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Abstrac t 
Dendrit ic spines are small evaginations of the dendrites of neurons first discovered late in 
the 19th century. Since their discovery, many theories have been put forth to explain the 
physiological role of the spine. However, only recently with the advent of new laboratory 
technology has data been available to test the various theories put forward. The two most 
compelling theories today are that spines are important mediators of a form of cellular 
memory known as long-term potentiation ( L T P ) , and that spines may be involved in the 
conduction of regenerative electrical impulses within dendrites similar to action potentials 
in axons. 

We w i l l review some of the major mathematical models put forth which attempt to 
explain the role spines may play in the induction of L T P . We wi l l address the importance 
of calcium signals in L T P induction and suggest how the unique morphology of the spine 
may allow for transient, spatially localized increases in calcium within the spine head, but 
not elsewhere in the dendrite. This could help account for the associativity, cooperativity, 
and input specificity requirements of L T P . 

We w i l l also review some of the major mathematical models on dendritic action poten­
tials. These models generally assume the existence of voltage-gated ion channels with 
H o d g k i n - H u x l e y (HH) type dynamics exist in the spine head. We w i l l employ a con­
t inuum approach in which spines are modeled as having a certain uniform density. We 
w i l l further make use of the F i tzHugh-Nagumo ( F H N ) equations without recovery to ap­
proximate the H H equations. We w i l l examine the new set of equations in the traveling 
wave frame and seek to determine how the various parameters influence the speed, and 
the shape of the traveling wave front solutions. We show that there is a certain balance 
between local excitation of the spine heads, and freedom for the electrical current to pass 
from spine head to dendrite required for traveling front solutions to exist. Furthermore, 
strict parameter spaces in which traveling front solutions exist are determined, as is the 
profile of the wave in the special case of a standing wave. 
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Chapter 1 
Introduction to Dendritic Spines 

Cajal 's classic work on neurophysiology [17] conclusively proved that the cell doctrine, 

the idea that all organs are made up of cells, applied equally well to the brain as it did 

to all other organs of the body. Since then, physiologists have pondered the role of the 

neuron's unusual morphology in its capacity for computation. The neuron contains highly 

arbourized appendages known as dendrites and axons, which branch off of a central body 

known as the soma. It is conventionally thought that the computational complexity of 

the brain is a consequence of the numerous connections neurons form wi th each other at 

synapses. B y synapse we mean that morphological entity in which the terminal branch of 

an axon of one neuron, the presynaptic neuron, is directly opposed to another neuron, the 

postsynaptic neuron, but separated by some small distance (50 nm) [48]. It is estimated 

that there are approximately 10 1 2 neurons each forming up to as many as 2 x 10 5 synaptic 

connections wi th other neurons [48]. Since it is thought that synapses are the main sites 

of "information transfer," this enormous connectivity makes the problem of decoding how 

the central nervous system (CNS) functions enormously difficult, and gross simplifications 

are required to elucidate important principles. 

One classical simplification is the theory of dynamic polarization. This theory holds that 

dendrites act as antennae which are acted upon by neurotransmitters released at the axon 

terminal opposed to it in response to an action potential. These neurotransmitters cause 

a local change in conductance of the dendritic membrane to certain ions, resulting in a 
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Chapter 1. Introduction to Dendritic Spines 

passive electrical current which propagates towards the soma. This current is converted 

into a frequency of action potentials at the axon and is the sole output for a neuron. 

The foundations of this theory were weakened by experimental and theoretical investi­

gations of the granule cells in the olfactory bulb. It was shown that the dendrites of 

granule cells release neurotransmitters which mediate the inhibit ion of mi tra l and tufted 

cells [89]. This was the first demonstration that dendrites not only could receive inputs, 

but also could act as output devices. The key compartment is the dendritic spine, "the 

smallest neuronal compartment capable of performing a complete input-output operation 

of a single synapse" [105]. 

Spines are small evaginations of dendrites first noticed by Ca ja l in 1888 [17]. They 

are the site of type 1 excitatory synapses, which make up over 90% of al l excitatory 

synapses in the C N S [31] with glutamate usually acting as the neurotransmitter [105]. 

The typical morphology of a spine is a small, roughly spherical head connected v ia a 

long, thin cylindrical stem to the dendrite [35]. Spines are typically just large enough to 

form one, or occasionally two synapses, and thus form "a structural, biochemical, and 

physiological compartment that is specific for that synapse" [35]. In this regard, it should 

be pointed out that the physical composition of spines is discontinuous from that of its 

parent dendrite. 

The most obvious example of this discontinuity can be seen in the structure of the 

cytoskeleton [35] where there is the complete absence of microtubules. Instead, the cy­

toskeleton is composed of a loose filamentous network of actin and actin-regulating pro­

teins which provide the scaffolding for the basic spine structure. The actin-regulating pro­

teins, calmodulin ( C a M ) , fodrin, myosin, and microtubule associated protein 2 ( M A P 2 ) , 

interact wi th actin in a calcium-dependent manner. This interaction has been suggested 

as a mechanism underlying short-term memory [23]. One of the unique morphological 
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Chapter 1. Introduction to Dendritic Spines 

characteristics of the spine is the postsynaptic density (PSD) which is an area approxi­

mately 50 nm thick lying just beneath the spine head membrane and directly opposed to 

the axon terminal. Its dimensions are usually proportional to the dimensions of the spine 

head, but not the spine neck [36]. Furthermore, it has been shown that the area of the 

P S D also is proportional to the number of presynaptic vesicles in the axon terminal to 

which it is opposed, and this suggests that some form of pre- and postsynaptic dynamic 

coregulation is involved and points to a possible role for spines in regulating synaptic 

efficacy. 

The spine also is unique in the presence of a select group of organelles [35]. A l l spines 

contain smooth endoplasmic reticula (SER) , which is involved in C a 2 + sequestration 

and membrane synthesis. Many also contain polyribosomes, which function in protein 

synthesis. Some complex spines also contain mitochondria and multivesicular bodies 

which are restricted to the base of the spine. Thus, spines appear to have the capability 

of "independent energy metabolism, membrane turnover, and protein synthesis and thus 

in theory could function as a semi-autonomous unit within a neuron" [35]. In this light, 

it should be noted that von Neumann suggested that the fundamental unit of integration 

is not likely to be the whole neuron, but instead the single synapse [109]. The spine 

seems to be uniquely situated to mediate this role within the synapse. 

This would not be of much interest except for the fact that there is experimental evidence 

suggesting that the spine may, in fact, actually perform such roles. Spines are degenerate 

or irregular in many mental disorders: thin and tiny in Down's syndrome and long 

and tortuous in mental retardation (Fragile X syndrome) [105]. Furthermore, in partial 

epilepsy, cortical pyramidal cells at a distance from the site of the seizure show simplified 

dendritic trees and decreased spine density, graded with the duration of the seizures. In 

less pathological cases, it has been shown that: 1) there are changes in spine stem length 

during field learning in honeybees, 2) rats trained in spatial learning show increased spine 
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Chapter 1. Introduction to Dendritic Spines 

densities on basal dendrites of C A 1 hippocampal neurons, and 3) chicks show increased 

spine density in the lobus parolfactorius following one learning experience [35]. However, 

the best example of a role for spines in memory comes from the Bruce effect where 

exposure of unfamiliar male pheromones to an impregnated female causes abortion. This 

effect is thought to be mediated by metabotropic glutamate receptor 2 (mGluR2) in the 

olfactory granule spine [47] and could be prevented by the m G l u R 2 agonist, D C V - I V . 

A s a result, it has been suggested that mGluR2s in the olfactory granule spine acts as a 

storage device for the original male pheromone [105]. Thus, there is an increasing amount 

of evidence suggesting that spines may be quite important both in memory and in normal 

cognitive function, but its exact role and the mechanism through which it accomplishes 

this st i l l is largely unknown. 

One of the great difficulties in studying dendritic spines is that their sizes situate them just 

at the edge of optical resolution using light microscopy (typical dimensions of dendritic 

spines in pyramidal cells of rodent neurons are 0.1-0.2 / im for the spine stem length, 

0.04-0.2 pm for the spine stem diameter, 0.004-0.2 / / m 3 for total spine volume, and 

0.1-0.7 / i m 2 for total spine surface area). Furthermore, they are vir tual ly impossible 

to study in detail using traditional electrophysiological techniques as they cannot be 

impaled by electrodes and generally are electrically remote from the soma. Recently, 

more sophisticated fluorescence microscopy techniques have been developed and have 

allowed some insight into spine function. However, due to the long period before these 

new experimental techniques became available, and the great deal of interest in the 

possible roles of spines, many theories about how spine morphology could contribute to 

its hypothesized functions have been put forward. 

Perhaps the simplest claim that has been made is that spines increase the surface area of 

the dendrites and simply serve to connect neurons [17]. However, it has been shown that 

even if al l spines were removed from the dendrites in pyramidal cells there would sti l l 
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Chapter 1. Introduction to Dendritic Spines v 

be ample room for the formation of synapses in the dendrites. A more likely possibility 

in this regard is that spines "allow more synaptic connections to be compacted into a 

l imited brain volume, and hence they can be considered the microscopic parallel to sulci 

and gyri i n the brain" [35]. 

A recent claim that has begun to garner a great deal of interest is the idea that the spine 

acts as a compartment to allow for the biochemical amplification and spatial localization 

of second messengers that are produced as a result of local synaptic activity. Another 

area of interest has been the electrical roles that spines may have in mediating synaptic 

excitation. A s a model system that has drawn a great deal of interest recently, we w i l l 

review some theories put forth on how features of spines may be crit ical in the induction 

and expression of a cellular correlate of memory known as long-term potentiation ( L T P ) 

in Chapter 2 (for a more general review of L T P , see [12]). This chapter w i l l serve as 

background material and is an area of much current interest amongst experimentalists 

and theoreticians in the neurosciences. 

The remainder of the thesis wi l l focus on theories put forth on the electrical roles that 

spines may play. We w i l l start by giving a thorough review of the literature in Chapter 

3. We w i l l focus, in particular, on theories concerned with excitable dynamics. These 

theories suggest that there may be dendritic action potentials mediated by voltage-

gated sodium and potassium channels within spine heads. Of special interest w i l l be a 

continuum model developed by Baer and Rinzel [5] in which spines are not treated as 

individual entities, but rather are averaged out over space as a uniform density of spines. 

This allows several important simplifications to be made. 

A t this stage, the reader wi l l be well acquainted with the various theories of excitable 

dynamics in spine heads, and some of the inferences made based on numerical experimen­

tation. However, one failing of numerical simulations is that they fail to give one a good 
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grasp of what roles various biophysical features of a neuron are important in allowing for 

the existence of traveling wave pulse solutions. The reason that numerical simulations 

are so vi tal ly important is that the system of equations used to approximate the ex­

citable dynamics, the Hodgkin-Huxley equations, involve transcendental P D E s . A very 

successful approach that has been used over the years in this situation is to replace the 

complicated nonlinear functions with a cubic function and to replace the complicated 

recovery equations, wi th one simple linear O D E . This new set of equations is known 

as the F i tzhugh-Nagumo ( F H N ) equations, and they are amongst the most commonly 

studied set of equations in applied mathematics. Occasionally, instead of using a cubic 

nonlinearity as in the F H N equations, other functional forms are used. These equations 

are usually piecewise linear and attempt to mimic some of the general features of the 

cubic. The advantage of this approach is that the equations can be solved exactly. In 

Chapters 4, 5, and 6, we w i l l use the F H N approach to simplify the equations governing 

the excitable dynamics in a continuum spine model of an infinite dendrite. In Chapter 

4, the functional form we wi l l use is a piecewise linear discontinuous function of the form 

—v + H(v — a). In Chapter 5, the functional form we wi l l use is a piecewise linear contin­

uous function whose shape approximates that of a cubic polynomial . In Chapter 6, we 

w i l l use the standard cubic used in the F H N equations. We w i l l show how the various 

parameters play a role in determining whether traveling wave solutions exist and show 

how the speed of the propagating wave depends on the values of the parameters. 
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Chapter 2 
Spines and Long-Term Potent iat ion 

2.1 Introduction to Long-Term Potentiation 

In 1949, Donald Hebb proposed a coincidence detection rule in which the strength of 

association between two neurons would increase if they were simultaneously active [38]. 

In 1973, such a phenomena was first observed in the dentate gyrus of anesthetized rabbits 

and was termed long-term potentiation (LTP) [11, 10]. L T P may be expressed as a 

persistent increase in the size of the synaptic component of the evoked response recorded 

from individual cells or from populations of neurons [12]. B y persistent, we mean a stable 

increase in synaptic efficacy which lasts at least one hour. This is to be differentiated 

from shorter changes such as post-tetanic potentiation ( P T P ) , which lasts on the order 

of seconds, and short-term potentiation (STP) , which is a transient increase in synaptic 

weight that decays back to baseline within the first 30 minutes. 

One of the most interesting features of L T P is that it is prominent in al l areas of the 

hippocampus. This brain structure has long been implicated from lesion studies as being 

important to memory [104]. What is even more intriguing is that st imulation protocols 

that are capable of inducing L T P in the laboratory are qualitatively similar to those 

actually seen within the hippocampus during learning. 

L T P exhibits three very important features that are expected of any cellular substrate 

of memory: cooperativity, associativity, and input-specificity [12]. Cooperativity is used 
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Chapter 2. Spines and Long-Term Potentiation 

to describe the requirement that L T P has a threshold wherein weak st imuli are not 

encoded into an increase in synaptic efficacy. Such a mechanism is required to prevent 

"spontaneous memory" formation. Associativity means that a subthreshold activation 

at one synapse may become potentiated if there is strong activity at a nearby synapse. 

Thus the efficacy of a synapse is dependent upon its coactivity patterns with its neighbors. 

Input-specificity is the requirement that inactive synapses should not undergo an increase 

in efficacy. This once again can be viewed as some form of prevention of "spontaneous 

memory". 

2.2 The Coincidence Detector 

L T P has garnered a great deal of interest because of its possible linkage with memory and 

because it has yielded many fascinating biochemical results. One of the first problems to 

be dealt wi th was the identification of a coincidence detector. B y a coincidence detec­

tor, we mean a cellular process which is activated during strong pre- and postsynaptic 

coactivation and serves as a signal for the induction of L T P [12]. In C A l hippocampal 

pyramidal neurons, the coincidence detector is most likely a l igand-gated cation channel, 

the nicot inic-methyl-D-aspartate receptor ( N M D A R ) , which opens in response to gluta­

mate and N M D A . N M D A R s are thought to be capable of functioning as the coincidence 

detector because they are largely blocked at potentials below -20 m V by M g 2 + [73]. Thus 

in order for a synapse to become potentiated, it has to be active, and the neuron has 

to be highly depolarized in the vicinity of the N M D A R . A s a result, the neuron may be 

in the firing mode (threshold is typically a potential of f» — 50mV at the axon hillock). 

In support of this theory, it has consistently been found that N M D A R antagonists block 

the induction of L T P [12, 73]. 

The next issue becomes what feature of N M D A R activation is crucial to L T P induction. 

N M D A R s are highly calcium permeable, and C a 2 + i s a potent second messenger capable of 
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Chapter 2. Spines and Long-Term Potentiation 

ini t iat ing many different biochemical cascades involving enzymes such as protein kinases 

( P K s ) , which add P 0 4
3 ~ to proteins, and protein phosphatases (PPs) which remove 

PC>43~ from proteins, and a variety of other proteins such as C a M and actin. Evidence 

for the importance of calcium in L T P induction comes from experiments which show that 

calcium chelators are capable of preventing the induction of L T P when administered to 

the postsynaptic neuron. 

Thus, the idea that L T P is a calcium-dependent process depending on N M D A R activa­

tion became entrenched within the discipline. This led inevitably to the question about 

the nature of the calcium transients that are involved in the induction of L T P . It was 

generally accepted that there must be some sort of threshold relating to some feature 

of the calcium transient. Above this threshold, L T P would be induced, but below this 

threshold, only S T P or perhaps even P T P could be induced. However, due to the l i m ­

itations of experimental techniques, there was no known method of actually observing 

the calcium transients within dendritic spines, the presumed locus for L T P induction. 

A s a result, a number of mathematical models were proposed to help gain insight into 

the importance of various biophysical systems thought to be important in mediating the 

calcium transients. 

2.3 First Generation Mathematical Models of L T P 

The first generation models of L T P focussed heavily on what was biophysically necessary 

to produce large, spatially localized C a 2 + transients under stimulation protocols similar 

to ones that experimentally induce L T P . It was thought that memory formation should 

involve some sort of a biochemical threshold. Below this threshold, there is very weak 

activation of a critical molecule, and above this threshold there is near maximal activation 

of this molecule. Thus, some recurring themes in these models were: the l imitat ion of 

calcium channels to spine heads which acted as the sole source of calcium for the cell, and 
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Chapter 2. Spines and Long-Term Potentiation 

a heterogeneous distribution of calcium pumps and calcium buffers (these are c a l c i u m -

binding proteins (CaBPs) which generally diffuse slowly and can be seen to function, in 

some sense, as a capacitance [121]). 

The basic physical geometry of the spine was a cylindrical spine head attached v ia a 

cyl indrical spine stem to a cylindrical dendritic shaft. In some of the models, only a 

single spine stem was modeled, while in others, many were. 

In the electrical part of models, the spine head was modeled as an isopotential compart­

ment which is linked through a resistor to the parent dendrite. The resistor represents 

the theoretical total resistance conferred by the spine stem. This represents a lumped-

sum resistance approximation which gives a good approximation to the actual system. 

Certainly, the amount of error introduced in this approximation is far smaller than the 

uncertainty in the electrical parameters used. The voltage in the dendrite was determined 

from the passive cable equation. 

The motion of calcium was based on simple linear diffusion, coupled to nonlinear effects 

due to the pumps and buffers. The entry of C a 2 + is voltage-dependent and occurs only in 

the distal part of the spine head. Otherwise, the voltage and C a 2 + m o v e m e n t equations are 

decoupled. However, this may not be justified in small compartments such as dendritic 

spines [86]. 

The following parameters and variables are common in many of the following models and 

w i l l be defined here: 
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Chapter 2. Spines and Long-Term Potentiation 

Parameter or Variable name Description 

vc The synaptic reversal potential of a channel, c 

tpeak,c The time to peak conductance of a channel, c 

9c peak conductance of a channel, c 

Cm specific membrane capacitance 

Rjn specific membrane resistance 

Ri specific intracellular membrane resistance 

R<x>,sp spine input resistance 

R<oo,d infinite dendrite input resistance 

DCa calcium diffusion coefficient 

RN spine neck resistance 

rn radius of spine neck 

In length of spine neck 

rsp radius of spine head 

1'Sp length of spine head 

r<i. radius of dendrite 

kbf forward buffer rate constant 

kbb backwards buffer rate constant 

kpi rate constant for a first-order kinetic C a 2 + pump 

K C a 2 + turnover rate for a C a 2 + pump 

Ps surface density of a C a 2 + pump 

Kd constant of dissociation 

F Faraday's constant (9.6 x 104 Coulombs/mol) 

[B] concentration of C a 2 + - b o u n d buffer 

[M] concentration of free buffer 

[Bt] total concentration of buffer 

DB diffusion coefficient of the bound buffer 
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Chapter 2. Spines and Long-Term Potentiation 

2.3.1 The First Attempt: Gamble and Koch, 1987 

The first realistic L T P model was put forth by Gamble and K o c h ( G K ) in 1987 [27]. 

In this model, the dendritic spine head contained synaptic receptors, voltage-gated cal­

c ium channels ( V G C C s ) , voltage-gated noninactivating potassium channels, and a leak 

conductance. The spine head was heterogeneous and contained a specialized area under 

the outer circular face called the shell which roughly corresponds to the post-synaptic 

density. The spine neck also was divided into distal and proximal portions, which cor­

respond to the sides furthest and nearest, respectively from the dendrite. The parent 

dendrite was homogeneous and contained only one leak conductance. Calcineurin and 

C a M were present as non-mobile, spatially inhomogeneous buffers. The concentrations 

of calcineurin and C a M were taken to be 10 pM and 50 pM, respectively, in the shell, and 

5 pM and 25 pM, respectively, in all other areas. The binding of C a 2 + to calcineurin and 

to each of C a M ' s four C a 2 + binding sites was taken to be governed by first-order kinetics. 

There was also a non-saturable adenosine triphosphate ( A T P ) driven ca lc ium-pump with 

first-order kinetics, an equilibrium value of 50 n M for [ C a 2 + ] i , the intracellular calcium 

concentration, and a time constant of 2 ms located i n a thin compartment apposed to 

the subsynaptic membrane. • 

Some of the main discoveries from this model were: 

1. H F S is much more important than the total amount of synaptic activity in inducing 

large increases in [Ca 2 + ] j in small compartments such as dendritic spines. 

2. The relative change in [Ca 2 + ]^ was much smaller than the relative change in con­

centration of C&1+ — C a M . This was due to the fact that the concentration of 

C a 2 + — C a M depends on the fourth power of [Ca 2 + ]^ . 

3. Synaptic activity at a nearby spine was simulated by the injection of depolarizing 

current during spike activity at the spine of interest. Depolarizing current more 
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than doubled the increase in [ C a 2 + ] s p . the concentration of calcium with in the 

spine head. This showed the possible importance of associativity in L T P . 

4. The high input resistance of the spine allowed for much larger E P S P s in the spine 

head than in the parent dendrite. This allowed for the activation of high-threshold 

V G C C s . 

2.3.2 The Second Attempt: Holmes and Levy, 1990 

Holmes and Levy (HL) developed a model in 1990 looking for insights into how N M D A R s 

might be important for the associative nature of L T P . They based their model on a rat 

hippocampal dentate granule cell and explicitly included 1-115 dendritic spines in their 

model. The model also contained buffers, pumps, and diffusion for C a 2 + . The model 

differed from the G K model in that it included other spines and a completely different set 

of receptors. The H L model included N M D A R s and n o n - N M D A R s , which were thought 

to conduct a mixed N a + / K + current. The model had no V G C C s since they are not 

important in the induction of L T P in these cells, and there is little evidence for their 

existence in significant numbers. 

A t that point in time there was little quantitative information about the kinetics of the 

N M D A R s . Thus, Holmes and Levy developed a mathematical model involving simple 

kinetics for receptor binding and for the transitions of receptor to different conductance 

states for both the N M D A R s and n o n - N M D A R s . 

The qualitative features that they were trying to build into their model of N M D A R 

function were that the unbinding of neurotransmitters (NTs) from N M D A R s had to be 

slow, the transition of the N M D A R - N T complex to an open channel state had to be 

even slower, the N M D A R is blocked by M g 2 + in a voltage-dependent manner, and the 

average number of N M D A R s on a single spine head that were open at any given time 

had to be small (usually < 1). The approach used to calculate C a 2 + influx was simply to 
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determine the conductance of the N M D A R s and turn it into a C a 2 + - f l u x by assuming 

that N M D A R s were permeable to C a 2 + , N a + , and K + with a relative permeability ratio 

of Pea : PK '• PNO, of 10.6:1.0:1.0. The important qualitative differences between the 

N M D A R s and n o n - N M D A R s were the longer mean open times for N M D A R s , 

The one major assumption made was the linearity of conductance addit ion. That is, the 

conductance changes due to activation of receptors from temporally separated presynaptic 

events do not affect each other. This assumption is only valid if the number of receptors 

bound to N T s is small compared to the number of receptors. 

