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Abstract 

A two dimensional model of a jet impinging on a heated wafer is constructed. After neglecting buoyancy, 
a Navier-Stokes solver provides the flow velocity such that the energy equation can be used to solve for 
the temperature in the gas. Using a coupling condition, a heat conduction solver in the wafer is coupled 
to the energy equation solver in the gas, and as such the heat transfer across the surface of the wafer 
can be computed. A predictive formula is constructed for the surface heat transfer coefficient in terms 
of the Reynolds number and the ratio of the jet height to the nozzle width. 
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1 Heat Transfer in a Thin Semi-Conductor Wafer 
1.1 Introduction 
In the production of micro chips it is necessary to produce semi-conductor wafers in a carefully controlled 
manner, such that structural degradation of the material is kept to a minimum. This structural degradation 
has a direct impact on the performance of the micro chips. The wafer is subjected to a series of processes 
(For a more detailed description of the manufacturing of Silicon Wafers, see [7].) Anealing is the process by 
which a wafer is heated to a high temperature (RJ 1050°C7) so that dopants can be introduced to the wafer, 
and thermally activated diffusion can take place. Rapid Thermal Processing (RTP) is the term commonly 
used to describe these types of process. 

Most of the techniques involved in R T P originate from ideas that arose from experiments conducted in the 
field of materials science. The first devices to resemble R T P were developed in the 50s and 60s. These devices 
used a convection furnace to heat the wafers in batches. A furnace creates a heat transfer environment that 
is difficult to control, due to the convection currents occurring. Although advances in furnace design have 
enabled these kinds of R T P device to heat up quickly, the speed is still appreciably slower than an equivalent 
device using a radiative influx of heat. The first commercial R T P chamber to use radiation was developed 
in 1999; unfortunately it was not a commercial success. 
In 1994, scientists at a Vancouver based company, Vortek Industries (www.vortek.com) began to research 
R T P as a possible application for their high powered arc lamps. Vortek is world renowned as a leading 
manufacturer of extremely high powered lamps that operate between 50 and 300kW. They are now at the 
stage in which a prototype R T P chamber has been built and adjustments are being made in order to refine 
their patented R T P tool. The key advantages to this process are: 

• The wafer can be heated to the peak temperature (w 1050°C7) very rapidly. This lowers the thermal 
budget (integral of temperature with time) thus makes for a more efficient production line. 

• The temperature across the wafer can be accurately controlled and thus superior wafers can be pro­
duced. It is desirable to maintain a uniform temperature throughout the wafer such that structural 
abnormalities and surface degradation is kept to a minimum, and thus the tracks which are to be 
placed on the wafer can be placed in closer proximity. There are many reasons to produce smaller 
micro chips, the most important being increased speed, reduced power consumption, and the advent 
of nanotechnology. 

A target temperature uniformity has been set at ±2°K due to market demand. 

Figure 1: Chamber side view 

The configuration of the equipment is depicted in fig. 1. A n array of jets are used to cool the wafer with 
a flow of inert gas on the top side. The wafer must be held in a horizontal configuration for heating, as 
internal stresses within the thin wafer prevent a vertical configuration (which would perhaps be better suited 
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to convection cooling). The horizontal configuration also facilitates a smooth production production line, as 
machinery to hold and turn the wafer is not necessary and the wafer can simply sit in a recess. 

Figure 2: Showerhead top down view (Showerhead is the same size as the wafer) 

The wafer is housed in a black chamber that serves to absorb unwanted reflected radiation, and the light 
shines through a quartz window onto the bottom surface of the wafer. The space in the chamber is occupied 
with inert gas. The C C D camera uses the emitted radiation to measure temperature across the wafer surface 
and thus experimental data can be obtained. 
The top surface of the plate is subjected to a flow of inert gas that passes over the wafer via a showerhead 
that sits above the wafer. F ig 2 depicts a schematic diagram of this showerhead; note that the arrangement 
of holes shown describes an approximate layout for a typical showerhead configuration. Currently, much 
experimentation is underway concerning the placement of the holes. This showerhead can be adjusted from 
l c m to 2.5cm above the surface of the wafer. The wafer is about 15cm in diameter. 
When a wafer is in position and ready to be treated, the influx from the lamp is turned on. The influx 
from the lamp takes a few seconds to reach its maximum value, and as such the temperature of the wafer 
'ramps' up to the peak temperature (about 1050°C) in about 5 seconds. The wafer is held at the peak 
temperature for a time period of around 15s. The lamp is then switched off and the temperature of the 
wafer ramps down, the most dominant method of cooling being the radiative heat loss. 

2 Formulation of the Problem 
Vortek would like to know how best to arrange the apparatus such that the heat transfer across the surface 
of the wafer remains as uniform as possible. Put most simply, for a given flow rate, how high does the shower 
head need to be and how close together should the holes in it be placed to get a heat transfer coefficient 
that is as uniform as possible. Setting up a full 3D computational model would be the best way to obtain an 
accurate answer, but such a model would take a long time to configure, and computations are likely to take 
a long time (perhaps 4-5 hours per run, so to obtain the necessary range of data would take months.) As 
usual when solving applied mathematics problems the best approach is usually to simplify the problem as 
much as possible; this will provide insight into how best to formulate a more complicated model. Proceeding 
in this manner, we reduce the problem to that of a single (2D) jet impinging on a flat plate, which is heated 
by a constant influx of heat. Since the problem has now been made 2D, the information obtained will be 
qualitative rather than quantitative. However, we should hope that the qualitative relationships obtained 
will still be applicable to an equivalent axisymmetric 3D jet, since the domain we consider is effectively a 
cross section of such a jet. In simplifying the model we have also removed the effects of neighboring jets, and 
this probably represents the greatest deviation from the actual physical representation. Appealing to the 
pictorial data obtained from Vortek, it would seem that a jet introduces a localized peak to the heat transfer 
coefficient on the surface of the wafer. It seems likely that interference between the jets and the corresponding 
effect on the heat transfer coefficient is confined to the regions between the jets. We are hopeful then, that 
our model of a single jet gives a useful qualitative description of the heat transfer coefficient in the vicinity 
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of a single jet. We will be unable to provide quantitative data (with regards to the actual setup) using this 
model, but we aim to gain a qualitative understanding of how changing the height of the showerhead (H) 
and the jet nozzle width (d) affect the local heat transfer. Some attempt is made, however, to use parameters 
that will give variable values in the right kind of range (e.g. the peak temperature on the wafer is kept to 
around 1050°C which is around the same temperature used in the annealing process ). 
For the purposes of qualitatively describing the local HTC (Heat transfer coefficient) with regard to unifor­
mity, the influx parameter was modeled using its peak value and disregarding the ramping stages. However, 
in order to obtain quantitative data when implementing a 3D model, these effects would have to be included. 

Figure 3: Surface Wafer temperature image for a gas flow of 0.2Zmm - 1. The lighter the color, the cooler 
the surface (Actual temperature data is unavailable due to commercial sensitivity; moreover the actual 
temperature values are not important for the purposes of this discussion.) 

Figure 4: Surface Wafer temperature image for a gas flow of 0.5/mm 1. The rings of jet nozzles create colder 
rings on the wafer that are just visible in the image. 

