t) + 5z] over the time interval [t,t + St] 
is due to the net mass flux into the control volume during that interval. For 
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fluid density p\ ' 
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fluid density pn 
velocity uu 

z = L(t) 

Figure 4.1: Mass conservation at the moving interface. 

the problem shown in Figure 4.1, this gives 

(Pi - Pii)Sz = (Piui ~ P\iuu)5t. 

Taking the limit as 6t —* 0, we arrive at a condition on the velocity of the 
interface, that is 

(pi ~ P\\)L(t) = pim - puuu. (4.11) 

Further, in the case of flow through a porous medium which has porosity cf), 
the interface velocity wil l be given by 

0(pi - Pn)L(t) = piui - puuu, (4.12) 

where u\ and u\\ are now understood to be the Darcy velocities. Now, for the 
Udell phase change problem, suppose we take region I to be the two-phase 
region, and region II to be the vapour-only region. The condition (4.12) 
holds, but we must consider mixture quantities in region I. That is, we 
consider quantities associated with the mixture of liquid and vapour in the 
two-phase region. Let us define 

pi — pis + pv(l — s), the mixture density, 
piU\ = piui + pvuv, the mixture mass flux. 

Then equation (4.12) gives 

4> ( (pis + pv(l - s))i - (pv)u ) L(t) = (pLui + pvuv)i - (pvuv)n. 

(4.13) 
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Now, in view of the continuity of temperature (4.9) and of vapour pres
sure (4.10), we have that (p„)i — (Pv)n = 0, and hence 

<t> ((pi ~ Pv)s\ L(t) = (pm + pvuv)i - (pvuv)n. (4.14) 

To explicitly find the interface velocity, we must be careful. Specifically, the 
saturation condition at the interface (4.8) is s = 0 at z = L~. The velocity 
L(t) must be considered as a limit of an indeterminate form. In particular, 
the velocity is explicitly given by 

L ( t ) = ] i m (w + w ) i - ( f t « . ) n ( 4 1 5 ) 

z-»L(t)- (j)(pi - pv)iS 

We note that such an indeterminate form for the velocity of a moving in
terface, resulting from a mass conservation argument, also arises when con
sidering the porous medium equation, as we have seen in Chapter 2. The 
common feature here is the degeneracy as s —* 0. 

Now, for the Udell phase-change problem, we also require an energy bal
ance across the moving interface, which we will also see to be a limit of 
an indeterminate form. The argument we present here is an extension of 
Crank's [20] derivation of the Stefan condition in one dimension. Our prob
lem includes an extra term due to motion and phase change in the two-phase 
region, and we refer to the energy balance as a Modified Stefan Condition. 
Consider the problem shown in Figure 4.2. The interface between the two-
phase region and the vapourronly region in the Udell problem moves a small 
distance Sz in the small time interval St. The heat which flows into the 
control volume during the time interval is 

while the heat which flows out of the control volume during the time interval 
is . 

K^=-\ St. 
dz)x 

Now, the heat required to evaporate the liquid which moves up to the inter
face is 

(hvappiUi)St. 

These three quantities are exactly the same as for the steady-state problem. 
We now consider the extra heat released or required when the interface moves. 



Chapter 4. The M2 mixture method for the transient Udell problem 85 

5z, 5t 
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(two-phase) L(t) 

z = L(t) 

Figure 4.2: Temperature profile and the moving interface. 

First consider the case 5z,L > 0. The additional mass which appears 
in the two-phase zone after the interface has moved is (pspiSz. This must 
be exactly the amount of mass from region I I which has condensed, and the 
heat released upon condensation is then 

hvap4>spi5z. 

Given these four terms, we see that the energy balance across the interface 
is given by 

K 
dz 

5t +'hvap(j)spi8z = hvappiui5t. 
J i 

Now, we take the limit as 5z, 8t —» 0 to give 

hvap(f)spiL(t) = hvappiui — (4.16) 

To find L(t), we note that s —> 0 + as z —> L(t) , and evaluate the limit 
.ni l 

Lit) = lim < 
hvapPlUl dz J i 

hvap(j)spi 
(4.17) 
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Now, if we repeat this argument for the case 8z,L < 0, we get exactly 
the same condition. Notice that, if we take (4.17) as the indeterminate 
modified Stefan condition which determines the interface velocity, then the 
mass balance (4.15) becomes 

(pi - Pv)i\hvap(piui)i - K% ^ | 

(piui+pvuv)i-(pvuv)n = : —j— : ——, as z -> L . 
tlvapPl 

(4.18) 
We note here that the indeterminate modified Stefan conditions (4.15) and 
(4.17) can be thought of as limiting cases of the Rankine-Hugoniot condi
tions for our system. The Rankine-Hugoniot condition states that, for a 
conservation law of the form 

At + Bz = 0, (4.19) 

where B is the flux of the quantity A, then for any smooth space-time 
curve z = L(t), the jumps in A and B are related to the velocity L(t) by 

[A]_L(t) = for z = L(t), (4.20) 

which expresses the conservation of A across the curve (see, for example [3]). 
For our problem, this may be easier to see after we have reformulated the 
system as a mixture problem, so the careful derivations of (4.15) and (4.17) 
are valuable here. 

4.1.2 Model summary 
In summary, we have a two-phase region 0 < z < L(i), in which 

(j)(pis + pv(l-s))t + (piui + pvuv)z = 0, (4.21) 

and 

(pc) Tt = KTZZ - hvap ( ( # „ ( 1 - s))t + (pvuv)z). (4.22)' 

The vapour-only region L(t) < z < D has 

((j>pv)t + (Pvuv)z = 0, (4.23) 

and 
(pc)Tt = kTzz. (4.24) 
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A t the moving interface z = L(t), the five conditions are 

[T}+-

\P)+-

<t>((pi- Pv)s)1L(t) 

s 
0, 

0, 

(Piui + 

0 

PvUv)l - (PvV>v)lI> 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

<t>spiL{t) KapplUl — K (4.29) 

A t the upper boundary z = D, we impose a temperature T = T i , and have 
no mass flux, so that uv = 0. A t the lower boundary z = 0, we impose a 
temperature T = T 0 (< T i ) , and have no mass flux, so that piui + pvuv = 
0. Finally, we give initial profiles of saturation, temperature and pressure 
throughout the entire system at time t = 0. 

