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A b s t r a c t 

A well-known system of partial differential equations, known as the Gierer Meinhardt 
system, has been used to model cellular differentiation and morphogenesis. The system 
is of reaction-diffusion type and involves the determination of an activator and an in­
hibitor concentration field. Long-lived isolated spike solutions for the activator model 
the localized concentration profile that is responsible for cellular differentiation. In a 
biological context, the Gierer Meinhardt system has been used to model such events as 
head determination in the hydra and heart formation in axolotl. 

This thesis involves a careful numerical and asymptotic analysis of this system in one 
dimension for a specific parameter set and a limited analysis of this system in a multi­
dimensional setting. Numerical analysis has revealed that once the spikes form they 
continue to move on an extremely slow time scale. This type of phenomenon is a general 
indicator of meta-stable behaviour. By perturbing off of an isolated spike solution an 
exponentially small eigenvalue of the linearized operator was found. This small eigenvalue 
accounted for the extremely slow motion found numerically and thus was used to obtain 
an equation of motion for the location of the spike. The Gierer Meinhardt system is 
analyzed in the limit of small activator diffusivity for both a finite inhibitor diffusivity 
and for an asymptotically large inhibitor diffusivity. In this thesis, the mathematical 
techniques used include the method of matched asymptotic expansions, spectral theory 
and numerical computations. 
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C h a p t e r 1 

I n t r o d u c t i o n 

The development of a complete organism from a single cell is still one of the great mys­

teries remaining in biological science. Many different mechanisms are involved in the 

completion of this process. Some involve mechanical interactions between the cells, and 

between the cells and their extracellular matrix, such as gastrulation. In other process 

such as organogenesis, among a group of similar cells, certain cells will become differen­

tiated from their neighbors. These cells will begin to change and develop the necessary 

structures for the organs that they will eventually form. The mechanism responsible for 

cell differentiation varies for different structures. Experiments have shown that a local 

increase in the concentration of a substance called a morphogen, or inducer, is often 

responsible for organogenesis. The inducer will cause the activation of genes which will 

then produce the specific proteins used by the mature organ. Thus, cells in the neigh­

borhood of an inducer concentration peak will form one organ and the surrounding cells 

will have other fates. In some cases, isolates spikes are required, as in the formation 

of the heart or liver. In other cases, such as the spinal cord, the periodic nature of 

the resulting structure would require periodic fluctuations of the activator. In all cases, 

precise positioning of the structure is required for the resulting organism to be viable. 

The mechanism for placement of the concentration spike must be stable to the random 

fluctuations present in any biological system. 

Turing [13] proposed a reaction-diffusion system of activator-inhibitor type that suggested 
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Chapter 1. Introduction 

that a two species chemical system with Fickian diffusion and non-linear reactive terms 

could model morphogenesis. He conjectured that some stable spatially inhomogeneous 

solutions to this system could have isolated peaks in the inducer concentration. As 

a first step to exploring this hypothesis, he examined the spectrum of the linearized 

reaction-diffusion system about a spatially homogeneous equilibrium solution. He found 

that, under certain constraints, a finite number of spatially periodic eigenmodes will 

have positive eigenvalues. Subsequent studies (e.g. Gierer and Meinhardt [5], Holloway 

[6]), which have involved large-scale numerical computations, have shown that these 

eigenmodes will grow in time until they enter the non-linear regime. Nonlinear effects 

will then lead to a saturation of the amplitudes of these modes. When this occurs, 

isolated spikes of the activator concentration will typically be formed. 

A qualitative explanation for this phenomenon is as follows. The activator is auto-

catalytic, and the inhibitor diffuses rapidly and slows the production of the activator. It 

itself is catalyzed by the activator. Any local increase in the activator concentration will 

continue to increase due to auto-catalysis. This, eventually, will lead to the formation 

of a spike. The local increase in the activator concentration will cause a local increase 

in the inhibitor concentration, which will then spread quickly. This globally elevated 

concentration of the inhibitor will localize the existing spike and will also prevent the 

formation of additional spikes in the activator concentration at other spatial locations. 

In this thesis we analyze spike behavior for the following general Gierer Meinhardt system 

in one spatial dimension. In this system, the activator concentration A = A(x, t) and the 

inhibitor concentration H = H(x,t) satisfy 

Ap 

At = DaAxx - ^ A + paCa—, -L<x<L, t>0, (1.1a) 
Am 

Ht = DhHxx- \xhE + Chph—, -L<x<L, t>0, (1.1b) 

Hx(±L,t) = 0, Ax(±L,t)=0. (1.1c) 
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Chapter 1. Introduction 

The exponents p, q, m, and s are assumed to satisfy 

v — 1 ui 
p > 1, q > 0, m > 0, s > 0, 0 < < (1-2) 

9 5 + 1 V ' 

The values of (p, q, m, s) will depend on the details of the reaction. The constant pa 

represents the rate of increase in active sources caused by the presence of activator and 

inhibited by the presence of inhibitor. The constant ph is the rate of increase of active 

sources of the inhibitors that are turned on by the activator. In addition, Da and 

are the diffusion coefficients of the activator and the inhibitor, respectively, and and Ca 

and Ch are the coupling constants. The parameter set (p,q,m,s) — (2,1,2,0) is used 

to model a system in which the activator and inhibitor have different sources. The set 

(p, q, m, s) = (2, 4, 2,4) is used to represent an activator-inhibitor system with common 

sources. Gierer and Meinhardt proceeded to use these equations to model the head 

formation in the hydra. 

We may reduce the number of parameters appearing in the Gierer Meinhardt system 

using an appropriate non-dimensionalization of the problem. We choose, 

t = t'T, A = A0A, H = H0H, x = Lx', (1.3) 

where, 

PhChA™ 

A0 

X = 

ChPh 
PaCg s+1 Y 1 f PaPa 

ChPh) Pa 

P-a 
qm- (p- l)(s + 1)' 

This results in the following non-dimensional system: 

H 

^(±1 ,0 = 0, ^(±i,t') = o. 

Av = D'aAx,x, -A + 

rhHf — D'hHxixi — pH + 

Ph 

tern 

-1<X'<1, t'>0, 

-l<x'<l, t'>0, 

(1.4) 

(1.5) 

(1.6) 

(1.7a) 

(1.7b) 

(1.7c) 
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Chapter 1. Introduction 

Here 

Da Dh p = phH0. (1.8) 
L2Pa 

Bifurcation and perturbation methods have been the two main analytical methods used 

to examine the behavior of solutions to the non-linear Gierer Meinhardt system. Previous 

analyses have shown that when the diffusion coefficients are sufficiently large, the spa­

tially homogeneous solution is stable. As one or both of the diffusion coefficients become 

smaller, this solution becomes unstable and spike-like patterns in the activator concen­

tration will result. Bifurcation analysis is used to investigate the properties of solutions 

near this bifurcation point. In general, the limitation of this method is that it will lead 

only to small amplitude solutions that bifurcate off of the trivial solution. However, it 

is the large amplitude solutions which are of interest in morphogenesis. The calculation 

of these solutions typically requires a full numerical simulation. In certain cases, pertur­

bation methods have been used to calculate large amplitude solutions. Keener[7] used 

perturbation methods to investigate the nature of large amplitude steady-state spike so­

lutions in the limit for which the diffusion coefficient of the inhibitor tends to infinity. 

This analysis leads to the non-local problem studied in the second chapter of this thesis. 

The analysis done by Nishiura[10] links the bifurcation analysis and the perturbation 

analysis. 

Before we describe the goals and the outline of the thesis and summarize some previous 

work, we find an appropriate scaling of (1.7) for spike solutions. We introduce a small 

parameter e in (1.8) by 

In the variables of (1.7) the amplitude of a spike solution tends to infinity as e —> 0. 

Therefore, it is convenient to introduce new variables so that the amplitude of the spike 
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Chapter 1. Introduction 

solution is 0(1) as e —>• 0. For simplicity, in what follows, we drop the primes in (1.7). 

We first introduce a and h by 

A = e~Uaa, H = e-"hh, (1.10) 

where the exponents va and vh are to be found. To balance the terms in (1.7a) we require, 

-va =-VaP + qvh- (1-11) 

We are interested in solutions involving isolated spikes of the activator concentration. 

We therefore expect A to be localized to within an 0(e) region near the spike. Thus in 

our scaling of (1.7b) we will consider an averaged balancing. Specifically, we integrate 

(1.7b) over the domain to get 

/

l rl rl Am 

Htdx = -pJ Hdx + J -jjjdx. (1.12) 

Since A will be localized to within an 0(e) region about the spike location x 0 , we scale x 

in the last term by y = (x — x 0 ) e _ 1 . Balancing the terms in this equation results in the 

following: 

-vh = -uam + uhs + 1. (1.13) 

Solving equations (1.11) and (1.13) yields, 

(p - l)(s + 1) — qm' (p - l)(s + 1) — qm ' 

This determines the scaling in (1.10). In terms of these new variables, (1.7) becomes 

a? 

at = e2axx — a + — , —1 < x < 1, t>0, (1.15a) 

am 

rhht = Dhhxx - ph + e'1-—, - 1 < x < 1, t>0, (1.15b) 
ns 

a x ( ± l , t ) = 0 , hx(±l,t) = 0. (1.15c) 
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Chapter 1. Introduction 

We will study this scaled system analytically and numerically as e -» 0 for two different 

ranges of Dh: 

Dh —> oo , weak coupling limit; Dh = 0(1) , strong coupling limit. (1-16) 

In the weak coupling limit, the inhibitor will diffuse very rapidly compared to the size of 

the domain. Thus, the concentration of the inhibitor may be considered to be constant in 

space. Each spike in the activator concentration is confined to a small region and will thus 

act as a point source of inhibitor. The equilibrium level of inhibitor concentration will 

then, in effect, count the number of spikes of activator concentration and the position 

of the spikes will be irrelevant. Too many spikes will cause the equilibrium level of 

inhibitor to become large and the spikes will become unstable. In the strong coupling 

limit, the inhibitor will still diffuse much faster then the activator, but the length scale 

of its diffusion is comparable to the size of the domain. Thus, if the distance between 

adjacent spikes is small, large levels of inhibitor concentration may build up in this area. 

However, when the distance between adjacent spikes is large, the spikes do not feel each 

others presence, since the inhibitor concentration decays exponentially with the distance 

from the source of inhibitor. Therefore, in this strong coupling limit, the positioning of 

the spikes will play an important role in determining the stability of a configuration of 

spikes. 

Previous work on the Gierer Meinhardt system has focused on small amplitude solu­

tions. In this thesis, we will attempt to construct large amplitude equilibrium and time-

dependent solutions. The analysis will be done for the limit e —>• 0 for two different ranges 

of Dh (Dh —>• oo in chapter 2 and Dh = 0(1) in chapter 3). Our preliminary numerical 

computations have suggested that spike solutions to the Gierer Meinhardt system will 

be formed quickly in time from initial data. These spike solutions persist in their basic 

shape, but the centers of the spike layers migrate very slowly towards their equilibrium 

positions. This type of phenomenon, in which internal layers move exceedingly slowly in 
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Chapter 1. Introduction 

time, is referred to as meta-stable behavior. 

The motivation of this study is the numerical simulations presented in the thesis of 

David M . Holloway[6]. The parameter values used in this thesis correspond to the strong 

coupling limit where Dh = 0(1). In Holloway's thesis, numerical simulations using a 

finite difference method were run from 20 000 to 560 000 iterations at a fixed time 

step before an equilibrium was achieved for the discretized problem. This very slow 

convergence of the system towards equilibrium suggests that the system could exhibit 

meta-stable behavior. Simulations carried out in two dimensions resulted in a somewhat 

random pattern of equilibrium spike positions in the computed solution. I believe that 

the randomness of the spike locations for the computed equilibrium solutions does not 

correspond to a true equilibrium solution for (1.7), but is instead likely due to meta-

stable behavior of some quasi-equilibrium solution. Since meta-stable solutions evolve 

on such a slow time scale, these quasi-equilibrium solutions could easily be mistaken 

for true equilibrium solutions. In a one dimensional domain, true equilibrium solutions 

have equally spaced spike locations. It is conjectured that the analogous result, in a two 

dimensional domain, is that an equilibrium spike layer solution should have spikes that 

lie on lattice sites and not on random positions in the domain. Our goal is to ascertain 

if meta-stable behavior occurs for (1.7). 

Meta-stability has been studied previously for other partial differential equations (e.g. Ward 

[17]). As shown in this previous work, a necessary condition for meta-stability is that the 

spectrum of the linearization of the partial differential equation about some canonical 

spike-type or shock-type profile contains asymptotically exponentially small eigenvalues 

in the limit for which the width of the spike or shock profile tends to zero. The existence 

of these eigenvalues is usually indicated by a near indeterminacy in determining internal 

layer locations corresponding to certain equilibrium solutions. 
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Chapter 1. Introduction 

To illustrate this phenomena consider the following two problems on |x| < 1, t > 0: 

ut = e2uxx + 2(u-u3), u s ( ± l ) = 0, (1.17) 

ut = e2uxx - u + u2, ux(±l) = 0. (1-18) 

Equation (1.17) is a phase transition problem, which gives rise to shock solutions. Equa­

tion (1.18) resembles the activator equation when the inhibitor is a given constant. 

The canonical one-shock profile for (1.17) has the form us(y) = tanh(y). Consider the 

function UE{X) = us (£=£a) that satisfies the steady-state equation corresponding to 

(1.17). Here XQ is a constant satisfying |x 0 | < 1- Since this function fails to satisfy the 

boundary condition in (1.17) by only exponentially small terms for any rr0 in \XQ\ < 1, it 

is analytically very difficult to determine the correct value x0 = 0 corresponding to a true 

equilibrium solution. Hence, we shall refer to UE(X), where XQ is arbitrary in |x 0 | < 1, 

as a quasi-equilibrium solution. To link this near indeterminacy to the occurrence of an 

exponentially small eigenvalue, we linearize (1.17) about our quasi-equilibrium solution 

uE(x). This leads to the eigenvalue problem 

L(j) = t2(f)xx + (2 - 6u2

E)(/) = A<6, - 1 < x < 1, (1.19) 

</>x(±l) = 0. (1.20) 

Since UE solves the steady problem for (1.17) it follows that Lu'E = 0. Hence, on the 

infinite line —oo < x < oo subject to (j) —>• 0 as x —>• ±oo we have that <f> = u'E and A = 0 

is an eigenpair of (1.19). However, since u'E fails to satisfy the boundary conditions for 

the finite domain problem by only exponentially small amounts, we expect that the finite 

boundary will perturb this eigenpair by only exponentially small terms. Therefore, this 

suggest that there is an eigenvalue of (1.19) which is exponentially small. Moreover, 

since u's > 0, it follows that u'E has no nodal points. Hence the exponentially small 

eigenvalue must be the principal eigenvalue. It is this eigenvalue that is responsible for 

the meta-stable behavior that occurs for the corresponding time-dependent problem. As 
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Chapter 1. Introduction 

a remark, a similar situation arises for a solution with n shock layers. In this case, the 

quasi-equilibrium solution has the form unE(x) = Y^=ius {s~T^)i f ° r some X{ satisfying 

\xi\ < 1. The eigenvalue problem associated with the linearization of (1.17) about unE 

has n exponentially small eigenvalues, one associated with each internal layer. These 

n exponentially small eigenvalues lead to the slow coupling between shock layers for 

the evolution problem. For a precise quantitative description of these results see the 

references in [17]. 

