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Abstract

The study of 2-categories extends many of the constructions within category

. theory itself. In particular, this thesis investigates the important categoribal’con—

_structions of an adjunction and a monad within the context of a 2-category. _

Chapter 1 introduces thé'fUndarhental notions of category theory, with an em-
phasis on présenting a widé variety of examples. It is a goal of this chapter that
a reader unfamiliar with category theory is provided with sufficient background
to follow subsequent, chépters, as well as gain an appreciation for the power of
category theory throughout mathematics. | |

’ writes Saunders MacLane, one of

“The slogan is: ‘Adjoints arise everywhere’;
the founders of Category Theory, in the preface to his book Categories for the
Working ‘Mathematician. Chapter 2 begins by defining the concept of adjoint

functors; the second focus of this chépter is that of a monad. The relationship

between these two is then discussed in detail.'

The notion of 2-categories is defined in Chapter 3. We go on to extrapolate

many of the categorical structures discussed in Chapters 1 and 2 to 2-categorical

structures.
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1 Categories

1.1 Introduction

The notions of a category, functor, and natural transformation were ﬁ‘rs't‘ intro-
duced in 1942 in a joint paper by Sémuel Eilenberg and Saunders MacLane 6n
Céch cohomology [5] They proceeded to abstract the ideas aﬁd treat them di--
rectly in a paper entitled General Theory of Naturdl Equival‘énces published in
1945 6] |

Since then, Category Theory has grown rapidly. .Initi_ally' studied as a language
for other branches of mathematics (like topology), it has emerged and developed

as an autonomous field of study.

Unlike a set which is completely defined by the elements which belong to it,

category theory puts the emphasis on the “morphisms” between the elements.

1.2 Axiomatic Definition of a Category
A category C is comprised of
e a collection of objects A, B,... (sorhetimes called C,—obj_ects)

e for every pair of objects A,B, a collection of arrows or morphisms f,g,. ..,

(C-arrows), written C(A, B) (or Hom(A, B) if C is clear from the context)

e for every triple A,B,C of objects, a comesitibn law:




Hom(A,B) x Hom(B,C) — Hom(A,C)
- f X 9 - —  gof
which obeys the following associativity axiom:

If f € Hom(A,B), g € Hom(B,C’), h € 'HO?ﬁ(C’, D), then ho (g of) =
(hog)of. | |
e for evefy object A, an arrow 14 E_Hom(A,A), called the identity on‘A,v »
which obeys the folloWing identity ‘axiom: _ v '
Given arrows f € Hom(A, B) and g € Hom(B, C), then lpof = f and
golp=g. | o |
An arrow f € Hom(A, B) will often be represented.,by the notation f : A— B |

A is called the domain of | f and B is called the codbmain.

We can expreSs the axioms above by éimply -saying'the following diagrams com-

mute:
A—1-B A—1-p
AU NN
C—-2-D B—>C
 (associativity) (identity)

'1.2.1 Examples of categories:

1. The most fundamental of all categories is Set, whose objects-are all sets .

and whose arrows are all set functions.

- 2. There are a host of examples in which the objects are “sets” with an under-

lying structure and the arrows are the functions between such sets. For




3.

example, Grp is the category of groups and group homomorphisms, Top is
the category of topologlcal spaces and continuous functlons The followmg

chart lists the most common of such categories:

Grp | Groups and group homomorphisms

Ab | Abelian groups and group homomorphisms

Top | Topological spaces and continuous functions

Rng | Rings and ring homomorphisms (preserving units)

CRng | Commutative rings and ring homomorphisms (preservmg units)

Vet | Vector spaces over a field k£ and linear maps

(a) O is the empty cétegory with no objects and no ar'ro’w's.-v
(b) 1 is the unit category with one object and one arrow, namely the

identity arrow of the object.

1a

'
(¢) 2 is the category with two bbjects aﬁd three arrows: vo‘ne'.ident_ity_
arrow for eachﬁ object. and one non-identity arrow from one object to

the other. Composition can be defined in only on_e'.way'a'nd clearly

both the identity and associativity axioms are satisfied.

S A
A—B

(d) 3 is the category with three objects (A, B, C), an identity arrow for
each object and three other arrows f : A — B, g : B — C and .
h: A— C’.‘_ Again, composition can be defined in only one way

(g o f = h) and both axioms are satisfied.
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4. Take all the natural numbers to be the objects of a caﬁ;egory and define an

arrow from n to m to be all the real-valued n xm matrices. The composition
will be matrix multiplication; the identity arrow for an object n is the
n X n identity matrix. The associativity and identity axioms follow from

pr’ope'rties of matrix multiplication.

5. Monoids: |
Let ‘N be the‘set of natural numbers. Forrﬁ'é category with one object
N and arrows the natural nﬁmbers’ n,m,.... Let the composition of the ‘
arrows be addition. Thé identity, arrox?v'. will be 1y the number .O. We label

‘this category < N, +,0.>.

This is an example ‘of. a monoid. A monoid is a triple:‘ < M, *, 1 >
‘in which M is'a set, * is a binary operatiicv)n on M (ie,*: M xM— M)
that is associative, and 1, is an identity element of M (ly*z = z=gx*l M
for all z € .M ). In the manner described abové, every monoid caﬁ be seen

as a category with one object.

6. Posets:
- A partial ordering (<) on a set P is a reflexive (p < p), transitive (p <

¢,q <1 = p <r), and antisymmetric (pg 4,9 < p = p = q) relation on,

the elements of P. We can form the category Poset whose objects are all




partially ordered sets and whose arrows are continuous functions between

them.

. A partially ordered set itself (P, <) can be considered a category. The
~objects are the elements of the set P. The arrows will be .determined by
the partial ordering. Define ﬁhére to be a single arrow. from p to q if p S q;
otherwise, there exists no arrow between elements. The identity law is
satisfied by the reflexivity ’of é, composition of ax_;rows follows from the’
transitivity of < and sinée. there is at most one arrow between any two

elements, the composition must be associative.

. A set itself can be viewed as a category whose objects are the elements
of the set and whose only arrows are the identities on each element. A

category whose only morphisms are identities is called a discrete category.

. Comma categorles

Given any category C and an object A of C, we can form the category C l A:
of objects over A The obJects of C | A are the arrows of C with codomain
A and the arrows of C 1A from f:B—A tog:C — A are the C-arrows

k:B — C such that B —> ¢ commutes. (ie., go k= f)
. N w0 |
A

Similarly, we can define the category C T A of objects under A where the

objects are arrows with domain A and the arrows from f: A — Bto
. e -
f g

'g: A — C are the arrows k : B — C such that B——( commutes. ‘(i.e., :
. k .

ko f = g). Categories of these type are called comma categories.




1.3 Subéatégories' I_
A category B is. a subcqtegory of a caﬁegofy C if:
(i) each oi)ject of B is an-objecf of C; .
(11) for aii B—objects B and B, B(B, B') C C(B, B'); and |
(iii) compoéites and i'dent-i'ty arrows are the samé in B»d_s inC

The subcategory is called full if for any objects B, B’ € B, if f B — B’ is an

arrow in C, then f is an arrow in B. In other words, B(B, B)) =C(B,B’).

The category Ab of abelian groups is an exarhple‘ of a full subcategory of the

category of groups Grp, since the arrows of Ab are all the group homomorphisms

between abelian groups.




Special Objects and Arrows
1.4 Monomorphisms
An arrow f : A — B in a category C is a monomorphism (or.is monic) if for

any pair of C-arrows g,k : C =3 A such that fog = foh then g = h. (i.e, f is

left-cancellable).

