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Abstract

Symmetries of a system of differential equations are transformations which leave invariant the
family of éolutions of the system. Infinitesimal Lie symmetries of locally solvable analytic
differential equations can be found by using Lie’s algorithm. We extend Lie’s algorithm to one
which can calculate infinitesimal Lie symmetries of analytic sy‘stemé of differential equations

which are not locally solvable.

Local infinitesimal symmetries of differential equations are flows of vector fields which de-
pend on local properties of solutions and have been extensively calculated and applied. In
contrast .inﬁnit)esimal nonlocal symmetries, which are flows of vector fields depending on non-
local properties of solutions, have only recently been introduced. Using our extension of Lie’s
symmetry algorithm, we study the infinitesimal nonlocal symmetries of potential type intro-
duced by Bluman, Kumei and Réid. ‘We give. verifiable criteria for useful potential systems
and give a complete potential symmetries analysis for a class of nonlinear diffusion equations.
We also find large classes of higher order scalar and systems of partial differential equations

admitting potential symmetries.
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Chapter 1

Introduction

Examples of differential equations abound in all areas of science. They arise whenever one
attempts to model any process (abstract or physical) that depends on continuously varying
quanti.ties and the rates at which -they change. Once a differential equation has been obtained
thaf adequately models the problem at hand, the question of existence and uniqueness of
solutions for a given set of data (initial or boundary) must then be addressed. One may then

be interested in obtaining numerical, asj'fmptotic or exact analytical solutions.

There are many branches of mathematics which deal with the above mentioned problems.
Broadly speaking, they come under the general heading of analysis. However, the most general
techniques for finding exact solutions of differential equations come from the branch of math-
ematics called Lie group analysis of differential equations and its generalizations. This subject
lies at the crossroads of analysis and differential geometry, and was originated by its founder,
Sophus Lie.” The research presented here lies in this field of mathematics. We first give a general

overview of the historical and conceptual background to this thesis.

1.1 Brief Historical Background

Marius Sophus Lie was born in Nordfjordeid, a town in the western part of Norway, on December
17, 1842. His school teacher [6] was Ludvig Sylow, who inspired him on the works of N.H. Abel
and E. Galois. Abel showed that it was impossible to solve polynomial equations of order
greater than four. by radical expressions. Galois subsequently gave an elegant theory for this

by considering symmetries of these equations. Lie and Sylow collaborated on a careful editing



Chapter 1. Introduction 2

of Abel’s completed works. Lie had a close friendship with F. Klein that led to a long fruitful
collaboration. Klein, who published his Erlangen program in 1872 (see [33, 27]), developed the
thesis that geometry was the study of invariants of group actions on geometric objects. Lie’s
starting point had been in modern geometry, after coming across the works of J.V. Poncelet
aﬁd J. Pliicker, and soon turned his attention to the geometry of differential equations with all

his genius.

Lie formally defined and initiated the mathematical study of continuous groups of transfor-
mations, now called Lie groups. He showed how these led to a symmetry theory of differential
equations, in the same spirit as the Galois theory for polynomial equations. Of the many
achievements of Lie, of particular relevance to us is his algorithm on the explicit determina-
tion of the continuous group of transformations (the admitted group) that leave invariant the
solﬁtion space of a given differential equation. With this algorithm, he was able to classify all
ordinary differential equations with respect to the admitted group, and to develop an integration

theory for such equations:

In a short communication to the Scientific Society of Géttingen (3 December 1874),
I gave, among other things, a listing of all continuous transformation groups
in two variables z,y, and especially emphasized that this might be made the
basis of a classification and rational integration theory of all differential equations
flz,y,¢,---,y™) = 0, admitting a continuous group of transformations. The great

program sketched there I have subsequently carried out in detail. (S. Lie [41], p.187)

I noticed that the majority of ordinary differential equations which were integrable
by the old methods were left invariant under certain transformations, and that these
integration methods consisted in using that property. Onée I had thus represented
many old integration methods from a common view-point, I set myself the natural

problem: To develop a general theory of integration for all ordinary differential

equations admitting finite or infinitesimal transformations. (S. Lie [42], p. iv)
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Sopbus Lie died on Feb 18, 1899 and left a profound legacy. His work has greatly influenced
the development of mathematics to the present day. His Lie gfoups and Lie algebras pervade
much of mathematics and physics. For example, the modern theory of elementary particles in

physics would be significantly different without his work.

The modern theory of Lie groups is radically different from that originally formulated by Lie.
Lie was interested in groups of transformations that act on the solution space of a differential
equation. In general, these are local Lie groups, with transformations being defined if they are
sufficiently close to the identity (otherwise graphs of functions may not be mapped to other
graphs of functions). Besides E. Noether, who proved a remarkable theorem [46] showing the
one-to-one correspondence between symmetries of a variational integral and the conservation
laws of the associated FEuler-Lagrange equations, the application of Lie groups to differential
equations was scarcely further developed for almost fifty years. During that time, Lie group
theory underwent a radical abstract reformulation at the hands of E. Cartan and those who
followed him. Interest switched from local Lie groups to global Lie groups. Present day interests
focus on special classes of global Lie groups (semi-simple, solvable, etc.) and on representation
theory, where the group action on the underlying space is linear. This is in direct contrast to

the local Lie groups studied by Lie which were never so elegant.

A major revival of interest in Lie’s original application of Lie groups to differential equations
was sparked off by the works of Ovsiannikov in the former USSR in the late 1950’s and 1960’s
[49] and of Bluman in the West in the late 1960’s and 1970’s [11, 12]. In the 1980’s, the
advent of symbolic manipulation computer programs (see the review paper [28]), which take
away the often tedious computations associated with Lie’s algorithm, has also helped in drawing
researchers into this area. The basic theory can be found in Ovsiannikov [50], Olver [47], Bluman
and Kumei [15], and in many other texts that have followed since. Besides applications of the
theory to particular differential equations of interest, research in this area focusses on extending

the scope of the theory. For example, in this dissertation, we develop a new symmetry algorithm

which extends Lie’s algorithm for the calculation of symmetries of general systems of PDEs.
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Using this new algorithm, we discover large classes of higher order scalar and systems of partial

differential equations admitting potential symmetries, which are new classes of symmetries.

" For a more detailed account of Lie the mathematician, see Baas [6], Ibragimov [30], and the

references therein.

1.2 Symmetries of Differential Equations

A symmetry of a differential equation (DE) is a transformation mapping any solution tb another
solution of the DE. Given a solution of the DE, knowledge of an admitted symmetry then leads
to the generation of another solution. This is one of the most basic applications of symmetry
analysis of DEs and relies on the symmetry being explicitly known. Even if one starts with a
simple solution, which can usually be found by inspection, one can obtain a highly nontrivial
solution in this way. Continuous symmetries such as translations, scalings and rotations can
often be found by inspection. Even some discrete symmetries may be stumbled upon. However,
most symmetries are not so easily found and the fundamental problem is one of algorithmic
determination of symmetries. We shall restrict ourselves to finding continuous symmetries. The

task of finding discrete symmetries is still very much an open subject (see Reid et al [55]).

Symmetry is defined in terms of transformations on the solution space of a DE. However,
explicit knowledge of a symmetry in terms of local coordinates also defines how derivatives of
solutions are transformed. Consequently, one can concentrate on how the DE itself is trans-
formed instead of how its solution space is transformed. This is very useful, since the solution
space is not usually known a priori. If one naively applies an arbitrary transformation on a DE,
the symmetry conditions turn out to be an overdetermined system of nonlinear DEs for the
transformation, which cannot be solved in general. To proceed, Lie considered a special class
of transformations called a one-parameter group of point transformations or, more generally,

contact transformations. These transformations are essentially the flows associated with vector

fields defined in the space of independent and dependent variables. These vector fields and their
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components are called infinitesimal generators and infinitesimals of the point transformations,
respectively. The fundamental insight due to Lie was that the symmetry conditions for these
one-parameter groups of point transformations turn out to be linear in the infinitesimals of
the transformations. Being linear, these infinitesimal determining equations are much easier to
analyse and, in a large number of cases, have been solved explicitly to yield the admitted group
of poiﬁt (or contact) symmetries. The derivation of the infinitesimal determining equations of
any given DE is called Lie’s algorithm. Henceforth, we shall refer to ‘one-parameter groups of

point symmetries’ as simply ‘point symmetries’.

The infinitesimal generators of point symmetries depend only on independent and depen-
dent variables. Lie also considered contact symmetries, where the infinitesimal generators also
depend on first order derivatives of dependent variables. Since the time of Lie, the symmetry

theory of DEs has been extended and applied in many ways. Applications now include:

e Counstruction of new solutions from old ones.

Integration of ordinary differential equations (ODEs).

Invariant (similarity) reductions of partial differential equations (PDEs).

Solving boundary value problems (BVPs).

Linearization of PDEs.

Generalized symmetries.

Construction of conservation laws (Noether’s theorem).

