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Abstract

In the present thesis, a computational capability is developed for the prediction of film

cooling of turbine blades. This includes the development of two comprehensive numerical

codes and the associated methods. To address the difficulties associated with complex

configurations of turbine blades and convergence problems, several numerical techniques

are used, including curvilinear coordinate-based calculations, multigrid acceleration, do

main segmentation and grid generation. Investigation and validation of these methods

are carried out and novel techniques are proposed to achieve an efficient numerical solver.

Two computer codes have been developed. One is a 3D curvilinear coordinate-based

CFD code, called CMGFD, which can be used to calculate laminar/turbulent flows in

arbitrary geometries using non-structured curvilinear grids. The methods developed here

have been implemented into the codes. To support the application of the CMGFD code,

a multigrid elliptic grid generation code, MBEGG, was developed which can be used

to generate multi-block curvilinear grids for the CMGFD code. A multigrid method

is used to solve the three elliptic grid generation equations thus providing an efficient

grid generator. The developed computational codes are applied to study film cooling of

an experimental turbine blade model. The computational domain follows the physical

geometry which includes a curved blade surface and a number of injection holes. A block

structured curvilinear grid is generated by the MBEGG code which exactly represents the

inclined, round film-holes and the curved blade surface. The computational results show

that the developed numerical tool has the potential to accurately model the complex

cooling process in actual blade geometries.
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Chapter 1

Introduction

1.1 Background

One of the most effective ways to improve gas turbine engine efficiency is to increase

the working fluid temperature. Consequently, new turbine designs are continually be

ing pushed to operate at higher temperatures. The modern gas turbine engines operate

under working temperatures of 1400— 1500°C which are beyond the allowable metal tem

peratures. Therefore, to maintain reasonable engine life and safety, critical components,

such as the turbine blades, have to be protected.

Film cooling is a widely used technique to protect turbine blades from the high tem

perature of the surrounding gas stream. This technique involves injection of coolant at

one or more discrete locations along a surface exposed to a high temperature environment

in order to protect the surface in the downstream region. A discrete-hole cooling arrange

ment for a turbine blade is illustrated in Figure 1.1. In this blade there are a number

of discrete, small injection holes on the surface from which coolant is injected into the

boundary layer on the blade surface to form a thin layer of coolant which protects the

blade surface from the high temperature environment. The cooling process occurs in a

complex 3D configuration which includes not only a curved airfoil but also a number of

small injection holes. The aim of film cooling design is to minimize the coolant injected

while maximizing the thermal protection for the blades. A large number of experimental

and computational studies have been devoted to the understanding of the film cooling

1



Chapter 1. Introduction 2

Injection tubes

Hot Main Flow

Figure Li: Illustration of a discrete-hole cooling arrangement for a turbine blade.



Chapter 1. Introduction 3

process in order to achieve higher film cooling effectiveness. A brief literature review is

provided in the following paragraphs.

1.2 Motivation for the Present Study

Film cooling has been a subject of research for many years. There are a large number

of research papers on film cooling of turbine blades in the open literature. Goldstein

(1971) gave a detailed review of film cooling research and summarized the experimental

results on film cooling effectiveness with normal, tangential or nearly tangential injection

up to 1971. There are two major techniques in film cooling studies; one is experimental

investigation and the other is numerical prediction. Most early investigations of film

cooling were carried out using experimental techniques. Current engine design is highly

empirical and relies on a large experimental database. Recent works are more concerned

with discrete-hole film cooling on a flat plate or a curved blade surface. There have

been numerous experimental investigations of discrete hole cooling. However, a review

of experimental studies is not the subject of the present thesis. Instead, only a selection

of some experimental works associated with the physical model of the present numerical

study are mentioned.

In the film cooling of a turbine blade, the stagnation region near the leading edge is a

particularly critical region as it suffers the most intense exposure to the hot free stream

and therefore requires particular attention. A number of studies have been carried out for

film cooling at the leading edge. Ou & Han (1991, 1992) and Mehendale & Han (1992)

carried out a systematic investigation of the effects of high mainstream turbulence and

the effects of injection orifice geometry on the leading edge film cooling. They measured

the film cooling effectiveness over a blunt body with a semi-cylindrical leading edge and
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a fiat afterbody. Here, the film cooling effectiveness is defined as follows,

TjoTw
T—T

(1.1)

where Taw is the adiabatic wall temperature, T is the mainstream temperature and

T is the coolant temperature. Two rows of orifices at +150 and +400 were used with

spanwise blowing and with spacing-to-diameter ratios of 4 and 3. The effectiveness was

found to decrease with increasing mainstream turbulence; however, this effect decreased

with increasing blowing rate. Their study also indicates that the spacing-to-diameter

ratios have a significant influence on the film cooling effectiveness.

Recently, a systematic experimental investigation of film cooling effectiveness near

the leading edge of a turbine blade was carried out by Gartshore et al (1993) and Sal

cudean et al (1994) at the University of British Columbia. This study was carried out to

fulfill a research collaboration between Pratt & Whitney Canada and the University of

British Columbia. A large turbine blade model was used in this experimental study. This

model has a semi-circular leading edge with four rows of laterally-inclined film cooling

orifices positioned symmetrically about the stagnation line. Both air and CO2 were used

as coolant. A heat-mass transfer analogy was used to measure the cooling effectiveness.

Their experimental results indicate that the film cooling effectiveness changes substan

tially with respect to the overall mass flow ratio. Here, the mass flow ratio is defined as

eU/ where Pc and p are the coolant density and the mainstream flow density

respectively. The best effectiveness was obtained in a range of mass flow ratios 0.5 — 0.6.

A continuous decrease in the film cooling effectiveness was found when the mass flow

ratio was further increased.

The above experimental studies indicate that the film cooling effectiveness is influ

enced by a number of factors, such as, spacing-to-diameter ratios, mass flow ratios and
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free stream turbulence. Therefore, in order to achieve an optimal design of the film cool

ing system, a parametric analysis has to be carried out to determine the film cooling

performance with various blade geometries and flow parameters. For this purpose, ex

perimental measurements are too expensive and time-consuming to obtain the detailed

flow and heat transfer data. In addition, measurement is also limited by the availability

and accuracy of the measuring instruments for many situations. An alternative method

in film cooling research is numerical prediction.

Recent advances in high speed digital computers and computational fluid dynamics

make it possible to model the flow field and heat transfer phenomena in film cooling of

turbine blades. Numerical simulation can provide detailed information about flow fields

and constitutes a fast and inexpensive tool for understanding the film cooling process.

The present study is motivated by the above need and is devoted to the numerical

simulation of film cooling of turbine blades. It is our aim to develop a computational

capability for the prediction of film cooling of a turbine blade with a realistic geometry.

1.3 Previous Numerical Studies

Numerical simulation of the film cooling of turbine blades is not new. There are a number

of numerical studies in the literature and the first research paper can be traced back to

Kacker et at (1969). However, most of the early numerical studies were confined to two

dimensional flows with wall jet configurations. Among the three-dimensional studies,

Bergeles et at (1978) used a partially parabolic numerical scheme to predict the mean

velocity and temperature of laminar flow for a single row of inclined holes and for a

surface with multiple rows of holes. Later, they used the same method in conjunction

with an anisotropic turbulence model to calculate a single jet injected into a crossflow at

900 and 300. Good agreement with measured results for an inclined injection hole was
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obtained over most of the domain with the exception of the region in the vicinity of the jet

orifice where the agreement was poor especially for high mass flow ratios. This is partly

caused by the assumption of a uniform velocity profile at the jet exit plane. Demuren et

al (1986) carried out a systematic study for a single row of holes in a flat plate inclined

at different angles using the locally-elliptic procedure. As in the treatment of Bergeles

et al (1978), uniform velocities at the jet exit plane were assumed in order to exclude

the coolant orifice ducts from the computational domain. The predicted film cooling

effectiveness was in poor agreement with the measured data in some cases, especially for

high mass flow ratios. Sathyamurthy and Patankar (1990) investigated discrete-hole film

cooling over a flat plate with lateral injection. A laterally periodic parabolic procedure

was used in their calculation. Their results indicate that lateral injection can operate at

high blowing rates and can achieve better film coverage than streamwise injection.

Computations of film cooling by solving elliptic Navier-Stokes equations have also

been reported. White (1981) solved the fully elliptic transport equations for a single

injection hole on a flat plate. The novel feature of the method is its use of separate

computational domains in the injection pipe and cross-stream regions. Comparison of

jet exit profiles with measurements showed good agreement. Jubran (1989) used a com

mercial CFD code, PHOENICS, to predict the film cooling effectiveness and the velocity

field for two rows of holes inclined in the streamwise and spanwise directions over a flat

plate. More recently, Zhou et al (1993) used a multigrid and a segmentation technique

for the prediction of film cooling for the case of discrete holes with lateral injection. With

this technique, they were able to use a very fine grid and the solution also extended into

the injection hole regions for the vertical injection hole case. The computational results

showed good agreement with the experiments.

More recently, computations have been reported for more complex geometries using

body-fitted coordinates to approach real blade configurations. This includes the use of
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some commercial CFD codes. Leylek and Zerkle (1993) conducted computations for a

streamwise inclined orifice on a fiat plate. Their solutions include flow in the plenum,

coolant tube and cross-stream regions. A curvilinear grid was used to represent the

circular injection tube which formed an angle with the blade wall in the streamwise

direction. They reported important information on the flow in the coolant hole which

contains counter-rotating vortices and local jetting effects. The results showed that for

a hole length of about 4 times the hole diameter, there is a large separation region in

the film cooling tube which leads to redistribution of the coolant flow at the hole exit.

However, the influence of wall curvature was not considered since the computations did

not include the curved blade surface.

Garg and Gaugler (1993, 1994) used general body-fitted coordinates to model the

complex flow domain around a real turbine airfoil. The fully three-dimensional Navier

Stokes equations were solved together with closure proposed by the Baldwin and Lomax

(1978) algebraic turbulence model. The computational domain included the whole curved

blade surface but not the coolant ducts. Turbulent (1/7 power law) profiles were specified

at the duct exits, in conformity with observations of Leylek and Zerkle (1993). Experi

mentally measured wall temperatures were specified as boundary conditions at the airfoil

surface and wall heat fluxes were calculated. Fair agreement with the experimental re

sults was reported. Their study provided important guidelines for numerical simulations

of film cooling for real turbine blades.

Vogel (1994) carried out calculations of turbine flows with film cooling using multi

block body-fitted coordinates. Two cases are reported in Vogel’s paper, the first dealing

with two-dimensional film cooling with a slot configuration. A curvilinear grid was used

to represent the curved leading edge. The second calculation deals with film cooling

from a single orifice on the suction side of the blade. Since the calculation deals only

with a single streamwise inclined injection orifice, the author was able to use a symmetry
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condition through the middle of the injection orifice. The computational domain included

the suction side of a blade surface and half of the streamwise injection orifice. The paper

focussed on the detailed flow field and did not describe the temperature field.

1.4 Remarks on Film Cooling Studies

Actual measurements provide the most reliable information about a physical process.

However, it should be mentioned that there are serious difficulties with measurements

in many situations and the measuring instruments are not completely free from errors.

In addition, experimental investigations are usually expensive and time-consuming in

obtaining the complete flow data. Numerical simulation can furnish detailed information

about fluid flow and heat transfer phenomena and provide a fast and inexpensive tool for

understanding the film cooling process. However, numerical simulation has not reached

a stage where it can be directly applied in engine design. One of the major problems is

that there is lack of appropriate methods to model the cooling process for the complex

geometry of a turbine blade. Therefore the majority of the previous calculations were

limited to simplified geometries.

The complex configuration of an actual turbine blade presents a number of difficulties

for numerical simulation. First, the flow region includes a curved blade surface and a

number of circular injection holes for which an ordinary coordinate system, such as

Cartesian or cylindrical coordinates can not be applied. Secondly, the flow occurs in

different flow regions: a main flow region around the blade surface and a number of sub

regions in the small coolant injection holes for which ordinary one-segment methods are

ineffective. Thirdly, the diameters of the injection holes are very small compared with

the characteristic dimension of the main flow region. When a fairly dense grid is used in

the injection holes, the number of grid nodes needed overall will be too large to be used
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with the present computer capacities without using excessively nonuniform grids. The

use of a very non-uniform and dense grid near the cooling orifices can cause additional

convergence difficulty. Therefore, a solution method should be developed to address both

the convergence and geometrical difficulties.

The use of simplified geometries, such as a fiat plate with discrete wall jets, can provide

useful flow information about the complex cooling process. However, the curvature of a

real blade is not accounted for in such a model; consequently the film cooling might be

significantly miscalculated. Due to the shape of turbine passages, the flow through them

experiences very strong streamline curvature. This curvature can significantly influence

the cooling process. Furthermore, as reported by Leylek and Zerkie (1993), the velocity

profile at the orifice exit is very complex and is neither uniform nor in alignment with the

coolant tube. Our study also showed that the velocity, temperature and k — c profiles at

a coolant-hole exit plane strongly depend on the hole location and the mass flow ratio.

Thus, an assumption of constant or power-law solution profiles may be very inaccurate.

Therefore, in order to obtain accurate flow and heat transfer data, the simulation should

include both the curved blade surface and the coolant ducts.

1.5 Objective and Scope

The present work has two main objectives. (1). One objective is to address the need

discussed above to develop an efficient numerical tool suitable for modeling the film

cooling process over realistic physical geometries. (2). The other objective is to use this

numerical tool to study film cooling of the TJBC experimental turbine blade for which

considerable measured data has been obtained. This provides not only a validation of

the experimental results but also a detailed flow and temperature field.
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The first objective involves both code and method developments. To address the diffi

culties associated with complex geometries and convergence problems, several numerical

techniques are used including grid generation, curvilinear coordinate-based calculation,

multigrid method and domain segmentation. Two computer codes are developed. One

is a 3D curvilinear coordinate-based CFD code, called CMGFD, which can be used to

calculate laminar/turbulent flows in arbitrary geometries using non-structured curvilin

ear grids. The other is a multigrid elliptic grid generation code, called MBEGG, which

can be used to generate multi-block curvilinear grids for the CMGFD code.

The CMOFD code is developed based on an existing CFD code, MGFD, developed by

Nowak (1992) in our research group. The MGFD code is a comprehensive 3D numerical

code with multigrid and domain segmentation techniques. However, its application is

still limited to rectangular type geometries since it is based on the Cartesian coordinate

system. To address the present need for the prediction of film cooling of turbine blades,

the CMGFD code is developed using block-structured curvilinear grids. All the tech

niques used in the MGFD code, such as the multigrid method and domain segmentation

feature, are generalized to the CMGPD code. It should be mentioned that due to the

comprehensive nature of the MGFD code, substantial work was required to implement

the curvilinear grid-based calculation. In addition to changing the basic grid system,

other significant changes, such as inclusion of the multigrid method, are also made.

The CMGFD code involves several numerical techniques. These techniques are imple

mented in the code in four steps. In each step, considerable effort is involved in developing

efficient methods suitable for the code. A detailed investigation of the proposed method

and validation of the code is carried out. The development of these methods comprises

one of the important tasks in the present study and is described in the following para

graphs.

In the first step, the calculation of laminar flow in complex geometries using general
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curvilinear grids is investigated. This step is necessary to develop an efficient, curvi

linear coordinate-based finite-volume method while avoiding the additional complexity

of turbulence modeling and domain segmentation treatments. Finite-volume methods

in conjunction with curvilinear grids have been become popular in recent years for flow

simulation in complex geometries. However, problems still exist in terms of the accu

racy and efficiency of such computations. In the present study, a finite volume method

using general curvilinear grids is proposed to overcome some of these difficulties. The

coordinate invariant conservation equations and the physical geometric quantities of the

control cells are used directly to formulate the numerical scheme without reference to

the commonly-used covariant and contravariant vectors. The definitions of the physical

geometrical quantities and the tangential velocity unknowns are introduced. A new differ

ence scheme for the non-orthogonal diffusion and pressure terms is proposed. This scheme

contributes to the main diagonal terms in the resulting coefficient matrix and allows an

implicit treatment of the non-orthogonal quantities without increasing the number of

computational molecules. A coupled equation solver is used in place of the commonly-

used pressure-correction equation associated with grid non-orthogonality. The developed

method is implemented in the CMGFD code. Several two- and three-dimensional lami

nar flows are computed and compared with other numerical, experimental and analytical

results to validate the solution method and code. The main work in this step is presented

in chapter 2.

In the second step, the method developed in the first step is generalized to turbulent

flows. It is well known that turbulent flows are more difficult to handle. This step is

intended to increase our knowledge in dealing with turbulent flows in the environment of

general curvilinear grids and achieve an efficient numerical method for turbulent flows.

The mathematical model adopted for the present study is introduced. The k — c two

equation model together with the ‘wall function’ is used to simulate turbulent flows.
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The discretization of the k — e equations and the formulation of the ‘wall function’ are

presented. The treatment of the source terms in the k — e equations is discussed in

detail. The performance of the method is investigated through several three-dimensional

turbulent flows to validate the method as well as the CMGFD code. This is presented in

chapter 3.

The third step is concentrated on the development of an efficient multigrid method

for flow simulation in general curvilinear grids. The multigrid method is an efficient iter

ative solution procedure which exhibits convergence rates insensitive to grid refinement.

It has been widely used in the field of computational fluid dynamics. However, there

have been relatively few studies carried out using general curvilinear grids. There are

additional difficulties for multigrid acceleration in curvilinear coordinate systems which

require careful consideration.

In the present study, a multigrid method for calculating laminar/turbulent flows using

general curvilinear grids is developed. First, the multigrid calculation of laminar flows

is studied with emphasis on the influence of complex flow boundaries. It is found that

the discrete governing equations on different grid levels can become inconsistent in some

curvilinear grids due to complex flow boundaries, thus reducing the efficiency of the

multigrid algorithm. A novel treatment is proposed to solve this problem. Secondly, the

difficulties associated with the multigrid acceleration of turbulent flows are discussed and

several techniques which help the performance of the multigrid method are introduced.

Particularly, it is found that the formulation of the coarse-grid defect equation using the

‘wall function’ can cause inconsistency of the governing equations between fine and coarse

grids. This problem is discussed in detail and a novel approach is proposed to allow the

successful implementation of the multigrid method for turbulent flows. Work in this step

is presented in chapter 4.

In the last step, the method developed in the three previous steps is generalized to
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non-structured curvilinear grids by using a domain segmentation technique. This tech

nique divides the domain of interest into different sub-domains. Solutions are obtained

by iteratively applying the solver described in the previous steps to each sub-domain.

The implementation of the domain segmentation strategy in the method using general

curvilinear grids is studied. Particular attention is given to the communication between

neighbouring sub-domains. The performance of the multi-block method is investigated

through several computational examples.

The methods described above have been implemented in the CMGFD code. With the

above developments the code can be used to deal with arbitrary complex geometries if

proper block-structured curvilinear grids are generated. However, generating appropriate

grids is often a difficult task. The existing difficulty in generating appropriate grids

is one of the reasons that few numerical studies are carried out over complex three

dimensional domains. In the present study an elliptic grid generation code, MBEGG,

is developed to support the application of the CMGFD code. Even though the code is

initially developed to address the need for the prediction of film cooling of a turbine blade

it can be used to generate multi-block curvilinear grids for various complex flows. An

elliptic grid generation method is used in the code, which solves three nonlinear elliptic

grid generation equations. The source terms in the equations are problem-dependent

functions and can be used to control the grid characteristics, such as orthogonality and

grid stretching. In the present study, methods to achieve certain grid quantities, such

as skewness, through the control functions are implemented in the code. The multigrid

method is an ideal solver for the elliptic grid generation equations due to the fully elliptic

nature of the equations. In the present study, a multigrid method is developed to solve

these equations. A domain segmentation technique is adopted in the code to generate

block-structured curvilinear grids. Block-structured curvilinear grids are generated for

flows over a cooled turbine blade using the code.
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As mentioned earlier, the main objective of the present thesis is to develop an efficient

numerical tool for the prediction of fluid flows in complex geometries with emphasis on

calculation of film cooling problems. To this end, the developed computational code is

applied to study film cooling of a UBC experimental turbine blade model. This model

has a semi-circular leading edge with four rows of film cooling orifices positioned sym

metrically about the stagnation line. It uses a lateral injection and the cooling orifices

are inclined spanwise 300 to the turbine blade surface. The computational domain is

taken directly from the physical geometry without simplification and includes not only

the curved blade surface but also the entrance ducts of the circular coolant holes. The

physical domain is segmented into a number of sub-domains and separate curvilinear

grids are generated for different flow regions. Grids are generated by the MBEGG code

which represents exactly the curved blade surface as well as the circular injection orifices.

ec U
Computations have been carried out for a low overall mass flow ratio (M = ) of

e:nftyU
0.52 and a high mass flow ratio of 0.97, where e is density, U is velocity and the subscript

c and co indicate the coolant and hot flow respectively. The computational results are

compared with the available experimental results.

1.6 Contributions of the Thesis

In summary, the present thesis contributes to both the engineering application and theory

of CFD in the following areas:

• A numerical method for computing fluid flow in complex three-dimensional ge

ometries using curvilinear grids is developed. Unlike previous numerical studies,

the original coordinate-invariant conservation equations and the physical geometric

quantities of the control cells are used directly to formulate the numerical scheme
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without reference to the coordinate derivatives of transformation. The physical ge

ometric quantities, including volumes, surface areas and surface normal directions

of control cells, are introduced to formulate the governing equations in place of the

commonly-used covariant and contravariant vectors. A calculation and interpola

tion procedure for the physical geometric quantities is developed. This method

allows the use of significantly non-smooth grids.

• A new scheme for handling the non-orthogonal terms in the momentum and pres

sure equations is developed. This scheme contributes to the main diagonal terms

in the resulting coefficient matrix and allows an implicit treatment of the non-

orthogonal quantities without increasing the number of computational molecules.

This treatment of the non-orthogonal terms enhances computational stability and

convergence rate.

• The physical tangential velocity components resulting from the velocity expansion

in the unit tangent vector basis are proposed as dependent variables in the momen

tum equations. The discrete momentum equations using the tangential velocity

components are obtained by an algebraic manipulation which avoids the tensor ex

pression of Christoffel symbols. A coupled solution procedure is used in place of the

complicated pressure-correction equation associated with grid non-orthogonality.

• Numerical simulation of turbulent flows in complex geometries is studied. The k —

two-equation model together with the ‘wall function’ treatment is used as the tur

bulence closure. Discretization of the k — e equations is presented with particular

attention to the linearization of the source terms and calculation of the turbulence

energy generation rate. Methods are introduced to enhance the computational sta

bility and facilitate the calculation of the energy generation rate. The formulation

of the ‘wall function’ in general curvilinear grids is developed.
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A multigrid procedure for the computation of three-dimensional laminar/turbulent

flows in general curvilinear grids is developed. It is shown that the discrete gov

erning equations can become inconsistent between fine and coarse grids in certain

curvilinear grids, as well as when the k — 6 model with the cwall function’ is used

for turbulent flows. Novel procedures have been proposed to solve these problems.

Computational results using fine grids of up to approximately one million grid nodes

showed that the developed multigrid algorithm is very efficient and a reduction of

up to 99% in CPU time was achieved.

• A domain segmentation strategy in conjunction with general curvilinear grids is de

veloped. This approach allows the treatment of arbitrary three-dimensional geome

tries using non-structured curvilinear grids. Particular attention has been given for

the communication between different sub-domains. The performance of the multi-

block method is investigated through several computational examples which show

that the developed method has the capability to deal with complex flow domains

using multi-block structured curvilinear grids and allows the use of significantly

discontinuous grid slopes at the interface.

• A block-structured curvilinear coordinate-based finite-volume code, CMGFD, is

developed based on an existing Cartesian coordinate-based CFD code. The new

code has the capability to deal with arbitrary geometries by using separate curvi

linear grids in different flow regions. There is no restriction for curvilinear grids

to be used and no limitation for the number of segments to be used in a flow re

gion. An efficient multigrid method is implemented in the code which promises fast

convergence for both laminar and turbulent flows.
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• A multi-block elliptic grid generation code, MBEGG, is developed for generating

block-structured curvilinear grids in complex geometries. The code uses an ellip

tic grid generation method which solves three elliptic partial differential equations.

A multigrid method is developed to solve these equations which provides an effi

cient grid generator. Techniques to control grid quantities, such as skewness, are

introduced. A multi-block grid generation strategy is adopted to allow the gener

ation of block-structured curvilinear grids in arbitrary geometries. This code has

the capability to generate block-structured curvilinear grids in arbitrary 2D or 3D

domains.