N o t e : The pictures presented above in no way reflect the quality of Silicon wafers produced by Vortek. 
The examples shown here are merely plots obtained during testing and are used here to illustrate how the 
impinging jets create changes in the heat transfer. The heat transfer patterns from the latest Vortek model 
are far superior to the ones presented here. 
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3 Modeling 

3.1 Geometry 
As discussed before, the problem has been reduced that of a 2D jet impinging on a flat plate. It is hoped that 
the results obtained will be useful in describing (qualitatively at least) the heat transfer due to an equivalent 
3D axially symmetric jet. Please refer to Table 1 for a description of parameters and their values. 

3.2 Governing Equations 
The temperature T(x, y) in the wafer is modeled by the 2D heat conduction equation: 

The gas flow is modeled using the non-dimensional Navier-Stokes equations in artificial compressibility form. 
Artificial compressibility means that we have added an aphysical time derivative of pressure to the continuity 
equation. This derivative is scaled by a parameter /3 that sets the pseudo-compressibility of the fluid. With 
the addition of this time derivative of pressure, we are able to advance pressure and velocity in time together. 
Note that this approach can sometimes affect the time accuracy; care must be taken in computing transient 
processes. (Since we are computing steady state solutions this will not be of great concern.) 
The aim in the gas flow domain is to compute the flow field using the Navier-Stokes equations, and then 
to use the Energy equation to compute the temperature. In decoupling the velocity and pressure from the 
temperature we have neglected the effects due to buoyancy that may be of concern near the heated wafer, 
where large temperature gradients may be possible, especially during the initial (transient) stages of heating. 
Buoyancy is caused by the fact that hot air is less dense and thus a pressure difference exists between the 
hot and cold gas, the latter tending to sink under gravity, the former rising upwards. The jets' function is 
to blow away these rising and falling gas currents so that a uniform temperature can be established on the 
wafer surface. We hope then that in the actual prototype RTP device, the speed of the gas next to the wafer 
is large enough to blow away these unstable gas currents. For the purposes of our model we are convinced 
that in the vicinity of the jet any pressure gradients due to temperature differences will be far outweighed 
by the pressure gradient caused by the impinging gas. As we move away from the impinging zone, and the 
situation can be likened to that of a uniform flow past a heated plate, we may have to pay closer attention 
to the effects of buoyancy. Indeed if the flow is slow enough, it may be possible that convection cells are 
created in the form of a rolling vortex made up of a flow loop of rising and then falling gas close to the 
plate surface. This is the so called Poiseuille-Benard flow which is studied in the 2D case by [5]. In practice, 
it may be possible for the regions between the gas jets to produce flow fields in which convection cells can 
exist. However, since our model's physical significance is limited to the region near a single jet, it will not 
be instructive to investigate convection cells in the context of this model. We leave this area of investigation 
for future study. 
Here then, are the non-dimensional Navier-Stokes equations in artificial compressibility form: 

dP _1_ (cPu cPu 
dx  + Re \dx 2  + dy 2  ) 

(b + H) 
d 
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The equations have been non-dimensionalised via the following: 

P-JL T-H 
X~d' U~U' pU*' T* 
- y ~ v 

y=d> v = u-

where 

Ud 
v 

2 
TjjVrnazI is the mean velocity across the inflow, 

1°K is a typical temperature fluctuation 

Hats were subsequently dropped, and the domain ranges become: 

L H 
0 < x < - , 0<y<—. 

In order to solve for the temperature in the gas flow domain, we use the flow field given by the solution of 
the Navier-Stokes equation to compute the energy equation for incompressible flow (i.e. the flow velocity v 
satisfies V.tf = 0, at least at steady state. This assumption is valid for the low Reynolds numbers encountered 
in this model). 

Re = 

U = 

T* = 

In which 

_ Ud _ inertia ^ _ fxcp _ dissipation ^ _ cpT* _ enthalpy 
v viscosity' k conduction' U2 kinetic energy 

3.3 Boundary and Initial Conditions 

l.(a) Vertical Direction - Wafer 
A picture of the geometry, including the boundary conditions imposed is shown in fig. 5. A t the top 
surface of the wafer we have the coupling condition corresponding to temperature continuity through 
the wafer-gas interface. We have also included the radiative heat loss term which is represented by 
the fourth power relationship on T. For a better explanation of how this term is derived see [3]. 
Basically, radiative heat loss occurs due to energy being released from the material in the form of an 
electromagnetic wave, usually with a frequency towards the red end of the electromagnetic spectrum. 
This is also why objects can appear to glow red when they are hot. This heat is radiated to the chamber 
walls which absorb the heat energy. The walls are specially painted black and the material carefully 
selected such that the reflected radiation is kept to a minimum. For more information on radiative 
heat transfer in the context of R T P see [7]. We hope that the heat radiated to the chamber walls is 
quickly dissipated by convection, and that our assumption of room temperature being maintained at 
the wall throughout is a realistic one. If an accurate quantitative model were being constructed, this 
effect may have to be reconsidered as it may well be expected that the chamber walls will heat up to 
some degree during the course of operation. 

We observe that since the radiation heat loss term is a fourth power relationship on T, it will be 
the dominant mechanism of cooling once the temperature is sufficiently large. At the bottom surface 
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Tx = 0 

ux = v = 0 

P = 0 
T* = O 

u = v = 0 

P„ = 0 

^ = fear, - oE (T4 - 1%, 
TT = 0 

kSiTy = -a(t) + aE(Ti-T4

Room) 

Figure 5: The full geometry and boundary conditions for a jet impinging on a flat plate 

Parameter Value Unit 
Wafer Thermal Conductivity (ksi) 149.0 Wm^K'1 

Gas Thermal Conductivity (koas) 0.025 Wm~lK-1 

Wafer Thermal Diffusivity (ust = ^) 9.0 x 10-5 

Wafer Stefan Boltzman const, (a) 5.67 x 10"8 Wm-2K~4 

Wafer Emissivity (E) 0.7 -
Influx (a) 2.33 x 105 Wm-2 

Room Temp. (TRoom) 297.0 K 
Wafer Length(L) 0.10 m 
Wafer Width (6) 0.0007 m 

Typical Shower Head Height (H) 0.02 m 
Typical Peak Incoming Velocity (|Vmo:i:|) 0.042 ms"1 

Typical Peak Outgoing Velocity (Vout) 0.0105 ms-1 

Typical velocity scale (U = %\Vmax\) 0.028 ms-1 

Typical Reynolds No. (Re = ^ ) 9.33 -
Table 1: Approximate values of parameters used 

we have a (constant) influx of radiant heat provided by the lamp, and an outflux of radiant heat. 
Since the gas is prevented from circulating around the wafer, and the flow field near the bottom of 
the plate is dynamically stable (i.e. the flow will be carried along the plate and then upwards by 
natural convection) , convection effects at the underside were ignored. Again, if we were looking for a 
quantitative representation, this may have to be reconsidered. 

(b) Vertical Direction - Gas 
Pressure, velocity and Temperature are prescribed on all sides of the boundary. At the Wafer-Gas 
interface we have a coupling condition based on temperature continuity. At the top of the domain 
(showerhead surface) we have prescribed the temperature to be at room temperature. As described 
before this neglects the radiant heat exchanged between the showerhead and the wafer surface, see 
[7] where this process has been studied. We do, however, include the radiation heat loss to the 
surroundings. 

2.(a) Horizontal Direction - Wafer 
Since the wafer is so thin, the heat loss through the edges will be minimal, and thus we can use a no 
flux boundary condition. 
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(b) Horizontal Direction - Gas 
At the left hand side of the domain we have a symmetry plane, hence there is no flow across the 
boundary (u = 0) and the other quantities have x derivatives zero. At the outlet we assume the flow 
is fully developed and take the pressure to be zero (we are free to measure pressure from whatever 
reference value we choose.) 