In Set, the monic arrows correspond exactly with injective functions. Given
f € Set(A, B) such that f is injective and arrows g,h € Set(C, A) such that

fog= foh, then we have:
f(g(e)) = f(h(c)) for all elements ¢ € C -
= g(c) = hlc) for allc € C since’ f is injective
=qg = h | |
So f is monic. Conversely, let f € Set(A, B) be a monomorphism and as'sufne"

f(a) = f(a) for some a, a € A. Conétruct the maps:
g: {0} — A and h: {O} — A

then

~fog = for

= g = h since f is monic
9(0) = h{0)
=a '=. a




Therefore, f is injective. O -

In the monoid < N,+4,0 >, every arrow is monic since m +n = m + p cer-

- tainly implies n = p.

1.5 Epimorphisms

An arrow f: A — B is an epimorphism (or is epic) in a category C if for any
pair of C-arrows g,h : B =3 C such that go f = ho f then g = h. (ie., fis.

right-cancellable).

In Set, the epic arrows are the surjective functions. (The justiﬁcatiori for this is
comparable to the justification above that the injective functions are monic.) In

"< N, +,0 >, all arrows are epic since m +n = p+n clearly implies m = p.

1.6 Isomorphisms

A C-arrow f “A - Bisan isomorphism, or is invertible (or is iSo) if there is a
C-arrow g : B — A such that |
| gof =1 A and‘
fog = 1s
In Set, the i.s‘om.orphisrrvls are exactly the bijective functioné, which are the func-
tions that are both injective and surjective, and hence both mopic and epic. For

a general category C, it is easy to show that all isomorphisms are both monomor-

phisms and epimorphisms. However, the converse is not true in general. For

8




example, in the monoid < N, +, 0 > all arrows are both monic and epic but the
only arrow that is iso is 0 N — N. Indeed if the arrow m has an inverse n, then

m +n = 0 but m and n are natural numbers so we must ,have m=n=0.

As a special ‘case of a monoid, any group G can be characterized as a category

with one object G such that every morphism has an inverse.

1.7 Initial and Termihal.O‘bjects

An object 0 is initial in a category C if for every C-(')bject A there exists ezactly

one arrow from 0 to A in C.

A category may have many initial objects but they will all be isomorphic. (Note:
two objects A, B are isomorphic in C if there exists an invertible C-arrow f : A —

B.) This also holds for terminal objects.

An object 1 is terminal in a category C if for every C- obJect A, there exists

2

exactly one arrow from AtolinC.

In Set, there is only one initial object, namely the empty set, vt/hereasv every
singleton is a terminal object. Specifically, given a set A, .the empty function
is the unique function from the empty set to A. Further, for each eet A, there
is exactly one function frem A to a singleton set {z}, namely the maﬁ sehding'

all elements of A to z. In Grp, the group with one element is both initial and

terminal. The same argument as above can be used to show the group with one




element is terminal. It is initial since the single element must be an identity
element, and hence must be sent to the identity element of any other group by

properties of group homomorphisms.

1.8 Duality

Given a cafegory C we can construct another category, called C, W‘hose objectsv |
ére_the objects of C and whose arrows are the arrows of C “reversed”. That is,
fof each C-arrow f : A — B, we Afor.m an arrow f? : B — A in C°. Clearly
C satisfies the axioms for a'cétegofy. f o g°° will exist precisely when g o f
exists aﬁd- fPo QOP = (g o f)°?. The identity morph.isms 14 will be.b the. same aé
the identity: morphisms in C. We call C? the dual or opposite category of C CTts

existence has far—reaching implications. Monic arrows in C are epic in C%; initial - |

objects in C are teirrhinal objects in C?.

More gener_ally, givén any categorical statement 3, define its 'duai, Z‘OP, as thé'
statement obtained by replacing “domain” with “Codoinain” and Vice-versa. If
¥ is true for a category C then X° will be true for C?. As Weil, if ¥ is true
for all categories (i.e., derived from the aﬁioms of a category), tvhen‘ sihce it caﬁ
be shown that any category D can be expressed as C"” for some category C ,b 3P

must also be true for all categories. This is the Duality Principle.

10




1.9 Equalizers

Given a pair of C-arrows, f,g: A =3 B, an arrow ¢ : E A is an. equalizer of f

and g if:
(i) foi=goiand

(ii) Whenever h : C' — A is such that foh= g'o h, then thér_e exists a unique
arrow k : C — F such that i o k = h (i.e., h factors uniQuely through the
equalizer). That is, given:

¢
N
Y foo
- F — A == B
there is exactly one way to fill in the dotted arrow to make the diagram

commute. An arrow will be called an equalizer in C if it is an equalizer for

any pair of C-arrows.

b_For example, in Set, given f,g: A = B , let E be the subset.of Aon .WhiCh f and
| g agree. That is E={z | z € A and f(z) = g(z)}. Then the ‘inclusion function
. 1: E — Ais an equalizer of f and ¢g. In Grp, tHe equalizer Of f, g:A= B is‘the
kernel {a € A| f(a) =g(a)}. -

1.10 Co-Equalizers
The dual notion to an equalizer is that of a co-equalizer. Given a pair of arrows

f,g: B = A, a co-equalizer is an arrow e : A — E such that:

(i) eof=e€og and

11




(11) Whenever h: A — C is such that h o f = h o g then there exists a unique

arrow k such that k o e = h. That is, within the diagram:
E<—A<=B

T f
oo

C

there is only one way to fill in the dotted arrow so that the diagram com- -

mutes.

In Set, the co-equalizer of f,g: A = B is the quotient of B by the equivalence - .

 relation generated by the pairs (f(a), g(a)) for all a€ A

1.11 Pullbacks
Given two morphisms with common co—domaiﬂ,. f:A—-Candg: B — C' ,in a
category C, then a'pull_chk. of (f,g) is 2 triple '(D, f’,.g’) such that:
(i) D is an object of C'.' |
(ii) f’ : D —> B,g :D — A are morpvhisms of C sﬁch that fog = go f’ a‘nd 
(iii) whenever there é#ists an object X and morphisms h: X — A and j:X —

B such that foh = goj then there exiéts a'unique arrow k : X — D such
thath=¢gokand j= f ok




i.e., given the above diagrarri, when h and J are such that the outer square
" commutes, there is only one way to fill in the broken arrow to make the

whole diagram commute.

The inner square of this diagram is called a pullback square.

In Set, the pullback object of f:A->C and g : B — C is given by the
set {<a,b>|a€ Abe B, fa) = g(b)}. o |

1.12 Pushouts

The dual to a pullbaék is called a pushout. Given the mofphisms f:A— Band

g: A= D, a pushout of (f,g) is comprised of the triple (C, f’, g’)rsucfl‘ that -
(i) C is an object of C
(ii) ¢’ : B— C and f': D — C are arrows in C such that ¢'o f = f'og and

- (iii) whenever there exists an objéct X and arrows h: B — X ,j:D — X such
that ho f = j o g, then there exists a .uniqUe.arfow k: C — X such that
the following diagram commutes:

f

A—B
gl g
p-L-¢C

N

The inner square is called a pushout square.




In Set, the pushout of arrows f and g always exists and. is the disjoint’ union
of their co-domains, B U D with the element f(a) and g(a) identified for each

a € A.

1.13 Pr_oducts

Generalizing the notion. of the Cartesian product of two sets, we obtain the prod-

uct of two objects in a category.

