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Abstract 
Gauss' class number problem is that of finding an upper bound for | D | with given 
class number h(D) where D is a negative fundamental discriminant. A theorem of 
Goldfeld reduces the class number problem to finding an elliptic curve defined over Q 
with rank r > 3 which satisfies the Birch and Swinnerton-Dyer conjecture. A theorem 
of Gross and Zagier gives a method of predicting when a Heegner point yields rational 
point of infinite order on an elliptic curve. In some cases their theorem allows us to 
say for certain whether the derivative of the L-series of an elliptic curve vanishes. 
Applying their theorem to a particular elliptic curve with rank r = 3, Gross and 
Zagier were able to show that their curve satisfied the Birch and Swinnerton-Dyer 
conjecture, thus solving the class number problem. This thesis examines closely the 
theory of Heegner points including computational results varifying the Gross-Zagier 
theorem. 
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Chapter 1 
Introduction 

The story was told that the young Dirichlet had as a constant compan
ion all his travels, like a devout man with his prayer book, an old, worn 
copy of the Disquisitiones Arithmeticae of Gauss Tietze 

The class number problem dates back to the work of Kar l Friedrich Gauss, Disquisi
tiones Arithmeticae. According to Goldfeld [17], it may go back to Fermat. Gauss' 
class number problem poses the question, given a number h, how many discriminants 
D exist with class number equal to h? Gauss conjectured that for negative discrimi
nants, this number is finite. His conjecture was proved in the 1930s by a combination 
of theorems by Hecke and Heilbronn [20]. Unfortunately, their theorems did not 
provide an effective formula for computing an upper bound for discriminants with a 
given class number. 

The history of Gauss' class number problem is vast and interesting. Many famous 
mathematicians worked on this problem including Dirichlet with his class number 
formula, Hecke, Heilbronn, Siegel, Birch, Baker and Stark to name a few. More 
recently, in the 1980s, Goldfeld, Gross and Zagier were able to solve the general 
problem of finding an upper bound for the absolute value of a negative discriminant 
given a class number using the theory of elliptic curves. 

In the 1960s, Birch examined a proof of the class number equal to one problem by 
Kurt Heegner published in 1952. Along with Stephens, he discovered a method to 
produce rational points on elliptic curves and, in 1981-82, conjectured the conditions 
in which these points are of finite or infinite order. Almost immediately, Gross and 
Zagier verified the conjectures of Birch and Stephens. With a suitable point on an 
elliptic curve provided by the Heegner point method, the theorem of Gross and Zagier 
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combined with a theorem of Goldfeld solves the class number problem. 

The purpose of this thesis is to investigate the theory and computation of Heegner 
points and their connection to the class number problem. 

This thesis is organized as follows. The next chapter describes the history of the 
class number problem in detail, from the work of Lagrange to Heegner's proof of the 
class number one problem in 1952. Chapter 3 is an overview of the theory of elliptic 
curves including complex multiplication, L-series and the canonical height function. 
Chapter 4 provides some necessary information on modular curves and the conjecture 
of Shimura and Taniyama which links elliptic curves to modular curves. Chapter 5 
introduces us to the theory of Heegner points and describes how we can use these 
points to produce rational points on elliptic curves. The important theorem of Gross 
and Zagier will be stated in terms of rational points on elliptic curves. Also included 
will be some computations of points on elliptic curves using Heegner points. Finally, 
Chapter 6 is intended to tie the theory of Heegner points to the class number problem 
via the theorems of Goldfeld, Gross and Zagier. 
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Chapter 2 
The Class Number Problem 

Gauss' class number problem arises from the theory of binary quadratic forms. The 
purpose of this chapter is to describe the history of the problem from Lagrange's work 
to the result of Heegner. 

Let / = ax2 + bxy + cy2 = (a, b, c) be a binary quadratic form with a, b and c integers 
and discriminant D = b2 — Aac. 

Definition 2.1 The form f = ax2 + bxy + cy2 is said to represent the integer m if 
there exist integers x and y such that m = ax2 + bxy + cy2. 

Definition 2.2 Two forms, f = ax2 + bxy + cy2 and F — Ax'2 + Bx'y' + Cy'2 are 
said to be equivalent, (a,b,c) ~ (A,B,C), if F can be obtained from f by a linear 
transformation 

x = ax' + By' 

y = jx' + 8y' 

where a5 — B'j — 1. 

It can be easily shown that equivalent forms represent the same set of integers and 
have the same discriminant. It can also be shown that equivalence of forms is an 
equivalence relation [6]. 

Definition 2.3 The class number, denoted h(D), is the number of inequivalent forms 
with discriminant D. 
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A binary quadratic form ax2 + bxy + cy2 with negative discriminant is called a definite 
form. It is easy to see that a and c must have the same sign. 

Definition 2.4 A positive definite form is a form with negative discriminant where 
both a and c are positive. 

In the 1770s, Lagrange [24] developed a general theory of binary quadratic forms 
ax2 + bxy + cy2. He showed that every positive definite form is equivalent to a certain 
canonically chosen reduced form as follows. 

Definition 2.5 A form with negative discriminant is said to be reduced if it satisfies 

—a < b < a < c or 0 < b < a = c. 

The idea of equivalence is closely connected to the modular group 

The group F acts on the upper half plane H = {z 6 C : Im z > 0} by 

az + b 

Definition 2.6 For any group G of one-to-one transformations of a set X to itself, 
a fundamental domain R (if one exists) is a subset of X such that any point in X 
can be mapped by some transformation in G to some point in R, and no two points 
in the interior of R can be mapped to each other by any transformation in G. 

A n example of a fundamental domain of T (see Figure 2.1) is 

R = {z : Im z > 0, \z\ > 1, |Re z\ < 1/2}. 

Given two equivalent forms / = (a,b,c) ~ (A, B,C) = F with discriminant D = 
b2 — Aac = B2 — AAC < 0, we can associate two complex numbers in Q(vTJ) 

CJ = (-b + y/D)/2a, 

4 



R 

- 1 / 2 1/2 

Figure 2.1: The Fundamental Region R 

x 

u' = (-B + VD)/2A 

lying in the upper half plane H. We say that to is equivalent to LO' in the sense that 

OLIO' + (3 

LO = , 

JLO1 + 8 

where I a @ \ [s t h e s a m e transformation that takes f to F. A form is reduced 

if its associated complex number to lies in the fundamental domain R of the modular 
group T. This leads to a modern interpretation of the class number which will proceed 
the following definition. 

Definition 2.7 D is a fundamental, or field, discriminant if D is of the form b2—4ac, 
with a, b and c relatively prime integers. 

So D is a fundamental discriminant if and only if D = l(mod 4) and D is squarefree, 
or D/4 = 1, 2(mod 4) and T>/4 is squarefree. 

Given a field K, the ring of integers of K, denoted O(K), is the set of elements of K 
which satisfy a monic polynomial equation over TL. 
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If K = Q(VD) then 0(K) = Od = TL\\(D + y/D)]. 

To each binary quadratic form ax2 + bxy + cy2 of negative discriminant D we can 
associate an ideal 

[a,(-b + y/D)/2] (2.1) 

in the ring of integers OD-

Definition 2.8 Two ideals A and B are said to be equivalent, A ~ B, if there exist 
principal ideals (Ai) and (A2) such that A(\\) — B(A 2). 

