
C O N V E R G E N C E OF BEHAVIOUR RULES IN ITERATED 
MATRIX GAMES 

by 

JONATHAN PATRICK 

B. Arts & Sc., McMaster University, 1997 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in 

THE FACULTY OF GRADUATE STUDIES 

Department of Mathematics 
Institute of Applied Mathematics 

We accept this thesis as conforming 
to the required standard 

THE UNIVERSITY OF BRITISH COLUMBIA 

October 1999 

© Jonathan Patrick, 1999 



In presenting this thesis in partial fulfillment of the requirements for an advanced degree at the 
University of British Columbia, I agree that the Library shall make it freely available for refer
ence and study. I further agree that permission for extensive copying of this thesis for scholarly 
purposes may be granted by the head of my department or by his or her representatives. It 
is understood that copying or publication of this thesis for financial gain shall not be allowed 
without my written permission. 

Mathematics 
The University of British Columbia 
Vancouver, Canada 

Date ( 3 / . e > / V ' f 



Abstract 
This master's thesis reports on a foray into Game Theory, focusing solely on the two-
person (not necessarily zero-sum) game. Primarily, I am interested in the convergence 
properties of different behaviour rules and how one might proceed to introduce some form 
of learning into the strategies of the players involved in the game. Therefore, I begin with 
the introduction of some key equilibrium sets - namely the set of Nash Equilibria (NE), 
the set of correlated equilibria (CE) and the marginal best-response set (MBR). I briefly 
discuss the relationship between these three sets before moving on to describe some 
desirable properties of behaviour rules. From there, I introduce six behaviour rules (four 
from the literature, two original) that attempt to incorporate some form of learning into 
the game. The four from the literature are Fictitious Play, Exponential Fictitious play, 
Regrets 1 and Regrets 2. I have named the two original behaviour rules Past Response 
and Modified Regrets. I then move on to describe the convergence properties of each. 

This thesis was originally motivated by a talk given by Andreu Mas-Collel on the 
properties of the two Regrets-based behaviour rules. Thus, a fair amount of time is spent 
reworking the convergence proofs of both Regretsl and Regrets2 as they were developed 
by Mas-Collel and Sergiu Hart. I then suggest an alternative proof of the Regretsl 
convergence properties. I close off the paper with some numerical results from three 
games - a zero-sum game, a game developed by Lloyd Shapley (called the Shapley game) 
and a game called Battle of the Buddies. They are designed to give some numerical 
confirmation of the convergence theorems stated earlier in the paper as well as some 
indication as to where further study might be useful. 
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Chapter 1 
Introduction: Playing the Game 

A mathematical game is an attempt to model the interaction between individuals or orga

nizations. A game may have any number of "players", representing either individuals or 

groups. In this thesis, we will restrict ourselves to the most obviously practical and com

mon case of a two player game. This is not a limiting restriction as most non-cooperative 

games can be reduced to two players simply by having each player view all the others 

as one unit. Thus each player responds to the outcome of all the other players' actions 

rather than looking at each action individually. We will refer to this second player, N, 

as "nature" or the "environment". The first player will be denoted by the letter M. We 

will, more often than not, take the position of player M with player N's point of view 

usually following analogously. 

1.1 The one-shot game 

In order to illustrate the basic setup, consider the simple game called "matching pennies". 

In this game M tries to match the choice of heads or tails made by N, while iV tries to 

prevent M from doing so. Each receives a numerical pay-off of +1 for a success and —1, 

for a failure. Thus if JV chooses heads and M chooses tails then M receives a pay-off of 

—1 (penalty) and N receives a pay-off of +1 (reward). In the event that M plays strategy 

i, (in this game either heads, h, or tails, t), and N plays strategy j (again either heads or 



tails), the payoff (sometimes called utility) for player M is represented by j) and 

for player N by uN(i,j). Thus uM(h,t) = -1 and uN(h,t) = 1. Of course, if M knows 

nature's choice, in advance of making his own decision, then M will win every time ... 

leading to a rather uninteresting game: Even partial knowledge of iV's action will confer 

an advantage on M. The effects of what information is available to each player and how 

best to use that information is a key issue in game theory. Here we address the simplest 

case where both players act independently and in ignorance of the other's action. I will 

denote the set of possible strategies (or actions) available to player M by SM, and the 

set of possible actions available to nature by S^. 

In the matching pennies game, both M and N have only two possible actions, h and 

t. Their payoffs therefore can be represented in a very simple matrix form where the 

columns represent the strategies of nature and the rows represent the strategies of M, 

i.e., the top right hand entry of the matrix refers to the event that M chooses heads and 

N chooses tails. The entries in the matrix refer to the payoff received in each case. Thus, 

the payoff matrices of players M and N respectively are 

1 -1 

-1 1 

-1 1 

1 -1 

It is easy to see that in any two person game where player M has m strategies, \SM\ = m, 

and player N has n strategies, \SN\ = n, we can represent their respective payoffs for 

each possible pair of strategies in two m x n matrices. Such a game will be called an 

m x n matrix game and is defined by its two payoff matrices. 

The Matching Pennies game is an example of what is called a zero-sum game. Such 

a game is characterized by the fact that UM = —u^. Much of the theory is simplified in 

this sub-class of games. 
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1.2 Mixed Strategies: Best Response and Minimax 

There are obviously many ways for a player in a game to choose an action. For instance, 

in the "matching pennies" game, M could choose to play heads, or to play tails, or, using 

a random number generator, to pick heads with probability p and tails with probability 

1 — p, for any preselected p obeying 0 < p < 1. In more mathematical terms, this 

amounts to M placing a probability measure, p, on the set of possible strategies, SM- N, 

naturally, must do likewise, placing a probability measure, u, on the set of strategies, SN-

(Thus the case where M plays heads with certainty is simply the measure that places all 

its weight on heads and none on tails. Probability measures that place all their mass on 

a single action are called pure strategies; general measures are called mixed strategies.) 

I will denote the set of probability measures on a set S by P[S]. Once M and N have 

chosen their measures p G P[SM] and v G P[SN] respectively, player M's expected payoff 

where the summation is taken over all i G SM and all j G SN-

A natural question concerns how player M decides on a measure considering that 

the measure v of player N is unknown. One method is to make an (educated) guess as 

to how N is likely to act and then to respond in a manner that maximizes one's own 

expected payoff based on that guess. This is formalized in the following definition. 

Definition: We say that p, is an e-best response to v for M if 

If e = 0 then we refer to p simply as a best response to v. 

Among the best-response measures, there is, necessarily, a measure that places all its 

weight on one strategy. This follows from the fact that MM(A*> V) is a linear function in 

is 

(1.1) 

"M(£> v) > S U P UM(H, V) - e. 
t*€P[SM] 
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p. That is, it can be written as, 

Thus, one best-response measure, ft, places all its weight on the strategy i G SM which 

has the greatest coefficient, J2jesN

 uM(i,j)v(j)- It should be fairly obvious that the set 

of best-response measures to v,B[v] = argmax^p[sM]UM(p,^), is never empty (since 

| SM I is finite) and may consist of more than one measure. For the purposes of this thesis, 

in cases where there is more than one best response we will use the arbitrary rule which 

chooses the best-response measure which places all its weight on the action with the 

smallest subscript. That is, we pick \x = 5k where 

k = mm{m : 6m E B[u}}. 

The key question concerning the origins of this educated guess (since the actual measure, 

v, of player N is unknown) will be dealt with later. 

Of course, one need not proceed by always playing a best-response to some estimate. 

A more cautious player might want to maximize the worst-case outcome. Specifically, 

this means that player M would choose (x in order to maximize: 

min y). 
veP[sN] 

The von Neumann minimax theorem asserts that, for a zero-sum matrix game, each 

player can insure that his pay-off does not dip below a certain value, v. In mathematical 

terms, this means that there exists a fi G P[SM] such that 

WJW(A> u ) > v Vz/ G P[SN]-

Similarly, there exists a measure v G P\S^\ such that 

uN(p,v) > — v Vyu G P[SN]. 
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In a zero-sum game, this implies that there exists (/}, z>) G P[SM] x P[SN] and a scalar v 

such that 

uM(v, J>) < v < uM(fr, v) V(//, v) e P[SM] x P[SN] 

([1]). Other perhaps more interesting methods of choosing a measure will be discussed 

later on once more complexity has been added to the game. 

The above discussion might lead one to question whether there might exist a pair of 

measures (one from each player) such that neither player would benefit from unilaterally 

changing measure (that is, by playing differently while assuming that the other player's 

measure remains the same). The following definition formalizes this concept. 

Definition: A pair of measures ji G P[SM] and v G P[SN] is a Nash equilibrium combi

nation iff no single player can unilaterally increase his (expected) payoff by choosing a 

different measure. Thus (p,, i>) is a Nash equilibrium iff both: 

WM(A>^)> m a x %( Ju,i') and UN(P,,I>)> m a x UN(P,,U). 
H€P[SM] veP[SN] 

I will denote the set of Nash equilibria by NE. This is a (possibly empty) subset of the 

Cartesian Product space, P[SM] X JP[SW]- Note that if (/}, 0) e NE, then jj, must be a 

best response to v in the sense defined above. Similarly, <v must also be a best response 

to ft. 

In the matching pennies game, if v = [0.5,0.5], then 

UM(M, £ ) = 0 = uN(fx, v) for all fj, G P[SM] 

This includes the two pure strategies, \ih = [1,0] and fxt = [0,1]. To find a NE pair, 

(A, z>), involving the above i>, we must choose fi to ensure that 

0 = UJV(A, £) > max UN(P-,^) 
veP[sN] 

5 -



This is equivalent to finding \x such that 

0 ^ max [(A(2) - A(1)M1) + (A(l) - A(2)M2)] 

= " max[/i(2)-/i(l),/l(l)-/2(2)]. 

Thus for (/}, ii) G NE, we are forced to choose fi(l) = fi(2), i.e., fi — [0.5,0.5]. Such a 

choice ensures that (/i, v) G NE. 

1.3 Co-ordinated Strategies (Measures on the Prod
uct Space) 

So far, we have only considered placing separate measures on the two players' strategy 

sets. A natural extension is to place a measure, a, on the product space SM X SN 

instead. Thus, under this measure, each pair of strategies (i, j) G SM X SN is given a 

certain probability or weight. We will call such a measure a correlated measure. The 

expected value of the payoff function for player M (and similarly for player N), imposed 

by the measure a, is then defined by: 

where a(i, j) is the weight placed on the pair of strategies (i,j) by the measure a. 

I will use the short-hand notation, UM{OI) for Ea(uM) whenever possible. 

Al l this may also be written in matrix notation. The correlated measure, a, can be 

written as a \SM\ X \SN\ matrix A, with nonnegative entries, a(i,j), that sum up to 

one. In the case where a is a product measure, writing p and v as row vectors gives the 

matrix representation A = pTv. A correlated measure thus represents a product measure 

if and only if its matrix representation has rank 1. We have already seen that player M's 

(and player iV's) utility function can be represented in matrix form as UM (UN)- Thus 
UM{A) — tr(ATUM)-

(i,J)€SMxSN 
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One might wonder why one would want to study correlated measures seeing as we 

are here only interested in non-cooperative games. After all a correlated measure seems 

to represent a form of cooperation between players. It will become clearer later as to 

why this is not necessarily so but an initial hint comes from the following fact. It should 

be evident that 

since the maximum on the right hand side is taken over a subset of the measures that 

are available on the left. Thus it seems possible that both players might gain more by 

considering product measures, even if they are not interested in cooperating. 

Once one has a correlated measure, it is a simple procedure to deduce the marginal 

measures for each player. Under a correlated measure a, the marginal measure for player 

M is given by: 

The marginal for player N, aN, follows analogously. 

However, a measure a e P[SM X SN] may not derive from the product of two mea

sures, //. G P[SM] and v € PfSW]- The following example makes this clear. Consider a 

correlated measure that places the following probabilities on the nine pairs of strategies 

in a 3 x 3 game: 

The marginal measure for player M is (.5, .25, .25) and for player N is (.35, .5, .15), but 

there are no marginals that, when multiplied together, will produce the measure, a, given 

above. An easy way to ascertain this is to note that the rank of the above matrix is 3. 

7 
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The introduction of correlated measures leads to a redefinition of the concepts of 

best-response and equilibrium: 

Definition: A (correlated) measure a has the marginal best-response property if, 

max UM{/J>,CXN) < %(a) and max UN(O>M, V) < UN(CX). 

The marginal best-response property is called exact if the above two equations are ac

tually equalities ([4]). I will denote the set of measures with the marginal best-response 

property (not necessarily exact) by MBR. 

Definition: A correlated measure a is called a correlated equilibrium if the following two 

equations are satisfied: 

UM{.OL) > ^ uM(ip(i),j)a(i,j) VV> : SM -> SM 

uN(a)> XI uN(i,(l>(j))a(i,j) V<> : SN SN. 

I will denote by CE, the set of correlated equilibria. 

In words, a correlated equilibrium is a probability distribution or'measure that as

signs probability to all possible combinations of players' strategies in such a way that no 

one player can, by himself, increase his expected gain by redistributing the measure. One 

way of visualizing this is in terms of the payoff matrix. Suppose we hold the probability 

of each entry in the matrix A fixed. Then a correlated measure is in CE if and only if 

player M (for instance) cannot increase his expected payoff by relabelling the rows in 

any way. In the matching pennies game, the possibilities for relabelling are 1) to assign 

tails to the first row and heads to the second, 2) to assign tails to both or 3) to assign 

heads to both. 
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1.4 Relationships between Equilibrium Concepts 

The set of correlated measures with the marginal best-response property, MBR, contains 

but need not equal CE. To see this, recall that the best response set to any v G P[SN] 

includes a pure strategy. Hence the best response set to ajv includes a pure strategy, 

which we will assume places all its mass on A; G SM- Thus, for the constant function 

tp : SM - » SM defined by = k for all % G SM, we have: 

max UMIPICXN) = WM(&,Q!JV) 
i*eP[sM] 

= X UM(k,j)aN(j) 
jesN 

If a G CE then RHS < %(a), so the first condition defining MBR is satisfied. Since we 

could do as much taking the position of N (and therefore show the same property for 

player A T ) , this is enough to prove that CE C MBR. 

Moreover, maxM«M(At,C*N) actually equals 2^iesMiesN

UM^{'i)-lJ)a{i-,!J) f ° r some 

constant function tp. But it is easy to produce examples where there exist non-constant 

ip which outperform every constant choice. Consider the correlated measure, a, which 

assigns probability as before: 

.20 .30 .00 

A = .00 .20 .05 

.15 .00 .10 

Further, suppose that the utility matrix for player M is the identity matrix. Then 

%(d) = 0.5 and 

aM = (0.50,0.25,0.25) and aN = (.35, .50, .15) 
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Thus, 

max UM{p, Qijv) = 0.5. 
/*eP[sM] 

Thus a is in MBR. However, if player M chooses -0(1) = 2,-0(2) 

expected payoff is: 

2 and ^(3) = 1, his 

uM(il>(i),j)a(iJ) = .3 + .2 + .15 = .6S 

This is higher than % ( « ) = .5 so a 0 CE. In this example, the inequality is strict 

proving that CE C MBR. 