For the C a 2 + part of the model, the spine head was split into four compartments: two 

just under the outer circular surface of length 50 nm representing the P S D , and two more 

of length 225 nm. The spine neck was split into three roughly equal sized compartments. 

To model the C a 2 + in the vicinity of a spine, four dendritic compartments of length 0.5 

pm were used, but adding additional ones didn't affect the [ C a 2 + ] s p . C a 2 + movement 

between the different compartments was modeled according to simple linear diffusion 

between compartments, binding to buffers (based on C a M dynamics as assumed in the 

Z K model), and elimination by nonhomogeneously distributed pumps. 

The main conclusions of this model were: 

1. Pr ior theories about the N M D A R acting as the source of the nonlinearity in L T P 

are probably not true. It was previously thought that the voltage-dependence of 

the N M D A R could result in a positive feedback loop which would generate a large 

C a 2 + influx. However, C a 2 + influx could never be increased more than four-fold 

over the control. 

2. The role of fast buffers is to amplify the nonlinearity in [Ca 2 4"]^, and buffers play a 

more important role in modifying the C a 2 + transient than pumps, or diffusion. 

3. The associativity of L T P could be seen in the voltage-dependence of the N M D A R 
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as it required a large number of coactive synapses firing at high frequency to result 

in large changes in C a 2 + influx, and [Ca 2 + ] 
sp 

4. Dendrit ic spines, because of their small volume, "provide a locus for physiologically 

important transient increases in [ C a 2 + ] i " [41]. 

2.3.3 The Third Attempt: Zador and Koch, 1990 

Later in 1990, Zador and K o c h (ZK) put forward a model [122], wi th the same spirit as 

the H L model. The basic models for the voltage equations were the same although only 

one spine was explicitly modeled, and the basic C a 2 + movement model was the same, 

incorporating diffusion, pumps, and buffers for C a 2 + . There were, however, a couple of 

differences which make this model worth noting. 

The most fundamental difference is that the Z K model is based on C A l hippocampal 

tissue wi th pyramidal neurons which is the most thoroughly studied tissue in the field of 

L T P research. The morphology of the model was similar to the one used in the previous 

two models wi th only slight quantitative differences. It should be noted that the value 

of the input resistance was much larger than in the H L model and result in less stringent 

requirements for associativity. 

In the electrical model, explicit, empirical formulas for the forms of the time-dependent 

conductances for N M D A , and n o n - N M D A R (here it was based on A M P A R s ) were found: 

9non-NMDA{t) = 9non—NMDA~ exp ( 1 — J , (2.1) 

exp ( ^ ) - exp ( ^ ) 
9NMDA(t,V) - 9NMDAl + ^ M

/
g 2 + ] ^ ^ y (2.2) 

where 9non—NMDA is a n alpha function with tpeak = 1.5ms, and a peak conductance of 

9non-NMDA — -5nS. The parameter values for 9MMDA were TX = 80ms, r2 = .67ms, 77 = 
0 . 3 3 m M _ 1 , 7 = 0 . 0 6 m V _ 1 and CJNMDA — 0.2 nS. The corresponding currents generated 
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in the spine head were calculated under the assumption of linear conductance addition 

as in the H L model. 

In the C a 2 + part of the model, it was assumed that all of the C a 2 + influx was mediated 

by the N M D A R s within the spine head. The factors involved in C a 2 + mobil i ty were 

immobile cytosolic buffers based on C a M , as in previous models, a heterogeneous density 

of C a 2 + pumps obeying first-order Michael is-Menton kinetics, and C a 2 + diffusion. The 

density of pumps in the proximal spine neck, the part closest to the dendrite, was much 

higher i n the spine neck due to the possible presence of the spine apparatus which may be 

important in calcium sequestration. The method of determining the size of the calcium 

flux was to convert the current mediated by the N M D A R by using Faraday's constant, the 

valence of calcium, and by mult iplying by 0.02, into the amount of the current thought 

to be due to C a 2 + . 

The basic assumption of the modeling is that the degree of potentiation of a synapse 

should be a monotonic function of peak [Co^CaM]. Some of the results from these 

simulations were: 

1. The high surface area to volume ratio of the pumps allowed for a great deal of sep­

aration between dendritic calcium concentration and spine calcium concentration. 

Thus spines are to a great extent isolated from each other with respect to calcium 

fluxes. 

2. C a 2 + dynamics in the spine are quite sensitive to spine morphology and this could 

be an important mechanism in metaplasticity, the plasticity of synaptic plasticity 

[1] (for a model which explicitly explored this concept see [29]). 

3. The associativity nature of L T P arises through the voltage-dependence of the N M ­

D A R . It was found that a weak input which alone resulted in very litt le elevation 

of [Ca2"1"]^ in the spine could result in a much greater elevation of [ C a 2 + ] i if there 
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was enough activity at coactive synapses along the dendrite. 

2.3.4 Conclusions about first generation L T P models 

A t this point, it would seem that these first models had done a credible job of explain­

ing the robust experimental properties of L T P . L T P occurs when there is a sufficient 

amount of presynaptic activity at a synapse coupled to strong, local depolarization in 

the neighbourhood of the dendritic spine to alleviate the voltage-dependent M g 2 + block 

of the N M D A R — this explains the associativity and cooperativity properties of L T P . 

The spine is crit ical since its morphology allows large local changes in [ C a 2 ^ due to the 

presence of buffers, the diffusional restriction of its thin neck, the presence of calcium 

pumps, and its small volume relative to that of its parent dendrite — this explains the 

input specificity of L T P . Lastly, the threshold nonlinear type behavior expected of L T P 

induction can be seen in the activation of C a B P s . 

Part of the difficulty with the models as presented is that they are computationally 

intensive and fail to give much qualitative insight into the nature of calcium dynamics in 

a dendritic spine. One simplification is to identify a smaller number of lumped parameters 

whose values would give a good understanding of the nature of the calcium dynamics. 

If this is not possible, then a more thorough numerical investigation into how buffering, 

pumping, and diffusion parameters interact with spine shape to determine the shape of 

calcium transients should be carried out. Work has been done in both of these areas by 

Woolf and Greer who carried out numerical simulations on diffusion of second messengers 

in dendritic spines [118], and by Zador and K o c h [121] who carried out analytical work 

(based on the approach used by Wagner and Keizer [110]). 
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2.4 Numerical Investigation of Second Messenger Dif­
fusion in Dendritic Spines 

Woolf and Greer numerically modeled the diffusion of second messengers in the dendritic 

spines of granule cells of the olfactory bulb. The spine morphologies were based on 

serial electron microscopy reconstruction [119]. These cells were chosen rather than 

hippocampal pyramidal cells since their spines have both input and output operations, 

and their necks are thinner and longer than hippocampal pyramidal cell dendritic spines 

so the lack of spatial localization of second messengers in the granule cell spines implies 

the same of the hippocampal pyramidal cell spines. 

The numerical results of their simulations suggested the following: 

1. In general, longer and thinner spine necks resulted in larger transients of second 

messengers in the spine heads, and longer times were required to reach peak con­

centrations in the spine neck. 

2. Extrusion mechanisms often can be inefficient in spatial sequestration of second 

messenger signals at physiologically plausible density levels. 

3. B inding mechanisms can profoundly affect the shape of second messenger transients 

and the ability of the signals to reach the base of the spine. 

These results have some important implications. If there is a calcium-induced calcium 

release ( C I C R ) mechanism in spine heads, then the effect may simply prolong the el­

evation of calcium in the spine head. However, if the release mechanisms are present 

in the spine neck and throughout the dendrite, then there could be active propagation 

of calcium signals from one spine head to another. There is also a question about the 

diffusion of activated C a B P s such as C a M . A n important factor to consider here is the 

off-rate, or the rate of unbinding. C a M has a relatively rapid off-rate, so activated C a M 

levels w i l l quickly decay once the calcium transient begins to die. Thus the degree of 
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localization w i l l be strongly influenced by calcium-clearance mechanisms. The picture is 

a bit different for membrane-bound second messengers such as D A G and P K C . They w i l l 

probably be restricted to the spine head and theoretically allow a much better spatial lo­

calization of the effects of synaptic activity than cytoplasmic diffusible second messengers 

such as C a 2 + . This suggests that modeling the effect of buffering on calcium transients 

by scaling the diffusion coefficient of calcium may lead to qualitatively incorrect results. 

2.5 Linear iz ing C a l c i u m Dynamics through A s y m p ­
totic Expansions 

To obtain a better understanding of the non-linear calcium dynamics, Zador and K o c h 

[121] show how it is possible in certain l imit ing cases to reduce the dynamics to one 

linear P D E with constant coefficients in cylindrical domains. This equation is formally 

identical to the cable equation in the low [Ca 2 + ] j range, and simple linear diffusion in the 

high [Ca 2 + ] ? ; range. Their method used asymptotics for cases in which [Ca 2 + ] j is expected 

to be small and large relative to certain parameters and then to determine a leading 

order equation. 

The calcium dynamics involve diffusion, saturable pumps obeying Michael is -Menton dy­

namics, and diffusible buffers. The governing system of equations are 

D c o ^ d x ^ ~ P { [ C a ] ) ~ fcMCa][M] + kbb[B) + *f(x, t), (2.3) 

Db^r + kbf[M][Ca] - kbb[B], (2.4) 

[M](x,t) + [B](x,t), (2.5) 

where P[Ca] is the contribution of the pump term, DB is the diffusion coefficient of 

bound buffer, r is the radius of the cylinder, and ^/(x, t) is a source term. Here we have 

made the implici t assumption that [Bt] is a constant which is tantamount to a spatially 

homogeneous distribution of buffers and equivalent diffusion coefficients for bound and 
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free buffers. 

There are two assumptions that are critical in the reduction. The first is to assume that 

the time scale of diffusion is much longer than the time scale for buffering (i.e. for a 

length /, we require ^ > rB where rB = kbb+k\^Cc^)- If we follow the methods of Zador 

and K o c h , we can obtain a single equation for the C a 2 + dynamics 

„r„ ^d[Ca] d 
(DCa + DBp([Ca}))d[Ca] P([Ca]) + *f(x,t). (2.6) 

dx 

The second assumption has to do with looking at high and low C a 2 + l imits of the terms 

in equation (2.6). 

First , let us consider the low calcium l imit . If we assume that [Ca] <C KdtB, and [Ca] <C 

KfiiV the leading order equation becomes 

n + R A C a ] ( n , „ n ffl 2KmaxPS{^ ^ 2 , , 
^ ®~dT = (Dca + PDB'~dx* r [Ca] +-f(x,t) (2.7) 

where (5 = If we mult iply both sides by r/2 we can rewrite the above equation as: 

r(l + P) d[Ca] = r(DCa + PDB) d2[Ca) 
2 dt 2 dx2 

-PsKmax[Ca] + K^PJC^Jix, t), (2.8) 

n*,t) = p
f
K

{x't]
K . (2.9) 

Now notice that if I(x, t) = lo is & constant and we look for steady state solutions of 

(2.8), we get 

K „ = l i m m ^ . ( 2 . 1 0 ) 

t—>oo in 
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If we make the following substitutions: 

into (2.8), we obtain 

R-m Ps-Kmaxi ( 2 -l l) 

C. = (2.1*) 

Roo = Koo, (2.14) 

V = [Ca], (2.15) 

C ™ 3 F = 2 ^ ^ " - ^ + ( 2 - 1 6 ) 

which is readily recognized as the cable equation with a normalized current source term. 

The value of doing this is that the cable equation has been very thoroughly studied (see 

[43]). In the framework of the cable equation, we can see the pump acting like a membrane 

resistance, the buffers contributing to the capacitance, and the diffusion terms acting like 

intracellular resistances. More quantitatively, we can immediately define quantities such 

as the space constant, A, the time constant, r , and the input resistance of an infinite 

cable, Roo. In cable theory, these quantities are determined by the following formulas 

A = (2.17, 

r = RmCrn, (2.18) 

*• - ^ v f • 
If we now substitute (2.11)—(2.14) into the expressions listed above, we get 

_ , r ( l + /?) 
2P K 

T ( D C . + I3DB) 

s 1 max 
3 

K = ( 2 r ) ~ * (2 22) 
n ^ ( D C a + 8 D B ) P s K m a x ' 
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where Xc is the chemical space constant, TC is the chemical time constant, and is 

the chemical input resistance of an infinite cylinder. Now notice that TC is dependent on 

the radius of the cylinder, but r is not. Thus the time required for equilibration is going 

to be much larger for a larger cylinder. In particular, the time constant is expected to be 

small for a structure such as a dendritic spine suggesting that [ C a 2 + ] s p could rise quickly 

during stimulation and return to normal levels quickly at the end of stimulation. Also 

notice that just as in the electrical case, the space constant scales like the square root of 

the radius. However, the one big difference is that for reasonable physiological values of 

the given parameters, A c <C A. It can, in fact, be up to three orders of magnitude shorter 

than the electrical space constant. Thus, it is expected that the localization of chemical 

signals is going to be much more efficient than the localization of electrical signals within 

neurons.] 

A similar reduction can be performed in the high calcium l imit . If one applied this 

assumption as we did with the low calcium l imit , one could reduce the calcium dynamics 

to a simple linear diffusion equation with a source. In this case, the buffers and pumps 

are totally saturated, and all the essential nonlinearities are removed. 

Zador and K o c h then applied this linearization in the low C a 2 + l imi t to their Z K model. 

One of their observations was that the chemical input resistance of the spine was 10 

times larger than that of the parent dendrite. Thus, the same source located on the 

spine w i l l produce a much larger transient than if it were located on the parent dendrite. 

Furthermore, the chemical space constant of the spine neck was 0.27 pm making the spine 

neck length 4Ac which means that steady state [ C a 2 + ] s p would decay by a factor of 

~ 55 by the time it reached the parent dendrite. Furthermore, the small radius of the 

spine neck and head also mean that spines have much smaller chemical time constants 

than the parent dendrite. This w i l l only further amplify the concentration gradient 

between spine head and parent dendrite during calcium transients. This result shows 
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how important the morphology of the spine is in both allowing for the development of a 

large, transient increase in [ C a 2 + ] s p while simultaneously l imi t ing the extent to which it 

w i l l spread throughout a dendrite. 

Another interesting facet of the linearized C a 2 + dynamics can be seen in the morpho-

electrotonic transform [123]. Not only are local C a 2 + transients in active spines isolated 

from the dendritic shaft, but C a 2 + transients in the dendritic shaft are to a large extent 

isolated from the spine heads. This is in contrast to the tremendous voltage attenuation 

from spine head to dendrite when there is an input to the spine head, but when there 

is an input to the dendrite then there is very little voltage attenuation from dendrite to 

spine head [88]. 

This gives us a good understanding of calcium dynamics and how spines provide a m i -

croenvironment for large changes in [ C a 2 + ] s p . However, L T P cannot be explained simply 

as a result of C a 2 + influx through N M D A R s when strong presynaptic activity is coupled 

to strong depolarization in the neighbourhood of the spine, wi th the resulting large non­

linear increase [ C a 2 + ] i in the spine, and the activation of C a B P s and C a 2 + -dependent 

enzymes. Thus, the modeling cannot end here. 

2.6 The Spatial Nature of C a 2 + Transients in L T P 

Due to the input-specificity requirements of L T P , the C a 2 + transient' must be severely 

restricted spatially in order to prevent the induction of L T P at adjacent synapses. Thus, 

it has been suggested that the dendritic spine may act as a separate compartment from 

the parent dendrite which acts to amplify the [ C a 2 + ] i f o r a given level of st imulation [81]. 

This idea was built into the models reviewed above in the form of calcium pumps and 

buffers wi th in the spine. However, only in the last few years have experimental techniques 

to measure [ C a 2 + ] i in dendritic spines been developed. 

23 



Chapter 2. Spines and Long-Term Potentiation 

It has been found in a number of experiments that the [ C a 2 + ] s p , the concentration of 

C a 2 + in the spine head, is significantly higher than [ C a 2 + ] r f , the concentration of C a 2 + in 

the parent dendrite, during synaptic stimulation [84, 75]. This difference could largely be 

negated by application of the N M D A R antagonist, D - A P V . Furthermore, bath applica­

tion of N M D A resulted in values of [ C a 2 + ] 5 p greater than [ C a 2 + ] d in a manner depending 

on [ C a 2 + ] 0 , the extracellular calcium concentration [101]. Lastly, depolarization of the 

soma to -20 m V results in a larger increase in [ C a 2 + ] s p than in [ C a 2 + ] d [101, 99]. This dif­

ference could be blocked by application of L - t y p e voltage gated calcium channel ( V G C C ) 

blockers, but not by either a P - type V G C C blocker or an N - t y p e V G C C blocker. This 

suggests that spines have a hyperconcentration of N M D A R s and L - t y p e V G C C s com­

pared to the parent dendrites, or a smaller concentration of C a B P s as assumed in the 

mathematical models of L T P . For example , a recent experiment [32, 33] followed the 

dispersal of C a 2 + in a dendrite that was temporarily made permeable to C a 2 + . It was 

found that there was a significant lag in the change in [ C a 2 + ] s ? ) compared to [ C a 2 + ] d in 

one-third of all spines. This difference was more frequently found in spines wi th long, 

thin stems than in spines with short, stubby stems. 

However, it should be noted that the lag in spines for spreading C a 2 + was not due to a 

physical diffusion barrier as there was no lag in the change in [ C o 2 + ] between spine and 

parent dendrite when C o 2 + was substituted for C a 2 + in the extracellular fluid ( E C F ) . 

This suggests the possible importance of calcium pumps in keeping [ C a 2 + ] s p somewhat 

isolated from [ C a 2 + ] d . However, notice that the degree of difference is considerably 

smaller than that suggested theoretically. This may in large part be due to the fact that 

calcium fluorescence techniques do not actually measure the C a 2 + directly but rather 

the concentration of calcium bound to certain exogenous C a B P s which fluoresce when 

irradiated wi th light of certain wavelengths. 

The idea that calcium dynamics are not always as intuitive as one might think is an 
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important one when dealing with such a qualitative endeavor. Nowycky and Pinter [78] 

performed a rigorous numerical analysis of the motion of C a 2 + and C a B P s in model cells 

(for a less rigorous treatment of simulations of the movement of C a B P s , but one that is 

specific to spines see [45]). One of their chief results was the spatio-temporal distribution 

of C a 2 + - b o u n d buffers and C a 2 + can be quite different. This is especially true for small , 

mobile calcium chelators such as fura-2 which are typically used in calcium fluorescence 

experiments. This may partially explain the paradoxical results of the above experiment. 

2.7 The temporal nature of C a 2 + transients in L T P 

The experimental data shows reasonable qualitative agreement wi th the theoretical mod­

els in terms of l imit ing the spread of C a 2 + . Unfortunately, the same cannot be said of 

the temporal nature of the C a 2 + transients. 

In a recent study [64], a photolabile C a 2 + chelator, diazo-4, which increases its affinity 

for calcium 1600-fold upon exposure to intense light, was used to determine some of the 

temporal features of the C a 2 + signal required to induce L T P . A stimulus which normally 

induces L T P (100 Hz stimulation for 1 s) was found to induce P T P if the light was applied 

1 second after the beginning of the stimulus (Is of 100 Hz stimulation), S T P or weak 

L T P if light was applied 1.5-2.0 seconds following the beginning of the stimulus, and full 

L T P if the light was shone 2.5 seconds or later after the beginning of the stimulus. Whi le 

these results may possibly allow for the release of C a 2 + from intracellular stores such 

as the S E R , they do rule out any possible influences due to long-lasting C a 2 + waves or 

oscillations. Furthermore, since the peak [ C a 2 + ] i i s reached within 1.5 seconds when only 

S T P was induced, this indicates that incomplete activation of some quickly activated 

[ C a 2 + ] i dependent process does not distinguish whether S T P or L T P is induced. This is 

where the models discussed above fail . The Ca 2 + -dependent processes that were assumed 

to underlie L T P were quick, and the peak level of [ C a 2 - ^ in these simulations occurred 
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well before that noticed during experiments (this can be seen in the small value of rc). 

Thus, the nature of the nonlinearity that is produced during L T P could not be of the type 

that would have been noted in the previous modeling efforts. We w i l l need to consider 

some more results from the biology of L T P before attempting to proceed. 

Whi le a fairly robust result in L T P has been the requirement of increase in [Ca 2 + ] j and 

the activation of N M D A R s , there are other possible sources of C a 2 + such as the S E R . 

C A 1 hippocampal pyramidal neuron dendritic spines contain a high concentration of 

m G l u R 5 [94], a metabotropic glutamate receptor, which catalyzes the hydrolysis of phos­

phoinositide bis-phosphate (PIP2) to inositol trisphosphate ( IP 3 ) and diacylglycerol 

( D A G ) . I P 3 acts on I P 3 receptors located in the S E R to cause release of C a 2 + (see [9] for 

a review), while D A G is a potent activator of protein kinase C ( P K C ) . This is of some 

interest since it is known that I P 3 receptors are found in C A 1 hippocampal pyramidal 

neurons but ryanodine receptors (RyRs) which are involved in calcium-induced calcium 

release ( C I C R ) processes are not, even though they are typically found in high concen­

trations in dendritic spines [103]. Furthermore, I P 3 is produced during the induction of 

L T P [37], and topical application of I P 3 to their dendrites can result in a C a 2 + wave which 

propagates throughout the dendrite [44]. Moreover, thapsigargin [7, 37] and dantrium 

[79], which act to inhibit the release of C a 2 + from intracellular stores, can prevent the 

induction of L T P . A direct link between these results and a role for mGlur5 comes from 

agonist/antagonist studies. m G l u R 5 antagonists have been shown to prevent the in ­

duction of L T P [6], while agonists have been shown to be capable of potentiating L T P 

[20, 13, 14]. The effects of m G l u R 5 agonists could be prevented by thapsigargin which 

strengthen the link between intracellular C a 2 + stores and the induction of L T P . In light 

of this evidence, I w i l l now review a model of L T P which explicitly included the presence 

of intracellular calcium stores. 
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2.7.1 A Model of C a 2 + Dynamics in Dendritic Spines 

Schiegg et al . developed a model [97] in 1995 which incorporated a mechanism for the 

release of C a 2 + from intracellular stores as a result of the experimental results noted 

above. In particular, they were concerned with meeting the criterion for elevated levels 

of [ C a 2 + ] s p for 2 — 2.5 s as noted in the study using the photoactivable calcium chelator, 

diazo-4 [64]. 