A similar analysis may be applied to (1.18). Here the canonical spike profile is given by 

us(x) = |sech 2 ( | ) . Again the quasi-equilibrium solution uE = us ( 5-^ f l) will satisfy the 

steady-state equation corresponding to (1.18) but fails to satisfy the boundary conditions 

in (1.18) by only exponentially small amounts for any value of XQ in \XQ\ < 1. Thus, 

determining the true equilibrium value xo = 0 requires exponential precision. Linearizing 

(1.18) about uE results in the eigenvalue problem, 

L<j> = e2(bxx + (-1 + 2uE)<f> = \<f>, (1.21) 

0x(±l) = 0. (1.22) 

It is clear that Lu'E = 0 and that u'E fails to satisfy the Neumann boundary conditions 

in this problem by only exponentially small amounts. Thus, there must be an eigenpair 

exponentially close to A = 0 and (j) = u'E. This case differs from the shock problem (1.17) 

in that now u'E has exactly one nodal point. Therefore, uE must be exponentially close 

to the second eigenfunction of (1.21). Thus, the exponentially small eigenvalue is not the 

principal eigenvalue for (1.21) and hence there is no reason to expect that meta-stability 

will occur for (1.18). This suggests that the Gierer Meinhardt equations, under the as­

sumption that h is a given constant, may not exhibit meta-stable behavior. We will show 

that meta-stable behavior results from the coupling of the activator and inhibitor con­

centration fields. We will also show that there are exponentially small eigenvalues for the 

activator-inhibitor problem and that, under appropriate conditions, these exponentially 
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Chapter 1. Introduction 

small eigenvalues are indeed the principal eigenvalues. 

There are also a few rigorous results for the Gierer Meinhardt in certain limiting situa­

tions. Multi-peak equilibrium solutions to the Gierer Meinhardt equations are rigorously 

shown to exist in one-dimensional domains [12]. Similar results for multi-dimensional 

domains can be found in [9]. These papers provide interesting examples of rigorous 

existence results as they also provide a qualitative description of the solutions. 

The organization of this thesis is as follows. In Chapter 2 we will consider the weak 

coupling limit Dh —>• oo. This leads to the what is known as the Shadow system introduced 

in [10]. A one-spike quasi-equilibrium solution to the Shadow system will be constructed 

using the method of matched asymptotic expansions. The eigenvalue problem associated 

with the linearization about this solution will be obtained. The spectrum of this problem 

will then be examined and an exponentially small eigenvalue will be shown to exist. Under 

some appropriate conditions, this eigenvalue will be demonstrated to be the principal 

eigenvalue. Then, the analysis of metastable behavior associated with phase transition 

problems considered in [17] will be extended to quantify the meta-stable behavior in our 

system. This analysis, which is based on the projection method of [17], imposes a limiting 

solvability condition to derive an ordinary differential equation governing the motion of 

the center of one spike. Multiple spike solutions will then be considered. A similar 

spectral analysis to that of the one spike case, will reveal that the principal eigenvalue 

will not be exponentially small. Thus, solutions with multiple spikes are not meta-stable. 

In Chapter 3, we will consider the strong coupling case for which the inhibitor diffusion 

coefficient Dh is 0(1). The study of this case is significantly more intricate than the 

previous case in that we no longer have the simplified Shadow system to work with. 

Again we will use the method of matched asymptotic expansions to construct a one-

spike quasi-equilibrium solution. In this case, the inhibitor concentration is no longer 
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Chapter 1. Introduction 

spatially constant. We will use the one-spike quasi-equilibrium solution to derive an 

eigenvalue problem as in the second chapter. This eigenvalue problem will prove to be 

of a similar form to the eigenvalue problem of the second chapter and thus the previous 

results may be applied. The n-spike quasi-equilibrium solution will then be constructed 

using the method of matched asymptotic expansions. It will be shown that the height 

of an individual spike is a function of the position of all the other spikes. The n-spike 

eigenvalue problem will then be derived. An n-spike solution will be shown to be meta-

stable under an appropriate condition on the inhibitor diffusion coefficient. This leads to 

a quantization condition for the maximum number of meta-stable spikes that the system 

can support for a given value of £ V 

Finally, in Chapter 4 we will give some preliminary results for the G M system in higher 

spatial dimensions. In particular, we use the projection method to derive an ordinary 

differential equation for the location of a spike layer in a multi-dimensional setting. 

A variety of numerical methods and software packages were used to carry out the numeri­

cal computations in this thesis. Short time simulations of the full P D E system are carried 

out using I M E X schemes [11, 2]. Long time simulations use the fully implicit scheme from 

the package P D E C O L . Numerical solutions to eigenvalue problems are computed using 

COLSYS and M A T L A B . 

11 



C h a p t e r 2 

I n f i n i t e I n h i b i t o r D i f f u s i o n 

C o e f f i c i e n t 

2.1 I n t r o d u c t i o n 

We now examine the Gierer Meinhardt equations in the weak coupling limit Dh —> co. 

We will begin by constructing a one-spike quasi-equilibrium solution. The stability of 

this solution will be examined by analyzing the spectrum of the eigenvalue equation 

resulting from a linearization about our one-spike solution. The principal eigenvalue is 

exponentially small and we estimate it precisely in the limit e —» 0. We then use the 

projection method to derive an ordinary differential equation governing the motion of 

the location of the spike corresponding to a one-spike solution. The case of n spikes 

will then be considered. The stability of an n-spike solution will be studied by a similar 

examination of its linearized spectrum. 

The scaled Gierer Meinhardt equations are given by, 

dP 
at = e2axx — a+ — , — 1 < re < 1, £ > 0 , (2.1a) 

am 

rht = Dhhxx - ph + e _ 1 — , (2.1b) 
ns 

a x ( ± l , t ) = 0, hx(±l,t) = 0. (2.1c) 

In the limit Dh —r oo we write h as a power series in D^1 as 

h = ho + D^hi + ••• . (2.2) 
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Chapter 2. Infinite Inhibitor Diffusion Coefficient 

Substituting this into (2.1b) we arrive at the following equations: 

h0xx = 0, - 1 < x < 1, (2.3a) 
am 

hixx = Thot + ph0 - C~1 — , - 1 < x < 1, (2.3b) 

M ± M ) = 0, (2.3c) 

hlx(±l,t)=0. (2.3d) 

From (2.3a) and (2.3c) we find that h0 = h0(t), and so h0 is spatially homogeneous. By 

applying a solvability condition to (2.3b) subject to (2.3d), we derive the following O D E 

for h0 = ho{t): 

1 f1 am 

rh0 + ph0 - e _ 1 - / — dx = 0. (2.4) 

2 y_! hs 

Here ho = dho/dt. We expect that the dynamics of h is much faster than that of a. 

Therefore, we set h0 = 0 in (2.4) and solve for the equilibrium value of ho. In this way, 

we get 

h ° = { e ~ 1 i L a m d x ) ' * 1 - ( 2 - 5 ) 

Thus, to leading order as Dh —> oo, the Gierer Meinhardt equations are reduced to 

dP 
at = e2axx - a+-g, - l < a ; < l , t>0, (2.6a) 

n0 

h0= {e-l-^-j\mdxy+\ (2.6b) 

o x ( ± l , t ) = 0. (2.6c) 

This system is referred to as the Shadow System for (1.7) (see [7, 10]). 

To determine the range of validity of this approximation, we note that we have required 

hxx = 0 to be the dominant balance in a neighborhood of a spike. Thus, if we scale 

y = e~1(x — XQ), where x0 is the spike location, we will require that, 

^ > e " 1 or Dh^e. (2.7) 
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Chapter 2. Infinite Inhibitor Diffusion Coefficient 

To ensure that hxx — 0 is the leading balance in the outer region, defined away from an 

0(e) region near the spike, we will require that Dh 3> 1. 

2.2 A O n e - S p i k e Q u a s i - E q u i l i b r i u m S o l u t i o n 

We now construct a one-spike quasi-equilibrium solution aE — aE(x). This solution will 

be symmetric about x 0 , where |x 0 | < 1, and it will achieve a global maximum at x = XQ. 

In addition, aE(x) —>• 0 at infinity. The quasi-equilibrium solution aE(x) satisfies 

e2a"E - a E + -^ = 0, (2.8a) 

h0 = ( e - 1 ^ J amdx^j , (2.8b) 

a'E(x0) = 0, (2.8c) 

a E ^ 0 a s i - > ±oo. (2.8d) 

Now we introduce the local variable y = e~1(x—x0) and we set set uc(y) = h^1 aE(xQ-\-ey), 

where 7 = q/(p — 1)- Substituting this into (2.8) we get the following canonical spike 

problem uc(y): 

u'c-uc + up

c = 0, 0 < y < oo, (2.9a) 

uc —y 0 as y -» oo, (2.9b) 

u'c(0) = 0. (2.9c) 

In terms of the solution to (2.9), the quasi-equilibrium solution for (2.8) is 

aE(x) = hluc (e _ 1 (x - x 0 )) , (2.10a) 
p-i 

/ 8\ (a + l)(p-l)-9m f°° 

ho=(ji) . (3 = J^umdy, J = q/(P-1). (2.10b) 

Here x 0 is the unknown location for the center of the spike. The existence of solutions 

to (2.9) can be shown by analyzing the phase plane and has been proved in [8]. 
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Chapter 2. Infinite Inhibitor Diffusion Coefficient 

To determine numerical values for certain asymptotic quantities below we must compute 
uc(y), P, and other constants numerically. To do so we first note that in the far field 

uc ~ ae~y as y —> oo, where a > 0 is given by (see [17]) 

l o g ( ^ ) , I - 1 1 log(a) 
P-I Jo 

p + i 
IP+I v 

dr). (2.11) 

Therefore, we can use the asymptotic boundary condition u'c + uc = 0 at y = y^, where 

yL is a large positive constant. To compute solutions for various values of p, we use a 

continuation procedure starting from the special analytical solution uc(y) — |sech 2 ( | ) , 

which holds when p = 2. The boundary value solver C O L N E W is then used to solve the 

resulting boundary value problem. In Fig. 2.1, we plot the numerically computed uc(y) 

when p = 2, 3,4. 

1 • 6 I 1 1 1 1 1 1 1 1 r 

0 2 4 6 8 10 12 14 16 18 20 
y 

Figure 2.1: Numerical solution for uc(y) when p = 2, 3,4. 

We note that the solution CLE(X) will satisfy the steady-state problem corresponding to 
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(2.1a), but will fail to satisfy the boundary conditions in (2.1c) by only exponentially 

small terms as e —> 0. This will be true for any value of x0 that is not within an 0(e) 

distance from the boundary. Thus, we will need to use exponentially accurate asymptotics 

to determine the equilibrium position of the spike. 

2 . 3 T h e O n e - S p i k e L i n e a r E i g e n v a l u e P r o b l e m 

To examine the stability of the quasi-equilibrium spike solution found in the previous 

section, we will linearize about this solution and we study the spectrum of the corre­

sponding eigenvalue problem. The resulting eigenvalue problem is of a non-local nature. 

Results from [3] suggest a numerical method for the analysis of the spectrum of such 

a problem. To solve the non-local problem we introduce a continuation parameter to 

gradually introduce the non-local effects. The eigenvalue problem on the extended real 

line will then be considered, for which some exact results exist. The perturbing effect of 

a large but finite domain will then be studied. 

To begin our analysis, we derive the eigenvalue problem in terms of cp and rj defined by 

a(x, t) = aE(x) + ext(j)(x), (2.12a) 

h(x, t) = h0 + extr](x). (2.12b) 

Here aE and h0 are given in (2.10) while <f> <C aE and t] <C h0. Substituting this into 

(2.1) results in the following eigenvalue problem; 
p—I p 

t2<f>xx-<f> + P^<j>-q-^iV = W, (2.13a) 

a m _ 1 am 

DhVxx ~ m + mt~1^—^ - se-1—fj-77 = rXn . (2.13b) 
n0 tiQ 

Substituting (2.10a) and (2.10b) into (2.13) we get 

e2(j>xx - 0 + pvP-V - qhlv-q-xvPcJ] = \<j>, (2.14a) 

Dhr]xx + me-lhfm-l)-su™-l(l) - s c - 1 ^ " * " 1 ^ ^ = ^Xn. (2.14b) 
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We then expand r\ as a power series in D^1, 

r) = r}0 + D^r]l + O(Df), (2.15) 

and we substitute this into (2.14) and collect powers of D^1 to obtain 

Voxx = 0, - 1 < x < 1, (2.16a) 

Vixx = Wo ~ me-^^-V-'u?-1^ + se-1hT~'~1v^r}0 + rXr]0, - 1 < x < 1 

(2.16b) 

7 f o x ( ± l ) = 0, (2.16c) 

?7ix(±l) = 0. (2.16d) 

Thus, ?7o is a constant independent of x. To determine rjo we apply a solvability condition 

on the 771 problem to get 

(2/x + 2s(3hlm-s-x + 2Ar)77o = e ^ m / i ^ 1 ^ f u^1^ dx , (2.17) 

where (3 is defined in (2.10b). Solving for 770 we get 

t 3 b = g m / 1 ° / (2.18) 
2(/x(s + 1) + Ar) c v ' 

Our non-local eigenvalue problem for <f> = <f)(x), defined on |x | < 1, is obtained by 

substituting (2.18) into (2.14a) 

Lt<f> = e2cf>xx - <j> + pul-l<f> - m ^ J l q ^ l X t ) f u r 1 * * * = (2.19a) 

<^(±1) = 0. (2.19b) 

The integral term in equation (2.19) changes the nature of this problem drastically from 

standard Sturm-Liouville problems and non-standard techniques will be needed [3]. Also 

note that the eigenvalue A appears on both sides of the equation. Thus, (2.19) is an 

implicit eigenvalue equation. However, since r is typically very small, we may assume 

that r = 0 as a simplifying approximation. This approximation is used in all of the 
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analysis below. However, the case of a small r would not be significantly more difficult 

to analyze. 

