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Abst rac t 

A discretization method referred to as the quadrature discretization method is in

troduced and studied in this thesis. The quadrature discretization method is a spectral 

method based on a grid of points that coincide with the points of a quadrature. The 

quadrature is based on a set of nonclassical polynomials orthogonal with respect to some 

weight function over some interval. The method is flexible with respect to the choice of 

the weight function and quadrature points so that the optimum accuracy and conver

gence in the solution of differential equations and/or partial differential equations can 

be obtained. The properties of the quadrature discretization method are studied and 

compared with classical spectral methods as well as finite difference methods. Several 

analytic model problems in one and three dimension are studied. The quadrature dis

cretization method competes well with classical spectral methods and is far more superior 

than the finite difference method. In some cases it provides significant improvement in 

the accuracy and convergence of the solution of the problem over other methods. 

The main objective of the quadrature discretization method is to determine the weight 

function that defines the polynomial basis set and hence the grid points that provide opti

mum convergence in a given application. The quadrature discretization method is applied 

to a large class of time dependent Fokker-Planck equations. Several weight functions are 

used and the results are compared with several other methods. The weight functions 

that have often provided rapid convergence of the eigenvalues and eigenfunctions of the 

Fokker-Planck operator are the steady solutions at infinite time. 

The quadrature discretization method is also employed in the solution of Schrodinger 

equations. The weight functions that are used are related to the ground state wave 

ii 



functions if known, or some approximate form. The eigenvalues and eigenfunctions of 

four different potential functions discussed extensively in the literature are calculated and 

compared with the published values. The eigen-problem of a two-dimensional Schrodinger 

equation with the Henon-Heiles potential is also calculated with the quadrature dis

cretization method. The rate of convergence of the eigenvalues and eigenfunctions of the 

Schrodinger equations is very rapid with this approach. 
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Chapter 1 

Introduction 

Differential equations are widely used in almost all areas of science, engineering for 

modeling and forecasting. However, most of them can hardly be solved in closed form. 

Therefore, accurate and efficient numerical algorithms are required to provide solutions 

to many different types of differential equations. The major numerical techniques widely 

used include finite difference method (FD) , finite element method ( F E M ) , and spectral 

methods. 

The main objective of these numerical methods is to approximate derivatives by 

algebraic expressions involving the solution evaluated on a grid. Ordinary differential 

equations ( O D E ) are thus reduced to algebraic equations and partial differential equations 

( P D E ) ( P D E ) are reduced to systems of, O D E s . In this section, we shall confine our 

discussion to linear differential equations. 

A differential equation can be written as 

where u(x) is the solution of the equation, and L is the linear differential operator. 

Discretizing the variable £ on a grid with N points, E q . (1.0.1) can be approximated by 

algebraic equations 

wi th L N , the matr ix representative of the differential operator L, and UJV, the approxi

mate solution at the grid points. W i t h different numerical techniques, the choice of the 

1 

Lu = -f{x) 
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gridding and construction of the derivative and differential matrix may vary. 

Similarly, a time-dependent partial differential equation can be written in general as 

du(x,t)/dt = Lu + f(x), (1.0.3) 

where t is the temporal variable, x is the spatial variable, f(x) is a source function, u(x, t) 

is the solution and L is the differential operator which contains all the spatial derivatives 

of u. The steady solution of Eq. (1.0.3) is Eq. (1.0.1). Eq. (1.0.3) must be coupled 

with an initial condition u(x,0) and suitable boundary conditions. For simplicity, we 

only consider one spatial dimension in this chapter. Similar statements can be applied 

to the higher dimensions. By discretizing the spatial variable x, the partial differential 

equation, Eq. (1.0.3) can be approximated by a system of first order ODEs, 

-^- = LN + fN. (1.0.4) 

We shall often confine the discussion of time discretizations to Eq. (1.0.3) with f(x) = 0, 

i.e., we consider 

- ^ = LNuN. (1.0.5) 

There are several ways to solve the ODE system Eq. (1.0.5). The solution of this time 

dependent P D E can be evaluated by an eigenfunction expansion. The formal solution 

(with f(x) = 0) is then of the form 

u(x,t) = ^ c n e A " V n ( x ) , (1.0.6) 
n=0 

where A n and <f>n(x) are the eigenvalues and eigenfunctions of the eigenvalue problem 

L(f)n(x) - \n<f>n(x), (1.0.7) 

the coefficients cn are determined from the initial condition, u(x,0), and are given by 

c n = J u(x, 0)(j)n(x)dx. (1.0.8) 
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The convergence and accuracy of the eigenvalues and eigenfunctions of the matrix Lyv 

determine the convergence and accuracy of the solution. The convergence as well as the 

rate of the convergence of the eigenvalues and eigenfunctions depend on the choice of the 

numerical methods and spatial gridding used to construct the differential discretization 

matrix representation in the spatial variable. 

The second method is to discretize the ODE system Eq. (1.0.5) in time, and thus 

integrate the O D E system numerically. This approach is applicable for both linear and 

nonlinear problems. In most applications, the temporal discretization uses conventional 

finite difference methods, including implicit, explicit and semi-implicit or implicit-explicit 

schemes. Among the factors which influence the choice of a time-discretization are the 

accuracy, stability, storage requirements and work demands of the methods. The explicit 

scheme is easy to implement and relatively less costly, but has a strong stability restriction 

which is determined by the eigenvalue spectrum of the differential operator L. The 

popular explicit schemes are the Adams-Bashforth methods which includes the simple 

first order forward Euler (FE) method. The implicit scheme provides the best stability 

but involves a matrix inverse and is expensive, especially for nonlinear problems. It 

is the best choice for stiff (large condition number) linear problems which encounter 

instability while using an explicit scheme. A related set of implicit methods are the 

Adams-Moulton methods which include the first order backward Euler (BE) and the 

second order Crank-Nicolson (CN) method. Implicit-explicit schemes become popular 

for the time integration of nonlinear problems. The idea of these type of schemes is to an 

apply implicit scheme for the linear term and an explicit scheme for the nonlinear term of 

the problem. Another popular class of temporal discretization methods are the Runge-

Kutta Methods. Some standard references in these temporal discretization methods are 

the books by Gear (1971) [1], Lambert (1973) [2], Shampine and Gordon (1976) [3], 

Dekker (1984) [4], Butcher (1987) [5], and Hairer (1989) [6]. 
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The basic idea above is to discretize the differential operator L in physical space, i.e. 

approximate the differential operator directly by discretization. Most finite difference 

and collocation methods use this idea. Another popular approach is to approximate the 

solution in transform space. It involves expansion of the solution by a finite sum. For 

example, the solution u(x) of Eq. (1.0.1) can be expanded in a set of orthogonal basis 

functions ^fc(x) (k = 1,2,...,^), that is 
k=N 

u(x) = J2 CkMx)- (1-0-9) 
k=i 

The transform coefficients are constant and can be solved by an algebraic equation 

Ac =b (1.0.10) 

where c is the coefficient vector of c/;, and A and b are the transform matrix and vector 

determined by minimizing the residual function R(x; Ck) = Lu + / or its related function-

als. The methods used in this approach include finite element methods, ta,u and Galerkin 

spectral methods. 

Finite difference methods for solving differential equations consist of replacing each of 

the derivatives in the differential operator by an appropriate difference-quotient approx

imation (such as du(x)/dx [u(x + h) — u(x — h)]/2h, where h is a small grid spacing). 

The difference quotient is generally chosen such that a certain order of truncation error 

is maintained. The method approximates derivatives of a function by local arguments 

and is designed to be exact for polynomials of low order. The matrix representative 

of the derivative operator is generally banded. The FD algorithm is easy to program 

and implement, but relatively low in accuracy. A higher order of accuracy for the finite 

difference method is possible and has strong restriction to the stability of the solution. 

The F E M is frequently used to solve partial differential equations that occur in en

gineering applications, especially, in the areas of solid mechanics, elasticity, and compu

tational fluid dynamics [7-17]. The idea of the finite element method is to divide the 
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interval in x into a number of sub-interval and approximate the solution by a sum of 

basis functions which are piecewise polynomials of low fixed degree. The differential ma

trix derived is sparse because only a handful of basis functions are non zero in a given 

sub-interval. Since the approximate solutions are piecewise polynomials, the pieces or 

the sub-intervals can be easily chosen to fit the geometry of the problem. The F E M is 

therefore very useful in solving problems with complex geometry in multi-dimensional 

problems. The F E M is closely related to the finite difference method. The discretization 

of the differential equation are difference equations, but derived by a different approach. 

In some cases (especially in one-dimensional cases), they can be equivalent. The disvan-

tage of the F E M is the relatively low accuracy because each basis function is a polynomial 

of low degree. 

Spectral methods involve the expansion of the solution by a finite sum 

N 
u(x) « uN{x) = ak4>k{x) (1.0.11) 

k=0 

in a set of orthogonal basis functions (trial functions), (j>k{x). When this series is substi

tuted into Eq. (1.0.1), we can define a residual function 

R(x] a 0 , a i , ...,a^) = LUN + / . (1.0.12) 

The spectral method is constructed using test functions to minimize the residual i.e. the 

coefficients in the series expansion are chosen so that the residual is orthogonal to the 

space spanned by the basis of test functions, tpk{x): 

J R(x] ao, ai,ajs[)il>k{x)dx = 0. (1.0.13) 

This is analogous to techniques used in the F E M . The choice of the test functions dis

tinguishes between the spectral Galerkin, tau and collocation (also referred to as pseu-

dospectral) methods [18,19]. In the Galerkin approach, the test functions are the same as 
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the trial functions and individually satisfy the boundary condition. Spectral tau meth

ods are similar to Galerkin methods, but none of the test functions need to satisfy the 

boundary conditions. Hence a supplementary set of equations is required to apply the 

boundary condition. In the collocation method, the test functions are shifted Dirac delta 

functions centered at so-called collocation points. For many problems, especially nonlin

ear ones, the collocation ( or pseudospectral) method is the easiest to implement, and the 

most efficient [19-23]. Spectral methods use global basis functions which are polynomials 

(or trigonometric polynomials) of high degree and generate solutions with high accuracy. 

Pseudospectral method can be viewed as the limit of FD methods when the order of 

accuracy tends to infinity [24]. Unlike low order FD method and F E M which result in 

large, sparse matrices; the differential matrix representative by the spectral method is 

usually full. 

There are numerous numerical schemes available in the numerical computation. Most 

of them belong to the three methods discussed above, or schemes which are a combination 

of several techniques. The geometry of the domain and required level of accuracy are the 

key factors in selecting among these approaches. The F E M is particularly well suited to 

problems in very complex geometries, whereas spectral methods can offer superior accu

racies and cost efficiencies, mainly in simple geometries. Although sometimes a mapping 

of a complicated physical domain onto a simple computational domain is possible, the 

mapping must be smooth to preserve the high-order accuracy and exponential conver

gence rates associated with the spectral method. Finite difference methods perform well 

over a broad range of accuracy requirements and (moderately complex) domains. For 

years, many numerical analysts have been working on the spectral domain decomposi

tion or spectral element methods [25-32]. The techniques can apply to problems with 

complicated domain and provide superior accuracy and convergence over the F E M . 

The advantage of spectral methods is that they are more accurate than the FD method 
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and the F E M so that far fewer grid points are required. A principal disadvantage is that 

in solving time dependent problems in finite boundaries, they are often subject to tight 

stability restrictions when an explicit temporal discretization methods is used. 

For a specific problem, a particular numerical scheme may be selected to meet stabil

ity and convergence requirements, as well as the physical and geometric aspects of the 

problem. 

In the context of solving time-dependent PDEs, spectral methods have notable ad

vantages over other numerical methods. First, the error between the numerical solution 

and exact solution decays exponentially versus number of grid points N. This high 

accuracy allows one to treat problems with very much fewer grid points which would 

otherwise require an enormous number of mesh points by other numerical methods. For 

multi-dimensional problems, the use of relatively coarse grids that suffice for most accu

racy requirements offer superior efficiency in time and memory. Besides this potentially 

high accuracy, spectral methods are also powerful for many cases in which solutions and 

variable coefficients are nonsmooth or even discontinuous [19,22,33,34]. 

Spectral methods and pseudospectral methods based on the expansion of the solu

tion in orthogonal polynomials have been successfully applied in many areas such as 

simulations of turbulence flow [18,19,35], computational fluid dynamics [18-20,29,36-41], 

weather prediction [19,42,43], kinetic theory [44-47], and quantum mechanics [48-51], 

etc. 

It has been demonstrated numerically that the condition number, i.e. the ratio of 

the largest to the smallest eigenvalue of the spectral approximation matrix is large. It is 

known that finite difference and finite element methods have an 0(N2) condition num

ber. For spectral methods, the largest eigenvalue of the first derivative operator grows as 

0(N2), and of the second derivative operator grows as 0(N4), as N increases, leading to 
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poorly conditioned matrices [18,19,29,36,39,52-58]. This effect upon the numerical com

putations of the eigenvalues of the derivative operator is caused by the round off error 

depending on machine precision of the computer. One cause of the roundoff error in us

ing the spectral differentiation matrix is attributed to inaccurate computation of certain 

matrix elements, particularly certain large elements in the upper and lower right corner 

of the matrix [52,53,56]. Methods for reducing the error of Chebyshev pseudospectral 

approximation of derivative matrix are discussed by several researchers [52,53,55,56,59]. 

Several researchers [29,60] also point out that the poor condition of the derivative ma

trices is related to the minimum spacing of the grid points. The large condition number 

of the spectral derivative matrix is not necessarily a problem in the accuracy of the so

lution of differential equations. However, the large condition number of the derivative 

matrix brings stringent stability restrictions to solve time dependent PDEs by temporal 

discretization, since in actual computations, the stability limit depends on the precision 

of the numerical solution of eigenvalues. On the other hand, the differential matrices by 

a spectral method are usually dense. Direct inversion of these matrices is usually expen

sive for large matrices. Iterative schemes are sometimes a practical necessity. Therefore, 

reduction of the condition number of spectral differential matrices is necessary for stabil

ity of iterative methods and time integration. There have been numerous studies on the 

preconditioning of spectral matrices. The idea of preconditioning with second-order finite 

difference methods is described by Orszag [25]. Some other preconditioners based on the 

FD [61,62], the F E M [31,63,64], and the spectral methods [65,66] have been proposed 

and successfully tested in the literature. Besides preconditioning techniques, algorithms 

for direct improvement of the condition number of derivative matrices are also discussed 

by Heinrichs [57], and Kosloff and Tal-Ezer [60]. 

Most spectral and pseudospectral methods currently used are restricted to traditional 

or "classical" basis functions such as trigonometric functions and polynomial solutions 
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of Sturm-Liouville eigenvalue problems. The details of these polynomials are described 

in most texts on spectral methods [18,19,29,36,38,39]. The choice of basis functions is 

dictated by the weight function, w(x) and the domain of the problem considered. For 

example, for [—1,1] and w(x) = 1, w(x) = (1 — x)a(l + x ) P and w(x) = ^ / = p " , one has 

the "classical" Legendre, Jacobi, and Chebyshev polynomials, respectively. Laguerre and 

Hermite polynomials are used for w(x) = e~x on [0, co] and for w(x) = e~*2 on [-co, oo], 

respectively. When the basis set is chosen, the associated grid points in a pseudospectral 

method are fixed, and adaptive gridding techniques are difficult but possible [40,67]. In 

many cases, the choice of grid points is essential to the convergence of the eigenvalues 

and eigenfunctions of the differentiation matrix. For some physical problems, spectral 

solution with classical polynomials may result in poor convergence or even inaccurate 

results. Therefore more flexibility in choice of grid points is desired. 

Many problems of physics and engineering lead naturally to the solution of a partial 

differential equations in an unbounded domain. The condition at infinity given by a 

certain asymptotic behavior of the solution can be obtained by asymptotic analysis at 

infinity. However, for numerical approximation, it is not easy to interpret the behavior 

at infinity. Most numerical methods such as finite difference, finite element methods 

and spectral methods with trigonometric functions and Jacobi-type polynomials as basis 

functions can only apply to the problem with finite domain. One of the most widely used 

techniques is to restrict the computation to a finite domain by truncating the domain and 

imposing "artificial boundary" conditions. Another treatment consists of mapping the 

unbounded domain into a bounded one and using the standard discretization techniques 

mentioned above. The more attractive technique is to use basis functions defined on 

an unbounded domain such as Hermite polynomials (or Gaussian-type polynomials) on 

(—co,oo) and Laguerre polynomials on (0,oo). For those polynomials, the collocation 

points spread all over the infinite domain with increasing N, and there is no restriction 
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on the size of the domain is required and thus no artificial boundary cutoff is needed. 

As to the approximation by spectral methods, some results and a comparison with these 

techniques can be found in the papers by several workers [29,67-69]. Although use of 

Hermite and Laguerre polynomials bring some promising results for solving unbounded 

boundary problems, the direct spectral approach may not produce good approximation. 

Scaling and shifting factors may be necessary in practical applications of the classical 

spectral methods. On the other hand, many physics problem have some special charac

teristics and need special treatment when solving these models. For example, the solution 

of the optical bistability model for laser physics is usually characterized by two stable 

states. Use of the Hermite spectral method may result in slow convergence and/or poor 

accuracy. Thus, it is necessary to find some nonclassical basis functions that can relate 

to the physics of the problem very well and generate good convergence and accuracy 

of the solution. Recently, Shizgal and coworkers started using nonclassical polynomials 

on an infinite domain to solve some physics related problems [43,45-47,51,70-72]. They 

received very encouraging results. Another reason for using those physics related basis 

functions is that they have very attractive properties from the numerical point of view. 

There is evidence that the condition number of the first and second Hermite differen

tiation matrices are 0(\/rN) and O(N), respectively [29,68,73]. Numerical results from 

our work also showed that the condition number for a second differentiation matrix can 

be improved to be between O(N) and 0(N2) depending on the physical problem and 

polynomial basis set chosen. This is better than second order finite difference which is 

0(N2), and far better than 0(N4), for example, by Chebyshev spectral method. 

For these reasons, it is necessary to have a spectral method which is not restricted to 

the "classical" orthogonal basis functions and associated points. 

The purpose of this thesis is to study a fast, and accurate spectral method, namely, 

the quadrature discretization method (QDM), and apply the method to solve several 
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differential equations, notably, the Fokker-Planck equation (FPE) and the Schrodinger 

equations (SE). 

nonclassical polynomials as basis functions in a spectral approximation. The idea of the 

Q D M is initially introduced by Shizgal in solving eigenvalues of Lorentz Fokker-Planck 

equation [74]. A set of nonclassical polynomials called "speed" polynomials based on 

weight function x2 exp(—x2) was used in this work. The method was later developed fur

ther by Shizgal and Blackmoreby using speed and some other weight functions [71,72,75]. 

Their generation of polynomials was based on a recursion subject to round-off errors and 

hence their approach was limited to a small set of weight functions. In this thesis, by 

introducing the Stieltjie's procedure, it is easy to construct accurately a set of nonclassi

cal polynomials defined by any weight function. For a specific problem, a specific weight 

function may be chosen to optimize the accuracy and convergence of the solution. The 

details of the Q D M is described in Chapter 2. 

Another main interest of this thesis is to solve differential equations in an unbounded 

domain. Two types of second order differential equations in an unbounded domain are 

discussed and solved numerically by the Q D M . 

The first type of equation is the Fokker-Planck equation (FPE) of the form: 

with homogeneous boundary conditions at infinity. P(x,t) is related to some probability 

density function of a system. A(x) and B(x) are referred to as the drift and diffusion 

coefficients and depend on the particular application considered. 

The F P E was introduced by Fokker and Planck to describe the Brownian motion of 

particles [76,77]. For the past several decades, there has been an ongoing interest by 

numerous researchers in the description of nonequilibrium phenomena modeled with a 

In this thesis we introduce the quadrature discretization method (QDM), which allows 
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F P E . This interest continues unabated to the present date [78]- [91]. The basis for many 

of these models is Brownian diffusion in a potential characterized by Gaussian white 

noises. This leads to a time dependent linear F P E with drift and diffusion coefficients 

which can be nonlinear functions of the independent variable of interest. The theoretical 

basis for this approach has been provided in several standard references [92-94]. 

The traditional method for the solution of the F P E is a spectral method which usu

ally involves the expansion of the probability density function (PDF) in a suitable basis 

set, and the reduction of the differential equation to a set of algebraic equations for the 

expansion coefficients. An alternate approach involves the discretization of the P D F 

on a grid of points. This discrete approach in the solution of differential and/or inte

gral equations has been used by researchers in other fields, notably neutron transport 

[95], radiative transfer [96], and computational fluid dynamics [18,36]. Fourier series or 

Chebyshev polynomials are almost exclusively chosen as basis functions in the applica

tion of the pseudospectral approach. Other popular discretization schemes are based on 

the finite-difference technique such as those proposed by Chang and Cooper [97], Larsen 

et al [98] and Epperlein [99] primarily for the solution of a nonlinear F P E that arises in 

plasma physics. Park and Petrosian [100] have recently provided a detailed comparison 

of several different methods to the solution of FPEs applied to astrophysical problems. 

Another type of equation to be studied in this thesis is the Schrodinger equation (SE) 

that arises in quantum mechanics and molecular physics. The equation has the form 

with V(y) as the potential. There have been numerous studies on the solution of the SE 

with different methods for several potential function V(y) [101]- [133]. The methods in

clude variational and spectral techniques with Gaussian-type basis functions [29,101-111], 

perturbative approach [112-117], Pade approximation [118-122], FD methods [123-125], 
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and some other methods [126-131]. A very similar approach to the Q D M for the solution 

of the SE referred to as the Discrete Variable Representation (DVR) was developed by 

Light and co-workers [132], and has been used by several other researchers [133]. The 

Q D M and D V R differ in the use of polynomial basis functions. The Q D M uses nonclas-

sical polynomials and the DRV uses classical polynomial, majorly the Hermite (or scaled 

Hermite) polynomials. Hermite functions are the exact eigenfunctions of the quantum 

mechanical harmonic oscillator which has one well in the potential. This close connec

tion with the physics makes them a nature choice of basis functions for the quantum 

mechanical problems. However for many problems with more than one well in potential 

Hermite polynomials are barely a good approximation of the solutions, as we will show 

later in this thesis. Therefore, new polynomial sets suitable to the physical nature of the 

solution are needed to improve the accuracy and convergence. 

The purpose of this thesis is to study the quadrature discretization method and apply 

it to solve second order partial differential equations with unbounded boundaries. It is 

shown in this thesis that the Q D M is easy to implement. The method provides high 

accuracy and rapid convergence, and is very efficient in solving high dimensional PDEs. 

Unlike most spectral methods and FD methods, it is possible for the Q D M discretization 

to preserve the symmetry for the self-joint joint differential operator. Furthermore, the 

flexibility of the Q D M in choosing weight function provides one the opportunity to achieve 

the best solution with the least computation work. 

In Chapter 2, the basic ideas of the Q D M are introduced. The Q D M is tested and 

compared with other numerical methods. The applications of the Q D M to the FPEs 

and SEs as well as the implementations and the results are presented in Chapter 3 and 

Chapter 4, respectively. Finally, a summary of the completed research and suggestions 

for the future work are given in Chapter 5. 



Chapter 2 

The Quadrature Discretization Method (QDM) 

The Q D M , originally introduced by Shizgal et al as discrete ordinate method [71, 72], 

is a numerical method for the efficient solution of integral and differential equations. The 

Q D M can be used to solve a large class of differential and integral equations [71,72] and 

has also been applied to fluid dynamics problems [40]. The Q D M is a spectral method 

based on the discretization of the solution on a grid of points (collocation points) that 

coincide with the points of a quadrature. The quadrature is based on a set of nonclassical 

polynomials orthogonal with respect to a specified weight function. 

In this chapter, the fundamentals of the Q D M are introduced and discussed. It 

differs from traditional spectral methods in that it is based on nonclassical polynomials. 

In the next section, several aspects of classical polynomials and spectral/pseudospectral 

methods are discussed. The numerical solution of differential equations is based on the 

approximate representation of the first derivative operator by a finite derivative matrix of 

dimension equal to the number of grid points. Higher order derivatives are represented by 

powers of the derivative matrix. The Q D M is based on the use of nonclassical polynomials 

which are generated by a method developed by Gautschi [134]. Several model problems 

are studied with the Q D M , and the results are compared with those for the classical 

pseudospectral method and the finite difference method. In the comparison of exact and 

approximate solutions, we introduce the errors E\ (average error), E2 (standard error) 

and E°° (maximum error) defined by 

14 
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N 

(2.0.1) 

1 N 

(2.0.2) 

and 

E°° = max{\u1 — u\ ; = 1,2, ...,#}, (2.0.3) 

where uf is the approximate solution and u\ is the exact solution. 

2.1 Classical polynomials and the pseudospectral method 

Classical polynomials referred to in this thesis are the polynomials used by most re

searchers in the application of spectral methods. They include Chebyshev, Legendre, 

Jacobi, Laguerre and Hermite polynomials as well as their related polynomials. The 

details of these polynomials are discussed in most standard references on orthogonal 

polynomials and spectral methods [18,39,36,135]. Here we only give a brief summary of 

these polynomials and some of their properties. 

Classical polynomials used in spectral methods are related to the polynomial solutions 

of eigenvalue problems of Sturm-Liouville equation 

in some interval / . A n are the eigenvalues and un{x) are the corresponding eigenfunctions. 