The modeling approach was to use a 10 compartment electrical model of a C A 1 hip­

pocampal pyramidal neuron split into a soma compartment, a basilar bush, a lower 

apical branch, and an upper apical branch which is subdivided into 6 dendritic compart­

ments. The upper apical branch was subdivided to allow better spatial resolution in the 

neighbourhood of the synaptic input. A set of A?'spine identical spines were attached 

to the fourth dendritic compartment away from the soma on the upper apical branch. 

The spine morphology was as before, a cylindrical spine head attached v i a a spine neck, 

which was reduced to a lumped potential in the electrical model, to the parent dendrite. 

It further was assumed that there was synchronous activity in each spine, and thus the 

voltage and current loss to the dendrite was the same for each spine. A s , a result, only 

one spine needed to be explicitly included in the electrical model. The voltage channels 

used in this model were based on the N M D A and n o n - N M D A R currents used by Zador 

and K o c h [122]. 

The calcium dynamics were essentially the same as in the Z K model. The spine head was 

split into three compartments in the discretization, with al l synaptic channels located in 

the subsynaptic compartment. The spine neck also was subdivided into three compart­

ments. There are a couple of differences worth noting. First , it was assumed that 10% 

of the current flowing through the N M D A R is due to C a 2 + , rather than the 2% used in 

the Z K model. Rather than model the four separate sites on C a M , which was assumed 
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to have a total concentration of RS 30 uM, it was assumed that there was a buffer with a 

single calcium binding site with [Bt] = 120 uM in the spine. The forward and backward 

binding constants of the buffers were the same as in the Z K model. The form of the 

pumps were as in the Z K model, but the pump efficiencies were larger than the values 

used in the Z K model by a factor of 10. Rather than explicitly model the [Ca 2 + ] f l ! , it 

was assumed that [ C a 2 + ] d was clamped at 50 n M . However, by far the biggest difference 

between the two models is the inclusion of a C I C R mechanism in this model. 

B o t h the IP3 receptor and the R y R show a bell-shaped calcium response w i t h l i t t le 

calcium release at low [Ca 2 + ] j and high [ C a 2 * ^ . Rather than using a detailed model 

of both I P 3 receptors and R Y R s , Schiegg et al . combined the two in the form of one 

phenomenological equation with a bell-shaped calcium dependence. It was assumed 

that there was one common intracellular C a 2 + pool which occupied j^th of the spine head 

volume. In the discretization scheme used, this intracellular pool was placed in the second 

compartment, directly below the subsynaptic membrane. The release of C a 2 + from this 

store and into the second spine compartment is modeled by 

d [ C < 1 ^ = PX ([Ca]store - [Ca]2) (2.23) 

where [Ca]siore is the concentration of C a 2 + in the store, [Ca]2 is the concentration of 

calcium in the second compartment, and X is the number fraction of open channels. X 

is calculated from 

dX 
[X - (RA)Re([Ca]2)] (2.24) 

dt 1~store 

where RA is the probability of receptor-agonist binding and Re([Ca]) models the b e l l -

shaped calcium response of the receptors. In these simulations, when the effects of 

intracellular Ca 2 + re lease was thought to occur, RA was set equal to 1. This is equivalent 

to assuming the receptors are saturated by agonist molecules. The following functional 
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form was used for Re: 

/ r , f 0, [Co] < [Colo, 
Re([Ca}) = { (2.25) 

{ u{[Ca]) exp [1 - u([Ca])], [Ca] > [Ca]e, 

»([Ca]) = ™ - ™ \ • (2.26) 

The form of the above equation is an a-funct ion (i.e. it has the form cae^ for t > 0, 

and 0 otherwise) which attains a maximum of 1 at [Ca] = [Ca]max. In the simulations, 

[Ca]e was chosen to be 150 n M as it is thought that there is little C I C R release when 

( C a 2 + ] i i s less than 150 nm. Thus the "intracellular stores only w i l l act as a source so long 

as [Ca]2 is above 150 n M . 

If RA was set equal to zero, it was found that previous models could not sustain high 

calcium concentrations for longer than 100 ms after the end of the stimulus. If we refer 

back to the analysis done on linearizing calcium dynamics, we can see this is a result 

of the extremely small value of the chemical time constant. This is where intracellular 

C a 2 + stores come into the picture. If four pulses are applied at 100 Hz wi th Nspine = 30 

and RA = 1, it was found that [ C a 2 + ] could be kept above 400 n M for longer than 1 s. 

Because of the steep drop-off in Re([Ca]) for [Ca] > 250 n M , it was found that there 

was minimal involvement of intracellular stores unti l [Ca]2 ~ 400 n M . The intracellular 

stores are able to maintain this concentration by compensating for the loss of calcium 

through pumps and diffusion if there is enough calcium present in the store, and if pX 

(see (2.23)) is large enough. If p or X is reduced by a factor of 10, then it is not possible 

to sustain elevated [ C a 2 + ] s p under any stimulation protocols. If, however, p and X are 

large enough, the drop-off in [Ca]store is nearly linear in time from the time it begins 

unt i l the time it ends, resulting in a quasi-steady-state in which [ C a 2 + ] s p is elevated for 

over 1 s after the end of the stimulation at a near constant value. The key factor that 

controls whether a spine is in the high X range is receptor-agonist binding which can be 

thought of as a function of IP3 concentration. Thus, if a stimulus is large enough to result 
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in significant I P 3 release, it is expected that [ C a 2 + ] s p may be elevated for a significant 

amount of time. Otherwise, [ C a 2 + ] s p wi l l decay quickly as the value of pX w i l l be too 

small to compensate for the loss of calcium through diffusion and pumps. 

This model nicely builds a mechanism showing how intracellular calcium stores can ex­

plain the results of the diazo-4 experiment where the previous models fai l , and it also 

helps explain the importance of I P 3 in L T P . Unfortunately, there is evidence suggesting 

that there are other calcium stores of importance in L T P , and that the biochemical cas­

cade involved may be a bit more complicated than init ial ly thought. It turns out that 

protein kinases (PKs) , and protein phosphatases (PPs) may be quite important in L T P 

induction. 

2.8 Protein Kinases and Phosphatases in L T P 

A s mentioned previously, there is ample evidence for the existence of L - t y p e V G C C s in 

dendritic spines. However, typically it has been found that depolarization pulses alone 

could not induce L T P . Some suggested that this may be due to an inabil i ty to create the 

appropriate increase in [ C a 2 - ^ , although it has been found that most of the increase in 

[Ca 2 + ] ? ; during synaptic activity is due to V G C C s [72]. However, depolarization pulses 

coupled to L F S (2 Hz stimulation) which did not act through an increase in C a 2 + influx 

could result in the induction of L T P [54]. This suggests that some aspect of glutamate 

release may be important in inducing L T P . Three immediate candidates for this effect 

are N M D A R s , m G l u R 5 , and a possible priming effect that action potentials have on the 

presynaptic cell. The problem with N M D A R s as the candidate is that bath application 

of N M D A is capable of creating large C a 2 + transients, but they only can induce S T P 

and not L T P [12] (although, see [108]). The problem with the priming hypothesis is that 

postsynaptic glutamate iontophoresis is capable of inducing L T P [22]. Thus the most 

likely st imuli required for the induction of L T P is some combination of a sufficiently 
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large increase in [ C a 2 + ] i and the activation of m G l u R 5 . 

Since a local, transient increase in [Ca 2 + ] ? ; itself was never seriously expected to be the 

ultimate end of the biochemical cascade which results in L T P , the next question becomes 

what is? That is, there may be a number of biochemical cascades involved which al l have 

one common endpoint — the activation of some critical molecule or biochemical process 

that once init iated results in a persistent increase in synaptic efficacy. It turns out there 

is such a candidate molecule, C a 2 + - C a M dependent protein kinase II ( C a M K I I ) (for a 

review of this remarkable enzyme see [16]). 

A B r i e f I n t r o d u c t i o n t o C a M K I I 

C a M K I I is a holoenzyme composed of 8-12 basically identical monomers. Each monomer 

possesses a catalytic site, a regulatory domain, and a site which allows it to bind to 

other monomers. Monomers are typically inhibited by their regulatory domain, but 

this inhibit ion is relieved when C a 2 + — C a M binds to the regulatory domain. In its 

C a 2 / — C a M bound state, each monomer has a very broad substrate specificity allowing it 

to regulate such diverse processes as carbohydrate metabolism, neurotransmitter release 

and resynthesis, cytoskeletal function, and ion flux [98]. Interestingly, C a M K I I is the 

most common Ca 2 + -dependent P K , comprising « 1% of total protein i n the brain, and 

& 2% of total protein in the hippocampus, and 30-40% of the total protein in the P S D . 

Given its high concentration in the P S D and hippocampus, it is not surprising that it is 

suspected of playing a major role in governing synaptic plasticity. 

C a M K I I has a unique set of attributes that allow it to respond to the distinctive prop­

erties of calcium signals which usually occur over a narrow range of concentrations, and 

are transient and pulsatile in nature rather than smooth and continuous. C a M K I I han­

dles such signals elegantly due to its multiple activity levels which are dependent not 

only on its monomers C a 2 + — C a M bound, but also their phosphorylation state. The 
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C a M K I I subunits are involved in autophosphorylation reactions [71] - one subunit in 

its C a ^ + — C a M bound state can phosphorylate a neighbor in the same state [34]. This 

phosphorylation has the effect of trapping C a 2 + — C a M to a monomer through a dramatic 

decrease in the off-rate of Ca 2" 1" — C a M binding. Since there is very litt le effect on the 

on-rate of binding, this results in a dramatic increase in the monomer's affinity for C a M 

- the Kd goes from RS 45 n M to RS 60 p M , one of the highest known affinities for C a M 

[16]. Whi le Ca 2" 1" — C a M typically dissociates from a monomer within a half-second, in its 

phosphorylated state, the typical dissociation time is on the order of hundreds of seconds. 

In this C a 4 + — C a M bound, phosphorylated state, the monomer maintains 100% of its 

catalytic activity. Even after the C a 2 + — C a M dissociates from the monomer, so long as 

the monomer is phosphorylated, it maintains 20-80% of its catalytic activity. Now it can 

be seen how the C a M K I I molecule can decode calcium signals. If a C a 2 + signal is arriving 

with a certain frequency, a certain number of subunits per holoenzyme are going to bind 

Ca^"1" — C a M . If two proximal subunits become activated, they may become involved in 

an autophosphorylation reaction which traps the C a 2 + — C a M and leads to a potentiation 

of the calcium signal. If the frequency is low, the Ca^"1" — C a M would escape before the 

next spike (this can happen because there are phosphatases which also are activated by 

C a 2 + — C a M which dephosphorylate the subunits), but if the frequency is high, then there 

is the possibility of even more subunits becoming activated with each new spike. "This 

cooperativity of calmodulin trapping may allow the kinase to be a frequency detector 

wi th a threshold frequency beyond which it becomes highly active" [16]. 

A M o d e l of C a M K I I D y n a m i c s 

Using some estimates of experimental parameters [68], Michelson and Schulman [69] 

developed a model for the activation and transition between different activity states of a 

ten subunit C a M K I I molecule. 

The jth subunit, Sj, had five activation states: inhibited, Sj, C a 2 + — C a M bound, 5 ^ , 

32 



Chapter 2. Spines and Long-Term Potentiation 

C a 2 + — C a M trapped, Sj, autonomous, Sf, and capped, Sf. In the capped state, it is 

phosphorylated at an additional site compared to the autonomous and trapped states. 

Once a subunit is bound to Ca 2" 1" — C a M , it can traverse the trapped, autonomous, 

and capped states. The transitions between these states were a function of the O a 2 * — 

C a M concentration and the activation state of its r ight-hand neighbor. 

If we let Sf+1 denote the activation state of the right-hand neighbor, the following tran­

sition matr ix describes the probability of transfer between the various activation states: 

pn([Ca4Ca.M]) p, B([Ca4CaM]) 0 0 0 

pBi([Ca4CaM},Sf+1) pBB{[Ca4CaM], Sf+l) pBT([Ca4CaM], Sf+1) 0 0 

0 pTB([Ca4Ca.M},Sf+1) pTT{{Ca4CaM),Sf+1) pTA([Ca4CaM], Sf+1) 0 

PAl([Ca4CaM},Sf+1) 0 PAT{[Ca4CaM],Sf+1) pAA{[Ca4CaM],Sf+1) pAC([Ca4CaM], Sf+1) 

0 0 0 PCA([Ca4CaM],Sf+1) pCC{[Ca4CaM},Sf+1) 

where the nonzero entries in each row are non-negative and sum to 1. 

The method used to solve the problem was Monte Carlo simulation. The transition prob­

abilities were based on half-life estimates of the various activity states from experimental 

data [68]. It was assumed that the transition state probabilities could be fitted to an 

exponential distribution. 

The results of simulations suggest that the trapped state of the subunits can act as a 

"capacitance" that allows for significant temporal summation even at low frequencies. In 

fact, a single InM. C a 2 + — C a M spike was capable of increasing the activity of C a M K I I for 

minutes following the stimulation. Another observation from the application of sinusoidal 

Ca 2" 1" — C a M transients is that while the proportion of subunits in inhibited, bound and 

trapped state is sinusoidal, the proportion in the autonomous and capped state do not 

and thus appear to be acting capacitively. 
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C a M K I I a n d L T P 

The idea of C a M K I I acting as a frequency detector of high frequency calcium signals, 

coupled to its high concentration in the hippocampus and P S D immediately suggests 

that it may be very important in L T P induction. This has been recognized and a very 

prominent theory in the field has been put forward suggesting that the activation of 

C a M K I I is not only necessary and sufficient for the induction of L T P but may actually 

be the genesis of L T P and L T D expression [57, 60, 58, 59]. The basic idea is that low 

levels of [Ca 2 + ] j which are thought to be involved in L T D induction may preferentially 

activate protein phosphatases which wi l l dephosphorylate C a M K I I subunits and result 

in a decrease in synaptic efficacy. However, a large increase in [ C a ^ ^ w i l l directly lead to 

the phosphorylation of C a M K I I and the resulting increase in C a M K I I activity w i l l lead 

to an increase in synaptic efficacy. In between synaptic weight change episodes, the level 

of phosphorylation of C a M K I I wi l l be set by the competing reactions of dephosphoryla-

t ion by protein phosphatases and autophosphorylation within C a M K I I holoenzymes. In 

support of this theory, it has been found that postsynaptic injection of C a 2 + — C a M can 

lead to the induction of L T P [112], while postsynaptic injection of C a M inhibitors [62] or 

C a M K I I inhibitors [62, 65] can block L T P induction. Furthermore, evidence for the l o n g -

term activation of C a M K I I following L T P induction has been found [26]. A n interesting 

question now becomes how might C a M K I I increase synaptic efficacy. One possibility 

that has been suggested is that C a M K I I directly phosphorylates synaptic glutamate re­

ceptors and results in an increase in conductance. In this light, it has been shown that 

several glutamate receptor subunits have consensus phosphorylation sites for C a M K I I 

[67]. Furthermore, C a M K I I can phosphorylate and increase the current through kainate 

receptors (this is a type of n o n - N M D A R which is quite similar to the A M P A R ) three-

to four-fold in vitro. A corollary to this C a M K I I hypothesis for L T P should be that if 

C a M K I I already is maximally activated or cannot be activated at a l l , then it should be 
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impossible to induce L T P . This is, in fact, observed. Transgenic mice without genes for 

C a M K I I are incapable of undergoing L T P [30], and when a constitutively active C a M K I I 

was introduced into hippocampal slices, it resulted in an increase in synaptic efficacy but 

prevented further induction of L T P [85]. 

Now the hypothesis that increased receptor conductance leads to an increase in synaptic 

efficacy seems intuitively obvious, but one has to remember that efficacy here refers to the 

abil ity of presynaptic activity to result in action potential generation at the axon hillock. 

In fact, it has been show that under certain circumstances this may not be true [117]. 

This w i l l be dealt wi th in more detail when I review results from electrical modeling of 

spines later. 

Now there is one last question which I should delve into before finishing the L T P portion 

of this thesis. Is an increase in [Ca 2 + ] ? ; under normal physiological conditions sufficient 

for the induction of L T P ? 

2.8.1 The role of P K C and sufficiency of C a 2 + in LTP induction 

The question of the sufficiency of increases in [ C a 2 + ] j i n L T P is very contentious. The first 

of many positive results came from experiments with a calcium chelator, n i t r -5 , which 

releases C a 2 + upon exposure to light [63]. However, many different experimental results 

have been found, and there is no clear consensus. One interesting experiment alluded to 

earlier [112] found that postsynaptic injection of C a 2 + o r C a M alone could not induce L T P 

while the injection of a c a l c i u m / C a M mixture could in a manner that was inhibited by 

C a M K I I and P K C inhibitors. The role of C a M K I I in L T P was discussed previously and 

w i l l not be discussed again. P K C was mentioned previously as a P K which is activated 

by D A G which is produced during m G l u R 5 activation (along with I P 3 ). It has been a 

fairly consistent observation that P K C is activated during L T P induction [51], and its 

inhibi t ion prevents L T P induction [3, 111, 91]. 
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The l ink between P K C activation and C a M K I I activation is not immediate as neither has 

any direct effect on the other. However, it has been discovered that P K C phosphorylates 

a protein, R C 3 (also called neurogranin), found in high concentration in dendritic spines 

[113]. R C 3 is a calmodulin-binding protein which decreases its affinity for C a M when it 

is phosphorylated [28]. It has been shown that R C 3 can modulate calmodulin availability 

and decrease the activity of C a 2 + — CaM-dependent enzymes [66]. For example, in the 

presence of luM of R C 3 (a more physiological concentration is 2pM), 10 pM of C a 2 + was 

required to achieve hal f -maximal velocity of nitrous oxide synthase (NOS) , a Ca 2" 1* — C a M -

dependent enzyme. Only .55pM of C a 2 + w a s required in the absence of R C 3 . It was found 

that inclusion of activated P K C could prevent the RC3-mediated inhibit ion of N O S . This 

effect could be negated by inclusion of alkaline phosphatase which dephosphorylates R C 3 . 

This is of some interest since R C 3 is dephosphorylated by P P 1 and calcineurin, both of 

which are found in dendritic spines [102]. The specific link between R C 3 and L T P comes 

from an experiment in which it was found that antibodies to R C 3 which inhibit its 

P K C - m e d i a t e d phosphorylation could prevent the induction of L T P [25]. One possible 

reason for this effect may have been due to some effect on C a M availability. Some have 

suggested that " R C 3 is a biochemical 'capacitor' in that it transduces C a 2 + fluxes into 

kinetic parameters affecting the availability of C a 2 + / C a M and the rapidity wi th which 

it is made accessible to other enzymes" [28]. Thus, R C 3 may be acting as a P K C -

mediated C a M store, and this is the connection between P K C and C a M K I I activation. 

However, there is some evidence suggesting a role for phosphorylated R C 3 in mobil izing 

of intracellular C a 2 + stores in Xenopus oocytes [21]. 

2.9 Conc luding remarks about L T P 

W h a t exactly L T P is at this moment is not at all clear, but there seems to be a very 

strong connection between it and dendritic spines. The connections between L T P and 
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learning/memory are less clear. The only solid connection between L T P and learning 

appears to be that mechanisms which reduce the capacity for L T P induction seem to 

impair spatial memory in rats. This is consistent with the hippocampus being very 

important in spatial memory. Otherwise, there seems to be little effect for the most 

part. One has to be a bit cautious because here L T P means L T P induced at the Schaffer 

collaterals in the stratum radiatum of C A 1 hippocampal pyramidal neurons. Thus, L T P 

induction may be dependent on similar but slightly different mechanisms elsewhere in 

the C N S . O n the other hand, the local learning memory paradigm may not be the way 

most memories are stored in the C N S . This should not denigrate, however, the work that 

has been done in this field. L T P is a very robust memory phenomena which may provide 

insights into the way in which memories are encoded in the C N S , and this is why it is 

so extensively studied. Moreover, L T P offers an excellent example of theoreticians and 

experimentalists working side-by-side in deciphering the riddle of biological complexity. 
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E l e c t r i c a l M o d e l i n g of Spines 

3.1 Introduction 

W h i l e intracellular C a 2 + dynamics are difficult to quantify, the cable model for voltage, 

and the parameters which describe it, are known with much more certainty. Thus, we 

stand on much firmer ground when we try to obtain insights into the electrical nature 

of spines than when we try to understand their C a 2 + dynamics. The first notion of the 

possible electrical implications of spine necks was made by Chang in 1952 [19]: 

"If the end bulbs of the gemmules (spines) are the receptive apparatus for the 

presynaptic impulses, the process of postsynaptic excitation init iated there 

must be greatly attenuated during its passage through the stems of the gem-

mules (spine necks) which probably offer considerable ohmic resistance be­

cause of their extreme slenderness." 

Since then, a number of theories have been put forward to explain the electrical nature 

of spines. I now w i l l review a few of the major ideas. 

3.2 Spines mediate synaptic potential attenuation 

A s mentioned above, Chang made this proposition in 1952 and explained its functionality 

by requiring that a number of synapses be coactive to bring a cell to threshold for action 

potential ( A P ) generation. From cable theory estimates, one expects the most important 
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determinant of this phenomena to be spine neck resistance since the spine membrane 

resistance is large enough to be assumed to be infinite owing to the extremely small 

surface area of spines. It turns out that because of the extremely short lengths of spine 

necks (on the order of 1/im), there is likely to be very little current attenuation across 

the spine stem (this w i l l be elaborated upon later). However, because the spine input 

resistance is expected to be much larger than the dendritic input resistance, the spine 

should be able to mediate a much larger local E P S P than the same current input into 

the parent dendrite. 

A n important point which w i l l be made here is the asymmetry in the cable equation. 

W h i l e a synaptic event w i l l produce a large voltage gradient between spine head and the 

parent dendrite, there w i l l be little voltage difference between the dendritic shaft and 

neighboring, inactive spines [88]. The large, local E P S P generated in spine heads has 

implications in terms of the activation of N M D A R s , which may be important in L T P , 

and voltage-gated channels, which may allow for a type of pseudo-saltatory conduction 

with in dendrites (this w i l l be discussed later). Thus, as Shepherd pointed out [105]: 

" . . . a spine is a sensitive detector of its own synaptic input, but it follows 

closely with neighboring spines the integrated potential of its parent dendrite; 

from this perspective, it is both a detector and an integrator." 

3.3 Spines allow for linear summation of E P S P s 

One idea put forward was that the attenuation across a spine neck w i l l keep spines isolated 

from each other and allow linear E P S P summation. This is a consequence of the nature of 

the current inputs which are proportional to the difference between the transmembrane 

potential and the reversal potential of the channel which can be considered to be a 

constant under most normal, physiological conditions (however, see [86]). However, one 

aspect to be pointed out is that the time course of an E P S P in a spine is expected to 
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be much shorter than an equivalent one on the parent dendrite. This narrows the time 

frame over which non-linear interactions between neighboring spines can occur, and this 

can have important implications when nonlinear spine dynamics are considered. One 

thing that should be mentioned is that the time course of the E P S P as observed in the 

dendrite and soma is fundamentally the same whether the synapse is on the spine or the 

dendrite because the higher capacitance of the dendrite and soma cause them to function 

as low-pass filters. However, the spine is not so constrained. 

