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Abstract

The Riemann zeta function, C(s) with complex argument s, is a widely used special

function in mathematics. This thesis is motivated by the need of a cost reducing algorithm

for the computation of C(s) using its Euler-Maclaurin series. The difficulty lies in finding

small upper bounds, call them n and k, for the two sums in the Elller—Maclaurin series of

C(s) which will compute C(s) to within any given accuracy for any complex argument s,

and provide optimal computational cost in the use of the Euler-Maclaurin series.

This work is based on Backlund’s remainder estimate for the Euler-Maclaurin remain

der, since it provides a close enough relationship between n, k, s, and . We assumed that

the cost of computing the Bernoulli numbers, which appear in the series, is fixed, and

briefly discuss how this may influence high precision calculation. Based on our study

of the behavior of Backlund’s remainder estimate, we define the ‘best’ pair (n, k), and

present a reliable method of computing the best pair. Furthermore, based on a compu

tational analysis, we conjecture that there is a relationship between n and k which does

not depend on s. We present two algorithms, one based on our method and the other

on the conjecture, and compare their costs of finding n and k as well as computing the

Euler-Maclaurin series with an algorithm presented by Cohen and Olivier. We conclude

that our algorithm reduces the cost of computing C(s) drastically, and that good numer
ical techniques need to be applied to our method and conjecture for finding n and k in

order to keep this computational cost low as well.
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Chapter 1

Introduction

One of the most important special functions in mathematics is the Riemann zeta function,

(s), which takes complex argument s. Because of its widespread importance, it is

essential to have an accurate and efficient technique of computing the zeta function. One

method of approximating ç(s) is via the Euler-Maclaurin (E-M) summation formula.

Given s E C and absolute error tolerance e > 0, we will present an algorithm for the

computation of C(s) to within E, which is based on the E-M series of ((s) and a simplified

version of Backlund’s remainder estimate (BRE) for the E-M remainder.

Our objective is to choose that number of terms in the E-M series which minimizes

computational cost. We take into consideration that the terms of the two sums in the

E-M series have different computational cost. This is due in part to the appearance of

the Bernoulli numbers in one of the sums. Throughout this paper, we assume that there

is a fixed cost for obtaining the Bernoulli numbers, since they can always be tabulated.

However, a Bernoulli number table takes an excessive amount of storage space for high

precision calculation. Therefore, we employ an estimate of the Bernoulli numbers. Then,

by a recursive calculation of the sum involving the Bernoulli numbers, we can assume

fixed computational cost for the terms of that sum.

Besides s and c, BRE involves two unknowns, which we will call n and k, and which

determine the number of terms used in the E-M series of C(s). So, our goal becomes

finding that pair (n, k) which gives the least number of terms needed, i. e. which will

minimize the computational cost. Based on a thorough computational analysis of BRE,

1



Chapter 1. Introduction 2

we conjecture that there is a relationship between the optimal n and k, which does not

depend on s and , but only on the cost of computing terms from the E-M series of C(s).

This relationship allows us to eliminate n, giving us a simplified version of BRE. Thereby,

given s and , we make it possible to solve BRE for the single unknown k, and compute

the E-M series of C(s) using the least number of terms.

The following is an outline of how the material of this thesis is presented. Chapter 2

covers in detail the proof of the E-M summation formula and an estimate of its remainder;

introduces the Riemann zeta function, C(s), and some of its properties required for the

algorithm; shows the application of the E-M summation formula to C(s); derives the

growth ratio of consecutive terms in the E-M series of C(s); and gives a proof of BRE.

At the end of Chapter 2, we also work through practical examples demonstrating the

behaviour of the E-M series of C(s) and BRE for the real and complex cases. Thereby,

we point out the difficulties involved in choosing optimal values for n and k. For those

familiar with the E-M series of C(s) and BRE, we suggest that Chapter 2 be skipped.

Chapter 3 is an in-depth discussion of the behaviour of BRE. After a thorough inves

tigation of the optimal n and k, we will present a method which allows us to compute the

optimal n and k and give the aforementioned conjecture. Lastly, we will use the growth

ratio, together with BRE, to approximate the size of the smallest term in the E-M series

for any given s. We conclude Chapter 3 by considering the existence of a relationship

between the n and k from the smallest term and the optimal n and k.

In Chapter 4 we present two algorithms for the computation of C(s). One which

utilizes our method of computing the optimal n and k, and one which is based on our

conjecture. Furthermore, we will compare these two algorithms as well as Cohen and

Olivier’s recent algorithm [2], and discuss their differences in distributing computational

cost.
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The Appendices comprise brief discussions of a validation of BRE, the Bernoulli poiy

nomials, and the Gamma function, as well as Mathematica [6] programs which facilitate

the above analyses and generate the graphs displayed throughout this work.



Chapter 2

Euler-Maclaurin Series of C(s)

This chapter provides a detailed treatise of the E—M summation formula, its remainder,

and its application to the Riemann zeta function. Furthermore, BRE is introduced and

its practical use is demonstrated for real and complex cases. Through these examples, it

will become evident that it is no easy task to solve for the two unknowns in BRE given

s e C and e > 0, and that we need a reliable method for choosing values for the two

unknowns.

The E-M summation formula, its proof, and its application to C(s) all involve the

Bernoulli polynomials and the Gamma function as well as some of their properties and

estimates. The reader can find all relevant information regarding the Bernoulli polyno

mials and the Gamma function in Appendices B and C, respectively.

2.1 Statement and Proof of the E-M Summation Formula

Proposition 1 Letf be afunction defined on the interval [a, b], where a < band a, bE Z.

Suppose that f has continuous derivatives up to order 2k or 2k + 1. Then

b 1f(a)+f(a+1)+...+f(b-1) = j f(x)dx -(f(b)-f(a))

+ (2j)!
(f21(b) - f(2i1)(a))

+Rk,

4



Chapter 2. Euler-Maclaurin Series of C(s) 5

where
ifa f(2k)(x) L’2k(x) dx,

= or (2.1)

(2k+1)! Jf(2k+l)(x) ‘2k+1(x) dx,
depending on how smooth f is, and /-‘m(x) is as defined by equation (B.2).

Proof: Let f be a function that satisfies the conditions of Proposition 1 on the interval

[a, b], where a, b Z and a < b.

Let r Z and consider the integral f’ f(x) ‘L’(x) dx over the unit interval [r, r+1].

Using integration by parts and the periodicity 1 of we get:

r+1f f(x)(x)dx
r+1

= f(x)i(x)I1_j f’(x)i(x)dx
,r+1

= f(r +1) urn -b1(R) - f(r) lirn b1(R)
- J f’(x)bi(x) dx

R—*r+1 R*r+ r

1 1 r1
= f(r + 1) - f(r)(-)

- f f’(x)i(x) dx

1 r+1
= (f(r) + f(r + 1))

- j
f’(x)i(x) dx.

Using the fact that m(r) = Bm(r) Bm(O) = /3m for any integer r and rn> 1 as

well as property (B.23) of7bm(x) for m > 0, we can continue with integration by

parts successively and obtain:

r+1

j
f(x)b(x)dx

1 r+1
= (f(r) + f(r + 1)) -

j
f’(x)i(x) dx

1 1 r+1 1 r+1
= (f(r) + f(r + 1))

-

f’(x)2(x) + f f”(x)2(x) dx

1 1 +i
= (f(r) + f(r + 1)) - (f’(r +1) - f’(r)) + f f”(x)2(x)dx
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= (f(r) + f(r + 1))
+k

(f’)(r +1) - f(i’)(r))

+ ()k jr+l
f(k)(x)(x) dx

= (f(r) + f(r + 1)) -
(2j)!

(f(2i1)(r +1) - f(2i1)(r))
-

since 13m = 0 for rn odd, and Rk is Rk as given in Proposition 1 but restricted to

the interval [r, r + 1]. Next, subdivide the interval [a, b] into its unit subintervals.

Again, using the periodicity 1 of we can sum the above equation over the unit

subintervals of [a, b] and get:

j
f(x)(x) dx = f(a) + f(a +1) + + f(b -1) + f(b)

- k

.

- f(2i1)(a))
- Rk.

Now, keeping in mind that by definition of ‘1(x) we have &x) = 1 for all x, we

can rewrite this equation and Proposition 1 follows. D

We need to have an estimate for the remainder Rk of Proposition 1. Applying the

absolute value to equation (2.1) and using the result of equation (B.22) we get

!
Iba f(2k)(x) 2k(x) dx

IRk! = or

(2k+1)! lb f(2k+l)(x) 2k+1(x) dx

!
Iba f(2k)( ) I2k(x)I dx,

or

(2k+1)!
ja f(2k+1)(x) 2k+1(x)l dx,
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1 a j(2k)( ‘ 2(2k)! ‘çoo cos2irlx ,j
(2k)! Jb J x1 (2)2k L.4=1 j2k (iX

or
1 1a j(2k+1)( ‘ 2(2k+1)! ‘coo sin2wlx d(2k+1)! Jb J iXI (2)2k+1 L.41 12k+1 X

2c(2k) ja f(2k)(x) dx,

or

fba f(2k+1)(x) dx,

depending on how smooth f is. This is the standard way of estimating the E-M remain

der. As we will see in Section 2.4 we need to take a similar but modified approach in

estimating the E-M remainder of the zeta function.

2.2 E-M Summation Formula Applied to C(s)

Next, we introduce Riemann’s definition of the zeta function and some of its properties

necessary for a computational algorithm, but our main concern is to derive the E-M series

of C(s).

Definition 1 The Riemann Zeta function C(s) is defined by

C(s)
=

-—, (2.2)

for s in the setS := {s E C (s) > 1}.

Proposition 2 C(s) is analytic on S.