The coefficients a(x), h{x) and w(x) are real-valued functions, and w(x) is referred to 

as the weight function. With particular choices for these coefficients, several classical 

polynomial sets are obtained. For Jacobi polynomials, 

a(x) = (1 - x)a+1(l + xY+\ b{x) = 0, w{x) = ( l - x ) a ( l + x)^ (2.1.2) 
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for Va; £ (—1,1), and a > — 1, ft > —I. Legendre and Chebyshev polynomials are Jacobi 

polynomials with a = (5 = 0 and a = ft = — \ respectively. For Laguerre polynomials, 

we have the coefficients 

a(x) = xa+1e~x 

i b(x) = 0, w(x) = xae~\ (2.1.3) 

for \/x G (0, oo), a > — 1, whereas for Hermite polynomials, these are given by, 

a(x) = w(x) = e~x\ b(x) = 0, (2.1.4) 

for 6 ( — 00,00). The polynomials satisfy a three recurrence relation [39] 

Un+1(x) = (pnX + On)un(x) + TnUn--L, (2.1.5) 

where u0(x) and u\(x) are the first two polynomials in a given set. The recurrence 

relations for Legendre, Chebyshev and Hermite polynomials are as follows: 

Legendre 
2n + 1 n 

Ln+1(x) = ———xLn(x) — L n _ i ( x ) , (2.1.6) 
Tl -\- 1 77. —I— _L 

with Lo(x) = 1, Li(x) = x; 

Chebyshev 

Tn+1{x) = 2xTn{x)-Tn^(x), (2.1.7) 

with To(x) = 1, T\(x) = x; 

Hermite 

Hn+1(x) = 2xHn(x)-2nHn-1, (2.1.8) 

with H0(x) = 1, H^x) = 2x; 

If the zeros of the Nth order polynomial are {xi,i = 1,2,.., N}, a Gauss quadrature 

formula, for an arbitrary smooth function f(x), gives 

N 

/ f(x)w(x)dx m J2f(xj)w3, (2.1.9) 
J I 3=1 
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where Wj = JIlj(x)w(x)dx, are the weights, and Xj are the quadrature points of the 

integration formula. If f(x) is a polynomial of degree 27V — 1 or less, Eq. (2.1.9) is 

exact [39,136]. The function lj(x) is the interpolating polynomial uniquely defined by 

the condition 
ro, iii^j 

lj(xi) = { (2.1.10) 
l l , iii = j 

The quadrature points and weights for the classical polynomials and related Gauss-type 

quadrature formula can be found in standard references in spectral methods [18,19]. 

The classical pseudospectral method is based on the discretization of a smooth func

tion f(x) on a grid of these quadrature points {xi, i = 0,1, 2 , N } . Derivatives of the 

function are approximated by the analytic derivatives of the interpolating polynomial 

lj(x). The first derivative can be represented in a matrix form as 

N 

(DNf)(Xi) = £ ( A v ) , ? / ( * - . ; ) , (i = 0 , 1 , 2 , A O , . (2.1.11) 
3=0 

where DN is the derivative matrix with the entries (Dw)ij = l'j(xi). Higher order deriva

tive matrices can be obtained by multiplying DN by itself a suitable number of times. 

The spectral derivative matrix is usually full. The explicit expression of the derivative 

matrices based on the quadrature points is described in the references by Canuto [18], 

Peyret [137,138], and Funaro [39,68]. 

The advantage of the spectral method is its spectral accuracy, that is, errors for 

numerical approximation decrease exponentially with increasing number of grid points. 

Consider a second order differential equation 

d2u . , N . . 
— = sm(7rx) (2.1.12) 

with homogeneous Dirichlet boundary condition u( — 1) = u(l) = 0. The problem has an 

analytic solution u(x) = — ir2sin(7rai). We solve the problem with a Legendre spectral 



Chapter 2. The Quadrature Discretization Method (QDM) 18 

Legendre FD 
N Ex E2 

E°° Ex E2 
E°° 

4 4.09(-02) 5.01(-02) 6.13(-02) 1.56(-01) 1.91(-01) 2.34(-01) 
8 2.40(-04) 2.83(-04) 4.46(-04) 3.66(-02) 4.01(-02) 5.30(-02) 
16 1.50(-11) 1.72(-11) 2.91(-11) 8.68(-03) 9.46(-03) 1.30(-02) 
32 2.73(-14) 3.23(-14) 6.03(-14) 2.11(-03) 2.31(-03) 3.22(-03) 
64 1.21(-14) 1.52(-14) 4.36(-14) 5.19(-04) 5.73(-04) 8.04(-04) 
128 1.29(-04) 1.43(-04) 2.01(-04) 
256 5.01(-05) 
512 1.26(-05) 

Table 2.1: Errors for the numerical approximation of u" = s in(7rx) with a Legendre 
spectral method and a finite difference method. 

method and a 2nd order central difference method. Table 2.1 gives the errors of the 

numerical solutions of Eq. (2.1.12) with both methods. 

It can be seen from the results that for the Legendre method, the error decays very 

fast. The maximum error decays to O(10~ 1 4) within 32 points. Increasing TV beyond this 

point would not reduce the errors significantly, and the errors remain close to machine 

accuracy. 

For the FD method, the error decays at a much slower rate. With 128 grid points, 

the error is O(10 - 4 ) and with 512 grid points, it is O(10 - 5 ) . This indicates that to obtain 

4 decimal places accuracy for the solution of Eq. (2.1.12), the FD method requires more 

than 100 grid points, while for the Legendre spectral method, approximately 8 points are 

needed. As a matter of fact, the error for the FD method decays at the rate of 0(N~2). 

For the Legendre spectral method the errors decay at an exponential rate as the number 

of grid points N increases. To show this point, we plot the logarithm of the errors versus 

logio(N) in Fig. 2.1. The exponential accuracy of the spectral method makes it very 

attractive for solving multi-dimensional problems since much coarser grids are needed in 

comparison with the finite difference method. 
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As mentioned in Chapter 1, spectral derivative matrices based on classical polyno

mials have some drawbacks. The main disadvantage of the spectral discretization is the 

large value of the largest eigenvalue of the differentiation matrix, which can result in 

an instability when iteration and/or explicit time integration methods are applied. The 

largest eigenvalue of the derivative matrices with Chebyshev and Legendre collocation 

methods grows very fast as number of grid points N increases. 

Consider the eigenvalue problem of the advection operator 

^j^ = X»Mx) on (-1,1) (2.1.13) 

subject to the boundary condition 

<M1) = 0 (2.1.14) 

The eigenvalues are computed with Chebyshev and Legendre collocation methods. 

The boundary condition is imposed by removing the last row and column of the derivative 

matrix DM- The resulting (A^ —1) X (N — 1) is diagonalized numerically. Figs. 2.2 and 2.3 

show the eigenvalues of the first derivative matrix with N—8, 16, 32, 64. Although most 

of the eigenvalues converge to a curve in the left half-plane between —iN and iN, a few 

spurious eigenvalues diverge at a much faster rate. The modulus of the largest eigenvalue 

|AJV| m relation with the number of grid points is plotted in Fig. 2.4. The largest 

eigenvalue grows like 0(N2) as N —> oo. For the Le gendre method, |A/v| ~ 0.0S0N2, and 

for the Chebyshev method, \ X N \ w 0.089N 2. 

For the second derivative matrix, we consider the eigenvalue problem of the diffusion 

operator 

^M = Xn(f)n(x) o n (-1,1) (2.1.15) 

with the boundary conditions of Dirichlet type: </>n(l) = </>„( —1) = 0. The problem has 

the analytical solution, XN = — (nir/2)2 and (j)n(x) = siny/X^x, n = 0,1,2,.... 
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Figure 2.2: Eigenvalues of the 1st derivative matrix with Chebyshev discretization with 
N=8, 16, 32, 64. 
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Figure 2.3: Eigenvalues of the 1st derivative matrix with Legendre discretization with 
N=8, 16, 32, 64. 
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Figure 2.4: Eigenvalues of 1st derivative matrix with Chebyshev and Legendre discretiza
tion. The solid line is for Chebyshev. The dashed line is for Legendre. 
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The largest eigenvalues calculated with Chebyshev and Legendre collocation methods 

are given in Fig. 2.5. The boundary conditions are imposed by removing the first and 

last rows and columns of the derivative matrix D^. The resulting (TV — 2) x (N — 2) is 

diagonalized numerically. The largest eigenvalue grows like 0(N4) as N —» co, and | A n | = 

0.026A r4 and | A n | = 0.047iV4 for the Legendre and Chebyshev method, respectively. 

Several researchers showed that the effect upon the numerical computation of the 

eigenvalues of the derivative matrix is caused by round off error [52,53,55,56,59]. This 

property of the derivative matrix does not play a role in the solution of a differential 

equation. As seen in Fig. 2.1, the error of the solution of the differential equation Eq. 

(2.1.12) decreases at a very fast rate with increasing. However, for the time-dependent 

differential equation, the large value of the largest eigenvalue causes an instability in the 

time integration when explicit time-stepping techniques are applied. For the first order 

explicit Euler method, for example, the time step At to ensure the stability of the time 

integration may be 0(N~4) for a 2nd order time-dependent differential equation. To 

reduce the order of growth rate of the largest eigenvalue, preconditioning of the derivative 

matrix is usually used. The topic of the preconditioning is out of the scope of this thesis. 

Methods for preconditioning can be found in many references [66,139-141]. 

Another way to improve the condition of the spectral derivative matrix is to use 

mapping techniques. Several researchers suggested that [29,60] the growth rate of the 

largest eigenvalue is related to the minimum spacing A s m m between the adjacent grid 

points. The largest eigenvalue (in modulus) of the first derivative matrix is of the order 

of 1 / A x m i n , and for the second derivative matrix it is of the order of 1 / A 2 x m i n . Most 

classical points in finite domains, for example, Chebyshev and Legendre points, have 

minimum spacing of 0(1/N2) such that the 1st and 2nd derivative matrices grow like 

0(N2) and 0(N4), respectively. Kosloff and Tal-Ezer proposed a modified Chebyshev 

method to improve this condition [60]. They mapped the Chebyshev points in [-1,1] 
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Figure 2.5: Eigenvalues of the 2nd derivative matrix with Chebyshev and Legendre dis
cretization. The solid line is for Chebyshev. The dashed line is for Legendre. 
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to a new set of grid points in [-1,1] which has minimum spacing of 0(1/N) such that 

the largest eigenvalues of 1st and 2nd derivative matrices improve to 0(N) and 0(N2), 

respectively. Their algorithm is similar to those of the Fourier method but it provides 

accurate solutions for nonperiodic problems. The detailed description of the method can 

be found in their paper [60]. Fig. 2.6 give the largest eigenvalues related to the modified 

Chebyshev approximation versus the number of grid points N. 

Classical Chebyshev and Legendre polynomials are defined in a finite domain (-1,1). 

For a problem in an arbitrary finite domain (a,b), one can either map the domain into (-

1,1) by using change of variable, or use scaled Chebyshev and Legendre polynomials. For 

problems with unbounded domain, one needs to truncate artificially the infinite domain 

into a finite domain in order to apply the Chebyshev or Legendre spectral method. The 

accuracy and convergence of the solution are directly related to the domain truncation. 

For a certain number of grid points, the larger the domain, the coarser the grid, and the 

slower the convergence. If the domain is too small, the error caused by domain truncation 

may exceed the accuracy requirement. 

The Hermite points for the infinite domain naturally spread over the whole domain 

with increasing ./V and no artificial boundary cutoff is involved. As shown in several 

literatures [29,68,73], Hermite points have another advantage that the minimum spacing 

is 0(l/y/~N) such that the largest eigenvalues of the first and second derivative matrices 

are 0(y/~N) and O(N) as N —> oo. This property of Hermite polynomials and their close 

connection to the physics usually make them the natural candidate for solving problems 

in an infinite domain. However, it may not be always the best choice as we will see later 

in the thesis. The largest eigenvalues of the derivative matrix for the Hermite points 

versus number of grid points N is plotted on a logarithm scale in Figure 2.7. Numerical 

fitting shows that the largest eigenvalue satisfies AJV ~ Q.2SN0^ for the first derivative 

matrix and XN ~ 0.3SN1'27 for the second derivative matrix. These orders are slightly 
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Figure 2.6: Largest eigenvalues of the 1st and 2nd derivative matrices calculated by the 
Kosloff modified Chebyshev method. 
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larger than the asymptotic results. 

2.2 The quadrature discretization method 

2.2.1 Construction of derivative matrices 

Consider a set of polynomials, Fn(x), orthogonal with respect to a weight function w(x), 

that is, 

J w(x)Fn(x)Fm(x)dx = 8 n m . (2.2.1) 

There are as many quadrature rules as there are sets of orthogonal polynomials. The 

familiar quadratures are those based on the classical polynomials discussed in the last 

section. Theoretically, a set of orthogonal polynomials can be constructed for any interval 

and any weight function. The major development of the Q D M is to generate, with the 

method introduced by Gautschi [134], new sets of points and weights from nonclassical 

polynomials chosen to maximize the rate of convergence of the solution of a specific 

differential equation. 

The Q D M is based on the discrete representation of a function j\x) by its values at 

the set of N quadrature points Xi, that is, f(xi). We expand f(x) in the {Fn} orthogonal 

basis set, 
N 

f{x) = J2anFn(x), (2.2.2) 
n=l 

where an are the expansion coefficients of f(x) and are given by, 

an = jw(x)f(x)Fn(x)dx. (2.2.3) 

The expansion coefficients can be evaluated numerically with the quadrature rule in 

Eq.(2.1.9), and 
N 

an = Y, W3f(x,)Fn(xj). (2.2.4) 
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Figure 2.7: Largest eigenvalues of the 1st and 2nd derivative matrices calculated by the 
Hermite method. 
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Eq. (2.2.4) gives the transform from the physical space {/(x,)} to the transform space 

{an}. If we use Eq.(2.2.4) to evaluate f(x) at the quadrature points X{ we have another 

transform that does the reverse transformation which is from the transform space {an} 

to the physical space {/(a^)}, 
N 

f{xi) = '£anFn{xi). (2.2.5) 
71=1 

Substituting Eq. (2.2.4) into Eq. (2.2.2), we obtain 

f(x) = J2J:wlf(xl)Fn(x1)Fn(x). (2.2.6) 
1=1i=i 

The above equation indicates that f(x) can be calculated at any point from its values 

f(xj), that is, 
N 

/ W = E ' i W / W . (2-2-7) 

where the interpolation polynomial lj(x) is given by 

N 

71=1 

and satisfies 
(0, i f i ^ j 

Ijixi) = <| (2.2.9) 
1, i f i = j 

If Eq. (2.2.7) is differentiated, one obtains 

D F { X I ) - E A . / f e ) , (2.2.10) 

where A,-j are the entries of the derivative matrix A and are defined by 

= /;(.'.•,) = E '^./^(x,)/.;:!,-;). (2.2.11; 

71 = 1 
It is easy to notice that the transformations between the physical space and transform 

space shown in Eq. (2.2.4) and Eq. (2.2.5) are not symmetric. To symmetrize the 

transformations, we consider an alternative function / defined by 

/(•'•) = V™j(x). (2.2.12) 
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If the expansion coefficients of f(x) in the basis set Fn(x) are an, then there is a unitary 

(or orthogonal) transformation between the physical and transform spaces, that is, 
N 

f(X*) = E V^Fn{ (2.2.13) 
n=l 

N 

^ ^ E ^ - ' N / W . (2.2.14) 
i=i 

where the matrix elements of the symmetric transformation T are T; n = s/w^n^Xi). 

If in Eq. (2.2.13), Xi is replaced with x, and Eq. (2.2.14) is used for an, one obtains 

a A^th-order interpolation, given by 

/ » = E4(*)/(*;), (2-2-15) 
3 = 1 

where the interpolation polynomial Ij(x) is given by 
AT 

Ij{x) = y/w^J]^2Fn{xj)Fn(x). (2.2.16) 
71=1 

The algorithm for differentiation in the discrete basis is given by differentiating Eq. 

(2.2.15) and using Eq. (2.2.16) one has that 
df{ Xi 

N 

dx . . 
.7 = 1 

- E (2-2.17) 

where the derivative operator, Dij = y/W{W3T'j(xi) is given by 

N 

Di3 = ^JT3 E Fn(x3)F^{xt). (2.2.18) 
n=l 

We refer to the derivative matrix D with the elements Dij as the Q D M modified derivative 

matrix. We have the following relation between the derivative matrices A,-7 and Dij 

&n = vS'MAr (2.2.19) 

The matrix element of the derivative operator d/dx in the transform space (also called 

Galerkin 's matrix) is 

dnm = j w(x)Fn{x)F'm{x)dx. (2.2.20) 
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If we evaluate it with the quadrature rule in Eq.(2.1.9), we have that, 

N 

dnm = E WkFn(xk)F'n(xk). (2.2.21) 

For some specific physical models, using the transform matrix have an attractive advan

tage that the resulting differential matrix in the transform space may be banded [29,142]. 
If we transform the derivative matrix d back to the physical space with transform 

matrix T , we obtain the Q D M derivative matrix D = T d T T , that is. 

N N N 

Dv = E E Bn(Xl)^/u7z[J2 wkFn(xk)F^(xk)}Fm(x3)^IJ]. (2.2.22) 
n=l m=l k=l 

The sum over n yields 6ik and the sum over k can subsequently be performed and one 

obtains Dij given by Eq. (2.2.18) 
The second derivative matrix A ^ 2 ' or D^ 2 ' can be obtained simply by multiplying it 

by itself. It is easy to show that the matrix elements for A ^ 2 ' and D^2) satisfies 

Ag> = y/wj/wM?- (2-2.23) 

The application to differential equations is based on the algorithm for numerical 

differentiation, defined by, 
df N 

lf-U*, = EAvf(x

3), (2-2.24) 
i=i 

or 
df N 

V^[^],=,, = E A , / ( ^ ) v % , (2.2,25) 
where the matrix A„ and are defined in equations (2.2.11) and (2.2.18) respectively. 

Generally speaking, the matrix representation of a differential equation can be written 

in a simple way by replacing derivatives with Aij or Dij and function with their values 

at set of points Xi. The advantage of introducing the new derivative matrix D will be 

demonstrated later in this chapter and in the applications as shown in chapter 3 and 

chapter 4. 
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The Q D M method is analogous to the collocation method by using the classical sets of 

polynomials (e.g. Jacobi polynomial, Hermite polynomial, etc.) and their corresponding 

weight functions to generate weights and points to construct the differential matrix. The 

advantage of the Q D M over the traditional pseudospectral method is that it allows the use 

of arbitrary orthogonal polynomial basis sets or equivalently arbitrary weight functions. 

This give us a much wider choice of the collocation points and weights to apply to a 

specific problem. The main idea is to choose a weight function related to the physical 

nature of the problem to be solved such that the solution converges rapidly. 

2.2.2 Genera t ion of orthogonal polynomials , quadrature weights and points 

There have been several discussions on the generation of a set of polynomials orthogonal 

to each other with respect to some weight function w(x). This is a numerically unstable 

problem [143,75] and a practical approach, referred to as the discretized Stieltjes's pro

cedure, has been provided recently by Gautschi [134]. 

Basis set generation; The Stieltjes's procedure: 

The generation of a set of polynomials orthogonal with respect to some weight function 

w(x) has been discussed in several texts [135] and papers [71,72,75]. For a nonclassical 

weight function, the usual Schmidt procedure [144] which involves orthogonalization of a 

given member of the set to all the functions of lower order and then normalized, is highly 

unstable due to roundoff errors and is not practical. The Schmidt procedure is analogous 

to methods based on the moments of the weight function. The best a/pproach is one 

based on the three term recurrence relation of the polynomials {Qn{x)} with Qo = 1, 

given by 

Qn+i{x) = (x - an)Qn(x) - BnQn-^x). (2.2.26) 
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It can be shown that the two recurrence relations Eq.(2.1.5) and Eq.(2.2.26) are 

equivalent and satisfy 

cr, n 
Pv 1 (2.2.27) 

Pn = — , (2.2.28) 

PnPn-l 
anc 

Q n = — • (2.2.29) 
Pn-\pn-1---P\ 

For the classical polynomials, the coefficients a n and Pn are known and exact. For 

example, a n = 0, Pi = 1/3 and Pn = n 2 / (4n 2 — 1) (n > 1) for the Legendre case; a n = 0, 

Pi = 1/2 and Pn = 1/4 (n > 1) for the Chebyshev case; and a n = 0, pi = 1/2 and 

Pn = n / 2 (n > 1) for the Hermite case. The polynomials generated by Eq. (2.2.26) are 

not normalized. The corresponding normalized polynomials P n ( x ) = <5n(^)/v

/7n satisfy 

the recurrence relation 

x P n ( x ) = ^/Pn+iPn+1(x) + a n P n ( x ) + ^JPnPn_,(x), (2.2.30) 

where the normalization factors are given by 

7n = / w ( x ) Q 2

n ( x ) d x . (2.2.31) 

For the Q D M , we are interested in the non-classical sets of orthogonal polynomials 

and a n , Pn are usually unknown and calculated numerically. The recurrence coefficients 

in Eq. (2.2.26) are given by 

_ J w ( x ) x Q n ( x ) d x 
a n ~ f w(x)Ql(x)dx > K L L i l ) 

and 
f w ( x ) Q l ( x ) d x 

/ w ( x ) Q 2

n _ 1 ( X ) d y 
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One of the practical approaches of numerical computation of an and Bn in Eqs. (2.2.32) 

and (2.2.33) is the Stieltjes's procedure introduced by Gautschi [134]. The method in

volves the accurate calculation of the integrals in Eqs. (2.2.32) and (2.2.33) by subdivid

ing the domain of interest into many subdomains and evaluating the contribution from 

each subdomain with a high order quadrature. Gautschi discusses the use of Gauss-

Legendre and Feijer quadrature rules. The calculation begins with Q - i = 0, Q0 = 1 and 
ao = A) = 0. Equation (2.2.26) can then be used to generate Qi and then ot\ and B\ with 

Eqs. (2.2.32) and (2.2.33). In this way all the recurrence coefficients are calculated. The 

quadrature weights and points are calculated as discussed elsewhere [135,75]. The dis

cretized Stieltjes's procedure was used to calculate the recurrence coefficients for several 

nonclassical weight functions reported in previous papers. It is found to work remarkably 

well as long as care is taken to ensure the accuracy of the integrals by a judicious choice 

for the number of subdivisions and the order of the quadrature in each interval. 

Since there is no analytic solution of an and 3n for most non-classical recurrence 

relations, the accuracy of the numerical calculation of an and Bn will be essential to the 

later calculation of quadrature points and weights as well as the derivative matrices. To 

investigate the accuracy of the Stieltjes's procedure we calculate the an and 8n for up 

to 100 quadrature points for the classical polynomials with the Stieltjes's procedure and 

compare the results with the known analytic solution. 

The maximum errors E°° in an and Bn computed by Stieltjes's procedure for several 

classical polynomials with TV quadrature points are shown in Table 2.2. The error curves 

for the an and Bn with N = 50 is given in Fig. 2.8. As shown in the table, the 

maximum errors in Bn for both Legendre and Hermite polynomials and in an for all the 

polynomials are very small and at most O(10~ 1 3). The maximum error in Bn for the 

Chebyshev polynomials are 7.76 x 10~5. It is unchanged with changing because the 

maximum error eventually occurs at the first coefficient B^. The reduced accuracy of 
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N 

Chebyshev 
5 9 528058591081317e- 17 7 763988590681060e- 05 
10 5 386806816078257e- 16 7 763988590681060e- 05 
20 9 710341644410283e- 16 7 763988590681060e- 05 
50 1 805638645361598e- 15 7 763988590681060e- 05 
100 2 490836730411662e- 15 7 763988590681060e- 05 

Legendre 
5 7 070397677170780e- 16 3 053113317719181e- 15 
10 7 070397677170780e- 16 3 053113317719181e- 15 
50 4 679789671731484e- 15 3 053113317719181e- 15 
100 6 021950962055382e- 15 3 164135620181696e- 15 

Hermite 
5 4 996208974320000e- 15 9 103828801930001e- 15 
10 4 996208974320000e- 15 4 840572387370000e- 14 
50 2 609915956900000e- 14 3 375077994860000e- 13 
70 5 530643324450000e- 14 4 760636329590000e- 13 
100 5 530643324450000e- 14. 7 034373084020000e- 13 

Table 2.2: Maximum error in ctn and f3n calculated by the Stieltjes's procedure. 

the recurrence coefficients /3n's for the Chebyshev polynomial is due to the less accurate 

intergrations. Recall the weight function for Chebyshev polynomial is w(x) = m 

interval [-1,1] and it is divergent as x tends to the end points. When one integrates a 

polynomial with respect to this weight function numerically, a large round-off error is 

involved and results in poor accuracy of the integration. For all the computations, the 

maximum errors are insensitive to the changes in N . 

Theoretically, for polynomials defined in an infinite domain, the integrals for a's and 

/3's are evaluated in the entire domain. When numerical integration is applied, one has 

to truncate the domain into a finite one. If the truncated domain for the integration is 
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.20.00 1 1 ' ' ' 1 1 1 ' 1 

0.00 10.00 20.00 30.00 40.00 50.00 
n 

Figure 2.8: Errors in an and Bn calculated by the Stieltjes's procedure with N=50. The 
dash dotted curve is for Chebyshev polynomials, the dashed curve is for the Legendre 
polynomials and the solid curve is for the Hermite polynomials. 
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N E°° 
01 N 

[-20, 20] 
5 4 996208974320000e-15 9.103828801930001e-15 
10 4 996208974320000e-15 4.840572387370000e-14 
50 2 609915956900000e- 14 3.375077994860000e-13 
70 5 530643324450000e- 14 4.760636329590000e-13 
90 5 530643324450000e- 14 7.034373084020000e-13 
100 5 530643324450000e- 14 7.034373084020000e-13 

[-5, 5] 
5 2 346651055977530e- 15 7.246219748680005e-06 
10 1 263572315381132e- 14 2.919377614958041e-02 
50 3 598600987376839e- 14 1.874888749856461e+01 
100 8 320267776295266e- 14 4.374979589455547e+01 

[-50, 50] 
5 6 658312592764631e- 16 1.154631945610163e-14 
10 1 382306109940420e- 15 3.907985046680551e-14 
50 1 895834758617558e- 14 1.492139745096210e-13 
70 3 565939958333915e- 14 2.060573933704291e-13 

>91 overflow 

Table 2.3: Maximum error in the numerical solution of an and Bn for the Hermite poly
nomials on three intervals [-20,20], [-5, 5] and [-50, 50]. 
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too small, the truncation error for the integration is large and results in low accuracy for 

the calculation of an and fin. If the domain is too large, the integrals can be very large 

and cause number overflow for the computer. Careful choice of domain cutoff for the 

numerical integration is therefore needed for the accuracy and stability of the results for 

the numerical calculation of an and /3n. The computer overflow in the integration of low 

degree polynomials is rare so that it is not necessary a worry if number of quadrature 

points required is not large. The error estimation of an and ftn for the Hermite polyno

mials calculated by Stieltjes's procedure with several choices of integration intervals are 

given in Table 2.3. 