It can be shown that equivalent ideals of type (2.1) correspond to equivalent forms 
[10]. 

The equivalence classes of ideals of Q(VD) are called ideal classes. They form a group 
and h(D) is equal to the order of this group. In particular, when h(D) = 1, every 
ideal in Q(v /D) is principal and the integers of Q(VD) have unique factorization. 

Gauss expanded the ideas of Lagrange in his book of 1801, Disquisitiones Arithmeticae 
[14]. It is important to note that Gauss only considered forms of the type ax2 + 
2bxy + cy2 with even middle coefficient and defined the discriminant, often called the 
determinant, as d = b2 — ac. Many of Gauss' results apply to general binary quadratic 
forms. 

Gauss proved that the class number h(D) is finite for any discriminant D. He did this 
by defining a composition of binary quadratic forms of discriminant D and proving 
that the classes of binary quadratic forms form a finite group although the notion of 
"group" had not yet been formally defined. 

This result can also be proved by noticing that if / = (a, b, c) is a reduced form of 
discriminant D, then Ab2 < 4ac = b2 — D. This implies that 3b2 < —D which then 
implies that |6| < y/—D/3. Thus there are only finitely many candidates for reduced 
forms since the set of possible b's is finite and each such b determines a finite set of 
factorings of b2 — D into 4ac. 

Another important result of Gauss, which uses the genus theory of forms (see [6]), 
is that 2t~1\h(D), where t is the number of distinct prime factors of D. If h(D) = 1 
then this implies that — D must be prime or a power of 2 equal to 4 or 8. 
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Gauss also conjectured: 

C o n j e c t u r e 2.1 (Gauss) The number of negative discriminants D < 0 which have 
a given class number h is finite. 

From the tables of Gauss, it was known that h(—p) = 1 for the following 9 values of 

P-
3,4,7,8,11,19,43,67,163. 

It is interesting to note that in 1911, Dickson [12] showed that if any further negative 
fundamental discriminants existed with class number one then they must be at least 
as small as -1500000. 

Gauss' conjecture, which was proved in 1934 by a combination of theorems by Hecke 
and Heilbronn [20], leads to the modern form of Gauss' class number problem as 
stated by Goldfeld [17]: 

Find an effective algorithm for determining all negative discriminants with 
given class number h. 

Let x be a Dirichlet character modulo m. The Dirichlet L-series can be defined by 

oo 

n=l 

This series converges for all Res > 1. For nonprincipal characters, this series converges 
on the entire complex plane. 

Dirichlet also studied the class number problem for binary quadratic forms and, like 
Gauss, considered only forms with an even middle term. 

In 1839, Dirichlet proved that E Q CQ(s) = (is)L(s, x) where the sum is over a set of 
inequivalent forms of discriminant D and 

oo 

CQ(S) = ^2 (om 2 + 6mn + c n 2 ) _ s , 
m,n=—oo 

where YI' indicates that the sum is over all (m,n) ^ (0,0), ((s) = E^Li n~s l s *be 
Riemann zeta function and x is the real nonprincipal Dirichlet character modulo D. 
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Dirichlet used this result to prove his Class Number Formula: 

£(1>X) = 
2nh(D) 

where UJ = 
2 D < - 4 
4 £> = - 4 
6 £> = - 3 

D is a fundamental discriminant and x m ° d D is the real nonprincipal Dirichlet char
acter; thus proving that L(l,x) is nonzero which is a key to proving his theorem on 
the infinitude of primes in arithmetic progression. 

In 1918, Landau [25] published the following theorem which was first stated in a 
lecture given by Hecke: 

Theorem 2.1 Let D be a negative discriminant and let x be the odd, real, primitive 
character modulo D. 
If L(s, x) 7̂  0 for s real and 1 > 5 > 1 — cj log | D | , then 

where c, C\ > 0 are fixed absolute constants. 

The generalized Riemann hypothesis states that the only nontrivial zeros of L(s, x) are 
on the line Res = 1/2. This implies, by Hecke's theorem, that h(D) > C\y/\D\/log | D | 
and this in turn implies Gauss' conjecture that the number of negative discriminants 
D with a given class number is finite. 

The classical Riemann hypothesis states that the only nontrivial zeros of the Riemann 
zeta function £(s) are on the line Re s = 1/2. 

In 1933, Deuring [11] proved the theorem: 

Theorem 2.2 / / the classical Riemann hypothesis is false, then h(D) > 2 for —D 
sufficiently large. 

In the same year, Lehmer [26] improved Dickson's bound for a tenth discriminant — p 
with h(-p) = 1, to - 5 x 109. 
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In 1934, Mordell [28] proved that if the classical Riemann hypothesis is false, then 

h(D) —>• oo as D —>• —oo, 

thus proving that if the classical Riemann hypothesis is false then Gauss' conjecture 
is true. 

This result was quickly improved upon by Heilbronn [20] who proved, in 1934 also, 
that if the.generalized Riemann hypothesis is false then 

h(D) —> oo as D —> —oo. 

Specifically, Heilbronn proves, "If there is, to modulus m, at least one real character, 
X, principal or not, so that L(p,x) = 0 for at least one p in the half-plane a > 1/2 
then 

h(D) ->• oo as D ->• -oo." 

Here, a = Re p. 

When combined with Hecke's theorem, this leads simply to 

h(D) —y oo as D —> —oo, 

proving Gauss' conjecture and ensuring a finite number of discriminants with a given 
class number. 

Unfortunately, the constants in the proof were not effective, since if the generalized 
Riemann hypothesis were false, all constants would depend on a real zero 0 of L(s, x) 
such that 1/2 < 0 < 1. 0 is called Siegel's zero [17]. 

Shortly after, also in 1934, Heilbronn and Linfoot [21] proved that there are at most 
ten negative fundamental discriminants D for which h(D) = 1: 

D = - 3 , - 4 , - 7 , - 8 , - 11 , -19, -43 , -67, -163, ? 

The existence of the tenth discriminant depends on Siegel's zero. If the tenth dis
criminant did exist, the generalized Riemann hypothesis would be false. 

In 1935, Siegel [30] proved: 

Theorem 2.3 (Siegel) For every e > 0, there exists a constant c > 0 (not effective) 

such that h(D) > c\D\^2~e. 
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In 1951, Tatazawa [34] improved upon Siegel's theorem by showing that it is true, 
with an effectively computable constant c > 0 for all D < 0, except for at most one 
exceptional discriminant D, this discriminant's existence depending on the existence 
of Siegel's zero. 

In 1952, Heegner [19] published a proof of the class number one problem (ie. that 
there is no tenth fundamental discriminant). He reduced the problem to the solution 
of a system of Diophantine equations. Unfortunately, his proof was discounted due 
to a supposed gap traceable to a result of Weber. Deuring [11] and Birch [4] each 
filled the gap in 1968, as did Stark [32] in 1969. 

Birch's examination of Heegner's proof led him to develop the theory of Heegner 
points, ultimately leading to a solution of Gauss' class number problem. In the next 
chapter, we review some theory of elliptic curves. 
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Chapter 3 
Elliptic Curves 

3.1 Introduction 

A significant connection between elliptic curves and the class number problem is due 
to a theorem of Goldfeld's [16] which will be stated in the concluding chapter. We 
begin by giving the formal definition of an elliptic curve. 