In (2.19) we note that uc = uc [e~l(x — x0)]- Therefore, we will only seek eigenfunctions 

that are localized near x — x0. These eigenfunctions are of the form 

4>{y) = cf)(x0 + ey), y = e~l(x - x0) . (2.20) 

Therefore, we can replace the finite interval by an infinite interval in the integral in 

(2.19) and impose a decay condition for <j)(y) as y —> ±oo. This gives us (with r = 0) 

the eigenvalue problem for the infinite domain — co < y < oo 

Lej> =~4>yy~A K " ^ - 2Bis+l) r """^ ^ = ^' ^'^^ 

<j>(y) -> 0 as y -> ± o o . (2.21b) 

To treat the non-local eigenvalue problem, we split the operator Le into two parts, 

AJ> = e2ct>xx - 4> + pug" V, B<t> = Ip™^ f « r V dx. (2.22) 

We define a new operator Lg(j) = Acp — 5B(f>. When S — 0 we have a simple Sturm-

Liouville problem. At 6 = 1 we have our full non-local eigenvalue problem. We define 

Lg, A and B in a similar fashion, but on the extended domain —co < y < oo with 

the appropriate boundary conditions at ±oo. To observe that L£ has a zero eigenvalue, 

we first note that if we differentiate (2.9a) with respect to y = e~l(x — xo), it is clear 

that Au'c = 0. In addition, uc(y) is even about y = 0 and is increasing for y < 0 and 

decreasing for y > 0. Thus, u'c is odd about y = 0. Therefore, J^u^^u^dy = 0, 

which implies that Bu'c = 0 as well. Thus, Leu'c = 0. Moreover, uc and u'c tend to zero 

exponentially as y —> ±oo. Therefore, the eigenvalue problem (2.21) has a zero eigenvalue 

with corresponding eigenfunction (j>(y) = u'c(y). 

Now for the finite domain problem (2.19), the function u' c[e_ 1(a; — x0)] fails to satisfy 

the equation and boundary conditions of this problem by exponentially small terms as 
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e —>• 0. Therefore, we expect that the presence of the finite domain will perturb the 

zero eigenvalue and corresponding eigenfunction of the extended problem by only an 

exponentially small amount. 

The function uc(y) has a unique maximum at y = 0 and thus the eigenfunction u'c(y) has 

exactly one zero at y = 0. This implies that uc(y) corresponds to the second eigenfunction 

of A . Hence, the principal eigenvalue of A is positive and bounded away from zero. 

Therefore, the principal eigenvalue of A for the finite domain problem is not exponentially 

small. Since Lg has a positive eigenvalue when S = 0, we must consider what happens to 

this eigenvalue as 5 ranges from 0 to 1. If this eigenvalue remains positive then, since we 

expect that the eigenvalues of Lg and Lg will differ only by exponentially small amounts, 

we can conclude that the one-spike quasi-equilibrium solution is unstable. Alternatively, 

if this eigenvalue crosses through zero at some finite value of S < 1, then the principal 

eigenvalue of Lg when 5 = 1 (which corresponds to our eigenvalue problem (2.19) will 

be exponentially small. Hence, if this occurs, the one-spike solution is anticipated to be 

meta-stable. 

We now estimate an eigenvalue for the infinite domain operator Lg when 5 <C 1. To fix 

notation, let tpo(y) and A 0 be the first eigenpair of our local operator A and let X0(5) be 

the eigenvalue of Lg for which XQ(5) —> A 0 as 8 —> 0. The corresponding eigenfunction 

of Lg is denoted by <f>(y;5). Specifically, we will calculate the sign of A0(0) analytically. 

Thus, we have that tf>o(y) and <j>(y;6) satisfy 

<f>oyy + (-1 + P " ? - 1 ) ^ = Ao^o , (2.23a) 

0o -)• 0 , as y-¥ ±oo . (2.23b) 

and 

tyy + (-1 + K _ 1 ) £ - ^BXS+I) F ^ ^ ' ( 2 - 2 4 A ) 

- » 0 , as y -»• ±oo . (2.24b) 
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Multiply (2.23) by 4> and (2.24) by ^ 0 and subtract the resulting equations. Then, 

integrating this the result from — oo to oo, we arrive at the following relation 

= - s ^ i j £ > * j y - ^ y -

Now taking the limit as 5 —>• 0, we have 

a% mg f ^ u ^ d y f^u^fody 
d6 s = 0 2P(s+l) fcfady • [ Z - Z b ) 

Since uc > 0 on ( — 0 0 , 0 0 ) and <f>0 is of one sign, we conclude that ^f|«j=o < 0. Thus, 

X0(5) — A 0 < 0 when 8 is sufficiently small. We must now examine whether this inequality, 

which occurs when 5 is small, will persist as 5 increases to cause A 0 to cross through zero 

at some value 0 < S < 1. 

We will now examine the eigenvalues of the non-local eigenvalue problem on the infinite 

line (2.21). Recall that in terms of the local and non-local operators A and B, respectively, 

this problem can be written as 

Here 

LS(j) = A(p- 5B(j> = Xcf) - 0 0 < ?/ < 0 0 (2.27a) 

0 - 4 0 , as y-t ± 0 0 . (2.27b) 

= 4>w - c* + pv?-1^, B<f) = 2 ^ 1 ) f " « r ^ dy. (2.28) 

The calculation of the eigenvalues of this problem will require some numerical analysis. 

Thus, we will work with a specific parameter set. The values (p,q,m,s) = (2,1,2,0) 

are commonly used in simulations, so we will work exclusively with this set. For this 

parameter set, we begin by reviewing some exact results for the spectrum of the local 

eigenvalue problem 

A4> = X4>, (2.29a) 

as y - > ± o o . (2.29b) 
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This problem has three isolated eigenvalues and a continuum of eigenvalues, comprising 

the continuous spectrum. These three isolated eigenvalues (when p = 2) are A 0 = 5/4, 

Ai = 0 and A 2 = —3/4 with eigenfunctions 0 O = sech2(y/2), ^ = tanh(y/2)sech2(y/2) 

and 4>2 = 5sech3(j//2) — 4sech(y/2), respectively (see [4]). For the corresponding finite 

domain problem, we note that the eigenfunctions above, written in terms of y = e~l(x — 

XQ), will fail to satisfy the boundary conditions in (2.19) by only exponentially small terms 

as e —> 0. Thus, we expect that the eigenvalues of A will be only slightly perturbed from 

those of A. As we have previously noted, the zero eigenvalue of (2.29) will persist as 

8 ranges from zero to one. Hence, there is an eigenvalue of (2.19) that is exponentially 

small as e —> 0. 

Now we will compute the eigenvalues A0(5) and A2(<5) for which A0(5) —> 5/4 and A2(<5) —»• 

—3/4, as 8 —> 0. We need to compute these eigenvalues numerically. To do so, we use 

the initial guesses provided above for 8 = 0 and then use a continuation procedure to 

compute these eigenvalues as 8 increases. The computations are done using C O L N E W . 

In Fig. 2.2 we plot the numerically computed A0(5) and A2(<5) versus 8. As can be seen 

from this graph, A 0 ~ 0 for 8 = 1/2. It will be shown analytically that this relation 

holds with equality (i. e. A 0 = 0 when 8 = 1/2). Shortly after A 0 becomes negative, it 

becomes complex. At this point, C O L N E W is no longer able to track the eigenvalue. 

To understand what is happening, we computed A2(5) as well. Figure 2.2 illustrates the 

situation. As 8 increases from 0 to 1, An is decreasing and A 2 is increasing. At a value 

of 8 ~ 0.65 the two eigenvalues collide and split into complex conjugates eigenvalues 

with negative real parts. To track the eigenvalues beyond 8 w 0.65 one must employ 

a different numerical technique. These computations are done by discretizing the finite 

domain problem when e <§C 1. These eigenvalues are exponentially close to the eigenvalues 

of Lg and so we can neglect these exponentially small errors. The operator Lg may 

be approximated by a discrete linear operator (i.e. a matrix) Cg. The eigenvalues of 
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the continuous problem may then be approximated by the eigenvalues of this matrix. 

To discretize the operator, we use the centered difference approximation of the second 

derivative for the local operator. The non-local operator is approximated using the 

Trapezoidal rule. This then results in the following matrix, 

o ••. 

0 

^ 2 3 

0 

0 

\ 

rn-2,n-3 Tn-2,n-2 Tfi-lfi-l 

0 rn-l,n-2 Til-lfi-l ) 

( 

+ 8 

where, 

r l f l = -2e2/h2, 

r 1 > 2 = 2e2/h2, 

= e2/h2, 

rhl = -2e2/h2 + (-1 +pup

c-1((xi - x0)/e)), 

n,i+i = e2/h2, 

mquP((xi - xQ)/e) _x 

-uc ((-1 - x0)/e)h/2, Si,l = 
2p(s + l) 

mqup

c((xi-xQ)/e)^m_1 

2p(s + l) 
UT ((xj ~ x0)/e)h, 

mqup

c{(xi-x0)/e)^m_1 

x. 

2P(s + l) 

h = 2/n, 

- 1 + ih. 

urL((l-x0)/e)h/2, 

\ 

(2.30) 

(2.31a) 

(2.31b) 

(2.31c) 

(2.31d) 

(2.31e) 

(2.31f) 

(2.31g) 

(2.31h) 

(2.31i) 

(2.31J) 

Here n is the number of grid points. By numerically calculating the eigenvalues of £5 

we give numerical results for A 0 in Table 2.1. Since the real part of A 0 remains negative 

as 8 —¥ 1, we conclude that the one-spike quasi-equilibrium solution is stable for this 
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parameter set. Similar computations can be performed for other values of p, q, m and s. 

It is possible to find the critical value of 5, denoted by 8 = 8C, for which A0(5C) = 0. At 

this value of 5, we will have two eigenfunctions corresponding to the zero eigenvalue. One 

of these eigenfunctions is known to be u'c(y). Thus, we may use the method of reduction 

of order to find the other eigenfunction (j>(y). Introduce v(y) by (f> = vu'c. Then, in terms 

of v, (2.27) with A = 0 becomes 

u'cv" + 2v'u"c - up

c5J = 0, (2.32) 

vu'c —> 0 as y —> ±oo . 

Here 

j _ mq ' 
/

oo 
uTX<vdy. (2.33) 

• o o 
2/3(5 + 1) 

We will consider I as a constant, independent of v for now. Next, we substitute w = v' 

in (2.32) to get the following equation for w: 

[W{u'cf] = 5cIvPcu'c. (2.34) 

The solution is 

5 I up+1 C 
w = ̂ i W + W ( 2 - 3 5 ) 

To satisfy the boundary conditions in (2.32) as y —> ±oo, we need only require that w 

is bounded as y —> ±oo. Clearly this implies that C = 0. We then have the following 

solution for v, 

SJ fy up+l s i ry up+l 

P + 1 7-00 « ) p + 

Finally, we substitute the equation above into (2.33), to obtain the following relation: 

2/?(s + 
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Since I ^ 0, we can cancel / to get the following expression for Sc, 

*•=U^t,+i)/>'* (/IS*') *)"'• (2-38) 

For the parameter set we used, the integral above may be evaluated exactly. Substituting 

Uc(y) = |sech(t//2)2, m = 2, p = 2, q = 1 and s = 0 into the equation above, results in 

Sc = | as is suggested by Fig. 2.2. 

i. 4 1 1 1 1 —1 1 

1 2 -

1 -

0 8 

0 6 

0 4 

0 2 

0 

-0 2 

-0 4 

-0 6 

_n o 1 1 1 1 1 1 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

5 

Figure 2.2: A 0 and A 2 versus. 5. 

2 . 4 A n E x p o n e n t i a l l y S m a l l E i g e n v a l u e 

In the previous section, we showed that the only positive eigenvalue of the local operator 

A becomes negative with the inclusion of the non-local effects. Thus, for the non-local 

operator L e , the principal eigenvalue will be exponentially small. We denote this eigen­

value by A i . To predict the dynamics of the quasi-equilibrium solution, we must obtain 
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s A 0 

0.0 1.2518 

0.1 1.0073 

0.2 0.76149 

0.3 0.51345 

0.4 0.26158 

0.5 0.0052548 

0.6 -0.28247 

0.7 -.59237+ 0.15315z 

0.8 -.71522+ 0.23035z 

0.9 -.84093+ 0.23008i 

1.0 -.98551 + 0.14507z 

Table 2.1: S and A 0 for the case (p, q, m, s) = (2,1,2,0). 

a very accurate estimate of A i . Let fa denote the eigenfunction corresponding to X\. We 

expect that fa ~ C\uc {e~1(x — x0)) in the outer region away from O(e) boundary layers 

near x = ± 1 . The behavior of fa in these regions will be analyzed using a boundary 

layer analysis. 

To begin the boundary layer analysis we write fa in the form 

fa(x) = C i « [e~l(x - x0)] + fa [e~l{x + 1)] + fa [ e ^ l - x)]) . (2.39) 

Here fa(r)) and fa(n) are boundary layer correction terms and C\ is a normalization 

constant given by 

~*-*(/j<(y)rdy) 2 • (2.40) 
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Thus, 

Ci = UP) , where 3=1 « ) 2 dy. (2.41) 
J — o o 

In the boundary layer region near x = —1, uc[e~l(x — xQ)] is exponentially small as 

e —> 0. Thus, as e —> 0, ^ ( 7 7 ) satisfies 

0j' — 0£ = 0, 0 < 77 < 0 0 , (2.42a) 

^(0) ~ - a e - £ _ 1 ( 1 + x o ) . (2.42b) 

Similarly, the boundary layer equation for 4>r(rj) is 

4'r - (j>r = 0, (2.43a) 

<̂ (0) ~ a e - e _ 1 ( 1 - X o ) . (2.43b) 

Here a is defined in (2.11). Solving the boundary layer equations we get 

^ ( 7 7 ) = ae-e~1{1+ao>e-"> (2.44a) 

^ ( 7 7 ) = - a e - 6 - ^ 1 - 1 0 ^ - " . (2.44b) 

To estimate Ai we first derive Lagrange's identity for (u,Lev), where (u,v) = f^uvdx. 

Using integration by parts we derive 

(v, Leu) = e 2 (uxv - vxu) |^=LX + (u, L*v), (2.45) 

where 

L*v = e2vxx - v + ur'v - 2 ^ " ^ / ' «S« <*x . (2.46) 

We now apply this identity to the functions u'c[e_"1(x — x0)] and </>i(x) to get 

« , Le<h) = -efau'XzU + (fc, L e V c ) . (2.47) 
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We will now examine each of the terms in (2.47). We begin with (u'c, Lefa). The dominant 

contribution to this integral arises from the region near x = x0 where u'c[e~l(x — x0)] ~ ^ r . 