Ca lcu la t ion of quadrature points and weights 

If the an and f3n for the recurrence relation are known, the quadrature points which 

are the roots of the Nth polynomial constructed from the recurrence can be calculated 

by diagonalizing the tri-diagonal matrix [136] 

/ 

J = 
0 y/p\ a2 

0 0 

0 0 

0 0 

\ 

V 

(2.2.34) 

0 0 0 ... ayy-i /SJV-I 

0 0 0 ... PN-I CJV J 

The points are the eigenvalues of the matrix of 3. The corresponding weights are given 

in the terms of the first component of the ith normalized eigenvector of the matrix J 

[136,134]. 

In Table 2.4 we give the points and weights of several previous cases studied in the 

above section. In order to study the effect of the error of the calculated an and /3n, we 
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N poo poo 

Chebyshev 
5 2.954894016793386e-05 
20 7.757441346845083e-06 
50 3.121430352637233e-06 
100 1.569879214957659e-06 

7.806354429684692e-05 
2.321553559997414e-05 
9.635848417718917e-06 
4.898200317991069e-06 

Legendre 
5 2.220446049250313e-
50 1.415534356397075& 
100 3.885780586188049e-

15 3.774758283725532e-15 
15 5.384581669432010e-15 
15 7.507883204027621e-15 

Hermite 
[-20, 20] 

5 4.440892098500626e-
50 5.773159728050815e-
70 7.460698725481052e-
100 9.592326932761353e-

15 1.032507412901395e-14 
14 1.271205363195804e-14 
14 1.068589661201713e-14 
14 1.276756478318930e-14 

[-5, 5] 
5 1.495381356519943e-07 5.903613908841976e-08 
50 4.192398352706889e+00 5.962550119618734e-02 
100 8.408353932924946e+00 8.056316459982088e-02 

[-50, 50] 
5 2.664535259100376e-15 2.109423746787797e-15 
50 5.417888360170763e-14 5.828670879282073e-15 
70 4.618527782440652e-14 5.190292640122607e-15 

Table 2.4: Maximum error for the numerical approximation of points and weights. 
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0.80 1.20 1.60 2.00 
l o g 1 0 ( N ) 

Figure 2.9: Minimum spacing of points versus number of quadrature points N. The dash 
dotted curve is for Chebyshev points; the dashed curve is for Legendre points and the 
solid curve is for Hermite points. 
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compare the results calculated directly from the exact an and 8n, as well as the exact 

points and weights where it is applicable. • 

The results from Table 2.4 show no sign of the extra error involved for the calculated 

points and weights except the error from the errors of an and 8. If we can produce the 

recurrence coefficient accurately enough, the accuracy of the points and weights will not 

be affected. 

The minimum spacing between adjacent quadrature points is plotted in Figure 2.9, 

The minimum spacing satisfies Aminx ~ 9.87/N2, Aminx « 12.2/A^2, and Aminx & 

2.22/v^/V for the Chebyshev, Legendre, and Hermite points, respectively. Again, the 

results show that the minimum spacing is decreased at rate of 0(1/N2) for the Chebyshev 

and Legendre points and 0(1 /s/N) for the Hermite points as number of quadrature points 

N increases. 

2.3 T i m e integration 

In most applications to the PDE, the spatial discretization uses the Q D M but the tem

poral discretization uses conventional finite difference. 

Consider a time dependent P D E 

| ^ = / (u , i ) <>0, (2.3.1) 

where the general (linear or nonlinear) operator / contains the spatial part of the P D E . 

After discretizing the spatial operator by the Q D M , the semi-discretized version of Eq. 

(2.3.1) becomes 

where U(t) is the set of grid values of u(x,t), F is the discretization representation of 

the operator / . In this section, we confine our discuss to the linearized version of (2.3.2), 
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i.e., we consider 

ft = L U ' <2-3-3» 

where L is the matrix resulting from the linearization of (2.3.2). 

If F(U) is linear, i.e., L = F, and L is a diagonalizable matrix, we can solve Eq. 

(2.3.3) by eigenfunction expansion. 

Eigenfunction expansion 
The eigenvalue problem of Eq. (2.3.3) is defined by 

L(f>n(x) = -en<f)n(x), (2.3.4) 

where en are the eigenvalues and 4>n(x) are the eigenfunctions. The linear time-dependent 

equation, admits a solution of the form 

oo 
u(x,t) = 5>ne-e"Vn(x), (2.3.5) 

71=0 

where the coefficients cn are determined from the initial condition, u(x, 0), and are given 

by 

cn = J u(x,0)<f>n(x)dx. (2.3.6) 

In actual calculations, the solution u(x,t) given by Eq. (2.3.5) must be truncated at 

n = JV, and evaluated at quadrature points. It is essential that the lower eigenvalues 

and eigenfunctions converge accurately and rapidly in order to achieve a fast accurate 

approximation of the solution. 

Since no numerical approximation involved in temporal variable t, the accuracy of the 

solution of Eq. (2.3.3) is of the same order as the numerical method applied to approx

imate the differential operator L. In the case that the eigenvalues are easy to calculate 

accurately and converge very fast, the eigenfunction expansion technique is a super choice 
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for the solution of the time dependent problem. The convergence could be difficult at 

small times depending on the choice of the initial condition. For most applications to 

solve time dependent problem, temporal discretization is a more popular approach. 

Tempora l discret izat ion 

Most temporal discretization uses a finite difference method. The eigenvalue spectrum 

of the discretization matrix in space determines the stability of the time-discretization. 

The region of the absolute stability of a numerical method is defined for the problem 

f = w <2 3 7> 

to be the set of all XAt such that \\U\ \ is bounded as t —• oo. A method is called A-stable 

if the region of the absolute stability includes the region Re{\At} < 0. 

The most simple and popular schemes widely used in the applications are the first 

order forward Euler (FE) and backward Euler (BE) method, as well as the second or

der Crank-Nicolson (CN) method. The discretization formula for Eq. (2.3.3) of these 

methods are as following: for the forward Euler method, 

jjn+l = Tjn + A t L n ^ g 

For the backward Euler method, 

Un+1 = Un + AtLn+\ (2.3.9) 

and for the Crank-Nicolson method, 

Tjn+l =zrjn + }-&t[Ln+1 + Ln}. (2.3.10) 

The F E method is an explicit method and the absolute stability region is |1 + A A i | < 1. 

If the eigenvalue A is real, then —2 < XAt < 0. Both F E and C N are implicit methods 

and are A-stable, i.e. they are absolutely stable in the entire left-half plane. 
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N QDM1 QDM2 QDM3 QDM4 
4 7.08(-03) 3.11(-03) 9.26(-02) 9.62(-02) 
6 1.59(-02) 4.47(-03) 9.26(-03) 1.18(-02) 
8 5.25(-04) 1.99(-04) 4.01(-04) 6.10(-04) 
10 2.66(-05) 5.43(-06) 1.04(-05) 1.85(-05) 
12 4.43(-07) 9.86(-08) 1.84(-07) 3.75(-07) 
14 8.77(-09) 1.29(-09) 2.36(-09) 5.43(-09) 
16 8.59(-ll) 1.28(-11) 2.31(-11) 5.90(-ll) 
20 1.20(-14) 4.44(-15) 3.48(-15) 6.78(-15) 
25 4.95(-14) 7.35(-15) 1.05(-14) 1.23(-14) 

Table 2.5: Standard error for the numerical approximation of u" = sin(7ra;) for the four 
Q D M methods. 

The detailed discussion of these methods and other high order and more complicated 

numerical schemes are out of the scope of this thesis and can be found in standard 

references [1-6]. 

2.4 N u m e r i c a l tests and results 

In this section, we give three analytic examples to study the properties of the Q D M . 

2.4.1 One-dimensional Poisson equation 

The first example we discuss is the one-dimensional Poisson problem in section 2.1 defined 

by Eq. (2.1.12). We compared the convergence of the solution of the Poisson problem 

between the classical Legendre method and a second order FD method. Since the in

tention of the Q D M is to use nonclassical base functions, in this section we applied four 

nonclassical polynomial sets based on four weight functions. They are w x ( x ) = sin 2(7roj), 

w>2(x) — ex2, w z ( x ) = e~x2, and 104(2) = 1 — x 2 . We refer to the Q D M based on these 

weight functions as QDM1, QDM2, QDM3 and QDM4, respectively. 

The standard errors of the numerical solution for the four methods are given in Table 
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2.5. A l l the methods work remarkly well and the rate of convergence is exponential. With 

20 quadrature points, the numerical approximations of the solution is at least 14 digits 

accurate. The rate of convergence for the Q D M competes well with that for the classical 

Legendre method and the method is much faster than the FD method (see Table 2.1). 

We also study the largest eigenvalue of the derivative operators based on the nonclassical 

Q D M , the result is similar to the classical methods, that is, the largest eigenvalue of the 

first derivative matrix grows like 0(N2) and of the second derivative matrix grows like 

2.4.2 A n analytic example 

In order to demonstrate the applicability of the Q D M and some of its properties, we 

consider a time-dependent Fokker-Planck equation defined by 

The physical interpretation of P(x,t) is the probability density function. It is defined in 

x £ (—00,00), and satisfies P(±oo ,£)=0 . With a ^-function initial condition at xo, Eq. 

(2.4.1) has an analytic solution 

0{N4). 

where 

(2.4.2) 

where z = e 1 / 4 . The equilibrium solution as t —>• 00 is given by 

(2.4,4) 

If we set P(x,t) = Po(x)g(x,t), then the equation for g(x,t) is given by, 

(2.4.5) 

Lg(x,t), 
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It is easily shown that the operator L is self-adjoint with respect to the equilibrium so

lution PQ{X). 

1. Eigenvalue problem. 

First, we consider the eigenvalue problem of Eq. (2.4.5): 

-L<f>n(x) = [-Aix)-^) + B(X)^}MX) = -KMX), (2-4.6) 

where A n and <f)n are the eigenvalues and eigenfunctions, respectively. The exact eigen

values of Eq. (2.4.6) are 

A n = n/4, 7i = 0, l ,2 , . . . . (2.4.7) 

Three set of polynomials are applied in the Q D M to solve the eigenvalue problem Eq. 

(2.4.6). They are scaled Legendre polynomials with weight function w\(x) = 1 in a finite 

interval, scaled Hermite polynomials with weight function w(x) = e~4x'2, and nonclassical 

polynomials with weight function w(x) = P o ( x ) . We refer to the methods based on these 

polynomials as Legendre, Hermite, and Q D M , respectively. 

The discretization matrix L N of the differential operator in Eq. (2.4.4) is in the form 

- L N = - A A + BA 2 (2.4.8) 

where, A and B are the diagonal coefficient matrices of A(x) and B(x), A is the derivative 

matrix with its entries defined in Eq. (2.2.11). 

If we use the equilibrium solution Po(x) as weight function, the Galerkin matrix L N 

of the operator L can be obtained in a simple form 

L N = BDD T, ' (2.4.9) 

where D is the modified Q D M derivative matrix with its elements defined in Eq. (2.2.18). 

The detailed derivation of the matrix is given in Chapter 3. We refer this approach of 
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N Ai A 5 Aio Al5 A20 

Exact 0.25 1.25 2.5 3.75 5.0 

Error 
Hermite 

4 .218(-01) 
6 .123(-02) .465(+01) 
10 .592(-06) .524(+00) .186(+02) 
15 .205(-12) .682(-02) .278(+01) .319(+02) 
20 .104(-13) .889(-04) .126(+00) .616E+01) .458(4-02) 
25 .905(-14) .146(-07) .504(-01) .654(+00) .103(4-02) 
30 .133(-13) .184(-08) .192(-01) .919(+00) .171(4-01) 
40 .508(-13) .389(-12) .681(-04) .574(+00) .168(4-01) 
50 .143(-13) .913(-13) .777(-07) .285(+00) .141(4-01) 

Q D M 
4 .205(-02) 
6 .467(-04) .204(+00) 
10 .530(-08) .242(-02) .576(+01) 
15 .722(-15) .308(-05) .282(+00) .124(+02) 
20 .999(-15) .212(-07) .104(-01) .140(4-01) .213(4-02) 
25 .000(4-00) .206(-ll) .506(-04) .230(4-00) .358(4-02) 
30 .666(-15) .422(-14) .453(-07) .152(-01) .100(4-01) 
40 .555(-15) .666(-14) .151(-13) .767(-06) .227(-01) 
50 .355(-14) .000(+00) .444(-14) .439(-12) .577(-05) 

M Q D M 
4 .154(-03) 
6 .257(-05) .388(+00) 
10 .347(-07) .216(-01) .306(+01) 
15 .158E-08) .180(-06) .408(+00) .808(4-01) 
20 .140(-11) .999(-09) .447(-02) .151(4-01) .153(4-02) 
25 .934(-13) .107(-11) .193(-03) .402(-02) .369(4-01) 
30 .433(-14) .102(-13) .163(-07) .315(-01) .559(4-00) 
40 .278(-15) .666(-15) .431(-13) .312(-05) .759(-02) 
50 .472(-14) .688(-14) .160(-13) .276(-ll) .240(-05) 

Table 2.6: Numerical error in the eigenvalues of the analytic example for the Hermite 
and Q D M methods. 
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N Ai A 5 Aio Al5 A20 

Exact 0.25 1.25 2.5 3.75 5.0 
Error 

Legendrea 

4 .295(-02) 
6 .102(-03) .500(+00) 
10 .143(-06) .230(+00) .845(4-01) 
15 .105(-11) .192(-01) .259(4-01) .207(4-02) 
20 .156(-13) .140(-02) .978(4-00) .823(4-01) .386(4-02) 
25 .354(-10) .125(-04) .395(4-00) .453(4-01) .174(4-02) 
30 .491(-08) .242(-06) .854(-01) .268(4-01) .113(4-02) 
40 .462(-04) .691(-03) .128(-02) .672(4-00) .466(4-02) 
50 .414(+00) .341(+00) .583(4-00) .523(4-00) .137(4-01) 

Legendreb 

4 .250(-01) 
6 .262(-02) .761(+00) 
10 .468(-06) .292(+00) .186(4-01) 
15 .200(-12) .568(-01) .928(4-00) .606(4-01) 
20 .247(-14) .566(-05) .424(4-00) .128(4-01) .127(4-02) 
25 .164(-14) .143(-07) .656(-01) .796(4-00) .118(4-02) 
30 .239(-14) .770(-ll) .199(-03) .845(-02) .511(4-01) 
40 .711(-14) .134(-12) .128(-09) .109(-03) .440(-00) 
50 .799(-14) .222(-12) .695(-12) .102(-05) .728(-00) 

Legendre0 

4 .105(+00) 
6 .313(-01) .901(+00) 
10 .297(-04) .739(+00) .255(4-00) 
15 .137(-09) .494(4-00) .168(4-01) .133(4-01) 
20 .927(-14) .314(4-00) .139(4-01) .257(4-01) .424(4-01) 
25 .255(-14) .465(-01) .109(4-01) .229(4-01) .343(4-01) 
30 .555(-14) .942(-05) .916(4-00) .194(4-01) .317(4-01) 
40 .389(-15) .443(-ll) .388(4-00) .135(4-01) .250(4-01) 
50 .178(-14) .254(-10) .216(-05) .841(4-00) .183(4-01) 

Legendre points in a (-2,2); 6 (-3,3); c (-4,4). 

Table 2.7: Numerical error in the eigenvalues of the analytic example for the Legendre 
method. 
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discretization as modified Q D M (MQDM). The main advantage of using the M Q D M 

representation is that the differential matrix is simple to construct. The matrix repre

sentative is symmetric and the eigenvalues are all real. 

The matrix representations in Eq. (2.4.8) and Eq. (2.4.9) are diagonalized to give the 

approximate eigenvalues and eigenfunctions. The convergence of the eigenvalue A 1 ; A 5 , 

Aio, A 1 5 , and A2o is shown in Table 2.6 and 2.7 for each method. The exact eigenvalues 

are given in the top of the tables. Table 2.6 compares the errors of these eigenvalues 

calculated by the Hermite, Q D M and M Q D M . As we can see from the table, Q D M and 

M Q D M give relatively the same rate of convergence for most eigenvalues, and the error 

of eigenvalues decays very fast. As A^ increases, the convergence of the first eigenvalue 

Ai for the M Q D M is slightly slower than that for the Q D M . To obtain 14 decimal places 

accuracy of Ai it requires A^ = 30 points for the M Q D M in comparison with N = 15 points 

for the Q D M . The Hermite method calculates small eigenvalues (e.g. A 1 ; A 5 ) very well 

but the results for the larger eigenvalues (e.g. A i 5 , A2o) are not as good. The eigenvalue 

A20 is only accurate to 0(1) for the Hermite method with A^ = 50 in comparison with 

O(10~5) for the Q D M and M Q D M . 

For the Q D M , the points spread over the interval (—00,00). As N increases, the 

domain is getting larger. Since we use the equilibrium function Po(x) as the weight 

function, the resulting domain reflects the natural property of the solution. At the 

boundary points, the rate of decay of the the solution is the same as the exact solution. 

We may refer to this domain as natural domain of the problem. With the same number 

of quadrature points on a larger domain, some points are beyond the natural domain 

and can not contribute to improve the accuracy. Therefore the rate of convergence is 

expected to be slower. If the domain is much smaller than the natural domain, the 

boundary condition may not be accurately applied, which results in low accuracy in the 

solution. Therefore, choosing the weight function is very crucial for the convergence of 
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Figure 2.10: Numerical approximation of the eigenvalues for the analytic F P E problem. 
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N Q D M Hemite 
4 (-1.834, 1.834) (-1.010, 1.010) 
6 (-2.077, 2.077) (-1.326, 1.326) 
10 (-2.375, 2.375) (-1.834, 1.834) 
15 (-2.605, 2.605) (-2.344, 2.344) 
20 (-2.764, 2.764) (-2.775, 2.775) 
25 (-2.885, 2.885) (-3.155, 3.155) 
30 (-2.983, 2.983) (-3.498, 3.498) 
40 (-3.136, 3.136) (-4.106, 4.106) 
50 (-3.252, 3.252) (-4.632, 4.632) 

T a b l e 2.8: D o m a i n generated f r o m the Q D M and H e r m i t e weight func t ion for the a n a l y t i c 
F P E e x a m p l e . 

the so lu t i on . W e w i l l discuss more about the choice of the weight func t ion i n C h a p t e r 3 

a n d C h a p t e r 4. T a b l e 2.8 gives the domains for the Q D M and H e r m i t e m e t h o d versus 

n u m b e r of g r i d . 

T o a p p l y the Legendre po in t s , one has to t runca te the inf in i te d o m a i n ( —oo, o o ) i n to a 

f in i te d o m a i n (—c, c) . T a b l e 2.7 gives the n u m e r i c a l error of these eigenvalues ca l cu l a t ed 

by Legendre m e t h o d i n the intervals a: (-2,2), b : (-3,3), and c: (-4,4), respect ive ly . 

W e refer to the above three Legendre me thods as Legendre" , Legendre 6 a n d L e g e n d r e c 

m e t h o d , respect ive ly . A s we can see f rom the table , the Legendre 6 m e t h o d on in t e rva l 

(-3,3) is the best a m o n g the three Legendre methods . A s N increase, the error of the 

eigenvalues ca l cu l a t ed b y the Legendre" m e t h o d decays i n i t i a l l y , and t h e n increase. T h i s 

is because the t r u n c a t e d d o m a i n is too s m a l l , and w i t h N increas ing , the t r u n c a t i o n 

error caused b y the b o u n d a r y cut off accumula tes and is ge t t ing larger and larger. T h e 

L e g e n d r e 0 m e t h o d is i n general slower t h a n Legendre 6 m e t h o d , since the d o m a i n (-4,4) 

is w i d e r t h a n i t requires and some points near the b o u n d a r y are not c o n t r i b u t i n g . In 

c o m p a r i s o n w i t h the Q D M and M Q D M , the convergence of the L e g e n d r e 6 m e t h o d is 
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slower, especially for the large eigenvalues, but it is better than the Hermite method. 

For the Hermite and. Legendre methods, some of the eigenvalues of the differential 

matrices are imaginary as shown in Fig. 2.10 with N — 8 and N = 32. For the Q D M and 

M Q D M , all the eigenvalues are real. This property is obviously important with regard 

to C P U time and memory, especially for higher dimensional problems. 

Fig. 2.11 compares the largest eigenvalues of the differential matrix versus number of 

quadrature points for each method. The largest eigenvalue grows like C^TV 1- 7 6) for the 

Q D M , 0(A^ 1- 8 5) for the M Q D M , C^/V 1- 2) for the Hermite, and 0(N2) for the Legendre 

method as ./V increases (N < 100). It worth to point out that, although the largest 

eigenvalue of the second derivative matrix for the Legendre method grows at much faster 

pace ( 0(N4)), this property is not shown in this application. 

2. Time dependent solution 

We intend to solve the Eq. (2.4.1) with a ^-function at x0 as initial condition. The 

application of the eigenvalue expansion stated in section 2.3 in the solution the the time-

dependent problem with x0 chosen as one of the quadrature points is straight forward. In 

this section our interest is to apply the temporal propagation techniques such as forward 

Euler or/and backward Euler method to solve the time-dependent the F P E problem. 

We set x0 = 1. Since it is very hard to discretize the ^-function numerically based on 

the quadrature points, in order to compare the numerical result with the exact solution, 

we use the exact solution at time t= l as the initial distribution. Both forward and 

backward Euler are used to solve the problem. Since the real part of the eigenvalues 

are all negative for the Q D M , Hermite and Legendre differential matrices, backward 

Euler method is always stable, the choice of the time step is depended on the accuracy 

requirement of the solution. For the forward Euler method, the time step A t has to 

satisfy the condition A t < 2 / \ m a x , where A m a x is the largest eigenvalue of the differential 



Figure 2.11: Largest numerical eigenvalues for the analytic F P E example. The results 
with the Q D M , M Q D M , Hermite and Legendre are denoted by solid lined with asterisks, 
crosses, solid circles and diamonds, respectively. 
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N Q D M Hermite Legendre 
10 0.24 0.094 0.45 
15 0.12 0.056 0.20 
20 0.075 0.039 0.11 
25 0.051 0.030 0.071 
30 0.037 0.024 0.048 
35 0.028 0.020 0.035 
40 0.022 0.017 0.026 
50 0.015 0.013 0.016 
60 0.011 0.010 0.011 
70 0.0085 0.0093 0.0084 
80 0.0067 0.0079 0.0063 
90 0.0054 0.0070 0.0050 

Table 2.9: Maximum time step in the F E time integration. 

matrix. Table 2.9 gives the maximum time step for the forward Euler method for the 

Q D M , Hermite and Legendre differential matrix. 

The numerical solution of Eq. (2.4.1) solved by the forward Euler method with 

A i = 0.01 is given in Fig. 2.12 and Fig. 2.13 with N = 6 and TV = 15 quadrature points 

respectively. In the figures, the solid line is the exact solution. As we can see from Fig. 

2.12, with only six quadrature points, the Q D M approximates the exact solution very 

well. Among the three discretization methods in spatial dimension, the Q D M approxi

mation is the best. The Legendre method is better than the Hermite method, but still a 

little bit off the exact solution. Hermite method approximate poorly to the exact solu

tion for large times. With increasing number of quadrature points to = 15 (Fig. 13), 

all the numerical approximations can not distinguish from the exact solution in the figure. 

3. An equivalent problem 

If we make a simple change of variable y = \ sinh x and let P(y, t) — \ cosh xP(x, t) 
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Figure 2.12: Numerical solution of the time dependent F P E with N = 6. The solid lines 
are the exact solution. The plus signs are the results with the Q D M , the asterisks are the 
result for the Legendre method and the circles are the results with the Hermite method. 
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Figure 2.13: Numerical solution of the time dependent F P E with TV = 15. The solid 
lines are the exact solution. The plus signs are the results with the Q D M , the asterisks 
are the result for the Legendre method and the circles are the results with the Hermite 
method. 



Chapter 2. The Quadrature Discretization Method (QDM) 58 

in Eq. (2.4.1) and (2.4.2), one finds the equation, 

dP(y,t) = l,dP{y,t) ldP\y,t) 
dt 4 l dy 2 dy2 

(2.4.10) 

The equilibrium solution of this equation is 

dP(y,t) = ldP(y,t) ldP2(y,t) 
dt 4 dy 8 dy2 

The eigenvalues of its eigen-problem are rc/4, (n = 0 , 1 , N ) and the eigenfunctions are 

the normalized Hermite polynomials Hn(y). We solve the eigen-problem numerically by 

the Q D M and M Q D M with w(y) = Po(y) and Legendre methods in the interval (-6,6). 

Since the eigenfunctions are polynomials, we expect accurate results in numerical ap

proximations. Table 2.10 gives the convergence of the eigenvalues for the three methods. 

For the Q D M and M Q D M , the solutions are exact. While for the Legendre method, 

the eigenvalues are exact for small N and the error is getting larger with increasing N 

after a certain level of N. The poor approximations are a result of the domain cutoff 

for the Legendre method. Furthermore we should point out that, the Galerkin matrix 

in transform space (see Eq. (3.2.12), Chapter 3 for detail) is diagonal with the Hermite 

polynomials as basis set. The diagonal elements are the eigenvalues of the eigen-problem 

of Eq. (2.4.12). The eigenfunction matrix is the transform matrix defined in Eq. (2.2.15). 

In comparison with the current eigen-problem, the convergence of the eigenvalues of 

the eigen-problem Eq. (2.4.6) is much slower because the eigenfunctions of the problem 

are not polynomials. 