Proof: Let fr(s) = for r E I/V. Let s = o + it E S. Let M be any positive number

such that (s) = u> M> 1. Then

=
e e =



Chapter 2. Euler-Maclaurin Series of C(s) 8

and converges since M > 1. Hence, by the Weierstrass Test fr(5)

converges uniformly on {s E C I R(s) M}. Since further, {fr(5)}i are analytic

for all s E C, it follows that C(s) is analytic in S. 0

Proposition 3 (Functional Equation) For all s E C\{O, 1}

C(s) = 2(2K)’ sin () F(1 - s)C(1 - s). (2.3)

Proof: By a change of variables in the definition of F(s) (see Appendix C) we obtain

dt
F(s) = kS I tse_kt_

Jo t
s 1 - 2d1

F — = I te\21k8 Jo t

Summing over k, we get

dl
rF () C(s) = j tte2

dl
= j (e) ti—. (2.4)

Now, let ‘0(1) = By the Poisson summation formula [3, p.209] it follows
that ‘0(1) = ‘0(4’). Let /(t) = Then ‘/(t) = and together

with the functional equation for ‘0(1) this implies that b(-) = /i’?/’(t) + 4j_i. So,

equation (2.4) becomes

irF () C(s) = fb(t)t
1 5dt 00 3dt

= f b(t)t_+f b(t)t—

1 5dt 8dt
= f r--

+ j b(t)t-

81d1 1°° 8d1 3d1
= j b(t)r-- + f (t -i) r--

+ f b(t)t-

s i—s dl 1 0 1—s s dl
= f b(l) (t + r)

+ f (r -

= f (t)(t+t)T_(-+1).



Chapter 2. Euler-Maclaurin Series of C(s) 9

The right hand side of the above equation converges for all s e C\{O, 1}, and it is

symmetrical with respect to s and 1 — s. It follows that

F () c(s) = (1
2
5)
(1 - s)

= (1s)

= (2)’2 sin () F(1
— s)C(1 — s)

by equation (C.26) in Appendix C. D

Note: Throughout the rest of this paper, we write s = a + i t for a, t E JR, unless

otherwise stated.

Definition 2 Let n e liv. define Ca(s) to be the partial sum of C(s),

Then we can write C(s) as C(s) = lim÷C(s). The following proposition uses the

notation of Hutchinson [4] in a slightly modified form for easier cross references with the

functions in the programs of Appendix D.

Proposition 4 Let n, k E IN. Then for s S the Riemann Zeta function satisfies

1 1 k

C(s) = Cm(s) + + + T(n,s) +R(n,k,s), (2.5)
S j=1

where

Tn — 132j s(s + 1)...(s + 2j — 2)
‘

— (2j)! s+2j1

1 2j—2

(2’ s+2i_1 fi (s + m) (2.6)
mO
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and the remainder term is

R1 k — s(s + 1)...(s +2k — 1) f°°b2k(x) d8j
(2k)! in xs+2k

— s(s+1)...(s+2k) [00 ?/2k+1(X) 27
— (2k + 1)! in xs+2k+1

Proof: Let n V with n> 1. Let s C\{1}. Define f(x) = -4. Then f is a function

on the interval [0, 1] with continuous derivatives:

f(d)(x) = (_l)d (s(s +1) ...(s + d - 1)).

Hence, we can apply Proposition 1 to f on [0, 1] with derivative order 1 and get

1f(1)+f(2)+.+f(n_1)=J f(x)dx - -(f(n)-f(1))
1 2

+ jf’(x)i(x)dx.

This implies

n 1 11 1 (ni(x)
= , —dx ——-—+——s i dx

ii XS 2ns 2 Ji XS

— —1 n 1 11 [ni(x)
— (s—1)x’ + 2s5j X3+l

X

— 1 1 1 1 11 j bi(x)
d 2 8

— 2 + s — 1 s — 1 S—l 2 n8 ii Xs+l
x. ( . )

In other words,

1 1 1 1 1 1
dx =

s—i —

___

Now, let n —* oc in equation (2.8), so that

C(s) =+1_sj1dX

1 1 [00 &j(x) n bi(x)
= —+ —5I dx—si dx

2 s — 1 in x ii XS

1 1 11
= Cn(5)+1i+8j xs+id
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Continuing with integration by parts just as was done in detail in the proof of

Proposition 1, we get

1 1 11
C(s) = C(s)+ S_1fl8_l 2ns

/32 /32n s(s+1)...(s+2n—2)+ + + (2n)! s+2n_l

_________________

2(x)
dx

(2n)!

1 1 11
=

/32 /32n s(s+1)...(s+2n—2)
+ 2t + + (2)’ s+2n_l

s(s+1)...(s+2n—1) x
(2n)!

(urn 2+’(x)
b s+2n 2n+i(X)

(2n + 1)x+2
+ 2n + 1 In dx)

1 1 11
= Cm(s)+ s—1n1 2ns

/32n s(s+1)...(s+2n—2)+ + (2n)!

s(s + 1) . . (s + 2n) f 21(x)
dx

(2n + 1)! in Xs+2n+l

which proves Proposition 4. D
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Remark 1: Actually, equation (2.5) makes sense for all s C with J(s) > —2k, because

the integral for R(n, k, s) converges throughout the half-plane J(s + 2k + 1) > 1.

Hence, C(s) can be extended by analytic continuation to other values of s. Fur

thermore, equation (2.5) also shows that C(s) can be extended to a meromorphic

function of s, since C(s) has as its only singularity a simple pole at s = 1.

Remark 2: Now, remember that the functional equation for C(s) is not valid for s equal

to 0 or 1. The E-M series of C(s) (2.5) gives C(0) = — and C(1) = co.

Note: Throughout the rest of this paper, the letters n and k are solely reserved to

represent the bounds for the two series respectively in the E-M summation formula

for C(s) as given in equation (2.5).

2.3 Growth Ratio of the E-M Series for C(s)

The terms in the E-M series of C(s) grow large in a graded way. This implies that if we

ask, when do the terms of that series get large, it is not too important if we are off by

a few terms. For the estimate of the growth ratio of the E-M series of C(s) we need the

following three limits:

/k+1limi = 1,
k-ooV k

(k+l2k
2Limi = e, and

k—*oo k j

lim
(k—i-i)2 — 1

k—co(2k+i)(2k+2) — 22
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Now, the ratio of two successive terms can be estimated for large k:

Tk+1(n, s) — flL(s + m)
Tk(n, s) 132k(2k + 2)!n’21 + rn)

= 2k+211(+2k1)(+2k)

1J27r(k + l)()212 1 1
k 2

(k)2k (2k+1)(2k+2)n2(8+2)

/k+1 1 (k+l2k (k+1)2
V k (7re)2 \ k ) (2k+1)(2k+2)n2

(s + 2k2
2rn )

This implies that the terms in the E-M series (2.5) will start to grow when

I + 2k1 2Trn. (2.9)

2.4 Backlund’s Remainder Estimate

A more practical estimate of the E-M remainder of (s) than the one previously derived

in Section 2.1 is due to Backlund [1]. It states that the magnitude of the remainder in

the E-M series (2.5) is at most times the magnitude of the first term omitted:

IR(n,k-1,s)I Sk1ITk(nS) (2.10)

This shows that the error may get worse as the imaginary part of .s gets larger. The

practical effect of this is that in a given band J(s) b, where b E ]R, we need roughly

E’(s) many terms to calculate ((s). When s is real, the remainder is less than or equal to

the first term omitted, i.e. the actual value of C(s) always lies between two consecutive

partial sums of the E-M series (2.5).
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Now, Backlund’s estimate of the E-M remainder of c(s) is derived as follows:

IR(n,k— i,s)!

...(s+2k—i) [00

in

roob2_1()
in x2—1 dx

(lim ( b2k(x) -b—*oo 2kx9+2

//32k fll_s_2k

s + 2k—i

[00 /32k —b2k(x) dxJn

r /32k -b2k(x)! dx
I n

(_i)1c+1 (/32k — /2k(X)) dx

s(s+i)...(s+2k—1)
(2k)!

1
/32k!

(u + 2k — i)n+2k_1

— Is+2k—iI
Tk(ri,s){.

—

s(s+i)...(s+2k—2)
(2k — 1)!

s(s+i)...(s+2k—2)
(2k — 1)!

s(s+i)...(s+2k—i)
(2k)!

s(s+i)...(s+2k—1)
(2k)!

s(s+1)...(s+2k—1)
(2k)!

—s—2k+1
2k in )

00 2k(x) I
Jn xs+

dx)

b2k(x) dx

b2k+l(x) d
x+2k+1

x

s(s + 1)
(2k)!

<

<

s(s+i)...(s+2k—1)
(2k)!

s(s+i)...(s+2k—i)
(2k)!

I 100 dx
%!32kIin x+2c

[00 dx
/32k!] x+2k

a+2k ‘°°

j
(_i)1

2k+1
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For a validation of BRE see Appendix A, where a brief computational discussion is

given on BRE compared with the absolute error.

2.5 The E-M Series of C(s) in Practice

We want to demonstrate how the E-M series of C(s) (2.5) works in practice. This will

show that choosing n and k requires careful consideration of the calculations involved in

the series. We will also find out that there is more than one pair (n, k) that will yield a

desired accuracy, and that we have to ask ourselves what the “best” pair (n, k) should

be. As suggested by Edwards [3, p.115], we need to compute the first several numbers

in the sequence fs(s + 1) ... (s + 2j — 2) and to see how large n must be in order to

make the terms of the series decrease rapidly in size.

First, consider the case when s is real. Then IR(n, k — 1, s) Tk(n, s) by BRE (2.10).

Let s 3, and say, we want to compute C(3) to within six digits of accuracy. For

j = 1,2,3,4 in the above sequence we get:

= = 0.25

i3.4.5 = — = —0.08

= = 0.083

3.4. .9 = —0158! 20

Table 2.1 shows many possible values for n and k which give C(3) to within six digits

of accuracy, e. g. n = 3, k = 4 or n = 6, k = 2. However, we choose n = 5, k = 2 since the
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k= 1 2 3 4 5
n =

2 1.3 l0 3.3 10 1.5 l0 1.0 lO 1.0 1O

3 1.1 1O 1.3 i0 2.5 10_6 7.8 lO 3.4 10

4 2.0 l0 1.3 106 1.4 i0 2.5 108 6.1 1O

5 5.3 106 2.1 iO 1.5 108 1.7 i0 2.7 10’°

6 1.8 10—6 5.0 108 2.5 i0 1.9 10’° 2.1 10_il

Table 2.1: Values of BRE for s = 3 as k ranges from 1 to 5 and n ranges from 2 to 6.
Oniy two digits of accuracy are given!

terms of the series (2.5) decrease more rapidly in size than for the choice n = 3, k = 4,

and we do not compute superfluous terms as with the choice n = 6, k = 2.

