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Abstract 
This thesis examines some connections between topology and group theory, in particular 
the theory of orderable groups. It investigates in close detail some landmark results on 
this mathematical interface, beginning with Holder's Theorem, and touches upon some 
recent results in this expanding field of research. 

Simply stated, Holder's Theorem asserts that Archimedean orderable groups are none 
other than subgroups of the group of real numbers under addition. Since Holder proved 
this in 1902, only one significant refinement, due to Paul Conrad, has been made, so these 
powerful theorems provide the foundation for our understanding of orderable groups. 
In particular this understanding has served topologists well. This thesis is mostly a 
distillation of work done in connection with topological applications of the theory, which 
are surprisingly varied and diverse. Burns and Hale's work on local indicability and right 
orderability is considered, as well as Bergman's study of the universal covering group of 
S L ( 2 , R ) . In addition N . Smythe's extension of a classical result of Alexander's via the 
left orderability of the fundamental groups of certain surfaces is investigated. 
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Chapter 1 
Introduction 

In 1994, P. Dehornoy [11] proved that the braid group Bn is right orderable: the proof, 

considered difficult, conveyed no geometric intuition, and a second proof approaching the 

result from this latter perspective has since been added to the literature. This startling 

result, which opened the door to further insight into braid theory (for instance, it has re

cently been shown that Pn, the pure braid group, is bi-orderable) was the inspiration and 

genesis of this master's thesis, which undertakes a retrospective of some important results 

in topology that have involved, specifically, the theory of orderable groups. The diver

sity of these topological applications suggest some of the power and flexibility that order 

considerations bring to bear on topology, and contains the promise that this conjunction 

of mathematics will continue to yield interesting research in the future. 

We begin with the following definition. 

Definition 1 A group G is said to be right orderable if there exists a total order 

relation < on the set G such that a < b implies ay < by for all a,b,y G G; in this case 

we say that < is invariant under right multiplication. A group G is left orderable if 

it is invariant under left multiplication. A group G is bi-orderable or orderable if 

a < b implies xay < xby for all a,b, x,y e G. 

Now it is easily shown that if G is right orderable, then it can also be left-ordered (not 
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Chapter 1. Introduction 

necessarily by the same ordering!), and vice versa; but groups abound which possess one

sided orderings but which are not bi-orderable. A well-known example is the fundamental 

group G of the Klein bottle, which has presentation G = (a, b \ aba'1 = b'1) = Z xi Z. 

It is known (for details, see [9] ) that if N < G is right orderable and G/N is right 

orderable, then G is right orderable. We have, in the example of the Klein bottle, 

Z = (b) normal in G by virtue of the semi-direct product construction, and G/{b) = Z, 

as (a, b | aba~l = b'1,6 = 1} = (a; —); so G is right orderable. But if G were orderable we 

would have b>e=>ab>a=$- aba-1 > e b'1 > e, a contradiction as b > e => 6 _ 1 < e. 

It is natural to inquire, in the wake of such definitions and distinctions, why orderable 

groups might be worth studying. To give an idea of the value of orderability as a math

ematical tool, we note that if G is right orderable, then it is torsion free. For take g ^ e, 

say g > e. Then g2 > g => g3 > g2 ... =4> gn > e for every n £ N, implying that 

gn zfz e Vn. It is known that if G is a right-orderable group and R is a domain, then the 

group ring RG has no zero divisors and only trivial units. It is also known that if G is 

an orderable group, then ZG embeds in a division algebra. So knowing that a group is 

right-orderable or orderable gives important information, not just about the group itself, 

but about some related mathematical structures as well. 

The purpose of this thesis is to investigate the theory of orderable groups in relation 

to topology, and is organized as follows. The second chapter is devoted to Holder's 

Theorem, which states that a group G is and Archimedean if and only if it is isomorphic 

to a subgroup of (R, +). Paul Conrad's refinement of this result, which allows for a 

weakening of the hypotheses of the theorem to right orderability and Archimedean, is 

noted. The next chapter positions right orderability in the larger group theoretic context 

with respect to the class of locally indicable groups. In this chapter major contributions 

by Burns and Hale and Bergman are investigated. In the final chapter, orderable groups 

are featured in their interactions with knot theory, and Neville Smythe's generalization 
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Chapter 1. Introduction 

of a result in classical knot theory is studied. 
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Chapter 2 
Holder's Theorem 

As the study of orderable groups properly begins with Holder's characterization of Archimedean 

ordered groups, and as the proof of the result is obtainable in English only in the form 

of a brief sketch [22], it seems appropriate to begin this study of orderable groups and 

topology by working out the details of Holder's argument. But first we will need some 

preliminary definitions. 

Definition 2 Define the positive cone P C G of an orderable group G to be the set 

{x G G : x > e}. 

Definition 3 Let < be an order on an orderable group G. Forx G G define the absolute 

value of x as 

For x,y G G write x <C y (in words, x is infinitely smaller than y) to mean that xn < \y\ 

for all n G Z. If neither x <^ y nor write x ~ y. 

Observe that for every x£G,x~x&sxlytx. Moreover, the relation ~ is symmetric 

by definition. Suppose finally that x ~ y and y ~ z. Then there exist s , t e Z satisfying 

- l if x < e. 

(2.1) 
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Chapter 2. Holder's Theorem 

Xs > \y\ and yt > \x\, so xst = (xsY > > y* > \z\; it follows easily that x ~ z. So 

~ is an equivalence relation; the equivalence classes so defined are called Archimedean 

classes. 

Definition 4 If all the non-identity elements of G are equivalent, then (G, <) is an 

Archimedean group, that is, an Archimedean order is one in which G has only two 

Archimedean classes. 

Note: in an Archimedean group, for all x, y such that x < y, x ^ e there exists n £ Z 

with \xn\ > y. 

Now it is not the case that every ordered group is Archimedean. For instance, consider 

(Z x Z, +) with the dictionary order (ai, bi) < (a2, b2) if a\ < a2, or if ai = a 2 and b\ <b2. 

Observe that (0,x) « (y,z) if y > 0. 

Theorem 1 (Holder) Let < be an ordering on an orderable group G. Then < is an 

Archimedean order if and only if G is order-isomorphic to a subgroup of the additive 

group of the real numbers under the natural order. 

Proof. J 

(<=) (K, <) is Archimedean, and so any subgroup of it is. 

(=>) The strategy is to show first that G is an abelian group, and then to use this fact 

to define an isomorphism. Assume that < is an archimedean order on G. The claim is 

that G is abelian. For consider any t G G such that t > e. 
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Chapter 2. Holder's Theorem 

Case 1. Suppose that e < t < x for every x G P C G. Then G Archimedean implies the 

existence of an integer nx for each x such that 

tn* < x < tn*+l => e < xt~nx <t 

• e = xt~nx, 

since t is smaller than any element in the positive cone, 

=>• x = tUx 

=>G=(t) 

So G is cyclic and hence abelian. 