4.2 Fixed domain, mixture formulation 
Any numerical method which is based on solutions in the disjoint domains 0 < 
z < L(t) and L(t) < z < D wil l require an implementation of the interface 
conditions. A natural approach to take is that of front tracking, which re
quires that the interface velocity be imposed explicitly. Suppose we were to 
take the interface condition (4.28) as the condition which defines the veloc
ity L(t). A n y explicit implementation of this wil l require evaluation of the 
indeterminate form given in (4.15). Thus, any front tracking scheme requires 
not only the explicit computation of interface location at each time step, but 
an accurate numerical evaluation of this limit. Furthermore, extension of a 
front tracking scheme to higher dimensions would also require consideration 
of the interface geometry, and solutions to problems on irregular domains. 

Clearly, front tracking is not feasible for this model problem. A n alterna
tive is to reformulate the problem over the fixed domain 0 < z < D, thereby 
avoiding the need for explicit consideration of the complex interface physics. 
The interface location can be recovered, a posteriori from the solution of the 
transient, fixed domain problem. That is, we aim to develop an interface 
capturing method. Here, we present a reformulation based in part on the 
mixture model described by Wang and Beckermann [68]. 

The reformulation is in terms of a density over the entire pack, rather 
than saturation in just the two-phase zone. The main point is that if we 
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consider the water anywhere in the porous pack to be a mixture of vapour 
and liquid, then the density of this mixture must be continuous, even as we 
cross the interface. Suppose we. define the m i x t u r e dens i ty p by 

p = pls + pv{l-s). (4.30) 

Then equations (4.21)-(4.22) reduce to the system 

4>Pt = ~(piui + pvuv)z 1 
> (4.31) 

(pc)Tt = KTzz-hvav(((j)pv(l-s))t + {pvuv)z) J 

Now, the variables uv,ui,pv are all functions of s and T, and in particular 

( 4 3 2 ) 

—K , ( d 
Ui = —s6 (J-z(pv-SJ(s)) + pl9y (4.33) 

and 
• J(s) = 1.417(1 -s) -2.120(1 -sf + 1.263(1 - s) 3 , (4.34) 

where pv is the vapour pressure. So if pv,pv,s can be found as functions 
of p and T , then (4.31) is a system in the two dependent variables p and 
T. Furthermore, given that p is the density of the liquid-vapour mixture, 
the system (4.31) is valid over the entire porous pack, rather than just the 
two-phase zone. Thus, we seek solutions to (4.31), from which we can recover 
the position of the interface between the two-phase zone and the vapour-only 
zone. 

Now that we are considering a system valid over the entire domain, we 
can not take the vapour pressure to be equal to the saturation pressure. 
Rather, the vapour pressure at a point will be equal to either the saturation 
pressure (in which case, the point is in the two-phase zone) or the pressure 
given by the ideal gas law for the vapour-only zone. Given values of p and 
T , a comparison of these two pressures, namely 

psat(T) = aebT, p*(p,T) = ^ , 

determines whether or not the vapour is fully saturated, and hence the values 
of pv,pv and 5. If p* < Psat, then the vapour is undersaturated, so must 
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be in the vapour-only region. In this case, the vapour pressure p = p*. 
If Psat < P*i then the vapour is fully saturated, and hence p = psat- We see 
that equations (4.31), together with the algebraic constraint 

p„ = m m ^ o t ( T ) , ^ T ) (4.35) 

form a differential-algebraic system for the two variables p, T, which is valid 
over the entire domain. In the next section, we describe the numerical solu
tion of this model problem, with p, T as the primary variables. 

4.3 Computational method 
Equations (4.30)-(4.35) give a coupled parabolic system on the domain 0 < 
z < D. Now we consider the discretization of the problem, written as 

*-.iM*r-s)-- <4 36) 

Tart + w(p,T)T = ^-zQ(p,T,^-\ (4.37) 

where the fluxes q, Q are given by 

* (?'T' ti) = i (Me-1") ^SA(P.T) + fB(p,T) yZSB{p,T)\ , (4.38) 

where 

fA(p,T)=*s* + ^ ( l - s ) \ 
Pl Pv 

9A(P,T)=P, 

fB(p,T) = ^S, 
Pi 

gB{p,T) = i>{s), 

fc(p,T) = pv(l-s)3, 

9c(p,T)=p. 
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and the function w is given by 

w(p,T) = hvap<f>pv(l - s). (4.40) 

The time-dependent terms in the energy equation have been grouped to
gether, leaving the time derivative of an enthalpy-type quantity. Also, in 
keeping with formulations of degenerate diffusion problems for numerical 
computation [25], we have rewritten the degenerate liquid velocity as 

iP(s) = - (ffffidt = 0.2415s4 - 0.6676s5 + 0.6315s6. (4.42) 

This change-of-variables idea is used in preference to regularisations of the 
type Kri = s 3 + n, such as those seen in the fuel cell literature [50, 51]. The 
numerical convenience offered by such regularisations is due to the fact that 
they smear out the sharp interface. 

Also, we have the boundary conditions 

q\z=o = Qbot(t), q\z=D = Qtapit), T | z = = 0 = Tbot(t), -T\Z=D = Ttop(t). (4.43) 

For the closed sand pack, the boundary fluxes are zero, and we will take the 
boundary temperatures to be constant in time. Now we wish to implement 
a numerical scheme for the solution of the system (4.36)-(4.43). Two imple
mentation options are available for explicit time-stepping. One option is to 
use a quasi-enthalpy method. The density p may be explicitly updated from 
the mass equation (4.36). Then the en tha lpy E, defined by 

may be explicitly updated from the energy equation (4.37). The tempera
ture T must then be recovered from the enthalpy by way of a nonlinear solver. 
A second option is to form a mass matrix, and write the system (4.31) as 

U j = - — (s3pz + 5(i>(s))z) , (4.41) 

where the function ip is given by 

'S 

E(p,T) = pcT + w(p,T), (4.44) 