The following is the evaluation of C(3) using n = 5, k = 2:

= 1.0000000

= 0.1250000

= 0.0370370

= 0.0156250

= 0.0080000

j51—3
= 0.080 0000

5_3 0.0040000

T1(5,3) = 0.0004000

T2(5,3) = —0.0000053

C(3) •.‘ 1.2650673

Now, consider the case when s is not real. Let s = + lOi, and say, we want to
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compute ( + ioi) to within six digits of accuracy. Here, si is considerably larger

than in the previous case. This implies that we need a much larger value for n in order

to achieve comparable accuracy. However, the terms in (a(s) are much more difficult

to compute when s is complex. This is because nS = n(cos(tlnn) — isin(tlnn)), so,

computation involves a root, a logarithm and two trigonometric functions. Therefore,

our goal is to keep n still as small as possible, but larger than k, because Ca(s) will

then converge much faster. Table 2.2 shows many possible values for n and k which give

k= 2 3 4 5 6
n =

5 1.7 i0 1.6 i0’ 2.2 i0 3.8 10—6 8.6 iO’

6 6.4 1O 4.1 iO 3.8 10_6 4.7 io 7.3 10

7 2.7 iO 1.3 10 8.8 iO 7.9 10 9.1 iO

8 1.3 i0 4.8 10—6 2.5 iO 1.7 1O 1.5 10

9 6.9 iO 2.0 10—6 8.1 10—8 4.4 iO 3.1 10_lU

10 3.8 i0 9.0 iO’ 3.0 10—8 1.3 iO 7.4 10k’

11 2.3 iO 4.4 10 1.2 10-8 4.4 10-10 2.0 lO

12 1.4 iO 2.3 iO 5.3 iO 1.6 10’° 6.3 10_12

Table 2.2: Values of BRE for s = + lOi as k ranges from 2 to 6 and n ranges from 5
to 12. Only two digits of accuracy are given!

( + lOi) to within six digits of accuracy, e. g. n = 6, k = 5 or n = 12, k = 3. However,

we choose ii = 10, k = 3 since the terms of the series (2.5) decrease more rapidly in size

than for the choice n = 6, Ic = 5, and we do not compute superfluous terms as with the

choice n = 12, k = 3. The following is the evaluation of C ( + lOi) using n 10, Ic = 3:
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= 1.37020921

0.27924235

= -0.08076170

= -0.02332837

= -0.00045640

= -0.00000996

-‘ 1.54489512

— 0.38646841i

+ 0.14756128i

-1- 0.13593214i

— 0.01232751i

— 0.00004223i

+ 0.00000785i

— 0.11533689i

Cio ( + lOi)

1 10-—1Oi
—

T1 (io, + lOi)

T2 (io, + lOi)

T3 (io, + lOi)

C(+1oi)

The above two examples show that in order to compute <is) to within a certain

accuracy, we need some method that tells us how to choose n and k. This method has

to be reliable and efficient, since it is too cumbersome to calculate a table of remainder

values for each s, and decide by comparison what values of n and k to choose. Chapter 3

discusses the influence of n and k on the behavior of BRE, and explains how we can choose

n and k in order to minimize the computations involved. This way we can develop an

efficient algorithm for the calculation of c(s) based on the E-M series (2.5).



Chapter 3

Analysis of Backlund’s Remainder Estimate

The main objective of this chapter is to find those n and k such that ij Tk(n, s)

and such that the computational cost is minimized by the least number of terms in the

E-M series of C(s). We want to do so in an efficient and accurate manner. To this end,

we require an analysis of both the behavior of BRE, and the computational cost, as well

as a reliable method of finding the optimal n and k.

3.1 Defining the Best Pair (n, k)

Throughout this section, let s be fixed, and write = e_D > 0, where D e 1R. First, we
analyze the behavior of BRE for fixed k and n, and then we discuss the computational

cost involved with the E-M series of C(s). This will lead to a definition of that pair (n, k)

we require to solve our problem.

Case I: Let k be fixed. Then Backlund’s estimate of R(n, k — 1, s) is of the form

C1(s, k) C2(s,k), where C1 C1(s, k), and C2 C2(s, k) are positive, non-zero

constants depending on k and s. This means that if we want to find C(s) to

within any accuracy e_D, we need n to satisfy C2 in n — in C1 D. Now, f(n) :=

C2 ln n — inC1 as a function of n, for E ]f?+\{o}, is monotone increasing and

concave downward. Figure 3.1 shows the graphs of f for different s and k. As

expected, the general shape of the graph of f is independent of the choices for

s and k, since a change in C1 results in a vertical translation of the curve of f,
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and a change in C2 results in an expansion or a contraction of the curve of f.
Furthermore, f is invertible; so, given any D E we can always find a positive

integer n such that f(n) D.

D

n

Figure 3.1: The graphs of — ln applied to Backlund’s remainder estimate as a function of
n (= f(n)) for three different values of s and k, where D denotes the number of accurate
digits to the base e. The steepest curve has s = + lOi, k = 94, the middle curve has
s = 3, k = 125, and the curve with the most gradual slope has s = 4 + 6i, k = 28.

The above discussion implies that for any fixed k, we can always find an n such

that R(n, k — 1, s)I < . However, we want to keep computations at a minimum,

and by randomly choosing k we have no influence on the number of terms used in

the E-M series of C(s). In particular, we will not know, if the choice for k minimizes

the number of terms used.

Case II: Let n be fixed. Then every term in Backlund’s estimate of the remainder

R(n, k — 1, s)j depends on k. In order to show how BRE behaves for fixed .s and

n, let us simplify the estimate by applying estimate (B.24), Stirling’s formula for

factorials, and equation (C.25) to it. We can do this, because the asymptotic

estimate is sufficiently accurate for values of k as small as 3. We

obtain

.s + 2k — 1R(n,k — 1,s)
u + 2k—i

400

300

200

100
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s+2k—1 2 1 F(s+2k—1)
a + 2k — 1 (2K)2ku+2k_i F(s)

— C1 s+2k—1 F(s+2k—1)l
—

a + 2k — 1 (2n)2k

where C := C(s, n) > 0 is a constant depending only on fixed s and n. Let us

define g(k) : 2k in 2irn — (in + in IF( +2k — 1)1 + in c). So, if we want

to find C(s) to within accuracy e_D, we need k to satisfy g(k) D. Is this possibie?

In order to answer this question, we need to analyze g(k), for k

D

k

Figure 3.2: The graphs of — in applied to Backlund’s remainder estimate as a function of
k (= g(k)) for three different values of s and n, where D denotes the number of accurate
digits to the base e. The curve with the highest maximum has s = + lOi, n = 40, the
curve with the lowest maximum has s = 4 + 6i, n = 10, and the intermediate curve has
5 = 3, Ti = 37.

We have that in increases for increasing k. Therefore, the behavior of
IF(s+2k—i)g depends largely on the behavior of in . By definition of the Gamma

function (see Appendix C), + 2k — 1) grows factorially in k, and (2irn)21 grows

exponentially in k. So, there must exist a k0 E 1R such that for k < k0 we have

I( + 2k — 1) <(2irn)2k, and for k> k0 we have + 2k
— 1)1 > (27rn)2k. j

other words, g will increase to some best number D0 of accurate digits to the base

e and then decrease again, where D0 depends on k0. Finding k0 just means looking

for the smallest term in the E-M series of C(s), but this term can be found by the
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growth ratio (2.9). So, we are able to deduce from this growth ratio that k0 is that

number, which satisfies I + 2k0 2irn, for our fixed s and n. Figure 3.2 shows

the graphs of g for various values of s and n. As expected, the general shape of g is

independent of the choices for s and n, since modifying s or n shifts the maximum

of the graph of g according to the growth ratio.

Now, we can answer our previous question if, given D E ]R+, we can find a k that

will satisfy g(k) D. For fixed s and n, given any error = e_D, we can only find a

k that satisfies the previous inequality if D D0, where D0 is as defined above. In

other words, for fixed n, we cannot necessarily find a k such that R(n, k—i, s) <e

holds.

The behavior of Backlund’s remainder estimate for fixed n and for fixed k shows that

the best possible n and k, which satisfy R(n, k — i, s) < , depend on k. This is because

for any k we can always find an n that satisfies the previous inequality, but not vice

versa. There is one further discussion we need to have regarding n and k, before we will

define what exactly is meant by “best” pair (n, k): We have to analyze how the choice

of n and k influence the cost of computing C(s) using the E-M series (2.5).

Essentially, the E-M series of ((s) consists of two sums, namely (a(s) = and

T3(n, .s). Let S,, denote the series Ca(s), and Sk denote the sum Tj(n, s). Then,

n gives the number of terms to be used from the series S,,, and k gives the number of

terms to be used from the series 3k• Since our goal is to write an efficient algorithm for

the computation of C(s) using its E-M series, we need to analyze the work involved in

computing Sn and Sk. This will determine how to choose the ideal integers n and k.

There are two important issues to keep in mind. First of all, if n is too large, we are

not making efficient use of the E-M series for C(s), because the behavior of forces the

addition of large and small numbers in the sum S,. This causes problems in machine
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computation, as valuable digits will be lost. On the other hand, if k is too large, we need

many relatively expensive calculations of the terms Tj(n, s) for 1 k. Lehmer [5]

suggests a method in which the real and imaginary parts of Tj(n, s) are computed re

cursively. However, this uses a lot of storage space and is again a question of machine

economics. It is therefore important to find that pair (n, k) which will make efficient use of

the behavior of the E-M series of C(s), and will be economical for numerical computation

of C(s).
In machine arithmetic, an addition (subtraction) has negligible cost in comparison

to a multiplication (division). Other operations such as a logarithm (exponential) or

a table look-up cost a fixed amount. Assume we have a table of Bernoulli numbers.

Then there is no cost associated with computing /3,. What is the cost of calculating Sk,

or rather, of )(8+1+232)? The cost of computing the first term, is 5

multiplications. Every other term of Sk can be obtained from its previous term by an

additional 6 multiplicative operations:

(s(s+1O)...(s+2j-2)((s+2j-1)(s+2j)s(s+1)...(s+2j)
(2j)!n2i ) (2j + 1)(2j + 2)n2 ) — (2j + 2)!n2i+2

Hence, Sk costs roughly 6k multiplicative operations to compute. There are some ways to

speed up the computation (see Lehmer [5] and Hutchinson [4]) but, ultimately, the cost

depends on k. Let us say, therefore, that the cost to compute Sk is pk multiplications, for

some p 1. The computation of S, on the other hand, costs roughly qn multiplications,

since each term in the sum costs a fixed number q of multiplications, and there are n — 1

terms in total.