3. (a) Initial Condition - Wafer 
The initial temperature distribution in the wafer is taken to be constant (room temperature). 

3.(b) Initial Condition - Gas 
The velocity, and pressure are taken to be zero everywhere. The temperature is taken to be room 
temperature, as in the wafer. Note that convergence times could probably be reduced by using an 
initial velocity field that was more similar to an impinging jet e.g. using data from computation 
with similar parameters. This method was not utilized however, to ensure the numerical solution was 
correctly converged. 

With the conditions as stated we have a well posed problem, and thus the solution to the problem is unique. 
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3.4 Wafer M o d e l 

To simplify validation of the model, we break the model into two parts, that of the conduction in the wafer 
and the gas flow model. To separate the model we need to specify a new boundary condition at the wafer-gas 
interface. The most obvious choice is to use a linear outflux which corresponds to amalgamating the heat 
conduction (Newton's law of cooling) and convection effects into one term by a judicious choice of constant 
of proportionality, the surface heat transfer coefficient (h). For the purposes of validating this part of the 
model, we can take h as some constant. Later, we will use this boundary condition in comparison with the 
full coupled boundary condition to determine the heat transfer coefficient for the full problem. 

3.4.1 Governing Equations 

The temperature in the wafer is modeled by the 2D heat conduction equation: 

dT fd2T d2T\ n _ n 

0 < X < L '  0 < y < b -

kSiTy = -h(T- TRoom) - aE(T* 

ks,Tv = -a(t) + ffE(T*-T4

Room) 

Figure 6: Boundary conditions on the wafer. We have replaced the coupling condition at the interface with 
a simple convection term; this makes it is easier to validate the conduction model 

3.4.2 Discretisation of Domain 

In order to solve the problem numerically we must divide the space into control volumes by forming a grid 
over the domain with spacings Ax and Ay in the x and y directions respectively. In this analysis, each cell 
is labeled by a subscript which refers to the ith column and jth. row. A bar over the variable denotes 
the average value. It can be shown (see [2]) that the central value of the cell is second order accurate to the 
average value over the cell. In this paper we shall simply refer to the variable as, say Tij and implement 
this as the central value of the (i,j)th cell, but remember that it actually means the average value of the 
(i, j)th cell. We must also divide the time into steps of size At. Some analysis of the combined space-time 
discretisation scheme is necessary to ensure that the time step used is compatible with the space step sizes. 

Space 
A second order centered flux was used to discretise the Laplacian: 1 

dT _ (Tj+ij — 2Titj + Ti-ij Tjj+i — 2Tjj + Tj-i \ 

~dti~K V AP Ay 2 ) ' 

Using Von Neumann analysis (see [2]) it can be shown that the eigenvalues are 

2K 2K 
X k l = -7r-2(l~C0S<Pl') ~ -r-2 (1-COS0/). 

For more information on discretisation, including a proof that this centered discretisation is second order accurate see [2] 
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T i m e 
A second order centered implicit (Trapezoidal) time advance scheme was employed. It was important that 
the scheme be at least 2nd order since we have a transient process with time dependent boundary conditions, 
although in this paper we present results only for steady state solutions we anticipate that it may be use­
ful to have a time accurate model. Also, probably more importantly we must not damage the space accuracy.) 

The amplification factor G of a solution is defined as the growth rate of the solution from time level t — nAt 
to time level t + At = (n + l)At. As an example, consider 

dv — = Aw. dt 
The exact solution is 

v{t) = Aext, 
and thus the amplification factor is given by 

v(t) vn 2 6 

By comparing a numerical schemes amplification factor with this Gexact we can determine a scheme's time 
accuracy. \G\ < 1 gives the condition for stability. Thus when A is expressed as a function of the space 
stepping Arc, Ay we can examine the space/time discretisation together. 
The trapezoidal scheme is advantageous because of its stability properties: 

The amplification factor is 

^ , , A (AA*)2 (AA*)3 

G = 1 + XAt + v ; + v 1 , 

11 -I- ^ 1 
| G | = 2 1 

XAll • \x
 2~l 

Thus we can see by comparing with the exact amplification factor that the scheme is 2nd order accurate. 
Now consider A : 

A = A + IB, 

, . A2 B2 A2 B2 

l + A+ — + —<l-A+ — + — 4 4 4 4 
=> A < 0 for stability. 

This means that there is no (theoretical) restriction on the time step in order for the scheme to be stable 
because the eigenvalues for the space discretisation lie in the stable space of the time advance scheme. 

Applying this time advance scheme for each point in the space discretisation (3.4.2) yields, in matrix form, 
the following system of equations: 

At + [S*] 2 + [ 5 » ] 2 = °' 

where 
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T21 

T = Ti-ij 

Ti,j 
Ti+l,j 

and 

[S,] = Ax2 

(2 -1 
-1 2 -1 

- 1 2 1 

and similarly 

[Sy] Ay2 

V 

(2 -1 
-1 2 -1 

-1 2 1 

V 

\ 

/ 

\ 

J 
Hence we obtain 

[I] + ̂  + ^ ) sf = ([Sx] + [Sy]) f». 
= -At(FluxIntegral)ij 

Approximate Factorisation 
In order to solve the resulting matrix problem, broadly speaking we need to separate the problem into its x 
and y solution components. Then we may apply boundary conditions in one direction and solve that sub-
problem, and then apply boundary conditions in the other direction to fully solve the problem at that time 
step. One way of delivering the matrices into the desired form is the method of approximate factorisation 
(for more information see [2]). This is demonstrated below; the matrix equation is written as a product. It 
may be checked that when this product is expanded out, the extra term is of order (At) 2 and thus will not 
affect the time accuracy. Applying the method of approximate factorisation gives 

This introduces an error of 0(At3) and does not affect the time accuracy which is 0(At2). 
Specifically, if we denote the operator Ea$ by 

We obtain the final result 

nAt 
1 - 2Aa;2 

(Eifi —2 + E-ito) 

Ea,bSTitj — 6Tj+aj+b. 

1 — ——^ (-̂ O,! — 2 + EQ^-I) 
2Ay2 

STij = At{Flux Integral) Ij 
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In practise this equation can now be solved in two steps (we introduce 6Q{j as an intermediate matrix): 

K,At 1 
1 - ^XZt - 2 + £ - i>°) 6®i,j = ^{Fluxlntegral)^, 2Ax2 

which gives the information necessary to update the temperature for each time step. 

3.4.3 Discretising the Boundary Conditions 
A simple way to prescribe boundary conditions on a mesh is to use cells on the exterior side of the boundary, 
so called 'ghost' cells. Thus updating the value of the ghost cell based on a calculation involving the interior 
cells provides a quick method of imposing the boundary condition. This means that the same flux calculation 
can be used everywhere, which is efficient and can be easily implemented. 

Bottom of Wafer 
At the bottom of the wafer we have the radiative influx of heat provided by the lamp, and the heat loss 
radiated out to the chamber walls. We need to find an equation that will determine how to set the ghost 
cells for both the space and the time discretisations. 

Space 
Restating the boundary condition in continuous form:2 

BT 

On y = 0, k— = - a ( t ) + R { T * - T R o o m ) , 

where 

T(x,y,t) is the temperature, 

Tw{x, y, t) is the temperature on the bottom surface of the wafer, 

TRoom is the (constant) room temperature. 

R is the product oE the radiation parameter, used for brevity. 

In discrete form this becomes 

=• T,-_! = Tj + ̂  (a(i) - R(Tt - TRoomj) . 