(4.45) 
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Figure 4.3: Gr id and staggered grid. 
where 

together with 

and 

O H = (p, a12 = 0, 

u J.(n \dP» d s \ a-21 = hvap(p I (1 - s j — - pVT^ I , 

a 2 2 = pc + hvap4> (̂1 - s ) ^ - Pv^j 

f 
Jo 

Either of these two explicit methods requires the computation of derivatives 
of all quantities with respect to the primary variables p, T, as would an 
implicit method. Given the inherent stiffness in the problem, here we shall 
use a fully implicit scheme. Now we discretize the parabolic problem (4.36)-
(4.43) by finite volumes, in order to conserve the total mass, given by 

p(z,t) dz, 
10 

in a discrete sense. 
Given that mass flux is given at the boundaries (4.43), we develop a 

scheme which computes a discrete approximation to the solution of (4.36)-
(4.37) with mass fluxes on a grid which coincides with the boundary points, 
and density p on the corresponding staggered grid. That is, we use a finite 
volume scheme for updating pj, which is the cell average density for cell j. 
Also, we use cell averaged temperatures. Consider Figure 4.3. Let Tj and Pj 
be the average values of temperature, T , and density, p respectively, over grid 
cell j. We introduce vectors T and R to represent the interpolated values of 
temperature T and density p falling on the grid. So we have 

Tj = Tj+1/2 = 2 ± 2 ± i " .for j = l , ..,#.+1, 
(4.46) 

Rj=pj+1/2 = for j = l , . . ,AT + l . 
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Then a fully implicit (Backward Euler), conservative, finite volume scheme 
for the mass equation (4.36) is given by the discretization 

on+1 — ri? 1 

F , = P j

 k

 P> - ( Q j - q j - x ) n + 1 = 0, j = 2,.., N+l, (4.47) 

where the discrete fluxes are given by 

+fB(Rj,Tj) ^ B i P i + u r ^ - g B i p , , ^ ^ ^ 

(4.48) 
Next, we discretize the energy equation (4.37) in a similar manner. We have 

W - P° k~ + ,k (4 49) 
- ^ ( Q J - Q J ^ 1 = 0, j = 2,..,N + l, 

where 

Q . _ j r > T j + i - T j hygpK f / D rp \ I gc(Pj+1 iT>+l)~9C(pji Tj)\ 

j h T ^ ^ J ' ^ V /» j ' (4 50) 
j = l , . . , i V + l . 

Here, fc, are the chosen time step and grid spacing, and superscripts denote 
the time level. To close the system for the 2N + 4 unknowns, Tj,pj, j = 1 : 
N + 2, we need four more equations. The boundary conditions give 

= qi — qbot = o, 

Gi = T i — Tbot = o, 

FN+2 = QN+I — qtop = o, 

GN+2 = TN+I Ttop = o, 

(4.51) 

Note that we cannot find the ghost values pi,pw+ 2 explicitly in terms of 
interior cell values, so we just include them in the system to be solved. That 
is, we have 2(AT + 2) nonlinear equations 

Fj = 0, Gj = 0, j = l,..,N + 2, 
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for the unknowns Pj,Tj, j = 1,..N + 2. We use a Newton method with 
analytical Jacobian. In order to avoid "if" statements in the code, we replace 
the nonsmooth map (4.35) with the smoothed minimum 

p = min £ (p s a t ,p*) = He(p* - psat)psat + (1 - He(p* - Psat))p*, (4.52) 

where the smoothed Heaviside function is given by 

H£(X) = ^ l + tanh(^pjY (4.53) 

for a smoothing radius e, and p* = -j^pT. In practice, the smoothing radius e 
can be taken arbitrarily small, and thus, the singularity and degeneracy in 
the saturation equation are retained. 

4.4 Numerical results and discussion 
In Figure 4.4, we show a typical result, starting from an initial uniform den
sity, with no mass flux across the boundaries. The initial temperature is 
uniform, and the system is subject to sudden heating up to a fixed tem
perature at the upper boundary. A number of density, temperature and 
saturation profiles are shown, for increasing time, and we note that the pro
files shown approach the correct steady-state profiles. The transition to an 
interface s = 0 is captured, and the interface between the two-phase and 
vapour regions is clearly moving to the left. In Figure 4.5, the interface po
sition, L(t) is plotted. The stepwise behaviour is due to the discretization, 
and the fact that we take L(t) as the first grid point to the right of s = 0. 
Also, we plot L(t) for three grid sizes: N = 20,40,80. Convergence to a 
base numerical solution is clear as the grid is refined. The question remains, 
however, of whether the numerical method indeed computes the interface 
velocity accurately. This wil l be addressed in the next section. Figure 4.6 
shows the temperature history at a point. A n initial increase in temperature 
is numerically the result of the sudden-heating boundary condition. After 
this, the temperature history has a wavy, stepwise nature, in common with 
the enthalpy-method solution of the Stefan problem [3]. 

For the results shown in Figures 4.4-4.6, small time steps are initially 
required,'in order for the Newton iteration to converge to within the specified 
tolerance. In fact, initially, we use Forward Euler time-stepping to get past 
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Evolution to correct steady-state profiles, starting with uniform density and temperature 

0 0.05 0.1 0.15 0.2 0.25 

Figure 4.4: Evolution to correct steady-state. 

the initial transients, and then employ the fully implicit scheme. However, 
the time step required for convergence to within a fixed tolerance decreases as 
the saturation profile steepens before the interface moves by a grid point. In 
Figure 4.7, we demonstrate the stiffness in the problem. A n experiment was 
performed using implicit time stepping with adaptive time-step. Whenever 
the nonlinear solver is unable to converge to within the required tolerance, 
the time-step is halved. The figure clearly shows the relationship between 
the time-step and the interface advance. 
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Moving interface location, with T0=360 T1=367.9727 W=13.8153 L=0.175 

Figure 4.5: Interface location L(i), with grid refinement. 

4.5 Similarity solutions and numerical 
convergence study 

Numerical experiments using our mixture-based capturing method for the 
time-dependent problem show that initial distributions evolve to the correct 
steady-state solutions, as given by the disjoint-domain method of Chapter 3. 
In this section, we carefully examine the dynamics of the system to ensure 
that the method indeed captures the moving interface accurately in time. 
Typically, the convergence of numerical methods for moving boundary prob
lems is demonstrated using initial and boundary data consistent with known 
similarity solutions. Similarity solutions are available for the two-phase Ste
fan problem and the porous medium equation. In the literature, analytical 
convergence studies of numerical schemes have appeared for reduced, scalar 
models of two-phase flow in porous media [2, 49]. Also, analytical solutions 
have been found for reduced and scalar models of phase change in porous 
media [9, 13, 34, 41, 42, 59, 60, 74]. Wang and Cheng [69] summarize analyt
ical solutions to model problems presented by a number of authors, for both 
steady-state and transient problems. These have largely been constructed by 
neglecting temperature and capillary effects. Wang and Cheng [69] propose 
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Figure 4.6: Temperature history at a point. 

a similarity solution for a full model including temperature and capillary 
effects, and underline the need for further analytical solutions to such prob
lems. Here, we reduce our model problem only by simplifying the coefficients, 
but we retain the full, nonlinear, vector problem, and construct a travelling 
wave solution. 