The result of the above discussion is that the total cost of computing C(s) using its

E-M series is roughly qn + pk, where q and p are as defined above. Therefore, we need to

choose n and k such that qn +pk is minimized. Together with the result of the discussion

about the behavior of Backlund’s remainder estimate for fixed n and for fixed k, we can
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finally give the following definition for the best pair (n, k):

Definition 3 Let s E C\{i} and e> 0. For any k e IIV\{0}, we can find an n e ]J\T

such that R(ri, k—i, s) e using Backlund’s remainder estimate. The ‘best” pair (n, k)

for the E-M series of(s) such that R(n, k — i, s) < e is defined by that positive integer

n, for which qn + pk is the smallest. The positive numbers q and p depend on the cost of

computing a single term of S and Sk, respectively, and satisfy p, q 1.

Note: In the best pair (n, k), we will refer to n and k as the “best” n and “best” k,

respectively.

3.2 Analyzing the Best Pair (n, k)

Let us look at BRE (2.10). We notice that, given s and e, we can solve for n in terms of

k, and then we can substitute this expression for n in qn + pk to obtain an expression in

k only. Furthermore, minimizing qn + pk is equivalent to minimizing an + k with a =

and a> 0, since p, q i. Because the procedure of finding the smallest an + k does not

depend on a, we study the simpler case a = 1 at first, and then look at the general case.

Since BRE simplifies for s E JR, we consider the real and complex cases separately.

3.2.1 Case I: s is Real, a = i

Throughout this section let s e 11?, i. e. s = a, and let e > 0. Then Backlund’s remainder

estimate becomes

IR(n,k—i,s)I Tk(n,s)L

We want to simplify ITk(n, s) as much as possible without significant loss of accuracy. As

in Case I of Section 3.1, we apply estimate (B.24), Stirling’s formula for factorials, and
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equation (C.25) to Backlund’s estimate, and obtain an estimate which holds for k > 3,

since the asymptotic estimate
“-‘

is nearly an identity for k 3:

T (n )
2 1 F(8 + 2k — 1)

k
— (2)2k s+2k_i F(s)

Given such that ITk(n, s) = , we can solve the above estimate for n and get:

1 2 F(s +2k — 1)
= F(s) ) . (3.11)

Note that for now, we must consider n E ]F+\{o} in order to solve this equation, but

shortly, we will return to n 1/V. Now, we can substitute the above expression for n in

n + k, and obtain an expression involving only the variable k. Let us use this result and

define the following function:

1_2 F 2k—i_‘\s+2k_1

F(s) (2ir)21c )
with k E ff+\{o}, and s and are parameters. We also require k> 1, since this function

is developed from R(n, k — 1, s). In order to identify the best k, we need to minimize Hr.

First, let us determine if H,. does in fact have a minimum.

Since .s and are fixed, the term that embodies the dependence of H,. on k is F(+2)-1)

Now, I’(s + 2k — 1) grows factorially in k by the definition of the Gamma function (see

Appendix C), and (2)2k grows exponentially in k. As a result we can show that there

exists a k0 ii? such that for k < k0 we have F(s + 2k — 1) < (2ir)21, and for k > k0

we have F(s + 2k — 1) > (27r)2k. This implies that for increasing k, H,. first decreases to

a minimum, and increases monotonically thereafter. Figures 3.3, 3.4, and 3.5 depict H,.

for different .s and . The graphs show that the general shape of Hr is independent of

the choice for s and .

Since H,. has a minimum, we are able to find the best pair (n, k). Let kmin denote
dH,.(k)that k at which Hr has its minimum, i. e. kmin is the solution to dk = 0. Then the
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Figure 3.3: Hr(k) (= n + k) for s = 3 and = 1050, 2 = 10_b00, and E3 = 10200. The
respective minima are at (27, 53.8291), (55, 107.272), and (111,214.346).
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Figure 3.4: Hr(k) (n + k) for s = 20 and = 10_50, E2 = 10_150, and = 10_250. The
respective minima are at (17, 41.8848), (73,148.856), and (128, 255.962).
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Figure 3.5: Hr(k) (= n + k) for s = 50 and €1 = 10_b00, E2 = 10_200, and = 10_300.
The respective minima are at (18, 57.0659), (73, 148.1641), and (129, 271.227).
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best n, denote it b mjn, is given by Hr(kmin) — kmin. However, we require n, k é JZV,

so let the best pair (n, k) be given by (Fflminl, F1rnin1). The remaining issue in finding
kmin is solving dH(k)

= 0. Because of the complicated dependence of H on k in equation

(3.12), an analytic expression for the minimum of Hr will be difficult to find (if it is even

possible). Hence, we will instead utilize a numerical technique such as Newton’s method;

but considering the complicated forms of the derivatives of Hr, the secant method may

be more appropriate.

Now that we can actually find the best pair (n, k), let us take a closer look at the

sum of the best n and the best k for different s and . Examining the minima of Figures

3.3, 3.4, and 3.5, we notice a curious phenomenon: The value of n + k is approximately

twice the size of the best k; in other words, the best n is almost the same size as the best

k. We computed the best n and the best k for different s as decreases, and depicted

their graphs in Figure 3.6. These graphs show that the best n and the best k are almost

identical. If this were true in general, it would allow us to replace n by k in Tk(n,s)I.

Then, BRE involves only one variable, namely k. This means that we can solve BRE

for k given s and without having to find the best n and the best k. Therefore, we will

investigate the relationship between the best pair (ri, k) and the k found by taking n = k

in BRE.

Let s be fixed. We will compute the values for the best pair (n, k) as a function of ,

as well as those k which satisfy IR(k, k — 1, s)l < according to BRE, and then compare

the two results. To that effect, we define the following two functions:

f() := Hr(kmim)Ir, (3.13)

g() := kITk(k,s)I<, (3.14)

where > 0 and kmin is that number which solves 0. In other words, f(e) is

the sum of the best n and the best k as a function of e, and g() is the smallest k for
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Figure 3.6: Plots of best n together with best k for s = 3, 20, and 50, respectively, where
= e_D with 1 <D <700.

which R(k, k — 1, s) < using Backlund’s remainder estimate. Since we want to show

that we can choose n = k in the Backlund’s remainder estimate, we will compare f(E) to

2g(E), i. e. ii + k to 2k. Figure 3.7 depicts the graphs of f() and 2g(e) for different s.

We observe that for decreasing , i. e. higher precision of C(s), the curves of f and

2g are nearly identical. This further supports the choice n = k in Backlund’s remainder

estimate. In order to get a clearer picture of how f and 2g differ, we compute their ratio.

We suspect that as —* 0 we have —* 1. This conjecture is supported by Figure 3.8,

which depicts the ratio for the same values of s used in Figure 3.7. Consequently, it

seems reasonable to let n equal to k in BRE, obtaining the same accuracy as if using the

best n and the best k. In this way, we are able to reduce the number of variables in our

problem from two to one, thereby significantly reducing the amount of computational
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effort required.
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Figure 3.7: The graphs of f() and 2g() for s = 3, 20, and 50, respectively, where = e_D

with 1. <D <700.

Figure 3.8: The graphs of the ratio
with 1 <D <700.
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Before we summarize the important result of this section, we will consider the case

when s is complex.

3.2.2 Case II: s is Complex, c = 1

Throughout this section let s = a + it E C, and let e > 0. Remember, we want to solve

BRE for n, and substitute the resulting expression in n + k in order to get an expression

in k only. Again, we need to simplify Tk(n, s) as much as possible without significant
I’(s+2k—1)loss of accuracy. Unlike the real case, C, so we need to take the absolute value

of this term. For computational reasons, we also need to estimate f’( + 2k — 1). This is

because, when trying to minimize n + k, we need to take the derivative of jF(s + 2k
— 1)1

with respect to k, and Mathematica [6] attempts to take the derivative of the absolute

value of this term, which does not exist except at zero for complex arguments. However,

the derivative of this function with respect to the real variable k does exist everywhere.

Therefore, we will apply estimate (B.24), Stirling’s formula for factorials, equation (C.25)

as well as Stirling’s formula for the Gamma function (see Appendix C) to Tk(n,s)I. We

get:

I / \ s+2k—12 1 1 / 2w is+2k—1
ITk(n, s) I (2)2k flU+2k_1 If(s) V s + 2k — 1 e

— 2\/ 1 I + 2k — 11cr+2k- _sargs

— (2ir)21 +2ki I()I
Then, given c we can solve this estimate of BRE for n. Unlike the real case, we have the

additional term . We get for ri:

( 2 Is + 2k —

71 =
I(s)I (s)g(s)+1 (2ire)2k } (3.15)
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with n 1R\{0}. Substituting the above expression for n in n + k, we can define the

following function:

700

600
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400

300

200

100

H(k)
2/

kE F(s)I (s)arg(s)+s_1
1

s + 2k
— 11a+2k_4\ c+2k-1

(27re)2k )
— s+2k—1I ( 2/
— e F(s) (s)arg(s)

(3.16)

____________________________

s+2k—1\ +2k-1

(2re)2k ) +k,

with k> 0, and s and are parameters. Now, we need to minimize H in order to identify

the best k. So again, we need to determine if H does in fact have a minimum.

Since s and are parameters, the dependence of H on k is embodied by the fraction
Is+2k1I°21 The term s + 2k — l0+21 grows factorially in k, and (27re)21 grows

exponentially in k. Similar to the real case, this implies that for increasing k, fI first

decreases to a minimum, and increases monotonically thereafter. Figures 3.9, and 3.10

depict II for different s and , and show that the general shape of H,. is independent of

the choice for .s and c.

n+k

50 100 150 200 25&

Figure 3.9: H(k) (= n + k) for s = + lOi and = i0°, = 10150, and = 10250.

The respective minima are at (31, 59.7432), (87, 166.976), and (142, 274.14).

As with the real case, H has a minimum and we let the best pair (n, k) be given by
dH(k)(fminl, Fkminl), where kmin is the solution to dk = 0 and min = Hc(kmin) — kmin.
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n+k
700

600

500

400

300

200

100

50 100 150 200 25

Figure 3.10: H(k) (= n + k) for s = 5 + 9i and i = io°, 2 = 10_b00, and c = 10_200

The respective minima are at (28, 55.997), (56,109.609), and (111, 216.763).

Since equation (3.16) is even more complicated than equation (3.12), we will again use a

numerical method to find an analytic expression for the minimum of H.

Our task now is to check if the best pair (n, k) behaves the same way as in the real

case. The minimum of Figures 3.9, and 3.10 seem to indicate that the best n is again

about the same size as the best k. Figure 3.11 depict the graphs of the best n and the

best k for different s as decreases, and show that the graphs in each of these Figures

are almost identical. Therefore, we continue investigating the relationship between the

best pair (n, k) and the k found by taking n = k in BRE in the same manner as the real

case.