Implicit Time Advance 
In discrete form we have (using the notation Tn to represent T at time level n): 

k 
Ay 

= - a n + R 1 Room 

If we denote ST — Tn+1 - T n, writing the above equation at time level (n +1) and then subtracting gives 
2the influx term a(t) is shown as a function of t to reflect the fact that the model would accommodate such a parameter. In 

computing the results for this study however, its peak value was used. (Also note that a(x,t) can also be accommodated.) 

11 



k Ay^ 0 = ~Q" + 1 + a n + R t((T-+1)2 + CO'JCC"1 + TZ){TZ+l - O] . 

The problem here is that the temperature at the bottom surface of the wafer (Tw) is unknown at time level 
(n + 1), but we can approximate it by Tw at time level n (a more detailed analysis of the error introduced 
here is given further down the page) 

« an - an+1 + 2R(T^)2(2T^)STW, 

5Tj (k - 2R(TZ)3Ay) = ST^ (k + 2R(T^)3Ay) - (an+1 - an)Ay, 

where 
W ~ 2 

Error Analysis of Approximation used in Radiation Boundary Condition 
(Note that this analysis is only pertinent to transient computations, the results obtained during this study 
were all obtained for steady state solutions. The analysis included here is to show that the model is capable 
of time accurate results should the model be required to simulate transient cases.) 
Consider the Taylor series expansion for T™+1 

dTn 

T£ + 1 = + -^-At + 0(At2), 

( Tn+ 1 )2 = ( T n ) 2 + 2T^At + 0(At2), 
( r „ + l ) 2 + ( r n ) 2 = 2 ( T n ) 2 + 2T^At. 

so to second order 
dTn dTn 

(2(T£)2 + 2(r;) 2^At)(2T^ + -jjS-At) ~ «T£ + 1 ) 2 + (T^)2)(T^+l + T") 
dTn 

=• 4(T£)3 + 6(T%)2^At ~ (K+1)2 + (T:) 2)(T^ + 1 + T"). (1) 

So in approximating the radiation boundary condition we have introduced an error of size |6(T")2^"-At|. 
Looking at the left hand side of (1), we must impose the condition 

dTn 

The error is largest when the temperature at the wall is varying quickly. As the temperature approaches 
steady state, the error will decrease to zero. This suggests that it may be necessary to take smaller time 
steps in certain regions where the temperature is varying rapidly. Refining the time step should provide a 
simple method to determine whether the error introduced is important. The analysis performed here gives 
a good indication of when this error is likely to be largest, and therefore over which time period the time 
convergence should be verified. 

Top of Wafer 
At the top of the wafer we have radiation heat loss as well as the linear outflux corresponding to the 
convection cooling provided by the impinging jet. The parameter h is in reality a function of x the distance 
along the plate. For the purposes of validating this model we take ft to be a constant. We need to find an 
equation that will determine how to set the ghost cells for both the space and the time discretisations. 
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Space 
In continuous form the boundary condition is 

dT 
k— = -h(x)(Tw - TRoom) - R(T* - TRoom), 

where 

T{x, y, i) is the temperature, 

Tw(x, y, t) is the temperature on the top surface of the wafer, 

TRoom. is the (constant) room temperature. 

R is the product aE the radiation parameter, used for brevity. 

Writing this in discrete form we obtain 

k ( ^ i r 1 ) = ~ h ( p ^ 1 ) ~ T R ° ° m ) ~ R { T ™ - T«°°™}' 

1j — 

(T,--! (k - + L\yhTRoom - AyR(T* - TRoom)) 

(k + ^) 

Implicit Time Advance 
Using the notation T™ meaning Tw at time level n, and 5T = Tn+1 — Tn , we have: 

STj-STj-A^ u fSTj+STj^ A n f m n , 3 fSTj-i+STj 

h ^ , 1 T>ITn\i A . \ _ XT. (l, h ^ _0OfTn\3, 

5Tj[k + —±+ 2R(TZYAy = 8T^ [k - — ^ - 2R(T^)iAy 
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3.5 Gas F l o w M o d e l 

We now consider the gas flow above the wafer. Fig. 7 below depicts a 2D impinging jet on a plane surface. 
Using a symmetry boundary condition along the jet axis, only half the jet needs to be considered. The gas 
flowing in is assumed to be at room temperature, and has a peak velocity |V m a i | . Since the inlet channel is 
narrow we may assume that the flow is fully developed in the channel and emerges as a quadratic velocity 
profile. This profile can be used to compute the pressure gradient at the entrance to the gas flow region. 

u = 0 

Vln(x) = (x2-d2)j2\Vmax\ 
u = v = 0 
Pv = 0 

UX = V-

P = 0 
Tx = 0 

-Ty = kSlTy - CJE T 4 - Tj 

Figure 7: Boundary conditions for the gas flow domain 

Channel Inlet: Fully developed profile 

X 

Symmetry P 

Jet Inlet 

x 

ane V (x) = (x2 - d) j2\Vm 

Figure 8: Boundary conditions on channel inlet 

For a fully developed profile one may assume the following velocity in the y direction (see [8] or [1]): 

14 



V (x) = (x2 - d2) ^\Vmax\, 

and from the y momentum equation 

dP (32V\ 2 

The mean velocity across the inflow can be related to the maximum of the velocity profile as follows: 

» = y ; Vin(x)dx 

d3 

rd 

Jo 
d2)dx 

3.5.1 Governing Equations 
Under the assumption that the Reynolds number of the flow is large enough such that buoyancy effects can 
be ignored, temperature can be decoupled from velocity. Henceforth the problem is modeled by first solving 
the Navier-Stokes equations yielding the flow field at steady state and then solving the energy equation. As 
discussed in section 3, the non-dimensional Navier-Stokes equations in artificial compressibility form can be 
written as 

dP ldu 1 dv 
dt + /3dx + fidy ~ ' 
du du2 duv 
dt dx dy 
du duv 
dt dx 

df_ 
dy 

dP_ J_ 
dx Re 
dP_ J_ 
dy Re 

d2u d2u 
dx2 dy2 

d2v d2v 
dx2 dy2 

The incompressible energy equation is 

dT dvT dvT 
dt dx dy 

dvT _ 1 fd2T + Ec 
Re - Pr \ dx2 dy Re 

du 
dx 

+ 2 'dv du\' 
^dx dy J 

The equations have been non-dimensionalised via the following: 
P x 

X=d' 
« V 

V=d' 

u p = pU2 T= — T 
T* 

Thus 
_ Ud inertia Re = — = —, v viscosity Pr = 

pcp _ dissipation 
k conduction' Ec = cpT* enthalpy 

U2 kinetic energy' 
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where 
2 

U = -\Vmax\ is the mean velocity across the inflow, 
o 

T* = \°K is a typical temperature fluctuation 
Hats were subsequently dropped, and the domain ranges become: 

L „ H 
0 < z < - , 0<y <—. a a 

3.5.2 Navier Stokes Discretisation: Centered flux evaluations, Implicit Euler time advance 

In matrix form we have 

dU 9F^ + dG_Q 

dt dx dy ' 
where 

U = \ u 
\ v i 

' 0 \ G = uv — 

V 

J^du 
Re dy 

Re dy j 
Integrating over a computational cell, applying Gauss's theorem and dividing by the cell volume gives 

dt Ax 
Using centered flux evaluations and a functional notation 

Ay 

' + 5 J 
F (Uij, Ui+ij) 

I U i , , - + U i + l , j \ 

I 2/3 1 
( " i . j + H i + l . j ^ , P i . j + f i + l . j 1 U i + l . j - U j , , 
\ 2 ) "•" 2 fle A f t 

2 2 fle A x 

and 
: G {Uij,Ui,j+i) 

( 2/3 
u i , j + u i , J + l vi,i+vi,i + l 1 U i , 3 + 1 - U i , j 

2 2 fle A t i 
2 

1 / VjJ + Vjj+A Pi,J+Pi,i + l 1 Vi,i + i - V i , i J 

\ V 2 y 2 Re Ay 'J 
Using an implicit Euler time advance, the fully-discrete formulation is 

ui,j ui,j _ OUi,j _ » + ; . J « - ; , J 

At At A x Aw 

In order to evaluate the fluxes at time level (n + 1), a Taylor series expansion is used to express these fluxes 
in terms of data at time level n. 