4.5.1 A reduced model problem 

Let us consider a model problem with reduced Darc'y velocities, and the 
majority of coefficients equal to one. Specifically, we consider 

liquid flux = —pis3 (pz + sz), and vapour flux = —pvpz, 

where we have simplified the Leverett function and the relative permeability, 
and have taken absolute permeability and viscosity to be unity. We note that 
removing the relative permeability of vapour, namely (1 — s) 3 , wil l not affect 
the singularity structure at s = 0, but it wil l allow for solutions with satu
ration s > 1. In this sense, the solutions cease to be physically meaningful. 
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Figure 4.7: Timestep and interface location. 

Conservation of liquid mass reads 

(pis)t- (pis3(sz+pz))z = T. 

Conservation of vapour mass reads 

(pv)t - {pvPz)z = -r, 

8 9 10 
x10 

(4.54) 

(4.55) 

where the weighting (1 — s) has been taken as 1. Again, this wil l not affect 
the structure near s = 0. Conservation of energy is 

Tt=Tzz + T. (4.56) 

In the vapour region, we have 

T = 0, p = pvT (ideal gas), p <psat(T) (undersaturated), s = 0, 
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leaving a problem for pv, T (or p, T). In the two-phase region, we have 

p = pvT (ideal gas), p = psat(T) (fully saturated), 

leaving a problem for s,T and T. A t the interface z = L(t), we have five 
conditions, corresponding to (4.25)-(4.29): 

s = 0, (4.57) 

[T}_ = 0, (4.58) 

\p£ = 0, (4.59) 

(Mass) pia-L{t) = - (Pls3{sz+pz) + pvPz)~ + (p(pT)z)+ , (4.60) 

(Energy) p,s"L(t) = (-pis3(sz +pz))~ - [Tz}_ . (4.61) 

Note that, in view of the ideal gas law p = pvT, conditions (4.58)-(4.59) 
further imply continuity of vapour density 

[Pv]t = 0. (4.62) 

Also, for convenience later, we note that (4.60)-(4.6l) give 

0 = -(pvPz)- + (p(pT)z)+ + [Tz}_. (4.63) 

Then, the five conditions (4.57),(4.58),(4.62),(4.61), (4.63) can be used to 
solve the problem. 

For the fixed domain problem on 0 < z < D, first we define the mixture 
density 

p = pls + pv, (4.64) 

and then use the "M2-map" 

p = mm(pT,p3at(T)), 

n = £ • 
r>v — j< i 

(4.65) 
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leaving the coupled system 

Now, we consider forms of the saturation pressure function, psat(T) which 
yield semi-analytical travelling wave solutions. 

4.5.2 Travelling wave solution for case psat(T) = otT 

Suppose the saturation pressure is a linear function of temperature, such that 
PsatiT) = aT. Then pv = a in the two-phase region. Also suppose that we 
have an infinite porous medium —oo < z < oo, with far-field temperatures 
not yet specified. At time t, let there be an interface at z = at separating a 
two-phase region z < ct, and a vapour-only region z > ct. So the interface 
initially is at z = 0, that is, L (0) = 0, and we seek travelling wave solutions 
with speed c. Then, in the two-phase region, mass and energy conservation 
give 

(4.66) 

(s3(sz + aTz))z + -T2 zz (4.67) 

( l + a 2 ) T 2 2 . (4.68) 

In the vapour region, mass and energy conservation give 

pt = (p(PT)z)z (4.69) 

Tt =' Tz zz- (4.70) 

Finally, at the interface z = L(t), the 5 conditions (4.57), (4.58), (4.62), 
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(4.61), (4.63) give 

s = 0 (4.71) 

[T]! = 0 ' (4.72) 

. • M t = 0 , (so pt = <*), (4-73) 

Pls-c = (-Pls3(sz + aTz)Y - [Tz)+_ , (4.74) 

0 = - (a2Tz)~ + (P(PT)Z)+ + [Tz}+_ . (4.75) 

We seek travelling wave solutions to the system (4.67)-(4.70), which satisfy 
the interface conditions (4.71)-(4.75). In the two-phase zone, seek solutions 

s(z,t) = G(Q, T(z,t) = F1(£), (4.76) 

and, in the vapour zone, seek solutions 

' p(z,t) = R(t), T(z,t) = F2(0, (4.77) 

where 
i = z-ct. (4.78) 

W i t h c > 0 we have wavefronts moving to the right with speed c. Solutions 
of the two linear heat equations are 

F1(0 = A1 + B1e-^S, (4.79) 

and 
F2(0 = A2 + B2e-'*. (4.80) 

The constants A1,B1,A2, B2 must be consistent with the interface conditions. 
Continuity of temperature (4.72) gives 

A1 + B1 = A2 + B2. (4.81) 

Now, the saturation equation (4.67) gives 

-cG'=(G3(G' + aFl))' + -F[', 
Pl 
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and hence 
a2 

-cG = G3{G'-r-aF[) + —F[ + A3, (4.82) 
Pi 

or 

G3G' = -(cG + a (G3 + j j Fi + A3^j . (4.83) 

The constant A3 must be consistent with the interface conditions. Condi
tion (4.74) gives 

s3sz 

G 3 G " = - ( c G + < * G 3 ( — - - ( T - ^ ) ^ - -cB2) . 
\ 1 + a2 Pi 1 + a 2 Pi / 

Comparing with (4.83), we find 

A3 = -(B1-B2). (4.84) 

Then the travelling wave saturation profile G(£) may be found by solving 
the O D E (4.83), subject to G(0) = 0, for f < 0. The constant A3 is given 
by (4.84), and (4.79) gives 