Therefore, the inner product can be estimated as 

(u'c,Lefa) = ^-(fa,fa), 

cV 
/ -A 1/2 

(2.48a) 

(2.48b) 

(2.48c) 

since fa is normalized. Next, to estimate —efauc\x

::zl_i, we will use our asymptotic esti­

mates of uc and fa. Since uc(z) ~ ae - ' 2 ' as z —> ±oo we have that u'c [ e _ 1 ( ± l — x0)] ~ 

ae~e 1( 1 =F X°). In addition, using the previous boundary layer results for fa we get fa(±l) ~ 

^2C\ae~e 1(lI?x°). Using these results and the estimate for Ci, we get 

-efauXz\ ~ 2 ^ a 2
 ^ e - 2 £ _ 1 ( i + * o ) + e ~ 2 e ~ 1 ( 1 ~ X o ) ^ (2.49) 

The only term left to examine is (fa, L*€u'c). Since u'c is a solution to the local operator, 

we have 

T*ii' — — 
L e U c ~ 2/?(* + l) 

j ^up

cu'cdx, 

mqu] m—1 

2(3(s + l) p + 1 -u\ 
P + i 

x = - l 

,m—1 

I)(P + I) vc 

Thus, the term (fa,L*u'c) is approximated by 

amquc 

2(3(s + l)(p+l) 
( l + x o ) _ g - ( p + l ) e ' • ' ( l - s o ) ^ _ (2.50) 

amq 
2/3(s + l)(p + l) 

Ciamq 
20(s + l)(p + l) 

Ciamq 
2/?(s + l)(p + l)m 

-(p+^e-^l+xo) _ „ - ( p + l ) e 

- ( p + ^ e - ^ l + x o ) _ „ - ( p + l ) e 

- ( p + ^ e - 1 ( l + x o ) _ P - ( P + 

i(i-xo)) y1
 u ^ - ^ i ^ c f a , 

^ l - x o ) ^ 

l ) e - i ( l - x o ) ^ ^ 

x = l 

x = - l 

g m e 1 ( l + x o ) _ g ~ m e 1 ( 1 _ x o ) 

(2.51) 
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Since p > 1 and m > 1 the term from equation (2.51) will be asymptotically negligible 

compared to the term from (2.49). Therefore, to within asymptotically negligible terms, 

(2.47) gives us the following asymptotic estimate for Ai as e —>• 0: 

Ax ~ 2a 2 /T 1 (e-^d+zo) + e -2 e - i ( i -* 0 )) . ( 2 . 5 2 ) 

In (2.52), a and (3 are defined in (2.11) and (2.41), respectively. This is the main result 

of this section. This estimate holds for p, q, m and s satisfying (1.2). 

As an example, we take the parameter set (p,q,m,s) = (2,1,2,0). For these values 

we can calculate that uc(y) = |sech 2(y/2), a = 6 and /3 = 6/5. Therefore, for a spike 

centered at x0 = 0 with e = 0.02 we have that 

A 1 « 2 ^ ( 2 e - 2 / ° 0 2 ) , 

~ 0.4464091171 x 10~ 4 1. 

We end this section with a few remarks. Firstly, we recall that Ai and fc ~ C\uc [e~l(x — x0 

are an eigenpair of Lg when 5 = 0. To within negligible exponentially small terms this 

eigenpair remains an eigenpair of Lg as 5 ranges from 0 to 1. To see this, we note 

that the only difference between the calculations of the eigenvalue for the local problem 

and for the non-local problem, is that the term (L*u'c, fc) in (2.47) would be replaced by 

(A(pi, fc) = 0, since A is self-adjoint. In the final calculation of Ai the term {L*u'c, fc) was 

ignored since it is asymptotically exponentially smaller than the other terms in (2.47). 

Secondly, we note that (Ai, fc) is an eigenpair of the adjoint operator, L*. For the same 

reasoning as above, fc would have the same interior behavior near x = XQ and the same 

boundary layer correction terms near x = ± 1 . Repeating the calculation to find A^, we 

would arrive at the same estimate as in (2.52). 
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2 . 5 T h e S l o w M o t i o n o f t h e S p i k e 

The quasi-equilibrium solution fails to satisfy the steady-state problem corresponding 

to (2.1) by only exponentially small terms for any value of XQ in \x$\ < 1. Moreover, 

the linearization about this solution admits a principal eigenvalue that is exponentially 

small. Therefore, we expect that the one-spike quasi-equilibrium solution evolves on an 

exponentially slow time-scale. We will now find an equation of motion for the center 

of the spike corresponding to the quasi-equilibrium solution. To do so we first linearize 

(2.1) about a(x,t) = / i Q U c [ e _ 1 ( x — x0(t))], where the spike location x0 = x0(t) is to be 

determined. For a fixed x0 we have shown that the linearization around this solution 

has an exponentially small principal eigenvalue as e - > 0. By eliminating the projection 

of the solution on the eigenfunction corresponding to this eigenvalue, we will derive an 

equation of motion for xo(t). This procedure is known as the projection method and has 

been used in other contexts (see [15], [17], [14] and [16]). 

To proceed with the analysis, we will need to use the orthogonality property the eigenfunc­

tions. However, it is clear that the operator Le is not self adjoint, so the eigenfunctions 

may not be orthogonal with respect to the standard inner product. However, the local 

operator is self-adjoint and therefore has a complete set of orthonormal eigenfunctions. 

As previously noted, the principal eigenpair of Le corresponds to an eigenpair of the 

adjoint operator L*. Moreover, it is also the second eigenpair of the local operator A. 

We will refer to the eigenpairs of the local and adjoint operator as (A;,fc) and (X*,4>*), 

respectively. 

We are now ready to examine the motion of a spike. We begin by linearizing around a 

moving spike solution by writing, 

a(x, t) = CIE(X] x0(t)) + w(x, t), where CLE{X; x0(t)) = h],uc [ e - 1 ( x — x0{t)] , 

(2.53) 
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and w <C aE. We also assume that wt <C e~lXQaE, where x0 = dx0/dt. We substitute 

this ansatz into (2.6) to get 

Lew = -e~lx0hlu'c [<Tl{x - xQ)] , -1 < x < 1, rj > 0 (2.54a) 

wx(-l,t) = - e - ^ X [ e _ 1 ( - l -x0(t))] , (2.54b) 

wx(l,t) = -e-xhlu'c [e-l{\ - x0(t)] . (2.54c) 

Here Le is the operator defined in (2.19). Next, we expand w(x,t) as an eigenfunction 

expansion in terms of the eigenfunctions of our local operator A, 

w(x,t) = f2^ir&- (2-55) 
i=i * 

Using the orthonormality of the eigenfunctions we may isolate the coefficient of Di, 

D1(t) = \1(w,<f>1), (2.56) 

since (A~i,fc) = (Ai,fc) . We also know that (AJ,<^*) = (Ai,fc) . Thus, we may write the 

expression above as 

D1(t) = (w,L*</>1), 

= - e 2 f cw x | *=^ + (L e u;,fc), 

= -e 2fc^xlx=l-i - e - ^ o ^ K ^ i ) . (2.57) 

We can calculate wx(±l,t) from (2.54). Then, using our asymptotic estimates for fc, 

the equation above for Di becomes 

£>,(*) - - e 2 d a ^ ( e - ( 1 + I o ) / V c [(1 + x0)/e] + e^ 1 "* 0 ^ [(-1 - x0)/e] - e^xoh&Cr1, 

~ -2^Jla2hl (-e-2^+xo^ + e - 2 ( i - x o ) / e ) _ -y/|^ X o . (2.58) 

Since A _ 1 L>ifc is 0(1) in the region near x = x0, we must impose the solvability condition 

that D\(t) —)• 0 as e —> 0. Setting £>! = 0 in (2.58) yields the following equation of motion 
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for the center of the spike x0 = x0(t): 

x0(t) ~ ^j- [e-^+x°y< - e - 2 ( i - o ) A ] . ( 2 . 5 9 ) 

This is the main result of this section. Setting x0 = 0 we find the equilibrium position of 

the spike to be located at x0 = 0 and it is stable. 

2 . 6 A n n - S p i k e S o l u t i o n 

We will now examine the properties of an n-spike quasi-equilibrium solution. The anal­

ysis will proceed in the same manner as for the case of the one-spike quasi-equilibrium 

solution. The stability of an n-spike quasi-equilibrium solution will be examined by 

linearizing about this solution and studying the resulting spectrum. 

We begin by defining an n-spike quasi-equilibrium solution by 

n - l 

anMx) = hl,E^2uc - xt)] , (2.60a) 
t = 0 

K,E = (e- 1 ^ J1 alE dx^j ^ , (2.60b) 

where 7 — q/(p — 1). Substituting (2.60a) into (2.60b), we can determine hn>E as 

( n0\ ( a + l ) £ - l ) - , m 

M ) ' ( 2 ' 6 1 ) 

where @ was defined in (2.10b). In (2.60a), the spike locations Xi for i = 0,.., n — 1 satisfy 

— 1 < x0 < xi,.., < xn-i < 1. They correspond to local maxima of a n ,£ . 

We now linearize (2.1) about an>E and hn>E by introducing </> and n defined by 

a(x, t) = antE(x) + ext(j>(x), (2.62a) 

h(x,t) =hn,E + extn(x). (2.62b) 

(2.62c) 
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Here (j) ^ an,E a n d rj <C hn>E. Substituting (2.62) into (2.1) we get the following eigen­

value equation 

e2fax ~ & + p-jj^(t> ~q-r^V = AcA, (2.63a) 
nn,E h n E 

am~l am 

DhVxx ~ m + m e _ 1 T J ^ - ^ - se~1-^[rj = Arn. (2.63b) 
nn,E hn,E 

Since each spike of the quasi-equilibrium solution is localized to within an 0(e) region 

near x — Xi for some i, we look for an eigenfunction fax) of the form 
71-1 

fax) = YJ&V~\x - ^)] • (2.64) 
i=0 

Therefore, we need to introduce local coordinates near each spike. In particular, the ith 

set of inner variables are defined as 

fa(Vi) = Hxi + eVt), Vi = e~l(x ~ xi)- (2-65) 

Once again, we expand 77 as a power series in D^1, 

V = m + D-1

m+0(D-2). (2.66) 

Substituting this expansion into equation (2.63) we get the following equations for 770 and 

Voxx = 0 , - K x < l (2.67a) 

(CZ1 , a™ 
mxx = prjo - me '-^—(1) +se-'—^rjo + rXrjo, - 1 < x < 1, (2.67b) 

nn,E h n E 

Vox(±l) = 0, (2.67c) 

mx(±l) = 0. (2.67d) 

Thus, 770 is a constant and it can be determined by imposing a solvability condition on 

the problem for 771. This condition requires that 

/: ( /irjo-me x-^-</> + se 1T^VO + rXr]0 ) dx = 0 . (2.68) 
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The integral is decomposed into the sum of four separate integrals. We then can calculate 

the third integral as 

-5^odx = K m

E

s - % / Wn)dVi 
1 nn,E j = 0 • ' - o o 

= 2nrj0sPhlm

E-s-1. (2.69) 

Substituting (2.69) and (2.64) into (2.68) we can determine rjo as 

mh^m~^~s n~l r°° 
% = — T T T ^ ^ I E ur1(yl)Uyi)dyl. (2.70) 

Substituting (2.70) into (2.63a), we arrive, after a lengthy algebraic calculation, at the 

following eigenvalue problem corresponding to an n-spike solution: 

p 71—1 poo 

<?<\>xx + pup

c4> ~ 2n/3(/x(s + 1) + rA) ^ J U ^ ~ L D ^ = A<^> \ X \ < 1 

(2.71a) 

fc(±l)=0. (2.71b) 

Finally, we use localized coordinates to examine the stability of each spike. This yields 

on the interval — oo < yi < oo that 

71—1 p Tl — 1 /»0O 

fam ~4> + PY1UC le~l (x ~ $ ~ 2n^( / i (sT 1) + T A) ^ / uTl{Vi)^i{yi)dVi = A^> M < c 

(2.72a) 

$ -»• 0 as ?/, ->• ±oo . (2.72b) 

Since r is typically very small, we can set r = 0 in (2.72) as a simplifying approximation. 

Now we note that if each fc were independent of i (i. e. fc(?/i) = $(2/i)) f ° r « = 0,.., n — 1, 

then S^To J"^ u ™ - 1 ^ ) ^ ) % = n u™" 1( ?/)$(y) dy. The factor of n would cancel 

in (2.72) and we would be left with the same eigenvalue problem as (2.19). Thus, for 

the parameter set we have used previously, we would conclude that an n-spike solution is 
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meta-stable. However, we now show that this conclusion of meta-stability is erroneous. 

To see this we note that we can construct a global eigenfunction by taking 4>i(yi) = b^(y) 

for some constant b{. The non-local term in (2.72) then becomes 

"—1 poo poo I 1 \ 

£ / <~\yi)Uvi)dyi = / u™-\yMy)dy J > . (2.73) 

i=0 J~°° J-°° \i=0 J 

Then, if we impose the constraint that 

71-1 

X > = 0 , ( 2 - 7 4 ) 

7=0 

the non-local term vanishes. Hence, with this constraint, $(?/) satisfies the local eigen­

value problem 
$" - $ + pup-l$ = A 0 $ . (2.75) 

This problem has exactly one positive eigenvalue A 0 . When p = 2, we found that A 0 = 5/4 

with corresponding eigenfunction $o(y) = sech2(y/2). Hence, under the constraint (2.74), 

A 0 is also a positive eigenvalue of (2.72). This then leads to an instability. 

In summary, when there is more than one spike we may always construct an eigenfunction 

of the form <j>(x) = YJlZi b& [e~\ x — Xi)] where YLi=o ^ = 0- This eigenfunction has a 

positive eigenvalue. Therefore, it is impossible to find a stable multiple spike solution for 

large values of Dh. 

We now illustrate this instability result numerically for a two-spike solution for the pa­

rameter set (p,q,m,s) = (2,1,2,0), fx = 1, r = 0.01, Dh — 40, and e = 0.05. We 

took the quasi-equilibrium solution as our initial condition. The first spike (Spike 1) is 

centered at x0 = —0.5 while the second spike (Spike 2) is centered at x\ = 0.5. In Table 

2.2 we tabulate the numerically computed amplitudes of the two spikes as a function of 

time. We now use this data to estimate the positive eigenvalue. We remark that the 

data in Table 2.2 is taken after the simulation has been run approximately t = 20 units 
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to eliminate any transients and to ensure that the positive eigenvalue is dominant. After 

this time the solution at the spike locations x — x0 and x = X\ will be approximately 

given by, 

a{xl,t) ^ a2,E{xi) + eXotfa{xi), i = 0 ,1. (2.76) 

This relation will only govern the linear instability of CL2,E- For the parameter set we 

have used a2tE{xi) = 6.25. Then, we can re-write (2.76) as, 

A 0 t + log[^o(a; i ) ]«log( |a(a; i ,*)-6.25 | ) , i = 0 ,1. (2.77) 

To estimate A 0 from the data in Table 2.2, we take x\ — 0.5 and evaluate (2.77) at two 

different values of time, labeled by t\ and t2. Using the numerically computed values for 

a(0.5,t) at t = ti and t = t2 gives us two equations for the two unknowns 0o(O.5) and 

A 0 . In this way, A 0 can be estimated. In Table 2.3 we give the numerical results for A 0 

and 0o(0.5) using various values of t\ and t2. For this parameter set, we would expect 

that the principal eigenvalue is 1.25. The interpolated values, obtained by our numerical 

procedure, are all close to 1.25 as expected. 
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time Spike 1 Height Spike 2 Height 

19.5 6.2738663390032 6.2635545772640 

19.8 6.2761841264723 6.2612374542097 

20.1 6.2795439171902 6.2578790593718 

20.4 6.2844142872978 6.2530116219365 

20.7 6.2914746492378 6.2459574213615 

21.0 6.3017102226534 6.2357347923334 

21.3 6.3165498360813 6.2209223724487 

21.6 6.3380658088900 6.1994635220925 

21.9 6.3692634678024 6.1683858288480 

22.2 6.4144988374999 6.1234022942033 

22.5 6.4800753144382 6.0583539884737 

22.8 6.5750761790975 5.9644587136514 

23.1 6.7124619645111 5.8293778760449 

23.4 6.9103141671528 5.6362910167926 

23.7 7.1926098041313 5.3636802602846 

24.0 7.5876099073842 4.9877041819062 

24.3 8.1196649411629 4.4906888214834 

24.6 8.7900467006609 3.8780493118962 

24.9 9.5540932480348 3.1943794842134 

25.2 10.3232394145038 2.5150430348060 

25.5 11.006159488840 1.9098035904776 

Table 2.2: Height of spike 1 centered at x0 = —0.5 and of spike 2 centered at x\ — 0.5. 
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h * 2 a(.5,*i) a(.5,t2) Ao 0o(-5) 

22.8 23.4 5.9644587136514 5.6362910167926 1.275223721 _ e - 3 0 . 3 2 8 4 6 9 4 9 

23.1 23.7 5.8293778760449 5.3636802602846 1.242238171 _ e - 2 9 . 5 6 1 7 2 2 1 5 

22.5 23.7 6.0583539884737 5.3636802602846 1.276189822 _ e - 3 0 . 3 6 6 3 7 6 2 9 

22.2 23.4 6.1234022942033 5.6362910167926 1.315422050 _ e - 3 1 . 2 6 9 1 1 0 3 8 

Table 2.3: Logarithmic Interpolation of A 0 and </>n(.5). 
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C h a p t e r 3 

Finite Inhibitor Diffusion Coefficient 

In the previous chapter, we examined the Gierer Mienhardt equations in the limit e —> 0 

and Dh —> oo. In this chapter, we analyze the case of a finite Dh in the limit e —>• 0. 