The difference between a Nash equilibrium and a correlated one is that a Nash equilib

rium assigns probabilities to each player's possible actions on their own while a correlated 

equilibrium assigns probabilities to all possible pairs of actions of players M and N. 

To highlight the potential usefulness of correlated equilibria, consider, for example, 

the simple game called The Battle of the Buddies ([9]). To understand this game, consider 

two friends, Dave who wants to go to a hockey game and Marc who wants to go to a 

movie. Each, however, would rather go to his friend's choice than do his own thing alone. 

Thus Dave's first choice is for both of them to go to the hockey game but his second 

choice would be for both of them to go to a movie. (Of course, we are considering the 

situation in which they both choose independently.) Thus we can define the game by the 

following payoff matrices: 

5 0 

0 1 
UN 

1 0 

0 5 

As an aside, there is a legitimate question here about the plausibility or even the 

desirability of quantifying rewards. In order to be useful, game theory must necessarily 

reduce all rewards to a quantity. It cannot deal with qualitative rewards which may 

10 



nonetheless figure prominently in the decision process. This is an unfortunate limitation 

and one that needs very much to be kept in mind at all times. You cannot quantify a 

friendship. Nor can you quantify the value of a person's job, or the effect of an action 

on the environment. An excessive focus on the mathematics behind a problem may lead 

one to allow what is quantifiable to trump the qualitative aspects, to the detriment of 

all involved. 

Returning, to the above example, let us first determine the existence of Nash equi

libria. Recall that for a pair of measures, (/*, u), to be a Nash equilibrium it must satisfy: 

> M A X UMII^,^) 
V£P[SM] 

=• 5£(1)*>(1) + (1 - A(l))(l - HI)) > max [5/i(l)i>(l) + (1 - /x(l))(l - P(l))] 
»eP[sM] 

=>/i(l)(6i>(l)-l) > max >(1)(6/>(1)-1)]. 
V€P[SM] 

There are therefore three possible cases allowing for the existence of a Nash Equilibrium. 

First, if 6i>(l) - 1 > 0 then p,(l) must be equal to 1. If, 6z>(l) - 1 < 0 then fi(l) must be 

equal to zero. The other case requires that z>(l) be equal to 1/6. Since we can do much 

the same using N, it is easy to verify that there exist only three Nash equilibria - with 

[>, v) = [(0,1), (0,1)], [(1,0), (1,0)] or [(5/6,1/6), (1/6,5/6)]. The corresponding payoffs 

are [UM,UN] = [1,5], [5,1] and [5/6,5/6]. The following diagram illustrates the possible 

payoff region provided we restrict ourselves to measures derived from the multiplication 

of marginals. 

However, the set of correlated equilibria is much larger. Recall that for a measure, 

a, to be a correlated equilibrium, it must satisfy: 

%(a) > uM(ip(i),j)a{i,j) 
(.i,j)€SMxSN 

5d(l, 1) + d(2,2) > M</>(1), 1.) + uM(rp(\), 2)a(l, 2) + uM(^(2), l)a(2,1) 

+ «M(^(2),2)a(2,2) 

11 



Figure 1.1: Payoff region allowing only for measures derived from the multiplication of 
marginals 

as well as, 

uN(&) > X uN(i,<j)(j))a(i,j) 

(hj)esMxSN 

=> d(l, 1) + 5o(2,1) > t/^(l, 0(l))o(l, 1) + *(2))a(l, 2) + ujr(2, #(l))a(2,1) 

+ Utf(2,#2))a(2,2) 

for arbitrary </>, ̂  : {1)2} —» {1,2}. This implies that if a measure a, is a correlated 

equilibrium then the following two conditions must be satisfied: 

o ( l , l ) > 5d(l,2) 

6(2,2) > 5d(2,l) 

These lead to a set of measures rather than three points. The following picture depicts 

the possible payoff region provided we allow for any correlated measure. 

Note that these two diagrams highlight the potential usefulness of correlated measures 

that do not derive from the multiplication of two marginal measures. The payoff pair 

(3,3) which seems to be the most obvious compromise is included only in the second 

diagram and not the first. 

12 



Figure 1.2: Payoff region allowing for all measures 

Now, if we restrict ourselves to the set of correlated measures of product form, i.e., 

where a — aMa>N, then all three sets (CE, MBR and NE) are indistinguishable. That 

MBR and NE are equivalent under this restriction is obvious from the definitions. (MBR's 

definition is precisely that of NE in this case.) To show that CE and MBR are also 

equivalent, we need only show that some constant transformation, if>(i) = k for all i G 

SM, is an upper bound on 2~2iesM jesN

 uM{i>{i),j)oi.(i,j) for all possible transformations 

ip : SM SM- It would then follow that MBR=CE since the maximization in the 

definition of MBR turns out to be the largest constant transformation. Now, since we 

are in the case where a is a product measure, 

X uM(ip(i),j)a{i,j) = X uM(ii)(i),j)QM(i)aN{j) 

= X ( Yl UM(V>W> J W ( j ) ) OiM{i) 
iesM \jesN / 

Furthermore, since SM is finite, it follows that there exists an k G SM such that 

uM(k,j)aN(j) > X uM(i,j)®N(j) for all i G SM 

jesN j&sN 

Thus, letting ip(i) — k for all i G SM will give the desired upper bound and therefore CE 

13 



and MBR are equivalent. 

1.5 Repeated Plays 

Of course, game theory is hardly confined to one-shot games, the application of which 

is fairly limited. In the more involved scenario of repeated play, player M must impose 

a measure on his set of strategies, SM, each time the game is played. (It is hopefully 

clear that actual actions are single-strategy choices, but that the choice of which action 

to play may very well be governed by a pre-chosen probability measure over the set of 

all possible actions.) 

In the simplest scenario, a player may decide to use the same measure for all rounds 

of the game. Thus his empirical distribution.of play (that is the distribution of the actual 

history of the game) derives from repeated draws from a fixed distribution. He may, on 

the other hand, decide to vary his mixed strategy at each round. (In fact, if he doesn't 

and the other player is at all rational then he is not likely to fare very well in the long 

run - unless he happens to have hit upon an equilibrium.) How, and for what reasons, a 

player might decide to vary his play is a question at the heart of this thesis. 

The most logical idea would be for each player to attempt to learn from the history 

of the game. So, for instance, if t rounds have already been played, then each player has 

the experience of t rounds from which to draw in order to better gauge the behaviour of 

his opponent. For ease of notation, we can define a history matrix, h1: 

at 
BM sM(l)...sM(t) 

bN SN(l)...SN(t) 

where SM{k) is the actual strategy played by M during round k (similarly for player iV). 

I will denote by SM x SN, the set of all histories of length t. Thus, M's measure or 
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behaviour rule for round t + 1 may be a function of h1. We will assume, however, that 

each player's payoff matrix is stationary with respect to time. The matching pennies 

example illustrates this notation perfectly. If M were to notice that, no matter what he 

chooses, nature seems always to choose heads (i.e. sN = (h,h, ...,h)) then it would make 

sense for player M to do likewise. 

Thus game theory becomes interested in the incorporation of learning into a game. 

This is, obviously, no trivial question. How do you incorporate into a mathematical model 

the idea that people learn from their past experience? We will look at some attempts to 

do just that later on in this paper. The bulk of this paper will be concerned with the 

long run performance of a number of different behaviour rules (policies used to determine 

action) that attempt to incorporate learning. More specifically, I am interested in each 

behaviour rule's differing convergence properties and whether or not they do actually 

converge to some stable equilibrium where each player eventually sticks to one measure 

(or set of measures) over his set of strategies. 

Of course, one might still wonder what purpose there is in discussing equilibria. What 

reason do we have for believing that players will eventually come to decide upon measures 

that lead to an equilibrium? The study of game theory itself assumes a certain amount 

of rationality in the players. (If you take issue with that assumption then game theory 

will have little to offer.) The idea behind the study of equilibria is that, given time, the 

players will come to some compromise. It is this idea of a compromise that equilibria are 

meant to represent. 

However, not all correlated equilibria result in great compromises. Recall, for exam

ple, the Battle of the Buddies where two equilibria resulted in one player caving in every 

time. So even if we can insure convergence to CE, this may not be all that desirable 

a result. Thus, even within CE, we may want to insure convergence to certain specific 
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distributions. 

Questions of how to incorporate learning into a game and how to insure convergence 

have, of course, been around for a while. A number of methods of deciding on one's play 

(behaviour rules) have been developed which will be discussed in the remainder of this 

thesis (along with some original ones). I will be focusing specifically on their differing 

convergence results - what they converge to (if at all) and under what circumstances. 
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Chapter 2 
Behaviour Rules 

2.1 Overview 

Though the concept of a behaviour rule has already arisen, we have until now left it 

somewhat informal. This needs now to be remedied. 

Definition: A behaviour rule for M is a measure-valued mapping, p : \Jt>o(SM x SN) —> 

P[SM] which returns a mixed strategy for M based on a given vector of observed plays. In 

other words, we imagine player M choosing a fixed mapping p, and choosing as the mixed 

strategy to play at time t + l, the measure, pt+l = p(sM(l), sN(l),SJV(£))-

Of course, it is quite possible to have a behaviour rule that only takes a portion of 

the history into account or which even ignores the history completely. For instance, in 

Matching Pennies, one might choose to play heads all the time no matter what happens 

(a constant mapping) or to play heads in the morning (first n rounds) and tails in the 

afternoon (next n rounds). We will, however, concentrate on history dependent rules. 

Any given pair of behaviour rules (p, v) defines a probability distribution over all 

possible histories of any fixed length t. I will denote by p(p,u)[ht] - the probability 

that the history h* will result given that M uses the fixed rule p and N uses the fixed 

rule v. Recall that we are assuming that each player acts independently. Similarly, if 

HL C SM x SN, we can define p(p, ^[H1] as the probability that a history h} G HL will 

17 



result given that M uses the fixed rule \x and N uses the fixed rule v. 

One means of evaluating a behaviour rule is to determine whether it guarantees a 

certain lower bound pay-off. To that end the following two quantities are useful. First, 

for any history vector, b} = ( s M ( l ) , s M ( t ) , Sjv(l), sN(t)), we can define the time-, 

averaged realized pay-off, 

1 * 
Unitf) = -^2UM(SM{T),SN(T)). 

T-l 

Second, a useful performance index associated with a particular history h} is 

UMih1) = max wM(//,F(/i*)) 

where represents the empirical distribution. of play of player N up to time t. In 

words, this represents the pay-off to M if N plays the empirical measure of iV's past 

plays and M plays the corresponding best response. 

2.2 Properties of Adaptive Behaviour Rules 

To express desirable properties for M's behaviour rule ji, several criteria have been pro

posed. Each involves a different assumption concerning the behaviour rule of player N 

and attempts to insure that player M's time-averaged realized pay-off exceeds some lower 

bound. The first criteria, called safety, allows player N to use any available behaviour 

rule, v, and seeks to guarantee that M receives at least his min-max pay-off. This prop

erty is obviously desirable, but perhaps not essential. It seems reasonable to think that 

in pursuing safety, one might be forced to ignore opportunities for much larger gains. . 

Safety: 

A behaviour rule, fi, is said to be e-safe for player M if there exists a t such that for 

any possible behaviour rule, u, available to nature and for any t>t there is a subset of 
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histories of length t, H ' c S ^ x SN, with p(p, > 1 - e, such that 

UM^) + e > min max'uM(/x, i/) V/i*e#* 

A behaviour rule is said to be safe if it is e-safe for every positive e ([4]). 

A second proposed criterion is consistency. This property is satisfied when player M 

does no worse than if he had played a best response against the empirical distribution. 

There are no less than three variations on the definition of consistency, each making 

different assumptions on the behaviour rule of player N. In the first definition given 

below, player N is assumed to employ a specific constant behaviour rule, v. In the 

second definition, the behaviour rule is again assumed to be constant but now player N 

can use any fixed measure, v £ P[SN]- Finally, in the definition of universal consistency, 

all restrictions on player TV's behaviour rule are lifted. In each case however, the goal is 

the same. 

Consistency: 

Let v be a fixed measure in P[SN}- A behaviour rule, p, is said to be e-consistent 

against 0 if there exists a t such that for any t > t there is a subset of histories of length 

t, H* C SM x SN, with p(p, > 1 — e, and 

UM{h}) + e > UM{ti) 'WeH1 

([4])-

If the above holds true for all fixed measures v € -P[»SV] then p is said to be e-

consistent. In words, a behaviour rule is e-consistent if, given that the mixed strategy 

played by nature is constant, M does about as well as playing a best response against the 

empirical distribution of play. A behaviour rule is said to be consistent if it is e-consistent 

for all positive e. 
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Finally, a behaviour rule, ft, is said to be e-universally consistent if there exists a t 

such that for any behaviour rule v available to nature and for any t > t there is a subset 

of histories of length t, #* C SM x SN, such that p(p, > 1 - e, 

UM{ti) + e>UM{ti), WeHK 

The key change here is that if ft is e-universally consistent then v is allowed to vary with 

time (i.e. there is no guarantee that vl = uj for i ^ j). Again, a behaviour rule is said 

to be universally consistent if it is e-universally consistent for all positive e ([4]). 

It is easy to show, directly from the definitions, that universal consistency implies 

safety. Universal-consistency of a measure, ft, implies that for all e > 0 there exists a t 

and a set of histories Hl. C SM x SN such that, for any behaviour rule v by player N and 

for any t > t, p(p, v^H1} > 1 — e and 

But maxMMjvf(//, z7(/i4)) > min^fmax^ UM{P, V)\, for all /i*ei?*. So the above inequality 

implies the defining inequality for safety. 

2.3 Forecasting and Response 

It is useful to divide the larger set of all possible behaviour rules into two subsets. The 

first subset of behaviour rules attempts to predict TV's play and then proceeds accordingly. 

The first step in this process - prediction - is the function of a forecast. A forecast is an 

attempt to determine how the other player will act (possibly expressed probabilistically) 

in the next round. 

The most obvious forecast is the empirical average of the opponent's past play. Thus 

if the game has been played for t rounds and N has played strategy i, x number of 
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times then the forecast would simply predict that player N will play strategy i with a 

probability of x/t. Thus, we define 

1 * 
^ ) = 7 E 7 i M ^ . j = l,2,...,\SN\, '(2-1). 

r=l 

representing the empirical probability of playing strategy j observed in the history, h*. 

Here, Ij(p) = 1 if p == j, and zero otherwise. 