3.4 Spine neck resistance as controller of synaptic 
weight 

One idea that has frequently been put forth is that a spine is ideally situated to be a 

compartment for controlling the strength of an individual synapse. Since changes in spine 

morphology and density have been correlated with memory [105, 35], this idea does have 

some merit. 

W i l f r i d R a i l showed the conditions under which a mechanism controlling spine stem 

length could be prominent [90]. His analysis was under steady state assumptions, but 

the fundamental underlying idea applies to transient currents as well. He demonstrated 

that the amount of current that reaches the parent dendrite when injected into the spine 

head is most malleable when the resistance of the spine neck is approximately equal to 

the input resistance of the infinite dendrite. 

It is a fairly typical observation that spines with the longest and thinnest necks tend 

to be located on thin distal dendrites. Thus, the thinking was that there is some sort 

of an impedance matching between RN and Roo,d which allows features of the spine 

neck to control synaptic efficacy. However, the bulk of evidence suggests that typically 

RN < # o o , d [107]. 
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3.5 Spines attenuate transient synaptic input 

The fundamental ideas of Rail 's work led people to delve into the possibility that synaptic 

events in spines may push the spine membrane potential towards the synaptic reversal 

potential due to the high input resistance of spines. This notion was a fundamental one 

in the field for many years with no clear consensus. However, in the early 1980s, several 

groups came forward with a formal mathematical analysis of the problem [116, 49, 50, 52]. 

A l l suggested that there should be little attenuation of current across the spine neck, 

although it was accepted that there was a range of geometrical and electrical parameters 

over which local spine E P S P s could push the potential towards the synaptic receptor 

reversal potential and result in voltage saturation. K o c h and Zador [53] showed there 

is insignificant attenuation of transient synaptic input if the product of the synaptic 

conductance and input resistance of the spine head is much smaller than one. In this 

case, the spine could be said to represent a current source of amplitude gsyn(Vsyn — Vsp) 

where g s y n is the synaptic conductance, Vsyn is the synaptic reversal potential, and Vsp is 

the spine head potential. Conversely, if' gsynRinfty <^ 1> then the action of a synapse can 

be seen as a voltage source causing the dendritic E P S P to approach „°°,d °Zn . 

The earlier conclusions that there would be significant attenuation were based on a poor 

understanding of the electrophysiology of spines and were based on channel densities 

of squid axons. W i t h more reasonable, physiological estimates, it seems as though 

9synRoo,sP *C 1 for most spines. Thus spines act primari ly as current sources and moving 

a synaptic connection from the spine head to the dendritic shaft would not appreciably 

change the depolarization achieved within the dendrite or within the soma. Let us now 

look at some other theories of spines and leave this idea behind. 
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3.6 Spines increase the low—pass filtering capacity of 
neurons 

One feature of spines that has not been addressed much so far is the idea that spines w i l l 

increase the surface area of dendrites. Thus, spines would be expected to have a reduced 

membrane resistance, and an increased capacitance. This w i l l have the net effect of 

decreasing the electrotonic length and input resistance, while having litt le effect on the 

time constant [46] (see below for an analytical justification). This w i l l drastically reduce 

spatial summation and wi l l amplify the low-pass filtering capacities of dendrites. This 

effect has been noticed in the torus semicircularis of the weakly electric fish, Eigenmannia 

[95, 96]. It was noticed that the amplitude envelope of a stimulus (2 — 20 Hz) was nicely 

reflected in the fluctuations of heavily spined neurons, but not in sparsely spined or 

aspiny neurons of otherwise similar morphology. This has implications in minimiz ing the 

jamming of Eigenmannia's electrolocation capabilities by electrical discharges from other 

nearby electrical fish. 

3.7 The effect of passive spines on the cable proper­
ties of dendrites 

The intuitive notions of spines not affecting membrane time constant while decreasing the 

electrotonic length and input resistance of dendrites should be quantifiable. The nature 

of spines is such that compartmental models and numerical simulations are required 

to represent their discrete nature. However, Baer and Rinzel [5] developed an idea for 

simplifying the situation for the case of a relatively spiny dendrite with identical spines. 

Instead of modeling each spine individually, just view them as having a certain density, p. 

The spines are not connected to each other directly electrically, but are coupled indirectly 

v ia the parent dendrite. Thus we can come up with a modified cable equation for passive 

spines in a passive dendritic tree as follows (see the table in Section 2.3 for some of the 
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symbols) 

dVd Tir]d2Vd nrd 

2 , r d C m — = — — - — . V i + pIN, (3.2) 

IM = (3.3) 
KN 

where Vsp and Vd are the membrane potentials of the spine and the dendrite, respectively, 

Csp is the specific capacitance of the spine, RmjSp is the specific membrane resistance of 

the spine, IN is the resistive current flowing between the spine head and the dendrite, 

and p is a proportionality factor. If we mult iply (3.1) by Rm,sp a n d (3.2) by and 

make the substitutions 

r = RrnCm, (3.4) 

A = ^ (3.5) 

T = - , (3.6) 
r 

X = \, (3.7) 

we get 

R'm,spCsp dVSp 
r ~Vsp — Rm)SplN, (3.8) 

dVd _ d2Vd pRmj ( , q ) 

W ~ dJO'Vd+2^r~d
lN- (3"9) 

If we mult iply and divide the term containing IN in (3.9) by A, recognize that Rooid = 

2jf ™A, a n d let p = Ap, which is a measure of spine density per electrotonic length, then 

we get 

dVd d2Vd 

dT dx2 
-Vd + pR0o,dIN. . • (3.10) 

Now, we can make use of physiological estimates of the parameters to reduce the problem 

further. Typical ly, we expect Rm,sp ^ RN, and Roo,d 3> RN, and Vsp « Vd . Let us 
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introduce a small parameter, e = JiN , and expand Vs„ as 
f*-in,sp " 

Vsp = Vd-reVsPtl + e2Vsp,2... (3.11) 

If we substitute the above equation into (3.8) and (3.10), and only retain 0(1) terms in 

e, we get 

Rm,spCsp dVd 

r dT 
-Vd - VsPtU (3.12) 

dVd _ d2Vd pR^, 
dT dX2 V d + R Z ~ p V s ^ ( 3 1 3 ) 

If we solve (3.12) for Vsp>i, substitute it into (3.13), and rearrange the terms, we obtain 

pR0o,dRrn,spCsp\ dVd 82Vd ( pRoo,d\,r , o i A\ 

1 + Rm,sp r ) W - d X ^ - { l + - R - ) V d - ( 3 " 1 4 ) 

Now by analogy wi th the cable equation, the appropriate thing to do here is to mult iply 

both sides of the equation by ^1 + p^°°-d j to get 

dVd 2d2Vd 

~&T = sdX*~ d' ( ^ 

T> = ^ P Z J ~ i (3-16) 

A, - ( l + l T ^ ) 2 - (3-17) 

Now notice that if ' m , s
r

p i p > 1, we have r s > 1, and the effective time constant is 

larger than the time constant of an equivalent nonspiny dendrite. The opposite is true 

ft C Fi c 

if in's* av < 1. Under reasonable physiological assumptions, we expect m , ° * s p ss 1 in 

agreement with the results of Jaslove [46]. However, notice that \s < 1, and thus there 

always w i l l be a decrease in effective electrotonic length. Furthermore, the same also is 

expected to be true of the effective input resistance since it is proportional to the effective 

electrotonic length, i.e., 

Roo,deff ~ Roo,d.^s- (3.18) 
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The unfortunate thing about the above analysis is that it does not show how electrotonic 

length and input resistance change with Rjy. We only have done a leading-order approx­

imation which neglects the effects of RN under the presumed physiological conditions. 

However, the certainty with which these predictions can be made must be tentative since 

no direct measurements from spines have been made. The spine cytoplasm looks quite 

different from the dendritic cytoplasm and might have a different value of Ri (probably 

bigger). Spines contain spine apparati, S E R , and occasionally mitochondria which should 

act to increase R^ by an uncertain amount. To clear up this issue, we look at a steady 

state model. This should not effect the length constant or the input resistance. The 

equations now become 

0 = INl (3.19) 

0 - X 2 ^ - V d + pR00>dIN. (3.20) 

We can solve (3.19) for Vsp to obtain 

VdRm,sp 
Vsp = "2 • (3.21) 

-H-rn,sp + J*N 
Substituting (3.21) into (3.20), we obtain 

A' 
d2Vd 

dX2 
1 + 

pR<x,d 

RN + R-rn,sp J 
Vd = 0. (3.22) 

This yields an effective space constant, Xe^, and effective input resistance, R^I{,, of 
oo,d> 

= A
 p , (3.23) 

' 1 + ' RN+Rm, 

< J = I ^ J f . (3.24) 

Thus, we immediately can see that increasing R^ has the effect of increasing Xe^ and 

Rood- This can be reasoned as a result of increasing isolation between spine and shaft 

and decreasing the conductance load of the spines on the dendrite. Notice that for 

Rm,sp >̂ RN, we recover the leading-order multiplicative corrector to A, A s , derived 

earlier. 
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3.8 Computational richness of active dendritic spines 

Now that we have seen the effects of passive dendritic spines on the cable equation, the 

next obvious question is: what is the effect of active conductances in dendritic spines? 

Investigations into the implications of active conductances in dendritic spines began in 

1985 with the publication of three papers on the subject [70, 82, 106]. 

Mi l le r et al . [70] looked into the effects of letting the value of the spine neck resistance 

depend on the amplitude of the E P S P in the dendritic shaft. They found that the 

peak dendritic E P S P to a synaptic input was a bell-shaped function of the spine-neck 

resistance ceteris paribus when the active conductances were sufficiently large. Intuitively, 

one expects that as neck resistance init ial ly is increased from low values, this increases the 

input resistance of the spine and results in an increase in the spine E P S P . This recruits 

more and more active channels to open and increases the current output to the dendrite 

and results in a larger dendritic E P S P . Eventually, at some critical value of spine neck 

resistance, there should be an action potential in the spine head and a nonlinear increase 

in dendritic E P S P . A s the spine neck resistance continues to increase, the high spine neck 

resistance w i l l eventually cause a very quick voltage saturation in the spine head as the 

spine head potential approaches the reversal potential of the active channels. Increasing 

i?iv further has litt le effect on the voltage-time integral and only serves to decrease ijv 

and the resulting dendritic E P S P . This is the principal driving force for current through 

the spine neck which is the cause of the dendritic E P S P [87]. Thus active spines confer 

an even greater dependence of synaptic efficacy on spine neck resistance than was first 

implicated by R a i l in 1974 [90] (for the appropriate parameter ranges). These results were 

confirmed by Perkel and Perkel [82], who also showed that in order to get the bell-shaped 

curve of dendritic E P S P vs. spine neck resistance: 

1. The ratio of peak active conductance to peak synaptic conductance had to be 

sufficiently high (larger than 1). 
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2. The dendritic input resistance had to sufficiently small , i.e., for high enough den­

drit ic input resistance, the dendritic E P S P is essentially a monotonically decreasing 

function of spine neck resistance. 

A thorough investigation into this problem was made by R a i l and Segev in the late 1980s 

[87]. They suggested that the key to the attainment of threshold for an excitable dendritic 

spine is 

I active > IN - I syn when VSP = VTH (3.25) 

where Iactive is the current through active channels, I S Y N is the synaptic current, and VTH 

is the threshold voltage where net inward current generated at the spine head is greater 

than the net outward current into the passive dendrite. Thus, the early active current 

must exceed the difference between the current though the neck and the synaptic current. 

They concluded that increasing RN decreases the voltage threshold because 

1. Increasing spine neck resistance increases the spine input resistance and results in 

steeper spine E P S P s . 

2. 1^ is a monotonically decreasing function of RN increasing the likelihood that the 

inequality (3.25) is satisfied. 

3. Increasing RN decreases the conductance loading of the spine head membrane. 

The effects of increasing active channel densities in active spines also was investigated. 

In general, it was found that increasing the density of active channels eventually led to 

a quick saturation of the voltage in the spine head. However, here the dendritic E P S P 

was a monotonic function which plateaued at some finite value since IN is inversely 

proportional to RN but independent of the channel density. 

R a i l and Segev went on to address the significance of placing active channels i n spines 

versus on the dendrites. They suggested that to optimize synaptic efficacy, active mem­

brane channels should be divided into spines such that each has just the right density 
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of channels to fire action potentials. This is preferred to equally spreading them over 

the dendrite since the smaller dendritic input resistance would make it more difficult to 

achieve threshold. Furthermore, the precise synchronous t iming of inputs is very crucial 

to possible nonlinear interactions when dendrites contain active spines. For example, a 

single synaptic event which is insufficient to result in an active spine firing an action 

potential, could be sufficient if the dendrite is depolarized from activity at neighboring 

spines. This is a result of the decreased value of IN due to the larger value of Vd in 

inequality (3.25). The possibility of precise t iming is strengthened even further for those 

spines which appear to receive input from both an inhibitory presynaptic terminal and 

an excitatory presynaptic terminal. Here, conjunction of presynaptic and postsynaptic 

inputs wi th in a narrow time window could prevent action potential generation and result 

in a nonlinear decrease in dendritic E P S P . 

3.9 Pseudosaltatory conduction in dendritic spines 

While it seems as though more attention was paid to RN than in the above simula­

tions, this is because they tended to focus on the implications of a single excitable spine 

in isolation from its neighbours. One question that arises naturally is whether or not 

active spines can mediate action potentials which regeneratively travel down dendrites. 

Since the active channels would only be in discrete locations in the spine head along 

the dendrite, the situation is somewhat analogous to saltatory conduction in myelinated 

axons. Here, we expect that a high dendritic input resistance is essential to ensure that a 

dendritic E P S P stays above Vth as suggested by R a i l . The possibility of pseudosaltatory 

conduction in excitable spines was first simulated by Shepherd et al . in 1985 for spiny, 

distal dendrites in pyramidal neurons of the cerebral cortex [106]. Their in i t ia l results 

suggested that such dendritic action potentials were possible wi th H o d g k i n - H u x l e y type 

kinetics in the spine heads if: 
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1. active channel densities were large enough, 

2. the am constant was sufficiently large, 

3. spine neck resistance was within a certain range, 

4. dendritic radius was sufficiently small (this is correlated wi th a large space constant 

and dendritic input resistance, both of which aid in action potential generation), 

and 

5. active propagation past branch points depended on activity in sister branches. 

They suggested such a mechanism could allow for large increases in the efficacy of distal 

dendritic inputs, and allow for much quicker propagation of information to the soma 

instead of the classical result that distal dendritic inputs only can have a slow, small 

modulatory effect on the somatic potential. Furthermore, the propagation of an impulse 

often required several near-synchronous, spatially localized inputs and could greatly in ­

crease the complexity of information processing that can take place in dendrites. The 

action of a set of inputs now not only depends on the size of the depolarization it can 

elicit at the axon hillock, but also depends on its spatio-temporal coactivation patterns 

wi th its neighbours. R a i l and Segev showed a similar result for excitable spine clusters 

[88], that is, for dendrites in which there are passive and active spines, but with the 

active spines located in close proximity with each other. 

M o t i v a t i o n o f t h e s p i n e c o n t i n u u m m o d e l 

Once the notions of significant synaptic attenuation across spine necks had been put to 

rest, more interest began to develop about the possible implications of excitable spine 

membranes. From some of the major papers that had been written in this field over the 

past few years, the issue of the significance of dendritic spines is not yet clear. However, 

over the past few years, the paradigm has shifted to spines being mediators of biochemical 
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specificity of synapses (i.e. their role in L T P ) rather than electrical modulators of synaptic 

activity. The possibility of active membranes in spines is a fascinating one, both in 

terms of the possible generation of mathematical richness in the model equations, and its 

capacity for fundamentally altering the way in which the effects of distal dendritic inputs 

are viewed. However, the problem is plagued with analytical intractability in its present 

form — the computational modeling of active membrane channels wi th in spines yields 

results which make intuitive sense, but we seem to lack an understanding of how the 

parameters work together to elicit the propagation of these dendritic action potentials. 

The problem has to do with the discrete nature of spines. This is where the ideas of 

averaging and switching to functional forms which retain enough of the qualitative spirit 

of the model, but allow for more analytical methods of investigation, become crit ical in 

yielding new insights into the problem. 

One approach to the problem mathematically would be to follow in the lines of B e l l and 

Cosner [8] and treat the spines as identical point sources of current which are evenly, but 

discretely distributed on the dendrite. Another would be to try the method analogous 

to the one previously used to derive the effects of passive spines on the electrotonic 

properties of passive dendrites. This continuum approach was used by Baer and Rinzel 

to numerically investigate the propagation of dendritic action potentials mediated by 

active spines in 1991 [5]. Their approach was to have a passive, homogeneous, infinite 

dendrite attached to a certain density of spines as explained earlier. Here, however, 

the spines contained synaptic conductances and Hodgkin-Huxley type dynamics. Baer 

and Rinzel indicated that their simulations suggested that while the placement of active 

channels in the spine head had important implications in terms of threshold for the 

ini t iat ion of traveling pulses (namely, less presynaptic pulses were required for dendrites 

w i t h active channels in the spines), it was relatively unimportant in the propagation of 

a pre-existing pulse. 
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In the next section I w i l l try to modify Baer and Rinzel's equations to make them more 

analytically tractable. 

D e r i v a t i o n of the M o d e l 

In the paper written by Baer and Rinzel [5], they added active channels based on 

H o d g k i n - H u x l e y type kinetics to the spine membrane voltage equation used in the study 
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of passive spines. As a result, their model equations were 

dVd 7rrjd2Vd 2nrd 

2 , r d C r n — = — — - — V d + N{x)IN, 

dV 
T T T ( \ 

(ssp ryp — -'act J-N lsyn\X) t), dT 

IN 

noo(V) 

Tm(V) 

TH(V) 

Tn(V) 

<*m{V) 

v s p - v d 

RN 

I act = l A S P { I N A + I K + IL), 

iNa = 9Na{VSp ~ VNa)m3, 

IK = 9K{Vsp - V K ) n 4 , 

h = 9 L { V S P - V L ) , 

dm _ m^Vsp) - m 

dT ~ rm{Vsp) ' 

dh _ /too ( K p ) - h 

dT ~ Th{Vsp) ' 

dn _ n00(Vsp)-n 

dT Tn(Vsp) 

am(V) 

(3m(V) = 4e " t 8 , 

o . m { v ) + pm{vy 
ah{V) 

ah{V)+(5h{Vy 
an(V) 

<Xn(V) + pn(vy 
1 

a m ( V ) + Pm(Vy 
1 

<*h{v) + ph{vy 
I 

(Xn(V) +/3n(Vy 

25 - V 

10 (e^ - l ) ' 
V 

7e 20 

0.n(V) = 

Pn(V) = 

100 
1 

30-V • 
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Isyn was modeled as an a function 

ISyn(X,T) — Gsyn(X,T)(Vsp — Vsyn), (3.48) 

Gsyn(X,T) = Y^9syn{X,T — Tj), (3.49) 

, 0 T < 0 , 
9syn(x,t)={ (3.50) 

CJsynte T P « * T > 0. 

If we mult iply both sides of (3.26) by multiply the numerator and denominator of IN 

by A where A = y is the electrotonic length of the passive dendrite, use the identity 

R<x,d = ^ o r a semi-infinite dendrite, assume that N(X) = N, and let p — XN, we 

obtain 

r n 5 T = JX2 ~ d ~RN~^ s p ~ d'' ( ^ 

I'm — RmCm. (3.52) 

The purpose of studying the system of equations stated thus far was to obtain an under­

standing of whether it is physiologically plausible for the Hodgkin-Huxley- type dynamics 

found in squid axons to mediate action potentials in dendrites if they are located within 

the spine heads. The problem with using the above set of equations is that they are 

intractable analytically. This is where analogues of models become important. One of 

the more successful analogues employed for gaining an intuitive understanding of action 

potentials in squid giant axons is the Fi tzhugh-Nagumo equations (for a review see [18]). 

The F i tzhugh-Nagumo equations replace the Iact term in (3.27) by something more 

tractable analytically while sti l l maintaining the main features of the dynamics. The 

simplification which is made is that the time scale of the activation of m, which is what 

controls the init iat ion of the pulse, is much faster than the activation of h and n which 

control the "relaxation" of the pulse. Using this idea, it is possible to reduce Jf3p + Iact 

from being controlled by three variables, m, h, and n to being controlled by two variables 
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v and w. Here, v represents voltage, and it is assumed that m m 0 O (u ) , and that h and 

n can be combined into one recovery variable, r . The reduction usually takes the form 

V s p +hct = f(v) + r, (3.53) 
R'm,,sp 

dr Tnoiv) — r , 

where r r is a constant. 

In order to match these functions with experimental data, we define the quantities: Ip{v) 

which is the transient peak current at voltage v and Iss which is the steady state current 

at voltage v. More formally, 

Ip(v) = l i m Im(T,v), (3.55) 
T ->0+ 

Iss(v) = l i m Im(T,v) (3.56) 

T—>oo 

where Im(T, v) is the membrane current at time T and voltage v. Thus, we may conclude 

that 

,./ x Iv(v) + Iss(v) 

f(v) = P V ^ 2
 1 , (3.57) 

r M = Iss(v) - Ip{v). (3.58) 

Since, Ip(vrest) = Iss(vrest) = 0, we know that f(vrest) = r^v^t) = 0. Thus, we can 

simplify our in i t ia l system of equations to the following: 

dV 
C s p - ^ = -f(Vsp)-Isyn(x,tj-IN-r, (3.59) 

^ = A ^ - V ^ ^ - V i ) . (3.61) 

Notice that if J s , y n = 0, then Vsp = V/ = 0 is a rest state of the system. Since we mainly 

w i l l be interested in traveling wave phenomena not aided by synaptic currents, we can 

drop the Isyn term from (3.59). 
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In order to make the equations more tractable analytically, typically / is chosen to be a 

cubic polynomial , and hence the largest root corresponds to the sodium reversal potential, 

VNa. Furthermore, we usually choose r^v) = av, a > 0. Thus we can write (3.59) and 

(3.60) as 

C s p ^ = gacUveVsp(Vsp - K X W a - Vsp) - V s p ~ V d - r, (3.62) 

dr 1 

W = - ( ° V v - r ) . (3.63) 

If we divide (3.62) and (3.63) by VNagactive and (3.61) by VNa and make the following 

substitutions: 

rs = (3.64) 

T = 

fjactive 
7*171 

K = 

9active RN 

pRo 

R N 

x_ 

J'' 
II 
vNa: 

VJ. 

vNa 

Yi 
vNa 

r 

(3.65) 

(3.66) 

7 = „ * , (3-67) 

(3.68) 

iP = (3.69) 
dactive 

t = —, (3.70) 

x = - , (3.71) 

(3.72) 
a 

« = 7^- (3-73) 

w = (3.74) 

(3.75) 
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we obtain 

dv ' , 
— = v{v-a){l-v)+j(w-v)-s, (3.76) 
ds 1 , . , 

m = <377> 

In general, the value of rr w i l l be large O(10 3 ) (according to [18]), and we see that for 

t = 0 (1 ) , s = O(-^r). Thus, to leading order, we may assume that s = 0. This simplifies 

the above equations to: 

dv 

— = v{v-a)(l-v)+1{v-w), (3.79) 

dw d2w I K , . , 

Except for the cubic term, this is the set of equations that w i l l be studied here. Having 

dropped the recovery term, these sets of equations w i l l not yield pulse solutions, in 

general, but under certain conditions I wi l l show that traveling front solutions of constant 

shape and speed can be obtained. 

