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Abstract

The cytoskeleton is a macromolecular scaffold which gives the cell its shape and controls

cellular motion. Actin is the most abundant proteins in the cytoskeleton and an impor

tant determinant of its structure and mechanical properties. Actin monomers polymerize

into filaments that are then linked to one another by a variety of binding proteins. Fil

aments can organize into unipolar and bipolar bundles as well as orthogonal networks.

The formation of these structures and the transitions between them depend on the types,

quantities, and properties of the binding proteins.

The problem addressed in this thesis concerns interactions of actin filaments with

actin binding proteins. I investigate the main mechanisms governing the formation of a

variety of cytoskeletal actin structures as well as transitions between them. In particular

I discuss how the type of binding protein and its binding kinetics affects the structures

formed. I further investigate the influence of the geometry of the molecules and the

dimensionality of the environment (for example the presence of a surface near which the

structures form).

Dynamic continuum models analogous to the mean field approximation in physics

are used to study the time evolution of angular distributions of actin filaments. Integro

partial differential equations are derived for two types of events: (a) rapid binding of

filaments, and (b) gradual turning and alignment of filaments. Linear stability analysis

is applied to 2D and 3D versions of such models. Numerical analysis and explicit solutions

are discussed in special cases.

It is found that as the actin filament density increases in the cell, a spontaneous
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tendency to organize into bundles or networks occurs. Both the linear stability anal

ysis and the nnmerical results indicate that the structures formed are highly sensitive

to changes in the parameters including the total mass of actin filaments, the rotational

diffusion coefficient and rate constants representing binding and unbinding. Criteria (in

volving combinations of these parameters) are obtained for instability of the homogeneous

steady state and appearance of order. Similar results are obtained for both rapid and

gradual alignment models, suggesting robustness of the modelling approach.
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Chapter 1

Introduction

1.1 The cellular cytoskeleton

A molecular scaffold, referred to as the cytoskeleton, euables a cell to adopt a variety of

shapes and to carry out various functions including motility. This highly complex network

consists of numerous protein filaments and may exhibit physical properties similar to a

liquid or a solid at different times and at different locations in the intracellular medium

of the cell, the cytoplasm. The cytoskeleton is distinct for two main evolutionary classes

of living organisms: the eucaryotic cells (e.g. animal cells) which have a cytoskeleton and

the procaryotes (e.g. bacteria), which do not.

The three principal types of protein filaments forming the cytoskeleton are: actin fil

aments, microtubules and intermediate filaments. Even though these three major protein

filaments all participate in the cytoskeletal structure in animal cells, they have different

functions. For example, the intermediate filaments are found in a basket-weave of fibers

which extend from the nucleus to the membrane and provide mechanical integrity. Mi

crotubules are the thickest of the filaments. They are long cylindrical rods which radiate

from one site (the microtubule organizing center or centrosome) to the cell periphery, and

play a key role in over-all organization of cell movement (for example, by transporting

organelles or vesicles, thereby facilitating communication between different parts of the

cell). Actin filaments are also vitally important in the mechanical structure and motil

ity of the cell. Actin filaments are rarely found solitary, but associate into networks,

1



Chapter 1. Introduction 2

bundles, or various complex structures which undergo dynamic rearrangement during

cell motion, cell division, and other functions of the cell. Both actin and microtubules

are dynamic structures that polymerize and depolymerize, associate and dissociate (into

bigger structres) on a ps time scale.

Recent studies suggest that all of the above classes of filaments are implicated in the

motility and alignment of cells along certain preferred axes of orientation (Oakley and

Brunette, 1993), particularly when the cells are grown on grooved surfaces. Abundant

information is available on actin dynamics and strnctures and this will form the main

topic of this thesis.

A variety of smaller proteins are associated with actin and are believed to take a

leading role in these structural transitions. Indeed, actin filaments by themselves have

little mechanical strength. However, in the presence of these auxiliary proteins, which

connect actin filaments to one another in various configurations, stronger well-defined

structures are formed. The types, the amounts, and the affinities of the attachment

proteins determine the type of structure that forms, and are thus of great importance

to cellular function. The actin structures are not static, but constantly changing as an

integral part of cell movement and cell function. In this thesis we concentrate exclusively

on the dynamics of actin structures, and on transitions that take place under the influence

of the actin-related proteins.

1.2 Actin structure and function

Actin has become one of the most carefully characterized proteins in cell biology since

its discovery in muscle in the 1940s, and non-mnscle cells in the 1960s. It is an abundant

protein in cells and an important determinant of the structure and mechanical properties

of the cytoplasmic matrix.
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Figure 1.1: A schematic representation of the helical structure of an actin filament (a),
and attached myosin filaments and heads which determine its pointed amid
barbed end (b). Taken from Stossel (1994).

The actin molecule exists both as a monomer (globular or 0-actin), and as a polymer

(fliamentous actin, F-actin, or microfiiainents) in cells. Each globular actin has binding

sites on jt,s surface that allow it to associate with two other monomers in a helical ar

rangement (see, e.g. Stossel, 1994; Alberts et al., 1989; Bray, 1990). The orientation of

the actin monomers in this double helical structure provides it with a unique polarity,

see Fig. 1.1. This polarity is most easily detected by allowing the filaments to react with

a protein molecule, myosin, which binds to each actin subunit in a filament in a very

precise fashion giving the appearance of a series of arrowheads. The direction in which

the arrowheads point defines the pointed end, and the other end is called the barbed end,

see Fig. 1.1. Actin filaments grow bidirectionally by addition of monomers with different

rates of assembly (i.e. different growth rates) at opposite ends. Thus F-actin may he

viewed as a polar macromolecule with a pointed (slowly growing) and a barbed (fast

growing) end.

MYOSIN
HEAD
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The slow step of assembly of a few actin molecules provides a nucleus for the formation

of an actin filament. An equilibrium is quickly reached whereby the so-called ‘critical

concentration’ of monomer is in apparent equilibrium with F-actin filaments.

Actin filaments are essential for many forms of cellular motility. In non-muscle cells,

actin filaments are highly dynamic on a second to minute time scale. Since the 1970’s it

has been generally recognized that in cultured motile cells, polymerized actin occurs in at

least two distinguishable states of structural organization: in linear fibrillar bundles -

commonly referred to as stress fibres - and in isotropic meshworks or networks confined

to the motile lamella zones and ruffling membranes, see Fig. 1.2a-b, (Small et al., 1982;

Stossel et al., 1985; Stossel, 1984; Weeds, 1982). The transitions between bundles and

meshworks are vital to cell motion and organization.

In some actin structures the filaments display locally uniform polarity whereas in oth

ers they display opposite polarity or no polarity. The bundling proteins such as fascin,

fimbrin and villin create polarized bundles (Pollard and Cooper, 1986). Unidirection

ally polarized microfilament structures are found in microvilli of epithelial cells, and in

streocilia of cochlear hair cells. F-actin structures which do not display any polarity

are observed in the cell cortex, and in the periphery of various cells including amoebas,

macrophages, leukocytes and blood platelets. In these latter cases the filaments inter

sect in a perpendicular fashion. In both stress fibres in fibroblasts and epithelial cells in

culture the filaments are organized into bundles without being polarized (Stossel, 1984).

Populations of actin filaments have been observed to rearrange in a variety of cells,

for example during differentiation of embryonic carcinoma cells, during locomotion of

fibroblasts or during development of yeast cells. See (Way and Weeds, 1990; Meulemans

and De Loof, 1992). It has been revealed that the structural organization of actin fila

ments can also form and disappear rapidly in various cellular phenomena such as mitosis
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Figure 1.2: Network of actin ifiaments (a), joined and held nearly perpendicular by the
cross-linking proteins (e.g. ABP or fllamin), and bundles of actin filaments
(b), joined and held nearly parallel by the bundling proteins (e.g. vil]in,
fascin). Note that the helical arrangement of actin subunits in the ifiaments
is not reflected in this figure.

and fertilization (Pollard, 1990). The rearrangement of actin cytoskeleton in a cell is now

known to affect many functions of the cell. It also plays a dominant role in various phe

nomena, such as the motility of a parasitic bacterium inside a host cell. The bacterium

Listeria monocytogenes propels itself through the host cell cytoplasm using a tail-like

actin meshwork that it assembles on its posterior end (Theriot and Mitchison, 1992).

1.3 Actin associated proteins

The microfilaments interact with various other proteins in the cell: anneal end to end,

fragment, become capped at the ends, crosslink and organize into diverse structures. The

self-assembly of actin structures is regulated in a remarkably precise manner; it occurs

at particular times and in discrete places within the cell. It is now recognized that this

control is conferred by actin binding proteins. After the discovery of the major classes

(a)
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of actin binding proteins in the 1980’s it seemed possible that the assembly and function

of actin in cells might be explained by relatively simple mechanisms involving a small

handful of proteins (Cooper, 1991; Pollard and Cooper, 1986; Pollard et al., 1990). Some

of these actin binding proteins lead to interactions between filaments by linking them

together in various ways. The cross linking proteins promote the formation of orthogonal

meshworks and the bundling proteins promote the alignment of filaments in bundles. The

role and function of each binding protein is determined by observing how it interacts with

microfilaments. However, the mechanism by which a variety of filament structures form

or switch from one to another in a cell when all actin binding proteins are acting in

concert is unclear.

The actin binding proteins are classified in different groups according to how they

interact with actin. Actin monomer binding proteins, capping proteins, severing proteins,

proteins that bind to the sides of actin filaments and membrane attachment proteins

are the major different groups in eucaryotic cells. The proteins that bind to the sides

of actin filaments are generally considered in three different subgroups based on their

functional properties. Among those, except for the group including tropomyosin which

bind to only one filament at a time, the cross linking proteins and the bundling proteins

promote interactions between filaments. In this thesis we focus attention to proteins in

these two classes. Cross-linking proteins include ABP and filamin, and the filaments

form networks or meshworks where they are joined approximately at 90° angles via these

proteins (Stossel, 1990; Tilney et al., 1992a-b; Hartwig, 1992; Hartwig et aL, 1980;

Weeds, 1982). The bundling proteins include villin and fascin, and the filaments produce

structures where actin filaments are aligned parallel to each other (Cooper, 1991; Pollard

and Cooper, 1986; Weeds, 1982). Further details about the binding proteins are given in

section 3.3.
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1.4 Review of previous work

There is a wealth of literature which focuses ou actiu and its dynamics. Several branches

of science have led to recent progress in this subject, including cell biology, biochemistry,

biomathematics, biophysics, colloid and polymer chemistry, rheology and thermodynam

ics. As a result of interdisciplinary efforts, several important symposia and conferences

have served to summarize the progress in this field. The effect has been to stimulate

researchers to explore the molecular and mechanical basis of important phenomena such

as cell motility or mitosis. Numerous studies have attempted to unravel the mechanism

of motility at the cytoskeletal level. Although knowledge of the constituents and the

organization of components has been elucidated, the details of mechanisms are largely

unknown.

Experimental and theoretical studies of the formation of different cytoskeletal struc

tures and the properties of the resulting structures have been previously considered.

Recent work by Dufort and Lumsden (l993a,b) has provided dynamic visual images of

the actin cytoskeleton and its interactions with many binding proteins. The cellular au

tomaton simulation that they have produced allows an exploration of the interactions

of a small population of actin molecules. The three dimensional spatial positions, bind

ing and unbinding, and the spatial and rotational diffusions of individual molecules is

shown. The results reveal the dramatic transitions that these molecules undergo. (See

video supplement to l993a.) Their papers also contain detailed values of parameters

associated with actin kinetics. Their model is a complex and realistic simulation, with

many parameters. The realism of the simulation makes it hard to dissect the essential

effects from the many competing influences.

In other previous theoretical considerations the approach is a mechanical one, con

sidering the effects and the balance of the forces in and outside of the cell and neglecting
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the microscopic interactions and their influences on the mechanical properties of the cy

toskeleton. In a recent publication, Sherratt and Lewis (1993) consider the alignment of

intracellular actin filaments as a response to external forces (stress and strains) or to an

anisotropy in the stress field of the filaments themselves. Their approach is a mechanical

one, based on a balance of forces in the system. In their model, the interactions between

the filaments, as well as the turnover rate and the strength of the bonds between them

is reflected in a single parameter: the sensitivity parameter.

Oster, Murray and Odell (1985) present a model accounting for the formation of reg

ular hexagonal patterns in microvilli solely as a consequence of the mechanical instability

of the contractile acto-myosin gel. In (Oster and Odell, 1984), the actin-myosin mesh

work is considered, and the dynamic contractile behavior of the cytogel is captured in a

model based on the mechanical properties of the gel which, in turn, are regulated by a

chemical trigger. In these models, the cross-links between actin filaments are assumed to

be permanent, and the cytogel is viewed as an elastic material. However, according to

(Sato et al., 1987), the mechanical properties of the cytoskeleton also depend on (or are

influenced by) the dynamics of the rapid rearrangement of these bonds. Thus, there is a

problem with the above approach, namely, on the time scales of interest, the cytoskeletal

network behaves as a viscous fluid with negligible elasticity. Oster (1989) gives a review

of the role of the mechanical aspects in cell motility and morphogenesis.

Other mechanical models of the contractile behavior of the actin-myosin meshwork

appear in (Alt, 1987; Pohl, 1990). In (Alt, 1987) the actin-myosin meshwork is viewed

as a creeping viscous fluid with negligible elasticity. Thus, in this model the filament

cross-links are not assumed to be permanent. Pohl (1990) models iv. vitro experiments

of actin-myosin based contraction waves, stimulated by external forces, regarding the

cytoplasmic matrix as a mixture of a fibroid network and an aqueous solution. Applying
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the laws of fluid mechanics to this mixture, he describes the dynamic behavior of the

cytogel. His model is based on the Reactive Flow Model of the cytoplasm reviewed in

(Dembo, 1989). Dembo (1989) reviews the mechanical theory of the dynamics of the

contractile cycle of actin cytoskeleton, considering a dynamic F-actin network. In this

model, the network is assumed to be isotropic and the network synthesis and breakdown,

as well as the formation of cross-links between the filaments are described by single terms

in the equations.

The importance of the key structural elements in these phenomena, the actin binding

proteins, has been noted in the above papers. However the interactions between the actin

filaments and the binding proteins and the consequences of these interactions have not

been included in most of these models.

1.5 Goals and Objectives

In this thesis we investigate the hypothesis that molecular interactions between

actin filaments and the actin associated proteins lead to the formation of

order and the transitions between different structures formed by the actin

cytoskeleton. We further propose that these transitions occur even in the absence of

external mechanical forces.

To investigate this hypothesis we must derive models for the dynamic changes in

actin. (The problem cannot be studied as an equilibrium phenomenon, but rather as a

kinetic one.) These models will permit characterization of the essential aspects of molec

ular interactions promoting order of several types: bundles, networks, versus isotropic

arrangements of microfilaments. We focus on the orientational distribution of filaments

in these structures, not on the spatial density. (But see Mogilner and Edelstein-Keshet

1994c for a general framework of spatio-angular models.)
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Biological experiments have produced a wealth of iuformation about details of the

chemistry, biochemistry, and molecular biology of the actin structures. However, much of

this knowledge is focused either on individual molecules or on macromolecular assemblies,

but not on the relationship of one level of complexity to the next. The goal of this thesis

is to link the properties at the level of individual molecules with the behavior of the

ensemble. The mathematical model provides this linkage.

An additional objective of the modelling approach is to determine the sensitivity of

actin dynamics to parameters such as the kinetic rate constants, the concentrations, and

the affinities of the various intermediates. The importance of this issue has been recently

proposed by Wachsstock et al (1994). Recent interest has arisen in the comparison of

cytoskeletal structures found in different species of organisms whose actiu associated

proteins are related, but have slightly different kinetic rates.

The models discussed here describe the angular density of the actin structures, such as

might occur in a particular location inside the cell. I will study two structurally distinct

classes of models here. One class (Chapter 2) accounts for rapid (one-step) actin filament

alignment in response to interactions with other filaments mediated by specific types of

binding-proteins. A second class (Chapter 3) deals with more gradual drift-like turning

and alignment. In chapter 4, the basic model of the first sort is modified to allow for the

presence of a surface, such as the cell membrane.

The challenge of deriving a suitable model is that it is desirable to capture the essential

aspects of the phenomenon, whilst keeping the model simple enough to analyse. This is

a rather difficult task considering the overwhelming quantity of biological, bio-physical

and bio-chemical information on the components of the cell. Further, it is of interest to

investigate the robustness of the predictions to the formulation of the model. For this

purpose, comparisons were made between the two distinct ways of modelling analogous
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situations; that is, I investigated a given class of binding proteins in each modelling

scenario, and found essentially similar conclusions.



Chapter 2

Models for rapid alignment of actin filaments

2.1 Introduction

In this chapter I develop a model to study the formation of parallel and orthogonal actin

filament structures as well as the transitions between these. We first ask several questions

about the formation of such actin filament structures. We ask which type of molecular

interactions and properties observed biologically can account for the observed dynamics

of actin in the cell. We also consider how properties at the molecular level (for example,

affinities of binding proteins) can affect the macro-molecular structure and organization,

and how changes in the details of the interactions can affect the outcome of the structures

that form. Towards this goal we will reformulate, in mathematical terms, the dynamics

of the actin filaments in the cell based on the elements and properties reported in the

biological literature (Stossel, 1990). Second, we address the question of a spontaneous

switch between the orthogonal and parallel structure and the sharpness of this transition

in a model that accounts for the presence of two types of actin binding proteins.

The model(s) will allow us to reach the following conclusions:

(1) When the density of aetin reaches a critical level, a spontaneous tendency to orga

nize into an orthogonal or parallel structure occurs.

(2) The structure depends on the concentrations of active cross-linking or parallel bind

ing proteins, e.g. filamin and ABP-50 or fibrillin and villin.

12
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(3)Furthermore, the switch between the orthogonal and the parallel aligned structures

can occur as a result of a change in the relative binding rates and concentration of the

two types of actin binding proteins (cross linking and bundling).

The results presented in this chapter have appeared in the paper Civelekoglu and

Edelstein-Keshet (1994).

2.2 The molecular approach: a new model based on molecular interactions

Experimental evidence indicates that forces are not essential for the cytoskeletal rear

rangement and the rapid changes in the cytoskeletal structure can be mediated by the

actin binding proteins. Actin interacts with several different proteins at once depend

ing on the relative binding affinities, concentrations of different proteins, and regulatory

factors (Way and Weeds, 1990). A new set of actin binding proteins may be responsible

for a change in the cytoskeletal organization of a cell (Vandekerckhove, 1990). Also, the

actin binding proteins may act differently under different conditions. For example, some

proteins act as cross-linking proteins in the absence of Ca++, and as capping proteins

in the presence of Ca. The sol-gel transformation can therefore be regulated by the

response of a single molecule to changes in Ca concentrations (Korn, 1982; Hartwig,

1992). Thus, there exists biological evidence that the changes in the molecular properties

of these elements affect the resulting structure, and changes from one structure to the

other occurs also in the absence of external forces, via activation or inactivation of the

actin binding proteins. Based on the above evidence, we view the cell as a pool of inter

acting molecules. In the following section we present a model based on the geometry of

the molecular interactions, and on the differences between binding proteins that promote

a variety of actin structures that form.
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According to Stossel (1990) and Pollard and Cooper (1986) the steps in the forma

tion of the actin meshwork are as follows: First, needlelike actin filaments are created

by polymerization of individual actin monomers. This process has two stages: the single

molecules aggregate to form small groups of three or four molecules -nucleation-, and

then the nuclei elongate, eventually generating long, stiff rods of actin. When the length

and mass of these filaments reach a certain level, the filaments start to join under the

influence of cross-linking proteins in orthogonal networks or bundles. As seen under the

electron microscope, some cross-linking proteins join the actin filaments at approximately

right angles (Hartwig, 1992; Hartwig et al., 1992; Hartwig et al., 1980; Stossel, 1984; Stos

sel, 1990; Tilney et al., 1992a-b; Weeds, 1982), whereas the bundling proteins promote

binding in parallel. The ways in which the cross-linking and the bundling proteins bring

about the high angle branching or the parallel alignment of actin is a function of their

structure (Stossel, 1984; Stossel, 1990; Hartwig and Stossel, 1981; Pollard and Cooper,

1986).

The models we formulate in the following sections account for the formation of struc

ture in a pool of actin filaments in the cell and focuses on orientation rather than spatial

distributions. We assume the existence of short (ready to bind) actin filaments rather

than explicitly modeling the nucleation of filaments.

2.3 Model I: one type of binding protein interacting with F-actin (2 dimen

sional model)

In this section we consider a two dimensional analogue of a truly three dimensional

molecular system. The model corresponds to a mean-field approximation of the molecular

system. A similar simplification was made in (Sherratt and Lewis, 1993). The model
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here closely resembles a model for orientations of interacting cells described in (Edelstein

Keshet and Ermentrout, 1990).

We distinguish between filaments which are bound to other filaments, referred to

as Bound filaments, and those which are not, referred to as Free filaments. The

following simplifications have been made in deriving this model:

(a) We consider only angular distribntions of filaments, not spatial distributions.

(Thus the model applies to a small part of the cell.) A fuller model which includes

spatial variations is discussed in Mogiliier and Edelstein-Keshet (1994b).