A produét in a category C of two objects A and B is the triple (A x B,p4,pB)

such that
" (i) A x B is aC-object
(ii) pa:AXxB—>Aandpg: AXB— B are C-miorphisms and

| (iii) for any pair of arrows of the form f:C — Aand g: C — B there is exactly
one arrow k : C — A x B for which k opag = fand kopp = g That 'is;,

there is ohly one morphisrh k that makes the following diagram commute:

Note: k is often written < f,g >.
1.13.1 Examples:

1. In Set, the product of two sets A and B is simply the Cartesian product

A x B = {(a,b) | a € Ab € B} and the arrows p;q and pp are the

14




projections of A x B onto A and B respectively. The unique arrow k : C —

~AxBis () = (£(c),9(0))

2. In a poset, thé product:of two elements d and b is their inﬁmum (greatest
lower bound), denoted in f (a, b), if it exists. Notice that in f(a,b) < a and
mn f'(a, b) < b and if there exists'a ¢ such that ¢ < a and ¢ < b, then by def-
inition of infimum, ¢ < inf(a,b). Since theré is at most oﬁe arrow between

two elements in a poset (defined by <), this arrow is unique. -

1.14 - Co-Products
Dually,i the co—pro‘duct of two objects A,‘ B 1n a cétegory C is a triple (A—i—B, 14,18)
such that: o

(i) A+ B is a C-object

(ii) i4: A— A+ Bandig: B— A+ B are morphivsrr-ls and

’ (iii) whenever there exists a pair' of morphisfns» f A ——YC’,_' g: B — C, then

there is a unique arrow k : A+ B — C such that

C
A

A iB -
is commutative.

1.14.1 Examples:

1. The co-product of two sets A, B in Set is the disjoint union AU B and i4,

ip are the inclusion maps.



2 In a poset viewed as a category, the suprémum (least upper bound), sup(a, b),
of two elements a and b, if it exists, has the property that a < sup(a, b),
b < sup(a,b) and given any c such that a < canda <bthen sup’(a, b) <ec
There is at most one arrow between iaﬁy two element in a poset, sd' this

arrow is unique. Hence sup(a, b), when it exists, is'a co-product in a poset.
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_ Beyohd' Categorieks: |
Functors and Natural Transformations

1.15 Functors

After gaining an understanding of categories, it is natural to look for a way to
relate different categories. A functor is essentially a morphism of categories that

'preserves categorical structure.

Precisely, a functor F' frdm_a category C to a category D consists of: -
(1) a mapping that assigns to each C-object A, a D-object F(A).
(i) a mapping that assigns to each C-arrow fi A —‘>‘ B; a D-arrow F(f) :
F(A) — F(B) such that |
. F(14) = 1pa for all C-objects A. (The identity arrow on'Ais assigned -
to the identity arrow on F(A).) | - .
e F(go f)= F(g) o F(f) whenever go f is defined in C.

That is, whenever . 4 N B commutes in C th_én F(A) if),F(B)

gAlQ. | o »,“F(mblF(.g)
C,‘ F(C)

commutes in D.
1.15.1 Examples of Functors:

1. The identity functor lc : C — C has 1¢(4) = A and 1¢(f) = f. If C is a

vsubca‘.c_egory of D, then 1¢ : C — D is an inclusion functor.

9. There is a functor U : Grp — Set which takes a group A to its und'erlying

set A and a group homomorphism f to the corresponding set function f.

17



U is an example of a forgetful functor which forgets the structure of Grp
objects. There is such a functor from C — Set for any ceitegory C whose -

objects are sets with additional structure (eg, Top, Rng, Ab, etc.).

. A forgetful functor need not discard all the structure of the objects in its

domain. U : Rng — Ab is a forgetful functor assigning each ring R to its

additive abelian group and each ring homomorphism f : R — S to the

~same function regarded simply as an additive homomorphism.

. Let F: Set — Grp be the map which brings a set A to the free group

generatéd by A (the group of finite sequences of elements of A and A"t
formal. inverses of elements of A where composition is concatenation and -
cancellation). If f :’A — B is a set function, there is a ur_ﬁque group
homomorphism F' (f) - F (A) — F(B) obtained by applyir'lg' f to each
elenient of a finite sequence'in AU Al sﬁc'hv that F(f) oi = j o f where

it Ao F(A) and 7 : B — F(B) and f(a™!) = (f(a))”l.for a € A are the

~inclusion maps. F'is a functor called the free group functoh

‘5. The power set functor P : Set — Set maps each set A to its power set P(A)

and each arrow f : A — B to the arrow P(f): P(A) — P(B) that assigns
each Ay C A to its image under f, f(Ap) C B.

6. (a) Any functor F : 1 —C picks out an object of C, as F sends the object '

of 1 to some C € C, and its identity arrow to 1, the identity arrow
of the object C. |
(b) A functor G : 2 — C picks out an arrow of C, as 2 contains a single

non-identity arrow that is sent to a non-identity arrow in C.

18



10.

11.

There is a functor H, : Top — Abfor eachn € Z+ which maps a topological
space X to its n'® homology group, H,(X ) Notice that continuous maps
(arrows in T'op) induce homomorphisms (arrowé in Ab) between hofndlogy

groups.

. The functor F' : Rng — Grp maps a ring to-its group of units. (A ring

homomorphism maps units to units and induces a group homomorphism on -

the group of units.) ‘

GL, : Rng — Grp maps a ring with identity to the group GLn(R) of

invertible n X n matrices over R.

If (P,<p) and (@, <g) are posets, then a functor between them is a non-

decreasing set function.
Given a category C and fixed object AeC , define a f.uncto;;:_' ,
| C(A,—):C—>Set.
from C to the Cafeéofy of seﬂs by settiﬁg
C(A,~)(B) = C(A, B) - for al 'oijects BeC

Given the morphism f. : B — C inC, déﬁne the fnapping C(A,=)(f),
written C(A4, f) from C(A, B) — C(A,C) by

C(A, f)(g) = fog

for an arrow g € C(A, B). This functor is called a hom-functor or a repre-

sentable functor.

19



1.16 Contravariant Functors

There is a natural rrilappingf : C — C® for which I(A) = A and I(f) = fép.
Ho'wever‘this mapping éontradiéts the composition axiom for functors since I (go
Cf)=(go )P = fPog? _ f(f) o f(g) vMot}ivated by this, it is useful to define
coﬁtmwm’ant functors which “reverse” the direction of arrows (i.e., the domain
of an afrow is assigned to the codomavin. of the image arrow and vice—versa,)_.» :

‘F_ormally, a contravariant functor consists of:
(i) a mapping that assigns to each C-object A, a D-object F(A).

(ii) a mapping that assigns to each C-arrow f : A — B, a D-arrow F(f) :

F(B) — F(A) such that

e F(14) = 1pa) for all C-objects A. (The identiﬂy arrow on A is assigned - |
" to the identity arrow on F(A))
e F(go f)=F(f)o F(g) whenever go f is defined in C.
1.16.1 Examples:

1. The mapping I : C — C° defined above is a contravariant functor.

2. The contravariant power seﬁ functor P : Set — Set takes each set A to its
power set P(A) and each set function f : A — B to P(f) : P(B) — P(A)

that takes each By C B to its inverse image f~!(Bo) C A.

3. Given the posets (P,<p) and (@, <g), a contravariant functor between

them is an order reversing set function.

20



1.17 Limits

Initial objects, eq’ualizefs, pullbacks, and producté are all examples of a more

general construction called a limit.

Before defining a limit, it is useful to have the following definition: given a functor

F:D—C,aconeonF consists of:
- e an object C € C
e for every object D € .D, a morphism f‘b L0 - F(D) in C in such a way
that for every morphism d: D — D" in D, fp = F(d) o fp. |

Such a cone is denoted (C, (fp)pep)-

A limit of a functor F' : D — Cis a cone (L, (fp)pep) on F such that for

every cone (M ,(gp)pep) on F there is a unique morphism m : M — L for which - -

.every object D € D, gp = fpom.

The cones for any diagram formed from a category (collection of objects as ver-
tices and arrows as edges) form a category themselves. A limit in this category
is a terminal object. Tt follows that since terminal objects are unique up to iso~ .

morphism, then so are limits.

| 1.18 Co-Limits

Examples of co-limits include terminal objects, co-equalizers, pushouts and co-

products. To define a co-limit, first define a co-cone on a functor F : D —-C

21



as:
e an object C € C

e for every object D € D, a morphism fp : F(D) — C in C such that for
~ every morphism d: D' — D in D, for = fp o F(d).