Since the Q D M and M Q D M are exact for the problem, it is easy to know that the 

largest eigenvalue is O(N). For the Legendre method we applied, the largest eigenvalue 



Chapter 2. The Quadrature Discretization Method (QDM) 

N domain A i A 5 Aio Al5 A20 
Exact 

0.25 1.25 2.5 3.75 5.0 

Error 

Hermite 
4 (-2.020, 2.020) .555(-16) 
10 (-3.668, 3.668) .222(-15) .222(-15) .111(-13) 
20 (-5.550, 5.550) .111(-14) .266(-14) .311(-14) .755(-14) .109(-12) 
30 (-6.996, 6.996) .178(-14) .155(-14) .666(-14) .933(-14) .400(-13) 
40 (-8.213, 8.213) .888(-15) .799(-14) .933(-14) .933(-14) .320(-13) 
50 (-9.284, 9.284) .355(-14) .666(-15) .266(-14) .355(-14) .258(-13) 
70 (-11.14, 11.14) .160(-13) .622(-14) .311(-14) .444(-14) .977(-14) 
90 (-12.74, 12.74) .738(-14) .533(-14) .191(-13) .933(-14) .888(-15) 

Legendre 
4 (-6, 6) .111(-15) 
10 .222(-15) .205(-12) .129(-11) 
20 .833(-15) .566(-12) .183(-09) .141(-09) .768(-10) 
30 .350(-14) .169(-12) .133(-09) .317(-08) .549(-07) 
40 .173(-13) .187(-12) .223(-09) .647(-08) .342(-06) 
50 .533(-14) .571(-13) .127(-10) .331(-07) .128(-05) 
70 .279(-13) .400(-09) .250(4-00) .496(4-00) .994(4-00) 
90 .192(-13) .240(+01) .449(4-01) .100(4-01) .979(4-00) 

Table 2.10: Comparison of the numerical error of the eigenvalues of E q . (2.4.12) for 
Hermite and the Legendre methods. 
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is marginally O(N). One should notice that the largest eigenvalue approximated by the 

Legendre method for this problem is much smaller than the largest eigenvalue of the 

second derivatives (which is 0(N4)). It occurs to us that the condition of a differential 

matrix is related to both differential operator and boundary conditions. It doesn't have 

to be of the same order as of the highest derivative in the differential operator. 

For the time integration by the explicit forward Euler method, the time step restriction 

should be OiN'1). 

As we recall the maximum time step is around 0(N2) for the time integration for the 

solution of Eq. (4.2.1) and (4.2.2). 

For the above examples, it is interesting to point out that although the condition 

number (or the largest eigenvalue) of the first and second derivative matrices depends 

on the minimum spacing of the grid as we discussed previously, it doesn't seem true for 

the differential operator. For the Legendre points, the minimum spacing is 0 ( iV 2 ) , and 

the condition number of the second derivative matrix is 0(N4). However, the condition 

numbers of the differential matrix representatives for the above examples are 0(N2) and 

O(N), respectively. 

2.4.3 Three-dimensional Poisson problems 

In one dimensional examples, we already show that the Q D M provides very high accuracy 

and fast convergence in the solution of differential equations. In comparison with the 

FD method, the Q D M usually requires much coarser grid of points for the solution to 

converge to the same accuracy. This indicates a great advantage of the Q D M in solving 

high dimensional problems. Our interest in this section is to solve the three dimensional 

Poisson equation of the form, 

(2.4.13) 
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f(x,y,z) Boundary Condition u(x,y,z) 

A 3g(^+J/+2) exact solution e(x+y+z) 

B -207T 2^(x, y, z)* + sin(47ra;) sin(27ry)a(z)* u\Bc = 0 

* <j>(x, y, z) = sin(47ra;) sm(2%y)[l - e - 5 ^ - 1 ) ] , a(z) = 10(1 - l O ^ e - 5 ^ 2 - 1 ) ] . 

Table 2.11: Examples of Poisson problems 

subject to Dirichlet boundary conditions. The specific examples in Table 2.11 are con

sidered. 

Numerical solution of example A is calculated by a second order central differencing 

FD method and the Q D M on a I B M RS6000 computer. Two set of polynomials are 

applied in the Q D M . One is the classical Chebyshev polynomials. Since the main in

tention of the Q D M is to use nonclassical polynomial basis set, we also applied a set of 

nonclassical polynomials associated with an arbitrary weight function w(x) = e 6 x 2 . For 

convenience, we use the same set of polynomials and the same number of grid points in 

each dimension. As we will see later in Chapter 4, sometimes it is necessary to use differ

ent grids in different dimension in order to obtain superior convergence of the solution. 

The standard errors (E2) of the solution and the C P U time of the calculation.for each 

numerical method are given in Table 2.12. In the table, N is the number of grid points. 

For the Q D M with nonclassical polynomials, the first C P U time is for the calculation of 

the points and the Q D M derivative matrix associated with the weight function w(x) = 

e 6 x 2 . The second C P U time is for solving the discretized algebraic equation. As seen from 

the table, the error of the solution calculated with the FD method decays at the rate 
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F D Chebyshev Q D M 
•N E2 

C P U N E2 
C P U N E2 

CPU1 CPU2 
4 .754(-2) 0.01s 4 .486(-3) 0.01s 4 .113(-2) 1.72s 0.00s 
10 .143(-2) 0.03s 6 .263(-5) 0.03s 6 .882(-5) 1.76s 0.00s 
20 .366(-3) 0.39s 8 .731(-8) 0.05s 8 .254(-7) 1.77s 0.01s 
30 .163(-3) 1.99s 10 .136(-10) 0.10s 10 .478(-10) 1.81s 0.03s 
40 .920(-4) 6.75s 12 .122(-12) 0.21s 12 .145(-12) 1.83s 0.08s 
50 .589(-4) 16.5s 16 .522(-13) 0.50s 16 .631(-13) 1.86s 0.15s 
70 .300(-4) 61.1s 
90 .182(-4) 182.s 

Table 2.12: Standard Error and C P U time for the numerical approximations of example 
A of the Poisson problems. 

of 0(1/N2) as N increases, whereas the error of the solution calculated with the Q D M 

decays at a much faster rate. With N = 10, or 10 x 10 x 10 grid, E2 = 0.136 x 10~ 1 0 

for the Chebyshev approximation, and E2 = 0.478 x 10 _ 1 ° for the Q D M . For the FD 

method, E2 = 0.589 x 10~4 with N = 50, or 50 x 50 x 50 grid. To achieve accuracy of 

O(10 - 1 2 ) , only a 12 x 12 x 12 grid is needed, and it costs less than a second for both 

Q D M and Chebyshev method. However, for the FD method, with 90 x 90 x 90 grid, 

it takes about 3 minutes and one can only obtain accuracy of O(10~ 4). Comparing the 

C P U time, the Q D M is much faster than the FD method if the same accuracy of the 

solution is required. 

Although the FD method performs relatively poorly in the calculation of Example A 

in comparison with the Q D M , the result calculated by it is still acceptable. In some cases, 

the FD method may fail while the Q D M can do very well. To show this point, we studied 

example B of the Poisson problems described in Table 2.11. Fig. 2.14 plots the exact 

solution of this problem at z = 0, i.e., u(x, y, 0) = (1 — e5) sin(47ra;) sin(27rj/). As seen in 

the figure, the solution of the problem is highly oscillated in x and y dimensions. The 

Poisson problem is solved by the three methods used in Example A . Fig. 2.15 shows the 
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TV F D Chebyshev Q D M 
E2 

C P U E2 
C P U E2 C P U 

10 .218(02) 0.04s .154(02) 0.06s .272(02) 1.77s 
16 .732(01) 0.19s .121(00) 0.18s .375(00) 1.89s 
20 .452(01) 0.44s .144(-02) 0.44s .492(-02) 2.33s 
26 .261(01) 1.19s .449(-06) 1.18s .186(-05) 3.22s 
30 .194(01) 2.20s .947(-09) 2.07s .460(-08) 4.19s 
34 .150(01) 3.67s .137(-11) 3.49s .719(-11) 5.59s 
40 .108(01) 7.15s .267(-12) 6.73s .849(-12) 8.94s 
50 .688(00) 17.4s 
70 .349(00) 36.5s 
90 .211(00) 118.s 

Table 2.13: Comparison of the standard Error E2 and C P U times for the three numerical 
approximations of example B of the Poisson problems. 

standard error of the numerical solution versus logwN for the three numerical methods. 

The comparison of errors is given in Table 2.13. 

The results indicate that the numerical solution calculated by the FD method con

verges very slowly. Even with a 90 x 90 x 90 grid, the FD solution barely reaches 1 

decimal place accuracy. While for the Chebyshev method and the Q D M , the numerical 

solution can achieve 11 decimal place accuracy with 40 x 40 x 40 grid. 

For both examples, it is evident that the Q D M based on nonclassical polynomials 

competes well with the traditional Chebyshev method in the accuracy and convergence 

of the solution of PDEs. 
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Figure 2.14: Exact solution for example B at 
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Figure 2.15: Standard error of the solution for example B. 



Chapter 3 

Applications of the QDM to the Solution of Fokker-Planck Equation 

3.1 Introduction 

The Fokker-Planck equation was introduced by Fokker and Planck to describe the Brow-

nian motion of particles [76,77]. For the past several decades, there has been an on

going interest by numerous researchers in the description of nonequilibrium phenomena 

modeled with a Fokker-Planck equation (FPE). This interest continues unabated to the 

present date [78] - [91]. The basis for many of these models is the Brownian diffusion 

in a potential characterized by Gaussian white noise. This leads to a time dependent 

linear F P E with drift and diffusion coefficients which can be nonlinear functions of the 

independent variable of interest. The theoretical basis for this approach has been pro

vided in several standard references [92] - [94]. A general Fokker-Planck equation in one 

dimension is of the form 

dP(x,t) dA(x)P(x,t) d2B(x)P(x,t) 
dt ~ dx + d*x • [ 6 A A ) 

where P(x,t) is related to probability density function of x and A(x) and B(x) > 0 are 

referred to as the drift and diffusion coefficients, and depend on the particular application 

considered. The detail of the derivation of the Fokker-Planck equation can be found in 

the book by Risken [93]. 

The main objective in many of studies in Fokker Planck equation is the approach 

of some initial probability density function (PDF) to equilibrium, which in some ap

plications may be characterized by two or more stable states. Examples of systems 

66 
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studied with a F P E include, model systems [78]- [80], [145]- [146], electron relaxation 

in gases [147], reactive systems [83,148,149], polymer dynamics [84], optical bistability 

[70,150,151], nucleation [152], dielectric relaxation [153], climate models [154], biological 

applications [155], astrophysical problems [86,100,156], economics [89], ionospheric ap

plications [87,91], plasma physics [88], nuclear dynamics [90], and numerous other appli

cations. These Fokker-Planck equations are strictly linear although the coefficients may 

be nonlinear functions of the independent variable. The main objective of the present 

chapter is to provide an efficient and rapid numerical method of solution of this large 

class of Fokker-Planck equations. 

The traditional method for the solution of the F P E usually involves the expansion of 

the probability density function in a suitable basis set, and the reduction of the differen

tial equation to a set of algebraic equations for the expansion coefficients. This is referred 

to as spectral method of solution as discussed at length by Funaro [39] and Canuto et al 

[18,36]. A n alternate approach involves the discretization of the P D F on a grid of points. 

This discrete approach in the solution of differential and/or integral equations has been 

used by researchers in other fields, notably neutron transport [95], radiative transfer [96], 

and computational fluid dynamics [18,36]. If the grid corresponds to the roots of the Nth 

order polynomial of some basis set, the solution procedure is referred to as a pseudospec

tral approach as described by Fornberg [19]. Fourier series or Chebyshev polynomials are 

almost exclusively chosen as basis functions in the application of the pseudospectral ap

proach. Other popular discretization schemes are based on the finite-difference technique 

such as those proposed by Chang and Cooper [97], Larsen et al [98] and Epperlein [99] 

primarily for the solution of a nonlinear F P E that arises in plasma physics. Park and 

Petrosian [100] have recently provided a detailed comparison of several different methods 

of solution of Fokker-Planck equations applied to astrophysical problems. 

The purpose of the present work is to apply the Q D M to the solution of several 
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Fokker-Planck equations. The F P E describes the relaxation of some non-equilibrium 

distribution, P(x,t), to a "steady distribution", Po(x), at infinite time which can be 

written in the form, 

This steady distribution, characterized by the "potential" U(x), is the eigenfunction 

of the Fokker-Planck operator with zero eigenvalue, that is the "ground" state. In the 

Q D M , the steady distribution given by Eq. (3.1.2) is employed as the weight function 

for the polynomials used to generate the quadrature grid. In the present work, we 

consider these weight functions together with alternate choices in order to maximize 

the rate of convergence of the solutions. We use Gautsch's Stielties procedure [134] to 

generate the polynomial sets orthogonal with arbitrary weight function. This permits 

the construction of polynomial basis sets and the corresponding quadrature grids for any 

appropriate weight function that accelerates the convergence of the solutions. 

Although the present work is restricted to Markovian processes and a linear F P E , 

it is anticipated that the present methodology will be easily adapted to nonlinear and 

multidimensional problems. The distinction between the F P E considered here with drift 

and diffusion coefficients which are nonlinear functions of the independent variable x and 

"truly" nonlinear equations was made clearer by Drozdov and Morillo [157]. For the 

non-Markovian situations, several workers have derived approximate FPEs in one and 

two dimensions [158]. We anticipate that the Q D M will provide an accurate and efficient 

approach to these problems. 

(3.1.2) 

with 

(3.1.3) 
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3.2 The Q D M matrix representation of the Fokker-Planck operator 

Equation (3.1.1) can be rewritten as 

dP(x,t) d 
dt dx 

A(x)P(x,t) + 
dB{x)P{x,t) 

dx 
(3.2.1) 

and has a stationary solution at infinite time given by Eq. (3.1.2). If we set P(x,t) = 

Po{x)g(x,t), then the equation for g(x,t) is given by, 

dg(x,t) 
dt 

- A W ^ ^ l + B i x f 9 ^ 
dx 

= -Lg(x,t), 

dx2 
(3.2.2) 

It is easily shown that the operator L is self-adjoint with respect to the equilibrium 

solution Po(x). Direct application of the Q D M derivative matrix to the "spatial" operator 

L gives the matrix "representative" 

N N N 

Lgi = -A(xi) Aij9j + B(xi) J2 J2 A3kg{xk)-
j=l j=l k=l 

(3.2.3) 

which is not symmetric and its eigenvalues may be imaginary. It is therefore important 

to construct a symmetric representative of the operator L. 

Let's consider the matrix representative of operator L in the transform space, 

Lr J w(x)Fn(x)LFm(x)dx, (3.2.4) 

where Fn(x) is the set of polynomials orthonormal with respect to the weight function 

w(x), that is 

J w(x)Fn(x)Fm(x)dx = Snm. (3.2.5) 

For convenience, it will be useful to introduce a second set of orthogonal functions, defined 

by 

Q n — 
\ 

to a; 

Po(x 
Fn{x) (3.2.6) 
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which are orthogonal with respect to equilibrium solution PQ{X), that is, 

J P0(x)Qn(x)Qm(x)dx = c w (3.2.7) 

The matrix elements of the operator L in the basis set {Qn(x)} are given by 

Lnm = J P0(x)Qn(x)LQm(x)dx, (3.2.8) 

= J P0(x)Qn(x)(A(x)Q'm(x)-B(x)Q'm(x))dx. 

Integrating by parts on Eq. (3.2.8), 

Lnm = -B(x)P0{x)Qn{x)Q'm(x) (3.2.9) 

+ J A(x)P0(x)Qn(x)Q'm(x) + (B(x)P0(x)Q'n(x)Qff_(x)dx, 

= -B(x)P0(x)Qn{x)Q'm 

+ J (A(x)P0(x) + (B(x)P0(x))')Qn(x)Q'm{x) + B(x)P0(x)Qn(x)'Q'm(x)dx, 

and using the facts that Po(x) = 0 at the boundaries and A(x)P0(x) + dB(x)P°(x) = Q f o r 

all x on the defined interval, we obtain that 

Lnm = J P0(x)B(x)Q'n(x)Q'm(x)dx. (3.2.10) 

In terms of the polynomial basis {Fn(x)} and weight function w(x), upon which the 

quadrature rule is based, we have, substituting Eq. (3.2.6) into Eq. (3.2.10), that 

Lnm = J B(x)w{x)[-^ + q(x)]Fn(x)[~ + q(x)]Fm(x)dx, (3.2.11) 

where 
w'(x) P^{x) 

= ^ - ^ - T . (3.2.12) 
HK ' 2w(x) 2P0{x) V ; 

If the weight function w{x) could be chosen equal to PQ{X) then q(x) = 0. Applying the 

quadrature rule Eq. (2.1.9), we have that 
N 

Lnm ~ E B{xk)wk[F'n{xk) + q(xk)Fn(xk)][Fm(xk) + q(xk)Fm(xk)], (3.2.13) 
k=i 
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where xk, k = 1,2, ...,N are the quadrature points which are the zeros of FN(X). The 

matrix representative Lnm is transformed back to the physical space with transformation 

matrix T defined in Chapter 2, that is, T,-n = y/wlFn[xi) and we obtain 

N N 
Lij — ̂  ' / ~] TinLnmTmj, (3.2.1.4) 

n=l m=l 

Substituting Eq (3.2.13) and transformation matrix T into Eq.(3.2.14), that is, 

N N N 
Lv = E E \/wlFn(xi)Y^B(xk)wk[Fll(xk)+q{xk)Fn(xk)][F^ 

71=1 771 = 1 k = \ 

and using the fact that 

and 

(3.2.15) 

wkFn(xk)Fn(x,) = 8 % k (3.2.16) 
N 

71=1 

N 
J2wkFn{xk)Fm(xk) = 6NM, (3.2.17) 
k=i 

one finds that 
N 

Lij ~ zZ B(xk)[Dkl + q(xK)6ki][Dkj + q(xk)Skj], (3.2.18) 
fc=i 

where are the elements of derivative matrix defined in Eq. (2.2.18). It is obvious 

that this matrix representation is symmetric. For the case when the weight function 

w(x) = Po(x), or q(x) = 0, the matrix elements of operator L, Lij, is simplified as 
TV 

Lij = E B(xk)DkiDkj (3.2.19) 
k=\ 

The great advantage of the Q D M is that the matrix representation of the Fokker-

Planck operator is easily constructed and evaluated for arbitrary coefficients A(x) and 

B(x). Since any set of orthogonal polynomials could be employed, it provides more 

opportunity to choose the weight function or basis set to optimize the matrix for rapid 

convergence and high accuracy of the solutions. It is expected that the convergence would 

be rapid for w(x) = PQ(X) although this is not always the case. The use of the modified 
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derivative operator D^ rather than derivative operator A,-,- provides a symmetric matrix 

representation of FP operator. It is essential for the stability in the time integration of 

the O D E system 

^ ^ . = -YtLii9{xi,t). (3.2.20) 
.7 = 1 

3.3 Eigenfunct ion expansion 

The formal solution of the Fokker-Planck equation, Eq. (3.2.1), may be evaluated by 

eigenfunction expansion. If <j)n(x) are the eigenfunctions of operator L in Eq. (3.2.3), the 

eigenvalue problem of the FP equation is defined by 

L<f>n(x) = -en<j>n(x), (3.3.1) 

where en are the eigenvalues and <f>n(x) are the eigenfunctions. The linear time-dependent 

equation, Eq. (3.2.1), admits a solution of the form 

oo 

P(x,t) = P0(x) £ cne-^Vn(x), (3.3.2) 

where the coefficients c n are determined from the initial condition, P(x, 0), and are given 
by 

c n = J P(x, 0)(f)n(x)dx. (3.3.3) 

The eigenvalues in Eq. (3.3.1) and Eq. (3.3.2) are in units of reciprocal time. The 

ground state eigenfunction is the equilibrium distribution Po(x) with zero eigenvalue. 

The eigenvalues en are real and satisfy en > 0, for n > 0. 

In actual calculations, the solution P(x,t) given by Eq. (3.3.2) must be truncated at 

n = N. It is essential that the lower eigenvalues and eigenfunctions converge accurately 

and rapidly in order to achieve a fast accurate approximation of the solution. To obtain 

rapid convergence of the eigenvalues and eigenfunctions of the FP operator, the choice 

of the weight function or the basis functions plays an important role. 
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Since no numerical approximation involved in temporal variable t, the accuracy of 

the solution (3.3.2) is as the same order as the numerical method applied to approximate 

the differential operator L. 

3.4 Tempora l discret izat ion 

Numerical schemes for temporal discretization of the Fokker-Planck equations have been 

studied by several researchers [97-100]. Most of the methods used are finite difference 

methods. Chang and Cooper [97] used centered differences on the diffusion term and 

weighted differences on the drift term of the FP equation. Their method corresponds 

to a standard finite difference scheme for solving time-dependent FP equations and was 

used in many applications [154]. Larsen et al [98] then generalized the Chang-Cooper 

method to allow for more efficient solution of the nonlinear FP equation using larger time 

steps. More recently, Epperlein [99] developed a scheme which extended the standard 

Chang-Cooper scheme by providing not only number density conservation but also energy 

conservation and allowed much larger time steps for stable and accurate solutions. The 

schemes are implicit in the temporal discretization. In a review of numerical methods 

for solving FP equations of stochastic acceleration, Park et al [100] compared several 

finite difference schemes, including the Chang-Cooper method, the method by Larsen et 

al, and some semi-implicit schemes based on the above two schemes. They pointed out 

that the fully implicit Chang-Cooper method is the most robust finite difference method. 

Other methods suffer from instability and accuracy problems when dealing with some 

FP equations. Although there is some success of these methods, the finite difference 

methods generally encounter some difficulties that would be easy to solve or avoid in the 

Q D M . First, the FP equation is defined over a infinite interval. To a,void this problem 

for the finite difference methods, one has to evaluate the equation over a finite interval 
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and impose boundary conditions on the newly defined boundaries. This implementation 

usually would cause some boundary effects in the numerical calculation. Second, the 

current finite difference methods available are at most 2nd order accurate in the spatial 

dimension, while the Q D M is spectral accurate. Furthermore, since the differential matrix 

constructed in the finite difference schemes is usually not positive definite, an implicit or 

semi-implicit time discretization has to be performed to obtain a stable solution. With 

the Q D M , the differential matrix of the FP operator is symmetric and the eigenvalues of 

the matrix are positive. This indicates that one can even use explicit time discretization 

to obtain a stable solution of the problem if the condition number of the matrix is not 

very large. For a implicit method, there is no restriction to the choice of time steps for 

a stable solution. Finally, the Q D M differential matrix is very easy to construct and the 

method is very easy to implement. The finite difference schemes seem more complex to 

implement. At present, for simplicity, we only use the first order implicit and explicit 

Euler discretization in the time intergration. 

3.5 Applications and results 

In this section, we apply the methodology of the previous sections to several different 

systems described with a F P E with bistable states. Our main objective is to determine 

the optimum basis sets with the Q D M formalism for the evaluation of the eigenvalues 

and eigenfunctions of the Fokker-Planck operator. The time dependent solutions are then 

expressed in terms of an eigenfunction expansion. 

(1) The Quartic Potential: 

A very popular model system is the quartic potential, 
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defined by choosing, A(x) — x3 — x and B(x) = e with x € [—00, 00] . The equilibrium 

P D F , Po(x), exhibits a bimodal form indicative of two stable states that occur for x = ± 1 . 

This system has been considered by many authors in a study of the role of fluctuations 

in systems far from equilibrium and the subsequent evolution of such systems. Several 

workers have sought numerical and semianalytical solutions to this system. Eigenvalues 

for this system were reported by Dekker and van Kampen [146] with a finite difference 

approximation, by Risken [93] with a matrix continued fraction technique and Indira et 

al [145] with a finite difference scheme to solve the time dependent F P E . Blackmore and 

Shizgal [71] employed the Q D M , with a quadrature based on the steady equilibrium P D F 

as the weight function. 

Since the equivalent Schrodinger equation (see section 4.2 for detail) has three wells at 

x = 0 as well as at x = ± 1 (see Fig. 2 of reference [71]), in this work we use three different 

weight functions and compare the results for each. We choose (a) the equilibrium P D F 

wa(x) = Po(x) = exp[—(x4/4 — x2/2)/e], (b) a Gaussian weight function centered at the 

origin, Wb(x) = exp(—x2/2e), (c) a second narrower Gaussian weight function centered at 

the origin, wc(x) = exp(—4x2/e), and (d) the sum of the equilibrium P D F and a Gaussian 

weight function peaked at the origin, Wd(x) = PQ(X) + exp(—x2/2.37e). The motivation 

for these different choices becomes clear when the variation of the eigenfunctions are 

seen. The widths of the Gaussian functions were chosen by trial and error to optimize 

the rate of convergence. 

The eigenfunctions for e = 0.01 and e = 0.001 are plotted in Fig. 3.1. The dotted 

curves are for e = 0.01 and the solid curves are for e = 0.001. It is clear that the 

eigenfunctions are symmetric for n even and antisymmetric for n odd.- For e = 0.01, some 

of the eigenfunctions are localized either near the origin and/or near ± 1 , whereas others 

are spread over the domain. For e = 0.001, the eigenfunctions are generally concentrated 

either near x = ± 1 and/or near x = 0. The eigenfunctions are concentrated in the 
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Figure 3.1: First ten eigenfunctions for the quartic potential model. The dotted curves 
are for e = 0.01 and the solid curves are for e = 0.001. 
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regions of the minima in the potential of the Schrodinger equation [71]. For e = 0.01, the 

eigenfunctions are not as localized as for e = 0.001. The eigenfunctions are concentrated 

in the three regions corresponding to the extrema of the quartic potential, i.e., x = 0 

and x = ± 1 , respectively. Therefore, for small e this suggests choosing a weight function 

Wd(x) with peaks at three extrema of the potential. This results in a set of quadrature 

points concentrated in these three regions where the eigenfunctions are localized. It 

is anticipated that this choice will provide a rapid convergence of the eigenvalues and 

eigenfunctions. In the previous work by Blackmore and Shizgal [71], only the weight 

function wa(x) was used. 