(b) Binding and unbinding of filaments is similar at all stages of the process. (Actually

once a dense network forms unbinding will be restricted to its exposed surface.)

(c) Monomers are added to the filaments at a rate proportional to the total length of

filaments. (Actually, monomers are only added at the ends of an actin filament but we

assume that filaments have some fixed average length so that the total number of ends

is proportional to the total length of filaments.)

(d) We assume that only free filaments can rotate freely. (In reality small clusters of

bound filaments will also undergo rotational diffusion but we do not distinguish between

small and large clusters.)

The model is based on the following variables:

t = time,

U = an angle, 0 U 27r, with respect to some arbitrary fixed direction,

L(O, 1) = the concentration (total length) of free actin filaments at orientation U at time

1,

B(O, t) = the concentration (total length) of bound actin filaments at orientation 0 at

time 1,

= the rate constant for binding of filaments via actin binding proteins,



Chapter 2. Models for rapid alignment of actin filaments 16

K(O) = the kernel representing the angnlar dependence of the rate constant for

binding,

p = the concentration of free actin binding protein,

6 = the dissociation rate of the actin binding proteins,

g = the concentration of actin monomers,

xi = the rate of elongation of filaments by addition of monomers at the ends,

= the rate of shortening of filaments by loss of monomers from the ends.

The concentrations of L and B are the total length of filaments (in terms of monomer

subunits) inside a unit element of the region, for example, length per unit area in a two

dimensional model, or length per nnit volume in a three dimensional version. These are

analogous to the density function F(, p) defined by Sherratt and Lewis (1993), who also

neglect the spatial dependence of F. Note, however that L and B in our model are time

dependent, as we explore a fully dynamic model.

The quantity /3K(O) is the rate constant for binding of one filament to another fila

ment at a relative angle 0 in the presence of actin binding proteins. 5 is the magnitude

of the rate constant. The kernel K is a normalized function which represents the ef

fective interaction of molecules at various relative configurations. It is known in many

chemical reactions that molecules must first come into the correct relative configurations

before they can react. The nature of the kernel K, discussed below, is deduced from

several remarks in the literature (Stossel, 1990; Hartwig and Stossel, 1981; Hartwig et

al., 1980; Tilney et al., 1992a-b) taking into consideration the molecular properties and

the structure of the actin binding proteins. For example, the orthogonal binding protein,

Actin Binding Protein, promotes binding of filaments at right angles, see the histogram

in (Hartwig et al., 1980) or (Stossel, 1994). Filament densities L(0,t) and B(0,t) are

functions of time and of 0. Since 0 is an angle of orientation, all functions of 0 are
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assumed to be periodic, i.e. L(O, t) = L(2r, t) for all t.

In deriving the equations of the model we start by considering the behavior of an

individual filament. The repertoire of a single filament consists of:

(a) rotational diffusion which results in tumbling and thus random reorientation of

the molecules (frictional forces in the cytoplasm will limit this effect for larger molecules),

(b) binding upon contact with another filament and an actin binding protein (this

binding is angle dependent)

The rotational diffusion of actin filaments in the cytoplasm can be depicted as a

random walk in 0. The associated diffusion coefficient, ji, has been determined in the

literature for biopolymers, see (Mossakowska et al., 1988; Phillips et al., 1991; Sawyer et

al., 1988; Thomas et al., 1979).

Next, we consider how the free actin filaments binding to others can affect the free

filament density at a given orientation 0, namely L(0, t). To this end, we first consider

the rate that a single free filament at orientation 0 attaches to another free filament, say

at orientation 0’, in presence of actin binding protein. This rate depends on the density

of free filaments oriented at 0’, i.e. on L(0’, t), and on their relative orientation, i.e. on

(0— 0’). Ler r be the effect of filaments at angle 0’ on the rate of realignment of a filament

at angle 0. Then,

r = p/3K(0 — 0’)L(O’,t), (2.1)

where /3 is the binding rate and p is the concentration of actin binding protein. Summing

over the density of free filaments at all possible orientations results in R, the cumulative

effect of all filaments oriented at 0’ on the rate of realignment of a filament at angle 0.
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Then,

p2w

R = p/3 J K(O — O’)L(O’, t)dO’. (2.2)
0

Finally, we consider the effect of such binding on the total density of free filaments

oriented at 0, which is:

OL(0, t)
= —p/3L(0, t) j K(0 — 0’)L(O’, t)dO’. (2.3)

For notational simplicity, we adopt the * notation for the above convolution integral, i.e.

p2w

K * L
= J K(0 — 0’)L(O’,t)dO’. (2.4)

0

As mentioned above, actin filaments bind to each other via auxiliary protein molecules

of different structures. With cross-binding proteins, e.g. ABP or filamin, F-actin

forms networks or meshworks joined approximately at 90° angles (Stossel, 1990; Tilney

et al., 1992a-b; Hartwig, 1992; Hartwig et al., 1980; Weeds, 1982), whereas the bundllng

proteins, e.g. villin or fascin, produce parallel actin filaments (Cooper, 1991; Pollard

and Cooper, 1986; Weeds, 1982). ABP and filamin are long flexible hinge-like molecules

whereas villin and fascin are short rod-like molecules (Stossel, 1990; Pollard and Cooper,

1986). Differences in the structures of these binding proteins implies differences in the

geometry of binding. In the presence of a binding protein, two filaments bind upon

contact depending on (a) the kinetic rate constant of the binding protein, and (b) the

proper configuration being attained by the filaments at the binding site. The critical

angular range for successful binding depends on the molecular structure of the given

binding protein. In the model, the relative angle formed by the actin filaments, 0, must

be within some critical range for binding to occur in each case. This is depicted by
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the function K(O). In the thesis we will consider several types of kernels associated

with binding proteins but in this chapter we restrict attention to two types: one which

accounts for orthogonal cross-linking of F-actin, and a second one for the bundling of

F-actin. The critical angles a and b in the equations below reflect this range for the

orthogonal binding and bundling proteins. Thus, modelling the orthogonal binding of

F-actin we consider kernels of the following form (see Fig. 2.3a):

If(O) for IO—<a or
K1(O) = 2 2

, (2.5)
I. 0 otherwise

and modelling parallel binding we consider the following type of kernels (see Fig. 2.3b):

(h(O) forO<b or or 2ir—O<b
1(2(0) = . (2.6)

0 otherwise

It was argued by Edelstein-Keshet and Ermentrout (1990) that the specific form of these

functions is of no consequence for the conclusions of the model as long as they satisfy

certain symmetry properties. The critical angles a and b, beyond which the binding does

not take place represent a range of angular attraction (a = 20° and b = 30° in Fig. 2.3a-b,

respectively). We also normalize K by requiring,

JK(0)dO = 1. (2.7)

This means that the angle dependence, summed over all possible angles of interaction

is set to 1. The following fnnctional differences are assumed between L and B type

filaments:

(1) Free filaments reorient randomly but bound filaments do not.
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Figure 2.3: Shapes of angle dependent kernels representing the angle dependence of bind
ing of two actin filaments via (a) orthogonal actin binding proteins and (b)
bnndling proteins. We assume a uniform concentration of actin binding
proteins in the cell. The vertical axes represent the kernel and the horizon
tal axes represent the angle between two contacting ifiaments. The critical
angles are as follows: a = 200 in (a) and b = 30° in (b).
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(2) Binding of two filaments occur if two filaments contact in presence of actin binding

proteins.

(3) All bound filaments can become free by dissociation of proteins at some fixed

unbinding rate 6. (Actually, 6 would probably be density dependent as bound filaments

on the inside of a large network would have very low rate of dissociation. We do not

include this effect in the model.)

(4) Filaments can elongate by addition of actin monomers, g, at the constant rate i’.

(5) Filaments can shorten (loss of actin monomers from ends) at a constant rate 7.
(Recall the assumption that the number of free ends is proportional to the total length

of the filaments.)

The following set of equations depict the interactions described above:

f(O, 1) = — 7L + vgL + 6B — /3pL(K * B) — /3pL(K * L)

%f(o, t) = —7B + vgB — 6B + 3pB(K * L) + /3pL(K * L)
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The terms in the equations (2.8) have the following meanings: L(K*B) represents the rate

at which free filaments, oriented at 0, bind to bound filaments at arbitrary orientations,

L(K * L) denotes the rate at which they bind to free filaments at arbitrary orientations,

and B(K * L) denotes the rate at which free filaments, at arbitrary orientation, bind to

bound filaments oriented at 0. p denotes the rotational diffusion constant of F-actin,

and the first terms in the right hand side of the equation for free filaments represents

the angnlar diffusion of filaments freely rotating in the cytoplasm. p denotes the actin

binding protein concentration. 3 denotes the rate constant for binding of filaments by an

actin binding protein and denotes the dissociation rate of the actin binding proteins.

The 0-independent steady state of these equations, (L, B), corresponds to the case

in which the total addition of actin monomers to filaments equals the total loss of actin

monomers from filaments. (This equilibrium state is referred to as the treadmilhing

state in Stossel (1990).) Thus the second and third term in the equation for free filament

density and the first two terms in the equation for bound filament density cancel each

other and (2.8) reduces to the following system of equations, similar to equations (17) in

(Edelstein-Keshet and Ermentrout, 1990):

t) = p + SB — /3pL(K * B) — /3pL(K * L)oo
. (2.9)

-1(0, t) = —SB + /3pB(K * L) + /3pL(K * L)

Also, the total mass density of actin filaments in the system is conserved, i.e.

M
=
L2r{L(0,t) + B(0,t)}dO (2.10)

is constant. The quantity M will be treated as a constant throughout the present analysis.

Later we will be interested in the situation in which M is allowed to vary slowly.

The equations (2.9) can be written in the following dimensionless form:
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(O, t) = + B — L(K * B) — L(K * L),
(2.11)

(O,t) = —B + B(K * L) + L(K * L),

where = 6/j3pM and e = p/B pM are dimensionless parameters. Also, the densities L

and B are dimensionless quantities. The details of this non-dimensionalization is given

in the Appendix A.

2.4 Analysis of Model I

The analysis of the model is similar to the analysis of the model in (Edelstein-Keshet

and Ermentrout, 1990). The homogeneous steady state (L, B) of the system (2.8), or

equivalently (2.9) is found by setting:

DL
— 0

— DL
Iat ao
1 DB0OB ,

at ao (2.12)and satisfies.

B/3pMl
b

L 6

This represents a time independent population in which all orientations are equally rep

resented. If this steady state is stable, the population will persist in the ratio (2.12b) and

no angle or orientation will be favored. However, if noise can disrupt this steady state,

i.e. if it is unstable, the situation might change to one where some angles are favored.

XVe investigate this possibility by considering small perturbations from the steady state.

Equations (2.9) can be linearized about the homogeneous steady state by substituting

L(O, t) = L -i- L0(O, t) and B(O, t) = B + B0(O, t) into (2.9) and retaining linear terms:
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%(O, t) = + 6B0 — /3p(L(K * B0) + L0B) — /3p(L(K * L0) + L0L)
2 13

-(O,t) —6B0 + /3p(B(K * L0) + B0L) + 73p(L(K * L0) + L0L)

When L0 and B0 are sufficiently small to render the linear approximation (2.13) a valid

representation of the full equations (2.9), the linear stability theory is an adequate method

for the analysis of the states near the steady state value (L, B). The details of the

linear stability analysis are given in Appendix B. These equations are now linear integro—
02

partial differential equations containing the Laplacian operator () and the linear

operator (K* ), and they describe the evolution of a small perturbation from steady

state. As discussed in Mogilner and Edelstein-Keshet (1994a), both these operators

share a common set of eigenfunctions, namely:

lv C R. (2.14)

The fact that the domain 0 0 2ir is periodic (i.e. all functions H(0) = H(0 + 2vrn))

will restrict permissible values of lv to the integers, lv = 0, 1, 2,.. . , n. The terms 6jk8

form an orthonormal basis for periodic functions which satisfy Dirichiet ‘s Conditions,

i.e. functions with finite number of finite discontinuities and finite number of turning

points. Moreover, any such periodic function f(0), with period 2K can be expressed

as a convergent sum of terms ake, referred to as its Fourier series expansion. Thus,

considering perturbations where the dependence on 0 is of the form e18 is sufficient to

investigate the stability of this steady state. We thus consider perturbations of the form:

L(0,t) L
= + eJVOe)t. (2.15)

B(0,t) B B0
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where L0,B0 are small amplitudes, k is the wavenumber (the number of peaks or the

number of dominant orientations in [0, 27rJ) and A is the growth rate of the perturbation.

As the domain is periodic, with period 27r, the wavenumber k must be an integer. We

seek conditions for which such small perturbations from the steady state are amplified

with time, i.e. for which A > 0 for some wavenumber lv.

2.4.1 Linear stability analysis

Using the form (2.15) for the perturbations and substituting into (2.13) the equations

can be written in the following matrix form:

L0
A=J , (2.16)

B0

where

fan a12\ f(izk2+/3pL(1+k)+/3pB) 6—/3pLk \J=I 1=1 — 1. (2.17)
a21 a22) \ $pL(1 + K) + /3pBK —(6 — /3pL))

Here k is the Fourier transform of the kernel K, lv is the wavenumber, and A is the

growth rate of the perturbation as above. See Appendix B for the description of the

Fourier transform of K. For stability to uniform perturbations and instability to 0-

dependent perturbations it is necessary that the determinant of the Jacobian,

det J =a11a22 —a12a21, (2.18)

be non-negative for lv = 0 and negative for some integer wavenumber lv. Such an integer

is then a destabilizing wave number or mode. Thus the stability condition is determined
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by an algebraic equation, referred to as the dispersion relation, obtained by setting the

determinant of the Jacobian matrix to be negative. It is a condition on the type of

periodicity that leads to instability. The determinant of the Jacobian in (2.17), with

slight rearrangement, leads to the following condition:

The Dispersion Relation:

Ck2 <k(i - k) (2.19)

where,

C
= ((L ) =

(2.20)

is a combination of the parameters in (2.9) or the dimensionless parameters in (2.11).

The steady-state (IL, B) of (2.9) can be destabilized by pertnrbations of the form (2.15),

provided that the wave nnmber Ic satisfies (2.19). Only wavennmbers satisfying this

inequality will give rise to growing strnctnres. Thns (2.19) mnst be satisfied for either

bundles or networks of actin to form. We can visualize (2.19) graphically as done in

(Edelstein-Keshet and Ermentrout, 1990) by plotting the right hand side and the left

hand side of it on a common set of axes. This has been done in Fig. 2.4 for varions

settings of the parameters. The expression on the right hand side of (2.19) as a fnnction

of Ic (the wavy curve in Fig. 2.4a-b) is fundamentally different for the two types of kernels

in Fig. 2.3a-b and is scaled differently for different choices of critical angles a and b. The

left hand side of (2.19) is a parabola in Ic with coefficient C, as shown superimposed in

Fig. 2.4a-b. The inequality (2.19) depends on the shape of K(k)(1 — k(k)) and on

the value of C. Though only integral Ic values are relevant (dne to periodic boundary

conditions), we plot this expression as a continuous function of Ic for easier visualization.
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—0

The expression K(k)(1 — K(k)), the wavy curve in Fig. 2.4a-h. is shown as a
function of the wave number k for k, the Fourier transform of the kernels in
Fig. 2.3a.-b. Superimposed is a set of parabolas y = Ck2. (The parabola and

the function K(k)(i —K(k)) are plotted as continuous functions ofk, however
only integer Ii values arc of interest.) The uniform steady state of (2.9) can
he (list urhed and pattern formation can be initialed only by pertH rhat ions
(2.15) whose wave number k is a integer satisfying Ck2 < k(1 — K). where
C depends on biological parameters. The sequence of parabolas in (a) and
(b) can be generated by varying the total mass of F—actin, Al = (L + B).
given that the other parameters are constant. Parameters are as follows: in
(a.) the critical angle is a = 20° and the coefficient C is 0.04 and 0.01, in (h)
the critical angle is b = 30° and the coefficient C is 0.06 and 0.02.

1r1 other words the parabola Ck2 must be lower than the function of K displayed on the

right hand side of the inequality at some integer value k for instability at that wave

number. In the case where we have a kernel accounting for the orthogonal binding of

F—actin, as in Fig. 2.3a, the first i ritegral wave number at winch the mequality (2. I 9) is

satisfied is k = 4, (see Fig. 2.4a). This means that a perturbation of the form 40 grows,

the steady state loses stability and four orientations, 90° apart, become accentuated

among all possible orientations from 0 to 2ir. As a result, the filaments are mostly

orthogonal to each other. In the case where we have a kernel accounting for the bundling

of F-actin, as in Fig. 2.3b, the first such wave number is k = 2, as shown in Fig. 2.4b.

A perturbation of the form e20 grows and results in two accentuated orientations 180°

a) C = 0.04 b)

C = 0.01

(1

C=0.06 C=0.02

0

0.

I

0.

Figure 2.4:

-0.
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apart. In this case most filaments lie parallel to each other. In both cases the positions

of the accentuated orientations are determined by the initial disturbance that disrupts

the steady state. However the spacing between them is determined by a wave number

lv, which satisfies (2.19). The instability discussed here is somewhat analogous to the

isotropic-nematic transition in liquid crystals.

2.4.2 Numerical analysis

The equations of the model were simulated numerically by using an explicit finite differ

ence scheme. To insure stability of the numerical scheme a small value of zit = 0.01 and

forward differencing for 15,000-100,000 iterations were used. The numerical code used

to obtain these results is written in Fortran. Numerical solutions to (2.9) in the case of

orthogonal or parallel binding kernels is given in Fig. 2.5a-b and Fig. 2.6a-b. A variety

of initial densities were nsed, including random (in Fig. 2.5a-b and Fig. 2.6a-b) or sinu

soidal deviations from the homogeneous steady state densities 1 and B (obtained from

the steady state equation 2.12b), and from other homogeneous densities for L and B.

The magnitude of these deviations was roughly 10% of the initial homogeneous densities.

(Smaller deviations also cause instability but the time evolution is much slower.) The

variables were discretized typically on a grid of 30 to 36 points (AU =
= 12° and

360° . . .AU = -- = 10 ). For numerical stability I made sure that the values of AU, At satisfied

the Courant-Friedrichs-Lewy condition for a given value of II:

[LAt 1
(AU)2

(2.21)

See Press et al. (1988). The kernel in Fig. 2.3a was used for Fig. 2.5a-b and the kernel

in Fig. 2.3b was used for Fig. 2.6a-b. In the results shown in Fig. 2.5a-b the critical
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Formation of orthogonal network of F-actin in a pooi of initially randomly
distribnted bonnd (a) and free (b) actin filaments. Shown are numerical
results to (2.9) where K is as in Fig. 2.3a. The horizontal axis is orientation
and the vertical axis is the density of bound F-actin at a given orientation
in (a) and of free F-actin in (b). Initial densities (not shown) are L =

L +L0(U,t), and B = B + B0(8,t) where L = 0.8, B = 9.2, L0 and B0 are
10% random noise. Other parameters are 6 = = 0.5, p = 5, p = 0.4 and M

10. The grid size is AU = 36° and At = 0.01. The solutions were found
for 16,000 iterations, with plots shown at 3,200, 6,400 and 16,000 iterations.
Note the scale on free and bound F-actiu indicating that most filaments are
bound. In (a) and (b) four orientations 90° apart have been accentuated.

angle is a = 20° and in Fig. 2.6a-b the critical angle is b = 30°.

In Fig. 2.5 and Fig. 2.6 we present the evolution of bound and free actin filament

densities over time. Fig. 2.5 shows formation of parallel filament structures (two preferred

orientations) whereas Fig. 2.6 shows orthogonal meshworks of filaments (four preferred

orientations), as anticipated from our assumptions about the kernels in each case. It can

be seen that structures that develop in the bound population are similar to those that

arise in the free actin density. Pattern formation occurred either in both populations or in

neither. The number of preferred orientations and their location was identical for bound

and free actin filaments. However, pattern formation appeared sooner in one population

than in the other for certain choices of parameters. For example if 6 << p, which means

a)

0
t

Figure 2.5:

b)
0.5

0,5

0.4

0.3

0.2

0.1

0 60 120 180 240 300 36C
0
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a)

0

0.5

0.4

0.1

0

0

Figure 2.6: As in Fig. 2.5a-b, but showing the formation of parallel networks of F-actin.
Shown are numerical results to (2.9) where K is as in Fig. 2.3b, (a) bound
F-actin and (b) free F-actin. Initial densities as in Fig. 2.5 where 1 = 0.5,
B = 4.5. Other parameters are 6 = 0.6,,8 = O.S,p = 4,/A = 1.2 and M

5. The grid size is z\O = 100 and zXi = 0.01. The solutions were found
for 30,000 iterations, with plots shown at 6,000, 18,000, 24,000 and 30,000
iterations. In (a) and (b) two orientations 1800 apart have been accentuated.

biologically that the rotational diffusion of filaments is considerably higher than the

dissociation rate of the actiu binding proteins with filaments, pattern formation in free

actin filaments took considerably longer than in the bound actin filaments. Also, in all

simulations, the free actin filament density level was considerably lower than the bound

actin filament density level at the final stable configuration. In the following section we

will only present the evolution of the bound filament density since the evolution of the

two populations is essentially the same.