Case 2. Assume now that there exists u G G such that e < u < t. If t < u2, that is, if 

e < u < t < u2, then 

t < u2 =>• < u 

, u~Hu~l < e 

=> (wH) 2 < t. 

So relabelling we have found u (choose u~lt above) such that e < u < u2 < t; thus in 

all cases we may assume that there exists u such that e < u < u2 < t. Now if G is 

not abelian, then there exist x,y G G such that commutator [x, y] ^ e. Without loss of 

generality take [x, y] > e. Then with [x, y] playing the role of t in the inequalities above 

we obtain, as G Archimedean implies that there exist m , n G Z such that um < x < um+l 

and un < y < un+1, that [x,y] < u~mu~num+lun+l = u2, which is a contradiction as 

e < u < u2 < [x, y]. Therefore we conclude that G is abelian. 
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Chapter 2. Holder's Theorem 

The next step is to show that G is order-isomorphic to a subgroup of (R, +) by defining 

explicitly an isomorphism G -» (R, +) taking x G G to the limit of a certain sequence to 

be defined for each x. First fix some t > e, t G G. Given x G G and n G Z + , there exists 

m G Z (m dependent on x,n,t) such that tm < x2" < tm+l. So for each x, for every n, 

define (n(x) = | e S so that tm < x2" < tm+1. 

Claim: l im^oo (n(x) exists (for each x). 

To prove the claim, it suffices to show that {(n} is a Cauchy sequence, that is, it suffices 

to show that 

1 
Cn < Cn+1 < Cn + 7^ • 

Lemma: For any four elements a, b, c, d of a bi-orderable group with a < b and c < d, we 

have ac < 6d (and so, in particular, an < bn for every n e R 

Proof of Lemma: ac < be < bd. 

Now, if tm < x2n < tm+\ then it follows from the lemma that t2m < x2n+1 < t2^m+l). 

This implies that 

_m_2m 2(m+1) _ m + 1 J_ 
C" — 2 " — 2 n T T - < 2^+1 _ 2 " ~ + 2"' 

as desired. Thus the sequence is Cauchy, hence convergent. 

We are therefore in a position to define a map 4>>•: G —>• (R, +), </>(a;) = lim^^oo Cn(^)-

Claim: (j) is order-preserving (that is, x < y =>• </»(x) < 0(y)). 

Proof of claim. 
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Chapter 2. Holder's Theorem 

Let x,y G G,x < y. Now we already saw that (n(x)&nd Cn(y) are mbnotonic increasing 

sequences. Thus to show that <f)(x) < (f)(y), it suffices to show that (n(x) < Cn(y) f ° r 

every n. But for every n we have x < y rc2" < y 2" by the lemma. If mx- and m y 

are the largest possible integers satisfying tmx < x2n and tmy < y2n, then the fact that 

x2n <- y2n implies that mx <my. It follows that 

C»(aO = ^ < ^ = Cn(y). 

Thus <p is order-preserving. 

Claim: ^ is a homomorphism. 

Proof of claim. 

We we must show that 4>(xy) = <f)(x) + (p(y). As usual, there exist mntX, mn,y for every 

n G N such that 

+1 

-f.mn,y < y2n < £rrcn,j, + l 

These, together with the lemma and the fact that G is abelian, imply that 

j.mx,n+my,n < y2™ 

g 0 tm,,- .+m»,» < (2^)2" <. i m a s , B +m s , n +2 j a n d therefore (n(xy) lies between m*-"+mv-" 
2" 

Cn(x) + Cn(y) and m^+

2™«>"+2 = (n(x) + (n(y) + 2^n\ Then taking n oo we have 



Chapter 2. Holder's Theorem 

4>(xy) = <f>{x) + 4>{y). So <?!) is a homomorphism. 

Claim: <j) is injective. 

Proof of Claim. 

We show ker<b = e as follows. Assume x G P . 

Case 1: t < x. There exists mn such that tmn < x2* < tmn+l for every n, implying that 

mn + 1 > 2" Vn (as t < x). It follows that mn > 2" - l = > f f > l - ^ > 0 V n > l = ^ 

l im n _ > 0 0 Cn(x) 7̂  0 as (n(x) is monotonically increasing. Thus (j>{x) ^0. 

Case 2: x < t. Here there exists N G N such that t < x2". Again mn satisfies tmn < 

x2n < tm"+1 Vn G N, implying that f,m» < x^N+in-N) < t™n+i_ B u t ^ > t ^ m n + x > 

2n-N =>mn + l > 2n2~N =>mn> 2n2~N - 1 ^ ^ > ^ - J r = > l i m ^ Cn(x) > 0. 

Finally, x £ P, x ^ e a ; - 1 G P </>(z-1) = -<i>{x) ^ 0 (as x'1 ker<j> by the above) 

=*> ^(x) ^ 0. • 

This, then, is the proof of Holder's Theorem. Paul Conrad [9] added a remarkable 

footnote in 1959: 

Theorem 2 (Conrad) / / G is right orderable and archimedean, then G is orderable. 

Thus by Holder's Theorem, G is order-isomorphic to a subgroup o/(R,+). 

Conrad's proof is short and simple, and depends upon the fact, easily verified, that G is 

orderable if and only if P is normal in G. 
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Chapter 3 
Some Group Theory and Satan's 
Parkade 

In attempting to understand right orderable groups it becomes important to situate them 

in relation to other classes of groups. Within this context the class of locally indicable 

groups assumes particular prominence, as it has been shown that locally indicable implies 

right orderable, but right orderable does not imply locally indicable. We now turn to 

these results with a view to understanding a remarkable topological application, the 

universal covering group of SL(2,R), which we will denote by SL. 

Definition 5 A group G is said to be locally indicable if each of its non-trivial finitely 

generated subgroups can be mapped homomorphically onto a non-trivial subgroup o/Z. 

More generally, if X is a class of groups closed under forming isomorphic images then 

G is locally X-indicable if every non-trivial finitely generated subgroup admits a non-

trivial homomorphism onto a group in X. 

The following results are stated without proof ([9], [8]): 

Theorem 3 (Conrad) A group G is right orderable if and only if for every finite subset 

{xi, ...,xn} C G that does not contain e, there exist Ci = ± 1 , 1 < i < n, such that e does 

not belong to the subsemigroup of G that is generated by {xf, ...,xe™}. 
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Chapter 3. Some Group Theory and Satan's Parka.de 

Theorem 4 (Burns and Hale) If G is locally RO-indicable, then it is right orderable. 