Definition 3.1.1 An elliptic curve is a pair (E,0) where E is a smooth projective 
curve of genus 1 and O is a (base) point of E. 

Every elliptic curve can be embedded as a smooth cubic curve in the projective plane 
P 2 given by an equation of the form 

ZY2 + axXYZ + a3YZ2 = X3 + a2X2Z + a4XZ2 + a6Z3, 

or, simply, as 

E : y2 + ayxy + a3y = x3 + a2x2 + a^x + a 6 (3.1) 

Equation 3.1 is called a (long) Weierstrass equation for E. The point O is the point 
[0,1,0] at infinity. If E is defined over a field K, then the otj's can be chosen to be in 
K. 

Definition 3.1.2 An admissible change of variables over K in a Weierstrass equation 
is one of the form 

x = u2x' + r, 

y = u3y' + su2x' +1, 

where u, r, s and t are elements of K and u is nonzero. 
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Note that an admissible change of variables fixes the point at infinity and the group 
law to be described below. 

Definition 3.1.3 Two elliptic curves defined over a field K that are related by an 
admissible change of variables over K are said to be isomorphic. 

If the characteristic of K, char(if) ^ 2, 3, then E has a Weierstrass equation of the 
form 

E : y2 = x3 + Ax + B. (3.2) 

This is done by making the change of variables 
1 1 

Y = V + 2 a i X + 2 ° 3 ' 

X = x +

A a \ t a l -

Equation 3.2 is called a short Weierstrass equation for E. 

Assuming E is nonsingular (the cubic in x in the right hand side of Equation 3.2 has 
3 distinct roots), the discriminant of E is defined by 

A(E) = A = -16(4A 3 + 27B2) ^ 0. 

I will now briefly discuss the group law (see Figure 3.1). Given 2 points, P i , P 2 on E, 
construct the line P i P 2 . This line will intersect £ at a 3rd point (possibly the point 
at infinity), Q. The group law is defined such that P i + P 2 + Q = O or, P i + P 2 = — Q, 
where — Q is defined to be the reflection of Q about the x-axis. (—(x,y) = (x, —y).) 
This construction makes E(K), the points (x,y) on E with x,y G K, including the 
point O at infinity, into an abelian group with O the identity element. The only 
nonobvious group law is the associativity law. 

This gives the set of points E(Q) a very important structure. Mordell proved (see 
[31]) that E(Q) is a finitely generated abelian group. Weil improved this result to a 
more general theorem. 

Theorem 3.1.1 (Mordell,Weil) Let K be a number field. Then E(K) is a finitely 
generated abelian group. In other words, E(K) = 17 @E(K)tors, where ris called the 
rank of E(K) and E(K)tors is finite abelian. 
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Figure 3.1: The Group Law 

3.2 Elliptic Curves over C and Elliptic Functions 

Given two complex numbers co\ and co2 with Im(a;i/a;2) > 0, let A = {au>i + bco2 : 
a, b e Z} C C be a lattice. 

Definition 3.2.1 An elliptic function is a A-periodic meromorphic function f(z). 

In other words, f(z) is holomorphic except for possibly countably many poles and 
f(z + co) = f(z) for z £ C, co e A. The collection of all elliptic functions for A forms 
a field, denoted C(A). 

Definition 3.2.2 The Weierstrass p-function 

is an elliptic function with a double pole at each point of A and no other poles. 

Note that p(z) converges uniformly and absolutely on compact subsets of C—A. This 
can be proved using the Weierstrass M-test. 

We will need to also consider the function, 

= — V ( 1 1 
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Definition 3.2.3 Two lattices A i and A 2 are nomothetic if there exists a complex 
number r such that 

A i = r A 2 . 

Theorem 3.2.1 a) <C(A) = C(p(z), p'{z)) = the set of rational functions over C in 
p(z),p'(z). 

b) The functions p(z) and p'(z) satisfy the differential equation 

p'(z)2 = 4p(z)3-g2(A)p(z)-g3(A), 

where g2(A) = 60G 4(A), g3(A) = 140G 6(A) and 

u>6A 

(Note: G2k(A) are absolutely convergent for all integers k > 2 and G2k(^L) = 
A - 2 f e G 2 f c ( A ) for any X e C x . ) 

Also, the discriminant A(A) = g2(A)3 — 27g3(A)2 of the cubic polynomial is non-zero, 
so 

EK : y2 = 4x 3 - g2(A)x - g3{A) 

defines an elliptic curve over C. 

(c) The map 
<j>K : C / A EA(C) 

z (p(z),p'(z)) 

is a complex analytic isomorphism of complex Lie groups. 

(d) Conversely, given any elliptic curve E defined overC, there exists a lattice A such 
that EA = E. (A is unique up to homothety.) 
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In fact, 

1 OO 

= -,+l>+i)cw* 
JO 

= \ + 3G4z2 + 5G6z4 + 7G8z6 + ••• 
z2 

Further, 

p'(z) = ^ + 6G±z + 20G6z3 + 42G8z5 + ••• 
z6 

It can also be shown [23] 
G * e Q [ G 4 , G 6 ] . 

In particular, if E is defined over Q given in short Weierstrass form 

E : y2 = Ax3 - mG±x - 140G 6, 

then Gk € Q for all k. We will use this result in Chapter 5. 

The isomorphism described in (c) implies that 

(p(zi + z2), p'(zi + z2)) = (p(zi), p'(zi)) + (p(z2), p'(z2)), 

where the addition on the right hand side is addition of points on the elliptic curve 
according to the group law. 

We can now define the j-invariant of an elliptic curve E = E^. 

Definition 3.2.4 
j(E) = 1728 3

 9 2

 2 g2

3 -27g3

2 

Theorem 3.2.2 The function j(E) characterizes the isomorphism class of E over 

C . More precisely, E is isomorphic to E' if and only if j(E) = j(E'). 
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3.3 Complex Multiplication 

We have our bijection from C / A to the elliptic curve EA. Clearly, nA C A for any 
integer n. 

Definition 3.3.1 We say E has, or admits, complex multiplication if there exists a 

complex number (3 G C — Z such that f3A C A. 

Let A = [wi,^] be the lattice generated by LO\ and u)2• Then /?A C A if and only, if 

f3 ( 1 ] = M [ W l ) where M = \ J is a matrix with integer entries. (3 is 
\OJ2 J \co2 J \t u J 

an eigenvalue of M and so a root of the characteristic polynomial of M, a quadratic 
monic polynomial with integer coefficients. Hence, (3 lies in a quadratic extension of 
Q. In fact, all the /J's lie in the same quadratic extension: 

Write (3u>2 = tux + uu2 with t and u integers as above. Then (3 — t(ui/cu2) + u which 
implies that B,LOI/LU2 G Q(\/—D) = K, where D is a positive integer. 

If EA has complex multiplication, then the set {3 G C : /?A C A} is a subring of OK 
for some complex quadratic field K = Q(y/—D). 