_

D

Figure 3.11: Plots of best n together with best k for s = + lOi and s = 5 + 9i, respec
tively, where = e_D with 1 < D 700.

1(

100 200 300 400 500 600 100 200 300 400
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Let s be fixed. Similar to equation (3.14) we define the following function

g(f) := k12:1IjTk(k,3)I6’

and we let f be the same function as defined by equation (3.13) except we replace H by

FIG. Figure 3.12 shows the graphs of f() together with 2g() for different s. This way,

we are comparing n + k to 2k, and notice that for decreasing e the curves of f and 2g

are nearly identical. Furthermore, the ratio , which is depicted in Figure 3.13 for the

same values of s as in Figure 3.12, supports our previous conjecture that —* 1 as

—* 0. Therefore, we can draw the same conclusion as in the real case, namely, that it

seems reasonable to let n equal to k in BRE.

2kn+k 2k-n+k

D
- 100 200 300 400 500 600

D

Figure 3.12: The graphs of f() and 2g(€) for s = + lOi and s = 5 + 9i, respectively,
where c = e with 1 <D <700.

Now, let us finally summarize the results from Sections 3.2.1 and 3.2.2.

3.2.3 Method for Finding the Best Pair (n, k) for c> 0

Our original question was, given s and , what is the smallest cn + k that will give us

C(s) to within using the E-M series of C(s)? In Sections 3.2.1, and 3.2.2 we discussed

the case a = 1 for real and complex arguments s, respectively. As a result of that

discussion, we found a method of finding the smallest n + k, which works equally well for

30(
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ni-k! 2k

0.995

0.99

0.985

0.98

0.975

0.97

n+k /2k

D

Figure 3.13: The graphs of the ratio for s = + lOi and s = 5 + 9i, respectively,
where = e_D with 1 <D < 700.

the real and complex cases, and can be summarized as follows. In essence, we simplified

BRE by estimating it further applying estimate (B.24), Stirling’s formula for factorials,

equation (C.25), and in the complex case also applying Stirling’s formula for the Gamma

function (see Appendix C); solved the new estimate for n given e; and substituted the

resulting expression in n + k. Thereby, we obtained an expression in k only, and were

able to employ a numerical technique for finding the minimum. In order to answer our

origmal question, we generalize this method in the following way. Based on equations

(3.11), and (3.15) write

I (2F(s+2k—1)’ s+2k—1

I ‘F(s) (2,r)2 ) , .9 E ia,
n(k) := ç / _1( s2k_1I0+2k 2 +2k 1

I (27re)2 ) ‘ ‘

and define H(k) := cn(k) + k with c> 0, so that

I H(k),
L H(k), s E C,

where Hr and H are as defined in Sections 3.2.1, and 3.2.2, respectively. By solving
dHa(k)

= 0 using a numerical technique in the same way as before, we obtain the best k,

which in turn gives us the best n by evaluating n(bestk). So, we have demonstrated a

practical method of finding the best pair (n, k) for arbitrary a > 0.

0. 99

0. 9S

0. 98

0.

0. 97
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3.2.4 Conjecture 1

Now that we have a working method for finding the best n and k, let us pick up from

the intriguing result of Sections 3.2.1, and 3.2.2 about the best pair (n, k) for a = 1. For

various real and complex arguments s, we demonstrated via careful analysis and detailed

graphing that best n best k. This led us to substitute k for n in BRE. In order to

verify the validity of this substitution, we looked at the ratio best n+kbest k, where k is that

number which gives Tk(k, s) < e. We noticed that this ratio tends to 1 as e —+ 0,

and therefore were sufficiently convinced that taking n = k in BRE and solving for k

given s and c will yield the best k as e —* 0.

We want to know if this result can be generalized to all a > 0. To this end, we

compute the ratio for different a at a number of s values as e decreases. The scatterbest k

plot of Figure 3.14 shows this ratio. As e decreases, this plot strongly suggests that the

ratio converges for each a. This leads us to believe that there is a relationship between

best n and best k, and we are prepared to make the following conjecture.

Conjecture 1 Lets e C\{1}. Let p,q be the cost of computing the terms Tj(n,s) and

4, respectively, for any j J1V. Given e > 0, let (ne, k) be the best pair (n, k) which

solves ITk(n,s) <e. Then there exists a real constant c, 0 <c < 1, such that

limn = p(p,q) k,

where

(p,q) = (1— c)— +c.

Conjecture 1 has the following implications for BRE: It allows us to reduce the number

of unknowns in BRE from two to one, so that we get the new E-M remainder estimate

s + 2k — 1
R(n,k—1,s)f

u+2k—1
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n/k=u

1.4

1.2

a

0.8

0.6

Figure 3.14: Scatter plot of the ratio as a function of a. At
a = , 1, ,. . . , 6 the ratio has been computed for the following s and values:
s = 3,20,50,+2i,+10i,+40i,2+3i,5+9i, and 10+15i; and e = e_D with
D = 230,350,460,575, arid 700. The smooth curve is the graph of t(a) = (1 — + .

which depends only on k. Furthermore, solving for k given s and , which can be done

employing a numerical technique, ensures that the solution is the best possible k.

Consider the choice c = , and remember that a = . Let us write t(a) = (p, q).

From Figure 3.14 we can see how well the graph of (a) fits onto the scatter plot at the

points of convergence for each a. How accurate is this choice of c? Figure 3.15 shows the

graphs of best n together with t(a) best k for some arbitrarily chosen values of s and

different a; and Figure 3.16 shows the ratio k for the previous values of s and

a, and where k is again that number which gives Tk((a)k, s) e. Since the

plots of Figure 3.16 indicate that the ratio tends to a value near 1 as e —* 0, the chosen

value, , for c must be close to the actual value of c.

$
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100 200 300 400

Figure 3.15: Plots of best n together with ((i
—

+ best k for (s,c) = (20,2),
(+2i,3), (3,4), (5+9i,5), (2+3i,6), and (+10i,7), where €.= e_D with
1<D<500.
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Figure 3.16: The graphs of the ratio a best m+besi k for (s, a) = (20, 2), ( + 2i, 3), (3,4),(ii(cs)a+1)k

(5+ 9i, 5), (2 + 3i, 6), and ( + lOi, 7), where e with 1 <D 500.
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3.3 The Smallest Pair (n, k)

In Section 3.1 we have defined that pair (n, k), which gives us the minimum number of

terms to be used in the E-M series (2.5) for the computation of C(s), and we denoted

this the best pair. Now, we want to introduce a different pair (n, k), which we shall call

“smallest” pair, and discuss a possible relationship between the best and smallest pairs.

By the behavior of BRE for fixed k and s from Section 3.1, we know that the terms

Tk(n, s) first decrease to some best error, and then grow large again. The turning point

of growth is given by the growth ratio of Section 2.3, which tells us that the size of the

smallest term can be established with the relationship s + 2k 27rn. Let us find the

magnitude of the smallest term by applying the growth ratio to BRE. As before, we

also utilize estimate (B.24), Stirling’s formula for factorials, equation (C.25), as well as

Stirling’s formula for the Gamma function (see Appendix C). We get

s + 2k—i
IR(n,k—1,s)I u+2k—i

s+2k—1 2 F(s+2k—1)j 1
u + 2k — 1 (2)2k F(s)

Is+2k—iI 2 1 / 2ir (s+2k—i’21’’ 1
u +2k — 1 (2K)2k F(s) V s +2k — 1 e ) u+2k_1

— Is + 2k
— ii 2 1 (s + 2k —1y+2kl _targ(s+2k_1)

—

o + 2k — 1 (2)2k_ I(s) e ) fl+2k1

+ 2k — 1 2 i (2nNJ+2kl_arg(s+2k_1)

o + 2k — 1 (2)2k_ I’(s) +2k_1

+2k — i 2(2ir)4 1
=

u + 2k — 1 (s)I (c+2k_1)+targ(s+2k_1)
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Amazingly, this estimate depends only on k, so given s and e we can solve for k
1 • i i i s—f2k 1 1 1empioying a numericai tecnnique, ann n is given D 2 accorcung to tne growtn ratio.

Based on this result, let us make the following definition.

Definition 4 Let s E C\{1}, and e > 0. The “smallest” pair (n, k) for the E-M series

of((s) such that R(n,k
— 1,s)H < e is defined by the smallest positive integer k that

satisfies

Is+2k—12(2ir) 1
< 317

+ 2k — 1 jF(s) (+2k_1)+targ(s+2k_1) — , ( )
and then

fls+2k
2ir

Note: In the smallest pair (n, k), we will refer to n and k as the “smallest” n and

“smallest” k, respectively.

We are interested, if there might be a relationship between the best and smallest

pairs that will help us to reduce computational cost. A possible relationship does not

ease computations any further if we compare solving equation (3.17) with solving equation

FiCii Tk((p, q)k, s)] = e; however, both of these equations are less demanding to

solve numerically than = 0 from our working method for finding best n and best

k. This is because the derivative dH(k) is more complicated and involves the Polygamma

function. So, just as with Conjecture 1 we can simplify the computations involved in

finding best n and best k if their is a relationship between the best and smallest pairs.

Therefore, we compute the ratio k for different o > 0 at a number of s values as

e decreases. Figure 3.17 depicts this ratio in a scatter plot. This plot provides strong

evidence that the ratio converges for each a as e decreases. Just as in Section 3.2.4, this

leads us to believe that there is a relationship between smallest k and best k, and so we

make the following conjecture.
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Figure 3.17: Scatter plot of the ratio sm,aUest k as a function of a. At
a = , 1, ,.. . , 6 the ratio has been computed for the following s and e values:
= 3,20,50, + 2i, + 10i, + 40i,2 + 3i,5 + 9i, and 10 + 15i; arid € = e with

D = 230,350,460,575, and 700. The smooth curve is the graph of z(a) = (1— + .

Conjecture 2 Let s E C\{1}, and let p, q be the cost of computing the terms Tj(n, s)

and
,

respectively, for any j E ]1V. Given € > 0, let k denote the best k, and let k

denote the smallest k. Then there exists a real function v dependent on p, and q only

such that

limk v(p,q)k.

Note: Conjectures 1 and 2 also imply a relationship between best n and smallest n:

Given € > 0, let n denote the best n, and let n denote the smallest n. Then

S + 2 flb

limns = (p,q)

2ir

The result of this section has not given us any other insight than that of reducing

the computational cost involved in finding best n and best k over the method given in
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Section 3.2.3. However, Conjecture 2 involves the same amount of work in finding best n

and best k as Conjecture 1; and since we justified Conjecture 1 in more detail, we will

only employ the result of Conjecture 1 in our algorithm.