Coro l la ry : If G is locally indicable, then G is right orderable, as Z is right orderable. 

An example of a right orderable group that is not locally indicable will be found in the 

universal covering group of SL(2, E). But this is not a simple construct and will require 

some additional work to understand. We begin with some definitions. 

Def in i t ion 6 A topological group G is a group that is also a topological space, sat

isfying the requirements that the multiplication map m : G x G —> G sending (x, y) to 

x • y and the inversion map sending x to x~l are continuous. 

An important example: the set M„(E) of n by n matrices is a euclidean space of dimension 

n2. As the determinant function det : M„(E) —> E is continuous, dei _ 1(0) is a closed 

set, and its complement, the group GL (n , E), is thus an open subset of E " 2 . Note that 

matrix multiplication, which is given by polynomials in the coefficients, is continuous, 

and the inversion map, which by Cramer's rule is a rational function of the coefficients, 

is also continuous. 

Def in i t ion '7 Let G be a topological group with operation •, and assume thatp : G —> G 

is a simply connected covering space of G. Then if G is locally path-connected, there 

exists a multiplication map rh on G relative to which G is a topological group and p is a 

homomorphism. The group G is called the universal covering group of G. 

Let V : G x G ->• G x G be the map p x p, and let e e p _ 1(e) be selected, where 

e = l o For the existence of rh required by the definition, we note that by the lifting 

theorem mV lifts to rh with rh(e,e) = e if and only if (mV)*(iTi(G x G, (e, e))) = 

m*V*{iTi(G x G, (e, e))) C p*(iri(G, e)). Since G x G is simply connected the containment 

11 
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Chapter 3. Some Group Theory and Satan's Parkade 

is automatic and we are guaranteed the lift m, which as the lift of a continuous map 

is continuous. For the condition that p is a homomorphism,. the multiplication map 

fn is defined as follows. Let x,y G G. Choose paths a from e to x and ft from e 

to y. Let a(t) = pa(t), and (3(t) = pJ3(t). Then take the path j(t) = a(t) • /3(t) 

(where • is the group operation in G, not a path product) and lift it to a path 7 in 

G that begins at e. Then x • y is defined to be the endpoint of 7 . Note that we have 

p(x • y) = p(7(l)) = 7(1) = a( l ) • 0(1) = P&(1) • PP(1) = p{x)p(y). 

Now SL(2,K) is not its own universal covering group, as we establish in the following 

claim. 

Claim: 7r 1(SL(2, K), I) = Z (where J is the identity matrix). 

Proof of Claim. 

Recall the following definitions. 

Def in i t ion 8 An or thogonal mat r i x is a matrix A for which AA1 = I. The set O(n) 

of orthogonal (real) matrices forms a subgroup of G L ( n , R ) ; and SO(n) = {A G O(n) | 

det(A) = 1}, the special orthogonal group, is a subgroup o /SL(n , R). 

It is a standard result that O(n) is compact. 

Def in i t ion 9 A subspace Y of a space X is called a deformat ion retract if there 

exists a continuous retract r : X —>• Y such that the identity map on X is homotopic 

to the map i o r, where i is the inclusion of Y in X. A subspace Y C X is a strong 

deformat ion retract of X if there exists a continuous map H : X x I —> X such that 

H{x, 0) = x for every x e X, H(x, 1) e Y Va; G X, and H(s, t) = s Vs G Y and V i G I. 

12 



Chapter 3. Some Group Theory and Satan's Parkade 

Recall that if Y is a strong deformation retract of X, with y0 6 Y, then the inclusion 

map i : (Y, y0) —> (X, y0) induces an isomorphism of fundamental groups. With this 

artillery we are ready to prove that SL (2 ,E) is not simply connected, by showing first 

that TTI(SL(2,R)) = TTI(S0.(2)), and then that TTI(S0(2)) = TTI(51). 

Subclaim #1: SO(2) SL (2 ,E) is a strong deformation retract. 

Proof of Subclaim. 

We construct the homotopy as follows. Let A £ SL (2 ,E ) , let ex = (J),e2 = (°). Let 

Vi = Aei,V2 = Ae2. Since det(A) = 1, A is invertible, v\ and v2 are linearly independent. 

We use the Gram Schmidt process on vx and v2 to orthnormalize via three homotopies: 

1). Set hi(t) = tfy + (1 -t)vi, sending vx —> = v'{. 

2. Replace v2 by v'2 = v2 — ^ p j p W i via the map h2(t) = v2 — t(v2 • v")vi. 

3. Replace v'2 by v'2' = ^ via h3{t) = t ^ + (l- t)v'2. 

After reparametrizing these three homotopies we obtain the single homotopy desired. 

Thus to prove that 7Ti(SL (2 ,E)) = Z, it suffices to show that S0(2) is homeomorphic to 

S 1 . 

Subclaim #2: SO(2) ^ 5 1 . 

Proof of Subclaim. 

We will use the fact that for X compact and Y Hausdorff, if / : X —> Y is continuous, 

one-to-one, and onto, then / is a homeomorphism. Since det: 0(2) —> E is continuous, 

d e £ - 1 ( l ) = S0(2) is closed, hence compact. Moreover S1 is Hausdorff. We define / : 

S O ( 2 ) —> S1, f(A) = A(l). Then / takes a matrix to where it moves the point e±, and 

since SO(2) C 0(2) preserves lengths of vectors / maps Sl into itself. Note that / is 

13 
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clearly onto, as 

^ cos 9 — sin 9 

^ sin 9 cos 6 

G S0(2) for every 9 G [0, 27r). Moreover the invertibility of elements in SO(2) gives 

A(l) = B(l) <!=> 1(1) = A^BQ) B = A. Continuity is also immediate from the 

continuity of the sine and cosine functions and the fact that elements of SO(2) acts as 

rotations on S1: for if Rg G SO(2) is rotation by angle 9 with image Rgei * = (cos 9, sin 6), 

we can always choose rotation by angle (j), R<p, with 9 < 4> < 9 + e to obtain images that 

are arbitrarily close. 

Summarizing: we have seen that SL(2,R) is not simply connected; and in the ensuing 

discussion we will investigate more closely the geometry associated with its covering 

group. 

Definition 10 A (right) group action is a map X x G—> X, (x,g) H-> x-g satisfying 

x • e = x and x • (hg) = (x • h) • g for all g,h G G,x G X. The kernel of the action is the 

set {g G G | x • g = x Vx G X}. An action is faithful provided that the kernel is trivial. 

In equivalent terminology that is often used: an action is effective if (x • g = x Vx G 

X) g = e. 