The results of the numerical simulations matched the predictions of the analysis and

pattern formation in networks (Fig. 2.5a-b) or in bundles (Fig. 2.6a-b) was obtained for

a choice of parameter values which satisfied (2.19). Changing any of the parameters M,

t, 6, /3 or p affects the value of the dimensionless constant C that appears in (2.19) and

thus the stability of the system. For example, when monomers assemble into filaments,

0
•0

115

5 10

b)

2’

0.3

I
LI.. 0.2
0

0 60 120 180 240 300 -

80 120 180 240 300 361

6

the total mass of actin filaments, M, increases. Therefore C decreases and this leads to
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the formation of a meshwork or bundles. Similarly, increasing the binding rate of the

binding protein, 3, increasing the actin binding protein concentration, p, or decreasing

the dissociation rate of the actin binding protein, 6, in the cell results in formation of

meshworks or bundles.

We have also observed that, in the case where the critical angle a, or b was either too

small, a, b 50, or too large, a, b 40°, no pattern formed (for 200, 000 iterations) for

any choice of the other parameter values. This means that when the range of angular

attraction is too small, very few filaments become bonnd and they are released before

getting a chance to form big groups. Most filaments remain free, and thus the directional

homogeneity is preserved. In the latter case, i.e. when the range of angular attraction

is too wide, the filaments bind to each other at nearly every possible relative angle.

Most filaments become bound with no apparent structure, and hence, the directional

homogeneity is preserved in this case too.

To summarize, both numerical and analytical results of the model show that the

organization of F-actin into orthogonal networks or bundles depends on the biological

and chemical properties of the molecules, the parameters in the system. Typical values

of parameters taken from biological literature are given in the discussion.

2.5 Model II: two types of binding protein interacting with F-actin (2 di

mensional model)

In this section we consider the case where both orthogonal and parallel binding can

occur. The question addressed is under what circumstances will one of the two forms of

structure dominate. To this end we extend the model in section 2.3 to account for the

existence of two types of actin binding proteins simultaneously: the cross linking and the

bundling proteins. We now allow the actin filaments to bind orthogonally and in parallel.
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We also investigate the transition from the network structure to the bundles and vice

versa. K1 and K2 denote the orthogonal and the parallel binding kernels as in section

2.3. Also p1, /31 and P2, /32 will denote the concentrations and the binding rate constants

of orthogonal cross-linking (1) and parallel bundling proteins (2), respectively.

The equations depicting the effect of the two types of binding simultaneously can be

written as follows:

j(o, t) = — 7L + vgL + 6B — /31p1L(Ki * B) — /31p1L(Ki * L)

—/32p2L(K2* B) —52p2L(K2* L)

-rno’ t) = —“yB + vgB — 6B + ,3ipiB(K1* L) + /3ipiL(K1 * L)+

* L) + /32p2L(K2* L)

In the above equations we have assumed for simplicity that 6 = 62 = 6, i.e. that

dissociation rates for both types of proteins are approximately equal. In order to reduce

to the previous method of analysis, we now define:

K = (1 — i/)K1 + ?J’K2, (2.23)

where

/ !32P2
22.4

and

= /3iPi +/32P2
= /32P2

(2.25)
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Here K is a combined binding kernel and /3p is a combined binding rate and binding

protein density. Note that /32 = 0 (or P2 = 0) results in all orthogonal binding and

= 0 (or pi = 0) results in all parallel binding as in section 2.4. For example, p2 = 0

stands for the situation in which the parallel binding protein, villin, is absent. /32 = 0

represents the case of binding protein that has no affinity to actin, similar conclusions

hold for P1 = 0, /3 = 0 with respect to the orthogonal binding protein, see Table 2.1.

The parameter i/’ represents the ratio of parallel binding to orthogonal binding, and is

summarized in Table 2.1. For purposes of the analysis, it is convenient to vary the single

parameter t,b. As discussed later, in numerical investigations results are calculated for

various values of the parameters 5i, Pi, /32 and P2. After slight rearrangement of terms,

equations (2.22) can be reduced to the previous system, (2.8), but with the new kernel

defined above, in (2.23).

In this section we study both extremes as well as intermediate situations, i.e. we

are interested in all values of t/’ in 0 < /‘ 1. Also note that since K1 and K2 were

normalized, so is K, and further,

(2.26)

The shape of the kernel K (see Fig. 2.7a-b) in this case depends not only on the two

critical angles but also on the parameter & representing the ratio of the concentrations

and the binding rates of the two types of auxiliary proteins. Here we assume that

the effect of two different binding proteins is simply linear in their concentrations. This,

together with the linear property of the operator K* allows us to reduce the new problem

to the old one via (2.23).
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b=0 b=0.5

actin /32=0 13i=O
binding or !3iPi = /32P2 or
proteins P2 = 0 = 0

kernel =
= K1 + K2

=

type of binding orthogonal both kinds of parallel
binding only binding binding only

Table 2.1: The proportion of parallel and orthogonal binding rate and binding pro
tein concentration can be represented by a single parameter /‘ defined
by (2.25).

2.6 Analysis of Model II

2.6.1 Linear Stability Analysis

The analysis is identical to the previous section, and the stability condition is exactly

as given in (2.19), but with the new interpretations of /3p and K as above in (2.25) and

(2.23). The left hand side of (2.19) in this case, too, is a parabola as a function of the

wave number k. and its coefficient depends on the parameters in the system. The right

hand side is a function of the Fourier transform of the combined kernel, K, as in (2.26).

The inequality (2.19) can be rearranged to obtain:

+ B))k <(/31p1k1+/32p2k2)(/3ipi + /32p2 —

/31p1k1
—
/32p2k2) . (2.27)
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H
60 120 180 240 300 36C

8

Shapes of the kernels K representing the combined angle dependence of both
orthogonal and parallel binding. The values of the critical angles are a = 20°
for K1 and b = 20° for K2, note that K is also dependent on the parameter
b. (a) b = 0.3 (for example /3 = 0.7, /32 = 0.3 and Pi = p2). (b) 4 = 0.7
(for example /3 = 0.3, /32 = 0.7 and P1 = P2).

In order to study the transition from the extreme case where the bundling proteins are

inactive or absent, i/’ = 0, to the other extreme case where the cross-linking proteins

are inactive or absent, = 1, we vary j3 (or equivalently p) from 1 to 0 and /32 (or

equivalently p2) from 0 to 1 simultaneously. The reason for this is that we wish to

investigate only the effect of the changes of the binding rates or binding protein ratio

while all other conditions remain the same. See Fig. 2.8a-e for plots of the function on

the right hand side of (2.27) for various values of the parameters as varies from 0 to

1. We also display the parabola on the left hand side of (2.27) on these figures. As

in the previous section, instability at integer wavenumbers k occurs if the parabola on

the left hand side of (2.27) is lower than the function on the right hand side of (2.27),

i.e. the uniform steady state of (2.22) is disrupted and pattern formation is initiated by

perturbations of the form (2.15) whose wavenumbers satisfy (2.19) or equivalently (2.27).

The first integer wavenumber for which (2.27) can be satisfied depends on the value of

5, and for the choice of critical angles a = b = 20°, k changes from 4 to 2 as ,L’ changes
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C = 0.04 0.12 C = 0.04

C = 0.12 C = 0.04 C = 0.3 C 0.12

Figure 2.8: The expression on the right hand side of (2.27) is shown as a function of the
wavenumber k. K is as in Fig. 2.7a and 2.7b for (b) and (d), respectively.
The critical angles are a = 20° for K1 and b = 20° for K2 in all cases. Also
m = P2 = 2 and hence /3p 2 in all cases. The superimposed parabolas
from left to right can be obtained by increasing the ‘total mass’ of F-actin in
the system. In (a) /3 = I and /32 0 and the coefficient C of the parabolas
are 0.12 and 0.04, in (b) i3 0.7 and /32 = 0.3 and C 0.12 and 0.04, in
(c) /3 = 0.5 = /2 and C = 0.12 and 0.04, in (d) /9 = 0.3 and /32 = 0.7 and
C = 0.3 and 0.12, and in (e) /3 = 0 and /32 1 and C = 0.3 and 0.065. The
first wavenumber for which the uniform steady state is disturbed is k = 4 in
(a)-(c) i.e. perturbations of the form eh grow resulting in four accentuated
orientations 90° apart, a network structure. For (d) and (e) the first such
wavenumber is k = 2 i.e. perturbations of the form e2tO grow resulting in
two accentuated orientations 180° apart, bundles.

C = 0.12

I .5

0.5

C = 0.065
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from zero to one (or equivalently 5 from one to zero and 52 from zero to one), (see Fig.

2.8a-e). The transition from k = 4 to k = 2 is sharp, as predicted by the analysis, and

will be discussed in the subsection below.

2.6.2 Numerical Analysis

The numerical solutions of (2.22) are in agreement with the results of the analysis. The

methods of the numerical computations are identical to those of the previous section. In

Fig. 2.9a-e the numerical solutions to (2.22) corresponding to the kernels used in Fig.

2.8a-e are shown. We note that the number of peaks that arise correspond to the integer

for which the parabolas in Fig. 2.8a-e first cross below the curve on the right hand

side of (2.27). For example, this occurs at k = 4 in Fig. 2.8a-c, whereas at k = 2 in

Fig. 2.8d-e. Initial densities were random deviations from the uniform steady state. The

results of cases where deviations were sinusoidal were similar and we do not present them

here. We first summarize the results of the simulations in which the initial densities

were uniform with small deviations. In the cases where the quantity ib was smaller than

0.5 (and even when it was equal to 0.5 in some cases), indicating a higher binding rate

or a higher concentration of the orthogonal cross linking proteins, pattern formation of

orthogonal networks resulted for the choice of parameter values which satisfied (2.27),

see Fig. 2.9a-c. For values of iJ’ closer to i/’ = 0.5, in some cases, two peaks appeared first

and later divided into four peaks. However whether this occurs depends on the values

of the critical angles, a and b, and the parameter 6 which represents the dissociation

rate of the binding proteins. Also for the choice of parameter values for which b = 0.5,

i.e. equal binding rates and/or equal concentrations for both types of binding proteins,

the resulting structure is dependent on the values of the critical angles a and b, and

could be either orthogonal networks or bundles. For the values a = 20° and b = 20° the
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a)

t

18c)

Figure 2.9: Formation of the network or bundles of F-actin in a pool of initially randomly
distributed bound filaments and two type of binding proteins: orthogonal
and parallel. K(k) is identical to the ones used for Fig. 2.8a-e corresponding
to 2.9a-e in order. Initial densities (not shown) are 10% random noise on the
uniform steady state (L, B), L = 0.25 and B = 4.75, and other parameters
are @p = P1 = P2 = 2, i = 1.84,6 = 0.5,1W 5,At = 0.01 and the
grid size is AU = 12°. The solutions were found for: 70,000 iterations,
with plots shown at 1 , 42,000 and 70,000 iterations in (a) and (b), 100,000
iterations, with plots shown at 1 , 60,000 and 100,000 iterations in (c),
50,000 iterations, with plots shown at 1, 10,000 and 50,000 iterations in
(d), and 130,000 iterations, with plots shown at 1 , 104,000 and 130,000
iterations in (e). In (a)-(c) four orientations 90° apart have been accentuated
(network structure), and in (d) and (e) two orientations 1800 apart have been
accentuated (bundles).
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filaments organize into a network when 7/’ = 1, see Fig. 2.9c. In the cases where the

qnantity 7/’ was larger than 0.5 (higher binding rate or a higher concentration of bundling

proteins) pattern formation in the form of bundles resulted for the choice of parameter

values which satisfied (2.27), see Fig. 2.9d-e. The transition from one type of structure

to the other was very sharp, as predicted by the analysis. We have also simulated cases

with pre-structnred initial densities to analyze how stable these structures are to sndden

changes in their environment. For example, we started with a pool of filaments organized

mostly parallel to each other as in Fig. 2.9d, and let the parameter 7/ be very close to

0 (a sudden change from high parallel binding rate to high orthogonal binding rate), or

we started with a network of filaments as in Fig. 2.9b, and let the parameter 7/’ be very

close to 1 (a sudden change from high orthogonal binding rate to high parallel binding

rate). Through these simulations we have found that for the same parameter values, the

same type of structure results regardless of the choice of initial densities, i.e. whether

uniform or pre-structnred. However, in the case of pre-structured initial densities the

orientations that appeared were usually determined by the initial ones, with either two

new peaks appearing in between the existing ones (change from bundles to networks) or

two alternating peaks disappearing (change from networks to bundles). This transition

does not require the complete break up of the existing structure; rather the new structure

forms on the remnants of the old one. Thus in our model the cell is capable of switching

its cytoskeletal structure while preserving its polarity, rather than choosing a random

new direction after every switch. This might be compared to the situation where cells

moving in a particular direction tend to continue in that direction even in the absence of

external stimuli.
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2.7 Generalization of Models I and II to 3 dimensions

The models in sections 2.3 and 2.5 are two dimensional analogues of a truly three dimen

sional structure. In the 2D models, I and II, the functions L(O) and B(Q) have as thier

domain an interval of length 2K with periodic boundaries. This domain is formally equiv

alent to a unit circle. Thus the problem of pattern formation in angle 0 can be thought

as a pattern formation on a unit circle. Similarly, in 3D, a given orientation can be put in

correspondence with a unit vector, and thus with a point on the surface of a unit sphere.

Thus to extend the analysis to 3D it is necessary to generalize the domain from a unit

circle to a unit sphere. We represent the points on the surface of a unit sphere by (ci, 0),

where 4) is in [O,ir] and 0 is in [0, 2K]. The equations of the model in three dimensions are

largely analogous to (Mogilner and Edelsteiu-Keshet, l994a). One studies perturbations

of the uniform steady state that are spherical harmonics, i.e. Legeudre polynomials. The

dispersion relation analogous to (2.19) or (2.27) then involves the inner product of K

with these spherical eigenfunctions, rather than the Fourier transform K.

Directions in 3-D can be represented by unit vectors on the surface of a unit sphere.

A spherical coordinate transformation leads to the representation of the vectors in the

cartesian coordinate system (x, y, z) in terms of angular coordinates (r, 4), 0). The angular

coordinates Q = (, 0) will be used to describe an orientation. (See Figure 2.10). This

is commonly referred to as the surface spherical coordinates. A unit vector in cartesian

coordinates has the corresponding representation:

u = (x,y,z) = (cos0sin4),sinOsin4),cos4)). (2.28)

The problem in 2-D, described by the equations (2.9), can then be generalized to 3-D

by converting the convolution terms and the rotational diffusion term to account for the



Chapter 2. Models for rapid alignment of actin filaments 40

Figure 2.10: The angular coordinates (, 8) shown in 3D. (k, 8) represent the angles on
the unit sphere.

3-D dynamic.

The rotational diffusion in 3-D corresponds to a random walk on the surface of a unit

sphere. Hence this can be described by the angular part of the Laplacian operator in

3-D. In surface spherical coordinates this is:

1 8 8 1 82
A

= sino sin +
sin28O

(2.29)

Similarly the convolution terms which account for the interaction of filaments on the rim

of a unit circle in 2-D can be generalized to account for interactions with filaments over

the unit sphere. These interactions depend on the relative orientation of the filaments as

explained in 2.4. The angle between two filaments oriented at 0 and 0’, in 2-D, is simply

0 — 0’. In 3-D the angle between two filaments oriented at Q and Q’, say 7, can also be

expressed in terms of the angles th, 0, 4/ and 0’, however it is a complicated expression.

Conveniently, the cosine of the angle 7, cos 7, can be calculated simply by considering

z

x

y
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two unit vectors, n and n’, oriented at !2 and IV, and taking their scalar product n n’.

n = (cosOsin,sinOsinç&,cosç&),

= (cos 0’ sin ‘, sin 0’ sin qS’, cos ‘), . (2.30)

cos 7 = n n’ = cos cos ç’ + sin sin ‘ cos(O — 0’)

Since we assume that filaments interact in 3-D depending on the relative angle, 7, between

them, the kernel K is a function of this variable: K(7). In the light of the above

calculations it is convenient to express this kernel as a function of the cosine of the angle

.
Defining ri = cos 7 we denote this new function with the same symbol, K(r1). We

consider three types of interactions:

1- Orthogonal binding or binding at close to right angles, K1(i7), Fig. 2.lla,

2- Parallel binding or binding at acute angles, K2(), Fig. 2.llb,

3- Both orthogonal and parallel binding, with a large critical angle value for orthogonal

binding and a small critical angle value for parallel binding K3(i1), Fig. 2.Ilc.

4- Both orthogonal and parallel binding, with a small critical angle value for orthog

onal binding and a large critical angle value for parallel binding rate K4(i7), Fig. 2.lld.

Also, the line integral in 2-D will be replaced by a surface integral (a double integral)

in 3-D. The surface differential dS in spherical coordinates being:

dS = sin d0d, (2.31)

the convolution terms take the following form:
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Figure 2.11: The kernels K.j(r1) for i = 1, 2, 3 and 4 representing the four types of inter
actions listed above. Note that the argument of K, the cosine of an angle:

= cos’y, is varying from -1 to 1. The kernels in Fig. 2.lla and b corre
spond to the ones shown in Fig. 2.3a and b. Only here, the argument is i

rather than 0. The kernels shown in Fig. 2.llc and d are of the form (2.23)
where K1 and K2 as in Fig. 2.lla and b, and = 0.33 and = 1 for c and
d respectively.

K * L = Is K(, !Y)L(’, t)dS

çir r2Tr
= Jo Jo K(, 0, gY, 0’)L(çb’, 0’, t) sin qYd0’dY

= ff1 K()L(qY, 0’, t)d(cos çY)dO’

(2.32)

where S is the surface of the unit sphere. Hence the equations analogous to (2.9) in 3-D

can be written as follows using the new definitions of the convolution and the diffusion
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terms:
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= pAL + SB — /3pL(K * B) — /3pL(K * L),
233

V(Q,t)= —SB+pB(K*L)+pL(K*L).

2.7.1 Linear Stability Analysis

Analogously to the 2-D case, we look for the homogeneous steady state of the equations

(2.33) where filaments are equally distributed in every direction !l = (‘, 0). We wish to

determine whether this steady state can be destabilized leading to patterns in 1! signifying

a transition from isotropic to nonisotropic networks of filaments.

The linearized set of equations which govern perturbations, are, by direct analogy

with equations (2.13):

(O, t) = pAL0 + SB0 — flp(L(K * B0) + L0B) — p(L(K * L0) + L0L)
2 34

—rn11°’ t) = —SB0 + /3p(B(K * L0) + B0L) + ,Øp(L(K * L0) + L0L)

•The operators A and K* in these linear equations now have as their domain the set of

functions on the unit sphere. This surface spherical geometry restricts eigenfunctions of

these operators to the set of surface spherical harmonics (SSH) Y(Q),

Y(Q) = Y(,U) = AF(cos) + E(A cosmO + BsinmO)F’(cos), (2.35)
m=1

where F are the Legendre polynomials of degree n and F, are the associated Legendre

functions of degree n and order in. Indeed, both operators share this set of eigenfunctions,

and
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= —n(n+1)Y
(236)

K*Y = k(n)Y

where the multipliers of Y, on the right hand side are the corresponding eigenvalues and

— p1

K(n) = 2rrj K(71)F(9i)d97. (2.37)
—1

(See Appendix C for details.) It is a well-known result that the set of SSH forms an

orthonormal basis for functions satisfying Dirichlet ‘.s Conditions on the unit sphere

(MacRobert, 1927; Arsenin, 1968; Hobson, 1931), so that such a function f(’,O) for

o <q r, 0 <0 2r can be expressed as:

f(, 0)
=

Y@, 0). (2.38)

Thus, to investigate the stability of the steady state we consider perturbations of the

following form:

L(fl,t) L
=

— + Y(Q)e. (2.39)
B(fl,t) B B0

As in the 2-D case here too L and B are steady state values, L0 and B0 are small

amplitudes. A is the growth rate and n is the mode number of the perturbation.

Substituting these into (2.34) and retaining only the linear contributions, we arrive

at the following inequality, the dispersion relation, which is analogous to equation (2.19)

in 2-D.

Cn(n +1) <f?(n)(i - k(n)) (2.40)
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where,

C
= ((L ) (2.41)

The details of these calculations is given in Appendix C and follow closely the 2-D case.

The dispersion relation (2.40) differs from the dispersion relation (2.19) in its dependence

on the mode number n: note that in the 2-D case the dependence on the mode number

k is of the form k2 whereas here the dependence on the mode number n is of the form

n(n + 1). We conclude that the homogeneous steady state is destabilized and pattern

formation is initiated by perturbations of the form (2.39) provided that the mode number

n satisfies (2.40).

An integral form of the kernel K, K, as in (2.37), appears in this equation. This is

analogous to K, the Fourier transform of K, appearing in the dispersion relation (2.19)

in the 2D case. Similarly to the 2-D case we visualize (2.40) graphically in Fig. 2.12a-d

for the four types of kernels given in Fig. 2.lla-d. In Fig. 2.12 the expressions on both

sides of the inequality (2.40) are plotted superimposed as functions of the mode number

n. The coefficient C of the quadratic function on the left hand side of (2.40) is positive

small in all biologically relevant cases.