Equivalence transformations.
e Nonclassical solutions.

The theory behind Lie’s algorithm is given in §2. For now, let us consider two illustrative

examples.
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Example 1.2.1 Elementary Example of Symmetry

Consider the simple second order ODE

d*y
W = 0, (11)

which has solutions consisting of all non-vertical lines in the plane R2, given by
y = mz + ¢, m,c € R.
Examples of symmetries of the ODE are translations in v,

Te(z,y) = (z,y + ),
and rotations about the origin,
T CosE —sineg x

RE = 9
Y SINE COSE Y

where ¢ € R. Clearly such translations and rotations map any straight line in the plane to

another straight line and hence are symmetries of the ODE.

Notice that.different values of ¢ define different transformations 7T.. Moreover, this family
of transformations has a group structure: The identity element is Tb, the binary operation
is composition (Ts0T. = Tsy.) which is closed and associative, and to each transformation
T. there corresponds its inverse T_.. The same can be said of R., except that in this case,
not all values of ¢ are permitted if R. is to be a symmetry of the ODE. For instance R/,
rotates a horizontal line to a vertical line which is no longer a solution of the ODE. However,
if ¢ is sufficiently close to zero, then R. is a symmetry of the ODE. In general, symmetry
transformations may only be defined locally about the identity transformation (corresponding
to € = 0). Both 7. and R, are examples of local Lie groups of point transformations (7 is also
a global Lie group of point transformations). They correspond to the flows of the infinitesimal

generators (vector fields) X and Y respeétively, given by

X = 0, Y = —y0y + 20,

So far, we have concentrated on how transformations act explicitly on solutions of the ODE.
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This is made possible since the ODE was simple enough so that its solution space is explicitly
known. In general, this ié not true an(i one has to deal with the equations themselves. For any
e, the translations (z,9) = Te(z,y) transform the ODE to the new ODE, §%%/0%2 = 0, which
cléarly has the same solutions as the original ODE. As for the rotations (%,7) = R.(z,y), the
original ODE is transformed to the new ODE
A3% =0, A= <cose —sin 53—2) ,

where dy/dz can be expressed in terms of 7,y and dy/dZ. So long as A # 0, this ODE has
the same solution set as the original ODE. The nonvanishing of A essentially restricts ¢ to
be sufficiently close to the identity to ensure that straight lines do not become vertical. For

example, rotation of the line y = 0, through an angle of 7 results in a vertical line and this is

reflected by the fact that A vanishes for the line y = 0 when ¢ = 7.

Lastly in this example, the general solution of the ODE can be obtained from rotations and
translations of any one solution: Any non-veftical line can be reached by rotating any given non-
vertical line line to achieve the right slbpe, followed by vertical translations to achieve the right
y-intercept. In general, for the case of partial differential equations (PDEs) where the number
of independent variables is greater than one, one cannot hope to generate the general solution
from symmetries. However, the principle of mapping solutions to solutions still holds and one

can hope to generate nontrivial solutions by applying symmetries to simple solutions. O

Example 1.2.2 Mapping Solutions to Solutions
Consider the partial differential equation
Ut = Uz,

known as the heat equation. By inspection, the heat equation has the simple solution u = 1.

Applying Lie’s algorithm leads to the infinitesimal generator

X =at0, +1* 0, — (2a® + Jtu) 8y, (1.2)
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whose flow corresponds to the one-parameter Lie group of transformations

~ ~ ~ —p2
Z =%, t= l—tst’ %= uV1—etexp [m‘:_%)] . (1.3)
This transformation can be used to generate a new solution from the simple solution u = 1 as

follows. The graph of this simple solution is given by
{(z,t,1) :z,t e R}.

Now under the given symmetry transformation, any point (z,t, 1) on this graph is transformed
to a new point (Z ,»t~, %), where 1 is the value of the new function f over the point (Z, f), given
by (1.3). This new function, obtained by expressing (z,t) in terms of (%,%) in (1.3¢c), is given
by

~ . (= _ 1 £z2
i= 130 = Vv P L(HJ)] '

Hence, we have generated a highly nontrivial solution from a very simple solution, through the

application of a symmetry.!

Further examples of the applications of symmetry analysis can be found in the standard
texts mentioned previously. However, we note in particular that there has been a lot of recent
interest in the nonclassical method of Bluman and Cole [11] where the definition of invariant
solutions of a DE is further extended. In the classical approach, one looks for solutions that
afe invariant under some point symmetry admitted by the DE. However, in the nonclassical
approach, a special class of solutions of the DE are sought which admits a point symmetry
that is not admitted by the DE a.s a whole. See Clarkson and Mansfield [24] for an algorithmic
implementation of the nonclassical method and Bluman and Shtelen [19] for further extensions
of the method. Other exact solution methods include the work of Ovsiannikov [50] on partially
invariant solutions and Olver [48] on differential constraints. For work on the equivalence

transformations, see Lisle [43].

! As an undergraduate, I did not like differential equations very much. However, as a Master’s student searching
for something to work on [25], I came across this very simple, but elegant application of symmetry analysis and
was instantly won over to the study of Lie theory of DEs.
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1.3 Potential Systems

As already mentioned, the symmetries considered by Lie were point symmetries where the
infinitesimals depend on independent variables 2 and dependent variables u, and contact sym-
metries where the infinitesimals can also depend on first order derivatives of u. Lie theory of
DEs is further extended by the consideration of generalized symmetries, where the infinitesimal
generators can also depend on the derivatives of dependent variables up to some finite order.
Point, contact and generalized symmetries are called local symmetries, since their infinitesimal
generators depend_v only on local properties of solutions. In particular, at any point z, the

infinitesimal generators depend only on z and the values of u and its derivatives at that point.

One can further enlarge the class of known symmetries of DEs by considering nonlocal sym-
metries, which are characterized by infinitesimal generators that are not of local type. For
example, if the infinitesimal generator depends on integrals of dependent variables, then the
corresponding symmetry would be nonlocal. In principle, a DE can admit many nonlocal sym-
metr_ie.s, but the fundamental issue is in their algorithmic determination. Special and/or heuris-
tic techniques have beén employed by Akhatov et. al. [1], Konopelchenko and Mokhnachev [34],
Kumei [37], Kapcov [32], Pukhnachev [52], and Krasil’shchik and Vinogradov [35, 36] to obtain
nonlocal symmetries of DEs. In particular, the approach of Krasil’shchik and Vinogradov is
restricted to PDEs with two independent variables. In this thesis, we will use the potential
systems approach of Bluman, Kumei and Reid [16] which is a systematic method for finding
nonlocal symmetries of PDEs with two or more independent variables. Nonlocal symmetries of
ODEs require a different approach (see Bluman and Reid [17]) and are not considered in this

thesis.

A simple minded way to find nonlocal symmetries of a given PDE is to apply Lie’s algorithm

with infinitesimal generators of the form
X = &z, u,u_1)0; + n(z, u, u_1)0y, Uy = /u dz.

If unsuccessful, then what other forms of infinitesimal generators should one consider next?
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Clearly such an approach is ad hoc and a systematic procedure is needed.

In the potential systems approach, one uses a conservation law of the PDE R{u} to form
an associated potential system S{u,v} involving the introduction of potentials v. Here, the
potential variable v, which is algorifhmically determined, replaces the formal variable u_; in
the above ad-hoc approach. By their very construction, potentials are nonlocal with respect to
the dependent variable u of the original PDE R{u}. Since the solutions of R{u} are nonlocally
embedded in the solutions of S{u,v}, studying S{u,v} may lead to new nonlocal information
for R{u} and vice versa. Also, this embedding of solutions is not one-to-one so that invertible
mappings in (&, u,v)-space can lead to noninvertible mappings in (z,u)-space and vice versa.
In this dissertation we only use the potential system S{u,v} for finding nonlocal symmetries
of R{u}. The use of potential systems to deduce other types of nonlocal information for R{u}

can be found in [3, 4, 18, 20].

Nonlocal symmetries of R{u} may be found as point symmetries of S{u,v} which do not
project onto any point symmetry of R{u}. Nonlocal symmetries that arise in this way are called
potential symmetries. Being realized as point symmetries of S{u,v}, Lie’s algorithm? can be
used to calculate these potential symmetries and, once found, all the applications of point
symmetries outlined in the previous section are available. In particular, potential symmetries
can lead to new information for R that is not obtainable via local symmetries of B. Applications

of potential symmetries include:

¢ Noninvertible mappings of known solutions to new solutions.

e New invariant solutions of R.

Exact solutions of new boundary value problems for R.
e Linearizations of R through noninvertible transformations.
¢ Nonlocal mappings between PDEs.

¢ Nonlocal conservation laws of PDEs.

2Tn §1.4, we will have more to say on the use of Lie’s algorithm to find point symmetries of potential systems.
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Let us now discuss, through illustrative examples, the construction of potential systems S{u, v},
how their point symmetries can lead to potential symmetries of the original PDE R{u}, and

how potential symmetries can lead. to new nonlocal information for R{u}.