I w i l l look at three different cases. In the first case, I w i l l replace the cubic by a piecewise-

linear term —v + H(v — a) where H is a Heaviside function. In the second case, I w i l l look 

at the case where the cubic is replaced by a piecewise linear continuous function which 

attains the same maxima and minima at the same places as the cubic and has roots at 

v = 0 and v = 1. In the last case, I w i l l examine the cubic case in (3.79) and (3.80). 
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Piecewise L i n e a r D i s c o n t i n u o u s 
M o d e l 

In this chapter, we begin to look at the model when the cubic polynomial is replaced with 

a piecewise linear approximation, v — H(v — a) where H is a Heaviside function. This 

model is quite simple, allows for explicit closed form solutions, and st i l l has the general 

shape of the cubic. 

The purpose of these approximations is to attain the same fundamental dynamic structure 

for the traveling front solution of constant profile and speed, but wi th much simpler 

functions. Hopefully, the approximations are close enough to show how the solution 

changes and how it depends on the values of the parameters. Linear functions are nice 

because solving O D E s with constant coefficients is equivalent to solving for the roots 

of polynomials, which is a much simpler problem analytically and numerically. Also , it 

affords the possibility of using "continuation" methods to determine how speed depends 

on certain parameters once a single solution is found. This technique was used successfully 

by Rinzel to show that the modified F H N equations have a slow, unstable solution [92], 

which had been suspected from numerical experiments. 
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The form of the equations that we are studying is: 

dv 
— = H(v - a) - v+j(w - v), (4.1) 

dw d2 

- + - { v - w ) , (4.2) 
dt dx2 r r 

where 7 > 0, K > 0, r •> 0, and a > 0. 

Our approach w i l l ini t ia l ly be to look at the spatially homogeneous steady state solutions 

to the problem. We w i l l be especially interested in those cases where at least two such 

steady states exist. We w i l l then proceed to search for constant speed solutions, and 

use a substitution to reduce the system of P D E s to a boundary value problem for a 

system of O D E s . The specific type of solution that we are looking for is a traveling front 

between the two steady state solutions. We wi l l begin by demonstrating the existence 

of constant speed solutions for certain parameter sets. Then we w i l l use numerics to 

generate solutions for traveling fronts and examine the dependence of the shape and 

speed of the front on the different parameters. 

4.1 Spatially homogeneous steady states 

We begin this study by examining the spatially homogeneous steady states, which are 

obtained by dropping the term from (4.2) and then setting the left -hand sides of 

(4.1) and (4.2) equal to 0. Thus, 

0 = H(v - a) - (1 + i)v + jw, (4.3) 

0 = - ( 1 + K)W + KV. (4.4) 

If v < a, then H(v — a) = 0, and the system reduces to: 

0 = - ( 1 + 7)u + ~/w, (4.5) 

0 = KV - (1 + K)W, (4.6) 
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which only has the tr ivia l solution v = w = 0. If v > a, then H(v — a) = 1, and (4.3) 

and (4.4) become 

-1 = —(1 + 7 ) ^ + 71/;, 

0 = KV — (1 + K)W. 

(4.7) 

(4.8) 

The solutions are v = v, and w — where 

1 + K 

1 + K + J 
K 

> a, 

1 + K + 7 

The inequality in (4.9) can be rewritten as 

(4.9) 

(4.10) 

7 1 — a 
< 

1 + K 
(4.11) 

and is a consistency condition for the existence of the nontrivial spatially homogeneous 

steady state: 

Now we shall explore the stability of these steady states. The stability matr ix corre­

sponding to both steady states (they have the same stability matrix because H(v — a) 

only contributes a constant) is given by: 

A = 
- ( 1 + 7) 7 

K - ( 1 + K) 

If we solve for the determinant and trace, we get 

det(A) = 1 + K + 7 > 0, 

tr(A) = - ( 2 + K + 7) < 0. 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

The determinant of A is positive and the trace of A is negative, which imply that the 
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eigenvalues of A , given by 

trace(A) + y/trace2(A) - 4det(A) 
_ (4.16) 

trace(A) - yj'trace2(A) - 4det(A) 
(4.17) 

2 

are both negative. Thus both steady states are stable. Note that this situation is not pos­

sible for a continuous dynamical system, where stable steady states always are separated 

by an unstable steady state. 

We now ask under what conditions, in addition to the consistency condition (4.11), do 

traveling front solutions between the two steady states exist. 

4.2 Traveling front solutions 

We now seek out solutions that travel with constant speed c > 0 to the right wi th un­

changing shape. It should be noted that we designate the speed to be positive arbitrari ly 

here. Solutions with negative speed do exist as well. Such solutions can be thought of as 

the wave dying out, whereas solutions with positive speed can be thought of as the wave 

actively propagating forward. Introduce the following change of variables to a traveling 

wave frame: 

z — x — ct (4.18) 

t* = t. (4.19) 

Substituting this change of variables into (4.1) and (4.2), we get 

dv dv 

dt* dz 
dw dw 

H(v — a,) — v + j(w — v), 

d2w w K . 

(4.20) 

(4.21) 
dt* ° dz 
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Since we are looking for solutions which go from the steady state (v = 0, w = 0) to the 

steady state (v — vs, w = ws), our boundary conditions are 

lim w(z,t*) = 0, (4.22) 
z—>oo 

\imv(z,f) = 0, (4.23) 
z—>oo 

l i m w(z,t*) = ws, (4.24) 
2—> —OO 

l i m v(z,t*) = vs. (4.25) 
2—> —OO 

We are looking for continuous solutions for positive speed traveling fronts. Hence, we 

know that there is some value of z, say z = z0, such that v(z0) = a. Notice that (4.20) 

and (4.21) are autonomous in z, and thus horizontal translation of a solution is also a 

solution because the boundary conditions are at infinity. Thus, we shall arbitrari ly choose 

z0 = 0 for simplicity. That is, our consistency condition is limz^0+v(z,t*) = a (Note, we 

have asked for the r ight-hand l imit because solutions to the problem for c = 0 are not 

continuous about v = a but have a jump discontinuity. We can, nevertheless, satisfy this 

condition). For this problem, we are interested in fronts which represent steady state 

solutions in the traveling wave frame. Thus, we may drop the time-derivative terms from 

(4.20) and (4.21) to obtain 

-cv' = H(v -a)-v + j(v - w), (4.26) 

-cw' = w" - — + -(v - w), (4.27) 
T T 

where ' denotes differentiation with respect to z, subject to an overdetermined number of 

boundary conditions; the problem is third order, but there are four boundary conditions, 
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and one consistency condition: 

l i m w(z) = 0, 
z—>oo 

l i m v(z) = 0, 
z—»oo 

l i m w(z) — ws, 
z—>—oo 

l i m v(z) = vx 

2 — > — O O 

l im viz 
2 ->0 + 

We can eliminate the variable v. Solving (4.27) for v yields 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

v = 
„ , 1 + K 

W + CW W 
(4.33) 

and differentiation of this equation gives 

v = 
ill , il 1 + AC , 

w + cw w (4.34) 

Substituting for v and v' from (4.33) and (4.34), respectively, into (4.26), we obtain 

cw + [c2 - (1 + 7)] w" - c 1 + 7 + 1 + K w' + 1 + K + Jw = -H(-z). (4.35) 
T • T 

Notice that if the following three boundary conditions are met, the other two boundary 

conditions in (4.28)-(4.32) are automatically satisfied because they correspond to the 

fulfillment of steady state conditions: 

l i m w(z) = ws, 
! — > — O O 

l i m w(z) = 0, 

l i m v(z) = a. 
2 - 4 0 + v ' 

(4.36) 

(4.37) 

(4.38) 

We proceed to solve for solutions of (4.35) for the special case c = 0, which is the easiest 

case because the third derivative term in (4.35) drops out and reduces the order of the 

equation. Moreover, this case should give the boundary of the region in the parameter 

space that corresponds to the existence of positive speed traveling wave solutions. 
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4.2.1 Stationary front solutions 

We set c = 0 in (4.35) to obtain the second-order O D E 

-(1 + 7 K + 1 + K + 1w = KH{-Z). (4.39) 

The general solution, wg(z), for this O D E is 

wg(z) = { (4.40) 
b2,ie-»* + hie"*, z > 0, 

where 

/ l + K + 7 , 
p = M - (441) 

To match the boundary conditions, we require 6 1 ) X = b2>2 = 0. A particular solution, 

wp(z), to (4.39) is given by 

{ ws, z < 0, 
(4.42) 

0, z > 0, 

To match the coefficients of z = 0, notice that from (4.26) either w or v must have a 

jump discontinuity when c = 0 at z = 0. Physically, it makes more sense for v to be 

discontinuous because it represents spine head voltage. Thus, we look for a solution w 

which is C 1 in z. For w to be continuous at z = 0, we require 

h,2 + ws = 6 2 , i , (4.43) 

and for IO to be differentiable at z = 0, we require 

A*&i,2 = (4.44) 

These yield 

&i,2 = - & 2 , i = - y - (4.45) 
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Thus, the solution to (4.39) is 

W s , - ( 2 - e ^ ) , z<0, 
w(z) = { z K (4.46) 

f e ^ z , z > 0. 

Now applying (4.33) with c = 0, and substituting in for p, using (4.41), we get 

z < 0, 
<;(*) = <{ S 2 ( 1 + 7 ) 1 " " (4.47) 

iw° e-»* z > o 
2(1+7) ' 

A p p l y i n g our matching condition, (4.38), at z = 0, we get (after using (4.10) for ws) 

r y ^ r = 2a. (4.48) 
( l + 7 ) ( l + 7 + «) 

A t this point it is hard to say which way the inequality should go for positive speed 

waves, but intuitively we should expect that smaller values of a make the system more 

excitable. Thus, the correct condition is 

7- r~7~~~~~ r > 2a. (4.49) 
( l + 7 ) ( l + 7 + «) v ; 

If we rewrite the left-hand side as 

7 ' K' / x 

-—-— , (4.50) 
I + 7 I + K + 7' v ' 

then it is easy to see that the left-hand side of the matching condition is always less 

than one. Thus, we see that there are no positive speed solutions for a > |, which is a 

classical result from the ordinary F H N equations. 

4.2.2 Positive speed traveling wave fronts 

We look for solutions to (4.35)-(4.38) for which c > 0. If we substitute w = eyz into 

(4.35), we get the characteristic polynomial : 

cp(y) = cy3 + [c2 - (1 + 7)] y2 ~ c 
1 + K 

1 + 7 + — 
1 + K + 7 

y + -• (4.51) 
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Notice that cp(0) > 0 and cp'(O) < 0. Thus, cp always has one negative real root and 

may have two positive real roots, a positive root of mult ipl ic i ty two, or two complex roots 

wi th positive real part. 

Suppose there are three real roots, fj,\ < 0 < p2 < u-3', then, we know that using the 

technique used above, we can find a solution for w given by 

( blt2e^z + bh3e^z + ws, z < 0, 
to(z) = t (4.52) 

{ b2>1e^z, z>0. 

Requiring continuity of w and its first two derivatives at z = 0 yields 

bi,2 + bl}3 - 6 2,i = -ws, (4.53) 

^ 2 ^ 1 , 2 + ^ 3 ^ 1 , 3 - ^ 1 ^ 2 , 1 = 0, (4.54) 

A , 2 + /^&i, 3 - A , i = . 0. (4.55) 

This system of equations has the solution 

62,1 = wsh, (4.56) 

&1.2 = wsb2, (4.57) 

h,3 = yjsb3, (4.58) 

where (4.59) 

61 

b2 

h 

P2P3 (4.60) 

(4.61) 

(4.62) 

61 

b2 

h 

(M3 - Ml) 0*2 -
MlM3 

M l ) ' 
(4.60) 

(4.61) 

(4.62) 

61 

b2 

h 

(M3 -
MlM2 

M l ) ' 

(4.60) 

(4.61) 

(4.62) 

61 

b2 

h 
(M3 - Ml)(M3 - M2)' 

(4.60) 

(4.61) 

(4.62) 

Thus, 6 2 ,i > 0, 6 1 ) 2 < 0, and 6 1 ) 3 > 0. We define 

p(A / , )=M 2 + c / i - ^ , (4.63) 
T 

so using (4.33), we obtain the solution 

1 - ~ [ h g ( ^ ) e ^ z + b2g(p2)e^z] + vs, z < 0, 
u(z) = •( (4.64) 

- ^ ^ ( M I ^ 1 2 , z > 0 . 
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In order to satisfy our matching condition, (4.38), we require 

rbiws 

g{Hi) = a, (4.65) 

which may be rewritten in terms of the eigenvalues as 

j u 2 / i 3 ( n \ + C / A I - _ q ( l + K + 7) 

( M 3 - Mi.X/J.2 - Mi) r 
(4.66) 

If we could find a "near-by solution" for some parameter set to the above problem, then 

we could use continuation to get a feel for the dependence of c on the parameters. We 

have a solution for c — 0, but that solution is degenerate because p$ —> oo as c —> 0. The 

obvious method for getting an ini t ia l non-degenerate guess is to use singular perturbation 

techniques. 

Assume that K, T and a are fixed, and that c = e is a small parameter. E x p a n d 7 in 

powers of e as 

7 = 7o + Hi + • • • (4-67) 

where 

7o« 

( l + 7o)(l + 7o + «) 

Our boundary condition (4.36) can be expanded as 

2a. (4.68) 

ws = wl + ew2 + 0{t1), (4.69) 

•wi = 7 — ^ - — ' ( 4 - 7 ° ) 1 + K + 70 
Will . V 

t«2 = • (4.71 
l + « + 7o • V ; 
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We need to obtain corrections to the eigenvalues. Here, we expect that 

Mi = Mi , i+eMi ,2 + 0 (e 2 ) , (4.72) 

M2 = M2,i + ^ 2 ) 2 + 0 (e 2 ) , (4.73) 

Mi,i = " M , (4.74) 

IJL2,I = p. (4.75) 

If we substitute the above equations into (4.51), and collect terms of 0(e), we get 

- w r h ^ r ( 4 ' 7 7 ) 

In order to come up with an expansion for p3, we guess that to leading order, p3 = 

where p > 0. Substituting this into (4.51), we get 

+ ^ V2 - (1 + 7)] f4.i - e ( l + 7 + ^ ) + (4.78) 

We get the correct value of p if we match the leading-order quadratic and cubic terms. 

Thus, p = 1. We try to expand p3 as 

M3 = — + M3,2 + 6/43,3 + • • • • (4-79) 
e 

Substituting the above expression into (4.51) and collecting powers of e~~2 and e _ 1 , re­

spectively, we get 

Ms.i = l + 7o, (4-80) 

M3,2 = 7i- (4-81) 

Now we need to suggest an asymptotic expansion for the coefficients. In this case, we have 

an exact formula for them in terms of the eigenvalues and the steady states (equations 
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(4.56)-(4.62) for which we have expansions. One thing that should be noticed from (4.62) 

first felt in the second derivative of w, and we can see this evolving into a jump condition 

in w as e —>• 0. Notice that v gets some contribution from w" in (4.33). Thus we see that 

v has a jump discontinuity in the l imit ing case as c —> 0. This could be easily seen if one 

refers back to (4.26) and sets c = 0. Here there is a jump when v crosses a, and since it 

is not in w, it must be in v. The solution is constructed in this manner since w is only 

indirectly coupled to the nonlinearity, and its effects are damped out. 

Returning to solving for the constants, we can solve for the corrections to al l of the 

constants easily and can derive an answer which is only dependent upon ji which is st i l l 

unknown. To get a guess for 71, we have to apply the matching condition (4.38). From 

(4.64), this condition is equivalent to 

In order to tackle this problem efficiently, we'll need some more notation. Let us write 

(j(Pi) as 

is that 63 is 0 (e 2 ) as e —>• 0. However, the exponential term is 0(e°^) so its effects are 

(4.82) 

9oM + e # i O i ) (4.83) 

where 

9o(t*i) 
1 + K (4.84) 

T 

9iM = Mi (4.85) 

and expand bi as 

61 =Pi,i + e/?i,2 + 0 ( e 2 ) (4.86) 
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where 

= 'J'2'1 , (4.87) 
M2,l - Ml,l 

1̂,2 = / — [M3,l(M2,2 - Ml,2) + (M3,2 - Ml,l)(/i2,l - Ml,l)] (4-88) 
M3,l(M2,l - Ml.lJ 
^ M2,lM3,2 + ^2,2/^3,1 

M3,l(A*2,l -

We now match the coefficients of e in (4.82) to obtain 

(4.89) 

0 = tvig{iihl)Phl + y , (4.90) 

0 = '^i/?i,ibo(Mi,i)Mi,2 + 0I(A*I,I)] + ^i0i,25o(Mi,i) + '^20i,i5o(Mi,i)- (4-91) 

Equation (4.90) is equivalent to condition (4.48) if condition (4.68) holds. If we solve 

(4.91) for 7 i , we can use the asymptotics to approximate a guess for a solution with speed 

e for a particular choice of a, K, and r . 

Now that we have a means for making a guess, we can use numerics to try to determine 

solution sets of [p,\, fj,2, / J3 , c) in terms of (a, 7, K, T) to determine the effects of the pa­

rameters on the shape (which is determined by the eigenvalues) and the speed (which is 

given by c) of the wave. 

4.3 Numerical results 

4.3.1 Varying a 

In this section, we vary a over the acceptable ranges for 7 = 1.5, K, = 5, and r = 10. 

In Figure 4.1, we show the speed of the wave as a function of a. 

Here we get the intuitively obvious result that c is a monotonic decreasing function of 

a, ceteris paribus. It appears that speed may be becoming large as a —> 0, but strictly 

speaking, it is not appropriate to allow a = 0, so this result w i l l not be commented upon 

more here. 
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0, 

Figure 4.1: Speed of the wave, c, as a function of o for 7 = 1.5, K = 5, r = 10. 

If we look at Figure 4.2, we get the expected result that p3 —> 00 as we approach the 

value of a where speed goes to zero (a wider range for a is not shown because the scaling 

of the graph required to enclose p3 obscures P2, and p\. We also get the result that as 

the speed goes to zero p2 + Mi —> 0. 

4.3.2 Varying K 

In this section we w i l l graph the results obtained for the values of the speed of the wave 

and the eigenvalues as functions of K, for fixed values of a, 7 and r . 

In Figure 4.3 we have graphed the speed of the wave as a function of K. Here we see 

that there is some minimum value of K for which are no positive speed traveling front 

solutions. This intuitively makes sense as K measures the ability of the spines to depolarize 
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Figure 4.2: Eigenvalues of the wave as functions of a for 7 = 1.5, re = 5, r = 10. 

the dendritic shaft. Furthermore, there is some definite maximum value of c for a certain 

value of re. Thereafter, the speed of the wave gradually decreases as re increases. This also 

makes sense, since re becoming large is equivalent to the spine density going to infinity 

which creates a tremendous conductance load that must be overcome to bring spines at 

the leading edge of the front up to threshold. 

In Figure 4.4 we have graphed the eigenvalues of the wave as a function of re. 

4.3.3 Varying 7 

In this section, we graph the speed and the eigenvalues of the wave as functions of 7 for 

fixed a, re and r . 

In Figure 4.5, we have graphed the speed of the wave as a function of 7. A s was the case 
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Figure 4.3: Speed of the wave, c, as a function of K for a = 0.1, 7 = 1.5, r = 10. 

for K, the general shape of the wave is a skewed hump. However, in this case, there is also 

an upper value of 7 which corresponds to a zero-speed wave. The idea that there must 

be some maximum value of 7 above which there are no positive speed traveling waves 

makes intuitive sense. If 7 is too large, then the current generated with in the spine head 

is quickly lost to the dendritic shaft and the spine is not able to reach threshold. The fact 

that the speed of the wave should become smaller for very small values of 7 is related to 

the fact that the spine head saturates quickly so little current is delivered to the parent 

dendrite. 

In Figure 4.6 we have graphed p\ and p2 as functions of 7. We again notice that as 7 

approaches the two values which correspond to zero-speed waves, \i\ 4- u.2 —> 0. 

In Figure 4.7 we have graphed ^ 3 as a function of 7. It is easier to see the tendency of /z 3 
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Figure 4.4: Eigenvalues of the wave as functions of K for a = 0.1, 7 = 1.5, r = 10. It 
should be noted that the abscissa here is not zero, but is a value close the value of K, 
which corresponds to zero-speed waves as shown in Figure 4.3. 

to become large as 7 goes to its upper l imit which corresponds to zero-speed waves, but 

the same occurs at the lower l imit as well. It is difficult to graph this region thoroughly 

due to numerical instability of the routine used. 

4.3.4 Varying r 

In this section, we have graphed the speed of the wave, and the eigenvalues as functions 

of r for fixed values of a, 7 and K. 

In Figure 4.8 we have graphed the speed of the wave as a function of r . In this case, we 

have actually graphed c\fr as a function of r. This is due to the fact that the original 

scaling involved a nondimensionalization by a length scale. If we plotted c against r 
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Figure 4.5: Speed of the wave, c, as a function of 7 for a = 0.1, K = 5, r = 10. 

directly, we would get the erroneous impression that c —>• 0 as r —>• 00. Physically, r 

represents a time-scale of active dynamics in the spine head. We intuitively expect that 

the speed of the wave should plateau to some maximum value as the speed of the active 

dynamics becomes very fast. This is, in fact, the case when we correct for the space 

scaling factor introduced earlier. 

In Figure 4.9 we have graphed u-i and \i2 against r . We have performed a scaling here 

as well to correct for the ini t ia l nondimensionalization. In this case, we see that the 

long-scale shape of the wave is not appreciably affected by changes in r as one would 

intuitively expect. Where we would expect to see a change is in the short-scale behaviour 

close to the discontinuity in the equation. This is reflected in /z 3 as shown in Figure 4.10. 
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Figure 4.6: Eigenvalues, px and p2, as functions of 7 for a = 0.1, K = 5, r = 10. The 
abscissa is not zero in this graph. It corresponds to the lower value of 7 which corresponds 
to zero-speed waves as can be seen in Figure 4.5. 