Chapter 4

Algorithm and Conclusion

4.1 Presentation and Discussion of Algorithm for Computing ((s)

We finally outline an algorithm for the computation of the Riemann zeta function using

the E-M series (2.5), which is based on the method described in Section 3.2.3:

1. begin Zeta(s,ef)

(a) initialize p, q respectively

(b) ifs = 0 then

i. return

(c) ifs = 1 then

i. return co

(d) if (s) <0 then

i. return 2(2ir)’ sin () f(1 — s) Zeta(1 — s,

(e) else

i. let c =
p

dH(k)
ii. let k be that positive integer closest to the solution of dk = 0

iii. let n = [n(k)1

iv. return Ca(s) + =i- + + Tj(n, s)

(f) end if

2. end Zeta

43
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Notes: The following is a list of explanations about variables and functions involved in

the above algorithm:

• s E C is the argument for the Riemann zeta function.

• > 0 is the accuracy with which we want to compute ((s).

• p, q denote the cost of computing T(n, s) and 4, respectively.

• The Gamma function, I’, on line 1.d.i. is built into most of the common

computer languages, but if necessary, we can compute F(s) using the Stirling

series for log F(s).

• The functions H(k) and n(k) on lines 1.f.ii. and 1.f.iii., respectively, are as

defined in Section 3.2.3.

• On line 1.f.ii., any numerical root finding technique can be employed to solve
dHa(k) 0 for k.

• The work required to compute the terms Tj(n, .s), 1 <j < k, on line 1.f.iv. can

be reduced by applying a recursive method such as suggested by Lehmer [5].

We have to take into account that such methods lower the computational cost

and have to decrease p accordingly.

As the algorithm, stands it can be converted into any suitable programming language

and applied for the computation of C(s) to within any number of accurate digits for all

s E C. Before we discuss the complexity of this algorithm, we show how Conjecture 1 can

be employed to yield a slightly different algorithm. Let c be the constant of Conjecture 1.

As was shown in Section 3.2.4, c = is a reasonable choice; so, we will use it. The new

algorithm is obtained by replacing lines 1.f.i. through 1.f.iii. with the following three

lines:

let t = (1 — c) + c
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let k be the smallest positive integer that satisfies Tj(çtk, s)j <

let n = pk

We now have two operative algorithms for computing the values of the Riemann zeta

function to any precision for any complex argument. Furthermore, these algorithms are

optimal in that they have been derived so that the least number of terms are used from

the E-M series of ç’(s);i. e. these algorithms achieve minimum cost in the computation

of the series. However, these algorithms differ in their computational cost of finding n

and k. We discuss their differences, and also draw another recent algorithm into the

discussion, which has been developed by Cohen and Olivier [2]. For easy reference, we

denote the algorithm based on the method of Section 3.2.3 by A, the algorithm using

Conjecture 1 by B, and Cohen and Olivier’s algorithm by C.

Cohen and Olivier’s objective is to compute the value of the Riemann zeta function

for any s C to within any given accuracy. Their algorithm C utilizes the relationship

between n and k as given by the growth ratio, and an estimation of F(s + 2k) to find the

values of n and k: For details see reference [2].

First, we look at the values of n and k given in Table 4.3 as computed by the three

different algorithms A, B, and C; and compare them. Cohen and Olivier did not take into

account the different computational cost of terms from the two sums in the E-M series of

((s). So for comparison reason, we assume that the cost is the same, and therefore, take

p = q = 1 => = 1 in the computation of n and k. The subscripts A, B, and C of n and

k indicate with what algorithm n and k have been computed. As was shown in Sections

3.2.1 and 3.2.2 it is immediately apparent from Table 4.3 that kA + A kB + B• More

importantly, Table 4.3 also shows that

I (nA+kA),
nc + k0

1 3k.
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This means that algorithm C uses 1 times as many terms from the E-M series for the

computation of C(s) as algorithms A or B. Further, the values of k compared to kA

or kB are almost twice their size; however, k controls the number of terms used in the

sum Tj(n, s), and it takes more work to compute Tj(n, s) than 4. This means

that the cost of computing the E-M series is far less in either algorithm A or B than in

algorithm C.

s d k riG kA A kB=nB

3 50 59 20 27 27 27

3 200 232 75 111 114 108

20 50 47 18 17 25 22

20 250 277 92 128 128 128

50 100 64 29 18 40 32

50 300 294 102 129 143 136

+ lOi 50 67 22 31 29 30

+ lOi 250 298 95 142 133 138

5+9i 50 62 21 28 28 28

5+9i 200 235 76 111 106 109

Table 4.3: Values of k and n as computed with algorithms A, B, and C, where s is the
complex argument of the zeta function and = 10 is the given accuracy.

The question that needs to be answered next is, how does the computational cost

of finding n and k compare in the three algorithms. As pointed out earlier, algorithm

A’s main work lies in solving dH(k)
= 0 for k, for all s E C\{1}. Regardless of the

numerical technique employed, we need at least the first derivative of dHa(k) However,
dHa(k) . .

dk already involves the Log, Gamma, and Polygamma functions and is, therefore,
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quite complex iu structure. On the other haud, algorithm B’s core work lies in solving

ITkCttk, )I = € for k, for all s e C, which only involves the Log and Gamma

functions after the usual simplifications. Now, Newton’s method converges quadratically,

so for a good enough initial guess very few iterations should be required to solve for k

with a tolerance of 1, which is all the accuracy we ask for since we take the ceiling of that

k. In fact, with the approximations involved, being within one or two of the best k is

reasonable. Algorithm C’s main work comes from Newton’s method applied to a function

whose most intricate term is the Arctan; moreover, Cohen and Olivier provide an initial

guess. Furthermore, this work is only required for s E C, since for s € 18 algorithm C

solves for ii and k by given identities.

To sum up, we have that algorithm C requires very little cost in finding ri and k and

algorithm A the most. Algorithm B is less expensive than algorithm A, but somewhat

more expensive than algorithm C in computing the values for ri and Ic. Of course, much

depends on the numerical root finding technique employed, but a numerical analysis is

beyond the scope of this paper.

What we have, now, are two algorithms, namely B and C, with opposite qualities.

Algorithm B takes some work in finding n and Ic, but uses the least computational cost

in the E-M series, while algorithm C requires very little work in finding n and Ic, but

uses a large number of terms from the E-M series. This implies that for lower precision

calculation it is entirely possible that Cohen and Olivier’s algorithm is less expensive than

our algorithm, even though they use more terms in the E-M series of C(s). However, for

high precision calculation, when the cost is dominated by the computation of the E-M

series, our algorithm will excel due to the above points.
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4.2 Conclusion and Future Work

We have met the objective of this paper in that we presented two algorithms for the

computation of the Riemann zeta function, which are based on the E-M series of c(s)

and minimize the cost of computing the E-M series with respect to BRE. One of the

algorithms utilizes a method for computing the optimal values of the upper bounds,

n and k, for the two sums in the E-M series. This method is derived and stated in

Section 3.2. The other algorithm is based on Conjecture 1 in Section 3.2.4 and requires

less computational cost in finding n and k than the previous algorithm.

There are two issues that have been mentioned, which deserve further investigation.

First, in high precision calculation the Bernoulli numbers need to be dealt with in another

way than tabulating them, as storage space becomes expensive. They can be estimated,

but this causes a loss in accuracy of n and k. Secondly, for both algorithms an efficient

numerical root finding technique has to be implemented. Neither of these issues have

been addressed here, since they are beyond the scope of this paper.

Our main result is the conjectured relationship between n and k. In the case when

n = ,uk, we have not performed an exhaustive analysis of BRE. Based on the graphs of

Figure 3.15, we believe that there is a much simpler relationship between k, s, and than

is given through BRE. We suggest that a relationship between k and s in the above case

merits further investigation.

We also want to point out that considering a relationship between the upper bounds

of the two sums in a series is worthwhile to look into in the general case. For example,

using the identity (C.25) and the Stirling’s series for the Gamma function, we get a series

for log F(s) that has two sums. Since the Gamma function is related to the Riemann zeta

function, e. g. by the Functional Equation (2.3), the technique employed in this paper

should be applicable to the Gamma series as well.
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Appendix A

Validation of Backlund’s Remainder Estimate

Backlund’s estimate of the E-M remainder is derived by leaving out a negative integral

(see Section 2.4). We have been unable to evaluate or estimate this integral. However, we

need to validate BRE as a good estimate of the actual error to justify its use. Therefore,

we compute the ratio as a function of n for fixed large k and different s E C,

where AE denotes the absolute error. Remember that the absolute error is defined as

the absolute value of the difference between the actual value and the computed value; in

our case we have

AE= k(s)-
Figure A.18 depicts the graphs of the ratio for nine values of s. It is evident from

these graphs that in all cases considered, BRE increases the number of accurate digits

asked for by about 20% when n k. This means that n and k are slightly larger than

required for a given accuracy. Since the simplification of the remainder introduced by

BRE is needed to obtain a relationship between n and k, this small increase in cost is

justified.

Furthermore, by taking n = k in BRE we obtain an estimate for the error which is

even sharper than in the general case, as is shown in Figure A.19. We used n = k when

comparing Cohen and Olivier’s [2] algorithm to our algorithm in Section 4.1.
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n

absolute errorFigure A.18: The ratio BRE , for k = 40 and 1
corresponds to s = 3, 20, and 50; the second plot to s = + 2i,
the third plot to s = 2 + 3i, 5 + 9i, and 10 + 15i. Note that for
ratios are very close to each other, so that their graphs overlap.

absolute errorFigure A.19: The ratio BRE , for n = k with 1 < k < 100, and s = 3, + 2i, and
s = 2 + 3i, respectively.

n

< 100. The first plot
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the complex values the
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Appendix B

Bernoulli Polynomials

Definition 5 Let Bm(X) denote the m-th Bernoulli polynomial, where x E 1R. Bm(x) is

inductively defined by Bo(x) = 1 and for m> 0 by the two conditions

B1(x) = (m + 1)Bm() and (B.18)

jBm+i(X)dX = 0. (B.19)

For example,

Bi(x) = x—

B2(x) = x —x+,

B3(x) = x3 — x2 + -x.

Definition 6 Let bm() be the periodic extension of the restriction of Bm(X) to x [0, 1].