Denote this co-cone by (C, (fp) b_ep). These are distinguished from cones by the -

context.

A co-limit of a functor F : D — C is a co-cone (L, (fp)pep) on F such that for |
every co-cone (M, (gp)pep) on F, there exists a unique morphism m : L — M

such that for every object D € D, ,g’D'v: mo fp.

A category C is called complete when éll functors of the form F': D — C have a
limit. The category C is called ﬁniteljy complete when all such functors with finite

domain D have a limit.

For example, if F': D — Set is a functor then the set

L={(zp)pep | zp 6 F(D);.Vf : D — D’ in D, (F(f))zp = zp/}

provided with the projections pp : L — F(D) is the limit of . Therefore, Set is -

a complete éategory.

22



1.19 Natural Transformations

In keeping with category theory’s emphasis on mappings, we will now examine

- structure-preserving morphisms between functors called natural transformations.

In fact, Eilenberg and MacLane’s initial motivation to define categories and func-

tors was in order to study natural transformations.

Given two functors F,G . C = D from a category C to a category D, a nat-

ural transformation n : F5@G from F to G is a collection of morphis_ms Na :
F(A) — G(A) of D, indexed by the objects of C, such that for each f : A— Bin
C, ng 0. F(f) = G(f) ona. (The arrows n4 are called the components of n.) ie.,

given the following arrow in C the given square in D commuites:

A FA)-G4)
JfA F(f)l lcm
B - F(B) —>G(B)

If each component n4 of a natural transformation n : F—>G is invertible in D;

" then 7 is called a natural isomorphism or a natural equivalence, writtenn : F* = G.

The inverses 1" in D also form a natural isombrphism n~l:TSS.
1.19.1 Examples:’

1. There is ah identity natural transformation from a functor F' to itself.

2. Recall the categories CRng and Grp of commutative rings with identity

‘and groups, respectively. Recall also the functors F : CRng — Grp which

maps a ring to its group of unité, and GL,, : CRng — Grp which maps a

ring R to the group of n x n invertible matrices over R. We claim that the
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determinant det : GL,—»F is a natural transformation.

detg

GLa(R) %2 F(R)

 GLn(f)| - F(f)
detg

GL,(S)—= F(S)

- For any ring R, det is a group homomorphism from GL,(R) to F(R) since

det(AB) = (det A)(det B).. Further, let f : R — 5 be an arrow of C’Rng."

Since f is aring hOmomorphiém, F(f)(detgr(A)) = dets(GL,(f)(A)). Hénce'

det is indeed natural.

. Recall the power set functor P : Set — Set and the identity functor lge: : - '

Set — Set defined previously. If A € Set, there is a map
oot A > P(A)
o @}

which takes z, an element of A to the singleton set {z}. ¢ is a natural

_ transformation 1g.,—P.

4. Given a category C and a morphism f : A — B of C, ‘there is a naﬁural
trénsformation _ |

| C(f, ) : C(B,~)>C(A, )
where C(B, —) and C(A, —) are hom—f_unctors (repreéentable functors). This

natural transformation is defined by putting, for every object C € C, and

every morphism g : B — C,
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An Application of Category Theory to Topology
1.20 Classify_ing.Spaces

Previously, we described how any monoid can be viewed as a catégory’with one
object. Conversely, any category C with a single object A can be realized as a
__monoid (M, *,1,) where M is the collection of C-arrows, * is the composition of

arrows, and 14-is the identity arrow on the object A.

More generally, every category C can .be_ realized as a semi-simplicial set. Fur-
ther, any semi-simplicial set has a realization as a topological space. A formal
deﬁnitibn of a semi—simpliéial set can be found in Godement [8] Informaily, if is
a sequence of sets Ag, A1, Ay, .. ., together with certain bbunda,ry a’nddegenéréey

maps.

Associated Ito any category C, it is possiblé to consider fhe nem;e of C, denoted
Ne. For any poset P, N¢(P) is defined to be the set of funétqré from the cat;
egory P to C. Specifying P to be thé ordered s'efs {0, 1,2,...,n} now gives a
semi-simplicial set A [8]. This semi-simpliciél set can B_e realized, via well-known
procedures, as a topological space A(A), called the classifying space of C [16],

otherwise denoted by BC.

In this way, an abstract notion, i..e., a category, leads. back to a structure that is

much more concrete, namely a topological space.




2 Adjunctions and Mo‘n‘ads |

2.1 Adjoint Functors

The:idea of adjointness was developéd by Daniel Kan in 1958 [11]. It is considered

one of the most important contributions of category theory to other branches of

_mathematiés. |
2.1.1 Definition:

Given twb categories C and D, and a pair of functors between them, F:C — D

and G : D — C, adjointness occurs when there is a bijective correspondence be-

tween D-arrows from F(C) to D and C-arrows from C to G(D).

We can define a function n which assigns to each pair of objects C € C, D € D,
a bijection of hom-sets: | '

n =1c.p: C(C,G(D)) = D(F(C), D)
The functions ne,p form the components of a natural transformation n: F->G.
In this case, F is called left adjoint to G,'Written‘F -1 G, while G is said to be
right adjoint to F, which is written G - F.
2.1.2 An Alternative Deﬁniti_on:
An adjunction consists of a pair of categories C, D, and a pair of functors
F:C— D, G: D — C and a natural transformation: n : I0=+(G o F) such

that for each C-object A and C-arrow f : A — G(B), where B is a D-object, .

there is a unique D-arrow f# : F(A) — B so that the following triangle in C
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commutes: 4 4, G(F(A))
| NG iG(f#)
- G(B)

n is called the unit of adjunction.

Equivalently, associated with every adjunction there is another natural trans-
formation € : (F .o G)=Ip called the co-unit of adjunction. ¢ has the property .
that for each D-arrow g : F(A) — B there is a unique C-arrow g* : A — G(B)

for which the following diagram in D commutes: F(G( B)) LB o
F(g) 1

_ L

F(A)

It can be shown that the existence of a unit implies the existence of a co-unit and

g

vice-versa (see Barr and Wells [2]). Furthermore, either one implies the existence

of an adjunction.
2.1.3 Examples:

1. Consider the categories Set and Grp and the functors F : Set — Grp and
U: Grp — Set where F' is the free group functor and U is the forgétful

functor introduced earlier. Then F' 'and U are an adjoint pair (F 4 U). i.e.,
Set(A,U(G)) = Grp(F(4),G)

where A € Set ahd G € Grp. This is equivalent to saying for any set ‘I‘nap o
from A to U(G) (the underlying set of the group G), there ié a unique gfoup
homomorphismv from F(A), the free group with basis A, to G which extends |
the given set map. Namely, given f : A — U(G), define g : F(A) —» G

to be g(aS',...,as") = f(a1)¥ - ... f(an)®™, where &; = £1 and - denotes
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the group operation of G. The empty sequence is mapped to the identity

element of G.

. Let A be aset. Let P(A) be the power set of A. Observe that P(A) can be

viewed as a category when inclusioﬁ is used to deterinine an ordering of the
subsets_(inthis way, P(A) caﬁ be considered a pbsetj. If f: A— Bis a
function between sets, then there is a direct image functor we will also call -
f:P(A)— P'(B)‘ assigning each Ag C A to its image under f, f(AO) C B.
There is also a functor f ~1: P(B) — P(A) sending each By to its inverse
image f"l(Bolj C A. Clearly f is left adjoint to the inverse image functor -
. | | |

. An initial object 0 in a category C arises as the image of the 'unique object

of the category 1 under left adjoint to the constant functor ¢ — 1. The

unit of adjunction must be the identity natural transformation n: 114,

whereas & picks out the unique C-arrow from the initial object 0 to each

C-object. C — 1 also has a right adjoint, namely a terminal object, call it t
of C. The unit of adjunction is the unique arrow from each C-object to the

terminal object where the co-unit ¢ is the the identity.