Another way to characterize complex multiplication is as follows. Suppose points on 
E are given by (p(z), p'(z)). Recall that addition on E corresponds to addition in C: 

(p(>i), p'(zi)) + (p(z2), p'(z2)) = {p{zr + z2), p'{zi + z2)) 

Therefore, multiplication by m is 

[m]P = [m](p(z), p'(z)) = {p{mz), p'(mz)) 

for any integer m. 

In particular, p(2z) = 2p(z) + \ (^) • 

j r i \ polynomial in p(z) of degree ra2 

In general, plmz) = , J—r~n , \ c J— 1,—7-
polynomial in p[z) of degree m — 1 

An elliptic curve E has complex multiplication by a non-integer f3 G C if and only if 
p{J3z) = f(p(z))/g(p(z)), where / and g are polynomial functions over C. Further, 
the degrees of / and g are |/3|2 and |/?|2 — 1, respectively. 
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Examples 

1) E : y2 = x3 + x has complex multiplication. 

This can be seen in two ways: 

a) If (x, y) £ E then (—x, iy) £ E. 

b) E is isomorphic to C / A , where A = [i, 1]. 
Clearly, iA C A. In fact, iA = A. 

2) E : y2 = x3 + 1 has complex multiplication. 

a) If (x, y) £ E then (px, y) £ E. 
b) E 1 is isomorphic to C / A , where A = [p, 1]. 
It is not difficult to show pA = A. 

Definition 3.3.2 A non-constant morphism, <ft : E\ —>• E2 between elliptic curves 
which satisfies (j)(0) = O is called an isogeny. 

An isogeny is always a group homomorphism. 

Definition 3.3.3 The endomorphism ring of E, denoted End(E'), is the set of iso
genics from E to itself. 

Notice that End(E) is a ring where ((j)+^)(P) = </>(P) +^(P) and <H>{P) = 4>(i>(P))-

Example If m is an integer then the multiplication by m map, [m] : E -> E, is in 

Theorem 3.3.1 Let E be an elliptic curve defined over a field K. Then there are 
three possibilities: 

End(£ ) . 

End(E) = < an order in a quadratic imaginary field 
I a maximal order in a quaternion algebra 

The third case can only occur if the characteristic of K is nonzero [22]. 
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Figure 3.2: Two distinct tangent directions at P on the left; One distinct tangent 
direction at P on the right. 

If E has complex multiplication then the endomorphism ring of E is strictly larger 
than Z . This is another way to define complex multiplication. 

3.4 L-Series of Elliptic Curves 

Given an elliptic curve E defined over Q in long Weierstrass form, we can make the 
substitution as in Definition 3.1.2 with rational numbers u,r,s,t yielding an elliptic 
curve E' isomorphic to E with A(E') = u~12A(E). Then there exists a substitution 
that makes A minimal subject to O j 6 Z . This curve is called the global minimal 
model. 

We can reduce an elliptic curve E modulo a prime p by reducing the coefficients of 
the Weierstrass equation of E modulo p. Denote this elliptic curve by Ep. 

Definition 3.4.1 E has good reduction modulo p if p does not divide A(E). (ie. 

A(EP) ? 0.) 

In this case, Ep is an elliptic curve over F p , where F p is the finite field with p elements. 

Otherwise, we say E has bad reduction modulo p. In the case of bad reduction, there 
is a singular point P on Ep. We distinguish two types of bad reduction by the nature 
of the singularity. (See Figure 3.2) 

1) If there are two distinct tangent directions at P over F p we say that P is a node 
and that E has multiplicative reduction mod p. 
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2) If there is a single tangent direction at P over Wp we say that P is a cusp and that 
E has additive reduction mod p. 

Definition 3.4.2 The conductor N of E is defined by 

N = YI Pep 

p\A(E) 

, I I if E has multiplicative reduction modulo p. 
where ep = < 

I > 2 if E has additive reduction modulo p (See [7]). 

We now define the L-series of E: 

Definition 3.4.3 

L(E/Q, s) = LE(s) = JJ(1 - "PP")'1 II(1 - app-s+pl-2s)-\ 
p\N pj[N 

whereap=\ P + 1 ~ N p i f P / N and Np = \EJ¥P)\. P 1 ± 1 orO ifp\N p 1 M p n 

Theorem 3.4.1 (Hasse) \ap\ < 2^/p 

Theorem 3.4.1 is known as the Riemann hypothesis for elliptic curves over finite fields. 
It implies that the Euler product for LE(s) converges absolutely for Re s > 3/2. 
Therefore, for Re s > 3/2, we may write LE(s) = Yl™=i ° n ^ _ s -

For certain elliptic curves, LE(s) has an analytic continuation to the entire complex 
plane as we will discuss in Chapter 4. 

3.5 Heights 

The canonical height function will not be used until Chapter 5, but it is convenient 
to introduce it at this point. 

Let E be an elliptic curve defined over Q and suppose that P — (x, y) is a point in 
E(Q) such that x = p/q where p and q are relatively prime integers. 
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Definition 3.5.1 The naive height of P is defined by 

h(P) = I logmax(|p|, \q\) if P ^ O 
\ 0 ifP = 0 

Definition 3.5.2 The canonical height of P is given by 

f , „ , ,. h(2nP) 
h(P) = lim — '-. 

Theorem 3.5.1 1. h(P) - h(P) is bounded 

2. h(2P) = 4h(P) 

Further, h(P) > 0 with equality if and only if P has finite order. 

Also, the set {P G E(Q) : h(P) < C} is finite for any real number C. 

We will also need the definition of the regulator of an elliptic curve over Q which is 
related to the canonical height. First, we need to define the Neron-Tate pairing. 

Definition 3.5.3 The Neron-Tate pairing on E/Q is the bilinear form 

(,):E(Q) x E(Q) —>• K 

defined by (P, Q) = h(P + Q)- h(P) - h(Q). 

The regulator of an elliptic curve E defined over Q may be defined in terms of the 
Neron-Tate pairing. 

Definition 3.5.4 The elliptic regulator of an elliptic curve E defined over Q, denoted 

RE/Q, is given by 
RE,Q = det(Pi, Pj) 

where P\,.., Pr are generators of the nontorsion part of E(Q) and 1 < i,j < r. 

If the rank r — 0, we set RE/Q = 1-

Note that the regulator is independent of the choice of generators for E(Q). 
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Chapter 4 
Modular Curves 

4.1 Modular Forms 

In order to describe modular curves and their relationship to elliptic curves, we must 
first explore briefly the theory of modular forms. 

Recall that T = SX 2 (Z ) is the modular group, 

T = | ^ a * j e GL2(Z) :ad-bc=l 

and that T acts on the upper half plane Ti = {z G C : Im z > 0} by 

a b \ aco + b 
co = . 

c d I ao + d 

Definition 4.1.1 Let f(z) be a meromorphic function on the upper half plane % and 

let k be an integer. Suppose that f(jz) = (cz + d)kf(z) for all 7 = ( ] in T. 
\ c d) 

Further, suppose that f(z) is "meromorphic at infinity". This means that the Fourier 
series 

f(z) = Y^ anqn, where q = e27viz, 

has at most finitely many nonzero an with n < 0. Then f(z) is called a modular 
function of weight k for T. 

We also have the following definition: 
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Definition 4.1.2 If a modular function of weight k f(z) is holomorphic on TL and 
at infinity (ie. an = 0 for all n < 0), then f(z) is called a modular form of weight k 
for T. If a modular form f(z) vanishes at infinity, which occurs when ao = 0, then 
f(z) is called a cusp form of weight k for T. 