_c _ t 

Notice that we can find an analytical solution to (4.83) if B\ = 0, which 
amounts to an isothermal two-phase region, with no variation in vapour 
pressure, and hence no vapour flow. In this special case, the exact solution 
G(£) is given implicitly by 

l-G3-l-B3G2+B2G-B3\og 
G + B3 

B3 

+c£ = 0, where B3 = -—, (4.85) 
Pi 

and G(£) may be accurately computed using a root finder. In general, though, 
an analytical solution to (4.83) wil l not be available, and we compute &(£) 
using an O D E solver. However, equation (4.83) is singular at G = 0. Letting 
w = G4, we have the regular problem 

^w' = - (cw1/A + a (w3/* + j^j F[ + A3^j, w(0) = 0. (4.86) 
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It remains to find the density p in the vapour-only region. Equation (4.69) 
becomes 

-cR' = (R(RF2)')', 

and hence 

-cR = R{RF2)' + A.i. (4.87) 

Now, to find the constant 4 4 , we use condition (4.75) to give that, at £ = 0, 

R(RF2)' = {l + a2)F[-F^ = -cBx+cB2, 

and condition (4.73) to give —cR = —ca. Substituting in (4.87), we find 

A4 = c(B1 - B 2 - a). (4.88) 

From (4.87), we can write . . . 

R' = - 1 ^ ) { { c + RF!1)R + AA, (4.89) 

and then solve for i?(£), in general, using an O D E solver. Also, we note that, 
for the special case Bi = B2 + a, then A\ = 0, and the exact solution R(£) 
is given explicitly by 

fl(fl= ~ ^ * ^ 5 , where A6 = a(A1 + B1). (4.90) 

Solution - Summary 
We have constructed the following travelling wave solution. 

F1(£)=A1 + B1e-&*, (4.91) 

F2(0 = A2 + B2e"*: . ' (4.92) 

and G(£) = i v 1 / 4 ^ ) , where w solves 

-Aw' = - [cwl'A + a (w3'4 + j^j F[ + A^j, £ < 0 , w(0) = 0, 

(4.93) 
and finally, i?(£) solves 

R' = -1^77-A(c + RF>)R + Ai), £ > 0 , R(0) = a. (4.94) 
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The constants A2. A?n A4 are given by 

A2 = AX + BX-B2, A3 = - (B, - B2), A4 = c(B1-B2-a). (4.95) 
Pi 

We have a three-parameter family of solutions to the model Udell problem. 
That is, a family of solutions parameterized by Ai,Bi,B2. These can be 
carefully chosen in order to have temperature increasing in both regions, and 
the density decreasing to the right of the interface. A typical result is shown 
in Figure 4.8. Now we are in a position to compare numerical results with 
the travelling wave solution. 

Travelling wave profiles for o=0.7 p =5 A,=1 B^-0.5 B2=-0.83557 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

rj=z-ct 

Figure 4.8: Travelling wave profiles for mixture density, temperature and 
saturation. 

N o t e : W i t h B\ < 0 to ensure that F\ is increasing, we have F\ —> 
—oo as £ —» —co. Clearly, the temperature in the two-phase region will 
become negative for some value of t, and remain negative as t increases. 
Our code takes the M2 comparison as pv = min(p, a). This gets around 
the fact that the vapour pressure becomes negative as temperature does. 
So, while comparison with this travelling wave solution serves the purpose 
of evaluating the performance of the numerical method, we note that the 
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t ravel l ing wave solutions to this reduced problem on ly represent any th ing 
close to the phys ica l p roblem up to the t ime at wh ich T and p become 
negative. T h e solu t ion structure of the physical p roblem at the interface is 
retained, though. 

4.5.3 Numerical results and convergence study 
In order to evaluate the performance of our cap tur ing method appl ied to 
the reduced U d e l l problem, we s imply give our code i n i t i a l condit ions and 
boundary condit ions consistent w i t h the exact t ravel l ing wave solut ion given 
by (4.91)-(4.95), for the chosen values of the parameters Ai, Bi, B2. In F i g 
ure 4.9, we show computed interface locat ion , no t ing close agreement w i t h the 
exact t ravel l ing wave solutions, and apparent convergence w i t h g r id refine
ment. N o w we w i l l demonstrate the convergence of our schemes numerical ly. 

Interface position for reduced Udell problem with travelling wave solutions 
0.12 

0.1 

-1 0.08 

I 0.04 

0.02 

0 

1 : 1 : 1 : : 1 : r 

N=160 
— N=320 
— exact TW solution 

c=4 

-

-

0.005 0.01 0.015 0.02 0.025 
time, t 

Figu re 4.9: C o m p u t e d and exact interface loca t ion for the reduced t ravel l ing 
wave prob lem. 
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Although we have a second order scheme and an exact solution, we don't ex
pect to be able to show second order accuracy. Firstly, we need an accurate 
measure of interface location. As mentioned in Chapter 2, methods are avail
able for the enthalpy solution of the Stefan problem [65], but are based on 
a known phase-change temperature, and will not be applicable here. In the 
results shown, the interface location is simply the next grid point to the right 
of s = 0. Also, the stepwise behaviour of not only the interface location, but 
of the temperature history at a point, introduces errors, which result in less 
than second order accuracy (see [3], for example). Even i f novel methods are 
used to capture the interface position accurately, the stepwise temperature 
histories associated with the enthalpy method can give rise to large point-
wise errors in temperature. Indeed, the norm of the temperature error 
is a poor measure of accuracy, and though the L\ norm is a better measure, 
convergence in this norm is at first order. Bearing in mind these results, 
we expect similar, or worse, behaviour for our capturing method applied to 
the reduced Udell problem, and no better than first order accuracy in the 
solutions. 

In the Tables .4.1-4.3, we show the results of a numerical convergence 
study for the finite volume, capturing method, applied to the reduced Udell 
problem. 

Table 4.1: Errors for reduced Udell problem, implicit (BE) time-stepping 
with p, = 0.2, c = 4. 