From previous numerical experiments, it would seem that a smaller inhibitor diffusion 

coefficient can lead to more spikes that are stable. 

We begin with the scaled Gierer Mienhardt system (see (2.1)) from the previous chapter, 

ap 

at = e2axx — a + —, — 1 < x < 1 =,, rj > 0, (3.1a) 
hq 

am 

rht = Dhhxx- nh + e _ 1 —, (3.1b) 
hb 

where p,q,n,s satisfy (1.2). We construct a quasi-equilibrium solution to (3.1) with 

n spikes using the method of matched aysmptotics. To examine the stability of this 

solution, we study the associated eigenvalue problem arising from linearizing (3.1) about 

our quasi-equilibrium solution. A n inner solution in an 0(e) neighbourhood of each spike 

is matched to an outer solution defined away from the spike. The cases of one spike and 

of n spikes(n > 1) will be treated separately. 

3.1 A O n e - S p i k e Q u a s i - E q u i l i b r i u m S o l u t i o n 

In the limit e —> 0, we construct a quasi-equilibrium solution to (3.1) with exactly one 

spike. The spike is centered at x 0 , with — 1 < x0 < 1 and x0 is taken to be the local 
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maximum of a. We use the method of matched asymptotics to construct the quasi-

equilibrium solution. 

In the inner region, defined in an 0(e) neighbourhood of x0, we introduce the following 

inner variables, 

a(y) = a(x0 + ey), h(y) = h(x0 + ey), y = e _ 1 (x - x 0 ) . (3.2) 

Substituting (3.2) into (3.1) results in the following inner equations, 

aP 
ayy — a + — = 0, —oo < y < oo, (3.3a) 

hfl 
am 

Dhhyy — e2ph + e— = 0, —oo < y < oo. (3.3b) 
hs 

We then expand h and a in powers of e, 

h = ho + eh1-\ , a = a 0 + O(e). (3.4) 

Substituting (3.4) into (3.3) and collecting powers of e, we find, 

h0yy = 0, —oo < y < oo, (3.5a) 

1 am 

hyy = -oo < y < oo. (3.5b) 

To match to the outer solution constructed below, we will require that h0 does not grow 

linearly in y as y —>• ±oo. Thus h0 is a constant independent of y. Therefore, So satisfies 

(3.3a) with an unknown, but constant value of h, i . e. h ~ h0, Thus, as in (2.10a) the 

quasi-equilibrium solution aE{x) = do is 

aE{x) = hluc [e _ 1(x - x0)] 7 = q/{p - 1). (3.6) 

Here uc(y) is the canonical spike solution satisfying (2.9a). 

To determine h0 we must match the inner solution to the outer solution, which we will 

construct below. To obtain a matching condition for the outer solution, we integrate 
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(3.5b) from y = — oo to y = oo to get 

1 . r°° 
h[(oo) - h[(-oo) = -—hlm-s / < ( y ) dy. (3.7) 

Dh 7-00 
Since ho is a constant, we get from (3.4) that, 

h'(oo) - h'(-oo) = -—hl m ~ s / um(y) dy + 0(e 2). (3.8) 
Dh J-OO 

Now, we construct the outer solution defined away from an 0(e) neighbourhood of x = xo-

Since a is exponentially localized to an 0(e) region about x0, we get to within negligible 

exponentially small terms, that a = 0 in the outer region. In the outer region we get, 

to within exponentially small terms, h satisfies Dhhxx — ph = 0 on [—1,1] subject to 

continuity and jump conditions that must hold at x = XQ. TO derive these conditions we 

write the matching condition between the inner and outer solution as, 

h(x) ~ ho + ehi(y) + • • • , as x —> XQ, y —> oo, (3.9a) 

h(x) ~ h0 + dii(y) -\ , as x —> XQ , y —> —oo. (3.9b) 

Therefore h(x0) ~ h0. Now by subtracting (3.9a) from (3.9b) and substituting in (3.7), 

we then get the jump condition, 

1 roo 
1 7m—s 

/

o o 

u?(y)dy. (3.10) 
•00 

Where [v] = V(XQ) — V(XQ). Therefore, the outer approximation for h satisfies, 

Dhhxx — u.h = 0, —l<x<l, (3.11a) 

hx{-l) = Ml) = 0> (3-Hb) 

[h] = 0, (3.11c) 

W] = -^rhlm-s ^ u™(y)dy. (3.11d) 
l>h J-00 

The solution to (3.11) is given by, 

* = — = 2 ^ = c o s h ( J^-(a;< + l ) ) c o s h ( , / - ^ - 1)). (3.12) 
V ^ s i n h ( 2 , / f ) V A V A i 
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Where (5 is defined in (2.10b), £< = mm(xo,x) and x> = max(x 0, x). In terms of this 

solution, ho is given by h0 = h(xo). Thus, using (3.12) we get, 

1+s yn 

ho = I ^ c o s h ( , / £ ( x 0 + l ) ) c o s h ( A / ^ ( x 0 - 1)) I . (3.13) 
VL^s inh (20y y D h * D h 

In summary, the one-spike quasi-equilibrium solution is given by, 

aE = hluc(e 1(x - x0)), (3.14a) 

hE = 12 cosh( J-fr{x< + l))coshU-^-(x> - 1)). (3.14b) 

See figures 3.1, 3.2 and 3.3 for plots of outer solutions. 

0.4 1 1 1 1 1 1 1 1 1 r 

0.15 h 

0.1 \-

0.05 - | i i 
0 I I I I I ^1 i lis I I I I 

-1 -0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0.4 0.6 0.8 1 

Figure 3.1: Outer Solutions for Dh = 1. 

We close this section with a few remarks. Firstly, we can re-establish our approximate 

formula for h0 when Dh ~> 1 using our formula for h0. We examine the limit as Dh tends 
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0.14 

0.1 

-1 -0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0.4 0.6 0 

Figure 3.2: Outer Solutions for Dh = .1. 

to oo and we find, 

lim j — — — — — -==-
D^°° \VDhl2sinh(2J^-) 

c o s h ( V D~h(x°+ 1))cosh(y^;(a:o _ 

1+5—yrn 

28\ (3 + l ) ( p - l ) - ? T > 

2̂ J 

(3.15) 

Which corresponds with the value found in the previous chapter(the length of our interval 

is 2). Figures 3.4 and 3.5 illustrate the behaviour of ho as Dh and x0 are varied. 

Secondly, the derivation leading to the jump condition (3.10) can be significantly short­

ened by making the following observation. In the outer variables, a is localized to within 

an 0(e) neighbourhood near x = x0. In the inner region, h ~ h0, where ho is a constant. 

Therefore, for the outer equation for h, the term e - 1 a m / / r s in (3.1) has the effect of a 

multiple of a delta function centered at XQ as e —>• 0. To find the multiple of 5(x — x0) 
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0.5 
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~i 1 1 r 

a\,E 

_i i_ -1 -0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0.4 0.6 0. 

Figure 3.3: Outer Solutions for Dh = 10. 

(3.16) 

we integrate e 1am/hs over a small neighbourhood centered at x0, 

lim / —— dx = h1™'8 / uc(y) dy = hln~s2(3. 
s^°Jx0-s e/i s 7 - o o 

Therefore the term e _ 1 a m /h s in (3.1) may be replaced by h0

rm~s2P5(x—x0) in constructing 

the outer solution. This yields that the outer approximation to h satisfies, 

hxx - ph = -h1™ s2(3S(x - x0), - 1 < x < 1 

M - i ) = hx(l) = 0. 

It is clear that system (3.17) and system (3.11) are equivalent. 

(3.17a) 

(3.17b) 

In the derivation above, we have required hxx — 0 to be the dominant balance in the 

neighborhood of a spike. We will thus require that condition (2.7) still hold. Away from 

a spike, we have no longer assumed that hxx = 0 and thus the condition that Dh 3> 1 is 
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Figure 3.4: h0 versus Dh, for x0 = 0, ± .5 . 

no longer required. 

It is important to emphasize that (3.14) satisfies (3.1) up to exponentially small terms 

for any x0 E (—1,1). It also fails to satisfy the no-flux boundary conditions at x = ± 1 

by only exponentially small terms for any x0 G (—1,1). Determining x0 requires expo­

nential precision in the asymptotic solution to eliminate this near translation invariance. 

This also suggests that the quasi-equilibrium solution could be meta-stable. In order to 

examine these issues, we will examine the spectrum of (3.1) linearized about (3.14). 
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0.3 

0.25 

ha °-2 

0.15 

1 1 1 1 — i — i — i — i — 

Dh = o.i 

Dh = l 

-
Dh = 10 

/ 

i i i i 

-0.8 -0 .6 -0.4 -0.2 0 
X0 

0.2 0.4 0.6 0. 

Figure 3.5: h0 versus XQ for Dh = .01,1,10. 

3.2 A O n e - S p i k e E i g e n v a l u e P r o b l e m 

To examine the stability and the dynamic properties of the quasi-equilibrium solution 

constructed in the previous section, we now analyze the spectrum of the operator derived 

by linearizing (3.1) about our quasi-equilibrium solution. We thus define, 

a(x, t) = aE(x) + ext(j)(x), 

h(x,t) = hE(x) + extr)(x), 

(3.18a) 

(3.18b) 

45 



Chapter 3. Finite Inhibitor Diffusion Coefficient 

where ^ « and n -C hE. We substitute (3.18) in (3.1) and linearize to get the 

following eigenvalue problem: 

p—I p 

e2fax - 0 + ^ f - 0 - q - ^ V = A0, (3.19a) 

a m _ 1 a m 

D h r j x x - w + n-^—<j)-S6-1-£Ir} = Xrn. (3.19b) 
enE n E 

Again, we will use the method of matched asymptotics to match an inner region about 

the spike to an outer region away from the spike. A similar matching condition to (3.10) 

will be derived and used to solve for n in terms of 0. This then leads to a non-local 

eigenvalue problem analogous to (2.19). 

We define the following inner variables by 

fj(y) = n(x0 + ey), fay) = (j)(x0 + ey), y = e ~ 1 ( x - x 0 ) . (3.20) 

Substituting (3.20) in (3.1) and noting that, in a neighbourhood of XQ, hE ~ ho and 

a E ~ tiluc{y), we arrive at our inner eigenvalue problem, 

fay - 0 + pujr 1 ^ - <M-lup

cfi = Xfa (3.21a) 

^Vyy - M + j W ^ - ' r C - 1 * ~ i K T - ' - ^ c V = Arr}. (3.21b) 

Expand fj and 0 in an e power series, 

fj = fj0 + efj2 + . . . , 0 = 0o + 0(e). (3.22) 

Substituting this into (3.21) give us the following 0(e~2) and 0(e~1) equations on —oo < 

y < oo: 

fjoyy = 0, (3.23a) 

Dhf)lyy + m h l { m - l ) - s u ™ - l f a - s h r - ^ f i o = 0. (3.23b) 
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As was the case for constructing the quasi-equilibrium solution, in order to match to the 

outer solution found below, we will need to eliminate the linear growth in 770. Thus, we 

have that 770 is a constant independent of y, which will be determined by matching to 

the outer solution. By integrating the 0(e~1) equation we get the following condition, 

which will be used just as in (3.9) to provide a jump condition for the outer equation: 

77^(00) - T M - O O ) = ~ (^hT-'^fh /_°° < dy - mhtm~l)-s £ v£-% dy) . 

(3.24) 

The situation here parallels exactly the analysis leading to (3.11). By following the same 

matching procedure the equation above will lead to the following jump conditions for 77 

at x — xn : 

[77] = 0, (3.25a) 

[Vx] = lJh (shom~S~1^ J°° <dy - mht1^-* f_ um~% dy) • (3.25b) 

In the outer region, we have that a# is exponentially small. Therefore, by applying the 

jump conditions written above, we get the outer problem for 77 

Dhr]xx - m = T A«, - 1 < x < 1, (3.26a) 

% ( - l ) = Tfe(l) = 0, (3.26b) 

[77] = 0, (3.26c) 

[Vx] = (fhr~'-% y00 < dy - mhtm-l)-s £ < - ^ 0 dy) . (3.26d) 

In the outer region (j) = o(er) for any r > 0.. with <f> = 0, at all orders of e. Solving 

(3.26a) results in the following, 

77 = A cosh cosh O^p-) , (3-27) 
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a c o s h ( s ^ ) c o s h ( s £ ± ) 
A,sinh(J) 

a 
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where 

A = n (mhom~l)~S dV ~ shT'^Vo f <dy _ _ 
D h sinh(-) V 7 - o o 7 - o o / ]] U- + T\ 

(3.28) 

We can determine r}o = "(^o) by evaluating (3.27) at x = XQ to get 

, » . 7 ( n * - l ) - s / • o o - i ; —4 /"OO 

3 ^ , ^ — / ur^dy, (3-29) 
2D J - O O 

C = V , ' ^ * : A • (3-30) 

Finally, we arrive at our eigenvalue problem by replacing 77 in (3.21a) by (3.29) to get 

the inner eigenvalue problem 

<f>0yy + (-1 + ur'Uo - < , \ ° l n a / « r V o d y = Afc , |yI < 0 0 , (3.31a) 
1 + Csn0' 2p J-00 

0->O as y - > - ± o o . (3.31b) 

In (3.31) we note that £ depends on a, which in turn depends on A Hence, the eigenvalue 

is implicitly defined by (3.31). However, since r is taken to be small, we will take r = 0 

to get a = (Dh/p)1/2. Ignoring the implicit A terms will result in a small error. For a 

more accurate results with non-zero r, an iterative approach may be used starting with 

the guess found by assuming r is zero. 