Construction of Potential Systems

The idea of using a conservation law of a PDE to introduce potentials is not new. Applications
have concentrated mainly on reducing the original system of PDEs to an equivalent system
involving only the potentials. The main advantage of this is that the resulting system contains

fewer equations and hence is easier to analyse.

Example 1.3.1 Potentials in Physics

In physics, the equations defining electromagnetic radiation are governed by Maxwell’s equa-

tions

OE 0B
W—VXB, W—

where E € IR? is the electric field and B € IR® is the magnetic field. One can introduce a

-VxE, V-E=0, V-B=0,

vector potential A such that B = V X A is automatically divergence-free, i.e., V-B = 0. Then
obviously, V x (0A/dt+ E) = 0. Consequently, one can introduce a scalar potential ¢ such that

0A /0t + E = V¢. Maxwell’s equations are then reduced to the following equivalent system:

9’A 9 DA
ST TYX(VxA)=Vo,  V.om=Ag,

which involves only the potentials A and ¢. O

In the potential systems approach one does not seek to eliminate the original dependent
variables to form a reduced system involving only the potentials, as was the case in the above
example of Maxwell’s equations. Rather, one replaces the given conservation law (divergence-
free expression) with the equations defining the potentials to form a potential system, as shall be
illustrated in the following two examples. The reduced equations can yield useful information

for the original PDE [10]. However, from the perspective of finding nonlocal symmetries, the
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potential system allows these symmetries to be ezplicitly realized. We shall point this out when

we come to discuss potential symmetries in §4.1.1.

Example 1.3.2 Case of two independent variables

In the case of two independent variables, the prototypical example is the nonlinear diffusion

equation

a9, . 0
;"W + 5o (E(wus) =0, (1.4)

with corresponding potential system
Vg = U,
(1.5)
v = K(u)ug,
where  is the concentration, K(u) is the concentration-dependent diffusivity and v is a scalar
potential. Notice that taking the sum of the t-derivative of (1.5a) and the z-derivative of (1.5b)
leads to the original PDE (1.4). We say that the original PDE is a differential consequence or

an integrability condition of the associated potential system. 0

Example 1.3.3 Cuse of three independent variables

In the case of three independent variables, the prototypical example is the nonlinear wave
equation
()t (o) + oe(Coluluy) = 0, (16)
ot Oz 0y Y
with corresponding potential system
—Ut — V3 .z + Vo,y = 07
Cl(u)ux — U1y + V3t = 0, i (17)
Cou)uy — v + 010 =0,
where Cy(u) and Co(u) are the wave speeds, v = (v1,v2,v3) is a vector potential, and v; ,; =
O0v;/0z; (z; =t, z or y). As in the previous case, the original wave equation is a differential
consequence of the associated potential system, as can be seen by taking the sum of the t-

derivative of (1.7a), the z-derivative of (1.7b) and the y-derivative of (1.7¢). O

The precise construction of potential systems is described in §4.1. For now, it suffices to
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say that the procedure is algorithmic: In [26] Haager et al. have developed a software package

which automates the construction process.

Potential Symmetries and Applications

Point symmetries 6f R{u} are of the form
X = (e, u) 05+ (2, ) Ou,y
whereas point symmetries of S{u,v} are of the form
X5 = 5(z,u,0) 8y + 7°(x, u,v) By + p°(z, u,v) 8.

It turns out that if ${u,v} admits X5, then R{u} must admit

XS = £5(z,u,v) 8z + 7°(, u, v) O,

By comparing X and XS, one can see that a new symmetry has been found for R{u}if (6%,75)
depends on v. These new symmetries, called potential symmetries, are nonlocal symmetries of

R{u} since v is nonlocal with respect to u.

Example 1.3.4 Potential Symmetry

Let R{u} be the nonlinear diffusion equation (1.4) with associated potential system S{u, v},
given by (1.5). If K(u) = exp(aarctanu)/(1 + u?), where a is a constant, then S{u,v} admits

the infinitesimal generator [16]
X5 = vd, + atd; — (1 + u?)d, — 20,.
Since the infinitesimal corresponding to z depends on v, we have found a potential symmetry

of R{u}. In particular, the flow of X corresponds to the symmetry transformation of ${u,v}

given by
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T =xcose +vsing,
t = e,
a4 = ucose—sing
~ cose+usine’?
¥ = —xsine + vcose,

which is defined for all € € IR sufficiently close to zero. This transformation induces a symmetry

transformation of R{u} obtained by projection onto (z,u)-space:
T = zcose + (fudz)sine,

t

east,

ucose—sing
cosetusine

Il

u
This induced symmetry transformation is clearly nonlocal. By projecting X° to (z,u)-space,

one obtains the nonlocal infinitesimal generator
%S = (/ud:v)@x +atd, — (1 + u2)ds,

admitted by R{u}. 0O

The following example further illustrates why potential systems and potential symmetries

are worthy of study.

Example 1.3.5 Noninvertible Linearizations

Consider the nonlinear system of PDEs R{u!, u?}, given by

1

2 _
u, —u; =0,

u —ule? —wl —u? =0,

which describes fluid flow through a reacting medium. These equations, also known as the
Thomas equations, were studied by Thomas [64] (see also Whitham [71]). When applying the
linearization algorithms [38, 15|, one can show that there exists no invertible transformation

which linearizes R. Evidently, the point symmetries of R are not sufficiently rich enough.

However, a noninvertible linearization of R can be found through a potential system of R:
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Using the first equation in R which is a conservation law, one can form the associated system

S{ul,u?, v}, given by

u? —ulu? —ul —u? = 0.

One can show that S admits an infinite-parameter family of point transformations with in-

finitesimal generator

X = ¢ {(%e+ u' )0 + (o + u2)0ya + 90, },

where 9(z,1) is an arbitrary function satisfying the linear PDE

Yot — Yo — P = 0.
Consequently, the linearization algorithm leads to the following invertible mapping
1 —v 3 —v, 1
2=z wl = —e w® =e Yu
’ ’ ’ (1.8)

2y =1, w? = e Yu?,
which transforms S to the linear system

wl :w2,v wl :w3, w? :w2+w3.

22
Moreover, projecting the transformations (1.8) to (z,u)-space, one obtains the noninvertible
transformation

7 =z, wh = —e_fuldt,

29 =1, w? = u?e” fuldt,

which maps R to the linear system

w, = w*, w :w2+w;2.

Hence, we have found a noninvertible linearization of R through potential symmetries of R. O
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1.4 A New Symmetry Algorithm For Systems of PDEs

Lie’s algorithm successfully leads to the point symmetries admitted by scalar PDEs and systems
of PDEs of Cauchy-Kovalevskaya type. However, we have encountered problems when applying
this algorithm to more general systems of PDEs, such as potential systems. As such, we have
had to derive a new symmetry algorithm to overcome these problems. To do this requires us to
synthesize ideas from the Formal Theory of Integrability and the existing Lie Theory of DEs.

We now sketch out the main points.

Recall that a symmetry of an n-th order system R of PDEs is a transformation mapping
any solution to another solution of R, i.e., a transformation that leaves the solution space of R
invariant. Since the solution space of R is not known explicitly in general, Lie’s algorithm deals
solely with the equations of R. The equations of R define a locus of points (subvariety) in the
space of independent variables, dependent variables and all derivatives of dependent variables
up to order n (n-jet space or n-th extended space). Since solutions of R lie in the locus of R,
one arrives at the symmetries of the solution space of R by finding the symmetries of the locus

of R. There are two important caveats to this.

The first caveat is that symmetries of the locus of R -are only guaranteed to map points
in the locus to other points in the locus: They may not map functions to functions. As such,
while they are guaranteed to map solutions of R to other points in the locus of R, they may
not map solutions to other solutions of B. One ensures that solutions of R are mapped to other

solutions by seeking symmetries that belong to the class of extended point transformations.

The second caveat is that one may not obtain the full set of symmetries of R unless certain
differential consequences of the equations of R are used. Appending differential consequences
to the equations of R leads to a new system R which has the same solution space as R, but
a different locus. As such, the symmetries of R and R are the same, but the symmetries

of their respective loci may be different. It is true that any such system R can be used to

find symmetries of R. However, in general the full set of point symmetries of R may not be




Chapter 1. Introduction ' 17

uncovered. In short, to obtain all the point syﬁmetries of R, one must apply Lie’s algorithm
to a locally solvable system }~Z, ie., R must be such that given any point in its locus there must
pass a solution of R. If R is not locally solvable, symmetries of its locus are required to leave
invariant, not only the solutions of R, but also regions of the locus through which there are no

solutions. This leads to stronger conditions than necessary on the symmetry transformations.

For analytic systems® of PDEs, an n-th order system of PDEs is locally solvable if the system
contains all its differential consequences up to order n. It turns out that scalar PDEs and
systems of PDEs of Cauchy-Kovalevskaya type are locally solvable and, hence, Lie’s algorithm
successfully leads to all the point symmetries admittéd by such PDEs. The situation for more

general systems of PDIs is not so simple, as we now illustrate in the following two examples.