Notice if the weight A; is zero, then the modular function f(z) is invariant under F. 

Examples 

1) Let k be an integer greater than 1. For z EH we define 

G2k{z) = YI T — r + n)2k' 
(m,n)#(0,0) v > 

where the sum is over pairs of integers. If the lattice A 2 = [1, z] is generated by 1 and 
z then this is the definition of G2k(z) = C?2A;(A2) from the previous chapter. G2k{z) is 
a modular form of weight k. As in the previous chapter, we let g2(z) = 60^4(2:) and 
g3(z) = U0G6{z). 

2) The discriminant 

A(z) = g2(z)3 - 27g3(z)2 

is a cusp form of weight 12 for T. 

3) The j-invariant 
_ vm^zf 

J [ Z ) ~ A{z) 

is a modular form of weight 0 for T. 

It can be shown that 

, = {l + 2 4 Q E ^ ^ 3 ( n ) e 2 ^ } 3 

where o3(n) = E d | „ r f 3 -

Theorem 4.1.1 The modular functions of weight 0 for T are precisely the rational 
functions of j [6]. 
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Figure 4.1: Open Sets in %* 

4.2 The Modular Curve X0(N) 

As usual, we let % denote the upper half plane and let 

r 0 ( A O = | ^ ^ e SL2(Z):c = 0(mod N) 

Let U* = H U P'(Q) be the completion of U, where P ;(Q) = Q U {oo}. 

We topologize %* as follows: A basic open set about a point of % is an open disc 
wholly within "H, and a basic open set about oo is {r : Im r > M} for each positive 
real number M. If x = p/q G P'(Q) is rational, a basic open set about x is of the form 
D U {x}, where D is an open disc in V. of positive radius r and center x + ir. The 
resulting topology on %* is HausdorfT, % is an open subset and T acts continuously. 
(See Figure 4.1) 

X0(N) = 7r/r 0(iV) is a compact HausdorfT space. It can be shown that X0(N) is 
a Riemann surface and this Riemann surface can be realized as the set of complex 
points of a projective curve defined over Q [22]. 

As usual, j(z) is the modular invariant and we let JN(Z) = j(Nz). The meromorphic 
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functions on H invariant by T0(N) are rational functions oi j and jN. There is an 
equation, called the modular equation, given by FN(j,jN) — 0, connecting j and jN 

with FN(u,v) E I,[u,v]. This makes the curve 

Z0(N): FN(u,v) = 0 

into an irreducible plane model for X0(N). 

Let 9 be the mapping: 

9 : X0(N) -> Z0(N) 

z^{j(z),j(Nz)). 

By a point on X 0 ( i V ) we will mean either a point z G U*/YQ(N) or its image 
(j(z),j(Nz))EZ0(N). 

4.3 Weil Curves and the Shimura-Taniyama Con
jecture 

Some modular curves are elliptic curves themselves. For example, X0(ll) has genus 
one and can be defined as an elliptic curve over Q. Unfortunately, there are only 
finitely many modular curves X0(N) of any given genus. However, it often happens 
that there is a map 

0 : X0(N) ->• E, 

defined over Q, from X0(N) onto an elliptic curve E also defined over Q. In this 
case, we say that E is a modular elliptic curve or a Weil curve. To avoid confusion 
between "modular elliptic curves" and "modular curves", the term "Weil curve" will 
henceforth be used. We also may say that E has a modular parametrization of level 
N or that E is parametrized by modular functions. 

For Weil curves, LE(s) has an analytic continuation to the entire complex plane given 
by the functional equation: 

^fj T(s)LE(s) = ±(^j T(2-s)LE(2-s). (4.1) 

One reason why the analytic continuation of the L-series LE(s) is so important is due 
to a famous conjecture of Birch and Swinnerton-Dyer [3]: 
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Conjecture 4.3.1 (Birch,Swinnerton-Dyer) Rank(E(Q)) = r if and only if 

LE(S) = CE{S — l)r + higher order terms, 

where CE can also be explicitly conjectured as 

_S-Q(f)-R-UcP 

E ~ JTf " 

R is the regulator of E/Q, \T\ is the order of the torsion subgroup E(Q)tors o,nd Q(f) 
is a certain integer multiple of the least real period of E, to be specified later. The 
local indices cp, sometimes called the Tamagawa numbers, are certain positive integers 
with cp > 1 only ifp\N (see [31]). Further, S is conjectured to be the order of a group 
associated to the elliptic curve E called the Tate-Shafaravich group. 

So the behaviour of LE{s) at s = 1 may contain a lot of information about the elliptic 
curve E. 

Recall that the L-series for E may be given by the product 

LE{S) = - app-°)-1 - app~s + p'-'T1 

p\N ppf 

or by the series Yl^Li a n n _ s . 

Let fE(r) = ZZi anQn, where q = e2™. 

The following theorem connects elliptic curves to cusp forms of weight 2. For the 
purpose of this thesis, it is unnecessary to go into detail on the subject of newforms, 
a special class of cusp forms. For a detailed explanation, see [22]. 

Theorem 4.3.1 Let f be a modular cusp form of weight 2 for the group T0{N). 
In other words, f is an analytic function on the upper half plane Tl, such that for 

( I d ) G r ° ( A 0 ' Z G % ' 

Assume further that f is a normalized newform and that f has rational Fourier coef
ficients. Then there exists an elliptic curve E defined over Q such that / = / E -
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Notice that if f(z) is a modular form of weight 2 for T0(N) then the differential form 
f(z)dz is invariant under T0(N). In the case described by the above theorem, E is a 
Weil curve by a theory due to Eichler and Shimura (for a good source see [22]). 

Corollary 4.3.1 Let E be a Weil curve and let f = Yl^Li anQn be the corresponding 
cusp form. Then LE(S) satisfies the functional equation In addition we have 

where e is the sign in the functional equation for LE(S). 

We may now state the famous conjecture due to Shimura and Taniyama (and occa
sionally credited also to Weil). 

Conjecture 4.3.2 (Shimura,Taniyama) Let E be an elliptic curve defined overQ, 
let LE(S) be its L-series and let / E ( T ) = Y^=ianQn be the inverse Mellin transform 

Then f is a cusp form of weight 2 on T0(N). 

Furthermore, there exists a map 4> from X0(N) to E, defined over Q, such that the in
verse image by <fi of the differential dx/(2y+aix+a3) is the differential c(2iri) f"(r)rfr = 
cf(r)dq/q, where c is some constant. 

More simply, the Shimura-Taniyama conjecture states that every elliptic curve is a 
Weil curve. 

There is a great deal of evidence to support the Shimura-Taniyama conjecture. In 
particular, it is known to be true for all elliptic curves with complex multiplication, 
for all curves with square-free conductor, and for all curves with conductor N such 
that 27 does not divide N [8]. In fact, it would appear that the conjecture has recently 
been proven by Breuil, Conrad, Diamond and Taylor, although the proof is as yet 
unpublished. 