N num ll-Erlli factor \\EPh factor \\EL\U factor 

20 50 5.2534 E-3 9.6053 E-2 1.4120 E-2 
40 200 1.8412 E-3 2.85 4.1025 E-2 2.34 7.3350 E-3 1.93 
80 800 6.7618 E-4 2.72 1.7308 E-2 2.37 3.8450 E-3 1.91 
160 3200 2.6595 E-4 2.54 7.2590 E-3 2.38 2.0283 E-3 1.90 
320 12800 1.1249 E-4 2.36 3.0324 E-3 2.39 1.0625 E-3 1.90 

We have exact solutions given by the travelling waves, with speeds c = 
1, 2 and 4. In each case, we use implicit time-stepping, with p, = k/h? fixed. 
The number of grid points is AT, and num is the number of time steps. We 
quantify the errors by calculating numerically the norms of the errors made 
in the temperature T , the mixture density p, and the interface location L. 

file:////El/U
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Table 4.2: Errors for reduced Udell problem, implicit (BE) time-stepping 
with /j 0.2, c = 2. 

N num || F r l l i factor \\EPh factor II EL ||I factor 
20 50 1.9986 E-3 8.1047 E-2 1.3620 E-2 
40 200 7.0790 E-4 2.82 3.3881 E-2 2.39 7.3350 E-3 1.91 
80 800 2 . 5 8 4 2 E - 4 2.74 1.4097 E-2 2.40 3.8450 E-3 1.90 
160 3200 9 . 7 7 1 2 E - 5 2.64 5.8601 E-3 2.41 2.0283 E-3 1.89 
320 12800 3.8206 E-5 2.56 2.4351 E-3 2.41 1.0625 E-3 1.91 

Table 4.3: Errors for reduced Udell problem, implicit (BE) time-stepping 
with fj, — 0.2, c = 1. 

N num II F r | | i factor \\EP\\i factor \\EL\\I factor 

20 5 0 1.1646 E - 3 5.9305 E-2 1.5220 E-2 
40 2 0 0 3 . 6 3 1 9 E - 4 3.21 2.6721 E-2 2.22 7.0375 E-3 2.16 
80 800 1.2909 E-4 2.81 1.1080 E-2 2.41 3.7072 E-3 1.90 
160 3200 4.5586 E-5 2.83 4.6023 E-3 2.41 1.9445 E-3 1.91 
320 12800 1.6463 E-5 2.77 1.9151 E-3 2.40 1.0119 E-3 1.92 

Specifically, we compute the time-averaged quantities defined by 

.. - num N 

n=l j=l 

^ ^ num N 

l l ^ " 1 = S Yl \P^ZJ^) - Pexact(Zj, tn)\, ibLLlIb iv 71=1 ] = 1 

num 
| £ L | | I = — JZlHQ-ct, 

mum num 
n=l 

In all three cases, we see convergence at first order. We note here that, when 
computing solutions to the two-phase Stefan problem with travelling wave 
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solutions, using the enthalpy method described in Chapter 2, we found the 
temperature error to decrease by a factor of around 1.9-2.5 as the grid spacing 
is halved. Also, applying the discretization used by Evje and Karlsen [25], 
applied to the one-dimensional porous medium equation ut = (uzux)x, we 
found the error in u to decrease by a factor of 2.4-2.5 as the grid spacing 
is halved. Our capturing method for this coupled, vector, nonlinear prob
lem clearly gives convergence rates comparable with those for these scalar 
prototype problems. 

4.5.4 Other choices for psat(T) 

We briefly mention two more forms for the saturation pressure which yield 
semi-analytical travelling wave solutions which may be of interest. 
C a s e Psat(T) = aT + (3 
The temperature in the two-phase region, jF\(f) may be found analytically, 
but it is given implicitly. 
Case psat(T) = aT + (3T2 

In this case, we have pv{T) = a + (3T, which is increasing if a, (3 > 0. The 
travelling wave solutions in the vapour region remain the same. In the two-
phase region, an analytical solution is again available for the temperature 
profile. For T(z, t) = F \ ( z — ct), we find that Fi(£) satisfies 

-c{l + (3)F1 = (l + (a + (3F1)(a + 2(3F1))F{ + A1, (4.96) 

with Ai yet to be specified. Thus Fi(£) is given implicitly by 

^{Fr + df + (a - 2d)(Fx + d) + (d 2 - ad.+ b) log |*\ + d| + £ 

for some Bi, where the constants a, b, d are given by 

_ 3a 1 + o? , A1 

a~2jV ~2W' c{l + (3)\ 

4.6 Computations in higher dimensions 
One of the distinct advantages of a fixed-domain, front-capturing method 
over front-tracking is that extension to higher dimensions is much more 

= Bu 

(4.97) 

(4.98) 
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straightforward. In this section, we return to the full mathematical model 
for the physical problem, and present some computational results in two 
dimensions. 

4.6.1 Mathematical model 
If we generalize the governing equations (4.1)-(4.3) to higher dimensions, we 
have 

(cMs) t + V.(flu,)-=r, (4.99) 
where, as before, u represents the Darcy velocity, and T is the condensation 
rate. Similarly, conservation of mass for the vapour phase is given by 

( # l ) ( l - s ) ) t + V.(p„u,) = - r . (4.100) 

The energy equation is now 

(p-c)Tt = V.(kVT) + hvapr, (4.101) 

where the Darcy velocities are functions of the saturation and the vapour 
pressure, and are given by 

u„ = - ^ V p , (4.102) 
fly 

and 
u, = - ^ ( V p - W ' ( s ) V s ) , (4.103) 

Pi 

where p is viscosity, K is the permeability of the medium, KR^RV are the relative 
permeabilities, and J(s) is the Leverett function. 

For our sample 2D computations, on Q = (0, D) x (0, D), we take periodic 
conditions in the x direction. At the bottom boundary y = 0, take a given 
temperature, and no mass flux, so that 

T = T0(x, t), (pmi + pvuv).n = 0. (4.104) 

A t the top boundary y = 1, we take a higher given temperature, and no mass 
flux, so that 

T = Tx{x,t)(>T0(x,t)), (piui + pvuv).n = 0. (4.105) 

Now, given that there is no mass flux across the boundary, our initial condi
tion fixes the total water mass W. 

Now, in order to compute solutions to this problem, we simply extend 
the finite volume scheme described in Sections 4.2-4.3 to the two dimensional 
problem. 



Chapter 4. The M2 mixture method for the transient Udell problem 109 

4.6.2 Numerical results and discussion 

T1=513.3, T0=360, q=1500.s0=0.5, L=0.15 

0 0.05 0.1 0.15 0.2 0.25 

Figure 4.10: Steady-state, one-dimensional profiles. 