• Computations are carried out for film cooling of a UBC turbine blade model. Block-

structured grids are generated by the developed MBEGG code which exactly rep

resent the inclined, round film-holes and the curved blade surface. Computations

over the cooled turbine blade model are carried out for overall mass flow ratios of

0.52 and 0.97. The detailed flow field is obtained which improves our understanding

of film cooling. The structure of vortices is investigated numerically. This provides

information on the mixing of coolant with hot flow. The predicted results are

compared with the experimental results of Salcudean et at (1994) and show good

agreement. The present computations show that the developed numerical tool has

the potential to model the complex cooling process in actual blade geometries.



Chapter 2

A Computational Method Using Curvilinear Grids

In this chapter, a finite-volume method for laminar flow in complex 3D geometries us

ing general curvilinear grids is presented. A new second-order accurate difference scheme

for the cross-derivative terms is proposed to describe the non-orthogonal components,

allowing parts of those terms to be treated implicitly without increasing the number

of computational molecules. The coordinate-invariant conservation equations and the

physical geometric quantities of control cells are used directly to formulate the numeri

cal scheme without reference to the coordinate derivatives of transformation. A coupled

equation solver is used in place of the complicated pressure-correction equation associ

ated with grid non-orthogonality. Several two- and three-dimensional laminar flows are

computed and compared with other available numerical, experimental and analytical re

sults to validate the solution method. Part of the work presented in this chapter has

been reported previously in He and Salcudean (1994).

2.1 Introduction

For problems with complex geometries, finite-element methods appear to be the natural

choice due to their intrinsic geometric flexibility. Finite-volume/difference methods, how

ever, are well established in computational fluid dynamics and an alternative approach

would be to use these methods with an appropriate body-fitted coordinate system. Such

methods can be developed based on well-established solution algorithms and numerical

codes for the regular geometries.

18
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Curvilinear coordinates, with orthogonal and non-orthogonal grids, have been used

extensively for fluid flow in complex geometries and a number of research papers ex

ist in the open literature; for examples, see Maliska and Raithby (1984) and Shyy et

al (1985). The governing equations are considerably simpler in orthogonal coordinates;

however these methods have serious geometric limitations. Orthogonal grids are difficult

to generate, especially for three-dimensional domains. For complex three-dimensional ge

ometries, non-orthogonal grids are often necessary because they provide greater flexibility

in the distribution of the grid points.

The use of a curvilinear coordinate system can entail a number of difficulties which

have to be addressed. First, most grid generation techniques provide discrete grid points

rather than the analytic functions of transformation. In such cases, the coordinate deriva
• . . axayaz

tives of transformation (commonly called covariant base vectors), aj = (—, —, -), are

usually computed approximately and other metric quantities, such as contravariant base

vectors and the Jacobian determinant, are then evaluated from these coordinate deriva

tives. The definition and calculation of these derivatives, however, becomes ambiguous

when a non-smooth grid is used. The procedure used to approximate these quantities

is critical and may lead to significant numerical errors or even unrealistic solutions, as

demonstrated by Segal et al (1992) and Lee et al (1992) for example.

Secondly, significant deterioration of the convergence rate of some of the available

iterative solution procedures can occur with a non-orthogonal grid, as demonstrated by

Peric (1990), especially when the grid is highly non-orthogonal. This is partially due to

the explicit treatment of the large non-orthogonal diffusion terms, which can be described
a 128u 0 138u

analytically by cross-derivative terms such as —(Pg -a-—) and --—(Pg --—) in the
82

momentum equations, where I’ is the diffusion coefficient and g23 is the controvariant

metric tensor.

The choice of dependent variables in the momentum equations also requires careful



Chapter 2. A Computational Method Using Curvilinear Grids 20

consideration. When Cartesian velocity components are used as dependent variables

the conservation of momentum is considered along fixed directions everywhere in the

field and no curvature terms appear in the momentum equations. The applicability and

performance of the scheme, however, depend on the orientation of the computational

grid relative to the reference Cartesian coordinate system. In the staggered approach,

zero convective fluxes across the control volume faces may occur when the grid turns

by 900 and one Cartesian velocity component is stored on each cell face. Grid-oriented

velocities can be used as dependent variables in order to eliminate this difficulty. The use

of grid-oriented velocity components, however, leads to grid-sensitive curvature terms in

the momentum equation. Such terms depend on the second derivative of grid coordinates,

and thus are difficult to discretize in a conservative manner, possibly leading to severe

inaccuracies as noted by Segal et al (1992).

Most of the work reported in the literature uses a variant of the SIMPLE algorithm of

Patankar (1980) to couple the pressure and velocity fields. The extension of this technique

to non-orthogonal grids results in a complex pressure correction equation, especially for

three-dimensional cases (see Peric (1990)).

In the present study a method for the computation of fluid flow in complex geome

tries is proposed that attempts to solve some of the problems discussed above. Efforts are

made to achieve greater flexibility in grid design using significantly non-orthogonal and

non-smooth grids. To solve the problem related to the non-orthogonal grid, a new second

order accurate numerical scheme is proposed to describe the cross-derivative terms. This

scheme allows implicit treatment of part of the non-orthogonal terms, without increas

ing the size of the computational molecules. To avoid inaccurate discretization for a

non-smooth grid, the physical geometric quantities, i.e., volumes, surface areas and sur

face normal vectors, are calculated directly and used to formulate the numerical schemes.
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These geometric quantities are calculated in such a way as to satisfy the geometric conser

vation laws as described by Vinokur (1989). When the divergence theorem is used over

a control cell, the conservation equation can be expressed accurately for an arbitrary

grid using these geometric quantities. Such an approach yields an overall conservative

approximation for any grid and provides a better physical understanding of the resulting

formulation.

The proposed method uses the physical tangential velocity components as dependent

variables in the momentum equations. These variables are the contravariant-type velocity

unknowns and are volume flow rates across cell faces with appropriate normalization.

Similar to other grid-oriented velocity unknowns, the choice of such dependent variables

gives rise to additional curvature terms. These terms can be expressed by Christoffel

symbols using tensor notation and discretized directly as done by Segal et al (1992), for

instance. In the present study, a different approach is followed which avoids the explicit

discretization of the second-order coordinate derivatives. A coupled equation solver,

combined with a staggered grid approach, is used to solve the momentum and continuity

equations directly, eliminating the need for the pressure correction equation.

The proposed method is described by first presenting the derivation of the discretized

general governing equations and the numerical scheme for the non-orthogonal terms.

This scheme is then proven to be second-order accurate. Next, the treatment of the

momentum equations and curvature terms using the tangential velocity components as

the dependent variables is described, followed by a description of the overall coupled

solution procedure in the curvilinear coordinate system. Finally, four computational

examples are presented to demonstrate the capabilities of the method.



Chapter 2. A Computational Method Using Curvilinear Grids 22

2.2 Numerical Formulations

Only laminar flows in single domains are considered in this chapter in order to avoid

the complexity of turbulence modeling and multi-domain treatment. The generalization

to those more complex cases will be presented in the following chapters. The flow is

assumed steady, incompressible and Newtonian. Under such assumptions, the laminar

flow is governed by the following Navier-Stokes equations,

eu7u—9(IVu)=—7p, (2.1)

(2.2)

where g is the flow density, is the dynamic viscosity, p is pressure and u is the velocity

vector. Equations (2.1) and (2.2) express the momentum and mass conservations, re

spectively, for steady incompressible flows. It should be noted that these equations are

written in a coordinate-free form independent of coordinate systems.

The governing equations (2.1-2.2) can be transformed to a general curvilinear coor

dinate system with the aid of tensor calculus. The transformed equations can then be

discretized in the transformed rectangular domain. In the present study, a direct dis

cretization method is developed. Instead of using the transformed governing equations,

the coordinate-free governing equations are used directly to formulate the numerical

schemes in a general curvilinear grid. All the numerical schemes are formulated us

ing the physical geometric quantities without using the commonly-used covariant and

contravariant vectors. This method is more desirable for non-smooth grids since the

coordinate derivatives, which are not well defined in irregular grids, are avoided.

This section describes the discretization of a general scalar governing equation, which

forms the basis for the discretization of the momentum equations. The geometric quan

tities used in our discretization are described first. The divergence theorem is then used
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to integrate the governing equation. Finally, the new discretization method for the non-

orthogonal terms is described and the second order accuracy is proven.

2.2.1 Physical Geometric Quantities

For curvilinear coordinates = (r), where r = r(xi, x2, x), is a vector and X: are the

components in a Cartesian coordinate system, the commonly-used covariant vector and

contravariant vector in the literature are defined as aj = and a = 7j respectively.

These vectors and associated metric tensors are required in the transformed governing

equations and subsequent numerical formulation. For computations using curvilinear

grids, the covariant vectors are usually calculated approximately from the discrete grid

points of a given grid. Other quantities required in the numerical formulation such

as the contravariant metric tensor and Jacobian determinant are then evaluated from

these vectors. In the solution procedure, interpolations are necessary to obtain these

quantities in various locations, especially for a staggered grid system. The procedure

of calculation and interpolation of these quantities is critical and may violate certain

geometric conservation laws (see Vinokur (1989)), leading to significant numerical errors.

In the present study, instead of using coordinate derivatives aj, the physical geometric

quantities, which include cell surface areas, cell volumes and surface normal directions,

are used directly to formulate the numerical scheme. A uniform grid with mesh size

= 1 is assumed in the transformed computation domain whenever the notations of

coordinate transformation are used. The geometric quantities used in the present study

are illustrated in Figure 2.1. The unit tangent vectors, denoted by e2 (i= 1, 2, 3), are

calculated at the centers of the control volume surfaces and are locally parallel to the

coordinate lines . These tangent vectors correspond to the normalized covariant base

vectors aj in the literature. The surface area vectors, denoted by S (i = 1, 2, 3), are

defined at the same point as e: and are normal to the control volume surfaces, with
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2

Figure 2.1: Illustration of the physical geometric quantities for a control cell.
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magnitude S2 equal to the corresponding surface area. The volume of the control cell

is denoted by V.

e2, S and V are the basic grid quantities and are calculated directly using discrete grid

points. For the convenience of formulation, two additional quantities are defined from

the above geometric quantities. The non-orthogonal angles, denoted by a2 are defined as

the angles between the surface area vector, S2, and the tangential vector e2. These angles

are a measure of the degree of grid non-orthogonality; for an orthogonal grid these angles

are zero. The surface area vectors, S are rescaled and denoted as: e =
S

S’cosc

2.2.2 Calculation of the Geometric Quantities

In general, the geometric quantities have to be evaluated from discrete grid points. The

unit tangent vectors e2 are calculated by second order accurate averaging (using the

center points of two neighboring control cells).

The faces of a control cell are generally surfaces rather than planes, as illustrated

in Figure 2.2. In fact, it is not always possible to fit a plane through four points. The

surface area vectors and volume of a control cell can be approximated directly by various

formulas.

To approximate the surface area vectors and volume of a cell, the following formulas

for a triangle and a pyramid are used. A properly oriented surface area vector for a

triangular face with vertices r1, r2 and r3, is given by

S = (r2 — ri) x (r3 — ri)/2, (2.3)

and the volume for a pyramid with vertices r1,r2,r3 and r4 is given by

(r2 — ri) x (r3 — ri) (r4 — ri) = S . (r4 — ri). (2.4)

Using equations (2.3) and (2.4) we can use various averaging processes to calculate the

geometric quantities for an arbitrary cell having straight line edges. Each polygonal
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face is divided into plane triangular faces, and the total volume treated as a sum of

tetrahedra. In order to obtain an accurate discretization, the geometric quantities are

calculated according to the geometric conservation laws described by Vinokur (1989) and

the following formulas for surface area vectors and volume are used:

S, = (r6 — r,) x (r3 —r4)/2 (2.5)

V + S + S) (r8 — r,), (2.6)

where the subscripts w, s, b indicate locations, west, south, bottom, respectively (see

Figure 2.1), of the vectors. From the two basic vectors, S and e, the quantities coscq

and & can be calculated.

Noting that r2 —r1, r3 — r1 and r4 — r, are the approximations of covariant vectors a1 =

a2
= 82

and a3
=

respectively, we can see S1 a2 x a3, and V (ai x a2) a

from the formulas (1) and (2). Since the volume element and contravariant vectors

& satisfy formulas = (ai x a2) a3 and a’
= a2xa3

(see Thompson et al (1985)), we

have, 1 and V The volume element is the inverse of the Jacobian

determinant.

The geometric quantities at the positions described in section 2.2.1 are calculated

from known discrete points. For other locations, the values for & and V are computed

by a second order accurate interpolation and the unit tangent vectors are calculated from

e2 by orthogonal relations, & e3 = 0 (i j), instead of calculation from e2 by averaging.

2.2.3 Discretization

The general transport equation for a dependent variable is written as follows:

V (2.7)

where u, e and I’, are the velocity, density and diffusion coefficient respectively. The first

term represents transport of variable by convection and the second term represents
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transport by molecular diffusion. The last term, C, is a source term which generally

depends on q. This equation is the natural expression of the transport of variable q and

takes different forms in various coordinate systems. The discretized equations were ob

tained by first integrating equation (2.7) over a control volume in the physical space, and

then deriving an algebraic approximation to this integral equation. Geometric quantities

associated with the control volume are used directly to evaluate the fluxes on the control

cell surfaces.

Let J = puqf — I’ denote the total flux. Equation (2.7) can be then written as

J+C—0 (2.8)

Equation (2.8) is integrated over a general control volume in the physical space, SV, as

shown in Figure 2.2, and the divergence theorem is applied,

fJfv.JdvjJ.dS (2.9)

J S’e — J S’jw + J S2n — J . S28 + J S — J . S3

Next consider transport of variable q along the coordinate direction:

JS = qfu.S—I’4.S (210)

=

where

F=u•S, (i=1,2,3)

are the volume flow rates across cell faces. By the definition of gradient,

cq5= (jcdS)/V

Applying Gauss divergence theorem, we obtain

(4’)p = [S’(e
—

+ S2(q5
— q) + S3(q — b)j/V (2.11)
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w
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I I
I /
I I

•N

Figure 2.2: A general control volume. Nodes to the north, south, east, west, top and
bottom are represented by N, S, E, W, T and B respectively. Lower case denotes control
volume surfaces.
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w ere çSe
— , çbn —

an
— cbb are approximations o ----, ----, and -s-—, respectively,

vci uc2 uç3

since A2 = 1 in the transformed space. Hence, the gradient of the dependent variable q5

can be expressed as:

= + S2- + (2.12)

Substituting equation (2.12) into (2.10) we obtain the following expression for the trans

port of variable 4:

3. =
— pguif-

— (2.13)

where
si.si

=
, (i,j = 1,2,3)

is the surface area metric tensor. When the grid is orthogonal, g3 = 0 for i j, there

fore, the last term in (2.13) is the result of grid non-orthogonality. The total transport

of variable can be decomposed into an orthogonal component and a non-orthogonal

component:

J•S=J+J, i=1,2,3 (2.14)

where

J = — 1’g-

and

12
— Vng

Substituting equation (2.14) into (2.9), the conservation equation over the control cell

can be written as:

(J + Jçr)e — (J, +J1)+ (J + Jr)In — (J, + Jr)s (2.15)
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The orthogonal components, J, have the same form as for the Cartesian coordinate

system. Therefore, schemes such as the hybrid scheme, or the power-law scheme of

Patankar (1980) for regular geometries can be applied to these terms. The non-orthogonal

components, however, cause some numerical difficulties. Ordinary discretization of the

non-orthogonal terms, involving only the corner points, results in a 19-diagonal coefficient

matrix which is not unconditionally diagonally dominant. This may result in numerical

instability and unrealistic solutions. Direct solution methods are impractical for this

19-diagonal coefficient matrix as demonstrated by Braaten and Shyy (1986). Hence, the

common practice is to treat the non-orthogonal components of the equation explicitly

by combining them into the source term. This may cause serious deterioration in the

convergence rate if these explicit components become large. It is therefore necessary to

investigate other treatments. In the present study, a new numerical scheme is proposed

to address this difficulty and is presented in the following section.

2.2.4 Discretization of the Nonorthogonal Fluxes

Referring to Figure 2.3, consider the approximation of one of the non-orthogonal terms,

g12p, at the mid-point of the east surface. When the central difference scheme is used,

there is no contribution to the main diagonal terms of the resulting coefficient matrix.

Also, four additional corner points are involved, with at least two negative coefficients in

the resulting discretization for the cross-derivative term, _(g12), making an implicit

treatment difficult. The following alternative approximation was introduced to solve this

problem:

If g121e 0, then

e(NEE+q’P S
uc2



Chapter 2. A Computational Method Using Curvilinear Grids 31

NW N NE

___

fl h

W w P e E

S h

SW S h
SE

Figure 2.3: Illustration of discretization of cross-derivatives.
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and if g12 > 0, then

= (N - P + E - SE)/2h (2.17)

Different numerical schemes are chosen depending on the sign of the coefficient g’2,

based on the preference for a positive contribution to the main diagonal term. The idea

is similar to the upwind scheme for the convection terms in which different expressions

are employed for different signs of the velocity. In contrast to the one-side difference, this

scheme is symmetrical around point e and is second-order accurate. This can be shown

through the following order analysis.

With reference to Figure 2.3, the following is obtained using Taylor expansions:

NE 75E HEh + jEh2+ 0(h3),

and

q5p — bs = — ph2 + 0(h3).

Combining the above expressions yields,

kNE — bE + 4p
— q5s = + )h+(E

— 4)h2 + 0(h3). (2.18)

Since

82 +
2je + 88h2 + 0(h3), (2.19)

4lEP 8621eh+0) (2.20)

we can write equation (2.16) as

= — E + P — s)/2h + 0(h2). (2.21)

A similar estimate exists for approximation (2.17):

= — + — sE)/2h + 0(h2). (2.22)
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The above estimates show that the schemes (2.16-2.17) presented here are second-order

accurate. The other derivatives involved in the expressions for the non-orthogonal com

ponents can be treated similarly. This approach provides a second order approximation

for the non-orthogonal term Also, using this method, the number of corner

points used is reduced by half and the main diagonal term of the resulting coefficient

matrix, ap, is augmented by the following amount:

2P(g’2 + jg’3 + g23).

2.2.5 Formulations of the Discretization Coefficients

After treating the non-orthogonal diffusion as described above, the general governing

equation can be discretized following the methods developed for standard Cartesian co

ordinates. In the present study, the Power Law profile of Patankar (1980) is used for the

orthogonal fluxes which ensures the central difference operator at low Peclet number and

gradually changes to upwind differencing at high Peclet numbers.

A general algebraic equation is obtained by substituting the discretized forms of the

orthogonal and non-orthogonal fluxes into equation (2.15). The resulting equation can

be written as

apqp = aEbE + awqw + aNqN + ascbs + aTqT + aBçbB + ab + b (2.23)

where the aE, aw, etc. denote the combined convection-diffusion coefficients, including

the non-orthogonal terms. The summation index “nc” represents the corner points from

the discretization of non-orthogonal fluxes (such as c’wN, and q5ws) and b includes only

the source term C.
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2.3 Calculation of The Flow Field

2.3.1 Variable Arrangement and The Choice of Velocity Unknowns

A staggered grid arrangement is adopted in which the scalar quantities, such as pressure

are located in the geometric center of each control cell and the tangential velocity

components are located in the middle of the cell surfaces. There are several options

for choosing velocity unknowns for the method using non-orthogonal grids. The use of

curvilinear velocity unknowns is preferred here since the applicability of such a method

is not limited by grid-orientation, which is a requirement for later calculations.

Different sets of velocity unknowns may be chosen. A discussion and review of the

various possibilities is given by Rodi et al (1989). In the present study, the physical

tangential velocity components are used as the dependent variables for the momentum

equation. These variables, denoted as U, as defined by Borisenko and Tarpov (1968),

are the resulting coefficients from the velocity expansion in the unit tangent basis vectors

u = U’e1 + Ue2e2 + Ue3. (2.24)

From the above equation and the orthogonal relation of {ej and {et}, the following

expression for U can be obtained:

UE = u e’
(2.25)

e

From the above formula, it can be seen that the physical tangential velocity components

are similar to the physical contravariant velocity components u & which were used

by Demirdzic et al (1987) as the primary velocity unknowns and differ from them only

by a factor of e: e. Unlike the non-physical contravariant velocity components, these

physical velocity unknowns have the same order of magnitude as the Cartesian velocity

components which are independent of the mesh size. As pointed out by Demirdzic et
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Figure 2.4: Illustration of the three types of physical velocity components in curvilin
ear grids, OA1 and 0A2: physical contravariant velocity components, OB1 and 0B2:
physical tangential velocity components, and OC1 and 0C2: physical covariant velocity
components.

al (1987), the use of physical velocity unknowns is preferred since there are drawbacks

inevitably associated with the non-physical velocities. There are three different types

of physical curvilinear velocities which are illustrated in Figure 2.4. In this figure, the

line segments OA1 and 0A2 represent the physical contravariant velocity components

and are the velocity projections on the unit surface-normal vectors. The line segments

OB1 and 0B2 represent the physical tangential velocity components and are the results

of velocity expansion in the tangential vector basis. Segments OC1 and 0C2 represent

the physical covariant velocity components and are the velocity projections on the unit

tangential vectors e1 and e2. The advantage of using the physical tangential velocity

components is that if the velocity is tangent to one of the grid lines, the corresponding

physical tangential velocity component will become identical with the velocity while

other tangential velocity components vanish. From Figure 2.4, it can be seen that only

e2

A2 U

Al
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the physical tangential velocity components have such a property, which reduces the

effects of false diffusion when one of the grid lines is aligned with the flow streamline.

From equation (2.25) it can be seen that the physical tangential velocity components

are the volume fluxes, u S, normalized by appropriate geometric quantities. The volume

fluxes m S were used as velocity unknowns by Rosenfeld et at (1988), and are equivalent

to the quantities As reported by Segal et at (1992), the use of quantities as

velocity unknowns provides a more accurate solution than the use of the contravariant

velocity projections U.

The tangential velocity components are contravariant unknowns which are equivalent

to the quantities . Unlike the contravariant velocity projections U or volume
Scosa

fluxes, U’ are the physical components and their physical lengths are of the same order of

magnitude as the velocity. This facilitates the implementation of the boundary condition

in programming.

Similar to the use of volume fluxes, the use of the tangential velocity components

satisfies the velocity-recovery requirement as described by Segal et at (1992). In fact,

from the calculations of geometric quantities described in section 2.2.2 and the formula

(2.24) and (2.25), it is easy to see that the transformation u —* U —* v gives exactly

v = u if u is a constant vector. Computational tests also show that the use of the

tangential velocity components as velocity unknowns provides satisfactory performance.

2.3.2 Discretization of Momentum Equations

As with other types of grid-oriented velocity components, the use of tangential velocity

components as dependent variables gives rise to additional curvature terms which can

be expressed as Christoffel symbols using tensor notation. Since these curvature terms

involve second order derivatives of the grid coordinates, they are difficult to discretize

accurately when grids become non-smooth. There are two basic approaches for the
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discretization of momentum equations for the use of curvilinear velocity unknowns. One

method is based on the transformed momentum equations for the curvilinear velocity

unknowns. Discretization is carried out in a rectangular domain in the transformed

space. The other is based on the discrete momentum equations written in a locally

fixed coordinate system. The present study follows the second approach and derives the

discretized equations based on algebraic equations for Cartesian velocity components.

This approach was first used by Karki and Patankar (1988) for calculations of two-

dimensional flows using the physical covariant velocity unknowns as the primary variables

in the momentum equations. It seems more desirable for non-smooth grids since the

explicit discretization of second order derivatives of the grid coordinate is avoided.