Of course, a left action is defined in the obvious way. If a set X admits a right (respec

tively, left) group action, X is said to be a right (respectively, left) C7-space. It is easy 

to check that if X is a left C7-space and if we define x • g = (#-1) • x for all x G X and 

g G G, then X is a right G-space. 

To show that G is right orderable, we will need the following characterization of right 

orderable groups: 

14 
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Proposition: G is right orderable if and only if G acts effectively on an ordered set by 

order-preserving bijections. 

Proof: 

(=>•) Let G act on itself by right multiplication. Then right invariance gives precisely the 

order-preserving property desired. 

(<=) Assume now that G acts effectively on an ordered set X by order-preserving bi

jections. Assuming the Well Ordering Principle, let X be well-ordered by some or

der (X,-<). The idea is to define an order (G,<) in the following way. Since G 

acts effectively on X, if g, h e G are such that g ^ h, then there exists x E X 

such that x-g ^ x • h. Under the well-ordering, there exists a minimal such x at 

which g and h differ: denote this Say g < h provided • g < x{g,h) • h. 

For right invariance assume that g < h, that is, • g < x{g,h) • h; then for any 

/ € G we require gf < hf, but in fact X(gf,hf)'' 9f < x(gf,hf) ' hf follows at once 

from the assumption that G acts in an order-preserving manner. Finally we show that 

g < h,h < k =>• g < k. There are a couple of cases to consider. If x^h) = x{h,k), then 

easily X'9th) • g < X(9th) • h = X'h,k) • h < x^h%k) • k = x^h) • k, so g < k. Otherwise assume 

that X(9th) ^ £ ( / i , / c ) ; let us first suppose that •< X(h,k)- Now g and h differ at 

but h and k must agree at x^^ -< x^k), so necessarily g and k disagree there, that is, 
x{g,h) • 9 < x(g,h)• h = • k. At no point less than x^g^) do g and k differ, since k = h 

and h = g prior to X(9th)- Thus we obtain g < k. If on the other hand x^k) < x{g,h), then 

g = hat X(htk) and therefore x>hjk) • g = x^k) • h < x^k) • k. Since is the first point 

at which g, h, and k differ, we again have g < k. • 1 

Now it is evident that SL(2, R) acts by matrix multiplication on the set of rays through 

0 in the plane: if A e SL(2, R), and x = (x, y) is a point on a ray p through the origin, 

A(tx) = tA(x) for every t e R by linearity, so rays are indeed taken to rays. The 
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kernel of this action is trivial, since if Cl denotes the set of rays through the origin and 

A G SL(2,R) fixes every ray through the origin, then certainly AQ) = (*•) for some 

A > 0, and = (°), some (5 > 0; but then det(,4) = 1 (3 = A" 1 . Now A fixes every 

ray, so the point x = (}) is mapped to (^_i) = t(l) for some t G R + =>- A = 1 and A = I. 

In the action just described, the angle through which a ray is moved is specified only 

modulo 27T for A G SL(2,'R), but an element of the covering group SL which projects 

down into SL(2,]R) may be thought of as a linear transformation of the plane in which 

the angle a ray is moved is specified continuously in the real number s: if A moves p by 

angle s, there exist elements of SL that move p by angles s 4- 27r/c for every k G Z. Thus 

the action of SL on Cl is certainly not faithful (there are infinitely many elements that 

project to / G SL(2,'R)), but if we "unwind" the.circle of rays through the origin and 

identify them with R, then SL indeed acts faithfully on this set. If one is mathematically 

inclined to lurid geometrical visions, one can visualize this set-which is the set of rays 

through 0 in the infinite-sheeted branched covering of the plane with branchpoint 0-as a 

sort of infinite parkade spiralling above the plane (in which parking space 2nk is directly 

overhead parking space 2ir(k — 1)). Hence the name Satan's Parkade. 

The claim is that SL is right orderable, preserving the usual ordering of the line R. We 

will use the proposition above, showing that SL acts effectively on R by order-preserving 

bijections. Note that SL(2, R), in acting on the rays through the origin of the plane, can 

also be considered as acting on 5 1 by orientation-preserving homeomorphisms, where 

x G S1 is taken by A G SL(2,R) to pffy- So we will prove the more general result that if 

A : R —>• R is a lift of any homeomorphism A : S1 —> S1, then A is also a homeomorphism; 

and that if A preserves orientation on the circle, then A preserves the ordering on the 

line. 
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For given A a homeomorphism from Sl to itself, A will be a lift of the map Ap and is 

thus continuous: 

R,x~0 R,y0 

S1,x0 >-S1,y0 

A 

To see that A has a (continuous) inverse, let B = A~l. That is, B is the lift of the 

map A_1p, and we obtain pBA = A~xAp = Ip. Since Ipx~o — Ix0 = x0, pBAfo — x0; 

but also plx0 — px0 = XQ, so BA = I as maps. Analogous reasoning yields AB — I, 

and we can conclude that the inverse of A i s . A - 1 ; note that A'1 is continuous. Thus 

homeomorphisms of S1 lift to homeomorphisms of R. 

We now assume that A : S1 —> S1 preserves orientation, and show that A lifts to an 

order-preserving homeomorphism on R. Consider the points (*) and A^) = (c°^e

9) (we 

will write (cos9,sin9) for convenience). Let Rg be rotation on S1 by angle —9. Note 

that Re is an orientation-preserving homeomorphism and that (Re o A ) Q = (J). Let 

g : Sl —>• S1 be this map i?e ° A. Then it suffices to show that g : R —> R preserves order, 

where (R,p) is a covering map (that is, pg = gp; we take p(£) = (cost, sint)). We already 

know that homeomorphisms of the circle lift to homeomorphisms of the line; so as g is 

either an increasing or a decreasing function it suffices to show that g maps R + to R + . 

Since p is a covering map there exists an open neighbourhood U C S1 of (J) such that 

each component of p~l(U) is mapped topologically onto U. So there exists an interval 

V = (—e, e) C R such that p restricted to V is a homeomorphism. Since g is continuous 

there exists 5i > 0 (take Si < e) such that d(0,y) < 51 =4> d(g(0),g(y)) < e. Then 

putting Ui = p(—8i,5i) we have Ui C J7. Moreover since ^ is continuous we can choose 

a neighbourhood U2 C C/x small enough that flf(f/2) C C/x. Let V - p~l(U2) = (-5,5) for 

some 5 > 0. To show that g takes R + to itself we need only show that <?(f) > 0. Recall 
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that g fixes (J) on S1, so that on V we have g(0) = 0. To see why #(§) > 0, consider 

P<Kf) =
 9P(%) = 9(c°s f, sin | ) . Since smt is an increasing function at 0 and g preserves 

orientation, g(cos §, sin |) will have positive angle measure. It follows that #(§) > 0 on 

V C R. 