More generally, a forecast, 7, will generate, after round t of the game, a /c-tuple, 

v = (i>i(ht),Vkih})) where fc = \SN\ and is M's forecasted probability that 

nature will play strategy j at time t + 1. The forecast, of course, depends on whatever 

factors player M deems relevant. It would seem reasonable, however, to let the forecast 

depend only on the past history, h} € S*M x Sl

N. Thus a forecast is a function, 7 : 

U ~ i SM x &N ~> P[SN]-

Calibration: 

The idea behind a calibrated forecast is that eventually the empirical distribution of 

play of the opponent (nature) should converge to that which is predicted by the forecast 

(or alternatively, the forecast should adapt to fit the empirical distribution). If this occurs 

then the forecast is said to be well-calibrated. 

Naturally, this idea can be represented mathematically. Fix v £ P[SV] and a sequence 

of plays as recorded in history matrices h1, h2,h},... Let N(v,t) denote the number 

of the first t rounds where M's forecast, 7(/i*), generated the measure v. This can be 

written as: 

iV(/>,t) = ^ J , ( 7 ( / i t ) ) 

Let p(i>,j,t) be the fraction of these rounds for which nature plays j. 

. . J o i f A T ( M = 0 
P\v,3,t)=\ 

{ N^f)^r=iW{hT))Ij{sN(T)) otherwise 
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The forecast 7 is calibrated with respect to the history sequence hl, h2,... if: 

l i m V | ^ £ ^ = o VjeSN 

t—>oo z — ' t 

where the summation is taken over all possible v ([3]). 

In other words, calibration merely insists that, in the long term, the forecast agrees 

with reality. However, it is clear that a good forecast need not guarantee a good be

haviour rule or even that a good forecast is necessary for a good behaviour rule. The 

following are a couple of forecast-based behaviour rules that seek to make good use of 

forecasts in order to incorporate some form of learning into a player's behaviour. 

Fictitious Play: 

One of the most popular behaviour rules is that of Fictitious Play (FP) which at

tempts to make an educated guess (updated after each round) at the measure chosen by 

the opponent and then plays a best response to this guess. Player M makes some initial 

guess at nature's measure, u0, and then proceeds to modify it using the empirical proba

bility distribution, F(/i*), which is accumulated as the game progresses. Mathematically, 

this "educated guess" or forecast rule, takes the following form: 

n0 + t n0 + t 

where n 0 is a fixed number ([4]). The FP behaviour rule is then given by 

fit+1 = argmaxliep[sM]UM(tJ','y(ht)) 

(see definition of best response, chapter 1, pg.4). In the cases where there is more than 

one argmax, recall from chapter 1, pg. 4, the rule for deciding on a pure strategy. 

As time goes on, FP places less and less weight on the initial guess, uQ, and more 

and more weight on the accumulated empirical distribution, Z/(/i*). The long term effect 
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is that the forecast rule eventually mirrors the empirical distribution of past play by the 

opponent (and is thus calibrated). As time goes on, therefore, FP begins to behave more 

and more like a best-response to the forecast 7(/i4) = V(h}), the empirical average of 

play. Thus we have a form of learning incorporated into the behaviour rule. This rule 

is deterministic in the sense that although it forecasts a probability for each strategy 

available to the opponent, its output is a pure strategy. 

Though FP is consistent against certain measures it is not safe, as Fudenberg and 

Levine have shown ([4]). Therefore it is not universally-consistent either. Fudenberg and ' 

Levine did show that, given a situation where switching between actions becomes more 

and more infrequent, FP does turn out to be consistent (see the Shapley game discussed 

below). The lack of universal consistency has consequences for the convergence proper

ties of FP which will be discussed later. 

Past Response: 

The past response behaviour rule, PR, is much like FP. The real difference occurs in 

the method of forecast. Suppose player M plays strategy j in round t. Whereas FP's 

forecast is based on the empirical distribution of the entire game up to the present, PR 

forecasts based only on the empirical distribution of those plays by N that followed a 

round in which M played j -that is, on observed "past responses" of player A?" to action 

j. Like FP, it would then place positive measure only on those actions which are a best 

response to this empirical distribution. Again an initial guess, v0, is needed. Assuming 

sjif(t) = j , PR's forecast rule for round t+1 has the following form: 

/ v ' n0 + t no + t 3' 

where no is a fixed number and u{h^) is the empirical distribution of play by N based 
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only on those rounds r < t, where sM(r - 1) = j. Specifically, for all k € SN, 

t t 
v(h))[k] = y X J i M T - WkMT)) where T = J2Ik(sM(r)). 

T=2 T = l 

PR therefore is an attempt to account for learning in the opponent while at the 

same time learning oneself. For the same reasons as FP, however, PR is neither safe 

nor universally-consistent. This being said, PR does seem to do better against the other 

behaviour rules (at least in the Shapley game - see Chapter 5) and may be an example of 

how insuring consistency requires that one forego certain opportunities for greater gain. 

PR, though doing better against the other behaviour rules, when played against itself has 

a much lower payoff than any of the others. Thus it has the possibility of much greater 

gain and the risk of much greater loss. 

2.4 Forecast-free Behaviour Rules 

Both FP and PR depend on h} indirectly through an explicit forecast, 7(/i*). However, 

an intermediate forecast is not essential as the next four behaviour rules demonstrate. 

Though they all rely on the history of the game, they never directly attempt to forecast 

the measure of the other player. 

K-exponential Fictitious Play: 

K-exponential FP, an invention of Fudenberg and Levine, assigns probability to each 

strategy, i £ SM, in the following way: 

t Wj exp [Kufavjh*))] 
W J U £ , e S M ™ i e x P M i , ^ ) ) ] 

where w(i,i/(/i*)) = UMi^u^ih1)) (see Chapter 1, equation 1.1). Here, w\,w\sM\ is a 

collection of positive weights independent of time t and chosen in advance ([4]). 
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At first glance, this behaviour rule bears scant resemblance to FP. Looking for similar

ities, the first most obvious is that, like FP, it also depends on the empirical distribution 

of player N's play, namely V(h}). In fact, closer examination shows that /^-exponential 

FP is a smoothing of the best-response strategy of FP that places equal weight on all 

maximizers. In other words, for K sufficiently large and for fixed weights, Wi > 0, this 

behaviour rule assures that player M will play an e-best response to with high 

probability and the remaining strategies with small probability. To see this, consider 

equal weights, IUJ, and define w(i,I7(/i')) = m for ease of notation. The best response 

would simply be the argmax over i of {itj : i = 1,.., |SM|}- ^-exponential play however 

now has the form: 

E i expf/cuj-] 
1 

V • exp[/c(Mj - Ui)) 

E j : U j = U i 1 + Yty.UjKm exp[-K(«i - Uj)] + £ j : t y > t t i eX P[«(^ - Ui)} 

Now, if we let K go to infinity, we will have two options. If i is a best response then the 

third sum will be empty and the second sum will go to zero, leaving only the first sum. 

If i is not a best response then the third sum will be non-empty forcing to zero. 

Thus, 

if i is a best response 
lim = < 1 

I 0 otherwise 

So, as K goes to infinity, ^-exponential FP converges to the best response measure that 

places equal weight on all maximizers. Unlike FP, ^-exponential FP does allow for other 

strategies to be played if only with small probability. This is called a tremble from the 

best-response. Exponential FP does, in some sense, still use the empirical distribution 

of play as a forecast even though it is not explicitly stated as such. 

The major advantage of the ^-exponential FP over standard FP is that M's measure 

25 



now depends smoothly on the empirical distribution. Thus, since the empirical distri

bution adjusts as the inverse of the sample size, M's play cannot oscillate wildly. As 

Fudenberg and Levine have shown, it is this property of ^-exponential FP which causes 

it to be e-universally consistent ([4]). 

Regrets 1: 

This behaviour rule was developed by Andreu Mas-Collel and Sergiu Hart. The idea 

is to define a function that in some sense measures the "regret" that M has for having 

played one strategy in the past rather than another. Suppose the game has already been 

played for t rounds. Then, given any two strategies j, k G SM, the regret function for 

player M is defined in the following way: 

r i _ 
RM(J,k) y X (uM{k,sN(r)) - Um(J,SN(T))) 

T<t:sM{r)=j 

where SJV(T) is the strategy played by N at time (or round) r and [z]+ = max2;, 0 ([8]). 

This quantity measures the difference in payoff between what M received and what 

he could have received if he had consistently played the strategy k whenever he had, 

in the past, played strategy j. Note that RM(j,j) = 0. (This function, RM, obviously 

requires a certain amount of knowledge about M's payoff function which may or may not 

be reasonable depending on the application.) Computing this for every possible strategy 

j £ SM yields a \SM\ x \SM\ matrix, RM, where the (j, k)th entry is RM(j,k) as defined 

above. 

We can convert this into a stochastic matrix, PM, by dividing by an appropriate 

constant, K, and replacing the diagonal entries by 1 minus the sum of their corresponding 
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rows. In other words, 

PL = I+\{#M-diag{&Me)} (2.2) 

where e is a column of ones and K - which is independent of both time and history - is 

chosen to insure that the sum of the non-diagonal entries in each row is strictly less than 

one. 

The regrets 1 behaviour rule then proceeds in the following manner. Given that 

•SMOO = j, the measure or behaviour rule chosen by player M is simply the jth row of 

the matrix Pl

M. In detail, 

nt+l(k) = ±&M(j,k) yk^j (2.3) 

»t+1u) = i - E (2-4) 

Note that unlike FP, this rule assigns positive probability to all strategies having positive 

regret as well as to the previously played strategy. This differs from fictitious play which 

assigns positive probability only to those strategies that are a best response. 

This regret 1 rule however is not universally consistent, so Mas-Collel and Hart de

rived the following method, also based on regrets, that is universally consistent. 

Regrets 2: 

The idea behind this method is to find an invariant vector, q, to the probability 

matrix Pj^. That is, qt must satisfy the following equation: 

qtp* = ql (2.5) 

where ql is a row vector of length \SM\ whose components sum to one. That such a vector 

ql exists is a result of the following theorem (taken from Isaacson and Madsen, [5]): 
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Theorem: Al l finite stochastic matrices P have 1 as an eigenvalue and, moreover, there 

exist non-negative eigenvectors corresponding to A = 1. 

In fact, Isaacson and Madsen actually show that there is a left-eigenvector corre

sponding to A = 1 that has non-negative components that sum up to one ([5]). (Note 

that the subscript M (or N) has been dropped on R, P and q for ease of notation.) 

By multiplying through by K, equation 2.5 can be written as: 

nq* = KqlI + ql [Rf — diag(Rte)\ 

^ 0 = q* (R* - diag(R?e)) (2.6) 

The regrets 2 behaviour rule assigns probabilities to playing each strategy i G SM, 

based on solutions to the above equation. That is, 

//'• r !(0 v?: G s.w 

for some ql satisfying equation 2.6. 

Both regrets behaviour rules have an interesting interpretation in terms of Continuous-

time Markov Chain (CTMC) theory. If we let Q* = R* - diagiffe) then Q* has the 

properties of an infinitesimal generator of a CTMC. That is, 

- Q * M = Q%j) Vi G SM• 

So we can interpret the regret, i?*(j, k), as the rate of discarding strategy j in favour 

of strategy k. Therefore solving equation 2.6 is equivalent to solving for the stationary 

distribution of a CTMC. In essence, Regrets 2 runs a fictitious CTMC, between each 

round of the game, and uses its stationary distribution as the measure for the following 

round. 

In terms of this matrix Gf, the stochastic matrix, P*, has a very simple form:. 

P' - / : V . 
K 
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Interestingly, this is precisely the formulation for the stochastic matrix derived by the 

uniformization of the CTMC process (see [5] or [6]). 

Regrets 2 has been shown by Mas-Collel and Hart to be universally consistent. 

2.5 Modified Regrets 

The idea for this behaviour rule stemmed from the results of the Battle of the Buddies 

game. When the game was played using any of the above behaviour rules (Regrets 2 

not included due to programming difficulties), the result was that one of the two friends 

caved in to the wishes of the other every time. Which one ended up caving was entirely 

dependent on what happened in the first few rounds. This hardly seems satisfactory 

though not entirely unexpected. Regretsl for instance only changes action if there is a 

positive regret while holding the other player's action constant. Now if we assume that 

player iV chooses his preferred action then there will never be a positive regret for player 

M, as his choice of payoff is between one (if he caves in) and zero (if he doesn't). Thus, 

M will inevitably cave in even though his gain will remain one by not switching and 

might be 5 if he switched and convinced his friend to do likewise. 

In other words, all these behaviour rules do not take into account the ability of one 

player to affect the action of the other. This, I think, is a major defect but not one 

that is easily overcome. For instance, how does one go about including in one's idea of a 

regret, the fact that if one had played differently one might have been able to change the, 

action of one's opponent? In the standard Regrets-based behaviour rule, the regret for 

not having played action k when one actually played j is simply a matter of the difference 

between what one would have received if one had played k and what one actually did 

receive, assuming the other player does not deviate from his play. Somehow one would 

like to also incorporate into the idea of a regret, R(j, k), some means of determining how 
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much one could possibly receive if, by switching from strategy j to k, one also persuaded 

one's opponent to switch as well. 

It is this idea that motivated the following variant of Regrets 1 which I will call 

Modified Regrets (MR). MR also looks at the difference between what one could have 

received if one had played strategy k in the past when one actually played strategy j but 

now we allow the strategy of nature to vary over the whole set SN. Thus, if j was played 

in round t then the modified regret is defined in the following way: 

E {uM(k, SN(T)) - uM(j, Sn(T))} 
T<USM(T)=J 

+ IM!I + I M 2 | £ E W M - « M ( J , * ) } 
1 11 1 2 1 r<t:sM{r)=j ieSN 

(2.7) 

where Mx = max(UM) and M2 = min(UM)- Note that the first sum is simply the 

"normal" regret from the Regrets 1 behaviour rule. The second sum allows player M 

to account for losses arising because he has not tried to force the other player to switch 

strategy. The weighting on the second sum turns out to be useful since MR is of little 

benefit when the game is zero-sum. Thus, with the above weighting, MR reduces to 

normal regrets 1 when we have a zero-sum game. 

Unfortunately, the above MR behaviour rule causes both players to be too stubborn 

in the Battle of the Buddies game (whereas, with the other rules, they are too compliant) 

so some idea of a compromise has to be introduced. The necessary twist is to have player 

M use MR unless his own payoff has diminished over the last two rounds due to a change 

in strategy by player N. This turn of events is likely to occur because player N sees some 

sort of benefit to playing his new strategy. Thus in such a scenario, player M, for that 

round only, responds with a best response to the last strategy played by his opponent. Re

sults from this version of MR will be discussed later but turn out to be fairly encouraging. 
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Chapter 3 
BlackwelPs Approachability 
Theorem 

3.1 Overview 

Before analyzing the performance of the different behaviour rules, it is useful to make 

a short digression into a versatile and abstract result called Blackwell's Approachability 

Theorem (BA.T.). Though only explicitly used in the proof of the convergence results 

of Regrets 2, B A . T . also formed the spring board for Regrets 1 which in turn led to 

Modified Regrets. 

