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Abstract 
In this thesis, we are concerned wi th computing the least squares solution of the linear matrix 
equation 

AX = B 

subject to the constraint that the matrix X is positive semidefinite. For symmetric X, this 
is the previously studied semidefinite least squares (SDLS) problem; for nonsymmetric X, we 
introduce the nonsymmetric semidefinite least squares (NS-SDLS) problem. A n application of 
this second problem is the estimation of the compliance matrix at some location on a deformable 
object. This is an important step in the process of making interactive computer models of de­
formable objects, a technique which is used in the area of medical simulation. We also introduce 
a third semidefinite constrained least squares problem called the linear matrix inequality least 
squares (LMI-LS) problem, which is a generalization of the first two problems. 

Sufficient conditions for the existence and uniquenss of solutions for each of these three 
problems is provided. These solutions are characterized as solutions of nonlinear systems of 
equations known as the Karush-Kuhn-Tucker (KKT) equations. It is shown that the K K T 
equations for each of these problems can be stated as a semidefinite linear complementarity 
problem (SDLCP). Interior-point methods are proposed for the numerical solution of each of 
these three problems. Computational experiments are conducted which indicate that predictor-
corrector interior-point methods solve these semidefinite constrained least squares problems 
efficiently. A noticable improvement is made over the current computational methods used for 
solving the S D L S problem. 
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Chapter 1 
Introduction 

There are often times in which one would like to find a solution to a problem for which no 
exact solution exists. We would st i l l like to be able to give such a problem to a computer and 
have it respond wi th more than just "There i s no exact s o l u t i o n . " It is preferable to have 
the computer let us know that there is no exact solution, but provide us wi th a solution which 
gives us the smallest error possible i n our problem. In addition, there are many times in which 
we would like to compute such a solution wi th least error for a problem which requires, for 
example, that the variables of this solution cannot be negative. We must find a way to have the 
computer provide us wi th a solution that satisfies our problem as close as is possible subject to 
such a constraint. 

In this thesis, we are concerned wi th the problem of solving the linear matrix equation 
which is defined as 

AX = B (1.1) 

where A and B are rectangular matrices and the variable X is a square matrix. There is often 
no exact solution to this equation, but we are st i l l interested in a solution which minimizes 
the sum of the squares of the components of the matrix AX — B. Such a solution is called a 
least squares solution of this equation. In certain applications there are constraints that must 
be satisfied, constraints which the standard least squares solution does not usually satisfy. For 
example, we could require that a l l the entries of the matrix X be nonnegative, or that the 
matrix X be symmetric, or both. 

We focus our attention on two possible constraints which we can place on the matrix X when 
finding the least squares solution of equation (1.1). The first is to insist that X be symmetric and 
have nonnegative eigenvalues; that is, to constrain X to be positive semidefinite. In the second 
case, we allow X to be nonsymmetric, but constrain the symmetric part of X, ^(X + XT), to 
be positive semidefinite. We also consider a third problem which is a generalization of the first 
two problems. This problem seeks a least squares solution of the linear equation 

Ax = b (1.2) 

where A is a rectangular matrix and x and b are vectors. In this case we constrain the variable x 
by insisting that a linear combination of symmetric matrices, which is defined by x, be positive 
semidefinite. We now define each of these three semidefinite constrained least squares problems 
explicitly. 

1 



Chapter 1. Introduction 

1.1 The Semidefinite Constrained Least Squares Problems 
The first of our three problems is called the symmetric semidefinite least squares (SDLS) prob­
lem, and is defined as follows. 

minimize \\AX — B\\F , . 

subject to X y 0 1 ' ' 

Here we use the notation X y 0 to mean that X is symmetric and positive definite. Moreover, 
|| • \\p is the Frobenius matrix norm which is used to measure the size of the residual matrix, 
AX — B, for a given matrix X. We wi l l define this norm in Chapter 2, but for now it is enough 
to observe that | | A X " — -B||.F > 0 i f X does not satisfy AX = B; if X satisfies AX = B, then 
\\AX — B\\p = 0. Therefore, the S D L S problem is the problem of finding a symmetric n x n 
matrix X which minimizes this measure of the error in the equation AX = B, for some m x n 
matrices A and B, subject to the constraint that X be positive definite. 

We call our second problem the nonsymmetric semidefinite least squares (NS-SDLS) prob­
lem, and we define it as follows. 

minimize 11̂ 4-̂ — B\\F A\ 
subject to \(X + XT)yO ^ > 

This time we are looking for an n x n matrix X, which is possibly nonsymmetric, and which 
minimizes the Frobenius norm of the residual matrix AX — B, where A and B are some m x n 
matrices, subject to the constraint that \(X + XT) be positive semidefinite. 

Final ly, our th i rd problem is defined as 

minimize \\Ax — b\\2 Q ^ 
subject to Kx •< C 

where 
n 

fCx = Xi Ki 
t=i 

and K\,..., Kn and C are k x k symmetric matrices. The constraint that ICx -< C means that 
we require that the k x k symmetric matrix, C — Kx, be positive semidefinite. Since this type 
of constraint is commonly known as a linear matrix inequality, we call this problem the linear 
matrix inequality least squares (LMI-LS) problem. Here A is an m x n matrix, b is a vector of 
length m, and a; is a vector of length n. This time we measure the size of the residual vector, 
Ax — b, using the Euclidean vector norm, || • H2, which we w i l l define in Chapter 2. 

We would like to note that while the S D L S problem has been previously studied in great 
detail, this seems to be the first time that the N S - S D L S and L M I - L S problems have been 
formulated and studied. Furthermore, as we wi l l see, each of these problems are convex opti­
mization problems whose local minimizers are global minimizers, and, under the condition of 
strict convexity, there is at most one global minimizer. 
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Chapter 1. Introduction 

1.2 An Application 
The inspiration behind the study of these semidefinite constrained least squares problems began 
wi th the need to solve the N S - S D L S problem in order to estimate the compliance (or stiffness) 
matrix of a deformable (or elastic) object (see [15]). This compliance matrix estimation is 
important i n many areas including robotics, medical simulation, and computer graphics. The 
idea is to use this compliance matrix to be able to model a deformable object, such as a human 
organ, and interact wi th its vir tual model on a computer. This interaction is done by using 
some computer interface which allows users to touch this vir tual object, and which also provides 
some force-feedback depending on the elasticity of the object. 

The method used for estimating the compliance matrix at a certain location on a deformable 
object is to experimentally measure the displacement vector u resulting from some force, rep­
resented by the vector p, applied to the object at this location. The compliance matrix X for 
this contact point governs the relationship between u and p: 

In order to estimate the compliance matrix at this contact point, many displacement measure­
ments, u 1 , . . . ,ul, are taken for the same number of different forces, p1,... ,pl. We then want 
to find the matrix X which satisfies 

Due to unavoidable errors in this recording process, we wi l l not be able to find the matrix X 
which satisfies equation (1.7) exactly. Therefore, we aim to find a matrix X which minimizes 
the error i n this equation. 

However, a problem occurs when using the simple unconstrained least squares solution of 
equation (1.7). If the compliance matrix X has an eigenvalue wi th a negative real part, this may 
cause the vir tual model to respond to the user touching that contact point by pull ing the user's 
hand further in the direction of the touch. B y insisting that ^(X + XT) is positive definite, none 
of the real parts of the eigenvalues of X wi l l be negative. Therefore, we are interested in solving 
the N S - S D L S problem in order to obtain a compliance matrix which produces a well-behaved 
vir tual model for the deformable object. For more on this topic, see [14]. 

1.3 Numerical Solutions 

The purpose of this thesis is to present algorithms for computing approximate solutions to each 
of these three problems. We would like these approximate solutions to agree with the exact 
solution to wi th in a prescribed accuracy, and we would also like to compute these approximate 
solutions efficiently; i.e., the algorithm should not take too long to run on a computer. 

The methods we choose to implement are the popular interior-point methods which have 
been used to solve many other similar constrained optimization problems. We choose these 
methods due to the great success they have had in solving these types of problems accurately 
and efficiently. Moreover, it does not appear that interior-point methods have been used in the 
design of algorithms for solving the S D L S problem before this. 

u = Xp. (1.6) 

[ p 1 . . . p T

T * T = [ « 1 - " « l ] r . (1.7) 
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Chapter 1. Introduction 

1.4 Previous Research 
Although neither the N S - S D L S problem nor the L M I - L S problem seem to have been previously 
studied, the S D L S problem was first proposed back in 1968 by Brock [7] for obtaining symmetric 
positive definite compliance matrices like those discussed in Section 1.2. Brock had proposed 
a method for computing a symmetric positive definite least squares solution to (1.1); however, 
the method he uses only returns the solution to 

minimize \\AX — B\\p ,.. , 
subject to X = XT { ' ' 

which is not always positive definite. 

The S D L S problem was later reformulated and studied in 1988 by Allwright [3]. In that 
paper, Allwright proved that there is a unique solution to this problem i f and only i f the matrix 
A has full column rank, and proposed a computational method for approximating this solution 
under that condition. Allwright also mentions that although there does not seem to be a simple 
formula for the solution of (1-3), we do have the following result that was shown i n the P h . D . 
thesis of Woodgate [32]. 

• If A = I, then the solution of (1.3) is X = \(B + BT){0y 

Here / represents the n x n identity matrix, and M ( 0 ) denotes the result of changing al l of 
the negative eigenvalues of M to 0 in the eigenvalue decomposition of M. In 1990 Allwright 
provided a necessary and sufficient condition for the existence of a solution when A does not 
have full column rank in the follow-up paper [4] written jointly wi th Woodgate. 

Woodgate went on in 1996 to provide a Lagrange multiplier type condition which charac­
terized solutions of the S D L S problem in [33], although it was not stated in terms of Lagrange 
multipliers. Th is result was then used to provide expressions for the solution of the S D L S 
problem in a couple of special cases when A has full column rank: 

• If ABT is symmetric and positive definite, then the solution of (1.3) is 

X = A^B = [ATA)-lATB. 

• The solution of (1.3) is X = 0 i f and only i f — ATB — BTA is positive definite. 

Notice that X = A^B is the solution to the unconstrained least squares problem 

m i n | | A X - B\\F, (1.9) 

where A^ is the Moore-Penrose pseudoinverse of A. Woodgate also provided a computational 
method in [33] for solving the S D L S problem when A has full column rank. 

In 1998, Woodgate proposed a new algorithm for solving the S D L S problem in [34] which 
is based on the related unconstrained problem (1.10). 

mm\\AETE - B\\F (1.10) 
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Chapter 1. Introduction 

The idea here is that X is symmetric and positive semidefinite i f and only i f X = ETE for 
some n x n matrix E. This approach was avoided in [3] and [33] due to the fact that (1.10) 
is no longer a convex optimization problem, which can make obtaining a global minimizer 
difficult. However, Woodgate proved in [34] that any local minimizer of (1.10) is actually a 
global minimizer. The resulting computational method showed great improvements over the 
previous methods from [3] and [33]. We wi l l refer to this method as Woodgate's Algorithm, and 
we wi l l use it as the basis for which we compare the interior-point methods described here for 
the S D L S problem. 

Further progress was made in 1999 by Liao [16] in the area of determining an expres­
sion for the solution, X, of the S D L S problem under certain conditions. B y considering the 
singular value decomposition of A, Liao was able to determine an expression for X under a 
fairly general assumption, which includes the case when the matrix ABT + BAT is positive 
semidefinite. Notice that this is a more general result than the one provided in [33] for the case 
when ABT is symmetric and positive definite. Liao also used this result to provide an expres­
sion for a l l of the solutions of a specific case of the S D L S problem, the least squares inverse 
eigenvalue problem for positive semidefinite matrices. This is the problem of determining the 
positive semidefinite matrices A for which, given some eigenvalues A i , . . . , A m wi th correspond­
ing eigenvectors v\,... ,vm, minimize the norm of the eigenvalue equation AV = VA, where 
A = d i a g ( A i , . . . , A m ) and V = {v\--- vm). 

minimize ^\AV — VA| | i 7 , .. 
subject to A h 0 

A related paper by X ie [35] provided the only example of the N S - S D L S problem (1.4) in 
the collection of literature we considered. In that paper, X i e studied the least squares inverse 
eigenvalue problem for nonsymmetric positive semidefinite matrices (1.12). 

minimize | |^4I^ — V^A , ^. 
subject to \{A + AT)yQ ^' ' 

A n interesting result which is found i n [35] is the expression for the solution of the N S - S D L S 
problem when A = I: 

• If A = I, then the solution of (1.4) is X = \{B + BT){0) + \{B - BT). 

U n t i l now, we have only mentioned previous work done on semidefinite constrained least 
squares problems which are covered by the three problems which we are considering. However, 
there has also been much work done on problems that are generalizations of the S D L S problem. 
In 1995, H u [11] proposed a computational method for solving the following matrix estimation 
problem. 

minimize \\AX — B\\p 
subject to X = XT, 

L<X<U, (1.13) 
AminPO > C > 0, 

X eV 

In (1.13), the inequality, L < X < U, is to be interpreted component-wise: Lij < Xij < Uij, 
for a l l i,j £ { 1 , . . . , n). Furthermore, A m j n ( X ) represents the minimum eigenvalue of X, and V 
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specifies a set of n x n matrices having a particular linear pattern. That is, 

{ m 

i=l 

where K\,..., Km are some symmetric n x n matrices. The idea behind Hu's method is to 
transform (1.13) into an equivalent convex quadratic program wi th infinitely many linear con­
straints, and then solve this problem by generating and solving a sequence of ordinary convex 
quadratic programs, adding a new linear constraint at every iteration. 

Escalante and Raydan [9] also consider the matrix estimation problem (1.13), but wi th 
A = I. They propose using a different computational method, known as Dykstra 's alternating 
projection algorithm. This method is based on viewing the constraints in (1.13) as the intersec­
tion of three sets, and performing a series of projections onto each of these sets unt i l a desired 
tolerance is reached. This paper also contains the following interesting result: 

• The solution to 
minimize \\X — B\\p 
subject to X = XT, (1.14) 

AminPQ > e > 0 

is X = \{B + v3 T)( £), where denotes the result of changing all of the eigenvalues less 
than e to e in the eigenvalue decomposition of M. 

1.5 Outline of Thesis 
We summarize the remainder of this thesis as follows. In Chapter 2 we provide a general 
discussion of convex optimization and develop the systems of equations (the KKT conditions) 
which w i l l characterize the solutions of each of our three semidefinite constrained problems: 
the S D L S (1.3), the N S - S D L S (1.4), and the L M I - L S (1.5). This chapter also mentions the 
conditions which w i l l guarantee the existence and uniqueness of solutions to our problems, 
and shows the connection of each of these problems to the semidefinite linear complementarity 
problem (SDLCP). Chapter 3 then goes on to describe the interior-point methods which we 
w i l l be using to solve our three problems. Starting wi th some background about interior-point 
methods, Chapter 3 provides the intuit ion behind how we can define a central path which 
w i l l be used as the basis for describing the interior-point algorithms for our problems. Due 
to the connection to the S D L C P , we are able to provide a uniform discussion of the standard 
path-following and predictor-corrector algorithms which we are considering; this discussion also 
includes some of the known theoretical convergence results for these two types of algorithms. 
Finally, Chapter 3 concludes by mentioning the issues involved in implementing the standard 
path-following algorithm and the predictor-corrector algorithm for each of our three problems. 
The results of the numerical experiments of our interior-point algorithms conducted in M A T L A B , 
along wi th a comparison to Woodgate's Algor i thm, wi l l be presented in Chapter 4. We finish 
wi th our conclusions and ideas for future work in Chapter 5. 
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Chapter 2 
Convex Analysis and Optimality Conditions 

2.1 Preliminaries 
We begin by discussing the framework in which the theoretical results wi l l be presented. Since 
we w i l l be working both in the space of vectors and in the space of matrices, it w i l l be useful 
to generalize these spaces as is done in Borwein and Lewis' book [6]. There they define a 
Euclidean space E to be a finite-dimensional vector space over the reals wi th which there is an 
inner product (•, •) : E x E —> IR that satisfies the following conditions (x, y, z G E; a, (3 G 1R): 

1. {ax + Py, z) = a {x, z) + P (y, z), 

2. {x,y) = {y,x), 

3. {x, x) > 0, where {x, x) = 0 if and only if x = 0. 

Examples of Euclidean spaces are I R n and IR™1*™, which are the spaces of real column 
vectors x = (x\,... ,xn)T and real mxn matrices A = (aij), respectively. The standard inner 
product on IR" is defined as 

n 

{x,y} ••= ^XiVi = xTy. 
i=l 

Similarly, the inner product we wi l l use on j " R m x n w i l l be defined as 

m n 

i=l j=l 

where tr(j4) = ^ 
_ t an is the trace of a matrix A e j " R " x " . 

,{x,x). This is the Euclidean 
nor nTfe j f F r f i s ^ e f e c f o / l f 1 ? ^ . f n ^ ^ . ^ M r t rftxYe well known Frobenius norm, 
which is denoted by || • | |^ . When referring to topological properties in these spaces, it is wi th 
respect to these norms. 

B y the least squares solution to a matrix equation AX = B, where A G ! R m x " , B G R . m x p , 
and X G I R T l x p , we mean a matrix X (or vector, i f p = 1) such that the norm of the residual 
matrix, R = B — AX, is minimized. We notice that \\AX — B\\p is minimized exactly when the 
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sum of squares of the residuals, 

m n 

\\AX - B\\F = £ £ 4 , 
i=l 3 = 1 

is minimized. It is also noticed (we wi l l show this later) that i f f{X) = ^\\AX — B \ \ F and 
g(X) = \\AX - B\\F, then 

Vf(X)=AT(AX-B) and Vg{X) = ^ - ^ A T { A X - B). 

Thus, we can see that V / ( X ) is a simpler expression than Vg{X) and avoids the difficulty 
arising when | | A X " — BWF = 0. It is for these reasons that we w i l l hence forth only deal wi th 
the (normalized) sum of squares function, f(X) = ^\\AX — B \ \ F , when finding the least squares 
solution of a matrix equation. For an account of the statistical justification behind the principle 
of least squares, see [5]. 

We wi l l use Sn to denote the space of real symmetric n x n matrices A, where symmetric 
means A = AT. We make <S™ a Euclidean space by defining the inner product to be (X, Y) 
tr(XY) and we note that the dimension of 5 " is | r i ( n + 1). A symmetric matrix A is called 
positive semidefinite i f x1Ax > 0 for a l l x G IR", and positive definite if strict inequality holds 
whenever x ^ 0. The sets of positive semidefinite and positive definite matrices in Sn w i l l 
be denoted respectively as S™ and « S " + . Notice that <S™+ is actually the interior of <S™. For 
X, Y G Sn we say X -< Y if Y - X G S% and X < Y i f Y - X G S™ + . This is known as the 
Loewner partial ordering of Sn. 

It is important to note that <S" is a cone in Sn; a cone in E is a nonempty subset C that 
satisfies C = 1R+C, where I R + C := {tx \ t G IR+, x G C} and JR+ := {t G IR | t > 0}. Thus 
C is a cone i f for every vector x i n C, the ray from 0 through x is completely contained wi th in 
C. Another example of a cone is the positive orthant in IR™, 

IR". := {x G IR™. | Xi > 0 for i = 1,..., n\, 

whose interior is the set IR™ + := {x G IR™ | Xi > 0 for i = 1 , . . . , n}. For x, y G IR™, the partial 
ordering induced by IR™ is written a s x < j / i f y — x £ IR™ and x < y iiy — x G IR™ + . 

We denote the spectrum, or set of eigenvalues, of a matrix X G IR™ x n by cr(X). If X G <S™, 
then 

1. a{X) C IR, 

2. X G t?™ i f and only i f a{X) C 1R + , and 

3. X G 5 ™ + i f and only i f a{X) C I R + + . 

A special feature of the cones IR™ and <S™ is the fact that they are self-dual. Let H C E 
be a cone. Then H is called self-dual i f H = H*, where 

H* = {y G E | (x,y)>0 for al l x G H} 
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is the dual cone of H. A s we wi l l see later, the importance of self-dual cones in optimization is 
due to the fact that i f H is self-dual, then 

* f <*,!/> = ( ° ' 'lfl£H (2-1) 
x e H [ — oo, otherwise. 

We w i l l now summarize and prove these results in the following proposition. 

P r o p o s i t i o n 2.1.1 Let H be a self-dual cone in a Euclidean space E . Then equation (2.1) 
holds. Furthermore, IR" and <S" are self-dual cones. 

P r o o f . Let y G H. Then y G H*, which implies that (x, y) > 0 for a l l x G H. Moreover, since 
H is a cone, 0 G H and (0, y) = 0. Thus inf (x, y) = 0. O n the other hand, i f y fi H, then 

y fi H*, which implies that there exists an x G H such that (x,y) < 0. Furthermore, tx G H 
for a l l t > 0 and (tx, y) = t (x, y) < 0. Now l i m t (x, y) = —oo implies inf (x, y) = —oo, which 

proves the first claim. 

To show IR™ and <S" are self-dual cones, we first note that both sets are clearly cones i n their 
n 

respective spaces. If x, y G IR" , then X{, y, > 0 for i = 1 , . . . , n, and thus (x, y) = ^^xi Vi 2t 0. 
i=l 

Therefore, IR" C (IR" )*. To show that (IR" )* C IR" , suppose to the contrary that there is a 
y G (IR")* such that y fi IR" . Then y has the properties that (x,y) > 0 for al l x G IR" and 
that some y2- < 0. Take x = (where is the i%h unit vector: the vector wi th 1 i n the ith 

component, and zeros elsewhere). Then x G IR" and (x,y) = < 0, which is a contradiction. 
Therefore, y G IR" . 

To show that 5" is self-dual, we follow a proof given in [27, p. 520]. Let X,Y G <S". 
Since X is positive semidefinite, it has a unique positive semidefinite square root, \[X. Using 
this factorization of X and the fact that tr(ATB) = tr(BAT) for a l l A,B G I R m x " (see [27, p. 
521]), we get (X, Y) = tr(y/xVXY) = tr(VXYVx). Since Y is positive semidefinite, we know 
that y/XYy/X must also be positive semidefinite, and thus have real nonnegative eigenvalues. 
B y the fact that the trace of a square matrix is equal to the sum of its eigenvalues, we get 
(X,Y) > 0, showing that S£ C 

Suppose now that Y G (Sn)*. Then (X,Y) > 0 for al l X G <S™. If Y fi 5?, then Y 
has a negative eigenvalue A wi th eigenvector u G IR". Let X = uuT, then X G 5" and 
(X,Y) = tr(uuTY) = tr(uTYu) = A||it||2 < 0 gives the contradiction. Thus Y G <S", proving 
that (SI)* CSl. M 

2.2 Convex Analysis 
A s we w i l l see, the problems introduced in Chapter 1 fall under the scope of convex optimization. 
This is due to the fact that the sum of squares functions which we are considering are convex 
functions, and we are minimizing them over a convex set of points. A s per the classical work 
of Rockafellar [25], we find that the convexity of sets and functions is a powerful concept in 
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optimization, largely due to the facts that a local minimizer of a convex function over a convex 
set is a global minimizer and that a minimizer of strictly convex function is unique. After 
defining these concepts in §2.2.1, we w i l l state and prove these results in §2.2.2. 

2.2.1 C o n v e x sets and funct ions 

We wi l l begin by defining the concepts of convex sets and functions, after which we w i l l show 
that the sum of squares functions that are the subject of this thesis are convex. 

Definition 2.2.1 A set fi in a Euclidean space E is called convex if 

tx + (1 — t)y G fi, for all i , y £ ( ] and t G [0,1]. 

Given a convex set fi, a function f : fi —> JR is called convex if 

f(tx+(l-t)y)<tf(x) + (l-t)f(y), 

for all x,y G fi and t G [0,1]. The function f is called strictly convex if the above inequality is 
strict whenever x ^ y and t G (0,1). 

Thus a set is convex i f for any pair of points in the set, the line segment between that pair lies 
entirely inside the set. For example, the cones IR™ and <S" are convex. A function is convex i f 
between al l pairs of points, x and y, the line segment connecting (a;, f(x)) and (y, f(y)) lies on 
or above the graph of / at each point on the line segment between x and y (see Figure 2.1). 

(yj(y)) 

Figure 2.1: The graph of a convex function / . 

Proposition 2.2.2 Given A G I R M X ™ and B G M M X P , the sum of squares function f(X) = 
| | | J4X — B\\p is convex in I R ™ X P and strictly convex if and only if A has full column rank. 

10 



Chapter 2. Convex Analysis and Optimality Conditions 

Proof. Here we give an extended version of a proof provided by Adlers [1, p. 5]. Let X, Y G 
I R n X D and * G [0,1]. Since f{X) = § (AX, AX) - (AX,B) + \ (B,B), then 

f[tX + (l-t)Y) = \t2(AX,AX)+t(l-t)(AX,AY) + \(l-t)2(AY,AY) 

-t (AX, B) - (1 - t) (AY, B) + \ (B, B) 

which implies that 

[tf(X) + (1 - t)f(Y)} - f(tX + (1 - t)Y) 

= \{t- t2) (AX, AX) - t(l - t) (AX, AY) + |[(1 - t) - (1 - t)2} (AY, AY) 

= \t(l-t)(AX - AY,AX - AY) 

= \t(l-t)\\A(X-Y)\\2

F > 0. 

If A has full column rank and X ^ Y, then A(X — Y) can not be the zero matrix. Further, i f 
t G (0,1) then the inequality above wi l l be strict. However, i f A does not have full column rank, 
then there exists a nonzero U G IR™ x p such that AU = 0. Let t ing X G ] R n X p be arbitrary, 
we can choose Y = X — U so that 1 ^ 7 and A(X — Y) = AU = 0. In this case, even wi th 
t G (0,1), the inequality above is not strict, showing that / is only strictly convex when A has 
full column rank. • 

From Proposition 2.2.2 it also follows that f(X) = — B\\F is convex over Sn since 
Sn is a convex subset of H™x™. It is also useful to note that when p = 1 above, we get the 
result presented in [1] that f(x) = \\\Ax — b\\2 is convex over JRn. 

2.2.2 C o n v e x o p t i m i z a t i o n 

Given a convex set fl C E and a convex function IR, a convex programming problem 
is an optimization problem of the form 

ini{f(x)\x efl} (2.2) 

where we would like to determine the value of the infimum. If the infimum is attained in 
problem (2.2), then we would like to find a point x G fl such that f(x) = min{/(a;) \ x G fl}. 
Such an x is called a global minimizer of / over fl, and is referred to as an optimal solution 
to the optimization problem. A local minimizer is a point x G fl for which there is an open 
set N C E containing x such that f(x) = min{/(a;) | x G fl fl N}. A n y point x in fl is called 
feasible; i f x is in the interior of fl, then x is called strictly feasible. A feasible direction at a 
point x G fl is a vector » 6 E such that x + tv G fl for al l t > 0 small enough. 

Theorem 2.2.3 Let x G fl be a local minimizer of the convex programming problem (2.2). 
Then x is a global minimizer. If f is strictly convex, then x is the unique global minimizer. 

Proof. Suppose x is not a global minimum. Then there exists a y G fl such that f(y) < f(x). 
Since / is convex, 

f(tx + (l-t)y) < tf(x) + (l-t)f(y) 

< tf(x) + (l-t)f(x) 

= m , 
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for a l l t G (0,1). Since x is a local minimizer, there exists an open set TV C E containing x such 
that f(x) = min{/(a;) | x G fi (~1 TV}. But TV being open implies that there exists a to G (0,1) 
such that tox + (1 — to)y G TV, contradicting the fact that x is a local minimizer. Therefore, no 
such y exists and x is a global minimizer. 