4.4 Numerical simulation of the P D E model 

The analytical method we developed for the system of O D E s was extremely useful in 

exploring some of the important regions of the parameter space. It allowed us to develop 

an intuitive understanding of some of the processes involved in traveling wave front 

propagation. Unfortunately, it fails to address whether the solution we found is stable or 

unstable. Naturally, this would be a good thing to know since the fronts discovered w i l l 

not be seen experimentally if they correspond to unstable solutions. Since no proof of 

the stability of the system exists, we decided to examine the system of P D E s numerically 

using P D E c o l . 
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2 4 6 8 10 12 14 

7 

Figure 4.7: Graph of ps as a function of 7 for a = 0.1, K = 5, r = 10. 

Our procedure was to run P D E c o l using Neumann boundary conditions, and the ini t ia l 

guess was the computed solution from our analysis (slight perturbations to the ini t ia l 

guess were also made, and they gave the same results). The result is shown in Figure 

4.11. The traveling front appears to propagate to the right wi th approximately the 

theoretically computed speed without changing shape. This acts to confirm our previous 

analysis, and strongly suggests that the solution we have discovered corresponds to a 

stable solution. 
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Figure 4.8: Speed of the wave, c, as a function of r for a = 0.1, 7 = 1, re = 5. 
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Figure 4.9: Graphs of ji\ and u,2 as functions of r for 7 = 1, K = 5, r = 10. 
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Figure 4.11: Simulation of the traveling front for 7 = 1, re = 5, r = 10. 
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Chapter 5 
Piecewise L i n e a r C o n t i n u o u s 
A p p r o x i m a t i o n 

In this chapter, we w i l l look at the continuum model with a piecewise linear, continuous 

approximation of the cubic. This function wi l l be qualitatively, and even quantitatively, 

similar to the cubic. This piecewise linear function has roots at v = 0 and v = 1 and w i l l 

attain the same local maximum and local minimum at the same points as the cubic. 

The primary motivation for exploring this approximation is that there may be some 

internal functional structure in these model equations which is important in the behavior 

of the solution that is not captured in the piecewise linear discontinuous approximation. 

We w i l l show that for certain parameter ranges, there are three steady states, two of which 

are stable in the space-clamped case, while the third is a saddle point. Furthermore, we 

show that there is, in fact, an inner region of the solution, which does not exist in the 

piecewise linear discontinuous approximation. 

We now begin the study of the piecewise linear continuous ( P W L C ) model, which is 

given by 

dv 

dt 

dw 

~di~ 

f(v) + j(w - v), 

d2w W K , 

(5.1) 

(5.2) 

where 7 > 0, K > 0, r > 0, and 0 < a < 1. 
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In order to write a formula for / explicitly, we first need to determine the local maxi ­

m u m / m i n i m u m of / and the points where they occur. Differentiating / with respect to 

v, we find the roots of 

f'(v0) = -3'u 2 , + 2(a + 1 > 0 - a = 0 (5.3) 

to be 

1 — \J a2 — a + 1 
(5.4) 

v - a + l W ° 2 - a + 1 (5 5) 
umax — g • \°-°) 

Given the restrictions on a, it is obvious that 0 < vmin < vmax < 1. The local m i n i m u m 

and maximum of / are given by: 

fmin — /\'Umiri) i (5-6) 

fmax — f{^max)i (p-^) 

respectively. If we choose /(0) = 0 = / ( l ) , then we may write 

/ ( « ) = { 

rriiv, - o o < v < vmin, 

m2v + b2, vmin < v < vmax, (5.8) 

m3v-\-b3, v m a x < v , 

where 

fmin _x 

m1 = —-, (5.9) 

fmax fmin ^ n\ 
m2 = , (5.10) 

Umax ^min 
fmax i _ x 

m3 = , (5.11) 
-*• "max 

j fmin Umax ~~ fmax^min l r ~ n\ 02 = — — ; , (5.12) 
Jmax umm 

h = f™x . (5.13) 
1 Umax 
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Since fmin < 0 and fmax > 0, we conclude that rri\ < 0, m2 > 0, b2 < 0, 63 > 0. This can 

be determined from the x - and y-intercepts of the different linear pieces of / . 

Now that we have an explicit formula for / , we can examine the spatially homogeneous 

steady states. 

5.1 Spatially homogeneous steady states and stabil­
ity 

We look for spatially homogeneous steady states, so we are looking for solutions to 

0 = f^+jfa-y), (5.14) 

0 = KV-(1 + K)W. (5.15) 

One obvious solution is the origin, v = 0 = w. 

The equation of the v nullcline is 

f(v) 
w = v , 

7 (5.16) 
= P H . 

while the equation for the w nullcline is 

w = h(v) = ^v. (5-17) 

Since/ ' (u) < 0 for ve(-oo,vmin) \J{vmax,oo), then p (v) > 1 for ve(-co, vmin) \J(vmax, oo). 

O n the other hand, ti (v) = ^-j- < 1. Thus, there wi l l be three steady states if and only 

if 

h{vmax) > p{vmax). (5.18) 

This condition is equivalent to 

7 < frnax^ ^ ^ 

K, + 1 Vma/J 
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To determine the middle steady state, (v2,v:2), we look for solutions of 

0 = (m2v2 + b2) + j(w2 - v2), 

0 = KV2 — (1 + K)W2, 

which yields 

6 2 (« + l ) 
v2 = -

w2 = -

(K + l ) m 2 - 7 ' 
b2 K 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

Since m2 > > when condition (5.19) holds, we know that v2 > 0. If we substitute 
Umax K-j-1 v ' 

m 3 for m2, and 63 for b2 in the above equations and use the fact that m 3 = —63, then the 

th ird steady state, (^3,^3), is given by 

b3(K + l) 
v3 

w3 

6 3 (« + l ) + 7 ' 
b3K 

(5.24) 

(5.25) 
b3{K + 1) + 7' 

The stability of the steady states (let us denote the steady state at the origin as (vi,w\)) 

can be determined by looking at the stability matrix 

Ai = 
mi - j 7 

K - ( l+ . re ) 

Its determinant, det(Ai), and trace, tr(Ai) are 

% = 1,2,3. (5.26) 

1,2,3, (5.27) 

(5.28) 

det(Ai) = — m j ( l + « ; ) + 7 , 

tr(Ai) = m j ( l + K) — 1 — 7 — K,, * = 1,2,3. 

Since m,i,m3 < 0, we know that det(Ai), det(A3) > 0 and tr{Ai),tr{A3) < 0, so (vi,Wi) 

and (v3,w3) represent stable steady states. Conversely, since m2 > > - ^ r , we know 

that rfet(A2) < 0, and this steady state is a saddle point. 

Since there are two stable steady states separated by a saddle point i n the space-clamped 

case when condition (5.19) holds, we now inquire into the existence of traveling front 

solutions between the two steady states. 

84 



Chapter 5. Piecewise Linear Continuous Approximation 

5.2 Traveling front solutions 

We now seek out traveling fronts with constant speed c which traverse a path from the 

steady state at (vi,Wi) to the one at (v3, w3) as solutions to our P W L C model. A s in the 

previous chapter, we look only for solutions with constant shape and make the reduction 

to the characteristic 

z = x- ct. (5.29) 

Substituting into (5.1) and (5.2), we get 

-cv' = f(v)+j(w-v), (5.30) 

-cw' = w" - — + -{v - w) (5.31) 
r r 

where ' denotes differentiation with respect to z. The relevant boundary conditions are 

l i m w(z) = u»3, (5.32) 
2—> — OO 

l i m v(z) = v3, (5.33) 
2—> —OO 

l i m w(z) = 0, (5.34) 
2 — > O Q 

\imv(z) = 0. (5.35) 
2—>OQ 

A s in the P W L D model, there is no spatial dependence in the r ight-hand side of our 

nonlinear O D E , and the associated boundary conditions are at ± o o . Thus, without loss 

of generality, we enforce the condition that 

v{0) = vmin. (5.36) 

Furthermore, since we expect our solution to be monotonic, we shall require 

V(zi) = Vmax (5-37) 

where z\ < 0. 
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If we solve (5.31) for v, we get 

T 

K 
w + cw 

1 + K 

Differentiating the above equation with respect to z, we get 

T III it 1 ~~r~ ^ / 

w + cw w 

(5.38) 

(5.39) 

We see that the boundary conditions on v become redundant since if w satisfies the 

boundary conditions (5.32) and (5.34), then the boundary conditions for v are automat­

ically satisfied. E l iminat ing v and v' in (5.30) using (5.38) and (5.39), respectively, we 

get 

cw'" + [c2 (7 - mi)]w" 7 - 77lj + 
K ^ +

7 ~ ( 1 + " ) m ' = ^ (5.40) r r 
where i — 1 for ve(oo,vmin), i = 2 for ve(vmin,vmax), and i = 3 for ue(w m a a ; , 00 ) . We 

denote the characteristic polynomial of the above O D E by cpi where 

cpi(y) = cv3 + [c2 - (7 m) y 7 - m,i + 
l + K 

y + 
7 - (1 + K)m,i 

(5.41) 

Notice that cpi(0), cp 3(0) > 0 and cp'^O), cp'3(0) < 0 (when c > 0), so both of these 

characteristic polynomials have one negative real root and two wi th positive real part 

which may be complex. However, cp2{0) < 0, so it has one positive real root, but may 

have either two roots with negative real part or two roots with positive real part. 

The next step is to search for stationary solutions, that is, solutions for c = 0. The 

reasons for doing this is that it reduces the order of the O D E , so it is easier to solve. 

Also , it allows us to determine the boundary in parameter space that corresponds to 

positive speed traveling front solutions. 

5.2.1 Stationary front solutions 

Here we set c = 0 in (5.40) to obtain 

[m-i — j)w -\ w = —. 
r r 

(5.42) 
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Thus, we define 

A,; = 

UJ = 

Ij - m,j(l + K) 

T(J - m») 

/ m 2 ( l + K,) — 7 
T(7 - m,2) 

i = 1,3, (5.43) 

(5.44) 

and write down a solution for w 

0 < z < 0 0 , 

w(z) = I 

d l t l e X l Z + dii2e-Xlz, 

d2,i cos(coz) + d2>2 s'm(ujz) + w2, z\ < z < 0, 

d3 e^{z-zi) + d32e-*3(*-*i) + w3, - 0 0 < ^ < Z l . 

(5.45) 

In order to match the boundary condition (5.32), we require d 3 > 2 = 0, and in order to 

match the boundary condition (5.34), we require d ^ = 0. We now apply C 1 continuity 

conditions on w, and the matching conditions (5.36) and (5.37). 

If we apply continuity and differentiability across z = 0, we get 

d\,2 ~ d2,i = w2, 

- A i d 1 ) 2 - iod2>2 = 0, 

and if we do the same at z — z-i, we obtain 

^3,1 - d2tx COS(UJZI) - d 2 ] 2 s i n ^ ^ x ) = w2 - w3, 

A 3 d 3 ; 1 + d2,iUJ [sm(cozi) - d 2 > 2 sin^wzi)] = 0. 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

Now let us write down the solution for v using (5.38): 

v{z) T- [UJ2 + i±^] [d 2,i cos(a;z) + d 2 ; 2 sin(w2)] + v2, zx < z < 0, (5.50) 
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If we apply our matching conditions (5.36) and (5.37), we get 

K 

1 + K 

T 

d-iAT 

•A? 

+ V3 

If we substitute in for A] and A 3 in the above equations using (5.43), we get, 

Vminil - mi) 
di: 

d3A = 
7 

Jmax ^3 
"7-

7 - m,3 

We may substitute in for rf1]2 in (5.46) using (5.53) and solve for d2i 

Vmin{l - m i ) - yw2 

d2,i 
7 

Similarly, using (5.53) and (5.47), we may solve for d2>2 

d2,2 ~ 
[7 - m2)[7 - mi][7 - m i ( l + K)\ 

7 V m 2 ( l + re)-7 

We only have to solve for d 3 ) 1 and z\ using (5.48) and (5.49). If we let 

2/2 

« 1 

a2 

then we may rewrite the problem as 

cos(a>Zi), 

sin(u;zi), 

^3,1 + w 3 - w 2 , 

A 3c? 3,i 
UJ 

d-2,2 Q.I 

-d 2 t 2 d.2,1 V2 Ci2 

with solution 

V2 d-2,1 + ^2,2 

d2,i (d3,i + w 3 - w2) + 

d,2,2 ( d 3 , 1 + w 3 - w 2 ) - ^ ^ -

(5.51) 

(5.52) 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

(5.57) 

(5.58) 

(5.59) 

(5.60) 

(5.61) 

(5.62) 
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Enforcing the condition y\ + y\ — 1 gives us a solvability condition on the parameters. 

However, it turns out that there is an easier way of determining this restriction in a 

certain case, and we derive the restriction this way. Once this condition is known, we 

can use the above derivation to obtain the full solution to the problem. The method we 

use is to integrate (5.30) and (5.31). 

First , mult iply both sides of (5.31) by w' and integrate from z — —oo to z = oo to obtain 

dz = Q (5.63) 
II i 1 + re ; re ! 

w w w w H — v w 
T T 

Using integration by parts and the fundamental theorem of calculus, the above expression 

can be simplified to: 

r {w'{z)f - (1 + re) (w(z)f + 2KV(Z)W(Z) 

2r 
rer / v w dz = 0, (5.64) 

or if we use the boundary conditions u / ( ± o o ) = 0, w(—oo) = w3, w(oo) = 0, v(—oo) 

v3, v(oo) = 0, and u>3 = we obtain 

V W dZ = ; . 
2(1 + re) 

(5.65) 

Now mult iply (5.30) by v' and integrate both sides from z = — oo to £ = 00 to obtain 

0 = f(v(z)) - yv(z) v (z) + jw(z)v (z)j dz. (5.66) 

Using (5.65) and the fundamental theorem of calculus, we get 

"3 7«3 
0 f i V ) d V = 2(1 + re)' 

(5.67) 
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We can do the integral on the left in three parts as follows: 

V3 ^ rvmin 

f{v) dv = / f(v) d,v + 

0 

m,i vl 

rmn 

V ma x 

f(v)dv+ f(v)dv 

m\v dv + / (m2v + b2) dv + 63(1 — v) dv 
V3 

+ 
vmax 'Vmin] [m2(Vmax ~ Vmin) + 262 

+ 63 [v3 - Vrnax] 
'W.3 + Vmax 

2 [ / m o i ( " r a o i ^mi?x) + frnin'Umax] + 63 [^3 VTl 1 -
'"3 + Vr, 

Thus, going back to (5.67), we require 

2 [ / r a a i ( " m a i Vmin) + fmin'Umax] + ^3 [^3 Vn 

If we let u — —fr and substitute in v3 = r-^f-, we get 

1 -
^ 3 + Vri 7«3 

2(1 +re) 

(5.68) 

= 0. 

(5.69) 

[fmaxi'Umax Vmin) + fmin'U'max. + 63 
63 

63 + ti 
2 - v max 63 

63 + U 

b\u 

2(63 + u)2 

(5.70) 

If we mult iply the above equation by (6 3 + u)2 and collect powers of u, we get 

a2u + a\u + 0,0 = 0, (5.71) 

where 

— 3 Ff C Vmax Vmin ) + fmin'Umax + (1 ^ m o i ) > 

— ^3 ( [ / m a i ( " m o i ^ m m ) + fminVmax] + 63 2 2vmax + ^ " m a x 

&2 — 2 \_fmax(Vrnax ^ m i n ) + frninVmax b3Vmax(2, Vmax)] 

(5.72) 

, (5.73) 

(5.74) 

Now ao, Qi , and 02 depend only upon a, and it can be shown that for 0 < a < | , an > 0, 

a i < 0, and a2 < 0, so there is only one positive root to this equation. Also , for a = |, 
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a 0 = 0 and thus there is one negative root and one zero root. W h a t this shows, in essence, 

is that there can be no positive speed traveling wave solutions for a > |. 

It can be shown that one part of the boundary corresponding to traveling wave solutions 

is determined by 

7 -a-i ~ y/aj- 4aoa 2 , , 
+ 1 2a 2 ' 1 ' ' 

If we recall, the result for the P W L D model is that there were usually two values of 

7 which corresponded to stationary front solutions. It turns out that there is another 

boundary for zero speed waves in the P W L C model, but it has to be attained in a different 

manner than the above result. The reason why it does not appear in the integral method 

we just used is that it occurs as z\ —> 0, and thus v' attains a jump discontinuity which it 

d id not previously have and the above analysis is incorrect. Also , when we tried to solve 

the problem exactly, we were operating under the assumption that there was an internal 

matching layer. A g a i n , as before, this second boundary emerges as a consequence of the 

discontinuity. The same methods and techniques that were used to solve the problem for 

the stationary fronts in the P W L D model could be used here, in principle. 

In order to find the other boundary, we first have to recognize that it occurs for small 

values of 7. In fact, we assume 7 < m 2 unlike what we had tacitly assumed previously. 

In this case we have lost our internal matching layer, so our solution for w becomes 

{ d 1 2 e ~ X i Z , z>0, 
(5.76) 

dz,ieX3Z + w3, z<0. 

We can apply our matching conditions, (5.46) and (5.47) to obtain 

di,2 = d3ii+w3, (5.77) 

- A i d i , 2 = A 3 d 3 , i - (5-78) 
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We solve the above system of equations to obtain 

= Xrip (5 79) 

Now, we use equation (5.38) to write down a solution for v 

A 2 ] e~XlZ, z>0, 
v(z) = { , K L T L J (5.81) 

Here we cannot enforce matching condition (5.36), but we try to enforce the condition 

we did before in the P W L D model 

l i m v(z) = vmm, (5.82) 
Z-S-0+ 

which is equivalent to 

, r i + « 
(5.83) 

If we substitute for d l i 2 and A] in the above equation using (5.79) and (5.43), we get 

A37 umin 

(Ai + A3)(7 - m i ) w3 

(5.84) 

Thus we see that there is a second boundary condition for zero speed waves. The above 

equation could be solved explicitly to yield a lower bound for 7 in terms of a and K. 

Our next goal w i l l be to tackle the problem of positive speed traveling wave fronts since 

we have some idea of the parameter set we require. 

5.2.2 Positive speed traveling fronts 

We are looking for solutions to equation (5.40) subject to the boundary conditions 

w(—oo) = u>3 and w(oo) = 0 with v(0) = vmin and ' 0 (^1) = vmax for some z\ < 0. 
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Let us denote by Xitj one of the roots of the characteristic polynomial cpi. We know 

that cpi and cp3 each have one negative real root and two roots with positive real part. 

We ini t ia l ly assume that al l three roots are real and distinct. We also note that in the 

l imi t ing case of zero speed solutions, cp2 had two imaginary roots and one positive real 

root. Here we init ia l ly assume that cp2 has two complex conjugate roots wi th negative 

real part. Thus the solution for w is given by 

w(z) = { 

di,iex,'LZ, 0 < z < oo, 

e" z [d 2,i cos(cuz) + d 2 , 2 sin(u;z)] + d 2 , 3 e A 2 ' 3 Z + w2, zx < z < 0, (5.85) 

d 3 , 2 e A 3 ' 2 ( z - Z l ) + d 3 , 3 e A 3 - 3 ( z - Z l ) + w3, -oo < z < zu 

where A 1 : 1 < 0, p ± LO are roots of cp2 with p < 0, A 2 ) 3 > 0, and 0 < A 3 ] 2 < A 3 ) 3 . 

Now we apply our boundary conditions and matching conditions to pin down some of 

these constants. A p p l y i n g C° , C1, and C 2 conditions at z — 0, we get 

d i , i - d 2 , i - ^2,3 = w2, (5.86) 

A i , i d 1 : i - pd2,i - cod2j2 - A 2 ] 3 d 2 ) 3 = 0, (5.87) 

A ^ d i . i - p2d2}1 - 2pud2>2 + io2d2y3 = 0. (5.88) 

A t z = zi, we obtain 

d 3 , 2 + d 3 , 3 + w3 = e'1Z{ [d 2,i cos(o;zi) + d 2 > 2 sin(a;zi)] + d 2 > 3 e A 2 ' 3 Z l + w2, (5.89) 

A3,2^3,2 + A 3 , 3 d 3 > 3 = pe'JZi [d 2 ) i cos(u;zi) + d 2 , 2 sin(u;zi)] 

-\-Loe I J' Z l [—d2 ii sin(wzi) + d 2 , 2 COS(LOZI)] 

+ A 2 ) 3 d 2 , 3 e A ^ 3 Z l , (5.90) 

^ 3 , 2 ^ 2 , 3 + A 3 ) 3 d 3 i 3 = d2^ellZx [p2 cos(w,zi) — 2pw S\TL(LOZX) — LO2 COS{LOZI)\ 

+d2>2etlZl [p2sin(LOZi) + 2PLOCOS(LOZI) — co2sin(uz\)\ 

+Al 3 d 2 , 3 e A 2 ' 3 2 1 . (5.91) 
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Unfortunately, no easy formula exists for finding the solution of the di}j in terms of the 

Xij. In principle, it is a linear system, but one that does not appear to simplify neatly 

as in the P W L D model. Thus, we do not attempt to write down a solution for the ditj. 

We can write down a solution for v easily using (5.38) 

' - ^ ( ^ i ) ^ ' 1 1 . 0 < z < o o , 

- ^ e / i Z d 2 , i [(M2 - to2 + cp - ^) cos(uz) - uj(2p + c) s i n ^ ) ] 

v(z) = <j -^'zd2,2 [{u2 - U J 2 + cp, - sin(u;z) + u (2p + c) cos(wz)] 

-^fg(X2,3)e-x^z + v2, Zl<z<0, 

k -I [ d 5 M > ^ ) e X 3 M z ~ z l ) + d3jg(\3,3)ex^z-^] +v3, -oo < z < z u 

(5.92) 

where g is as given previously in (4.63). We can explicitly write down equations for our 

matching conditions (5.36) and (5.37) 

diMKi) = ~ V - ^ i (5-93) 
T 

d 3 ) 2 0(A 3 l 2) + d313<-(A3,3) = K ( V 3 ~ V m ° * \ (5.94) 
r 

Thus we are left wi th the problem of solving 14 transcendental equations (the 8 listed 

above and the six for the eigenvalues). In general, it is difficult to give a sufficiently 

accurate in i t ia l guess for the Newton method nonlinear equation solver that we are using 

to determine a solution to such a system. However, we showed previously how one can 

get two different zero speed solutions, one corresponding to a small value of 7, and one 

corresponding to a larger value of 7. The small 7 problem is a very difficult one to 

perturb off of, so we do not attempt to do that here. One can perturb off of the large 

7 solution, but it requires a bit more work than in the P W L D model as we don't have 

explicit expressions for the d^ in terms of the eigenvalues. Here we need to use a bit of 

asymptotics to guess the appropriate scalings for the non-order 1 coefficients. 
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In order to begin the process, we proceed as in the P W L D model and let c = e <C 1 and 

assume that re, a, and r are fixed. Let 7 be expanded in a power series in e as 

7 = 7 0 + e 7 l + O(e 2 ) . (5.95) 

We also need asymptotic expansions of our steady states 

u>2 — W 2 , i + + 0(e2), (5.96) 

ui3 = w3,i + CW3.2 + 0(e2), (5.97) 
62(re + l ) 

m2(re + 1) - 70 

jib2(K + 1) 

[m2(re + 1) - 7 0 ] " 
™2,2 = } 7 — - ; 72> ( 5- 9 9) 

b-iU + l) 

^ 3 , 1 = , , ^ _/ , 5.100 
63(re + 1) + 7 0 7i63(re + 1) 

[&3(re + l ) + 7 n f 
™3,2 = - 7 7 - 7 — r 7 - 72- ( 5 - 1 0 1 ) 

Expansions of v2 and 113 can be attained by mult iplying the equation for u>2 and 103, 

respectively, by ^±1. 