In order to discretize the momentum equations, auxiliary discretizations for the Carte

sian velocity components are considered. Suppose that all three Cartesian velocity com

ponents are located at the U’ position. The governing equations for Cartesian velocity

components can be viewed as special cases of the general governing equation (2.7). The

discretization can be obtained according to the method outlined in the last section by

integrating the governing equations over the control cell for Ut’. Since the Cartesian ye

locity components are assumed to share the same control cell as for Us’, their discretized

equations will have identical coefficients. Therefore, the discretization can be written,

using vector notation, as:

a’u = a’ue + au + a$L’ufl + a’u3 + + a’ub + + be’, (2.26)

where the lower case is used for the subscripts instead of the upper case to indicate that

the positions of UC1 are at cell faces instead of at cell centers. The source term be’,

contains only the pressure gradient term, which is discretized by applying the divergence

theorem, as discussed later. The above discretization for the momentum equation is

coordinate-invariant and independent of the choice of dependent variables.
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To find the discretization using the tangential velocity components as dependent

variables, the velocity expansion in the local tangential vector basis at point “p”,

is considered. Taking the inner product of vector e and vector equation (2.26) and

applying formula (2.25), the following equation is obtained:

= aj,(UE) + + (be’)’, (2.27)

where

(U,)’ = e. u, (U$j’ = e• u, (be’)’ = e be’, (2.28)

the index “nb” represents the six nearest neighbors of the node p, namely, e (east), w

(west), n (north), s (south), t (top) and b (bottom), and the index “nc” represents the

corner points, as previously defined. The primed velocities, (Us)’ and (Us)’, are velocity

projections of neighboring velocities over the vector, e’, at point p. The vector e’ changes

from point to point in the flow field, and therefore, the velocities (U,)’ generally differ

from the actual neighboring variables, U?. Since (U,)’ are not dependent variables, they

must be replaced by U,. This can be done by rearranging equation (2.27) as follows:

a’U’ = aU + a$U,! + b1,c + bE1 (2.29)

where

= > a((U,!)’
— U?) + a((U,)’ — U,). (2.30)

Equation (2.30) represents the curvature terms when the tangential velocity components

are used as velocity unknowns. Using equations (2.25) and (2.28), equation (2.30) can

be rewritten as

= a(eb — e) . u,1, + — e) u. (2.31)

The above equation shows that the curvature terms for U’ are produced by the change of

vector e1 from point “p” to the neighboring points. Figure 2.5 illustrates the formation

of curvature source terms.
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Figure 2.5: Velocity decomposition in a locally fixed coordinate system.

For an actual computation, the velocity u at neighboring points is calculated from

equation (2.24), and the curvature term b1,c is then calculated from equation (2.31). For

a staggered grid the velocity unknowns U2 and are not defined at the UE1 position

Therefore, some interpolation is needed for the calculation of velocities Unb and u,. In

the present study, full weighting is used for the interpolation.

The discretized equations for the other two velocity unknowns can be derived in a

similar manner. The resulting discretization for the momentum equations, with part of

the pressure difference term written explicitly, can be expressed as follows:

= + + b1,c + A1(pp —pw) + b’ (2.32)

a2U$2 = + a$U, + b2,c + A2(pp
— PS) + b2 (2.33)

= aU + a$L’U7 + b3,c + A3(pp
— PB) + bE3 (2.34)

a
2,e

7 Ui,e

Ue

(a)
Ui,e

(b) ale

where the superscripts indicate the different coefficients associated with different velocity
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components and the second summation on the right hand side includes partial non-

orthogonal flux terms. The third term represents the curvature body force and the last

term contains only pressure terms.

2.3.3 Treatment of Pressure Gradient and Associated Boundary

In equations (2.32-2.34), the pressure term is concealed in the source term. However,

the pressure is also an unknown in a flow field and must be found together with the

velocity variables. The pressure term, b”, in these equations can be obtained from the

above derivation of the discrete momentum equations. The p can be expressed using

the physical geometric quantities as follows,

v(S1+S2+S3f). (2.35)

The pressure source term, bi1’, in equations (2.32-2.34) can be written explicitly as

=
+ (2.36)

where

g”=S•S2, (i,j=l,2,3)

is the surface area metric tensor. The first term in equation (2.36) is the orthogonal

component, and the last term in equation (2.36) is the non-orthogonal component which

vanishes for an orthogonal grid. The orthogonal component is discretized naturally using

the central difference scheme. For the non-orthogonal component, the scheme proposed

for the non-orthogonal diffusion terms is applied. Referring to Figure 2.3, the discretiza

tion of g12f at point ‘e’ takes the following form.

12 — f g’2(pNE —PE +pp —ps)!2 ifg12 <0
g

uc2
. g’2(pN —

pp + PE — psE)/2 otherwise
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With such a discretization, a quantity g’2e(pE —

pp)/2 is generated which appears

as a direct pressure force to drive the velocity component Ut’. This quantity, which is

equivalent to an orthogonal component g12/2, can be treated in a similar manner as

the orthogonal term. Such a treatment of non-orthogonal pressure terms will increase the

implicit portion in an iteration procedure and contribute to the main diagonal terms in the

resulting pressure equation, thereby enhancing the numerical stability and convergence

speed.

The discretization of the pressure gradient requires pressure values outside the flow

domain. This can be seen from the discretization of non-orthogonal pressure terms

presented in the above formulation. For example, the discretization of cross-derivative

g1202 in the Ue1
— momentum equation next to the north boundary requires the pressure

values beyond this boundary. In the present study, a linear extrapolation is used to

calculate the pressure values outside the boundary using the pressures inside the domain.

2.3.4 Discretization of Continuity Equations

Integrating the continuity equation

7 •gu = 0 (2.37)

over a scalar control volume, as shown in Figure 2.2 and applying the divergence theorem,

we obtain

(u — (gu S’) + (eu S2)7,
— (eu• S2)8 + (eu. S3) — (eu. = 0. (2.38)

Substituting equations (2.24) into the above equation yields the following discretized

equation:

(iU’)e — (ciU’) + (c2U2) — (C2Ue2)5+ (c3UE3)t
— (c3U)b = 0, (2.39)
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where

,

Figure 2.6: A scalar control volume with 7 unknowns.

Ct = eSlcoscx

With this formulation, the mass conservation equation is expressed exactly using the

tangential velocity components, without any extra source terms.

2.4 Solution Procedure

2.4.1 Coupling of the Velocity and Pressure

The evaluation of the pressure field has always been a difficult issue in the primitive-

variable approach for incompressible flow since the pressure is indirectly involved in the

continuity equation. This difficulty becomes more acute when a curvilinear coordinate

,

/
I
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system is used since expressions for the pressure gradient and the continuity equation

become much more complicated. In this section, a block-implicit pressure-velocity cou

pled solution procedure is presented which essentially updates the velocities and pressure

simultaneously. This method was first used by Vanka (1986a) to solve two-dimensional,

steady, incompressible flow using a Cartesian coordinate system and was observed to

provide good convergence rates.

2.4.2 Symmetric Coupled Gauss-Seidel Iteration Method

The pressure and velocities for a typical control volume are shown in Figure 2.6. The

pressure, located at the center, and the velocities, located at the control volume surfaces,

are treated as the unknowns, and the pressure and velocities at all the other points

are treated explicitly. The momentum equations (2.32-2.34) provide the six algebraic

equations for the six unknown velocities. These equations can be simplified by treating

only two variables implicitly for each equation and are written as follows:

a’U’ — App = R1, (2.40)

a’eU’ + A’pp = 1?2, (2.41)

a28U2 — A2pp = R3, (2.42)

a2U12 + A2pp = R4, (2.43)

3 e3 ,iE3 —

b — ‘b PP — .LL5,

+ App = R6, (2.45)

where the R (i = 1, 2, ...6) include all the other terms left in the equations, calculated

using the currently-available values of the velocity and pressure at the neighboring points.
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This approach is intended to provide a simple algebraic system which can be solved

efficiently. The continuity equation (2.39) provides an additional algebraic equation, i.e.,

Ci,eUj’ — + C2,U,2 —c2,3U2 +c3,tU! —c3,bU = 0. (2.46)

These equations are arranged in a block structure as follows:

4’ 0 0 0 0 0 —A U5j R1

o a’6 0 0 0 0 A!’ U’

o 0 0 0 0 — A!2 U2 R3

o 0 0 a2 0 0 A2 X U2 = R4

o 0 0 0 0 —A Ub

o 0 0 0 0 R6

Cl, Ci,w C2,n —C2,s C,t C3,b 0 PP 0

The above block of equations is solved analytically using Gaussian elimination. The

procedure is repeatedly applied in the checkerboard order to all cells in the flow field.

After sweeping the whole field, the coefficients a, etc., are recalculated and the entire

procedure is repeated until the residues become sufficiently small.

2.5 Validation of the Method

The proposed method has been implemented in the CMGFD code. This code was written

for general three-dimensional geometries, and can treat both two- and three-dimensional

problems. A number of examples are reported in this chapter. They are computed using

the CMGFD code to validate the code and the proposed method using non-orthogonal

grids.

2.5.1 Cavity flow with inclined side walls
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Grid 20 x 20 40 x 40 80 x 80
Inclination /3 600 45° 30° 60° 45° 30° 60° 45° 30°

# of Iterat. 75 85 110 141 160 190 310 396 450

Table 2.1: Number of iterations necessary for convergence.

The flow in a cavity with the top wall moving at a constant velocity, U.n,, is often used as

a case study for testing the efficiency of a solution algorithm. Here, the side walls of the

cavity are taken to be inclined, forming an angle, 3, with the horizontal plane. Three

cases are computed with inclinations of /3 = 60°, 45° and 30°, at a Reynolds number

Re = 100, where the Reynolds number is defined as Re =
.

Calculations were

performed for various grid densities and Table 2.1 lists the convergence rates for each

test calculation. The convergence criterion was a maximum residual of less than i0 for

each equation. The momentum residuals were normalized by and the mass residual

by oU. Unlike the results reported by Peri (1990), the present method allows a wide

range of under-relaxation factors with fast convergence for significantly non-orthogonal

grids. Computational results using the finest grid, 80 x 80, are plotted in Figure 2.7.

They show a strong main vortex, driven by the lid movement, and a sequence of weaker

vortices in the sharp corner between the bottom plate and the upstream side wall. This

second vortex system is the main difference between the square cavity and cavities with

inclined walls. These results are very similar to the previous numerical results of Perié

(1990), which used a central difference scheme for non-orthogonal fluxes.

2.5.2 Laminar flow through a tube with a constriction

As the second example, laminar flow through a tube with an axisymmetric constriction

was considered. Such flows were studied experimentally by Young et al (1973). The
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80 x 20 Separation point Reattachment point
Re # of Iterations Experiment Prediction Experiment Prediction
50 210 0.33 0.32 2.28 2.27
100 241 0.34 0.33 4.19 4.10

Table 2.2: Comparison with experimental results and numbers of iterations for calcula
tion.

The boundary conditions imposed were no-slip on the wall, zero stream-wise gradient

at the outlet, fully developed parabolic flow at the inlet, and symmetry conditions at the

axis. An 80 x 20 grid in x-r coordinates was used for the calculations (see Figure 2.8a).

The density of the grid points was higher near the wall than at the centre of the tube,

and the grid was stretched in the axial direction, with more grid points in the constricted

region. Computations were carried out at Re=50 and 100 where the Reynolds number

was defined as
2UR0

Re=
ii

and U is the mean velocity of the inflow. The predicted flow field and streamlines for

Re = 50 are plotted in Figures 2.8b & 2.8c respectively. In these figures, X8 and X,. are

separation and reattachment points respectively. The flow pattern for Re 100 is very

similar, except for the size of the recirculation zone.

The predicted separation and reattachment lengths, together with experimental re

sults from Young et al (1973), are presented in Table 2.2. Excellent agreement is shown

between the present computations and experimental results.

2.5.3 Developing laminar flow in a pipe

For the third computational example, laminar flow through a pipe was considered. This

flow can be considered to be two-dimensional because of axial symmetry. However, the
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use of a non-orthogonal grid in the present calculation makes the problem appear fully

three-dimensional (see Figure 2.9a). This problem was chosen because the available

analytical solution makes it possible to test the accuracy of the proposed method. Fur

thermore, such a grid will be used as part of the mesh for subsequent computations of

the film.cooling process for turbine blades.

The 16 x 16 x 50 mesh illustrated in Figure 2.9a was generated by solving an elliptic

grid generation system of equations.

The three-dimensional, incompressible Navier-Stokes equations were solved, with the

no-slip condition at the wall, uniform velocity profile (w = 1) at the inlet, and zero

stream-wise gradient condition at the outlet. The pipe length was chosen as twelve times

the diameter (D) for the computations and the Reynolds number was ReD = 100. Using

the same convergence criterion as in the previous problem, a solution was obtained after

480 iterations. Figure 2.9b shows the velocity vectors in the symmetry plane. Figure 2.9c

shows the calculated velocity contours in a cross-plane located ten diameters downstream

(x/D = 10). Figure 2.9d compares the calculated solution in the well-developed region

(x/D = 10) with the analytical solution u(r) = 2.0(1 — i’)2. The result shows good

agreement between the analytic and the numerical solutions. Figure 2.9e compares the

maximum velocity in the developing region with the results reported by Shah and London

(1978) which also shows a good agreement.

2.5.4 Flow in a pipe with a smooth 90 degree bend

For this example, laminar flow in a pipe with a smooth 90° bend was considered. This is

a strongly three-dimensional flow, where the main flow in the streamwise direction along

the pipe is influenced by strong secondary flows in the pipe cross section, arising from

the centrifugal forces due to the bend curvature. This flow was studied experimentally

by Enayet et at (1982). The same geometry used in the experimental study was adopted
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Figure 2.9: (a) Illustration of grid and velocity, (b) development of velocity profile, (c)
velocity contour in the cross-pipe plane at x = 1OD, (d) comparison with analytic solution
at x = 1OD, (e) Comparison for flow in the developing region, where - =
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Figure 2.12: Contours of mean velocity U/UB in the bend.

for the present computation. The geometry and grid are illustrated in Figure 2.10. Due

to the symmetry about the x-z plane, the computational domain has been limited to the

top half of the pipe only. A 32 x 16 x 64 mesh was used in the computations, which were

carried out at Re = pUbD/u = 500, corresponding to the experiment, where Ub is the

bulk velocity at the entrance and D is the pipe diameter. The convergence criterion was

the same as that used in the first example, with convergence satisfied after 620 iterations.

Figure 2.11 shows the calculated velocity vectors in the plane of symmetry. Contours

of streamwise velocity in four cross-stream locations are plotted in Figure 2.12. The

predicted velocity at these same four locations in the plane of symmetry, together with

the results measured by Eanyet et at (1982), are plotted in Figure 2.13, where reasonable

agreement can be seen.

Inside a) 3=3O Inside b) 13=60

Inside c) 13=75 Inside d) h=D
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Figure 2.13: Comparison with the experimental results of Eanyet et al (1982).
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2.6 Closure

A numerical method for computing laminar flows in complex three dimensional domains is

presented. Computational examples show that the proposed method can be used to solve

flow problems in complex three-dimensional geometries using significantly non-orthogonal

and moderately non-smooth grids. A new scheme for handling the non-orthogonal fluxes

is proposed which is useful when the grid is significantly non-orthogonal. Efforts have

been made to allow for the use of moderately non-smooth grids by directly employing the

geometric quantities of control cells and avoiding explicit discretization of the derivatives

of the grid coordinates.



Chapter 3

Computation of Turbulent Flows Using Curvilinear Grids

In this chapter, the method developed for laminar flows in the last chapter is gener

alized to solve turbulent flows in complex three-dimensional geometries. The Reynolds-

averaged Navier-Stokes equations together with the k — e turbulence model are solved to

simulate turbulent flows. The cwall function’ is used to take into account the near-wall

region where the k — 6 model is not valid. The discretization of the Ic — e equations

and the treatment of the source terms are discussed. Special attention is given to the

treatment of wall boundaries. The performance of the numerical method is investigated

through several three-dimensional turbulent flows. Comparisons with available experi

mental results are made which show that the present solution method for turbulent flows

is reliable.

3.1 Introduction

In this chapter, the ideas used in chapter 2 are generalized to solve turbulent flows in

complex three-dimensional geometries. It is well known that turbulent flow is more

difficult to handle than laminar flow. Turbulence modeling is one of the difficult areas

in CFD. However, most engineering flows, such as film cooling of a turbine blade, are

turbulent. This chapter presents work intended to increase our knowledge of computing

turbulent flows in the environment of general curvilinear grids and to develop an efficient

solver for turbulent flows.

55
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The 3D, incompressible, time-averaged Navier-Stokes equations are solved. Turbu

lence closure is attained by the use of the standard k — e model with the ‘wall function’

treatment described by Launder and Spalding (1974). The k — e model is the most widely

used turbulence model in the CFD community. Its capability has been demonstrated by

many authors. However, the k — c model also has some shortcomings for turbulent flows

with curvature, recirculation, etc. due to anisotropic and non-equilibrium turbulence. It

is our aim to show how the k — e model performs with our solution method for curvilinear

grids.

The k — e turbulence model was derived for fully turbulent flows and is not valid

in the near-wall region in which the influence of laminar viscosity is important. In the

present study, the ‘wall function’ described by Launder and Spalding (1974) and others

is used to link the equations in the fully turbulent flow and in the near-wall region. The

method evaluates the turbulence quantities near the wall by assuming different velocity

profiles (log-law or linear) in the near-wall region. The advantage of such a method is

that there is no need for excessively fine grids to take into account the steep gradients

in the near-wall region. In this chapter, the detailed formulations of the ‘wall function’

using the grid geometric quantities and the physical tangential velocity components are

presented. The velocity boundaries on the wall are implemented by treating the wall

shear stress as an auxiliary force in the momentum equations.

For turbulence calculations, the k — e equations do not generate additional complexity

for discretization. They can be viewed as special cases of a general scalar equation and

discretized according to the method described in previous chapter. However, the numer

ical treatment of the source terms in these equations is important and deserves special

attention. In this chapter, the treatment of these source terms is reported in somewhat

more detail. In non-orthogonal curvilinear grids, the turbulence energy generation rate

becomes difficult to calculate from the tangential velocity unknowns. To overcome this
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difficulty and facilitate the calculation of the curvature source terms in the momentum

equations, the Cartesian velocity components are used as auxiliary dependent variables.

The turbulence energy generation rate can be easily calculated using the Cartesian ve

locity components.

The performance of the developed method is investigated through several three-

dimensional turbulent flows, including benchmark computations for developing turbu

lent pipe flow, and developing turbulent flows in a square duct and a tube, each with

a 900 bend. Computational results are compared with available experimental results to

validate the method.

3.2 Governing Equations

In this section, the governing equations and turbulence model used in the present study

are described. The full, Reynolds-averaged Navier-Stokes equations together with the

standard k — e equations are solved for turbulent flows. Using the eddy viscosity con

cept and the closure of the k — c two-equation model of Launder and Spalding (1974),

the averaged governing equations for steady, incompressible flows can be written in the

following coordinate-free form:

u.vu—v.(jieiivu)—vp, (3.1)

vu = 0, (3.2)

v(euk—vk)=G—ee, (3.3)

2
[It 6 6

v .(eue —
— v c) = C1G — 0C--, (3.4)

fl, lb

where k is the turbulence kinetic energy, c is the turbulence energy disspation rate, e

is the flow density, G is the turbulence energy generation rate, C1, C2, k and a6 are
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empirical constants which, following Launder and Spalding (1974), are taken as

C1 = 1.44, C2 = 1.92, k = 1.0, o = 1.3, C,1 = 0.09.

Equations (3.1) and (3.2) represent the momentum and mass conservations, respectively,

for steady, incompressible flows, and are the well-known Reynolds-averaged Navier-Stokes

equations. Equations (3.3) and (3.4) are the transport equations for turbulence kinetic

energy and its dissipation rate respectively. In these equations, u is the mean velocity

vector which is time-averaged from the instantaneous velocity, u is a tensor, and neff

is the effective viscosity which is given by:

Peff = ILt + i’i,

where tj and i-it are the laminar and the turbulent viscosities respectively. The turbulent

viscosity is evaluated from the relation

pt = pC,k2/c, (3.5)

where C,4 was found empirically to be approximately constant at high Reynolds numbers.

3.3 Discretization of the k — e Equations

The momentum equations and the continuity equation are same as that for laminar

flows presented in Chapter 2 except that the viscosity ueff in equation (3.1) includes the

additional turbulent viscosity. Therefore, the velocity components and pressure can be

treated in the same way as in the last chapter. The discretization of equations (3.1-3.2)

can be obtained from the equations derived in the previous chapter. Therefore, only the

discretization of the k — € equations requires further consideration.

The k — 6 equations (3.3-3.4) can be treated together as a general scalar equation as

follows:

(3.6)
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where the dependent variable, q, is a scalar which designates the turbulence energy k or

dissipation rate c. The corresponding diffusion coefficient and source terms in the above

equation are

F=, S=G—e, (3.7)

and

1’ = , S = CG — C2T. (3.8)
06

for the k and 6 equations respectively.

The discretization of the scalar equation (3.6) has been presented in the last chapter.

Therefore, the discretization of the k — e equations can be obtained without additional

difficulties if the source terms can be solved appropriately. There is not much information

in the literature regarding the efficient treatment of these source terms. It was found,

however, that the treatment of these source terms is critical in terms of computational

stability and efficiency. In the present study, the numerical treatment of these terms is

reported.

The source terms in the k — 6 equations include the turbulence energy generation

rate which has to be evaluated from the velocity. The evaluation of the turbulence

energy generation rate G becomes complex for computations using curvilinear velocity

unknowns. In a Cartesian coordinate system, the generation rate G can be expressed

using the derivatives of mean velocity components:

aUi 0U2 c9U
C = + —)----, (3.9)

where (U1,U2,U3) are the Cartesian mean velocity components. In a curvilinear coordi

nate system, the generation rate is usually calculated using the transformational formula.

The expression of the turbulence generation rate based on the physical tangential velocity

components can be obtained with the aid of tensor calculus. However, the formulation
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includes the second-order derivatives of grid coordinates and becomes complex and dif

ficult to calculate. To save computational efforts, Cartesian velocity components are

used as auxiliary variables in the solution procedure in addition to the primary velocity

variables. Such an approach allows efficient calculation of the turbulence generation rate

without using the transformed formulas for the physical tangential velocity components.

In addition, the curvature source terms in the momentum equations can be efficiently and

accurately evaluated. The disadvantage is the requirement of additional computer stor

age for these auxiliary variables. This disadvantage can be remedied using a subdomain

solution procedure as introduced in a later chapter.

The generation rate can be evaluated directly from the auxiliary Cartesian velocity

components as follows. First, the gradients of Cartesian velocity components VU are

calculated from the formula for presented in equation (2.12). From the gradient

VU, the derivatives 0U2/6x1 can be obtained easily and the energy generation rate G

can then be calculated from equation (3.9). Such an approach allows efficient evaluation

of the energy generation rate.

After calculating the turbulence energy generation rate, the source terms can be

treated in the following manner. For the turbulence energy equation, integrating the

source term Sk over a control volume SV gives

S =
—

oe) r (G — 0e)V (3.10)

where the subscript p indicates that the value is associated with the control-volume center

and V, is the volume of the control cell with center ‘p’. There are two approaches which

can be used to deal with the source term. One is to move all the quantities in equation

(3.10) to the right-hand side in the discrete equation and treat them as source terms in

the solution procedure. The other is to split the source term into two different portions

by appropriate linearization and to treat one of them implicitly. For the first approach,
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however, the source term may become negative. As discussed by Patankar (1980) for an

always-positive variable, the source term in the discretization equation should be positive

in order to avoid unrealistic solutions. To achieve a positive source term, the dissipation

rate c is replaced by C,Lek2/uL using equation (3.5) and the negative term —Ge can then

be linearized with respect to the dependent variable k. Therefore, the total source term

can be split as follows:

(3.11)

where
(Y 2

c’
1Li,& C” IrYTI\

)p, cV)p

The term Sr., positively contributes to the main diagonal term ap in the discretization of

the k-equation, which enhances the numerical stability. The source term of the c-equation

can also be linearized in a similar manner according to the always-positive rule described

by Patankar (1980).

After calculating the source terms, the final discrete equations for k and c can be

written as the following seven-point algebraic equations:

4kp = 4kE + 4kw + 4kN + agks + 4kT + aB + bc, (3.13)

aep = aECE + aew + aNEN + acs + aTET + a + b, (3.14)

where the subscripts indicate the seven scalar positions, namely the center point ‘P’ and

the six neighbors; the superscripts indicate coefficients associated with k and e.

For a non-orthogonal grid, the source terms in the above two equations contain the

non-orthogonal diffusion quantities which may become negative which allows the possi

bility that the physical positive variables could acquire an erroneous negative value. To

solve this problem, an artificial damping quantity is added to both sides of the discrete

equations. Taking the k—equation as an example, a positive quantity 3k is added to



Chapter 3. Computation of Turbulent Flows Using Curvilinear Grids 62

both the source term and the main diagonal term at the same time, where /3 is a positive

constant and is chosen depending on the problem to be solved. Therefore, the source

term is augmented by an amount I3kp while the coefficient of the main diagonal term,

ap, is increased to ap + /3. This artificial damping technique is different from the or

dinary under-relaxation in the literature. The former increases both the main diagonal

and source terms and the latter reduces the change of the dependent variables. Such a

practice is found to be very useful for turbulent calculations using non-orthogonal grids.

3.4 Wall Boundaries

The k — 6 model is valid only for fully turbulent regions and does not take into account

the laminar viscosity effect which is important in the near-wall region. To take this effect

into account without using an excessive number of grid points near the wall, the ‘wall

function’ is adopted in the present study.