The inequality (2.40) depends on the shape of K(n)(l — [((n)) and on the constant

C. For this case, since the eigenfnnctions are 5511 and hence the function k(n) involves

Legendre polynomials of degree n, this expression can only be evaluated for integer n. Its

discrete values have been connected by line segments in Fig. 2.12 for ease of visualization.

For instability the quadratic function of n must be lower than the function on the right

hand side for some integer mode number n. In Fig. 2.12a and c, n = 4 is the first such

mode number. Thus the harmonic Y4 breaks the stability and becomes the leading mode.
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Figure 2.12: The ftmct.ion on the right hand side of (2.40) is shown superimposed with
the quadratic function of n on the left hand side for various values of the
coefficient C. The plots a-d correspond to the four different type of kernel
shown in Fig. 2.ila-d. Iii cases a and c the first mode causing instability is
4, while in b and d it is 2. The quadratic function on the left hand side is
shown for the following values for the coefficient C: in a and c C = 0.015
and 0.005 and in b and d C = 0.05 and 0.015.

This mode is rotationally and pattern-wise highly degenerate. However, it is shown in

(Busse, 1987) that the mode competition removes the pattern degeneracy. The resulting

pattern has the form of six mutually perpendicular smooth peaks on the surface of the

unit sphere. (Two of them at the north and the south pole and four of them mutually

perpendicular on the equator.) Most filaments are oriented in a mutually orthogonal

manner: the 3D orthogonal network architecture of microfilaments observed in the cortex.

In Fig. 2.12b and d the first mode for which (2.40) is satisfied is ii = 2, thus the second

harmonic Y is the leading mode. This mode is rotationally degenerate. It is shown in

(Mogilner and Edelstein-Keshet, 1994) that the harmonics P2’ and P die out and the
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leading mode is P’. The pattern evolved is axisymmetric and the angular distribution

of filaments looks like two smooth peaks at the north and south pole. The filament

density is increased on the poles and diminished on the equator suggesting the alignment

of F-actin in a parallel manner. This type of parallel alignment of microfilaments in 3D

is commonly observed in stress fibers. The competition of different modes, F,, for the

case of the second and the fourth harmonics, Y2 and Y4, is discussed in greater detail

in (Mogilner and Edelstein-Keshet, 1994). We conclude that the results of the linear

stability analysis of the model in 3D are highly analogous to the results of the linear and

numerical analysis in 2D case, one important difference being the value of the constant

C for which the stability breaks. This constant is a combination of the parameters in the

model such as the total mass of actin, M, the kinetic rates of the binding proteins, fi, and

the amount of available binding protein, p. In the 3D case C = 0.005 and C = 0.015, see

Fig. 2.12a-d. In the 2D case, C = 0.065 and C = 0.12 (one order of magnitude higher)

(see Fig. 2.8a,b,d and e for comparable kernels). This indicates that the steady state is

more stable in 3D than it is in 2D. That is, stronger interactions or higher total mass of

actin are necessary for the organization of filaments in ordered structures. (See Mogilner

and Edelstein-Keshet, 1994-a.)

2.8 Nonlinear analysis in 2D and 3D

The instability discussed in sections 2.4, 2.6.1 and 2.7.1 is analogous to the isotropic

nematic transition in liquid crystals. In that case, linear stability analysis is sufficient to

describe pattern formation in 2D but not in 3D. A complete bifurcation analysis of Model

I in both 2D and 3D has been carried out in Mogilner and Edelstein-Keshet (1994a). They

applied analysis following the synergetics approach (Haken, 1977; Friedrich and Haken,
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1989) in which an assumption is made that the fastest growing mode controls the ampli

tudes of all other (slave) modes. A full mode expansion is substituted into the nonlinear

model and terms up to third power in the leading mode and up to second power in the

other modes are kept. This leads to a system of equations for the mode amplitudes. In

2D, from these equations, it can be deduced that the bifurcation is supercritical (implying

a non-equilibrium phase transition of second order). This implies that as a governing pa

rameter increases past its bifurcation value the amplitude of the inhomogeneity increases

gradually. In 3D a similar analysis can be applied but the modes are described by the

SSH and the calculations are more complex. In contrast to the 2D case, the transition

in 3D case is a transcritical bifurcation implying a non-equilibrium phase transition of

first order. This means that the amplitude of the pattern jumps abruptly from zero to a

higher value. Physically this means that the stable inhomogeneous pattern can co-exist

with the homogeneous distribution.

2.9 Discussion and conclusions

The main points and results of this chapter can be summarized as follows:

(1)- The model presented here accounts for directional distribution of F-actin without

considering its spatial distribution.

(2)- The observed dynamics of assembly and disassembly of F-actin structures in the

cell can be explained by relatively simple interactions of the molecules in the cell.

(3)- The switch between an orthogonal network and bundles of F-actin may result

simply from a change in the binding rates or in the concentrations of actin binding

proteins, see Fig. 2.8 and 2.9 for 2D results and Fig. 2.12 for 3D case. These in turn,

could be governed by messages received by the cell and expression of the genes coding

for these actin binding proteins.
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Recent experimental evidence also suggest the key importance of the kinetic rates of

the binding proteins in the formation of actin cytoskeleton. Wachsstock et al. (1993)

and (1994) showed that the structure of actin filament gels depends strongly on affinities

(kinetic rates) of the binding proteins.

As previously mentioned actin filaments are polar structures with two structurally

different ends. The polarity of filaments has not been explicitly included as yet in the

above models, but, in cases where it is important, it can readily be accommodated

by a slight change. In actin structures the filaments can display any of the following

configurations: (a) bundles with locally uniform polarity, (b) bundles where filaments are

arranged in anti-parallel fashion (opposite polarity) and (c) networks of perpendicular

filaments. The polarized binding of filaments can be accommodated in the model simply

by changing the kernel, K2(O), in section 2.3 to allow binding only in the case of acute

contact angle. An example of this sort would be a kernel as in Fig. 2.3a, but without

the hump in the middle. Our conclusions, and the results of the linear analysis and the

numerical computations remain valid also with this type of kernel.

Examples of actin structures considered in this chapter include orthogonal networks

of filaments observed in the periphery or cortical cytoplasm of motile cells, for example

pseudopods, lamellipodia and membrane ruffles of moving or spreading cells and bundles

of actin filaments observed in stress fibres, microvilli (column-like structures) of epithelial

cells and filopodia (finger-like projections) of blood cells (Hartwig, 1980; Hartwig, 1992;

Stossel, 1984; Way and Weeds, 1990; Weeds, 1982).

We base all interactions and physical and molecular properties on the biological data.

Most of the parameters in the model appear in biological literature, but not in forms

corresponding exactly to the parameters in the equations. In (Sato et al., 1987), the

dissociation constant for the complex Acanthamoeba a-actinin (a cross-linking protein
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found in amoeba as wefl as in many other organisms (Pollard and Cooper, 1986; Sato et

al., 1987; Stossel et al., 1985)) with actin ifiaments has been measured in sedimentation

binding experiments as 26,uM. From this value, they also give estimates of the association

and dissociation rate constants of the a-actinin with F-actin as io — 107M’s1 and

2-200.s—’, respectively. These correspond to our model parameters /3 and
.

The values

of these rate constants are known for various other actin binding proteins too (Pollard

et al., 1990).

The rotational motion of F-actin has been extensively studied (Mossakowska et al.,

1988; Phillips et al., 1991; Sawyer et al., 1988; Thomas et al., 1979). A typical value for

the rotational correlation time of actin filaments of average length 1im is (10-lOOjzs),

from various cells (for example rabbit skeletal muscle or chicken gizzard smooth muscle

actin) have been measured using various techniques, for example by solid-state nuclear

magnetic resonance (NMR) spectroscopy. Note that these are the results of in vitro

studies, and the average length of actin filaments in vitro and in vivo differ significantly

(e.g. 1zm and 0.ljtm). The results show that the time scale of filament motion is

of the order of microseconds. The rotational diffusion coefficient, z, of F-actiu can be

calculated from the rotational correlation time viewing the actin filaments as a rigid body

diffusing about its long axis. The rotatioual correlation time given above corresponds to

a rotational diffusion coefficient (10 — 104r1).

The time scale of dissociation and association rates of the actin binding proteins are

comparable to the time scale of the rotational diffusion rate of F-actiu. Many of the other

parameters in our model, such as the elongation rate constant, 7, or the total filament

concentration. M, are provided in (Cooper et al., 1983; Cooper, 1991). Typical values

are: M = 300-400,uM (local concentration in lamellae), and 7 = 107M1r’. We have

not yet gathered a complete set of biological parameters for our equations, but this is
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an important future goal. This is a rather difficult task since the parameters appearing

in literature are being measured under different circumstances (some in vitro and some

others in vivo), from various species, and under various chemical conditions.



Chapter 3

Models for gradual alignment of actin filaments

3.1 Introduction

After the investigation of the models described in Chapter 2, certain drawbacks of these

equations appeared: while the models were a reasonable description of a process of rapid

(nearly instantaneous) alignment mediated by certain binding proteins, they could not

describe cases in which the actin filaments are gradually pulled into alignment. The

interactions of myosin with actin are of this type: myosin binds to two actin filaments

and gradually pulls them into an aligned (anti-parallel) configuration. This is referred

to as the actin-myosin sliding filament mechanism (Alt, 1987; Mabuchi, 1986). This

important class of proteins could not be omitted from consideration in models of actin

dynamics, and motivated a new model.

As will be shown, a model which accounts for gradual turning differs from the previous

models in having drift terms (in angle) where these were absent before. In Chapter 2,

models consisted of two coupled equations for the bound and free actin filaments, but as

we will show below, the model for gradual alignment can be based on a single equation

which, by itself, reproduces the phenomena of alignment. We still view the process of

alignment as a phenomenon mediated by a variety of actin-binding proteins, and we

consider not only myosin, but also proteins which would have effects similar to those

discussed in Chapter 2.

Aside from being the simplest type of model for gradual alignment, the model we will

52
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describe here has several convenient featnres: first, it can be analysed for linear stability

in a straight-forward way. Second, it allows some explicit steady state solutions to be

found. These allow us to study several classes of interactions. Some of these are essentially

similar to cases discussed in Chapter 2, but some new cases, including that of myosin

and unipolar bundling proteins are also included. The results of the model are given for

interactions in two dimensions. (The analysis leading to explicit solutions necessitates

2D, but the linear stability analysis can be generalized to 3D in a straightforward way,

as before.)

In the gradual alignment model, the turning rate of an actin filament is assumed to

be influenced by all other actin filaments, which interact with it in an angle-dependent

way. The kernels, in this case, represent the turning rate of one filament towards another.

(The convolution K * A is the cumulative turning rate, or drift velocity, induced by the

actin density.) Note that this is in contrast to the meaning of convolutions in Chapter 2,

where they represented probabilities of binding.

As before, the details of the functions taken to represent the turning rates do not

heavily influence the predicted behavior. Only some general symmetry properties of

these kernels are essential. Therefore, in this chapter, we approximate the various classes

of interactions (corresponding to various binding proteins) by using two sorts of con

venient forms of the kernels. We investigate the linear stability analysis of the model

using piecewise linear kernels (for which it is easy to compute the fourier transform),

and we discuss explicit steady-state solutions using trigonometric kernels (for which the

appropriate integrals are easily evaluated.) The symmetry properties of corresponding

cases are the same, even though their functional form is distinct. As we will see, these

two distinct functional approximations lead to essentially similar qualitative results.

Parallel to chapter 2, we extend the model to account for the competition of binding
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proteins when more than one type is present. The results obtained for cases corresponding

to those discussed in chapter 2 are in agreement. This leads to the conclusion that the

predictions are robust, i.e. are not highly sensitive to the precise details of the models.

3.2 Angular drift model

We consider one type of actin density, A, as it is mathematically simpler to deal with a

single equation. Also this model leads to pattern formation with a single equation which

was not possible in the case of previous models.

The two-dimensional model is based on the following variables:

0 = an angle, —7r 0 ir, with respect to some arbitrary fixed direction,

A(0, t) = the concentration of actin filaments at orientation 0 at time t,

K(0) the rate of turning of filaments meeting at a relative angle 0.

The rate of turning of a given filament, K, depends on its interaction with all other

neighboring filaments; moreover it depends on the type of binding protein that mediates

these interactions. The following equation describes how the density of filaments in a

given direction changes through filament-filament interaction mediated by actin binding

proteins:

ÔA(0 t) U 8A2
Ut

= oV(0t)A(0t) + (3.42)

V(0, t) = K * A
= L K(0 — 0’)A(O’, t)d0’. (3.43)
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Equation (3.42) is a standard conservation equation:

= —V. (Flux), (3.44)

FMwhere the Flux term includes both a convective (VA) and a diffusive term (—p--). The
first term in equation (3.42) represents a continuous drift with angular velocity V(O, t).
This velocity, which is given by the convolution integral, represents the turning of a single
filament under the cumulative influence of interactions with all other filaments. We as
sume implicitly that the total effect of the other filaments is a simple superposition. This
assumption leads to the convolution shown in (3.43) and to the quadratic nature of the
nonlinearity. The second term in (3.42), which is the rotational diffusion, represents the
random turning of filaments as before. The drift term represents deterministic dynamics
while the laplacian accounts for stochastic effects. As before, we do not represent the
spatial distribution of filaments. We consider A(O, t), K(O) as smooth periodic functions
of 0 on (—ir, ir). From equation (3.42) it can be shown that the total mass of of the
system is conserved, so that:

M
= £ A(0)dO (3.45)

is constant.

The equation (3.42) is a phenomenological description. However it can be derived
rigorously as a Fokker-Planck approximation from assumptions about the underlying
stochastic turning process (see Segel and Jaeger, 1992).

Details of the interactions will depend heavily on the shape of the kernel K which has
different forms to account for different kinds of actin binding proteins. Actin filaments
in the cell orient at various angles to one another depending on the type of actin binding
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Figure 3.13: Schematic diagram summarizing some actin binding proteins, their shape
and interaction with actin filaments.

protein mediating their interaction. We discuss four classes of actin binding proteins in

the section below.

3.3 An overview of binding proteins

Pollard and Cooper (1986) give an excellent review of actin binding proteins. (See Fig.

3.13 for a summary.) Here we restrict our attention to the proteins that bind to the sides

of actin filaments, linking them together. Briefly we can consider four major categories,

nnipolar and bipolar bundling, orthogonal networking and myosin. We have already

described the first three classes in Chapter 2 under the assumption of rapid turning and

alignment. We now reconsider them with the gradual turning model. Further, we can

now treat myosin, which is known to mediate slow turning and sliding of actin filaments.

sliding capping

bundling actin ifiaments

/

orthogonal networking

stiffening fragmenting
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3.3.1 Unipolar bundling proteins (I)

This group includes fimbrin, fasciu, and villin. These proteins promote the formation

of unidirectional F-actin bundles in which the filaments have the same polarity. Such

bundles are observed in numerous cell types including the brush border microvifli of

epithelial cells, the cortical microvilli of fertilized egg oocytes, the streocilia of cochlear

hair cells, the processes extending from the surface of blood platelets and others. The

actin binding proteins in these structures hold the filaments tightly together in bundles.

The physiological purpose of this type of actin structure is to stabilize cell protrusions, e.g.

for the purpose of increasing surface area for exchange of material with the surroundings

(Pollard and Cooper, 1986; Pollard, 1990; Stossel, 1984). While we only have information

about the final configuration of the actin bundles we can speculate about the dynamics

that lead to its formation. In particular, it is evident that the filaments have a tendency

to converge to a parallel orientation in the presence of these proteins, with the pointed

ends all converging to the same direction.

3.3.2 Bipolar bundling proteins (II)

Bipolar bundling proteins attach filaments to each other both in parallel and antiparallel.

These binding proteins are generally observed in stress fibres on the ventral surface of

mammalian fibroblasts, in epithelial cells in culture, in endothelial cells in vivo, and in

the cytoplasm of amoebas. Annular rings seen around the whole cell consist of such

bidirectional arrays of fibers, closely resembling stress fibers. Similar filament bundles

are observed at the peripheral margin or the leading edge of blood platelets and of tissue

culture cells. Spectrin, tropomyosin and a-actinin are from this group and most of them

can bind the sides of two different actin filaments (Pollard and Cooper, 1986; Pollard,

1990). It is evident that filaments converge to either parallel or anti-parallel orientation
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and we will assume this occurs with equal probability.

3.3.3 Orthogonal networking proteins (III)

There is a class of binding proteins that promote orthogonal networks. Orthogonal

networks of actin filaments are often observed in the periphery of motile cells such as

amoebas, macrophages, leukocytes and some blood platelets. In these structures, long

actin fibers are linked together in oblique or right angle relationships. A substantial

majority of filaments in the periphery of the cell cortex consist of short fibers and are

often found in T- and X-shaped junctions. Such binding proteins include ABP and

filamin (Stossel, 1994; Stossel, 1990; Pollard and Cooper, 1986). In particular, filamin is

believed to be a floppy hinge with two nearly perpendicular arms. Stossel suggests that

the role of the orthogonal networking proteins is to preserve the isotropic 3D structure

of the cytoskeleton (without filamin, bundling and cross-linking proteins would collapse

the network into linear structnres, changing the mechanical properties of the cytogel

drastically).

3.3.4 Myosin (IV)

The small bipolar myosin molecules arrange actin filaments in bidirectional bundles by

pulling adjacent randomly oriented fibers against each other. Such bundles have a role in

contractile events associated with cytokinesis and motility such as endocytosis, exocytosis

and membrane ruffling. A functional myosin unit consists of a complex of two myosin

molecules. Each molecule has an active head capable of binding to and walking towards

the plus end (the pointed end) of an actin filament. If two actin filaments are spatially

fixed at their ends and connected by the myosin complex then the gliding of the myosin

heads along the filaments leads to the gradual turning of the filaments to an anti-parallel
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configuration. The velocity of gliding of myosin is about liz/s (see Peskin et al., 1994).

This means that, in this case, the process of alignment of the attached microfilaments

is not rapid as in Chapter 2. The gradual turning modeled by equation (3.42) is more

appropriate for this case.

3.4 Classification of Kernels

We assume that the binding protein causes the gradual alignment of filaments to which

it is attached. As there is no quantitative data on the dynamics of this process, we

will consider several reasonable scenarios. In this section we introduce a few functional

representations of the alignment rates. That is, we suggest possible forms for the kernels

which would be representative of the classes of actin binding proteins introduced in section

3.3. We will assume symmetry of turning towards positive and negative directions (we

neglect any possible chirality of the molecular interactions). It then follows that all

kernels K(O) are odd functions, so that:

L K(O)dO = 0. (3.46)

Two basic types of functions (leading to four distinct kernels) will be investigated:

( L3+aO forO0,
(a) K(O) =

—3+aO forO<0.

(3.47)
a(O—7r) for —7rO<—,

(b) K(O)= riO for —<O<

a(O+vr) for<O<ir
In this model the kernel is not normalized (i.e. the integral of )K) is not set equal to

1). This means that the rate constants are included as part of the expressions for K.
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Figure 3.14: Shapes of the kernels K representing various types of interactions between
actin binding proteins and actin. The values (in particular the signs) of the
parameters a and j3 determine the type of interaction the kernel represents.
In (a) the kernel is of type 3.47a with = —land a = —1, unipolar bundling
proteins, in (b) the kernel is of type 3.47a with 3 = 1 and a = 1, bipolar
bundling proteins, in (c) the kernel is of type 3.47a with = 4 and a = —1,
bipolar bundling proteins, and in (d) the kernel is of type 3.47b with a = 1,
orthogonal binding proteins.

rfhe parameters a and ,8 determine the type of interaction represented. a is the slope

of the function K(O), and is the y-intercept of K, the magnitude of the velocity at

o = 0. (See Figure 3.14 for the graph of kernels of type a and b above for some choices of

the parameters a and .) The biological and mathematical meaning of these parameters

is discussed in greater detail below for each of the cases. We now describe the specific

forms these kernels take for different choices of a and , and the binding protein they

represent.

b)

—. theta

z
. theta

/
theta

—ir

/1
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I’

direction of V

-Ic It

relative angle

Figure 3.15: Shown is the direction of the angular drift due to interactions of ifiaments
(mediated by unipolar bundling proteins) meeting at a relative angle 9. This
case is referred to as ‘attraction’ since filaments converge to a configuration
where they have the the same orientation. Note that the direction of move
ment is counterclockwise when the kernel is negative and clockwise when the
kernel is positive.

3.4.1 Kernels for unipolar bundling (I)

We first look at some kernels representative of interaction between filaments mediated

by unipolar bundling proteins. In these cases, the kernel is of the form (3.47a) where

j3 0 (see 3.2). Thus the rate of change of the relative angle between filaments K(9) is

negative for positive 0 and positive for negative 0, that is motion is towards 0 = 0 so the

filaments converge towards each other, a parallel configuration (see Fig. 3.15). We refer

to this convergence as ‘attraction’.

We further consider the following specific cases:

(1) 5 = 0, a < 0.

The filaments oriented at acute relative angles are attracted weakly to zero while those

at obtuse relative angles are attracted strongly. Note that the angular velocity is zero if
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the relative angle is zero.

(2) < 0, a = 0.