Now suppose that / is strictly convex and that there exists another global minimizer z G fi, 
which means f(z) = f{x). Lett ing t G (0,1) we get 

f(tx+(l-t)z) < tf{x) + {l-t)f(z) 

= tf(x) + (l-t)f(x) 

= m , 

contradicting the fact that x is a global minimizer. This implies that no such z exists and x is 
the unique global minimizer. • 

2.2.3 Cone constraints 

For our purposes we w i l l be specifying the constraint set fi to be the set of points which are 
mapped by some "convex" function into either IR™ or <S™. B y "convex" we mean convex in 
terms of the partial order induced by the closed convex cones IR™ or 5™. If C C E is some 
general closed cone, we write x <c y if y — x £ C and x <c y i f y — x G int C. Using this 
notation we have that < represents <IR^ a n d zi represents < s « . It turns out that the binary 
relation <c is a partial ordering when C is convex and pointed, where pointed means that 
C n - C = {0}. 

Proposition 2.2.4 If C is a pointed convex cone in E , then <c «s a partial ordering o /E. 

Proof. The binary relation <c is a partial ordering if <c l s reflexive, antisymmetric, and 
transitive. 

1. Reflexive: x <c £, Vx G E 
Since C is a cone we have 0 G C, which implies that x — x G C for a l l x G E, and so <c 
is reflexive. 

2. Antisymmetric: x <c V a n d y < c x =^ x = Vi Var, y G E 
Given x , j / £ E such that x <c y a n d y <c xi w e have y — x^C and —(y — x) G C Since 
C is pointed and y — x G C D — C , we have x = y. 

3. Transitive: x <c y and y <c z =>• x <c zi Vx, y, z G E 
Let i , i ; , z £ E such that x <c y and y <c z. Then y — x G C and z — x G C , and the 
convexity of C implies ^(z — a;) = ^(y — x) + \{z — y) G C. Now, since C is a cone, we 
have z — x G C. • 

A slightly different version of the following definition can be found in [6, p. 59] 

Definition 2.2.5 Let E and Y be Euclidean spaces and C a pointed closed convex cone in Y . 
A function g : E —> Y is called C-convex if 

g(tx + (1 - t)y) <c tg(x) + (1 - t)g{y), 
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for all x,y G E and t G [0,1]. Furthermore, g is called strictly C-convex if the above inequality 
holds with <c when x ^ y and t G (0,1). 

Proposition 2.2.6 Let E and Y be Euclidean spaces, C a pointed closed convex cone in Y , 
and g : E —> Y a C-convex function. Then the set fl = {a; G E | g(x) <c 0} is convex. 

Proof. Let x,y G fl and t G [0,1]. Then —g(x),—g(y) G C and the convexity of C implies 
-tg(x) - (1 - t)g(y) G C. Therefore g(tx + (1 - t)y) <c tg(x) + (1 - t)c/(y) < c 0 and the 
transitivity of <c gives us tx + (1 — i )y e f i . • 

In §2.1 we stated that the cones of primary interest to us are cones that are self-dual. Recall 
that a cone H in E is called self-dual i f H = H*, where 

H* = {y G E | (x, y) > 0 for al l x G H}. 

It turns out that self-dual cones are always pointed, closed, and convex. 

Proposition 2.2.7 Let H be self-dual cone in E . Then H is a pointed closed convex cone. 

Proof. Let y G H, and suppose — y G H. Then we have (x,y) > 0 and (x,—y) > 0 for a l l 
x G H. Thus (x, y) = 0 for al l x G H, which implies that (y, y) — 0. Therefore y = 0, which 
shows that H fl —H C {0}. Since every cone satisfies 0 G H, we see that H is pointed. 

To show H is closed, it suffices to show that for every sequence {yn} i n H that converges 
to some point y G E, we have y G H. Let x G H, then (a;, y n ) > 0 for a l l n G IN, and since the 
inner product is continuous, we have (x,y) = l im (x,yn) > 0. Since x was arbitrary, (x,y) > 0 

Tl—>0O 

for a l l a; G i ? , and therefore y G i f . 

Finally, to show that 7f is convex, we let u,v G H, t G [0,1], and we notice that 

(ar, tu+(l- t)v) = t (x, u) + (1 - i ) {x, v) > 0 

for a l l x £ H, which implies that tu + (1 — i)u G i ? . • 

2.3 Lagrangian Duality and Optimality Conditions 

We are now in a position to describe the duality theory for the convex program 

inf{/(a:) | g(x) <H 0} (2.3) 

where / : E —> IR is convex, g : E —» Y is //-convex, E and Y are Euclidean spaces, and H 
is a self-dual cone in Y . Recall that IR™, l R m x ™ , and <S™ are a l l Euclidean spaces, and that 
IR™ and <S™ are both self-dual cones. Therefore this general formulation allows us to apply the 
results obtained to the many problems of interest i n this thesis, and the proofs of the results are 
practically identical to the case of semidefinite constraints, which we w i l l be considering for our 
least squares problems. The majority of this section is drawn from Borwein and Lewis ' book [6, 
§3.2, § 4 . 3 ] where they present the duality theory of problem (2.3) for the case of Y = IR7™ and 
H = IR™. Furthermore, the following development is undertaken here because it is believed 
that it is not to be found elsewhere stated in these terms. 
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2.3.1 Lagrangian duality 

We begin by introducing the central concept in this section, the Lagrangian function L : E x 
Y -> IR, defined by 

L(x;X) :=f(x) + (X,g(x)). 

The immediate power of the Lagrangian function becomes apparent when we notice that by 
equation (2.1), the self-duality of H implies that i f — g(x) G H, then (A, g(x)) < 0 for al l A G H, 
and i f — g(x) £ H, we can pick A G H to make (A,g{x)) as large as we want. Thus, 

, . _ J f(x), ii x is feasible 
Ae# . \ +oo, otherwise, 

and we can state our optimization problem as 

p := inf sup L(x; A), (2.4) 
xeE Aeff 

where p G [—oo, +oo] is called the primal value of the primal problem (2.3). 

It is also useful to quickly note that this same trick can be applied to problems with equality 
constraints. For example, consider the problem 

i n f { / ( x ) | g(x) = 0} 

which w i l l then have the Lagrangian interpretation 

sup Llx- A) = / / ( : E ) ' l f X i S f e a S i W e 

A G Y \ +oo, otherwise, 

where L(x; A) := f(x) + (X,g(x)}. In a sense, this is due to the fact that Y is the dual of the 
cone {0}. That is, {0}* = Y . 

Returning to problem (2.3), we define the Lagrangian dual problem as 

d := sup inf L(x; A), (2.5) 

where d G [—oo, -f oo] is called the dual value, and notice the following fundamental result. 

Theorem 2.3.1 (Weak Duality) 
Defining the primal function : E —> (—oo,+oo] by 

$(x) := supL{x; A) 

and the dual function $ : H —> [—oo, +oo) by 

$(A) := inf L{x;X) 

we have ̂ (x) > $(A) for all x G E and A G H. Moreover, p> d. 

Proof. Let x G E and A € i f . Then 

= supL(x;X) > L{x;X) > mi L(x;X) = $ (A) . 

Since x G E and A G H are arbitrary and independent, p = inf * ( x ) > sup $(A) = d. • 

14 



Chapter 2. Convex Analysis and Optimality Conditions 

2.3.2 Sufficient conditions for optimali ty 

The usefulness of the Weak Dual i ty Theorem is that i f we find x G E and A G H such that 
ty(x) = 3>(A) G ( — 00, +00), then we know that x is feasible for (2.3) and attains the minimum. 
Not only is x opt imal for the primal problem, but A is optimal for the dual problem as well. 
Furthermore, we notice that 

0 = tf(x) - $(A) = f(x)-irdxeE[f(x) + (X,g(x))} ) 
> f(x)-f(x)-(~X,g(x)) \ (2.6) 
= (X,-g(x)) > 0, J 

where the last inequality comes from the self-duality of H. Therefore, equality holds throughout, 
and we have that x minimizes the function L ( - ; A ) over E and that (A, — g(x)) = 0 (hence 
(X,g(x)) — 0). This motivates the following definition and theorem. 

Definition 2.3.2 Let x G E be feasible for the convex program (2.3). We call A G H a 
Lagrange multiplier for x if x minimizes the function L( •; A) over E and (A, g(x)} = 0. 

Theorem 2.3.3 (Lagrangian sufficient conditions) 
If x G E is feasible for the convex program (2.3) and has a Lagrange multiplier A, then x is 
optimal. 

Proof. Assuming A is a Lagrange multiplier for x, equation (2.6) shows that ^f(x) = 3>(A), and 
the optimality of x follows. • 

2.3.3 The K K T conditions 

U p unti l this point, we have not had to use the convexity of the problem (2.3) in the above 
results. However, using the facts that / is convex, g is iJ-convex, and H is a self-dual cone, we 
have the following result. 

Lemma 2.3.4 (Convexity of the Langrangian) Let E and Y be Euclidean spaces, H C Y 
a self-dual cone, f : E —> JR a convex function, and g : E —> Y an H-convex function. Defining 
L : E x Y —> IR by L(x;X) = f(x) + (X,g(x)), we have the following results: 

(a) If / i <H ^ and X G H, then (A,//) < (A, L>). 

(b) The function L( •; A) : E —> IR is convex for all X G H. 

Proof. Part (a) follows from the self-duality of H and the following implications: 

fi <H v =^ v — /i G H 

{X,u-n)>0 

=> (A,/i) < (X,v). 
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For part (b), we let x , t /£E and t G [0,1]. Then 

L(tx + (1 - t)y; A) = f(tx + (1 - t)y) + (A, g(tx + (1 - t)y)) 

< tf(x) + (1 - + (A, tg(x) + (1 -

= tL(x;\) + (l-t)L(y;\), 

where the inequality follows from the convexity of / , the if-convexity of g, and part (a) of this 
lemma. • 

Therefore, i f we are dealing wi th differentiable functions, and in particular, i f the function 
L(x; A) is differentiable with respect to x, then any cri t ical point of L( •; A) is in fact a global 
minimizer of L( •; A) over E . Thus, finding a solution to the following system of equations wi l l 
give us a feasible point x wi th Lagrange multiplier A, and hence an optimal solution to the 
convex program (2.3). 

V x L ( x ; A) = 0 
-g(x) >H 0 

A >H 0 
(\g(x)) = 0 

This system of equations is often known i n other settings as the Karush-Kuhn-Tucker (KKT) 
conditions (for example, [21, p. 328]). 

In the K K T conditions (2.7), V x denotes the derivative, or gradient, w i th respect to x, 
where the gradient of a function h : E —> IR at x G E , denoted Vh(x), is defined as the element 
a G E (if it exists) such that h'(x;d) = (a,d) for all d G E . Here h'(x;d) is the directional 
derivative of h at x in the direction d, and is defined as 

h'(x;d) := l im h(x + td)-h{x) 

i f this l imit exists. Thus, h has a (Gateaux) derivative S7h(x) at x i f h'(x; d) exists for al l d G E 
and i f h'(x; •) is a linear function on E. If S7h(x) exists for a l l x G E, then we say that h 
is differentiable. If V / i : E —> E is a continuous function, then we say that h is continuously 
differentiable. 

(2.7) 

Example 2.3.5 Consider the sum of squares function f(X) = ±\\AX - B\\2

F for A G 
B G I R m x p , andX G l R n X p . Letting D G M n X p be some direction, we have 

f(X;D) = l i m / ( * + ^ ) - / P 0 
t-*o+ t 

\ (A{X + W) - B, A(X + tD)-B)-\ (AX -B,AX- B) 
= l im 

i->0+ t 
t (AX - B, AD) + U2 (AD, AD) 

= l i m 
t->o+ t 

= (AT(AX -B),D). 

Therefore, Vf(X) = AT(AX - B). 
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If we consider f defined over the Euclidean space Sn with A,B G I R m x ™ , then we require 
V / P O G Sn. Letting D G Sn and Z := AT{AX - B), we have f'(X;D) = (Z,D) and 

{\{Z + ZT),D) = \{Z,D) + \{ZT,D) 

= \(Z,D) + \(Z,D) 

= (Z,D), 

where the second equality follows from the symmetry of D. Since \{Z + ZT) G <Sn, we find that 
Vf(X) = ±(Z + ZT). • 

2.3.4 Necessary conditions for optimali ty 

Now we know that i f we are able to solve the K K T system (2.7), then we have solved our 
optimization problem, but how do we know that the K K T system is i n fact solvable for our 
problem? That is, how do we know that i f an optimal solution exists, it must have a Lagrange 
multiplier? To answer this question, we state the Slater constraint qualification for problem 
(2.3): 

There exists x G E such that g{x) <// 0. (2.8) 

It turns out that the Slater condition is enough to guarantee the existence of a Lagrange 
multiplier for every optimal solution. 

Theorem 2.3.6 (Lagrangian necessary conditions) Suppose that x G E i s optimal for the 
convex program (2.3) and that the Slater condition (2.8) holds. Then there is a Lagrange 
multiplier for x. 

Before presenting a proof to this theorem, we need to develop some further concepts. The 
first of these is the value function v : Y —> [—oo, +oo] defined by 

v{y):=mf{f{x)\g{x)<Hy}, (2.9) 

so that v(0) is the optimal value of the convex program (2.3). We w i l l use the value function in 
the proof of Theorem 2.3.6 by showing that any subgradient of v at 0 is a Lagrange multiplier 
for any optimal x, where subgradient is defined as follows: 

Definition 2.3.7 Let h : Y —> ( — oo, +oo]. We say (f> G Y is a subgradient of h at y if 

(</>,y-y) < h(y) - h(y), for ally G Y 

We denote the set of subgradients of h at y as dh(y). 

For a convex function h : Y —> ( —oo,+oo], where convex here means h is convex on its 
domain, 

dom(/i) := {y G Y | h(y) < +oo}, 

the connection between the gradient and subgradients at a point can be seen in the following 
theorem. 
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Theorem 2.3.8 (Borwein &: Lewis [6, p. 36]) If the function h : Y —> (—oo,+oo] is con­
vex then any point y £ core(dom h) and any direction d £ E satisfy 

h'(y;d) = max{(0,d) | 4> £ dh(y)}. (2.10) 

In particular, the subdifferential dh{y) is nonempty. 

Here, the core of a set C C Y is the set of points y £ C such that for al l directions d £ Y we 
have y + td £ C for al l t > 0 small enough. 

For extended real valued functions h : Y —> [—oo, +oo] we say h is a convex function i f 

epi(h) = {(y,r)£YxTR\h{y)<r} 

is a convex set. Using this extended definition of convexity, we can show that the value function 
is actually convex. 

Proposition 2.3.9 The value function defined by (2.9) is convex. 

Proof. Let ( y i , n ) , ( y 2 , r 2 ) £ epi(v), t £ [0,1], and set (y,r) := « ( y i , n ) + (1 -t)(y2,r2). Then 
v{yi) < r\-> V{V2) < r2t and we want to show that v(y) < r. 

First of al l , we notice that 

v{yi) <n =>• mi{f(x) | g(x) <H yi} < n 

=> 3XJ £ E such that g(xi) <H yi (2-H) 

for i = 1,2. Now we let x := fcri + (1 — t)x2, and the //-convexity of g implies that 

g(x) <H tg{x\) + (1 - t)g(x2) 

<H tyi + (1 - t )y 2 = y, 

so that v(y) < f(x). This fact and the convexity of / implies that 

v{v)<tf{Xl) + {l-t)f(x2). 

Taking the infimum over a l l x\ and x2 satisfying 2.11 gives 

v{y) < tv(yj) + (1 -t)v(y2) 

< tn + (1 - t)r2 = r. 

Therefore, epi(w) is a convex set, and thus v is a convex function. • 

A s we w i l l see in the proof of Theorem 2.3.6, the convexity of the value function v allows 
us to use the following result to show that the Slater condition (2.8) implies that v never takes 
on the value —oo. 

Lemma 2.3.10 (Borwein & Lewis [6, p. 44]) If the function h : Y —> [—oo, +oo] is convex 
and some point y £ core(dom/i) satisfies h(y) > —oo, then h never takes the value —oo. 
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We are now in a position to prove the Lagrangian necessary conditions. 

Proof of Theorem 2.3.6. Recal l that we are assuming that x G E is optimal for the convex 
program (2.3) and that the Slater condition (2.8) holds: 3x G E such that g(x) <H 0. 

Since x is optimal, we have v(0) = f(x) > —oo. B y showing that 0 G core(domv), we 
can use Lemma 2.3.10 to show that v : Y —> (—oo,+co]. Thus, we need to show that for al l 
directions d G E we have 0 + td G dom(t;) for a l i i > 0 small enough. Let t ing d G E we have 

td G dom(w) <=> v(td) = inf{/(o;) | g(x) <H td} < +oo 

C(t) := {x G E | g(x) <n td} ^ 0. 

B y showing that 3e > 0 such that V i G (0,e) we have x G C(t), we shall have proved our claim 
that 0 G core(domu). 

First of al l , we wi l l show that 3 k G IN such that x G C ( | ) . Suppose, on the contrary, that 
x fi C(^) for al l k G IN. That is, the sequence defined by = \d — g(x) lies entirely in E \ H, 
which implies that — g(x) = l i m G c l ( E \ H) — E \ mt(H), wi th the last equality following 

k—»oo 
from the fact that H is closed. This gives us our contradiction, since — g(x) G 'mt(H). 

Lett ing e ^ , where x, G C(jjr), we w i l l now show that x G C(t) for a l l t G (0, e). This can 
be achieved by showing that the set 

T := {t > 0 | x G C(t)} 

is convex, and using the fact that 0, e G T. 

Let t i , t2 G T and a G [0,1]. We want to show that t := od\ + (1 — a)*2 G T . Since 

U G T ^ £ G C(<i) 

#(£) <H Ud, 

for « = 1,2, we have 

td — g(x) = at\d + (1 — a)t<id — g(x) 
= afad - g(x)) + {1 - a){t2d - g{x)) 

G H. 

Therefore, g(x) <H td, which implies t G T . Hence, T is convex, finally proving that 0 G 
core(domt;). 

Thus, by Lemma 2.3.10, we have v : Y -» (—oo, +oo], so we can apply Theorem 2.3.8 to 
get the fact that dv(0) ^ 0, which implies the existence of a subgradient —A G Y of v at 0. It 
remains to show that A is a Lagrange multiplier for x. That is, A G H, x minimizes L( •; A), 
and (\,g(x)) = 0 . 

We begin by showing that A G H, which, by the self-duality of H, is equivalent to showing 
( A , y ) > 0 for a l l y G H. Let t ing y G H, we have that g(x) <H 0 implies g(x) <H y. Thus, 

v(y) = i n f { / ( x ) | g{x) <H y} 

< mi{f(x) | g(x) <H 0} = v(0). 
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Since - A G dv(0), Definition 2.3.7 shows (-X,y - 0) < v(y) - v{0), so 

v{0) < v{y) + (X,y) 

< v(0) + (X,y), 

giving us (A, y) > 0 for al l y G H. 

To show that x minimizes L( •; A) and (A, g(x)) — 0, we again use the definition of subgra-
dients, this time to get that ( — X,g(x) — 0) < v(g(x)) — v(0), so that 

v(0) < v(g(x)) + (X,g(x)) 

= i n f { / ( x ) | xeB}+(\,g(x)) 

< f(x) + (\,g(x)) 

for a l l x G E . Since x is optimal, we also have v(0) — / ( x ) , which implies that f(x) < 
f(x) + (X,g(x)) for a l l x G E . Using this fact, we find that f(x) < f(x) + (\,g(x)), so we get 
(\,g(x)) > 0. O n the other hand, (\,g(x)) < 0 since —g(x),X G H. Therefore, (A,g(x)) = 0, 
which implies that 

L(x;X) = f(x) + (X,g(x)) 

= m 

< f{x) + (\,g{x)) = L(x;X). 

Therefore, A is a Lagrange multiplier for x. • 

2.3.5 Summary 

We wi l l now summarize the preceding results and introduce some new terminology which wi l l 
be used to guide our discussion. For our purposes here, we w i l l be assuming that the Lagrangian 
function is differentiable with respect to x. 

We first introduce the slack vector, s G Y , which we use to "add slack" to the inequality 
in problem (2.3), giving us the equivalent problem 

inf f{x) 
s.t. g(x) + s = 0, (2.12) 

S >H 0, 

sup L(x; X) 
s.t. VxL(x;X) = 0, (2.13) 

X>H 0. 

W i t h this slack vector, the K K T conditions for optimality can now be stated as 

V x L ( x ; A ) = 0, X>H0, 
g(x) + s = 0, s > H 0 , } (2.14) 

(X,s) = 0, 

with associated dual problem 
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where the first two lines can be understood as dual feasibility and primal feasibility, respectively, 
and the last condition is often coined as complementary slackness. 

We say that a point (x, s, A) G E x Y x Y is primal-dual feasible if g(x) + s = 0, WxL(x; X) = 
0, and s, A ># 0. Given a primal-dual feasible point (x, s ,A) , we know from Theorem 2.3.1 
(Weak Duali ty) that the value of the objective function of the pr imal is always greater or equal 
to that of the dual, wi th equality implying that (x, s) is optimal for the pr imal problem and A 
is optimal for the dual problem. Let t ing (i{x,s, X) represent this duality gap, we find that 

n(x,s,X) := f(x) — L(x; X) 

= f(x) — f(x) — (X,g(x)) (2.15) 

= (X,-g(x)) = (X,s) > 0 

wi th n(x, s, X) = 0 implying that (x, s, X) is optimal for problems (2.12) and (2.13). Further­
more, i f (x, s) is optimal and the Slater condition holds for problem (2.12), then there exists 
A G Y such that (x, s, A) is primal-dual feasible and fi(x, s, A) = 0. 

Finally, we summarize these results i n the following theorem. 

T h e o r e m 2 . 3 . 1 1 Suppose the Lagrangian function for problem (2.12) is differentiable with 
respect to x and that the Slater condition (2.8) holds. Then x G E is optimal if and only if 
there exist points s, A G Y such that (x, s, A) is primal-dual feasible and fi(x, s, A) = 0, which 
is equivalent to (x,s,X) satisfying the KKT conditions (2.14). 

2.4 Application to Semidefinite Constrained Least Squares 

We can now apply the results of the previous section to the three problems of interest in order 
to state the conditions necessary and sufficient for optimality. 

2.4.1 T h e s y m m e t r i c semidef ini te least squares p r o b l e m ( S D L S ) 

A s we mentioned in Chapter 1, we would like to find a solution to the matrix equation AX = B, 
where A,BE M m x n and X G Sn, i n the least squares sense, but where we require that X be 
positive semidefinite. The S D L S problem can be stated formally as 

inf l\\AX-B\\F 

s.t. XhO [ ' 

which is a special case of problem (2.3) wi th E = Y = Sn, H = 5", f(X) = ^ | | A X " - B\\F, and 
g(X) = —X. We can use Proposit ion 2.2.2 to show that / is a convex function over <S", and 
we note that since g is clearly a linear function, it is necessarily if-convex. 

For this problem the Lagrangian function L : Sn x Sn —> IR is defined by 

L(X;A) = f(X) + (A,g(X)) 

= i\\AX-B\\2

F-(A,X), 
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with X derivative 

V * L ( X ; A) = \{Z + ZT) - A , where Z = AT(AX - B). 

Since the Slater condition (2.8) clearly holds for this problem (for example, X — I), we have 
that X G Sn is optimal for (2.16) i f and only i f there exists A G Sn such that the following 
K K T conditions are satisfied: 

AT(AX-B) = Z, 

\{Z + ZT) = A , 

(A,X) = 0, 

X, A h 0. 

We now state the following important fact, which is found as an exercise in [6, p. 108]. 

Proposition 2.4.1 (Semidefinite complementarity) If X,Y >t 0, then the following are 
equivalent: 

(i) (X,Y) = 0, 

(ii) XY = 0, 

(iii) \{XY + YX) = 0. 

Proof, (i) (ii): To show that (X,Y) = t r ( X Y ) = 0 implies XY = 0, we follow Todd's 
advice [27, p. 523] by considering the eigenvalue decomposition of X, X — UAUT, where U is 
an orthonormal matrix (UUT — I) and A is a diagonal matrix wi th the eigenvalues of X, 

along its diagonal. 

We first notice that 

^ - - • ^ A r !> Xr+i — • • • — A n — 0, 

0 = tr{XY) = tr(UAUTY) 

= tr{AUTYU) 

= (A , UTYU) 
n 

= £ Xi(UTYU)i 

Since Y is positive semidefinite, so is UTYU, and thus [UTYU)u > 0 for i = 1 , . . . , n. This 
implies that A, (UTYU)a — 0 for i — 1 , . . . , n , which tells us that (UTYU)a = 0 for i — 1 , . . . , r. 
Since UTYU is positive semidefinite wi th zeros along the diagonal in the first r positions, we 
must have 

" 0 0 
UTYU = 

o y 
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for some Y £ <S™ r . Let t ing A = D i a g ( A i , . . . , Xr), we also have 

A = 
A 0 
0 0 

and so AUTYU = 0, which in turn implies that XY = U{AUTYU)UT = U • 0 • UT = 0. 

(ii) =» (iii): Clearly, i f X Y = 0, then \(XY + YX) = \(XY + (XY)T) = 0. 

(iii) =» (j): This follows from the fact that tr(\(XY + YX)) = ti(XY). • 

Therefore, the K K T conditions for problem (2.16) are equivalent to the following nonlinear 
system of equations. 

AT(AX-_B) = Z 
\(Z + ZT) = A 

A X = 0 

x, A y o 
It should be noted that although such a Lagrange multiplier type characterization of optimality 
was stated by Woodgate in [33], it was not stated using the Lagrange multiplier matrix A . For 
comparative purposes, we provide this characterization of Woodgate: 

(2.17) 

where 

L(X) 

. Y e 5+ and L(X) £ <S", 

:= ATAX + XATA — ATB — BTA, 

:= {X 6 SI | tr(XL(X)) = 0}. • 

We can clearly see why Woodgate's characterization of optimality is equivalent to (2.17), how­
ever, as we w i l l see, using (2.17) w i l l be highly useful when discussing the interior-point algo­
rithms of Chapter 3. 

Now for a note on whether or not the S D L S problem actually has an optimal solution. We 
are concerned about the existence of an optimal solution because the usefulness of the above 
K K T characterization of optimality only applies if such a solution exists, and, as we see from 
the following example, this is not always the case. 

Example 2.4.2 (Woodgate's counterexample, [4]) Consider the SDLS problem with 

A=[l 0 ] , B = [ - 1 1 ] , and X 
a b 
b c 

Then f(X) = i | | A X " - B\\2

F = i[(a + l ) 2 + (b - l ) 2 ] and X h 0 if and only if a > 0 and 
ac — b2 > 0. This implies that f(X) > | ( a + l ) 2 > \ . Furthermore, if 

Xn — 
r I 1 

n 
1 n 

then Xn y 0 for all n 6 IN and l im f(Xn) = l i m k(-\ + l ) 2 = i . Therefore, the optimal value 
n—>oo n—>oo " 

is p = \ , but as we will now show, this value is not attained. 
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Suppose X y 0 and f(X) = | [ (a + l ) 2 + (b — l ) 2 ] = \ . Since a > 0, it must be the case 
that a = 0 and b = 1, which implies that ac — ti2 = — 1 ^ 0, contradicting the assumption that 
X is positive semidefinite. Therefore, no X £ 5 2 satisfies f(X) = 5. • 

Originally, in [3, Theorem 3.1], Allwright claimed that the minimum in the S D L S problem 
always exists. However, after the discovery by Woodgate of the above counterexample, they 
jointly produced an erratum and addendum paper [4] where they point out the error in the 
proof of that theorem, and correct the statement to say that the minimum i n the S D L S problem 
exists when the matrix A has full column rank. Using the following theorem of Weierstrass, we 
w i l l present an alternate proof of this result. 