In order to give an intuitive understanding of this theorem, we need to define a 

general "pay-off" function, WM(S*) which is the payoff to player M when the players play 

s* = sN(t)). This WM(S') need not be a scalar, so in this general setting, we define 

it as a vector (or matrix) in RL. We also define a generalized time-averaged pay-off 

function, V M ( ^ ) = \ J2T<t VM(ST), also a vector in RL. Thus, %(s T) is the realized pay

off in round r and VM(^*) is the realized, time-averaged pay-off for a particular history 

of length t. An underlying assumption in the following discussion is that all pay-offs lie 

in the same bounded subset of RL. 

The question that B A . T . attempts to answer concerns whether or not it is possible 

for M to insure that VM{ht) approaches a pre-determined set C with probability one. 
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Blackwell's approach is to impose a condition. Suppose that for any Vjvf(̂ *) £ C 

there exists a measure p 6 P ^ M ] (dependent on VA/ (^ ' ) ) S U C N T N A T : 

[«M(/i, j ) - p ro j c V M ( / i t ) ] n < 0 Vj e SN 

where n = Vjf (h*) — projcVMih?) (that is, the outward normal of C at the closest point 

in C to V M ( ^ ) ) a n d vM(l^,j) = (see Chapter 1, equation 1.1). 

Geometrically, this implies that for all sN G Sjy, the expected-payoff in the next 

round, VM(IJ>,SN), will be, relative to the hyperplane through PTOJCVM^), on the same 

side as C (as demonstrated in Figure 3.1 below). This is called the Blackwell Condition. 

The dependence of the choice for p on VM(^*) and the set C is clear but will not be 

specifically indicated in order to ease the notation. 

Figure 3.1: Geometrical representation of Blackwell's condition 

Blackwell's theorem asserts that, given any predetermined set C, if the above con

dition can be satisfied then M can insure that VM(^*) approaches C with probability 

one. 
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Before delving into the actual proof, I will give a somewhat geometrical interpretation 

of why B.A.T. makes sense. Given any p e P[SM] and j e SN, the expected value of 

VM{ht+l), when AT plays strategy j £ SN and M uses measure p as a behaviour rule, can 

be written as follows: 

VM(li, j)[ht+1) = j^V^h*) + j^vM(p,j). 

Furthermore, if p is chosen to satisfy the Blackwell condition and t is sufficiently large, 

then for all j e SN, VM{h, j)[ht+l] is contained in the circle with center projcVM{hl) and 

radius 1 1 — p r o j c V M i h } ) \ \ . This follows from the fact that it is a convex combination 

of VM(^*) and vM{^,j) (which lies on the same side of the hyperplane as C) and t is 

large. 

Using this fact, it is easy to show that the euclidean distance between C and VM(IV), 

denoted by d(Vjvf(/i*), C), cannot increase very fast as t goes to infinity (since.larger t 

favours smaller "correction" from VM^*)) - Indeed, 

d(VM(ht+l),C) - d{VM(ti),C) < \\VM(p,,sN)[ht+1] -PTOJCVMWW - | |VM(tf) - p r o j c V M 

= l l ^ y M ^ ) + j^jvM(p,sN) -PTOJCVMWW 

-\lV„(li') - projcVM(ti)i: 

This last expression obviously goes to zero as t goes to infinity (since all pay-offs are 

bounded). A precise computation shows that rf(14f(/it), C) doesn't merely converge to 

some limit greater than zero and remain bounded away from C but actually goes to zero 

itself. Thus by the Law of Large numbers, since the distance to C in expectation goes 

to zero so must the realized distance between the time-averaged pay-off and the set C. 

Blackwell's more detailed proof is outlined in the next two sections which may be skipped 

if the reader so desires. 
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3.2 Auxiliary Results 

Blackwell's proof of his Approachability Theorem depends heavily on a version of the 

Strong Law of Large Numbers (SLLN), due to Blackwell himself, which he uses in order 

to prove a key lemma. These (Blackwell's version of the SLLN and the lemma) I will 

state first before diving in to the actual proof of B A . T . 

Blackwell's version of the SLLN is as follows: 

Theorem: If Bi,B2,... is a sequence of random variables such that \Bk\ < 1 and there 

exists a u > 0 such that 

...,£*_!] < -umax( |5* | |£ 1 , . . . ,£ f c _i) 

then for all a e R 

Prob{Bi + ... + Bk > a for some k} < 

I will not attempt to prove the above theorem here but refer the reader to the bibli

ography ([2]). For the following lemma, however, I will provide the proof, essentially as 

Blackwell presented it ([1]). 

Lemma 3.2: Let (5\<52,... be a sequence of random variables for which there exist con

stants a, b and c such that, with probability one, 

0'<<y*<o VteN (3.1) 

|^+i_ 5 t |<_A_ v t e i V (3.2). 

E[6»l\5\S*,...,S<]< ( 1 - ^ ) 5 * + ^ VtGiV '(S3)' 

Then 5* -» 0 almost surely (a.s.). Indeed, for every e > 0, there exists a T0 depending 
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only on e, a, b and c such that for any 51 satisfying equations 3.1, 3.2 and 3.3, we have 

Prob{81 > e for some i > T0} < e. (3.4) 

To see that this conclusion is truly equivalent to almost sure convergence, first assume 

almost sure convergence and fix n > 0. Then 

{UJ : 6f -> 0} = {UJ : Ve G (0,n) 3T s.t. Vi > T,6t < e,} 

= n e e ( 0 i 7 ? ) [u T G Ar{u; : Sl < e, Vi > T}] 

As e decreases, the above sets that form the intersection shrink in a nested fashion. 

Therefore, 

-> 0] = inf P [UT{<5* < e, Vi > T}1 (3.5) 

ee(0,v) 

And as T increases, the above sets that form the union also increase in a nested fashion 

so, 
P{5*->0}= inf supP{<J*<e, V i > T } 

T 

Assuming 51 —> 0 a.s. implies that for all e > 0, 

sup P{5* < e, Vi > T} = 1 
T 

Hence there exists a T 0 such that P{<5* < e, Vi > T0} > 1 — e which is equivalent to 

equation 3.4. 

Conversely, if equation 3.4 holds, then for each e G (0,77) we can find T = Te such 

that 

P{St < e, Vi > T J > 1 - e. 

Consequently, from equation 3.5, 

P{5* ->• 0} > inf [1 - el = 1 - 77. 
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Since this is true for any rj > 0, equation 3.4 implies almost sure convergence. 

Proof of Lemma: 

Fix any e > 0 and any t0 > 2. We first prove that there exists a t\ > t0 depending 

only on t0,a,b and c such that 

ProbiS1 > e/2 for tQ < t < h} < e/2. (3.6) 

To see this, define for t > to, 

f 5l if 6i > 0 for t0 < i < t 
a = < 

I 0 otherwise 

Then, cu* < e/2 implies that <5* < e/2 for some i e [t0, t]. 

By equation 3.3, for t > tQ, 

c 

It is clear, therefore, that this implies that the sequence of constants E{at), eventually 

decreases. To see that it does in fact converge to zero, let us define e* = Ela1]. Then, 

<• <- Hy+? 
=>t(i-l)e ' < ( t - l ) ( t - 2 ) e t - 1 + C ^ ~ 1 ^ . 

If we let 0* = t(t - l)e* then 

Fixing t0, it follows that /?* - @to < (t - t0)c. Thus, substituting for /?*, we get 

* t0(t0-1)6*° (t-to)c ( i . 
6 - t(t-i) + W ^ ) ( 1 
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which, of course, implies that Efa*] converges to zero as t -> oo at a rate depeding only 

on to, a, c. 

In other words, for all e > 0 there exists a T > 0 such that for all t>T, 

(e-Y > E(c?) > f a*dP > J i V > e/2}. 
V / / J{at>e/2} Z 

Therefore, there exists a ti > t0 depending only on to, a, c such that 

Prob{al1 < e/2} > 1 - e/2. 

This completes the first step in proving the lemma - demonstrating that equation 3.6 

holds under the conditions stated in the lemma. 

In order to continue, we define the following double sequence. (A new random se

quence with index k associated with each fixed t.) For every t,k with t < k we define 

the variable ztk as follows: 

0 unless 5 t _ 1 < e/2 and 51 > e/2 

5k if st-i < e / 2 a n d $i > e/2 for all i such that t<i<k 

8ko for k > h0, if S1'1 < e/2 and 5i > e/2 for all i, such that t<i<k0 

and 6ko < e/2 

Perhaps it would be helpful to unpack this definition a little bit. We can first break it 

down into two possibilities - either there is an upcrossing of the level e/2 by the function 

8l between round t — 1 and round t or there isn't. If there isn't then ztk is equal to zero 

for all k. If there is then again we have two possibilities - either 8l remains above e/2 for 

all % such that t < i < k or else it dips below e/2 at some round k0, t < k0 < k. These 

two possibilities account for the second two parts of the definition of ztk (see diagram 

below). 

Thus, ztk monitors the upcrossings of e/2 made by 5k. If an upcrossing is made at 
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time t, then ztk keeps track of the value of 8k up until it once again dips below e/2. ztk 

then holds the constant value associated with the first value below e/2. 

epsildn/2 

Figure 3.2: Three cases for ztk 

It follows from the above definition that if 8k > e for some k > tx then either (i) 

8l > e/2 for all t such that t0 < t < ti, or (ii) ztk > e for some t € [to>̂ ]- Indeed, if 

(i) fails then we must have 5* < e/2 for some t with tQ < i < t± and there must exist 

an upcrossing somewhere between i and k. Therefore, there exists a t € [to, fc] such that 

zik = 8k > e, i.e., (ii) must hold. 

Now, we have already shown that outcome (i) is not very likely, i.e., 

Prob{81 > e/2 Vi G [t0,*i]} < e/2. 

Therefore, if we can show that the same is true for case (ii), i.e., 

Prob{ztk > e for some t >t0 and some k > t} < e/2 (3.9) 
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then both options would be nicely bounded which would imply that Prob{5k > e for 

some k > ti} < e, completing the proof. 

In order to prove equation 3.9, fix t > t0. If t is not associated with an upcrossing, 

then ztk = 0 for all k > t. Hence such a f makes no contribution to the probability on 

the left in equation 3.9 and so we may assume that t is associated with an upcrossing. 

In this case, define Bk = ztk — zt,k-i, k >t (with f3t = 0). Two cases arise. If zt;k-\ > e/2 

we have both zt,k-i — o~k~l and ztk = 5k, so @k = <5fc-1 — $k and 

If zt,k-i < e/2 then Bk = 0 since we can't be in the second case in the definition of 

ztk. So, in either case, equation 3.10 is satisfied. 

We now use the aforementioned variation on the SLLN in the following manner. If 

we let Bk — (t/b)Pk+u and we define u = e/26 then, by equation 3.2: 

E\Pk\ztt,Pt,-,Pk-i. E[5k - 5k~l\5\ 5k~l] 

E[Sk\5t,...,5k-1]-5k-1 

— max(|^||A,...,/? f e-i) since < b/k. (3.10) 

Pk < r Vfc > t Bk < 
t 

< 1 Vk > t 
k + 1 ~ 

and, by equation 3.10, 

E[Bk-i\Bt,-Bfc-2. = ElUkWi+u-Pk-i] b 

< -^max(-|^fc||)9t+i,..,^jfe-i) 

= - ^ m a x d S / t - x l l B t , . . . , ^ ) 
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Thus, this definition of Bk satisfies the hypotheses of the above theorem allowing us to 

assert that, for u = e/26, 

Prob{Bt + ... + Bk_i > a for some k] < {^T~^j • 

But 

Bt + ... + Bk^ = l/3t+l + ... + lf3k 

= ^[(Zt,t+1 - Zt,t) + ••• + (Zt,k - Ztjc-l)] 

= ^(zt,k - zt,t) 

Thus, taking a = st/b above, we have 

( l - u \ l ' b 

Prob{ztk — ztt > s for some k > t} < rts where r = I I 
\l + uj 

Recall that ztt = 5K Therefore, since < e/2 (by assumption) and t > t0, we can 

insure that ztt < 3e/4 (by taking £0 large enough and using equation 3.2), so that ztk > e 

for some k implies that ztk — ztt > e/4. Thus, 

Prob{ztk > e for some k>t}< (re / 4)*. 

This, finally implies that, 
0 0

 r e(*o/4) 

Prob{ztk > e for some k>t,t>t0}< > (r e / 4)* = n 

t=t0 

Now r < 1, so for large enough £0, we have equation 3.9. Thus both options are nicely 

bounded completing the proof of the lemma. 

One final theorem is required before we can complete the proof of B.A.T. 

Theorem 1: For every closed subset C G RN, there exists a function TTC • RN —> RN, 

with the property that 

< z - 7rc{z),y -irc{z) > < -^\y - TTC{Z)\2 Vy G C. 
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Indeed, it suffices to take for nc any selection of the nonempty-valued (since C is closed) 

multifunction z —> argmin{\z — y\ : y G C}. 

Proof of Theorem 1: The proof is a straightforward application of the properties of an 

inner product. If z G Rn and n = irc(z) is a nearest point in C to z, then 

\z - 7r| 2 <\Z- y\2 Vy £ C 

Thus, 

\ Z - K \ 2 < \{z - ir) + (n - y)\2 

— \z — 7r | 2 + 2 < z — 7T, 7T — y > +\TT — y\2 

<z-Tr,y-ir> < ]r\y - ir\2 Vy G C 

completing the proof. 

3.3 Concise Statement and Detailed Proof 

Before we can even make sense of the statement of BAT, we will need the following 

definition. 

Definition: Let C be a set in L-space. We shall say that C is approachable if there exists 

a behaviour rule (for player M) such that for every sequence of mixed strategies available 

to player N, the sequence {<5* : t G L} converges to zero almost surely. Here 5l is the 

squared distance to C of the empirical V M ( ^ * ) , Le., 

Sf = min{\VM(ht)-TT\2 :7i eC}. (3.11) 

That is, for every e > 0 (and every possible behaviour rule by player N) there is a To 

such that 

Prob^ > e for some t > T0} < e. 
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Note that, as shown earlier, this is equivalent to almost sure convergence of 8f to zero. 

This being said, we are finally in a position to actually give a concise statement of B.A.T. 

Blackwell's Approachability Theorem: Let C be any closed set in RL. Suppose there 

exists a map g : {RL\C) -> P[SM] such that for every z e RL\C, the measure fjt = g(z) 

obeys 

<vM(/j,,sN) -Trc{z),z-irc(z)> < 0 VsN e SN. (3.12) 

Then C is approachable. Indeed, the behaviour rule 7(/i*) := # ( V M ( ^ * ) ) w u ^ serve. 