. Let Int = (Z,<) and Real = (R, <) be the integers and the reals with

the usual ovrdering which can both be considered categories as they are
examples of posets. Define I :-Int < Real to be the inclusion map which

is clearly a functor. Define F :‘.Real — Int to be the ceilirig function,

“denoted F(r) = [r], bringing each object r € R to the smallest integer

greater than or equal to 7. F is also a functor since if r < ' then [r] < [r]

(recall < represents an arrow). Further, F' is left adjoint to I. Observe that
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r < I([r]) for each r. (Adjﬁncﬁidns between. partial orders are also known

as Galois connections.)

One of the useful. pr’opefties‘ of adjoints is the fact that left adjoints preserve
co-limits (i.e., left adjoints map colimiting cones in the source category to colim-
iting cones in the target category)and'dually, right -adjoints preserve limits. See

MacLane [14] for a proof.

2.2 Monads

Closely related to the theory of adjoint functors is the catégorical 'struéture called
a monad or a triple. The first appéarance of monads was in 1958 by Godement
[8] who used them for'corﬁputing sheaf cohomology. Throughout the 1960’s work

by various mathematicians began to slowly reveal the significance and i)ower of

monads within category theory.

2.2.1 Deﬁnition:

A monad or a triple in a categorvy C, denoted by T=<T, 77,@ >,.c0'_nsists' of
oafunctorT:C—»C |

e two natural transformations n : Io—T and p : T o T'=T which make the

following diagrams commute:

78 _£>T2 T‘_"T_)Tiin_T
) l“ X l“/
"—T T
(associativity law) (léft and right identity law)
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Tn the diagram above, T is used to mean T iterated n times (i.e., ToTo...0T).
Also, we have dropped symbols for operations when the operatiori is obvious. 7is

called the unit (identity) element of the monad, and 'p'is called the'multiplicatz’on.
2.2.2 Examples:

1. Let M ‘be a monoid. Define the functor T : Set — Set by T(A) = M x A.
Let na : A M x A take a € Ato (1y,a) and let g : M ><'>(M x A) —
M x A take (m,‘n, a) where m,n E M to (mn,a). The associative_é,nd '
identity laws follow from those of the monoid. Then (T,n, 1) ié a monad in _ 

Set.

2. Let T : Set — Set take a set X to the 'undérlying set of the _free group

- generated by X. Thus T(X) is the set of words made up of symbols z and
z~! for all z € X plus the empty word []. To simplif_y, we will .a'c.tually take

T(X ) to be the equivalence Claséesl of wérds where -ény word cont‘aining‘

zz~!or i‘lr is eqﬁivalént to the word obtained by deleting tho_s_e’ elements.

_ Denote‘ the equivalence class of a word w by [w]. We get tkha-t nx takes eaéh

z € X to [z] and px : T(T(X)) — T(X) gives the concatenation of any

two words generated by X. It follows that (7,7, p) is a monad in Set.

3. Let (P, <) be a poset and hence a category.-A functor T : P — P'is a
non-decreasing function. If there is a monad in P, then there are natural

transformations 7 : Ip—T and‘u . T257 such that
r<T(z) and T(T(z)) < T(z)

for all z € P. The diagrams for a monad necessarily commute since there

is at most one arrow between objects. Notice that z < T'(z) implies that
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T(z) < T(T(x)), so together the conditions above imply T(T'(z)) = T(z).
" Thus a monad 7 in a partial order P is a closure operation ¢ in P. That
is, t : P — P is a monotonic function with z < t(z) and t(t(z)) = t(z) for

'alljxeP.

4. Recall the power set functor P : Set — Set (see Section 1.17, Example
5) and the natural transformation o : lgg— P taking an element to its
singleton set (See Section 1.19, Example 3). Let pu : P25 P bring a set of

subsets to its union. Then < P, n,u>withnp=o0isa monad on Set.
2.3 Co-Monads

Dually, a co-monad L'in a‘category C is a monad in the category C*?. L =<1, é, 6>
where L : C — C is a functor, ¢ : L—Ic and ¢ : L Lo L are natural transforma-

tions satisfying the commutative diagrams:

L_5>L2 . : ‘L. : .
| e T
L2 6L; L3 ’ .IOL eL L2- Le LOI_

2.3.1 Example:

Let M be a monoid and let L be the representablé functor L = Hom(M, —) :
Set — Set. If X isaset,let f: M — X bean arrbw_in _Seti, and define € : L—1ge;
by (X(f) = £(1), and 6 : L=>L? by [(X())][(m)(n)] = f(mn) for m,n € M.

Then (L,¢,0) is a co-monad in Set*.
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2.4 AdJunctlon and Monads

Monads are closely related to adjunctions. In 1961 P Huber [10] proposed and |

proved ,the following theorem:
~2.4.1 Theorem:

Let F C — D G:D— C be adyomt functors F 4 G, wheren : I;—>G o F and
| £:FoG — ID are the unit and co-umt of ad]unctzon, then T =< GF,n,GeF >

is a monad on C.

Proof:

G o F =T is indeed a functor C — C. The unit diagram of the monad is: .

kGFJEiGFGFEQLGFk

"GF
which follow from the 1dent1ty natural transformatlons Ic: Ge -G : G—>G and

Ip:eF - Fn: F5F of the adjunction.

The associative law of the monad reduces to the diagram:

GFGFGF — %I — GFGF
GeFGF l ’ : lGeF .
GFGF ——7—>GF

.ThlS dlagram is simply G apphed to the followmg dlagram evaluated at F

FGFG FG
. sFGl . le
- FG Ip

The commutatlwty of thls dlagram follows from the naturahty of e : FG=>Ip

‘which 1mphes the horizontal composite e(FGe) = €(€FG).
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Thus < GF,n,GeF > is a .monad, generated by the adjunction F' 4 G, with

unit 7 and co-unit €. [

For example, the free group monad defined in Section 1.2.2, Example 2, arises
from the adjuhctioﬁ of the forgetful functor U . Grp — Sét and the free group

functor F': Set — Grp, described in Section 1.1.3, Exampie 1.

After Huber showed that every adjunction gives rise to a monad, it was a natural
quéstio’n to ask the converse: can every monad be defined by an adjunction? In
1965, both Kleisli and the pair Eilenberg and Mqore shoWed‘ independently that ‘

this is indeed the case.
2.4.2 Theorem: _

Let T =< T, n, k> be a monad on C. Then there is a cqteg.ory D and an adjoint
pair F:C—D,G:D —C suchthat T =GoF,n: Ic-—>GoF is the unit ofthé

adjunction and p = GeF where € is the co-unit of the adjunction.

We will now state the two very distinct constructions of Kleisli and of Eilenberg-

Moore that can be used to prove this theorem.

Proof 1: (Kleisli [13]) -
First observe that if a category D’ and an adjoint pair F: C - D', G: D' — C

exists and T = G o F', then the full subcategory D of D’ of objects of the form
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F(A) for A € C must, by definition, have the property that

D(F(A), F(B)) = C(A,G(F(B))) = C(A,T(B))

- This observation will allow us to define D in terms of the information given from

CandT.

Define the c;mtégory D e'_Ls féllqws: :
e the objeéts of D will be the objects of C
 the hom-sets of D will be D(A, B) = C(A, T(B))
. if‘f‘»: A R T(B) € D(A,B) and g : B _> T(C) € D(B,0), ‘then let
| gof E D(A, C) be the cbmpbsite: | '

A—L1(B) 22

T(C) -4~ T(C)
e the identity arrow on an objecf Ais na.

The associativity and identity laws of monads and the naturality of  make this

construction D a category.