Theorem 2.4.3 (Weierstrass, [6, p. 4]) 
Suppose that the set D C E is nonempty and closed, and that all the sub-level sets of the 
continuous function f : D —> IR are bounded. Then f has a global minimizer. 

Here, the sub-level sets of a function / : D —> IR are defined to be the family of sets 

{x£D\ f(x) < a} (2.18) 

for a G IR. 

Lemma 2.4.4 Let f : TRnxp -> IR be the sum of squares function f{X) = ^ | | A X — B\\p, with 
A G H m x " and B G I R m x p . Then f has bounded sub-level sets if and only if A has full column 
rank. 

Proof. Since / is always nonnegative, we need only consider sub-level sets 

C{a) := {X G 1R" X P I f{X) < a} 

for a > 0. 

Let us first show that i f A does not have full column rank, then some of the sub-level sets 
of / are not bounded. For example, i f a > ^\\B\\F, we wi l l show that C(a) is unbounded. Since 
rank(A) < n, there exists a nonzero X G I R " x p such that AX — 0. Furthermore, letting t > 0, 
we also have A(tX) = 0, which implies that f(tX) = ^\\B\\F < a, and so tX G C(a) for a l l 
t > 0. However, since \\X\\p > 0, we find that l im = l im = +00. Therefore, 

C(a) is unbounded. 

Now suppose that A has full column rank. Let a > 0 and X G C(a). Then | | | A X — B\\p < 
a, which implies that \\AX — B\\p < \/2a. This in turn implies that 

| | A X | | F = \\AX-B + B\\F 

< \\AX - B\\F + \\B\\F 

< y/2a+\\B\\F, 
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and so tr(XTATAX) = \\AX\\2

F < /? := (V2a+\\B\\F)2. Since A has full column rank, the n x n 
symmetric matrix ATA is positive definite and has eigenvalue decomposition A1 A = QTAQ, 
where Q is orthonormal and A is diagonal wi th the eigenvalues of ATA, 

A i > • • • > A n > 0, 

along its diagonal. Let t ing Y = QX (then X = QTY and \\Y\\F = ||-X"||.p), we have 

P > ti(XTATAX) = t r ( Y T A Y ) 

= t r ( A Y Y r ) 
n 

= £ \i(YTY)ii 
i=i 
n 

> J2Xn(YTY)u 
i=\ 
A „ t r ( Y J Y ) = Xn\\X\\2

F, 

which implies that \\X\\F < M := V p / A ^ , and so C(a) is bounded. • 

Therefore, i f A has full column rank, then f{X) — \\\AX - B\\2

F must also have bounded 
sub-level sets over any subset of TRnxp. Since <S™ is nonempty and closed, and / is a strictly 
convex and continuous function, Theorem 2.4.3 gives us the desired result. 

T h e o r e m 2.4.5 If A has full column rank, then the SDLS problem has a unique optimal solu­
tion. 

2.4.2 T h e n o n s y m m e t r i c semidef in i te least squares p r o b l e m ( N S - S D L S ) 

It is sometimes desirable to find the least squares solution to the matrix equation AX = B, 
where A,B £ JRmxn, X £ IR™*™, and requiring that X be "positive semidefinite" in the sense 
that vTXv > 0 for a l l v £ IR™. Since 

vT(l(X+XT))v = \vTXv + \vTXTv 

= \vTXv + \vTXv 

= vTXv, 

this requirement turns out to be equivalent to requiring that the symmetric part oi X, \{X + 
XT), be positive semidefinite. This specific problem, which was the starting point for this 
thesis, does not seem to have been previously studied. 

We can state the N S - S D L S problem as follows. 

inf \\\AX-B\\2

F 

s.t. l(X + XT)hO { y j 

Here we have the instance of problem (2.3) where E = I R " X " , Y = <Sn, H = 5?, f{X) = 
\\\AX - B\\2

F, and g(X) = -\{X +XT). Proposit ion 2.2.2 states that / is convex over M" x ™, 
and g being a linear function implies that it is an TJ-convex function. 
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This problem then has the Lagrangian function L : ] R n x n x 5 " -> IR defined as 

L(X;A) = \\\AX-B\\F - (A,\{X + XT)) 

= \\\AX-B\\F-\(A,X)-\(A,XT) 

= \\\AX-B\\F-(A,X), 

and therefore satisfies 
VXL{X; A) = AT{AX - B) - A. 

Thus, wi th Proposit ion 2.4.1 in mind, and given that X = I implies that the Slater condition 
holds, we find that X G 1R™X" is optimal for the N S - S D L S problem i f and only if there exists 
a slack matrix S G «Sn and a Lagrange multiplier matrix A G <S" such that the following K K T 
conditions hold. 

AT(AX — B) = A } 

5, A >: 0 J 

Again , we can use Theorem 2.4.3, Lemma 2.4.4, and the fact that the set of feasible points, 

D := {X G I R " X " | \{X + XT) h 0}, 

is nonempty and closed to get the following result. T h e o r e m 2.4.6 If A has full column rank, then the NS-SDLS problem has a unique optimal 
solution. 

2.4.3 The linear matrix inequality least squares problem ( L M I - L S ) 

The th i rd problem under consideration is actually a generalization of the first two problems. 
Here we seek a least squares solution to the linear equation Ax = b, where A G I R m x " , x G 
IR", b G I R m , and we require that x satisfies a linear matrix inequality, i.e., that a linear 
combination of symmetric matrices be positive semidefinite. More specifically, the L M I - L S 
problem is described as 

inf \\\Ax-b\\l ( 2 2 1 ) 

where 

s.t. tCx -< C 

ICx = XiKi 
i=l 

and Ku...,Kn,C G Sk. In terms of problem (2.3), we have E — IR", Y = Sk, H = <S* 
f(x) = ^\\Ax — &H2, and g(x) = ICx — C. The constraints here are defined by an affine function 
(a linear function plus a constant), which satisfies g(tx + (1 — t)y) = tg(x) + (1 — t)g(y) for al l 
x,y G IR" and t G [0,1]. Therefore, g is an if-convex function, and the convexity of / follows 
from Proposit ion 2.2.2. 
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To show why this formulation is equivalent to the previous two problems, consider, for 
example, the N S - S D L S problem wi th n = 2. Then 

X = Xi x 3 

X2 Xi 

and we have the constraints 

Ux + xT) = 
1 (x2 + s3) X l 2 

i ( x 2 + x 3 ) x 4 

y 0, 

which is equivalent to the constraints of the L M I - L S problem, with x = ( x i , x 2 , X 3 , X i ) T and 

0 -I - 1 0 
0 0 , K2 = K3 = 0 KA 

0 0 
0 - 1 

, and C 

If the matrices associated wi th the N S - S D L S problem are A and B = bi b2 

0 0 
0 0 

, then setting 

A = A 0 
0 A 

and b bi 
b2 

implies that ^||^4x — b\fe = ^\\AX — B\\F. In a similar manner, it can also be shown that the 
S D L S problem is a special case of the L M I - L S problem. 

The observation that this third problem generalizes the first two problems already gives us 
more than enough justification for studying it. However, a further reason to study the L M I - L S 
problem is that its constraints are the same as those arising in the area of (linear) semidefinite 
optimization (see the recent survey paper by Todd, [27]). A semidefinite programming problem 
(SDP) is described as 

inf (C, X) 
s.t. K*X = d, (2.22) 

x y 0 
where K.*X = ((Ki,X))n 

, and whose dual problem is described as 

sup dTX 
s.t. K\ < C. 

(2.23) 

It is also instructive to note that the K K T conditions for the S D P problem are described as 

(2.24) 

0 + 5 = C, 
K.*X_ = d, 
XS = 0, 

S,X y 0. 

The linear functions K : IR™ —> Sk and K* : Sk —» IR™ described here are adjoints of each 
other, in that (A, /Cx) = (AC*A, x) for al l A 6 Sk and x G IR™. This is in fact easy to show: 

n 

(A,/Cx) = ^ ( A . t f i ) 
i = l 

= x r (AC*A) 

= (AC*A,x). 
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The fact that the functions K. and /C* are adjoints allows us to show that the Lagrangian 
function for problem (2.21), L : IR™ x S f c - > ] R , satisfies 

L(x;A) = \\\Ax-b\\l + (A,K,x-C) 

= ±\\Ax-b\\% + {lCmA,x)-(A,C), 

which in turn implies that 

VxL{x; A) = AT(Ax - b) + K.*A. 

Unlike the problems S D L S and N S - S D L S , the Slater condition (2.8) does not always hold 
for the L M I - L S problem. However, if the Slater condition does hold for this problem, then we 
have that x £ H™ is optimal i f and only i f there exist S, A £ Sk such that the K K T conditions 
(2.25) hold. 

AT(Ax -b) + IC*A = 0 
ICx + S = C 

AS = 0 
S, A y 0 

For example, i f the set of matrices {K\,..., Kn} spans Sk (i.e., span{Ku...,Kn} = Sk), 
then the function K. maps IR™ onto Sk. In this case, the Slater condition (2.8) clearly holds: 
{x £ W1 | ICx -< C} ^ 0. 

For this more general problem, we have to be a little more careful when stating the existence 
theorem. The set of feasible points, 

D := {x £ JRn | ICx z< C}, 

can be shown to be closed using the fact that /C is continuous and Sk is closed. However, we 
do not know i f D is nonempty. These facts give rise to the following theorem. 

Theorem 2.4.7 If A has full column rank and the set of feasible points is nonempty, then the 
LMI-LS problem has a unique optimal solution. 

Again we notice that a useful assumption which guarantees that the set of feasible points is 
nonempty is to have span{.K"i , . . . ,Kn} = Sk. 

More on the assumption span{K"i , . . . , Kn} = Sk 

Twice now, we have found the assumption 

sp<m{K1,...,Kn} = Sk (2.26) 

to be very useful. First of al l , when assuming that A has full column rank, assuming (2.26) 
implies that the L M I - L S problem has a unique optimal solution. Secondly, assuming (2.26) 
implies that optimality is characterized by the K K T conditions (2.25). We now take some 
time to investigate some other useful implications of assuming (2.26). We begin by giving the 
following definition. 
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Definition 2.4.8 Let E and Y be Euclidean spaces, and let T : E -> Y be a linear function. 
We define the null space of T as 

null T = {x G E | Tx = 0} 

and the range ofT as 

range T = {y G Y | Tx = y, for some x G E}. 

Given a subset fl o /E, we define the orthogonal complement of fl as 

flx = {x G E | (x,v) = 0, for all v G fl}. 

We immediately have the following familiar result from linear algebra. 

Proposition 2.4.9 Let 1C : ] R n -> Sk be defined as in the LMI-LS problem (2.21). Then 
null(K.*) = (range AC) X . 

Proof. The result follows from the following series of implications. 

t7Gnull( /C*) AC*[/ = 0 

<S> (K*U,x) = 0, for a l l x G E T 

(U, Kx) = 0, for all x G IR™ 

^ (U, V) = 0, for all V G range AC 

O i7 G (range AC)"1 

• 
We wi l l find the following corollary to the preceding result to be extremely useful in the 

upcoming discussion. 

Corollary 2.4.10 Let K, : IR™ -» Sk be defined as in the LMI-LS problem (2.21). Assume that 
(2.26) is true; that is, s p a n { i f i , . . . , Kn} = Sk. Then \k(k + 1) < n . Moreover, if A G Sk is 
nonzero, then AC* A ^ 0. 

Proof. It is clear that the dimension of s p a n j i f i , . . . , Kn} can be at most n. However, by 
assumption, the dimension of s p a n j i ^ i , . . . , Kn} equals \k(k + 1), which gives us our first 
claim. B y the definition of AC, we have range AC = span{ i l " i , . . . ,Kn}. Thus, range AC = Sk, 
which implies that null(AC*) = (range AC)X = {0}. Therefore, i f A G Sk is nonzero, then 
A £ null(AC*), which implies that AC*A ^ 0 . • 
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2.5 The Semidefinite Linear Complementarity Problem 
A fantastic connection between our three semidefinite least squares problems was discovered 
while researching the interior-point methods which we wi l l be using to compute solutions to 
our problems (see Chapter 3). It turns out that each of our three problems can be stated as a 
semidefinite linear complementarity problem ( S D L C P ) , which was first introduced by Ko j ima , 
Shinoh, and Hara [13] as an extension of the L C P , or (monotone) linear complementarity 
problem (2.27), and as a generalization of the SDP, or semidefinite programming problem (2.22). 
For comparative purposes, we state the definition of the L C P (see [31, Chap. 8]), which is the 
problem of finding vectors x and y in IR™ such that 

y = Mx + q, x>0, y > 0, and xTy = 0, (2.27) 

where q is a vector i n IR™ and M is an n x n positive semidefinite (but not necessarily symmetric) 
matrix; i.e., uTMu > 0 for al l u G IR™. 

O n the other hand, the S D L C P is defined as the problem of finding matrices X and Y in 
J?" such that 

(X,Y)eC, XhO, YhO, and (X,Y)=0. (2.28) 

Here £ is a monotone ^n(n+ l)-dimensional affine subspace of <S™ x Sn, where monotone means 
that £ satisfies 

(X1 -X,Y' -Y)> 0, for a l l (X',Y'), (X,Y) G £ . (2.29) 

If strict inequality holds in (2.29) for al l distinct pairs (X',Y') and ( X , V ) G £ , then we say 
that £ is strictly monotone. Furthermore, we say that a monotone subset A of <S™ x <S™ is 
maximal i f there is no monotone subset of <S™ x Sn which properly contains A. The following 
result from a paper by Shida, Shindoh, and K o j i m a [26] provides insight into the need for £ to 
have dimension |n(n + 1) = dim<S™. 

Lemma 2.5.1 ([26, p. 388]) Let E be a Euclidean space. Suppose £ is a monotone affine 
subspace o / E x E . Then £ is maximal if and only if d im £ = d i m E . 

The next result, which is a slightly modified version of a result from the same paper, 
illustrates the connection between the definitions of the L C P and the S D L C P , and w i l l be a 
useful tool for showing that the S D L S (2.16), N S - S D L S (2.19), and L M I - L S (2.21) problems 
can each be stated as an S D L C P (2.28). 

Corollary 2.5.2 ([26, p. 389]) Let E be a Euclidean space. Suppose that £ is an affine 
subspace o / E x E given by 

£ = {(x,y) G E x E | y = Mx + q], (2.30) 

where M. : E —> E is a linear function and q G E . Then £ is monotone and maximal if and 
only if Ai is positive semidefinite; i.e., (u,M.u) > 0 for every t i £ E . 
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We conclude wi th some further notation. We define the set of feasible solutions, the set of 
interior feasible solutions, and the set of solutions of the S D L C P (2.28) as 

c+ = {(x,Y) €£ | x y o, Y y o}, (2.31) 

C++ = {{X,Y) eC\XyO, YyO}, (2.32) 

£* = {(X,Y)eC+ I (X,Y) = 0}, (2.33) 

respectively. Thus we can state the S D L C P as the problem of finding a pair of matrices (X, Y) 
i n £* . 

2.5.1 T h e S D L S p r o b l e m is an S D L C P 

Recall that the semidefinite least squares (SDLS) problem (2.16) is defined as 

inf 
s.t. 

\\\AX B\\F 

x yo 

where A, B G TRmxn and X G Sn. We were able to show in Section 2.4.1 that the S D L S problem 
can be solved by finding symmetric matrices X and A satisfying the following K K T equations: 

AT{AX -B) = 

(X,A) = 

x, A y 

z, 
A , 
0, 
0. 

(2.34) 

Lett ing M : Sn ->• Sn and Q G Sn be defined as 

MX = \(ATAX + XATA), and 

Q = —\(ATB + BT A), 

and letting 

£ = {{X,A) G 5n x Sn | A = MX + Q), 

we see that (X, A) satisfies the K K T equations (2.34) i f and only i f (X, A) satisfies 

[X,A)eC, XhO, AyO, and <X,A) = 0. (2.35) 

Since M is clearly linear, by showing that M is positive semidefinite, we can use Lemma 2.5.1 
and Corollary 2.5.2 to conclude that the S D L S problem (2.16) is indeed an S D L C P (2.28). 

To show that M is positive semidefinite, we first let U G Sn. Then 

(U,MU) = (U,±(ATAU + UATA)) 

= \[tr{UATAU)+tx{UUATA)] 

= ±[tr(UATAU)+tr(UATAU)} 

= \\AU\\2

F > 0, 

where the third equality follows from the fact that tr((VT) = tr(VU) for a l l V G l R n x n (see [27, 
p. 521]). Thus, M is positive semidefinite. We also notice that i f A has full column rank, and 
U is nonzero, then the last inequality would be strict, which shows that M is positive definite 
in this case. 
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2.5.2 The N S - S D L S problem is an S D L C P 

We stated the nonsymmetric semidefinite least squares (NS-SDLS) problem (2.19) as 

inf l\\AX-B\\2

F 

s.t. \(X + XT) h 0 ' 

where A,B € ] R m x ™ and X G IR™*™. Recall that in Section 2.4.2, we showed that we can solve 
the N S - S D L S problem by finding symmetric matrices X and A satisfying the following K K T 
equations: 

AT(AX-B) = A, \ 
\{X + XT) = 5 , 

(A, S) = 0, 

A , s y o. 

(2.36) 

To show that the K K T equations (2.36) can be stated as an S D L C P (2.28), we assume that 
A has full column rank and let M : Sn —> Sn and Q G Sn be defined as 

MA = | ( G _ 1 A + A G - 1 ) , and 

Q = ^(G~1ATB + BTAG~1), 

where G = ATA is positive definite. Lett ing 

C = {(A, S) G Sn x Sn | S = MA + Q}, 

we see that the equations (2.36) imply 

( A , S ) G £ , A ^ O , ShO, and (A, S) = 0. (2.37) 

Conversely, i f (A, S) satisfy (2.37), defining X := G _ 1 ( A + ATB) gives us a solution of (2.36). 
Aga in we see that M is clearly linear, and by showing that M is positive definite, we can 
use Lemma 2.5.1 and Corollary 2.5.2 to conclude that the N S - S D L S problem (2.19) is also an 
S D L C P (2.28). 

To show that M is positive definite, we first let U G Sn be nonzero. Then 

(U,MU) = (U^iG^U + UG-1)) 
= ^[ tr^G- ' f /J+tr f f /PG- 1 ) ] 

= triUG^U) 
= \\VG^U\\2

F > 0, 

where we used the same trick as before to get the third equality, and the inequality follows from 
the fact that G _ 1 is positive definite, and thus VG_1 is positive definite. 

2.5.3 The L M I - L S problem is an S D L C P 

A s before, we state the linear matrix inequality least squares problem (2.21) as, 

inf i | | A B - 6 | | | 
s.t. K,x<C ' 
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where 

ICx = y^yXjKj, 
i=i 

and Ki,..., Kn, C G Sk. Here we also have A G R m x " , b G IR™, and x G IR™. In this context, 
we make the following assumptions: 

1. A has full column rank; and 

2 . the set of strictly feasible points, {x G IR™ | ICx -< C}, is nonempty. 

Under these assumptions, we know from Section 2 . 4 . 3 that there is a unique optimal solution 
to the L M I - L S problem, and that to find this solution we need only find a vector x G IR™ and 
matrices S, A G Sk which satisfy the following K K T equations: 

AT{Ax-b) + K*A = 0, 1 
ICx + S = C, 

( A , 5) = 0, 

A , s y o. 

( 2 . 3 8 ) 

We would now like to show that these K K T equations ( 2 . 3 8 ) can be stated as an S D L C P 
( 2 . 2 8 ) . We begin by rewriting the first equation of ( 2 . 3 8 ) as 

x = G-l{ATb-IC*K), 

where G = ATA, and substituting into the second equation of ( 2 . 3 8 ) to get 

S = KG^Vk + {C- KG~lATb). 

Thus, i f we define M : Sk -» Sk and Q G Sk as 

MA = / C G " 1 / C * A , and 

Q = C - ICG~lATb, 

and let 

£ = { ( A , S) G Sn x 5 " | S = MA + Q}, 

then a solution of the K K T equations ( 2 . 3 8 ) gives us a pair ( A , S) which satisfies 

( A , S) G C, A y 0, S y 0, and ( A , S) = 0. ( 2 . 3 9 ) 

Conversely, i f (A, 5) satisfy ( 2 . 3 9 ) , defining x := G~1{ATb - K* A) gives us a solution of ( 2 . 3 8 ) . 

Since M is composed from linear functions, it too is linear. Now we would like to show 
that M is also positive semidefinite. Lett ing U G Sk, we have 

(U,MU) = (U,KG~lK*U) 

= {K*U,G~lIC*U) 

= vTG~1v > 0, 
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where v = K*U G IR™. Thus, M is positive semidefinite. Also, i f we assume that 

s p a n j ^ a , . . . , ^ } = Sk, 

then having U ^ 0 implies that v 0 (see Corollary 2.4.10), which then makes the inequality 
above strict by the fact that G~l is positive definite; therefore, under this assumption, M. is 
positive definite. 

Since M. is positive semidefinite, we know from Lemma 2.5.1 and Corollary 2.5.2 that C is 
indeed a monotone \k(k + l)-dimensional subspace of Sk x Sk, showing that we have stated 
the L M I - L S problem (2.21) as an S D L C P (2.28). 
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Chapter 3 
Interior-Point Methods and Algorithms 

3.1 Overview 
Based on the results of Chapter 2 that describe when the S D L S (2.16), N S - S D L S (2.19), and 
L M I - L S (2.21) problems have a unique optimal solution, we w i l l hence forth assume that the 
coefficient matrix A in these problems has full column rank and that {x € IR™ | Kx -< C} ^ 0 
in the L M I - L S problem. Using these facts, we are now interested in describing algorithms to 
generate a close approximation to the unique optimal solution of each of these problems. 

According to Nocedal and Wright [21, p. 7], the basic idea behind al l optimization algo­
rithms is to start at some ini t ia l guess and iterate through a sequence of points unti l we are 
"close enough" to an optimal solution of the problem. Many of these optimization algorithms 
can be seen as following the framework provided i n Figure 3.1; i n each iteration they first choose 
a direction i n which to move and then they choose the distance to travel. Interior-point methods 
for constrained convex optimization problems do exactly this, wi th the additional requirement 
that a l l iterates remain in the interior of the feasible region. Depending on whether the iterates 
are pr imal feasible points, dual feasible points, or primal-dual feasible points, an interior-point 
method w i l l be classified as a pr imal method, a dual method, or a primal-dual method. We 
also find that the most important interior-point methods fall under the classes of path-following 
methods or potential-reduction methods. 

A l g o r i t h m 3.1 

G i v e n an ini t ia l point i £ E . 

W h i l e x is not "close enough" to an optimal solution, do 

1. F i n d a suitable direction d £ E . 

2. F i n d a suitable step length 9 > 0. 

3. Update x := x + Od. 

E n d 

Figure 3.1: A framework for many optimization algorithms 
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The path-following methods for convex programming problems use a path defined in the 
feasible region that traces a route to the optimal solution, and, at the same time, stays as far 
away from the boundary of the feasible region as possible. B y following this path, the iterates 
are guided toward the solution of the problem before getting too close to the boundary. This 
technique is used because it was noticed that if iterates are st i l l far from the solution, but close 
to the boundary, then taking steps toward the solution can be hindered by the requirement that 
al l iterates remain in the interior of the feasible region. This situation can force us to choose 
very small step lengths, making the overall progress of the algorithm extremely slow. See [21, 
p. 398] for a description of this behaviour in the case of linear programming. 

Potential-reduction methods take a different approach by defining a potential function that 
is small both at the optimal solution and when we are far away from the boundary. B y choosing 
directions and step lengths wi th the purpose of reducing the potential function at each step, 
our iterates wi l l tend toward the solution of the problem while staying away from the boundary 
of the feasible region. See [30] for a description of a potential-reduction method used for solving 
the S D P problem (2.22). 

For our purposes here, we wi l l only be considering primal-dual path-following methods for 
solving the S D L S , N S - S D L S , and L M I - L S problems. A s our guidance, we wi l l be looking at 
the primal-dual path-following methods used for solving the S D P problem (2.22), which are 
described in [27], and the same methods for solving the nonnegative least squares problem 
( N N L S ) , 

i n f 111 4<r- _ Ml? 
(3.1) 

inf i | | A c - 6 | | | 

s.t. x > 0, 
which are described in [23]. We do this because, in many ways, the S D L S and N S - S D L S 
problems are extensions of the N N L S problem from the vector case to the matrix case. Further, 
the L M I - L S problem can be seen as a combination of the S D P and N N L S problems, wi th the 
constraints coming from the S D P problem and the objective function coming from the N N L S 
problem. In fact, we can also notice many similarities in the K K T conditions for the N N L S 
problem, 

AT(Ax-b) = A, } 
XiX{ — 0, for i = 1 , . . . , n , > (3-2) 
x, A > 0, J 

to the K K T conditions (2.17) and (2.20). Notice that the conditions (3.2) follow from applying 
the results of Chapter 2 to problem (2.3) wi th E = Y = IR", H = 1R™_, f(x) = \\\Ax - b\\%, 
and g(x) = —x, and further that i f x, A > 0, then (A, x) = \Tx = 0 i f and only i f AjXj = 0 for 
each i. 

It should also be noted that the primary reason for considering primal-dual path-following 
interior-point methods for solving the S D L S , N S - S D L S , and L M I - L S problems is the success 
these methods have had for solving the N N L S problem (see [23]) and especially for solving the 
S D P problem (see [27]). In particular, these methods are not only efficient i n practice, they 
are also efficient in theory in that they have a provably polynomial complexity. That is, these 
methods have a worst-case running time that is a polynomial function of the size of the problem 
(see [20] and [24]). 

This chapter is summarized as follows. We begin by discussing the log barrier problems 
associated wi th each of our three problems in Section 3.2, and show how solutions to these 
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problems satisfy systems of equations which define our central path. We then provide a uniform 
treatment of the existence of the central for each of our three problems under the setting of the 
S D L C P (2.28) in Section 3.3. The existence of this central path which traces a route to the 
optimal solution provides us with the motivation for discussing in Section 3.4 the interior-point 
methods under consideration. After providing some convergence results for these interior-
point methods in Section 3.5, we discuss the issues involved in implementing these methods in 
Section 3.6. 

3.2 Log Barrier Problems 
Consider the function F : <S™ —> ( — oo, +oo] defined by 

F(X) = \ " l n d e t * ' (3-3) 
[ +oo, otherwise. 

Notice that F has the barrier property for <S™: as X G <S™+ approaches the boundary of <S™, 
d e t X > 0 and approaches 0, and thus — l n d e t X approaches +oo. The function F defined 
here is known as the logarithmic barrier function for the cone <S™. A s we w i l l see, we w i l l be 
able to use this function to impose the positive semidefinite constraints in our optimization 
problems. There is also a logarithmic barrier function for the cone IR™, which is the function 
F : IR™ -> (-oo, +oo] defined by 

53" 

(3-4) F{x) = { ^ = 1 l n ^ , ifx>n 
+oo, otherwise. 