In the next step, we seek to find expansions for the eigenvalues. The ones which were 

0(1) in the l imit e —>• 0 are easy to handle, and we deal with them first. Thus, we expand 

A i _ i , co, and A 3 ; 2 as follows 

0(e2), (5.102) 

0 (e 2 ) , (5.103) 

0(e 2 ) . (5.104) 

Following the same techniques as before, we try to find expansions for the "missing 

eigenvalues" as in the P W L D model. Here, we can expand A 2 , 3 and A 3 ) 3 as we did in the 

1>1 - A ( 1 ) 

- A l , l 

LO = w w 

3,2 - A ( L ) 

- A 3,2 
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P W L D model for A 3 . Thus we expect 

A ( 1 ) 

A2,s = -f + >tf} + 0(e), (5.105) 

A(i) 
A 3 , 3 = -^ + \{

2
2l + 0(e). (5.106) 

We also notice that u. = 0 in the l imit ing zero speed wave case, so we expect to be able 

to expand \x as: 

p = eu{1) + 0 ( e 2 ) . (5.107) 

5.3 Numerical Results 

5.3.1 Varying a over its range 

In Figure 5-1, we see the fairly classical result that the speed is a monotonic decreasing 

function of a with the zero-speed wave occurring before a = 0.5. 

In Figure 5.2, we see that the absolute value of z\ is a monotonic increasing function 

of a. This is somewhat counterintuitive as one would expect that when a is decreased, 

the dendrite should be becoming more excitable, and this should translate into faster 

moving, steeper solutions. One should note that the absolute value of z\ corresponds 

to distance traveled within the wave for the value of v to increase from vmin to vmax. 

However, the difference between vmax and vmin, 

Jmax umm 
2 y / o 2 - a + l 

Vmin = = , (5.108) 

is a decreasing function of a. Thus, although z\ is increasing as a decreases, a greater 

portion of the total height achieved by the traveling front is being traversed, and the 

solution is not necessarily any less steep. 
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a 

Figure 5.1: Speed of the wave as a function of a for 7 = 1.5, K = 5, r = 10. 

5.3.2 Varying K over its range of values 

In Figure 5.3, we see roughly the same relationship between c and K that we saw in the 

P W L D model, that is, there is something of a skewed hump which intuitively should 

asymptote at some positive value of c. 

In Figure 5.4, we have plotted z\ against K over the range corresponding to traveling 

front solutions. 

Here we see the relationship between z\ and K is directly opposite to that between c and 

K. One can immediately reason out that this is the case because when the dendrite is 

highly excitable, this should correspond to high speed, steep solutions. That is, solutions 

in which c is large and the absolute value of z\ is small. Conversely, when the dendrite is 

not highly excitable, this should correspond to low speed, gently sloped solutions. That 
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Figure 5.2: z\ as a function of 7 = 1.5, K = 5, r = 10. 

is, solutions in which c is small and the absolute value of zx is large. 

5.3.3 Varying 7 over its range of values 

In Figure 5.5, we see the same relationship that we noted in the P W L D model, that is, 

there appears to be a hump shaped relationship between 7 and c. This is due to the 

balancing factors of the strength of local depolarization, voltage saturation, and current 

attenuation which are intricately linked to 7. 

The next two graphs, Figures 5.6 and 5.7, show where the the assumed functional form 

of the wave breaks down. When 7 becomes small , the roots are no longer complex 

conjugates in the inner matching region. Instead, they become negative real roots. In 

Figure 5.6, we see the complex portion of the root going to zero. In Figure 5.7, we see 
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F i g u r e 5.3: Speed of the wave as a f u n c t i o n for K for a = 0.1, 7 = 1.5, r = 10. 

the emergence a n d s p l i t t i n g of the two real roots . T h i s b i f u r c a t i o n was d i f f i c u l t to get 

n u m e r i c a l l y . T h e p r o b l e m was t h a t n o n - s i m p l e roots are t y p i c a l l y very i l l - c o n d i t i o n e d . 

T h u s , w h i l e o n l y a n O(e) change is m a d e i n the coefficients of the p o l y n o m i a l , there is 

a n 0(1) change i n the roots . T h e easiest way a r o u n d the p r o b l e m t h a t I f o u n d was to 

j u m p c o m f o r t a b l y across the b i f u r c a t i o n , a n d pro jec t a l l o ther var iab les across the j u m p 

a c c o r d i n g to a s i m p l e l inear a p p r o x i m a t i o n . T h e n go back, a n d accura te ly ca l cu la te the 

two negat ive real roots u s i n g M a p l e . O n e can head back towards the b i f u r c a t i o n site, or 

move o n i n the other d i r e c t i o n . 

I n F i g u r e 5.8, we have p l o t t e d a g r a p h of z\ against 7. Here we see t h a t as 7 goes 

to i ts lower c r i t i c a l va lue c o r r e s p o n d i n g to z e r o - s p e e d waves, the inner m a t c h i n g reg ion 

d i sappears (i.e., z\ —> 0). T h i s can be u n d e r s t o o d qui te w e l l m e c h a n i s t i c a l l y . If 7 is s m a l l , 
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Figure 5.4: zx as a function of K of a = 0.1, 7 = 1.5, r = 10. 

there is very strong local depolarization so the spine head voltage should quickly jump 

to its equil ibrium value. This corresponds to a slow-moving wave because it effectively 

chokes off the current source for the dendrite due to voltage saturation. Conversely, as 

7 approaches its higher critical value corresponding to zero-speed waves, we see that 

the absolute value of zx is increasing. This is due to the low excitability of the spines 

which occurs because too much current is being lost to the dendrite. This results in 

a requirement for a long period of time for the spines to depolarize and thus a large 

absolute value of zx. 

5.3.4 Varying r over its range of values 

In Figure 5.9, we have graphed A / T C against r to compensate for the factor involved in 

the nondimensionalization and to make it easier to interpret graphically. We see that the 

100 



Chapter 5. Piecewise Linear Continuous Approximation 

c 

1.2 
7 

Figure 5.5: Speed of the wave as a function of 7 a — 0.1, K = 5, r = 10. 

speed of the wave, c, is a monotonic increasing function of r , the nonlinear time scale, 

which appears to asymptote to some finite positive value just as in the P W L D model. 

In Figure 5.10, we have plotted the relationship of z\ with r . The graph shows that 

the magnitude of Z\ is a monotonic decreasing function of r . This result is intuitively 

obvious, as the wave should become steeper as the nonlinear dynamics are sped up. 

5.3.5 Numerical simulation of the P D E model 

The analytical method we developed for numerically finding solutions to the system of 

O D E s that we derived was very valuable in mapping out some of the relevant parameter 

ranges, and allowed us quickly to verify numerically some of our intuitive expectations 

from the P W L D and full Hodgkin-Huxley models.' However, these traveling fronts are 
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Figure 5.6: LO over the range of 7 values for which there are complex conjugate roots for 
a = 0.1, K = 5, r = 10. 

not of much experimental importance unless they can be shown to correspond to stable 

solutions. Lacking a proof of the stability of the system of P D E s , we instead decided to 

examine the solution numerically using P D E c o l . The program was run wi th Neumann 

boundary conditions, and the ini t ia l guess was the computed solution from our analysis 

(slight perturbations to the ini t ia l guess were made and st i l l gave the same result). The 

result is shown in Figure 5.11. The traveling front appears to propagate to the right with 

the theoretically computed speed without changing shape and thus acts as an important 

check of our analysis. 
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Figure 5.7: The real eigenvalues which exist on the other side of the bifurcation for 
a = 0.1, K — 5, T = 10. 
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Figure 5.10: Z\ as a function of r for 7 = 1, K = 5, r = 
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x 

v 

Figure 5.11: This is a simulation of the traveling front for a = 0.1, 7 = 1, K = 5, r = 10. 
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Chapter 6 
T h e F u l l C u b i c M o d e l 

In this chapter I w i l l attempt to solve some of the dynamics for the ful l cubic model. 

This system w i l l be seen to be similar to an F H N system with reversed kinetics. This 

reduced system parallels some of the ideas developed for the F H N equations by Rinzel 

and Terman for bistable steady states. 

The main thing that w i l l be seen here is that some of the steps from the analysis of 

the piecewise linear approximations have natural correlates in the fully nonlinear model. 

However, there are a couple of important differences which w i l l be noted and w i l l be 

shown to be artifacts of the discontinuity of the linear interpolations. 

The form of the equations that we are studying is 

dv 

di 

dw 

~dt 

(6.1) 

(6.2) 

where 7 > 0 , K > 0, r > 0, 0 < a < 1, and / is given by 

/ ( « ) v{v — a)(l — v). (6.3) 
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6.1 Spatially homogeneous steady states 

For spatially homogeneous steady states, we are looking for solutions to 

0 = f(v) + 1(w -y), (6.4) 

0 = KV-(1 + K)W. (6.5) 

One obvious solution is the origin, v = 0 = w. To determine the existence of other steady 

states, we have to be a bit more thorough. 

The equation of the v nullcline is 

w = v — 
f , 7 (6-6) 

3 

7 

while the equation for the w nullcline is 

K, 
w = v, 

1 + K (6.7) 
= h(v). 

Since / '(0) < 0, we know that the slope of the v nullcline in the (v, w)-plane is greater 

than 1 at the origin. However, ti (0) < 1, so the v nullcline always passes over the top 

of the w nullcline at the origin which is exactly the opposite of the case in the F H N 

equations. 

In order to find the other steady states we see that the equilibria must satisfy 

P(v) ~ = 0, (6.8) 
1 + K 

or alternatively, 

v ( v 2 - (a + l)v + a + -l— J = 0 . (6.9) 
V 1 + KJ 
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The non-zero roots of the above cubic are given by 

= I a+l + ^ a - l ) ' - ^ 

vs = M« + l - A / ( a - l ) 2 - — 

(6.10) 

(6.11) 
2 1 " ' " V v~ ~' 1 + K " 

which represent the v components of the steady state. The corresponding w components 

are obtained by noting that 

Wi = -u,-, i = 2, 3. 
1 + K 

A n obvious condition on the existence of these roots is 

47 

(6.12) 

1 + K, 
< ( l - a ) ' (6.13) 

If we let v-i — 0 — wi, then we can determine the stability of the steady states from the 

eigenvalues of the matrix 

A, i = 1,2,3. (6.14) 
f'{vi)-J 7 

re - ( 1 + K ) 

Since trace(Ai) < 0 and det(Ax) > 0 (since / '(0) = — a < 0), we know that the origin is 

always stable and can be shown to correspond to a stable node. If the inequality (6.13) 

holds, then we know that v2 is the second root of (6.8). A s this equation is a positive 

cubic, we see that this cubic must have a negative slope at v2, and hence 

KJ 
V {v2) < 

1 + K,' 
(6.15) 

Thus, substituting for p (v2) using inequality (6.15) in the equation for det(A2), we see 

that 

det(A2) = p (v2)(l + K) - JK 

< ̂ —— (l + «) - J K 

< 0. 

(6.16) 
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Thus, this equil ibrium point must be a saddle point. Similarly, we can show that 

p'(v3) > (6.17) 
X ~T K 

and thus determine that tr(A3) < 0 and det(A3) > 0. Hence, this equil ibrium point must 

be stable. Here we have the classical case of a bistable steady state in the phase plane. 

If, however, = (1 — a) 2 , the two roots v2 and v3 coalesce into one. In this case, one 

can easily see that the determinant of the stability matrix should be zero, and we have 

a nonhyperbolic equilibrium. A center manifold reduction could be attempted here to 

determine some of the features of this equilibrium, but it is not of much concern here 

and won't be pursued any further. 

Since we now know that there are two stable steady states separated by a saddle point in 

the space clamped case if inequality (6.13) holds, we now can inquire into the existence 

of traveling front solutions between the two stable steady states. 

6.2 Traveling front solutions 

We seek traveling front solutions of the fully nonlinear equations wi th constant speed c 

which traverse a path from the steady state at (vi, wi) to the one at (v3, w3). We proceed 

as in the previous two chapters and look for solutions with constant shape in the traveling 

wave coordinate 

z = x- ct. (6.18) 

Substituting into (6.1) and (6.2) we get 

-cv = f(v)+j(w-v), (6.19) 

—cw' = w — — + — (v — w), (6.20) r r 
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where ' denotes differentiation with respect to z. The relevant boundary conditions are: 

l im w(z) 

l im v(z) 

2 —> — OO 

l im w(z) 
2—•OO 

l i m v(z) 

0, 

0. 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

There are four boundary conditions that we shall try to satisfy for this third-order 

problem, so the problem is overdetermined. 

A s i n the previous models, our nonlinear O D E is autonomous, and the associated bound­

ary conditions are at oo. Thus, the problem is translation invariant. Since we know that 

for some value of z, say z0, v(z0) = v2, we may without loss of generality enforce the 

condition 

v{0) = v2. (6.25) 

The next crit ical issue is determining the stability of the various equilibria in the traveling 

wave frame. Let u = iu', then we can use the fact that u = w" to write the above system 

as the system of three first-order nonlinear O D E s 

v) - jtv], (6.26) 

(6.27) 

w - - v \ . (6.28) 
T T j 

The stability matrix of each of the three roots is given by 

1 1 
V — — 

c 
1 

w = u 

/ 
') 1 

1 
Ui c 

Ai 0 0 1 

K, 1 + K. 

CT CT 

, « = 1,2,3. (6.29) 
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The characteristic polynomials for the equilibria are given by 

cpi(X) = A 3 - p'{vi) -

(6.30) 

Since p (0) = a + 7, we know that cpi(O) > 0 and cp'j < 0, so cpi has one negative real 

root and two roots with positive real part. Thus, as z —> 00, we have a two-dimensional 

unstable manifold. 

Given inequality (6.15), we assert that cp2(0) < 0 and cp'2(0) < 0, so cp2 has one positive 

real root and two roots with negative real part. Thus, as 2 -> —00, this equil ibrium 

point has a two-dimensional unstable manifold, and it is unlikely that a trajectory from 

the equil ibrium at (0, 0, 0) could enter this equilibrium. 

Similarly, given inequality (6.17), we assert that cp 3(0) > 0 and cp'3(0) < 0, so cp 3 has 

one negative real root and two roots with positive real part. Thus, as z —>• —00, this 

equil ibrium has a two-dimensional stable manifold, so it seems plausible that there may 

be a path connecting it to the equilibrium at (0, 0, 0) for a certain speed, c. 

We notice a problem that we did not have previously. Before, we could explicit ly state 

a general form of the solution by using the fact that the equations were linear wi th 

constant coefficients in the various regions. We then could use boundary conditions to 

try and determine certain coefficients, and the values of z which split up the axis to make 

everything consistent. Here we first develop a technique to show how one may determine 

the parameter range which corresponds to zero-speed waves. Then, we show how to 

obtain an implici t formula for the solution trajectory to the standing wave problem and 

show that the results are consistent with the analysis done on the previous problem. 

We verify the results numerically and show the similarity between it and the solution to 

the P W L C model. Lastly, we suggest a means to perturb off this solution in order to 

determine the parametric dependence of speed. 
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6.2.1 Using integration to determine zero speed wave solutions 

If we mult iply (6.20) by w and integrate both sides of the equation over (—00,00), 

we obtain (using integration by parts, the fundamental theorem of calculus, and the 

boundary conditions) 

/

OO j'C 

(w')2dz = / 
•00 J —c 

WW WW -\—vw 
T T 

dz 

1 '\2 1 + K 2 [W ) W 
K 
—VW 
T 

wv dz, (6.31) 

1 + « 2 — W3 - KTV3W3 

zr T 
wv dz. 

If we use the above derivation to solve for wv'dz, we can use it to derive an implicit 

equation for c. The first step is to mult iply both sides of (6.19) by v and integrate over 

(—00, 00) to obtain 

/

•OO fOO 

(v )2dz = I [(f(v) — jv) + 7u>] v dz 
-00 J— 00 

° r 7 '1 f°° 
f(v) — —(v2) dv + 7 / wv dz. 

2 J J_00 

(6.32) 

Now we make the substitution described above and isolate the terms involving c on the 

right to obtain 

-c / 00 
-00 

[v')2 + ^V) 2 
dz = f(v) dv + j2vj + 

^3 

7(1 + K)W2 

2K 
jv3w3 

f(v) dv + , 7 " 3 . . 
M ; 2(1 + K) 

Thus, we can obtain the following implicit expression for c 

(6.33) 

c = (6.34) 

Clearly the denominator in the above expression must always be positive and non-zero 

for any solution to the system of O D E s we are examining. Thus the speed of the wave 

equals zero when 

f{v)dv 
7 

2(1 + K) 
vi = 0. (6.35) 
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If we solve the integral above and do a little bit of algebra we find that 

v l _ « a + T>V3+ 2 L X ) = 0 , ( 6 . 36) 

3 \ 1 + K, J 

Recall ing the equation for v3, (6.8), we can derive another constraint 

vi - (a + l)v3 + a + —!— = 0. (6.37) 
1 1 + K, ' 

We subtract these two equations, yielding 

1 + 3 

Substituting the above expression into (6.37), we obtain 

7 ha+l)v3-a. (6.38) 

3 

Then eliminating v3 in (6.37), we get the tidy result: 

v3 = \{a + \). (6.39) 

7 2 f a - ] - ] (a-2). (6.40) 
1 + K, 9 V 2̂  

B y analogy, it is easy to see that the positive speed traveling wave fronts should exist if 

the following inequality is satisfied 

7 < 2 

1 + K, 9 
( a - 0 (a - 2) . (6.41) 

Now we show a method to determine the profile of a zero-speed solution. 

6.2.2 Calculating the profile of a zero-speed front 

In this section, we are searching for solutions to the nonlinear O D E s corresponding to 

c = 0. In this case, the O D E s reduce to 

0 = - P(TJ) + 77JJ, (6.42) 

0 = u; w + -v. (6.43) 
T r 

115 



Chapter 6. The Full Cubic Model 

One should notice that the simple change of variable z = -jU eliminates r from the 

problem. Thus, we shall just adopt the convention that r = 1 for the analysis that we 

shall do. 

Note that 

/ dp i 

dv 
a d2p . i, 9 dp a 

(6.44) 

(6.45) 

Substituting these results into (6.43), we obtain the single nonlinear O D E 

~v" + ^ - f ( v ) 2 - (1 + K)P(V) + K^V = 0, (6.46) 

with the associated boundary conditions given by (6.22) and (6.24), and the enforced 

condition (6.25). 

If we use the assumption that condition (6.40) holds, then we can show that 

KJV — (1 + K,)p(v) = KJV — (1 + K)V(V2 — (a + l)v + a + 7), 

v — 

Now let us write 

d,p 

dv 

= - ( 1 + K)V l^v2 - (a + l)v + a + 

= - ( 1 + « ) » ( „ - i ± i ) ( 

= 3 u 2 - 2 ( a + l)w + a + 7, 

K7 

i+V' 
2(a + l ) ' 

(6.47) 

= 3 
a + 1 1 o 

(6.48) 

where 

Pl a + 7 
(a + 1)5 

(6.49) 
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Thus, 

d2p . / a + 1 
d^ = 6 [ V - ~ 3 -

There is a natural change of variables to try in order to minimize the algebra 

i ( a + l) ' 
z = A / 1 + Ky, 

1 (a + iy 

M a k i n g these substitutions into (6.46), we get 

3(u2 + p 2 ) ^ + 6u 
dy2 

subject to the boundary conditions 

du 

[dy 
+ u(l - u2) = 0 

l i m u = 1, 

u(0) = 0, 

l i m u = — 1. 
2/->oo 

We can integrate (6.54) in phase space. Define g = ^ . Rewrite the O D E as 

dg _ —6ug2 + u(u2 — 1) 

dy 3(u2 + p2) 

However, we know that dg/du — (dg/dy)/(du/dy), so we may conclude 

dg —6ug2 + u(u2 — 1) 

d,u 

If we now rewrite the equation as 

3g(u2 + p2) 

3(u2 + p2)gdg + (6g2u + u(l - u2))du = 0, 

then the O D E given above has the integrating factor 

(6.50) 

(6.51) 

(6.52) 

(6.53) 

(6.54) 

(6.55) 

(6.56) 

(6.57) 

(6.58) 

(6.59) 

(6.60) 

p = 3(u2 + p2) (6.61) 
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If we now endeavor to integrate partially (the equation is now exact) we can show that 

the solution is given by 

9 
u + p ) g + (f)(u) = constant, 

d(f> 

du 
3u(l-u2)(u2 + p2), 

or 

u2 

(v2 + p2)2g2 + ^ [6p2 + 3(1 - pV - 2u4] = k 

(6.62) 

(6.63) 

(6.64) 

where k is some constant. The above equation is even in u, so if (u, g) = (1, 0) is a point 

on the trajectory, then so is (u,g) = (—1, 0). The trajectory goes through these points if 

1 
; i + 3P

2) = k. 

Now we may rewrite the equation as 

9-(u2 + p2)g2 = \(u2-l)2(2u2 + l + 3p2). 

If we recall that g = we obtain the result 

du _ {u2 - l)x/2u2 + l + 3p 2 

dy 

A p p l y i n g the condition u(0) = 0 yields 

y = V18 

18(ti 2 + p 2 ) 

s2 + p2)ds 

( s 2 - l ) ( 2 s 2 + l + 3 p 2 ) ' 

and integration gives 

y = 31og e y/i2)u + gi(u) + <5(l + p2) ,5g2(-u) 6g2(u). 
atanh{ ) — atanh(—7-r) 

9i(u) 

where 

(6.65) 

(6.66) 

(6.67) 

(6.68) 

(6.69) 

0i W 

92(u) 

5 

= ^2U2 + l + 3p2, 

= 3p 2 + l + 2'u, 

1 

V / 3 + 3p 2 
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Now that we have shown how to generate implicit solutions to the problem for zero-

speed waves, we can see that if we perturb one of the parameters, we should be able to 

predict the speed of the resulting wave analytically. This is, however, beyond the scope of 

the present investigation and wi l l be left as an open problem for someone else to pursue. 

The basic techniques are standard regular perturbation techniques, and the leading order 

solutions is stated above. The problem should simplify to finding the solution to some 

linear second-order differential equation which can be solved numerically. 