Given an isogeny class of elliptic curves defined over Q, there exists an elliptic curve 
E in the isogeny class called a "strong Weil curve" together with a map (j) from X0 (N) 
to E characterized as follows. 

of(2ir)-T(s)LE(s). 
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Given a map </>' from X0(N) to E', where E' is in the same isogeny class as E, there 
is an isogeny F from E to E' such that (j)' = F o (f>. 

The map <j) is called a strong Weil parametrization of E and the constant c above, 
called Manin's constant, is conjectured to be always equal to ± 1 when 4> is a strong 
Weil parametrization of E. 

In the case where E is a strong Weil curve, there is a simple map [33] 

This is a rapidly converging series and F o u = (j), where F is the isomorphism, 

We will use this rapidly converging series in our calculations of points on elliptic 
curves. 

Note that the map u is independent of the choice of the representative UJ on X0(N) 
since f{r)dr is invariant under T0(N). 

If E is not a strong Weil curve, then E is isogenous to a strong Weil curve and the 
points obtained by u(u>) will give us points on that strong Weil curve. 

u : X0(N) -)• C / A E(C) 

UJ !->• u(uo) 

given by 
oo 

F : C / A ->• E(C). 
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Chapter 5 
Heegner Points 

5.1 Introduction 

Given an elliptic curve E defined over Q, as usual let E(Q) denote the set of rational 
points on E, including the point at infinity. As we know, a theorem of Mordell states 
that E(Q) is a finitely generated abelian group. 

Much is known about the torsion subgroup. For example, a torsion point can have 
order at most 12. However, less is known about the rank r. One would like an 
algorithm to construct rational points on E of infinite order, if they exist. In some 
cases, this is what Heegner points can do for us. 

The purpose of this chapter is to develop the theory of Heegner points and to describe 
an algorithm that can be used to find a rational point on an elliptic curve and to 
predict in which circumstances this point should turn out to be of infinite order. 

First, let us briefly review some class field theory which will prove very important in 
our construction. 

5.2 Class Field Theory 

Class field theory is the study of abelian extensions of number fields. Suppose to is 
an imaginary quadratic number. Then to satisfies an equation 

Ato2 + Bto + C = 0, 

where A, B and C are relatively prime integers. Denote the discriminant of to as 
A ( C J ) = B2 — AAC and let K be the quadratic extension Q(to). 
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In general, the Hilbert class field of a given field F is defined to be the maximal 
unramified abelian extension of F. For quadratic fields, K\ = K(J(UJ)) — Q(uJ,j(uj)) 
is the Hilbert class field of Q{UJ) [31]. 

The following theorem (see [31]) will be useful in our construction of rational points 
on elliptic curves. 

Theorem 5.2.1 1. The Hilbert class field is unique. 

2. [KX : K] = [K(j(u)) : Q] = h(A) =the class number of A . 

3. K\ depends only on A , rather than on UJ. 

5.3 The Heegner Point Construction 

As in the previous section, we will let UJ G H be a complex quadratic number with 
discriminant A = A(co). 

There are several equivalent ways of defining a Heegner point of X0(N). We will use 
the following definition: 

Definition 5.3.1 UJ is a Heegner point of X0(N) if it satisfies 

AUJ2 + BUJ + C = 0 

where A , B and C are relatively prime integers and A = 0(mod N). 

So UJ satisfies 

NA'uj2 + BUJ + C = 0 (5.1) 

and A(UJ) = B2 - ANA'C. 

Multiplying 5.1 by N: 
N2A'uo2 + BNUJ + CN = 0, 

yielding 
A'(NUJ)2 + B(NUJ) + CN = 0. 

Further, A', B amd CN are relatively prime integers and A(NUJ) = B2 - ANA'C = 

A(UJ). 
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Theorem 5.3.1 A complex quadratic number UJ is a Heegner point of X0(N) if and 
only if A(LO) - A(NOJ). 

We may also interpret any point r of X0(N) as a pair of elliptic curves, E = C / Z © r Z , 
E' = C / Z 0 iVYZ, together with the iV-isogeny E -» E ' . Then a Heegner point co 
corresponds to a pair of N—isogenous elliptic curves, each with the same complex 
multiplication. This can be seen by noticing that A(co) = A(Nui) and co and Neo lie 
in the same quadratic field. 

Recall from the Chapter 4 that the image of co on XQ(N) may be represented on the 
plane model as 

(j(co),jN(u))eZ0(N). 

For z £ V., j(l/z) = j(—z) = j(z). So for co a Heegner point, it is easy to show that 

T R = j(l/uJ) = j(Nco) = jN(co). 

Given an elliptic curve E defined over Q of conductor N, we will assume that E is a 
Weil curve so that there is a rational map 

<f>: X0(N) ->• E. 

If a; is a Heegner point then <f>(to) £ E(Q(J(CO),JN(CO))). 

Now, the Hilbert class field Kx — Q(co,j(co)) = Q(co,jN(co)), since the Hilbert class 
field of K depends only on A(co) = A(Nco). 

Therefore, Q(J(CO),JN(CO)) C Q(co,j(co)) = Kx and we have <j>(co) £ Kx. 

This is very convenient since Kx is Galois over K = Q(co). Now let the discriminant 
of co, A(co) = D and the class number h = h(D). In order to obtain a complete 
set of Ki/K conjugates, we must find h Heegner points a > i , a ^ , each satisfying 
Aico} + B{co + Q - 0 with B\ - AAid = D = r 2(mod 4iV), At = 0(mod N), 
B{ = r(mod 2N). Then if we take the sum 

P = (f)(co1)-r--- + <p(coh), 

we will obtain a point in E(K). 
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The question becomes, how can we extract a point in E(Q) from the point 17? 

Let us now assume that E is a strong Weil curve. Recall that this means that there 
exists a cusp form of weight 2 for r 0(iV) given by / ( r ) = ^ ° = 1 ane2winT, such that 

0 0 

L(/'s) = Ylann's = Le^-
n= l 

Moreover, in the case where E is a strong Weil curve, recall the simple map, 

u : X0(N) -)• C / A S £ (C) , 

where 

U(LO) = -2m / f(r)dr = —c 
oo 

it -e 
T7, 

n= l 

and F ou = <f>, where F is the isomorphism 

F : C / A -¥ E{C). 

Let e be the sign in the functional equation for LE(s) so that we also have the 
functional equation for / ( r ) : 

where / ( r ) is as above. 

Theorem 5.3.2 If to is a Heegner point, 

u(u) = e(L(f,l)-u(Lo)). 
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Proof 
pica 

u(to) — -2ni / f{r)dT 
J CJ 

rwt f - l \ l -1 
= —2iri / / —— -rr-^dr making the change of variables r (->• —— 

VJTL \NT j NT1 NT 

. r° 1 
= — 2iri / —ef(r)dr since for u; a Heegner point, to = —— 

t / —to ^ * 

= -2?rz / ef(r)dr 
Jo 

pica / pica 
= -2ni / ef(r)dr - I -2ni / c / ( r ) d 7 

= eL(f,l)-eu{-u) 

= e(L(/, 1) - u(-co)) 

Now, u{to) = E " = i % 2 ™ " \ 

Therefore, 

oo 
v ' ^ n 

n=l 
oo 

n 
n=l 

and = e(L(/, 1) - u(u)). • 

Since we are assuming E is a modular curve, 

L(ftl)=LE(l) = Q(f)-K, 

where K is a rational number and 

Q/fj I ^o(E) if the real locus of E has one component 
1 2Q0(E) if the real locus of E has two components 

and £l0(E) is the least positive real period of E [9]. (Recall the value Q,(f) in the 
Birch, Swinnerton-Dyer conjecture.) We take the sum 

U = u(ui) H h u(ioh) 
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yielding a point 
(x,y)eE(K). 