A s put forth in the highly significant book of Nesterov and Nemirovskii [20] (and more 
recently i n the work of Renegar [24]), at the heart of many interior-point methods lies a self-
concordant barrier function which is responsible for the rate of convergence of the method. The 
rate of this convergence is in turn based on the parameter of this function (which is referred 
to as the complexity value in [24]), from which it is implied that the smaller this complexity 
value, the faster the convergence (see [20, p. 42] and [24, pp. 35, 39]). The functions defined 
in (3.3) and (3.4) are special types of self-concordant barrier functions in that they have the 
smallest possible complexity value over a l l such functions for <S™ and IR™ (see [20, pp. 42, 198] 
and [24, p. 40]). We w i l l now follow Renegar's geometric presentation and define these terms 
for a general self-dual cone i f in a Euclidean space E. 

Firs t of a l l , we need to define the second derivative, or Hessian, of a differentiable function 
/ : U —> IR, where U is an open subset of E. We denote the Hessian of / at x G U as the linear 
function S72f(x) : E -> E (if it exists) which satisfies 

l i m i!v/(3H-») •• y i x ) v 2/(sHI = o. 
I M H O 

If V 2 / ( x ) exists for al l x G U, then we say that / is twice differentiable. If the function 
x i—^ V 2 f{x) is a continuous function, then we say that / is twice continuously differentiable, in 
which case, the function V 2 f(x) is self-adjoint for a l l x G U (i.e., (u, V 2 / ( x ) w ) = (V2f(x)u, v) 
for a l l u,v G E) [24, p. 9]. 
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In Theorem 3.2.3 we wi l l show that the derivative of the function F defined in (3.3) is 
V . F ( X ) = — X - 1 for al l X G <S™ + - Just for interest, we wi l l mention without proof (see [24, p. 
9]) that second derivative of this function at X G 5 ™ + is the linear function V 2 F ( X ) : <S™ —> Sn 

defined by 
V2F(X)V = X^VX'1. 

It is interesting to note the similarity which these formulas for V F ( X ) and V 2 F ( X ) have to 
the well-known scalar case: i f f(x) = — \n(x), then f'(x) = —x~l and f"(x) = x~2. 

Definition 3.2.1 Let E be a Euclidean space, H C E be a self-dual cone with nonempty in­
terior, and F : int i f —> IR be a twice continuously differentiate strictly convex function with 
V 2 i ? ( x ) positive definite for all x G int i f (i.e., (u,S72F(x)u) > 0 for all u ^ 0). 

The local inner product at x G int i f is defined as 

(u,v)x:=(u,V2F(x)v), 

for all u, v G E . Furthermore, we define the local norm at x G int i f as \\u\\x := y/(u, u)x for all 
u 6 E . Using the local inner product at x G int i f to define the gradient of F at x G int i f , we 
get the local gradient at x of F at x, denoted as VFx(x), and which equals V2F(x)~1\7F(x). 

The function F is said to be self-concordant if the following hold (see [24, p. 58]): 

1. For all x,y G int i f , if \\y — x\\x < 1, then 

\\v\\ 1 
TTTT < Ti F T ) for all v ^ Q 

\m\x i - | | y - z | | x 
2. F has the barrier property for H; that is, if a sequence {x^} C int i f converges to a point 

on the boundary of H, then F{x^) —> +oo. 

The function F is said to be a (self-concordant) barrier function if F is self-concordant and 

u F := sup | | V F x ( x ) | | 2 < +oo, 
xGint H 

where •uV is called the complexity value of F. 

We wi l l now state the following facts from [20] and [24]. 

Theorem 3.2.2 Any self-concordant barrier function F for S™ or IR™ must satisfy ftp > n. 
The functions defined in (3.3) and (3-4) are self-concordant barrier functions for 5 " and IR™, 
respectively, and each have complexity value $F = n. 

Therefore, it is in this sense that (3.3) and (3.4) are the best possible self-concordant barrier 
functions for <S™ and IR™. In fact, we also have the following important result which can be 
found in [27], and for reasons of interest we wi l l also present a proof. 
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T h e o r e m 3.2.3 The logarithmic barrier function F for S™, defined by (3.3), is a strictly con­
vex function over <S™+ with derivative VF(X) = — X - 1 for X £ <S™_|_. 

P r o o f . Here we present a different proof than the one given in [27], and we begin by showing 
that V / ( X ) = -X-1 for X £ S £ + . 

It is a fairly well-known fact that V d e t ( A ) = a d j ( A ) T for A £ IR™*™, where adj(A) = (m^) 
is the n x n adjugate matrix defined by 

rmj = detMji 

and Mji is formed by deleting row j and column i from A. This can easily be seen by considering 
the partial derivative of det(A) wi th respect to a,j, which we can calculate by expanding the 
determinant along row i: 

n 
det(A) — "Y^dikmki = a^m^ + ^2aikmki. 

k=l k^j 

Since neither mji nor the summation term at the end of this expression depend on a^-, we have 
8 f f ^ = mji, and the result follows. If A is invertible, we also have that A-1 = d e t ^ a d j ( y l ) , 

and so V det(A) = det(A)A-T. For X £ this result becomes V d e t ( X ) = d e t ( X ) X _ 1 , 
and since F(X) = — l n d e t X , we apply the chain rule to get 

= d5(]?)V d c t<*> -

We follow the advice given in an exercise from [6, p. 40] to show that F is strictly convex 
over <S™+. There it states that F is convex i f and only i f 

( V F ( X ) - V F ( Y ) , X - Y) > 0 for a l l X, Y £ S$+, 

and strictly convex i f and only i f the inequality is strict whenever X ^ Y. Let t ing X, Y £ <S™+ 

such that X ^ Y, we have 

{VF{X)-VF{Y),X-Y) = (Y~l -X~\X -Y) 

= tviY^X) - 2tr(J) + t r ( X _ 1 y ) 

= tr (y/XY^y/XJ + tr ( v / X ~ V v / X ~ 1 ) - 2n > 0, 

where the inequality comes from the fact [6, p. 8] that t r (Z) + t r ( Z - 1 ) > 2n for a l l Z £ <S™+ 

with equality i f and only i f Z = I. • 

3.2.1 The SDLS log barrier problem 

Notice how we can use the barrier function F defined in (3.3) along wi th a positive parameter 
T to impose the positive semidefinite constraints in the S D L S problem: 

min \\\AX-B\\1 + TF{X) (3.5) 
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Thus we get an unconstrained problem (3.5) called the SDLS log barrier problem, whose solution 
is necessarily positive definite. If X G <S™+ is such a solution, it is clearly characterized as a 
crit ical point of the strictly convex objective function f{-) + rF(-), where f{X) = \ \ \ A X - B \ \ F . 

That is, 

V(f + rF)(X) = Vf(X) + rVF(X) 

= \{Z + ZT) -TX-1 = 0, 

where Z = AT(AX - B). Let t ing A = TX~1, we have the following necessary and sufficient 
conditions for an optimal solution of (3.5). 

AT{AX-B) = Z ) 

X, A >- 0 J 
If (X, A) satisfies (3.6), then it is a primal-dual feasible point wi th duality gap 

/ i ( X , A ) = <A,X> 

= tr(AX) 

= nr. 

We immediately notice the similarity of conditions (3.6) to the K K T conditions (2.17) for 
the S D L S problem. In Section 3.3, we wi l l show that there is a unique solution (XT, A T ) to (3.6) 
for each T > 0, and that as r approaches 0, (XT,AT) approaches the unique optimal solution 
to the S D L S problem. 

3.2.2 T h e N S - S D L S log ba r r i e r p r o b l e m 

Again we use the barrier function for <S™ from (3.3) to define the NS-SDLS log barrier problem 
with positive parameter T : 

min \\\AX-B\\1 + TFC1(X + XT)) ( 3 . 7 ) 

Lett ing f{X) = ^\\AX — B\\F and g(X) = \(X + XT), we see that the function which we are 
minimizing, /(•) + rF(g(-)), is strictly convex. This can be shown by noticing that 

g{tX + (l-t)Y) = tg(X) + {l-t)g(Y) 

for a l l X,Y G M n x n and t G [0,1], which implies that F o g is convex on its domain. Since the 
sum of a strictly convex function and a convex function must be strictly convex, we find that 
we are minimizing a strictly convex function. 

A matrix X G JRNXN is a solution to (3.7) i f and only i f it is a cri t ical point of the function 
/(•) + rF(g(-)), and S = \{X + XT) is necessarily positive definite. First we must determine 
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W(F o g)(X). Let D G l R n x r i be a direction, then using the chain rule and the fact that g is 
linear, and so g'(X;D) = g(D), we get 

(Fog)'(X;D) = F'(g(X);g'(X;D)) 

= (VF(g{X)),g'(X;D)) 

= ( - ( i ( X + XT))-\$(D + DT)) 

= (~S-\D), 

where the last equality follows from the symmetry of — 5"" 1. Therefore, V(F o g)(X) = — 
and we have 

V ( / + T F O 5 ) ( 1 ) = Vf(X) + TV(Fog)(X) 

= AT(AX — B) — r 5 _ 1 = 0. 

Now we let A = TS~X, and we get that X is optimal for problem (3.7) i f and only i f it satisfies 
the following conditions. 

AT(AX-B) = A ' 
\(X + XT) = 5 1 , s 

AS = rl \ [6*> 
S, A >- 0 

Again we have that the conditions for optimality of the log barrier problem are remarkably 
similar to the K K T conditions (2.20) for the original problem. Aga in we notice that i f ( X , S, A) 
satisfies (3.8), then it is a primal-dual feasible point of the N S - S D L S problem wi th duality gap 
/ / ( X , 5 , A ) = (A, S) = nr. Moreover, as we w i l l see i n Section 3.3, for each r > 0, there is 
a unique solution ( X T , 5 T , A T ) to (3.8), and that this solution approaches the unique optimal 
solution to the N S - S D L S problem as r -> 0. 

3.2.3 T h e L M I - L S log ba r r i e r p r o b l e m 

We now define the LMI-LS log barrier problem using the logarithmic barrier function for S+ 
with r > 0 as follows. 

min \\\Ax-b\\l + TF{C-lCx) (3.9) 

If we let f(x) = \ || Ax - b\\?, and g(x) = C — ICx, then x G IR" is a solution to problem (3.9) i f 
and only i f S = C — ICx is positive definite and a; is a crit ical point of the function f{-) + TF(g(-)), 
which can be shown to be strictly convex by a similar argument as was used for the N S - S D L S 
log barrier problem (3.7). Let us first compute V(F o g)(x) by considering a direction d G IR" 
and using the chain rule wi th the fact that g'(x; d) = —ICd: 

(Fog)'(x;d) = F'(g(x);g'(x;d)) 

= (WF(g(x)),g'(x;d)) 

= (-(C -!Cx)-l,-lCd) 
= (>C*S-\d). 
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Therefore, we have 

V(/ + T f o j ) ( i ) = V / ( i ) + r V ( f o 5 ) ( j ) 

= AT{Ax-b) +TK.*S-1 = 0, 

and letting A = T 5 _ 1 , we have the following conditions for optimality of problem (3.9). 

AT{Ax - b) + K.*A = 0 1 
ICx + S_ = C 

AS = TI 

5, A >- 0 

(3.10) 

Once again, except for the right hand side of these equations, these conditions are exactly 
the L M I - L S K K T conditions (2.25). If (x,5, A) satisfies (3.10) then it is a primal-dual feasible 
point wi th duality gap / i ( x , S , A) = (A, S) = nr. Final ly , as we w i l l see i n Section 3.3, under 
the assumption that there exists a primal-dual feasible point (x, 5, A) of the L M I - L S problem 
such that S, A y 0, we have, for each r > 0, that there exists a unique solution ( x T , 5 T , A T ) to 
(3.10), and this solution converges to the unique optimal solution of the L M I - L S problem as 
T -> 0. 

3.3 The C e n t r a l P a t h 

Now that we have described the log barrier problems associated wi th our three semidefinite 
constrained least squares problems, intuitively we can see how the solutions to these problems 
stay as far away from the boundary of the semidefinite cone as possible, while approaching 
solutions of our original problems as we let r —> 0. Each of the systems of equations, (3.6), 
(3.8), and (3.10), describes what is called the central path which we would like the iterates of 
our algorithms to follow. A key question to be raised now is that of the existence of the central 
path for each of our problems. Luckily, we are able to give a uniform treatment for a l l three 
problems due to the fact that each problem can be stated as an S D L C P (see Section 2.5). 

Recall that we were able to write each of our three problems in the form: 

F i n d [X,Y) G £ , such that X y 0, Y h 0, and {X,Y)=0. 

For each of our problems, we were also able to express £ as 

£ = {{X,Y) eSp xSp \Y = MX + Q}, 

with M : Sp —> Sp being a linear positive semidefinite function, and Q G Sp. Also recall the 
definitions of £ + , £ + + , and £* (2.31-2.33). In each of our three problems, we know that there 
is a unique optimal solution (X,Y); i.e., £* = {(X,Y)}. 

Using this notation, we can write the central path equations for each of our problems as 

(X, Y) G £, X y 0, Y y 0, and XY = T J , 

or more succinctly as 
(X,Y) G £ + + \ i i \ 

XY = TI j 
where T > 0. We now state the following result from the paper that introduced the S D L C P . 
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Theorem 3.3.1 ([13, p. 98]) If there exists an {X,Y) £ C++, then: 

(1) For all r > 0, there exists a unique (XT,YT) £ C++ such that 

XrYT = TI. 

(2) The set C := {(XT,YT) | r > 0} forms a smooth path, called the central path. 

(3) l im (XT,YT) = (X,Y) £ £». 
T -+0+ 

In order to apply Theorem 3.3.1 to our problems, it suffices to show that there exists an 
{X, Y) £ C++. For the first two problems, the S D L S , and the N S - S D L S , showing that C++ # 0 
reduces to showing that the solution to a Lyapunov equation of the form 

GX+XG = H (3.12) 

is in S++, where G,H £ S++. To show this, we w i l l use the Kronecker product, ®, and 
symmetric Kronecker product, <g>5, which we w i l l find much use for later, and so we give a 
treatment of their properties in Appendix A . Unfortunately, for the L M I - L S problem, even 
after much effort, we were not able to prove that C++ / 0 i n general, nor were we able to find 
a counter-example. We begin by stating an important theorem about the Lyapunov equation. 

Theorem 3.3.2 Let G,H £ S++. Then there exists a unique X £ S++ such that (3.12) holds. 

Proof. This proof is drawn from [10, p. 268-271]. Firs t of a l l , we notice that we can rewrite 
equation (3.12) as 

(/ ® G + G ® I)vec(X) = vec(H). 

Since (I®G)T = IT®GT = I®G and similarly for the matrix G®I, we find that K := I®G + 
G®l£Sp2. Furthermore, i f a(G) = {A;}, then a {I <g> G) = a(G ® I) = {A,}, and so G being 
positive definite implies that K is positive definite. Therefore, X = mat(/< ' _ 1 vec(i /)) £ JRpxp 

is the unique solution to equation (3.12). 

To show that X is symmetric, we simply take the transpose of both sides of (3.12) to get 

XTG + GXT = H, 

and the uniqueness of X implies that X = XT. 

Finally, Lyapunov's Theorem [10, p. 96] states that i f we are given symmetric matrices 
G, X, and H satisfying (3.12) such that H is positive definite, then G being positive definite 
implies that X is positive definite. Therefore, X £ S++ is the unique solution to equation 
(3.12). • 

Recall that for the S D L S problem (2.16), we had p = n and had defined the function M. 
by 

MX = \{GX + XG), 
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where G = ATA G S%+. Thus, i f ( X , Y ) G C, then 

Y = MX + Q, 

which can be rewritten as 

GX + XG = 2(Y -Q). 

Since Q G Sn, we can clearly choose Y G <S£ + so that H := 2(Y - Q) G <S£ + . App ly ing 
Theorem 3.3.2, we are now able to conclude that there exists a unique X G S++ satisfying 
GX + XG = H. Therefore, C++ ^ 0 for the S D L S problem, which, by Theorem 3.3.1, implies 
that the S D L S central path exists. 

Similarly, for the N S - S D L S problem (2.19), we also h a d p = n , but had defined the function 
M by 

MX = \{G-LX + XG~L) 

where G = ATA G 5 ? + , and so G " 1 G S £ + . For (X,Y) G £ , we have 

Y = MX + Q, 

which we rewrite as 
G^X + XG'1 = H, 

where we can again choose Y G S++ to make H := 2(Y — Q) positive definite. Now Theorem 
3.3.2 provides the existence and uniqueness of an X G S++ which satisfies G _ 1 X + XG~L = H. 
Thus, for the N S - S D L S problem, we also have C++ ^ 0. Using Theorem 3.3.1, we conclude 
that the N S - S D L S central path also exists. 

Since we were not able to determine whether or not C++ ^ 0 is always true for the L M I - L S 
problem, for the remainder of the discussion we wi l l be assuming that there exists a primal-dual 
feasible point (x, S, A) of the L M I - L S problem such that S, A >- 0. 

3.4 Interior-Point M e t h o d s for the S D L C P 

We are now in a position to describe interior-point methods used for solving the S D L C P (2.28). 
The structure of our discussion is inspired by material regarding interior-point methods i n [21] 
on the linear programming problem ( L P ) , and in [27] on the S D P (2.22). 

Suppose we are given an S D L C P wi th 

C = { ( X , Y) G Sp x Sp | Y = MX + Q\, (3.13) 

where M : SP -» Sp is a linear positive definite function, and Q G Sp. Here we w i l l assume that 
C++ ^ 0 and that C* = { ( X , Y ) } . The basic idea behind interior-point methods for solving 
the S D L C P is to construct a sequence { ( X r , YR)} i n <S^+ x S++ which converges to the unique 
solution ( X , Y). That is, we require that X r and YT be positive definite for each iteration r. A 
/easi&/e-interior-point method also requires that the positive definite in i t ia l point (Xo, YQ) is in 
C so that YR = MXR + Q in each iteration; an m/easi 'Me-interior-point method only requires 
that (XQ,YQ) is positive definite and the method w i l l approach the set £ as it iterates. 
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The methods we describe here w i l l be path-following methods in that they w i l l use the 
central path discussed in previous section in order to be guided toward the solution while 
staying as far away from the boundary of positive semidefinite region as possible. A s in the 
framework described in Figure 3.1, in each iteration we w i l l update our current iterate (X, Y) 
to (X,Y) = (X,Y) + 9 (AX, A V ) for some suitable direction (AX, AY) £ Sp x Sp and some 
suitable step length 9 > 0 chosen so that (X,Y) is positive definite. 

3.4.1 C h o o s i n g a su i tab le d i r e c t i o n ( A X , AY) 

In each iteration, we want to take a step toward a point (XT,YT) on the central path, which is 
defined as the solution of the following system of nonlinear equations. 

F(X,Y) := MX + Q-Y' 0' 
XY - r l 0 

(3.14) 

Here we choose r = a fx, where fx (X, Y) jp is the normalized duality gap, and a is a centering 
parameter chosen from the interval [0,1]. When we choose a = 1, we wi l l be stepping toward 
the point on the central path with the same duality gap as our current iterate: 

/x(XT,YT) = (XT,YT) = tr(XYr) 
= t r ( £ J ) 

= PA 
= (X,Y) = tx(X,Y). 

Thus, when a = 1, we w i l l step toward the center of the feasible region, away from the boundary, 
but we w i l l make little or no progress toward the solution of the S D L C P . O n the other hand, 
by choosing a = 0, we wi l l be stepping directly toward the solution of the S D L C P , but we may 
be hindered in the next iteration because we end up being too close to the boundary, forcing 
us to take only very small steps toward the solution. Typical ly a is chosen in the open interval 
(0,1) in order to balance between these two goals of reducing the duality gap of our iterates 
and staying as far away from the boundary as possible. 

A s discussed in [21, Chap. 11], at the heart of many important algorithms for solving 
nonlinear equations like (3.14) lies Newton's method. This is largely due to the rapid convergence 
properties of this method under fairly reasonable assumptions. The Newton step taken in each 
iteration of Newton's method is defined as the solution of the linear approximation of the 
equations at the current point. For example, the Newton step taken toward the solution of 
(3.14) is defined as the direction (AX, AY) £ Sp x Sp satisfying 

F(X,Y) + VF(X,Y) AX 
AY 0. 

Thus, to calculate the Newton step for (3.14) at our current iterate (X, Y), we need only solve 
the system of linear equations, 

VF(X,Y) AX 
AY 

-F(X,Y), (3.15) 
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which can also be written as 

MAX-AY' 

AXY + XAY 

Notice that the first equation in (3.16) can be rearranged as Y + AY = M(X + A X ) + Q. In 
the literature for the S D L C P , when describing the Newton step for a general £ , they state this 
first equation as ( X + A X , Y + AY) £ C. 

Here arises the key problem that is the focus of much research i n interior-point methods 
for the S D P (see [27]). The function F defined in (3.14) maps a point in SV x SP to a point in 
SP x I R p x p . The reason behind this is that even i f the matrices X and Y are symmetric, the 
matrix XY is usually nonsymmetric. This means that the gradient of F at ( X , Y) is a linear 
function mapping between vector spaces of different dimension. In other words, VF(X,Y) 
cannot be a bijective function, and hence it is not invertible. We could compute the solution to 
(3.16) where the matrices A X and AY are in I R p x p , but we find that, contrary to our wishes, 
this solution is often nonsymmetric. 

Since this problem is due to the second equation in (3.14), that XY = rl, we need to find 
a way to replace this equation with an equivalent symmetric equation. A simple way of doing 
this is to just take the symmetric part of both sides of this equation, from which we get 

\{XY + YX) = TI. (3.17) 

This idea was introduced by Alizadeh, Haeberly, and Overton in [2], and the resulting Newton 
step, defined by 

MAX - A Y 
_\{YAX + AXY) + \(XAY + AYX) 

has been coined the A HO direction. 

However, there are many other ways of symmetrizing the equation XY — rl. A whole 
family of directions was proposed by Monteiro and Zhang (see [18] and [36]), called the MZ-
family of directions. In [36], Zhang proposed using replacing XY = rl in (3.14) wi th 

HP{XY) = rl (3.19) 

where Hp : JRpxp —>• <SP is the linear transformation defined by 

HP(U) = \ (PUP-1 + P-TUTPT) (3.20) 

with P £ I R p x p being some constant nonsingular matrix. In fact, we have 

Hp(XY) =rl & XY = rl 

for al l symmetric matrices X and Y (see [36, p. 377]). Thus, substituting XY — rl wi th (3.19), 
the Newton step (3.15) can be stated as 

MAX - A Y 
HP(AXY + XAY) 

Y - MX - Q 

rl-XY 
(3.16) 

Y - MX - Q 

TI - \ (XY + Y X ) 
(3.18) 

Y - M X - Q 

TI-HP(XY) 
(3.21) 
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Notice that the A H O direction (3.18) is a member of the MZ-fami ly wi th P = I. 

Another important direction in the MZ-family is the HRVW/KSH/M (or HKM) direction. 
This is the MZ-direct ion (3.21) defined with P = y/Y. That is, the H K M direction is obtained 
by solving 

MAX - AY 
VYAXVY + KVYXAYVY'1 + VY^AYXVY) 

or equivalently, 
[ MAX - AY 
AX + \{XAYY~L + Y~LAYX) 

for ( A X , /AY). This direction was independently discovered by Helmberg, Rendl, Vanderbei, 
and Wolkowicz, and by Koj ima , Shindoh, and Hara, only to be later rediscovered by Monteiro 
as a member of the MZ-family. We also mention the ducd-HKM direction as the MZ-direct ion 
(3.21) wi th P = \/X , which could be obtained by solving the following linear system. 

. M A X -
\ ( Y A X X " 1 + X~XAXY) + AY 

A third direction from the MZ-family which is s t i l l widely used for S D P is the Nesterov-
Todd or NT direction. This direction is defined as the solution of (3.21) wi th P = W~2, where 
W is the unique positive definite matrix satisfying WYW = X. We can even state this matrix 
W explicitly as 

W = \/X (VxYx/x)" Y X . (3.24) 

It was shown in [29] that the NT-direct ion is the solution to the following equivalent linear 
systems. 

" MAX - A y ' 
A X + WAYW 

For each of the directions already mentioned, we also have their corresponding predictor-
corrector direction. Given a nonsingular direction P 6 I R p x p , we compute this direction 
( A X , A y ) by first computing the predictor direction (dX, 5Y) as the solution of 

MSX - 5Y 
HP{8XY + X5Y) 

and then correct this direction by (5X, SY), which is computed as the solution of 

MSC-SY^ 
HP(SXY + X5Y) 

where a G (0,1] and T = afi. Together, these two directions give us the predictor-corrector 
direction, defined as 

( A X , A y ) := (SX, 8Y) + (SX, 5Y). 

Y-MX-Q 
TI - VYXVY 

Y - MX - Q 

TY-1 - X 
(3.22) 

y - MX - Q 

r X " 1 - y (3.23) 

Y - M X - Q 

TY'1 - X 

MAX-AY 

W^AXW'1 + AY 

Y - MX - Q 
T X - 1 - y 

(3.25) 

y - MX - Q 
-Hp(XY) 

(3.26) 

0 
TI - Hp{6X5Y) 

(3.27) 
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Clearly, once we have solved (3.26) for the predictor direction, we can compute ( A X , AY) 
directly as the solution of 

M A X - AY 
HP(AXY + XAY) 

The idea behind this predictor-corrector direction is as follows. First we attempt to reduce 
the duality gap as much as possible by setting cr = 0, which may end up taking us far away from 
the central-path and too close to the boundary of the semidefinite region. We then correct this 
step by computing a direction with o ^ 0 chosen to take us toward a point on the central-path 
wi th a duality gap as small as the one obtained by the predictor direction. We can also interpret 
this as having used second-order information to determine this predictor-corrector direction; i f 
the predictor direction gives us the direction tangent to the trajectory we are following, then 
the predictor-corrector direction takes into account the curvature of the trajectory as well (see 
[21, §14.2]). A n alternate interpretation of the predictor-corrector direction is that it is the 
direction which comes from taking a step wi th o = 0, and then a step wi th a G (0,1] (see 
[27, p. 549]). We choose to give the above description of the predictor-corrector direction to 
highlight the fact that the two linear systems we must solve, (3.26) and (3.28), both have the 
same coefficient matrix, which greatly reduces the computational effort required to compute 
this direction. 

We would also like to mention that there are many more search directions and families of 
search directions that have been studied i n the area of S D P . However, the most important of 
those studied appear to be the A H O , H K M , d u a l - H K M , N T directions, and their predictor-
corrector variants, which we have mentioned above. Moreover, as we w i l l discuss further i n 
Section 3.6, H K M is currently the direction of choice for large S D P problems [22]. 

Y-MX-Q 
TI - HP{XY + 6X5Y) 

(3.28) 

E x i s t e n c e a n d un iqueness o f sea rch d i r e c t i o n s 

Now that we have defined a few search directions that can be used in interior-point methods for 
solving an S D L C P , we would like to know under what conditions these search directions exist. 
The answer comes from a paper by Shida, Shindoh, and K o j i m a [26]. 

++ x S++ T h e o r e m 3.4.1 ([26, p . 392]) Let £ be given as in (3.13). Suppose that ( X , Y ) G S\ 
and T > 0. Then both the dual-HKM (3.23) and NT (3.25) search directions exist and are 
unique. Suppose further that | ( X Y + Y X ) G S+. Then the AHO search direction (3.18) exists 
and is unique. 

The assumption that \{XY + YX) G S+ is necessary in Theorem 3.4.1, for even when X 
and Y are both positive definite, the matrix \ (XY + YX) may not be positive semidefinite. 
Consider the counter-example provided i n [26] where 

X = 
49 0 
0 1 

and Y = 
4 1 
1 1 

Clearly X and Y are positive definite. However, the matrix 

\{XY + YX) = 196 25 
25 1 
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is clearly not positive semidefinite. In fact, a further example is provided i n [29] of an S D P for 
which the A H O direction does not exist for a given positive definite iterate. 