In this case, the angular velocity is independent of the relative angle. All filaments are

attracted to a relative orientation U = 0 at the same rate.

(3) < 0, a < 0.

This case is same as case (1), however the angular velocity is non-zero for all angles. (See

Fig. 3.14a for the graph of a kernel of this type.)

(4) 3 < 0, a> 0 and fi < —ar.

This case is similar to case (3) with the exception that here filaments oriented at acute

relative angles are attracted to a zero relative angle strongly while those oriented at

obtuse relative angles are attracted weakly.

3.4.2 Kernels for bipolar bundling (II) and myosin (IV)

In these cases, the kernel is either of the form (3.47a) where j3 0, or (3.47b) where

a < 0 (see 3.2). In case (3.47a), K(O) is positive for positive 0 and negative for negative 0

so motion is away from 0 = 0 and filaments diverge towards an anti-parallel configuration

(see Fig. 3.16). We refer to this as ‘repulsion’. In case (3.47b) K(0) is negative for acute

relative angles and positive for obtuse relative angles implying the tendency for parallel

alignment at acute angles and for anti-parallel alignment at obtuse angles.

We consider the following specific cases for the kernel (3.47a):

(1) /3 = 0, a> 0.

The filaments oriented at acute relative angles are repulsed weakly from zero while those

at obtuse relative angles are repulsed strongly. At 0 = 0 the angular velocity is zero.
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0
relative angle

Figure 3.16: Shown is the direction of the angular drift due to interactions of filaments
(mediated by bipolar bundling proteins) meeting at a relative angle 0. This
case is referred to as ‘repulsion’ since filaments converge to a configuration
where they have anti-parallel orientations.

(2) 41> 0, a = 0.

In this case the angular velocity is again independent of the relative angle. Filaments are

repulsed from 0 = 0 equally regardless of their relative orientation.

(3) 3> 0, a> 0.

This case is same as case (1). However the angular velocity is non-zero for all angles.

(See Fig. 3.14b for the graph of a kernel of this type.)

(4) 3> 0, a < 0 and /3> —air.

This case is similar to case (2) with the exception that filaments oriented at acute relative

angles are repulsed from 0 = 0 strongly while those oriented at obtuse relative angles are

repulsed weakly. (See Fig. 3.14c for the graph of a kernel of this type.)

-Tv

direction of V

IC
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Figure 3.17: Shown is the direction of the angular drift due to interactions of filaments
(mediated by orthogonal binding proteins) meeting at a relative angle 6.

3.4.3 Kernels for orthogonal binding (III)

In view of the structure of filamin, we assume that filaments converge to an orthogonal

configuration from both acute and obtuse relative angles. This suggests kernels of the

form (3.47b) where a > 0 (see 3.2). (See Fig. 3.14d for the graph of a kernel of this

type.) The rate of motion in this case is illustrated in Fig. 3.17.

3.4.4 Competition between two types of binding proteins (V)

We now consider the case of competition between two types of actin binding proteins when

they are simultaneously present in some proportions. We consider two cases, namely (1)

myosin and orthogonal binding proteins and (2) the bipolar bundling and the orthogonal

binding proteins. We represent the interaction of F-actin with two types of biuding

proteins by simply taking a linear superposition of the kernels of type (a) and (b) in

(3.47). (We are making a simplifying assumption, i.e. that the binding proteins do not

interfere with one another, as this would create nonlinear effects that are not described
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here.)

(1) Orthogonal binding proteins (III) and Myosin (IV)

Both kernels for type III and IV interactions are given by the basic form (3.47b) (see

3.2). However, the coefficient a is positive in the case of orthogonal binding protein

(III) and negative for myosin (IV). We will define K1(O),K2(O) to be kernels of the form

(3.47b) with a1 > 0 (III) and a2 < 0 (IV) in place of a, respectively. The coefficients

a1 and a2 are called the ‘effectiveness’ parameters, and represent the combined effects

of binding rate constant and concentration of the binding protein. (Note the similarity

to the combined effects of binding proteins described in section 2.5 where jpj represent

the binding rate and concentration of binding protein i.)

(2) Orthogonal binding (III) and Bipolar bundling proteins (II)

The kernel for orthogonal binding kernel is (3.47b) with coefficient a1 > 0, whereas the

bipolar bundling is simply given by (3.47a), with /3 > 0 and a2 > 0 (see 3.2). As in (1)

above, the coefficients can be viewed as the ‘effectiveness’ parameters of the two binding

proteins.

3.5 Linear stability analysis

We now examine steady states of equation (3.42) and their stability. Later on we will focus

on the specific forms that the stability criterion takes for different kernels. The analysis

of the model is similar to the analysis of the model in Chapter 2. The homogeneous

steady state A of the equation (3.42) satisfies:

aA DA -

= 0 = -a-, and A = constant. (3.48)
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Kernel type parameters type of protein

Type (a) /3 0, a e J? Tinipolar bundling (I)

Type (a) /3 0, a e Bipolar bundling (II)
or or

Type (b) a < 0 Myosin (IV)

Type (b) a > 0 Orthogonal binding (III)

Type (b) a1 < 0 Orthogonal binding
+ +

Type (b) a2 > 0 Myosin (V) (1)

Type (b) a1 < 0 Orthogonal binding
+ +

Type (a) /3> 0, a2 > 0 Bipolar bundling (V) (2)

Table 3.2: Table summarizing the types of kernels and the parameters a and /3,
representing different actin binding proteins. The forms of the kernel
of types (a) and (b) are given in 3.47.
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Note that any constant level of the variable is a steady state, but the value of the

constant is determined by the total mass which is conserved by equation (3.45). We wish

to examine the stability of this uniform steady state. As for Model I in Chapter 2 ,

terms are the eigenfunctions of the two operators appearing in the equation, namely the

Laplacian in 1D, and the integral operator. This fact greatly simplifies the linear analysis

of equation (3.42). Thus, we consider perturbations of the form:

A(O, t) = A +A0e°J’. (3.49)

where A0 is a small amplitude, lv is the wave number and A is the growth rate of the

perturbation. We seek conditions for which such small perturbations from the steady

state are amplified with time, i.e. for which A > 0 for some nontrivial wave number lv.

Substituting (3.49) into (3.42) and retaining the linear contributions we find that:

AAoe3CSe)\t = _ikAA0euJOe)tk —1uk2A0e”°e’t, (3.50)

where ft is the Fourier transform of the kernel K, namely:

k(k)
= £ K(O)ethO dO. (3.51)

By cancellation of common factors in (3.50) we find that the growth rate of the pertur

bations, A, is:

A = —ikAf( — 1k2. (3.52)

Instability occurs when A is positive. This leads to the following dispersion relation:
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Ck2 < —ikk (3.53)

where,

C = = 2ir-j. (3.54)

Note that the coefficient C is inversely proportional to the total mass M. We now

examine in detail what the dispersion relation implies in each type of interaction and

kernel ontlined in Sections 3.3 and 3.4.

Since the inequality (3.53) depends on the Fourier transform, K, of the kernel K,

we prepare the way by computing K, the Fourier transforms of the two basic kernels

(3.47a-b) considered in the previous sections. The exact forms of the Fourier transforms

are:
(a) K(k)

= _t(afr cos k7r — sin kK) + 3(cos kK — 1)),

(3.55)

(b) k(lv) = —(Kcosf_ sinkK).

We note that for Ic = 0, k = 0 since K is an odd function for all cases considered

here. This implies the neutral stability of the homogeneous distribution caused by the

conservation of mass. Substituting (3.55a-b) into (3.53) we find the two basic forms of

the dispersion relation:

(a) Ck2 <2(wr cos kir + fl(cos kK — 1)),

(3.56)

(h) Ck2c(2a7rcosk.
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We look for the smallest integer wavennmber k which satisfies (3.56). The homogeneons

distribution destabilizes in favor of the first wave number (the smallest one) which would

then govern the growing pattern until the system is drawn far from equilibrium where

nonlinear effects of competing wave numbers dominate. By previous remarks about C.

we observe that as the total mass, M, increases, the left hand side of (3.56a-b) decreases

so that the inequality can be satisfied. The first value of M for which these inequalities

are satisfied (for some integer k) will be called the ‘critical mass’. We now comment on

the specific cases 1-4 in section 3.4. The outcome of the dispersion relation, i.e. the first

mode number causing instability, for the cases considered below is summarized in Table

3.3. In Fig. 3.18a-d the left and right hand sides of the dispersion relations (3.56a or

b) corresponding to the kernels of type (3.47a or b) shown in Fig. 3.14a-d are plotted.

Notice the first integer wave number k causing instability (i.e. the first integer Ic for

which the parabola is below the curve) in each case.

3.5.1 Dispersion relation for unipolar bundling (I)

In all cases listed below the kernel is of the form (3.47a) with corresponding Fourier

transform (3.55a), and dispersion relation (3.56a).

(1)j3=O,a<O. Ck2<2cv’ircoslcvr

For even wave numbers, the right hand side of the inequality is negative. For odd wave

numbers, Ic = 1, 3, 5,... the right hand side is 2air. Thus, the first mode which breaks the

stability is Ic = 1. This means that perturbations of the form e0 will grow. Hence a single

direction in [—ir, ir] is accentuated. Most filaments align along this favored direction.

(2)5<0, a=0. Ck2<25(coskw—1)

In this case, the right hand side of the dispersion relation is zero for even wave numbers
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\k

Figure 3.18: The expression on the right hand side of (3.56a or b) is shown as a function
of the wavenumber k. K is as in Fig. 3.13a-d respectively, with a and 3
same as in Fig. 3.13a-d. Superimposed in each graph is a parabola for which
the coefficient C is chosen to satisfy the inequality. In (a), (b) and (c) the
coefficient C of the parabola is 1, and in (d) C = 0.3. The first wavenum
ber for which the uniform steady state is destabilized is k = 1 in (a) i.e.
perturbations of the form e8 grow, resulting in one accentuated orientation
(a unidirectional structure). For (b) the first such wavenumber is k = 2
i.e. perturbations of the form e2’9 grow, resulting in two accentuated orien
tations 180° apart (bundles). For (c) the wavy function assumes negative
values for all k. Thus the inequality cannot be satisfied for any value of k, so
the homogeneous distribution is stable. For (d) the first such wavenumber is
k = 4 i.e. perturbations of the form e46 grow, resulting in four accentuated
orientations 90° apart (orthogonal networks).
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and positive (and equal to —43) for all odd wave numbers, k = 1, 3, 5... . Thus, the first

destabilizing wave number is k = 1. This leads to unidirectional alignment of filaments

as in case (1).

(3) /3 < 0, a < 0. C1c2 < 2(cnr cos kir + /3(cos kc’r — 1))

In this case, for even Ic, the right hand side of the inequality is negative. For odd

wave numbers Ic = 1, 3,5,... it is positive and equal to —2Qira + 2/3). Thus, the first

destabilizing mode is Ic = 1. Filaments align in a unidirectional fashion as in the previous

cases. (See Fig. 3.18a for visualization of the dispersion relation corresponding to a kernel

of this type, shown in Fig. 3.14a.)

(4) /3<0, a>0 and —/3> air. Ck2 <2(aircoskir+/3(coskir— 1))

For even wave numbers, Ic = 2, 4, 6,... the right hand side is positive and equal to 2air.

For odd wave numbers it is also positive and equal to —2air
— 4/3> 2air. Thus, the first

destabilizing mode is Ic = 1 as before.

3.5.2 Dispersion relation for bipolar bundling (II) and myosin (TV)

We first consider kernels of the form (3.47b) with a < 0. As shown above, this leads to

the dispersion relation (3.56b). The sign of the expression on the right hand side of the

inequality (3.56b), namely 2air cos Icir/2, determines the outcome of stability. For odd

wave numbers, Ic = 1, 3, 5... this expression is zero. For wave numbers which are even

multiples of 2, Ic = 4, 8, 12... it is negative, and for odd multiples of 2, Ic = 2, 6, 10... it

is equal to —2air > 0. Thus, the first wave number which breaks the stability is Ic = 2.

This means that perturbations of the form e129 will grow and thus two orientations 180°

apart become accentuated. Hence filaments bundle in parallel and antiparallel fashion

equally.
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Next, we consider four cases of the dispersion relation of type (3.56a) corresponding

to four kernels of the form (3.47a), with fi 0, given in section 3.4.2 (1), (2), (3) and

(4).

(1) /3=0 and a>0. Ok2 <2aKcosklr

Clearly, the smallest k for which the inequality holds is k = 2. Thus, two directions, r

degrees apart, will grow in [—K, K]. The uniform steady state will he broken with the

appearance of two peaks 1800 apart again.

(2) 3>0 and a = 0. Ok2 <2/3(coskr— 1)

In this case, the right hand side of the inequality is negative for odd wave numbers,

k = 1, 3, 5, 7, ... and is equal to zero for even wave numbers. The homogeneous steady

state is stable to all perturbatious and no pattern will form. We conclude that some

dzfference in the interaction (turning rate) at different angles is essential for disruption

of homogeneity.

(3) 3> 0 and a> 0. Ok2 <2(aK cos kir + 5(cos kK — 1))

The first wave number satisfying this inequality is again k = 2. (See Fig. 3.18b for

visualization of the dispersion relation corresponding to a kernel of this type, shown in

Fig. 3.14b.) This can be easily seen from the dispersion relation (3.56a) since for odd

wave numbers, k = 1, 3, 5... the right hand side is negative and for even wave numbers

it is equal to 2aw.

(4) /3>0, a< 0 and /3> —a. Ok2 < 2(aKcoskK+/3(coskK— 1))

In this case the uniform steady state is stable to all perturbations. This follows from the

fact that for odd wave numbers, the right hand side is equal to —2(aK + 2/3) which is

negative, and for even wave numbers it is equal to 2aK, which is also negative. (See Fig.



Chapter 3. Models for gradual alignment of actin filaments 73

3.18c for visualization of the dispersion relation corresponding to a kernel of this type,

shown in Fig. 3.14c.) Thus, these types of interactions do not lead to pattern formation.

From the results of (2) and (4) we conclude that in the case of bipolar bundling (II)

and myosin (IV), i.e. when the interactions are ‘repulsive’, the necessary condition for

pattern formation is that the rate of repulsion at acute angles is smaller than the rate of

repulsion at obtuse angles. The biological implication of this result is as follows: if the

combined effects of the substances present in the cell cause greater repulsive interactions

at acute angles than at obtuse angles, then bundles will not form, even in the presence

of bundling proteins or myosin.

3.5.3 Dispersion relation for orthogonal binding (III)

The interactions between filaments mediated by orthogonal binding proteins lead to the

dispersion relation (3.56b) where a is positive, namely Ck2 < 2air cos kir/2. For odd

wave numbers, k = 1, 3,5... the right hand side of the ineqnality is zero, for even

wave numbers which are odd multiples of 2, lv = 2, 6, 10... it is negative, and for even

multiples of 2, lv = 4, 8, 12... it is positive. (See Fig. 3.18d for visualization of the

dispersion relation corresponding to a kernel of this type, shown in Fig. 3.14d.) Thus,

the first wave number which breaks the stability is lv = 4, meaning that four directions

90° apart will be accentuated, and four peaks will appear. In the presence of filamin, for

example, orthogonal networks of actin filaments would therefore be promoted.

3.5.4 Dispersion relation for competition of binding proteins (V)

Since the kernel for this case is given by a linear superposition, K(O) = K1(O) + K2(O)

(see section 3.4.4 (1)), the Fourier transform will also be a simple linear superposition,

i.e. K = Ki + K2 with K1 and K2 as in (3.55a-b).
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(1) Dispersion relation for myosin (IV) and orthogonal binding proteins (III)

In this case, K-i and k2 are of the form (3.55b). Therefore, the dispersion relation, which

is of the form (3.56b) is given by:

Ck2 <2(ai +a2)fr cos ). (3.57)

Since a1 is positive, and a2 is negative, if jail < 1a21 then (ai —I- a2) is negative. In this

case, the first mode to satisfy (3.57), and thus break stability is lv = 2. This implies that

filaments align in a bidirectional fashion. The effect of myosin dominates over orthogonal

binding proteins, so that bundling takes place. If, on the other hand, jail > a2j then

the coefficient (ai + a2) is positive, and the first mode to break stability is lv = 4. Thus,

in this case, the effect of the orthogonal binding proteins dominates and filaments form

an orthogonal network.

Consider the effect of the presence of a ‘passive’ binding protein, i.e one with smaller

rate constant, or with lower concentration (implying a lower ‘effectiveness’ parameter).

The critical mass at which instability occurs in this case would be larger than in the case

of a single binding protein because, from previous remarks (see section 3.5), the mass for

which instability can occur is of the order M a1 +a2jt This means that decreasing

the value of the coefficient ai + a2j hinders the appearance of order. If both types of

binding proteins are equally effective, aj = a2j, the homogeneous solution is stable.

(2) Dispersion relation for bipolar (II) and orthogonal binding (III) proteins

In this case, the Fourier transform of the kernel representing bipolar binding is of the

form (3.55a) with /3 > 0 and a2 > 0, and the Fourier transform of the kernel representing

orthogonal binding is of the form (3.55b) with a > 0 as in case (1). Thus the dispersion

relation is:
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Ck2 < 2(aiKcosk7+(cosk— 1)+a2rcos). (3.58)

The results in this case are exactly the same as those of case (1) above, and are indepen

dent of the parameter 3. (Note that the term containing fi in (3.58) is either negative or

zero for any integer k.) If a1 < a2 then k = 2 is the first unstable wavenumber, and if

a1 > a then k = 4 is the first unstable wavenumber. If a1 = a2, the homogeneons state

is stable.

The above results are valid only near bifurcation and will not predict the type of

order away from bifurcation where non-linear effects may dominate. For further analysis

and an explicit solution in this case, refer to section 3.6.

3.6 Steady state equation and explicit solutions in three special cases

For kernels of the special form described below, it is possible to obtain an explicit formula

for the steady state of equation (3.42). We first note that the steady state of (3.42)

satisfies A = 0, that is:

02A a
— A(K * A) = 0. (3.59)

Integrating once over —K U we obtain:

= f(O)A(O) + C, (3.60)

where C is the constant of integration and f(O) = (K * A)(O).

The steady state equation (3.60) is a first order linear ODE, and its general solution

is:
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Kernel Group First Mode
and Type causing instability

Unipolar bundling (I) k 1

Bipolar bundling (II)
or k=z2

Myosin (IV)

Orthogonal binding (III) k = 4

Myosin (IV) if a1 < a2 then k = 2
+

Orthogonal binding (III) if Iai > a21 then k = 4

Bipolar bundling (II) if ai < a2 then k = 2
+

Orthogonal binding (III) if a > a2 then k 2

Table 3.3: Table summarizing the outcome of the dispersion relation for different
types of kernels. The first mode causing instability is k = 1,2 or
4 depending on the type of interaction the kernel represents. This
wave number k is the number of accentuated orientations breaking the
homogeneous distribution.
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A(O) = (D + G(O)) exp(F(O)), (3.61)

where,

F(O) = I f(O)dO,
1 (3.62)

G(O) = fexp(——F(O))dO,

Note that the general solution (3.61) contains two arbitrary constants, C and D. We

need further conditions to uniquely determine the values of these constants; in this case

we use periodicity of the boundaries (BC) and the normalization condition (3.45) to solve

for these constants. We first note that C = 0 by observing that it represents the total flux

of material (see equation (3.60)). Thus, if we wish to avoid travelling waves of density

circulating through the periodic domain, we must set C = 0. Therefore, the solution is

of the form:

A(O) = Dexp(F(O)). (3.63)

We now solve for the constant D and the function F. For some special choices of the

kernel, K, it is possible to determine the function F. In the next section we present the

analytical solutions for a class of kernels of a special form and compare the results with

those obtained by linear analysis.

3.6.1 Steady state solutions for a special class of kernels

We now consider the class of kernels represented by:

K(O) = BsinnO, ii = 1,2,4. (3.64)
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Note that B is a constant (unrelated to a similar symbol in Chapter 2) and that B> 0

corresponds to repulsion, whereas B < 0 corresponds to attraction. A remarkable feature

of such integral kernels is that they are degenerate: meaning that they can be represented

as a finite sum of the products of the eigenfunctions of the linear integral operator (See

Yoshida, 1960). In particular, the kernel (3.64) has the following finite representation in

terms of the eigenfunctions:

K(O — 0’) = B(sin nO cos nO’ — cos nO sin nO’). (3.65)

This simplifies the integral term in equation (3.42) greatly. Indeed, with this representa

tion the velocity convolution term (3.43) can be written as:

f(O) = (K * A)(0) = c1 cos nO + c2 sin nO (3.66)

where,

= —B £ sin nOA(O)dO , c2 = —B £ cos nOA(O)dO. (3.67)

We now wish to determine the constant D and the function F. To do so, first observe

that for the particular choice of kernel given by equation (3.64), the function F(O) is

given by:

F(O)
= f f(O)dO = sin nO + cos nO. (3.68)

We rewrite F(O) as a phase-shifted cosine:

F(O) = cos(nO — w), (3.69)
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where w is some phase-shift (w is easily calculated from simple trigonometric identities).