The convergence of the lower order eigenvalues with several different weight functions 

for e = 1.0, 0.01 and 0.001 is shown in Table 3.1. The last entry in each column is the 

eigenvalue converged to the figures shown. For e = 1.0, the eigenfunctions are not very 

localized and with the equilibrium PDF, wa(x), as weight function the rate of convergence 

of the eigenvalues is quite rapid . For the next set of results with e = 0.01, a Gaussian 

weight function centered at the origin is used and the convergence of the eigenvalues is 

slower than for e = 1.0. The convergence to 5 significant figures is achieved with 60 

quadrature points. The first eigenvalue becomes extremely small with decreasing e and 

the convergence is very.slow and this behavior is discussed further with regard to the 

other applications. As e —> 0, the eigenvalues A 3 , A 4 and A 5 are triply degenerate [71] 

and tend towards 2. Similarly, the eigenvalues A 7 , A 8 and A 9 tend towards 4. Hence, 

with decreasing e the calculation of the splitting of these nearly degenerate eigenvalues 

becomes more difficult, as seen for A 3 —> A 5 . Results for e = 0.01 with the equilibrium 

distribution as weight function give the same final converged values for the eigenvalues 

but the rate of convergence is different. The difference in the results for these weight 

functions is demonstrated further for e = 0.001. 

The results for e = 0.001 in Table 3.1 are reported for three different weight functions, 
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N Ai A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 

€ = 1.0a 

10 0.79216 3.5537 6 8623 11.065 15.910 23.238 30.185 46.074 
15 0.79209 3.5489 6 8441 10.829 15.445 20.607 26.644 33.051 42.023 
20 0.79209 3.5489 6 8436 10.827 15.415 20.543 26.161 32.291 38.846 
30 6 8435 15.415 20.540 26.153 32.219 38.709 
40 26.153 32.219 38.709 

e = 0.016 

10 0.96787 1.8659 2.6791 3.4024 4.0276 
15 0.96786 1.8658 2.6776 3.3652 3.8922 
20 2.6768 3.3328 3.3441 3.7107 
30 1.7728 2.6765 2.9702 3.3321 3.5456 
40 1.7206(-3) 1 8642 1.8708 2.6772 3.3050 3.3689 3.4526 
50 6.9871(-6) 1 8645 1.8670 2.6772 3.3045 3.3655 3.4515 
60 6.0771(-8)* 1.8670 3.3044 3.3655 3.4515 

e = 0.001° 
4 1.9960 2.0060 
6 1.9880 1.9882 3.9999 4,0268 
8 1.9879 1.9879 3.9529 3.9547 
10 1.9879 3.9512 3.9513 
15 3.9512 3.9512 

e = 0.0016 

4 0.99698 1 9880 
6 1 9879 2.9727 3.9524 
8 2.9726 3.9513 
10 3.9512 

e = 0.001d 

6 1.0096 2 0220 2.0383 
8 0.82578 1 9897 2.0024 3.6293 4.0967 
10 1.0016 1 9912 1.9933 4.1423 4.1748 17.0192 18.3206 
15 0.99953 1 9879 1.9879 1.9900 3.1069 3.9524 3.9546 4.3375 
20 0.99698 1.9885 2.9723 3.9511 3.9512 4.0025 
30 1.9879 2.9727 3.9512 3.9541 
40 2.9726 3.9512 

Table 3.1: Convergence of the eigenvalues for the quartic potential. aw(x) = P o [ x ) ; 
b w ( x ) = eT^IM; d w ( x ) = P 0 { x ) + e-* K™^). P Q ( X ) = - * t ) I * \ s the equilibrium 
solution of the Fokker-Planck equation. 
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the equil ibr ium distribution (wa), a Gaussian centered on the origin (wb), and the sum of 

the equil ibrium and a Gaussian at the origin (wc). W i t h the equilibrium distribution, only 

the eigenvalues A 4 , A 5 , A 8 and A 9 , are calculated (see F ig . 3.1: solid curves), whereas for 

the Gaussian weight function centered at the origin, only the eigenvalues A 2 , A 3 , A 6 , A 7 and 

A 1 0 , are calculated. In both cases, the convergence is very rapid. This demonstrates that 

the choice of weight function which determines the distribution of grid points is extremely 

important. The eigenfunctions <f>4, <TS5, (f>$ and <T59 in F ig . 3.1 have their greatest variation 

near x = ± 1 and the equilibrium distribution provides the required distribution of grid 

points for the rapid convergence obtained. B y contrast, the eigenfunctions </>2, </>3, (f>6 and 

4>7 have their greatest variation near x = 0 and the Gaussian distribution centered at the 

origin provides the required distribution of grid points for the rapid convergence of these 

eigenfunctions. The eigenfunction pairs cf>3 and CT55, and </37 and <f>9, are antisymmetric 

(see F i g . 3.1) and the corresponding eigenvalues are (nearly) degenerate (see Table 3.1). 

The final entry in Table 3.1 is for e = 0.001 and a weight function which is the sum 

of the equil ibrium distribution and a Gaussian weight function centered at the origin. 

In this case, all the eigenvalues are calculated and the convergence is moderately rapid, 

more so than with only the equilibrium distribution as weight function. 

A summary of the rate of convergence of the eigenvalues is presented in Table 3.2. 

Here, A ^ , Ni, Nc and Nd are the number of quadrature points associated with the four 

weight functions shown at the bottom of the table. The entries in the table are the 

approximate numbers of points required to calculate the eigenvalues shown to 5 significant 

figures. As can be seen in the results, the rate of convergence of the eigenvalues is 

extremely rapid for e = 1.0 with both weight function wa(x) and wc(x), for e = 0.01 

with weight function iW(,(aj), and for e = 0.001 with weight function wj,(x). For e = 1.0, 

the convergence is twice as slow with the weight function Wb(x) because the Gaussian 

function employed is too narrow and there is an insufficient number of points in the 
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Ai A 2 A 3 A 4 A 5 Aio A l 5 A20 A25 
e = 1.0 

A 0.79209 3.5489 6.8435 10.827 15.415 45.599 85.415 133.03 187.38 
Na 15 15 30 20 20 40 40 50 60 
Nb 50 70 50 70 70 90 110 140 160 
Nc 20 20 20 15 20 30 50 40 50 

€ = 0.01 
A 6.16(-12) 0.96786 1.8645 1.8658 1.8670 3.9435 5.9608 8.7931 12.269 

Na 
50 80 80 40 70 90 100 110 100 

Nb 80 15 50 20 50 60 60 70 60 

e = 0.001 
A 1.2016(-109)(°) 0.99698 1.9879 1.9879 1.9879 4.9234 7.8013 9.6867 11.545 

Na 
** ** 8 8 ** 20 ** 30 

Nb 4 6 ** ** 10 ** 20 ** 
Nd 20 15 15 30 40 40 50 60 

(a)The value is estimated by Kramers' approximation. 
**More than 200 quadrature points are required for convergence. 

Table 3.2: Comparison of the rate of convergence of the eigenvalues for the quartic 
potential. Na,'Nb, Nc, and Nj, are the number of quadrature points for weight function 
Wa{X) = P0(x), Wb(x) = e-*2/(2£), Wc(x) = e - 2 / ( 0 . 2 5 e ) a n d Wd(xj = pQ(xj + e - x 2 / ( 2 . 3 7 e ) ) 

respectively. 

interval where the eigenfunctions are large. The first eigenvalue decreases extremely 

rapidly with decreasing e and the value for e = 0.001 in Table 3.2 is determined with the 

Kramers' approximation; see Eqs. (3.5.2) and (3.5.3). 

Generally speaking, for large e, the eigenvalues and eigenfunctions can.converge very 

fast with a weight function equal to either the equilibrium distribution or a Gaussian cen

tered near the origin (as long as a proper width is selected). For e = 0.01, the eigenvalues 

converge faster with the equilibrium function P0(x), i.e. wa(x), as weight function than 

with a Gaussian weight function Wb(x) shown in the Table 3.2. For e = 0.001, the rate of 

convergence improves dramatically for certain eigenvalues with wa(x) and for others with 

Wb(x). But both weight functions fail to provide accurate results for other eigenvalues. 
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e Ai A2 A 3 

QDM 
50 9.041867 30.45742 56.83964 
100 13.04778 43.49627 81.02501 
200 18.71484 61.94008 115.2331 
300 23.06393 76.09384 141.4834 
400 26.73058 88.02646 163.6139 

Wu and Kapral 
50 9.04 30.5 56.8 
200 13.1 43.5 81.0 
200 18.7 61.9 115 
300 23.1 76.1 142 
400 26.7 88.0 164 

Table 3.3: Comparison of the eigenvalues for large e for the quartic potential. 
w{x) = P0{x) = e x p [ - ( £ - f )/e], N = 20. 

By adding these two weight functions together all the eigenvalues can be calculated with 

a moderately rapid convergence. The first 25 eigenvalues can be calculated in this way 

to 5 significant figures with 60 points. For large e, the eigenvalues and eigenfunctions 

can converge very fast with either the equilibrium solution or a Gaussian centered in the 

middle (as long as a proper width is selected) as weight function. 

Wu and Kapral [149] employed this Fokker-Planck equation to study the barrier 

crossing dynamics in terms of the spectral properties of the Fokker-Planck operator. 

They studied the chemical rate problem in terms of the eigenvalue spectrum of the 

Fokker-Planck operator and a second projected operator defined in their paper. They 

were primarily interested in the very low barrier limit, that is for e >> 1. They expanded 

the eigenfunctions in a set of scaled Hermite polynomials and diagonalized the matrix 

representative of the Fokker-Planck operator in this basis set. They mention that the 

choice of scaling parameter is particularly important. Wu and Kapral reported the first 
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e yQDM ^Kramers ^Kramers _ yQDMyyQUM 

0.01 6.1596(-12) 6.2518(-12) 0.0150 
0.02 1.6232(-6) 1.6776(-6) 0.0335 
0.04 8.0874(-4) 8.6901(-4) 0.0752 
0.05 2.7761(-3) 3.0331(-3) 0.0926 
0.06 6.3146(-3) 6.9792(-3) 0.1052 
0.08 1.7774(-2) 1.9779(-2) 0.1128 
0.1 3.3545(-2) 3.6951(-2) 0.1015 
0.15 8.2136(-2) 8.5024(-2) 0.0352 
0.2 1.3478(-1) 1.2897(-1) -0.0431 

0.25 1.8717(-1) 1.6560(-1) -0.1152 
0.3 2.3802(-l) 1.9564(-1) -0.1781 
0.4 3.3407(-l) 2.4095(-l) -0.2787 

0.45 3.7934(-l) 2.5828(-l) -0.3191 
0.5 4.2294(-l) 2.7303(-l) -0.3544 

Table 3.4: Variation of Ai versus e for the quartic potential: Comparison with the 
Kramers' estimate. 

three eigenvalues for several large values of e. These are shown in Table 3.3 in comparison 

with the Q D M results with the equilibrium distribution as weight function and N = 20. 

For these large values of e, the Q D M is extremely efficient and the results in Table 3.3 

are converged to the number of significant figures shown. The more difficult numerical 

problem is for smaller values of e. 

The Wu and Kapral paper is but one of many models of chemical reactions viewed 

as the rate of passage of reactants in one well over the barrier to the second well which 

represents the product states. Usually, the initial distribution is taken to be the equilib

rium distribution restricted to one well that is in the region —oo < x < 0. The solution 

of the Fokker-Planck equation is then given by Eq. (3.3.2) and the rate of change of the 

density of reactants as the integral of the P D F over half the domain. The rate becomes 



Figure 3.2: The variation of the lowest nonzero eigenvalue, Xi versus e for the quartic 
potential. The solid line is the converged result with the Q D M . The dashed line is the 
Kramers' approximation, Eqs. (3.5.2) and (3.5.3). 
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purely exponential after an initial transient if the smallest non-zero eigenvalue is well 

separated from the higher eigenvalues, i.e. A a << A 2 < A 3 The rate coefficient is 

then approximated by 1/Ai. A well known approximation for the reaction dynamics in 

a bistable potential, that is, for Ai is the result obtained by Kramers over fifty years ago 

[159]. This asymptotic result derived elsewhere [93,159] is given by, 

Aj « ^y/U"(0)\U''(l)\e-^-u^e. (3.5.2) 

With the explicit expression for U(x) for the quartic potential, we get that, 

A a « -e'^4t. (3.5.3) 
7T 

A comparison of the converged Q D M results for Ai with the approximate result, Eq. 

(3.5.3), is shown in Table 3.4 and Figure 3.2. The graph demonstrates the very rapid 

decrease in AT with decreasing e consistent with the form given by Eq. (3.5.3). Departures 

from Kramers' result can be either positive or negative and become significant for e > 0.2. 

(2) Optical Bistability. 

Optical bistability refers to the phenomenon which can arise when light is transmitted 

in an optical cavity containing a medium. For particular conditions, the transmitted light 

intensity, It, is a nonlinear function of the incident light intensity, I;. The relationship 

between the incident and transmitted light intensities depends critically on the parameter 

C = ctL/2T where a is the linear absorption coefficient, L is the length of the cavity and 

T is the mirror transmissivity coefficient. When C exceeds a critical value, the It versus 

li is then discontinuous and this system is characterized by two stable states. Further 

detailed discussions of this phenomenon can be found elsewhere [150,151]. 

The behavior of this physical system can, within certain constraints, be modeled with 



Chapter 3. Applications of the QDM to the Solution of Fokker-Planck Equation 85 

a one-dimensional F P E with coefficients 

A{x) = y — x 
2C 

(3.5.4) 
1 4- x 2 ' 

and 
2qx2 

(3.5.5) 
(1 + z 2 ) 2 ' 

The dimensionless input and output amplitudes are denoted by y and x £ [0, oo], re

spectively. The parameter q = C/2NS where Ns is the saturation photon number. The 

stationary distribution PQ(X) can be bimodal for particular values of the parameters, in 

particular q and y. The variation of the potential in the equil ibrium distribution, Eq . 

(3.1.2), is shown in F i g . 3.3 for q = 0.4, and different y values for which there exists 

either a single state potential or a bistable potential. 

Previous work by Blackmore et al [70] employed a weight function which approximated 

the bimodal PQ(X) as a sum of two Gaussians. In this work, we choose wa(x) = PQ(X) 

and a second weight function made up of two equilibrium distributions, that is, w\,(x) — 

^o(^)+0.33Po(0.33a;+6.6). The quadrature weights and points are calculated as discussed 

in Sections 2.2 and 2.3. 

The first ten eigenfunctions for C = 8, q = 0.4, and y = 8 and y — 9 are shown in 

F ig . 3.4. The dotted curves are for y = 8.0 and the solid curves are for y = 9.0. The 

eigenfunctions for y = 9.0 in F ig . 3.4 are localized in two regions; one is near x = 0 

and the other near x = 6.6. On the other hand, the equilibrium distribution (the n = 0 

eigenfunction in F ig . 3.4) has only one peak near x = 6.6. If the equil ibrium distribution 

were used as the weight function, the quadrature points generated would be concentrated 

in this region. The eigenfunctions for y = 9 are more localized in the two regions than 

for y = 8. 

A comparison of the numerical convergence of the eigenvalues, A n , wi th weight func

tions wa(x) and Wb(x) is shown in Table 3.5 for C = 8, q = 0.4 and several y values. 
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Figure 3.3: The potential U(x) in the equilibrium distribution for the optical bistability 
problem, C = 8 and q = 0.4. 
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Figure 3.4: The first ten eigenfunctions of the Fokker-Planck operator for the optical 
bistability problem with C = 8, q = 0.4. The dotted curves are for y = 8.0 and the solid 
curves are for y = 9.0. 
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N Ai A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 

y = 7.5 a 

10 0.7779 3 4958 5 4983 6.7301 9 2306 13.2532 19.6935 29.7897 46.2350 
20 0.5809 0 9297 1 3063 1.7289 2 1979 2.7500 3.7418 5.4299 5.7352 
30 0 9291 1 3033 1.6991 2 1135 2.5445 2.9903 3.4510 3.9434 
40 2.5440 2.9886 3.4455 3.9132 

y = 8.0 a 

10 1.609(-5) 0.3773 0 7078 1.0355 1 4857 2 1358 3 7191 7 3766 16.4200 
20 5.494(-7) 0.3771 0 6692 0.7342 0 9843 1 2403 1 5440 1 9160 2.3760 
30 6.653(-7) 0 5255 0.6980 0 8822 1 0626 1 3013 1 5612 1.8527 
40 4.642(-7) 0 5210 0.6976 0 8729 1 0468 1 2742 1 5206 1.7880 
45 4.641(-7) 0 5209 0.6976 0 8728 1 0467 1 2738 1 5195 1.7860 
50 1 2738 1 5195 1.7858 

y = 9.0" 
2 0.6606 
4 0.6605 1.3178 1.9735 
6 1.9718 2.6224 3.2768 
8 2.6223 3.2693 3.9130 
10 3.9126 

y = 9.0b 

6 0.1721 0.6613 1.3510 40.5944 
8 0.04931 0.6606 1.3219 2.0198 5.0508 
10 0.1482 0.6606 1.3172 1.3946 2.0090 3.3048 21.3499 
20 0.2064 0.6605 1.3178 1.4933 1.9718 2.6223 2.9576 
30 0.2063 1.3178 1.4849 1.9718 2.6223 2.9039 
35 1.4849 2.8388 
40 2.8388 

3 2698 3 9180 
3 2693 3 9126 
3 2693 3 9126 

Table 3.5: Convergence of the eigenvalues for the optical bistability model with q = 0.4. 
aw(x) = PQ(X). bw(x) = Po(x) + 0.33Po(0.33x + 6.6). Po(x) is the normalized equilibrium 
solution of the Fokker-Planck equation. 
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As can be seen from the results, the rate of convergence of the eigenvalues is extremely 

rapid for the smaller y values with both weight functions. For y = 9, the convergence 

of some of the eigenvalues is extremely rapid with wa(x), whereas other eigenvalues are 

not calculated. With the weight function.Wb(x), we are able to calculate the first nine 

eigenvalues to 5 significant figures with 40 quadrature points. 

A comparison of the rate of convergence of several weight functions used for con

structing the Q D M matrix in the present and in the previous work is shown in Table 

3.6. For the weight functions we used in our present work, wa(x) and Wb(x), the rate 

of convergence of the eigenvalues is more than twice as fast as that for weight functions 

wc(x) = x 2exp(—x 2) and Wd(x) = x 2exp(—x 2) + x2exp[—(x — 6.6)2/0.1)] used in the 

previous work by Blackmore et al [70]. For q = 0.4 and y = 7.5 and 8, the convergence 

is the same with both wa(x) and Wb(x). The so-called "speed" quadrature points with 

wc(x) gives poorer convergence. For y = 9, wa(x) is superior for some of the eigenvalues 

and worse for others. For example, for y = 9 and q = 0.4, the eigenvalues A T , A 4 and A 7 

converge with 90 to 110 points, while eigenvalues A 2 , A 3 , A 5 , A 6 , A 8 and A 9 converge with 

less than 10 points. This is because that the eigenfunctions for y = 9 are concentrated 

in two regions; one is near x = 0, the other is near x = 6.6. However, the peak of the 

weight function wa(x) = Po(x) at x = 6.6 dominates and, with small N , most of the 

quadrature points are distributed near this region. Since there are not enough points 

or none in the x = 0 region, the eigenvalues corresponding to the eigenfunctions in this 

region are not calculated. With increasing N , there are more points near x = 0, and 

the "missing" eigenvalues are recovered. With Wb as weight function, the grid points are 

better distributed and all the eigenvalues converge quickly. The results for q = 1 are also 

shown in Table 3.6 and the results are similar to those obtained for q =0.4. 
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Ai A 2 A 3 A 4 A 5 A 6 A 7 As A 9 

y = 7.5 q = 0.4 
A 0.5809 0.9291 1.3033 1.6991 2.1135 2.5440 2.9886 3.4455 3.9132 

Na 20 30 30 30 30 40 40 40 40 
Nb 20 30 30 30 30 40 40 40 40 
Nc 30 40 40 50 60 70 80 80 80 

2/= 8.0 q = 0.4 
A 4.642(-7) 0.3771 0.5209 0.6976 0.8728 1.0467 1.2738 1.5195 1.7858 

Na 40 20 50 40 50 50 50 50 50 
Nb 40 20 50 40 50 . 50 50 50 50 
Nc 60 60 40 70 70 70 80 80 90 

y =9.0 q = 0.4 
A 0.2063 0.6605 1.3178 1.4849 1.9718 2.6223 2.8388 3.2693 3.9126 

Na 
90 4 4 100 6 6 110 8 10 

Nb ' 30 20 20 30 20 20 40 30 30 
Nc 30 100* 100 30 100* 100* 30 100* 100* 
Nd 30 60 70 40 90* 90* 50 90* 90* 

y = 7.5 q = 1.0 
A 0.3037 0.6883 1.1146 1.5723 2.0519 2.5446 3.0443 3.5542' 4.0872 

Na 
20 20 20 20 30 30 30 30 30 

Nb 20 20 20 20 30 30 30 30 30 
Nc 30 30 40 40 40 40 50 50 60 

y = 8.0 q = 1.0 
A 1.514(-3) 0.3343 0.4922 0.7460 1.0443 1.3761 1.7367 2.1225 2.5324 

Na 20 30 30 30 30 30 30 30 30 
Nb 20 30 30 30 30 30 30 30 30 
Nc 40 40 40 50 50 60 60 60 70 

y = 9.0 q = 1.0 
A 0.3166 0.6592 1.3099 1.8157 1.9516 2.5835 3.2045 3.2588 3.8136 

Na 
50 4 6 60 6 8 10 70 10 

Nb 40 20 20 30 30 40 50 40 50 
Nc 30 80 100 30 100 100 100 100 100 

* Converge to essentially 3 figures. 

Table 3.6: Comparison of the rate of the convergence of the eigenvalues for the optical 
bistability model. awa(x) = P 0 (x); bwb(x) = P o(^) + 0.33Po(0.33x + 6.6); cwc(x) = x2e~x\ 
dwd(x) = x2e-* + x2e-(x-6.6)Vo.i_ 
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(3) Climate Models. 

Nicolis and Nicolis [154] presented a stochastic model for climatic transitions. The 

independent variable x in the Fokker-Planck equation represents the globally averaged 

surface temperature, T. The time dependent P D F of the temperature is then given by 

Eq. (3.1.5) with B(T) = q2/2 and 

A{T) = Q[l-a(T)]-toT\ (3.5.6) 

with 

l -a ( r ) = 7 i , r < T 1 , (3.5.7) 

l-a(T) = 7 o + /?r,T1 < x < T2; 

l - a ( T ) = 7 2 ,T>T 2 . 

The coefficient A(T) is the difference between the solar influx Q[l — a(T)] (Q being related 

to solar constant, taken to be 340Wm - 2 with a the albedo) and the infrared cooling rate, 

ecrT4, (e being the emissivity and o the Stefan constant). In Eq. (3.5.7), 70, 71 and 72 are 

constants and ft is a temperature feedback coefficient. The values of the parameters used 

in this model are defined as Q = 340, e = 0.61, o =5.67xl0~ 8, T 2 = 297.0, 7, = 61.2, 

72 = 0.75, and for the continuity of A(x), 70 and T\ are defined by 70 — 72 — /?T2 and 

Ti - (71 - 7o)//3, respectively. 

For appropriate values of these parameters the system is bistable, and the correspond

ing climate potential has two minima at T = T± and a maximum at T = T 0 which lies 

between T+ and T_. It is important to mention that the defined A(T) is a nonsmooth 

piecewise continuous function. 

The equilibrium distribution can be written in the form: 

P0(T) = exp(--2U(T)), (3.5.8) 
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Ai A 2 A 3 A 4 A 5 Aio A l 5 A20 A25 
10 1.3990(-4) 0.57262 1.0695 1.1826 1.8395 
20 3.6683(-5) 0.51358 0.65862 1.0430 1.1819 3.5430 7.6004 
30 3.3949(-5) 0.49091 0.61516 0.94902 1.1703 2.9259 5.9582 10.019 15.110 
40 3.3889(-5) 0.48983 0.61350 0.94177 1.1687 2.7497 5.2499 8.6076 12.757 
50 3.3888(-5) 0.48981 0.61347 0.94160 1.1687 2.7335 5.0674 8.0389 11.684 
60 0.48980 0.61347 0.94160 2.7331 5.0466 7.8278 11.045 
70 5.0458 7.7945 10.865 
80 7.7931 10.824 
90 10.822 

Table 3.7: Convergence of the eij ̂ envalues for the climate model with 8 = 0.007123 
9 = 7.13. 

where U(T) is the climate potential defined by 

U(T) = — JT A(T')dT'. (3.5.9) 

Nicolis and Nicolis were particularly interested in the long time evolution of this 

system, namely, the time scale determined by the lowest non-zero eigenvalue of the 

Fokker-Planck operator. They employed a finite difference scheme proposed by Chang 

and Cooper [97] and integrated the F P E numerically to determine this long time depen

dence. Figure 3.5 displays the graphs for steady state function, PQ(T), and the potential, 

U(T), for several values of 8 with q = 7.13 y r _ 1 K 2 . With an increase in 8, the steady 

state moves from one peak at T+ to two peaks at T+ and T_, and then one peak at T_. 

In this way, there is a transition of the global average temperature from a warm to a cold 

state. The form of the potential changes from one well near T+ to two wells near T+ and 

T_, and then again to one well near T_. For convenience, we first rescale Eq. (3.5.6) with 

a linear transformation given by, T = 38.5x + 243.5 to position the two minima around 

x = ± 1 and the maximum around x = 0. The results are studied versus the parameters 

8 and q which determine the nature of the potential. 