If we compare (3.31) with the eigenvalue problem (3.31) found in the previous chapter, 

we note that the two problems are very similar. The only difference is the coefficient that 

multiplies the non-local part of the operator. The quasi-equilibrium solution will thus 

be stable if the coefficient of the non-local component of the operator is large enough to 

cause the first eigenvalue to become negative. In the previous chapter we examined the 
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eigenvalues of our system for the parameter set (p,q,m,s) = (2,1,2,0) and found that 

the eigenvalue problem 

u2 f°° 
L(f> = <!>„, + (-1 + 2uc)<j> -8-± uc<f>dy = \<f>, (3.32) 

J-oo 

with cj) —>• 0 as y —>• ±oo has a zero principal eigenvalue when 8 > \. With this parameter 

set, (3.31) becomes 

2CJIQU2 f°° 

(j)oyy + (-1 + 2uc)0o T^jr1 / uc<j)0 dy = A0o- (3.33) 

Thus, the first eigenvalue of this problem will be zero when 2(h0 > | . If we substitute the 

values of values of ( and h0, given in (3.30) and (3.13), into this inequality, we conclude 

that one spike will be stable when 2(5 > \. For this parameter set, ft = 3. Therefore, the 

one-spike solution will be stable for all values of Dh- As Dh —> oo this result agrees with 

with the results of the previous chapter. We note that the eigenvalue problem found for 

the case of infinite inhibitor diffusion may be re-derived by examining (3.31) in the limit 

as Dh —> oo. As Dh - ) o o w e have, 

lim C = —^-—. (3.34) 
Dh^oo^ 2(/i + rA) 

Substituting (3.34) and (3.15) into (3.31) simplifies to the result found in the previous 

chapter (see (2.19)). 

3.3 A n n - S p i k e S o l u t i o n 

We now construct an n-spike quasi-equilibrium solution to (3.1). The spikes are centered 

at Xi for i = 0 . . . n — 1, where x0 > —1, xi+i > Xi and x n _ i < 1. We begin by defining 

the following sets of inner variables near each x^. 

Oi(yi) = a(xi + eyt), hi(y) = h(xi + eyt), y{ = e'1 (x - x{). (3.35) 
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Our ith inner equations, defined on \yi\ < oo, are now 

aiyy - dj + -± = 0, (3.36a) 
K 

Dh - 1 a™ 
—hiyy-phi + --^ = 0. (3.36b) 

We expand hi and d, as a power series in e, 

^ = ^ 0 + 6 ^ 1 + . . . , di = d i 0 + O(e). (3.37) 

Collecting powers of e produces the following equations on < oo 

/lioro = 0, (3.38a) 
1 d m 

hilyy = - — ^ . (3.38b) 

To match to the outer solution, as before, we will need to eliminate the linear growth 

in hio as y —> ±oo. We thus have that hio is constant independent of y and clearly 

dio = h]0uc with uc as defined previously. It is possible to use matching of the inner 

and outer regions to find the jump conditions, which in turn will result in a system of 

equations for the h^s. However, it is less awkward to use the derivation from (3.17). 

In the outer region will behave like 2Ph]Q

m~s5(x — x{) about each Xj, as was shown 

in (3.17). Matching the inner and outer solutions of the h equation will thus be equivalent 

to solving the following problem 

n - l 

Dhhxx -ph + 2pY^hla~SKx ~ xi) = 0, - 1 < x < 1, (3.39a) 
i = 0 

hx(-l) = hx(l) = 0, (3.39b) 

h{xt+) = h(xi-), (3.39c) 

where h^ = h(xi) for % = 0,.., n — 1 are to be determined. Since using these equations are 

notationally simpler we will use (3.39) to determine the values of hio for i = 0,.., n — 1. 
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The solution to (3.39) on the interval (x;, xi+i) for 0 < i < n — 2 is 

^ sinh (y (̂xi+i - x)) ^ sinh (^ /^(a ; - x^)) 
/ / \ i ' " l - M , U / , x • 

s i n h v v ik (Xi+i ~Xi^) s i n h v v D~SXi+i ~x^) 

In the intervals near the endpoints, h is given by 

cosh(y^(*+i)) 

(3.40) 

h = hQ, 
cosh { ^ ( x 0 + 1)) ' 

-1 < x < x 0 , 

c o s h ( ^ ( l - x ) ) 
h = hnfi / — , x„_i < x < 1. 

(3.41a) 

(3.41b) 

cosh (A/7^! ~ Z n - l ) ) 

By integrating (3.39a) across each Xj, we get the following jump condition at each X;, 

hx(xi+) - hx(Xi-) =-^-h]Q

m-s• (3.42) 

Applying (3.42) at each x;, i = 0 . . . n — 1 yields the following nonlinear system for the 

h •i,0-

( ocu &12 0 

a2i a22 a 2 3 

o ••. 0 

V 
: ' • « n - 2 , n - 3 « n - 2 , n - 2 « n - 2 , n - l 

0 0 & n _ i , n _ 2 Q ! n _ i ) n _ i J 

, (3.43) 
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where the coefficients in this matrix are defined by 

ftn = coth( ) + tanhf J, 
a a 

« 1 , 2 M X\ ~ %0 X 
a 

—csch( ), 
a 

ctij = coth( ) + coth( ), 
a a 

c i n - l , n - 2 

&n-\,n-i = tanh( 

), 
a 

M Xn—1 ^ n - 2 \ 

a 

) + C0th( ), 
a 

(3.44a) 

(3.44b) 

(3.44c) 

(3.44d) 

(3.44e) 

(3.44f) 

(3.44g) 

(3.44h) 

In general we have to solve this system numerically. However, once we have a solution 

to this system we can define our n-spike quasi-equilibrium solution as 

n - l 

aN,E(X) = ^2hlouc [e l(x ~ xo)] , 
i = i 

(3.45a) 

cosh ( 
0 , 0 cosh^y^(x0+l)) ' 

— 1 < X < X0, 

K,E{.X) = { 

sinh( J~^{xi+i-x)\ „ sinh( ̂ ^ (x - X i ) ) 
hio 7 ^ — <- + / i i + i , o 7~=z ^ y , Xi<x<xi+l, i = 0 . . . n -

S i n h( V D^(Xi+1~XiH sinhl ̂ ^-(xi+i-xOJ 

cosh 
Xn-\ < X < 1. 

cosh^v/^(l-xn_1)J 

(3.45b) 

We emphasize that the height of each spike will be different and will depend on the 

location of all of the spikes in an intricate manner. A sample calculation for 3 equally 

spaced spikes is illustrated in figure 3.6. 
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0.18 

0.14 

0.12 

0.1 

0.08 h 

0.06 

Figure 3.6: A three-spike outer solution when Dh = 1. 

The case of infinite Dh. may again be re-derived by examining (3.39) as Dh tends to oo. 

To proceed with this we write h as a power series expansion in D^1, 

h = h0 + —hi -\ . 
Dh 

Substituting this into (3.39) results in the following equations, 

hoxx — 0, 

hixx - ph0 + 2pJ2 f^-'Six - x^ = 0, 
n - l 

i = 0 

M±i) = o» 
M±i) = o, 
h0(xi+) = h0(xi-) = hiQ 

(3.46) 

(3.47a) 

(3.47b) 

(3.47c) 

(3.47d) 

(3.47e) 
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Thus, we have that ho is constant and hi0 = ho for i = 0 . . . n — 1. We may now use a 

solvability condition on (3.47b) to find h0, 

/

l n - l 

(pLho -2pJ2 hlm~s5{x - Xi)) dx = 0. (3.48) 

This gives, 

n2(3\ 
fc°=UfJ • (3-49> 

which agrees with the result from the previous chapter. To find numerical solutions to 

the nonlinear system (3.43), we start with a large value of Dh with the initial guess from 

(3.49) and then use a continuation procedure on Dh to the desired value. 

3.4 The n Spike Linearized Eigenvalue Problem 

In the limit of large Dh, it was found that it was impossible to have a stable solution with 

more then one spike. With Dh = 0(1), numerical evidence leads us to believe that it 

should be possible to find stable multi-spiked solutions. The spectrum of (3.1) linearized 

about an n-spike solution should confirm this. Most of the previous analysis of the single 

spike linearization will not change for the case of n-spikes. First we linearize about an 

n-spike solution by writing, 

a(x, t) = antE(x) + extfax), (3.50a) 

h(x, t) = hn,E(x) + extr)(x). (3.50b) 

Since anyE is exponentially small outside of an 0(e) neighbourhood of each Xi we assume 

that 0 may be written as 4>(x) = Y^=o 4>i(x) where each fa is localized in an 0(e) 

neighbourhood of Xi. In a typical inner region, again we have an,E ~ hj0uc and h n , E ~ hi0-

We thus define the ith set of inner variables to be, 

fa(Vi) = fa(xi + eyi), fji(yi) = n(xi + eyi), = e~l(x - x{). (3.51) 
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Our ith inner equation in a neighbourhood of X; is thus, 

4>iyy ~4>i+ pup~l^i - qhJQ~lup
cfn = Afc, (3.52a) 

^f)iyy - prjt + ^ ^ - ^ - u ™ - 1 ^ - -^hir^TVi = A T * . (3.52b) 

Again, our goal is to match the inner and outer solutions and express each pair of coupled 

eigenvalue equations as a single non-local eigenvalue equation for fc. We expand fji and 

fc as a power series in e, 

Vi = Vio + + • • • , fc = fco + 0(e). (3.53) 

Collecting powers of e we arrive at the following equations: 

ViOyy = 0 , (3.54a) 

Dhr)ilyy + mhjt~1]~S<-lko ~ sh}™-S~l<Vio = 0 • (3.54b) 

Again 77*0 must be a constant to match with the outer solution, which will be determined 

later. As in the case of one spike, we will integrate (3.54b) to obtain, 

W o o ) - % „ ( - ( » ) = ^ - [shr-s-lVio2(3 - mhjt~l)~S £ u^ko dy) . (3.55) 

Following the analysis of (3.9) we can use (3.55) to provide a jump condition for the 

outer solution at X,. Thus, the outer problem for 77 derived away from an 0(e) region 

near each spike, is 

DhVxx ~m = rXv (3.5 6 a ) 
n—l , 

+ E UhlT'-'Wfto - mh]t-X)-s r ur%o dy) 5(x - Xi), 
i=0 ^ J-oo ) 

Vx(l) = Vx(-l) = 0. ( 3 5 6 b ) 

As before, we can solve for fji on each sub-interval and then apply the jump condition 

at each X; to arrive at a linear system of equations for {fjio}™=i- Proceeding with this 
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analysis results in the following tridiagonal system; 

«11 «12 

CX.21 C*22 

o ••. 

0 

«23 

0 

0 

^ I ».,0 ^ 

v 
where, 

^71-2,71-3 C*„_2,n-2 &n-2,n-l 

0 o; n_i ) n_2 a n _ i i n _ i J \ Vn-1,0 J \ J 

= - coth( ) + tanh(— ) -\ 5 tL 

• 1 .xx - x0 «i,2 = csch( ), 
a a 

a u - i = csch( ——^ — h , 

ay = I (coth(5±i^i) + c o t h ( £ i ^ = i )
N ) + ^ r - ' W 

c*i,i+i — —csch( ), 
a a 

On-l.n-2 = CSChf ), 
a a 

C^n—l,n—l — - ( t a n h ( ^ - ^ - ) + c o t h ( ^ i ^ ^ ) > ) + s K - ~ ^ W , 

mhl 7 ( m - l ) - s » o o 
•iO 

Dh /

oo 

oo 

fao dy. 

(3.57) 

(3.58a) 

(3.58b) 

(3.58c) 

(3.58d) 

(3.58e) 

(3.58f) 

(3.58g) 

(3.58h) 

Let G = A'1 where A — (a^) is the matrix in (3.57). Note that when the spikes are 

equally spaced , this matrix is strictly diagonally dominant and is thus invertible. In 

terms of the entries Ojj of ©, we can solve for the r^o's in (3.57) to get, 

71-1 mh 7(771—1)—s 

•30 
Dh 

u™ l(t>j0dy i = 0 . . . n - 1 . (3.59) 

Here © y will depend on all of the Xj ' s , on Dh, on \i and on r . About each spike, our 

local eigenvalue problem is given by, 
71-1 lh J. /»00 

faoyy ~ fao + pup~lfaa - -r-hj^ul V hfQ

m~1]~s / u™-1^ dy = Xfa0. 
uh r-f 7-oo 

(3.60) 
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Each local eigenvalue equation is coupled to all other local eigenvalue problems. To use 

the analysis of the previous section, we need to uncouple this system. To accomplish 

this, we express (3.60) in matrix notation. We thus write, 

00 \ (h 

h = 

\ 4>n-l J 

Equation (3.60) can now be written as, 

0 \ 
(3.61) 

hn-l J 

4>yy - 4> + Pul~14> - ^ f r - 1 e h * m - 1 > - X r <-^dy = A / 0 , 
Uh J —oo 

(3.62) 

where 0 = (Qij). 

Each localized eigenfunction is linearized about a similar spike scaled by the hj0. We thus 

look for a global eigenfunction composed of similar functions localized in a neighbourhood 

of each X{. To that end we write, 

( c 0 \ 

0. (3.63) 

If we choose the vector c(where c is the vector of scaling coefficients defined in (3.63)) to 

be any eigenvector of the matrix h 7 - 1 0 h 7 ( m - 1 ) ~ ' s with eigenvalue p then (3.62) becomes, 

mqp 
C[(pyy-(f)+ pvPc(j) + 

Dh c L 
u^Qdy ) = cA0. (3.64) 

Thus, we are left with a single scalar equation. Again the form of this equation is similar 

to (2.19). Using the analysis of this equation from the previous chapter we find that the 

principal eigenvalue of this system is zero when, 

2(s + l)23p 1 
Dh > 2' 

(3.65) 

We note that each eigenvector of the matrix h 7 1 © h 7 ( m ^ s will give rise to a different 

global eigenfunction. Thus for each eigenfunction found from (2.24) we may have up to 
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n different global eigenfunctions. It will be the smallest eigenvalue denoted by pmin, of 

h 7 - 10h 7(m - 1)~' s, that will determine the stability of any particular spike configuration. 

Specifically if 

r = 2 ( S + l ) 2 ^ t e > l j 

Dh. 2 

then the principal eigenvalue of (3.62) will be zero and the spike configuration will be 

stable. To illustrate this result we performed some numerical computations with the 

parameter set (p,q,m,s) = (2,1,2,0). In figure 3.7 and figure 3.8 we plot T versus Dh 

for a 2 spike and a 3 spike configuration in which the spikes are positioned at (—0.5,0.5) 

and (-2/3,0,2/3), respectively. The point at which V crosses 1/2 determines the critical 

value of Dh at which the stability of the spike configuration changes. Figure 3.7 predicts 

r 

Figure 3.7: 2 spikes. 

that a configuration of 2 spikes centered at —0.5 and 0.5 will be stable for Dh < .57 and 
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o i I I I I I I I I I I l 
0 0 . 1 0 . 2 0 . 3 0 . 4 _ 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 

Figure 3.8: 3 spikes. 

unstable for larger values of Dh- Figure 3.8 predicts that a configuration of 3 spikes 

centered —2/3, 0 and 2/3 will be stable for values of Dh < .18 and unstable for larger 

values. To check these results, we performed numerical simulations on the full system 

(1.7) using P D E C O L . These computations showed that the two and three spike system 

are stable for values of Dh < 0.33 and DH < 0.13 respectively. This discrepancy may be 

due to difficulties in running a simulation near a bifurcation point. 