Define the functor G : D—C by Gk(A) =T(A). i f:A— BeC(A, B) then

Gk (f) is defined by the composite: |
T(4) - 2(B) 22~ T(B)

The functor Fy is defined by Fx(A) = A. If f: A — B is an arrow in C then

| FK(f) iSZ
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' A4 T(A) . 7(B) 'which is equal to A_f> B—5T(B)

Finally the required equivale.nce C(A,Gk(B)) = D(FK.(A), B) is the same as

C(A,T(B))=D(A,B)

which is true by definition. [

‘This is called the Kleisli category and is denoted K(T').

Proof 2: (Eilenberg-Moore [7])

In order to build Eilenberg-Moore’s category, we need to define a T-algebra in a

catebgory C.

Definition: A T-algebra is a pair (A,a) where A is an object of C and a :

T(A) — A is an arrow of C such that the following diagrams commute:

ATATA) THA) T T(A)
k\la ltAl> o la
A T(A) — A

~ The arrow a is called the étructure map .of the algebra. | A map between T-
“algebras f: (A a) — (B,b) is: amap f: A— B of C for which T(A) ﬂQ,T(—B)
| o L)
A——B

commutes. Together, these form a category of T-algebras and T—algebra rhaps,

“denoted CT.

Define the forgetful functor GT : CT — C on the T-algebra CT by GT(A,a) = A
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and GT(f) = f. Define the functor FT : C.— CT by  FT(A) = (T(A), pa .

T(T(A)) — T(A)) and FT(f) = T(f). Notice tha‘,tv for eaéh AeC,FT(A)is also.
- a T—algebré (the commutativity requirements follow fforﬁ those of & moﬁad). ‘This
- is called the free T-algebra.- We have"GTFT(A) = GT(T(A), na) =.T(A); and
the -ﬁnit n of ‘the monad is a natural transformation n = nT . Io-GTFT. Con-
versély, FTGT(A, a)v—‘: (T(A), pa). Applying the structure map a : T(A)—> Ato :
this, we get (T(A), pa) . (A,a) by the associativity of a T-algebra (described
in the svecona"commutati\‘re‘ diagram in .the deﬁnifion abové). The family of ar-
TOWS sa,a) =a: FTGT(A,a) — (A, a) is natural by the definition of a.mo_rphism :

of T-algebras. Thus n7 : Ic—+GTFT and ¢7 : FTGT > I.r define an adjunction. O |

For example, recall that a closﬁre' operation T on a poset P is a monad in P.
A T-algebra in P is an element z with T'(z) < z (the structure map). Since
2 < T(x) for all z, we get < T'(z) < z implying = = T(z). So a T-algebra in P

is .simp‘ly an element in the poset which is closed.
2.4.3 Relating K(T) and C”

Proposition: The Kleisli category K (T) is embedded in the Eilenberg-Moore cat-
egory (the category of T-algebras), ct) as the full subcategory generated by the

1mage of F.

Proof:
The embedding is ® : K(T) — CT where ®(A) = (T(A), u4) and ®(F), where
f:A—> T(B),‘. is the combosite: ' '

T(A) T—‘.fl:r.?(B_j L2, T(B) ' O
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In fact, the relationship runs deeper thdn this. There is a‘(fatgg(;ry B in Which aﬁ
object is a category D, together with an adjoint pair F :.C —Dand G : D—C
(F G) which induces the monad T =< GF,n,GeF > wheré n and € are,
as usual, the unit and (.ZO—UI;lit‘Of adj»u_nction. An arrow in B from an objecf

(D, F,G) to an object (D', F',G’) is a functor H:D—7D for which G’ o H = G

and Ho FF =F'.

Theorem: K (T) 1is an initial object and CT is a terminal- object in the cate-

gory B defined above.

Proof: C* is terminal in B (We will omit the proof that K (T') is initial.)

(CT,FT,GT) is an object in B. There is a functor @ : D = CcT which takes an

object D.€ D to (G(D),Gep) and an arrow f.€ D to G(f). -® is called the
FEilenberg-Moore comparison functor. Observe that
GT®(D) = G"(G(D),Gep) = G(D) and -

GTa(f) = GTG() = GU)

verifying that GTd = G. Further, since

B(F(C)) = (GF(C), Gerey) = (T(C), i) = FT(C) and

B(F(f)) = GF(f) = T(f) = F7(f)

‘we have that ®F = F7T, as required.

It is also necessary to show that ® is the only such function. Assume it is not,
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and let H : D — CT be another functor satisfying thé cofnmutativity conditions. |
Notice that H(D) is a T—aigebra. By the requirement GT H | = G and the fact that
GT is Simply a forgetful functor on a T—algebra, we must have H(f) = G(f) and
the object of the T-algebra H(D) must be G(D). Thus H(D) = (G(D), h) where
h is :the stricture map for the T-algebra. It remains to detefmine h. We Wﬂl use
the fact that He = aTH . ‘Apply- both the right and left side of this equatio.ﬁ to
- the object .D. On the left,v we géthz-:D = Gep since H is simply G on arrows.
On the riglht,' eTH(D) = ET(G(D), h) = h by definition of eT. Thus h = Gep and
so in fact the functor H is the .functor ®. Thus @ is uniqﬁe a.nd. CTis tAermvinal in

the category of categories and adjoint pairs that induce the monad T'. U
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3 2-Categories

Before defining a 2-category, ‘let’si introduce several new exémples of 1-dimensional
categories. Taking all categories as objects and functors as arrows, form an im-
R portant category called Cat. Going fufther, take functors from a category C to a
category D as objects and natural transformations between phém as arrows and -
‘this will élso satisfy'the axioms for a cat-egory, dendted Funct(C, D) or DC. At‘

times, it may be convenient to combine these categories to form a single structure.

Categories consist of a collection of objects and a collection of morphisms con-
* necting the objects. In some cases, the morphisms themselves can be co_nnected
by morphisms. This adds another dimension to the idea of a category, leading to

the general notion of a 2-category (or a 2-dimensional category). -
3.1 Definition
A 2-category K consists of:

e a collection of objects A,B,C,... called “0-cells”

‘e for each pair of objects A,B, a._collection of morphisms f : A — B, called
“l-cells”, such that taken together with the obje(;ts; théy form a category
Ky (sometimes called the undeﬂying category of K ) |

e for each pair of morphisms f, g : A =3 B, a collection of moi*phiéms a: f=

g, called “2-cells” and represented pictorially as: A \Uf‘_, B
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e two composition laws on the 2-cells:

Vertical composition: - Horizontal composition:

f - . | .
/\ o f u uof
U o B= A {LﬁaB AW B U C=A brec

such that the' 1-cells f,g,... together with the 2-cells o, 3, ... form a cate-

gory under both the operation of vertical composition and horlzontal com-
p081t10n Wlth_ldentltle's: AT U,A
S——7"

14
e Finally, we require that horizontal and vertinal composition commute: i.e,
o A/Ua\ /%C . N :_B 5-@ ( |
iven —— B we have -y *(fra) = (0x0) - (yxa
g @ N7 O-7)*(B-a)=(0x0) (v )_

called the middle four exchange or simp.ly the interchange law; and given

the identities: A \i@; B 1. C wehave 1, * 15 = Liop)
. ) . . u )

Some notes about notation:

(i) K (A, B ) denotes the category formed by taking objects as the arrows from A

to B and the arrows as the corresponding 2-cells under verticai composifion.
(ii) composition of 1-cells will be denoted by o (i.e., f o g)
(ili) vertical composition of 2-cells will be denoted by - (i.e..,‘ a-f)

(iv) horizontal composition of 2-cells will be denoted by * (i.e.,  * a)
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3.1.1 Examples:

~1. The quintessential example of a 2-category is Cat. Cat can be viewed
as a 2¢category with categories as objects, functors as arrows and natural

transformations as 2-cells.