The ‘wall function’ has been used in the literature for turbulent flow calculations in

curvilinear coordinates. Demirdzic et al (1987) presented a calculation procedure for two-

dimensional turbulent flows based on the physical contravariant velocity unknowns. A

formulation of the ‘wall function’ for two-dimensional curvilinear grids was also presented

in this paper. Agouzoul et al(1990) presented a calculation for a three-dimensional turbu

lent flow using a non-staggered and non-orthogonal grid based on the Cartesian velocity

unknowns. To avoid the complication associated with the formulation of momentum

equations near the wall for three-dimensional flows, an ‘equivalent viscosity’ approach

was proposed in the paper to take the variations of the velocity in the near-wall region

into account. In the present study, the velocity boundary at the wall is implemented

by taking the wall shear stress as an auxiliary force in the momentum equations and

appropriately altering the flow fluxes on the control-volume surfaces near the wall. The
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formulation in a general curvilinear coordinate system based on the physical tangential

velocity unknowns and the grid physical geometric quantities is described below.

We consider the formulation at a scalar node Cp next to the wall. Following Launder

and Spalding (1974), two different velocity profiles near the wall are assumed depending

on the values of the dimensionless distance y+,

= lm(Ey), if y > 11.36, (3.15)

= y, if y < 11.36 (3.16)

where the dimensionless distance y+ is defined as:

=

IL

and the friction velocity is defined as:

UT =
(3.17)

Here, y, is the normal distance of the node ‘p’ from the wall, U, is the velocity component

parallel to the wall at the node ‘p’, and i and E are empirical constants which are taken

as i = 0.41, E = 9.97 following Launder and Spalding (1974).

The normal distance, yr,, is evaluated directly from a given grid. To calculate U,, the

velocity vector u which is calculated from formula (2.24) is decomposed into the normal

vector, u, and the tangential vector, ui,, at the wall,

u = (ew . up)e’, u = u, — u (3.18)

where et° is the unit surface normal vector at the wall. Here the magnitude of the

tangential velocity vector u is U.

After U, and y, are obtained, the only unknown in equation (3.15) or (3.16) is the

friction velocity UT. Therefore, UT can be solved from these equations iteratively using



Chapter 3. Computation of Turbulent Flows Using Curvilinear Grids 64

Newton’s method. The values of k and c at the first node from the wall are then specified

by the following algebraic expressions:

= (3.19)

= T (3.20)
pv

Instead of using the ‘no-slip’ wall condition, the wall boundary for velocity is imple

mented by appropriately modifying the flux transport terms at the cell surfaces adjoint

to the boundary and then treating the wall shear stress as an auxiliary force in the mo

mentum equations. The force due to the wall shear stress is in the opposite direction

to the tangential velocity u and can be expressed as: —rAu/U, where A is the wall

surface area of the control cell which can be obtained from the surface area vector, and

the wall shear stress can be obtained from the friction velocity using equation (3.17).

This term is treated as a force in the momentum equations and is used to modify the

source terms in the discretized equations. Taking the bottom wall as an example, the

source terms due to the wall shear stress for the Ue1 and UC2 momentum equations are

ejS3/U and eSj/U, respectively.

3.5 Application to Turbulent Flows

The method described in this chapter has been implemented in the CMGFD. In this

section, the code is applied to several three-dimensional problems to investigate the

performance of the developed method and the k — c model.

3.5.1 Developing Turbulent Pipe Flow

In the first example, the turbulent developing flow in a smooth pipe was computed. Such

a flow has been studied extensively by many authors. A review paper by Klein (1981)
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summarized most of the experimental results for the turbulent developing pipe flow. As

pointed out by Klein, developing pipe flow is very complex and, unlike earlier studies

which believed that turbulent developing pipe flow was solely determined by the growth

of wall-boundary layers, the velocity profile peak in the pipe centerline may reach a

maximum and then decrease again.

Since turbulent developing pipe flow has been extensively studied and many reliable

results are available, this problem was chosen to test the proposed method. As in the

last chapter, a non-orthogonal rectangular type grid (see Figure 3.la) is used to replace

the ordinary cylindrical coordinate grid. Such non-orthogonal grids are very useful for

solving many internal flows.

Based on the experimental results for this flow, the pipe length L was chosen as

80 times the diameter D from the inlet, within which fully developed flow is generally

achieved. Flows with two different Reynolds numbers, namely Re = eUbD/ = 10 and

3.0 x iO, are calculated, where Ub is the bulk velocity. At the inlet, a uniform velocity,

a constant turbulence kinetic energy, and a constant dissipation rate are prescribed. k

and e are evaluated from the following equations:

k = l.5U2(u/U)2, e = C,1c/l (3.21)

where u/U is the turbulence intensity and 1 is the turbulence length scale. Here, the tur

bulence intensity u/U was taken as 0.02 and 0.04 for Re = iO and 3.0 x iO respectively,

and the turbulence length scale was taken as one-tenth of the pipe diameter.

For flow with Re = 1O, the computed velocity profile at the centerline, together with

experimental results from Richman et at (1973) are plotted in Figure 3.2a. A velocity

peak was found at about 29 pipe diameters from the entrance which differs from the

measurements. However, the overall agreement is reasonable if one notices that the large

velocity scale exaggerates the difference which is under 6%. Further, this phenomenon
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Figure 3.1: (a) The non-orthogonal rectangular type grid. (b) Predicted velocity field at
the symmetry plane.
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Figure 3.2: Predicted velocity profiles for Re = iOn, (a) developing velocity profile at the
pipe center, (b) developed velocity profile at cross-section where z/D = 60.
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Figure 3.3: Predicted velocity profiles for Re = 3.0 x iO, (a) developing velocity profile
at the pipe center, (b) developed velocity profile at cross-section where z/D = 60.
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was confirmed by other experimental results as discussed by Klein (1981). The flow

becomes fully developed after 50 pipe diameters. The profile of the predicted fully-

developed velocity is plotted in Figure 3.2b with the experimental data. This figure

shows that the fully-developed velocity profile is in good agreement with the experimental

results.

Similar computational results for the higher Reynolds number 3.0 x iO together with

the experimental measurements of Richman et al (1973) are plotted in Figure 3.3. The

velocity peak occurs at about 32 pipe diameters; a little later than the case for the lower

Reynolds number. Good agreement between the predicted and experimental results is

also seen here at large z/d.

From both computations, accurate solutions were obtained for the flow in the well-

developed region. This is because the k — e model and the ‘wall function’ describe the

well-developed turbulent pipe flows very well. Thus the method can be very accurate if

a suitable turbulence model is used.

3.5.2 Developing Turbulent Flow in a 90° Curved Square Duct

As the second computation, turbulent flow in a 90°-bend square duct was simulated.

Experimental measurements were reported by Taylor et al (1982). The geometry which

was used in the experiment was also used for the computation, which consisted of a 90°

curved square duct with a mean bend radius of 92 mm with an upstream straight duct

0.3 m long and a downstream straight duct 0.2 m long. The dimensions of the cross

section are 40x 40 mm2. The Reynolds number defined by the bulk velocity, Ub, and the

cross-sectional dimension is 40, 000.

Exploiting the advantage of flow symmetry, only half of the physical domain was com

puted to save computational time. The configuration and grid used for the computation

are illustrated in Figure 3.4. A grid with 21 x 11 x 81 nodes was generated, which had
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Figure 3.4: Illustration of computational grid for the curved duct.
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a higher density of grid points in the curved section and less grid points near the outlet

and inlet.

As in the last example, a uniform velocity and constant k — € values were prescribed at

the inlet. Computational results are plotted for different cross-sections. The flow field in

the middle vertical plane is plotted in Figure 3.5. The maximum velocity occurs initially

near the inner side wall in the upper portion of the curved section and gradually shifts to

the outside wall due to the radial pressure difference arising from the bend curvature. As

in the experimental results, strong secondary flows are found in the present computation

which influence the whole flow pattern. The secondary current is developed gradually

and becomes strongest at about 9 = 60°, where the maximum secondary velocity reaches

approximately thirty percent of the bulk velocity. The secondary flow fields at two

different duct cross-sections together with the streamline velocity contours are plotted in

Figure 3.6.

The predicted velocity profiles at four different locations are compared in Figure 3.7

with the measured results of Taylor et at (1982).

The results agree well at the upstream portion of the curved section and deteriorate

with increasing downstream distance. However, the overall agreement is still reasonable.

The discrepancy in the downstream section is believed to be due to limitations of the k — €

model for flows with streamline curvature and strong secondary flows. A higher-order

scheme and denser grid spacing may also improve the computational results.

3.5.3 Developing Turbulent Flow in a 90° Curved Pipe

The last example simulates developing turbulent flow in a 900 curved pipe. Measurements

of such a flow was reported by Enayet et al (1982). Laminar flow with the same geometry

was studied in the last chapter where a good agreement between the experimental and

computational results was obtained. In the present study, the turbulent flow is computed
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(a)

Figure 3.5:
whole duct,

Flow field in the middle vertical plane, Re = 40, 000, (a) flow field in the
(b) flow field in the curved section.

(b)
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Figure 3.7: Comparisons of velocity profiles with the
locations, (a) ,8 = 30°, (b) 3 = 60°, (c) ,8 = 750, (d) downstream xd = 0.25D.

measurements at four different

74

S Measurement

Calculation

(a)
-o 0. 0

-0.00

(c)
-0.00

(d)



Chapter 3. Computation of Turbulent Flows Using Curvilinear Grids 75

Figure 3.8: Illustration of computational grid for the curved pipe.

to test the present method. The geometry is similar to that in the previous example

except that the cross-section is taken to be a circular disk. The diameter of the cross-

section is 48 mm and the radius of the pipe curvature is equal to 2.8 times the pipe

diameter. The bend was fitted with a straight pipe 240 mm long upstream and 480 mm

long downstream.

The grid and geometry are illustrated in Figure 3.8. A non-uniform and non-orthogonal

grid was used which was generated using an elliptical grid generation technique, to be

described in chapter 6. As was the case for the previous example, only half of the flow

domain was used for the computation.

The computation was carried out for a Reynolds number of 43, 000; the same as that

used in the experiments of Enayet et al (1992). The results are plotted in a similar

manner as for the previous example. The velocity vectors at the middle vertical plane

z

x

Grid at Cross Section
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U/Ub=1 .0
-

Figure 3.9: Flow field in the middle vertical plane, Re = 40, 000.
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Figure 3.11: Comparisons of velocity profiles for different cross-sections, (a) upstream
O.5D, (b) 3 = 30°, (c) j3 = 60°, (d) 3 = 75°.

(a) (b)

(C) (d))
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are plotted in Figure 3.9. Unlike the pattern of laminar flow in the same geometry (see

Figure 2.11), the velocity maximum in the curved, upstream section occurs near the

inner side and not near the outside wall as observed in laminar flow. As in the previous

example, the pressure-driven secondary flow extends over the entire flow region in the

curved and downstream sections. The secondary flow fields together with the streamline

velocity contours at two different locations are plotted in Figure 3.10 for reference. The

predicted velocity at different locations with the measured results of Enayet (1982) et al

are plotted in Figure 3.11. The overall agreement is good, even though there are again

some discrepancies in the downstream portion of the curved section.

3.6 Closure

Numerical simulation of turbulent flows in complex geometries using general curvilinear

coordinates is studied. The curvilinear coordinate-based method developed in the last

chapter is generalized to turbulent flows using the k — e two equation model with the ‘wall

function’ treatment. The discretization of the k — e equations and the treatment of the

‘wall function’ in curvilinear grids are presented. Methods enhancing the computational

stability are introduced.

Several three-dimensional turbulent flows are computed using the developed solution

method and detailed results are presented. Computational tests show that the method

is efficient and reliable. Accurate solutions can be obtained for flows without curvature

and recirculation. The computational results for the last two examples show certain

discrepancies with the experimentairesults. This is attributed to the limitations of the k—

e turbulence model and the ‘wall function’ treatment for flows with strong secondary flows

and streamline curvature. However, the overall agreement observed for both examples is

still acceptable.



Chapter 4

Multigrid Acceleration

In this chapter, the development and performance of a multigrid procedure for the

computation of three-dimensional laminar/turbulent flows using general curvilinear grids

are presented. Brandt’s (1981) Full Approximation Storage (FAS) in conjunction with the

Full Multigrid cycling (FMG) is adopted. The numerical method for laminar/turbulent

flows described in the last two chapters is used as the smoother. The present study

shows that the discrete governing equations can become inconsistent between fine and

coarse grids in curvilinear grids, as well as when the k — c model with the ‘wall function’

is used for turbulent flows. Novel procedures are proposed to solve these problems.

Several laminar/turbulent flows are calculated using the multigrid method to illustrate

its performance.

4.1 Introduction

The convergence rate of traditional single-grid iterative solution methods seriously de

teriorates as grids are refined. By using a Fourier analysis, Brandt (1980) showed that

iterative solution methods are only efficient in smoothing those error components whose

wavelengths are comparable to the mesh size. The multigrid method is an efficient

iterative solution procedure which exhibits convergence rates insensitive to grid refine

ment. The method has been widely used in the field of computational fluid dynamics.

More recently, a few studies have been reported on the use of multigrid acceleration in

80
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curvilinear coordinates. Those works differ mostly in the choice of the basic numeri

cal algorithms (coupled or decoupled), grid layout (staggered or collocated grids), and

primary velocity unknowns on non-orthogonal grids (Cartesian, contravariant velocity

components etc.). Rayner (1991) and Shyy et at (1993a,b) conducted multigrid calcu

lations for two-dimensional flows in complex geometries based on decoupled sequential

solution procedures. Those methods were based on the staggered grid system and the

pressure-correction scheme. Rayner (1991) used the contravariant velocity components

as the primary velocity unknowns, while Shyy et at (1993a) adopted a combination strat

egy in which both the Cartesian and contravariant velocity components were used to

facilitate the formulation of the mass and momentum equations. In addition to the

decoupled solution procedure, Joshi et at (1991) and Oosterlee et at (1992) reported

multigrid algorithms for flows in two-dimensional complex geometries based on a cou

pled solution solver. These methods were based on the staggered grid system and the

contravariant-type velocity unknowns. In contrast to the above two-dimensional works

which are based on the staggered grid system, Smith et at (1993) presented a multigrid

procedure for three-dimensional flows on non-orthogonal collocated grids. The algorithm

used by the authors solves the momentum equations for the Cartesian velocities as the

dependent variables and stores all variables at the control volume centers.

The implementation of multigrid algorithms for turbulent flows faces many additional

difficulties, even in a Cartesian coordinate system. The k — e two-equation model with the

‘wall function’ treatment is widely used for simulation of turbulent flows. The multigrid

acceleration for turbulent flows using such a two-equation turbulence model has been

investigated by a few authors. Based on experience with the difficulties of multigrid

cycling associated with the k—c equations and the ‘wall function’, Vanka (1987) developed

a multigrid method which did not include the k — e equations within the multigrid cycle,

but instead solved them on the fine grid and transferred only the turbulent viscosity. This
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method was also adopted by Yokota (1990) who reported good convergence rates. Even

though this method can speed-up the convergence rate for turbulent flows, the multigrid

efficiency may be limited by the slow convergence of the k —6 equations on very fine grids.

A more effective solution procedure can be expected if the set of governing equations as

a whole are solved together using the multigrid cycle.

Rubini et al (1992) presented a multigrid calculation for turbulent, variable density

flow over a three-dimensional, backward-facing step using the k — c model with ‘wall

function’ treatment. The authors used a staggered grid system and the SIMPLE algo

rithm as the smoother. The convergence of the k — c equations was accelerated together

with the momentum and continuity equations using the multigrid strategy. The authors

found that additional linearization of the source terms was necessary to prevent neg

ative values of k and e. In addition, the negative values of k and e can arise due to

negative correction. This problem was circumvented by simply not updating values in

locations that would result in a negative value. Their results indicate a dramatic reduc

tion in the computer time required to obtain a solution by a factor of over 25 for the

finest grid considered. Shyy et al (1993b) presented a multigrid solution procedure for

two-dimensional turbulent flows in conjunction with the k — e two-equation turbulence

model in general curvilinear grids. The method used a staggered grid arrangement and

the Cartesian velocity components as the primary variables in the momentum equations.

They reported some special treatments which facilitate the successful implementation of

the multigrid algorithm. Particularly, they noted the inconsistency of the ‘wall function’

among different grid levels which may decrease the efficiency of the multigrid method.

In the present study, the development of a multigrid procedure for computation of

three-dimensional laminar/turbulent flows in general curvilinear grids is presented. Prob

lems associated with multigrid calculation in curvilinear grids are analyzed. Novel tech

niques are proposed to solve these problems.



Chapter 4. Multigrid Acceleration 83

It was reported by Shyy et al (1993b) that the geometrical complexities can impose

an upper limit on the number of effective grid levels useful for the MG method. The

present study shows that this limitation is caused by the inconsistency between the fine-

and coarse-grid governing equations. When the coarse-grid defect governing equations

are directly formulated using the coarse grid nodes only, they will degrade relative to the

fine-grid equations with the degradation of the spatial resolution of the coarse grid. When

the degraded coarse-grid equations are solved, the resulting correction will be inadequate

to correct the fine-grid solutions thus reducing the efficiency of the multigrid algorithm.

In the present study, this problem is analyzed and a new method is proposed to solve it.

As mentioned in the previous paragraph, when the multigrid acceleration is applied

to all the governing equations, including the k — e equations, it is found that the formula

tion of the coarse-grid defect equation using the ‘wall function’ may cause inconsistency

between the governing equations of fine and coarse grids. This problem is discussed in

this chapter and a novel practice is presented to allow the successful implementation of

the multigrid method for turbulent flows using the k — e equations. Several techniques

which improve the multigrid solution efficiency for turbulent flows are introduced.

Consistent restriction of residuals and solutions between coarse and fine grids is im

portant for the nonlinear multigrid algorithm. It is impossible to preserve both the mass

and momentum conservations in the course of the transfer of solutions. However, mass

conservation can be maintained between grids by deliberately choosing the interpolating

formulation. In general, mass conservation between grids is usually not maintained in

restriction for methods using curvilinear grids. In the present study, a mass-preserving

restriction for the physical tangential velocity components is developed.

In order to validate the multigrid performance, computations were carried out for sev

eral laminar/turbulent flows with significant non-orthogonal and strongly curved grids.
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Comparisons were made between the multigrid and single-grid methods through measure

ment of the number of finest grid iterations, the equivalent work units and CPU time.

The computational results show that the developed multigrid method is very efficient.

4.2 The Multigrid Algorithm

The idea behind using multigrid methods is to remove the low-frequency errors by solving

the governing equations on various auxiliary coarse grids. For a multigrid method, it is

critical to use consistent governing equations between the coarse and fine grids. As

discussed later, this criterion may be violated in certain curvilinear grids. Therefore,

additional care should be taken in the development of a multigrid method for general

curvilinear grids.

In the present study, the Full Approximation Storage (FAS) of Brandt (1981) in

conjunction with the Full Multi-Grid (FMG) cycling is adopted. The solution procedure

is initiated on the coarsest grid and subsequent initial solutions on finer grids are obtained

by interpolating converged solutions. On each finer grid and on the finest grid, the FAS

solution procedure is applied to obtain a converged solution.

To illustrate the problem to be solved, the FAS procedure is briefly described in this

section using a two-grid (c, f) system. The discrete governing equations on a fine grid

are written as an operator equation as follows:

L(q) = 0, (4.1)

where L is the non-linear operator designating the discrete governing equations, q is the

solution vector which includes all dependent variables, and the superscript ‘f’ indicates

that the solution and operator are associated with the fine grid. Suppose is an

approximate solution of equation (4.1). Unless ‘i is the exact solution, there will be a
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residual r such that

= (4.2)

Let c be a correction of the approximation solution ‘çb so that z/i + satisfies equation

(4.1), namely,

Lb1 + c) = 0. (4.3)

Subtracting equation (4.3) from equation (4.2), the following equation is obtained:

L(b + c1) — L(b) = —r’. (4.4)

If the correction c can be found from the above equation, it is obvious that the exact

solution çif can be obtained. The idea of the multigrid method is to solve for the correc

tion c, rather than solve for the solution on a coarse grid. In order to do so, the above

equation is restricted to the coarse grid ‘c’,

L’(Ib + cc) — Lc(I/) = —Ir, (4.5)

where the superscript ‘c’ indicates that the quantities are associated with the coarse grid,

while I is the restriction operator. For linear problems, the approximation solution Iz/.

cancels out in equation (4.5) and a correction equation can be obtained. For non-linear

problems, the full approximation equation

LC(q5C) = Lc(Ic?.,bf ) — (4.6)

is solved in the FAS procedure and the correction cc is then obtained from the solution

difference

= c,jc —

The auxiliary equation (4.6) containing the restricted fine-grid residual (or defect) is

frequently referred to as the defect equation in the literature. After the correction is
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solved from equation (4.6), it is prolongated to the fine grid to adjust the old solution

namely, = ‘/‘f + Ibc
— Ibf) where is the prolongation operator. If the

adjusted solution q does not satisfy equation (4.1), the above procedure can be re

applied iteratively until the residue is below the required criterion. The above procedure

forms a two-level FAS procedure.

4.3 Consistent Formulation of Governing Equations

From the above multigrid procedure, it can be seen that the coarse-grid defect equation

(4.6) used for the calculation of the correction is formulated from the fine-grid equation

(4.1). Therefore, the defect equation should be a faithful representation of the fine-grid

equation on the coarse grid. Three components, the residual r, approximation solution

bf, and solution operator L1 have to be transferred to the coarse grid to formulate the

defect equation. Attention has been given to the accurate restriction of the solution and

the residual in the literature. However, the restriction of solution operators also requires

careful consideration. The defect equation (4.6) is similar to the solution equation (4.1)

except for additional source terms which include the residual restricted from the fine grid.

Therefore, the coarse-grid operator LC is usually formulated by discretizing the governing

equation on the coarse grid in the same manner as that used for the solution operator L.

Such a practice is usually adequate for computations in Cartesian coordinates. However,

this may result in inconsistent operators between coarse and fine grids for computations

using curvilinear grids.

Shyy et al (1993b) reported that geometrical complexities can impose an upper limit

on the number of effective grid levels for the multigrid method. Their computations

demonstrated that the efficiency of a multigrid method is not improved by using higher

grid levels if the spatial resolution on coarser grids becomes too degraded. The present
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(a) r1 (b)

Figure 4.1: Grids in cylindrical coordinates: (a) 16 x 16 grid; (b) 2 x 2 grid.

study indicates that this limitation is caused by the direct formulation of the defect

operator LC on the coarse grid which is no longer consistent with the fine-grid operator V

due to the degradation of the coarse grid. On a curvilinear grid, a coarse grid operator LC

depends on the grid geometric quantities associated with the coarse grid. In general, the

analytic function of the coordinate transformation is unknown and the physical geometric

quantities have to be calculated from the discrete grid nodes. Due to the deterioration

of the spatial resolution on the coarse grids, however, the physical geometric quantities

calculated from the coarse-grid nodes can become inconsistent with those on the fine grid

in the sense that they are not defined by the same coordinate functions.

In order to illustrate this problem, a two-dimensional flow domain, namely, a curved

channel is considered. For this particular problem, an analytic coordinate transformation

exists:

= rcos6,y = rsin&, r1 r r2,O , (4.7)

which transforms the curved channel domain in the x
— y plane to a rectangular domain

in the r — 8 plane. The corresponding curvilinear grids are shown in Figures 4.1a & 4.lb

for a fine grid 16 x 16 and a coarse grid 2 x 2, respectively. From Figure 4.1, it can be seen

jr
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Figure 4.2: Curvilinear grids: (a) 16 x 16 grid; (b) coarsest 2 x 2 grid; (c) 2 x 2 grid
restricted from the fine grid 16 x 16.

that even the 2 x 2 coarse grid still fully represents the curved channel geometry. This is

because the grid lines on the coarse grid are defined by the analytical function (4.7), which

is independent of the number of grid nodes. When the physical geometric quantities for

fine and coarse grids are calculated from the coordinate transformation function (4.7),

they are consistent since they are defined by the same coordinate system. In general,

however, the physical geometric quantities have to be calculated from the discrete grid

nodes When the physical geometric quantities are calculated from the discrete grid nodes

using the linear profile assumption, such as that used in chapter 1, the grid lines used for

the calculation are actually the line segments produced by connecting the neighbouring

grid nodes, as shown in Figures 4.2(a) &4.2(b) for the 16 x 16 fine grid and 2 x 2 coarse

grid, respectively. From these figures, it can be seen that the fine grid in Figure 4.2a

is a reasonable approximation to the corresponding grid in the cylindrical coordinates

shown in Figure 4.la. Thus, the physical geometric quantities calculated from the fine-

grid nodes are approximately equal to those defined by the coordinate transformation

(4.7). However, the coarse grid in Figure 4.2b can no longer give a faithful representation

of the corresponding grid in the cylindrical coordinate system shown in Figure 4.lb, and

thus the physical geometric quantities calculated from the coarse-grid nodes are different

(a) (b) (c)
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from those calculated from the coordinate transformation (4.7). Therefore, the physical

geometric quantities on the coarse and fine grids are inconsistent since they are essentially

equivalent to those defined by two different coordinate systems.