3.4.2 C h o o s i n g a su i tab le step l eng th 0 

Recall that our current iterate is (X, Y) G S++ x S\+. Once we have picked a step direction 
( A X , A Y ) from the directions discussed i n Section 3.4.1, we need to compute a step length 
9 > 0, where 

X := X + 9AX, 
Y := Y + 9AY, 

and we require that X,Y y 0. The natural step length for a Newton direction is 9 = 1, 
but a step length of 1 may cause us to exceed the positive definite region to which we are 
constrained. Therefore, we need to determine the maximum possible step length # m a x such 
that i f 0 < 9 < 9max, then X, Y y 0. 

The maximum step length in the direction AX can easily be seen as being the smallest 
positive number 9\ such that 

&et{X + 91AX) = 0, 

or 9\ = oo if no positive solutions exist. Similarly, the maximum step length in the direction 
AY is defined as the smallest positive number 92 such that 

det (Y + 92AY) = 0, 

or 92 = oo i f no positive solutions exist. Our maximum possible step length is then the minimum 
of these two numbers: 

0 m a x = min{0 i , 0 2 } . (3.29) 

Final ly, since we do not want to take a step al l the way to the boundary, we define our step 
length as 

9 := m i n { l , c x 9max}, (3.30) 

for some c G (0,1) which we w i l l call the step length parameter; in practice, c is usually a fixed 
number chosen from the interval [0.9, 1.0). Defining 9 in this way guarantees that our next 
iterate, (X, Y ) , satisfies X, Y y 0. 

We can compute 9\ and 92 as the minimum positive eigenvalues of the respective generalized 
eigenvalue problems 

Xv = X{-AX)v, and Yv = X(-AY)v. 

Since algorithms for solving generalized eigenvalue problems prefer to have the matrix on the 
right-hand-side be positive definite (see [17]), it is better computationally to find the maximum 
eigenvalues A i and A2 of the respective problems 

-AXv = XXv, and - AYv = XYv, 

then let 
^ [ 1 / A „ if A, > 0, ( 3 3 1 ) 

I +00, otherwise, 

for i = 1,2. See Lemma 5.1 from [13]. 
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A l g o r i t h m 3.2 

G i v e n ini t ia l matrices XQ,YO >- 0, and tolerances TOL\,TOL2 > 0. 

L e t {X,Y) := (X0,Y0) and r = 0. 

W h i l e \\MX + Q - Y\\2

F > TOLX o r {X,Y) > TOL2: d o 

1. Let ft := (X, Y)/p and choose a centering parameter cr 6 [0,1]. 

2. Choose a nonsingular matr ix P G I R p x p and compute the corresponding search direction 
( A X , AY) eSp xSp by solving (3.21) wi th r := op,. 

3. Choose a step length parameter c G (0,1) and compute the step length 9 by equation 
(3.30) so that 

(X,Y) := (X,Y) + 9(AX,AY) 

satisfies X,Y >- 0. 

4. Update (X,Y) := (X,Y). 

5. Let r := r + 1, and (XR,YT) := ( X , Y ) . 

E n d 

Figure 3.2: A general path-following algorithm for the S D L C P based on the MZ-family of search 
directions. 

3 .4 .3 S u m m a r y 

In summary, we describe a general path-following algorithm and a general predictor-corrector 
algorithm for solving the S D L C P (2.28) wi th C defined as in (3.13). The general path-following 
algorithm is given in Figure 3.2 while Figure 3.3 contains the general outline used for many 
predictor-corrector algorithms. Note that when TOL2 = 0, these algorithms wi l l each consis­
tently generate an infinite sequence {(XT, YT)} i n <S^+ x <SP

 + . Now we would like to know when 
{ ( X r , YR)} converges to the unique solution of the S D L C P , and, given e > 0, how many itera­
tions w i l l it take for Algor i thm 3.2 and Algor i thm 3.3 to terminate when we take the tolerances 
to be 

TOLX = e | | M X 0 + Q - Y0\\F and TOL2 = e (X0, Y0). 

We call such an iterate (XR,YR) which satisfies 

\\MXR + Q-YR\\2

F < e\\MXo + Q-Y0\\% 

(XR,YR) < e(X0,Y0) 

an E-approximate solution of the S D L C P . The next section deals with the questions mentioned 
above. 

(3.32) 
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A l g o r i t h m 3.3 

G i v e n ini t ia l matrices XO,YQ y 0, and tolerances TOLi,TOL2 > 0. 

L e t (X, Y) := ( X 0 , Y0) and r = 0. 

W h i l e \\MX + Q- YfF > TOLx o r (X,Y) > TOL2, d o 

1. Let fb := (X,Y)/p and choose a nonsingular P G JRpxp. 

2. (Predictor step) 

Compute the predictor direction (5X, 5Y) G Sp x Sp by solving (3.26). 

3. Choose a centering parameter a G (0,1]. 

4. (Corrector step) 

Compute the predictor-corrector direction ( A X , AY) by solving (3.28) wi th r := ajl. 

5. Choose a step length parameter c G (0,1) and compute the step length 6 by equation 
(3.30) so that 

( X , Y) := ( X , Y) + 9(AX, AY) 

satisfies X , Y y 0. 

6. Update ( X , Y ) := (X,Y). 

7. Let r := r + 1, and ( X r , Y r ) := ( X , Y ) . 

E n d 

Figure 3.3: A general predictor-corrector algorithm for the S D L C P based on the MZ-family of 
search directions. 

51 



Chapter 3. Interior-Point Methods and Algorithms 

3.5 Convergence Results 
A number of algorithms of theoretical importance have been formulated for solving the S D L C P 
(2.28), many of which fit nicely into the framework of either Algor i thm 3.2 or Algor i thm 3.3. 
Their importance comes from the fact that, in each case, it has been shown that the sequence 
of iterates converges to a solution of the S D L C P , and that the number of iterations required 
to get an £-approximate solution is a polynomial function in both 1/e and in the size of the 
problem, p. A n algorithm which has this polynomial iteration complexity is said to be a fully 
polynomial-time approximation scheme, and any constant-factor decrease in e, or increase in p, 
only results in a corresponding constant-factor increase in the running time of the algorithm (see 
[8, C h . 37]). Also see [31, C h . 3] for a complete discussion, i n the case of linear programming, 
of why we need only be concerned with bounding the number of iterations by a polynomial in 
order to conclude that the algorithm itself has a polynomial running time. 

These interior-point path-following algorithms for solving the S D L C P come under many 
different classifications: 

• feasible / infeasible, 

• short-step / long-step / predictor-corrector, 

• A H O / H K M / d u a l - H K M / N T search directions. 

Recall that the difference between feasible and infeasible algorithms is whether we are assuming 
that the ini t ia l matrices satisfy (XQ, YO) G C or not. The difference between short-step, and 
long-step algorithms comes down to a difference in the strategies used for choosing the center­
ing parameter a and the step length parameter c i n Algor i thm 3.2, while predictor-corrector 
algorithms are based on the framework of Algor i thm 3.3. Finally, we classify each algorithm 
according to which search direction it uses. 

The key issue wi th any interior-point path-following algorithm is that the Newton steps we 
take toward the central path are not guaranteed to land us directly on the central path; the 
most we can hope for is that we are "near" the central path i n each iteration. This idea of 
nearness is made concrete wi th the notion of neighbourhoods of the central path. First notice 
that we can state the central path as the set 

C = {(X,Y) G C++ I XY = fil, where fi = , (3.33) 

where we are assuming that C is defined as in Section 3.4. The two most common feasible 
neighbourhoods considered are the narrow neighbourhood, 

A/>( 7 ) := {(X,Y) G C++ | \\y/XYy/X - jiI\\F < 7 £ , where fi = ^p-) , (3.34) 

and the wide neighbourhood, 

J V -oo ( 7 ) == {(X,Y) e C++ | A m i n ( X Y ) > (1 - 7 ) A , where / i = <^> } , (3.35) 

where Xmm{XY) is the minimum eigenvalue of XY, and 7 G (0,1) is a parameter which 
determines the width of the neighbourhoods. Clearly, we can see that C C NF{I) and C C 
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jV-ood) for a l l 7 G (0,1). We can also consider the infeasible central path, which is defined as 

SC = {(X, Y) e Sp

++ x Sp

++ XY = fil, where fi = &jp-} . (3.36) 

The corresponding infeasible neighbourhoods are then 

SMF(-y) := {(X,Y) G Sp

++ x Sp

++ | \\VXYy/X- jiI\\F < 1ft, where fi = ™ } , (3.37) 

and 

Stf-ood) : = {(X,Y) G Sp

++ x Sp

++ | A m i n ( X Y ) > (1 - 7 ) / i , where fi = ^ } , (3.38) 

where 7 G (0,1). 

Now that we have a way of measuring nearness to the central path, we would like to 
determine strategies for choosing a and c so that each iterate is wi th in some neighbourhood, 
either narrow or wide, of the central path. Short-step algorithms are those which keep al l 
iterates wi th in a (feasible or infeasible) narrow neighbourhood, while those algorithms which 
keep al l iterates wi th in a (feasible or infeasible) wide neighbourhood are called long-step. The 
predictor-corrector type algorithms use two narrow neighbourhoods of different sizes, and keep 
al l the predictor iterates i n the larger neighbourhood, and al l the corrector iterates in the smaller 
neighbourhood. 

Ko j ima , Shindoh, and Hara proposed the first algorithm for solving the S D L C P in [13]. It 
is a feasible short-step algorithm using the d u a l - H K M direction (3.23) (see [13, p. 115] and [26, 
p. 391]) and keeps al l iterates in the neighbourhood A / F ( 7 ) , where 7 is chosen from the interval 
(0, 0.1]. Beginning at a point (XO,YQ) G A O K T ) , they choose a = 1 — j/y/p in each iteration, 
and are able to take a full step, 6 = 1, while remaining in the neighbourhood of the central 
path. We now state the theorem from that paper which provides this result. 

T h e o r e m 3.5.1 ([13, T h m 8.1]) Let 7 G (0, 0.1]. Suppose that (X, Y) G JV>( 7 ) . In Algo­
rithm 3.2, let a = 1 -l/y/p, ( A X , AY) be the dual-HKM direction (3.23), and 6 = 1. Then the 
next iterate, (X,Y), satisfies 

( X , Y) = ( X , Y) + (AX, AY) G MF(j), and 

aft < < ( l - ^ (3-39) 

where p, = (X,Y)/p. 

What this tells us is that we are guaranteed to reduce the duality gap of our current 
iterate by at least a constant factor in each iteration, meaning that the duality gap of our 
iterates w i l l converge to zero at a linear rate. Moreover, it follows that, under the conditions 
of Theorem 3.5.1, this algorithm is globally convergent in the sense that, given any (XO,YQ) G 

jVj?( 7 ) , the infinite sequence {(XR,YR)} generated by Algor i thm 3.2 when TOL2 = 0 wi l l always 
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converge to the unique optimal solution (X,Y). Following the commentary that appears after 
Theorem 8.1 in [13], we let e > 0, and find that for every r = 0 , 1 , 2 , . . . we have 

(XR,YR) e A/>( 7 ) and (XR,YR) < (l - (XQ,Y0). 

To determine the number of iterations required in order to compute an e-approximate solution 
which satisfies 

(XR,YR) e C++ and (XT, YR) < e (XQ, Y0), 

we follow the proof of a general complexity theorem in [31, p. 61-62]. Let t ing 

r > l o g - , 
7 £ 

we have 

iog(jrr,K> < r i o g ( i - J = j + iog(Xo,y0) 

< loge + l o g ( X 0 , Y o ) , 

which implies that (XR,YR) < e (XO,YQ). Therefore, we are able to compute an e-approximate 
solution in O (^/plogj) iterations, which implies that this feasible short-step algorithm of 
Ko j ima , Shindoh, and Hara is a fully polynomial-time approximation scheme. 

O f course, as is stated in the concluding remarks of [13], this feasible short-step algorithm is 
mainly of theoretical importance. It requires that we prepare an ini t ia l point (XQ, YQ) 6 MF(I) 
with 7 = 0.1, and even i f we know such an ini t ia l point, it would be more computationally 
efficient to use a smaller centering parameter cr and a larger step length 6. Indeed, i f p = 100, 
7 = 0.1, e = 1 0 - 1 0 , and TOL2 = e {XQ,YQ), the above complexity result only guarantees that 
our algorithm w i l l terminate i n 2000 iterations, which is clearly unreasonable in practice. 

Other important interior-point algorithms designed for solving the S D L C P were developed 
by Monteiro and Tsuchiya [19], and Koj ima , Shida, and Shindoh [12]. In [19] the authors put 
forth two feasible algorithms, a short-step algorithm and a predictor-corrector algorithm, both 
based on an entire family of search directions called the K S H (Kojima-Shindo-Hara) family 
of directions, of which the d u a l - H K M direction is a member. Bo th of these algorithms are 
shown to be able to produce an e-approximate solution of an S D L C P in at most O (.y/plog J ) 
iterations. The algorithm considered in [12] is an infeasible predictor-corrector algorithm which 
uses the A H O direction. Using an infeasible wide neighbourhood similar to (3.38), but related 
to the equation | (XY + YX) = TI, the authors develop an algorithm wi th a sophisticated step 
length control rule that keeps a l l iterates wi th in this neighbourhood. Furthermore, they prove 
that their algorithm is globally convergent, and, given e > 0, must provide an e-approximate 
solution in a finite number of iterations; under certain conditions, this number of iterations 
can be determined as being O ^ l o g ^ . However, the true strength i n their algorithm lies 
in the fact that, under the assumption that the solution of the S D L C P satisfies the strict 
complementarity condition, 

X + Y y 0, 
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they are able to prove that a parameter which measures the optimality and feasibility of their 
iterates converges quadratically to zero. 

This is a fast moving field and many aspects of interior-point algorithms for the S D L C P , 
and i n particular for the S D P (2.22), continue to be studied. For example, many other search 
directions, and families of search directions, have been proposed which we have not mentioned 
here. Our goal has only been to obtain some theoretical convergence results for the interior-point 
methods we w i l l be using to solve our three semidefinite constrained least squares problems. 
We now turn our attention toward the computational aspects of interior-point algorithms for 
our problems, while we keep in mind the following statement made by Todd i n [27], where 
he observes that the intense study in the field of semidefinite optimization is partly due to 
" . . . great advances i n our ability to solve such problems efficiently i n theory and in practice 
(perhaps 'or' would be more appropriate: the most effective computational methods are not 
always provably efficient in theory, and vice versa)." 

3.6 Implementation Issues 

The purpose of this section is to discuss the implementation of both a standard path-following 
algorithm and a predictor-corrector algorithm for solving each of our three semidefinite con­
strained least squares problems. In each case, we have decided to use the A H O direction, but 
we w i l l discuss the advantages of using the H K M , d u a l - H K M , and N T directions at the end of 
this section. 

We use the following rule for computing the centering parameter a in each iteration of our 
standard path-following algorithm, where (X, Y) is our current iterate. 

"Vr-MX-QfKTO!* 
otherwise 

The idea is to wait to reduce the duality gap of our iterates by choosing a near 1 unt i l we are 
wi th in our desired tolerance of being feasible, after which we choose a close to 0 to make rapid 
progress toward the solution. 

Based the results reported in [2] and [29], we have decided to use the Mehrotra algorithm for 
our predictor-corrector algorithm. This algorithm is based on Algor i thm 3.3 wi th an adaptive 
formula for determining the centering parameter a i n Step 3. Firs t we must choose a step length 
parameter c G (0,1) and compute the step length 0 by equation (3.30) so that the predictor 
iterate, 

(X+,Y+) = (X,Y) + e(8X,8Y), 

satisfies X+,Y+ >- 0. Lett ing jl+ = (X+ ,Y+)/p, the Mehrotra rule for defining a is 

A s is pointed out i n [21] wi th regards to Mehrotra's algorithm for linear programming, i f a lot of 
progress was made during the predictor step in reducing the duality gap of the current iterate, 
then / 2 + -C fi, which w i l l cause a -C 1. Having a small w i l l then allow for much progress to 
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be made during the corrector step as well. O n the other hand, i f not much progress is made 
during the predictor step, and fi+ ~ fi, then we w i l l have a « 1, which w i l l cause the corrector 
step to put more emphasis on centering the predictor iterate. 

We have chosen to implement the step length parameter c according to a recommendation 
of Todd et a l i n [29]. They observe that letting c = 0.98 in each iteration r is usually a good 
choice, but that choosing c adaptively according to 

c : = 0.9 +0.09 x 0 r _ i , (3.42) 

where 0 r -1 was the step length used i n the previous iteration (9Q = 1), can alleviate stagnation 
problems that sometimes occur when using a fixed step length parameter. 

For both the standard path-following algorithm and the predictor-corrector algorithm, most 
of the work of each iteration is in solving a linear system of the form (3.21) for the step 
direction. This amounts to rewriting the linear system i n the matrix-vector form using vec and 
the Kronecker product, or svec and the symmetric Kronecker product (see Appendix A ) , and 
then solving this fairly large system by factoring the 2p2 x 2p2 coefficient matrix. However, we 
w i l l see that there are ways to take advantage of the structure present in these linear systems 
and reduce the bulk of the work to that of factoring a p2 x p2 matrix. Moreover, it may be 
possible to avoid using vec or svec by solving a Lyapunov system directly (see [27, p. 547]), but 
we have not pursued this issue. Computing the predictor-corrector direction amounts to having 
to solve two different linear systems which have the same coefficient matrix. B y retaining the 
matrix factorization (for example, the L U or Cholesky factorizations) from the predictor step, 
we are able to compute the corrector step wi th much less effort. 

For each of our three least squares problems, we wi l l consider both the vec and svec versions 
of the linear system we must solve. In each case we wi l l propose a method that can be used 
to solve the resulting linear system more efficiently; there may be more efficient ways to solve 
these structured systems, especially i f the matrices involved are large and sparse, but we have 
not pursued this issue. For simplicity, we w i l l only examine the linear systems we must solve 
in order to obtain the A H O and d u a l - H K M directions for each of our least squares problems. 
The H K M and N T directions are similar. 

3.6.1 C o m p u t i n g search d i rec t ions for the S D L S p r o b l e m 

Recall that when we stated the S D L S problem (2.16) as an S D L C P (2.28), we had defined 
M:Sn^>-Sn and Q G Sn by 

MX = \(ATAX + XATA), and 
Q = -l(ATB + BTA), 

so that A = MX + Q is the same as 

AT{AX -B) = Z , 
\{Z + ZT) = A. 

Using vec and the Kronecker product, we can write both of the linear systems for the A H O 
direction (3.18) and for the d u a l - H K M direction (3.23) in the form 
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Direction E F D 

A H O 1(1 ®A + A ® / ) \(I®X + X®I) TI - \(XA + AX) 

d u a l - H K M \(X~L ® A + A ® * " 1 ) J ® J TX~1 - A 

Table 3.1: E, F, and D i n equation (3.43) for the A H O and d u a l - H K M directions. 

Direction E F D 

A H O I®SX TI -\(XA + AX) 

d u a l - H K M X - 1 ® s A 7 ® s I TX'1 - A 

Table 3.2: E, F, and D i n equation (3.48) for the A H O and d u a l - H K M directions. 

~\(I ®ATA + ATA®I) - J ® / 
E F 

where Z = AT(AX — B), and the matrices E, F, and D are as i n Table 3.1. Notice that 
while the coefficient matrix in the linear system (3.43) is 2n2 x 2n2, we are able to solve this 
system efficiently by mult iplying the first block row by F and adding it to the second block 
row, resulting in the n2 x n2 system 

M v e c ( A X ) = d (3.44) 

where 

M = lF(I®ATA + ATA®I) + E, (3.45) 

d = F v e c ( A - l(Z + ZT)) +vec(L>), (3.46) 

and then letting 
A A := l(ATAAX + AXATA) + \(Z + ZT)- A. (3.47) 

If we choose the d u a l - H K M direction which has F = I ® 7, then the corresponding M in 
equation (3.45) w i l l be an n2 x n2 symmetric and positive definite matrix (see Appendix A ) 
and we can solve (3.44) using the Cholesky factorization of Af . However, the A H O direction 
yields a matrix M that is, i n general, nonsymmetric; this implies that an L U factorization wi l l 
be necessary to solve (3.44) in this case. 

We could also use svec and the symmetric Kronecker product to write both of the linear 
systems, (3.18) and (3.23), in the form 

vec (AX) 
vec(AA) 

vec (A - KZ + Z1)) 
vec (D) 

(3.43) 
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I ®s ATA -I <g>s / 
E F 

where the matrices are defined i n Table 3.2. Th is time we can solve system (3.48) by solving 

Msvec(AX) = d (3.49) 

where 

M = F{I®SATA) + E, (3.50) 

d = F s v e c (A - \{Z + ZT)) +svec(D) , (3.51) 

and then letting A A be defined as in (3.47). Aga in , if we choose the d u a l - H K M direction, then 
M wi l l be an n x n symmetric positive definite matrix, where n := ^n(n + 1); otherwise, M 
w i l l be nonsymmetric for the A H O direction. 

svec(AX) 
svec(AA) 

svec (A - \{Z + Z1)) 
svec(Z>) 

(3.48) 

3.6.2 C o m p u t i n g search d i rec t ions for the N S - S D L S p r o b l e m 

When we stated the N S - S D L S problem (2.19) as an S D L C P (2.28), we had defined M : Sn 

and Q <E Sn by 

MA = ^ ( G - ^ + A G " 1 ) , and 

Q = ^(G-1ATB + BTAG-1), 

where G = ATA e <5"+. W i t h M and Q defined in this way, the equation S = MA + Q is 
equivalent to 

AT(AX — B) = A , 
\{X + XT) = S. 

Furthermore, given X e Hrx", A e Sn, and letting S := \{X + XT), it is easy to see that 

i f and only if 

MAA - AS = S - MA - Q 

ATAAX - A A = A - AT(AX - B) and A S = \{&X + AXT). 

(3.52) 

(3.53) 

Indeed, to show the forward implication, we simply let 

A X := G " 1 [(A + A A ) + ATB] - X; 

the backward implication is straightforward. Therefore, we are justified in replacing equation 
(3.52) with the first equation in (3.53) when solving for the search direction (AA, AS), so long 
as we define A S := \{AX + AXT) after determining AX. 

Given the current iterate (X, A), where \{X + XT),A >- 0, we first let S := \{X + XT). 
Then we solve either the matrix-vector equation defined using vec, 

I ® ATA 
E 

- 7 ® / 
F 

vec(AX) 
vec(AA) 

vec (A - AT{AX - B)) 
vec(D) 

(3.54) 
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Direction E F D 

A H O \{I ®A + A®I)V \{I ®S + S®I) T I - \{SA + A S ) 

d u a l - H K M \{S~L ® A + A®S~1)V I®I TS-1 - A 

Table 3.3: E, F, and D in equation (3.54) for the A H O and d u a l - H K M directions. 

Direction E F D 

A H O [I®S A)UTV I ® S S TI-1(SA + AS) 

d u a l - H K M ( S " 1 <g>s A)UTV I ® S I TS'1 - A 

Table 3.4: E, F, and D in equation (3.55) for the A H O and d u a l - H K M directions, 

or the matrix-vector equation defined using svec for AA £ Sn, while s t i l l using vec for AX G 

I®ATA -U 'vec(AX)' vec (A - AT(AX - B))' 
E F svec(AA.) svec(D) 

(3.55) 

where U is defined as the matrix in equation (A.2). In the linear system (3.54), we have the 
matrices E, F, and D defined as in Table 3.3, while E, F, and D are defined as in Table 3.4 
for the linear system (3.55). Note that V is the n 2 x n2 matrix which satisfies 

Vvec(AX) = vec Q ( A X + AXT)) ; 

thus UTVvec(AX) - svec(AS). 

In order to solve (3.54) more efficiently, we can solve 

M v e c ( A X ) = d , (3.56) 

where 

M = F{I®ATA) + E, (3.57) 

d = -Fvec (A — AT(AX - B)) + vec(D), (3.58) 

and let 

A A := ATAAX + AT(AX - B) - A. (3.59) 

Alternately, we could solve (3.55) by solving system (3.56) wi th 

M = I®ATA + UF-1E, (3.60) 

d = vec(A-AT{AX-B))+UF-1svec{D), (3.61) 
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and then let A A be defined as in (3.59). Notice that M is an n 2 x n 2 matrix in both (3.57) and 
(3.60), and so no advantage is obtained by solving (3.55) rather than (3.54). Furthermore, the 
d u a l - H K M direction does not appear to give a symmetric positive definite M in either (3.57) 
or (3.60), which means that we wi l l have to resort to using the L U decomposition for both the 
A H O and d u a l - H K M directions. 

3.6.3 C o m p u t i n g search d i rec t ions for the L M I - L S p r o b l e m 

We stated the L M I - L S problem (2.21) as an S D L C P (2.28) by defining M : Sk -> Sk and 
Q G Sk as 

MA = / C G " 1 / C * A , and 

Q = C-KG~XAT\ 

where G = ATA G S l + and K : H T -> Sk and K* : Sk -> IR" are defined by 

ICx = ^^XiKi, 1C*A = 

(Ki,A) 

i = 1 [(Kn,A)_ 

for some matrices K\,...,Kn G Sk. In this way, we have that S = MA + Q is equivalent to 

AT(Ax - b) + 1C*A = 0, 

Kx + S = C. 

Also, as before, i f we are given x G IR™ and A , S G Sk, we have that 

. M A A -AS = S-MA-Q 

i f and only i f 

ATAAx + /C*AA = -K*A - AT{Ax - 6), 

/CAc + A S = C-ICx-S. 

Again, this is easy to see; the forward implication follows by defining 

A E := G~l [ATb - K* (A + AA)] - x, 

while the backward implication is immediate. 

Therefore, in order to solve for the search direction given the current iterate (x, A, S), where 
A , S >- 0, we can solve either the linear system defined wi th vec, 

(3.62) 
~ATA KT 0 ' A E '-K*A - AT{Ax - b)~ 

K 0 J ® J v e c ( A A ) = vec(C — tCx — S) 
0 E F v e c ( A S ) 

where E, F, and D are as in Table 3.5, or we can solve the linear system defined wi th svec, 
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Direction E F D 

A H O \{I®S + S®I) \{I®K + K®I) T I - i ( A S + S A ) 

d u a l - H K M i ( A - J ® S + S® A " 1 ) I® I r A " 1 - 5 

Table 3.5: E, F, and £> in equation (3.62) for the A H O and d u a l - H K M directions. 

Direction E F D 

A H O I®SS I ®S A T I - i ( A 5 + 5 A ) 

d u a l - H K M A " 1 ®s S I ® S I r A - 1 - 5 

Table 3.6: E, F, and £> in equation (3.63) for the A H O and d u a l - H K M directions. 

~ATA KT 0 " Ax ~-K.*A - AT{Ax - b)~ 
K 0 I®S I svec(AA.) = svec(C7 — K.x — S) 
0 E F _svec(AS')_ svec(.D) 

(3.63) 

wi th E, F, and D as in Table 3.6. Furthermore, the K in equation (3.62) is defined as 

K = [vec(Ki) ••• vec(Kn)} (3.64) 

so that 

vec (ICAx) = KAx, and AC*AA = KT vec(AA), 

while the K i n equation (3.63) is defined as 
K = [svec(Ki) • • • s vec ( i i „ ) ] (3.65) 

so that 
svec {ICAx) = KAx, and AC*AA = KT svec(AA). 