2. Form a 2-category with 0-cells ‘t.opologica,l spaces, 1-cells continuous func-
tions betwéen them and 2-cells homotopy classes of hor_notbpies (i.e., homo- .

topies which are themselves deformable into each other).

3. The category K of ordered objects can be viewed as a 2-'cvateg’ofy, observing

there is a natural order to the set of morphisms’ (Hom(A, B))

4. Just as every ordinary set can be viewed as a discrete Category,- every ordi-
nary category C can be viewed as a 2—category: when we take the 2-cells to
be the identity morphisms of the arrows (i.e., for each pair of objects A,B,

the bategory C(A, B) is discrete).

5. Let C be a 1l-dimensional category. Form a 2-category called -an arrow
category, denoted Arr(C) or C™ by taking 0-cells as the objects of C, 1-cells
as the arrows of C, and 2-cells as the p.air of arrows < k, > in C such that
given the _arroWs f:A—=B,g:C—D, then k: A —C, 1: B — D such
that A-1. B

kl | lz
o C—=D o -
‘commutes (i.e., lo f = kog). The identity 2-cell is < 14,15 >. (Note:

often the term arrow category refers to the 1-dimensional category formed

- by taking the 1-cells and 2-cells-described above as the objects and arrows
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of the category, respectively.)

6. Take O-cells to be groups G, H,..., 1-cells to be group homomorphisms
f.g,... and define 2-cells to be the maps o : f = ¢ where f,g: G = H,
and o € H such that for all z € G, we have f(z) - a = «a-g(z) (where -

| represents the group operation in H). i.e., a € Aut(H), y — a- y-a b

3.2 " Dual of a 2-category

The dual K of a 2-category K is defined as the 2-category with the same objects

as K, the same 2-cells as K but K°?(A,B) = K(B,A). That'is, the 1-cells are

reversed, but not the 2-cells.

‘ Clearly, there is a second dual where thé 9-cells are reversed, but not the 1—cellé, la-

belled K, so K*(A, B) = K(A, B)%. 1t is not hard to show that K = K<,

3.3 | 2-Functors

A 2-Functor D : K — L between 2-categories K and L sends ob j‘ect_s of K to ob—'

jects of L, arrows of K to-arrows of L, and 2-cells of K to 2-cells of L, preserving

domains, co-domains, and all types of composition and identity.

| Formally, a 2-Functor F: K — L between two 2-categories K, L consists of:

(i) for each object A € K, an object F(A) € L.
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(ii) for each pair of objects A, A’ € K, a functor Faua:K(A A — L(F(A), F(A))

* which satisfies the commutative diagrams:

K(A, A) x K(A', A") L K(AAY)
FAA'XFA'A”l ‘ ’ ‘ lFAAH.'

- L(F(A), F(A") x L(F(A), F (A")) — L(F(4), F(A"))
assocjativity' axiom

1— 2 K(A,A)

1r(A) o iFAA

L(F(A), F(A))

identity axiom

Observe that a 2-functor induces an ordinary- functor on the O-cells and 1-cells

(i.e., the underlying category) of a 2-category.
3.3.1 Example:

Given a 2-category K and the 2-category Cat, fix an object A of K. Then there
exists a functor: | '

K(A,-): K — Cat |

This functor maps an object B of K to the categdry K(A, B), an element of Cat.

A morphism f: B — Cin K gets mapped to the functor:

K(A f): K(A,B) — K(A,C)
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Whére K(A, f)(g) = fog and K(A, f)(a) = if *Qr. AI 2-céllﬂ : f.:> f'is fnapp_ed |

to the 2-natural transférmzition:
K(A,6): K(A, ) = K(4, '

| ~where K(A,B), =B *14 K(A,—) is a representable 2-functor. |

3.4 2¥natural transformations

A 2-natural transformation 7 : DSE : K — L between 9-functors D and E,
assigné to each object A of K, an arrow 14 : D(A) — E(A) in L which is natural -
in the usual sense (i.e., for an arrow f:A— Bin K, ngo D(f) = E(f) o na)

but as well is “2-natural” in the sense that for each 9cell a : f=g in K , we have:

D(A) _'U{D(a) D(B) B8 E(B) = D(A) ma____ E(A) |E(e) E(B)

In light of these new definitions, we can define a new 2-category called 2-Cat
whose 0-cells are 2-categories, W_hose 1-cells are 2-functors, and whose 72-c_ells are

2-natural transformations.

3.4.1 Example:

Given the representable 2—functors, K(A,—) and K(A',—). Let f : A — A’ be an

arrow in K. There is a 2-natural transformation: -

K(f, =)+ K(A, =) = K(4,)

defined by, for each ob jevct. BeK,

K(f,~)s : K(A', B) = K(A, B)
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where K (f, —)B(g) = 'go.f and Kv(f,'—)'.B(a) =ax*l;. "

3.5 Modifications and 3-Categories

In Chapter 1, we defined categories consisting of objects and morphisms of ob-
" jects; functors which are morphisms of categories; and natural transformations

" which are morphisms of functors.

In this chapter, ‘we extended the definition of category .to a 2—catégory which
includes, along with objects and morphisms of objects, 2-cells, which are mor-
phisms iof fhe morphisms.iof the objects. Further, We’ve -deﬁﬁed 2-functors and
2-natural transformations. Following in the spirit of (;ategory theory, it séé,ms
natural to continue extending this idea of morphisms of mdrphisms, leading us
to the deﬁnition of a modification (as named by .B.enab'ou), a mofphism'of é, 2-

natural transformation.

" Definition: Given 2-categories K, L, 2-functors DE: K = L and 2-natural
'_ transformations o, 3 : D >:> E, assign to each object A of K, a2-cell ps : aa = B4
in L in such a way that for every pair of arTows f,g: A= B of K and evéry

2-cell v: f = g of K then
pp* Dy =Ev*pa

holds in L. This equality.c'an be represented by the diagram:.

D(f) B oA E(f)
—TT TS —T T T i
" D(A) 4oy D(B)  Yes E(B)= D(A) Yea E(A) B E(B)
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A modiﬁcation p: K ~~ L is defined as the collection of 2-cells (p4) ack-

Given 2-categories K, L, 2-functors D, F : K 3 L and 9-natural transforma-
tions a, B,y : D = E and modifications p ca ~ Band o : B ~ 7, then

gopia w'v_ is defined by putting

(coplatoa-pa

Given 2-functors D, E, F': K — L and 2-natural transformations a, 3,7, 4,
a,8:D = E,~,6: E= F, and modifications p :Va ~+ B, 0 :7 ~ 6, then the

composite modification o p : 7.- & ~» 6 - 8 is defined by

(0%p)a = OA* DA
3.5.1 3¥Categ0ries :

Just as Set is the paradlgmatlc category, C’at is the paradlgmatlc 2- Category,
2-Cat taken together Wlth modlﬁcatlons is the paradlgmatlc example of a -

Category. .

Aithough we will not formalize the definition here,. a 3-Category contains objects
(O-CGHS),‘ arrows (1-cells), 2—cells,. as well as morphisms between 2-cells called 3-
cells. These are required to satisfy associativity and identity laws for each kind -
of compositioh within the 3-Category. As statéd above, 2-Cat can be considered

a 3-Category when we take modifications as its 3-cells.
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3.6 n-Categories

It is clear that we can continue with the process of defining morphisms between
morphisms, ad infinitum. This leads to the theory of n-Categories. The classical

example of any n-Category is always (n-1)-Cat.