Thus orientation-preserving homeomorphisms on S~l lift to order-preserving homeomor

phisms on R; so finally we can deduce that SL is a a right-orderable group. 

We obtain additional information about SL in the following 

Lemma: For any A G SL(2,R), with t0 and tf G R and t0 < tf, if |t0 - tf \ < 2n, then 

\A(t0) - A(tf)\ < 2ir for every A G SL projecting to A. 

Proof of Lemma: Suppose for a contradiction that \A(tf) — A(to)\ > 27r; let's first assume 

that A(t0) < A(tf). Then since A is continuous, there exists ti G (to,i/) s u c n that 

A(ti) = A (t0) + 27r. Letting p0 € ^ denote the ray of angle t0, p/ the ray of angle tf, and 

so on, it follows that A(pi) = A(p0) + 27r = A(p 0). So we have t0 < h but A(t0) = A(ti), 

contradicting that det(A) = 1. (If we assume A (to). > -4(t/), then there exists ti € (to,t/) 

with A(ti) = A(tf) + 27T and we have ti < t/ but A(ti) = -A(t/), contradiction.) • 

Now suppose A takes the point t0 G R to r 0. Then from the lemma it follows that 

|A(t0+27r) — .A(to) | < 27r, and since A is.order-preserving, as well as a bijection, A(to+2ir) 

must be A(t0) + 2TT = r 0 + 27r. In fact this observation generalizes to the following 

proposition, of which it is the base case: 

Proposition: If A : R —> R is an order-preserving homeomorphism such that A(Z) = 

Z, then if A(0) - 0, we also have A(n) = (n) Vn € Z. 

Proof: Since A(—n) = — A(n) for every n, it suffices to show that the Proposition is 

true for n € N . Assume that the assertion is true for all k < n — 1, but suppose that 

A(n) = m,m > n. Then since A is onto, there exists s G N, s > n, such that A(s) = n, 
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contradicting that A is order-preserving. • 

Thus we now know that S L acts on 27r-multiples of vectors in fl in predictable fashion, 

rather than shuffling them around. 

Our goal is to define a nontrivial subgroup of the covering group of SL(2 ,R) that will 

map homomorphically to the identity, thus establishing that our group is not locally 

indicable. To do this we begin by specifying some matrices of interest in SL (2 ,R) . Let 

T 

a 
1 -r \ 

0 1 
, r = i 1 0 U= 0 

where r € R, s G R + . In fact ar is a horizontal shear, while br is a vertical shear. 

One easily computes that ar has repeated eigenvalue 1 and eigenspace {(*) | t G R}, 

while br also has repeated eigenvalue 1 though with eigenspace {(°) | t G R}, and cs has 

eigenvalues i/s and both positive by the condition on s with eigenspaces {(*) : t G R} 

and {(°) : s G R}. One also obtains the following identities: 

T Tl 

a a 
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The following easy calculations are also very much to our purpose: 

V ^ 0 W l - r \ / 4 - 0 \ 1 -sr 
caarc-i =. I ^ 1 = 1 I = a 

0 ^ / \ 0 1 / \ 0 I \ 0 1 

, 4= 0 U l 0 W v's 0 \ [ 1 0 , 
c:lbrcs = I ^ v = 1 = 6 

0 V~* I \ f 1 J \ 0 ) \ rs 1 

Finally, letting 

d = aba 
0 -1 

1 0 

we note that 

sr 

- 1 0 / V 0
 Ts ) \

 1 0 / V 0 

c:1 

. 0 -1 \ / 1 - r \ / 0 -1 \ / 1 0 , 
d~1ard= | = | =br 

-1 0 / \ 0 1 / \ 1 0 / \ r 1 

. 0 1 \ / 1 0 \ / 0 -1 \ 1 -r . 

- 1 0 / \ r l / \ l 0 / \ 0 • 1 

Now a,b,c,d e SL(2,R) satisfy these relations, but the immediate goal is to show that 

certain elements in their fibres satisfy the same relations in S L ; for once this is established 

it will not be too difficult to define a finitely generated subgroup of S L which maps 
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homomorphically to the identity in Z, thus showing that S L is not locally indicable. 

Suppose h G SL(2,R) has a positive eigenvalue A > 0 (relevant aside: a,b,c above all 

do). Then there exists v G R 2 with hv — Xv, so in terms of the action of SL(2, R) on Cl, h 

fixes a ray v, and in terms of the action of S L on Satan's Parkade, each element of p~l(h) 

must move v by 2nk, some k G Z (p here is the projection map in the definition of the 

universal covering group above). We define Ar,Br, Cs to be the liftings of of, br, and cs 

that actually fix the rays in the Parkade (rather than moving them by 27rA;). SO in order 

for this definition to even make sense we need to check that only one of h's infinitely 

many liftings to S L fixes the rays that map into the eigenspace of A. Moreover, since cs 

has two distinct positive eigenvalues, it is necessary to check that the lift that fixes the 

rays that map into one eigenspace is the same lift that fixes the rays that map into the 

other. To see why this latter claim is so, we claim that if / G SL (2 ,R) has at least one 

positive eigenvalue, then / moves every ray through an angle strictly less than it. For let 

A > 0 be an eigenvalue1, with v its eigenvector. Suppose w is a ray moved by angle > it. 

Note that w ^ —v, as then w is also fixed by / . Thus v and w are linearly independent 

and form an ordered basis for R 2 , but if / moves w by an angle greater than or equal 

to it, then / is in fact orientation-reversing, contradicting that det(f) = 1. But since / 

moves every ray through an angle of magnitude less than it', it cannot be lifted to a map 

/ that fixes a ray v[ of angle vy and moves some ray v2 of angle u2 by some 2itk, where 

k > 1. For (assuming without loss of generality that v\ < u2) f is continuous, and by 

the Intermediate Value Theorem there exists c G R, with associated vector w of angle c 

with ui < c < v2 such that f(w) = it, so that / moves w by it, a contradiction. 

Now to see that only one of h's infinitely many liftings to S L fixes the rays that map into 

the eigenspace of A, suppose that there exist hi,h2 G p~l(h), and hi and h2 both fix the 

eigenvector v of h in the Parkade. We must show that hi = h2. Let h — hih^1. Then 

ph = p(hih2

l) — p{hi)p(h2)-1 = hh~l = / . Consider w G Q,w ^ v and chosen to be 
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linearly independent from v. Then of course ph(w) = w. But then h also fixes w in the 

Parkade, since we saw above that I cannot lift to a map h that moves v by 0 degrees and 

w by 2nk, k ^ 0 (else there exists u between v and w that is moved by 7r. We conclude 

that h is the identity, so hi = h^. 