Following [21, p. 408], we can simplify the linear system (3.62) by eliminating A S , producing 
the equivalent system 

ATA KT " Ax 
K -F~lE_ vec(AA) rp - F " 1 v e c ( i ? ) 

vec(AS) rp - KAc, 

where 

rd = -K*K- AT{Ax-b), 

rp = vec(C — Kx — S). 
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We can further reduce this system by eliminating A A , which gives us 

(ATA + KTE~1FK)Ax = rd + KTE-lrq, (3.66) 

vec(AA) = E^iFK&c-rq), (3.67) 

vec(AS') = rp-KAx, (3.68) 

where 
rq = Frp - vec(.D). 

We note here that these equations (3.66)-(3.68) are identical to those for S D P in [2] where 
they state that computing the step direction in this manner is more stable than other methods 
considered. A similar discussion also holds for the linear system (3.63). 

A t this point we could use the Cholesky factorization on the n x n matrix in equation 
(3.66), provided that E~XF is symmetric positive definite, and that K has full-column rank 
(i.e., the matrices Ki,..., Kn are linearly independent). For example, it is easy to see that the 
H K M direction would have E~lF symmetric positive definite, due to the fact that 

E = I®I, and F= i ^ S " 1 <g> A + A <g> S ^ 1 ) . 

Of course, i f the matrix in (3.66) is not symmetric, we can always use the L U decomposition to 
solve for A E . 

3.6.4 Differences i n the search d i rec t ions 

We have already mentioned one significant difference among the different search directions we 
are considering i n Theorem 3.4.1. This was the fact that it is possible that the A H O direction 
w i l l not exist at certain interior points, although, as stated in [27, p. 547], this does not seem 
to cause difficulties in practice. O n the other hand, by the same theorem, we also know that 
the d u a l - H K M and N T search directions always exist. 

Al though Theorem 3.4.1 would seem to imply that we would prefer to use the d u a l - H K M 
or N T directions over the A H O direction, this is not necessarily the case. A s is noticed in both 
[2] and [29], performing numerical experiments wi th path-following algorithms for solving S D P s 
(2.22) using the A H O , H K M , and N T directions shows that the A H O direction gives rise to a 
method that 

• can achieve higher accuracy i n the duality gap, and 

• converges in fewer iterations, 

than the methods using the H K M and N T directions. We can see why the A H O direction might 
produce a more stable method for our problems from the fact that the linear system defining 
this direction is actually defined at the optimal solution, which is a feature that the H K M , 
d u a l - H K M , and N T directions do not possess. See also [2] for more stability analysis of the 
A H O direction. 

However, as we also observed for the S D L S and L M I - L S problems, the main disadvantage of 
using the A H O direction for solving S D P problems is that each iteration of the method w i l l be 
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about twice as expensive as each iteration of the method using either the H K M or N T directions 
[29, p. 790]. This is due to the fact that there is some symmetry to be taken advantage of when 
solving for the H K M and N T directions for an S D P problem; this symmetry does not exist 
when solving for the A H O direction. It turns out that, in terms of computer running time, 
using the H K M direction gives rise to the fastest method for reducing the duality gap by a 
factor of 10 1 0 for S D P s (2.22) (see [29, p. 791]). This point is further reinforced by the fact that 
one of the more widely used codes for solving SDPs , S D P T 3 [28], has removed the option of 
using the A H O direction due to it being inefficient or under-used, while retaining the options 
of using the H K M and N T directions. Moreover, as was mentioned before, H K M is currently 
the direction of choice for large S D P problems [22]. 

A l l things considered, we have decided to use the A H O direction in our experiments, pri­
marily due to the fact that we are mostly interested in solving only small scale problems. We 
also find the stability properties and the simplicity of implementing the A H O direction very 
appealing. Indeed, we see in [2] how care must be observed when implementing the H K M 
direction for S D P . 
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Chapter 4 
Numerical Results 

The purpose of this chapter is to obtain some information about how the standard path-
following (SPF) algorithm (Figure 3.2) and the predictor-corrector (PC) algorithm (Figure 3.3) 
perform in practice on each of the S D L S (2.16), N S - S D L S (2.19), and L M I - L S (2.21) problems; 
this gives us a total of six algorithms for our numerical experiments. We w i l l also compare 
Woodgate's Algor i thm [34] to the P C algorithm for the S D L S problem. 

A l l of our experiments were conducted i n M A T L A B [17]. A listing of the M A T L A B M-files 
used to produce these results can be found in Appendix B . Before reporting any results, we 
w i l l first explain some of the details of these codes and the methods of experimentation used. 

4.1 I m p l e m e n t a t i o n a n d e x p e r i m e n t a t i o n d e t a i l s 

The implementation details that need to be discussed are: 

• Which search direction are we using and how are we solving for it? 

• How are we computing the maximum step length? 

• What have we chosen for the starting points? 

• What is the stopping criteria? 

• How have we implemented Woodgate's Algori thm? 

• How are we generating problem instances for our numerical experiments? 

We w i l l now discuss each of these questions in order. 

4.1.1 S o l v i n g for the search d i r e c t i o n 

In each of our six M A T L A B codes we have used the A H O direction (3.18). We have decided to 
solve for this direction using vec and the standard Kronecker product (Appendix A ) ; this is due 
to the fact that there was too much overhead computation in our implementations using svec 
and the symmetric Kronecker product to give any advantage in solving a smaller linear system. 

Since we are using vec to solve for the A H O direction, we use the equations (3.44-3.47) 
and (3.56-3.59) to solve for this direction for the S D L S and N S - S D L S problems, respectively. 
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However, we can improve on these equations as follows. Since we are using the A H O direction, 
we can write (3.45) and (3.46) as 

M = I [{I®XATA) + (ATA®X) + (X® ATA) + (XATA®I)} + E, (4.1) 
d = vec{rl- \(XZ + ZX)), (4.2) 

where Z = AT(AX — B). We can easily see that this is a more efficient way to compute M 
because the sum of four n2 x n2 matrices is cheaper to compute than the product of two n2 x n2 

matrices. Similarly, when using the A H O direction, we can write (3.57) as 

M = § [(I ® SATA) + {S® ATA)} + E, (4.3) 
d = vec{rl-\{SR + RS + SA + AS)), (4.4) 

where R = Z — A and Z = AT(AX — B). We do not simplify the expression for d in (4.4) any 
further due to a loss of stability that was noticed in numerical experiments. In fact, replacing 
(4.4) wi th 

d = v e c ( T J - \(SZ + ZS)), 

results i n a loss in feasibility of the iterates as the duality gap goes to zero. A similar phe­
nomenon was also noticed for S D P in [2, p. 757]. For the L M I - L S problem, our implementation 
using equations (3.66-3.68) did not produce the efficiency we were hoping for; therefore, we 
chose to solve (3.62) directly for the A H O direction. 

4.1.2 Comput ing the maximum step length 

When solving the generalized eigenvalue problems in the computation of the maximum step, we 
have found that computing every eigenvalue and taking the maximum one is often less expensive 
than using an iterative method for just computing the maximum eigenvalue. In our l imited 
experimentation wi th sparsity, we found that it is advantageous to use an iterative method 
when dealing wi th sparse matrices, but in the case of dense matrices, it was more efficient to 
just solve these generalized eigenvalue problems directly. 

4.1.3 Starting points 

The starting points we choose for a l l our experiments is as follows. 

• S D L S / N S - S D L S : X0 = I and A 0 = I 

• L M I - L S : x0 = 0, S0 = I, and A 0 = I. 

For the S D L S and N S - S D L S problems, I is the nxn identity matrix; for the L M I - L S problem, 
0 is the zero vector of length n and I is the k x k identity matrix. 

4.1.4 Stopping criteria 

We use the following stopping criteria: 
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(i) Stop when ||res|| < TOL\ and p. < TOL2-

Here we have the norm of the residual defined as 

res := 
\1{Z + ZT)-A\\F, for S D L S , 

\\Z-A\\F, for N S - S D L S , 

where 
Z = AT{AX -B). 

Recall that the normalized duality gap is defined as 

p, := 

where 

( X , A ) / n , for S D L S , 
<S,A)/n, for N S - S D L S , 

s = Ux + xT). 
For the L M I - L S problem, the norm of the residual and the normalized duality gap are 
defined as 

||res|| := rd 

(S,A)/k, 

where 

rd = -IC*A-AT(Ax-b), 
rp — vec(c7 — Kx — S). 

Furthermore, we set 

TOLi := Ve| | res 0 | | , 

TOL2 := eAo, 

where ||reso|| and /IQ are the norm of the residual and the normalized duality gap at the 
ini t ia l iterate, and e > 0 is a given tolerance. Notice that, given the starting points 
above, we w i l l always have /} = 1, and so TOL2 = e. For the most part, we w i l l be using 
e = 1 0 ~ 1 0 except when investigating the performance of Woodgate's Algor i thm and the 
predictor-corrector algorithm on different tolerances. 

(ii) Stop when we have exceeded the maximum number of iterations, Maxlt. 

For a l l six algorithms, we have set 

Maxlt = 100. 

If we have reached our maximum number of iterations without meeting our desired tolerances, 
our algorithm w i l l report a failure. Failed attempts w i l l be reported but not included in our 
averages. 
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4.1.5 Woodgate's A lgor i thm 

For the details of Woodgate's Algor i thm, please refer to [34]. However, we would like to mention 
here the ini t ia l iterate and stopping conditions we w i l l be using in our implementation of this 
algorithm. 

We have decided to use the recommended starting point from [34], which is the matrix 

X0 = ai(o), 
where X is the solution to the symmetric unconstrained least squares problem (1.3), X^ is 
the result of the result of changing all of the negative eigenvalues of X to 0 in the eigenvalue 
decomposition of X, and a is some nonnegative scalar. 

Since a stopping criterion for approximate solutions was not provided in [34], we have 
decided to stop iterating Woodgate's Algor i thm when ||res|| < TOL\ and fi < TOL2, or when 
we have exceeded the maximum number of iterations, Maxlt. This time, we have 

||res|| = \\L(X){0) - L(X)\\F, 

fi = (X,L(X)(0))/n, 

Maxlt = 100, 

where 

L(X) := ATAX + XATA - ATB - BTA. 

Moreover, we set the tolerances as 

TOLi := y/i, 

TOL2 := e. 

This was done in order to make a fair comparison wi th the predictor-corrector algorithm for 
the S D L S problem, given the fact that, in general, fiQ ^ 1 for the ini t ia l iterate XQ above. 

One more difference should be noted between Woodgate's Algor i thm from [34] and our 
implementation of this algorithm. In each iteration, it is necessary to solve a linear system 
which has an n2 x n2 symmetric coefficient matrix, M, that is sometimes near singular. In order 
to avoid this near singularity, we modified M by adding vi, for some small positive parameter 
v. We were surprised to find that this modification greatly improved the convergence of this 
algorithm! After some experimentation, we decided to use v = 1 /n 2 . 

4.1.6 Generating problem instances 

For a l l of our experiments, we have chosen to report each result averaged over 10 randomly 
generated instances of our problems. We randomly generate the matrices A and B for the 
S D L S and N S - S D L S problems, and the vector b and the matrices A, Ki,... ,Kn, and C for 
the L M I - L S problem by choosing their entries uniformly from the interval [—1,1]. We have 
chosen the dimensions of our problems to satisfy m > n and n > ^k(k + 1) so that A has full 
column rank in al l three problems, and s p a n { K T i , . . . , Kn} = Sk in the L M I - L S problem (see 
Corollary 2.4.10). 
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4.2 Numerical comparison of the algorithms 
Our experimentation comes in three parts. Firs t of a l l , we compare the S P F algorithm wi th the 
P C algorithm for each of our three semidefinite constrained least squares problems. We then 
compare the P C algorithm for solving the S D L S problem to Woodgate's Algor i thm. Final ly, 
we look at each of these algorithms in action on a typical instance of each problem. 

4.2.1 T h e S P F / P C expe r imen t 

We compare the performance of the S P F algorithm wi th the P C algorithm for the S D L S , N S -
S D L S , and L M I - L S problems. This is done by determining how the average number of iterations 
and amount of C P U time required to compute an e-approximate solution, where e = 10~ 1 0 , and 
the resulting average feasibility of this solution - measured by the norm of the residual of the 
solution - each depend on the size of the problem. These averages are based on 10 randomly 
generated problem instances for each problem size. The results of this experiment are shown 
in Table 4.1. We have plotted the results from Table 4.1 in Figure 4.1 for the S D L S problem, 
in Figure 4.2 for the N S - S D L S problem, and in Figure 4.3 for the L M I - L S problem. 

Based on these results, we make the following observations. 

1. The P C algorithm is the clear winner in each of the three problems when we consider 
the C P U time required to reduce the duality gap by a factor of 1 0 1 0 . Even though each 
iteration of the P C algorithm is more expensive than each iteration of the S P F algorithm, 
we find that the overall C P U time for the P C algorithm is much less that of the S P F 
algorithm. This is due to the fact that, on average, the P C algorithm converges i n far 
fewer iterations than the S P F algorithm. 

2. O n the other hand, we notice that the S P F algorithm is better suited to producing an 
approximate solution that is closer to being feasible. This is partly due to the strategy we 
have used for choosing the centering parameter u (3.40) in the S P F algorithm. In fact, 
we find that while the P C algorithm tends to reduce the norm of the residual gradually, 
the S P F algorithm achieves feasibility once we are able to take a step length of 9 = 1. 

3. We observe that the N S - S D L S algorithms seem to require much more C P U time than 
their corresponding S D L S algorithms. This difference can be explained by the need to 
mult iplying an two n2 x n2 matrices each iteration in order to compute the matrix E = 
\{I®K + k®I)V. 

4. Al though we were successful in approximating the solution the S D L S and N S - S D L S prob­
lems wi th a tolerance of 1 0 ~ 1 0 in each attempt (in fact, we were able to perform a Cholesky 
factorization on these approximations, proving that they were numerically positive defi­
nite), we encountered a few higher order problems for which the S P F algorithm for the 
L M I - L S problem stagnated (we exceeded our maximum number of iterations). However, 
as the results show, the P C algorithm for the L M I - L S problem was successful in each 
attempt. 

5. The rapid growth in the C P U time required to solve these problems is to be expected due 
to the fact that in each iteration we are performing an L U decomposition of an n 2 x n 2 
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(or (n + 2k2) x (n + 2k2) for the L M I - L S problem) matrix. The C P U time required for 
this L U decomposition is itself proportional to n 6 (or (n + 2fc 2) 3 for the L M I - L S problem). 

4.2.2 The Woodgate / P C experiment 

Now we would like to compare Woodgate's Algor i thm to the P C algorithm for solving the S D L S 
problem. In order to do this, we have chosen to compare their ability to achieve a variety of 
tolerances on both small instances (n = 5) and large instances (n = 30). The results averaged 
over 10 random instances for n = 5 and over 10 random instances for n = 30 are shown in 
Table 4.2; the corresponding plots are presented in Figure 4.4. 

From this experiment we reach the same conclusion as in [34] that Woodgate's Algo­
r i thm is able to converge very quickly to an approximate solution of the S D L S problem for 
small instances wi th limited tolerances. However, for larger problems and smaller tolerances, 
Woodgate's Algor i thm is much slower to converge than the P C algorithm, both in terms of 
number of iterations and C P U time required. In fact, as we see for n = 30 and e < 1 0 - 4 , 
Woodgate's Algor i thm sometimes exceeds the maximum number of iterations, 100, before be­
ing able to achieve the desired tolerance. 

4.2.3 A final comparison 

The purpose of this section is to take a typical medium sized random instance of each of the 
S D L S , N S - S D L S , and L M I - L S problems, and investigate the convergence properties of each 
of the algorithms considered in this thesis. We can see how each algorithm converges to the 
optimal solution by watching how the duality gap goes to zero i n the duality gap convergence 
curves shown in Figure 4.5. 

These convergence curves again indicate the rapid convergence of the P C algorithm for each 
problem. A t the same time we see how the S P F algorithm has a fairly level convergence curve 
while the centering parameter a is s t i l l near 1, and then converges fairly rapidly for the S D L S 
and N S - S D L S problems when a is chosen near 0. However, we also witness the ability for the 
S P F algorithm to stagnate slightly when solving an L M I - L S instance. Woodgate's Algor i thm 
is seen to make slow but steady progress toward the solution. 

4.3 E s t i m a t i n g the compliance m a t r i x 

We now return to the application that was mentioned in Chapter 1 about estimating the 
compliance matrix at a certain location on a deformable object. Given a number of displacement 
measurements, u1 • • • ul G IR 3 , corresponding to some forces, p1 • • -pl G IR 3 , our aim is to find a 
matrix X which is the least squares solution of the equation 

\P

1...p

lfXT = [ui...ul}T (4.5) 

subject to the constraint that the real parts of the eigenvalues of X are nonnegative; i.e., that 
\{X + XT) y 0. Notice that we can write (4.5) as AXT = B. 
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S D L S # iterations C P U time (sec) log 1 0(| |res| |) 

m n S P F P C S P F P C S P F P C 
20 5 11.4 7.4 0.02 0.02 -15.2 -10.6 
40 10 11.2 8.1 0.06 0.05 -14.6 -10.8 
60 15 11.5 8.5 0.39 0.31 -14.4 -10.1 
80 20 12.4 9.1 1.38 1.05 -14.2 -10.1 
100 25 13.7 9.3 4.06 2.84 -14.0 -10.7 
120 30 13.8 9.2 9.61 6.57 -13.8 -10.3 
140 35 15.9 9.6 23.85 14.70 -13.7 -10.4 
160 40 16.1 9.6 47.95 28.95 -13.6 -10.1 

N S - S D L S # iterations C P U time (sec) l o g i o ( l l r e s l l ) 

m n S P F P C S P F P C S P F P C 
20 5 11.2 7.2 0.02 0.01 -15.0 -10.4 
40 10 11.4 8.4 0.07 0.06 -12.5 -10.9 
60 15 12.2 8.9 0.50 0.39 -12.2 -10.4 
80 20 12.4 9.1 2.06 1.57 -11.0 -10.1 
100 25 12.7 9.1 6.72 4.94 -11.0 -10.4 
120 30 13.4 9.1 18.91 13.15 -10.7 -10.1 
140 35 13.9 9.5 47.09 32.84 -9.8 -9.8 
160 40 14.8 9.6 106.99 70.61 -9.0 -9.4 

L M I - L S % success # iterations C P U time (sec) log 1 0(| |res| |) 

m n k S P F P C S P F P C S P F P C S P F P C 
40 20 5 100 100 11.3 7.7 0.03 0.02 -14.3 -10.3 
120 60 10 100 100 13.5 8.3 0.30 0.20 -13.6 -10.2 
300 150 15 100 100 17.3 8.3 2.97 1.45 -13.0 -9.5 
500 250 20 100 100 26.3 8.7 19.38 6.54 -12.7 -9.8 
700 350 25 90 100 32.1 8.9 75.85 20.96 -12.4 -9.6 
1000 500 30 70 100 45.1 9.2 289.44 60.86 -12.2 -10.3 

Table 4.1: Results from computing approximate solutions of the S D L S , N S - S D L S , and L M I - L S 
problems with fi < 10~ 1 0 , where fi is the normalized duality gap. The S P F algorithm and 
the P C algorithm are used. Results averaged over 10 randomly generated problems for each 
problem size. Failures are not included in the averages. 
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S D L S 

5 10 15 20 25 30 35 40 

(a) Average # iterations vs problem size n 

Figure 4.1: The plots of the data from Table 4.1 for the S D L S problem. The solid line 
sponds to the S P F algorithm, while the dashed line corresponds to the P C algorithm. 
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N S - S D L S 

(a) Average # iterations vs problem size n 

Figure 4.2: The plots of the data from Table 4.1 for the N S - S D L S problem. The solid line 
corresponds to the S P F algorithm, while the dashed line corresponds to the P C algorithm. 
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L M I - L S 

,i , , , , 1 

5 10 15 20 25 30 

(a) Average # iterations vs problem size k 

300 

(c) Average log 1 0(| |res| |) vs problem size k 

Figure 4.3: The plots of the data from Table 4.1 for the L M I - L S problem. The solid line 
corresponds to the S P F algorithm, while the dashed line corresponds to the P C algorithm. 
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S D L S % success # iterations C P U time (sec) 

!ogio(e) W G P C W G P C W G P C 
-2 100 100 0.6 3.0 0.01 0.01 
-4 100 100 2.2 4.3 0.02 0.01 
-6 100 100 3.9 5.3 0.04 0.01 
-8 100 100 6.1 6.3 0.07 0.01 

-10 100 100 9.4 7.3 0.10 0.02 

(a) m = 20, n = 5 

S D L S % success # iterations C P U time (sec) 

logio(e) W G P C W G P C W G P C 
-2 100 100 7.9 5.0 12.21 3.57 
-4 80 100 10.1 6.0 15.52 4.29 
-6 80 100 19.4 7.3 29.27 5.22 
-8 80 100 31.3 8.3 46.91 5.94 

-10 80 100 42.8 9.3 64.02 6.66 

(b) m = 120, n = 30 

Table 4.2: Results from computing approximate solutions of the S D L S problem wi th normalized 
duality gap p, < e, for e = 1 0 - 2 , . . . , 1 0 - 1 0 . Woodgate's Algor i thm (WG) [34] and the P C 
algorithm are used. Results averaged over 10 randomly generated problems. Failures are not 
included in the averages. 
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Woodgate / Predictor-Corrector comparison 

10 
(a) 

- 4 - 6 - 8 

# iterations vs log 1 0 (e) (TO = 20, n = 5) (b) C P U time vs log 1 0 (e) (TO = 20, n = 5) 

- 8 - 9 - 1 0 

(c) # iterations vs log 1 0 (e) (TO = 120, n = 30) (d) C P U time vs log 1 0 (e) (TO = 120, n = 30) 

Figure 4.4: The plots of the data from Table 4.2. The dashed line corresponds to the P C 
algorithm, while the dotted line corresponds to Woodgate's Algor i thm [34]. 
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Duali ty gap convergence curves 

(a) S D L S (m = 80, n = 20, e = 1 0 " 1 0 ) (b) N S - S D L S (m = 80, n = 20, e = l O " 1 0 ) 

0 5 10 15 20 25 30 

(c) L M I - L S (m = 500, n = 250, A: = 20, e = 1 Q - 1 0 ) 

Figure 4.5: Dual i ty gap convergence curves of typical random S D L S , N S - S D L S , and L M I - L S 
problems. The solid line corresponds to the S P F algorithm, the dashed line corresponds to the 
P C algorithm, and the dotted line corresponds to Woodgate's Algor i thm [34]. 
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In [14], the following ten force and displacement measurements were made from the nose 
of a stuffed toy tiger. 

» A 

A = 
- 0 3157 0 0330 0 0603 
- 0 3274 - 0 0158 0 0625 
- 0 3569 0 0787 0 0563 
- 0 2994 0 0301 0 0496 
- 0 3243 - 0 0048 0 0715 
- 0 3447 0 0736 0 0545 
- 0 2417 0 0709 0 0522 
- 0 2063 - 0 0099 0 0233 
- 0 3285 0 1585 0 0979 
- 0 2484 0 0878 0 0622 
- 0 2196 0 0023 0 0280 
- 0 3148 0 1506 0 0922 

B 

-1 4257 0 1528 - 0 4398 
-1 4024 - 0 3092 - 0 4187 
-1 3766 0 4366 - 0 4197 
-1 4274 0 1424 - 0 4353 
-1 3994 - 0 3095 - 0 4206 
-1 3716 0 4285 - 0 4193 
-1 .4269 0 1581 - 0 4335 
-1 .4015 - 0 3229 - 0 4214 
-1 .3767 0 4189 - 0 4333 
-1 .4257 0 1515 - 0 4358 
-1 .3989 - 0 3276 - 0 4217 
-1 .3724 0 4154 - 0 4356 

A s we can see, the regular unconstrained least squares solution, X, which minimizes 
| | A X " T — B\\p over al l possible 3 x 3 matrices X, does not satisfy our positive semidefinite 
requirement. 

» Xhat = ( A \ B ) ' 

Xhat = 
5.1595 0.3075 2.3185 
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-0.8348 6.2621 -8.1377 
1.5400 -0.0070 0.6169 

» norm(A*Xhat'-B,'fro') 

ans = 
0.9805 

» eig(Xhat) 

ans = 
-0.1683 
6.1034 + 0.8875i 
6.1034 - 0.8875i 

» eig((Xhat+Xhat')/2) 

ans = 
-1.8795 
5.1456 
8.7725 

Using the P C algorithm to compute an e-approximate solution to the N S - S D L S problem, 
with e = 1 0 - 1 6 , we obtain a matrix X which satisfies \{X-\-XT) >z 0 and minimizes | | j 4 X r — B \ \ F 
over a l l 3 x 3 matrices X which satisfy + XT) >z 0. 

» [X,Y] = ns_sdls_precorr(A,B,[], [],le-16,l); Xbar = X' 

r sigma theta norm(res) <S,Y>/n 

0 5 4503e+00 1 0000e+00 
1 1 1534e -01 8 0257e-01 1 0761e+00 1 1770e+00 
2 9 2476e -02 8 8364e-01 1 2521e-01 1 7550e-01 
3 1 4385e -01 9 0385e-01 1 2039e-02 3 7142e-02 
4 2 7082e -02 1 0000e+00 8 9038e-16 3 1443e-03 
5 1 5178e -02 1 0000e+00 6 4673e-16 2 1483e-04 
6 5 1198e -04 9 9198e-01 8 9622e-16 2 4720e-06 
7 1 5787e -06 9 8928e-01 8 0999e-16 2 6492e-08 
8 1 3218e -06 9 8904e-01 4 0358e-16 2 9050e-10 
9 1 3263e -06 9 8901e-01 5 1891e-16 3 1919e-12 
10 1 3270e -06 9 8901e-01 8 8842e-16 3 5076e-14 
11 1 3460e -06 9 8895e-01 6 6974e-16 3 8598e-16 
12 4 1771e -06 9 8768e-01 5 5102e-16 6 2161e-18 
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Average iteration time: 0.0030 seconds 
Total time: 0.0486 seconds 

Xbar = 
5.0392 0.4423 1.5978 
-0.6207 6.0223 -6.8559 
1.8979 -0.4079 2.7600 

» norm(A*Xbar'-B,'fro') 

ans = 
0.9859 

» eig(Xbar) 

ans = 
1.1481 
6.3367 + 0.7865i 
6.3367 - 0.7865i 

» eig((Xbar+Xbar')/2) 

ans = 
0.0000 
5.1401 
8.6813 

A s we see, the eigenvalues of X have nonnegative real parts and the symmetric part of 
X, \{X + XT), is positive semidefinite. Furthermore, the fact that neither \\X — X\\p nor 
H ^ X 7 ^ — B\\p — | | ^ 4 X r — B\\p is large indicates that the unconstrained least squares solution, 
X, was near the semidefinite constrained least squares solution, X; this result is to be expected 
due to the physical nature of this problem. 