In other words, if we find ourselves at round t, then the Blackwell condition requires 

that there exists a measure fit+1 € P[SM] such that the expected value of the next payoff, 

%(s i + 1 ) , is on the C-side of the hyperplane that separates this new payoff from the time-

averaged payoff up to time t. The theorem then promises convergence of V M ( ^ * ) to the 

set C. 

Proof of B.A.T.: 

The method of this proof is to show that, given Blackwell's condition, the random 

sequence S1 defined by equation 3.11 satisfies the three inequalities of Lemma 3.2. It 

then follows that 5* converges to zero almost surely, which is equivalent to C being 

approachable as shown earlier. 

If we denote 7 T C ( V M ( ^ * ) ) by y*, then Blackwell's condition requires that, given the 

history up to time t, we have: 

< vM{i/+\ sN) - y\ yM(/i*) -y*> < 0 Vt G R and sN e SN. (3.13) 
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Therefore, since yt € C and using theorem 1, 

St+l < \VM{ht+1) - y f 

= \VM(ht+l)-VM(ht)\2 + 2<VM(ht)-y\VM(ht+l)-VM(ht)> 

+ \VM(ti)-yt\2 (3.14) 

Now, 
, m -. t 

VM(ht+1) - VM{h<) = ^ X > " ( * T ) - T E ^ ( S T ) 
T = l T = l 

" "*'<T1 + iTTE»-M-it«-(0 
T = l r = l 

= + ~ [ ^ 4 ) - (* + l)VM{h})] 

vM{st+l) - M ^ ) 
t + l 

Using this fact, we can now write both 

< VM(h}) - y\VM{h^) - VM{h}) > = ^ [< VM{h}) - y\vM{st+l) - VM(h})>\ 

= m [< ~ y*> Mst+l) -yl> + < vM(h*) - y \ y* - vM(h}) >) 

= <h< VM{h}) - y\ vM(st+l) - y* > -£r\y* - VM{h})\2 

t+l 

and 

\VM{h^1)-VM{ht)\2 = 
vM(st+1) - VM{h}) 

t + l < 

since all payoffs are assumed to be bounded. Thus, given the history up to time t — 1 

and choosing // e P[SM] such that Blackwell's condition (equation 3.13) is satisfied, 

equation 3.14 implies: 

E[< VM^'1) -tf-\vM{*) - y ' - 1 ^ 1 , - , ^ - 1 ] E^S1,...,* t - n 

- 2 

\VM(ht-1)-yt-1\2 + 2 

l ^ - v w ^ - 1 ) ! 2 

t 
+ E[\VM(ht)-VM(ht-1)\2\8\...,6t-1} 

< 5 t - i _ V 1 + 4 t t2 

1 - ^ + ̂  \/t £ R and Vsjy € 5^ (3.15) 
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Since all payoffs are bounded, we know that 

0 < <5* < a for some scalar a and V i G R and V S J V £ £V (3.16) 

Finally, 

< ||V^r(/i*) - TT||2 - MV^C/i*-1 - TT||2 for all h* 

< WVMM-VMih^W2 

< -4 for some scalar b 
~ t2 

< - V i G and Vsjy G (3.17) 

These last three numbered equations are equivalent to those required for the lemma. 

Thus B.A.T. follows. 
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Chapter 4 
Convergence Results 

What then can be said about the convergence properties of these various behaviour 

rules? Do they converge at all? If so, can we characterize the set to which they converge 

independent of the game being played? In this chapter, I will focus on the convergence of 

the empirical distribution of play, namely the sequence in P[SM x SN] defined by: 

4.1 Fictitious Play, Past Response and /^-Exponential 
Fictitious Play 

Fictitious Play 

Foster and Vohra have shown that, given a certain condition, the set of all distri

butions which are limit points of zl is equal to CE provided that the behaviour rules 

involved are both a best-response to a calibrated forecast ([3]). Let us denote the set of 

limit points of this subset of behaviour rules by BR. Thus, Foster and Vohra proved that, 

given a certain condition, CE=BR. The required condition is that the set of measures 

over SN for which i is a best-response, Mb(i), must have a non-empty interior for all 

i G SM- More specifically, this implies that Mb(i) ^ Mb(j) for all i j and i,j G SM- In' 

those cases where this does not occur then there may exist a correlated equilibrium which 

is not contained in BR but any point in BR will still be a correlated equilibrium (i.e. BR 

T<t 
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is contained in but not necessarily equal to CE). Fortunately, the above condition can be 

shown to be true for almost every game. 

Since FP is a best-response to a calibrated forecast, it follows that if FP converges 

then it must converge to a correlated equilibrium. However, Foster and Vohra make 

no claim that any specific best-response behaviour rule based upon a calibrated fore

cast (such as FP) must converge. Their result merely implies that given any correlated 

equilibrium and given a game where the above condition is satisfied, there exists some 

best-response behaviour rule based on a calibrated forecast that will converge to it. The 

Shapley game described below is an example of a game in which FP does not converge 

to CE simply because there are no limit points. Thus the known convergence results for 

FP are entirely game specific. 

Past Response 

Past Response is a behaviour rule that I developed myself essentially as a potential 

opponent for the other rules. The idea behind it makes intuitive sense but I have made 

no attempt to determine any convergence results for it. Numerical results from three dif

ferent games are given in the following chapter. These numerical results suggest that PR 

does converge to a correlated equilibrium when played against itself but not necessarily to 

a very desirable one (a defect that is common to most of the other behaviour rules as well). 

K-exponential Fictitious Play: 

Fudenberg and Levine [4] prove that if all players use a universally consistent be

haviour rule then the empirical distribution of play will eventually remain within MBR. 

Moreover, if all players use ^-exponential FP then the conclusion can be strengthened 

to insure that the empirical distribution of play will eventually remain within the exact 

46 



MBR. 

To be a little more rigorous, assume that all players are using universally consistent 

behaviour rules. We can then derive a probability distribution, pT(/x, u), over the set of 

possible empirical distributions arising from the use of the given behaviour rules up to any 

time T. Now, there is no a priori reason to assume that this probability distribution will 

converge at all as time progresses. However, since the space of measures on a compact 

set is compact (in the topology of weak convergence), we can at least be assured of 

the existence of accumulation points. What Fudenberg and Levine prove is that, with 

probability one, these accumulation points will be found entirely within MBR. 

Mas-Collel and Hart make stronger claims for both Regrets 1 and 2. Their Regrets 2 

convergence result depends heavily on the aforementioned B.A.T., which allows Mas-

Collel and Hart to establish the following theorem. 

Theorem 2.3.1: Suppose that at every period t, M (or N) chooses strategies as outlined 

by Regrets 2. Then M's (or iV's) regrets i?*(j, k), converge to zero almost surely for every 

j, k £ SM-

Recalling the setup outlined in section 3.1, let L = {(j,k) £ SM X SM}, SO that RL 

can be viewed as the space of all \SM\ X \SN\ matrices, and let C be the non-positive 

orthant of R L . We define M's vector payoff, as the following square matrix: 

4.2 Regrets 2 

Proof: 

uM(k, sN(t)) - uM(j, sN(t)) if sM{t) = j, 

otherwise. 
(4.1) 

(Thus, has only one non-zero row, namely row j = SM(*)-) 
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So then, the regret function defined earlier is now equal to the positive part of the 

time-averaged pay-off. That is, 

RtMk)=[Wu(htW,k)]+. 

Moreover, V M ( / I * ) e C if and only if all of player M's regrets are zero. 

Now, suppose / i € P[SM] is an invariant vector of the stochastic matrix Pl

u associated 

with PiM. This is the same vector used in Regrets 2, to determine player M's measure. 

As in Chapter 2, \i satisfies, 

liTB}M = i^diagiR^e). (4.2) 

Thus, to prove the theorem it would suffice to show that this \i satisfies Blackwell's 

condition for the set C since then, by B.A.T., V M ( ^ ) will approach C almost surely. 

(Hence Rl

M —¥ 0 almost surely.) 

Note that for any VM{h}) e RL\C, 

VM{ti) - proJCVM{ti) = VM{ti) - (VM{ti) - VM^Y) = R*M. 

Moreover, 

proJcVMitf) • {VM{ti) - projcVMih})) = V M ( t f )" • F M ( ^ ) + = 0. 

Thus Blackwell's condition can be re-written as, 

E K ( ^ ^ ) ] ( i , A ; ) ^ ( i , f c ) < 0 \/sNeSN, (4.3) 
j,kesM 

or, in matrix notation, where "•" represents the standard matrix inner product (A • 

B=tr(ATB)), 

vM{^sN) • Rl

M < 0. 
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Now since [vM(fj,, sN)](j, k) = p(j)[uM(k, sN) - uM(j, sN)], equation 4.3 is equivalent 

to 

X fi{j)[uM(k, sN) - uM{j, sN)}RM(j, k) < 0 

j,kesM 

^Y, H p(k)RM(k,j)-p{j) RM{hk) uM(j,sN)<0 

jesM lkesM kesM 

j€SM 

Let = [ / Lt T i? M e : , - / i r (eJ J R t

M ) T ] . So then /3 = p?RM-p?diag(RMe). But this we 

know to be equal to zero by Equation 4.2 . Thus the inequality demanded here actually 

holds as an equality in this case. So Equation 4.3, and thus Blackwell's condition, holds. 

It follows, therefore, that VM(ht) converges to the set C almost surely and therefore so 

does RM(j, k) = max{[VM(/i*)](j, k), 0}, for all j, k e S M - That is, all regrets go to zero. 

Mas-Collel and Hart go on to show that having the regrets go to zero for all players 

is a necessary and sufficient condition for convergence of the empirical distribution to 

CE. (Note that CE need not be a single point. Thus, the guarantee is not that Regrets 

1 and 2 will ensure convergence of the empirical distribution to a single element of CE 

but that, given either of these behaviour rules, the empirical distribution will eventually 

remain within a small neighbourhood of the set of correlated equilibria.) 

Proposition: Let (s*)^!^... be a sequence of plays such that Umsupt^ooRl < 0 for i = 

M and N. Then the sequence of empirical distributions, zt, converges to the set CE. 

Proof: Let a G P[SM X SN] be an accumulation point of the sequence, z*, of empirical 

distributions of play and consider arbitrary strategies j, k € SM- Then 

seSMxSN:sM=J 
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In the limit, this is bounded above by zero (since all regrets go to zero). Therefore, 

limsup E zt{s)[uM(k,sN) - uM(s)] < 0. 
t—too _„ „ 

Thus taking the limit along the subsequence where z* converges to a gives, 

E o>(s)[uM{k,sN) - uM(s)} < 0 
S&SM'XSN:SM=J' 

O E a(J,sN)[uM(i>(j),sN) - uM(j,sN)] < 0 where = k 
SESMXSN:SM=J 

Now, since this is true for any arbitrary pair j, k G SM, we get 

E ^ M C 0 ( S M ) , sN)a(s) - uM{a) < 0 (4.4) 

for all ip : SM —> SM- Since the same could be shown using N instead of M , this proves 

that a is a correlated equilibrium. 

4.3 Regrets 1 

The proof that, if all players use Regrets 1, the empirical distribution of play converges to 

CE is a little more complicated. (Note that this hypothesis is also more restrictive than 

Regrets 2, which only required that all players use an adaptive procedure that insures 

that their regrets go to zero.) It does share similarities with the Regrets 2 approach in 

that the idea is to show that for each individual player, the regret goes to zero as the 

game progresses. Thus, by the above proposition, we have convergence to CE. 

Theorem: If every player plays according to Regrets 1, then the empirical distribution of 

play zl will converge almost surely as t —> oo to the set CE. 

Proof: We will drop the subscript M whenever this will cause no confusion. Thus once 

again we define the set C to be the non-positive orthant of RL, where L — {(j,k) £ 

50 



SM*SM}- Recall that = \ J2T<t v(st)- Regrets going to zero is then equivalent to 

V(hl) converging to the set C as t goes to infinity. A logical quantity to study therefore 

is the distance between V(h}) and the set C. We define: 

This proof will depend on taking a subsequence, {in}n=o,i,2..., of the rounds of the game 

and showing that along this subsequence all regrets go to zero. That is, ptn -> 0, as 

n —> oo. Then, by showing that all rounds in between tn and i n + 1 are bounded by the 

the difference pt+\ — pt. Instead, we must look at pt+s — Pt where s = t n + i — tn and t = tn. 

Specifically we need to look at the expected value of pt+s where only the history up to 

time t is known. The proof will depend on the fact that we can keep s small relative to 

t. 

This proof makes use of the standard "O" notation. For two real-valued functions, 

/(•) and #(•), defined on a domain X, "f(x) = 0(g(x))" means that there exists a 

constant K < oo such that < Kg(x) for all x e X. 

To simplify this process it is helpful to notice the following recursive relationship. 

Recalling the definition of v(st) as given in Equation 4.1, it follows that: 

Keeping all this in mind, we may now proceed with the proof of the convergence of the 

empirical distribution arising from the regrets 1 behaviour rule to the set of correlated 

equilibria (essentially following the proof developed by Mas-Collel and Hart, [8]). 

pt:= [distiVih')^)]2. 

inverse of n, we will prove that all regrets go to zero. Thus, it is no use simply investigating 

(4.5) 
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Step 1: 

With this background (equation 4.5) and since [^(ft*)]- G C, we can now derive a 

bound on pt+s: 

|2 

Pt+s < 
t 

t + S 

t 

w—1 

t + s (v(h<) - [v (/»*)]-) + T ^ - s J 2 « s t + w ) ~ 
w=l 

(t + sfpt+s < t2pt + 2tJ2 {v(st+w) - [V(h*)]-) • (Vitf) - \V{h*)]-) 
w=l 

E (v(st+w) - [Vih*)}-) + 

< t2pt + 2tJ2v(st+w) • R*+ 0(s2) since Rl = [V(ht)}+ 

< t2pt + 0(ts + s2) 

This last inequality follows from the fact that all payoffs are bounded and all strategy 

sets are finite. 

The above derivation leads to two useful equations: 

E[(t + sfpt^h1} < t2

Pt + 2tY/E[v(st+w)\ht] -R* + 0(s2), 
w=l 

(t + s)2pt+s-t2pt < 0{ts + s2). 

(4.6) 

(4.7) 

Step 2: 

Thus, we need to bound the expectation on the right hand side of equation 4.6, 

namely 

EMs^lh*] = E diag^M 
•SJVGSJV 

where <j)SN(j) = Pr[st+W = (j, S J V ) | / I * ] and USN(j,k) = [uM(k,sN) - uM(j,sN)]+. 
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The difficulty is that the stochastic process (s*+u%=0,i,2,.. *s n ° t stationary so the 

probability that M plays strategy j in round t+w is dependent on the play of N in rounds 

t through t+w-1. Thus, given only the history up to time t, the above expectation is very 

difficult to analyse. We proceed, therefore, by introducing a second stochastic process 

(s'+w)tu=o,i,2...- This new stochastic process uses the stationary transition probability 

matrices PM, Pj^ for,all' rounds greater than or equal to t. That is, sT = sT for all r < t 

and 

Pr[st+W = (j, sN) I s * , s ^ - 1 } = PM(sM{t + w- 1), j)Ph(SN(t + w-l), sN) 

where PM is the transition matrix defined by equation 2.2 on page 27. We can then 

define <p for the process (st+w)u;=o,i,2...in an analogous way to (j). 