It should be noted that the grid lines on a coarse grid always coincide with those

on the fine grid in an analytical coordinate system, such as the cylindrical coordinate

system, no matter how coarse the grid is. Similarly, this argument should also be valid for

general curvilinear grids, namely, the grid lines on a coarse grid used for the computation

of the physical geometric quantities should coincide with those on the fine grid in order

to be defined by the same coordinate transformation. For the curved channel geometry,

the grid lines in a 2 x 2 grid defined by the equivalent transformation of the 16 x 16 fine

grid in Figure 4.2a should be the restriction of the fine-grid lines as shown in Figure 4.2c,

rather than those shown in Figure 4.2b. However, the physical geometric quantities

such as the surface areas (lengthes in 2D) and cell volumes defined in Figure 4.2c can

not be obtained from the coarse grid nodes alone. Calculation of the grid geometric

quantities from the coarse-grid nodes is equivalent to using the low-resolution grid lines

as shown in Figure 4.2b rather than the curvilinear grid lines as shown in Figure 4.2c.

For instance, the length (area in 3D) of the cell-surface ‘s’ calculated from the grid nodes

in Figure 4.2b is equal to the distance of the two neighbouring nodes AB rather than the

length of the corresponding curved segment AB in Figure 4.2c. Therefore, the physical

geometric quantities calculated from the coarse-grid nodes only will be inconsistent with

those on the fine grid. When the defect equations on the coarse grid are formulated using

the coarse-grid geometric quantities, an inconsistency will arise between the governing

equations on the fine and coarse grids. The correction calculated from the inconsistent

coarse-grid defect equations will be inadequate to correct the fine-grid solution, thus,

reducing the multigrid efficiency.
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4.4 Consistent Calculation of the Grid Geometric Quantities

From the above discussion, we know that in order to obtain consistent governing equations

between fine and coarse grids, consistent physical geometric quantities have to be used.

In the present study, a calculation procedure is developed to achieve this goal. The

idea of the method is to use the same grid resolution in the formulation of governing

equations for all the grid levels. Instead of using the coarse-grid nodes to discretize the

equations, the finest grid is used to formulate the discrete governing equations on all

the grid levels. All the coarse-grid geometric quantities required to formulate the defect

governing equations are calculated from the finest grid instead of from the coarse-grid

nodes. First, the grid geometric quantities on the finest grid, namely, the surface areas,

cell-volumes and surface normal vectors, are calculated using the method presented in

chapter 2. The geometric quantities in the subsequent coarser grids are calculated in the

following manner. The surface areas for a coarse grid are calculated by summing the

areas of the relevant cell surfaces of the finest grid,

A, (4.8)
finest

and the unit surface normal vector e2 on a coarse grid is calculated as the area-mean of

the relevant unit surface normal vectors & in the finest grid,

e = (4.9)
C finest

where the subscripts ‘c’ and ‘f’ indicate that the quantities are associated with the coarse

and the finest grid respectively, and the summation is over all the cell surfaces of the

finest grid coincident with the coarse-grid surface. The cell volume of a coarse grid is

calculated as the summation of the relevant cell volumes of the finest grid,

> Vf, (4.10)
finest
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where the summation is over all the finest-grid cells coincident with the coarse-grid cell.

Such a calculation procedure of physical geometric quantities is equivalent to computa

tions using the coordinate transformation designated by the finest grid through all the

grid levels. For instance, the length of the cell-surface ‘s’ for the 2 x 2 coarse grid shown

in Figure 4.2 will be the length of the curved segment AB in Figure 4.2c rather than the

line segment AB in Figure 4.2b. With the present method, the coarse grids are actually

not involved in the numerical formulations. Therefore, the deterioration of the geometric

representation of coarse grids does not influence the multigrid efficiency.

4.5 Multigrid Acceleration of Turbulent Flows

The problem discussed in the last section occurs for both laminar and turbulent flows. In

this section, the problems particularly associated with multigrid acceleration of turbulent

flows are discussed. As mentioned earlier, the k — c equations are solved together with the

momentum and continuity equations in the present study using the multigrid procedure.

The multigrid acceleration of the k — 6 equations faces additional difficulties which have

to be carefully addressed. First, the use of the ‘wall function’ to link the flow in the

near wall region to the main flow region may not be suitable for all grid levels. The

‘wall function’ is valid only within a certain region near the wall. The calculation of

k and e near the wall relies on the assumption of the local equilibrium of production

of and generation of turbulence energy. In a six-level multigrid solution procedure, for

instance, the distance from the first scalar node to the wall on the coarsest grid will

be 2 = 32 times that of the finest grid. When the first scalar node of the finest grid

is adequately located in the equilibrium region, the first grid node of the coarsest grid

may be too far from the wall to obtain a reasonable solution profile. Secondly, the use

of the ‘wall function’ in different grid levels will cause inconsistent governing equations
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between grids as will be demonstrated later. Thirdly, the strong nonlinearity and the

dominance of the source terms in the k and € equations make these equations difficult to

handle in the multigrid cycling. The k — e equations have a strong nonlinear coupling

through the production and dissipation in the source terms. These source terms are

often dominant in the discrete governing equations. Furthermore, unlike the velocities

and pressure, certain k and c values updated by iteration or by adding corrections will

cause complete failure of the algorithm. These problems are discussed in the following

sections and novel treatments are introduced to solve them.

4.6 The Treatment of Wall Boundary on the Coarse Grids

In this section, the problem associated with the inconsistent governing equations caused

by the use of the ‘wall function’ in different grid levels is considered. To illustrate this

problem, a two-level multigrid procedure for a two-dimensional turbulent flow is consid

ered. Figure 4.3 shows a two-level multi-grid near a wall boundary, where the big and

small circles indicate the scalar nodes next to the wall on which the ‘wall function’ is

applied.. The k — e equations are applied to the cells marked with an ‘x’. If the ‘wall

function’ is used to formulate the coarse-grid defect equation, the restricted residual ir

in equation (4.6) at the scalar node ‘E’, for instance, will be the average of the fine-grid

residual R at the nodes ‘A’, ‘B’, ‘C’ and ‘D’. However, the residuals at nodes ‘A’ and

‘B’ are calculated from the k — 6 equations which are inconsistent with the operator LC

at node ‘E’ formulated by the ‘wall function’.

In equation (4.6), the restricted residual I includes the residuals of the k—€ equations

on the fine grid, but the solution operator Lc has to be formulated using the ‘wall func

tion’. Therefore, it is unlikely that a reasonable correction can be obtained by applying

the ‘wall function’ in certain areas while the residuals in the fine grid are calculated from
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Figure 4.3: Illustration of using inconsistent defect equations at interior scalar nodes ‘x’.

the k — c equations there. This will cause an inconsistency of the governing equations

between the fine and coarse grid levels.

The deterioration of speed-up from the single-grid to the multigrid procedure for

turbulent flow calculations using the k — 6 two-equation model with ‘wall function’ was

also observed by Shyy et at (1993b). To solve this problem, they used a special grid

coarsening system in which the first grid lines away from the wall are retained during

the course of grid restriction. With this practice, the treatment of wall boundary for

turbulent flows is adequately handled at the coarser grid levels, resulting in an increased

speed-up from the single-grid to the multigrid procedure. However, this non-standard

grid restriction will cause additional complexity in programming. Furthermore, the much

increased mesh expansion ratios among the adjacent cells on the coarser grids is not well

handled.

In the present study, a new method is proposed to solve this problem. The idea is

based on the argument that consistent governing equations through all grid levels have

to be used. To avoid the inconsistency between the use of k — e equations and the use of



Chapter 4. Multigrid Acceleration 94

the ‘wall function’ treatment on different grid levels, the ‘wall function’ is only applied

on the finest grid. For the wall boundary on the coarser grids, a Dirichiet boundary

condition for the k — e equations is used in place of the ‘wall function’ treatment. Instead

of solving k and c from the balance between the local production and dissipation of Ic

in the equilibrium region near the wall, the restricted Ic and 6 from the finer grid are

prescribed at the scalar nodes next to the wall as the boundary condition. A similar

treatment to the above has been developed simultaneously and independently by Sun

(1994).

For the momentum equations, the wall boundary on the coarse grids can be treated

in the same way as for the Ic — e equations, that is, the velocity components next to the

wall can be simply prescribed using the restricted velocity components from the fine grid.

Such a treatment is observed to provide better performance than the standard treatment.

However, this treatment will result in no correction for the tangential velocity components

on the cells next to the wall which limits the potential speed-up of the convergence rate

of the multigrid method. In the present study, an alternative approach is used which

solves the momentum equations in all the velocity positions without using the prescribed

values from the fine grid. The tangential velocity components next to the wall are strongly

dependent on the wall shear stress. If the wall shear stress can be determined, a governing

equation for the tangential velocity components next to the wall can be formulated. In

the ‘wall function’ treatment, the wall shear stress ‘r is calculated from the friction

velocity UT which is defined by the ‘wall function’. Since the ‘wall function’ will not

be used on the coarser grids in the proposed method, the wall shear stress can only be

obtained from the finest grid. Fortunately, it is possible to calculate the wall shear stress

on a coarse grid from that on the finest grid. It is known that the wall shear stress is

independent of the grid level. Therefore, the correct wall shear stress on the coarser grid

can be calculated from values on the finest grid. In the present study, the wall shear
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stress on a coarser grid is taken as the area-weighted average of the corresponding wall

shear stresses on the finest grid,

1
T,, = (4.11)

C finest

where the scripts ‘c’ and cf indicate the association between the coarse and finest grids

respectively. The summation is over all the finest-grid wall surfaces coincident with the

coarse-grid surface. After the wall shear stress is obtained, the momentum equations for

the tangential velocity components next to the wall can be formulated by considering

the wall shear stress as an auxiliary force in the momentum equation. The components

resulting from the vector expansion of the wall shear stress r in the unit tangential vector

basis {e} are used to modify the source terms in the discrete momentum equations (2.34-

2.36). With such a treatment, the governing equations on the coarse grids can be solved

to provide accurate correction.

4.7 The Treatment of k — e Quantities and Source Terms

In this section, several special treatments facilitating the multigrid calculation of tur

bulent flows are introduced. In chapter 3, a treatment of the source terms of the k —

equations was presented for calculation in general curvilinear grids. A key feature of the

treatment is to assure positive source terms in both the discrete k and e equations. This

practice is useful in avoiding negative values for turbulence energy and dissipation since

it is known that any negative k and c acquired during the iteration will lead to complete

failure of the solution method.

In the coarse-grid defect equation, the source terms contain additional quantities

from the restricted residuals and solutions which may become negative. Thus the values

of k and c possibly acquire an erroneous negative value. A similar treatment to that

reported by Rubini et al (1992) is used to solve this problem. However, different from
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their practice in which only the resultant error of the restricted solution was considered,

the source term as a whole is considered. Suppose the coarse-grid defect equations on a

coarser grid H for k and e can be written as

a = > aq + Sc, (4.12)

where S is the source term containing quantities from various sources, such as grid

non-orthogonality and restricted residual. If the source term 5C becomes negative, the

following discrete equation is used for the iterative solution solver:

Sc
(a

—
-,—)q = aflbcbflb. (4.13)
‘1p nb

This practice will eliminate any negative source term in the k — e equations.

In a multigrid method, the values of k and e may also become negative after adding

a correction. Rubini et al (1992) and Shyy et at (1993b) adopted the same strategy by

which they simply do not update any locations that would result in a negative value. In

the present study, this strategy is modified by including an additional limitation. Since

both k and e are involved in the denominators of some terms in the governing equations,

they should not be too small. For instance, if k becomes zero after adding the correction,

the source term in e equation (4.12) will become infinite. This will also lead to the failure

of the multigrid algorithm. Therefore, the correction scheme is modified for k and C in

the present study. Let

q = +
J!(

-

then for k and e

J q ifq>1O4&

( otherwise

where is the old approximation solution for Ic and e, qf — i/ is the correction on the

coarse grid. The present practice implies that if the Ic and e at some locations become
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unreasonably small by adding a correction, then the values at these locations will not be

updated.

Due to the strong nonlinearity and the dominance of the source terms in both the k

and c equations, under-relaxation of both the solution and source terms is adopted.

4.8 Restriction and Prolongation

In addition to the consistent formulation of governing equations on different grid levels,

the consistent restriction of solutions and residuals is also important for the multigrid

algorithm. In a nonlinear problem, the discrete solution operator Lc on a coarse grid

depends on the restricted velocity unknowns from the corresponding fine grid. There

fore, the restricted solution should be a good representation of the fine-grid solution.

It is impossible to conserve both mass and momentum in the course of the restriction

of solutions. However, mass conservation can be maintained between grids by deliber

ately choosing the interpolating procedure. The mass preserving restriction has been

emphasized and adopted in several previous works, such as Sivaloganathan (1988).

Mass conservation requires the mass flux through a control-volume surface on a coarse

grid to be equal to the total mass flux through the relevant surfaces of the fine grid,

namely,.

Flux = (u . ezA)c = >(eu . eA)f, (4.14)
fine

where the subscripts ‘c’ and ‘f’ indicate the association with the coarse and fine grids,

respectively, and the summation is over all the control-volume surfaces on the fine grid

coincident with the coarse-grid surface. Using equation (2.25) for the physical tangential

velocity components, equation (4.14) can be rewritten as

(eUiAiei . e). =(0UAe2
. ejf. (4.15)

fine
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From the above equation, the physical tangential velocity component on the coarse

grid can be defined as follows:

= ( e .eA)
(eUCiAiei e) (4.16)

2 Cfja

For the cell-centered variables and residuals the coarse-grid values are taken as the

volume-weighted mean of the eight corresponding fine-grid values. Taking the pressure

p as an example, we have:

Pc = >(V.p)f, (4.17)
Cfine

where the summation is over all the fine-grid control cells enclosed in the corresponding

control cell on the coarse grid. In order to preserve the high-frequency contents of the fine-

grid residuals, an interpolation of higher order than that used for velocities is employed.

The residuals of momentum equations on a coarse grid are taken as the area-weighted

mean of the relevant twelve values on the fine grid. Taking the residual of the U —

momentum equation as an example, the following formula is taken with reference to

Figure 4.4:

[Arf,f,kf_l + Arf_l,Jf,kf_l + Arf,f_l,kf_l

+ ArIf_l,f_l,kf_l + 2Arf,f,kI + 2Ar’If,f_l,kf + 2Arf_l,f,kf

+ 2Ar’f_l,f_l,kf + Arf,f_l,kf+l + ArIf_l,f_l,kf+l

+ Ar f,jf,k+i + Ar1 if—1,jf,kf +1, (4.18)

where the summation is over all the coefficients of the residuals. A bilinear interpola

tion is used as the prolongation operator. In all formulations for restriction and pro

longation, the area-weighted average procedure is used for all quantities defined on the

control-volume surface, such as velocity unknowns, surface normal vectors, and momen

tum residuals. The volume-weighted average procedure is adopted for all quantities

defined at the control-volume center, such as pressure and mass residual.
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kf+1

Figure 4.4: Illustration of locations of — residuals on fine and coarse grids for restric
tion.
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4.9 Test Calculations

The developed multigrid algorithm in general curvilinear grids has been implemented in

the CMGFD code. As shown in chapters 2 and 3, the code has been validated through

a number of model problems for both laminar and turbulent flows and has been proven

to be a reliable solver. Since the objective of this chapter is to develop an efficient

multigrid algorithm, comparisons with experimental or other computational results are

not made. Instead, the detailed convergence history for various grid sizes and multigrid

levels is presented. In order to provide a uniform measure of computational effort, a work

unit, WU, is defined as being equivalent to the computational effort for one traditional

single-grid iteration on the finest grid. For instance, for three-dimensional problems,

eight iterations on the next coarse grid are equivalent to one iteration on a fine grid. The

convergence criterion is based on the absolute maximum residual of the four equations,

i.e.,

R = max2,3,k(R , Rv, Rn’, R”, Rk, R)

where the maximum is taken over all computational cells.. A solution is considered to be

converged in the present study when the maximum residual is below 10—6. The reason for

using such a tight convergence criterion is that certain calculations require lower residuals

than others in order to show some flow phenomena. For instance, the third vortices in

the skewed cavity contain very small velocities which can not be seen without obtaining

lower order residuals (see Demirdzic et al (1992)).

The computations are started at the coarsest grid and the converged solution is pro

longated to the next finer grid where the FAS procedure is applied. This procedure is

continued until the finest grid is reached. A fixed V-cycle FAS procedure with two pre

smooth and two post-smooth iterations is used through all the computations. On the

coarsest correction level, ten iterations are applied to solve the defect equation.
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Figure 4.5: Physical geometry of the skewed cube.

4.9.1 Laminar Flow in a Skewed Cubic Cavity

In the first application, the multigrid algorithm is applied to the laminar flow in a skewed

cubic cavity. This example tests the performance of the developed multigrid method for

non-orthogonal grids. Flow in a cavity (or cube in 3D) has been considered as a standard

test case for numerical algorithms due to the characteristic nonlinear elliptic nature it

shares with many flows of practical interest. In the present study, the laminar flow in a

skewed cubic cavity is considered. The counterpart of this problem in two dimensions,

i.e., the flow in a skewed driven cavity, was proposed recently as a bench-mark problem

by Demirdzic (1992) for testing numerical methods on non-orthogonal grids and has been

studied by a number of authors. Figure 4.5 shows the problem currently being considered.

The side wall is inclined at an angle /3 = 45° with the top wall moving at a velocity U.

x= 1
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Figure 4.6: Convergence history of MG calculations using various grids.
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Figure 4.7: Comparison of convergence behaviors of multigrid and single grid calculations.
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All the walls are squares of dimension D x D where D = 1 in Figure 4.5. The Reynolds

number, defined as pUD/, was taken to be 100 in the present study.

Multigrid calculations have been carried out for grids consisting of (1) 16 x 16 x 16,

(2) 32 x 32 x 32, (3) 64 x 64 x 64, and (4) 96 x 96 x 96 cells using 4-level, 5-level, 6-level

and 6-level grids respectively. In these multigrid calculations the coarsest grid consisted

of only 2 x 2 x 2 cells for the first three grids and 3 x 3 x 3 cells for the last grid on which

the converged solution can be obtained with just a few iterations. All calculations were

initiated from zero velocity and pressure fields. The convergence histories of the multigrid

calculations for the four different grids are plotted in Figure 4.6 with reference to the work

unit (WU). It can be seen that, unlike the performance of single-grid methods, the rate

of convergence is independent of the grids and convergence is achieved for all the grids

in 40 work units. Vanka (1986b,1991) reported multigrid calculations for laminar flows

in a cubic cavity. His calculations showed that the residuals decreased by about three

orders of magnitude in roughly twenty finest-grid iterations. Considering the difference

between the work unit and fine grid iteration, and different efforts used on one single-grid

iteration, the performance of the present multigrid calculation using a non-orthogonal

grid is found to be comparable with the results reported by Vanka (1991) for flow in a

cube where the Cartesian coordinates were used.

In order to compare the performance of the multigrid and single-grid methods, com

putations with the traditional single-grid were also made. The convergence behavior

of the multigrid and the traditional single-grid methods are plotted in Figures 4.7 (a),

(b), (c) and (d) with reference to the equivalent work units for grids of 17 x 17 x 17,

33 x 33 x 33, 65 x 65 x 65 and 97 x 97 x 97, respectively. The convergence charac

teristics of these computations are also summarized in Table 4.1. CPU times for an

IRIX(SGI) machine are reported. Single-grid computations for the fine grids 65 x 65 x 65

and 97 x 97 x 97 were terminated after the first 2000 and 1000 iterations respectively as
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Finest MG MG CPU SG CPU CPU time Finest grid MG SG
Grid Levels seconds seconds speed-up iterations WU WU

17 x 17 x 17 4 47.2 213.9 4.5 18 34.91 242
33 x 33 x 33 5 390.9 7356.2 18.8 20 35.71 1092
65 x 65 x 65 6 4843.5 3.8 x 105* 78* 21 37.46 4300*

97 x 97 x 97 6 16495.2 1.6 x 106* 100* 24 41.46 6000*

Table 4.1: Convergence characteristics of all calculations (the superscript * indicates that
the values are estimated).

too much computational time is required to bring the residuals below 106 as specified

for the multigrid method. However the number of iterations required for convergence

can be estimated from the logarithmic variation after a certain number of iterations as

observed in Figure 4.7. The estimated speed-up ratio was 78 and 100 for the fine grids

65 x 65 x 65 and 97 x 97 x 97 respectively. From these results, it can be seen that the

multigrid algorithm produced a substantial improvement in the convergence rate. The

speed-up ratio was increased when the grid was refined. It should be noted that it is

impractical to seek a converged solution using the traditional single-grid method in the

IRIX (SGI) machine for the fine grid (4) which would require months to finish. However,

a solution can be obtained overnight on the same computer when the multigrid method

is used. This result clearly shows the necessity of using multigrid techniques for flow

calculations when very fine grids are required.

4.9.2 Laminar Flow in a Duct with Obstruction

The previous example requires the use of significantly non-orthogonal grids. However,

the problem does not involve other difficulties associated with grid curvature and the

degradation of spatial resolution on coarse grids as the grid is uniform and the grid

geometric quantities are constant everywhere. In the following example, the laminar flow
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in a duct with an arc on the bottom wall is computed for which a curved grid is required.

The geometry shown in Figure 4.8 consists of a duct with a square cross-section modified

by a circular arc on the bottom wall near the inlet. The counterpart of this problem in

two dimensions, i.e., flow in a planar channel with a circular arc on the bottom wall, was

recently computed by Shyy et al(1993b) using a multigrid algorithm. Here, the maximum

height of the arc is taken as 30% of the inlet dimension which is higher than that used

by Shyy et al (1993b). Multigrid calculations were carried out for a fine grid consisting

of 129 x 33 x 33 nodes using different grid levels in order to observe the efficiency of the

multigrid method using higher grid levels. Figure 4.8 shows a coarser grid 65 x 17 x 17

used in the present study where a non-uniform grid was adopted downstream. Figure 4.9

shows the coarsest grid, 9 x 3 x 3, used in the present study, where Figure 4.9a was

obtained by the restriction of grid lines on the finest grid and Figure 4.9b was obtained

directly from the coarsest grid nodes. It can be seen that the grid shown in Figure 4.9b

is not a faithful representation of the flow domain. When the defect equation (4.6) is

directly formulated on the coarsest grid, it is equivalent to using the grid geometric

quantities in Figure 4.9b. Therefore, the formulated governing equation is inconsistent

with that on the fine grid due to the degradation of the geometric representation of the

coarse grid. However, the physical geometric quantities calculated from the finest grid by

the proposed method are equivalent to those in the curvilinear grid shown in Figure 4.9a.

Thus, the representation of the flow domain does not deteriorate on the coarse grids.

Figure 4.10 shows the convergence histories of multigrid (MG) calculations using dif

ferent grid levels for the grid of 129 x 33 x 33. From this plot, it can be seen that the

computational efficiency is improved when a higher grid level is used even though the

coarsest grid was seriously degraded. Therefore, the effective grid levels useful for the

MG method are not limited by the geometric complexity, unlike the results reported by
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Figure 4.8: Illustration of the grid 65 x 17 x 17 used in the study.
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(a)

(b)

Figure 4.9: Illustration of the coarsest grid 5 x 3 x 3 in a xy— plane.
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Figure 4.10: Convergence history for computation of laminar flow in a duct using finest
grid 129 x 33 x 33.
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Shyy et at (1993b). The higher-level MG computations generated a substantial improve

ment in the convergence rate and a 5-level MG method resulted in a speed-up of the

convergence rate which was two times that of the 3-level MG calculation. This clearly

shows the advantage of the proposed method for multigrid calculations when the coarse

grid becomes degraded in spatial resolution.

4.9.3 Laminar Flow in a Strongly Curved 90° Pipe

In the last example, flow in a strongly curved pipe with a 900 bend was computed.