This function has a peak at w/n and a minimum at (w + ir)/n. To simplify calculations

we bring (3.63) to the following symmetric form by redefining the variable 0 so that

0 = w/n corresponds to the origin. (This is equivalent to measuring all angles relative

to the angle at which F has a peak.) Thus, with this new definition of 0, the equation

(3.63) can now be written as:

A(0) = Dexp(_-ZcosnO) (3.70)

where.

c = Bj cos nOA(0)dO (3.71)

3.6.2 Relations satisfied by the constants c and D

Note that the value c is determined by the angular distribution of A(0). To determine

the constant D in (3.70) we use the normalization condition (3.45) on A(0):

M
= £400 =

Djexp(—-_cosn0)d0. (3.72)

We observe that the integral in (3.72) involves the modified Bessel function of order zero:

10(z) = ifrec050do.
(3.73)

Thus, M can be written in the following form:
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M = 2irDI0(——). (3.74)‘an

(See Abramowitz and Stegun (1970).) So the constant D can now be written as:

M
D= (3.75)

22r10( —)‘an

The total mass, M, is in principle fixed in the system and known. However c depends on

the angular distribution of A, and is not known or predetermined. Thus to understand

equation (3.75) we need to investigate c.

Writing the constant c in (3.71) with the expression of A(O) given in (3.70) we find

that:

= BDjexp(—.S_cosnO)cosnOdO. (3.76)

We observe that the modified Bessel function of order one:

Ii(z) = jezc050cosodo. (3.77)

appears in this equation, so that:

Ii(----)
c = B1i/I ‘an

, (3.78)
Io(--)‘an

Note that (3.78) is a transcendental equation for the parameter c, which we now inves
tigate.
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3.6.3 Investigating the transcendental equation for c

Let us define the new variable X, by

X = —s—. (3.79)
‘In

For ease of notation define:

L(X) = R(X)
=

(3.80)

(Note that here L and B have meanings which are unrelated to similar symbols in Chapter

2.) Then (3.78) is equivalent to:

L(X) = R(X). (3.81)

Note that 10(X) is an even function, and 11(X) is an odd function so that R(X), the

right hand side of (3.81) is odd. We consider p, B and n as fixed parameters and M

as the gradually varying parameter of the model. The solution to this equation can be

visualized as the intersection points of L(X) and R(X) where their graphs are plotted

superimposed: see Fig. 3.19. L(X) is plotted for various values of the coefficient involving

the parameter M in Fig. 3.19 to illustrate cases having a single or three solutions. There

can be solutions for both positive and negative coefficients of L(X). Note that the

parameters p, n and M are positive for all biologically relevant cases. Thus, it suffices

to consider the following two cases: B is positive (i), and B is negative (ii). It is easily

seen that in all cases X = 0 is a trivial solution of the equation (3.81). Other solutions

depend on the sign of B and we consider the following cases:

(i) B > 0: This corresponds to the case of repulsion at 0 < rr. The trivial solution

X = 0 is the only solution in this case (see Fig. 3.19 and note the intersection of y = L(X)
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Figure 3.19: Solution of the equation (3.81) visualized as the intersection of L(X) (shown
for various values of the slope), and R(X) involving modified Besselfurtctiorzs
of order one and two. Note that there is a unique solution (intersection) at
X = 0 for large negative slopes or all positive slopes and two additional
symmetric solutions X1 = —X2 appear for negative slopes smaller than a
certain value, referred to as the ‘critical slope’.

A(O) = D = (3.82)27rI(0)

As all quantities in (3.82) are fixed so that the steady state solution is uniform in 0.

Thus, in this case, the only steady state solution is one in which the density is constant

(Tith positive slope) with y = R(X)). This means that c = 0 (see (3.79)), which in turn

implies that F(0) = 0 (see (3.69), and:

M

for all angles.
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(ii) B < 0: This corresponds to the case for which filaments with relative angle 0,

where 0 < r are attracted. We observe from Fig. 3.19 that the number of intersections

of L(X) and R(X) depends on the slope of L(X), and therefore on the value of the

parameter M. (Note the inverse relationship of slope and M in L(X) in (3.80).) In

particular, for large negative slope, there is only one intersection, at the origin. (In this

case, the steady state A(0), given by (3.82), will be uniform as argued above.)

For small negative slopes (or equivalently for large M), we will have three intersec

tions: one at the origin, and two symmetric intersections at X = +X. (Note that these

intersections depend on M, i.e. XE = X(M), and furthermore X is an increasing function

of Al.) Now define M to be the value of M for which the two additional intersections just

appear. For M> M the slope is small and negative and thus, two non-trivial solutions,

X and —X occur. This means that there are two values of c, but as the function I

is even, this will correspond to a single value of D in equation (3.75). Thus, we have

essentially shown the existence of a steady state (3.70) which is non-homogeneous.

3.6.4 The explicit steady state solutions

Our next goal is to actually characterize the shape of this non-homogeneous solution. To

do this, we need to take the following steps: (a) Use asymptotic approximations of the

modified Bessel functions in equation (3.80) to determine both M and X. (b) Use these

values to determine D and F, and eventually, the steady state A(0).

First note that the critical mass M corresponds to the case when the slope of L(X)

in (3.81) is negative and large enough so that the straight line is tangent to the curve

R(X). Also note that since the slope and the mass M are inversely proportional, a large

slope corresponds to a small M = M, and hence a small X value. In order to calculate

the value of the critical mass, M, we use asymptotic expansions of the modified Bessel
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functions. We separate this into two cases, namely small and large values of X. (It is

evident from Fig. 3.19 that the behavior of R(X) in (3.81) is quite different close to and

far from the origin: for large X this function is nearly constant, and for small X it can

be approximated by a line of slope -1/2.)

We first calculate the value of M using the first terms in the asymptotic expansions

of the Modified Bessel functions in (3.81) for small X. For X near 0, retaining up to

quadratic terms in the polynomial approximation we have:

10(X) 1 and, 11(X) for X ‘P0. (3.83)

(See Abramowitz and Stegun (1970).) Substituting these values for J and I in (3.81)

we obtain:

L(X) = —AX. (3.84)

Equating the slopes of the functions on the left and right hand side of (3.84) and solving

for M leads to:

M
= 2jtn

(3.85)

So for M > M, the non-homogeneous solution of (3.70) are = X(M). Since

X(M) is a monotonously increasing function of M the inhomogeneity in the system is

monotonously increasing with growing mass.

We now calculate the solution X to (3.81), then obtain c using (3.79) and finally D

and A(O) using (3.75) and (3.70) for two limiting cases: close to bifurcation (a): M

and far from bifurcation (b): M>> M.
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(a) In this case, the mass is near criticality, that is M = M + AM and AM << M,

where M0 is the small quantity given in (3.85). Since X decreases monotonously with

it/I we are looking for a small solution X to (3.81) in this case. Taking up to cubic terms

in the polynomial approximations of J and I, for small X we have:

10(X) —‘ 1 + 0.32X2 and, 11(X) X/2 for X —, 0 (3.86)

(See Abramowitz and Stegun (1970).) Substituting these values in R(X) in (3.80) and

(3.81), expanding the terms in Maclaurin series and retaining up to cubic terms we obtain:

- 1—BAM
X c 1.4sf . (3.87)

V in

hence, using (3.79)

/-BAM
c 1.4jmj/ . (3.88)

V tn

This value for c, together with the Maclaurin series expansion of the exponential term

leads to the following form of (3.70) for the angular distribution of the density A(O):

A(O) = (1 + acosnO) + O((7)2), (3.89)

where,

!—BAM
a = 1.4/ (3.90)

V 1un

Note that the coefficient of the cosine term a is small since AM is a small deviation

from the critical mass. Thus, equation (3.89) describes ri small peaks superimposed on
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a larger constant distribution. In the next section we discuss this solution for specific

choices of n.

(b) In this case the actin filament density is high, that is M>> M. Here we are using

the first terms in the asymptotic expansions of I and I for large X values. Following

Abramowitz and Stegun (1970) we have:

1

10(X), 11(x) xTheX for X (3.91)

Substituting these values in (3.81) we obtain:

- BM
X —. (3.92)

/-tn

Similarly to the case (a) we calculate the constant c from (3.79) then the constant D

from (3.75) and finally we obtain the following expression for the angular distribution

A(O) iu (3.70):

A(O) = /3e7@05 nO — 1), (3.93)

where,

= -(1 + O()), 7 = M(l + Q(MC))
(3.94)

Note that, in this case, the solution has the form of n-peaks located at the points:

i=0,1,..(n—1) (3.95)
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In the vicinity of each of these points, O,, A(O)has the following form obtained by nsing

the first two terms of a Taylor series for cos riO in (3.93):

A(O) = exp(-(O - O)2) (396)

Hence, the width of each peak has order of magnitnde:

d
= VBZn

(3.97)

Observe that the constant B which affects the value of the angular drift velocity in

equation (3.42) (note that B is a coefficient of the kernel K in (3.64) and the kernel

appears in (3.43)) also affects the width of the peak. High values of B represent high

angular drift, meaning strong binding and alignment, and this corresponds to sharp peaks

(small d in 3.97) in the steady state solution. Also note that as the total mass of actin

filaments, M, increases the peak becomes sharper and the inhomogeneity in the angular

distribution increases.

3.6.5 Examples of several steady state solutions for specific kernels

We now discuss briefly the implication of the steady state solutions obtained in the

previous section in biologically relevant cases, namely for n = 1, 2 and 4 in (3.64).

Unipolar bundling (I). n = 1, K(O) = BsinO, (B <0).

This kernel represents the attraction filaments at all relative angles corresponding to the

case of unipolar bundling. Indeed the solutions (3.89) and (3.93) have a single peak: the

actin filaments orient along one direction. In the case of a very dense filament population

the amount of alignment is very high.
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Bipolar bundling (H) and myosin (IV). ii = 2, K(O) = Bsin2O, (B <0).

This kernel represents attraction at acute angles and repulsion at obtuse angles corre

sponding to the case of bipolar bundling. It is seen from the solutions (3.89) and (3.93)

that there are two peaks: the population splits in two equal subgroups aligned in parallel

and anti-parallel fashion (hi directional bundles).

Orthogonal binding (III). ii = 4, K(O) = Bsiu4O, (B <0).

This kernel represents the convergence of the filaments to relative orientations 0, ir/2 and

it. This corresponds to orthogonal networking alternative to the one considered in the

Chapter 2. There are four peaks in the explicit solutions (3.89) and (3.93), meaning that

the filaments organize in an orthogonal network as total mass of filaments increases.

Competition of two types of binding proteins (V).

The following kernel is a linear superposition of kernels representing bipolar bundling (II)

(or myosin (IV)) for which n = 2,and orthogonal bundling (III) for which n = 4. This

depicts the combined effect of two proteins, as discussed previously.

K(O) = B2 sin 20 + B4 sin 40. (3.98)

Here, the first term accounts for bipolar bundling, and the second term accounts for the

effect of orthogonal binding. The ‘effectiveness’ parameters, which we previously called

i, a2 are now replaced by B2 and B4 < 0.

Observe that in the steady state solution (3.63), the kernel appears explicitly in the

function F(0), which is in the exponent. However, this will also affect the calculated

value of D. Superposition of two kernels will therefore lead to:
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A(0) = D exp(—(ci cos 20+ c2 cos 40)), (3.99)

where,

1
D = M( / exp(—---(ci cos20 +c2cos40))d0)1, (3.100)J-ir /1

and ci and c2 are constant which can be found form transcendental equations as in

section 3.6.3. The equation (3.99) represents four narrow peaks located at the angles

0, r/2, r and 3ir/2 and the magnitude of the peaks at 0 and r are equal and different
from the ones at ir/2 and ‘r/2. This indicates a mixture of actin filaments organized
in orthogonal network and bidirectional bundles. All filaments are positioned along two
mutually normal directions if we neglect the polarity of the filaments.

3.7 Discussion

The results this chapter are in qualitative agreement with those of Chapter 2. In Chap
ter 2 we considered two main types of actin-binding proteins, namely bipolar parallel
bundling and orthogonal networking. These correspond to the types (II) and (III) of this
chapter, respectively. In both chapters we have found that actin microfilaments would
organize either in orthogonal networks or bundles depending on the relative “effective
ness” of the orthogonal and parallel actin binding proteins. (In both cases “effectiveness”
represents both relative binding rate constants and the relative concentrations of binding
proteins when they co-exist in a mixture.) The linear stability analysis in both chapters
reveals that the transition between these two structures is sharp: a minute change in the
relative effectiveness ( in Chapter 2, and aj here) can result in a switch from one type
of structure to the other.
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The case of myosin, which causes gradual alignment of filaments could only be de

scribed in the context of Chapter 3, in which the gradual turning of filaments is explicitly

modeled by a drift term. (In Chapter 2 filaments align rapidly). We find, from remarks

in section 3.5, that the rate of alignment induced by myosin binding affects the forma

tion of order: For faster rate of alignment, a smaller mass can already promote bundle

formation.

The model in this chapter is of a sufficiently simple mathematical form, that explicit

steady state solutions could be determined. These agree precisely with the predictions

of the linear analysis: i.e. the integer wave number that destabilizes the homogeneous

steady state coincides with the number of peaks appearing in the nonhomogeneous steady

state solution. Although we have not proved so, we expect that these explicit solutions

represent stable steady states. These predictions are in qualitative agreement with the

numerical results of section 2.6 (see Fig. 2.8 and 2.9). The agreement of results supports

the hypothesis that the phenomena modelled here are robust in the sense that many

details of the type of model used (i.e. rapid or gradual alignment) and of specific forms

of kernels (i.e. piecewise linear or trigonometric) do not affect the general conclusions.



Chapter 4

Models for actin filament alignment associated with a membrane

In this chapter, we focus on several specific examples where actin plays a major role.
In these examples, we must incorporate certain geometrical features which have not yet
been included in our general models. The main structure discussed in this chapter is the
association of actin with a surface, such as the cell membrane or the surface of a parasitic
bacterium which assembles an actin tail. In Chapters 2 and 3 the models described actin
filaments that had freedom of movement in space (whether 2 or 3 dimensional), but the
presence of a surface near the growing and aligning actin structures would significantly
influence the types of order that form. In this chapter we discuss the type of modifications
that have to be made to the models to incorporate this feature, and investigate the results.

We are concerned here only with the animal cell environment. Our examples include:
(1) the cellular cortex, a relatively dense network of actin that defines the mechanical
properties and shape of the cell, (2) the contractile ring, a circular ribbon of actin
myosin complex that acts in the last stage of cell-division, (3) adhesion belts, dense
bands of aligned actin in the apical ends of the side surfaces of epithelial cells, and (4)
the actin tail-like structure of the intracellular bacterium Listeria rnonocytogenes.

The one common feature shared by all these examples is the fact that actin filaments
are closely associated with a surface. In some cases, actin is actually attached to the
membrane by various proteins. In other cases, while no hard attachment is known, actin
nucleation and polymerization is restricted to a zone close to a surface.

91
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4.1 Actin arrangement in specialized structures

(1) Actin in the cellular cortex

Actin in the cytoplasm of non-muscle cells is not evenly distributed over space. It is

most abundant in the cellular cortex, a thin layer adjacent to the plasma membrane.

The membrane itself is highly flexible. The cell cortex gives mechanical strength to the

cell surface and helps to control the shape, and the contractile properties of the cell. It

also mediates the formation of cellular extensions, and thus, ultimately, the movement

of the cell. In the cellular cortex, unlike other regions of the cytoplasm, actiu is attached

to the membrane by specific sequences of proteins such as ponticulin, vinculin, integrin,

and talin (Bray, 1992; Alberts et al., 1990).

The cellular cortex of some cells is an isotropic meshwork about 5tm thick, i.e. rela

tively thick compared to the dimension of actin filaments. (See Table 4.4.) It is believed

that the actin filaments in the cortex of these cells do not exhibit any spatial or angular

order (Alberts et aL, 1990). In other types of cells (see Table 4.4), the cortex is much

thinner, about 0.01 jim thick. Since actin filaments can have lengths ranging between

0.1-ljzm, the thickness of the cortex can be smaller than or comparable to the length

of individual filaments. In this case, most actiu filaments tend to ‘lie’ fiat on the inner

surface of the membrane and their 3D freedom of motion would be restricted, so that the

geometry is approximately that of 2D. This geometry would promote alignment of the

filaments. This partial alignment (from 3D to 2D) is probably enhanced by interactions

between filaments and the cross linking proteins.



Chapter 4. Models for actin filament alignment associated with a membrane 93

Type of cell Thickness of the cortex

Cultured fibroblast 0.2 pm

lymphocyte 0.1-0.2 pm

sea urchin egg 3-5 pm

red blood cell 0.01-0.02 pm

Table 4.4: Representative ‘order-of-magnitude’ values for the thickness of the cellcortex in some cells. (Modified from Bray (1992)).

(2) The contractile ring

The contractile ring (CR) is a filamentous structure formed during mitosis on the equa
torial plane of dividing cells (See Fig. 4.20). It is a beltlike bundle of actin and myosin
filaments. It appears beneath the plasma membrane during the initial stages of cy
tokinesis (cell division), and disappears once the cleavage of the cell is complete. The
contraction of this ring is believed to be responsible for generating the forces that con
strict the mother cell along its equatorial plane, producing two daughter cells. This
structure is known to be essential for cell division in animal cells. Once the division is
complete, actin and myosin filaments in the CR dissolve and disperse.

How the assembly and disassembly of this structure are controlled and details of
the organization of actin and myosin is still poorly understood. Little is known about
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DIVI DING CELL

Figure 4.20: A schematic representation of a.ctin filament bundles in the Contractile Ring

formed during mitosis. Taken from Alberts et al. (.1989).

other components of the contractile ring, but they may include proteins regulating actin

myosin interactions. The contractile actin-myosin complex must be physically attached

to the plama membrane to achieve effective cleavage. The chain of proteins involved in

this attachment is still uncharacterized. However membrane associated proteins such as

spectrin, ankyrin, vincuhin, ta.lin, fibronectin receptors and transmembrane proteins such

as band3 may play a role (Bray, 1992; Schoroeder, 1973; Cao and Wang, 1990; Mahuchi,

1986).

Various mechanisms have been suggested for the assembly of the contractile ring.

rflme chemical signals and the molecular interactions involved in time OCCSS are reviewed

in Harris arid Cewalt (1989) and Cao and Wang (1990). lmnmnunofiuorescent, studies

indicate that time primary mechanism underlying the formation of t,he contractile ring is

time spatial and angular reorganization of existing actin filaments in. the cell. It is found

that both myosin and actin filaments are recruited into the contractile ring by directional

contractile ring
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movement along the cortex towards the equator of the cell. There they organize parallel

to the membrane, and along the equator (See Fig. 4.20). We can think of this alignment

along the equator as a process that leads to loss of 1, and then 2 dimensional degrees of

freedom, as the final structure is essentially 1 dimensional (Cao and Wang, 1990; Pollard

et al., 1990; Mabuchi, 1986).

(3) Adhesion belts

Some contractile assemblies of actin are more long-lasting than the contractile ring. One

example includes the circular structures which form the belt desmosomes. (In the litera

ture there are various definitions of this term, but for the purposes of this chapter, the

subtle differences between the belt desmosomes and the adhesion belts are unimportant.)

These structures occur close to the apical surfaces of epithelial cells, and are known to

mediate shape changes during development and differentiation, 4.21. (See Odell et al.

(1981) for a model of gastrulation which incorporates the contraction of these bands.)

During embryonic development, many events that necessitate the folding of epithelial

sheets are ultimately dependent on the contraction of these structures.

One fundamental difference between the adhesion belts and the contractile ring, is

that the former are permanent or at least very long-lasting, whereas the latter is tran

sient (Alberts et al., 1990; Bray, 1992). Another difference is that belt-desmosomes are

attached to the membrane of not one but two adjacent cells, via proteins which perforate

the two neighboring plasma membranes. Proteins such as vinculin are implicated in this

attachment. A similarity shared with the contractile ring is the fact that contraction is

probably due to the sliding of actin filaments mediated by myosin.

(4) Actin in the tail of Listeria monocytogenes

Listeria monocytogenes is an intracellular parasite which can cause serious, sometimes
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EPITHELIAL CELL

adhesion belt

Figure 4.21: A schematic representation of actin filament bundles iii the Adhesion belts.

Taken from Alberts et al. (1989).

fatal, infections in pregnant women and newborns (Dabiri arid Sanger, 1990). The bac

terium exists inside the host cell, where it uses the host cell actin to create a structure of

its own: an actin tail. Liscrie invades a wide variety of cell types including rnacrophages,

fibroblasts, epithelial cells and enterocytes. This rod-shaped, gram-positive, intracellular

bacterium spreads from cell to cell by moving to the peripheral membrane of the host

cell and inducing filopodia-like projections on its surface that are subsequently internal

ized by the adjacent cell (Tilney and Portnoy, 1989; Dabiri arid Sanger, [990; Mounicr,

et al., 1990). Listeria. becomes coated with a cloud consisting of a large population of

ac.tin filaments after entering the cytoplasm. At later stages, the actin cloud rearranges

to form a tail-like structure extending outward from one end of the bacterium (Dabiri

and Sanger, 1990; Tilney et al., 1992a; Tilney et al., 1992b). This transition in actin

architecture is reqvired for bacterial motility (Kuhn et al., 1990).