Ultimately, we would like a point in E(Q). A theorem by Gross and Zagier to be 
discussed in the next section will then predict when this point will be of infinite order. 

We have two cases depending on the sign in the functional equation for LE(S). 

Case 1: e = —1 

Then LE(1) — 0 by the functional equation for E. In fact, the zero must be of odd 
order. Therefore, U = U G R and p(U) G K, p'(U) G R. 

Hence the point (x,y) G E{K) n E(R) = E(Q). 

Case 2: e = +1 

We have U = h(D)L(f, 1) - U by Theorem 5.3.2 and 

LE(l) = L(f,l) = Q(f)-K 

which is equal to a rational multiple of the least positive real period of E. So if we 
pick a discriminant D such that h(D)L(f, 1) is equal to an integer multiple of the 
least positive real period of E then we will have U = h(D)L(f, 1) — U = —U modulo 
A. In this case, U mod A will be pure imaginary and we will have 

p(U) G R and p'{U) = -2U~3 + §GAU + 2 0 G W 3 + 42G 8 f/ 5 + ... is pure imaginary. 

Therefore, p(U) G Q and p'(U) = VDB for some Be Q. 

So, (p(U),p'(U)/VD) G ED(Q), where 

ED : Dy2 = 4x 3 + ax + b 

is the short Weierstrass form of a twist of the elliptic curve E. 

In the case where the rank r of E is zero, the Birch and Swinnerton-Dyer conjecture 
predicts that 

r r M x S-Q{f)-Ucp 

In this case we may take D such that h(D) \\cp is an integer multiple of |T | 2 . 
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5.4 The Theorem of Gross and Zagier 

In 1982, Birch and Stephens published a conjecture about the height of the rational 
point arising from the Heegner construction: 

Conjecture 5.1 If E is an elliptic curve over Q which is parametrized by modular 
functions, ie. E is a Weil curve, and K is a complex quadratic field such that the 
Mordell-Weil group E(K) of K-rational points of E has odd rank, then the "canoni
cal" K-rational point of E which is given by Heegner's construction has Tate height 
measured by L'E/K(1). 

Birch and Stephens go on to state [5]: 

Unhappily, it is a consequence of this conjecture that the Heegner point 
turns out to be trivial whenever the rank is more than one. 

Recall that a point on an elliptic curve is trivial whenever it has canonical height 
equal to zero, or, equivalently, whenever it is a torsion point. 

Soon after, also in 1983, Gross and Zagier [18] proved this conjecture. 

Let E be the elliptic curve y2 — 4x 3 + ax + b defined over <Q>. Let ED be the twist 
Dy2 = 4x3 + ax + b, where D < 0 is the discriminant of an imaginary quadratic field. 
Assume also that D and N are relatively prime, where N is the conductor of E and 
that D = P2(mod 4N) for some 0. Let e be the sign of the functional equation of 
LE(S). Then if we let £lE and Q.ED denote the least positive real periods of the elliptic 
curves E and ED, respectively, there are two cases: 

Case 1: e = —1 

Then there exists a point € E(Q) such that 

LED(1)L'e(1) = cQED^lEh(PD) 

where c is a nonzero rational number and h is the height function on E(Q). 
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Case 2: e = +1 

Then there exists a point PD G ED(Q) such that 

LE(1)L'ED(1) = cQ,EDQ,EhED(PD) 

where c is as above and hEo is the height function on ED(Q). 

In both cases, the point Pp is the point given in the construction described in section 
5.3. Recall that in Case 2, we must take D such that h(D)L(f, 1) is an integer 
multiple of the least positive real period of E. 

5.5 Heegner Point Computations 

In this section, a basic step-by-step approach to computing Heegner points will be 
given, as well as several sample calculations. Note that all calculations were performed 
with the aid of the Pari-GP calculator. 

Given a strong Weil curve E defined over Q of rank r and conductor N, the Heegner 
point computation can be performed as follows: 

Step 1: Compute e = the sign in the functional equation for LE(s). 

Step 2: Find a fundamental discriminant D < 0 such that (N, D) = 1, D = 02(mod 
AN). If e = +1, restrict D further so that T J c p / | T | 2 = an integer. 

Step 3: Find h = h(D) Heegner points u>i, ...,coh such that u>i = (Bi + V~D)/2Ai, 
Ai = 0(mod N), Bi = (3(mod AN), representing the distinct classes of the ideal class 
group. 

oo 

Step 4: Compute U = u(u)X) H h u(toh) where u(z) = ^ _ ! I e 2 ™ i z 
n= l 

Step 5: Convert U mod A to P = (x,y). 
If e = — 1, try to recognize x, y G Q. 
If e = +1, try to recognize x, y/VT) G Q. 

Step 6: If e — —1, compute QEQEDhE(P) and compare with LED(1)L'e(1) = 
CQ,EQ,ED hE(P). 
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If e = +1, compute ilEQ,EDhED(PD) where PD = (x,y/y/D) and compare with 
L'ED(1)LE(1) = cQEQEDhED(PD). 

Example 

E is the strong Weil curve given by 

E : y2 = x3 -x + 1/4. 

The conductor iV = 37, the torsion group is trivial, the rank r = 1. 
1. c = - 1 . 
2. Choose D = - 3 with h(D) = 1. 
3. W ! = (-21 + v ^ ) ^ • 37. 
4. 0.2046805... - 1.22569469..A 
5. P = (-1,1/2) on E, 
6. 

ttEnEDhED(PD) £ 0.974440434816... 

L E i > (1)14(1) ^ 0.86616927199... 

So we have 
L ' B D ( l ) L f i ( l ) = ^ ^ f t ( P ) . 

We can compare this result to the Birch and Swinnerton-Dyer conjecture which would 
predict that 

rl / 1 U m 4Q.EVLEDSESED Cp(Q, Q) / - 0 s 

where S^, S^D are the orders of the Tate-Shafaravich groups of E and ED, respec
tively, Y\ cp is the product of the Tamagawa numbers of E and ED, Q is a generator 
of E and \TE\, \TED \ are the respective orders of the torsions subgroups of E and ED. 

One can check that ED is the strong Weil curve of conductor TV = 333 given by 
ED : y2 = x3 - 9x 27 

4 • 

Now, (Q,Q) = 2h(Q), SE = 1, SED = 1, ]\cp = 1, \TE\ = 1, and | T £ D | = 1 so 

equation 5.2 becomes 
LED(l)LE{l) = 8SlEnED(Q,Q) 
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Thus, assuming the Birch and Swinnerton-Dyer conjecture, the height of the point 

given by our construction h(P) is 9h(Q) where Q is a generator of the curve E(Q). 

In fact, P = ( - 1 , 0 ) = - 3 ( 0 , 1 / 2 ) where the point (0,1/2) is a generator of E(Q). 