Thus it makes sense to speak of the unique liftings Ar,Br, and Cs as defined above. 

Claim: Ar,Br, and Cs satisfy the corresponding identities in SL, namely: 

A r A r , = Ar+r^ W Q T , = gr+r^ = 

CsArC~x = Ars, 

C^B'Cs = Brs. 

Proof of Claim. 

We already know that in each case, both sides the equation project to the same element 

in SL(2,R). So by the preceding arguments we simply need to show that both sides of 

each equation have fixed rays, rather than moving them by some 27rfc. But by definition 

the right hand side of each equation has fixed rays. Now consider ArArl. Recall that ar 

has eigenspace {spanQ} for every r £ R. Since matrix multiplication is composition of 

transformations the eigenvectors stay fixed. So the same holds true for the chosen lift. 

This argument applies to BrBrf and CSCS, as well. For the last two equations the left 

hand sides are conjugates of elements having fixed rays, hence have fixed rays. If we 

define D = ABA we obtain in similar fashion the identities: 

D~lCsD = c;1 
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D-lArD = Br 

D~lBrD = Ar. 

Theorem: SL is not locally indicable. 

Proof. 

Let n e N > 1 and let H = (A,B,Cn) < SL. Let $ : H —> (Z,+) be any 

homomorphism. The identities above give that CnAC~x = An,C~1BCn = Bn, and 

D~xCnD = C~l. So A,B, and Cn are conjugate in this group to powers of themselves. 

Then ^(CnAC-1) = $(A n ) $(C*n) + $(A) - $ (C n ) = $(An) = n<f>(A) for 

some n > 1, implying that $(A) = 0, with similar arguments holding for the other 

generators. • 
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Chapter 4 
Knot Theory and Orderable Groups 

Knot (and braid) theory crop up notoriously in all sorts of different mathematical con

texts, so it is hardly surprising that orderable groups should intersect knot theory in 

nontrivial ways. This chapter undertakes an investigation of a result of N. Smythe which 

exploits order considerations to generalize a classical theorem of Alexander's pertaining 

to knots to all surfaces. Once again we begin with some definitions. 

Def in i t ion 11 A surface is a connected 2-manifold (that is, a connected Hausdorff 

space such that each point P has an open neighbourhood homeomorphic to the open disk 

D° = {(x, y) G R 2 \ x2 + y2 < I}). A surface w i th boundary is a Hausdorff space 

such that every point P has a neighbourhood homeomorphic either to the open disk or to 

the half-disk {{x,y) £ D° \ y > 0}. If the boundary is empty and the surface is compact, 

then it is said to be closed. 

Def in i t ion 12 A closed non-self-intersecting polygonal line in R 3 is called a polygonal 

knot. A smooth knot is the image of an infinitely differentiable embedding f : Sl — r 

R3J(t) = (x(t),y(t),z(t)), with ( f , f , | ) ± (0,0,0). 

Thus we can envisage a knot as an entwined polygon in R 3 (with finitely many edges), 

or we can envisage it as an entwined circle in that space. Two polygonal knots K0 and 

Ki are said to be equivalent provided Ki can be obtained from K0 via a finite sequence 
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of "elementary moves" (or their inverses), where these are as follows: let E{ and Ej be 

adjacent edges of the polygonal knot K0, and assume that the triangle spanned by E{ 

and Ej does not intersect K0 in any other points. Then an elementary move is simply 

the replacement of Et and Ej by the third leg of the triangle spanned. On the other 

hand, two smooth knots K0 and Kx are equivalent if there exists a one-parameter family 

ft : R 3 —> R3,t £ [0,1] of diffeomorphisms smoothly depending on the parameter t such 

that fo(K0) = KQ and fi(K0) = K\. Here, "smoothly depending" means that the map 

F : R 3 x [0,1] — • R3,F(x,t) = ft(x) is difTerentiable. The family of diffeomorphisms 

ft is called an isotopy, and equivalent knots are sometimes referred to as isotopic, or 

ambient isotopic. Note that if K0 and Ky are equivalent, there is a homeomorphism, 

namely, / i , between (R3,K0) and (R3,Kx). One might well ask whether the double-

barreled definition of knots given above-polygonal versus smooth-reflects two different 

irreconcilable approaches to knots, or whether the definitions are interchangeable. It is 

the latter that is true: there is a process called "smoothing" taking equivalence classes of 

polygonal knots to equivalence classes of smooth knots (for details see [7]). The upshot 

is that we can choose either definition we prefer to work with. 

Definition 13 A knot which bounds a disc in R 3 is trivial. 

A further technicality that must be broached in any discussion of knots is the issue of 

projection and knot diagrams, which we treat briefly and informally here. In essence 

what is required in choosing a "regular" projection for a (smooth) knot is a plane such 

that: 

• no more than two distinct points of the knot are projected onto the same point on 

the plane 

• the set of such crossing points is finite, and at any such crossing point the projections 

of two tangent lines to the knot do not coincide 
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• the tangent lines to the knot project onto lines on the plane, not to points. 

With polygonal knots some adjustment in vocabulary is necessary: we require that a 

vertex of the knot is never mapped onto a double point, as well as the conditions above 

that no more than two points are in the pre-image of any projection point (with at most 

finitely many such double points). 

Now there is an algorithm known as "laying down the rope", known at least as far 

back as Alexander and sometimes attributed to him, demonstrating that for any regular 

projection p(k) of a polygonal knot k, there is a trivial knot with the same projection (see, 

for instance, [26]). The procedure is simply to orient p(k), choose a starting point x on 

p(k), and at each double point P of p(k) with itself, in which arcs a(P) and /3(P) cross, 

to designate a{P) as an undercrossing if in the chosen orientation a(P) lies between 

x and arc 0(P). The knot that is obtained will be trivial. The question is whether 

this result generalizes to all surfaces. One generalization, to 5 2 x / , is immediate: that 

is, if k is embedded in S2 x I and p(k) is its projection onto S2 x {0}, Alexander's 

Algorithm applies since p(k) is contractible in the complement of a point Q of S2. Since 

S2 — {Q} = R 2 , the algorithm proceeds exactly as above, and the post-algorithmic p(k) 

will still bound a disc. Here is the theorem in full generality: 

Theorem 5 (N . Smythe) Let S be a surface, orientable or not, compact or not. Let k 

be a polygonal knot contained in, and contractible in, the interior of S x I, with regular 

projection p(k) in S x {0}. Then there exists a knot k' C S x [|, |] which has the same 

regular projection, and which bounds a disc in S x [|, | ] . 