» norm(Xbar-Xhat,'fro') 

ans = 

2.6795 

» norm(A*Xbar'-B,'fro') - norm(A*Xhat'-B,'fro') 

ans = 
0.0055 
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Chapter 5 
Conclusions and Future Work 

5.1 Conclusions 
The purpose of this thesis was to develop numerical methods for solving three semidefinite 
constrained least squares problems: the symmetric semidefinite least squares (SDLS) problem 
(1.3), the nonsymmetric semidefinite least squares (NS-SDLS) problem (1.4), and the linear 
matrix inequality least squares ( L M I - L S ) problem (1.5). Al though the S D L S problem had been 
previously studied, we found that neither the N S - S D L S nor the L M I - L S problems appear to 
have been proposed before. Our inspiration for studying these problems came from the need to 
solve the N S - S D L S problem for the purpose of compliance matrix estimation i n the modeling 
of deformable objects. The numerical methods we chose to use to solve each of these problems 
were the standard path-following (SPF) and predictor-corrector (PC) interior-point methods 
which have been used to solve the related semidefinite programming (SDP) and nonnegative 
least squares (NNLS) problems. Whi le algorithms have already been proposed for the numerical 
solution of the S D L S problem, namely Woodgate's Algor i thm [34], this appears to be the first 
time these interior-point methods have been used for this problem. 

We presented a uniform discussion of the K K T conditions which characterize the solutions 
of each of the three semidefinite constrained least squares problems by developing these con­
ditions for self-dual cone constrained convex programming problems in the general setting of 
Euclidean spaces. Using an important theorem due to Weierstrass, we were able to show that 
if the coefficient matrix A has full column rank then the S D L S and N S - S D L S problems have 
unique optimal solutions, and, under the additional assumption that the set of feasible points 
is nonempty, that the same holds true for the L M I - L S problem. 

The key discovery made in this thesis was that each of the three problems under considera­
tion are actually instances of a more general problem, the semidefinite linear complementarity 
problem ( S D L C P ) . This connection to the S D L C P then assisted us in providing a uniform 
discussion of the interior-point methods we were considering. After discussing some known 
theoretical convergence results for interior-point methods applied to the S D L C P , we went on 
to describe techniques used for the numerical implementation of these interior-point methods 
for each of our three least squares problems. 

Based on the numerical experiments performed in MATLAB wi th the S P F and P C algorithms 
using the A H O search direction, it was determined that the P C algorithm was the most efficient 
for a l l three problems. Moreover, the P C algorithm for the S D L S problem was seen to be an 
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improvement over the best current algorithm for solving this problem, Woodgate's Algor i thm. 
We also saw how the P C algorithm for the N S - S D L S problem was able to efficiently compute 
an accurate estimate of the compliance matrix at a certain location on a deformable object that 
satisfied the required positive semidefinite constraint. 

In conclusion, this thesis has made three important contributions. The first is the intro­
duction and study of two new semidefinite constrained least squares problems, the N S - S D L S 
problem and the L M I - L S problem. The second is the proposed use of interior-point methods 
for the solution of the S D L S , N S - S D L S , and L M I - L S problems. Included in this second point 
are the resulting efficient method for compliance matrix estimation and an improved algorithm 
for solving the S D L S problem. The final contribution, while related to the first two, is the 
development of the K K T conditions for each of the three problems and the explicit connection 
of these conditions to the S D L C P . 

5.2 Future Work 

In this section we summarize the many promising ideas for possible future work which arose 
during the course of research for this thesis. 

• When considering the existence of the central path i n Section 3.3, the question as to 
when C++ ^ 0 holds for the L M I - L S problem remained undecided. Th is is an important 
question that should be the topic of future work in this area. 

• More research could be done to propose more efficient ways to solve for the search direc­
tions in these interior-point methods. For example, it may be possible and preferable to 
solve a Lyapunov system directly rather than using the functions vec or svec in order to 
solve these large linear systems. 

• Similarly, if the matrix A is very ill-conditioned, we could find that the methods mentioned 
here for solving for the search directions would not be successful due to the presence of the 
matrix ATA whose condition number is known to be the square of the condition number 
of A. It may be possible to determine an equivalent system which could be solved in a 
more stable manner using a Q R factorization (see, for example, [23]). 

• Another topic for future consideration is to develop methods for solving large sparse 
semidefinite constrained least squares problems. 

• Final ly, it would be interesting to determine i f any of the other search directions mentioned 
here would result in more efficient algorithms for solving our three problems than the 
algorithms we have implemented here wi th the A H O search direction. 
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Appendix A 
Kronecker products 

A t many times in our discussion, we must solve a system of linear equations, but the variables 
we are solving for reside in a matrix rather than a vector. Here we follow the development in 
[2] and [29] by noticing that an easy way to deal wi th this situation is to rewrite the linear 
system by putt ing the entries of the unknown matrix into a vector. We do this by defining the 
function vec : I R n x " -> IR" 2 as 

vec(X) 
X2 

where X = [x\ x2 • • • xn\. In other words, the function vec stacks the columns of a matrix into 
2 

a vector. In fact, vec is an isometry between IR"X™ and IR 7 1 in that it is a linear bijective 
function that preserves the inner-product: (X, Y) = (vec(X), vec (Y) ) , for a l l X,Y £ I R n x " . 

2 

We denote the inverse of vec as the function mat : IR" —> I R " x n , which is defined in the obvious 
way. 

Using vec to rewrite the linear matrix equation 

AXBT = C, 

where A G I R p x n , B G ] R « x n , X G E T X " , and C G Wxq, as the linear equation 

M v e c ( X ) = vec(C), 
we find that the matrix M G I R P ? X " is the Kronecker product of B and A, which is defined as 

[bnA • • • binA~] 
B®A:= 

bqiA bqnA 
(A.1) 

The properties of the Kronecker product (see [29, p. 791, 794]) can be summarized as 
follows: 

1. [B ® A)vec{X) = vec{AXBT). 

2. {B®A)T = BT®AT. 
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3. (B®A)~1 = B~x ® A"1. 

4. (B ®A)(D®C) = BD® AC. 

5. If a(A) = {Xi} and a{B) = {HJ}, then a{B ® A) = {\ifij}. 

6. If A and B are symmetric and positive definite, then so is B ® A 

We can also define an isometry between real symmetric matrices and vectors. We denote 
svec : Sn —> IR™, where n := \n(n + 1), as the function defined by 

svec(X) = [xn , v / 2 x 2 i , • • •, V^a;™!, x 2 2 , V ^ E 3 2 , . . . , V2xn2,.. • ) U / T i T i J ! 

where X = [XJJ]. The reason for scaling the off-diagonal entries of X by \/2 is so that the 
inner-product is preserved: ( X , Y) = (svec(X), svec(Y)) , for a l l X , Y G Sn. The inverse of 
svec is denoted as the function smat : IR™ —> Sn. 

Now suppose we would like to solve the linear matrix equation 

\{AXBT + BXAT) = C 

for X G <S™, where A,BE IR™X™ and C G <S™. We define the symmetric Kronecker product of 
B and A, denoted as B ®s A, as the matrix in IR™X™ which satisfies 

(B ® s ,4)svec(X) = svec (\{AXBT + BXAT)), for al l X G 5™. 

In fact, we can compute B <S)S A as 

(A.2) B ®s A = \UT{B ®A + A® B)U, 

where U is the n 2 x n matrix that satisfies 

cTsvec(X) = vec(X) , for a l l X G <S". 

To compute U, let gj be the ith unit vector i n IR™, for i = 1,..., n , and let i?j = smat(ej) G <S™. 
Then Ei is of the form 

Ei = 

0 

0 

1A/2 

0 

0 

1A/2 

0 

0 

or Ei = 

0 

1 

0 

and the ith column of U is then 

Hi = Ue~i = Usvec(Ei) = vec(Ei) = vec(smat(ej)). 
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Therefore, we find that 

U — [vec(smat(ei)) ••• vec(smat(e s))], 

and since 

uj'iij = (Ei,Ej) = 0, iii^j, 

we also find that UTU = I G 1R" X " . Thus, we have 

UTvecX = svec(X), for a l l X G Sn, 

and identity (A.2) follows. 

We now summarize the properties of the symmetric Kronecker product (see [29, p. 794]) 

1. (B ®s ^l)svec(X) = svec {\{AXBT + BXAT)). 

2. (73 ®s A)T = BT ®s AT. 

3. B ®s A = A ®s B. 

4. (B ®s A)(D ®s C) = \{BD ®s AC + BC ®s AD). 

5. If A,B G Sn commute, a (A) = {Aj}, and a{B) = {fij}, then 

a(B ®s A) = {^{Xi/tj + XjtM)} • 

6. If A and B are symmetric and positive definite, then so is A ®s B. 
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Matlab M-files 

B . l SDLS M-files 
B . l . l sd l s .m 

function [X,Y,norm_res,muv,tt,iter,fail] = sdls(A,B,XO,YO,tol,verbose) 
7. [X,Y,norm_res,muv,tt,iter,fail] = SDLS(A,B,X0,Y0,tol,verbose) 
7. 

7. Uses a stanadard path-following interior-point method based on the 
% AHO search direction to solve the symmetric semidefinite constrained 
7. least squares problem: 
7. 

7. min norm(A*X-B,'fro') 
7. s.t. X symm. pos. semidef. 
7. 

7. where A and B are real m-by-n matrices, and X is a real n-by-n matrix. 
7. 

7o XO and YO are n-by-n in i t i a l strictly feasible matrices, which means 
7o that XO and YO are symmetric positive definite. 
7o Set as [] for the default value of eye(n). 
7. 

7o tol is the zero tolerance described below. 
7, Set as [] for the default value of le-10. 
7. 

7o Set verbose = 1 for screen output during algorithm execution, 
7o otherwise set vebose = 0 for no output. 
7. 

7o SDLS returns approximate optimal solutions to the above primal 
7o problem and its associated dual problem so that 
7. 

7. norm(res,'fro') <= sqrt(tol)*norm(resO,'fro') 
7, trace(X*Y) <= tol*trace(X0*Y0) 
7. 

7. where res = (Z+Z ')/2-Y, Z = A'*(A*X-B), and resO is res evaluated 
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at XO, YO. 

SDLS optionally returns: 

norm_res : norm(res,'fro') at the final iterate, 
muv : a vector of the duality gaps for each iteration 
tt : the total running time of the algorithm 
iter : the number of iterations required 
f a i l : f a i l = 1 i f the algorithm failed to achieve the desired 

tolerances within the maximum number of iterations allowed; 
otherwise f a i l = 0 

Nathan Krislock, University of British Columbia, 2003. 

N. Krislock. Numerical solution of semidefinite constrained least 
squares problems. M.Sc. thesis, University of British Columbia, 
Vancouver, British Columbia, Canada, 2003. 

t ic; % Start the preprocessing timer 

Maxlt = 100; 7, max iteration 

[m,n] = size(A); 
AA = A'*A; AB = A'*B; I = eye(n); 

i f isempty(XO), X = I; else, X = X0; end 
i f isempty(YO), Y = I; else, Y = Y0; end 
i f isempty(tol), tol = le-10; end 

XAA = X*AA; XY = X*Y; 

Z = XAA' - AB; Z = (Z+Z')/2; R = Z - Y; 

norm_res = norm(R,'fro'); mu = trace(XY)/n; muv = mu; 

to l l = sqrt(tol)*norm_res; tol2 = tol*mu; 

r = 0; theta = 0; 
i f verbose==l 

dispC '); 
disp([' r sigma theta norm(res) <X,Y>/n'] 
disp([' — 

ol = sprintf 0°/.3d',r) ; 
ol = [ o l , sprintf(' ') ] ; 
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ol = [ o l , sprintf(' %12.4e',[norm_res, mu]) ]; 
disp(ol); 

end 

pretime = toe; '/, End the preprocessing timer 

while ( norm.res > to l l I mu > tol2 ) & r < Maxlt 

t ic; '/, Start the iteration timer 

7, Compute sigma and tau 

i f norm_res < to l l 
sigma = l/n"2; 

else 
sigma = l-l/n"2; 

end 

tau = sigma*mu; 

7o Compute the AHO search direction (dX,dY) 

E = (kron(I,Y)+kron(Y,I))/2; 7. F = (kron(I,X)+kron(X,I))/2; 

XZ = X*Z; 

M = (kron(I,XAA)+kron(AA,X)+kron(X,AA)+kron(XAA,I))/4 + E; 
7. M = F*kronAA + E; 

d = vec(tau*I - (XZ+XZ')/2); 
7. d = F*vec(-R) + vec(tau*I-(X*Y+Y*X)/2); 

[L,U,P] = lu(M); 
dx = U\(L\(P*d)); 

dX = mat(dx); dX = (dX+dX')/2; AAdX = AA*dX; 
dY = (AAdX+AAdX')/2 + R; dY = (dY+dY')/2; 

7. Compute the step length theta 

c = 0.9 + 0.09*theta; 

thetal = max_step(X,dX); theta2 = max_step(Y,dY); 
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theta_max = min([thetal, theta2]); 

theta = min([c*theta_max,1]); 

7. Update 

X = X + theta*dX; 
Y = Y + theta*dY; 

XAA = X*AA; XY = X*Y; 

Z = XAA' - AB; Z = (Z+Z')/2; R = Z - Y; 

norm_res = norm(R,'fro'); mu = trace(XY)/n; muv(r+2) = mu; 

r = r + 1; 

i f verbose==l 
ol = sprintf ('7.3d',r) ; 
ol = [ o l , sprintf (' 7.12.4e', [sigma, theta, norm_res, mu]) 
disp(ol); 

end 

t(r) = toe; 7. End the iteration timer 

end 

i f r==MaxIt & ( norm_res > t o l l I mu > tol2 ) 
f a i l = 1; 

else 
f a i l = 0; 

end 

avt = mean(t); t t = sum(t) + pretime; i t e r = r; 

i f verbose==l 
i f fail==l, 

dispC ' ); 
dispCFailed to reach desired tolerance.'); 

end 
dispC ' ); 
disp(sprintf('Average iteration time:\t7.2.4f seconds', avt)); 
disp(sprintf('Total time:\t\t7.2.4f seconds', t t ) ) ; 
dispC ' ); 

end 
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B . 1 . 2 sd ls_precorr .m 

function [X,Y,norm_res,muv,tt,iter,fail] = sdls_precorr(A,B,X0,Y0,tol,verbose) 
7. [X,Y,norm_res,muv,tt,iter,fail] = SDLS_PRECDRR(A,B,XO,YO,tol,verbose) 
7. 

7o Uses a predictor-corrector interior-point method to solve the 
7. symmetric semidefinite constrained least squares problem: 
7. 

7o min norm(A*X-B,'fro') 
7o s.t. X symm. pos. semidef. 
7. 

7o where A and B are real m-by-n matrices, and X is a real n-by-n matrix. 
% 

7. XO and YO are n-by-n in i t ia l strictly feasible matrices, which means 
7o that XO and YO are symmetric positive definite. 
7o Set as [] for the default value of eye(n). 
7. 

7. tol is the zero tolerance described below. 
7o Set as [] for the default value of le-10. 
7. 

7. Set verbose = 1 for screen output during algorithm execution, 
7o otherwise set vebose = 0 for no output. 
7. 

7, SDLS_PRECORR returns approximate optimal solutions to the above 
7t primal problem and its associated dual problem so that 
7. 

7o norm(res,'fro') <= sqrt(tol)*norm(resO,'fro') 
7o trace (X*Y) <= tol*trace(X0*Y0) 
7. 

7. where res = (Z+Z')/2-Y, Z = A'*(A*X-B), and resO is res evaluated 
7. at XO, YO. 
7. 

7. SDLS_PRECDRR optionally returns: 
7. 

7o norm_res : norm(res,'fro') at the final iterate, 
7. muv : a vector of the duality gaps for each iteration 
7. tt : the total running time of the algorithm 
7o iter : the number of iterations required 
7o f a i l : f a i l = 1 i f the algorithm failed to achieve the desired 
7. tolerances within the maximum number of iterations allowed; 
7. otherwise f a i l = 0 

7o Nathan Krislock, University of British Columbia, 2003. 
7. 

7o N. Krislock. Numerical solution of semidefinite constrained least 
7. squares problems. M.Sc. thesis, University of British Columbia, 
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Vancouver, British Columbia, Canada, 2003. 

t ic; % Start the preprocessing timer 

Maxlt = 100; '/, max iteration 

[m,n] = size (A) ; 
AA = A'*A; AB = A'*B; I = eye(n); 

i f isempty(XO), X = I; else, X = X0; end 
i f isempty(YO), Y = I; else, Y = YO; end 
i f isempty(tol), tol = le-10; end 

XAA = X*AA; XY = X*Y; 

Z = XAA' - AB; Z = (Z+Z')/2; R = Z - Y; 

norm_res = norm(R,'fro'); mu = trace(XY)/n; muv = mu; 

to l l = sqrt(tol)*norm_res; tol2 = tol*mu; 

r = 0; theta = 0; 
i f verbose==l 

dispC '); 
disp([' r sigma theta norm(res) <X,Y>/n 
disp([' 

ol = sprintf 07.3d',r); 
ol = [ o l , sprintf(' ') ]; 
ol = [ o l , sprintf(' %12.4e',[norm_res, mu]) ]; 
disp(ol); 

end 

pretime = toe; 7, End the preprocessing timer 

while ( norm_res > to l l I mu > tol2 ) & r < Maxlt 

t ic; '/, Start the iteration timer 

7, Compute the predictor directions dXp, dYp 

E = (kron(I,Y)+kron(Y,I))/2; '/, F = (kron(I,X)+kron(X,I))/2; 
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XZ = X*Z; 

M = (kron(I,XAA)+kron(AA,X)+kron(X,AA)+kron(XAA,I))/4 + E; 
7. M = F*kronAA + E; 

d = -vec((XZ+XZ')/2); 
7. d = F*vec(-R) + vec(-(X*Y+Y*X)/2); 

[L,U,P] = lu(M); 
dxp = U\(L\(P*d)); 

dXp = mat(dxp); dXp = (dXp+dXp')/2; AAdXp = AA*dXp; 
dYp = (AAdXp+AAdXp')/2 + R; dYp = (dYp+dYp')/2; 

7o Compute predictor step length ptheta 

c = 0.9 + 0.09*theta; 

pthetal = max_step(X,dXp); ptheta2 = max_step(Y,dYp); 
ptheta_max = min([pthetal, ptheta2]); 

ptheta = min([c*ptheta_max,1]); 

'/, Compute the Mehrotra sigma and parameter tau 

muhat = sum(sum((X+ptheta*dXp).*(Y+ptheta*dYp)))/n; 

sigma = (muhat/mu)"3; 
tau = sigma*mu; 

7. Compute the predictor-corrector directions dX, dY 

dYpdXp = dYp*dXp; 

d = d + vec(tau*I-(dYpdXp+dYpdXp')/2); 

dx = U\(L\(P*d)); 
dX = mat(dx); dX = (dX+dX')/2; AAdX = AA*dX; 
dY = (AAdX+AAdX')/2 + R; dY = (dY+dY')/2; 

7o Compute the step length theta 

thetal = max_step(X,dX); theta2 = max_step(Y,dY); 
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theta_max = min([thetal, theta2]); 

theta = min([c*theta_max,1]); 

7. Update 

X = X + theta*dX; 
Y = Y + theta*dY; 

XAA = X*AA; XY = X*Y; 

Z = XAA' - AB; Z = (Z+Z')/2; R = Z - Y; 

norm_res = norm(R,'fro'); mu = trace(XY)/n; muv(r+2) = mu; 

r = r + 1; 
i f verbose==l 

ol = sprintf 07.3d',r) ; 
ol = [ o l , sprintf(' 7d2.4e',[sigma, theta, norm_res, mu] 
disp(ol); 

end 

t(r) = toe; 7o End the iteration timer 

end 

i f r==MaxIt & ( norm_res > t o l l I mu > tol2 ) 
f a i l = 1; 

else 
f a i l = 0; 

end 

avt = mean(t); t t = sum(t) + pretime; i t e r = r; 

i f verbose==l 
i f fail==l, 

dispC '); 
dispCFailed to reach desired tolerance.'); 

end 
dispC '); 
disp(sprintf('Average iteration time: \ t7o2.4f seconds', avt)); 
disp(sprintf('Total time:\t \ t7o2.4f seconds', t t ) ) ; 
dispC '); 

end 
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B.2 NS-SDLS M-files 
B . 2 . 1 ns_sdls.m 

function [X,Y,norm_res,muv,tt,iter,fail] = ns_sdls(A,B,X0,Y0,tol,verbose) 
% [X,Y,norm_res,muv,tt,iter,fail] = NS.SDLS(A,B,X0,Y0,tol,verbose) 

°l. Uses a stanadard path-following interior-point method to solve the 
% nonsymmetric semidefinite constrained least squares problem: 

7. min norm(A*X-B,'fro') 
'/, s.t. (X+X')/2 pos. semidef. 

7, where A and B are real m-by-n matrices, and X is a real n-by-n matrix. 

7, XO and YO are n-by-n in i t ia l strictly feasible matrices, which means 
7o that (X0+X0')/2 and YO are symmetric positive definite. 
7o Set as [] for the default value of eye(n). 

'/, tol is the zero tolerance described below. 
7o Set as [] for the default value of le-10. 

7. Set verbose = 1 for screen output during algorithm execution, 
7c otherwise set vebose = 0 for no output. 

7o NS_SDLS returns approximate optimal solutions to the above primal 
7, problem and its associated dual problem so that 

7. norm(res,'fro') <= sqrt(tol)*norm(resO, 'fro') 
7. trace (S*Y) <= tol*trace (S0*Y0) 

% where res = A'*(A*X-B)-Y, S = (X+X')/2 and resO and SO are res 
7. and S evaluated at XO, YO. 

7o NS_SDLS optionally returns: 

7o norm_res : norm(res,'fro') at the final iterate, 
7o muv : a vector of the duality gaps for each iteration 
7. tt : the total running time of the algorithm 
7o iter : the number of iterations required 
7o f a i l : f a i l = 1 i f the algorithm failed to achieve the desired 
7o tolerances within the maximum number of iterations allowed; 
7o otherwise f a i l = 0 

7. Nathan Krislock, University of British Columbia, 2003. 
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% N. Krislock. Numerical solution of semidefinite constrained least 
% squares problems. M.Sc. thesis, University of British Columbia, 
'/, Vancouver, British Columbia, Canada, 2003. 

t ic; % Start the preprocessing timer 

Maxlt = 100; '/, max iteration 

[m,n] = size(A); 
AA = A'*A; AB = A'*B; I = eye(n); 

V = vecV(n); '/, vec((X+X')/2) = V*vec(X) 

i f isempty(XO), X = I; else, X = XO; end, S = (X+X')/2; 
i f isempty(YO), Y = I; else, Y = YO; end 
i f isempty(tol), tol = le-10; end 

Z = AA*X - AB; R = Z - Y; SY = S*Y; 

norm_res = norm(R,'fro'); mu = trace(SY)/n; muv = mu; 

toll = sqrt(tol)*norm_res; tol2 = tol*mu; 

r = 0; theta = 0; 

i f verbose==l 
dispC '); 
disp([' r sigma theta norm(res) <S,Y>/n 
disp([' — 

ol = sprintf ("/.3d' ,r) ; 
ol = [ o l , sprintf(' ') ] ; 
ol = [ o l , sprintf (' °/ 012.4e', [norm_res, mu]) ]; 
disp(ol); 

end 

pretime = toe; End the preprocessing timer 

while ( norm_res > to l l I mu > tol2 ) & r < Maxlt 

t ic; °/, Start the iteration timer 

°/0 Compute sigma and tau 
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i f norm_res < t o l l , 
sigma = l/n"2; 

else 
sigma = l-l/n~2; 

end 

tau = sigma*mu; 

7, Find suitable directions dX, dS, dY 

E = (kron(I,Y)+kron(Y,I))*V/2; '/. F = (kron(I,S)+kron(S,I))/2; 

M = (kron(I,S*AA)+kron(S,AA))/2 + E; 
d = vec(tau*I - (S*R+R*S+SY+SY')/2); 

[L,U,P] = lu(M); 
dx = U\(L\(P*d)); 

dX = mat(dx); dS = (dX+dX')/2; 
dY = AA*dX + R; dY = (dY+dY')/2; 

7. M = F*kron(I,AA) + E; 
7. d = F*vec(-R) 
7. + vec(tau*I-(S*Y+Y*S)/2); 

7. Find step length theta 

c = 0.9 + 0.09*theta; 

thetal = max_step(S,dS); theta2 = max_step(Y,dY); 
theta_max = min([thetal, theta2]); 

theta = min([c*theta_max,1]); 

7. Update 

X = X + theta*dX; S = (X+X')/2; 
Y = Y + theta*dY; 

Z = AA*X - AB; R = Z - Y; SY = S*Y; 

norm_res = norm(R,'±ro'); mu = trace(SY)/n; muv(r+2) = mu; 

r = r + 1; 

i f verbose==l 
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o l = sprintf 07.3d' ,r); 
ol = [ o l , sprintf(' 7.12.4e', [sigma, theta, norm_res, mu]) ]; 
disp(ol); 

end 

t(r) = toe; 7. End the iteration timer 

end 

i f r==MaxIt & ( norm_res > t o l l I mu > tol2 ) 
f a i l = 1; 

else 
f a i l = 0; 

end 

avt = mean(t); t t = sum(t) + pretime; i t e r = r; 

i f verbose==l 
i f fail==l, 

dispC ' ); 
dispCFailed to reach desired tolerance.'); 

end 
dispC ' ); 
disp(sprintf('Average iteration time:\t7.2.4f seconds', avt)); 
disp(sprintf('Total time:\t\t7.2.4f seconds', t t ) ) ; 
dispC ' ); 

end 
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B.2.2 ns_slds_precorr.m 

function [X,Y,norm_res,muv,tt,iter,fail] 
= ns_sdls_precorr(A,B,X0,Y0,tol,verbose) 

'/, [X,Y,norm_res,muv,tt,iter,fail] = NS_SDLS_PRECORR(A,B,XO,YO,tol,verbo 
7. 

7. Uses a predictor-corrector interior-point method to solve the 
7o nonsymmetric semidefinite constrained least squares problem: 
7. 

7. min norm(A*X-B,'fro') 
7. s.t. (X+X')/2 pos. semidef. 
% 

7o where A and B are real m-by-n matrices, and X is a real n-by-n matrix 
7. 

7o XO and YO are n-by-n in i t i a l strictly feasible matrices, which means 
7o that (X0+X0')/2 and YO are symmetric positive definite. 
7o Set as [] for the default value of eye(n). 
7. 

7. tol is the zero tolerance described below. 
7. Set as [] for the default value of le-10. 
7. 

7o Set verbose = 1 for screen output during algorithm execution, 
'/, otherwise set vebose = 0 for no output. 
7. 

7o NS_SDLS_PRECORR returns approximate optimal solutions to the above 
7o primal problem and its associated dual problem so that 
7. 

7o norm(res,'fro') <= sqrt(tol)*norm(res0, 'fro') 
7. trace (S*Y) <= tol*trace(S0*Y0) 
7. 

7. where res = A'*(A*X-B)-Y, S = (X+X')/2 and resO and SO are res 
7o and S evaluated at XO, YO. 
% 

'/, NS_SDLS_PRECORR optionally returns: 
7. 

% norm_res : norm(res,'fro') at the final iterate, 
7o muv : a vector of the duality gaps for each iteration 
7o tt : the total running time of the algorithm 
7. iter : the number of iterations required 
7o f a i l : f a i l = 1 i f the algorithm failed to achieve the desired 
7, tolerances within the maximum number of iterations allowed; 
'/, otherwise f a i l = 0 

7o Nathan Krislock, University of British Columbia, 2003. 
7. 