We will proceed by first showing that the difference between these two processes can 

be bounded for fixed w and then prove that if we use the stationary process instead of 

the original one then we would be able to get a useful bound for Equation 4.6. Thus we 

will have proven that the original process gives a similar bound. 

Step 3: 

In round t + w, the original process will use the matrix Pt+W while the new stationary 

process will use the matrix P*. Thus, we would like to get a bound on the difference 

between these two transition matrices. Towards this end consider, 

v{h^)-v(h}) = -J_v(fc') + _L-^; t , ( a *^)-v(/ l «) 

t + s ^ v ' t + s 

< 0(s/t). (4.8) 

Therefore, it follows that the difference between the matrices P* and Pt+S can be no 

more than 0(s/t) either. 
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Step 4: 

However, we are really interested in comparing 4> and </>. Based on step 3, we get that. 

Pr[st+W = {j, sN)\s\ st+w-1} -Pr[st+W = (j, S j V ) | S *,s t + w ~ l ] 

= PM(sM(t + w-l),j)PN(sN(t + w-l),sN) 

-Pt

M

Us(sM(t + w-l),j)Pt

N

+s(SN(t + w-l),sN) 

= PM{sM(t + w- l),j)PN(sN(t + w - 1), s^) 

- (PM(sM(t + w- + 0(w/t))(PN{sN(t + w-l), sN) + 0(w/t)) 

= 0(w/t) since w < t 

However, this only bounds the one-step difference where the history up to time t + 

w — 1 is known and is equivalent in the two processes, whereas to compare (p and (j) 

we need to bound the s-step difference where only the history up to time t is known 

and equivalent. To do this we proceed by induction. Consider the following proposition 

involving n: 

w 

P r [ ^ = ( j , S A , ) | ^ . . . , S

t + " ] - P r [ 5

t + - = 0 > A R ) | ^ . . . , S * + " ] < £ ) 0 ( r / t ) , (4.9) 

r—n+l 

We know this is true by the above, for n = w — 1. We need to show that this is true for 

n — 0. But this is proven by the following 

= £ s * + n Pr[st+W = {j, SN^S1, st+n]Pr[st+n = st+n\s\ st+n-1} 

< E s ^ ( P r i s t + w = (j, sN)\s*,st+n] + X:r = n + i 0(r/t))Pr[§t+n = st+n\s\ s ^ " 1 ] 

< Y,st+n Pr[st+W = {j, SN^S*, st+n](Pr[st+n = st+n\s\ s ^ 1 ] + 0{n/t)) 

< E s ^ P r \ s t + W = U SN)W, st+n]Pr[st+n = s ' + V , s t + n - 1 } + Z7=n 0(r/t) . 

= P r [ 8 **> = ( i , a J V ) | s « , . . . , ^ - 1 ] + E T = B 0 ( r / t ) 
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Thus, by induction, this proves that equation 4.9 is true for n = 0. Therefore, 

w 

r-0 

4>sN (j) -4>SN{j) < — E R FOR S O M E L A R§ E K 

K (w{w + 1)' 

< 

t v 2 

K (w(w + iv) 

T 

It is important to note that this step requires that player N also does not change 

strategy too quickly. That is, player N must use a behaviour rule which insures that the 

transition probabilities do not change too drastically between round t and round t + w. 

The statement of the theorem is that all players use the same Regrets 1 behaviour rule. 

This is somewhat more restrictive than necessary but it does, at least, insure the validity 

of this proof. 

Step 5: 

So then 
E[v{st+W)\h*] • PJ - JB[u(s t+w)|/i*] • R* 

= H8NesN diag((f)SN)USN - £ S j v e S j v diag((pSN)USN I • Rf 

= ^sNesN

 dia9(kN ~ <t>SN)USN 

<2max(wM) J2SNesN
 dia9(kN 

< 4 max( U M ) 2 [T.jeSM T/SN </>** U) ~ <t>sN (J) 

= 0(w2/t) by Step 4 
It remains to be shown, therefore, that E[v(s*+u')|/i*] • Rl can be bounded for all w. 

•R1 

- <t>sN)uSN 
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Step 6: 

4>aN(j) = Pr[sN{t + w) = sN\ht}Pr[sM(t + w)=j\ht] 

= Pr[sN(t + w) = sA f|/ i

t][P ir(sM(i),;) 

(4.10) 

(4.11) 

Therefore, since Pl = I+\(Rt - (Hag^e)) 

P t - I + -diagiBJe) EHs^h^.R! = « ( J2 diag(4>SN)USN) • (i 

\sNesN J \ 

= K J kN(j)[uM(k,sN) - UMiJ^N^iJik) 1 (by defn of U,N) 
stjeSN \j,keSM ) 

X &w0')uAf(*:,Sjv)-P*C7,fc) - ^ J V ( i)wM ( i , s A r )P t ( i ,A; ) 

(Note that the second equality follows since I — ^diag(Rte) is a diagonal matrix and f/5jv 

has only zero elements along the diagonal.) 

Now, if we switch the indices in the first sum over j, k € SM and recognize that the 

second sum reduces to J2jesM <f>sN(j)uM(j, sN) (since £ f c e 5 M P\j, k) = 1 for all j e 5 M ) , 

we get that 

^ * . w ( A 0 / * ( * J ) - f c ( i ) (4.12) 

Thus, setting fit,w{j,sN) equal to what is inside the square brackets and recalling equa

tion 4.11, we have 

KkeSM 

= Pr[sN(t + w) = SHW {[P*r+1Mt)J) ~ [PT(sM(t),j)} 

= Pr[sN(t + w) = sN\ht}[(Ptr+1-(Pt)w](sM(t),j) 

Therefore,if we can bound d^w then we will have bounded P[u(s i+w)|/i*] • Rl as desired. 
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Step 7: 

Step 7 depends on the following lemma: 

Let P be an m x m stochastic matrix with all of its diagonal entries positive. Then 
[pw+l _ p w ^ = 0 (^-1 /2) for a l l ^ k = 1 ) ^ m 

Given this lemma, it is clear that j3t,w = 0(w~1/2) since Pl is designed so that the 

diagonal entries are positive. 

Step 8: 

Thus, we have now shown that 

£ ? [ u ( s t + w ) | h t ] -Rl = 0(w~1/2) 

Therefore, by step 5, 

2 

Finally, returning to equation 4.6 from step 1, it follows that 

£[(i + S) 2

A + s | /i<] < t2

Pt + 2t^O(^ + w-1'2) + 0(s2) 

= t2pt + 0(ss + ts^2) 

Step 9: 

Here then is where we need to make an intelligent choice for a subsequence, {£„}. 

Let tn be equal to the largest integer not exceeding n 5 / 3 . Therefore, by letting t = tn and 

s = tn+i — tn, step 8 results in 

E[t2

n+lPtn+^} = t2

nPtn+0{n2) 

since s = 0(n 2/ 3) which implies that s3 = 0(n2) and i s 1 / 2 = 0{n2). 
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Step 10: 

Finally, we can use the following theorem by Loeve, to show that along this subse

quence ptn goes to zero as n —> oo. 

Theorem: Let Xn be a sequence of random variables and bn a sequence of real numbers 

increasing to infinity, such that the series J2n Var(Xn)/b2

l converges. Then 

1 n 

lim — y^(Xr - E[Xr\Xu...,Xr_1]) = 0 a.s. 
n r=l 

If we let bn = £2 and Xn = bnptn — & n -iPt n _i then by equation 4.7 from step 1, it follows 

that \Xn\ < 0(tnsn + s2) = 0(n 7/ 3). Therefore, 

£ V«r(X n ) /6 2 = £ 0 ( n 1 4 / 3 ) / n 2 ° / 3 = £ 0( l /n 2 ) < oo 
n n n 

Moreover, Step 9 implies that, 

r E £ ^ l ^ W = O(n" 1 0 / S )E°( r a ) = ° ( n " 1 B / V ) = °(n"-/3) '•' 
On 

r<n r<n 
Therefore, since this obviously goes to zero as n —> oo, it follows that 

a.s. 

Step 11: 

Since ptn = J2jk[Rtn 0 ' ^)}2, step 10 implies that the subsequence Rtn converges to the 

set C a.s. as n ->• oo. When tn<t< tn+l we have Rf - Rtn < 0(n2/3)/0(n5^) = 0{l/n) 

by equation 4.8 in step 3. Thus the full sequence Rl converges to the set C a.s., thereby 

completing the proof. 
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Alternative Proof for Regrets 1 Convergence 

The concept behind this alternative proof is to use what we already know concerning 

the convergence properties of the Regrets 2 behaviour rule. If we can show that eventually 

the Regrets 1 behaviour rule behaves similarly to that of Regrets 2 then we will have 

proven the desired result. The basic idea is to show that a subsequence of the transition 

matrices arising from Regrets 1 is essentially equivalent to the transition matrices arising 

from Regrets 2. 

Towards that end it is necessary to introduce a tremble. Recall that a tremble 

is introduced to insure that all transitions have positive probability. In this case, I will 

introduce a tremble of l/tllA. That is, if S{ is the original sequence of transition matrices 

arising from the Regrets 1 behaviour rule, then the new sequence of transition matrices . 

has the following form: 

^ ^ ( l - ^ f ^ S r forallx. 

where A is a matrix with each entry equal to one and r is large enough so that the 

coefficient in front of S{ is positive. Note that the difference between the two sequences: 

must always be of the order of l / r 1 / / 4 so that, for large enough r, dealing with one 

sequence is essentially the same as dealing with the other. Therefore, 

E[S{+S - 5*+s|/i*] = 0{l/{t + s)1 / 4). 

Now, recall that RM = [VM{ht)}+ and that V M ( ^ * ) obeys the following recursion 

formula: 

VM(ht+s) = -±-VM{lt) + - i - V vM(st+w). 
t + s t + s z—' 

w=l 

This, in turn led us to the fact that 

P ^ s - P M = 0(s/t). : -(4.13) 
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(see step 3 from the original proof for regrets 1.) 

Moreover, as t gets large, the above recursion formula makes it clear that the Regrets 

1 behaviour rule essentially uses the same transition matrix over and over again. In other 

words, 

E[p£'\h*\ 

In fact, the difference is of the order of s/t. 

But, by theorem 2.15 in Markov Processes for Stochastic Modeling [7], the difference 

between [PM]S and the stationary distribution associated with PM can be bounded in the 

following way: 

[PMY - 7T* < C 

where C is a constant and 7r* is the stationary distribution associated with the transition 

matrix P M . Note that this is where it is necessary to assume that the transition matrices 

have non-zero entries. The above discussion on the addition of a tremble however shows 

that the perturbation introduced by the tremble can be easily controlled. 

Therefore, if we are given an e > 0 and a S > 0, and we start with t large enough, 

then we can choose s large enough so that the bound in equation 4.14 is less that 5 

without having the bound in equation 4.13 exceed e. The only difficulty would occur if 

as t increased the ratio s/t required in order to reduce the bound from equation 4.14 to 

a fixed number increased. However, it is easy to show computationally that this is not 

the case and that in fact this ratio decreases as t gets larger. 

Thus we can take a subsequence of the transition matrices arising from the Regrets 

1 behaviour rule - PM

+SL,PM

+S2,... (where ti+x =U + si) so that 

p u + 1 + S i + 1 _ p u + S i < e (415) 

1 (4.14) 
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and 

E[PM
+1+S>+1 - 7 r * i + S i < [PM

+ST+1 ~ K U + S I + e 

< 5 + e (4.16) 

Equation 4.16 proves that this subsequence of Regrets 1 essentially behaves like that of 

Regrets 2. Now, we know that Regrets 2 forces the regret matrix to zero and therefore 

forces the transition matrix to the identity. Therefore along this subsequence, Regrets 

1 also forces the regrets to zero. Moreover, the transition matrices (and therefore the 

regrets) between the members of the subsequence are restricted by equation 4.15 to be 

within e of the closest member of the above subsequence. Therefore, Regrets 1 must also 

force the regrets to zero and so insure convergence to CE. 

4.4 Modified Regrets 

The convergence results for modified regrets (MR) are entirely numerical. In the zero-sum 

game discussed in the next chapter, MR does not converge to a correlated equilibrium. 

However, it does converge towards the "best" compromise position where both players get 

an equal payoff. In the other two games, neither of which are zero sum, MR converges 

at a very fast rate to a correlated equilibrium. More particularly, it converges to the 

correlated equilibrium that results in equal payoff to both players. None of the other 

rules show anything close to the same kind of convergence rate - at least not in all three 

games. (These results will be given in more detail in the next chapter.) Intuitively, this 

makes sense. MR is based on the idea of compromise. It is an attempt to incorporate 

into a behaviour rule the idea of accomodation. Thus, it would make sense that, in games 

where there is a possibility of compromise (i.e., in non-zero sum games), MR would work 

very well. Even in a zero-sum game, the idea of a compromise would simply mean that 

both players should receive approximately zero payoff. 
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This brings into question, in my mind, the whole idea of convergence to correlated 

equilibria in the first place. As will be demonstrated, in the Battle of the Buddies game 

all behaviour rules converge to a correlated equilibrium but it is very obvious that the 

result (except in the case of MR) is far from satisfactory for one of the two players 

(see results next chapter). Thus convergence to the set of correlated equilibria is not 

necessarily a desirable outcome; or at least not a sufficiently restrictive one. If instead, 

we could guarantee convergence to the "best" compromise then surely that would be 

a more useful result. How one defines the "best" compromise is not an easy question 

to answer. Certainly, in a zero-sum game the best compromise would result in a zero 

payoff for each player. For a nonzero-sum game though the "best" compromise may not 

be definable in the general setting but rather depend on the specifics of each individual 

game. 

There is one type of game that would most obviously cause the MR behaviour rule 

some difficulty. Consider a game with the following pay-off matrices: 

UM 

1 0 0 

0 4 0 

0 0 1 

uN = 

0 3 0 

0 0 1 

1 0 0 

In such a game, MR will lead player N to have a positive regret for not playing strategy 

2. But if N plays strategy 2 then player M will play strategy 2 as well. Player N may 

continue to play strategy 2 (despite receiving zero pay-off) in the hopes of forcing player 

M to switch but in this case there is no reason why M ever would. Thus MR will only 

work well in those games in which both players can act in such a way as to create an 

adverse effect on the other player which might then influence him to switch strategy 

(such as Battle of the Buddies). 