Such flows have been studied experimentally and numerically by a number of authors

(for example Smith et at (1993)) and contain important characteristics, including strong

secondary flow and strong grid curvature. The adopted geometry is similar to that used

in chapter 2 but with a more strongly curved bend of 90° with the radius of the bend

curvature equal to 1.5 times the pipe diameter (see Figure 4.11). The bend was fitted

with a straight pipe of two diameters length in the upstream direction and a sufficiently

long pipe downstream.

Figure 4.11 shows the finest grid of 33 x 33 x 97 used for the present calculation. A

non-uniform grid in the downstream direction was adopted in order to place the outlet

boundary far enough into the uniform flow region. Computations were carried out using

three different multigrid levels. For the 5-level multigrid calculation, the coarsest grid

consisted of 2 x 1 x 6 cells (as shown in Figure 4.12). As in the last example, Figure 4.12b

was obtained from the finest grid by restriction of the grid lines, and Figure 4.12a was

obtained directly from the the coarsest grid nodes. It can be seen that the geometric

representation of the coarsest grid in Figure 4.12a is seriously degraded.

The convergence behavior for computations using 4 different grid levels is shown in

Figure 4.13. Again, the present results show that the number of effective grid levels useful

for the multigrid method is not limited by the geometrical complexity. The acceleration
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Figure 4.11: Finest grid in the MG calculation of curved pipe flow, 33 x 33 x 97.
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(a) (b)

Figure 4.12: Coarsest grid 3 x 2 x 7: (a) grid restricted from the finest grid; (b) grid
obtained from the coarsest grid nodes.
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Figure 4.13: Convergence histories for computations using different grid levels.
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ratio of the multigrid method increases when the number of multigrid levels is increased.

With the 5-level multigrid calculation, the convergence rate accelerates more than 40

times compared to the traditional single-grid method. However, when the number of

multigrid levels is reduced to 4, the speed-up ratio is reduced to about 28. This result

shows the necessity of using higher grid levels for an efficient multigrid method. This

type of flow was also studied by Smith et al (1993) using a multigrid algorithm and a

reduction of the overall CPU time up to 20% was observed compared with the single-grid

method. The speed-up ratio of the multigrid method obtained using the 5-level grid in

the present study is found to be much higher than that reported by Smith et al (1993).

4.9.4 Developing Turbulent Flow in A Strongly Curved 90° Pipe

This example considers the developing turbulent flow in a strongly curved pipe. The

same geometry as that used for laminar flow in the previous example was adopted.

Computations were carried out for a Reynolds number of i0 with grids consisting of

17 x 17 x 49 and 33 x 33 x 129 nodes using four and five-level multigrid cycles respectively.

Figure 4.14 presents a typical plot of the convergence behavior for computations using

the multigrid and single grid methods for the 17 x 17 x 49 grid. The fast convergence

of the multigrid method can be seen. A reduction of 85% in CPU time was achieved.

The converged solution for the fine grid 33 x 33 x 129 was not carried out using the

single-grid method due to the long computer time required, but the estimated speed-up

ratio of the multigrid acceleration based on the first 500 iterations of the single grid

calculation is more than 20 (or 95% reduction). This result is quite encouraging for

multigrid calculations of turbulent flows.
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Figure 4.14: Convergence history for the computation of a developing turbulent flow in
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4.10 Closure

An efficient multigrid procedure for three-dimensional laminar/turbulent flows in general

curvilinear grids is presented based on the curvilinear coordinate-based method developed

in the previous two chapters. It is shown that in certain cases, the ordinary formulation of

the coarse-grid equations may result in inconsistent governing equations between fine and

coarse grids which reduces multigrid efficiency. Special procedures need to be taken for

the formulation of the coarse-grid equations in curvilinear grids and the treatment of the

‘wall function’ in turbulent flows. Computational tests show that the multigrid algorithm

developed here efficiently reduces overall CPU time for both laminar and turbulent flows.

On a very fine grid, the CPU time for the multigrid method was found to be about one

hundred times less than that for a single-grid method. This clearly shows the necessity of

multigrid method for computations using dense grids. Unlike the observations reported

in the literature, the number of effective grid levels useful for the multigrid method is

not limited by the geometrical complexities with the present method, even for seriously

degraded coarse grids.



Chapter 5

Domain Segmentation and the CMGFD Code

In this chapter, the methods developed in the previous three chapters are generalized

to non-structured curvilinear grids by using a domain segmentation technique (multi

block method). This technique divides the domain of interest into different sub-domains.

Solutions are obtained by iteratively applying a solver to each sub-domain. The domain

segmentation strategy adopted here is described in this chapter. Particular attention

is given to the communication among neighbouring sub-domains. The performance of

the multi-block method is investigated through several computational examples which

show that the developed method has the capability to deal with complex configurations

using multi-block curvilinear grids. A curvilinear, coordinate-based CFD code, called

CMGFD, is developed based on the methods described in this and previous chapters,

and an existing CFD code called MGFD.

5.1 Introduction

With the methods developed in the previous chapters, laminar/turbulent flows in arbi

trary single-block geometries can be solved with appropriate curvilinear grids. However,

only structured, curvilinear grids can be used with those methods. It would be difficult

to treat multiple flow regions using single block grids, such as that in film cooling of a

turbine blade.

One approach to deal with multiple flow regions with finite volume methods is the

use of a domain decomposition technique. This technique has become popular in dealing

116
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with complex geometries in recent years. Leschziner and Dimitriadis (1989) presented a

calculation procedure for flows in a domain consisting of a main duct and a side branch

which may intersect at any angle. They used a multi-block, non-orthogonal grid to

represent domains in two conjunction ducts. At the duct interface, the computational

sub-domains overlap one set of finite volumes; those pertaining to the velocities normal

to the interface. Perng et al (1991) and Hinatsu et al (1991) developed a multigrid

domain-splitting technique for simulating incompressible flows in complex geometries.

In this method, the momentum equations are solved independently on each subdomain

while the pressure field is computed simultaneously on the entire flow field by a multigrid

method. However, they only applied the method to several two-dimensional flows in

relatively simple geometries.

In this chapter, a domain segmentation technique in conjunction with the methods

developed in the previous three chapters are developed to allow the use of block-structured

(multi-block) curvilinear grids. Particular attention is given to the data transfers between

neighbouring blocks. Several computational examples are carried out to validate the

method. The methods described in this and the previous three chapters are implemented

in the curvilinear, coordinate-based CFD code CMGFD. The development of this code

is summarized.

5.2 Domain Segmentation Technique

The idea of the domain segmentation technique is not complicated. The domain of inter

est is segmented into an arbitrary number of sub-domains, called computation blocks, and

each block is covered by its own Cartesian or curvilinear grid. A solver is then repeatly

applied to each block to obtain a converged solution in the whole domain. However,

the development of a generally-applicable 3D multi-block CFD code is not trivial. A 3D
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multi-block and multigrid CFD code, called MGFD, was developed by Nowak (1992).

The code is written generally which allows an arbitrary number of blocks to be used. It

can be used to solve flows in arbitrary geometries which may be decomposed into a num

ber of rectangular sub-domains. In the present study, the domain segmentation technique

of Nowak (1992) is generalized to curvilinear grids by using the methods developed in the

previous chapters. This practice will allow the use of non-structured, curvilinear grids

to deal with arbitrary geometries with multiple flow regions. The developed multi-block

method is described in the following paragraphs.

First, the domain of interest is segmented into a number of subdomains, which are

called computational blocks. The segmentation of a given domain can be arbitrary and

depends on the configuration. Each block overlaps with its neighbouring blocks by two

sets of cells to facilitate the communication among blocks.

In each block, the single-block solution method developed in chapters 2 and 3 is ap

plied to solve the governing equations. First, from either an initial-guess solution or

an intermediate solution obtained from the last iteration, the auxiliary Cartesian veloc

ity components and the turbulence viscosity are calculated. Next, the coefficients and

source terms in all the discrete governing equations are calculated using the formula

tions presented in chapter 2 and 3. The calculation of the coefficients and source terms

requires the geometric quantities and dependent variables at neighbouring control cells.

This procedure needs special treatment at block boundaries. For boundaries of the block

which fall on flow boundaries, such as a wall or an inlet boundary, the actual boundary

conditions are applied. For boundaries which fall in a neighbouring block, the dependent

variables and the physical geometric quantities are obtained from the neighbouring block.

The details will be discussed in the next section. After the discrete governing equations

are obtained, the alternative line-coupled iterative procedure described in chapter 3 can

be used to update the dependent variables.
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The above procedure is applied to all the blocks sequentially. After sweeping all

the blocks once, the turbulence viscosity and auxiliary Cartesian velocity components

are recalculated for each block and all the coefficients and source terms are recalculated

based on the updated turbulence viscosity and velocity unknowns. The entire procedure

is cycled through all the blocks until the residuals become sufficiently small.

Since the unknowns in only one block are solved at one time, the storage required for

the quantities in the discrete equations is much less than that required when the whole

flow domain is solved together. The number of cells contained in each block is usually

small and is independent of the number of cells used in the whole flow domain, so the

computer storage required can be reduced substantially. More importantly, this solution

procedure is able to deal with flows in multiple flow regions.

5.3 Communication Between Blocks

Efficient communication between the blocks has to be established in order to obtain

accurate solutions and fast convergence. This is done by appropriately transferring data

between adjacent blocks in each iteration. There are different methods to transfer data

between neighbouring blocks. In the present study, the method used by Perng (1991)

and Nowak (1992) is followed. In this method, each computational block is extended

into its neighbouring blocks by two sets of cells. The discrete governing equations on the

extended cells are formulated using the physical geometrical quantities and dependent

variables obtained from the neighbouring blocks. The discrete governing equations on

the extended domains are solved in the same way as those on ordinary cells by using a

line-coupled solver.

In the CMGFD code, three types of multi-block curvilinear grids are used which

require different treatments: (1) the grid lines in adjacent blocks match at the interface
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with complete continuity, (2) the grid lines match at the interface but with discontinuous

grid line slopes, and (3) the grid lines do not match at interface. For the first type of

grid, an interior boundary condition is used which ensures that both mass and momentum

conservation are satisfied at the interface. This interior boundary condition in each block

is implemented by using the overlapping cells in each of the neighbouring blocks. For

curvilinear grids, the formulation of governing equations on the extended cells in a block

requires the grid physical geometric quantities in its neighbouring blocks. The transfer

of the grid geometric quantities from one block to another is carried out at the beginning

of the solution procedure. The unknowns on the extended boundaries are prescribed by

using the intermediate solution of the associated neighbouring blocks. When the coupled

Gauss-Seidel solution solver has swept over all the computational blocks, the unknowns in

the whole flow domain, including all the interfaces, are updated. The converged solution

satisfies both mass and momentum conservation near the interfaces. Therefore, such an

approach will not produce any additional inaccuracy near the interface.

For the second type of grid, since the grid lines change directions abruptly across the

interfaces (see in Figure 5.1), the derivatives of the grid coordinates are not continuous

across the interface. Therefore, the ordinary numerical formulations using derivatives

of grid coordinates may produce significant numerical errors. With the numerical for

mulations described in chapter 2, the coordinate derivatives are avoided. However, in

terpolations are required to obtain the physical geometrical quantities and the velocity

components at the positions where they are not defined. These interpolations near the

interface are important as they may cause significant numerical error. This is discussed

as follows.

For convenience of discussion, the scheme is presented for the two-dimensional case but

it can be generalized to three-dimensional problems without additional difficulties. Figure

5.1 shows a two-block grid with discontinuous grid line slopes at the block interface. Due
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Figure 5.1: Illustration of multi-block curvilinear grids with discontinuous grid line slopes
across the interface.
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to the change of grid line slopes, the surface normal vectors e1 (or contravariant vector

a1) change direction abruptly across the interface. From equation (2.25) we know that

the velocity component UE is grid oriented and depends on the surface normal vector

e1. Therefore, the change of grid line direction can produce a large jump of UE across

the interface even with constant a velocity field, and the ordinary interpolation becomes

inadequate.

The numerical formulation of the momentum equations needs two (three for 3D)

velocity components at each velocity position. Since only one velocity component is

defined at a velocity position (control volume surface) in a staggered grid arrangement,

other components have to be obtained by interpolation. In particular, interpolation is

needed to obtain the velocity UE at each U’l position on the interface. As an example,

we consider the interpolation procedure at the point (i, j+1/2) on the interface. Here,

the UE_ velocity positions are marked with the (i-1/2, j), (i+1/2, j), etc., and the U’—

velocity positions are marked with (i, j-1/2), (i, j+1/2), etc. On the point (i, j+1/2), only

U” is defined and Ue has to be obtained from its neighbouring values by interpolation.

One natural interpolation scheme is to take the average of the four neighbouring values,

i.e.,

UE(i,j+)= 2,j 2,3+1+2,1+1) (5.1)

As discussed in the previous paragraph, the values of U(i — 1/2,j) and U(i + 1/2,j)

in segment 1 can be significantly different from the values at the neighbouring points

UE(i
— 1/2,j + 1) and UC(i + 1/2,j + 1) in segment 2 due to the sudden change of the

surface normal vectors e’ across the interface. Averaging these sometimes significantly

large different values unavoidablely produces certain numerical errors. Furthermore, the

velocity unknowns in scheme (5.1) have inconsistent base vectors. As discussed in chapter

2, each velocity component U pertains to a base vector. The surface normal vector e’ is
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used in the present thesis as the base vector to define U. A base vector for the averaged

velocity unknown UE(i,j + 1/2) has to be properly defined by interpolation. However,

a proper interpolation scheme to define the surface normal vector e1(i,j + 1/2) at the

interface can not be justified in view of the suddenly changed surface normal vectors e1

across the interface.

In the present study, an interpolation scheme is proposed to avoid these uncertainties

of interpolation near the interface. Instead of the full average scheme (5.1), a one-side

interpolation is used, namely, the interpolation at the interface is only taken from one

side of the interface. For example, the velocity component U(i, j + 1/2) at the interface

is averaged only from one segment, either from segment 1,

1 Ui — • + U1i+ 1
U(i,j + ) =

2’1

2
2’s) (5.2)

or from segment 2,

U(i,j+ )
= U(i— ,j+1)+U(i+ ,j+1)

(53)

If the interpolation is taken in segment 1, for instance, using equation (5.2), the surface

normal vector e’ will be calculated in the same way by averaging the two surface normal

vectors in segment 1 without using surface normal vectors from segment 2. Even though

the scheme (5.2) has only first order of accuracy, the base vectors (surface normal vec

tors) for the three velocity components U(i,j + 1/2), U(i — 1/2,j) and U(i + 1/2,j)

are consistent since there is no significant difference among them. This avoids the in

consistency of the base vectors (the surface normal vectors) associated with the velocity

components used in the full average scheme (5.1).

The choice of scheme (5.2) or (5.3) can follow the idea of the upwind difference

scheme. If UE(i,j + 1/2) > 0, the fluid flows from segment ito segment 2. The velocity

components U at point (i,j+1/i) are more likely to be influenced by those in segment
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1. Therefore, the interpolation scheme (5.2) based on segment 1 is used. Otherwise the

scheme (5.3) based on segment 2 is adopted.

For the third type of grid, since the grid lines do not meet at the interface the

extended cells can not be obtained directly from their neighbouring blocks. To reduce

the inaccuracy caused by interpolation, only semi-matched grids at the interface are

considered, namely grid lines in one block which meet with a coarser or finer grid of

another block (the same concepts as those used in a multigrid method). An illustration

of this type of grid is given in Figure 5.2. In this figure, the grid in Segment 1 (bottom)

is denser than that in Segment 2. For such grids, the extended cells for a block can be

constructed using a finer or coarser grid from its neighbouring blocks as illustrated in

Figure 5.2. From Figure 5.2 it can be seen that the extended cells of Segment 1 are just the

finer grid of Segment 2. The grid physical geometric quantities and the unknowns in the

additional cells are obtained from the corresponding values in the neighbouring blocks by

restriction or prolongation with the same strategy as that used in the multigrid method

described in chapter 4 (see Section 4.4). Such an assumption reduces the computational

effort significantly for non-matched curvilinear grids.

5.4 The CMGFD Code

As mentioned earlier, the CMGFD code was developed based on an existing CFD code,

MGFD, at UBC. The code was developed in four steps. In each step, detailed inves

tigation of the method and validation of the code were carried out in order to achieve

an efficient and accurate code. The methods described in chapters 2-5 have been imple

mented in the code. This is discussed in the following paragraphs.

Unlike Cartesian coordinate-based calculations, the computational grid for a complex
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Segment 2

- Extended cells
U —irom Segment 1

Interface

Extended cells
from Segment 2

Segment 1

Figure 5.2: Illustration of the semi-matched multi-block curvilinear grids.
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geometry is usually not simple to generate. For generality, the code assumes that a curvi

linear grid is available for a given problem and leaves the grid generation task for various

grid generation techniques, such as one which is described in chapter 6. Therefore, the

program GEO developed for generating various non-uniform Cartesian grids in MGFD

code actually will not be used in the CMGFD code.

For a given grid, the Cartesian coordinates of all the grid nodes are loaded into the

CMGFD code. A subroutine package has been developed to deal with the curvilinear

grids and arrange the basic block structures. The grid geometric quantities at cells in each

block are calculated from the given grid nodes. First, the surface normal vectors, surface

areas and volumes are calculated using the grid nodes. The unit tangent vectors are

then calculated from the surface normal vectors by the orthogonal relations. Secondly,

the physical geometric quantities are extended two sets of cells outside the block to

facilitate the formulation of the governing equations. For a boundary coinciding with a

flow boundary, the physical geometric quantities outside the boundary are taken to be

equal to the nearest values. For a block boundary falling in a neighbouring block, the

geometric quantities are directly taken from this neighbouring block.

There are two different approaches for storing the geometric quantities. One approach

is calculating only one set of basic geometric quantities, for instance the surface area

vectors, and storing them in the computer memory. All other quantities used in the

formulation of governing equations are calculated from these basic geometric quantities

in each iteration. The advantage of such an approach is that substantial computer

memory can be saved. However, recalculation of these quantities in each iteration requires

significant computer time. In the present study, an alternative approach is followed and

all the geometric quantities are calculated at the beginning and fixed throughout the

solution procedure.

As a by-product, the grid is checked using the geometric quantities, un-usable grids
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such as the grids with zero or negative volume cells, are reported to the user. This often

happens due to the wrong output of the grid generation code or inconsistent geometric

information loaded to the CMGFD code. In addition, there are a number of physical

characteristics that affect the quality of the grid, namely orthogonality, smoothness, cell

expansion ratios, etc. All these quantities are checked to identify low quality grids for

possible improvement.

The computed geometric quantities are used to formulate the governing equations.

This was done by properly modifying the MGFD code. All the code involved with grid

information (such as cell dimensions dx, dy, dz) are modified throughout the code. The

formulations for the coefficients and source terms are substantially changed from those

in the MGFD code. The source terms in the discrete momentum and continuity equa

tions are particularly complex in the present formulation as they include non-orthogonal

pressure, non-orthogonal diffusion, and grid curvature terms. Their calculation requires

various interpolations of velocity, pressure and geometric quantities. It is found that the

interpolation procedures are important in terms of computational accuracy and efficiency.

An interpolating procedure was developed through testing a number of problems.

The multigrid method proposed in chapter 4 is implemented in the CMGFD code by

using a new subroutine package. This package contains three subroutines namely, ‘FMG’,

‘FAS’ and ‘GEOM’. The FMG and FAS subroutines execute the standard FMG-FAS

procedure. They are written generally which allows easy implementation of multigrid

methods to other single-grid CFD codes. This package will also be used in the multigrid

elliptic grid generation code, MBEGG (see the next chapter). The GEOM subroutine is

written to calculate the physical geometric quantities on all the coarse grids using the

method developed in chapter 4.

So far, the code is limited to 3D steady, incompressible laminar/turbulent flows with

scalar transfer. For turbulent flows, the standard k — e model with the wall function
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treatment is used for the turbulence closure. The CMGFD code has the capability to

deal with arbitrary 2D/3D geometries by using separate curvilinear grids in different flow

regions. There is no restriction for curvilinear grids to be used and no limitation for the

number of segments in each flow region. An efficient multigrid method is implemented

in the code and promises fast convergence for both laminar and turbulent flows.

5.5 Test Computations

The validation of the CMGFD code has been carried out throughout previous chapters for

various geometries using single-block curvilinear grids. In this section, several calculations

using multi-block curvilinear grids are presented.

5.5.1 Computations of a L-Shaped Duct

In the first example, laminar flow in a b-shaped duct is calculated. This example allows

one to validate the solution method using multi-block curvilinear grids with discontinuous

grid slopes across block interfaces. In this study, two computational grids are adopted,

one is a two-segment non-orthogonal grid with discontinuous grid slopes and the other

is a two-block Cartesian type grid. Figure 5.3 shows the two-block non-orthogonal grid

used for the present study. It can be seen that the grid lines change direction signifi

cantly (by 900) at the interface. For comparison, computation is also carried out using

a two-block Cartesian grid as shown in Figure 5.4. Figure 5.5 shows the predicted flow

field in the symmetry plane of the duct using the two-block non-orthogonal grid. Two

recirculation zones are found in the two corner regions. Figure 5.6 shows the predicted

flow field using the orthogonal grid at the same plane. From Figures 5.5 and 5.6 the sim

ilarity of results predicted by the non-orthogonal and Cartesian grids can be seen. For
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Figure 5.3: Illustration of the adopted two-block non-orthogonal grid at the symmetry
plane for the L-shaped duct.
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Calculation using two-segment curvilinear grid

Figure 5.5: Predicted velocity field at the symmetry plane by the non-orthogonal grid.
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Calculation using two-segment cartesian coordinates

Figure 5.6: Predicted velocity field at the symmetry plane by the orthogonal grid.
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Figure 5.7: Comparison of the u-velocity profiles at the interface shown in Figure 5.3.
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Figure 5.8: Comparison of maximum residuals by multigrid and single-grid calculations
for the non-orthogonal grid.
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a quantitative comparison, the predicted U-velocity (U is the Cartesian velocity com

ponent in the outflow direction) profiles at the centerline of the interface from the two

grids are compared in Figure 5.7. Good agreement can be seen. These results show that

the developed method allows the use of multiblock grids with significantly discontinuous

grid line slopes. Computations are carried out for the non-orthogonal grids with both

multigrid and single grid methods. The convergence behaviour of multigrid and single

grid calculations are shown in Figure 5.8. It can be seen that the multigrid method

converged much faster than the single grid method. This shows the advantage of the

multigrid method for computations using multi-block curvilinear grids.

5.5.2 Calculation of A Hydrocyclone

Hydrocyclones have many applications in industry. Figure 5.9 illustrates a conventional

cone-cylindrical hydrocyclone. The cylindrical part is closed at the top by a cover,

through. which the vortex finder protrudes some distance into the cyclone body. The

underfiow leaves through the opening in the apex of the cone. The liquid enters the

hydrocyclone through a tangential inlet (feed opening) and leaves through the vortex

finder and underfiow orifice.

The developed CMGFD code is applied to simulate fluid flow in a hydrocyclone. Ex

cept for the region in and just around the tangential inlet duct, the motion of the fluid

within the hydrocyclone has axial symmetry. Therefore, the flow can be treated approx

imately as two-dimensional, axi-symmetrical, while the angular velocity component is

treated as a scalar quantity according to a discussion with Abdullah (1993). Figure 5.lOa

shows the non-orthogonal grid used for the present calculation. The grid contains three

blocks and the third block grid is generated by solving a two-dimensional grid generation

system. The predicted velocity field in a vertical plane is shown in Figure 5.lOb. From

this figure, the separation of fluid can be seen. Most of the incoming fluid moves in an



Chapter 5. Domain Segmentation and the CMGFD Code

I=O.4*D

DO=O.34*D

136

D
4.

Vortex finder.

I DO

D=O.075m

z=L=5*D

Tangential vel. inlet, feed opening

z=2.9*D

x

underfiow orifice (apex opening)

Figure 5.9: Illustration of a conventional hydrocyclone.
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(b)

Figure 5.10: (a) 3-block mesh used in the present study, (b) predicted velocity field.

outer helical flow into the outer portion of the inverted cone where it begins to feed across

towards the center. Some of the downward flow leaves through the underfiow orifice in

the apex of the cone while the rest reverses its vertical direction and goes up via the

inner helical flow and out through the vortex finder.

5.5.3 Laminar Flows Over A Turbine Blade

The last example in this chapter is a computation for laminar flows over a turbine blade.

Such a flow has no direct application to turbine engines since the flow in film cooling

of turbine blades is actually turbulent. Nevertheless, the present calculation is useful in

providing guidelines for calculation of flows in complex configurations using multi-block

curvilinear grids as well as the prediction of film cooling of an actual turbine blade.