The Q D M is applied to this system with the equilibrium function PQ(X) as weight 
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Figure 3.5: (A) The potential U{T) and (B) the equilibrium distribution P0(T) for the 
climate model, q = 7.13 y r - 1 K 2 . 
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function. In Fig. 3.6, we show the first ten eigenfunctions for q = 7.13yr _ 1 K 2 and 0 

= 0.007123, corresponding to the symmetric potential and symmetric stationary distri

bution function in Fig. 3.5. The convergence of the eigenvalues corresponding to these 

eigenfunctions is shown in Table 3.7, and 25 eigenvalues can be calculated to 5 significant 

figures with 90 quadrature points. The behavior of this system is similar to the other 

bistable systems. The calculations of the eigenvalues converge very quickly for small 

barriers, that is, for q large. The convergence is slower as q decreases as was the case for 

the quartic potential for small e. The calculations also converge quickly for values of 0 

which yield a potential with a single well at either cold or hot temperatures. 

As with the other bistable systems, the long time behavior of the system is determined 

by the first eigenvalue which can be very well separated from the higher eigenvalues. The 

variation of log 1 0 (Ai) versus 0 for several q values is shown in Fig. 3.7. The decrease in 

Ai as 0 increases is because of the increasing barrier between the two states until 0 = 

0.007123 where Aj reaches a minimum. It then increases for increasing 0 as the barrier 

again decreases until there is only one well at high temperatures. The behavior shown 

in Fig. 3.7 is referred to as "critical slowing down" and is determined in the present 

work in a more direct approach than by Nicolis and Nicolis. The minimum value of Ai 

in Fig. 3.7 which occurs for 0 = 0.007123, decreases as q decreases and as the barrier 

between the two wells increases. The dashed curves in Fig. 3.7 are the estimates of Ai 

determine with Kramers' approximation, Eq. (3.5.2), modified to take into account the 

contribution from both potential minima. The approximation is surprisingly accurate for 

the range of q and 0 in Fig. 3.7. 

For all the bistable systems studied in this chapter, the time dependent probability 

density functions are given by Eq. (3.3.2). We show only one example in Fig. 8 of the 

probability density for the climate model (q = 7.13 and 0 =0.007123) with an initial 
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Figure 3.6: The first ten eigenfunctions of the Fokker-Planck operator for the climate 
model q = 7.13 y r ^ K 2 , and 0 = 0.007123. 
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Figure 3.7: The variation of the lowest nonzero eigenvalue, A a for the climate model. 
The solid line is the converged result with the Q D M . The dashed line is the Kramers' 
approximation, Eq. (3.5.2). 
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delta-function distribution and reduced temperature i = 1.5 or T(0) = 301K. The dis

tribution function initially broadens, with the peak moving to lower x and then there is 

a bifurcation with a second peak appearing at x = ± 1 . With increasing time there is a 

decrease in the peak at x = 1 and an increase in the peak at x = — 1. At equilibrium, 

the two peaks are equal in magnitude. 

The time dependent solution of the probability density function P(x, t) for the climate 

model for q = 7.13 y r _ 1 K 2 , and 8 = 0.007123 with S function at x = 1.5 ( at high 

temperature T=401K) as initial condition is shown in Fig. 8. Implicit backward Eular 

scheme was used to calculate the time evolution. The One peak initial distribution is 

quickly transform into distribution with two peaks at x = ± 1 (T=250K and T=282K) 

and stablized gradually. 

The time dependence of the global average temperature corresponding to the distri

bution in Fig. 3.8 is shown by the solid curve in Fig. 3.9. The time scale is determined 

by Ai listed in Table 3.7. Because of the very large separation in the value of Ai relative 

to the higher eigenvalues listed in Table 3.7, the initial transient is not discernible in Fig. 

3.9. There is a very rapid, almost instantaneous decrease in the temperature to about 

280K and then the gradual slow decrease. The dashed curve is the single exponential 

decay with decay constant equal to Ai . 

Comparison between the Q D M and other numerical methods of solution of Fokker-

Planck equation are available in the papers by Chen et al [45] and Leung et al [47]. Some 

of the results are shown in Figure 3.10 and Figure 3.11. Detailed discussion can be found 

in the papers. 
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t=0 

2.00 

Figure 3.8: Time dependence of the probability density function for the climate model 
for q = 7.13 y r _ 1 K 2 , and 8 = 0.007123. The initial distribution is a delta function at 
T = 301 i f corresponding to x = 1.5. 
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Figure 3.9: The variation of the global average temperature corresponding to the distri
bution in Fig. 7. The solid line is the result all terms in the eigenfunction expansion 
whereas the dashed line is the result with just two terms corresponding to A 0 and A i . 
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Figure 3.10: Eigenfunctions of the Fokker-Planck operator for electron relaxation in Xe, 
E/n = 0.25 Td. The solid lines represent the exact results. The circle symbols are the 
results with the Q D M and the plus signs are the results with a finite difference method. 
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Figure 3.11: Variation of the maximum eigenvalue A^ versus the grid size, TV, for a finite 
difference approach and the Q D M . 
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3.6 Summary 

In the present chapter, we have demonstrated that accurate eigen-solutions of different 

Fokker-Planck equations can be determined with the Q D M . The main theme of this work 

is with regard to the choice of the weight function that determines the distribution of 

quadrature points in the Q D M . We have demonstrated that the convergence of the eigen

functions and eigenvalues of the Fokker-Planck operator is rapid with the appropriate 

choice of weight function. For the bistable systems studied here, which include the quar

tic potential, optical bistability and a climate model, the first non-zero eigenvalue can be 

extremely small and nearly degenerate with the zero eigenvalues that characterizes the 

equilibrium distribution. The small difference between these nearly identical eigenvalues 

can be determined with the Q D M . The slow approach to equilibrium is then character

ized by the smallest non-zero eigenvalue. It is anticipated that the gridding technique 

described in this work will find important applications to multidimensional problems as 

well as nonlinear problems which may include time dependent forcing terms and/or time 

dependent drift and diffusion coefficients in the Fokker-Planck equation. 



Chapter 4 

Appl ica t ions of the Q D M to the Solut ion of Schrodinger equation 

4.1 In t roduct ion 

There have been increased interest in the solution of the quantum mechanical problems 

with a discretization of the wave function in the Schrodinger equation. The traditional 

methods for solving a Schrodinger equation usually involve the expansion of the wave 

function in a suitable basis set, and the reduction of the differential equation to a set 

of algebraic equations for the expansion coefficients. The discrete approach in the solu

tion of other differential and/or integral equations has been used by researchers in other 

fields, notably neutron transport [95], radiative transport [96], and computational fluid 

dynamics [18,36]. In kinetic theory, a discretization method of solution of the linear 

Boltzmann equation was introduced by Shizgal [75]. For this problem, the velocity dis

tribution function for atomic species for a model reactive system was evaluated at set of 

quadrature points based on a set of "speed" polynomials orthogonal with weight function 

x 2 exp(—x 2 ) on the interval [0, oo]. 

There have been numerous papers on the solution of the elementary one-dimensional 

Schrodinger equation, 

with different methods and several choices for the potential function V(y) [101]- [131]. 

The details of the potentials in these references are discussed later with a rational given 

for those choices for benchmarking the Q D M against other numerical methods. Some of 

103 
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the potentials studied include the nonpolynomial oscillator (NPO)potential of the form, 

V(y) = y2 + (4.1.2) 
i +gy 

This potential is chacterized by the parameters A and g. It is close to a harmonic oscilla

tor except a deep and narrow anharmonic well near the origin for large A and g. In this 

case numerical calculation of the solution is extremely difficult. Mitra [101] employed 

Hermite polynomials as basis functions and reduced the Schrodinger equation to matrix 

form. Mitra obtained the eigenvalues and eigenfunctions by numerical diagonalization 

and reported numerical results for the first three eigenvalues. Kaushal [112] described 

a perturbative approach and compared with the previous numerical results. Bessis and 

Bessis [104] demonstrated that the matrix elements of the potential with Hermite basis 

functions can be done analytically and the numerical integrations by Mitra are unnec

essary. Flessas [126] showed that for particular relationships between A and g there are 

some exact results for the eigenvalues of this potential. For example, if A = — Ag — 2g2, 

then E1 = l - 2 g and for A = -7g2-6g±g^25g2 - 12g + 4, then E2 = (9g + X)/g. These 

results are useful for benchmarking different numerical methods. Hautot [105] reconsid

ered the calculation of the matrix elements of the Hamiltonian for this potential in the 

Hermite basis set. Lai and Lin [118] reported additional exact solutions not discovered 

by Flessas, and also introduced a Pade approximant analysis. Fack and Vanden Berghe 

[124] employed several different finite difference schemes to solve for the eigenvalues and 

eigenfunctions for this problem. They employed a fine grid of points and diagonalized 

matrices of dimensions 200 x 200. They compared their results with available numerical 

results of previous workers, as well as for models with known exact results. Varshni 

[128] and Witwit [121,110] extended the earlier work to a three-dimensional version of 

this potential. Scherrer et al [129] employed the continued fraction approach by Risken 

employed in the solution of the Fokker-Planck equation. 
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We have also considered the potential given by, 

V{y) = y 6 - 3 y 2 (4.1.3) 

considered by Sinha et al [131]. This potential belongs to the class of potentials that arise 

in supersymmetric quantum mechanics [114,115], and are the same class that results in 

the transformation of the Fokker-Planck equation to the Schrodinger equation [51,160]. 

These authors consider a comparison of the S W K B results [114,115] and an exact calcu

lation of the eigenvalues from a direct integration of the Schrodinger equation. In this 

application, the ground state is known and can be used as the weight function.in the 

Q D M . 

Kaluza [130] considered the anharmonic sextic oscillator defined by the potential, 

V(y)=1-y2 + 2y4+i-y6 (4.1.4) 

Kaluza employed an analytical Lanczos procedure to generate the tridiagonal matrix 

representative of the Hamiltonian for this potential. Since the algorithm is analogous to 

a Schmidt orthogonalization procedure, it suffers from considerable roundoff error. This 

problem was alleviated by using multiple precision arithmetic. Braun et al [125] employed 

a spectral method based on Chebyshev polynomials to study the same potential and was 

able to reproduce the numerical results of Kaluza and extend the precision of many of 

the higher eigenvalues up to 18 significant figures with 512 grid points. 

A fourth potential that we consider in this study is of the form, 

V(y) = y 2 + ey4 (4.1.5) 

which has been studied by several workers. Banerjee et al [102] and Banerjee [103] em

ployed a non-perturbative method with the product of scaled Gaussian and a polynomial 

as weight function to calculate the eigenvalues for this potential for various values of 
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e. Fernandez et al [106] and Arteca et al [108] applied a variational method to obtain 

the eigenvalues and compared with Banerjee's results. Fernandez and Castro [120] ob

tained the eigenvalues of this potential by solving the corresponding Riccati equation 

with Pade approximants. Recently, Fernandez and Tipping [122] improved the solution 

of the Riccati equation for this potential with a separation of the eigenfunctions into 

odd and even parity. Fack and Vanden Berghe employed a finite difference method to 

solve this problem. Witwit [111,117] extended the work to two and three dimensional 

problems. 

We also include an application of the Q D M to a two-dimensional Schrodinger equation 

with the Henon-Heiles potential that has been used by several researchers as a benchmark 

of different methods [161-168]. This model has also been used to study the chaotic 

behaviour [169-173]. In this first instance, we choose to apply the Q D M with Hermite 

points and weights. We also employ a grid determined by other nonclassical weight 

function. The result are in very good agreement with those of other researchers. 

4.2 The equivalence of the Fokker-Planck eigenvalue problem and the Schrodinger 

equation 

The eigenvalue problems of Fokker-Planck equation are equivalent to Schrodinger equa

tions: Recall the eigenvalue problem of F P E presented in Eq. (3.3.1). If the independent 

variable, x, is transformed to a new variable, y, 

(4.2.1) 

and we define ipn(y) by 

My) = \/Po{x{y))Mx(y)), (4-2-2) 
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with Po(y) = yB(x(y))Po(x(y))i then the Fokker-Planck eigenvalue equation, Eq. (3.3.1), 

is transformed into a Schrodinger equation 

-^j^ + v(y)My) = ^ n ( y ) , (4-2.3) 

#V>u(y) = tnipn(y)-

The potential function in the Schrodinger equation is derived from the drift and diffusion 

coefficients in the Fokker-Planck equation, that is 

VM = \w\y) - (4.2.4) 

where 

The potential functions obtained in this way belong to the class of potentials that occur 

in supersymmetric quantum mechanics [114,115]. 

If \f~P~o is differentiated twice, it is clear that it is the eigenfunction with a zero eigen

value of the Schrodinger equation Eq. (4.2.3). The Schrodinger equation, Eq. (4.2.3), can 

in turn be transformed into a different Fokker-Planck equation. The equivalence of the 

Fokker-Planck equation with the Schrodinger equation has been discussed by several au

thors [160]. It can be shown that the time-dependent Fokker-Planck equation equivalent 

to this stationary Schrodinger equation is given by 

dP(y,t) _ d 
dt dy 

with stationary solution given by 

W>{y)P(y,t)+

d-rm (4.2.6) 

P 0 ( y ) = e x P ( - j W(y)dy). (4.2.7) 

The Fokker-Planck eigenvalue problem is given by 

u / ( ,d<j)n d2cf)n 

file:///f~P~o
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where the drift coefficient, A(y) = W(y), and the diffusion coefficient, B(y) = 1. The 

Fokker-Planck operator, L, is self-adjoint with the equilibrium function Po{y)-

4.3 The QDM matrix representation of the Schrodinger equations 

The matrix representation of the Schrodinger equation, Eq. (4.2.3), has similar form to 

that of the Fokker-Planck equation. Consider the matrix elements of the Hamiltonian 

for a basis set {Sn(y)} orthogonal with unit weight function, that is, 

Hnm = - J Sn(y)S'm(y)dy + J Sn(y)V(y)Sm(y)dy. (4.3.1) 

With an integration by parts in the first integral, we have that 

Hnm = J S'n(y)S'm(y)dy + Vnm, (4.3.2) 

where Vnm = J Sn(y)V(y)Sm(y)dy. We now introduce a second polynomial set, {Fn} 

orthogonal with weight function w(y), that is, 

Sn(y) = y/^y)Fn{y), (4,3.3) 

where w(y) = exp(— / W(y')dy'). Eq. (4.3.2) can be rewritten as 

/
in1 in' 

™(y)[K + 7 T F ^ F n + ̂  Fn\dy + Vnm. (4.3.4) 
If one of the cross terms in the integrand above is integrated by parts one gets that 

Hnm = J wF'nF'mdy + [Km - Vnm], (4.3.5) 

where 

V(y) = \w\y) -\w\y). (4.3.6) 

If the matrix representative Hnm is transformed back to the discrete representation in 

physical space with the transformation T, that is, 
N N 

Hij — } ] } ] TinHnmTmj, (4.3.7) 
n=0 m=0 
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one finds that 
N 

Hi, = E DkiDkj + [V{yi) - V(yt))Si3. (4.3.8) 

If the potential of interest can be factorized in accordance with Eq. (4.2.4) then a possible 

choice of weight function would be given by the equilibrium distribution function or 

the square of the ground state wave function, Eq. (4.2.7). For this choice the term 

[V{yi) - V{Di)]Sij is zero since V(y) = V(y). 

The method can be applied to higher dimensional problems with product space of 

one-dimensional bases. For a two-dimensional Schrodinger equation, 

d2 d2 1 
~Q^~]py~ + V(X>y) ^nm(x,y) = Xnm^nm{x,y) (4.3.9) 

the eigenfunctions are represented by a two-dimensional grid constructed from the prod

uct space of orthogonal polynomials in x and y. The matrix representative of the two-

dimensional Hamiltonian for bases set {Xn(x), Ym(y)} orthogonal with unit weight func

tion is given by 

82 d2 

= - JJ Xn,{x)Ym,{y)(— + — )Xn(x)Ym(y)dxdy 

+ 11 Xnl(x)Ym,(y)V(x,y)Xn(x)Ym(y)dxdy (4.3.10) 

With an integration by parts, we obtain that 

-hfn'mi nm Sm'mJ X'n,(x)X'n(x)dx +Sn>n J Ym,(y)Ym(y)dy+ Vnlmi,nm, (4.3.11) 

where Vn'm\nm - If Xnl(x)Ym'{y)V(x,y)Xn(x)Ym{y)dxdy. 

As for the one-dimensional case, consider polynomial sets {G n (x)}, {Em(y)} orthog

onal with weight function u(x),v(y) respectively, that is, 

Xn(x) = ^u(x)Gn(x) (4.3.12) 

Ym(y) = yJv~ty~)Em(y) (4.3.13) 
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Eq. (4.3.11) can be rewritten as 

Hn'm',nm = ^m'm J u(x)G'n,(x)G'n(x)dx + $n'n J v(x)E'm,(y)E'm(lj)dlJ 

+[Vn ], (4.3.14) 

where 

J(\u\x)^-U'{x))u(x)G'nl{x)G'n{x)dx 

+*n'n /{\v 2{y) - \v\y))v{y)E'm,{y)E'm{y)dy, (4.3.15) 

and U(x),V(y) satisfy 

U'(x) = -}nu(x), (4.3.16) 

V'(y) = -\nv(y). (4.3.17) 

We obtain the Q D M representation of the Hamiltonian by transforming matrix i / r n ' n , m ' m 

to the discrete representation Hijtki, that is, 

Hij,ki = hi E Dk'iDk'3 + Sij Dk'kDkn + [V(xi, yk) - V{xt, yk)]8ij8ki, (4.3.1.8) 
fc'=i fc'=i 

where 

V(x, y) = \u\x) - \u\x) + \v\y) - l-V\y). (4.3.19) 

and Nx, and are the numbers of quadrature points chosen in actual applications. 

4.4 Applications and results 

The Q D M has been applied to several one-dimensional Schrodinger equations by Shizgal 

and Chen [51]. In this work, the Q D M was applied to several one-dimensional and a two 

dimensional Schrodinger equations. The eigenvalues and eigenfunctions were calculated 
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with different choice of weight functions and were compared with the results by other 

authors. 

The main purpose of this study is to consider the solution of the Schrodinger equation 

with the Q D M , and to study the rate of the convergence of the eigenvalues versus the 

number of grid points (equivalently basis functions) for different weight functions. The 

basis functions, Fn(x), are orthonormal with respect to the weight function, w(x). Our 

interest is to try to suggest the weight function that provides optimal convergence of 

the eigenvalues. We consider four different one-dimensional potentials in the Schrodinger 

equation that have received considerable attention in the literature over the past decade. 

If the convergence for one-dimensional problems can be optimized, there would be a con

siderable savings in computer time when applied to two and three dimensional problems. 

This has been demonstrated by Shizgal and Chen [51] in the application of the Q D M to 

the two-dimensional Henon-Heles potential. 

The first potential that we have chosen and which has been studied extensively [101]-

[129] is the NPO model, Eq. (4.1.2), shown in Fig. 4.1 as the solid curves. The dashed 

curves are the harmonic potentials, V(y) = y2 + X/g, for A = g = 100 and A = g = 10 

(upper curve) and for A = 10 and g = 100 (lower curve); the potential departs from 

harmonic in the vicinity of the origin. The deep narrow anharmonic well near the origin 

gets deeper and narrower with increasing A and g. Many of the previous calculations 

have emphasized the calculation of the ground state eigenvalue for large g. For situations 

where the potential is close to harmonic, it would appear useful to use the scaled Hermite 

polynomials as basis functions based on the weight function, w\(y) = exp(—ay2), where 

a is a scaling parameter. 

For this NPO potential, we have carried out an extensive analysis of the behavior 

versus the two parameters g and A and for different weight functions. The results are 

summarized in Tables 4.1-4.10. In Tables 4.1-4.3 with g = 1, 10 and 100, we use the 
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Figure 4.1: The nonpolynomial oscillator (NPO) potential, V(y) = y2 + 1 ^gy2. 
A and g equal to (a) 10, 10 (b) 100, 100 and (c) 10, 100. The dash lines are the corre
sponding harmonic potential V(y) — y2 + X/g. 
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weight function for scaled Hermite polynomials and vary the scaling parameter a for each 

of the first 5 eigenvalues so as to get the value of a that yields the most rapid conver

gence. The Q D M is implemented as discussed in the previous papers [51] by constructing 

the orthogonal polynomials for the chosen weight function with the algorithm described 

by Gautschi [134]. The quadrature points are then determined [135] and the eigenvalues 

calculated from the numerical diagonalization of the Q D M representative of the Hamil

tonian, Eq. (4.3.8). The results are shown for A = 1, 10 and 100 in each table. In Table 

4.1, we reproduce exactly (to 9 significant figures) the harmonic oscillator eigenvalues 

for A = 0. With increasing g, it is seen that the eigenvalues are getting increasingly 

equally spaced consistent with an harmonic potential. The underlined portion of each 

eigenvalue indicates the convergence to that number of significant figures. For g = 1, 

10 and 100 in Tables 4.1-4.3, we get convergence of the eigenvalues with 25-45, 60-120, 

170-180 quadrature points, respectively. The convergence is clearly much slower for the 

large values of g. The results in Table 4.3 for the largest eigenvalues are converged to 

no less that 3 significant figures. The slow convergence for large g is due to the narrow 

anharmonic form of the potential near the origin; see Fig. 4.1. 

For the results in Table 4.1, the values of a were chosen arbitrarily. The interest 

in this study is to develop techniques to optimize the convergence by selecting a weight 

function related in some way to the potential. Mitra [101] chose a = \ A + A and Bessis 

and Bessis [104] suggested a = yl + A / ( l + 0.5g). In Tables 4.4-4.6, we show the results 

analogous to those in Tables 4.1-4.3 using the value of a suggested by Bessis and Bessis. 

It is clear that the convergence in Tables 4.1-4.3 is faster than the convergence In Tables 

4.4-4.6. 

We have extended the previous efforts by employing a weight function chosen empir

ically but taking into account the form of the potential. Our previous experience [51] 
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N Ai A 2 

7.41750590 

A = 100 
26.70397902 
26.70596477 
26.70596566 
26.70596563 
26.70596563 

A 3 

g=_0 
5.00000000 

g = l 
5.62484751 
5.58979112 
5.58977905 
5.58977894 
5.58977893 
5.58977893 

g = 1 
10.73364911 
10.70106074 
10.70102615 
10.70102563 
10.70102557 
10.70102558 
10.70102558 

g = 1 
41.44872496 
41.44110330 
41.44109963 
41.44109976 
41.44109975 
41.44109975 

A 4 

7.00000000 

7.83801690 
7.64836479 
7.64820406 
7.64820127 
7.64820124 
7.64820124 

13.61840145 
13.38898345 
13.38834923 
13.38832431 
13.38832353 
13.38832349 
13.38832349 

53.83672948 
53.83909110 
53.83909383 
53.83909326 
53.83909327 
53.83909326 
53.83909326 

A 5 

9.00000000 

10.32756366 
9.68550819 
9.68407574 
9.68404264 
9.68404202 
9.68404202 

16.71237123 
15.82571826 
15.81924074 
15.81888806 
15.81887214 
15.81887152 
15.81887149 
15.81887149 

64.45752724 
64.18782502 
64.18745791 
64.18744198 
64.18744105 
64.18744100 
64.18744100 

A = 0 

5 1.00000000 3.00000000 

A = 1 
10 1.23249101 3.51099389 
20 1.23235080 3.50738872 
25 1.23235072 3.50738837 
30 1.23235072 3.50738835 
35 3.50738835 
40 

A = 10 
10 2.78256744 7.41859167 
20 2.78233128 7.41750446 
25 2.78233044 7.41750609 
30 2.78233052 7.41750588 
35 2.78233052 7.41750590 
40 
45 
50 

10 9.35966852 
20 9.35941813 
25 9.35941803 
30 9.35941803 
35 
40 
45 

Table 4.1: Convergence of the eigenvalues with V(y) = y2 + ^ n • w\(y) = e x p ( — a ! / 2 ) 5 

where a is chosen for the fatest convergence. 
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N Ai A 2 A 3 A 4 As 

A = 1 g= 10 
10 1.11770702 3.54168906 6.69900727 11.03978681 16.69475171 
30 1.05932983 3.08883073 5.09038673 7.13612019 9.26980877 
50 1.05929698 3.08809133 5.08285715 7.09048160 9.08892124 
60 1.05929690 3.08809085 5.08284796 7.09037430 9.08805809 
70 1.05929689 3.08809085 5.08284769 7.09037053 9.08801960 
80 1.05929688 5.08284768 7.09037041 9.08801815 
90 1.05929688 5.08284768 7.09037041 9.08801810 
100 9.08801810 

A = 10 g= 10 
10 1.65877686 4.53929108 8.04585051 13.12551490 19.66357857 
30 1.58013523 3.88195452 5.85711306 8.03082593 10.30455803 
50 1.58002278 3.87904292 5.83286153 7,90413992 9.88876928 
70 1.58002235 3.87903684 5.83276776 7.90315755 9.88233330 
80 1.58002233 3.87903683 5.83276755 7.90315433 9.88230079 
90 1.58002233 3.87903683 5.83276753 7.90315417 9.88229884 
100 5.83276753 7.90315416 9.88229873 
.110 7.90315416 9.88229873 

A = 100 g= 10 
10 5.82541635 12.16555870 15.97213490 22.13479362 29.83816388 
50 5.79394465 11.57221790 13.62913696 15.99309324 17.99876164 
70 5.79394241 11.57219684 13.62877371 15.98848089 17.97250413 
90 5.79394231 11.57219677 13.62877143 15.98843454 17.97208972 
100 5.79394230 11.57219678 13.62877142 15.98843423 17.97208598 
110 5.79394230 11.57219678 13.62877142 15.98843421 17.97208565 ' 
120 15.98843421 17.97208562 
130 17.97208562 

T a b l e 4.2: Convergence of the eigenvalues w i t h V(y) 
where cv is chosen for the fatest convergence. 

y2 + vh(y) = e x p ( - m / 2 
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N Ai A 2 A 3 
A 4 A 5 