Example 1.4.1 Let R be the system of second order PDEs given by

Upy = VU,
w (1.9)

Ut = v.

By differentiating (1.9b), we obtain the second order differential consequences

Upt = Ut
: ’ (1.10)
Ut = Vg.
However, we have not yet achieved local solvability. There is one further second order differential

consequence obtained by equating mixed partial derivatives wy; = uz4 to obtain
Vpg = Ut. (1.11)
The system R given by (1.9), (1.10) and (1.11) is locally solvable since there are no further

differential consequences up to order two. Hence, to find all the point symmetries of R, one

must apply Lie’s algorithm to the system R. 0

Here is an example of a system of PDEs where local solvability cannot be achieved for any

finite order.

3By staying in the analytic regime, we avoid certain smooth DEs for which there exist no solutions (see Lewy’s
counter example [39]).
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Example 1.4.2 Consider the third order scalar PDE
— DiF(z,t,u®) + DG(z,t,u®) =0, (1.12)
which has the associated potential system S, given by

Uy = Fa
(1.13)

v =G,
where F' and G are fixed, but not explicitly given. When looking for all the point symmetries
of S, which is of order two, one must first make the system locally solvable by uncovering
all its differential consequences up to order two. Such differential consequences can occur:
For example, when (F,G) = (ugg + U, uzz), S has the second order differential consequence
Vpy = Uty + ugp. Unfortunately, since F' and G are not explicitly given (such a situation will

arise in §5.1 when we study symmetries of potential systems), one cannot deduce all differential

consequences of § up to order two. The best one can do is to differentiate the equations of S

to obtain
Vge = Dy F,
Vet = DiF, (1.14)
v = DiG,

and the original scalar PDE (1.12) which arises through the compatibility condition vy = viy.
The system S, given by (1.12),(1.13) and (1.14), is of third order and to achieve local solvability
one must determine all differential consequences of 3 up to.order three. But this is not possible
for the same reason that S cannot be made locally solvable. This problem persists after any
number of differentiations of the equations of 5. Coﬁsequently S cannot be made locally
solvable at any finite order. As will be sh(;wn in §3.2, even the infinite system S obtained by
differentiating the equations of the system (1.12) and (1.13) to all orders is not locally solvable.
However, it turns out that such an infinite system satisfies the weaker property of analytic

local solvability and this will be sufficient for our purposes. Even so, the application of Lie’s

algorithm to such an infinite system S is clearly not feasible. O
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The above example illustrates the problems that one may encounter when applying Lie’s
algorithm to find symmetries of systems of PDEs. In §3.3, we show how one can relax the
local solvability requirement. Essentially, we show that the symmetry conditions for any locally
solvable system of PDEs can be reduced to an equivalent set of conditions involving significantly
fewer equations. In the new symmetry algorithm that results, only the equations of the given
system of PDEs are required at the ﬁrst. step. At a later step in the algorithm (the substitution

step), only a finite number of differential consequences of the system are required.

For scalar PDEs and systems of PDEs of Cauchy-Kovalevskaya type, our symmetry al-
gorithm is essentially the same as Lie’s algorithm. For more general systems of PDEs, our
algorithm is much more efficient: When finding symmetries of the system (1.13), only a finite
number of its differential consequences are required, whereas Lie’s algorithm requires the infi-
nite system S described in Example 1.4.2. Even when finding symmetries of the system (1.10),
Lie’s algorithm requires all the equations of the locally solvable system (1.9), (1.10) and (1.11)
from the very beginning, whereas our symmetry algorithm does not need to use the.differential

consequences (1.10) and (1.11) until the less computationally intensive substitution step.

1.5 Outline of Thesis

The following is assumed throughout the thesis:

Blanket locality and analyticity assumption: We always assume that all differential
equations, their solutions and mappings are local analytic functions of their arguments. For

simplicity of exposition we will discuss local properties using local coordinates.

This blanket analyticity assumption may be relaxed in some cases. Where it is crucial to have

analyticity, we shall explicitly state it.

We anticipate that this dissertation will be of interest to at least three different audiences.

One such audience will be interested mainly in the potential systems approach for finding

nonlocal symmetries of PDEs. Another audience will be interested in our extension of Lie’s
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algorithm and its theoretical basis. The third aﬁdience will be researchers in the field of sym-
bolic computation who will be interested in the algorithms of this dissertation as well as their
computer implementations. To help each reader access the specific information they need, we
feel it essential to provide a ‘road map’ designed for each of these three audiences. We will do
this after giving a brief description of each chapter. A more detailed description of the contents

of each chapter is provided at the beginning of each chapter.

The standard theory behind Lie’s algorithm is presented in §2. The symmetry transformé—
tions we consider belong to the class of transformations associated with flows of vector fields.
We seek such transformations which leave invariant the solution space of the given system R
of PDEs. As discussed in §1.4, one arrives at the symmetries of R through the symmetries of
the locus of R, by restricting to the class of extended point transformations and by requiring
that R be locally solvable. As such, the theory of extended point transformations and their
corresponding extended vector fields is provided. (The issue of local solvability will be tackled
in §3.) Symmetries of the locus are given by vector flelds which are tangent to the locus. By
restricting to extended vector fields the associated tangency conditions, called the infinitesimal
symmetry conditions for R, lead to the required symmetries of R. The resﬁlting algorithm is
called Lie’s algorithm. A discussion of the various other symmetry formulations, other algo-
rithms and their shortcomings is provided. In particular, we point out that a commonly used
and accepted algorithm for the calculation of symmetries of systems of PDEs appears to lack

theoretical justification.

In §3, a new symmetry algorithm which extends Lie’s algorithm to systems of PDEs is
presented. In order to do this, there are two questions to be answered. Firstly, how does one
achieve local solvability in general? Secondly, how can one find the point symmetries admitted
by systems of PDEs, such as (1.13), whose (analytic) locally solvable form consists of an infinite
number of equations? The Formal Theory of Integrability of Riquier-Janet answers the first

question. Here we follow the more efficient approach of Reid. By a finite number of operations

involving differentiations, back substitutions and applications of the Implicit Function Theorem,
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a prolonged standard form is constructed. We show that for any system of PDEs, it is the

associated prolonged standard form for which Lie’s algorithm applies.

To address the second question, we show how the infinitesimal symmetry conditions for a
prolonged standard form can be reduced to an equivalent set of symmetry conditions involving
signiﬁcantly fewer equations. This leads to a new symmetry algorithm which is more efficient
thaﬁ Lie’s algorithm. If the starting system of PDEs consists of a finite number of equations,
then only a finite number of equations from the prolonged standard form is required in this new
algorithm. This is true even if the prolonged standard form comprises of an infinite number of

equations.

In §4, we present the mathematical framework of the potential systems approach for finding
nonlocal symmetries of systems of PDEs. We provide details of how to find conservation laws,
how to construct potential systems, how to delineate which of these systems are useful for finding
potential symmetries, and how one can iterate this process to obtain higher generation useful
potential systems. A complete potential systems analysis of the nonlinear diffusion equation
is provided which shows how potential symmetries can arise. The construction of conservation
laws is through linear combinations, involving coefficients called factors, of the equations of
the system. We show how these factors can be used to derive necessary conditions for the

linearization of systems of PDEs.

To date, all examples of potential symmetries involve scalar PDEs of order two and systems
of PDES of order one. In §5, we tackle the problem of finding higher order scalar and systems of
PDEs admitting potential symmetries. Preliminary work on this problem appears in [51], where
necessary conditions for such PDEs are claimed, but where no examples were given. It turns
out that there is an error in their claims, since they neglect to form a locally solvable system
before applying Lie’s algorithm. We correct their claims using the new symmetry algorithm

of §3. We then proceed to construct large classes of higher order scalar and systems of PDEs

which admit potential symmetries.
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Our results are summarized in §6, where possible future directions for this research are also

discussed.

1.5.1 Specific Guide to Thesis

The reader, who is interested only in the potential systems approach and who is already familiar
with Lie’s algorithm,'can start immediately at §4 and read on. However, in §5 we make extensive
use of our new symmetry algorithm. Unless the reader is willing to read §2 and §3 for the
complete theory, the reader is advised to do the following: Read §1.4 to get the basic concept
of local solvability and the need of our new symmetry algorithm. Look at Theorem 3.3.3 which
is the basis of our new symmetry algorithm, given by Algorithm 3.3.4, as well as the example

that follows this theorem.

The reader should be familiar with all aspects of Algorithm 3.3.4 except for the use of
the prolonged standard form in the substitution step (step 2). Just think of the prolonged
standard form as providing all necessary substitutions that are derived from the equations of
the given system. The algorithms for achieving a prolonged standard form are summarized in
Appendix A. However, the reader should be able to follow the calculations of §5 without reading
Appendix A. If the reader is still unconvinced for the need of the new symmetry algorithm,
consider this. Any algorithm may lead to infinitesimal generators that can be verified, by other
means, as symmetries of the given system of PDEs. But the point is, where is the guarantee
that the algorithm used leads to the full set of the admitted infinitesimal generators? Through

Theorem 3.3.3, we provide a sound theoretical basis for our algorithm.