The results found for the case of Dh —> oo may be recovered by examining l imrj^oo 0 . 

We begin by examining limrjJl->0o A. We write r)oti as a power series in D^1, 

Vo,i = V{o}+D^+0(Df). (3.67) 

Using the Taylor series expansion of the coefficients of the matrix A, we get the following 
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first order system, 

/ i i 
KAXI 

1 
KAX2 KAX2 

0 

Thus f$> 

K A I I 

1 + 1 

KAXS K,AX3 

1 + KAxn-2 K,Axn-2 K A X „ _ 1 

^ K.Axn-l 

K A X „ _ I 

1 
fcAx„ 

( do) ^ 
Vo,0 

\ 7 7 ( 0 ) / 

= f)n-io = ^o°^ To determine fj^ we need to look at the next order 

system, 

I KAXI 

1 

V 0 

where, 

b0 = K2 

h = K2 

6 n _ x = K2 

KAXI '/o,o 
l 

K,AX2 KAX2 

0 
+ KAXS KAXS 

K A I „ - 2 « A l „ - 2 K A X „ _ I + 1 

0 1 
nAxn-

KAX„-

KAX„-I / \ bn-l J 

(3.68) 

(Axi + Axi+1) - ^(AXi + Axi+1) - sh]^s-l2f3yj ̂  + m / ^ ™ " 1 ^ / «rVi,ody 
I i \ r<x> 

r 
J —oo 

/

oo 

ur'kody 
-oo 

K 

We note that the coefficient matrix of (3.68) has a determinant of zero and a null space 

spanned by the vector (1 , . . . , 1) T . Thus for a solution to this problem to exist, we require 

that the left hand side vector is orthogonal to the null space. Taking the dot product of 
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(1 , . . . , 1) T with (b0, • • • , 6 n - i ) T and setting the result to zero gives (using the fact that 

£r=~i l A ^ = 2), 
"~1 poo 

J —oo 

~ ( 0 ) 

Vo = 
1 

2^ + 2snPhlm

E

s- i = Q 

(3.69) 

Therefore © must be tending to the matrix, 

/ l 

2K2 + 2sfi 

\ 

(3.70) 

\ 1 ••• 1 / 

as 7J/i —>• oo. The matrix (3.70) has one eigenvalue of n, with multiplicity 1 and corre­

sponding eigenvector (1, • • • , 1) T . The other eigenvalue is 0 with a multiplicity n — 1. 

The corresponding eigenvectors are of the form e^-, where has a -1 in the ith posi­

tion, a 1 in the jth position and zeros elsewhere. The zero eigenvalue implies that the 

related eigenfunctions will have the same eigenvalues as the local operator. These forms 

of eigenfunctions correspond to those discussed in section (2.6). 
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Chapter 4 
A Spike in a Multi-Dimensional 
Domain 

The preceding analysis was carried out in one dimension only. As a first attempt to treat 

the multi-dimensional case, we will analyze the slow motion of a one-spike solution to 

the Gierer Meinhardt system in the weak coupling limit Dh —> oo in a multi-dimensional 

setting. In this limit, we first construct a quasi-equilibrium solution. We then analyze the 

stability properties of this solution by examining the spectrum of the eigenvalue problem 

associated with the linearization about this solution. An exponentially small eigenvalue 

will be shown to be the principal eigenvalue for this linearization. Finally, we use the 

projection method to derive an equation of motion for the center of the spike. We remark 

that since some of the calculations below will parallel those in Chapters 1 and 2 rather 

closely, some of the analysis below will be covered briefly. 

The non-dimensionalized Gierer Meinhardt system in a domain Q G M.N is 

Ap 

At = e2AA- A + —, in Q (4.1a) 
Am 

ThHt = DhAH-{iH+—, in Q, (4.1b) 

An = 0, Hn = 0 on dQ. (4.1c) 

Here differentiation with respect to n represents the normal derivative on the boundary. 

As in Chapter 1, we re-scale this system to ensure that the amplitude of the spike is 0(1) 

as e —> 0. To derive the correct scaling we follow the analysis leading to (1.12), with 
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the exception that the integration in (1.12) will be replaced by an integration over an N 

dimensional domain. Thus, (1.13) is replaced by 

-vh = -vam + vhs + N. (4.2) 

Solving (1.11) and (4.2), we get 

= N q = N { P ~ l ) (A *\ 
Ua {l-p){l + s) + mq, V h (l-p)(l + s ) + m q

 { -6) 

Therefore, upon introducing the new variables a and h by A = e~Vaa and H — e~"hh, we 

obtain the following scaled Gierer-Meinhardt system, which is analogous to (1.15a): 

at = e 2 Aa — a + —, in Q, (4.4a) 
p 

rht = DhAh-u.h + e _ y v — , in O (4.4b) 

an = 0, hn = 0 on <9Q. (4.4c) 

We now examine this system in the weak coupling limit Dh —> oo. Following the analysis 

of Chapter 1, we expand h as a power series in D^1, 

h^hv + D^hx + OiDf). (4.5) 

Substituting (4.5) into (4.4) and collecting powers of D^1 we get the following problems 

for h0 and hi. 

Ah0 = 0 in fl, (4.6a) 
am 

A/i i = Thhot + fiho - £~NTT I N ^> (4-6B) 

h0„ = 0 on dQ, (4.6c) 

hln = 0 on dfl. (4.6d) 

^From (4.6a) and (4.6c), we conclude that h0 = h0(t), and so h0 is spatially homogeneous. 

To determine h0 we apply a solvability condition to (4.6b) and (4.6d) to get the following 
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ordinary differential equation for h0(t): 

rhh0 + pho 
r am 

/ = 0- (4-7) 
Jn no \Cl\ 

Here h0 = dh0/dt and |f2| is the volume of f2. As was the case for the one-dimensional 

system, we expect that the dynamics of h are much faster than those of a. Hence, we set 

h0 = 0 in (4.7) and solve for ho to get 

i 

This gives us the Shadow System for the Gierer Meinhardt equations in the weak coupling 

limit, 

ap 

at = e2Aa - a + in Q, (4.9a) 
ho 

ho = [ amdx) , (4.9b) 

an = 0 on an. (4.9c) 

We now construct a quasi-equilibrium solution aE for (4.9). This is done in a similar 

manner as in the one-dimensional case, except that the quasi-equilibrium solution will 

be radially symmetric about the center of the spike. Thus, we look for a solution to (4.9) 

in all of in the form 

a = aE(x) = K0

yuc(p), p = e _ 1 | x - x 0 | , 7 = q/(p - 1). (4.10) 

The function u c(p), called the canonical spike solution, is radially symmetric about the 

origin and it decays exponentially as p —> 00. It satisfies 

ul + ^^u'c + uc-up

c = Q, (4.11a) 

<(0) = 0 and uc(oo) = 0, (4.11b) 

uc(p) ~ ap{1-N)/2e-p, as p -»• 00 . (4.11c) 
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In terms of this solution, the quasi-equilibrium solution is given by 

aE(x) = hluc (e x|x - x0|) , (4.12a) 

0 " U N Jo 
h ° = 777% / < V V - i d p • (4.12b) 

Here QN is the surface area of the unit iV dimensional sphere. Recall that in the one-

dimensional case and with p = 2 we have the exact solution of uc(p) = | sech 2 ( | ) . To find 

numerical solutions for uc(p) in other dimensions, we will treat N as a real parameter, and 

use iV (and p for p ^ 2) as continuation parameters. We can use the far field asymptotic 

behavior (4.11c) to obtain the boundary condition u'c = uc, which we impose at 

some large value p = pL in our numerical computations of (4.11). The computations are 

done using C O L N E W . In Fig. 4.1 we plot the numerically computed solutions uc(p) for 

N = 1,2,3 when p = 2. 
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Again, we note that aE will satisfy the steady-state problem for (4.9a), but will fail to 

satisfy the no flux boundary condition (4.9c) by only exponentially small terms for any 

value of x 0 G f2. Thus, we expect that the spectrum of the eigenvalue problem associated 

with the linearization about aE contains exponentially small eigenvalues. 

We now obtain the eigenvalue problem for this linearization by introducing <j> and 77 

defined by 

o(x, t) = a £ (x) + e A V ( x ) , (4.13a) 

/i(x, t) = h0 + eA*77(x). (4.13b) 

Here (j) <C aE and 77 <C h0. We substitute (4.13) into (4.4) to arrive, after a lengthy 

calculation, at the following implicit eigenvalue problem, 

pNUN(p(s + 1)4- AT) JN 

(4.14a) 

(j)n = 0 on dfl. (4.14b) 

Here, j3^ is defined by 
POO 

0N= / u™-lpN~ldp. (4.15) 
Jo 

In (4.14), uc = u c [e _ 1 |x — x 0 | ] . Thus, we will only seek eigenfunctions that are localized 

near x = x0. These eigenfunctions are of the form 

0(y) = 0 ( x o + ey), y = e- 1(x-x 0). (4.16) 

Therefore, we can replace fl by W1 in (4.14a) and impose a decay condition for 4> as 

|y| —¥ 00. This gives us the eigenvalue problem for the infinite domain 

L£4> = Ay4> + (-1 + pup-l)i> - ~—^L_— / un

c-14>dy = \4>, in RN, 
PNilN(p(s + 1) + Ar) JRN 

(4.17a) 

4>-¥0 as | y | - ) - co . (4.17b) 
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In this problem uc = i t c ( | y | ) . If, in addition, we consider an eigenfunction that is radially 

symmetric (i. e. 0 = fap), where p = |y|), then (4.17) reduces to 

(4.18a) 

</>->• 0 as p - » o o , (4.18b) 

where A p 0 = fa + (N — l)p~lfa Since r is typically very small, we will use the simplifying 

approximation that r = 0 for the remainder of the analysis in this section. 

We first note that the function fa = dyiuc(\y\) for i = 1,..,N satisfies (4.17). Here 

Hi is the i ^ n coordinate of y. This follows from the combined effects of translation 

invariance and the vanishing of the integral in (4.17) by symmetry considerations. Thus, 

this problem has a zero eigenvalue of multiplicity N with corresponding eigenfunctions 

<fi — dyiuc(\y\) for i = 1,.., N. These eigenpairs will be perturbed by only exponentially 

small terms as a result of the finite domain. Hence, there are N eigenvalues of (4.14) 

that are exponentially small. The goal is to determine whether these are the principal 

eigenvalues of (4.14). If the" non-local term is absent in (4.14) then, since each of these 

eigenfunctions has one nodal line, we know that these eigenvalues are not the principal 

eigenvalues. When the non-local term is absent, there is exactly one principal eigenvalue 

for (4.14) and this eigenvalue is positive and bounded away from zero. Thus, no meta-

stable behavior can occur when the non-local term in (4.14) is absent. By introducing the 

effect of the non-local term in a gradual way, we will show that this positive eigenvalue 

will cross through zero and become negative. Hence, the effect of the non-local term will 

be to ensure that the exponentially small eigenvalues are the principal eigenvalues for 

the non-local eigenvalue problem (4.14). We also note that When the non-local term is 

absent in (4.14), the principal eigenfunction is radially symmetric. Thus, we will track 

this eigenfunction as a function of a continuation parameter that gradually introduces 

the effect of the non-local term in (4.14). 
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Therefore, we must first compute the eigenvalues and eigenfunctions of the radially sym­

metric problem (4.18) (with r = 0). This calculation is done by repeating the procedure 

used in one dimension, in which the non-local behavior is introduced gradually through 

a continuation parameter 5 

Ls4> = AP4> + (-l+ pvP-l)j> - ^ 7 M ^ <~XhN-X dp = Xfa p > 0, (4.19a) 

0-» 0 as p-+oo. (4.19b) 

We need to determine the eigenvalues of this problem as a function of 5 and to confirm 

that its first eigenvalue X0(5) has a negative real part when 5 = 1. To solve this eigenvalue 

problem numerically we take N as a continuation parameter as well as 5 (we could use 

pas a continuation parameter for p ̂  2). In Fig. 4.2 and Fig. 4.3 we plot the first two 

eigenvalues Xo(5) and A2(5) of (4.19) as a function of 5 for iV = 2 and N = 3, respectively. 

These computations were done using C O L N E W . These plots clearly indicate that A0(<5) 

crosses through 0 before 5 = 1. At some value of 5, A 0 and A 2 collide and become complex. 

To track the eigenvalues past the point where they become complex, we use the same 

technique as in the one-dimensional case. The differential operator is approximated by 

a matrix and the eigenvalues of the matrix are then approximations of the eigenvalues 

of the differential operator. Using this numerical procedure, we give numerical values for 

the real and imaginary part of XQ(5) in Table 4.1. This table shows that the real part of 

A 0 is negative when 5 = 1. 

4.1 An Exponentially Small Eigenvalue 

We will now use a boundary layer analysis to construct a composite approximation to 

the eigenfunctions corresponding to the exponentially small eigenvalues of (4.14). The 

corresponding eigenfunction is well approximated by dXiuc in the interior of the domain 

and has a boundary layer correction term near dfl in order to satisfy the no-flux boundary 

condition on dfl. In order to resolve the boundary layer we must define a local coordinate 
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Figure 4.2: \o(S) and A2(5) versus 5 in E 2 for the parameter set(p = 2, q = 1, m = 2, s = 
0). 

system. Let 77 represent the distance from a point in Q, to <9Q, where 77 < 0 corresponds 

to the interior of Q,. Let £ correspond to the other N — 1 orthogonal coordinates. To 

localize the region near dQ, we let 77 = e~lf). The eigenfunction on the finite domain can 

then be approximated by, 

<j)i = Ci (dXiuc (e x|x - x0|) + fc) , (4.20) 

where Ci is a normalization constant and fc is a boundary layer correction term. Using 

the fact that uc is exponentially small near d£l we get the following boundary layer 
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Figure 4.3: X0(8) and X2(8) versus S in R3 for the parameter set (p = 2, q = 1, m = 2, s 
0). 

problem 

dmfa - fa = 0, n < 0, 
df) 

dvfa = - ^ ( 5 S i M c ) | ^ = 0 — , on ?7 = 0, 

a function of C 
0i —> 0 as 77 —> — 0 0 . 