The computational domain is chosen according to the UBC experimental turbine

blade model of Salcudean et al (1993). This model uses four rows of circular injection

block3: 9x1 1
(a)
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Figure 5.11: Computational domain for a turbine blade model.

tubes located at a semi-circular nose coupled to a flat after-body. Exploiting the advan

tage of its symmetric property about the stagnation line, only half of the flow domain is

taken as the computational domain. Figure 5.11 shows the physical domain selected for

the present numerical study where three injection tubes are adopted in a row of circular

cooling holes in order to simulate flows with multi-injection holes. The physical domain

is segmented into four subregions, a main flow region and three injection coolant regions.

In order to obtain a continuous grid at the interface, a rectangular type grid is used for

the injection holes instead of cylindrical grids. A multi-block curvilinear grid has been

generated using the MBEGG code described in the next chapter. This grid is shown in

Figure 5.12.

Computations were carried out for a Reynolds number of 1000 and mass flow ratio of

0.5, where the Reynolds number is defined with respect to the radius of the semi-circular

Main ga

Coolant holes
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Figure 5.12: A 4-block curvilinear grid generated for the domain shown in Figure 5.11.
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x

Figure 5.14: The velocity at a surface distanced from the turbine wall by two cells
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body and main-stream velocity. Figure 5.13 shows the calculated velocity vectors on a

xz-plane through the middle of an injection hole, from which it can be seen that the

velocity is very non-uniform at the coolant hole exits. The flow in the injection hole

exits is affected by the main stream velocity and strong pressure gradient and, thus,

changed rapidly with respect to magnitude, direction, etc. The velocities at a surface

distanced from the turbine wall by two cells are plotted in Figure 5.14. Figure 5.15

shows the development of the non-uniform profile near the exit of injection holes. The

streamline velocity contour is plotted at the cross-planes of an injection hole at four

different locations. A strongly non-uniform velocity profile near the injection hole can

be clearly seen, which shows that the use of a uniform velocity profile as the boundary

condition at the injection exit, used in many previous studies, could be very inaccurate.

5.6 Closure

A domain segmentation technique in conjunction with the curvilinear coordinate-based

method developed in the previous three chapters is described. Communication between

different blocks is emphasized. The developed multi-block method allows the treatment

of arbitrary complex configurations using non-structured curvilinear grids. A multi

block and multigrid code is developed based on an existing CFD code. The multi-block

technique in conjunction with the methods developed in the previous three chapters is

implemented in the code. Computational examples show that the developed method and

code can be used to solve flows in complex geometries using block-structured curvilinear

grids with significant discontinuities in grid line slopes.



Chapter 6

Numerical Grid Generation

In this chapter, the development of a 3D elliptic grid generation code is presented. The

code is developed to address the need to generate appropriate grids for analyzing the film

cooling of turbine blades. An elliptic grid generation method is used in the code, which

solves three nonlinear, elliptic, grid generation equations. A multigrid method is devel

oped to solve these equations which provides an efficient grid generator. Techniques to

control grid quantities are introduced. A multi-block grid generation strategy is adopted

to allow the generation of block-structured curvilinear grids in arbitrary geometries.

6.1 Introduction

In order to simulate the film cooling process over a turbine blade, suitable grids have

to be generated to represent the actual blade geometry. One of the important tasks

in the present thesis is to develop an efficient grid generator to generate suitable grids

over turbine blades. This includes the development of a multigrid and multi-block grid

generation code, called MBEGG.

Grid generation has been investigated extensively in recent years and a large number

of research papers have been published on the generation of body-fitted grids for a wide

variety of geometries in two as well as three dimensions. A review paper by Thompson

(1982) summarized most of the work done before 1981. The grid generation methods

used in the literature can be classified into three categories: (1) conformal mapping,

(2) algebraic grid generation methods and, (3) elliptic grid generation methods. Among

144
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these methods, the third type of method has the best potential for the generation of

grids in complex three-dimensional configurations. In the present study, the elliptic grid

generation method proposed by Thompson (1985) is adopted. The method is based on

three elliptic partial differential equations. When proper grid nodes are specified at the

boundary of a domain, a smooth grid can be generated by solving these equations.

In the grid generation equations, the inhomogeneous terms are problem-dependent

functions (which are commonly called control functions). The choice of an appropriate

scheme for the evaluation of the control functions is one of the important considerations

in an elliptic grid generation method. Methods to achieve certain grid quantities through

the control functions, such as stretching and orthogonality, have been implemented in

the code. When these grid quantities are initially specified by users, the code can choose

the appropriate source terms to obtain the desired grids automatically.

In an elliptic grid generation method, a suitable solution method has to be developed

to solve the three nonlinear, elliptic, differential equations. The multigrid method is

an ideal solver for the grid generation equations due to the fully elliptic nature of these

equations. In the present study, a multigrid method is developed to solve these equations.

It is found that the method produces a much faster convergence rate than the traditional

single grid method.

For complex configurations, it becomes necessary to partition the physical domain

into a number of subregions. Grids are generated in the different subregions. A number

of papers have been reported in the literature for generating multi-block (composite)

grids in various complex configurations. A detailed discussion can be found in the review

paper of Thompson et at (1982). In the MBEGG code, a multi-block method is used to

allow the treatment of multi-region geometries. The development of the MBEGG code

together with the methods adopted is described in the following sections.
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6.2 Elliptic Grid Generation

The elliptic grid generation method proposed by Thompson (1985) is based on the fol

lowing well-known Possion equations:

\7k = Pk(xl,x2,x3), Ic = 1,2,3, (6.1)

where (x1,x, x3) are the Cartesian coordinates in a physical domain and (i=1, 2, 3)

are the curvilinear coordinates in a regular domain. Equation (6.1) has the same form as

the heat conduction equation, where P2(xi, x, x) are heat source terms. The equations

establish a correspondence between the Cartesian coordinates (x1,x2,x3) in a complex

physical domain and the curvilinear coordinates 2, in a cuboid domain. However,

the equations in this form, yielding (i,2,3) for given (x1,x2,x3)would be difficult to

use, especially when specifying the boundaries. Therefore, the following transformed

Poisson equations are usually used in the actual grid generation procedure:

O2Xk ä2Xk ö2Xk

____

a11 2 + a22 2 + a33 2 +2a12ö + 2a138 + 2a238
1 2 163 23

+ + + = 0, (6.2)

where the coefficients a23 are given by the following expression:

a23 = bm:bmj
m1

and where b23 is the co-factor of the (i, j) element in the transformation matrix

M = ()3x3

with J=det(M) as the Jacobian determinant. In the above equations, the P2 are problem

dependent functions which can be used to control the grid characteristics, such as or

thogonality and grid stretching. Thus, an important part of the work in the elliptic grid
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generation method is to develop an appropriate scheme for the evaluation of the control

functions. When a grid is specified at the boundary of a domain, the smoothest possible

grid can be obtained by solving the above grid generation equations.

6.3 Control Functions

To obtain the desired grids, proper control functions have to be constructed. In the

MBEGG code, two types of control functions are calculated from the boundary grid

nodes which may be specified by the user. The first type of control function controls the

grid stretching, and the second controls the grid orthogonality near the boundaries. Such

control functions are implemented in the code to allow the users to generate the required

grids. The two types of control functions are calculated from the boundary grid nodes

prior to the solution procedure. The calculation of the two types of control functions is

described in the following paragraphs.

For the convenience of our discussion, the surfaces in a three-dimensional block are

numbered. This is illustrated in Figure 6.1. Face 1, for example, is the boundary surface

where is fixed to zero.

The stretching functions used here are based on the method of Thomas and Middlecoff

(1980). These functions have the following form,

= —(xxE + + + y + z.), i = 1,2,3 (6.3)

where the superscript C3 indicates that the functions control stretching and the subscripts

indicate differentiation. With these stretching functions, the stretching of the grid at

boundaries can be transmitted into the interior.

In the MBEGG code, the F’ functions are calculated on all the boundaries where

is not a constant. For instance, P1’ is calculated on faces 3) to 6) but not on face 1) or 2).

This is because the P function is defined by the deratives with respect to which can
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Figure 6.1: Illustration of the face numbers in a 3D block.

not be calculated from the boundary nodes on surfaces 1) and 2). This function can be

calculated on faces 3) to 6) by using certain difference approximations. In the MBEGG

code, a second order difference scheme is used to discretize all the derivatives involved

in the F functions. After the F functions are calculated, they are then interpolated

into the interior of the grid using certain interpolation methods. These control functions

are calculated only once at the beginning of the solution process. This type of control

function is very useful for most grid generation problems.

The control functions used to control grid orthogonality near the boundaries used

in the MBEGG code are based on those proposed by Steger and Sorenson (1979). The

control functions are assumed to have the following form:

(6.4)

where the index n is the surface number from 1) to 6) (see Figure 6.1). The first term

on the right-hand side of equation (6.4) is the stretching function described in the last

paragraph, and the second term is the function to control the orthogonality near the

3
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boundary. Each R is a function which can be used to control the cell height and

orthogonality on face ‘n’. The R are determined as follows. Taking R (i=l,2,3) as

examples, the functions are assumed to have the following form,

R(1,2,3)= (6.5)

where at are positive constants. To define appropriate Q2, equations (6.2) are applied

on face 1) to obtain three linear equations for Qi, Q2 and Q. These equations can

be solved to obtain Q (i=l,2,3) if all the derivatives involved in equation (6.2) can

be calculated from grid nodes on face 1). This means that all possible first and second

partial derivatives of x with respect to must be determined. Derivatives involving only

or can be found by simply differencing the given boundary grid nodes. However,

derivatives involving can not be calculated in an obvious manner from the boundary

grid nodes. These derivatives are found from the constraints imposed upon a line of

varying which intersects face 1) as follows: (a) it must be normal to the tangent vector

along the 2 direction, (b) it must be normal to the tangent vector along the direction,

(c) the length along that line from the surface to the next node must be controlled. These

geometric constraints can be expressed in the following equations:

OXi Oxi Ox2 Ox2 Ox3 Ox3 —

+ + — 0, 6.6
uci ‘c uç ‘ç uci

Ox1 Ox1 Ox2 Ox2 Ox3 Ox3 —

+ .

-

+ — U,

uci uç3 uci uç3 uci 1Jç3

=
2, (6.8)

where S is the desired distance to the first point from face 1). From these equations,

the first derivatives with respect to i can be solved. The only derivatives remaining to

be determined are the second partial derivatives with respect to . Those can be found

by differencing the existing solution in the iteration process. After all the derivatives
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involved in equation (6.2) are calculated, these equations are treated as a 3 x 3 linear

algebraic system for the unknowns Qi, Q2 and Q. The orthogonal control functions R

can then be found using equation (6.5).

With the control functions expressed in equation (6.4), boundary stretching can be

conserved in the interior and orthogonal grids at boundaries can be obtained. These two

types of control functions can be used separately or in combination.

6.4 Multigrid Solver

The numerical solution of equation (6.2) can be obtained by iterative methods, such as

Gauss-Seidel iteration. Although iterative solution procedures have been widely used,

they become computationally expensive for finer grids and for higher accuracy. Thus,

there is a need to devise faster solution procedures. The multigrid method is an ideal

solver for the grid generation system, due to the fully elliptic nature of these equations.

In order to obtain an efficient grid generator, a multigrid method is developed to solve

these equations. The Full Approximation Scheme (FAS) of Brandt (1980) in conjunction

with Full Multigrid Cycling (FMG) is adopted. The basic idea of the FMG scheme is to

provide a good initial solution for the finer grids by prolongating from the solutions on

coarse grids. This avoids the need for an algebraic grid generation procedure for initial

solutions, which is often necessary for single-grid methods in order to avoid singularities.

A multigrid method includes four major components: discretization, smoothing (so

lution solver), restriction, and prolongation, which are summarized in the following para

graphs.

Discretization of equations (6.2) is obtained using the second-order, central difference

scheme for all derivatives involved. The resulting discrete equations are solved on a

cuboid domain with a Dirichlet boundary condition. The discrete governing equations



Chapter 6. Numerical Grid Generation 151

are then written as seven-point formulas as follows,

apbp = aEbE + awqw + aNcbN + asqs + arbT + aBcbB + C (6.9)

where the variable q expresses the three unknown xk (k=1,2,3) and the subscripts W,

E, etc. indicate the six neighbouring positions corresponding to node P.

Since the coefficients a23 in equation (6.2) are functions of the coordinate derivatives,

the singular case, i.e. J=O, and the anisotropic case where the coefficients a11 ,a22 and a33

have different orders of magnitude, e.g., a11 << a22, may occur. The point Gauss-Seidel

type relaxation is not efficient for the anisotropic case, such as a11 << a22, since it is only

smoothed in the 2 direction and not in the i direction. This can be remedied partially

by simultaneously solving for those unknowns along a line parallel to the 2 direction.

To prevent all the possible anisotropic cases, the alternating line-coupled Gauss-Seidel

iterative procedure is used as the smoother.

Singular cases may also happen during iteration (for example, zero initial guess so

lution will result in a11 = a22 = a33 = 0). For such cases ap 0, and the Gauss-Seidel

type relaxation fails as a smoother. To avoid this case, an artificial damping quantity

is introduced. That is, a positive quantity 13qp is added to both sides of equation (6.9),

where 3 is a positive constant and is chosen depending on the problem to be solved.

Therefore, the source term C is augmented by an amount of/3çbp while the coefficient ap

of the main diagonal term is increased to ap + /3.

Restriction is a process by which contents of a fine grid are transferred to a coarser

grid after a few sweeps of relaxation. Two quantities, namely, the approximate solution

(x1,x2,x3) and the residual are transferred to the coarse grid by two different types of

operators. Pure injection is used for the restriction of the solution. In order to preserve

the high frequency contents of the fine grid residuals, full weighting is applied in the

transfer operator for residue restriction.
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Prolongation is a process by which the corrections and solutions (x1,x2,x3) in the

coarse grid are interpolated onto the fine grid. Its order depends on the order of the

differencing scheme and for a second order difference scheme, it is sufficient to apply

linear interpolation for prolongation to avoid large magnification of the high frequency

components. In the program, bilinear interpolation is used.

6.5 Multi-Block Grid Generation

Although in principle it is possible to establish a correspondence between any physical

region and a single rectangular type domain by solving the elliptic grid generation equa

tions, the resulting grid is likely to be too skewed and irregular to be usable for certain

complex 3D configurations, such as that for the film cooling of a turbine blade. For com

plex configurations it becomes necessary to partition the physical domain into a number

of subregions. Grids are generated in different subregions.

In the MBEGG code, a multi-block grid generation method is used to generate grids

for complex geometries. In this method, the entire complex physical domain is segmented

into different sub-domains called grid blocks. Grids are generated in each block and

patched together to produce a multi-block grid.

The topology to define the block structure in a multi-block method can be complicated

for complex configurations. In the MBEGG code, the multiblock topology is defined

in the following manner. First, a data file is created to provide the basic geometric

information, such as the number of blocks, the neighbouring blocks, the grid dimensions of

each block, and block types. Secondly, a Cartesian coordinate system is chosen referring

to the given configuration to define the coordinates of each point in the domain.

A subroutine is used to define the block structure from the information provided by

the user. Each block is defined by six boundary surfaces. Each surface is defined by
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four edges. The shape of each edge is specified by the user as either a line or a curve

segment. For line segments, oniy the coordinates of the two end points are required.

For a curved segment, a function or certain constraints have to be given. A rule for the

grid distribution in each edge is specified by the user, such as uniform distribution or

nonuniform distribution with a given cell-dimension ratio. From this information, the

grid nodes in an edge are calculated. After all the edges have been defined, the grid

for each boundary surface can be generated. There are two types of boundary surfaces;

one is a plane surface and the other is a curved surface. For a plane surface, the two-

dimensional, elliptic, grid generation equations are solved to generate the smoothest grid

on the surface. The grid generation for a curved surface is somewhat more involved. In

the present study, an indirect technique is used. First, the curved surface is mapped into

a 2D plane area according to certain rules. A grid is then generated for the plane area

by solving the 2D, elliptic, grid generation equations. The grid for the curved surface is

obtained by mapping the 2D plane grid back onto the curved surface.

With the specified grid coordinates on the six surfaces of each block, the inner grid in

each block can be obtained by solving equation (6.2) while the grid coordinates of the six

surfaces are used as boundary conditions. For multi-block grids, the blocks share common

boundary surfaces called interfaces. The grids near the interfaces have to be controlled

in order to establish good relations between adjacent blocks. The grid lines in adjacent

blocks might be made to meet at the interface with complete continuity, with continuous

grid line but with discontinuous slope, or perhaps not to meet at all. Matched grid lines

across the interface can be achieved by simply specifying the same grid coordinates for

two adjacent blocks at the interface. This type of grid is adopted in all our calculations.

For a multi-block grid, smooth grid lines across the interfaces are preferred. This can

be achieved by specifying both the same grid coordinates and same grid line slopes at

the interface. Unfortunately, the elliptic grid generation system only permits one type
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of boundary condition to be specified in order to have a solution. In the present study,

generating grids with smooth grid lines across the interfaces was not sought. Instead,

efforts are made in the CMGFD code to allow for the use of discontinuous grid line slopes

across the interface.

6.6 The Code Structure

This code includes a 2D, elliptic, grid generation package and a 3D, elliptic, grid gen

eration package which can be used to generate grids in arbitrary 2D or 3D single-block

domains. The 2D grid generation code solves a two-dimensional, elliptic, grid genera

tion system and can be used to generate grids on the boundary surfaces of each block

which serve as boundary conditions for three-dimensional grid generation. The 3D grid

generation code solves the three-dimensional, elliptic, grid generation system and can be

used to generate grids in hexahedral domains of arbitrary shape. The automatic choice

of control functions is implemented in both packages. Designed grids can be obtained by

specifying the control functions. Both the 2D and 3D code packages are written using

a full multigrid and full approximation scheme. The code package described in chapter

5 for the multigrid method is modified for the present use. The MBEGG code is con

structed by using the two single-block generation codes and some subroutines for domain

decomposition and linkage.

6.7 Application of the Code

The code has been applied to generate grids in various geometries, such as curved pipes

and turbine blades, to support the application of the CMGFD code. The generation of

those grids, such as the multi-block grids over a turbine blade, have been shown in the

chapters where the problems are solved. In this section, only the generation of a grid in
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a 2D domain is presented to demonstrate the performance of the multigrid method.

Figure 6.2 shows the domain to be considered. This domain is related to the con

figuration of a turbine blade to be studied in the next chapter. Here, the circular edge

represents the blade surface in the cross-blade section. Such a domain will be used as a

boundary surface in a multi-block grid over the turbine blade.

Computation is carried out using a 6-level multigrid with the coarsest grid containing

only 2 x 2 cells. Convergence was considered to be achieved when the maximum residues

for all the three governing equations were less than a prescribed tolerance, which for these

tests was set at 5 x iO. The converged solution is plotted for a finer grid (32 x 32) in

Figure 6.3.

It was found that the full multigrid method which first started on the coarsest grid

had significant contributions to numerical stability for the grid generation. Because of the

strong nonlinearity of the grid generation equation, an inadequate initial guess will cause

numerical instability. Computations using the single-grid method showed that it was

difficult to converge for fairly dense grids. An algebraic grid generation procedure was

used in the single-grid method to achieve a good initial solution. With heavy relaxation

a solution was obtained for a grid of 32 x 32 cells. However, convergence could not be

obtained for grid dimensions beyond 32 x 32. The convergence behavior for the multigrid

and the single-grid calculations are compared in Figure 6.4. It can be seen that the

multigrid method produces a much faster convergence rate.

6.8 Closure

A multigrid and multi-block grid generation code was developed. An elliptic grid genera

tion method is used, which generates grids by solving three, elliptic, differential equations.

Methods to achieve certain grid quantities through the control functions are implemented
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Symmetry Line

Figure 6.4: A two-dimensional domain to be considered.
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in the code. A multigrid method was developed to solve these equations. The developed

multigrid algorithm dramatically reduces the computational effort required to solve the

system of elliptic grid generation equations. Fast convergence has been achieved with a

zero initial guess. A domain segmentation technique was developed to generate block

structured grids. The code can be used to generate grids in arbitrary 2D or 3D domains.

The combination of the MBEGG and CMGFD codes allows for flow simulations in arbi

trary geometries.



Chapter 7

Prediction of Film Cooling Over A Turbine Blade

Extensive experimental studies of leading edge film cooling have been carried out at

UBC by Gartshore et al(1993) and Salcudean et al (1993,1994a) based on a large turbine

blade model. In this chapter, computations are carried out based on such a blade model

and are compared with the experimental data. This model has a semi-circular leading

edge with four rows of film cooling orifices positioned symmetrically about the stagnation

line. Lateral injection is used and the cooling orifices are inclined at 300 to the blade

surface in the spanwise direction.

The computational methods and codes described in previous chapters are used to

analyze the flow and related heat transfer in this complex geometry. The computational

domain follows the blade geometry and includes not only the curved blade surface but

also the inclined circular coolant orifices. The computational domain is segmented into

a number of sub-domains and separate curvilinear grids are employed for different flow

regions. Grids are generated using the methods and codes described in the previous

chapter. A block-structured, non-orthogonal grid is used to exactly represent the curved

blade surface as well as the circular injection orifices. Computations over the cooled

turbine blade model are carried out for overall mass flow ratios of 0.52 and 0.97. The

relative mass flow ratios from each orifice are specified to match experimental values.

Density ratios of coolant to free stream were taken to be unity (constant density). The

predicted results are compared with the experimental results of Salcudean et al (1994).

159
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7.1 Problem Description

The film cooling model under consideration is that of an experimental turbine blade model

at TJBC, as shown in Figure 7.1. This experiment was designed to study the film cooling

effectiveness near the leading edge of turbine blades. The model has a semi-circular

leading edge diameter of 127 mm, spanwise top and bottom lengths of 1.2 m (between

fences), and a chordwise length of 2.3 m. Coolant was injected through four rows of

circular orifices which are inclined at 300 in the spanwise direction and perpendicular

to the blade surface in the streamwise direction on the cylindrical leading edge. These

four rows of orifices are located symmetrically at +150 and +440 with respect to the

stagnation line. Each injection tube has a diameter d of 12.7 mm and each row has

orifices whose spanwise spacing was 4d.

Exploiting the advantage of the flow symmetry about the stagnation line and pen

odicity in the spanwise direction, only half of the physical region with one period in the

spanwise direction was taken as the computational domain. Figure 7.2 shows the domain

used in the present study, where d is the diameter of the injection orifice. The compu

tational domain includes a main flow region, two half injection orifices in the first row,

and one injection orifice in the second row. The main flow region extends lOd upstream

from the leading edge, 40d downstream (in the positive x-direction) from the end of the

semi-cylinder, and 30d in the z-axis vertical direction from the leading edge. Since the

circular injection tubes are inclined at 300 to the spanwise direction, the orifices become

ellipses with a semi-major axis of 2d in the y-direction, as shown in Figure 7.2. The

length of the injection hole is 4d.
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Figure 7.1: Illustration of the turbine blade model used in the experimental study of
Salcudean et al (1994).

Figure 7.2: Illustration of the computational domain, including a main flow region, two
half injectionho1e ducts in the first row and one injection hole duct in the second row.

55d

x
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7.2 Computational Grid

The grid was generated using the MBEGG code described earlier. The computational

domain is segmented into four subdomains, a “hot” flow region over the blade, a coolant

hole in the second row and two half coolant holes in the first row. In order to obtain a

continuous grid at the interface, a rectangular type grid is used for the injection holes

instead of cylindrical grids. The generated grid is shown in Figure 7.3. The fine grid used

for the present study contains 101 x 17 x 37 nodes in the main flow region and 9 x 9 x 19

nodes for each injection orifice duct. Figure 7.4 shows the grid on the blade surface and

in the injection orifice regions. The grids in the orifice ducts match with the grids in the

main flow region at the interface.

7.3 Solution Model

Since the comparable film cooling experiments were done in a low, speed incompressible

flow with isothermal conditions and a heat/mass transfer analogy, the computations to

compare with the experiments are made with a steady, incompressible, constant density

code. The 3D, incompressible, Reynolds-averaged, Navier-Stokes equations together with

the energy equation are solved. Turbulence closure is attained by the use of the standard

k — model with the ‘wall function’ treatment described by Launder and Spalding (1974).