A = 1 g = 100 
10 1.74034331 6.61289499 14.45434406 25.73416848 40.57425497 
30 1.04840358 3.33049421 6.20396393 9.96961039 14.75340147 
50 1.01083691 3.04192292 5.19309999 7.64468189 10.57282857 
100 1.00841233 3.00987806 5.00989049 7.01481472 9.03654508 
150 1.00841061 3.00983181 5.00927636 7.00985617 9.00959190 
170 1.00841060 3.00983177 5.00927557 7.00984578 9.00949511 
180 1.00841060 3.00983177 5.00927553 7.00984517 9.00948856 

A = 10 g = 100 
10 2.12557689 8.03895659 17.66231586 31.55531547 49.82378424 
50 1.09321568 3.19606870 5.54663516 8.42645412 11.98070336 
100 1.08408954 3.09891916 5.09892856 7.13621223 9.24759634 
150 1.08406343 3.09831922 5.09279892 7.09883559 9.09763231 
170 1.08406335 3.09831722 5.09276616 7.09850083 9.09530236 
180 1.08406335 3.09831706 5.09276332 7.09846755 9.09503285 

A = 100 g = 100 
10 2.92175390 9.34160581 19.45189904 34.28680807 53.64778578 
50 1.84742726 4.11049745 6.47955464 9.57139193 13.28590654 
100 1.83638157 3.98422018 5.93857806 8.04492347 10.17201242 
150 1.83633621 3.98310435 5.92841712 7.98535022 9.95499695 
170 1.83633594 3.98309903 5.92834037 7.98458485 9.95023642 
180 1.83633590 3.98309857 5.92833282 7.98449794 9.94960676 

Table 4.3: Convergence of the eigenvalues with V(y) = y2 + 1 + ^ 2 . w\(y) = exp 
where a is chosen for the fatest convergence. 
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N X1 A 2 

A = 1 
3.50666367 
3.50738781 
3.50738831 
3.50738835 
3.50738835 

A = 10 
7.41837822 
7.41750412 
7.41750587 
7.41750590 
7.41750590 

A = 100 
26.70572641 
26.70596964 
26.70596558 
26.70596563 
26.70596563 

A 3 

g= 1 
5.59128149 
5.58978006 
5.58977901 
5.58977894 
5.58977893 
5.58977893 

g = l 
10.73118613 
10.70105591 
10.70102563 
10.70102558 
10.70102558 

g= 1 
41.44628014 
41.44114465 
41.44110119 
41.44109978 
41.44109975 
41.44109975 

A 4 

7.64562064 
7.64819920 
7.64820110 
7.64820123 
7.64820124 
7.64820124 

13.60393371 
13.38888589 
13.38832411 
13.38832349 
13 38832349 

53 91385775 
53 84147035 
53 83917850 
53 83909702 
53 83909346 
53 83909328 
53 83909327 
53 83909326 
53.83909326 

A 5 

9.69097632 
9.68404558 
9.68404226 
9.68404204 
9.68404202 
9.68404202 

16.67001724 
15.82484591 
15.81888465 
15.81887151 
15.81887149 
15 81887149 

64 86511926 
64 23043100 
64 19022920 
64 18763807 
64 18745616 
64 18744228 
64 18744111 
64 18744101 
64 18744100 
64.18744100 

10 1.23272180 
30 1.23235100 
40 1.23235074 
50 1.23235073 
60 1.23235072 
70 1.23235072 

10 2.78258502 
20 2.78233137 
30 2.78233053 
40 2.78233052 
45 2.78233052 
50 

10 9.35945915 
15 9.35941761 
20 9.35941803 
25 9.35941803 
30 
35 
40 
45 
50 
55 

Table 4.4: Convergence of the eigenvalues with V(y) = y2 + 1 ̂  2 • Weight functi 

u>i{y) = exp(- y yi + T ^ ) -
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N Ai A 2 As A 4 As 

A = 1 g = 10 
10 1.06515662 3.08692234 5.08700592 7.08838586 9.09234744 
30 1.06003407 3.08794408 5.08337022 7.09012096 9.08856179 
50 1.05946708 3.08805698 5.08296831 7.09031284 9.08814362 
100 1.05930820 3.08808859 5.08285570 7.09036658 9.08802645 
150 1.05929829 3.08809057 5.08284868 7.09036993 9.08801914 
170 1.05929756 3.08809071 5.08284816 7.09037018 9.08801860 
180 1.05929736 3.08809075 5.08284802 7.09037025 9.08801845 

A = 10 g = 10 
10 1.61407526 3.87252286 5.85545056 7.90700483 9.98909626 
30 1.58268033 3.87852707 5.83441119 7.90231956 9.88401555 
50 1.58046212 3.87895272 5.83303946 7.90301643 9.88258285 
100 1.58003812 3.87903382 5.83277730 7.90314922 9.88230893 
150 1.58002355 3.87903660 5.83276829 7.90315378 9.88229952 
170 1.58002282 3.87903674 5.83276784 7.90315400 9.88229905 
180 1.58002265 3.87903677 5.83276773 7.90315406 9.88229894 

A = 100 g = io 
10 5.89164179 11.65464995 14.22630311 17.92322840 22.47689280 
30 5.79569188 11.57183960 13.62953798 15.99205694 17.99649871 
50 5.79404301 11.57217532 13.62879829 15.98841237 17.97213192 
100 5.79394280 11.57219667 13.62877155 15.98843409 17.97208577 
130 5.79394234 11.57219677 13.62877143 15.98843420 17.97208563 
140 5.79394232 11.57219677 13.62877142 15.98843420 17.97208562 
150 5.79394231 11.57219677 13.62877142 15.98843421 17.97208562 
160 5.79394230 11.57219678 15.98843421 
170 5.79394230 11.57219678 

Table 4.5: Convergence of the eigenvalues with V(y) = y2 + 1 _^gy2 • Weight function 

Wl(y) = e x p ( - y 2 y i T ^ J ^ ) . 
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N Ai A 3 

10 1.00943021 
30 1.00902768 
50 1.00883028 
100 1.00860665 
150 1.00851699 
170 1.00849611 
180 1.00848760 

A = 1 
3.00981139 
3.00981943 
3.00982338 
3.00982785 
3.00982964 
3.00983006 
3.00983023 

g = 100 
5.00980562 
5.00959630 
5.00949367 
5.00937742 
5.00933081 
5.00931996 
5.00931554 

7.00981397 
7.00982620 
7.00983220 
7.00983900 
7.00984172 
7.00984236 
7.00984261 

9.00989938 
9.00973614 
9.00965609 
9.00956543 
9.00952908 
9.00952062 
9.00951717 

10 1.09402833 
30 1.08994543 
50 1.08798805 
100 1.08583151 
150 1.08499665 
170 1.08480631 
180 1.08472929 

A = 10 
3.09811836 
3.09819977 
3.09823881 
3.09828179 
3.09829842 
3.09830221 
3.09830374 

g = 100 
5.09791649 
5.09580087 
5.09478843 
5.09367433 
5.09324340 
5.09314518 
5.09310544 

7.09814755 
7.09827100 
7.09833030 
7.09839559 
7.09842085 
7.09842660 
7.09842893 

9.09889054 
9.09723424 
9.09644473 
9.09557603 
9.09524005 
9.09516348 
9.09513250 

10 1.92323022 
30 1.87989757 
50 1.86200758 
100 1.84549528 
150 1.84038615 
170 1.83936741 
180 1.83897462 

A = 100 
3.98167955 
3.98225971 
3.98260632 
3.98292370 
3.98302127 
3.98304068 
3.98304816 

100 
5.97436235 
5.94937345 
5.94066820 
5.93271091 
5.93026369 
5.92977655 
5.92958881 

8.01099094 
7.98317686 
7.98370029 
7.98417970 
7.98432709 
7.98435641 
7.98436771 

10.12548823 
9.96554325 
9.95876339 
9.95257021 
9.95066627 
9.95028732 
9.95014127 

Table 4.6: Convergence of the eigenvalues with V(y) = y2 -f 1 ^ y 2 • Weight function 

™ 1 (y) = exp(- y yi + TT

A-̂ -). 
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N 

5 
10 
15 
20 
25 
30 

00 
(c) 

5 
10 
15 
20 
25 
30 

1.39754248 
1.23347542 
1.23235072 
1.23235072 

1.23235072 
1.23235353 

2.78138892 
2.78233156 
2.78233052 
2.78233052 

A = 1 
6.00256900 
3.50334632 
3.50738845 
3.50738835 
3.50738835 

3.50738835 
3.50739706 

A = 10 
8.72184392 
7.41816173 
7.41750593 
7.41750590 
7.41750590 

g = 1 
11.66691170 
5.91911961 
5.58977876 
5.58977894 
5.58977893 
5.58977893 
5.58977892 
5.58983355 

g = 1 
14.67163572 
10.81174060 
10.70102881 
10.70102558 

27.12138709 
7.73245910 
7.64821025 
7.64820124 
7.64820124 

7.64820121 
7.64906899 

29.92249451 
13.48916964 
13.38872711 
13.38832349 

10.70102558 13.38832349 

52.46889173 
13.42453838 
9.68403519 
9.68404205 
9.68404202 
9.68404202 
9.68404195 

55.15913549 
18.62437460 
15.82253275 
15.81887215 
15.81887149 
15.81887149 

2.78233054 7.41767206 10.70448059 13.39000325 

5 
10 
15 
20 
25 
30 

(0 

9.35957820 
9.35941835 
9.35941803 
9.35941803 

A = 100 
26.76092127 
26.70595968 
26.70596563 
26.70596563 

g = 1 
41.56662303 
41.44117242 
41.44109980 
41.44109975 
41.44109975 

60.49260798 
53.84491548 
53.83909597 
53.83909326 
53.83909326 

91.26562732 
64.45670875 
64.18766807 
64.18744157 
64.18744100 
64.18744100 

9.35941803 26.70596563 41.44109975 53.83909296 

Table 4.7: Convergence of the eigenvalues with V(y) = y2 + 1 ^ 2 • Weight function 
W\(y) = exp(—Oiiy 2 ) / ( l + gy2)"2, where ot\ and a 2 are given in Table 10. Results from 
(b) Fack and Vanden Berghe (1985) [124]; (c) Lai and Lin (1982) [118]. 
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N Ai A2 A3 A4 A5 

A = 1 g= 10 
10 1.06078000 3.10750137 5.34002953 7.84826441 12.39506550 
12 1.05934121 3.08925905 5.10521689 7.20306392 9.76442476 
15 1.05929700 3.08810693 5.08309896 7.09455928 9.11338782 
20 1.05929690 3.08809085 5.08284789 7.09037308 9.08806709 
25 1.05929688 3.08809085 5.08284767 7.09037041 9.08801812 
30 1.05929688 5.08284768 7.09037041 9.08801810 
35 5.08284768 9.08801810 

A = 10 g= 10 
10 1.67530513 4.31996615 9.75230993 10.43741586 29.54884661 
20 1.58002638 3.87916818 5.83491979 7.91869454 9.97591517 
25 1.58002232 3.87903807 5.83278723 7.90346720 9.88457979 
30 1.58002233 3.87903684 5.83276775 7.90315728 9.88233966 
35 1.58002233 3.87903683 5.83276753 7.90315420 9.88229915 
40 3.87903683 5.83276753 7.90315416 9.88229873 
45 7.90315416 9.88229873 
(b) 1.58002233 3.87903683 5.83276752 7.90315413 9.88229866 

A = 100 g= 10 
10 7.48981433 8.03655640 44.09323078 49.71269815 149.70360371 
20 5.79394731 11.57682425 13.70481854 16.27467472 19.37491150 
25 5.79394193 11.57225713 13.62958358 16.00289112 18.03283044 
30 5.79394232 11.57219704 13.62878139 15.98861076 17.97411182 
35 5.79394230 11.57219678 13.62877147 15.98843650 17.97211015 
40 5.79394230 11.57219678 13.62877142 15.98843422 17.97208593 
45 13.62877142 15.98843421 17.97208562 
50 15.98843421 17.97208562 

Table 4.8: Convergence of the eigenvalues with V(y) = y 2 + ^ 2 • Weight function 
wi(y) = e x p ( — a i y 2 ) / ( l + gy 2) 0 1 2, where ct\ and a 2 are given in Table 10. (b) results from 
Fack and Vanden Berghe (1985) [124]. 
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N A i A 2 A 3 
A 4 A 5 

A = 1 g= 100 
10 1.04129101 3.29082677 6.43712676 10.95519923 55.86316463 
20 1.00841165 3.00986701 5.00988241 7.01509885 9.04372955 
25 1.00841060 3.00983203 5.00928092 7.00992522 9.01020204 
30 1.00841060 3.00983177 5.00927556 7.00984573 9.00949652 
35 3.00983177 5.00927551 7.00984496 9.00948602 
40 5.00927551 7.00984495 9.00948596 
45 7.00984495 9.00948596 

A = 10 g = 100 
10 1.45426410 5.01654653 29.97472996 72.98922478 243.24844347 
20 1.08416996 3.10035001 5.11504606 5.81559287 .7.21912972 
30 1.08406336 3.09831782 5.09277943 7.09864757 9.09661478 
40 1.08406334 3.09831700 5.09276191 7.09844919 9.09486638 
45 1.08406334 3.09831700 5.09276189 7.09844907 9.09486470 
50 5.09276190 7.09844907 9.09486466 
55 5.09276190 9.09486466 

A = 100 g = 100 
10 .25273328 58.55206092 526.35484897 565.24148666 1785.60704400 
20 1.89936536 4.43121455 8.05177942 12.63918879 27.70284628 
30 1.83635795 3.98374475 5.93607533 8.03086862 10.15714058 
40 1.83633587 3.98309869 5.92833557 7.98453363 9.95000108 
50 1.83633584 3.98309834 5.92832858 7.98444358 9.94916197 
60 1.83633583 3.98309834 5.92832857 7.98444352 9.94916096 
65 1.83633583 5.92832857 7.98444352 9.94916096 
0>) 1.83633444 3.98309836 5.92832790 7.90315413 9.88229866 

Table 4.9: Convergence of the eigenvalues with V(y) = y2 + 1+Y

GY2 • Weight function 
wi(y) = e x P ( ~ ~ a i y 2 ) / ( l + 9y2)a21 where a\ and a2 are given in Table 10. (b) Results 
from Fack and Vanden Berghe (1985) [124]. 
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g/A 1 10 100 
1 (1,10) (1.2,10) (3,12) 

10 (1.4,6) (2,8) (2,14) 
10 (1.4,6) (2,8) (2,14) 
100 (2,6) (2.4,8) (2.5,16) 

Table 4.10: ( a i , a 2 ) used for Tables 4.7-4.9. 

has suggested that a useful choice of weight function would be derived from the "super-

potential" associated with the potential. This would require the solution of the Riccati 

equation [120] which is as difficult if not more so than the solution of the Schrodinger 

equation. However, we have also shown that this choice of weight function is not always 

the best choice. Nevertheless, we have used an empirical weight function of the form, 

w1(y)=exp{-a1y2)/(l+gy2)a2. (4.4.1) 

The results obtained with this weight function are shown in Tables 4.7-4.9. In Table 4.10, 

we list the values of ct\ and a2 in the weight function. For all pairs of A and g, we obtain 

convergence of the eigenvalues to 9-10 significant figures with no more than 60 quadrature 

points. It is useful to compare the convergence of A 5 for A = 100 and g =100 in Table 

4.9 and Table 4.3. In Table 4.3, A 5 is converged to 9.950 with 180 quadrature points 

whereas it is converged to 9.94916096 with 50 points in Table 4.9. This demonstrates 

the usefulness of the Q D M and the use of arbitrary weight functions to accelerate the 

convergence. This could mean a great decrease in computational times for two and three 

dimensional problems. 

In Table 4.11, we compare the present results for Ai with the results reported in the 

literature by other workers. The methods used by others have been summarized in the 

introduction to the thesis. The weight function used is of the form given by Eq. (4.4.1) 
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10 100 500 
= 1 

QDM 1.232350723406 2 782330515932 9.359418026324 21.65874769959 
a 1.23235072 2 78233052 9.35941803 
b 1.23235072 
c 1.24213 
d 1.23235353 2 78233054 9.35941803 
e 1.23237205 2 782330 9.35941803 21.6587477 
f 1.23235 2 78233 9.3594 

g= 10 
QDM 1.059296880862 1 580022327392 5.793942300193 16.73274738223 

a 1.05929688 1 58002233 5.79394230 
b 1 58002233 
e 1.05929700 1 5800249 5.793947 16.73919 
f 1.05929 1 58002 5.794 

g = 100 
QDM 1.008410597947 1 084063335494 1.836335833449 5.083683913501 

a 1.00841060 1 08406334 1.83633583 
b 1.83633444 
c 1 08411 1.8411 
e 1.0084106 1 0840543 1.8363850 5.0840857 
f 1.00841 1 08406 1.8364 

g = 500 
QDM 1.001849154630 1 084063335494 1.18486023962 1.92317625551 

a 
c 1.18451 1.92255 
e 1.0018491 1 0184910 1.1848632 1.9232260 

Table 4.11: Comparison of the results of Ai with V(y) = y2 + 1 + ^ 2 • a. Scherrer, Risken 
and Leiber (1988) [129], b. Fack and Vanden Berghe (1985) [124], c. Chaudhuri and 
Mukherjee (1983) [107], d. Lai and Lin (1982) [118], e. Bessis and Bessis (1980) [104], f. 
Mitra (1978) [101]. 
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with values of c*i and a2 which are chosen empirically for different values of A and g. The 

Q D M results shown in this table are converged to the significant figures shown; either 12 

or 13. These converged results are considered to be accurate based on our experience in 

the calculation for analytic models. The most difficult parameter region is for g = 500 

and as can be seen from the results in the table, we ha,ve achieved remarkable convergence 

with g = 500. The only other work to compare with are the results by Bessis and Bessis 

[104] and by Chaudhuri and Mukherjee [107]. The Q D M results are far superior to the 

previous results. 

Figure 4.2 shows the variation of the error in Ai for the NPO model (g = A = 10) versus 

the number of quadrature points, n, for four different weight functions. A e x a c i is defined 

as the eigenvalue converged to 14 significant figures calculated with the Q D M . The fourth 

weight function (d) gives the most rapid convergence. The significant improvement with 

weight function (d) over the scaled Gaussian weight function can be explained with the 

variation of the eigenfunction shown in Figures 4.3 and 4.4. The convergence of the 

eigenvalue depends on the accurate determination of the eigenfunction near the origin. 

Figures 4.3 and 4.4 show the details of the ground state eigenfunction near the origin. 

The solid curves are determined with the new weight function, Eq. (4.4.1), and N = 140. 

This is considered to be very close to the exact result. The other results are obtained 

with N = 25. Figure 4.3 is for g = A = 100 for three different weight functions; Hermite 

polynomials (*), scaled Hermite polynomials (+) and the new weight function (o). Figure 

4.3B shows the eigenfunction on a small scale near the origin. 

From the figure, we see that the points generated from the scaled Gaussian weight 

function can not describe the rapid variation of the eigenfunction near the origin. How

ever, the new weight function, with a denser grid of quadrature points near the origin 

where the potential (Fig. 4.1) and the eigenfunction vary rapidly, is better. It is clear 

that the results with the new weight function, Eq. (4.4.1), gives the best convergence. 
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0.00 

-16.00 1 ' 1 1 1 ' 1 1 1 

0 40 80 120 160 
n 

Figure 4.2: Variation of the error in Ai , A A i = |Ai — A j r a c i | for the NPO potential versus 
the number of grid points n for different weight functions, (a) w(y) = exp(—y2), (b) 
w(y) = e x p ( - j / y i + (c) w(y) = exp(-5.8j/ 2), (d) w(y) = ef^; A = g = 10 
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Figure 4.3: Ground state eigenfunction for the NPO potential with g = X — 100, N = 25, 
with different weight functions. (*) w(y) — exp(—y2), (+) w(y) — exp( —17?y2) and (o) 
w(y) = e(i+g~y2)* • The solid curve is for the last weight function with N=140; (A) full 
scale; (B) small scale near the origin. 



Figure 4.4: Ground state eigenfunction for the NPO potential. A and g are equal to (a) 
10, 10 (b) 100, 100 (c) 10, 100 and ( ) 0, 0. (A) full scale; (B) small scale near the 
origin; (C) small scale at large positions from the origin. 
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Figure 4.4 shows the behavior near the origin for three different pairs of values of g and 

A. Figure 4.4B shows the small scale behavior near the origin whereas Fig. 4.4C shows 

the small scale behavior at large positions from the origin. The dashed curve is the result 

with the Gaussian weight function. 

If the potential belongs to the class of potentials in supersymmetric quantum mechan

ics [114,115], then the ground state eigenfunction is known with the eigenvalue equal to 

zero. This is the case for the potential given by Eq. (4.1.3), considered by Sinha et al 

[131]. The weight function that corresponds to the superpotential is of the form, 

w2(y) = exp(- 2/ 4/4) (4.4.2) 

The basis set was determined following the prescription by Gautschi [134] and the 

quadrature points as described in the earlier papers. For this choice of weight func

tion, V(y) = V(y) and the representative of the Hamiltonian in the Q D M representation 

is from Eq. (4.3,8) given by Hij = Y2k DkiDkj- We have studied the convergence of the 

eigenvalues for this potential with three different weight functions one of which corre

sponds to the Hermite polynomials, W2(y) defined earlier with a = 5, and another given 

by, 

w2(y) = exp(-y 4 /4 - 5y2) (4.4.3) 

The results with the three weight functions are shown in Table 4.12. The overall conver

gence is very similar with all three weight functions, although the second weight function 

Eq. (4.4.2) appears to give marginally faster convergence, in particular for the first eigen

value. Our results are consistent with the results of Sinha et al [131] to the precision that 

they report in their paper. 

The third potential (Eq. (4.1.4)) chosen was studied by Braun et al [125] and Kaluza 

[130] and also belongs to the class of potentials in supersymmetric quantum mechanics. 

Kaluza chose basis functions such that the matrix representative of the Hamiltonian is 
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N Ai A 3 A 5 Aio 

w2(y) = exp(-5y 2 ) 

5 3.20578381 19.34421619 
10 1.92166391 11.48428663 24.44773756 
15 1.93541230 11.67877474 25.22960745 72 68872477 
20 1.93548442 11.68098869 25.25435384 71 64137641 
25 1.93548209 11.68097117 25.25461676 71 57368183 
30 1.93548210 11.68097087 25.25460450 71 57923539 
35 11.68097089 25.25460490 71 57902800 
40 25.25460488 71 57903698 
45 71 57903668 
50 71 57903669 

w2(y) = exp(-2/ 4/4) 

5 1.95003306 13.51720225 
10 1.93549705 11.68815652 25.58769695 
15 1.93548226 11.68108903 25.26571988 75 81549114 
20 1.93548210 11.68097109 25.25463882 72 04071624 
25 11.68097089 25.25460546 71 58445530 
30 25.25460488 71 57920993 
35 71 57903737 
40 71 57903670 
45 71 57903669 

w2(y) = exp ( -y 4 / 4 - by2) 

5 4.54466778 23.73100470 
10 2.23089971 13.39054786 31.59035642 
15 1.94701006 11.78606709 25.89623300 83 65936104 
20 1.93570651 11.68371077 25.28051990 73 07062002 
25 1.93548392 11.68099725 25.25493023 71 64923337 
30 1.93548212 11.68097108 25.25460771 71 57992969 
35 1.93548210 11.68097089 25.25460489 71 57904422 
40 11.68097089 25.25460488 71 57903671 
45 71 57903669 

Table 4.12: Convergence of the eigenvalues for SE with V(y) = y6 — 3y 2. 
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tridiagonal. The generation of the basis set is essentially a Gram-Schmidt orthogonal-

ization which is subject to considerable round-off errors [75,143]. Kaluza avoids these 

numerical difficulties by using symbolic algebraic techniques in mathematics. For ar

bitrary weight functions, this analytic approach is not feasible, whereas the Gautschi 

algorithm is generally convergent. Braun et al [125] employed a spectral method of solu

tion based on Chebyshev polynomials on a finite interval where the cutoff at y = 8 is an 

additional parameter. They used up to 512 grid points and report the first 48 eigenvalues 

up to 18 significant figures. We have chosen the weight function, 

w3(y) = exp(-2y 2 - y4/2) (4.4.4) 

and determined the matrix representative of the Hamiltonian in the "polynomial basis" 

representation, Eq. (4.3.5) with Vnm — Vnm = 2. The matrix elements of the Hamiltonian 

are determined with the quadrature define by the weight function, Eq. (4.4.4). Because 

of the symmetry of the potential, the eigenfunctions are of either even or odd parity. The 

matrix Hnm of dimension N X N can be decomposed into two matrices for the odd and 

even eigenfunctions each of dimension | x y . Since the matrix Hnm is pentadiagonal, the 

submatrices of even and odd parity are tridiagonal. The convergence of the eigenvalues 

from the numerical diagonalization of these tridiagonal matrices is rapid. The first 48 

eigenvalues converge to 13 significant figures with less than 100 grid points and agree 

with the results by Braun et al. 

The fourth potential studied is given by Eq. (4.1.5). This potential is not in the 

class of potentials in supersymmetric quantum mechanics. We have in the first instance 

used scaled Hermite polynomials and the associated quadrature points to determine the 

eigenvalues with Eq. (4.3.8). The convergence of the lower order eigenvalues is shown 

in Table 4.14 for three values of e. The scaling is very important in order that the grid 

points are distributed over the region of y where the eigenfunctions are concentrated. 
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N Ai A 7 

1 
3 
5 
8 
10 
15 
20 
25 
30 
35 

1.00000000000000000 
1.00000000000000000 15.832389169799 

15.124216267224 
15.118931530866 
15.118929992544 
15.118929986242 
15.118929986242 

40.6232236023546 
36.367167641896 
36.343021051640 
36.342716214160 
36.342716212413 
36.342716212413 

66.261603950851 
62.648395926012 
62.356049424923 
62.356028944861 
62.356028944603 
62.356028944604 
62.356028944604 

N 2̂0 A 30 MO A 48 

30 
40 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 
100 

310.4920471524 
309.4993497820 
309.4993484837 
309.4993484837 

848.8060217068 
588.5806628599 
566.4282265701 
566.4026817440 
566.4026355012 
566.4026354734 
566.4026354734 

1346.579274312 
947.4614543288 
893.9968790569 
872.0907745529 
868.2562193165 
868.1457422322 
868.1452015357 
868.1452006773 
868.1452006767 
868.1452006767 

1597. 
1364. 
1248. 
1183. 
1149. 
1138. 
1137. 
1137. 
1137. 
1137. 
1137. 