The reader who is interested in our new symmetry algorithm and the theory behind it,
should read §2 and §3. The proof of Theorem 3.3.3, which our new symmetry algorithm relies
on, is of a technical nature and is given in Appendix C. For applications of our symmetry

algorithm, see §5, where the symmetries of potential systems are investigated. Much of our

effort here is spent on deriving the prolonged standard forms, which is an essential ingredient
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in the new symmetry algorithm, for the given potential systems. Read §1.3 to find out how
potential systems are constructed and why they are important to study. We also direct the
reader to Definition 4.0.1 and Theorem E.0.1, where the prolonged standard form has been used

to define local symmetries and to state the Fréchet formulation for finding them, respectively.

The reader interested in algorithms and their computer implementations is directed to Lie’s
algorithm given by Algorithm 2.3.8, to a commonly used variant of Lie’s algorithm given by
Algorithm 2.3.9, and to our new algorithm given by Algorithm 3.3.4. Notice that the new
algorithm does not require the given system to be in locally solvable form. Also, notice that
the substitution step (step 2), which is required in each algorithm, has been made more explicit
(and more easy to implement on a computer) in the new algorithm, through the use of the
prolonged standard form. The algorithms for achieving prolonged standard form are given
in Appendix A. If unfamiliar with the Formal Theory of Integrability of Riquier-Janet and
the improved algorithms of Reid, then the reader is referred to §3.1. See Definition 4.0.1,
Theorem E.0.1 and Theorem 4.2.5, where the prolonged standard form has been used to define
local symmetries, to state the Fréchet formulation for finding them, and to state the adjoint
theorem for finding factors leading to conservation laws. These particular formulations can
lead to improved algorithms for finding local symmetries and factors. Lastly, we point out that
a computer package [26] now exists which automates various aspects of the potential systems

approach.
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Lie’s Algorithm

I:n‘this chapter, we develop the standard theory behind Lie’s algorithm which is used to de-
termine all the point symmetries of a given PDE. In §2.1, we study transformation groups.
The transformations that Lie considered are those represented by the flows of (analytic) in-
finitesimal generators (vector fields). Given an infinitesimal generator, the corresponding set of
transformations, which satisfy the group axioms, is called a one-parameter Lie group of point
transformations. A set of infinitesimal generators generates a multi-parameter Lie group if and
only if they form a Lie algebra. In §2.1.4, the infinitesimal generators admitted by a system of
algebraic equations are derived. One requires that the infinitesimal generators are tangent to

the locus of the system and this leads to the algebraic infinitesimal symmetry conditions.

The n-jet (extended) space, i.e., the space of independent variables, dependent variables
and all derivatives of the dependent variables up to order n, is described in §2.2. The locus
of a system of DEs is the set of points in n-jet space which satisfies the equations of the
system. As mentioned in §1.4, the symmetries of the locus lead to the symmetries of the system
of DEs, provided that the system is locally solvable and the symmetry transformations map
functions to functions. To ensure the latter, one restricts oneself to Lie groups of extended point
transformations which are the flows of vector fields, called extended infinitesimal generators,

defined in n-jet space.

In §2.3, we derive the symmetry conditions for a system of PDEs. As in the case of algebraic
systems, one requires the extended infinitesimal generators to be tangent to the locus of the

system. This leads to Lie’s algorithm for determining the point symmetries admitted by the

24
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system of PDEs. A discussion of the various other forms of the commonly used symmetry
conditions and algorithms together with their theoretical shortcomings is provided. The local
solvability requirement of Lie’s algorithm can lead to problems and, hence, an extension of Lie’s

‘algorithm to overcome these problems is needed.

2.1 Transformation Groups

Definition 2.1.1 Let M = IR?, with coordinates z = (21,22, -, p). A point transformation
of a space M is an (analytic) (C*) mapping Z = 7(2) such that 7 is one-to-one and onto. The

transformation corresponding to the inverse of 7 is denoted by 771.

More generally, one can allow M to be any differentiable manifold® with local coordinates z,
and 7 defined only locally so that the rotations R. of Example 1.2.1 are also considered as
transformations. In this thesis we shall not always explicitly emphasize the local nature of our
statements, but ilt will always be assumed. Also, we will be dealing almost exclusively with
one-parameter Lie groups of transformations and as such the unqualified term ‘transformation’
will aways be taken to be a ‘point transformation’. We will see that these transformations are
essentially the flows of vector fields on M. Given such a characterization, we will be able to
write down the symmetry conditions for algebraic systems of equations in terms of these vector
fields. This will then pave the way for determining the infinitesimal symmetry conditions of
DEs, given in the next section. Let us first review the more familiar concept of flows of vector

fields.
2.1.1 Flows of Vector Fields

Definition 2.1.2 Let M be a differentiable manifold and TM |, be the space of tangent vectors

to M at z. A vector field X on M assigns a tangent vector X| € TM|, to each point z € M.

!The precise definition of an r-dimensional differentiable manifold M can be found in (69, 47]. It shall be
sufficient for us to treat M as a space made up of subsets of IR™ that are patched together in a suitable manner.
Since we will always work locally, the global topology of a manifold will not affect us.
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An integral curve of X through z = ¢ is a parametrized curve z = ¢,, (&) passing through zg

and whose velocity ézo (g) coincides with the vector field X, at any point along the path:

$20(0) = 20, ugle) = Xy, (o, VeET, (2.1)
where [ is some open interval of R containing the origin?. Different integral curves through a

given point can have different domains of definitions I and the unique one corresponding to the

maximum domain of definition is called the mazimal integral curve through the point.

Example 2.1.3 An example of an integral curve is the path traced out by a particle that is
being carried along by a river. Here, M is the surface of the river and the vector field X at any
point z € M is given by the surface velocity of the river at that point. Suppose that the flow
is steady. Then these velocities, and hence X, do not change with time. Let ¢ be the time, 2¢
Be the location of a particle at ¢ = 0 and ¢,,(¢) be the path traced out by the particle over
time. Then ¢z, (€), € € I, is an integral curve of X through z = ¢ for some open interval I
containing the origin. Assuming that the river is infinitely long with no sinks or sources, the

maximum integral curve of X through = = 2 is the unique integral curve where I = R. O

We denote the maximal integral curve of X passing through z € M by ¥(e,z) and call ¥

the flow generated by X. The flow has the properties:
U(6,U(e,z))=V(6+¢,2), T €EeEM, (2.2)
for all 6,¢ € I such that both sides are defined (one cannot flow past a sink),

¥(0,5) =2, and  2¥(s,0)=X] (2.3)

U(e,x)
Here is how flows of vector fields give rise to transformations on the underlying space. Let
7'5(:13) = U(g,z). Then for each fixed ¢, 7. : M — M defines a transformation on M. To see
this, recall the analogy of a vector field as representing a steady state surface velocity of a river.

To determine how 7. transforms any given ¢ € M, just imagine dropping a particle on the

2We further emphasize that (2.1b) is not only satisfied at the point z = zo (so that bag (0) = X|,,), but also
at all other points along the curve z = ¢4, (¢), Ve € I.
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surface of the river at 2 and letting it flow for a time . The resulting location of the particle is
T.(z). Different values of ¢ lead to different transformations 7. and the set of all these is called

a one-parameter family of transformations.
In terms of the local coordinates z, a vector field has the form

+ -+ EP(2) a% , (2.4)

T p_,c

81172

.0
_ gl
where (0/0z;)|e, 2 = 1,--+,p, forms a basis for T M at z. Henceforth, we shall drop the symbol

d
+ (@) 5~
Z.
] » and it should be clear, from the context, which point z or tangent space TM |, one is referring
to. We shall also use Oz, to denote 0/0,, and assume §{ are analytic functions of @ so that we
deal exclusively with analytic vector fields. Using (2.4), it is convenient to also express (2.1) in

terms of local coordinates:

1

Theorem 2.1.4 The one-parameter family of transformations T = 1.(x) associated with an
analytic vector field X, given by (2.4), is the unique solution to the autonomous system of

Qrdinary differential equations (ODEs)

OF; i ~ron
9 = £(2), 2(0) ==. (2.5)

Solving (2.5) to obtain the transformations 7. is often referred to as exponentiating X. In

particular, using (2.5) one can show that the power series expansion of 7, is given by

52
Te(z) = exp(eX)z = (1 +eX 45Xt ) z.

Example 2.1.5 Let M = R with coordinates & and consider the vector field X = 228,. Then

the corresponding one parameter family of transformations is given by

T

Te(z) = exp(eX)z = (2.6)

T 1l—cz’

Notice that when z > 0, then 7. is defined only for ¢ € I, where I, = (—o0,1/z). 0

Using the properties (2.2) and (2.3) of flows, one can show that the transformations 7. satisfy

the axioms of a group. In particular, the identity element is 7y, the binary operation between
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transformations is given by composition, 7. o 7s = Ts4., which is clearly associative. Lastly the

inverse of 7. is just 7_.. Let us now explore the group structure of such transformations.