What is extraordinary is that the theorem hinges upon the left-invariant orderability of 

the fundamental group TTI(S), SO that a necessary preliminary involves the (non-trivial) 

verification that such orderings exist for every surface other than the projective plane 

RP2 (which has fundamental group Z / 2 Z , clearly non-orderable, and will require sep-

26 



Chapter 4. Knot Theory and Orderable Groups 

arate treatment). First we observe that the free group of finite or countable rank has 

a left-invariant ordering. Various proofs exists: see for instance [12] (another slick ap

proach uses the Magnus map). Note that this result will take care of finite surfaces 

with boundary (whose canonical polygons.have perforations or "holes" bounded by the 

boundary curves), since any such is homeomorphic to a disc with strips attached (double 

strips corresponding to handles, Mobius strips to crosscaps, and single strips for any ex

tra perforations); and such surfaces deformation retract onto bouquets of circles passing 

through the strips, hence have fundamental groups free of rank equal to the number of 

strips. In addition this will take care of the case in which the surface is infinite (that 

is to say, non-compact), since the fundamental group of an infinite surface is free. For 

the details of this result, see, for instance [32]. The basic idea is to represent an infinite 

surface T as a nested union ( J n Tn of finite surfaces with boundary; with some care one 

inductively establishes that the free generators of iti(J-n) remain free in ir^Tn+i); then, 

since any closed path based at x £ J- is compact, it must lie in some Tn. 

We have as remaining cases the closed orientable surfaces which have fundamental group 

Gh = (fli, b i , b h I Ylaibiai~lbi~l = l),h> 0, and the closed non-orientable Hk = 

{ai,...,a,k I ai2a2

2 • • • = 1), for k > 1. Note that (ai | a2 = 1) is the fundamental 

group of the projective plane, to be discussed separately, while if h = 0 the group is 

trivial, corresponding to the surface S2, and is thus orderable. Turning to the orientable 

case first we note that if h > 1 we can define a homomorphism ^ : Gh —* Z given by 

*/j(ai) = 1,^(61) = 0,^h(ai) = ̂ h(k) = OVi > 1. Note that the kernel Kh contains 

bi and aj, bi for all i > 2. In the non-orientable case we define the homomorphism 

: Hk Z given by * f c(ai) = 1, ̂ (^2) = - 1 , ^(a*) = 0 Vi > 2. Note that if k > 2, 

the kernel contains all powers of at least one a;. In case k = 2 we observe that the kernel 

contains {a^a^- ••a1

i"a2*" | £ ' = 1 is = EZiJs}-
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We are interested in the covering spaces corresponding to these (normal) subgroups of 

Gh and Hk. Recall that it is possible to define an action of the group ni{S, X) on the fibre 

set p_1(a:) for any rc: for chosen x € p _ 1(x) and any a € 7Ti(S,x), define x • a G p_1(a;) 

to be the terminal point of the unique path class a in S such that p*(&) = a and the 

initial point of a is the point x. Of course the actions by Gh and Hk, restricted to their 

respective kernels, are still group actions. The claim is that in each instance p~l(x) 

has infinitely many sheets. To see that this is so, consider first the case k = 2, that 

is, Hk = (a, b | a2b2 = 1). Then the kernel of the homomorphism to Z contains such 

elements of the fundamental group as a3b3, a3b3a3b3, and (a3b3Y for any j > 1; for chosen 

x0 G p_ 1(:r) we will denote by Xj = x0-(a3b3y the terminal point of the lift. If Xj = xk for 

some j, k, where j ^ k, then the respective lifts are identical, so p* {(a3b3)3) =p*{(a3b3y), 

implying, since is a monomorphism, that (a3b3Y = (a3b3)h in H2. Since j ^ k this 

implies that we have (a3b3)m = 1 for some m £ Z, But H2 is not a commutative 

group, hence (a3b3)m ^ (a2b2)n for any n; so this is a contradiction. If k > 2, then there 

exists ai, i > 2, and all powers of in the kernel, and similar reasoning leads us to 

conclude that p~l(x) has infinitely many sheets, and if h > 1, the fact that all powers 

of bi are in the kernel gives the same result. In all three cases, therefore, the covering 

space corresponding to the kernel is an open'infinite surface, so the kernel is a free group, 

hence left-orderable. Since G/K is isomorphic to a subgroup of Z and left-orderable, 

it follows that Hk and Gh are left-orderable, since as mentioned earlier in this thesis, if 

K < G, and both K and G/K have left-invariant orderings, then so does G. 

With the left-orderability of the fundamental group of these surfaces now established, 

we turn to an investigation of the theorem in the case wherein 5 is any surface with 

the exception of S2 or RP2. By assumption, k, a polygonal knot, is contained in and 

contractible within M xl, where M denotes the interior of S. Let (M,e) be the universal 

covering space of M x I. Now it is a standard result of covering space theory that if 
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e : X -» Y is a covering map with X simply connected, then Aut(X) = TVi(Y,yo). We 

shall also make use of the fact that the universal covering surfaces are the sphere (for 

the sphere itself, and the projective plane), and the plane, which follows from every non-

orientable surface having an orientable surface as a 2-sheeted cover [32]. Thus M = R2 xl, 

and Aut(M) =.7Ti(M X I) = ITI(S), which we know is left orderable. Let x be chosen 

as a basepoint in M and let k\ be the lift of p(k) through x. If we let Tu denote the 

covering translation corresponding to the element u G TT1(M X J), then p(k) is covered 

by Tu(ki), which we denote by ku. A chosen orientation for p(k) G M x {0} will induce 

an orientation in ku G R2 x 0. Let p : R 2 x / —> R 2 x {0} be the projection over p, that 

is, ep = p. 

Alexander's algorithm of "laying down the rope" can be generalized as follows. Choose 

neighbourhoods around the double points of the collection {ku} sufficiently small to be 

disjoint and contain only the two simple arcs of the singularity. Then focussing attention 

on k\, we notice that kx might cross itself, or ki might cross some other ku, where u ̂  1. 

If ki crosses itself at the point P, let a(P) denote whichever of the two arcs precedes 

with respect to x in the orientation of ki, let /3(P) denote the arc that succeeds. If ki 

crosses kv, v ̂  1, let 7(P) denote the arc at the crossing that belongs to ki, and v(P) 

be the arc belonging to kv. Then a simple closed curve kx G R 2 x / is constructed in 

the following manner. For any point (r, s, 0) G ki, if (r, s , 0) does not belong to any of 

the singularity neighbourhoods, or if (r, s, 0) G OL{P), or if (r, s, 0) G 7(P) where P is a 

crossing of ki and ku such that u > 1, then let (r, s, |) be a point of ki. If on the other 

hand (r, s, 0) G (3{P), or if (r-, s, 0) G 7 ( f ) , where P is a crossing of kx and kv such that 

v < 1, then let (r,s,\ + t),0 < t < | , be a point of A4, where i = \ at P itself (giving 

(r, s, | ) as the point above P on fci), and t varies continuously to approach 0 as (r, s, 0) 

approaches the boundary of the neighbourhood at P. Thus we have fashioned a closed 

curve ki G R 2 x I such that p(ki) = k±. Note that a(P) is sent to an undercrossing on 
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ku and ft(P) becomes an overcrossing. Finally we define ku = Tu(ki). The algorithm 

is rather dauntingly technical, but roughly speaking (and we return to make this more 

precise below), we are to think of the curves {kw} as suspended in E 2 x I with their 

"altitudes" on the interval dependent on the group element which indexes them: higher 

up for those whose group element is positive in the group ordering, lower down if the 

group element is negative. 