F^.^FOJlfW^) 
= F(UPtj+SUiJ,U^1<j + SUi+ld) 

6F"k . 5Fn.l . , . 
SUi,j 
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The derivative terms are flux Jacobians: 

dUi,j 

dF"1 . 
• + 5 , 3 

at/, 

8Gn., ! 

x 
2/3 

II.. j + U i + l , j I 

in <+vi+i,i 
~ 4 

1 

—o ^ ' J Aa: Ke 

0 
iJij+Biiil. + 

0 

0 
" < , J + " i , j + l 

4 

Ay Re 

Ay Re 

0 

0 

Aziie- 1 

0 

0 
U i . j + t X j + l . j _ 1 

4 As ile-I 
X 
2/3 

4 

+ 
2/3 

"•,i+"»,J+i 
4 

f i , J + ^ i , J + l _ 1 

2 Aj/fle 

If we substitute the expanded fluxes into the fully-discrete equation, we obtain: 

I 1 9FP^ j dF?_k 1 dG" L 1 AG" A 

• t + 2 X 1 2 ^ I x ' . .7+2 _ _ _ 1 £ Z J L I A/7 

At Aa; 3(7;,Aa; 917̂  Ay at/*,,- Ay dUitj I  l J  

Ax at/j+ij Ax oUi-ij Ay oUij+i 'J Ay dUij-i 
TTn Z?n /^*n / ^ n 

Ax Ay 
Multiplying by At and relabeling terms we obtain 

{I + AtBx + AtBy) 5Uij + AtCx6Ui+ij + AtAx6Ui-itj + AtCySUitj+i + AAy6Uij-i 

Fn ! . — FJ1 t . G " , - G n . l 

Ax Ay 

Approximate Factorisation and Block Tri-diagonal Solution 
Applying an approximate factorisation (see section 3.4.2) we get 

[I + AtAxE_ifi + AtBx + AtCxElfi]x 

F.™ i - -F-1i • G " A - Gn._L 

[I + AtAyE0^ + AtBy + AtCyEo^SUij = — * ' \ x ' ^ - \ y * 

where EifiSUij = 5Ui+ij. As described at the end of section 3.4.2, this equation can be solved in two steps, 
using the Thomas algorithm to solve in each direction. 
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3.5.3 Energy Equation Discretisation: Centered flux evaluations, Trapezoidal time advance 
Applying Gauss's theorem over a control volume we arrive at: 

dt v H ) A i n Ji'J~i Ay Re-Pr\dxi-$,jAx dyij_LAy 

Ec ((8u dv\ fdv du\ \ i J + ? 
' PrAxAy VV^x flW ' ' 8y, , 

+ PrAxAy \\dx + flu/ " + Vflw dx)V)iA_,_ 

Using the notation X t o mean the central value of the (i,j)th cell and defining Sij as 

Ecffdu dv\ ,(dv.du^ / / « • • « - N 
5 ^ = - s r ( ( ^ : - ^ : ) w + ( ^ + 

Ec //flu flu\ /flu du\ v 3 

Pr \_ V Ax dy J " ' \dx ' flw, 

we can apply a Trapezoidal time advance scheme (centered implicit) to obtain 
f T i>U 1 ( RT A T i / f r < + 1 , J - - 2 ^ i J - + A r i _ 1 J - \ \ 

, W ™ ™ 1 fSTu+1-26Ti,j+6TiJ-1 

2Ay V 'J / ? e - P r V Aj/ 

_ J _ | „ . .fn . * n
 1 f ~ 2^3 + 

A . , I Vl'31i,j v*,3-i1i,j-l A j I iJg-Prl Ay 

So we can rewrite this in matrix form as 

(3) 

The right hand side of eqn. 3 is the flux integral at time level n. The left hand side can be approximately 
factorised as per section 3.4.2 to give 

[I] + Y \DX) + Y lDy]) & * (W + Y [DX]) + T [DY]) 5 F 

And thus we can solve separately in each direction using the Thomas algorithm as described at the end of 
section 3.4.2. 
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3.6 C o u p l i n g the T w o M o d e l s 

We are now in a position to put the two models together by coupling them at the interface using a temperature 
continuity condition. This gives us the boundary condition at the interface as seen in Fig. 5 : 

This equation is in dimensional form, so we must be a little careful in the implementation to ensure that the 
correct scaling is used as we move from the wafer domain (unsealed) to the gas domain (scaled). In practice 
this condition gives us a relationship to update the ghost cells at each time step, as follows: 

1. Compute the heat conduction in the wafer using an initial condition in the wafer and gas domain of 
room temperature everywhere. This means the boundary condition for the top of the wafer is just a 
Dirichlet boundary condition, with the value as given by room temperature. 

2. Once the conduction in the wafer is computed, we can compute the new surface wafer temperature using 
the old gas temperature data above the wafer (assuming temperature continuity across the interface 
we can just use T'' J +

2

r i |'~' = TijWan). We can now use this wafer surface temperature as a boundary 
condition to advance the energy equation. 

3. Once we know the new temperature distribution in the gas flow domain, we can use the coupling 
equation to obtain the new ghost cells such that the heat equation can be advanced. Steps 2-3 can 
now be repeated until the solution is within a tolerance value of steady state. 

For the purposes of this study, we only wish to know the heat transfer at steady state as this will enable us 
to extract the heat transfer coefficient by comparing with the boundary condition we assumed in section 3.4 
for the heat loss through the wafer, 
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4 Results 
With the volume flux through the domain held constant, and the jet radius d fixed, results were obtained for 
a range of H. This was repeated for varying Reynolds numbers (Red = ̂ ) corresponding to differing rates 
of flow. The values used for the parameters are tabulated below. A mesh size of 80 x 80 was found to give 
a reasonable accuracy / computation time trade off, the time taken for each test case was about Admins on 
a P4 1.8GHz system. 