2.1.2 Lie Groups

Definition 2.1.6 A group is a set GG together with a binary operation *: G x G — G satisfying
the following axioms:
Associativity: For all g,h,k € G, g+ (h*xk) = (gxh) k.
Identity Element: There exists an element e € G, called the identity element,
such that forall g€ G, exg=g =g=*e.

Inverses: For each g € G, there exists an inverse, denoted by ¢~1,

1 _ -1

such that gx g™ ' =e=g"" x g.

Example 2.1.7 An example of a group is the set of integers Z together with addition as the
associative binary operation. The identity element is 0 and the inverse of each integer 7 € Z is
~3. One often denotes this group by (Z,+). Other examples of groups are (R, +), the set of real

numbers with addition, and (IR, :), the set of positive real numbers with multiplication. 0

Unlike, (Z, +), the group (IR, +) has a binary operation which is an analytic map + : Rx R —
R. Such groups are called Lie groups.

Definition 2.1.8 An r-parameter Lie group is a group (G, *) which is also an r-dimensional
differentiable manifold M such that both the binary operation * and the inversion map ¢ ~ £~}

are analytic.

Henceforth, M will denote an p-dimensional differentiable manifold.

Definition 2.1.9 Let (G, *) be an r-parameter Lie group. An r-parameter Lie Group of trans-

formations is a collection of transformations G on M, together with a map 7: G — G, which

maps & to 7., such that
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Te is the identity map;

® T50Te = Thue;

(TE)_I = Te-1,

T.() is analytic in z and &;

The binary operation * is analytic in both of its arguments.

In general, we are interested in local Lie groups of transformations where the transformations
7. may only be defined when ¢ is sufficiently close to the identity e, which is taken to be zero.
Without loss of generality, we assume that any transformations considered are sufficiently close
to the identity transformation. The need for the analyticity requirements for Lie groups of
transformations is so that we can relate these to flows of vector fields. This will become clear

shortly.

We have mentioned that flows of vector fields lead to families of transformations which form
a local Lie group. In this regard, one can make a more precise statement:

Theorem 2.1.10 Given any vector field X on M, the transformations 7. = exp(eX) form a

one-parameter local Lie group of transformations acting on M.

As already mentioned, one-parameter Lie groups of transformations arising as flows of a vector
fields have a very simple composition law (cf. (2.2)). However, Lie groups of transformations

can have more complicated composition laws in general.

Example 2.1.11 An example of a one-parameter Lie group of transformations on M = R? is

z\  [(I+e)z 1l
)= (0r), er- o

The underlying Lie group is (I, ), where the group binary operation is given by

given by

€1 %€z = €1+ €2+ €189, 1,62 € I, (2.8)
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the identity is zero, and the inverse e~! = —¢/(1 4+ ¢€) for all ¢ € I. Clearly the axioms of

Definition 2.1.9 are satisfied for .. 0

Given any one-parameter local Lie group G of transformations, Lie [40] proved that there
always exists a re-parametrization (a particular choice of local coordinates for the underlying

Lie group G) such that G becomes equivalent to the flow of some vector field:

Theorem 2.1.12 Consider a one-parameter local Lie group of transformations G on M, giwen

by & = 7.(z) where T, = (11,- -+, 7P). Form the associated vector field X = £(z) 0,,, where

@) = &ri)| _,- (2.9)

Then there exists a reparametrization € = €(6) such that 7.5)(z) = exp(6X)z.

The proof of this theorem, which can be found in [15], relies on the analyticity assumptions in
Definition 2.1.9 in order to construct certain power series expansions. The re-parametrization
€ = ¢(6) is a different choice of local coordinates for the Lie group G, such that the group binary

operation in the original coordinates ¢ becomes addition in the new coordinates §.

Definition 2.1.13 Consider a one-parameter Lie group of transformations 7. on M with in-
finitesimals (€1, - - -, £P), given by (2.9). Each €' is called the infinitesimal of z; and the corre-

sponding vector field X = £18,, is called the infinitesimal generator of ..

Example 2.1.14 The infinitesimal generator associated with the one-parameter Lie group of
transformations (2.7) is given by X = 20, + 2y0,. The flow of X yields the one-parameter Lie

group of transformations

z z ez
Ts (y) = exp(6X) (y) = (625y)’ § € (—00,00).

The re-parametrization that relates 7. to 7 is given by € = e — 1. O

Theorem 2.1.12 can be generalized to an r-parameter group of transformations G as follows.

Let the Lie group (G, ) have local coordinates ¢ = (€1,+-+,&,) € G and 7. € G. Form the set
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of 7 associated infinitesimal generators
Xy = %) Oy, a=1,--- 7,

where the infinitesimals £ are given by

e=0"

Each transformation 7. € G can be realized as either
exp(A1X1)exp(AXz) - - -exp(A, X,),

or

exp(6X), (2.10)

where
X=mXy+pXo+ -+ p X, (2.11)

for all real numbers A;, 6, i, with A;, § sufficiently small. Hence, the r infinitesimal generators
X contain all the information needed to reconstruct the r-parameter Lie group of transforma-
tions G. (See [15] for more details.) Henceforth we will refer to any Lie group of transformations

as simply a Lie group.

It is natural to consider the r-dimensional vector space £ with basis given by the infinitesimal
generators {Xy,---,X,} over the real numbers since for any X € £, given by (2.11), the
corresponding transformation (2.10) lies in G for sufficiently small §. It turns out that £ is

endowed with an additional algebraic structure which we shall now investigate.

2.1.3 Lie Algebras

Definition 2.1.15 A Lie Algebra L is a vector space over some field F with an additional

binary operation (the commutator), such that for all a,b € F and X,Y,Z € L, the following
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properties are satisfied:
Closure. | F[X,Y] € L;
Bilinearity. [X,aY +bZ]=a[X,Y]+b[X,Z]; (2.12)
Anticommutativity.  [X,Y]=-[Y,X];

Jacobi Identity. [(X,[Y,Z]]+[Y,[Z2,X]]+[Z,[X,Y]] =0.

Given any finite dimensional Lie algebra £ with basis {Xy,---,X,}, Lie showed that the
closure proper;cy leads to |
[ Xa, Xp] = C75X, where a,B,y=1,---,r1,
for some constants Czﬁ, called the structure constants of £. The anticommutativity property
1e@ds to |

o A o,
C,B—_Cﬁa7

(&4

and the Jacobi identity leads to

Czﬁcgv + Cﬁp'vcga + Czacgﬁ =4
We will be confining ourselves to the case where L is the vector space given by a basis of vector
fields {Xy,--+,X,}, F is the field of real numbers and the commutator is defined as follows:
Definition 2.1.16 Let X = ¢ % and Y = ~* 5% be two vector fields. Their commutator is
the vector field

[X,Y]=XY-YX = (655 - /55) 2. (2.13)

Can any set of vector fields {Xi,---,X,} define a Lie algebra? One can easily verify that the
commufator bracket (2.13), by its very definition, satisfies the bilinearity and anticommutativity
properties as well as the Jacobi identity. However, it is not true in general that the closure
property holds for any set of vector fields. For example, {X; = 0;, X, = 20y} is not closed under
the commutator bracket. However the closure property does hold for infinitesimal generators

of an r-parameter Lie group.

Theorem 2.1.17 The infinitesimal generators {X,}, @ = 1,---,7, of an r-pamnieter Lie

group G form an r-dimensional Lie algebra L7.
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This follows from the fact that G is closed under composition of its members. In particular,
given any two infinitesimal generators X, and Xg of G, their corresponding transformations

exp(eX,) and exp(eXg) both belong to G and hence so does

r. = exp(—vEXg) exp(~vEXa) exp(vEX g) exp(vEXa),
for ¢ sufficiently small. By Theorem 2.1.12 the infinitesimal generator corresponding to 7. is

given by

O1e
de

e=0+4 = [Xa’ Xﬁ]

Consequently, the infinitesimal generators of G are closed under commutation.

2.1.4 Symmetries of Algebraic Equations

Consider the system of algebraic equations defined on M:
F,(z)=0, p=1,---,1 (2.14)
where [ < p and F € C*®°(M). The solutions of (2.14) are given by the locus of points

0, ={z € M: F(z) =0} C M.