The first results we show use the steady-state results for the one-dimensional 
problem shown in Figure 4.10. The total water mass (per unit area) in the 
system is W = 35.7, and the interface is L = 0.15. 

Now, we consider the two-dimensional, transient problem with uniform 
boundary temperatures at y = 0, D corresponding to those at z = 0, D for 
the one-dimensional problem. Now we give an initial condition with a fixed 
water mass (per unit length) of WD. Imposing no mass flux across the lower 
and upper boundaries, and giving periodic conditions in x, we expect the 
solutions to evolve towards the one-dimensional, steady-state results shown. 
Giving a one-dimensional initial condition gives the required result, showing 
agreement with the one-dimensional transient solutions at all times. 

In Figures 4.11 and 4.12, we show saturation, temperature and mix
ture density plots at increasing times, for a two-dimensional initial condition 
which has liquid water at a uniform saturation concentrated near the lower 
boundary in a block as shown, and vapour in the block above it. The tem
perature is taken initially uniform, so that T(x, y, 0) = Tb0t = 360, and then 
the system is subject to sudden heating at y = D. A fully implicit scheme is 
used, with a 20 x 20 grid. 
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We note the evolution of the system towards the correct steady-state. In 
Figure 4.12, we can see that after a time of about 20 minutes, the interface 
is approximately at y = 0.15. The influence of the initial condition is still 
apparent, but the saturation and temperature plots have roughly the familiar 
shape of the steady-state one-dimensional profiles. 

In Figure 4.13, we plot the liquid and vapour fluxes at early and long 
times, on a saturation contour plot. At t = 16, the liquid fluxes are small 
everywhere except near the interface. At the later time, there is a larger 
liquid flux at the lower boundary, where the vapour condenses, and then is 
driven upwards by the capillary pressure gradient. The vapour flux in the 
vapour region is initially large, but decreases in time as a steady-state is ap
proached. The one-dimensional steady-state solution has stationary vapour 
in the vapour region. As a steady-state is approached, the vapour flux be
comes essentially one-dimensional. 

In Figure 4.14, we plot contours of saturation at increasing time, for 
an initial condition with a "blob" of two-phase fluid at uniform saturation 
in the centre of the domain. Again, we have sudden heating at the top, 
closed upper and lower boundaries, and periodic conditions in x. We see 
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1=0 t=1115 

Figure 4.12: Saturation and temperature profiles - initial condition and long 
time. 

the two-phase region spreading, and migrating towards the lower boundary. 
There is initially a large downward vapour flux in the vapour region (outside 
the blob), and condensation occurs at the cold boundary y = 0. A second 
two-phase region thus appears near the lower boundary, creating a second 
interface which is clearly visible at t = 189. Liquid accumulates in the lower 
two-phase region, and the blob migrates downwards through the surrounding 
vapour region, until the two separate two-phase regions coalesce, leaving just 
one interface once more. Our capturing method encounters no problems upon 
these topological changes. 

By t = 6709, it appears that the solution is almost one-dimensional. 
The total mass (per unit length) in the system in Figure 4.14 is 3.7425, and 
the uniform boundary temperatures are T0 = 360 and Ti = 512.7. Thus, 
the steady-state to which the system evolves should correspond to the one-
dimensional steady-state with mass (per unit area) W = 3.7425/D = 14.734. 
Using our disjoint-domain method from Chapter 3, this gives s0 — 0.2, q = 
1000, and the interface position L = 0.104. In Figure 4.15, we plot satura
tion and temperature profiles for a fixed x in the two-dimensional problem, 
at a large time. Clearly, the system has almost reached the correct one-
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Saturation contours and liquid water flux at time t-16 
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Figure 4.13: Saturation contours with liquid and vapour fluxes. 

dimensional steady-state. 
In our final numerical experiment, we again give periodic conditions in x, 

no mass flux across the lower and upper boundaries, an initially uniform 
temperature distribution, at To = 360, and sudden heating at the upper 
boundary with a uniform temperature T i = 627.8. This time, we have an 
initial condition with total water mass of 7.5466, which corresponds to a one-
dimensional problem w i t h W = 7.5466/Z) « 29.7. The corresponding one-
dimensional steady-state solution has s 0 = 0.58, 'q = 2000 and L = 0.12. The 
initial condition this time has two two-phase regions at uniform saturation, 
one in the shape of a rectangle, and one in a circle. 

In Figure 4.16, we plot contours of saturation at increasing time. Our 
method again captures the topological changes with no difficulty. The two 
two-phase regions spread, while a third two-phase region develops through 
condensation at the cold lower boundary. The two initial two-phase regions 
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Figu re 4.14: Sa tura t ion contours for an in i t i a l "blob" of two-phase fluid i n 
the centre of the domain . 

coalesce, and also the in i t i a l l y c i rcular region coalesces w i t h the two-phase 
region near the lower boundary. Eventual ly , the remain ing vapour region 
near the lower r ight hand corner of the domain disappears, leaving just one 
two-phase region, and a one-dimensional steady-state is approached. In F i g 
ure 4.17, we plot the satura t ion and temperature profiles for a fixed x i n 
this two-dimensional problem, at a large t ime. Clear ly , this system has also 
almost reached its correct one-dimensional steady-state. 
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Comparison ol blob solution after long time, and 1 -D steady state 
0.25 r 1 ; n 1 1 r 

y 

Figure 4.15: Long time saturation and temperature profiles at fixed x for 
the spreading, migrating blob, together with one-dimensional, steady-state 
solution. 



Figure 4.16: Saturation contours for an initial condition with multiple two-
phase regions in the centre of the domain. 
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Comparison of circle and rectangle solution after long time, and 1-0 steady state 
1 1 1 -i r 
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y 

Figure 4.17: Long time saturation and temperature profiles at fixed x for ini
tial multiple two-phase zone problem, together with one-dimensional, steady-
state solution. 
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Chapter 5 

Conclusions and future work 

5.1 Summary of results 
In this thesis, we have described a number of free and moving interface 
problems, related to phase change processes in porous media. Throughout 
the thesis, we have made note of mathematical points of interest, with a view 
to motivating further work. 