Red U H/m d/m H/d 
9.33 0.02800 0.017 0.005 3.4 
9.77 0.02933 0.018 3.6 
10.22 0.03066 0.019 3.8 
10.66 0.03200 0.020 4.0 
11.11 0.03333 0.021 4.2 
11.55 0.03466 0.022 4.4 
11.99 0.03600 0.023 4.6 
12.44 0.03733 0.024 4.8 
12.88 0.03866 0.025 5.0 
13.33 0.04000 0.026 5.2 
13.77 0.04133 0.027 5.4 
14.22 0.04266 0.028 5.6 
14.66 0.04400 0.029 5.8 
15.11 0.04533 0.030 6.0 
15.55 0.04666 0.031 6.2 
15.99 0.04800 0.032 6.4 
16.44 0.04933 0.033 6.6 
16.88 0.05066 0.034 6.8 
17.33 0.05200 0.035 7.0 
17.77 0.05333 0.036 7.2 
18.22 0.05466 0.037 7.4 
18.66 0.05600 0.038 7.6 
19.11 0.05733 0.039 7.8 
19.55 0.05866 0.040 8.0 
19.99 0.06000 
20.44 0.06133 
20.88 0.06266 
21.33 0.06400 

Table 2: Ranges of parameters used for obtaining results 
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The figure below shows the streamline pattern for a domain with H = 17mm, d = bmm, Red - 9.33. The 
Jet inlet is at the top left of the figure. The darker color shading corresponds to larger velocity magnitude. 
(Note that the vertical is exaggerated by ~ 5L.) 
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Figure 10: The heat transfer coefficient for H = 17mm, d = 5mm, Red = 9.33 

The following figures (figs. 11 and 12) show how the temperature varies in the gas flow and wafer, for the 
same domain (H = 17mm, d = 5mm, Red = 9.33). However these figures probably do not represent the 
actual temperature observed experimentally, due to the limitations outlined in section 2. It may be noted 
that a change of lWm^1K~1 in h produces a temperature deflection of approximately 0.6° K. This estimate 
is not refined further however due to the qualitative nature of the study, i.e. we are really investigating the 
qualitative behaviour of h in order to asses its uniformity. 
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T/°K 

L x 

Figure 12: The temperature in the wafer with the jet impinging at the top left of the figure (H = 17mm, 
d = 5mm, Ra = 9.33) 
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We aim to relate the heat transfer coefficient (HTC) to the Reynolds number (Re) and the ratio (£). Firstly 
suitable scalings were chosen to represent the data: 

for the vertical scale 

(h - /loo) 

(hpk — hoc)' 

and for the horizontal scale 
x 
x7' 

where 

h is the heat transfer coefficient, 

/ioo is the value far from the jet (for each Re), 

hpk is the peak value (for each Re), 

x is the distance along the plate, (non-dimensionalised with respect to L, the plate length) 

x* is the x value where ) = \ (for each Re). 

Providing that we can find suitable relationships for the parameters that depend on Re, we are hopeful that 
a generalized formula for the HTC can be postulated. 

A sech2 (pr) curve seemed to be the most obvious choice of profile to fit the data, matching the curves at 
x = x* i.e. 

(h - /loo) _ ,,̂ 2 (Ax' 
(hpk — /ioo) 

= sech2 (^^j with A = cosh"1 (v )̂ ^ 0.88137... 

The two plots below show the scaled HTC data along with the sech2 (̂ f) for Re = 9.33 and Re = 21.33. 
The fit is still pretty good for the larger Reynolds number. Larger values of H (corresponding to larger )̂ 
give profiles that spread out a little further, the effect being more pronounced for larger Re, as one would 
expect. 
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(h - /ioo) 1 

X* 

Figure 13: (a) Scaled HTC for Re = 9.33 

(h - hoc) 1 

H = 0.04 
7 x 8 

Figure 14: (b) Scaled HTC for Re = 21.33 
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In order to correlate these plots we need to find relationships for hpk,hoo, x* in terms of Re. By assuming 
relationships of the form 

hpk = A P k (Re) 
aPk{Re) 

we can plot 

log h P k v apk {Re) log + log Apk, 

and thus obtain apk as the gradient, and log(Apfc) as the y intercept of the best fit line for each Re. This 
gives data for apk and Apk with Re so that plotting best fit lines to quadratic order through these curves 
gives us our relationships. This process can be repeated for hoo and x* and the resulting plots are given in 
appendix B. 

Putting all this together, we obtain the following formula for the (dimensional) HTC: 

where 

\x\ 

h = seen'* ( — I (hpu - hoc) + hoc, 
X* J 

X = cosh-1 (v )̂ ~ 0.88137..., 
H j a p k 

d 

HI 

hpk — Apk 

hoc — ^-oo 

x* — A* 

H 

with 

apk 

APK 

AQQ 

a* 
A, 

: -0.6940 + 0.02337.Re - 0.0003527Pe2, 
: exp (1.7406 + 0.08516Pe - 0.0016294i?e2), 
: -1.1799 + 0.02651fle - 0.0008423i?e2, 
: exp (1.8876 - 0.04313i?e + 0.001608.Re2), 
: 0.89427 - 0.0159963Ee + 0.4722 x 10_5i?e2, 
: exp (-5.66657 + 0.029919i?e - 0.0002652i?e2). 

In order to assess the accuracy of the formula in comparison to the computed HTC the difference between 
the computed value and the formulated value are plotted for increasing Re (figs. 15 to 19). In these plots x 
is the (dimensional) distance along the wafer (in meters). 
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Figure 15: (a) Error for Re = 9.33 

Figure 16: (b) Error for Re = 11.99 

27 



8 0.1 

Figure 17: (c) Error for Re = 15.11 



Figure 19: (e) Error for Re = 21.33 
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If we now plot the maximum error (Emax) for each Re we obtain fig. 20 

75 15 20 25 30 

Re 

Figure 20: Maximum absolute error in predictive formula 

The least squares approximation to the curve is given by 

Emax = 0.2224 - 0.04273i?e + 0.002700.Re2. 

This relationship is useful for estimating the error introduced when extrapolating the formula to obtain 
results outside the range of the computed data. Looking at figs. 15 to 19 it appears that increasing ̂  is not 
going to change the error behaviour substantially. For low Reynolds number, low values of ^ are perhaps 
prone to error when using the formulated result. 
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5 Conclusion and Proposed Future Study 
A 2D second order accurate computational model of the heat transfer processes occurring in a jet cooled 
Silicon wafer was constructed. The model was used to find a relationship between the surface heat transfer 
coefficient, the Reynolds number and the ratio of the jet height to the nozzle width. The formula was 
compared against the computed data and found to be in good agreement with the computational model. 
This provides a very useful relationship for calculating the heat transfer distribution. However, the validity of 
this result in the light of experimental data has not been investigated, which is perhaps the most significant 
failing of this paper. Most experimental data that was encountered catered only for high Reynolds numbers. 
Given more time for the study this is obviously something worth checking. Another point of contention that 
remains is whether the model created is actually of any use to engineers at Vortek. If we look at an enlarged 
overhead view of one jet from a row of jets (the neighbors having the same flow patterns), we may expect 
the following picture, fig. 21 

Figure 21: Overhead view of one jet from a row of impinging axisymmetric jets 

In the vicinity of the jet it would seem that the flow radiating out from the jet in any particular direction 
is an analogue of the 2d flow described by the model. The velocity will be different, however, as the flow is 
spreading out radially. Further investigation of the flow field due to an impinging axisymmetric jet would 
be instructive here. 