Definition 2.1.18 A symmetry of a system of equations (2.14) is a transformation 7 mapping

any solution to another solution of the system:

7(2r) C >
where g, is the locus of solutions of the system. A Lie group G acting on M is a symmetry group
of the system, if and only if for all 7. € G, 7. is a symmetry of the system, for ¢ sufficiently
small. 7
In other words, G is a symmetry group of the system if and only if for all 7. € G,
F,(re(z))=0 whenever ¢ € Op -

These conditions are, in general, nonlinear in 7. and hence very difficult to analyse. Using

the infinitesimal generators of G, an equivalent statement for these symmetry conditions can
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be made which turns out to be more useful in practice. As we shall see, the infinitesimal
formulation of the symmetry conditions will be indispensable in the case of DEs. This was the
fundamental insight due to Lie [40]. Before stating the infinitesimal symmetry conditions, one

must first define what is meant by a system of equations having maximal rank.

Definition 2.1.19 The system of equations (2.14) on M is of mazimal rank if and only if the
Jacobian matrix (0F,/0z;) is of rank [ at every solution z € p,. If a system is of maximal

rauk, then it is said to satisfy the mazimal rank condition.
The following theorem and the subsequent example are from [47, §2.1].

Theorem 2.1.20 (Infinitesimal Symmetry Conditions) Consider the system (2.14) with
locus of solutions g, and which is of mazximal rank. Then a Lie group G acting on M is a

symmetry group of the system if and only if every infinitesimal generator X of G satisfies

X[Fu(z)]=0,p=1,---,1, Vz € p,. (2.15)

Example 2.1.21 Let G = SO(2) be the one parameter rotation group in the plane M = R?,

with infinitesimal generator X = —y0, + 0, and consider the algebraic equation
F(z,y) = zt +:B2y2 + y2 —1=0.

Clearly (2.15) holds since
X(F) = -2zy(z* + 1) F(z, ).

In addition, the maximal rank condition is satisfied since the Jacobian
| (oF oF

0z’ Oy

vanishes only at (z,y) = (0,0) which is not a solution of F(z,y) = 0. By Theorem2.1.20,

) = (42 + 2297, 22%y + 2y),

SO(2) is a symmetry group of F(z,y) = 0. Indeed,
F(z,y)= (2*+ 1)(e* +9* - 1) = 0,

has S, the unit circle with origin for centre, as the solution set; rotations in the plane map

points in S! to other points in St 0
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Example 2.1.22 To illustrate the importance of the maximal rank condition, let M = R, G
be the one-parameter group of translations With infinitesimal generator X = 0, and consider
the equation F(z) = (z — 1)* = 0 which has locus of solutions g, = {z: 2 = 1}. We have
X(F) = 2(z — 1) so that '(2.15) is satisfied. -However, we know for certain that G is not a
symmetry group of g,. The problem is that the Jacobian 9F/dz = 2(z — 1) vanishes on g,, so
that the maximal rank condition does not hold and Theorem 2.1.20 does not apply. Of course,
in this example one could have simplified the original equation to 2 — 1 = 0 since both have the
same locus of solutions g,.. The new equation does satisfy the maximal rank condition, but now
(2.15) does not hold and one concludes that G is not a symmetry group of F(z) = 0. However,
the maximal rank condition is invaluable when considering more complicated systems where it

may be unclear whether such simplifications are needed in order to apply Theorem 2.1.20. 0

The following theorem will prove useful later:

Theorem 2.1.23 Consider the system (2.14) with solutions p, C M and symmetry group G.

Suppose H is a function on M such that H(z) =0, Vz € g,. Then
X[H(z)] =0, Vz € 0.

Proof. Since G is a symmetry group of the system, given any z € p, and 7. € G, we have 7.(z) €
op for € sufficiently small. In other words, H (7e(z)) = 0. Now 7. is given by exponentiating

some infinitesimal generator X in the Lie algebra of G. Hence, we have
0= H(r.(z)) = H(exp(eX)z), Ve € g

Differentiating this with respect to ¢ and setting ¢ = 0 leads to the desired result. O

2.2 Differential Equations

It is natural to consider a system R of n-th order DEs as a system of algebraic equations
in n-jet space, i.e., the space of independent variables, dependent variables and derivatives of

dependent variables up to order n. A principle motivation for doing this is that the symmetry
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conditions for algebraic equations have already been determined in the last section. How does
the group thus calculated relate to the symmetries of R? By passing to the algebraic regime,
we 1ose'the various relationships between a dependent variable and its derivatives. Without any
a prioﬁ restrictions on the transformations consider_ed, the algebraic symmetry conditions may
result in transformations that do not map analytic functions to analytic functions, let alone
mapping solutions to other solutions of R. Consequently, we are led to consider only certain
types of transformations (Lie groups of extended transformations) when applying the algebraic
symmetry conditions. It turns out that we will also require the system to ‘be locally solvable.

Let us first review some elements of n-jet space.

2.2.1 Jet Space

Let X = RP, with coordinates z = (21,22, -, %,), be the space representing the independent
variables, and let U = RY, with coordinates u = (ul,u?,---,u%), be the space representing the
dependent variables. The space M = X xU is called the base space. Of particular interest are

functions w = f(z), which are identified with their graphs
I'y={(z, f(z)):zeQ} C XX,

where @ C X is the domain of f. Consider the k-th order partial derivatives of f(z), given by

- b
0$j18$j2 o -ax]'k

where the multi-index J = (j1,--,Jk) is an unordered k-tuple of integers 1 < jy, -, jk < p

and the order of J, denoted by |J|, is the number of elements in J (k in this case). There are

g - pr such partial derivatives, where
_[p+Ek-1

P = k .

In order to build a space to represent these derivatives of f, one exztends or prolongs the base

space as follows. Let Uy = R7P* have coordinates u%, for all a = 1,---,¢ and for all J =

(1, *»Jk), so that U™ = U x Uy X -+ x U, represents the space of all partial derivatives of

u = f(z) up to order n. Also, let (™ denote a typical point in U™. By convention, u§ = u® is
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called the zeroth order derivative of u*, U® = Uy = U, and J is given by the single multi-index

0 when k& = 0. The dimension of U™ is ¢ - p(™ where

n

n +n
p()=p+p1+p2+"'+pn=<p )

Example 2.2.1 Consider the case p'= 2, ¢ = 1 so that X = R? has coordinates (zy,z2) =
(t,z), and U = R has the single coordinate u. Now U, is isomorphic to R? with coordinates
(ut,ﬂr) representing all first order partial derivatives of u with respect to ¢ and z. Likewise,
U; ~ R® with coordinates (e, Usg, Uz ) Tepresents all second order partial derivatives of u.
Lastly, U® ~ R® with coordinates u(® = (w, Ut, Uy, Wity Uiz, Uz ), 18 the space of all partial

derivatives of u up to order 2. O

The space X X U™ is called the n-th extension space or the n-th order jet space of the
underlying basé space X X U. It represents the space of all independent variables, dependent
variables and all derivatives of dependent variables up to order n. To graph a function v = f(z)
in this extension space, one must calculate the values of all the partial derivatives of f up to
order n, in the domain of f. One then forms the induced function u(™ = pr(™ f(z), called the

n-th prolongation of f, defined by the equations
ug = 95 f%(z).
The extended or prolonged graph is then given by

prTy = I = {(=,pr™ f(2))} € X x U™,

Example 2.2.2 Consider the case p = 1, ¢ = 1 so that X x U ~ R® with coordinates
(z,u,u;). The graph of the function f(z) = sinz is I'y = {(z,sinz) : 2 € R}, and the first
prolonged graph is given by

1“5,1) = {(z,sinz,cosz):z € R} C X x UM.

Also, consider the following locus of points

o= {(z,sinz,1):2 € R} C X x UM,
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o does not correspond to the extension of any graph u = f(z). O

The above example illustrates that any arbitrary locus of points p C X x U™ will not in
general be the prolonged graph of some function v = f(z). However, given any point in n-jet
space, one can always find an n-th prolonged graph of some function that passes through the

point.

Theorem 2.2.3 Given any point P(z,u™) € X x U™, there is an n-th prolonged graph F(f")

of some function u = f(z) that passes through P.

The proof of this theorem relies on constructing a Taylor polynomial of order n. Here, we will
just illustrate the case n = 1, with X = R? and U = R. Let X and U have coordinates (z,)
and u respectively. Then given any point P(zo, tg, u(Zo, %), uz(To, ), ut(o,%0)) € X XU, the

Taylor polynomial
f(z,t) = u(zo, to) + uz(zo, t0)(x — zo) + ui(zo, to)(t — to), (2.16)
has the first prolonged graph P(fl) passing through P.