Sample Heegner Point Computations 

Case 1: e = - 1 

la) N = 83, D = - 1 9 , h(D) = 1 
pj 2 _ 3 i 47 199 . y — X - f 4 g X g 6 4 

co = ( - 7 5 + v C T 9 ) / 2 • 83 
[ 7 ^ - 1 . 2 8 2 6 8 2 2 4 . . . 
P= (5/12,1/2) on E. 

L'E(l)LED(l) = 4nEQEDh(P)^0 

b) N = 83, D = - 4 3 , h{D) = 1 
£ . 2 _ 3 , 47 „ _ 199 

w = (149 + v
/ z 4 3 ) / 2 - 8 3 

[/ ^ 0.809104417526... 
P = (17/12, - 2 ) on E. 

L'e(1)LED(1) = 4QESlEDh(P) ^ 0 

Case 2: e - +1 

1. N = 19, D = - 3 1 , h(D) = 3 
z? . 2 _ ™3 _ 2 8 „ _ 1261 
CJ . y — x 3 x 1 0 g 

^ ! = (49 + v

/ = 3 T ) / 2 • 76, co2 = ( - 1 0 3 + \ / : i 3 1 ) / 2 • 133, u;3 = ( - 1 0 3 + ^ 3 1 ) / 2 • 190 
U 2* - 2 . 0 3 9 6 3 . . . - 1.581922..A 

P = ( - 1 4 / 3 , - 3 v / = 3 1 / 2 ) on £ PD = ( - 1 4 / 3 , - 3 / 2 ) on ED. 

vED{\)LE{\) = 4nEnEDhED{pD) ^ o 

2. iV = 37, D = - 1 3 9 , /i(T>) - 3 
J? _ cr . ,.2 _ „3 _ 70 4537 
^ - ^0 • y - g 3 a? 1 0 8 

wi = (71 + x / - l 3 9 ) / 2 • 37, w 2 = (219 + V ^ 1 3 9 ) / 2 • 185, u;3 = ( - 2 2 5 + yf^M)/2 • 259 
[/ ^ - 1 . 0 8 8 5 2 1 5 9 . . . - 1.76761067..A 

P — O on E Pj) = O on ED. 

L'ED(1)LE(1) = 0 
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3. iV = 53, D = -55, h(D) = 4 
E : y2 = x3 + x - 10 

ui = (293 + V^55)/2 • 364, UJ2 = (85 + v

/ z 5 5 ) / 2 . - 52, 
LO3 = (-539 + ^/^55)/2 • 572, w 4 = (-331 + V^55) /2 • 884 
U = -0.502573.. A 
P = (-42/11,136v^=55/121) on E -> PD = (-42/11,136/121) on ED. 
L'ED(1)LE(1) = 4SlEnEDhED(PD) ^ 0 

4. N = 100, D = -39, h(D) = 4 
E : y2 = x3 - x2 - 33x + 62 
ui = (-69 + v

/ z 3 9 ) / 2 • 100, u2 = (-69 + v

/ z 3 9 ) / 2 • 200, 
oo3 = (1131 + v

/ z 3 9 ) / 2 • 1300, w 4 = (1131 + v

/ z 3 9 ) / 2 • 600 
U ^ -0.6315494811... - 0.915366..A 
P = (329066/69277,33523812v

/=:39/65743873) on E 
-> P D = (329066/69277,33523812/65743873) on £ D . 
L ^ , ( 1 ) L £ ( 1 ) = 8QEnEnhED(PD) ± 0 

5. JV = 115, D = - 11 , h(D) = 1 
£ : y2 = x 3 + 7x - f 

w = (37 + v c :n)/2 • 115 
U ^ 1.34013549..A 
P = (1, V ^ T T ^ ) on E -> P D = (1,1/2) on £ D . 
L ' E B (1 )L B (1 ) = 4 a ^ / * W P o ) ^ 0 

Using the Pari-GP calculator, it was often necessary to convert a given strong Weil 
curve to its global reduced form. In particular, this was needed to compute values of 
L-series and heights of points. 
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Chapter 6 
Elliptic Curves and the Class 
Number Problem 

The purpose of this concluding chapter is to continue the story of the class number 
problem from where it was left off in Chapter 2. Due to a result of Goldfeld's and 
the Gross-Zagier theorem, there is a connection between the construction of rational 
points on elliptic curves via the Heegner point construction and Gauss' class number 
problem. 

Theorem 6.1 If h(D) < ey/\D\/\og\D\ with e > 0 sufficiently small, then there 

exists a real number (5 < 1 such that, for x the real, odd, primitive character modulo 
D, then L(/3,x) = 0. Further, 0 is given asymptotically as D —>• —oo by 

So 0 is Siegel's zero and this theorem clearly contradicts the generalized Riemann 
hypothesis. 

In 1976, Goldfeld [16] also proved the following theorem which links the Birch and 
Swinnerton-Dyer conjecture to the class number problem. 

Theorem 6.2 (Goldfeld) Let E : y2 = 4x3 + ax + b be an elliptic curve defined over 
Q with conductor N and L-function LE(S). 

In 1975, Goldfeld [15] proved: 

Q 
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Let r — rank(E(Q)). Fix D < 0 a fundamental discriminant and Q(VD) an imagi
nary quadratic field. Let x modulo D be the real, odd, primitive Dirichlet character 
associated to Q(\/D). 

Choose fi = 1,2 so that x{~N) = ( - l ) r - " . If LE{s) ~ ci(s - l ) r as s -> 1 then, for 
D and N relatively prime, 

where c is an absolute constant independent of E. 

This theorem would effectively solve the class number problem if an appropriate 
elliptic curve of rank r > 3 could be found. Gross and Zagier were able to find an 
appropriate curve by the Heegner point construction. 

For a special example, E0 : y2 = x3 + 10x2 — 20x + 8, which is a strong Weil curve 
with conductor N = 37, e = +1 and choosing discriminant D = —139, Gross and 
Zagier showed that the point F139 G EQ(Q) is trivial. Therefore, L'eD(1) = 0 and 
LED(S) ~ Ci(s — l ) m as s —?• 1 where m > 1 is the order of vanishing of LED(1). It 
can be shown that the sign in the functional equation for E? is negative, so the order 
of vanishing must be odd. Therefore m > 3 and it can be shown numerically that 
m < 4. Therefore the so-called analytic rank of E? is 3. It is known that the rank of 
EQ is also 3. This is Example 2 on page 37. 

Therefore, the curve E^ satisfies the conditions in Goldfeld's theorem. Combined 
with Goldfeld's theorem, this gives: 

Theorem 6.3 (Goldfeld,Gross,Zagier) For every e > 0 there exists an effectively 
computable constant c > 0 such that h(D) > c(log | D | ) 1 _ e . 

Oesterle [29] computed the constant in Goldfeld's theorem for a special elliptic curve 

and obtained the result: 

h{D) > 
c(\og\D\y-^ 

r 4 r 7V 1 3 exp(21 v

/ rloglog|T) |) 
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Of course, the Goldfeld, Gross and Zagier theorem along with Oesterle's constant 
provides very large upper bounds for \D\. Other methods have had to be used as well 
to find all discriminants with class number equal to h. This problem has now been 
solved (see [1], [2], [27], [35]) for 

h(D) = 1,2,3,4,5,7,9,11,13,15,17,19,21,23. 
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