One of its properties is that it is a continuous function for m > 1, since Bm(X) restricted

to x E [0, 1] is continuous and Bm(0) = Bm(1) for m> 1.

We want to express L’m() in terms of its Fourier series. In general, the constant term

of the Fourier series of L’m() is zero because of condition (B.19) in the definition of the

Bernoulli polynomial. The k-th Fourier coefficient of bi(x), k 0, is given by

J Bi(x) dx = j(x
—

dx

e_27nI 1 1 1 1
= —x

2ki L + (2kj — f e2dx

= 27rki
(B.20)
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Assume that m > 0. Given the definition of the Fourier series for a continuous

function f with period 1, i.e. f(x) = f(k)e2ix, the k-th Fourier coefficient of f’
is 2irkif(k). Together with condition (B.18) in the definition of the Bernoulli polynomial

and the result of equation (B.20), this implies that the k-th Fourier coefficient of m(X)

must be
— (2)m. Hence, the Fourier series of L’m(X) is given by

00

E m.
e2” (B 21(2irki’m

k=—oo,kO \ I

for m> 0, or, alternately

/ m_i2(2m). °° cos2rkx
= 1) (27r)2m

k=1
k2m

(B.22)

rn_i 2(2m + 1)! 03 sin 27rkx
/‘2m+1 = (—1)

(27r)2m+l
k=1
k2m+l

for m > 0 and 2m 0. Furthermore, from equation (B.21) it can be easily seen that

bm() has the following property for m> 0:

x) = mrn_i(x). (B.23)

Definition 7 Let 13m denote the m-th Bernoulli number, which is defined by the constant

term of the m-th Bernoulli polynomial:

= Bm(0).

Since Brn(0) = 0 for ni odd, it follows that for all rn

/32rn+1 = 0 and

132m = B2m(0).
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The following is an estimate of the magnitude of /3m for large m. Even though the

first few Bernoulli numbers are quite small in size, their magnitude grows rapidly as can

be seen from the following estimate:

132m = B2m(O)

= ?b2m(O)
°° 1( 1

“ -‘ 12 ‘2m k2mI k=1

“ “ (2r)2m

since

lim —— = lim C(2m) = 1.m—+c k2m m—*c
k=1

Applying Stirling’s formula for factorials, we finally obtain the estimate

2m

/32m1 4/ () (B.24)

for large m.



Appendix C

Gamma Function

Definition 8 The Gamma function F(s) is defined by

F(s) = fts_1e_tdt

fors EC with J(s)>O.

Integration by parts shows that F(s + 1) = sF(s). More explicitly we have

F(s)
= F(s + n)

(C.25)
s(s+1)...(s+n—1)

This shows that F(s) can be extended to all s E C with J(s) > —n, except at the

negative integers, where it will have simple poles. The following is a short collection of

special values and properties of F(s) used in this paper.

Special value s = : By a change of variables in the definition of F(s) we can calculate

F at s =

1 00

F () =
et2 dt =

Euler’s Formula: For all s E C

F(s) = urnn00s(s+l)(s+n)
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Legendre’s Duplication Formula: For all s E C

F () F(s) = 2’F
(5) (8+1)

Reflection Formula: For all s C with 0 <J(s) < 1

F(s)F(1 —s) = .

sin irs

Stirling’s Formula: For large s E C with args <ir

F(s)

Using Legendre’s Duplication Formula and the Reflection Formula we can also get

the following relationship:

23F(1_s)=F(’2)F(22)

=, 28ir sin()F(1s)F()
=r(l;S)

sir 1F(i=)
(2ir)’2 sin () F(1 — s) = . (C.26)
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Program

The following is the Mathematica code that produces all the graphs and tables in the

text. All routines are thoroughly commented.

(* Z(s) denotes the Riemann Zeta function.

R(n, k, s) is as defined in Section 2.2.

The variable a in this program denotes alpha,

which is defined in Section 3.3.2. *)

(* Zn[n, s] takes a complex number s and a positive

integer n; and returns the partial sum of the

Riemann Zeta function. *)

Zn[n_Integer, sj : Block[{i},

Sum[i(—s), {i, n—1}]J I;

(n>O && NumberQ[s]);

(* T[k, n, s] takes a complex number s and positive

integers j and n; and returns T as defined in

the Euler-Maclaurin series for Z(s) of

Section 2.2. *)
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T[k_Integer, n_Integer, s_] := Block[{a, b, c, d, i},

a = (2k)’;

b = n(s+2k-1);

c = BernoulliBE2k];

d = Product[s + j, {j, 0, (2 k) — 2}];

(c*d)/(a*b)] I;
(k>0 && n>0 && NumberQ[s]);

(* BRE[n, k, s] is Backlund’s estimate for the remainder

of the EM series for (s).

BRE[n_Integer, k_Integer, s_] : Block[{a, b},

a = Abs[(s+2k+1)/(Re[s]+2k+1)];

b = Abs[T[k+1, n, s]];

a*b] I;

(n>0 && k>0 && NumberQ[s]);

(* GErrVBRE[s, k, nmax] takes a complex number s,

and positive nonzero integers k and nmax;

and returns the graph of

(absolute error)/(Backlund’ s remainder estimate)

as a function of n, where 1 <= n <= nmax.

GErrVBREEs_, k_Integer, nmax_Integer] :=

Block[{n, ti, t2, t3, t4, tS, t6, t7, t8, t9},
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ti = Table[Zs[n, k, s], {n, 4, nmax, 4}];

t2 = Zeta[s] — Prepend[tl, ZsE1, k, s]];

t3 = Map[Abs[#] Sc, t2];

t4 = Table[BRE[n, k, s], {n, 4, nmax, 4}];

t5 = Prepend[t4, BREE1, k, s]];

t6 = N[Transpose[{t3, t5}], 200];

t7 = Apply[Divide, t6, 1];

t8 = PrependETable[n, {n, 4, nmax, 4}], 1];

t9 = Transpose[{t8, t7}];

ListPlot [t9,

PlotJoined -> True,

AxesLabel —> {Hn, IIlI}]] /;

(NumberQ[s] ScSc k>0 ScSc nmax>0);

(* GErrVC[s, kmax] takes a complex number s,

and a positive non-zero integer kmax;

and returns the graph of

(absolute error)/(Backlund’ s remainder estimate)

as a function of k, where 1 < k < kmax

and n=k. *)

GErrVC[s, kmaxlnteger] :

Block[{k, tl, t2, t3, t4, t5, t6, tT, t8, t9},

ti = Table[ZsEk, k, s], {k, 4, kmax, 4}];

t2 = Zeta[s] — Prepend[tl, Zs[1, 1, s]];

t3 = Map[Abs[#] Sc, t2];
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t4 = Table[BRE[k, k, s], {k, 4, kmax, 4}];

t5 = Prependtt4, BRE[1, 1, s]];

t6 = N[Transpose[{t3, t5}], 200];

t7 = Apply[Divide, t6, 1];

t8 = Prepend[Table[k, {k, 4, kmax, 4}], 1];

t9 = Transpose[{t8, t7}];

ListPlot [t9,

PlotJoined —> True,

AxesLabel —> {“n-i-k”, ““}]] I;

(NumberQ[s] && kinax>0);

(* GRn[s, n, kmax] takes a complex number s and positive

integers n and kmax, and plots the graph of Backlund’s

remainder estimate for IR(n, k, s) I for fixed n,

where kmax is the largest value for k. *)

GRn[s_, n_Integer, kmax_Integer:340] : Block[{b, t, k},

b = E;

t = Table[{k, —Log[b, N[BRE[n, k, s], 300]]},

{k, kmax}];

ListPlot [t,

PlotJoined -> True,

AxesLabel —> {“k”, “D”}]] I;

(NumberQ[s] &&c n>0 && kmax>0);

(* GRk[s, k, nmax] takes a complex number s and positive
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integers k and nmax, and plots the graph of Backlund’s

remainder estimate for R(n, k, s) for fixed k,

where nmax is the largest value for n. *)

GRk[s_, k_Integer, nmax_Integer:70] : Block[{b, t, n},

b = E;

t = Table[{n, —Log[b, N[BRE[n, k, s], 300]]},

{n, nmax}];

ListPlot [t,

PlotJoined —> True,

AxesLabel —> {“n”, “D”}]] I;

(NumberQ[s] && k>O && nmax>O);

(* LogRSk[s, k] takes a complex number s and a positive

integer k; and returns the logarithm to the

base b of the size of the smallest term in the

E-M sum for Z(s). Default value for b is e. *)

LogRSk[s_, k_Integer] Block[{b, al, a2, a3, a4, aS, a6},

b = E;

al = (1/2) Log[b, Abs[s+2k—1]];

a2 = —Log[b, Re[s]+2k—1];

a3 = Log[b, 2];

a4 = (Re[s]—1) Log[b, 2 Pu;

a5 = —(Re[s]—1) Logtb, Abs[s]];

a6 = ImEs] (ArgEs] —ArgEs+2k—1])—(2k—1);
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N[al+a2+a3+a4+a5+a6]] I;

(NumberQ[s] && k>1);

(* SkGR[s, d] takes a complex number s and an

integer d, where d is the number of precision

digits required in the calculation of Z(s), and

returns that number k for which the estimate

for the size of the smallest term in the

E—M sum for Z(s) is less than or equal to 1O(—d). *)

SkGR[s_, d_Integer] Block[{k, b, e},

k = 2;

b = E;

e = N[— d Log[b, 10]];

While[LogRSk[s, k] > e && k < 600, k++];

k] I;
(NumberQ[s] && d>0);

(* GuessuEa] takes a positive number a greater than one;

and returns u(a) as chosen in Section 3.2.4. *)

Guessu[a_] : N[(1—(1/E))(1/a)+(1/E)] I;

(NumberQ[a] && a>0);

(* HEk, s, d, a] takes a positive real number k, a

complex number s, and a positive number d, and
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returns n+k as defined by the function H in

Chapter 3.2.3. *)

s_, d_, a_: 1] : Block[{ci, c2, e},

ci = 2 1Od / (2 PiY(2k);

c2 = Gainma[s+2k—i]/Gairnua[s];

e = i/(s+2k—i);

N[a ((ci c2Ye) + k]] I;

(NumberQ[s] && Im[s]0 && NumberQ[d] Sc& d>O Sc&

NumberQ[a] && a>O);

s_, d_, a_: 1] : Block[{ci, c2, c3, e},

ci = 2 iOd / (2 PiY(2k);

c2 = Sqrt[(Re[s]+2k—i)2 + (Im[s]Y2] / (Re[s]+2k—i);

c3 = Abs[Gamma[s+2k-i]/Gamma[s]];

e = i/(ReCs]+2k—i);