It is actually quite rare to find examples of kn—,Cvategories where the associativ-
ity and identity laws hold 'precisély. Rather, it ‘i's more intefesting to study the
cases When't'hey hold ub to isomqrphism or even by a mere morphism. Thé iso;
morphisms or morphisms i1-r1vthese cases musf then be réquired to édtisfy some
“coherence dxioms”. Although wer will not in{zes_tigate -‘phis further here, élong
with any mention of n—Cate_gories, it is important to note the language used.
to distinguish between the different situations. The original definition (whéré
associativity and identity hold‘ with equality) is‘ labelled é “striét”_n—CétegOry;
the case when equality is réplaced with isomorphism is a “pseudb” n—Catégory
..(or sometimes “Sfrong” n—Categbry,_ depending on the context); finally the case
. when isomorphivsr‘n isvreplaced with a simple morphism is a “lax” n-Caﬁegory (or
* sometimes “weak” n-Category). These lab_elsrc'an ex’ten.d' to functors, naﬁﬁi*al
transformétions, monads;, and so on. A pseﬁdo—2—Category is called a bicategory.

_ Most study of n-Categories centres around weak (or lax) n-Categories.
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3.‘7 Adjunctions in-a 2-category

An adjunction in a 2-category K consists of a pair of arrows (1-cells) f : A— B
and g : B — A, together with 2-cellsn: 14 => gofande: fog=1p satisfying:

(Igxe)-(n*x1ly) = 1lgand
(exlp)-(Iyxm) = 1f

We say that. f is left adjoint to g (written f - g) and g is right adjoint to f

(Wfitten gt ).

Observe that When K = Cat, f and g satisfy the .usual definition of adjoint

functors where n and € are the ﬁnit_ and co-unit of adjunction, respectively.

-If D : K — L is a 2-functor, an adjunction n,e : f - u: A — Bin K clearly
gives a second adjunction D(n), D(e) : D(f) —|.D('u,) : D(A) —D(B)inL.
3.7.1 2-Adjunction

| We say 2-furictors D:K — L and E:K — L are 2-adjoint when there is an
isomorphism of 2-categories K(E(B), A) = L(B, D(A)) which is 2-natural in A -

and B. It has been shown by Kelly that this is equivalent to having 2-natural

- transformations n: 1 = Do E and € : Eo D = 1 satisfying the usual conditions.

'So in fact, 2-adjunction is just adjunction in the 2—category 2-Cat.
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3.8 Monads in a 2-Category
Just as the notion of an adjunction makes sense in a 2-category, so does the no-

tion of a monad.

A monad in a 2-category K on the object B of K consists of: -
e anarrow t: B — B

o 2cellsnp:1g=tand pu: t2_ =t called the wnit and multiplication of the
monad respectively. These are required to satisfy the usual commutativity

restrairits. As equations these are:
potn=1p, p-nt=1p, p-tp=p-put

The classical case is, of course, when K = Cat. This definition immediately pro-

duces the usual definition of a monad in a category stated in Chapt_er 2.

3.9 | Adjunctions'arid_Monads

If f:A— B,g:B — Ais an adjunction in a 2-category K_Wifh unit n and
co-unit €, then < ¢, 7, 4 > is-a monad on B where t = gf arid p = gef. This is.

t;hé monad generated by the adjunction of f and g.

Notice that this situation is identical to the 1-dimensional casé described in Sec-

tion 2.3.1 and the proof can be essent'ivally duplicated here.
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3.‘10 t-Algebras in a Z—Category .

Unlike adjunctions and monads, it is a little more difficult to find an analbgous
construction for a T-algebra within a 2-category. Tnstead of defining a T-algebra

with an object and a structure map, we define it with an arrow (1-cell) and a 2-cell.

Definition: A t-algebra on a monad < 't,n,u >.in a 2—category ‘K is an ar-

row (with domain A), s:A— B together with a 2-cell v : ts = s satisfying:
‘1/;773 =], vty = Vs

This t-algebra is denoted (s, 1/.). v is called an action of the monad. A morphism |

of t-algebras with domain A is a-2-cell 0 : s = s’ such that

Voto=o0-v

‘The t-algebras with common domain A, 'together with their morphisms form a

cafegory- denoted Alg(A., t). .

When K = Cat, the 2—category definition of a t-algebra is comn‘lonlyb restficted_.
to those with domain the unit category 1. Then the arrow s : 1 — B can b_e.
identified with the corresponding object s of B. Further v :ts = sand o : s = s
will be morphisms in B. Denote the category Alg(1,t) of 't-al.gebras by Bt. Under

this restriction, we get exactly the classical definition of a T-algebra.

Recall that in Chapter 2, T-algebras were introduced as a tool to construct an’
adjunction induced by a monad T'. Such an adjunction exists here as well. There

is a forgetful functor G4 : Alg(A,t) — K(A, B) such that GA(S; v) = s and
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Ga(o) = 0. Given any 7 : A — B, a morphism in- K, then (tr, ur : t?r = tr) is
a t-algebra. For any p:r = 7 ,tp i tr = tr' is a morphism of ¢-algebras. Thus
Fu: K(A,B) — Alg(A,t) where Fu(r) = (tr,ur) is a functor. The t-algebras

(tr, pr) are called the free t-adeb'ms. Fy is left adjoint to G 4.

Réturn to the restriction K = Cat and the'domaih A= v1, the unit category;
Then Fy = Fl,.GA = Gy, and K(4, B) = K(1, B) can be identified with the
category B. Thus, F} = FT : B - Btand G, = GT : Bt — B are exactly the
functors defined in Section 2.4.2, ‘Vé‘rifying that undér the given -restrictiéns, we

produce the classical Eilenberg-Moore category and adjunction.

These constructions, Alg(A,t), Ga, Fa are extrapolations of the Eilenberg-Moore

category and the corresponding adjoint functors defined in the 1-dimensional case.

ol



References

1]

[2]

'_[3]

Barr, M. and Wells, C. 1985. Toposes Trzples and Theorzes New York, NY:

Sprlnger Verlag

Barr, M. and Wells., C. 1990. Category Theory for Computing Science. Upper
Saddie River, NJ : Prenticé Hall.

Borceux, F. 1994. Handbook of CategomcalAlgebm Vol 1. Cambrldge Cam-

' brldge University Press.

[4]

[5]

-

9

9]

Camero_n, P.J. 1998. Introduction to Algebra. Oxford, NY: Oxford University -

Press.

Eilenberg, S. and MacLané,.S. 1942. “Group Exentions and Homology.”
Annals 0f Mathematics 43 757-831. | -

Eilenberg, S. and MacLane, S. 1945. “General Theory of Natural Equiva-

lences.”. Transactions of the American Mathematical Society 58: 231-294.

Eilenberg, S. and Moofe, J.C. “Adjo_int.FUnctolrs and Triples.” Illinois Jour-.
nal of Mathematics 9: 381-398. . A .

Godement, R. 1958. .T héorie des faisceaus. Paris: Hermann.

Goldblatt, R. .1979. Topoi, the Categorical Analysis of Logic. Amsterdam:

" North Holland Publishing Co.

[10]

Huber, P.J. 1961. “Homotopy Theory in General Categories.” Mathematische
Annalen 144: 361-385. |

52



[11] Kan, D. 1958. “Adjomt Functors.” Transactions of the Amemcan Mathemat— '
“ical Society 87: 294- 329

[12] Kelly, G.M. and Street, R. 1974 “Review of the Elements of 2-Categories.”
Lecture Notes in Math 420 75 103.

(13] Kleisli, H. 1965. “Every Standard Construction is Induced by a Pair of Ad-
joint Functors.” Proceedings of the American M athématz’cal ‘So_cz'ety 16: 544--
546.

[14] MacLane S. 1971. Categomes for the Workmg Mathematzczan New York

NY Sprmger—Verlag

[15] Pierce, B.C. 1991. Basic Category Theory for Cbmputer Scientists. Cam-
bridge, MA: MIT Press. | | |

[16] Segal, G. 1968. “Classifying Spaces and Speétral Sequences.” Institute des
Hautes Etudes Scieniiﬁques 34: 105-'112. |

53