Listeria monocytogenes synthesizes arid secretes an actin filament nucleator on its



Chapter 4. Models for actin filament alignment associated with a membrane 97

surface. The synthesis of this snrface protein, encoded by the tzctA gene, is necessary

for bacterially indnced actin assembly (Kocks et al., 1992). Filaments are nucleated at

the bacterial surface with their barbed end (the high affinity end) pointing towards the

surface of Listeria (Tilney et aL, l992a). It is suggested that the nucleatiou process

involves several actin-binding proteins, including profilin, talin, and vinculin (Kocks,

1994; Nanavati et al., 1994; Dold et aL, 1994). They are assembled at a large number of

specific spots on the bacterial surface (Dabiri and Sanger, 1990). Listeria assembles actin

filaments only on half of its surface, the ‘rear end’ (Tilney, 1990). As the filaments reach

a characteristic length, approximately 0.2zm, they become capped and cross-linked via

the actin bundling protein a-actinin (Sanger et al., 1992). This may be a crucial step in

the transition of the 3D actin cloud surrounding the bacterium into a more ordered (1D)

structure.

Fluorescence staining studies indicate only the presence of the bundling protein, a

actinin, profilin and tropomyosin throughout the tail and localized around the bacteria

(Dabiri and Sanger, 1990). Actin filaments surrounding the bacterium are highly aligned

parallel to the surface with their pointed end oriented towards the rear end of Listeria.

The proportions of the shape of Listeria resemble a long cylindrical body capped with

two hemi-ellipsoids (See Fig. 4.22). The typical length of a filament in the tail is of order

0.2jzm, and it contains about 70 subunits.

4.2 Modelling actin associated with a surface

By our remarks above, we restrict attention to actin structures that are associated with

a surface. The surface might be the cell membrane (in cases (1),(2),(3)), or the surface of

the invading bacterium (case(4)). As in Chapter 2, we will consider two populations of

actin filaments, those that are free and those that are bound to other filaments. However,



Chapter 4. Models for actin filament alignment associated with a membrane 98

Figure 4.22: A hypothetical simplified representation of Listeria and its actin tail in the
host cell.

unlike the models of Chapter 2, we assume that filaments polymerize only at the end

which is adjacent to the surface. We focus on a narrow region near the surface. Actin

filaments may leave or be transported to this region from other parts of the cell, but we

consider this to be a process in dynamic equilibrium.

For the purpose of this section we interpret the free filaments as those filaments

which have one end (the barbed end which is favored for polymerization) either attached

to or near the surface and the other end free to rotate. Bound filaments are those that

are attached to other filaments via actin binding proteins, and thus have no rotational

degrees of freedom. As in the previous chapters we describe the angular distribution of

the filaments only, not the spatial distribution. We consider the actin binding proteins as

short rigid rods with two actin binding sites at the ends. Two filaments become bound

when an actin binding protein links them.

We describe a three dimensional version of the model for which the independent

variables are time and angle on the unit hemi-sphere: the presence of an impermeable

surface, e.g. the inner surface of the plasma membrane, restricts the orientations of

the filaments attached to (or near) the surface to angles on a unit hemi-sphere. (In
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Figure 4.23: Shown are angles on the surface of the unit hemi-sphere represented in spher
ical coordinates. is a latitudinal angle from 0 to K/2, and S is a longitudinal
angle from 0 to 27r.

Chapter 2 filaments can assume all angles on the unit sphere.) We use a local spherical

coordinate system. The latitudinal angle = 0 corresponds to the direction normal to

the surface and the angle = lies on the surface (See Fig. 4.23). We assume that the

average distance between the points of attachment to the surface is much smaller than

the average length of the filaments (See Mabuchi, 1986). We consider filaments as rigid

rods of average length 1. We assume that the surface to which the filaments are attached

is fiat.

The variables in the model have identical descriptions to ones in section 2.7. L(Q, t)

and B(Q, t) represent concentrations of filaments, oriented at fl at time t. The kernel

K(Q, Q’) represents the effective interaction between two filaments, oriented at angles Q

and Q’. The interaction between filaments depends on their relative configuration. (As

z

x

y
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before, we assume that actin binding proteins mediate this, but we no longer explicitly

represent these by individual kernels.) For clarity, we concentrate all relevant definitions

below:

12 = (, 0) = an angle on the unit hemi-sphere, 0 ‘ w/2, 0 0 < 2w,

L(12, t) = the concentration of free actin filaments at orientation 12 at time 1,

B(Q, 1) = the concentration of bound actin filaments at orientation 12 at time t,

/3 = the rate constant for binding of filaments via actin binding proteins,

K(Q) the kernel representing the angular dependence of the rate constant for

binding,

p = the concentration of free actin binding protein,

6 = the dissociation rate of the actin binding proteins,

1 = the average length of an actin filament.

The dynamic behavior of the densities L and B is given by the following system of

equations:

(Q, t) = 1AL + SB — /3pL(K * L) — /3pL(K * B),
(4.101)

1) = —SB + /3pL(K * L) + j3pB(K * L).

These equations are identical to (2.33) with the exception that the integral is taken over

the surface of the unit hemi-sphere, S1:

K * L
=

K(1Z, Q’)L(11’, t)dQ’. (4.102)

In (4.101) terms such as fipL(K*L) represent the rate at which free filaments oriented at

12 bind to other free filaments. /3 is the binding rate constant of the actin binding protein.

SL denotes the rate at which the cross-links are dissolved. 6 represents the dissociation
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rate of the binding protein, pAL represents the random reorientation of free filaments,

A being the Laplacian in spherical coordinates and t, the rotational diffusion coefficient.

It can be easily verified that the total mass in the system:

M
= LuQt) + B(c2,t))dQ (4.103)

is conserved.

Although the equations of this model are identical to those of Model I in Chapter 2,

the difference is that here interactions occur in a region adjacent to a surface, so that

functions are restricted to the hemi-sphere. A second important difference is that here we

consider filaments to be fixed, or approximately stationary at one end, the end adjacent

to the membrane. Here, when two filaments contact we consider them to bind rapidly at

the new angle (as in Chapter 2) rather than turning gradually towards it (as in Chapter

3).

4.2.1 The kernel for binding near a surface

We now derive an approximate representation for the angular dependence for binding of

two filaments close to a surface. As we have discussed in previous chapters, the repre

sentation of the binding kernels in terms of eigenfunctions appropriate for the geometry,

and shared by the Laplacian and the integral operators is an essential part of the analysis

of the models. In the situation we are now considering, the presence of a surface breaks

rotational symmetry, so that spherical harmonics are no longer suitable as a class of

eigenfunctions, strictly speaking. (The surface uniquely defines some direction in space,

namely its normal vector, so that there is cylindrical rather than spherical symmetry.) In

order to accommodate this geometry accurately and with due generality we would have
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to treat the problem with more advanced methods. In section 4.4 we outline what the

first steps in such an approach would be, but here we discuss a simplified special case.

In principle, the binding kernel of actin filaments should be represented by a prod

uct of two functions, one reflecting the dependence of interactions on the presence of a

surface, and the other representing the dependence of interactions on the relative angles

between filaments. The latter function should be rotationally invariant, so that spherical

harmonics are appropriate eigenfunctions. The former component is not spherically sym

metric, so that its eigenfunctions are different. The special case where the dependence

on the surface is a constant can be treated with spherical harmonics, and we shall here

restrict attention to this simple case. This does not mean that the surface is ignored, as

it appears through boundary conditions. However, it means that filaments interact in the

same way given some relative angle between them, independent of their orientation rela

tive to the surface. Further it is equivalent to assuming a form of density-independence

which will be described in more detail in section 4.4.

(1) Binding kernel for actin filaments in the cell cortex.

We first derive the kernel, K1 for binding in the cell cortex, as it has the most general

form. From this kernel we later derive the more specific cases of kernels for the contractile

ring and adhesion belts, and the kernel for actin filaments in the tail of List eria. We

want this kernel to reflect the angular dependence of the interactions between filaments

in the cell cortex. Namely we want the angular dependence of binding to be zero when

filaments are perpendicular to the surface, higher if filaments are closer to the surface and

closer to each other, and maximal when filaments are lying flat on the surface. Further,

interactions should be symmetric about the long axis of a filament.

In arriving at a plausible form for the binding kernel in the cell cortex let us first
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consider an auxiliary function from which we will eventually derive K1. Define:

f0(Q, Q’) = sin24sin24)’cos 2(0 — 0’). (4.104)

This function has the following properties:

(i) f° = 0 for = 0 or 4)’ = 0,

(ii) f is monotonic in 4), 4/ and continuous for 0 < 4), 4)’ < 42, 0 < 0 — 0’ < 42,

(iii) f° is maximal for 4) = 42, &‘ = ir/2, 0 — 0’ = 0, K.

(iv) f° is symmetric in 4) and 4)’.

(Note that f° itself is not yet a suitable function representing the angular dependence

of binding as it is not strictly positive nor is it normalized.) We choose the positive

normalized kernel of the form:

K1(Q, Q’) = A1 + A2f

= A1 +A2((sin24)cos 20)(sin24)’cos 20’) + (sin2glsin 20)(sin24)’ sin 20’)),
(4.105)

where A1 is the normalization constant and A2 is the amplitude. Normalization and

positivity of K1 imply:

1
(4.106)

As before, the form of the kernel K1(Q, Q’) is of vital importance in the model. The fact

that the surface is impermeable to filaments implies a zero flux or Neumann boundary

condition at 4) = 42, 4)’ = 42. This boundary condition is thus the aspect of the

model which incorporates the effect of the surface, as mentioned above. We also assume

periodicity in the variable 0.
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(2) Binding kernel for actin filaments in the Contractile ring.

In order to explain 1D type of alignment in the cases of contractile ring (a narrow strip)

we have to take into consideration the fact that high actin density is restricted to a narrow

region on the membrane. If the filaments are oriented along that narrow strip they are in

a high density region. Thns, they have a higher probability of forming contacts, and hence

binding, than when they are oriented in directions normal to that strip. Mathematically,

this implies an anisotropy of the interactions in 0. Let 0 = 0 be an angle in the plane of

the surface and parallel to the strip. To reflect this anisotropy we now define:

K2(Q, Q’) = A1 +A2(sin2cos 20)(sin24/cos 20’). (4.107)

Note that there is now a nnique favored direction for interaction, 0 = 0, which is distin

gnished from other directions (unlike the case of K1.)

(3) Binding kernel for actin filaments in the Adhesion belt.

The geometry of the adhesion belts is the same as the contractile ring (a narrow 1D

strip). Thus, we nse the kernel derived for the binding of actin filaments in contractile

rings, namely K2, to represent the binding in this case as well. We will treat the analysis

of this case together with the contractile ring, case (2), in section 4.3.

(4) Binding kernel for actin filaments in Listeria tail.

In the case of actin snrronnding the surface of Listeria we do not assnme that the filaments

are attached to the bacterial snrface. (Evidence to this effect is controversial.) However

filaments polymerize only at their barbed ends provided these ends are close to the

bacterial surface. We chose 0 = 0 to be parallel to the major axis of Listeria and pointing

towards the rear end (See Fig. 4.24). The fact that Listeria assembles actin filaments only
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direction of movement of
Licterks

Figure 4.24: The longitudinal angle 0 = 0 is chosen to be the direction along the major
axis of Listeria pointing towards its rear end.

on half of its surface, the ‘rear end’ (Tilney, 1990) leads to the conclnsion that filaments

can interact with other filaments most effectively if they are oriented towards that end of

the bacterium. In this case effective binding occurs for filaments in the direction 0 = 0.

This suggests replacing the function in (4.104) by the following:

fi (Q, 12’) = sin 4) sin ci’ cos 0 cos 0’, (4.108)

Note that the dependence on 0 is no longer of the form cos 20 but rather cos 0. This

reflects the polarity in the interactions, binding occurs only if filaments are oriented

(nearly) at 0 = 0. We then define:

K3(2,fl’) =A1+A2f1
(4.109)

= A1+A2(sin4)cosO)(sinçó’cosO’).

For this kernel only filaments with (nearly) the same polarity interact (0 = 0). The

Listeria tail has a unipolar, rather than bipolar actin filament distribution.

0 0=0
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4.3 The analysis of the models.

In order to analyse the dynamic behavior of the equations(4.101) we first bring them to

the following dimensionless form:

L = EAL + B — L(K * L) — L(K * B),
(4.110)

B=—B+B(K*L)+L(K*L),

6 iiwhere c = , e = and ill is the total mass in the system. (A similar non/3pM pM
dimensionalization is done for Model 1 in section 2.4 and the details are given in Appendix

A. Note that this version applies to 3D, angles on the surface of the unit hemi-sphere

whereas equations (2.11) in Chapter 2 are in 2D.) As in chapter 2, we expect that at

large enough rotational diffusion coefficient p the stationary densities are homogeneous.

These homogeneous concentrations, L and B, satisfy:

B/9pM
Tm’

(4.111)

M=L+&

(See Appendix A for details in 2D case.) The ratio B/L is the proportion of bound to

free filaments. The product fi represents the strength of interaction and 6 represents

the decay rate of the cross-link. Note that if 6 is small, or equivalently /3p is large, the

homogeneous equilibrium ratio B/L is large. Also note that as the number of filaments

ou the surface, iW, increases, the proportion B/L increases.

The linear stability analysis of the equations (4.110) together with the boundary con

ditions lead to an eigenvalue problem closely resembling the one addressed and discussed

in section 2.7. In this case, the eigenfunctions of both the integral operator, K*, and

the Laplacian operator, A, on the unit hemi-sphere are a restricted subset of the surface
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spherical harmonics. In Chapter 2, we used the notation Y to denote the SSH. In this

case, the elements of this restricted subset are best expressed in the fundamental form

given below:

sinO
(4.112)

cos 0

where n—rn is even and sin 0 term corresponds to harmonics, Ym(Q), for positive in values

and cos 0 terms corresponds to harmonics, 1çm(Q), for negative ri-i values (MacRobert,

1927; Arsenin, 1968; Hobson, 1931). (See Appendix D for the expression of the harmonics

Y in terms of the fundamental harmonics }%Th.) The condition on the mode number, the

fact that n — i-n should be even stems from the geometry of the problem: namely that of

a herni-sphere with zero flux boundary conditions. (Only the SSH with n — in even are

even functions of ql about ir/2, thus have zero derivative at = ir/2.) The eigenvalues

corresponding to Ym for the integral operator, K*, and the Laplaciau operator, A are

—n(n + 1) and k, respectively (See Appendix D). As in section 2.7, by completeness,

the densities L(Q, t) and B(IZ, t) can be expanded in series of fundamental spherical

harmonics as follows:

L(Q,t) cc n lnm(t)= * Ym(Q) (4.113)
B(Q,t) n=ü m=—n bnm(t)

where tnm(t), bnm(t) are coefficients depending on time only and Z * means that the

summation is taken over harmonics for which n — in is even (MacRobert, 1927; Arsenin,

1968; Hobson, 1931).

To determine the stability of the homogeneous steady state, as in section 2.7 we

consider perturbations of the form:
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L(Q,t) L
=

- + ym(Q)eAt (4.114)
B(Q,t) B B0

Substituting this expansion into (4.101) with fri — in) even, and taking the linear ap

proximation in small amplitudes L0 and B0, we find that instability of the homogeneous

distribution occurs at any harmonic Ym for which the following inequality is satisfied:

Cn(n + 1) <k(i — kr), (4.115)

where.

6 N2 4116

In (4.115) k are coefficients in the expansion of the kernel over the surface harmonics
yin (See Appendix D).

We now consider the individual kernels described in section 4.2.1, and summarize

results in each case. The structure that forms at instability will be determined by the

first mode ri that satisfies the inequality (4.115). This will depend on the values of the

coefficients isf appearing in (4.115).

(1) Structures that form in the cell cortex (1)

First note that the coefficients k in this case are as follows:

1(22 = f<-2
= A2, (4.117)

= 0 otherwise.
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(See Appendix ID for details.) Thus in the case of the cell cortex the inequality (4.115)

is first satisfied for ii = in = 2 and for n = 2, in = —2, that is when the right hand side

is positive and maximal. The harmonics Y2 = 3 sin2 çó sin 20 and Yj2 = 3 sin2 ç& cos 20

destabilize the homogeneous distribution and initiate pattern formation in this case. Both

harmonics Y2 and p—2 have a peak at 42. However, the positions of the two peaks

along the latitudinal direction 0 is arbitrary.

We define Ccr to be the critical value of C at which instability occurs. (The value

of Ccr is calculated by substituting the values of ii, in and k causing instability in

(4.115).) In this case we obtain:

Ccr = A2(l — 1/3A2). (4.118)

Assuming all the parameters are fixed in the system, we treat Al, the total mass, as

the bifurcation parameter. From equation (4.116) we find that the critical value for C

corresponds to the following critical value for the total mass Al:

Mcr
=2p2A2(1 — 1/3A2)

(4.119)

If M > Mcr the stability of homogeneous distribution is broken and a pattern evolves

in which most filaments lie fiat (g = ir/2) on the surface of the membrane. Note that

in (4.119) M depends inversely on /3, the binding rate constant, p, the binding protein

concentration, and A2 the amplitude of interactions and is proportional to ,u, the rota

tional diffusion rate, and 6, the dissociation rate of the binding protein. So, as /3, p, or A2

increase, the critical mass Mcr decreases, i.e. the homogeneous distributiou becomes un

stable at low filament concentrations, and as ii, or 6 increase, the critical mass increases,

i.e. the homogeneous distribution becomes unstable at high filament concentrations.



Chapter 4. Models for actin filament alignment associated with a membrane 110

This analysis shows that the cell cortex loses its 3D isotropic structnre and adopts

a 2D one where most filaments are lying fiat on the snrface parallel to each other. The

strncture corresponds to a ‘hump’ in the angular distribution of free and bound filaments

centered at = ir/2. The preferred direction of alignment in this 2D structure (the plane

of the cell surface) is arbitrary in this case.

(2) Structures that form in the contractile ring.

In the case of contractile ring the coefficients K are as follows:

1’o — Ino
— Ill,

= A2, (4.120)

= 0 otherwise.

(See Appendix D for details.) Thus the inequality (4.115) is first satisfied for n = in = 2.

The harmonic Y22 = 3 sin2 4 sin 20 destabilizes the homogeneous distribution and initiates

pattern formation. }‘2 has peaks at 4’ = ir/2, and 0 = 0, r. Thus the growing pattern

is one in which filaments are lying flat on the surface (4’ = ir/2), and along the narrow

strip of high density region (0 = 0, ir).

The values of Ce,. and M7 are the same as in the previous case:

= A2(1 — l/3A2), (4.121)

and,

=2p2A2(1 — 1/3A2) ( .1 )

Thus, if iW > 11/Icr the stability of homogeneous distribution is broken and a pattern
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evolves in which most filaments lie flat on the snrface of the membrane again, but they

are also oriented along the equator. The pattern corresponds to a ‘hnmp’ in the angular

distribution of free and bound filaments centered at = ir/2, U = 0 and at = 7r/2, 0 = r.

(3) Structures that form in adhesion belts.

The kernel, and hence the results are same as in case (2) above. A pattern in which

most filaments lie flat and parallel (or anti-parallel) to one another on the surface of the

membrane evolves.

(4) Structure of the Listeria tail.

For the case of actin filaments in the tail of Listeria the coefficients k are as follows:

(4.123)

= 0 otherwise.

(See Appendix D for details.) Thus the inequality (4.115) is first satisfied for n = in = 1.

The harmonic Y = sin sin 0 destabilizes the homogeneous distribution and initiates

pattern formation in this case. Yj’ has a peak at = 7r/2, and 0 = 0, i.e. the growing

pattern is one in which filaments are perpendicular to the bacterial surface (çi =

and along the major axis of the bacterium (0 = 0, or).

The values of Cer and Me,- are as follows:

= A2(1 — A2), (4.124)

and,
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Mcr
= /32p2A2(1 —A2)

(4.125)

Thus, if M > Mer the stability of homogeneous distribution is broken and a pattern

in which most filaments are oriented along the axis of Listeria evolves. This pattern

corresponds to a ‘hnmp’ in the angular distribution of free and bound filaments centered

at qS=ir/2,O=O.

In all cases, if the mass M is large and the system is drawn far from criticality, sharp

narrow peaks in the angular distribution of the filaments evolves from the mild ‘humps’

described above. Results similar to those of section 4.3 were obtained for a general form

of the 3D model in Mogilner and Edelstein-Keshet (1994a-b). It is found that for a large

class of kernels, as the total mass in the system exceeds some critical value (determined

by parameters of the system), a spontaneous pattern formation occurs. The leading

mode having the largest amplitude is determined by the SSH with the largest coefficient

appearing in the expansion of the kernel. According to their results, the bifurcation is

supercritical and corresponds to a second order non-equilibrium phase transition. As the

total mass, M, increases the mild ‘hump’ described by the SSH which breaks the stability

of the homogeneous distribution transforms into a sharp narrow peak (See Mogilner and

Edelstein-Keshet (1994a)). The total amount of free and bound filaments in the peak

are:

B SB
= >

--,

(4.126)

where K > 1 is the value of K1 (for i =1,2,3) in the peak (See Appendix D). Hence as

the density of filaments grows, the ratio of the bound to free filaments increases.
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4.4 First steps towards a more realistic model

In this section we snggest a modified approach to the problem which takes into account

the effect of the surface on the actual interaction between filaments at various orienta

tious. (Recall that in section 4.2 the surface appeared only through a boundary condition

for the problem.)