421054106 
247596709 
445773964 
544197185 
943901457 
668487703 
541785229 
522672203 
522588690 
522588541 
522588541 

Table 4.13: Convergence of the eigenvalues of even parity with V(y) = \y2 + 2y4 + \y&. 
w3(y) = exp(-2y2-y4/2). 
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With the notion that the optimal weight function should be the square of the ground 

state eigenfunction, we have fitted, to polynomials, the ground state eigenfunction deter

mined previously with Hermite quadrature points. This is an alternative to solving the 

Riccati equation for the superpotential [106]. The fit is reasonably accurate but V(y) is 

not exactly equal to V(y). In Table 4.15, we show the convergence of the eigenvalues with 

this alternate weight function. The results with this weight function show a moderate 

improvement in the rate of convergence. We find for example that with the new weight 

function for e = 100, Ai is converged to 9 significant figures with 15 points whereas 20 

points are required with scaled Hermite polynomials. Similarly, A 3 is converged to 8 

significant figures with 20 points whereas 25 are required with scaled Hermite polynomi

als. The choice of weight function is clearly important for the rapid convergence of the 

eigenvalues. 

The Q D M is also applied to a two-dimensional Schrodinger equation with Henon-

Heiles potential, given by 

1pnl(x,lj) = \nl^nl(x,y), (4.4,5) 

where V(x,y) = | ( x 2 + y2) + Xx(y2 — \x2) and A = A/0.0125, consistent with the choice 

of previous workers. Since the parameter A is not too large and the Hamiltonian is 

close to the two-dimensional harmonic oscillator, we choose, in the first instance, the 

discretization based on Hermite polynomials in both the x and the y directions. The 

Q D M representation of the Hamiltonian given by Eq. (4.3.18) is easily constructed, 

with the potential function evaluated at the quadrature points in each dimension. The 

numerical diagonalization of the Q D M matrix yields the eigenvalues and eigenfunctions. 

The convergence of the two basis sets in each variable is shown in Table 4.16. Nx 

and Ny are the numbers of quadrature points in x and y dimension, respectively. In the 

tables, the eigenvalues are labeled with the principle quantum number n and angular 

1 d2 

2d2 
I i l l 
2d2y 

+ V(x,y) 
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N Ai A 3 As Aio 

€ = 10(a) 
12 2.44917485 16.63595545 35.88068953 94.30085478 
15 2.44917408 16.63591955 35.88506209 95.81165911 
20 2.44917407 16.63592150 35.88517148 96.15949348 
25 2.44917407 16.63592149 35.88517122 96.15623411 
30 16.63592149 35.88517122 96.15626312 
35 96.15626298 
40 96.15626298 

e = 100<b) 
10 4.99945382 34.87447875 75.72914876 253.32604009 
12 4.99941563 34.87402295 75.88739267 201.40793502 
15 4.99941758 34.87398862 75.87689375 205.27637088 
20 4.99941755 34.87398427 75.87700463 204.79428957 
25 4.99941755 34.87398426 75.87700403 204.79476335 
30 34.87398426 75.87700403 204.79477459 
35 204.79477451 
40 204.79477451 

e = lOOOOW 
10 22.86146298 160.68335404 350.84170426 1022.19210882 
12 22.86161867 160.68601691 350.38352262 924.84691394 
15 22.86160889 160.68588347 350.43503532 944.02953926 
20 22.86160887 160.68591272 350.43589703 947.71986787 
25 22.86160887 160.68591261 350.43589621 947.68562278 
30 160.68591261 350.43589622 947.68596392 
35 350.43589622 947.68596166 
40 947.68596167 
45 947.68596167 

Table 4.14: Convergence of the eigenvalues with V ( y ) = y2 + e y 4 . ^w4(y) = exp( 
^w4{y) = exp(-l(h/ 2); ^wA{y) = exp(-6(h/2). 
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N Ai no 

10 
12 
15 
20 
25 
30 
35 

2.44917318 
2.44917406 
2.44917407 
2.44917407 

e = lQ(a> 
16.63603391 
16.63593038 
16.63592170 
16.63592149 
16.63592149 

35.86694240 107.31938413 
35.88380588 
35.88516632 
35.88517122 
35.88517122 

98.84824260 
96.71828902 
96.16096863 
96.15625913 
96.15626298 
96.15626298 

12 
15 
20 
25 
30 
35 
40 

4.99941762 
4.99941755 
4.99941755 

6 = lQQfc) 
34.87397375 
34.87398436 
34.87398426 
34.87398426 

75.87733275 
75.87701004 
75.87700401 
75.87700403 
75.87700403 

210.04422203 
205.20313119 
204.79819433 
204.79477654 
204.79477452 
204.79477451 
204.79477451 

10 
12 
15 
20 
25 
30 
35 
40 

22.86160088 
22.86160897 
22.86160887 
22.86160887 

e = 10000<c) 
160.68728162 
160.68596913 
160.68591446 
160.68591261 
160.68591261 

350.26068143 
350.42650209 
350.43583997 
350.43589612 
350.43589622 
350.43589622 

1055.94778633 
973.50076873 
952.12677503 
947.72238259 
947.68593841 
947.68596166 
947.68596167 
947.68596167 

Table 4.15: Convergence of the eigenvalues with V(y) = y 2 + t y 4 calculated by fit
ting weight function to ground state eigenfunction. ^w4(y) = exp( — (y4 + 5y 2)/2); 
^w4(y) = e x p ( - ( 2 y 4 + 6y 2)); ^w4(y) = exp(-(50j/ 4 + 25y2)). 
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momentum quantum number I, as discussed by Noid and Marcus [174]. The convergence 

28 basis functions were required in each dimension. We cannot comment on the rate of 

convergence of other methods, since these are not reported by the earlier authors. 

The contour plots of several eigenfunctions are shown in Fig. 4.5 . The Czv symmetry 

of the eigenfunction is clearly evident and essentially converged with 32 new basis func

tions. It is surprising that this small number of basis functions can resolve the details of 

the eigenfunctions as shown in Fig. 4.5. 

Since the basic idea of the Q D M is to suggest nonclassical basis functions for which 

the rate of convergence is increased, we have also used the grid points based on the 

polynomials orthogonal with respect to the weight function, 

The grid points in y remain defined by the Hermite polynomials. We find some 

improvement in the rate of convergence, as shown in Table 4.17 for a selected number 

of eigenvalues. Since the potential is similar to a two-dimensional harmonic oscillator 

by virtue of the choice of the value A, it is not surprising that the Hermite basis set 

works as well as it does. The rates of convergences of the eigenvalue in the x and y 

dimensions are similar for both weight functions we applied. In Table 4.18, we compare, 

with the results of Feit et al [164], where the eigenvalues occur in almost degenerate 

pairs. Their results were calculated with 128 x 128 Fourier basis functions. Our results 

in this table for Hermite quadrature points converge to the significant figures shown with 

Nx = Ny = 50. With the new quadrature defined by the weight function given by Eq. 

(4.4.6), this convergence is achieved with Nx = Ny = 32. This demonstrated a significant 

saving of computational time in comparison with other researchers. As can be seen from 

of the lower-order eigenvalues is very rapid. Although the higher eigenvalues converge 

slower, the convergence is evidently still rapid. Even for the 80th eigenvalue , Ai 2 > 2, only 

(4.4.6) 
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Ny/NX 4 6 8 10 12 16 20 24 28 
A2,o (4th) 

4 2.9692 2.9605 2.9601 2.9601 
6 2.9632 2.9566 2.9563 2.9563 
8 2.9631 2.9566 2.9563 2.9562 

A 5 j l (16th) 
4 7.0182 5.9903 5.9126 5.9092 5.9089 
6 5.9505 5.8914 5.8677 5.8322 5.8256 
8 5.8784 5.8311 5.8279 5.8242 5.8192 
10 5.8716 5.8204 5.8179 5.8176 5.8176 
12 5.8713 5.8198 5.8174 5.8171 5.8170 
16 5.8712 5.8198 5.8174 5.8170 5.8170 

A M (44th) 
4 13.2657 12.6973 12.2964 
6 11.0336 10.1869 10.1688 10.1686 10.1686 
8 11.1240 9.6935 9.1708 9.1287 9.1284 9.1284 
10 10.0448 9.0536 9.0347 9.0264 9.0241 9.0240 
12 13.1807 9.9003 9.0499 9.0334 9.0247 9.0223 9.0222 
16 12.4574 9.8905 9.0497 9.0330 9.0243 9.0218 9.0217 

A 9 , _ 9 (54th) 
4 15.4681 14.5918 14.5446 
6 12.2319 12.1574 11.6740 11.5832 11.5749 
8 11.2850 10.7096 10.6113 10.4985 10.4785 10.4774 
10 12.4479 10.6346 10.1248 10.0684 10.0643 10.0640 10.0639 
12 11.8715 10.5047 10.1240 10.0441 10.0379 10.0375 10.0375 
16 15.5873 11.4840 10.3447 10.1237 10.0425 10.0361 10.0356 10.0355 
20 14.9696 11.4788 10.3234 10.1237 10.0425 10.0360 10.0355 10.0354 

Aio.io (65th) 
4 17.8647 17.2548 17.0406 
6 14.1919 13.5202 13.2560 13.1758 13.1734 
8 12.3695 12.1856 11.8637 11.8527 11.8502 11.8489 
10 12.3214 11.5307 11.2580 11.1959 11.1959 11.1699 11.1609 
12 14.4481 11.9189 11.1145 11.0690 11.0547 11.0532 11.0531 11.0531 
16 13.4192 11.6239 11.1072 11.0642 11.0515 11.0506 11.0502 11.0501 
20 18.1812 13.2653 11.6110 11.1055 11.0637 11.0512 11.0499 11.0498 11.0497 
24 17.7635 13.2631 11.6095 11.1051 11.0636 11.0512 11.0498 11.0497 11.0497 

Ai2, 2 (80th) 
4 26.0197 21.9893 21.0597 
6 16.2730 16.0380 15.8520 15.5594 
8 17.2961 14.4322 13.7976 13.4736 13.4400 13.4335 
10 17.7483 13.5335 13.0533 12.8019 12.6324 12.6245 12.6207 
12 14.3616 12.8665 12.5890 12.3091 12.2442 12.2176 12.2143 
16 16.1730 13.4822 12.4343 12.3128 12.1503 12.1477 12.1465 12.1463 
20 25.3965 15.9680 13.3034 12.3997 12.2177 12.0693 12.0666 12.0655 12.0651 
24 21.9153 15.6562 13.2932 12.3940 12.2139 12.0689 12.0660 12.0652 12.0651 
28 21.3602 15.5597 13.2926 12.3932 12.2138 12.0689 12.0660 12.0651 12.0650 

Table 4.16: Convergence of the eigenvalues, A n i / , for the Henon-Heiles potential wi 
Hermite points". "Weight function, u(x) = e x p ( — x 2 ) and v(y) = e x p ( — y 2 ) . 
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Figure 4.5: Contour plots of the eigenfunctions of the Schrodinger equation for the 
Henon-Heiles potential with n and / equal to (a) 2,0 (b) 6,0 (c) 9,-9 and (d) 10,6. new 
quadrature points were used with Nx = Ny — 32. 
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Ny/NX 4 6 8 10 12 16 20 24 
A2,o (4th) 

4 2.9616 2.9601 
6 2.9575 2.9563 
8 2.9575 2.9562 

A 6 , i (16th) 
4 7.0082 5.9439 5.9089 5.9089 
6 5.9531 5.8738 5.8283 5.8248 
8 5.8413 4.9878 4.9865 4.9865 
10 5.8764 5.8185 5.8176 5.8172 
12 5.8761 5.8179 5.8171 5.8170 
16 5.8761 5.8179 5.8170 5.8170 

A8,8 (44th) 
4 12.7920 12.2620 
6 11.1456 10.1687 10.1686 10.1686 
8 11.2597 9.7190 9.1286 9.1284 9.1284 
10 10.0603 9.0446 9.0250 9.0241 9.0240 
12 13.2.729 10.0034 9.0436 9.0232 9.0222 9.0222 
16 12.5442 9.9984 9.0433 9.0227 9.0218 9.0217 

A 9 _ 9 (54th) 
4 14.7114 
6 12.2173 11.7764 11.5794 
8 11.3010 10.6143 10.5439 10.4775 
10 12.5191 10.6767 10.0691 10.0644 10.0639 
12 11.9125 10.5473 10.0420 10.0379 10.0375 
16 15.6786 11.5413 10.3703 10.0403 10.0361 10.0355 
20 15.0393 11.5353 10.3499 10.0403 10.0360 10.0354 

Aio.10 (65th) 
4 17 1066 
6 14.1440 13.2565 13 1733 
8 12.3709 11.9700 11.8518 11 8489 
10 12.3221 11.5196 11.1959 11.1959 11 1608 
12 14.4451 11.9199 11.0714 11.0553 11.0531 11 0531 
16 13.4728 11.7027 11.0702 11.0517 11.0504 11 0501 
20 18.2794 13.3615 11.6918 11.0697 11.0514 11.0498 11 0497 

A 1 2 , 2 (80th) 
4 23 8554 20.5669 
6 16.0422 15 6786 15.2330 
8 17.2781 14.3895 13.4600 13 4334 13.4323 
10 17.9498 13.6380 12.9474 12.6293 12 6209 12.6180 
12 14.4303 12.8445 12.3391 12.2266 12 2142 12.2141 
16 16.2757 13.5128 12.4913 12.1806 12.1469 12 1463 12.1462 
20 25.6830 15.9901 13.3842 12.4590 12.1705 12.0660 12 0651 12.0651 
24 21.9864 15.7582 13.3790 12.4532 12.1701 12.0654 12 0651 12.0650 

Table 4.17: Convergence of eigenvalues, A n ) / , for the Henon-Heiles potential with new 
points6. ^Weight function, u(x) = e x p ( — x 2 4- §Ax 3) and v(y) = e x p ( — y 2 ) . 
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the results in Table 4.18, we have obtained excellent agreement with the previous results. 

For n < 11 our results are smaller than those of Feit et al, whereas for n > 11 our results 

are slight larger. 

4.5 Summary 

In this chapter, we have provided an extensive study of the use of the Q D M in the solution 

of the Schrodinger equation for several one-dimensional and two-dimensional potential 

functions considered recently by several other researchers. The main theme of this work 

is to determine the optimal set of basis functions, equivalently the weight function, that 

provides rapid convergence of the eigenvalues versus the number of basis functions or 

grid points. Although this work is more restricted to one-dimensional problems, the 

extension to two and three dimensions is straightforward [51] as shown for the Henon-

Heiles problem given in this chapter. The eigenvalues can be determined by the numerical 

diagonalization of the representative of the Hamiltonian in either the polynomial or the 

discrete basis. The work in this chapter generally employed the discretized version of the 

Hamiltonian at a set of points that correspond to the quadrature points associated with 

the chosen weight function. The distribution of grid points is determined by the weight 

function, which controls the convergence of the eigenvalues and eigenfunctions. We have 

demonstrated in this chapter the flexibility of the Q D M in that arbitrary weight functions 

can be employed to improve the rate of convergence. In some cases, the improvement is 

remarkable such as for the nonpolynomial oscillator. 
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n 1 Feit et al. Q D M a Q D M 6 

3 3 3.9825 3.982 417 nc c 

-3 3.9859 3.985 761 nc 
5. 3 5.8672 5.867 015 nc 

-3 5.8816 5.881 446 nc 
6 6 6.9991 6.998 932 nc 

-6 6.9996 6.999 387 nc 
7 3 7.6979 7.697 721 nc 

-3 7.7371 7.736 885 nc 
8 6 8.8116 8.811 327 nc 

-6 8.8154 8.815 188 nc 
9 9 10.0356 10.035 413 nc 

-9 10.0359 10.035 592 nc 
10 6 10.5727 10.572 480 nc 

-6 10.5907 10.590 470 nc 
11 3 11.1603 11.160 258 11.160 259 

-3 11.3253 11.325 231 nc 
11 9 11.7497 11.749 519 nc 

-9 11.7525 11.752 297 nc 
12 6 12.3335 12.333 785 12.333 786 

-6 12.2771 12.277 192 nc 
12 12 12.7474 12.748 445 12.748 520 

-12 13.0310 13.032 062 13.032 065 
13 3 13.0868 13.086 873 nc 

-3 13.0800 13.081 196 13.081 199 

Table 4.18: Eigenvalues for the Henon-Heiles potential. aHermite qudrature points based 
on u(x) = exp(—x2) and v(y) = exp(—y2), with Nx = Ny = 50. 6New quadrature points 
based on u[x) = exp(—x2 + §A£3) and v(y) = exp(—y2), with Nx = Ny = 32. cnc 
indicates no change from the QDM° results. 
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Summary and future work 

In previous chapters, we have presented the quadrature discretization method (QDM) 

and have applied it to some model problems as well as a large class of Fokker-Planck 

equations and Schrodinger equations. It has been shown that the Q D M is easy to imple

ment. The method provides high accuracy and rapid convergence, and is very efficient 

in solving high dimensional PDEs. Unlike most spectral methods and FD methods, it is 

possible for the Q D M discretization to preserve the symmetry for the self-joint joint dif

ferential operator. Furthermore, by introducing Stieltjes's procedure, one can generate a 

set of nonclassical polynomials for any weight function, which is a significant improvment 

from previous work by Shizgal and Blackmore [71,72,74]. The flexibility of the Q D M in 

choosing weight function provides one the opportunity to achieve the best solution with 

the least computing work. 

The Q D M is a discretization procedure based on a grid of points that coincide with 

the quadrature points defined by a weight function over some interval. The major advan

tage of the Q D M over the classical spectral method is that the Q D M allows one to use 

nonclassical polynomial basis set such that more choices a,re provided in the solution of 

differential equations. In the case that the basis functions are classical, the Q D M is equiv

alent to the classical pseudospectral method. By introducing the Stieltjes's procedure, 

it is easy for one to construct a set of nonclassical polynomials defined by an arbitrary 

weight function accurate^. For a specific problem, a specific weight function close to 

the solution, which is usually nonclassical, may be chosen to optimize the accuracy and 
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convergence of the solution. Therefore, the use of nonclassical basis sets may provide not 

only more choices but also superior accuracy and convergence than the classical spectral 

method for the solution of a given problem. 

The modified Q D M (MQDM) derivative matrix is also introduced in the thesis. It is 

the Galerkin matrix of the derivative operator based on the nonclassical polynomial basis 

set. The M Q D M has similar properties as the Q D M . Furthermore, the M Q D M matrix 

representative of a second order self-joint differential operator is symmetric. 

In the application to the model problems, such as the one-dimensional and three-

dimensional Poisson equations, the Q D M works remarkable well and competes favorably 

with the classical spectral method in both accuracy and the rate of convergence of the 

solution. In comparison with the finite difference method, the numerical solution of the 

Q D M is more accurate and converges at a much faster rate. In the solution of the three 

dimensional Poisson problem, the Q D M requires much smaller number of grid points and 

less C P U time than the FD method to converge to a given accuracy. 

In the solution of the model problem, an analytic time-dependent Fokker-Planck 

equations, the Q D M with the equilibrium solution as weight function converges faster 

than the classical Hermite and Legendre methods. A l l the eigenvalues of the Fokker-

Planck discretization matrix calculated by the Q D M (and M Q D M ) are real. By contrast, 

spurious imaginary eigenvalues occur for the classical Hermite and Legendre methods. 

The condition number of the FP operator is less than or equal to 0(N2) for the Q D M 

and classical methods. 

The main objective of the Q D M is to determine the weight function that defines the 

polynomial basis sets and hence the grid points which provide optimum convergence in a 

given application. In the applications to the Fokker-Planck and Schrodinger equations, 

the matrix representative of the differential operator is very easy to construct and the 
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matrix is symmetric. A l l the eigenvalues, except the zero eigenvalue, are real and nega

tive. Spurious imaginary eigenvalues do not occur. The convergence of the eigenvalues 

and eigenfunctions is extremely rapid with a judicious choice of the weight function. 

The Q D M is applied to three one-dimensional Fokker-Planck equations referred to as 

the optical bistable potential, the quartic potential and the climate potential, respectively. 

Comparisons have been made to investigate the influence of the choice of weight function 

or basis set on the rate of convergence of the eigenvalues with several weight functions. 

The result indicates that the choice of weight function (or the polynomial basis set) is 

important with respect to the rate of convergence of the eigenvalues and eigenfunctions. 

In general, to achieve fast convergence of the eigenvalues and eigenfunctions of the Fokker-

Planck operator, the equilibrium solution can be chosen as weight function if the potential 

barriers are small. If the potential is symmetric, the weight function chosen as a Gaussian 

function centered on some symmetry axis with an appropriate width can be used. In the 

case that the potential barriers are very large, the weight function should be chosen such 

that the quadrature points that are generated are concentrated near the minima and 

maxima of the potential, or in the wells of the equivalent Schrodinger potential. 

The time dependent solution of the Fokker-Planck equation has been calculated for 

the climate model by both explicit and implicit time discretization. For implicit time 

discretization, since the eigenvalues of the differential matrix are negative, the solution 

is always stable and the selections of the time step is only controlled by the accuracy 

requirement. For explicit time discretization, the time step is decided by both stability 

and accuracy requirements. For a stable solution, one need to consider the condition 

number of the differential matrix. The larger the condition number, the smaller the time 

step can be chosen. We find that for all three Fokker-Planck equations we have studied, 

the condition number of the differential matrix constructed with equilibrium solution as 

weight function, grows as 0(NP), with 1 < p < 2, as N —> co. 
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In the Fokker-Planck equation for the climate model, the drift coefficient function is 

piecewise linear but not smooth. By applying the Q D M , we obtain very good convergence 

of the eigenvalues and eigenfunctions. This indicates that the Q D M can work well for 

nonsmooth functions. 

The Q D M is also applied to the one-dimensional Schrodinger equations with several 

potentials. The Q D M in the solution of the Schrodinger equation is closely related to the 

methods for the solution of the Fokker-Planck equation. The matrix representative of 

the Hamiltonian is symmetric and all the eigenvalues are real. Different choices of weight 

functions in the Q D M solution of the Schrodinger equations are compared and studied. 

The ground state wave function (if it is known) or some approximate form is chosen as 

weight function in the Q D M to solve the problem. The convergence is very rapid in 

comparison with the classical Hermite method. For the Schrodinger equation with the 

nonpolynomial oscillator potential, the Hermite method converges very slowly in some 

cases, while the Q D M with appropriate weight function converges extremely rapidly. 

In the application to the two dimensional Schrodinger equation with the Henon-Heiles 

potential, very rapid convergence of the eigenvalues and eigenfunctions is obtained with 

selected weight functions. The basis sets are constructed with different weight functions 

in each dimension, so as to optimaize the convergence of the eigenvalues and the resolution 

of the eigenfunctions. The results are in very good agreement with previous results by 

others. 

In general, the Q D M is very efficient to the solution of the differential equations 

discussed in this thesis. The Q D M also includes most classical spectral methods when 

one choose to use classical weight function (or basis set). Ability to use nonclassical basis 

set in the Q D M gives one more flexibility in the solution of differential equations. With 

the Q D M , it is possible to obtain the superior convergence and accuracy of the solution 

of some problems, for which any classical spectral method fails to deliver. The Q D M can 
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be easily extended to the solution of high dimensional differential equations. 

The present work has concentrated on the basic development of the Q D M and its 

application to some model problems as well as Fokker-Planck and Schrodinger equations. 

For a complete understanding, improvement and broader applications of the Q D M , some 

future work will be considered. 

(i) Adaptive selection of the weight function to optimize the solution. In general we may 

consider a function close to the solution as a weight function. In the case that no clue 

about the solution is given, one may choose an arbitrary weight function to generate a 

solution and then use this solution as a new weight function to solve the solution again. 

(ii) The nonclassical polynomials are generated by the Stieltjes's procedure. The accuracy 

of polynomials and hence the points and weights as well as the derivative matrix depends 

on the accuracy of numerical calculation of the recurrence coefficients by the Stieltjes's 

procedure. In some cases, the Stieltjes's procedure may not be accurate. Therefore other 

possibilities may be considered and studied to improve the accuracy of calculation of the 

nonclassical polynomials. 

(iii) The current Q D M is based on the nonclassical polynomial basis set. To extend the 

class of the nonclassical basis set, a possibility of other nonpolynomial basis sets, for 

example the rational polynomial basis set, etc. may be considered. 

(iv) Both Fokker-Planck and Schrodinger equations are parabolic type in the infinite 

interval. They have similar forms and properties as advection-diffusion equations used 

extensively for the fluid dynamic problems. The techniques used in solving Fokker-Planck 

and Schrodinger equations may apply to this class of problems. Therefore studies of the 

Q D M in the solution of the advection-diffusion equation is our main task in the near 

future. 

(v) A l l the problems we discussed in this thesis are linear differential equations. Some 

studies in spectral method in the solution of nonlinear problem (for example, the Burger's 
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equation) has been carried out. Our interest in the future is to study how to apply the 

Q D M to the solution of the nonlinear differential equations. 

(vi) When compared with the FD method, the spectral method is superior in accuracy 

and convergence of rate. However finite difference is the most popular numerical schemes 

used by scientists and engineers. One of the reasons is that it is easy to use and standard 

software routines are usually available and ready to use. In the future, we may consider 

to provide a general guideline for the choice of the weight function for a given class of 

problems and to develop standard software routines in order that one can apply the Q D M 

easily. 
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