The results obtained in this paper indicate that a 3D model using a similar coupling condition would be 
effective in describing the flow due to one or more impinging jets. Using a fully 3D model would allow 
experiments in jet configuration and should provide information on how best to arrange the jets on the 
shower head to obtain a uniform heat transfer coefficient. Results obtained in this study would be very 
useful when validating the model. Depending on how accurate the results turn out to be (after comparing 
with experimental and 3d numerical data) it may be useful to investigate interference between jets e.g. 
by modifying the boundary conditions to include, say, two neighboring jets. It is a little uncertain as to 
what the flow field would look like, and it is likely that the different ranges of Reynolds numbers will cause 
qualitatively different flow fields. As long as the gas flow can be computed, it should be a straight forward 
task to repeat the method used to postulate a predictive formula for the heat transfer due to two neighboring 
jets. This may provide much needed insight on how close the jets should be placed together in any particular 
configuration. 
In order to present some results that might be useful to the actual setup used at Vortek, an example 
showerhead was converted to an equivalent row of slot nozzles. The results are intended to be used to asses 
how the temperature is offset by a varying heat transfer coefficient. The example showerhead has holes 
placed in concentric rings across the 10cm disc. By taking a line drawn from the centre outwards, the rings 
were translated to slots (the radial distance is now just the distance along the 2D plate). The speed of the 
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Figure 22: Sketch of the flow due to two neighboring jets as a possible future investigation 

gas through each hole was assumed to be the same, and this gives the same effective Reynolds number for 
each jet. Thus using the predictive model, the heat transfer coefficient may be formed via a juxtaposition 
of single (slot3) jets. This of course neglects effects due to cross flow, which would probably offset the data 
by a constant amount across the plate. The data pertinent to the example is tabulated in table 3 
The jets on the example showerhead disc were placed as follows: 

1 hole at the centre 

8 holes at 0.5cm 

12 holes at lew 

16 holes at 2cm 

32 holes at 4cm 

72 holes at 8cm 

This configuration was converted to a slot nozzle configuration by having 

1 slot jet at the centre 

1 slot jet at 0.5cm 

1 slot jet at 1cm 

1 slot jet at 2cm 

1 slot jet at 4cm 

1 slot jet at 8cm 

The total volume flux through the example showerhead is 

QT = 0.5 l/min = 8.33 cm3^1. 
3the word 'slot' is used to verify the fact that the jet is now 2D 
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Parameter Value Unit 
Wafer Thermal Conductivity (ksi) 149.0 Wm^K-1 

Wafer Thermal Diffusivity (KSi = *£) 
Wafer Stefan Boltzman const, (a) 

9.0 x 10"5 m^s-1 Wafer Thermal Diffusivity (KSi = *£) 
Wafer Stefan Boltzman const, (a) 5.67 x 10-8 Wm^K-4 

Wafer Emissivity (E) 0.7 -
Influx (a) 2.33 x 105 Wm~2 

Air kinematic viscosity (v) 1.5 x 10"5 i —i m s 

Room Temp. (TRoom) 297.0 K 
Wafer Length(L) 0.10 m 
Wafer Width (b) 0.0007 m 

Shower Head Height (H) 0.01 m 
Slot Jet radius (d) 0.00075 m 

Peak Jet Incoming Velocity (|Vmaa:|) 0.049 ms"1 

Jet velocity scale (U = %\Vmax\) 0.0327 ms~1 

Jet Reynolds No. (Re = ^) 3.27 -
Table 3: Values of parameters used for example calculation 

The total area of holes is 
AT = 145 x 7T x 0.0752 cm2 » 2.56 cm2. 

Thus assuming the flow through each hole is the same, the average jet velocity is 

U = ~ =3.25 cms-1. AT 

This gives the jet Reynolds number 
ite = ^ = 1.63. 

v 
Based on this data (Re = 1.63, H = 0.01 m, d = 0.00075 m, thus f = 13.33), the model predicts that the 
heat transfer coefficient is 

h = .865395 sech2 (25.617484a;) + .323462. 
and the maximum error in this is predicted as 

Emax = ±0.165 

Thus the composite heat transfer function is 

h = (.865395sech2 (25.617484a;) + .3120719659) + 
(.865395sech2(25.617484(a;- 0.005)) + .312072) + 
(.865395sech2(25.617484(a; - 0.01)) + .312072) + 
(.865395sech2(25.617484(a;- 0.02)) + .312072) + 
(.865395sech2(25.617484(a; - 0.04)) + .312072) + 
(.865395sech2(25.617484(x - 0.08)) + .312072). 

With an error4 

Emax — ±0.99 
Thus by computing the conduction in the wafer using the uncoupled wafer model (sec. 3.4), the temperature 
in the wafer can be computed at any time. For this example the temperature on the surface of the wafer at 
steady state along with the corresponding heat transfer function is plotted in figs. 23 and 24. 

4 This error is just a theoretical value formed from a sum of the errors in the composed heat transfer functions. The error 
due to the cross flow now introduced is likely to make this error estimate physically unrealistic. 
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Figure 24 shows the deflection in heat transfer coefficient predicted by the model for the arrangement of slot 
jets as described. It would be interesting here to compare the results found with the data obtained from 
experiment, unfortunately at the time of writing this information was not available to the author. Using 
the method described here, any arrangement of slot nozzles (and with differing Reynolds numbers) can be 
investigated. It is also worth noting that the spread of the jet (which is likely to be smaller for a round jet) 
could most easily be adjusted by raising the exponent of the sech function. There is also more tweaking that 
could be done in the light of experimental results e.g. changing the Reynolds number for each slot nozzle 
to better represent the flow. It is expected that neighboring jets will aid each other creating lower pressure 
areas where the holes in the showerhead are concentrated. 
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A Validation 
To ensure that the results obtained from the computations were correct, some exact solutions were formu­
lated and the L2Norm of the difference between the exact and computed meshes was calculated. We expect 
this L2Norm to decrease by a factor of 4 as the mesh is doubled in size for second order accuracy. Unless 
specified otherwise, the following data was used for the various physical parameters. The actual values of 
the parameters are not required to be exact (in fact the parameters will vary with temperature) but the 
values were chosen to be of the same order of magnitude so as best to validate the numerical scheme. The 
values used for the parameters are as tabulated in table 1. The temperature scale is in Kelvin. 

A . l Conduction in Wafer 
A.1.1 Test Case 1 

[ This test case is designed to check the validity of the solution in the x direction.] 

In the interior of the rectangle we have 
dT _ (cPT 82T\ 
~dt~K\dx2 + dy2 J 

Subject to the initial condition T {x, y, 0) = T 0 (const) and the following boundary conditions 

y 

Figure 25: The boundary conditions for the temperature problem 1. 

Firstly we decompose T into the sum of a steady state component and a transient component. 

T = u (x, y) + v (x, y, t) 

With u (the steady component) satisfying Laplace's equation with the same boundary conditions as for T 
but with no initial condition (there is no t dependence, and v satisfying the full heat conduction equation 
with homogeneous boundary conditions and the initial condition v (x,y,0) = T 0 — u (x,y) 

We obtain 

u {x>y) = i^W)cos (?)cosh
 ({Y -B) T) 

For v we try the following expansion 
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2^ Anm cos (—— J sin (o-„y) e ^ " > 
n=0 m=0 

which satisfies the boundary conditions at the left, right and bottom of the domain. 
Then the boundary condition at y = 6 yields 

a cos (anb) = 0 => an = 
(2n + 1) 7T 

2b n = 0,1,2. 