One thing that is somewhat striking about the above result is that it should perhaps 

generalize to other sets of equations. We now show that this is, in fact, the case. 

6.2.3 General method for getting solution trajectories to degen­
erate reaction—diffusion traveling fronts 

The problem can be stated as follows 

0 = -qfv) + W) (6.73) 

0 = w" - w + ipv, (6.74) 

subject to the boundary conditions 

l i m v = 'u 3, (6.75) 
z—> —oo 

l i m w = w3, (6.76) 
z—>—oo 

l i m v = 0, (6.77) 
2 - 4 OO 

l i m w = 0, (6.78) 
z—>oo 

where (v3,w3), (0,0) represent spatially homogeneous stable steady states and ( t ^ u ^ ) 

represents a spatially homogeneous unstable steady state, tp > 0, g(0) = 0 and is generally 

a cubic in profile. Here we also assume the auxiliary condition v(0) = v2-

119 



Chapter 6. The Full Cubic Model 

We can proceed as before by noting that w — q(v), and thus 

i, dq ' N 2 ^ 2 ( Z 
w — v — 4- (v ) 

dv 

Substituting these results into (6.74), we get 

d,v7 
(6.79) 

dq » d2q 

dv dv ',; + I 7 ( ' u ) -q\v) + il)v. (6.80) 

If we let Q{v) = 'ipv — q(v) and g = v , we again can simplify the problem by recalling 

that ^ = If we substitute these relationships into (6.80) , we get 

dv 9 dv 
(6.81) 

which may be rewritten as 

' d2o 

g ~ i L d g + \ - ± g 2 + Q{v))d,v = 0. 

dq 

dv dv 
(6.82) 

Now this equation is not exact, but we may determine an integrating factor. If we let 

dq 
M(g,v) = g-f, 

d,v 

N(g,v) 
d?q 

dv2 
g2 + Q(y), 

(6.83) 

(6.84) 

then we notice that 

M(g,v) 

dN d,M 

dg dv J 
(6.85) 

is independent of g. Thus, we know that there is an integrating factor of the form 

pi [M(g,v) \ dcj dv )\ ( l V (6.86) 

The equation is now exact, and the general solution is given by 

(6.87) 

(6.88) 
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where k is some constant. 

Since 0(0) = 0 and l i r n ^ o o v — 0, we immediately see that k — 0. Now in order for this 

to be possible, we also see that we require 9{v) > 0 for v in the open interval (0, v%) and 

0(1*3) = 0 to match the boundary condition at z = — 00. That is, 

I"" ~Q(v)dv = 0. - (6.89) 
Jo dv 

We can apply integration by parts here and noting that Q(v3) = 0 = Q{0), we see that 

we require 

fVS q(v)^r-dv = 0. (6.90) 
Jo dv 

If we follow this derivation for our problem, we w i l l end up with the result: 

= 0. (6.91) JK 

~ 1.2(1 + *.) jQ 

The fact that the speed of the wave goes to zero as r —> 00 is something of an anomaly. 

The actual physical speed of the wave goes to a constant, but in the nondimensionalization 

of the problem, the distance was scaled by r so the unit distance goes to 00 as r goes to 

00. Here we also see the classical results that the speed of the wave should go to zero as 

7 and K become small . Physically, this makes sense, since as 7 —*• 0, we have a situation 

in which current through the dendritic shaft is unable to penetrate into the spine head, 

Thus spines ahead of the traveling wave cannot reach threshold and create current to 

continue feeding the wave. Similarly, the speed of the wave should go to zero as K —> 0 

since there is no source to feed the dendritic shaft voltage. It should be noted here that 

these results do not agree with the results from the P W L D model, the P W L C model, 

or the ful l H H model of Baer and Rinzel . The lack of agreement wi th the former two 

can be shown to be due to a lack of sufficient continuity for the source term (i.e., f) . 

The lack of agreement with the full H H equations is almost certainly due to the lack of a 

recovery term. Intuitively, one would expect the region in parameter space corresponding 
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to traveling waves to contract in each direction as a recovery term is added, that is, the 

parameter space for positive speed pulses for the F H N equations with recovery should 

contain the parameter space for positive speed fronts for .the F H N equations without 

recovery. 

6.3 Numerical simulation of the P D E 

We decided to attempt a numerical simulation of the full P D E model on P D E c o l to 

ensure that there were actual traveling front solutions in our presumed parameter space. 

We ran the simulation using Neumann boundary conditions, and used a scaled version 

of a solution to the P W L C model for the same parameter set as an ini t ia l guess. The 

solution to the P W L C model was scaled so that it had the same height as the solution to 

the ful l cubic model, but no alterations in the shape were made. The resulting wavefront 

solution is plotted in Figure 6.1. 

One can see that the P W L C model gave a solution with a fairly similar shape to the 

cubic model as the shape did not evolve very much with time. Furthermore, the speeds 

of the fronts were actually quite comparable. However, i t should be noted that the slope 

of the wave front in the cubic case is steeper than the the slope of the P W L C wavefront 

as would be expected. 
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x 

Figure 6.1: This is a simulation of the traveling front for a = 0.1, 7 = 1, K = 5, r = 10. 
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Chapter 7 
D i s c u s s i o n 

7.1 Theories of spine function 

The function of dendritic spines is a mystery that has long plagued neuroscientists. Many 

different theories have been put forth on their functions, but unti l recently, they have 

largely been untestable due to lack of appropriate experimental techniques. W i t h the ad­

vent of devices such as fluorescence microscopy and other advances in laboratory equip­

ment, some direct observation of spine function has been possible in recent years. This 

has intensified the interest in the field amongst experimentalists and theoreticians alike. 

The main goal of this thesis was to review some of the major theories and study mathe­

matical models put forth on spine function. 

In order to understand spine function, one has to understand that spines are the main 

site of reception of excitatory synaptic transmission. The exact reason for why this is 

the case has been debated for many years. There are two predominant theories within 

the field of research. One theory holds that the primary reason is to allow for spatially 

localized regions in which biochemical reactions mediating changes in synaptic efficacy 

can be sequestered. This was the primary focus of Chapter 2. The other major theory 

suggests that spines may have special electrical properties that allow them to modify the 

size of the E P S P at the axon hillock compared to a neuron without spines. This is the 

focus of much of Chapter 3. We subsequently explored in greater detail one particular 
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continuum model of excitable spine heads and proceeded to derive an analogue model 

based on the Fi tzhugh-Nagumo equations. The mathematical analysis of three different 

models was the focus of Chapters 4, 5, and 6. The main purpose behind these analogue 

models was that the forms of their equations allow for analytical results which cannot be 

attained by numerical simulation and may give a deeper understanding of the underlying 

phenomena. 

7.2 Discussion of spines and L T P 

7.2.1 Spines and LTP 

In Chapter 2, we focused primari ly on evidence suggesting a role for spines i n mediating 

a localized memory phenomena known as long-term potentiation ( L T P ) . We introduced 

some of the important features of L T P such as cooperativity, associativity and i n p u t -

specificity. We explored three ini t ia l models suggesting how spines can play an important 

role in L T P by allowing high localized concentrations of [ C a 2 + ] i to develop wi th in the 

spine head in response to high frequency stimulation. This high level of intracellular 

calcium then could activate a number of calcium-dependent enzymes and unleash a 

biochemical cascade which eventually culminates in an increased postsynaptic response 

when that synapse is subsequently activated. These theories focused primari ly on the 

contributory roles of spine morphology, the presence of a specialized postsynaptic receptor 

known as a N M D A R which has a high calcium conductance and is largely inactive during 

low frequency activation but highly active during high frequency stimulation, and the 

presence of calcium buffers and pumps. These models went a long way in demonstrating 

that the special features of a spine, its shape and size, may be crit ical in creating a 

biochemical compartment specific to a particular synapse. 

We then proceeded to explore some ideas concerning calcium dynamics wi th in spines. 

The work of Woolf and Greer [118] showed that spines could develop localized calcium 
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transients if they had long spine necks, high amounts of buffers, and the absence of 

calcium-induced calcium release mechanisms in the spine neck. The unfortunate aspect 

of the above numerical result was that it failed to give one a true qualitative feeling 

about how all the different factors interplay to produce localized calcium transients in 

the spine heads. Zador and K o c h managed to shed a great deal of light on the subject 

through a linearization of calcium dynamics through the use of asymptotics [121]. They 

showed that under certain conditions, the nonlinear calcium dynamics reduce to the cable 

equation and were able to identify analogues to the concepts of input resistance, time 

constant and space constant. They showed that the chemical input resistance of the spine 

head was much larger than the parent dendrite, which allows for much higher increases 

in [Ca 2 + ] , t in the spine head than the same input would cause on the parent dendrite. 

Furthermore, the chemical space constant of the spine was also much smaller than the 

parent dendrite. This means that much higher levels of [Ca 2 + ] j w i l l be seen in the spine 

head than at the base of the spine head, which allows for spatial localization of calcium 

transients. Final ly , they showed that the chemical time constant of the spine head was 

much smaller than the parent dendrite. This only further amplifies the difference in 

[Ca 2 + ] j between the spine head and parent dendrite during calcium transients. 

We proceeded to explore the temporal nature of calcium transients required in L T P . It 

was shown that there may be an important role for calcium-induced calcium release 

processes to keep the level of [ C a 2 + ] i in the spine head elevated for long enough to allow 

for the biochemical cascade controlling L T P induction to become sufficiently activated. 

Final ly , we looked at the presumed final common pathway involved in L T P induction, the 

activation of protein kinases. We focused on how C a M K I I ' s peculiar autophosphorylation 

capacity may be crit ical in the induction of L T P , and briefly reviewed the results from a 

finite Markov chain model of C a M K I I function. 

We felt it was important to give the reader an understanding of L T P and its relationship 
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to spine function as this is one of the major fields of interest in neuroscience today. 

7.2.2 The electrical properties of spines 

In Chapter 3, we explored a number of theories proposed for the unique electrical prop­

erties that the presence of spines may confer to neurons. Some of the more prominent 

ideas put forth in the past include: 

• Spines mediate synaptic potential attenuation such that there is a large voltage 

gradient between the spine head and parent dendrite upon synaptic excitation. 

• Spines may allow for linear summation of E P S P s by decreasing nonlinear interac­

tions wi th neighboring spines. 

• The spine neck resistance may be a controller of synaptic weight. 

• Spines increase the low-pass filtering capacity of neurons simply by increasing the 

surface area of dendrites. 

• Spines effectively decrease the space constant and input resistance of dendrites 

while having little effect on the time constant. 

• Spines wi th active channels are computationally richer than passive spines and may 

allow for a form of pseudosaltatory conduction in dendrites. 

We finished the chapter by exploring a continuum model of active dendritic spines. The 

goal of this model was to simplify the problem of modeling spines by averaging them over 

the dendrite as a continuous density and thus significantly simplify the problem. Active 

continuous channels based on the Hodgkin-Huxley equations were placed in the spine 

head, and a thorough numerical investigation of changing various parameters such as 

spine neck resistance was made. This model went a long way in allowing more detailed 

analysis of the possible role of active spine dynamics on dendritic action potentials. 
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However, the model is st i l l far too complicated to allow for the derivation of any significant 

numerical results. Instead, it must rely upon brute force numerics to simulate a solution 

for each individual parameter set. 

In order to obtain a better qualitative feeling for the nature of the various parameters in 

dendritic action potentials, we decided to employ the simpler F i tzhugh-Nagumo dynam­

ics for the Hodgkin-Huxley dynamics. This approach has proven to be very successful 

in allowing insights to be made into action potential generation in axons by maintain­

ing the basic flavor of the equations, while drastically simplifying the functional form of 

the P D E s involved. Thus, we derived a continuum model based on active spines with 

F i tzhugh-Nagumo-type dynamics. We decided to simplify the model in the manner of 

Be l l and Cosner [8] by removing the recovery variable as justified by asymptotics. This 

reduced the problem to a third-order problem which is analogous to a F i tzhugh-Nagumo 

system with bistable steady states, which was studied previously by Rinzel and Keller 

[92]. 

We now compare and contrast the results from our analogue models. 

7.3 Results for the 3 analogue models 

7.3.1 The piecewise linear discontinuous model 

In Chapter 4, we used the piecewise linear term —v + H(v — a) where H is a Heaviside 

function instead of the cubic which classically is used in the F i tzhugh-Nagumo equations. 

We used this equation as it is the simplest one that retains the salient features of a cubic 

and allows for an ini t ia l exploration of the behaviour of the system of P D E s . We started 

by deriving the conditions under which a bistable steady state exists, 

7 < — • (7-1) 
1 + K a 

We further demonstrated that both steady states are stable. 
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We then began to search for constant speed traveling front solutions that travel wi th 

constant speed which go from one steady state to the other. We then proceeded to 

change the variables into the moving wave frame which allowed us to reduce the problem 

to a third-order system of O D E s with boundary conditions at z = ±00. Since the 

problem was translation invariant, and we knew that there was some value of z, say z0, 

for which V(ZQ) = a, we arbitrarily imposed the condition that ZQ = 0. 

Since we were primari ly interested in determining the parameter range which corre­

sponded to positive speed traveling front solutions, we can simplify the problem by map­

ping out the boundary of this region. That is, we can attempt to study the region in 

parameter space corresponding to zero-speed solutions. This has the effect of reducing 

the problem to a simple second-order O D E which can be solved explicitly. Moreover, we 

find that zero-speed waves correspond to 

T, " T T T = 2 a > ( 7 - 2 ) 
(1 + 7)(1 + 7 + K 

and positive speed solutions occur for the inequality 

r - ^ > 2a. (7.3) 
(1 + 7)(1 + 7 + K, V ; 

Interestingly, it can be shown that there are no positive speed solutions for 0, > \. 

We then proceeded to examine positive speed traveling front solutions in the appropriate 

parameter range. Our technique was to try and solve the set of nonlinear equations by a 

Newton's method, but we needed a reasonable approximate solution ini t ia l ly for a given 

parameter set. A n ini t ia l guess for a solution corresponding to a slow moving wave was 

made by perturbation techniques. Having accomplished this, we then could explore the 

dependence of the shape and speed of the wave in terms of the parameter set by holding 

three of the parameters fixed and altering the fourth using the method of continuation. 

Since we were mainly interested in the speed of the wave, we w i l l not comment any 

further on the shape of the wave. 
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We were most interested in the effects of the parameters on the speed of the wave. We 

found that the speed is a monotonic decreasing function of a. This is intuitively obvious 

since low values of a correspond to more highly excitable systems which should have faster 

propagating solutions. The speed of the wave has a skewed hump solution for K wi th a 

lower value which corresponds to a zero-speed solution. This is due to the fact that K is a 

measurement of the extent to which spines can depolarize the dendritic shaft. However, 

there is a value of n corresponding to a maximum speed because increasing spine density 

beyond a certain l imit creates a very large conductance load on the dendritic shaft which 

must be overcome to bring spines that are on the leading edge of the wave up to threshold. 

The graph of the speed of the wave against 7 also had a skewed hump appearance, but 

there were two values of 7 which corresponded to zero-speed solutions. If 7 was too 

small , the spine would achieve voltage saturation too quickly and not enough current 

would be delivered to the parent dendrite to bring the set of spines ahead of the front to 

threshold. Conversely, if 7 was too large, too much current would be lost to the parent 

dendrite, and the spine would be unable to reach voltage threshold. The graph of the 

speed of the wave against r was monotonic increasing. This is not surprising since it is 

intuitively obvious that speeding up the dynamics of the nonlinearities wi th in the spine 

head should speed up the wave as well. This is seen, and there appears to be a definite 

maximum speed of the wave. 

Our technique of simplifying the original set of equations and parameters to more man­

ageable sets allowed us to do some analytical work suggesting the appropriate balances in 

parameters to achieve propagating solutions. This gives one a better qualitative feel for 

the features of dendrites and spines required to allow for dendritic action potentials. This 

is much more intuitive than studying each of the numerous parameters of the individual 

model wi th t ime-consuming and computationally expensive nonlinear P D E s . 
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7.3.2 The piecewise linear continuous model 

In Chapter 5, we used a piecewise linear continuous ( P W L C ) approximation of the 

F i t z H u g h - N a g u m o cubic. This approximation, / , satisfied /(0) = 0 = / ( l ) , and / 

achieved the same maximum and minimum as the F i tzhugh-Nagumo cubic at the same 

points. The general aim in using this approximation was to attempt to reflect more accu­

rately the true shape of the F H N cubic while sti l l retaining the feature that the problem 

could be reduced down to solving a set of nonlinear algebraic equations. 

Most of the salient features of piecewise linear discontinuous ( P W L D ) model were re­

tained i n the piecewise linear continuous model. There were again two stable steady 

states in the traveling front frame so long as the inequality 

7 < frnox ^ ^ 

1 + K Vn 

is satisfied. This is clearly analogous to the result in the piecewise linear discontinuous 

model. However, in the P W L C model, there was a third steady state which is a saddle 

point. Thus, as in the P W L D model, we looked for traveling front solutions going from 

one stable steady state to the other. 

A s in the P W L D model, we showed there were no traveling wave solutions for a > |, 

and that for a parameter set with a < ^, there are two values of 7 which correspond to 

zero-speed traveling fronts for fixed 7 and K, but only one value for a and AC when the 

other two parameters are set. Finally, the dependence of the speed of the wave on the 

different parameters was generally the same in the two models. 

One of the major differences between the two models is that the piecewise linear con­

tinuous model has an "inner matching region" that the P W L D model lacks, and this 

generates a new set of eigenvalues. This creates a difference in how the smaller value 

of 7 which corresponds to zero-speed waves, can be calculated. In the P W L C model, 

this cannot be accomplished directly as in the P W L D model, because the solution is 
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degenerate. That is, as 7 decreases towards its critical value, c —>• 0 and z\ —> 0. In this 

case, we can circumvent this problem and discover the lower value of 7 by recognizing 

the disappearance of the "internal matching layer" and the problem becomes similar to 

the P W L D model in that there is a jump discontinuity in v. 

Another dimension that has to be accounted for in the P W L C model is the parametric 

dependence of z\ on a, 7, K and r . z\ is a monotonic decreasing function of a, meaning 

that as a decreases, the distance required for v to reach vmax increases. This is to a certain 

extent counterintuitive. However, it should be noted that z\ is the distance required for 

the value of v to go from vmin to vmax and 

_ 2 7 a 2 - a + 1 
Vmax Vmin — ^ > V / 

so the difference between vmax and vrnin is a decreasing function of a for a < |. In terms 

of the relationship between zx and K, we note that zx becomes large as K goes its crit ical 

value which corresponds to zero-speed waves, develops a local minimum at roughly the 

same value of K for which the maximum speed is obtained, and then begins to increase 

thereafter as the speed begins to fall . It can easily be reasoned that the same line of 

reasoning which explained the relationship of speed to K in terms of the excitability 

of the system applies to zi in terms of the steepness of the solution. The relationship 

between z\ and 7 is a bit more interesting. For large values of 7, we see that the value of 

Zi decreases, which corresponds to the decreased excitability of the system due to excess 

current loss to the dendrite. However, we also noticed that the value of zi went to 0 as 

7 approached its smaller critical value which corresponds to zero-speed waves. This can 

be seen to be due to the overexcitability of the spines due to the fact that l itt le current 

is lost to the dendrite. This results in the rapid firing of spines which is reflected in the 

small absolute value of zx, and the small value of c due to the voltage saturation of the 

spine choking off current transfer to the dendrite. In terms of r , we get the expected 

result that z\ is an increasing function of r which plateaus at some level. The reasoning 
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here is related to an increased level of excitability as r increases which steepens the wave 

profile. 

7.3.3 T h e cubic model 

The cubic model presents unique challenges that are lacking in the P W L C and P W L D 

models. The foremost problem is the presence of a cubic nonlinearity. In the other 

models, we knew the general form of the solution would be a linear combination of 

exponentials in different regions of space. This allowed us to reduce the problem from 

solving a series of O D E s to solving a system of nonlinear algebraic equations, for which 

a certain amount of analysis was possible. 

Our first step was to analyze the problem in phase space. As in the P W L C model, there 

are three steady states when 

< ( ! - ) • (7-6) 

is satisfied. Furthermore, the first and third roots again can be shown to be stable, while 

the middle root corresponds to a saddle point. Thus, we again looked for solutions going 

from one stable steady state to another. 

We proceeded to look for zero-speed traveling wave solutions. B y using integration 

techniques, we demonstrated that zero-speed solutions exist when 

is satisfied. This result is analogous to the upper l imit value of 7 corresponding to 

zero-speed solutions in the P W L C and P W L D models as positive speed solutions exist 

when 

7 <2-(a-l-)(a-2). (7.8) 
1 + K 9 V 2' 
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It also shows the same relationship in K and a in that there is some lower value of K and 

upper value of a which correspond to zero-speed waves. However, an important difference 

was that it was not immediately obvious whether there was a lower value of 7 which 

corresponded to zero-speed solutions. We were able to show in a more general manner 

later that there were zero-speed solutions, but they were degenerate and occurred in the 

l imit as 7 —» 0. The fact that the P W L C and P W L D models had zero-speed solutions for 

positive values of 7 is a consequence of the lack of sufficient continuity in the equations. 

Final ly , we calculated the profile of the zero-speed solutions by integrating in phase space 

and demonstrated that this technique was applicable to all similar degenerate react ion-

diffusion systems. The ability to calculate this profile gives us a technique to perturb 

off this solution using asymptotics to determine an approximate profile of a slow moving 

wave. 

7.4 Future areas of investigation 

We reviewed the field of research of mathematical models of L T P induction, and clearly 

much remains to be done. The biggest challenge that remains to be worked out here are 

the exact mechanisms of regulation of a huge biochemical cascade of calcium-dependent 

protein kinases and phosphatases. A n interesting project here would be to look into 

viable forms of regulation that could explain the spatiotemporal requirements of calcium 

transients required to induce L T P . 

There is also much work that can be done in following up theories of the electrical func­

tions of dendritic spines. The two problems that could immediately be taken up are the 

uti l izat ion of asymptotic techniques to perturb off of the zero-speed wave profile that we 

have calculated to generate approximations of the profile of slow moving waves. A d d i ­

tionally, reaction-diffusion systems with one small diffusion coefficient and a functional 

form similar to our set of equations also could be handled using asymptotics to perturb 
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off the degenerate solution profile that we have calculated. Lastly, an interesting problem 

to pursue would be to try to determine traveling pulse solutions by not excluding the 

recovery variable that we have dropped. This problem is much more difficult as it greatly 

increases the dimension of the parameter space and increases the order of the system of 

O D E s involved from three to four. 

7.5 Conclusion 

The field of mathematical neurobiology is developing rapidly and many new interesting 

problems surface every day. It offers an excellent opportunity for theoreticians and 

experimentalists to work together in gaining a better understanding of the functioning of 

the central nervous system. Dendritic spines present a unique challenge to theoreticians 

due to the sparsity of experimental data and the compelling belief that they must be 

there for some reason. The challenge as always is to determine what they are doing, and 

how they accomplish it. 
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