The first result of this work is an asymptotic analysis of smoothing meth
ods applied to the one-dimensional, steady-state, two-phase Stefan problem. 
This appears to be new work. Smoothing techniques are often implemented 
in capturing methods for moving interface problems, with little mention of 
the effect they have on computational results. In fact, Crank [20] mentioned 
that very little analysis of smoothing for the enthalpy function used in the 
enthalpy method had appeared in the literature, and this still appears to be 
the case. 

Also in Chapter 2, we have presented numerical convergence studies for 
the well established enthalpy method for the Stefan problem, as well as a 
more recently described method for the Porous Medium Equation [25]. This 
has been done with a view to drawing a direct comparison between the con
vergence rates for the capturing methods for these scalar problems, and the 
capturing method that we develop for the vector problem of phase change in 
porous media in Chapter 4. 

In Chapter 3, we have modified a recently developed method for solving 
the one-dimensional, steady-state free boundary problem of a three zone 
system to be applied to a two-zone system of particular interest. The model 
problem has been extended to allow for compressible vapour. Numerical 
results have been generated using this iterative disjoint-domain method. 

Also in Chapter 3, the method of residual velocities [22] for solving steady 
free interface problems with linear, scalar elliptic problems on either side of 
a free interface, has been extended to solve the nonlinear, vector problem of 
phase-change in porous media. Numerical results show agreement with the 
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results from the iterative disjoint domain method. 
In Chapter 4, we have developed a numerical interface capturing method 

for a model problem of time-dependent two-phase flow with phase change in 
porous media. We have allowed for a nonisothermal two-phase region, rather 
than making the popular assumption of an isothermal region. This will allow 
for computations in particular settings where thermal effects are important, 
such as fuel cell electrodes. 

Numerical solutions found using this capturing method are seen to con
verge in time to the correct steady-state solutions generated using the method 
of Chapter 3. These benchmark steady-state solutions have been particularly 
useful in va l ida t ing the results of the capturing method. 

We have found similarity solutions to a model vector problem for phase 
change in porous media. The singularity, degeneracy and coupling in the 
mathematical model have been retained, and we have demonstrated conver
gence of our numerical results to the exact t ravel l ing wave solutions, thus 
showing that the capturing method recovers an interface moving at the cor
rect velocity. To our knowledge, this is the first such convergence study for a 
full, coupled model. Convergence rates are comparable with those presented 
in Chapter 2 for the simpler, scalar problems. 

The implementation of the capturing method has been extended to the 
two-dimensional problem, and we have demonstrated that our method can 
easily deal w i t h mul t ip le interfaces, and topological changes such as disap
pearing interfaces. This is a distinct advantage over front-tracking methods. 
Also, no grid refinement near the interface is required by our method, which 
is an advantage over a recently described numerical capturing method for 
a related problem in the fuel cell literature [10]. Convergence to the cor
rect steady-state solutions is once again demonstrated using our benchmark 
solutions. 

5.2 Future work 
We suggest using the ideas presented in Chapter 2 as part of an asmymptotic 
analysis of smoothing techniques applied to the time-dependent Stefan prob
lem. This wil l involve the analysis of smoothing strategeies applied to the 
discontinuous enthalpy functions, and possibly an accompanying analysis of 
the relationship between the smoothing parameters and the computational 
grid spacing. 
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• In Chapter 3, the method of residual velocities has been used for the one-
dimensional porous medium problem. Future work which we have suggested 
includes an implementa t ion of the method applied to the two-dimensional. 
The analysis of the residual velocity method has so far been applied to prob
lems of Laplacian type [19, 22], and we suggest using the model problem 
described in Subsection 3.3.2 as a starting framework for the analysis of the 
full Udell problem. 

The capturing method that we have developed in Chapter 4 appears to 
be robust, and no grid refinement has been necessary in our computations. 
We have, however, used an adaptive time-stepping method. Future work will 
involve looking at strategies for this adaptive time stepping. 

Our computational method has been implemented for the so-called Udell 
problem of phase change in porous media. The model problem which we 
have considered is quite general, and future work wil l include applying this 
capturing method to specific physical and industrial problems of interest. 
In particular, we wil l look at model problems of phase change in fuel cell 
electrodes and oil reservoirs. 

Also, we wil l consider modified models of phase change which relax the 
saturation assumption which we have used throughout this thesis. We briefly 
describe such a model problem below, and some ideas concerning its solution. 

5.2.1 The "B ig -H" regularisation 
We take this idea from the fuel cell modelling literature (see, for example, [10, 
21, 50]), and refer the reader to Wang [67], who discusses the computational 
convenience offered by this regularisation. The vapour is not assumed to be 
at saturation in order for phase change to occur. Instead, any oversaturated 
vapour is supposed to condense at a very large rate, proportional to the 
degree of oversaturation. Undersaturated vapour may not condense. In the 
two-phase region, if vapour is undersaturated, then evaporation of liquid 
water occurs at a large rate, proportional to the degree of undersaturation. 
On the other hand, i f vapour is undersaturated and no liquid is present, then 
no phase change occurs. We take the condensation rate to have the following 
form: 

/ H+(pv - psat(T)) pv > psat(T) ( , 
\ H-s(pv-psat(T)) pv<Psat(T) • { - > 

Here, H+ and H~ are large constants, which account for the large conden
sation rates. The factor of s precludes the possibility of evaporation if there 
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is no liquid present. Now the governing equations for the model problem 
are the system (4.31), together with the condensation rate (5.1). These 
constitute three equations for three unknowns s, T and p on the fixed do
main 0 < z < D, rather than the two equations in two unknowns when we use 
the saturation assumption. This idea has been used in the fuel cell literature, 
but computations have only been performed under simplifying assumptions, 
such as isothermal conditions, or with computational regularisations or local 
grid refinement [10]. The method we have described in this thesis does not 
require any of these simplifications. The relation between our model and 
this "Big -H" model in the limit of large H+, H~ is of interest to us, and in 
particular, how the size of these parameters affects the computations. 

We propose to implement this method for the reduced model problem 
described in Subsection 4.5.1. A n asymptotic analysis of this method wil l 
appear in future work, where we take H+ — H~ = l/e. Preliminary analysis 
looking for travelling wave solutions suggests a corner layer will be introduced 
which wil l smear out the sharp interface, but that the sharp interface solution 
wil l be approached as e —> 0. This is continuing work. 
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