Without knowing the pay-off matrix of one's opponent, it is not easy to see how this 

might be remedied. One possible option would be to introduce a weighting on the two 
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sums in equation 2.7 on page 30. Such a weighting might consider monitoring the average 

of the components of % and increasing the weight on the first sum (the normal regret) if 

the average of past payoffs dipped below this level. Such a weighting might then prevent 

player M from continuing to try to influence player N when previous play had shown 

such influence to be minimal. My own experience, however, with the introduction of a 

weighting system has made it very clear that this is a delicate task. A weighting that 

may work well for one game can prove disastrous in another. Whether there does exist a 

"optimal" weighting system that would allow MR to perform well in all types of games 

remains an open question. 
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Chapter 5 
Experimental Results 

This chapter describes numerical experiments with the convergence results of various 

behaviour rules. I chose three different games to play, picking three whose forms varied 

quite dramatically. The first one is a zero-sum game which is an expanded version of 

the familiar scissors-paper-rock game. The second is a game developed by Lloyd Shap

ley and the third is the aforementioned Battle of the Buddies. I will use the following 

abbreviations to refer to the behaviour rules defined above: Regrets 1 - RI, Regrets 2 

- R2, Modified Regrets - MR, Fictitious Play - FP and K exponential-fictitious play - EFP. 

5.1 Scissors-Paper-Rock-Glass-Water 

This game (abbreviated SPRGW) works exactly the same way as the old game of scissors-

paper-rock, except that now, instead of having three choices, each player has five ([9]). 

Which choice beats which is demonstrated in the following diagram. If the arrow goes 

from vertex u to vertex v then u beats out v. Thus, for instance, glass beats out stone 

(see diagram below). 

A loss means a penalty of —1 and a win means a reward of +1. Thus UN = —UM, 
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w 

S G 

Figure 5.1: SPRGW - rules of the game 

where uM is of the following form: 

0 -1 1 1 -1 

1 0 1 -1 -1 

-1 -1 0 -1 1 

-1 1 1 0 -1 

1 1 -1 1 0 

In this game, the convergence rate for FP and PR is extremely fast. FP and PR when 

played against themselves converge to the Nash equilibrium where the marginals are 

both (1/9,1/9,1/3,1/9,1/3). The resulting payoff for both players is, of course, zero. 

EFP converges to the same Nash equilibrium, though at a slower rate. RI seems to 

be doing the same though the convergence rate is extremely slow. Finally, MR played 

against itself leads to a fast convergence to the marginals (1/3,1/3,0,1/3,0) which results 

in zero payoff as well. However, this distribution is not an equilibrium. So, in each 

case, an "optimal" compromise is reached in which both players do equally well. When 

the different behaviour rules are played against each other, however, their convergence 

properties become much less obvious (see Appendix). Numerical results however did 

support Fudenberg and Levine's claim that EFP converges to MBR in all cases where 
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the opponent uses a consistent behaviour rule. 

5.2 The Shapley Game 

Julia Robinson proved, as early as 1951, that, in a two person zero-sum game, FP does 

insure the convergence of the empirical distribution to NE ([10]). The Shapley game 

was originally conceived by Lloyd Shapley in order to prove that FP does not necessarily 

converge to a NE outside of the narrow context assumed by Robinson ([11]). Shapley's 

game is also useful here because it turns out to be a good example for demonstrating the 

previously discussed convergence properties (or lack thereof) of the various behaviour 

rules. 

The game is a nonzero-sum 3 x 3 game with the following payoff matrices: 

1 0 0 0 1 0 

UM = 0 1 0 , uN = 0 0 1 

0 0 1 1 0 0_ 

Foster and Vohra [3] have proven that, not only does FP not converge to an equilibrium 

but that, in fact, it doesn't converge at all. A fairly simple program will show that, in 

this game, FP oscillates between 6 states: (1,1), (1,2), (2, 2), (2,3), (3,3) and (3,1). Now 

the only correlated equilibrium with support on these states places equal weight, 1/6, 

on each of them. If we order the coordinates of the matrix by labelling the first row 

across numbers 1 through 3 and then the second 4 through 6 and so on, FP produces the 

following empirical distribution of play: 

After 1000 iterations: 

(.120, .281,0,0, .258, .058, .128,0, .086) 

After 30000 iterations: 

(.064, .095,0,0, .139, .203, .201,0, .298) 
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These values and the graphical results in Appendix A provide no indication that FP 

is converging to the correlated equilibrium. In fact, FP cycles through these six states 

and with each state change the length of time to the next change becomes longer. Note, 

however, that according to Fudenberg and Levine, due to the increase in time between 

state changes, FP is consistent in this game and thus should remain within MBR (the 

table below provides numerical confirmation of this). Thus this shows that Fudenberg 

and Levine's result cannot be strengthened to insure convergence to CE. 

The Ac-exponential FP behaviour rule also cycles through the same six states and 

produces the following empirical distribution of play after a certain number of iterations, 

again showing that universal consistency is only enough to insure convergence to MBR: 

After 1000 iterations: 

(.223, .329, 0, 0, .132, .066, .150, 0, .101) 

After 30000 iterations: 

. (.243, .061,0,0, .089, .131, .283,0, .193) 

EFP seems to do much the same as FP in that it cycles through the same six states with 

the rate of state change getting longer and longer. 

The Regret 1 behaviour rule again cycles through the same six states. The conver

gence to CE is obviously extremely slow. 

After 1000 iterations: 

(.218, .347, .000, .000, .237, .038, .093, .000, .068) 

After 30000 iterations: 

(.136, .149, .006, .015, .182, .197, .114, .004, .196) 

PR does something a little different. This behaviour rule cycles between all nine 

states and does seem to converge (though the evidence is entirely numerical) to the 
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correlated equilibrium which places the same weight on each of the six states mentioned 

above, and a little less weight on the remaining three states. 

After 1000 iterations: 

(.131, .117, .103, .097, .107, .112, .123, .092, .119) 

After 30000 iterations: 

(.114, .115, .108, .107, .112, .110, .113, .109, .112) 

This, once again, highlights the fact that not all correlated equilibria are desirable 

results. Here, the payoff is close to 1/3 for each player which is far from the optimal 

compromise of 1/2 each. 

Finally, MR not only converges to CE but does so at a rate much faster than that of 

Regrets 1. It also places all its weight on the same six states. 

After 1000 iterations: 

(.1668, .1668, 0, 0, .1668, .1668, .1668, 0, .1665) 

After 30000 iterations: 

(.1665, .1666,0,0, .1665, .1665, .1671,0, .1665) 

The following table summarizes the payoffs between behaviour rules after 30000 it

erations. It also gives the defining quantities, maxM(^, a^) and max^(OJM, ^), for MBR 

so that the results of Fudenberg and Levine can be easily confirmed. 
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Behaviour Rule 

(M vs N) 

max^ uM(p,aN) uM(a) max„ UM(OSM,^) uN(a) 

PR vs PR .336 .337 .337 .338 

FP vs PR .403 .402 .481 .593 

FP vs FP .501 .501 .499 .499 

EFP vs PR .418 .418 .469 .578 

EFP vs FP .413 .413 .476 .583 

EFP vs EFP .526 .525 .475 .475 

RI vs PR .359 .451 .356 .470 

RI vs FP .453 .537 .463 .463 

RI vs EFP .447 .485 .462 .462 

RI vs RI .399 .514 .395 .461 

MR vs PR .333 .250 .333 .500 

MR vs FP .333 .800 .333 .200 

MR vs EFP .433 .525 .294 .392 

MR vs RI .335 .850 .345 .101 

MR vs MR .334 .500 .334 .500 

Pathological as the Shapley game seems to be, it does, however ratify Fundenberg 

and Levine's result that any rule which is universally-consistent will eventually converge 

to the exact MBR (at least to a good approximation). Results show clearly that EFP 

converges to the exact MBR, no matter what behaviour rule is used by the opposing 

player (except MR). FP converges to the exact MBR except when played against MR or 

EFP. PR, on the other hand, converges to MBR only when played against itself. Recall 

that Fudenberg and Levine's result only insures convergence to MBR when all players 

are using a consistent behaviour rule. RI has been touted by Mas-Collel and Hart to 
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converge to CE in any game. While there is indication that this is true (see Appendix 

A) and theoretically the proof is sound, the rate of convergence is clearly slower than one 

might hope. Even after 30000 iterations, RI versus itself has yet to satisfy the criterion 

for MBR, let alone that of CE. Excluding MR, most of the above behaviour rule pairs do 

not converge to any distribution. The exceptions are PR against itself and RI against 

itself. Thus, the actual figures given above for payoffs received are not all that useful 

(except as ratification for Fudenberg and Levine's result). Closer examination actually 

shows that the payoffs continue to vary a fair bit, favouring player M at one iteration 

and player N at another. 

In contrast, MR causes rapid convergence when played against itself as well as against 

FP, RI and PR. MR vastly outplays both FP and Regrets 1 (see results in the above 

table) while being itself outplayed by PR. This last result is due to the fact tha,t PR 

will inevitably do well against a behaviour rule that uses a best response technique. PR 

when played against MR results in frequent switches causing MR to resort to the best-

response option on a frequent basis. Against EFP, the empirical distribution oscillates 

in such a way that both players do about equally well. Against itself, MR converges 

rapidly to the correlated equilibrium that places equal weight (1/6) on the six states 

(1,1),(1,2),(2,2),(2,3),(3,1) and (3,3) which, of course, leads to both players receiving a 

payoff of 1/2. 

5.3 The Battle of the Buddies 

Recall that the Battle of the Buddies game is defined by the following matrices: 

uM 

5 0 

10 1 

1 0 

0 5 
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For this game, the NE contains three strategy pairs - [(0,1), (0,1)],[(1,0), (1,0)] and 

[(5/6,1/6), (1/6, 5/6)] as shown earlier (chapter 1). Recall that, respectively, they result 

in payoffs of (1,5), (5,1) and (5/6,5/6). The first two equilibria result when one of the 

two friends caves in and agrees always to accede to his friend's choice. The last is more 

of a compromise but results in both of them getting even less of a reward than if either 

one had caved. 

Excluding MR, the results from this game are rather uninteresting. For any combi

nation of behaviour rules, the result is always that one of the two players caves in to the 

choice of the other. Which player caves in is entirely conditional on the first few rounds 

of play. In any case, the result, even though it is a correlated equilibrium, is anything 

but a compromise with one player always receiving a payoff of 5 and the other a payoff 

of 1. Only MR was able to do differently. Playing this behaviour rule against any of the 

others (except PR) leads to the opponent caving in every time - regardless of the initial 

condition. When played against PR, MR does not do well as both players tend to be 

too stubborn (see the table on the next page). When played against itself, MR comes 

close to the correlated equilibrium which places equal weight on strategy pairs (1,1) and 

(2,2) and none anywhere else. (After only 3000 iterations, the empirical distribution 

was (.4389, .1256, 0, .4355), which is itself a correlated equilibrium.) This leads to a much 

more satisfactory compromise where both players receive a payoff of approximately three. 

After only 3000 iterations the following payoffs and best responses to the marginals 

were observed: 
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Behaviour Rule max,, uM(p,aN) uM(a) maxj, uM{ctM,v) uN(a) 

MR vs FP 4.97 4.97 .999 .998 

MR vs EFP 4.96 4.96 .998 .999 

MR vs RI 4.94 4.94 .999 .994 

MR vs PR .985 .203 .866 .837 

MR vs MR 2.19 2.63 2.18 2.62 

Note that the initial conditions were set so that player ./V had the initial advantage. If 

they are set so that player M has the initial advantage then all of the first four converge 

directly to the Nash equilibrium that places all its weight on strategy pair (1,1). Thus, 

MR will not only outplay all but PR in any game of the same form as Battle of the 

Buddies but will, if played against itself, result in the "optimal" compromise. 
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Chapter 6 
Conclusion 

The problems related to the convergence of behaviour rules within game theory can be 

broken into three areas - whether or not a given behaviour rule can insure convergence 

of the empirical distribution, if it does, at what rate and, finally, to what point (or set 

of points) does it force convergence? 

The three games described in the last chapter show clearly that it is no simple matter 

to insure convergence of the empirical distribution even to a set, let alone a point. One 

solution is to relax the goal. Thus, Fudenberg and Levine developed ^-exponential FP 

which concentrates on insuring convergence to MBR. As the Battle of the Buddies game 

shows, however, this may lead to a less than satisfactory result, depending on the nature 

of the game. One can very easily play a best-response to the marginal of the other 

player and still fail to maximize one's payoff or even reach an acceptable compromise. 

Fudenberg and Levine's result for /c-exponential fictitious play is especially nice, however, 

in that it guarantees convergence to MBR no matter what behaviour rule is used by the 

opponent. 

Normal regrets, as developed by Mas-Collel and Hart, has the benefit of insuring 

convergence of the empirical distribution to a smaller set (CE) no matter what the game 

but again this does not address the fact that the set CE may contain points whose status 

as a compromise are less than ideal (e.g. Battle of the Buddies). Moreover, it is very clear 
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that though convergence is assured, the rate of convergence leaves much to be desired. 

Still there is something to be said for being able to insure convergence to CE as then, at 

least, one's payoff is assured. Unfortunately, Mas-Collel and Hart's result only insures 

convergence to CE if both players use normal regrets. Our numerical experiments showed 

that in the Shapley game, regrets 1 fails to converge to CE when played against anything 

but itself. 

What would be the ideal situation? Clearly one would want to insure a fast con

vergence, but to what? I am not convinced that either MBR or CE are necessarily the 

best answers to that question; or at least not sufficiently restrictive answers. In many 

games there are clearly correlated equilibria that do not lead to a satisfactory result for 

both players. An alternative would be the set of "optimal" compromises. Obviously, 

in zero-sum games this set would only include those distributions which lead to both 

players receiving a payoff of zero. However, in a nonzero-sum game, though the concept 

of an "optimal" compromise is fairly intuitive, it is not so clear what the set of "opti

mal" compromises would entail. Clearly it is not simply those for which both players 

do equally well as this would allow both players to do equally badly. For instance, in 

the Shapley game there are numerous distributions that would lead to both players get

ting zero. The set would include some correlated equilibria, but not all, and would also 

include some distributions outside of CE. It would hopefully avoid such unsatisfactory 

results as occurred in the Battle of the Buddies. 

Even more ideally (and perhaps unrealistically) one would like to be able to insure 

convergence to the above set even against other behaviour rules. In fact, one would, 

expand the set so that the goal is for the empirical distribution to converge to the set 

that insures at least the "optimal" compromise. This may, however, be too ambitious a 

task. 
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MR was an attempt to provide a behaviour rule that forced convergence to a more 

satisfactory set. While the results when MR is played against itself are generally excel

lent (and definitely superior to the other behaviour rules studied), there are games (as 

described on page 62) where currently MR fails to converge to a distribution resulting in 

anything that might reasonably be called an "optimal" compromise. Moreover, MR failed 

to do well against PR in any of the games discussed in the previous chapter. Whether 

or not there exists a useful weighting of the two sums involved that would lead to more 

satisfactory convergence, no matter what the game, is an open question. 