N[a (ci c2 c3Ye + k]] I;

(NumberQ[s] && NumberQ[d] && d>O &&

NumberQ[a] Sc& a>O);

(* HCEk, s, d, a] takes a positive real number k, a

complex number s, and a positive number d, and

returns n+k as defined by the function H in

Chapter 3.2.3. *)

HC[k_, s_, d_, a_ :1] : Block[{ci, c2, c3, e},
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ci = ((Re[s]+2k—i)2+Im[s]’2Y(i/2) / E;

c2 = (2 SqrtE2 Pi] iOd) /

(Abs [Gainma[s]] E (Im Es] Arg Es]));

c3 = ((ReEs]+2k—1)2+ImEs]2)(i/4) /

((ReEs]+2k—i) * (2 PiY(2k));

e = i/(Re[s]+2k—i);

N[a (ci (c2 c3)e) + k]] I;

(NumberQ[s] && NumberQEd] && d>O &&

NumberQEa] && a>O);

(* BnHEk, s, d, a] takes positive numbers k, and d, and

a complex number s; and returns the best n. *)

BnHEk_, s_, d_, a_: 1] : (HEk, 5, d, a]—k)/a I;

(NumberQ[k] && k>=i Sc& NumberQEs] && NumberQEd] && d>O &&

NumberQEa] && a>O);

(* GBESTnk[s, d, kmin, kmax] takes a complex number s,

a positive number d, and positive integers kmin

and kmax; and returns the graph of best (n, k)

using H as defined in Section 3.2.3, where

kmin < k <= kmax. *)

GBESTnkEs_, d_, kmin_Integer, kmax_Integer, a_ : i] :

BlockE{t, k, m,

t = TableE{k, HE1C, s, d, a]}, {k, kmin, kmax}];
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m = Min[Map[#[[2]] &, NEt]]];

c = AppendE

PositionEMapE#[E2]]&, NEt]], m][[1]]+kmin—1,m];

g = ListPlot[t,

PlotJoined —> True,

PlotRange —> {{kmin, kmax}, {1, 700}},

AxesLabel —> {“k”, “n+k”}];

Show[{Graphics[{AbsoluteThickness[2], Cross Ec]}],

g}]] I;

(NumberQ[s] && NumberQ[d] &8c d>O Sc& kmin>O &&

kmax>kmin && NumberQEa] && a>O);

(* BkdHEs, d, a] takes a complex number s and a

positive number d; and returns that k at which

H(k, s, d) has a minimum, using its derivative. *)

BkdH[s_, d_, a_: 1] : Block[{F, x, y, k},

F[y_] : D[H[x, s, d, a], xl I. x —> y;

k = 1;

While[F[k] < 0 && k < 400, k++];

k] I;

(NumberQ[s] && Im[s]O && NumberQEd] && d>0 &&

NumberQ[a] && a>O);

BkdH[s_, d_, a_: 1] := Block[{F, x, y, k},

FEy_] D[HC[x, s, d, a], x] I. x ->
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k = 1;

While EFEk] < 0 && k < 400, k++];

k] I;
(NumberQ[s] && NumberQ[d] && d>0 && NumberQ[a] && a>0);

(* BkBRE[s, d, a] takes a complex number s and a positive

number d; and returns the best k for which

IR(k, k-i, s)I <= i0(-d), using Backlund’s remainder

estimate. *)

BkBRE[s_, d_, a_:i] : Block[{b, e, u, k},

b = E;

e = NE— d LogEb, iOu;

u = GuessuEa];

k = 2;

While[LogEb, N[BREECeiling[u k], k—i, s], 300]] > e &&

k < 600, k++];

k] I;

(NumberQEs] && NumberQEd] && d>0 &&

NumberQEa] && a>0);

(* GBkVBnEs, dmax, a] takes a complex number s and a

positive integer dmax; and returns the graph of the

best n versus the best k. *)

GBkVBnEs.., dmax_, a..: i] :
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BlockE{dm, u, d, ti, t2, t3, t4, t5, t6, t7},

dm = Ceiling[dmax];

u = Guessu[a];

ti = Table[{s, d, a}, {d, 1, dm, 1O}];

t2 = Table[d Log[1O], {d, 1, dm, 1O}];

t3 = Apply[BkdH, ti, 1];

t4 = Transpose[{t2, u t3}];

t5 = Partition[Flatten[Transpose[{t3, tl}], 2], 4];

t6 = Apply[BnH, t5, 1];

t7 = Transpose[{t2, t6}];

gi = ListPlotEJoin[{{O, —1O}, {O, O}}, t4],

PlotJoined —> True,

AxesLabel —> -(“D”, 11k11}];

g2 = ListPlot[t7,

PlotJoined —> True,

AxesLabel —> {“D”, “n”}];

Show[{gl, g2}, AxesLabel —> {“D”, ‘“}]] I;

(NumberQ[s] && NumberQ[dmax] && dmax>O &&

NumberQ[a] ScSc a>O);

(* Ratiok[s, dmax, a] takes a complex number s and a

positive integer dmax; and returns the graph of

H(kmin) = best n+k Id, the graph of two times

those k for which IR(k, k-i, s)I <= 1O(-d)

using Backlund’s remainder estimate, and the graph

of the ratio of 2k to (best n + best k), where
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the number of accurate digits d runs from 1 to

1O(—dmax) in steps of 5. *)

Ratiok[s., dmax_, a_:1] :

Block[{dm, c, d, ti, t2, t3, t4, t5, t6, t7, t8, gi, g2},

dm = Ceiling[dmax];

c = a Guessu[a] + 1;

ti = Table[{s, d, a}, {d, 1, dm, 5}];

t2 = Table[d LogElO], -Cd, 1, dm, 5}];

t3 = Apply[BkBRE, ti, 1];

t4 = Transpose[{t2, c t3}];

t5 = Apply[BkdH, tI, 1];

t6 = Partition[Flatten[Transpose[{t5, tl}]], 4];

t7 = If[Im[s]O, Apply[H, t6, 1], Apply[HC, t6, 1]];

t8 = Transpose[{t2, t7}];

t9 = ApplyEDivide, Transpose[{t7, c t3}], 1];

tlO = TransposeE{t2, t9}];

gi = ListPlot[t4,

PlotJoined —> True,

AxesLabel —> {“D”, “k”}];

g2 = ListPlot[Join[{{O, —30}, {O, O}}, t8],

PlotJoined -> True,

AxesLabel —> {“D”, ‘an+k}];

Show[{gl, g2}, AxesLabel —> {“D”, ““}];

ListPlot EtlO,

PlotJoined -> True,
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AxesLabel —> {“D”, “}]] I;
(NumberQ[s] && dmax>O && NumberQ[a] && a>O);

(* Gu[siist, dust, amax, ainc] takes a list of

complex s values, a list of positive d values, where

d is the number of accurate digits, the maximum

number amax of a, and the increase ainc of a from 1

to amax. Gu returns a statistical plot of n/k

values based on slist, dust, and a values,

together with the function u(a) as chosen in

Section 3.2.4. *)

Gu[siist_List, dust_List, amax_, ainc_: 1] :

BlockE{sl, di, al, i, j, sdt, at, Hi, sdat, kt, ksdatl,

ksdat2, nt, nktl, nkt2, nkt3, gi, g2},

si = Length[slist];

di = Length[diist];

al = si * di;

sdt = Flatten[Table[Transpose[{Table[slisttEi]], {di}],

dlist}], {i, si}], 1];

at = Tabie[a, {a, .5, amax, ainc}];

Hi = Length[atl;

sdat = Tabie[Table[AppendEsdtC[j]], at[[ilJJ, {j, al}],

{i, Hl}];

kt = Appiy[BkdH, sdat, {2}];

ksdatl = Tabie[Tabie[Prepend[sdat [Li]] [Li]],
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kt[[i]] [[JIll, {j, al}] , {i, Hl}]

ksdat2 = Partition[Flatten[ksdatl], 4];

nt = ApplyEBnH, ksdat2, {1}];

nktl = Transpose[{nt, Flatten[kt]}];

nkt2 = Partition[Apply[Divide, nktl, {1}], all;

nkt3 = Flatten[Table[Transpose[{Table[at[[i]], {al}],

nkt2[[i]]}], {i, Hl}], 1];

gi = ListPlot[nkt3,

AxesLabel —> {“a”, “n/k”}];

g2 = Plot[Guessu[a], {a, .5, amax},

AxesLabel —> {“a”, “u”}];

Show[{gl, g2}, AxesLabel —> {“a”, “n/k=u”}]] I;

(NumberQ[amax] && amax>=.5 && NumberQ[ainc]);

(* Gv[slist, dust, aiuax, ainc] takes a list of

complex s values, a list of positive d values, where

d is the number of accurate digits, the maximum

number amax of a, and the increase ainc of a from 1

to amax. Gu returns a statistical plot of

(smallest n)/(best n).

Gv[slist_List, dlist_List, amax_, ainc_:1] :

Block[{(*sl, dl, al, i, j, sdt, at, Hl, tl, t2, sdat,

ri, r2, r3, r4, si, s2, s3*)},

si = Length[slist];

dl = Length[dlist];
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ai = si * di;

sdt = FlattenETabie[Transpose[{Table[siist[[i]], {di}],

diist}], {i, si}], 1];

at = Tabie[a, {a, .5, amax, ainc}];

Hi = Length[at];

ti Appiy[SkGR, sdt, 1];

t2 = Flatten[Tabie[tl, {j, Hi}]];
sdat = Tabie[Tabie[Append[sdt[[j]], at[[i]]], -(j, ai}],

{i, H1}];

ri = Appiy[BkdH, sdat, {2}];

r2 = TabieETabie[Prepend[sdat[[i]] [Ej]],
rl[[i]] [[j]]] , {j ai}] , {i, Hi}]

r3 = Partition[Fiatten[r2], 4];

r4 = Appiy[BnH, r3, {1}];

si = Transpose[{t2, r4}];

s2 = Partition[Appiy[Divide, si, {1}], ai];

s3 = FiattenETabie[Transpose[{Tabie[attti]], {al}],

s2[[i]]}], {i, Hi}], 1];

ListPiot [s3,

AxesLabel —> {“a”, ‘sm n / bst n”}]] I;

(NumberQ[amax] && amax>.5 && NumberQ[ainc]);