We first derive the angular dependence of binding of a filament at some orientation

to any one of the other filaments. We consider only the angle made with the normal of

the surface and focus attention on a single actin filament (call it A) whose orientation

is . As before, we will assume that the average length of the filaments is 1. Consider

the interactions of A with other filaments, for example those at angle ‘. In principle,

there could be numerous such filaments in the neighborhood of A. We will treat these

as a continuous slab of material, and assume that interactions with A occur only over

the length of A which is actually embedded in the slab (see Fig. 4.25). Moreover, the

strength of interactions will be proportional to the density of filaments in the slab.

The thickness of the slab, r will depend on the angle 4/, i.e r = r(th’) as follows:

= lcosgS’, (4.127)

(See Fig. 4.25.) If there is a uniform distribution of filament sites along the surface, (for

example a sites per unit area) then the density of filaments in the slab (per unit volume),

p(4/), will be:

= lcZ4/’
(4.128)

If > 4/the entire filament A is embedded in the slab and interacts all along its full



Chapter 4. Models for actin filament alignment associated with a membrane 114

“W)

Figure 4.25: Shown are the slab of material representing the filaments oriented at ‘, the
filament A oriented at t, the thickness of the slab r(’), the average length
of a filament 1, and the portion of the filament A embedded in the slab 1’.

length, whereas if < 4/ only a part of the filament A will interact. The effective length

of interactions, 1’, i.e., the portion of A which is embedded in this slab will be:

= 1cos4/
(4.129)

cos

(See Fig. 4.25.) To avoid singularities in the case of , 4/ c K/2 (when the filaments are

nearly lying flat on the surface) it is necessary to assume that the strength of interactions

cannot exceed some maximal value. We call this value Cr, the interaction strength

attained if the filaments are within a small angle Ic of r/2

Cr = , (4.130)
cosQ- — ic)

A
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y

theta

Figure 4.26: The kernel K plotted for various values of ‘, shown for = 0.5, 0.8 and 1
radian. The value of the small angle ic is 0.15 radian.

We build up the interaction kernel using the effective length of interaction and the ef

fective density of filaments in the slab, obtaining K pi’. Using the above assumptions

about p and 1’ we find that:

cos 4/
1

cos

Cr

Notice that the kernel is symmetric in 4, 4/. So far this kernel does not yet include

dependence on 0 and 0’: the final kernel should be a product of one of the 0, 0’-dependent

versions given in section 4.2.1 and the one in (4.131).

The graphical representation of this kernel as a function of for a number of different

4/ values is plotted in Figure 4.26. It is seen from this figure that the higher the density

of filaments, the higher is the strength of interaction between filaments.

The kernel obtained by combining the angle dependence of equations (4.131), and the

ones in section 4.2.1 (4.105), (4.107) or (4.109), now incorporates an explicit dependence

on the orientation with respect to the surface. The problem thus formulated no longer

has spherical symmetry, and its linear stability can not be investigated with spherical

for 4/ <

for ci < ci’

for 4, ç&’> —

(4.131)
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harmonics. We do not here treat this more complicated problem. Some steps in its

treatment would include: simplification of the expression using products of trigonometric

functions to approximate the terms, and explicit solution along the lines of chapter 3.

4.5 Discussion

In this chapter we presented a simple model accounting for the essential features of

association of actin filament structures with a surface, such as the cell membrane or the

outer surface of the bacterium, Listeria moriocytogenes.

We study the alignment of actin filaments into 1 dimensional structures such as the

contractile ring and adhesion belts. We had to modify the previous model (Model I of

Chapter 2) to include the effects of a surface. As discussed in detail, the surface presented

a constraint (boundary conditions) which restricted the full 3D freedom of movement of

actin, though the surface did not directly influence the way that two filaments inter

acted. (This was a simplification, made for mathematical convenience. In section 4.4 we

suggested an approach in which the surface also impacts the filament interactions.)

The four cases discussed here included (1) the cellular cortex, (2) the contractile ring,

and (3) the adhesion belts, (4) the actin tail of Listeria. These cases were characterized

by different binding kernels (4.105), (4.107) and (4.109). As discussed in section 4.3, in

each case once a critical mass of actin was exceeded, alignment would occur. However,

the critical mass was different in each case (see equations (4.119), (4.122) and (4.125)).

Situations for which 6 and jz are small (meaning low actin binding protein dissociation

and rotational diffusion rate) or p and 5 are large (high binding protein concentration

and rate constant) have a low critical mass value, meaning that spontaneous alignment

occurs more readily (at smaller densities). The value of amplitude of the binding kernel,

A2, which corresponds to the minimal Mer is different in different cases, namely:
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A2 = 3/2 in (1),(2) and (3),
(4132)

A2 = 1/2 in (4),

with,

=

(4.133)

in all four cases. Since the critical mass for bifurcation is the same in all cases, in the case

of Listeria tail formation, case (4), where the interactions are unipolar, the amplitude of

the binding kernel corresponding to initiation of pattern formation is not as high as in the

cases where the interactions are bipolar, cases (1), (2) and (3) (minimal critical mass for

bifurcation corresponds to a lower A2 value in case (4)). This makes intuitive sense since

in the former case a single ‘hump’ in the angular distribution of actin filaments grows as

a result of binding, whereas in the latter two ‘humps’ grow simultaneously and a single

hump will contain more filaments then two humps. Thus a higher amplitude, i.e. a larger

difference in strength of binding at different angles is required to accentuate the subtle

inhomogeneity at two orientations in which filaments may diffuse into other directions

faster and/or more easily than a single hump containing more filaments. Note that A2 is

similar to the ‘effectiveness’ parameters a and 3 in section 3.5, or B in section 3.6 which

plays a part in the magnitude of the drift velocity. From that point of view also, only a

higher drift velocity will allow the break of homogeneity into two groups compared to a

single group if the same amount of actin filaments are present in the system. In other

words the drift velocity should be high enough to override the diffusion and dissociation

rates of clusters smaller in size.

Moreover, the type of alignment was distinct. We found that in cases (2), (3) and (4),
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actin filaments formed structures along specific directions (a ‘ring’ along the equator, a

‘belt’ along the apical surface , or a ‘tail’ behind the bacteria), whereas in case (1) actin

organized into structures where filaments were oriented along an arbitrary direction.

(This is a direct consequence of assumptions that were made about the kernels in each

case.)



Chapter 5

Discussion

In this thesis we have focussed ou the dyuamics of actiu structures, and on transitions that

take place under the influence of the actin-related proteins. The importance of actin in

the cell stems from the fact that the structure, mechanical properties, and many cellular

functions are intimately related to the actin cytoskeleton. The rearrangement of actin in

the cytoskeleton determines aspects of cellular motility and many other properties of the

cell. As discussed in chapter 4, an actin structure (a “tail”) also plays a dominant role

in the motility of an intra-cellular bacterium Listeria monocytogeries.

We have investigated several types of actin binding proteins including those that

mediate unipolar bundles, bipolar bundles, and orthogonal networks. Our models give

continuum descriptions of angular actin distribution in such structures, and of the tem

poral behavior of this distribution. This is analogous to the mean field approximation in

physics. The scope of this work is different from recent modelling by Dufort and Lnmsden

(1993a,b) in which three dimensional spatial positions, binding and unbinding, and the

spatial and rotational diffusions of individual molecules is taken into account. The latter

is a complex simulation, whereas our models are aimed at analytic tractability. Unlike

Sherratt and Lewis (1993) who consider how actin responds to external forces (stress and

strains), our model is time dependent, and emphasizes the role of the binding proteins.

The philosophy of the modelling approach can be summarized as follows. The models

are based on the following assumptions: (1) The geometry of the binding proteins can

119
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be represented by a function that depends on the relative orientations of actin filaments.

This function is the kernel K. (2) The binding is either rapid (Chapter 2 and 4) or gradual

(Chapter 3). (3) Actin filaments can undergo random rotational diffusion governed by the

parameter i’ Futhermore in Chapters 2 and 4 the following specific simplifications were

made: (4) Actin filaments exchange between a bound and a free state. Only one type

of bound state is considered. (5) Binding and unbinding of filaments is the same at all

stages of the process. No distinction is made between small and large bound clusters. (6)

Monomers are added to the filaments at a rate proportional to the total concentration of

filaments. Thus the model only includes a limited number of features of a highly complex

system.

The model predicts the following results which were not given initially but which

follow from the analysis: (1) The above minimal assumptions are already sufficient to

obtain the observed pattern formation. (2) The formation of the final structure does

not depend on whether the molecules bind in a single step (rapidly as in Chapter 2)

or whether they pull each other gradually into the right configuration (as in Chapter

3). (3) Transitions from one structure to another can take place without completely

disassembling the original structure (see section 2.6). (4) The formation of structures

depends on combinations of the parameters. If such combinations do not satisfy certain

criteria (dispersion relations), no structures will form.

The models have included the following important parameters: p the rotational dif

fusion coefficient, M the total mass of actin, S the dissociation rate (Chapter 2 and 4), /3

the binding rate (Chapter 2 and 4). Pattern formation occurs for small p, 6 and/or large

M, /3. Short actin filaments have rotational diffusion, p, which is orders of magnitude

larger than that of long filaments. (For example, actin monomers rotate much more

quickly than F-actin.) This means that polymerization into long filaments must be the
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first and most important step in initiation of strncture: actin networks or bundles can

appear only in a late stage of polymerization according to the model. The model also

predicts that the total mass, M, must be large enough relative to other parameters for

structures to form. This can be explained by reasoning that a large total mass provides

opportunities for contact and binding. (This kind of dependence of self-organization on

total mass is found in other theories for self-organization in both physics and biology.)

The other parameters which reflect binding and unbinding rates also influence the ability

of structures to form. Similar predictions were made in Chapter 4 where the structures

are associated with a surface.

Our original hypothesis, stated in the introduction, was that molecular interactions

between actin filaments and the actin associated proteins lead to the formation of order

and the transitions between different structures formed by the actin cytoskeleton, even in

the absence of external mechanical forces. The results of Chapters 2, 3, and 4 confirm that

this hypothesis is correct, subject to the assumptions of the models. Further, the models

have allowed statements to be made about how the properties of individual molecules

affect the properties of the macromolecular structures, linking one level of complexity to

the next higher level.

Recent experimental work by Wachsstock et al (1994) reveals that actin associated

proteins from different species of organisms may have slight differences in affinities and

rate constants. Their work gives evidence to the changes in actin network structure

that stem from these differences in binding proteins. The models investigated in this

thesis predict that specific values of the parameter combinations lead to specific types

of actin alignment, and that minute changes in these parameters (close to bifurcation)

can lead to large changes in the structures that form. The comparison between proteins

derived from different species may have some implications about the molecular evolution
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of actin-associated proteins.

The two distinct types of models discussed were: (a) a model for rapid turning and

alignment of actin filaments (Chapter 2), and (b) a model for gradual drift-like turning

and alignment of actin filaments (Chapter 3). Comparisons between the results of these

separate models applied to a given class of binding proteins resulted in similar predictions.

These similarities are evidence that the phenomena are robust to changes in the structure

of the models.

Future areas of extension of this work might proceed in several directions:

(1) To determine a complete set of biologically realistic parameter values, and assess

whether these values agree with the predictions corresponding to the given structures,

(2) To generalize the models to a full spatio-angular treatment, and investigate both

spatial and angular distributions of actin in the cell, and

(3) to include the effects of mechanical properties of the cytoskeleton, and the presence

of external forces.
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Appendix A

Non-dimensionalization

In order to non-dimensionalize the equations (2.9) we define the following dimensionless

quantities:

B’

— -r
L
t
7-

Here B*, L” and t represent scalar dimensionless quantities, whereas B, 1, and r are

quantities with dimensions. Substituting the values of B, L and t in the equations (2.9)

by the corresponding values in terms of the variables defined above, and rearranging

them slightly we arrive at the following form:

= + 6r!B* — pEL*(K * B*) — prLL*(K * Lj
(A.134)

= 6rB* + /3prLB*(K * L*) + /3pr4L*(K * L*)

Choosing,

and L=E=M, (AJ35)
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and substituting these in (A.134) , and dropping the *‘s in the equations we arrive at

the dimensionless form (2.11) with the dimensionless parameters and 5 as follows:

= pM = ppM’
(A.136)

The stationary density distribution is expected to be a homogeneous one for large

values of the diffusion coefficient p or equivalently e. The values of these densities ho

mogeneous in 0 and time t, (IL, B), can be found by setting the time and 0 derivatives

equal to zero in (2.9). Thus we have:

0= 6B—,dpL(K*B)—/3pL(K*L),
— —

— (A.137)
0 = —6B + /3pB(K * L) + 3pL(K * L).

We observe that K * B = B and K * L = L. This leads to:

=
(A.138)



Appendix B

Linearization and Linear Stability Analysis

The linearized equations (2.13) constitute an eigenvalue problem. In vector notation,

these equations could be written as:

a L0 L0
— = A . (B.139)at ]3 130

where A is a linear operator which contains the Laplacian and K* and constants. We

assume solutions of the form:

L0(O,t) 1(0)
= e = v(0)et. (B.140)

B0(0,t) b(0)

Thus, writing the solutions as a product of a time independent and a direction indepen

dent part, and substituting them in (B.139) yields:

(J — AI)v = 0. (B.141)

For non trivial solutions we must have

det (J — XE) = 0. (B.142)

Each solution of (B.142), an eigenvalue will correspond to au eigenvector v1. The

general solution of the linearized equations (B.139) can then be written as:
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L0(O. t)

[B00:t]
= Zcivi(0)et. (B.143)

If one or more of the eigenvalues A is positive (or have positive real parts) the perturba

tions (L0,B0) will grow with time, i.e. the steady state will be destabilized.

As discussed, the eigenfunctions of the linear operator A are the functions ekG. Thus,

substituting the perturbations (2.15) in the equations (2.9) we obtain the following sys

tem:

AL0etkGet = ,tk2L0eCOe)t + 6B0eJVe.Xt — pLB0e1k9eft —

AB0ehIOet = _6B0eIkGe + pBL0eic8eAtft + pLL0eC6eAtft

(B.144)

Here, ft is the Fourier transform of the kernel K, namely:

ft(k) = JK(O)eikOdO, (B.145)

and it appears in the linearized equations since:

ft(k)eIk
j2W

K(O — O)eIkO’dO. (B.146)

The steady state values (L, B) satisfy:

0 = —oB + j3pL2 + /3pBL. (B.147)

Substituting this in (B.144) and eliminating eikSeAt terms from the equation we arrive at

the matrix form (2.16). In order to determine the sign of the eigenvalues we examine the
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trace and the determinant of the Jacobian J in (2.17). For .1 a 2 x 2 matrix, the two

eigenvalues are:

A1,2 + V — 4d
(B.14)

where t is thetrace of J and d is the determinant of J:

t = tr J = a + a, (B.149)

d = det J =a11a22 —a12a21. (B.150)

We observe that a11 and a are always negative since B/L > 0 for all biologically

relevant cases and since K < 1. Thus, the trace of the Jacobian is negative in cases of

interest. In this case, for one of the eigenvalues to be negative, that is for instability to

perturbations of the form (L0,B0), the determinant of J must be negative. This stability

criterion is equivalent to the dispersion relation (2.19).



Appendix C

The properties of SSH

The surface spherical harmonics Y,’s are special cases of solid spherical harmonics V,-’s

which are solutions of Laplace ‘s equation in spherical coordinates. The SSH which are

also solutions of Laplace’s equation are functions q and 0 only, thus independent of r,

they are obtained by dividing V1, by rTh and they satisfy the following equation:

n(n + 1)Y + -7(sinq)
+

=0. (C.151)

Thus the SSH of degree n, Y,, is the eigenfunction of the Laplacian operator in and 0

with corresponding eigenvalue —n(n + 1):

AY = —n(n + 1)Y. (C.152)

The SSH of degree n can be written as a linear combination of the Legendre polynomials

of degree n, F, (also denoted simply as F), and the associated Legendre functions of

degree n and of order m, P’:

Y. 0) = AF(cos ) + (A cos in0 + B sin m0)F(cos ). (C.153)
m1

Some of the first few Legendre polynomials are as follows:

134



Appendix C. The properties of SSJI 135

Ff(cos ) = cos

F(cos ) = (3 cos2 — 1), (C.154)

F3°(cos4) = (5cos3— 3costh).

See MacRobert (1927), Arsenin (1968), or Hobson (1931) for more details.

The Kernel K in the convolntion in (2.32), can be written as a function of j = cos 7,

where 7 is the angle between directions Q and 12’ as in (2.30). In this form, K can be

expressed as a linear combination of Legendre polynomials, F,(cos 7) (MacRobert, 1927;

Arsenin, 1968; Hobson, 1931):

K(i7) = > K’(n)P,(i7), (C.155)

where

K’(n)
= 2n+ 1

K(q)F)d. (C.156)

The integral of the product of the SSH and the Legendre polynomials has the following

property:

0 for n#mJ P(cos7)Ym(’,O’)d’dO’
= { 4 (C.157)

S Y(q,O) for n=m.
2n + 1

(See MacRobert (1927) or Hobson (1931).) This property of the SSH and the Legendre

polynomials is of extreme significance in the analysis of the linearized equations. Indeed,

the convolution of the kernel K and the SSH of degree n can be expressed as a product

of the SSH and k(n) as follows:
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K *
= jr K(Q, fl’)Y(Q’)dS

= Is K(cos7)Y(qS’, O’)d(cos cY)dO’

=I5(Z=1K’(m)F(cos ‘y))Y (4/ , O’)d(cos q&’)dO’

=
f:Tr A K’(n)F(cos -y)Y(gY, U’)d(cos q5’)dO’ (C.158)

= K’(n) f f. P,(cos7)Y(qY, O’)d(cos th’)dO’

= K’(n)241Y(,6)

=

where

k(n)
= 2n+

1K’(n) = 2K f K(ij)P()d. (C.159)

Hence the SSH are also the eigenfunctions of the Convolution operator K* with corre

sponding eigenvalnes k(n):

K * = k(n)Y. (C.160)



Appendix D

SSH on the surface of the unit hemi-sphere

For notational simplicity in this section we use the fundamental form of the SSH of degree

12,
yin as in (4.112). These harmonics relate to the basic SSH of degree n, Y,, in the

following way:

Yn(,O)
= k=-n

(D.161)

Some fundamental SSHs are as follows:

= sin 4sinO,

Y1’(ç&,O) = sincosO,

Y2’ = 3sin4cos4isinO,
(D.162)

= 3 sin ci cos cos 0,

= 3sin2glsin20,

= 3sin2qcos20.

See MacRobert (1927), Arsenin (1968), or Hobson (1931) for more details.

For m — n even, the fundamental SSHs are the eigenfunctions of both the Laplacian

and the Convolution operator on the surface of the hemi-sphere with zero flux BC:

AY’ = —n(n + 1)g’,
- (D.163)
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where k are the coefficients in the expansion of the kernel K in fundamental SSH:

K(Q,f) = z km(Q)gm(c), (D.164)
n=O m=—n

where Z * means that the summation is taken over harmonics for which n — in is even.

The coefficients K in this expansion can be easily calculated for the kernels given

in section 4.2.1. Comparing the terms in the above summation with the terms in the

expression of the kernels in (4.105), (4.107) and (4.109) we obtain the coefficients Kfl in

each case.

(1) Coefficients for the kernel in the case of the cell cortex

The kernel in this case is Ic’, given in (4.105). The sum in (D.164) corresponds to:

K1(Q,fl’) = A1 +kA2(2(Q)2(Q!) +2(Q)2(Q’)), (D.165)

hence,

I?: =A1,

= = A2, (D.166)

= 0 otherwise.

(2) and (3) Coefficients for the kernel in the case of Contractile ring and

adhesion belts

The kernels in these cases are K2, given in (4.107) and the sum in (D.164) corresponds

to:
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K2(Q, Q’) = A1 +A2Y2(Q)}2(ST). (D.167)

hence,

= A2, (D.168)

= 0 otherwise.

(4) Coefficients for the kernel in the case of the actin tail of Listeria

The kernel is, K3, given in (4.109) and the sum in (D.164) corresponds to:

K3(Q, Q’) = A1 +A2Y’(Q)Y’(Q’). (D.169)

hence,

A1,

A2, (D.170)

0 otherwise.

Stability analysis of equations (4.110) to perturbations of the form (4.114) leads to

the dispersion relation (4.115) where C is an algebraic combination of the parameters in

the system:

0=
jS2p2M =

(D.171)

(This analysis is similar to the one carried out in Appendix B for the Model I or the 3D

model in section 2.8.1.)
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In all cases the total density of free and bound filaments in the peak can be found

from (4.110):

KL + KLB — = 0. (D.172)

where K is the value of K(Q, Ii’) within the peak. (For example, for the case of the

actin tail of Listeria we have:

= = (ct= O = 0),

(D.173)

K3((, 0), (, 0)) = = !(A1 + A2) = (1 + !A2)> 1.

So that, the distributions satisfy:

L

- KM2
=

+KM’
(D.174)

B M SB
F=K=Kt>T.