(4.21) 

(4.22) 

(4.23) 

We require that fa —> 0 as r\ —> — 0 0 to match to the outer solution. Define </i(C) to be 

the right side of (4.22), 

ft(C) = -^ (a s i u c ) | , = o . (4.24) 

Then, the solution for fa is 

fa = 9i(C)ev. (4.25) 
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Thus, the composite asymptotic solution for the eigenfunction is 

<t>i = Ci[dXiuc + gi{Qe1f\, i = l...,N. (4.26) 

In order to complete our asymptotic estimate of the exponentially small eigenvalues, we 

apply Green's identity to fc and dXiuc to get the following relationship: 

Xi(dXiuc, fc) = - e 2 / (t>idn{dXiuc)dS + (L*dXiuc, fc). (4.27) 
Jan 

Here 

L*£v EE e2Av - v + ul~lv - J <v dx . (4.28) 

We will now estimate each term in (4.27). Since dXiuc is an exact solution to the local 

problem, we have that, 

K{dXluc) = - ^^1 j f ^ t i c d x . (4.29) 

Next, since uc is radially symmetric and localized to a small region in the interior of Q,, 

it is clear that fnupdXiucdx. = §uupdx.ucdx., = 1... N. Thus, we may write the 

expression above as, 

,m—1 " N 
l_c 

2N3(s +1) 

A n application of the Divergence Theorem results in, 

.m— 1 
L_c 

2N{3(s + 

On the boundary of £2, uc [e~x|x - x 0 | ] ~ a 6(JV-i)/2 r(i-JV)/2 e- £-i|x-x 0|_ Therefore, the 

integral in (4.31) will be exponentially small. If the boundary of Q, is smooth, we can 

estimate the integral to get the following bound: 

\r*(8 7/ )\ < \ m \ p+i (JV-IMP+D/2 (I-AQ(P+I)/2 6 - i ( p + i ) P n „ 2 ) I M < W I < 2N(3{s + 1){p+1f Po (4.3̂ j 
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Here p 0 = dist(x 0, dtt). Therefore, we have Thus, 

X £ ( » - i ) ( p + i ) / 2 ^ - « ) ( P + i ) / 2 ( , - ( P + i ) ( w - ' / 2 [ u?-iaXiucdx. (4.33) 
Jn 

A similar procedure shows that 

mq \dQ,\2 

\(L:dXi,fa)\< 
2N2f3(s + l) (p+l)m 

x a ( p + l ) m £ ( l - i V ) ( p + l ) m / 2 ^ ( l - J V ) ( p + l ) m / 2 e - ( p + i ) ( m - i ) p 0 / ^ '±34) 

Thus, this quantity is exponentially small. We will show that it is exponentially smaller 

than the other terms of (4.27). Therefore, we can ignore it. 

To proceed with the analysis, we need estimates for the eigenfunctions on the boundary. 

The first step is to find gj(() in (4.24). Let x0j represent the jth component of x0 and 

let Xj = Xj(Q be a parameterization of the boundary. So, setting r = \x — x0\, we apply 

the chain rule, which gives 

9 i ~ - { X i ^ K ( r A ) r - n ) , (4.35) 

where n is the outward unit normal to £1. Since uc(p) ~ ap^~N^2e~p as p —> oo we get 

that, 

Xj XQJ ) r - ( 1 + J V ) / 2 e - r / e r • n, on 5 0 . (4.36) 

We can now combine (4.20) with (4.36) to get an asymptotic approximation of fa on the 

boundary. In this way, we find 

fa~ - C i e ( J V - 3 ^ 2 a ( o ; i - r r i o ) r - ( 1 + i V ) / 2 e - r / e ( l + r-ri), on OQ. (4.37) 

This expression will be used in the integral term in (4.27). 

Now we estimate the left hand side of (4.27). Since fa and dXiuc are exponentially small 

outside of a neighbourhood of x = xo, this inner product will be dominated by these 
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localized functions. Using a Laplace-type approximation, we can approximate the inner 

product to get 

(0 X i « c > fa) ~ % j(Vc(r/e))2 ( x - i ^ i \ d x = 9^1 j u'c{p)2pN-1 dpd9, (4.38) 
6 Jn \ r J i V Jw 

where 6 represents the N — 1 angular co-ordinates. Since the integrand is independent 

of 6, we can define /3N = f0°° u'c(p)2pN~1dp, to simplify (4.38) to 

(dXiuc, fa) ~ CjeN-2£lNpN/N. (4.39) 

Here fl]^ is the surface area of the n-dimensional unit sphere. We may now find Cj by 

using the normalization relation fn fa dx = 1 to obtain, 

N 1/2 
d = ( ̂ — ) e^'2. (4.40) 

\PNSIN) 

Finally, we get our asymptotic estimate of Ai by substituting (4.39), (4.37) into (4.27) 

and using the estimate dn(dXiuc) ~ ae^ J V _ 5 ^ 2 r~^ i V + 1 ^ 2 e _ r / e , on dQ. In this way, we get 

^ ~ S^- [ fa - x 0 i ) 2 r - ( 1 + A V 2 r / e ( r • n)(l + r • n) dS. (4.41) 
PN^U Jon 

As a consistency check we observe by comparing the asymptotic orders of the two terms 

on the right side of (4.27) that the second term is asymptotically negligible compared to 

the first term. 

This surface integral may be further simplified by using a multi-dimensional Laplace 

technique. We let x m be the point on dQ, where rm = dist(xo, dfl) is minimized. Assume 

that x m is unique. If we parameterize the boundary near Cm (where x(Cm) = x m ) such 

that each Q corresponds to arclength along one of the principal directions through £ m , 

then for any smooth F(r), we have(see [15]), 

„ / v (N-l)/2 
/ r1-NF(r)e-2r^dS= — F(rm)H(rm)e-2r^e, (4.42) 

Jan \rmJ 
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where 

• H(rm) = (1 - rm/Ri)~1/2(l ~ rm/R2)-1/2 • • • (1 - r j R ^ y 1 ! 2 . (4.43) 

Here Rj are the principal radii of curvature of dfl at x m . This result assumes the non-

degeneracy condition Rj > rm, j = 1,... , N — 1 holds. Using equation (4.42) we have 

the following asymptotic estimate for the exponentially small eigenvalue, 

A " - f ^ ( r ) M / 2 ( ^ ) 2 f f ( - ) e " 2 ' " / 2 - < 4 4 4 > 
PjVliJV \'m/ \ 'm / 

We have used the fact that at xm, r will be in the same direction as the normal vector 

and thus r • n = 1 at this point. 

Now we may examine the dynamics of the iV-dimensional spike system. We linearize 

about a moving spike by writing, 

a(x, t) = KQUC ( e - 1 | x - x 0(£)|) + w(x,t), (4.45) 

where w < h^uc (e _ 1 | x - x 0(t)|) and wt < e~lr~lhlu'c (e _ 1 | x - x 0 ( i) | ) 2~2?=i x0i(xi-x0i). 

Substituting (4.45) into (4.9), we obtain, 
N 

Lew = e~1r~1h'^u'c(e~1\x-ico{t)\)'^2xoi(xi - x0i), in fi, (4.46a) 
i=l 

9 n w = - £ - 1 / i X ( € ~ 1 | x - x o ( t)|)nT, on dQ. (4.46b) 

Now we wish to isolate the behaviour caused by the exponentially small eigenvalues. We 

will expand w as an eigenfunction expansion. As in chapter 1, since our operator is not 

self-adjoint, we will use the eigenfunctions of the local operator. Again we will utilize 

the fact that the eigenpairs of interest are common to the local and adjoint operators, as 

well as L£. We will refer to the eigenpairs of the local operator and the adjoint operator 

by (Aj, fc) and (A^, </>*), respectively. We now expand w in terms of the eigenfunctions of 

the local operator as they form a complete orthonormal set, 

^ E ^ " , (4-47) 
»=i ' 
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The coefficient D ; in (4.47) is given by 

Di(t) = Xi(w, fa) 

e2 / dnwfadS + e lr lhl\u'c(e *|x - x0(<)|) y^jxoj(xj - x0j),fa } 
Jan V j=i J 

= - e 2 / dnw fa dS + hi £ x0jCi / dXjuc (e _ 1 | x - x 0 ( i) | ) <9Xiuc ( e - 1 | x - x0(<)|) dx. 
7an - = 1 

(4.48) 

Clearly (<&, </>j) = 0, for i ^ since uc is a radially symmetric function, and fa ~ 5 Z i « c -

Then (4.48) simplifies to 

Di(t) = - e 2 / dnwfadS + h1x0iCi / [d X i « c (e _ 1 | x - x 0 ( i ) | ) ] 2 dx, 
Van i n 

7 . (4.49) 
= - 6 2 / dnwfadS + ^ 

Jan 

Since A; is exponentially small, we may apply the solvability condition that Di(t) = 0 , 

for i = 1,... N. This will result in the following N coupled ordinary differential equations 

for the coordinates of the spike location x 0 : 

i <M = e2S f dnwfadS, i = l,...,N. (4.50) 
"0 Jan 

We can evaluate the right hand side in the expression using (4.46b) and our estimates 

for fa in (4.37) and for uc in the far field. This gives, 

xoi ~ eN-lC2a2 [ (xi - x0i)r-N

e-2r/e(l + r • n)r • n dS 
Jan 

^feNo_\ f (x._Xo.y-Ne-2r/e(1 + T . n ^ . n d S 

V PN^N ' Jan 

(4.51) 

The equation above tells us that the spike will be repelled by the boundary and thus 

will tend towards the center of Q, (see [15]). This is the main result of this section. 

We can obtain the equilibrium position of the spike by setting xo = 0 and solving the 

resulting transcendental equations. A geometrical interpretation of this result shows that 
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the center of the spike will tend towards an 0(e) distance of the center of the largest 

inscribed sphere in Cl. This result requires Cl to be convex (see [15]). 

We can simplify the above equations by applying equation (4.42), which results in the 

following equations of motion, 

V P / v r i i j V / \ ' m / I m 

One must be careful when applying the above equation, for as the spike moves the value 

of x m may change. 
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s Ao Ao 

in E 2 in E 3 

0.00000 1.6388 2.3703 

0.05000 1.4814 2.1588 

0.10000 1.3231 1.9456 

0.15000 1.1638 1.7304 

0.20000 1.0030 1.5125 

0.25000 0.84032 1.2910 

0.30000 0.67516 1.0646 

0.35000 0.50641 0.83098 

0.40000 0.33218 0.58554 

0.45000 0.14857 0.31741 

0.50000 -.055026 -.019898 

0.55000 -.37526 -.33843 + 0.29744? 

0.60000 -.48239 + 0.24569? -.44368 + 0.45028? 

0.65000 -.56115 + 0.33165?; -.54978 + 0.54508? 

0.70000 -.64059 + 0.38475? -.65696 + 0.60964? 

0.75000 -.72097 + 0.41770? -.76550 + 0.65310? 

0.80000 -.80268+ 0.43510i -.87584 + 0.67970? 

0.85000 -.88640 + 0.43886? -.98857 + 0.69170? 

0.90000 -.97333 + 0.42959? -1.1045 + 0.69037? 

0.95000 -.10657 + 0.40726?' -1.2249 + 0.67652? 

0.10000 -.11678 + 0.37248? -1.3513 + 0.65089? 

Table 4.1: S and A 0 in E 2 and E 3 for the case of (p = 2, q = 1, m = 2, s = 0). 
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Chapter 5 
Conclusions 

Previous studies have shown that scalar reaction diffusion systems can not support stable 

spike-like solutions. However, two species reaction diffusion systems have been shown to 

exhibit stable spike like solutions. To examine the cause of this stability change, we 

linearized about a one-spike solution and studied the resulting linear operator. The 

difference between the linear operator resulting from a scalar reaction diffusion equation 

and a two species system is the addition of a non-local term. It is this integral term that 

allows the system to be stabilized. When we consider n-spike solutions, the situation is 

more complex. One might assume that the stability of an isolated spike of an n spike 

solution will only depend on the local levels of inhibitor. This has proven not to be the 

case. For if it were, in the limit of Dh —>• oo, an n-spike solution with too many spikes 

would tend to zero globally in space as each spike would feel the same level of inhibition. 

However, it is observed numerically that some spikes persist while other vanish. Thus, 

the determination of the stability of n-spike solutions is very different for the two cases 

studied. 

The stability and dynamics of the Gierer Meinhardt equations were studied first for the 

limiting case of Dh oo and e —> 0. For this case it was found that one-spike solutions 

are stable, as the equilibrium level of inhibitor for one spike is sufficiently small to allow 

the spike to persist. This fact is reflected in the spectrum of the linearized operator 

resulting from a linearization about a one-spike solution. However, in this limit it is 
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impossible to find n-spike solutions, with n > 1, which are stable. This is reflected by 

the nature of the eigenfunctions resulting from a linearization about an n-spike solution. 

For this limit one can always find an eigenfunction with two localized extrema that has 

an eigenvalue bounded above from zero. As the modes corresponding to these positive 

eigenvalues grow, some spikes will vanish, while others will persist. It is conjectured that 

the winner of this spike competition will be determined by the positioning of the spikes. 

I suspect that the determination of this winner will be exponentially sensitive. 

The projection method was used to quantify the motion of a one-spike solution. The 

presence of an exponentially small principal eigenvalue is used to imply a limiting solv­

ability condition on the system, which in turn provides an equation of motion for the 

center of the spike. However, the full numerical results appear to move on a much faster 

time scale than predicted by the asymptotics. Difficulties in simulating an exponentially 

sensitive system may be responsible for this discrepancy. 

In the case Dh = 0(1) as e —>• 0 it is possible to have stable n-spike solutions. In this case 

the heights of the spikes will be dependent on their locations. A quasi-equilibrium solution 

may be found by considering each spike as a point source of inhibition. The heights of the 

spikes and the solution to the inhibition profile may then be computed simultaneously. 

The stability is dependent on both the value of Dh and the positions of the spikes. In this 

limit, the stability of an n-spike solution will depend on the eigenvalues of a matrix that 

couples the localized eigenvalue equations. The eigenvectors of this matrix form scalings 

of the local eigenfunctions, which when added together form a global eigenfunction. The 

results from numerical simulations of the full system agree well with the asymptotic 

stability predictions. There is a slight discrepancy, but this is likely due to problems in 

quantifying the stability of the system using full numerics. 

Qualitatively, the numerical and the asymptotic solutions agree both in motion and sta-
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bility. Since both of these phenomena are controlled by small eigenvalues, the numerical 

problem will be ill-conditioned and accurate results are difficult to obtain. Numerically 

simulated unstable solutions, which are the result of an eigenvalue of order one, agree 

very well with the predictions (see Table 2.3). 

There are many questions that remain to be answered about the Gierer Meinhardt system. 

For the case of large Dh, the question of determining which spike of an n-spike solution 

will persist is still to be answered. I believe that the non-local effects of the operator will 

have to be considered to determine which eigenfunction will have the largest eigenvalue. 

For finite values of Dh, n-spike solutions can be stable. It should then be possible to 

find the equations of motion governing an n-spike system. There are few results for the 

Gierer Meinhardt system in a multi-dimensional setting. Only the case of one spike with 

large Dh has been analyzed so far. The extension of the case to finite Dh and to multiple 

spatial dimensions should, conceptually, present no problems. However, the technical 

details of incorporating an arbitrary boundary will require more careful consideration. 
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