The shortcomings of the k — model are well known for the prediction of film cooling

problems. These are mainly due to the anisotropic and non-equilibrium turbulence caused

by flow curvature, film jet spreading, flow complexity, and unsteadiness near the injection

orifice exits, as well as the heat transfer to the wall in the near-wall, viscosity-affected

sublayer. However, the present calculations are for an adiabatic wall and, therefore, do

not involve heat transfer to the wall. It is useful to determine how well the standard k —

model can predict the film cooling over an actual geometry with a curved blade surface
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Figure 7.3: The grid generated for the present calculation containing 101 x 17 x 37 grid
nodes in the main flow region and 9 x 9 x 17 grid nodes in one injection hole.
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and the injection orifice ducts.

In addition to the Reynolds-averaged Navier-Stokes equations and the k — e equations

described in chapter 3, the following thermal energy equation is solved:

•(uT
— (- + -) T) = 0, (7.1)

where T is temperature, Pr and Pr are the Prandtl number and turbulent Prandtl

number respectively.

7.4 Boundary Conditions

Five types of boundary conditions; inlet, outlet, wall, no-flux, and periodic, are used.

The treatment of boundary conditions on each side can be described as follows:

• Mainstream:

The inlet plane of the mainstream (the west plane of the main flow region) is

located lOd upstream from the leading edge where all the dependent variables

except pressure are prescribed to match the experimental values. The mean velocity

is taken as U = 10 rn/s following the experiments. The turbulence energy and

turbulence dissipation were evaluated using the following formulas:

k = 1.5U2(u/U)2, e = C,k/l (7.2)

where u/U is the turbulence intensity and 1 is the turbulence length scale. The

turbulence intensity is assigned a value of u/U = 0.5% and the turbulence dissi

pation is calculated based on a length scale equal to the height of the wind tunnel

1 = 1.6 m. Since the turbulence intensity is very small, these assumptions should

not affect the results significantly. The temperature is assigned a non-dimensional

value of 1.
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• Coolant Inlets:

The velocities at coolant duct inlets are specified from the mass flow ratios and

discharge rates measured in the experimental study of Salcudean et at (1994a).

The k and c values at the duct inlets are evaluated from equation (7.2). The

turbulence intensity u/U is specified as 5% and the lenth scale 1 is taken to be the

diameter d of the injection orifice. The temperature is assigned a non-dimensional

value of 0.

• Adiabatic Wall:

The wall at the turbine blade surface (from the leading edge line to the outlet)

is assumed to be adiabatic and impermeable with zero tangential velocity. The

standard ‘wall function’ described by Launder and Spalding (1974) is used. The

front section before the stagnation line at the bottom of the main flow region is

treated as a zero flux and free-slip condition due to the flow symmetry about the

stagnation line.

• Periodic Condition:

The periodic (cyclic) condition is used on the boundaries in the spanwise direction

(i.e., the south and north planes). Such a boundary condition assumes that there

are an infinite number of orifices in the spanwise direction.

• No-Flux Condition:

The top boundary is located at a distance 30d in the z- direction from the symmetry

planes, where the impermeable, free-slip condition is imposed.
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• Outlet Condition:

The outflow boundary is located at a distance 40d downstream from the semi-

cylindrical end. The zero-gradient condition in the streamwise direction is im

posed for all dependent variables at the outlet boundary. It was sufficiently far

downstream to ensure that the flow in the upstream region was not affected by

downstream conditions.

7.5 Computational Procedure

The CMGFD code described in Chapter 5 was used to carry out computations of flow

and film cooling effectiveness for mass flow ratios of M = 0.52 and M = 0.97, where

M is the overall mass flow ratio averaged from all injection orifices which is defined

as M = -. Here U2nfty is the free-stream velocity and U is the average coolant

injection velocity. Due to the strong pressure gradient near the leading edge, the mass

flow from the first row (located at +15° of the semi-circle from the stagnation line) is

less than that in the second row (located at +44°). Following the notation of Salcudean

et al (1994a), the mass flow ratio for the first and the second rows are denoted as M15

and M44, respectively. The mass flow ratios M15 and M44 were obtained by Salcudean et

at (1994a) by measuring the discharge flow rate and are given by the following relations.

(1) if = 0.52, then M15 = 0.3 and M44 = 0.75.

(2) if M = 0.97, then M15 = 0.86 and M44 = 1.08.

These values were used to calculate the turbulence kinetic energy and dissipation rate

at the coolant duct inlets. For both mass flow ratios, the coolant duct Reynolds number

Re is equal to 4200 as in the experimental study, where Re
pUd

is based on the overall



Chapter 7. Prediction of Film Cooling Over A Turbine Blade 168

average coolant velocity U, injection orifice diameter d, and the viscosity and density of

the air at STP.

A two-level multigrid was used for the computations of the mass flow ratio M = 0.52.

No special effort was made for the initialization of the solution. On the coarse grid, all

the dependent variables except Ic and 6 were set to zero, and Ic and e were set equal to

the values in the free stream. The converged solution was prolongated to the fine grid

where the FAS procedure was applied.

It was observed that heavy under-relaxation was necessary to obtain a converged

solution. This is mainly due to the first row of injection holes where the jet exits are

located in the high pressure region. Convergence was not obtained until a and ct, were

reduced to 0.5 and 0.3 respectively, where c is the under-relaxation factor for momen

tum equations, and a, is the under-relaxation factor for pressure and the Ic — e equations.

Furthermore, under-relaxation of the turbulence production rate, the turbulence vis

cosity, and near wall turbulence quantities was applied to facilitate convergence of the

computations. For the mass flow ratio M = 0.97 convergence was even more difficult

to obtain. To overcome this difficulty, the converged solution for M = 0.52 was used

as the initial solution for this calculation. This approach was found to be very useful.

The maximum residuals of all the discrete governing equations dropped by 4 orders of

magnitude in about 400 iterations for M = 0.52 and 480 iterations for M 0.97.

Further iterations were carried out to achieve a residual drop of 8 orders of magnitude.

Grid independence studies have shown that, for the number of computational nodes equal

to half of that used in the final calculations, the film cooling effectiveness was lowered

as much as 20% while decreasing the number of nodes by 30% lowered effectiveness by

5%. One can conclude that the results predicted here for the finest grid are approaching

grid independence. Full grid independence can not be achieved with the standard wall

treatment in turbulent flows.
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7.6 Results and Discussion

The computational results are presented in this section. It should be mentioned that the

solutions are not presented in the complete computational domain in most of the figures

for reasons of clarity. The flow region near the curved blade surface and the injection

orifice exits contains the most rapid changes of dependent variables, while the region far

from the curved blade surface tends to be more uniform. Therefore, most of the figures

show the region near the blade surface and injection orifice exits.

Figure 7.5 presents the calculated solutions in the xz-plane and in a plane through

the centerline of the injection orifice (that is, the north or south plane) in the first row for

= 0.52. It should be noted that the orifice length projected on the xz-plane is only

half of the length of the orifice as viewed in the figures due to the inclination angle in

the spanwise direction. Here, Figure 7.5a shows a local velocity field around the curved

blade surface. Figure 7.5b shows the pressure distribution in the xz-plane for the entire

computational domain. The non-dimensional pressure is expressed as —p---, where Pref
Pref

is the pressure at the center of the stagnation line. Figures 7.5c & 7.5d show close-up

views of the velocity and pressure fields, respectively, near the orifice exit and curved

blade surface. It can be seen that the orifice exit is located in a high pressure region.

The coolant in the front region of the orifice is not blown out directly into the main flow

due to the high pressure near the leading edge which causes some of the hot fluid to

flow into the coolant orifice. The velocity in this region is nearly parallel to the blade

surface. Figure 7.5e shows the distribution of non-dimensional temperature , where

° = It can be seen that the temperature is higher than the coolant temperature

in a small interior region near the coolant tube exit. Non-dimensional temperature in

this case is equal to non-dimensional concentration, the number 0 being assigned to the

pure coolant and the number 1 being assigned to the free stream fluid. Figure 7.5f shows
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Figure 7.5: M = 0.52; Solutions at the streamwise plane (xz-plane) through the cen
terline of the 150 coolant orifice: (a) local velocity field around the curved blade surface,
(b) pressure distribution in the whole xz-plane, (c) local velocity field (near the orifice
exit) and (d) local pressure, (e) local temperature, (f) local turbulence kinetic energy.
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Figure 7.6: M = 0.97; Solutions at the streamwise plane through the centerline of the
150 coolant orifice: (a) local velocity field around the curved blade surface, (b) pressure
distribution in the whole xz-plane, (c) local velocity field (near the orifice exit) and (d)
local pressure, (e) local temperature, (f) local turbulence kinetic energy.

(d)
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the distribution of the turbulence kinetic energy normalized as It can be seen that

the turbulence is mainly produced in the region downstream of the orifice and is close to

the blade wall.

Figure 7.6 presents the results for M = 0.97 in the same manner. Unlike the previous

result for M 0.52, the coolant in the upstream region of the orifice is blown directly

into the hot flow field, although the velocity profile at the exit is still strongly non

uniform. From Figure 7.6e it can be seen that there is little dilution of the coolant flow

in the coolant duct. From both the distribution of non-dimensional temperature and

turbulence kinetic energy, it can be seen that the coolant penetrates farther into the hot

air for M = 0.97 than for M 0.52. This is one of the reasons why a higher mass

flow ratio may not produce higher film cooling effectiveness. Figures 7.7 and 7.8 present

similar results in the xz-plane through the coolant tube of the second row for M = 0.52

and M = 0.97 respectively. Unlike the first row, the second row injection is located

in a lower pressure region. The lowest pressure occurs just downstream of the injection

orifice.

The turbulence kinetic energy is larger at M = 0.97 than that at M = 0.52. It

is also larger for the second row than for the first row. It should be noted that the

turbulence kinetic energy at the entrance of the coolant orifice which is specified as the

inlet boundary condition is not convected to the interior of the orifice. This is because the

source terms are dominant in the k — c equations and the convection terms are small. The

inlet k and c values have little influence on the interior turbulence and the turbulence is

mainly produced by the generation term (contained in the source terms of k—c equations)

and ‘wall function’. Therefore, the use of estimated, uniform k — e values at the inlet

boundaries is likely adequate.

Comparison of Figures 7.5-7.8 shows that, as expected, the coolant penetrates further
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L
(a)

Figure 7.7: M = 0.52; Solutions at the streamwise plane through the centerline of the
440 coolant orifice: (a) local velocity field around the curved blade surface, (b) pressure
distribution in the whole xz-plane, (c) local velocity field (near the orifice exit) and (d)
local pressure, (e) local temperature, (f) local turbulence kinetic energy.
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(a)

174

Figure 7.8: M = 0.97; Solutions at the streamwise plane through the centerline of the
440 coolant orifice: (a) local velocity field around the curved blade surface, (b) pressure
distribution in the whole xz-plane, (c) local velocity field (near the orifice exit) and (d)
local pressure, (e) local temperature, (f) local turbulence kinetic energy.
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into the hot fluid with increasing mass flow ratio. The velocity at the orifice exit is

very complex and depends on the orifice location and mass flow ratio; an assumption

of a uniform velocity profile at the exit plane can be very inaccurate. The pressure

distribution shows that the highest pressure occurs upstream of the first row and the

lowest pressure occurs at the downstream edge of the second row. This produces a more

non-uniform distribution of the flow at the coolant tube exit in the first row than in the

second row. This effect is more noticeable at low mass flow ratios than at haigh mass

flow ratios.

Figure 7.9 shows the development of vortices for M = 0.52 in planes which are

perpendicular to the blade surface and which are between the first and the second rows.

Here, angle “a” indicates the angular position of the plane on the semi-circular blade

surface. The figure is shown with a longer domain in the y-direction for reasons of

clarity by extending the computational domain using the periodic boundary condition.

Figure 7.9a shows the velocity field in the plane through the centerline of the first row of

orifices. The velocity is generally directed downward except in the region near the blade

surface. This is not surprising since the plane through the first row forms a sharp angle

(15°) with the free stream direction. No vortices are observed in this plane. The high

pressure at the exit of the orifices causes the field to flow in both directions and the effect

of the lateral injection can not be observed.

Figure 7.9b shows the velocity field in the cross plane at a = 22°, which is approxi

mately at x/d = 0.6 downstream from the centerline of the first row of orifices. Figures

7.9c and 7.9d show the velocity vectors in the cross planes at a = 28° (x/d = 1.2) and

a = 36° (x/d = 1.8) respectively, which clearly show the streamwise vortices. Figure 7.10

presents velocity vectors for M = 0.97 in the same manner. Unlike the previous case,

the lateral injection is obvious at a = 15° (x/d = 0) and in the positive y — axis direction

close to the wall. No vortices can be observed in this plane, but they can be seen along
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Figure 7.9: M = 0.52; Velocity fields at cross-stream planes which are perpendicular to
the blade surface: (a) a = 15°, (b) a = 22°, (c) a = 28° and (d) a = 36°.
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Figure 7.11: M = 0.52; Velocity fields at cross-stream planes which are perpendicular
to the blade surface: (a) a = 44°, (b) a = 550, (c) a = 60° and (d) a = 80°.

the other three locations. It can be seen that the vortices formed above the orifices are

displaced spanwise to the right side as the plane moves downstream.

Figures 7.11 and 7.12 show the velocity fields in cross planes downstream of the

second row of coolant orifices. The flow pattern differs significantly from those presented

in the previous figures. Vortices are now formed closer to the orifice centerline and are

stronger. It is worthwhile mentioning that the formation of vortices is quite different
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from that reported by Vogel (1994) for streamwise injection. In the latter, the large
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Figure 7.12: M = 0.97; Velocity fields at cross-stream planes which are perpendicular
to the blade surface: (a) a = 44°, (b) a = 550, (c) a = 60° and (d) a = 80°.
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Figure 7.13: Contours of predicted FCE for M = 0.52 at the blade surface.

vortices tend to lift the coolant from the surface, enhance mixing and thereby decreasing

cooling effectiveness. For the present, lateral injection, the vortices are smaller, form

further downstream, and further from the blade surface than with streamwise injection.

The predicted film cooling effectiveness on the blade surface for M = 0.52 is shown

in Figure 7.13. It can be seen that the coolant from the first row of orifices flows through

the surface located between the cooling orifices of the second row, providing good cover

age of the blade surface. This broad coverage, with flow from the first row covering the

span between second row of orifices was also obtained by Salcudean et al (1994a). The

measured film cooling effectiveness is shown in Figure 7.14 for comparison. The spanwise

average effectiveness is shown in Figure 7.15 for M = 0.52 together with the experi

mental curve. Here the x-axis is the curved distance x/d from the stagnation line and

the y-axis is the spanwise averaged film cooling effectiveness. The agreement between

the two results is good.
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Figure 7.14: Contours of measured FCE for M = 0.52 at the blade surface.

The film cooling effectiveness on the blade surface for M = 0.97 is shown in

Figure 7.16. For comparison, the experimental contours of film cooling effectiveness are

shown in Figure 7.17 for a mass flow ratio of M, = 0.97. There are some discrepancies

between the predicted and measured results. It can be seen that the coolant from the

first row of orifices is blown toward the orifices of the second row, leaving a significant

region of the blade surface with poor coolant coverage. This observation is in agreement

with experiments (Salcudean et al 1994a). The predicted spanwise averaged film cooling

effectiveness together with the experimental curve is shown in Figure 7.18. The agree

ment is fair but not as good as for M = 0.52. At high mass flow ratios the coolant

penetrates deeper into the outer flow field and produces a much more complex flow in

volving anisotropic film jet spreading and non-equilibrium turbulence. Therefore, the

treatment of turbulence using the standard k — c model does not represent the flow as

accurately.

X/d
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Figure 7.15: M = 0.52; Comparison of the spanwise averaged film cooling effectiveness
with the measured result.
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Figure 7.16: Contours of predicted FCE for M = 0.97 at the blade surface.
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Figure 7.18: M = 0.97; Comparison of the spanwise averaged ifim cooling effectiveness
with the measured result.
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7.7 Closure

Computations of film cooling are carried out for a UBC experimental blade model us

ing the methods described in this thesis. From the present calculations, the following

observations are made:

• The flow field shows significant differences between the first row and the second

row because of the pressure variation on the blade surface. Flow at the exit of the

orifices is very non-uniform, particularly at the front row.

• The interaction between the main flow and coolant shows a different vortex forma

tion in the present spanwise injection from that observed in streamwise injection.

The vortices are weaker, form further downstream, and are further from the blade

surface. Therefore, the lifting of the coolant from the surface which occurs for

streamwise injection is not as significant for spanwise injection.

• Examination of the film cooling effectiveness shows good coverage for M = 0.52,

where the coolant from the first row flows between the orifices of the second row.

For M = 0.97 the coolant from the first row of orifices blows toward the orifices

of the second row and therefore the coverage is poor. A comparison of film cooling

effectiveness with experimental observations shows good agreement for M = 0.52

and fair agreement for M = 0.97.

• The present study shows that the computational methods and codes developed in

this thesis have the potential to model the complex cooling process in an actual

turbine blade geometry.

Further improvements of the computational results may be possible with improve

ments of the turbulence and near wall modeling, and extension of the computational

domain to include a part of the plenum.



Chapter 8

Conclusions And Recommendations

8.1 Conclusions

A computational capability has been developed for the prediction of film cooling of tur

bine blades. This includes the development of two comprehensive numerical codes and

the associated methods. The codes involve several numerical methods, including curvi

linear coordinate-based calculations, multigrid acceleration, domain segmentation, and

grid generation. A detailed investigation of these methods is carried out and novel tech

niques are proposed to improve the methods. Conclusions on theory development and

application are given in the following.

• A computational method using general curvilinear grids is proposed. The method

uses a novel discretization to overcome the difficulties associated with the use of non-

smooth grids. The numerical scheme is formulated directly using the coordinate-

invariant governing equations and the physical geometric quantities which include

the cell-surface areas, the surface normal vectors, and the cell volumes, instead

of the commonly-used covariant and contravariant vectors. This method avoids

the coordinate derivatives of transformation which are not well defined for non

smooth grids and allows for the use of significantly non-smooth grids. A new

scheme for handling the non-orthogonal terms in the momentum equations is pro

posed. This scheme contributes to the main diagonal terms in the resulting coeffi

cient matrix and allows for an implicit treatment of the non-orthogonal quantities,

185
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without increasing the number of computational molecules. This treatment of the

non-orthogonal terms enhances computational stability and convergence rate. The

physical tangential velocity components, resulting from the velocity expansion in

the unit tangent vector basis, are proposed as dependent variables in the momentum

equations. A coupled solution procedure is used in place of the pressure-correction

equation associated with grid non-orthogonality. A number of flow problems have

been studied using the proposed method which include flows in a skewed cavity,

flows in a curved pipe and ducts, and flows through a circular cylinder.

• Calculations of turbulent flow in curvilinear coordinates have been investigated.

The curvilinear coordinate-based method developed for laminar flows in complex

geometries has been generalized to turbulent flows. The k — c two-equation model

together with the ‘wall function’ treatment is used as the turbulence closure. Dis

cretization of the k — equations is presented with particular attention to the lin

earization of the source terms and calculation of the turbulence energy generation

rate. Methods are introduced to facilitate the calculation of the energy generation

rate and enhance the computational stability. A formulation for the ‘wall function’

in general curvilinear grids is presented. The performance of the developed method

is studied through several three-dimensional, turbulent flows.

• Multigrid acceleration of three-dimensional, laminar flows in general curvilinear

grids is studied. It was found that the discrete governing equations on different

grid levels can become inconsistent in some curvilinear grids due to complex flow

boundaries, thus reducing the efficiency of the multigrid algorithm. A novel tech

nique has been proposed to solve this problem. Computations using grids with

both significant non-orthogonality and strong curvature showed that the developed
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multigrid algorithm is very efficient. Unlike the phenomenon reported in the lit

erature, the number of effective grid levels useful for the multigrid method was

not limited by the geometrical complexities of the computational domain with the

present method, even for seriously degraded coarse grids.

• Several techniques which help the performance of the multigrid method in turbulent

flows are introduced. Particularly, it is found that the formulation of the coarse-grid

defect equation using the cwall function’ can cause inconsistency of the governing

equations between fine and coarse grids. This problem is discussed in detail and a

novel practice is proposed to allow the successful implementation of the multigrid

method in turbulent flows. A similar approach was also developed independently

by Sun (1994).

• Calculations using block-structured (multi-block) curvilinear grids are investigated.

The method developed for single-domain computations in general curvilinear grids

is generalized to multi-domains by using a domain segmentation technique. Par

ticular attention has been given to the communication between different domains.

The performance of the multi-block method is investigated through several com

putational examples which show that the developed method works well and allows

for the use of significantly discontinuous grid slopes at interfaces.

• One of the contributions of the present thesis is that a block-structured, curvilinear

coordinate-based, finite-volume code, CMGFD, has been developed based on an

existing Cartesian coordinate-based CFD code. The methods described in this

thesis, such as the curvilinear coordinate-based method, have been implemented

in the code in several steps, from simple cases to complex ones. At each step,

detailed investigations of the method and validations of the code are performed

in order to achieve an efficient and accurate code. An efficient multigrid method
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is implemented in the code and promises fast convergence for both laminar and

turbulent flows. This code has the capability to deal with arbitrary geometries by

using separate curvilinear grids in different flow regions. There is no restriction for

curvilinear grids to be used and no limitation on the number of segments which

can be used in the flow region.

• A multi-block and multigrid grid generation code, MBEGG, has been developed

to support the application of the CMGFD code. The code is based on an elliptic

grid generation method which solves three elliptic, partial differential equations.

Methods to achieve certain grid quantities, such as stretching and orthogonality,

through the use of control functions have been implemented in the code. When

these grid quantities are initially specified by users, the code can choose the appro

priate source terms to obtain the desired grid. A multigrid method is developed

to solve the three elliptic equations which provides an efficient grid generator. The

capability of the code is demonstrated through the application to a number of prob

lems. It can be used to generate block-structured curvilinear grids in arbitrary 2D

or 3D domains.

• Computations are carried out for film cooling of a turbine blade model at UBC.

In these calculations, the flow and the associated heat transfer are solved using

a block-structured, curvilinear grid generated by the MBEGG code which exactly

represents the inclined, round film-holes and the curved blade surface. Detailed

flow field and heat transfer data are obtained which improves the understanding of

the complex flow. The predicted vortex structures show how the coolant is lifted

and mixed with hot flows. Comparisons with experiments show good agreement at

low mass flow ratios, however, the agreement deteriorates at higher mass flow ratios

due to deficiencies of the k — turbulence model with ‘wall function’ treatment.
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Further improvement is expected by using more sophisticated turbulence models.

8.2 Recommendations for Future Work

Some recommendations for future work are made as follows:

• The turbulence modeling is a major source of numerical errors for many engineering

flow calculations. The present study shows that the k — e model with the ‘wall

function’ treatment is inadequate for predicting film cooling of turbine blades with

high mass flow ratios. Further studies are needed in this area, possibly using non-

isotropic, higher-order closure turbulence models or multiple-time-scale models.

The near-wall turbulence treatment to represent the increased mixing occurring at

high mass flow ratios should be further investigated.

• At the time of this study the CMGFD code is limited to incompressible flows with

constant density. However, many engineering flows involve variable density, such as

the film cooling problem with cool air or CO2 as coolant. Therefore, it is worthwhile

to generalize the CMGFD code to include variable density flows.

• The film cooling efficiency of a turbine blade is influenced by many factors, such as

the mass flow ratio, and the shape and location of the injection orifices. Therefore,

in order to achieve an optimal design for film cooling, a parametric study should

be carried out. This is possible with the numerical codes developed here.

• The transfer of data between subdomains is critical for multi-domain calculations.

It is often the source of numerical error and slow convergence, especially for non

matched grids at interfaces. Some methods use one set of overlapping cells while

other methods use two sets of overlapping cells to facilitate the data transfer be

tween neighbouring subdomains. However, there is a lack of detailed information
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about the efficiency of these methods. Further investigations would be useful in

order to achieve an efficient and accurate solver.

• The numerical scheme adopted in this thesis is based on the power-law profile of

Patankar (1980) for convection-diffusion which is a low-order scheme. Most of the

applications of higher-order schemes are limited to Cartesian coordinates. The

development and investigation of higher-order schemes in curvilinear grids would

be very worthwhile.

• Grid generation is one of the major tasks in numerical simulation for flows in

complex geometries. The developed grid generation code, MBEGG, can be used

for generating block-structured, curvilinear grids in complex geometries. However,

there are several aspects which require further consideration. In particular, the

code has no capability for generating grids with continuous grid slopes across the

interfaces for multi-domains. One possible method is to iteratively adjust the source

terms near the interface to achieve smooth grids.

• Although the CMGFD and MBEGG codes are able to simulate laminar/turbulent

flows in arbitrary 2D/3D geometries, the application of these codes is problem/user

dependent. It would be very useful to develop these codes into a user-friendly

package.
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