Claim: ku and kv are disjoint. 

Indeed, let Q G ku n kv. Consider Tu-i(Q) = P. Since ku = Tu(ki), we have P = 

Tu-i(Q) C Tu-iTu(ki) G h, but also P C Tu-iTv(ki) G 'ku-iv. Thus P G M ku-iv. 

Consider also P' = Tv-i(Q). Since kv = Tv(ki), we have P' = Tv-i(Q) C Tv-iTv(ki) G jfei 

and P' C Tv-iTu(ki) G kv-iu, so P' G ki fl kv-iu. Without loss of .generality, take u > v, 

i.e. u~lv < 1. Then we have p(P) a double point of ki and ku-iv by definition of p, so 

by construction P must be in E 2 x | . But turning to consider p(P') a double point of 

kx and we must have P' G E 2 x | , as > 1. But this a contradiction, since 

TU(P) = TV[P') = Q, and covering translations do not affect the third coordinate. Thus 

ku and kv are disjoint for all u,v,u ^ v. 

Moreover since by the very definition of ku we have u > v implying that any crossing of ku 

lies above kv in E 2 x / , u > v implies that ku lies above kv; hence we can isotope the curves 

{kw} such that ku C R 2 x (0,,|) if u < 1, h remains in R 2 x [|, | ] , and kv CR2 x (|, 1) 

if v > 1; and in all cases p(kw) = kw remains a regular projection for all w. Note that 

is isolated in R 2 x [|, | ] , and that the construction of ki with specific reference to 

the double points of ki with itself, coincides exactly with the "laying down the rope" 

algorithm. Thus by Alexander, k\ is contractible in (U u ^ i ku) , and bounds a non-

singular disc D in R 2 x [|, |] C M, the universal cover. Consider e(ki) C M x I: e(ki) 

bounds e(D). Since D e l 2 x [|, |] is isolated from the other curves {ku}, if e(D) has 
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singularities, these will be points of self-intersection. We invoke now a celebrated result: 

Theorem 6 (Dehn's Lemma) Let M be a PL 3-manifold, compact or not, with bound

ary which may be empty, and in M let D be a two-cell with self-intersections (singulari

ties), having as boundary the simple closed polygonal curve C and such that there exists a 

closed neighbourhood of C in D which is an annulus (that is, no point of C is singular). 

Then there exists a two-cell D0 with boundary C semi-linearly embedded in M. 

By Dehn's Lemma, e(D) may be modified in a neighbourhood of these singularities, and 

thus within M x [|, | ] , so that e(ki) bounds a non-singular disc. 

There remains one final surface to attend to. As noted before, the fundamental group of 

the projective plane is not orderable, so this case requires an extra step that will reduce 

the argument to that of the Mobius band, which has fundamental group Z (the Mobius 

band deformation retracts to S1). If p(k) is the regular projection onto S x {0} of a knot 

in S x I, where S is now the projective plane, one can transform the closed curve p(k) into 

a finite number of simple closed curves C\, C 2 , C m , by choosing open neighbourhoods 

of each crossing point small enough to contain no other crossing point and "splicing" the 

crossing in the following way: if P is the crossing point of arcs a and /3, and N(P) is 

the selected small disc neighbourhood, one can choose a point A e a fl N(P) preceding 

P in the orientation of p(k), and a point B on /3 succeeding P in the orientation. Then 

one joins A and B by an arc 7 within N(P) that doesn't elsewhere intersect p(k), and 

by deleting the open arcs AP and PB one obtains disjoint closed curves. 

If we choose a basepoint x on p(k), p(k) is nomotopic to a product of conjugates of 

the Ci, namely WiCiW~l,i < i < m, where W{ is an approach path (the trivial path in 

the case i = 1) from the basepoint x that connects to Ci across the disc neighbourhood 

and coincides exactly with p(k) elsewhere. It will now be expedient to transcribe this 

set-up into the language of homology: note that as a closed path p(k) can be considered 
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as a 1-cycle, that is, as a (formal) sum of oriented edges whose boundary is 0. So we 

have p(k) homotopic to a path product WiCiWi1w2C2w2

l • • • wmCmw^-, but this latter 

is the same in homology as Y1T=\ since the formal sum of edges is unchanged under 

conjugation by the {wi}. Thus since p(k) is contractible, WiCiW^w^w^1 • • • wmCmw^ 

is contractible, whence YHLI Ci is homologous to 0. It will follow that each d is null-

homologous and thus contractible: for suppose that some Ci is not null-homologous. 

Since the fundamental group of R P 2 is already abelian, H^RP2) = TTI(RP 2) = Z / 2 Z 

implies that an even number of the C, must be non-bounding as Y^HLI Ci ~ 0- Assume 

that Ci and C2 are not null-homologous. Recall that R P 2 = N Ug D2, where iV is a 

Mobius band attached along the boundary of the disc JJ)2. If C\ does not bound a disc, 

it circles around the Mobius band. So C2 C S — C\ is contained in the interior of D2, 

hence is contractible, contradicting the assumption that C2 is non-bounding. Thus each 

Ci bounds a disc. 

Since each d is bounding, each d separates RP2 into two connected regions, a disc A 

and the complement of the disc, which contains a Mobius band. Since no Cj intersects 

any Cj, i ^ j, their corresponding discs will either be disjoint or one will be contained 

in the other. If Di contains Cj, then Di contains Dj (as Di contains no Mobius band); 

so we can take Di, D2,Dn, n £ { 1 , m } to be the outermost discs not contained in 

any other discs, and set S = (J" = 1 Di U N(P), where N(P) is the disc neighbourhood for 

each crossing P of p(k); S is a proper connected subspace of R P 2 which contains p(k). 

Since within S we have p(k) homotopic to a product of conjugates of Ci, each of which 

is contractible in S, it follows that p(k) is contractible in S, hence contractible in the 

complement of a small disc in S, that is, within a Mobius band contained in S. With 

this, the argument is returned to the earlier case of the proof, and we are done. • 
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