In view of our results above, it seems fairly clear that the three problems related 

to the convergence of behaviour rules in game theory (mentioned at the outset of this 

conclusion) have yet to be ideally answered. Certainly there is possible work to be done 

in determining a more satisfactory target set to replace MBR and CE. Even with CE as 

the target set, it would be beneficial to have a behaviour rule whose convergence rate was 

a little faster than that of Regrets 1; though as yet Mas-Collel and Hart, to their credit, 

are the only ones to guarantee convergence to CE at all. The above notwithstanding, 

there is much to be said for the work that has already been done. My hope is that 

this thesis has provided a clear understanding of the research so far and at least some 

indication of future potentialities. 
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Appendix A: Graphical and Tabular 
Results 
This appendix presents graphical and tabular evidence of convergence of the different be
haviour rule pairs in the games described in the chapter 5. I have not included the graphs 
of all possible pairs in all three games as that would be both tedious and unnecessary. 
I have included some examples from the Shapley game as an indication of the various 
convergence rates. Also included are tables of the payoffs and empirical distributions 
after 30000 iterations, along with an indication of each pair's convergence properties. 

Legend: 
* obvious convergence 
+ evidence of convergence 
— no evidence of convergence 

Battle of the Buddies - 3000 iterations 
(initial conditions set to favour player N) 

Convergence Behaviour Rule Empirical Distribution 
* RI vs FP (0,0,0,1) 
* RI vs EFP (0,0,0,1) 
* RI vs PR (0,0,0,1) 
* RI vs RI (0,0,0,1) 
* MR vs RI (.9887, .0103, .0000, .0010) 
* MR vs FP (.9943, .0050, .0000, .0007) 
* MR vs EFP (.9917, .0070, .0000, .0013) 
* MR vs PR (.0073, .8194, .0073, .1659) 
* MR vs MR (.4389,1256, .0000,-.4355) 
* FP vs FP (0,0,0,1) 
* FP vs EFP (0,0,0,1) 
* FP vs PR (0,0,0,1) 
* EFP vs EFP (0,0,0,1) 
* EFP vs PR (0,0,0,1) 
* PR vs PR (0,0,0,1) 
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Behaviour Rule max/xitM(/u,Q!jv) uM{a) max„ uM(aM, v) uN(a) 
RI vs FP 1 1 5 5 
RI vs EFP 1 1 5 5 
RI vs PR 1 1 5 5 
RI vs RI 1 1 5 5 
MR vs RI 4.94 4.94 .999 .994 
MR vs FP 4.97 4.97 .999 .998 
MR vs EFP 4.96 4.96 .998 .999 
MR vs PR .985 .203 .866 .837 
MR vs MR 2.19 2.63 2.18 2.62 
FP vs FP 1 1 5 5 
FP vs EFP 1 1 5 5 
FP vs PR 1 1 5 5 
EFP vs FP 1 1 5 5 • 
EFP vs PR 1 1 5 5 
PR vs PR 1 1 5 5 

Behaviour rules Marginal for player 1 Marginal for player 2 
RI vs FP (0,1) (0,1) 
RI vs EFP (0,1) (0,1) 
RI vs PR (o, i) (0,1) 
RI vs RI (0,1) (0,1) 
MR vs RI (.9990, .0010) (.9887,.0113) 
MR vs FP (.9993, .0007) (.9943, .0057) 
MR vs EFP (.9987,-0013)' (.9917, .0083) 
MR vs PR (.8267,.1733) (.0147, .9853) 
MR vs MR (.5645, .4355) (.4389,-5611) 
FP vs FP (0,1) (0,1) 
FP vs EFP (0,1) (0,1) 
FP vs PR (0,1) (0,1) 
EFP vs EFP (0,1) (0,1) 
EFP vs PR (0,1) (0,1) 
PR vs PR (0,1) (0,1) 
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SPRGW - 30000 iterations 

Behaviour Rule maxMuM(Ai, aN) uM(a) max„ uM{aM, v) uN(a) 
RI vs FP .0471 -.0411 .0424 +.0411 
RI vs EFP .0739 -.0333 .0332 +.0333 
RI vs PR .0821 -.0695 .0399 +.0695 
RI vs RI .1565 +.0239 .0673 -.0239 
MR vs RI .6453 +.5678 .4192 -.5678 
MR vs FP .6666 -.0673 .3278 +.0673 
MR vs EFP .9027 -.2456 .2513 +.2456 
MR vs PR .7866 -.5287 .5405 +.5287 
MR vs MR .9993 -.0003 .9987 +.0003 
FP vs FP .0101 +.0000 .0101 +.0000 
FP vs EFP .0066 -.0038 .0123 +.0038 
FP vs PR .0018 -.0120 .0108 +.0120 
EFP vs EFP .0061 -.0068 .0048 +.0068 
EFP vs PR .0115 -.0088 .0121 +.0088 
PR vs PR .0101 +.0000 .0101 +.0000 

Behaviour rules Marginal for player 1 Marginal for player 2 
RI vs FP (.1011, .1358, .2991, .0924, .3717) (.0756, .1569, .3027, .1173, .3475) 
RI vs EFP (.1029, .1093, .3533, .1029, .3266) (.1239, .0861, .3269, .0896, .3735) 
RI vs PR (.0961, .1391, .3341, .0934, .3372) (.1460, .0842, .3529, .1035, .3134) 
RI vs RI (.1186, .0791, .3739, .1004, .3279) (.1426, .1152, .2355, .1342, .3726) 
MR vs RI (.2636, .2229, .2814, .2141, .0130) (.2301, .2332, .0617, .2437, .2313) 
MR vs FP (.2203, .2203, .3334, .2204, .0056) (.2592, .21350, .1940, .3334) 
MR vs EFP (.1929, .1928, .3360, .1933, .0851) (.2990, .2911, .0003, .3129, .0967) 
MR vs PR (.1917, .1175, .4187, .2558, .0164) (.2887, .2129, .0002, .2851, .2131) 
MR vs MR (.3332, .3332, .0007, .3329, .0000) (.3332, .3329, .0000, .3332, .0007) 
FP vs FP (.1102, .1117, .3300, .1153, .3329) (.1102, .1117, .3300, .1153, .3329) 
FP vs EFP (.1036, .1115, .3259, .1230, .3360) (.1096, .1152, .3286, .1076, .3390) 
FP vs PR (.1120, .1073, .3348, .1147, .3314) (.1108, .1112, .3342, .1100, .3338) 
EFP vs EFP (.1055, .1155, .3288, .1126, .3376) (.1157, .1092, .3275, .1083, .3393) 
EFP vs PR (.1159, .1087, .3298, .1173, .3283) (.1178, .1241, .3260, .0918, .3404) 
PR vs PR (.1095, .1114, .3238, .1130, .3424) (.1095, .1114, .3238, .1130, .3424) 
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Convergence Behaviour Rule Empirical Distribution 
RI vs FP (.0101, .0142, .0287, .0146, .0335, .0191, .0058, .0434, 

.0241, .0434, .0384, .0616, .0741, .0295, .0955, .0044, 

.0060, .0390, .0123, .0307, .0037, .0692, .1174, .0369, .1145) 
RI vs EFP (.0022, .0015, .0257, .0226, .0509, .0221, .0007, .0386, 

.0255, .0225, .0575, .0483, .0982, .0247, .1246, .0041, 

.0001, .0486, .0000, .0551, .038, .0355, .1158, .0168, .1205) 
RI vs PR (.0125, .0088, .0258, .0063, .0427, .0148, .0044, .0457, . 

.0372, .0371, .0511, .0389, .1141, .0299, .1001, .0180, 

.0019, .0435, .0025, .0276, .0496, .0302, .1238, .0276, .1059) 
+ RI vs RI (.0085, .0047, .0199, .0283, .0571, .0301, .0006, .0144, 

.0141, .0144, .0588, .0446, .01039, .0407, .1259, .0040, 

.0203, .0228, .0057, .0426, .0362, .0449, .0739, .0453, .1276) 
+ MR vs RI (.0128, .0177, .0439, .1715, .0177, .1687, .0139, .0016, 

.0238, .0149, .0329, .0249, .0118, .0304, .1815, .0112, 

.1690, .0044, .0150, .0145, .0047, .0077, .0000, .0029, .0027) 
+ MR vs FP (.0098, .1005, .0000, .0758, .0342, .0903, .0059, .0000, 

.0752, .0490, .0452, .0359, .0000, .0371, .2152, .1122, 

.0700, .0000, .0049, .0333, .0018, .0011, .0000, .0011, .0016) 
+ MR vs EFP (.0588, .0577, .0001, .0587, .0175, .0607, .0529, .0000, 

.0566, .0226, .0966, .0984, .0002, .1091, .0316, .0577, 

.0596, .0000, .0571, .0188, .0252, .0225, .0000, .0313, .0061) 
* MR vs PR (.0384, .0381, .0001, .0384, .0767, .0385, .0012, .0000, 

.0760, .0017, .0844, .1709,0, .0812, .0822, .1235, 

.0008, .0000, .0844, .0470, .0039, .0019, .0001, .0051, .0054) 
* MR vs MR (.0000, .1666, .0000,-1666, .0000, .1666, .0000, .0000, 

.1666, .0000, .0003, .0000, .0000, .0000, .0003, .1663, . 

.1663, .0000, .0000, .0003, .0000, .0000, .0000, .0000, .0000) 
* FP vs FP (.1102, .0000, .0000, .0000, .0000, .0000, .1117, .0000, 

.0000, .0000, .0000, .0000, .3300, .0000, .0000, .0000, 

.0000, .0000, .1153, .0000, .0000, .0000, .0000, .0000, .3329) 
+ FP vs EFP (.0097, .0120, .0349, .0096, .0375, .0128, .0118, .0413, 

.0127, .0329, .0378, .0378, .1061, .0337, .1105, .0131, 

.0108, .0362, .0154, .0476, .0362, .0429, .1101, .0362, .1106) 
* FP vs PR (.0087, .0119, .0381, .0135, .0397, .0135, .0121, .0351, 

.0110, .0355, .0381, .0396, .1089, .0380, .1102, .0125, 

.0131, .0373, .0126, .0392, .0380, .0345, .01148, .0350, .1092) 
* EFP vs EFP (.0076, .0154, .0329, .0141, .0354, .016, .0076, .0371, 

.0149, .0399, .0392, .0352, .1116, .0353, .1075, .0145, 

.0152, .0370, .0078, .0382, .0385, .0358, .1088, .0362, .1183) 
+ EFP vs PR (.0132, .0129, .0388, .0112, .0398, .0131, .0165, .0341, 

.0081, .0370, .0413, .0418, .1038, .0300, .1129, .0136, 

.0130, .0378, .0111, .0418, .0366, .0399, .1114, .0315, .1089) 
* PR vs PR (.1095, .0000, .0000, .0000, .0000, .0000, .1114, .0000, 

.0000, .00(ft), .0000, .0000, .3238, .0000, .0000, .0000, 

.0000, .0000, .1130, .0000, .0000, .0000, .0000, .0000, .3424) 
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Shapley Game - 30000 iterations 

Convergence Behaviour Rule Empirical Distribution 
— RI vs FP (.1595, .0862, .0005, .0003, .1389, .1429, .2424, .0009, .2284) 
— RI vs EFP (.1892, .2093, .0000, .0376, .2678, .0677, .1216, .0018, .1050) 
+ RI vs PR (.1389, .1608, .0302, .0393, .1610, .1637, .1386, .0365, .1310) 
+ RI vs RI (.1363, .1492, .0058, .0153, .1818, .1975, .1141, .0038, .1961) 
* MR vs RI (.2571, .0548, .0270, .0218, .2439, .0498, .0582, .0358, .2516) 
* MR vs FP (.2667, .0667, .0000, .0000, .2667, .0667, .0667, .0000, .2666) 
— MR vs EFP (.1489, .2094, .0142, .0774, .2427, .0559, .1158, .0624, .0734) 
* MR vs PR (.0833, .1666, .0833, .0833, .0834, .1667, .1667, .0833, .0834) 
* MR vs MR (.1667, .1667, .0000, .0000, .1667, .1667, .1667, .0000, .1667) 
— FP vs FP (.0644, .0945, .0000, .0000, .1386, .2033, .2013, .0000, .2980) 
— FP vs EFP (.0891, .1304, .0000, .0000, .1910, .2804, .0602, .0000, .2490) 
— FP vs PR (.1137, .1833, .0013, .0015, .1835, .2962, .1135, .0011, .1059) 
— EFP vs EFP (.2430, .0611, .0000, .0000, .0895, .1311, .2826, .0000, .1925) 
— EFP vs PR (.1084, .1754, .0017, .0017, .1756, .2848, .1082, .0015, .1426) 
* PR vs PR (.1138, .1147,1083, .1072, .1124, .1104, .1126, .1092, .1115) 

Behaviour Rule max^ujw^, aN) % ( « ) max„ uM(ctM,v) uN(a) 
RI vs FP .402 .527 .472 .472 
RI vs EFP .479 .562 .399 .399 
RI vs PR .358 .431 .364 .463 
RI vs RI .399 .514 .395 .461 
MR vs RI .337 .752 .346 .163 
MR vs FP .333 .800 .333 .200 
MR vs EFP .514 .465 .376 .381 
MR vs PR .333 .250 .333 .500 
MR vs MR .333 .500 .333 .500 
FP vs FP .501 .501 .499 .499 
FP vs EFP .529 .529 .471 .471 
FP vs PR .403 .403 .481 .593 
EFP vs EFP .526 .525 .475 .475 
EFP vs PR .429 .427 .462 .568 
PR vs PR .336 .338 .337 .338 
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0.4 
Shapley Game: R1 vs R1 (30000 iterations) 
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Shapley Game: FP vs FP (30000 iterations) 
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Shapley Game: MR vs MR (30000 iterations) 
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Appendix B: Programs 
All programs were written in Matlab. Though not presented here, they are available for 
public viewing at the following website: http://www.iam.ubc.ca/theses/ for any who are 
interested. 

The main program is given first and is called game.m. Each behaviour rule has two 
separate programs - one for player M and one for player N. The line in program "game" 
which starts jl = ... determines what behaviour rule is used by player M while the line 
right below it determines what behaviour rule is used by player N. The program "game" 
will first ask the user to input the payoff matrices for both players. Thus, it will run any 
game the user wants. 

Moreover by changing two lines, the user can run any pair of behaviour rules against 
each other. The output includes the empirical distribution (after however many itera
tions) of the game and, for each player, the payoff, the marginal distribution and the 
best-response payoff against the opponent's marginal distribution. (In other words, all 
the information displayed in the tables in Appendix A.) 
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