7o N. Krislock. Numerical solution of semidefinite constrained least 
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% squares problems. M.Sc. thesis, University of B r i t i s h Columbia, 
% Vancouver, B r i t i s h Columbia, Canada, 2003. 

t i c ; 7, Start the preprocessing timer 

Maxlt = 100; °/, max iteration 

[m,n] = size(A); 
AA = A'*A; AB = A'*B; I = eye(n); 

V = vecV(n); */. vec((X+X')/2) = V*vec(X) 

i f isempty(XO), X = I; else, X = XO; end, S = (X+X')/2; 
i f isempty(YO), Y = I; else, Y = YO; end 
i f isempty(tol), t o l = le-10; end 

Z = AA*X - AB; R = Z - Y; SY = S*Y; 

norm_res = norm(R,'fro'); mu = trace(SY)/n; muv = mu; 

t o l l = sqrt(tol)*norm_res; tol2 = tol*mu; 

r = 0; theta = 0; 

i f verbose==l 
dispC ' ) ; 
disp([' r sigma theta norm(res) <S,Y>/n 
disp([> — 

ol = sprintf ('°/,3d' ,r) ; 
ol = [ o l , sprintf(' ') ] ; 
ol = [ o l , sprintf (' °/,12.4e', [norm_res, mu]) ]; 
disp(ol); 

end 

pretime = toe; End the preprocessing timer 

while ( norm_res > t o l l I mu > tol2 ) & r < Maxlt 

t i c ; 7. Start the iteration timer 

% Compute the predictor directions dXp, dSp, dYp 
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E = (kron(I,Y)+kron(Y,I))*V/2; 7. F = (kron(I,S)+kron(S,I))/2; 

M = (kron(I,S*AA)+kron(S,AA))/2 + E; 7. M = F*kronAA + E; 
d = -vec((S*R+R*S+SY+SY')/2); 7. d = F*vec(-R) + vec(-(S*Y+Y*S)/2); 

[L,U,P] = lu(M); 
dxp = U\(L\(P*d)); 

dXp = mat(dxp); dSp = (dXp+dXp')/2; 
dYp = AA*dXp + R; dYp = (dYp+dYp')/2; 

7, Compute predictor step length ptheta 

c = 0.9 + 0.09*theta; 

pthetal = max_step(S,dSp); ptheta2 = max_step(Y,dYp); 
ptheta_max = min([pthetal, ptheta2]); 

ptheta = min([c*ptheta_max,1]); 

'/, Compute the Mehrotra sigma and parameter tau 

muhat = sum(sum((S+ptheta*dSp).*(Y+ptheta*dYp)))/n; 

sigma = (muhat/mu)"3; 
tau = sigma*mu; 

7o Compute the predictor-corrector directions dX, dS, dY 

dYpdSp = dYp*dSp; 

d = d + vec(tau*I-(dYpdSp+dYpdSp')/2); 

dx = U\(L\(P*d)); 

dX = mat(dx); dS = (dX+dX')/2; 
dY = AA*dX + R; dY = (dY+dY')/2; 

7o Compute the step length theta 

thetal = max_step(S,dS); theta2 = max_step(Y,dY); 
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theta_max = min([thetal, theta2]); 
theta = min([c*theta_max,1]); 

7. Update 

X = X + theta*dX; S = (X+X')/2; 
Y = Y + theta*dY; 

Z = AA*X - AB; R = Z - Y; SY = S*Y; 

norm_res = norm(R,'fro'); mu = trace(SY)/n; muv(r+2) = mu; 

r = r + 1; 

i f verbose==l 
ol = sprintf ('7.3d' ,r) ; 
ol = [ o l , sprintf (' 7.12.4e', [sigma, theta, norm_res, mu]) 
disp(ol); 

end 

t(r) = toe; 7. End the iteration timer 

end 

i f r==MaxIt & ( norm_res > t o l l | mu > tol2 ) 
f a i l = 1; 

else 
f a i l = 0; 

end 

avt = mean(t); t t = sum(t) + pretime; i t e r = r; 

i f verbose==l 
i f fail==l, 

dispC '); 
disp('Failed to reach desired tolerance.'); 

end 
dispC '); 
disp(sprintf('Average iteration time:\t7.2.4f seconds', avt)); 
disp (sprintf ('Total time:\t\t7.2.4f seconds', t t ) ) ; 
dispC '); 

end 
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B.3 LMI-LS M-files 
B.3.1 ImiJs.m 

function [x, S, Y,norm_res,muv, t t , i t er, f ai 1] 
= lmi_ls(A,b,KK,C,xO,SO,YO,tol,verbose) 

7. [x,S,Y,norm_res,muv,tt,iter,fail] = LMI_LS(A,b,KK,C,x0,SO,YO,tol,verbose) 
19 
7. Uses a stanadard path-following interior-point method to solve the 
7o linear matrix inequality least squares problem: 
7. 

7o min norm(A*x-b) 
7. s.t. K(x) + S = C 
7. S is symm. pos. semidef. 
7. 

'/, where A is a real m-by-n matrix, x is a real n-by-1 vector, 
7. b is a real m-by-1 vector, S and C are real n-by-n symmetric 
7. matrices, and K(x) = sum( x(i)*K_i, i=l:n ) where KK = [K_l, . . . ,K_n] 
7o and K_i is a real k-by-k symmetric matrix for i=l:n. 
7. 

7o SO and YO are n-by-n in i t ia l strictly feasible matrices, which means 
7o that SO and YO are symmetric positive definite. 
7o Set as [] for the default value of eye(n). 
7. 

7o tol is the zero tolerance described below. 
7o Set as [] for the default value of le-10. 
7. 

7. Set verbose = 1 for screen output during algorithm execution, 
7o otherwise set vebose = 0 for no output. 
7. 

7o LMI_LS returns approximate optimal solutions to the above primal 
7o problem and its associated dual problem so that 
7. 

7. norm(res,'fro') <= sqrt(tol)*norm(resO,'fro') 
7. trace (S*Y) <= tol*trace(S0*Y0) 
7. 

7. where res = [rp; rd] is the primal-dual residual vector 
7o and resO is res evaluated at xO, SO, YO. 
7. 

7o LMI_LS optionally returns: 
7. 

7» norm_res : norm(res,'fro') at the final iterate, 
7o muv : a vector of the duality gaps for each iteration 
7o tt : the total running time of the algorithm 
7o iter : the number of iterations required 
7o f a i l : f a i l = 1 i f the algorithm failed to achieve the desired 
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7. tolerances within the maximum number of iterations allowed; 
7. otherwise f a i l = 0 

7o Nathan Krislock, University of British Columbia, 2003. 
7. 

7. N. Krislock. Numerical solution of semidefinite constrained least 
7o squares problems. M.Sc. thesis, University of British Columbia, 
7o Vancouver, British Columbia, Canada, 2003. 

t ic; % Start the preprocessing timer 

Maxlt = 100; 7, max iteration 

[m,n] = size(A); k = length(C); 
AA = A'*A; Ab = A'*b; I = eye(k); Ik2 = eye(k~2); 
D = zeros(k~2,n); 0k2 = zeros(k~2,k~2); 

K = vecK(KK); 7. vec(K(x)) = K*x, K"{*}(Y) = K'*vec(Y) 

i f isempty(YO), Y = I; else, Y = Y0; end 
i f isempty(xO), x = zeros(n,l); else, x = xO; end 
i f isempty(SO), S = I; else, S = SO; end 
i f isempty(tol), tol = le-10; end 

Kx = mat(K*x); y = vec(Y); KY = K'*y; SY = S*Y; 

z = Ab - AA*x; rd = z - KY; 
Rp = C - Kx - S; rp = vec(Rp); 

norm_res = norm([rp;rd]); mu = trace(SY)/k; muv = mu; 

to l l = sqrt(tol)*norm_res; tol2 = tol*mu; 

r = 0; theta = 0; 

i f verbose==l 
dispC '); 
disp([' r sigma theta norm(res) <S,Y>/n'] 
disp([' — 

ol = sprintf ('7.3d',r) ; 
ol = [ o l , sprintf(' ') ] ; 
ol = [ o l , sprintf (' 7.12.4e', [norm_res, mu]) ]; 
disp(ol); 

end 
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pretime = toe; '/„ End the preprocessing timer 

while ( norm_res > to l l | mu > tol2 ) & r < Maxlt 

t ic; 7, Start the iteration timer 

'/. Compute sigma and tau 

i f norm_res < t o l l , 
sigma = l/k~2; 

else 
sigma = l-l/k~2; 

end 

tau = sigma*mu; 

°/0 Find suitable directions dx, dS, dY 

E = (kron(I,S)+kron(S,I))/2; F = (kron(I,Y)+kron(Y,I))/2; 
D = tau*I-(SY+SY')/2; rc = vec(D); 

M = [ AA, K', 0'; 
K, 0k2, Ik2; 
0, E , F ]; 

d = [ rd; rp; rc ]; 

w = M\d; 

dx = w(1:n); 
dy = w((n+l):(k-2+n)); 
ds = w((k~2+n+l):(2*k~2+n)); 

dY = mat(dy); dY = (dY+dY')/2; 
dS = mat(ds); dS = (dS+dS')/2; 

7o Find step length theta 

c = 0.9 + 0.09*theta; 

thetal = max_step(S,dS); theta2 = max_step(Y,dY); 
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theta_max = min([thetal, theta2]); 

theta = min([c*theta_max,1]); 

7. Update 

Y = Y + theta*dY; 
x = x + theta*dx; 
S = S + theta*dS; 

Kx=mat(K*x); y=vec(Y); KY = K'*y; SY = S*Y; 

z = Ab - AA*x; rd = z - KY; 
R p = C - K x - S ; rp= vec(Rp); 

norm_res = norm([rp;rd]); mu = trace(SY)/k; muv(r+2) = mu; 

r = r + 1; 

i f verbose==l 
ol = sprintf ('7.3d' ,r) ; 
ol = [ o l , sprintf (' 7 o l 2 . 4 e ' , [sigma, theta, norm_res, mu] 
disp(ol); 

end 

t(r) = toe; 7o End the iteration timer 

end 

i f r==MaxIt & ( norm_res > to l l I mu > tol2 ) 
f a i l = 1; 

else 
f a i l = 0; 

end 

avt = mean(t); tt = sum(t) + pretime; iter = r; 

i f verbose==l 
if fail==l, 

dispC '); 
disp('Failed to reach desired tolerance.'); 

end 
dispC '); 
disp(sprintf('Average iteration t ime:\t7o2 .4 f seconds', avt)); 
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disp(sprintf('Total time:\t\t7.2.4f seconds', tt)) 
dispC '); 

end 
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B . 3 . 2 l m i J s _ p r e c o r r . m 

function [x,S,Y,norm_res,muv, tt , i t er, f ai 1] 
= lmi_ls_precorr(A,b,KK,C,xO,SO,YO,tol,verbose) 

7. [x, S,Y,norm_res ,muv,tt, i ter , fai l ] 
7. = LMIJJSJ>RECORR(A,b,KK,C,xO,SO,YO,tol,verbose) 

7o Uses a stanadard path-following interior-point method to solve the 
7o linear matrix inequality least squares problem: 

7o min norm(A*x-b) 
7. s.t. K(x) + S = C 
7. S is symm. pos. semidef. 

7o where A is a real m-by-n matrix, x is a real n-by-1 vector, 
7o b is a real m-by-1 vector, S and C are real n-by-n symmetric 
7o matrices, and K(x) = sum( x(i)*K_i, i=l:n ) where KK = [K_l, . . . ,K_n] 
%, and K_i is a real k-by-k symmetric matrix for i=l:n. 

7o SO and YO are n-by-n in i t ia l strictly feasible matrices, which means 
7. that SO and YO are symmetric positive definite. 
7o Set as [] for the default value of eye(n). 

7. tol is the zero tolerance described below. 
7o Set as [] for the default value of le-10. 

7. Set verbose = 1 for screen output during algorithm execution, 
7. otherwise set vebose = 0 for no output. 

7, LMI_LS_PRECORR returns approximate optimal solutions to the above primal 
7o problem and its associated dual problem so that 

7. norm (res,'fro') <= sqrt(tol)*norm(resO, 'fro') 
7, trace(S*Y) <= tol*trace(S0*Y0) 

7o where res = [rp; rd] is the primal-dual residual vector 
7. and resO is res evaluated at xO, SO, YO. 

7. LMI_LS_PRECORR optionally returns: 

7. norm_res : norm(res,'fro') at the final iterate, 
7o muv : a vector of the duality gaps for each iteration 
7o tt : the total running time of the algorithm 
7. iter : the number of iterations required 
% f a i l : f a i l = 1 i f the algorithm failed to achieve the desired 
7o tolerances within the maximum number of iterations allowed; 
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'/, otherwise f a i l = 0 

'/„ Nathan Krislock, University of British Columbia, 2003. 
7. 

7o N. Krislock. Numerical solution of semidefinite constrained least 
7o squares problems. M.Sc. thesis, University of British Columbia, 
7o Vancouver, British Columbia, Canada, 2003. 

t ic; 7o Start the preprocessing timer 

Maxlt = 1 0 0 ; 7o max iteration 

[m,n] = size(A); k = length(C); 
AA = A'*A; Ab = A'*b; I = eye(k); Ik2 = eye(k~2); 
0 = zeros(k~2,n); 0 k 2 = zeros(k"2,k"2); 

K = vecK(KK); 7. vec(K(x)) = K*x, K~{*}(Y) = K'*vec(Y) 

i f isempty(YO), Y = I; else, Y = Y0; end 
i f isempty(xO), x = zeros(n,l); else, x = xO; end 
i f isempty(SO), S = I; else, S = SO; end 
i f isempty(tol), tol = l e - 1 0 ; end 

Kx = mat(K*x); y = vec(Y); KY = K'*y; SY = S*Y; 

z = Ab - AA*x; rd = z - KY; 
Rp = C - Kx - S; rp = vec(Rp); 

norm_res = norm([rp;rd]); mu = trace(SY)/k; muv = mu; 

to l l = sqrt(tol)*norm_res; tol2 = tol*mu; 

r = 0; theta = 0; 

i f verbose==l 
dispC '); 
disp([' r sigma theta norm(res) <S,Y>/n 
disp([' — 

ol = sprintf ('7,3d' ,r) ; 
ol = •[ o l , sprintf(' ') ]; 
ol = [ o l , sprintf (' 7o l2 .4e ' , [norm_res, mu]) ]; 
disp(ol); 

end 
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pretime = toe; % End the preprocessing timer 

while ( norm_res > to l l I mu > tol2 ) & r < Maxlt 

t ic; % Start the iteration timer 

'/, Compute the predictor directions dxp, dSp, dYp 

E = (kron(I,S)+kron(S,I))/2; F = (kron(I,Y)+kron(Y,I))/2; 
D = -(SY+SY')/2; rep = vec(D); 

M = [ AA, K' , 0'; 
K, 0k2, Ik2; 
0, E , F ]; 

d = [ rd; rp; rep ]; 

[L,U,P] = lu(M); 
w = U\(L\(P*d)); 

dxp = w (1: n) ; 
dyp = w((n+l):(k-2+n)); 
dsp = w((k"2+n+l):(2*k~2+n)); 

dYp = mat(dyp); dYp = (dYp+dYp')/2; 
dSp = mat(dsp); dSp = (dSp+dSp')/2; 

7, Compute predictor step length ptheta 

c = 0.9 + 0.09*theta; 

pthetal = max_step(S,dSp); ptheta2 = max_step(Y,dYp); 
ptheta_max = min([pthetal, ptheta2]); 

ptheta = min([c*ptheta_max,1]); 

7o Compute the Mehrotra sigma and parameter tau 

muhat = sum(sum((S+ptheta*dSp).*(Y+ptheta*dYp)))/k; 

sigma = (muhat/mu)"3; 
tau = sigma*mu; 
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% Compute the predictor-corrector directions dx, dS, dY 

dSpdYp = dSp*dYp; 
D = tau*I-(dSpdYp+dSpdYp')/2; rc = vec(D); 

d = [ rd; rp; rep + rc ]; 

v = U\(L\(P*d)); 

dx = w(1:n); 
dy = w((n+l):(k-2+n)); 
ds = w((k~2+n+l):(2*k"2+n)); 

dY = mat(dy); dY = (dY+dY')/2; 
dS = mat(ds); dS = (dS+dS')/2; 

% Compute the step length theta 

thetal = max_step(S,dS); theta2 = max_step(Y,dY); 
theta_max = min([thetal, theta2]); 

theta = min([c*theta_max,1]); 

7. Update 

Y = Y + theta*dY; 
x = x + theta*dx; 
S = S + theta*dS; 

Kx = mat(K*x); y = vec(Y); KY = K'*y; SY = S*Y; 

z = Ab - AA*x; rd = z - KY; 
Rp = C - Kx - S; rp = vec(Rp); 

norm_res = norm([rp;rd]); mu = trace(SY)/k; muv(r+2) = mu; 

r = r + 1; 

i f verbose==l 
ol = sprintf 0 7 . 3 d ' , r ) ; 
ol = [ o l , sprintf(' 7d2.4e',[sigma, theta, norm_res, mu]) ]; 
disp(ol); 
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end 

t ( r ) = t o e ; % End the i t e r a t i o n t i m e r 

end 

i f r==MaxIt & ( norm_res > t o l l I mu > tol2 ) 
f a i l = 1; 

e l s e 
f a i l = 0; 

end 

avt = mean( t ) ; t t = sum(t) + p r e t i m e ; i t e r = r ; 

i f verbose==l 
i f f a i l = = l , 

d i s p C ' ) ; 
d i s p ( ' F a i l e d t o r e a c h d e s i r e d t o l e r a n c e . ' ) ; 

end 
d i s p C ' ) ; 
d i s p ( s p r i n t f ( ' A v e r a g e i t e r a t i o n t ime: \ t%2 .4f s e c o n d s ' , a v t ) ) ; 
d i s p ( s p r i n t f ( ' T o t a l t i m e : \ t \ t ° / . 2 . 4 f s e c o n d s ' , t t ) ) ; 
d i s p C ' ) ; 

end 
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B .4 Woodgate's Algorithm M-files 

B . 4 . 1 wg_sdls.m 

function [K,norm_res,dgv,tt,iter,fail] = wg_sdls(A,B,K0,tol,verbose); 
7. [K,norm_res,dgv,tt, iter, fail] = WG_SDLS( A, B,KO, tol .verbose); 
% 
7. Uses Woodgate's Algorithm to solve the symmetric semidefinite 
°/0 constrained least squares problem: 
7. 

7, min norm(A*K-B,'fro') 
7. s.t. K symm. pos. semidef. 
7. 

7o where A and B are real m-by-n matrices, and K is a real n-by-n matrix. 
7. 

7o KO is an n-by-n in i t ia l symmetric matrix. 
7o Set as [] for the default value of KO = aleph(Kbar+), where Kbar is the 
7o solution of the symmetric least squares problem, 
7. 

7o min norm(A*K-B,'fro') 
7. s.t. K = K' 
7. 

7o Kbar+ is the result of setting any negative eigenvalue in the 
7. eigenvalue decomposition of Kbar to zero, and 
7, 

7o aleph(Kbar+) = alpha*Kbar+. 
7. 

7o tol is the zero tolerance described below. 
7. Set as [] for the default value of le-10. 
7. 

7. Set verbose = 1 for screen output during algorithm execution, 
7. otherwise set vebose = 0 for no output. 
7. 

7o WG_SDLS returns approximate optimal solutions to the above problem 
7, so that 
7o norm(res,'fro') <= sqrt(tol) 
7, trace (K*L(K)) <= tol 
7. 

7. where L(K) = eigshift(A'*(A*K-B) + (A*K-B)'*A, 0) and 
7. res = L(K) - (A'*(A*K-B) + (A*K-B)'*A). 
7. 

7o WG_SDLS optionally returns: 
7. 

7, norm_res : norm(res,'fro') at the final iterate, 
7« dgv : a vector of the duality gaps for each iteration 
7. tt : the total running time of the algorithm 
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'/„ iter : the number of iterations required 
7« f a i l : f a i l = 1 i f the algorithm failed to achieve the desired 
'/, tolerances within the maximum number of iterations allowed; 
% otherwise f a i l = 0 

'/, Nathan Krislock, University of British Columbia, 2003. 
% 
°/0 Based on an algorithm described in 
°/0 K. G. Woodgate. "Efficient stiffness matrix estimation for elastic 
'/. structures" Computers & Structures, 69:79-84, 1998. 

t ic; % Start the preprocessing timer 

ItMax = 100; °/0 max iteration 

[m,n] = size (A) ; 
X = A'; F = B'; I = eye(n); In2 = eye(n~2); In2divn2 = (l/n~2)*In2; 
XX = X*X'; FF = F*F'; FX = F*X'; Q = FX + FX>; 

1 vec(E') = V*vec(E) 
V = []; 
for i=l:n 

W = []; 
for j=l:n 

Eij = zeros(n); 
E i j ( i . j ) = 1; 
W = [W; E i j ] ; 

end 
V = [V, W]; 

end 

i f isempty(KO), 
K = lyap(XX,-Q); 
K = eigshift(K.O); 
trKKXX = trace(K*K*XX); 
i f trKKXX==0 

alpha =0; 
else 

alpha = max([0,trace(K*Q)/(2*trKKXX)]); 
end 
K = alpha*K; 

else 
K = K0; 

end 
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i f isempty(tol), tol = le-10; end 

E = real(sqrtm(K + le-14*I)); 

K = E'*E; KXX = K*XX; 
LK = KXX + KXX' - Q; 

LK = eigshift(LK.O); 

res = LK - KXX - KXX' + Q; norm_res = norm(res,'fro'); 
dual_gap = abs(trace(K*LK)/n); dgv = dual_gap; 

to l l = sqrt(tol); tol2 = tol; 

r = 0; t = 0; 

i f verbose==l 
dispC '); 
disp([' r omega alpha norm(res) dual_gap']); 
disp([' ']) 

ol = sprintf ('°/.3d',r) ; 
ol = [ o l , sprintf(' ') ]; 
ol = [ o l , sprintf (' °/,12.4e',norm_res,dual_gap) ]; 
disp(ol); 

end 

pretime = toe; % End the preprocessing timer 

while ( norm_res > to l l I dual_gap > tol2 ) & r < ItMax 

t ic; '/, Start the iteration timer 

7, Determine the direction D 

kronEXXEV = (kron(E*XX,E') + kron(E,XX*E'))*V; 
Z = kron(E*XX*E',1) + kron(K.XX) + kronEXXEV; 

M = Z + kron(I,LK); "/, This is the matrix used in Woodgate's paper 

M = M + In2divn2; % We have modified this matrix by adding 
% (l/n~2)*kron(I,I) to avoid near sigularity 
'/, and discovered i t has greatly improved the 
% convergence of this algorithm. 
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w = (kronEXXEV - kron(I,Q))*vec(E'); 

[L,U,P] = lu(M); 
d = U\(L\(P*w)); D=mat(d)'; 

Determine the step length omega 

OPTIONS = optimset('fminbnd'); OPTIONS.TolX = le-4; 
omega = fminbnd(@wg_f,0,1,OPTIONS, FF, E,D, XX, Q) ; 

7» Update E to aleph(E-omega*D) 

E = E - omega*D; 

K = E'*E; 
trKKXX = trace(K*K*XX); 
i f trKKXX==0 

alpha = 0; 
else 

alpha = sqrt(max([0,trace(K*Q)/(2*trKKXX)])); 
end 
E = alpha*E; 

K = E'*E; KXX = K*XX; 
LK = KXX + KXX' - Q; 

LK = eigshift(LK.O); 

res = LK - KXX - KXX' + Q; norm_res = norm(res,'fro'); 
dual_gap = abs(trace(K*LK)/n); dgv(r+2) = dual_gap; 

r = r + 1; 

i f verbose==l 
ol = sprintf (''/.3d',r) ; 
ol = [ o l , sprintf(' %12.4e',[omega, alpha, norm_res, dual_gap]) ]; 
disp(ol); 

end 

t(r) = toe; 7, End the iteration timer 

end 
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i f r==ItMax & ( norm_res > to l l I dual_gap > tol2 ) 
f a i l = 1; 

else 
f a i l = 0; 

end 

avt = mean(t); tt = sum(t) + pretime; iter = r; 

i f verbose==l 
i f fail==l, 

dispC '); 
disp('Failed to reach desired tolerance.'); 

end 
dispC '); 
disp(sprintf('Average iteration time:\ty,2.4f seconds', avt)); 
disp(sprintf('Total time:\t\t%2.4f seconds', tt)); 
dispC '); 

end 
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B . 5 Miscellaneous M-files 
B.5.1 vec.m 

function v = vec(V) 
7. v = vec(V) 
7. 

7o Given an m-by-n matrix V, returns the corresponding 
7. m*n column vector v. 

[m,n] = size(V); 

v = []; 
for i=l:n 

v = [v; V(: , i ) ] ; 
end 

B.5.2 mat.m 

function V = mat(v,n) 
7. V = mat(v.n) 
7. 

7o Given an m*n column vector v, returns the corresponding 
7o m-by-n matrix V. If n is not given, it is assumed that 
7o v is an n~2 column vector. 

if nargin == 1 
n2 = length(v); 
n = sqrt(n2); 
m = n; mn = m*n; 

else 
mn = length(v); 
m = mn/n; 

end 

k = 1; 
for i=l:m:mn 

V(: ,k) = v(i:(i+m-D); 
k = k+1; 

end 
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B .5 .3 v e c V . m 

function V = vecV(n) 
7. V = vecV(n) 

7. Calculates the n~2-by-n~2 matrix V which satisfies 

'/. vec((X+X')/2) = V*vec(X) 

7, for a l l n-by-n matrices X. 

V = []; 
for i=l:n 

W = []; 
for j=l:n 

E = zeros(n); 
E( i , j ) = 1; 
W = [W; E] ; 

end 
V = [V, W]; 

end 
V = (eye(n~2)+V)/2; 

B .5 .4 v e c K . m 

function K = vecK(KK) 
•/. K = vecK(KK) 

7o Calculates the k~2-by-n matrix K which satisfies 

7. vec(K(x)) = K*x 

7. where K(x) = x(l)*K_l + . . . + x(n)*K_n, 

'/, KK = [K_l,: . . ,K_n] , and each K_i is a k-by-k matrix. 

% This matrix K can be described as 

7. K= [vec(K_l) , . . . ,vec(K_n)] . 

[k, nk] = size(KK); n = nk/k; 
K = • ; 
for i=l:n 

K= [K, vec(KK(:,((i-l)*k+l):(i*k)))]; 
end 
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B .5.5 max step.m 

function theta_max = max_step(X,dX) 
7. theta = MAX_STEP(X,dX) 
7. 

7. Given n-by-n symmetric matrices, X and dX, where X is positive definite, 
7. MAX_STEP returns the largest theta_max > 0 such that 
7. 

7. X + theta*dX 
7. 

7o is positive definite for a l l 0 < theta < theta_max. If X + theta*dX is 
7o positive definite for a l l theta, then theta_max = Inf. 

x = max(eig(-dX,X,'chol')) ; 

i f x > 0 , theta_max = 1/x; else theta_max = Inf; end 

B.5.6 eigshift.m 

function M = eigshift(X,lam_min) 
7o M = eigshift(X,lam_min) 
7. 

7. Returns the result of setting a l l the eigenvalues less than lam_min 
7» in the spectral form of X (or (X+X')/2 i f X is not symmetric) to lam_min. 

X = (X+X')/2; n = length(X); 

[V,D] = eig(X); 

for i=l:n 
i f D(i , i) < lam_min 

D(i, i) = lam_min; 
end 

end 

M = V*D*V; 

B.5.7 wg_f.m 

function f = wg_f(t,FF,E,D,XX,Q) 
7. f = wg_f (t,FF,E,D,XX,Q) 
7. 

7o Required for computing the omega which minimizes WG_F in WG_SDLS. 

f = .5*trace(FF+((E-t*D)'*(E-t*D))~2*XX-(E-t*D)'*(E-t*D)*Q); 
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