2̂  A n m c o s ( ^ - j — J s m l i ^ — l e V ^ ) 
n=0 m=0 ^ ' 

ied by 
2 2 f" ,m , ^̂  (m-KX\ . ((2n + 1) T l V 

The constants are determined by 

L r 
= LJ0 b J 0

T o C O S { ~ L - ) S m { 2 b — ) d y d x - L j 0 bj0 «(*•*)«»(—)»»( SI )*dx 

dydx 

(2n+ 1)773/ 

26 

® 
With 

Now 

And 

u { x ' y ) = c o ^ y c o s (?)cosh
 ((2/

 - 6 ) T 

~ i iJl9n if m = 0, 
(J) _ J (2n+l)7r ' 

10 if m ^ 0 

fL /m-KX\ (2KX\ 
I C 0 S ( — ) C ° S ( — j 

0 if m #2, 
\ L ) ~ \ \ ifm=2 

4 L 2 (2n + 1) 

((2n + l ) 2 L2 + 1662) 7T 

And so 
4T 0 

S l n , e-W)« 
26 

4L 2 (2n + l ) / 2 T T X 

% [pn + l ) 2 L2 + 1662) 7T V A-

(2n + l ) 7 r y \ - * ( . * + # ) 
sm | — ) e y " > lb 

The steady state is reached very quickly, due to the high thermal conductivity and the very small thickness 
of the wafer. 
For the steady state case, the values for the L2 Norms were as follows: 

Mesh Size Z/2 Norm Factor 
20 x 20 
40 x 40 
80 x 80 

1.648e-006 
4.129e-007 
1.033e-007 

3.991 
3.997 

For the transient case the L2 Norms obtained were 

Time Step Time Level Mesh Size L2 Norm Factor 
0.0025 0.5s 20 x 20 0.1589 -
0.00125 0.5s 40 x 40 0.03961 4.012 
0.000625 0.5s 80 x 80 0.009896 4.003 

37 



A.1.2 Test Case 2 

Again we are solving the heat conduction equation, this time with a prescribed flux on the bottom of the 
wafer, and Newton cooling (convection) at the top surface: 

dT 
%-{x,0,t)=a(x) 
dy 

dT 
— (x,b,t)=P(T-TRoom) 

Firstly, we can scale the temperature to simplify the convection term slightly by letting T — T — TRoom and 
dropping the hat, remembering to rescale the temperature at the end. 

dT 
— = a[x) 
dy 

Figure 26: The boundary conditions for the temperature problem 2. 

For steady state problem, the eigenfunctions are given by: 

/ T W I N 
Xn = cos (-j—J 

YN = AN cosh (J^) + Bn sinh ( ^ ) 

The bottom boundary condition gives 

oo 
a w = B n c o s {—) 77 

n—l 
So as long as a(x) is sufficiently smooth, we have 

2 fL /nnx\ 
Bn = — / a fx) cos —— dx 

nir Jo \ L J 

On y — b: 

dT 

(Ansinh ("77") + B n c o s h ) 7 7 c o s (~7~) =
 13 Yl (Ancosh

 ("77") + B n s i n h ("77")) c o s ("77") 

[sinh ( 2 g ^ ) /? - 2 f C 0 S h (n*J>)] 

[sinh (22*) 2 i - / 3 c o s h ( 2 ^ ) ] 
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In particular if a (ar) = a cos {^jf-), for the steady state problem we obtain (after reseating the temperature 
by TRoom.) 

(/3sinh(̂ ) -cosh(^) 
(sinh(^)^-^coSh(^)) cosh + sinh cos 

For the steady state case with /? = 2 x 10s, the values for the L 2 Norms were as follows: 

Time Step Time Level Mesh Size Li Norm Factor 
0.005 1.0s 20 x 20 1.795e-005 -
0.0025 1.0s 40 x 40 4.499e-006 3.990 
0.00125 1.0s 80 x 80 1.125e-006 3.999 

A.1.3 Test Case 3 
The transient solutions obtained so far have boundary conditions that are discontinuous across t = 0, and 
therefore very small time steps were required near t — 0 in order to get an accurate computation. To better 
validate the time accuracy, another solution was obtained that had zero influx at time t = 0 and then 
increased linearly. 
The boundary conditions are shown below. 

7 a r 
dT 

Figure 27: The boundary conditions for the temperature problem 3 

Since the boundary conditions are ID, (a(t) does not depend on x) the solution will not vary in the x 
direction. Letting T(y,t) = u(y,t) +v(y,t) we obtain two problems to solve for u(y,t) and v(y,t). 

du d2u 

m=Kdy^ 0 < y < b 

u(y, 0) - TRoom 

un{0,t) =u„(6,i) =0 
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dv d2v 
-dt=KcV ° < V < b 

v(y,0)=0 
kvn(0,t) = -a{t) vn(b,t)=0 

Clearly, with a constant initial temperature and insulated sides, 

u(y,t)=TRo 

For v(y,t) we try the expansion 

v(y,t) 
a0(t) 

O O 

+ ^Tan(t) cos 

an(t) = lfo

 v(r1, t) cos (^p) dri 

dan{t) 2K fb d2v 
dt 

2K f dzv (mtr}\ 

2K 

~~b 

2K ( ajfy 
~k~ 

fb /mrr)\ n2n2 , 
J0

 VC0S[^)-vr-dT> 

dan(t) fmr\2 

If we suppose a(t) is linear 

dt • K(TTan{t) = ^ a { t ) 

a n { t ) = b k J 0 

a(t) = ct 

1 .A ' ( l - r ) 
e 5* a(r)dr 

, 2KC _ « n ' . ' ( . - r ) 

2KC 

2cfe 
kn2ir2 t + 

2 7T 2 ( ' 
e — ^ 

r=0 JO K T L 2 N 

a0(<) 

,9 O O 

v { y ' t ) = 2bk +22a^)^{-r) 
n=l 

T = T f i o o m + — + V ^ - ^ < + — ^ ( e 1) cos (— 
n=l 
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For the transient solution, with a ramp up time of 5.0s, the following L 2 Norms were obtained 

Time Step Time Level Mesh Size Li Norm Factor 
0.01 1.0s 20 x 20 1.144e-005 -
0.005 1.0s 40 x 40 2.874e-006 3.980 
0.0025 1.0s 80x80 6.933e-007 4.145 
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A . 2 E n e r g y E q u a t i o n 

A.2.1 Test Case 1 
The boundary conditions are shown below. 

T = 0 
u = 0 
v = 0 

T = 0 
u = 0 
v = 0 

Figure 28: The boundary conditions for the energy problem 1 

r2 exp (r\x + r2L) - r*i exp (r\L + r^x) 
r2 exp (r2L) — r\ exp (riL) 

where 

T(x, y) = sin (ny) 

wo , / «o , 2 
r i ' 2 = 2 ^ ± V 4 ^ + 7 r 

and the velocity was simply specified by 

u0 = 1.0 v = 0 

A Reynolds number of 666.666 was used, and the following L2Norms of the difference between the exact and 
computed solutions were obtained: 

Time Step Mesh Size L 2 Norm Factor 
0.005 
0.0025 
0.00125 

20 x 20 
40 x 40 
80 x 80 

1.738e-005 
4.343e-006 
1.0669e-006 

4.0017 
4.0710 
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B Data Plots 
The following plots show how the various parameter relationships were found. The trends for Apk, apjt and 
A*, a, show the best correlation (These parameters are related to the peak heat transfer and the spread in the 
heat transfer respectively) . The trends for A o o , (related to the heat transfer far from the impingement 
point) are more sensitive to the convergence of the gas flow. In order to get a better trend here it may be 
necessary to converge the gas velocity next to the wall to within a smaller tolerance. 
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Figure 29: (a) aPk = -0.6940 + 0.02337i?e - 0.0003527i?e2 

InApk 

10 12 18 20 
Re 

Figure 30: (b) APk = exp (1.7406 + 0.08516i?e - 0.0016294i?e2) 
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Figure 31: (a) <*«, = -1.1799 + fJ.02651.Re - 0.0008423.Re2 

10 12 14 16 18 20 

Re 

Figure 32: (b) = exp (1.8876 - 0.04313i?e + 0.001608Pe2) 
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