There are two types of differentiations that can be performed on X x U™, depending upon
how ohe views this space. Partial differentiation involves the partial differential operators 0,
and Jye, which treat X x U™ as just Euclidean space RY of dimension N = p + ¢ - p™. Since
1o relationships between any of the coordinates (z,u(™) are assumed, d,,g(z, u™) is calculated
while keeping fixed all the coordinates except for z;. A similar statement can be made for
Gucjx. Total differentiation on the other h@nd, involves the total derivative operators D, which
respect the various relationships between the coordinates of X x U(™. In particular, the total

derivative operators are defined through the following identity:
De.g(z,u™))| ..y = O (g(z,u™)] (m))- 2.17
( 9(z, )) >FS‘ +1) @ (g( )lp(f )) ( )

Example 2.2.4 Let X = R? and U = R with coordinates (z,t) and u respectively. The

function g(z,u®) = zu2, has the following partial derivatives:

Oig = 0, Org = uia dug =0, Ou,g = 0, Oup§ = 23 Usg.
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The total derivative of g with respect to t is calculated as follows:

(Dtg> ’FS?) = O (wfgf(ﬂ?,t)) = Qxfa:fzt-

This together with a similar calculation for D,g gives

Dig = 2xu,uy, D.g= ui + 22Uz gy,
One can easily show that the total derivative operator D,, is given by O
Dy = Op; + ufOya + -+ + uf;0pa + -+, (2.18)
where summation over the repeated indices « = 1,---,¢,J = (j1,- -+, Jk) and Ji = (41, -, Jk, ?)

is assumed. This is an infinite sum, but when applied to functions g(z, (™), only a finite number
of terms are needed. It is clear that this identity yields the same expressions for D;g and D, g as
given in Example 2.2.4. The advantage of using this identity for D, is that one avoids having
to make the replacements u(™ = pr(™ f(z) in (2.17). It is often convenient to use D; to mean

D, and Dj; to denote the k-th order total derivative operator Dy D;, ---D;,.

The total derivative operators D; encode the relationships between the various coordinates

of X x U™, namely
ug = Dy(u®).

The prolongation structure of n-jet space is discussed in detail in [60]. For our purposes, it will
be sufficient to view XxU™ as (R", D;), i.e., the Euclidean space of dimension N = p+¢-p™
together with the prolongation structure encoded in the total derivative operators D;. We are

now ready to discuss what we mean by a system of differential equations.

Definition 2.2.5 A system R of n-th order DEs is given by the system of algebraic equations

on n-jet space:
7 Au.(xvu(n)): 0, B= 17"'>l7 (219)

where A, are real valued functions on X x U™, A solution of the DE (2.19) is a function

u = f(z) such that

A, ut?)| = 0. (2:20)
. f
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We must emphasize that by a solution of R, one really means a function v = f(z) such that,
after replacing v and its derivatives by f(z) and its corresponding derivatives, A evaluates to
zero for all z in the domain of f(z). Having said this, it is often convenient to consider the

individual points in X x U™ that satisfy (2.19): -
Definition 2.2.6 [47, p.96ff] Let g, be the locus of points (subvariety) in n-jet space given by
o, = {(z,u™): A(z,u™) =0} C X xU™.

In other words, p, consists of the roots of the algebraic equations A : X x U™ — R

It is natural to ask what the relationship is between the solutions of R and the locus of

points p,. From (2.20), the extended graphs of solutions of R must lie in g,:

Theorem 2.2.7 Let R be an n-th order system of DEs. Then u = f(z) is a solution of R if

and only if its n-th extended graph lies in g, :

'Y C g,. (2.21)

Example 2.2.8 Let X = U = R and R be the ODE, A = u, + u? = 0. The general solution
of Ris f(z) = =, for any ¢ € R, since A(z, f(z), f'(z)) evaluates to zero for all z # c. One

also has
on = {(z,u, _uz): z,u € R} C XX QF

I‘(fl) given by the functions
u=(z—-¢c)7t uy = —(z — ¢)7%
and, as seen in Figures 2.1, (2.21) holds. 0
In general, given any point P in p, there is no guarantee that there exists an extended

graph of some solution u = f(z) of R passing through P. Theorem 2.2.3 still applies in that

one can always find an extended grdph of some function « = ¢g(z) passing through P. However,

u = g(z) will not, in general, be a solution of R.
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Figure 2.1: Extended graphs I‘}") of solutions u = f(z) of a PDE A = 0 must
lie in its locus g, .
Definition 2.2.9 The system of n-th order DEs (2.19) is locally solvable if and only if through

every point in g, , there passes an n-th extended graph I (f") of some solution u = f(2) of R.

For convenience, one often says that u = f(«) passes through a point in p, to mean that its

extended graph passes through the point.

Let us now explain the reason for introducing the definitions of the locus p, and of local
solvability for a system R of DEs. Our goal is to determine the symmetries admitted by R
which are transformations mapping solutions to other solutions of R. However one does not
know the solution space of R explicitly. One only has the equations that the solutions must
satisfy. Hence we must deal directly with the equations themselves. We have seen that it is
natural to view these equations as algebraic equations in X x U™ and this led to the definition
of a locus g, of points in X x U™ which are the roots of these equations. One can apply

Theorem 2.1.20 to determine the symmetry group G of 0, . How does a symmetry 7 € G relate
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to a symmetry 7 of R?® If there is a one-to-one correspondence between a symmetry of o, and
a symmetry of R, then our goal is reached. Unfortunately, this is not true in general as we shall

now show.

From the outset, one must ﬁot confﬁée Asolutions of R with points in g,: The former are
strictly functions u = f(z) and the latter are individual points in X xU(™. While it is true that
all points in the extended graph I‘(f") of a solution belong to g, (cf. Theorem 2.2.7), unless one
has local solvability, there may be points in g, which do not belong to some extended graph
of a solution of R. Hence let p, = AUB C X xU™ such that through any point in A (B),
there exists (does not exist) an extended graph of a solution of R which passes through the
point. Suppose 7 is a symmetry of R, mapping solutions to other solutions of R. Since through

every point in A, there passes an extended graph of solutions of R and, vice-versa, all extended

graphs of solutions of R are contained in A, we have
T(A) C A.

However, since there are no extended graphs of solutions passing through points in B, there
is no guarantee as to how 7 transforms these points. In particular, one could have v mapping
points in B to points outside of g, altogether. If this were true, then G is not a symmetry group

of g,.
Now let 7 be a symmetry of g, , so that
7(0,) C 04, o, = AUB.

Unfortunately, there is no guarantee that 7 will leave A invariant as a subset of g, . In particular,
T could map points in A to points in B. If this were true, then 7 is not a symmetry of B. The

differences between the symmetries 7 of G and 7 of 5 are illustrated in Figures 2.2.

3In order to precisely relate  and 7, one must first talk about their induced transformations: If 7 is explicitly
known, then a transformation between solutions u = f(z) of R induces a well defined transformation on extended
graphs I‘;") of solutions. Since extended graphs belong to n-jet space, 7 induces a transformation on n — jet
space, which we shall investigate further in §2.2.2. It is this induced transformation that one uses to relate to
the transformation 7 on g,. Until §2.2.2, we shall not distinguish between 7 and its induced transformation on
n-jet space.
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XxUm™ T

o, =AUB

Figure 2.2: Differences between the symmetries 7 of G and 7 of J

Now let us assume that R is locally solvable so that B = (). Then any symmetry 7 of R
is also a symmetry of p,. However, the converse is still not true in general. Certainly, 7 must
now léaye A invariant, but points oﬁ an extended graph of a solution of R may be mapped
arbitrarily to other points of A and not be mapped to another extended graph of a solution of
R. If this were trué then 7 would not map solutions to solutions of R and hence would not be

a symmetry group of R.

Definition 2.2.10 A transformation acting on X x U™ is an eztended transformation if and

only if the transformation maps extended graphs to extended graphs of functions.
Consequently, it is natural to require that:

(1) R be locally solvable.

(2) G consists of extended transformations.

In §2.2.2, we will see that condition (2)leads to strong restrictions on the form of transformations

one can have. Let us now discuss the local solvability condition for a system of DEs.

There are two main reasons why R, given by (2.19), may not be locally solvable. The first

is the lack of existence of solutions for R, which can occur if A is smooth but not analytic
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in its arguments (see Lewy’s counter example [39]). One avoids such problems by restricting
to analytic differential equations. The second reason is that there may be other n-th order
differential consequences that lead to further relations between the coordinates of n-jet space
and thereby restricting the locus of points that satisfy the DE. In this regard, it is possible for

two systems of DEs R and R to have the same solutions, but only one being locally solvable.

To illustrate, suppose a system R of DEs (2.19) has a differential consequence A;qq(z,w™) =
0. Then consider the new system R given by
A, =0, pw=1,--1
| A1 = 0.

Let A = (Aq, -+, A1), and & (0,) denote the roots of A = 0 (A = 0). R and R have the
same solutions. However, the equations of R and of E are not algebraically equivalent since the
additional equation A;y; = 0 of R defines a new algebraic relation between the coordinates of
X xU™. Consequently p, and o, are not the same locus of points in X x U(™. In particular
we have

0. C - (2.22)
Example 2.2.11 Let R be the system of DEs given by

t

U =€, uxz:()a
and R be the system
Lt =0
Uy =€, Ugy = U,
_0 — ot
Ugt = U, . Ut = €.

R and R have the same solutions, which are given by
f(z,t) =€ + az + B, (2.23)

where «,( are arbitrary parameters. Now treat these two systems as algebraic systems in

X xU®, with coordinates _(:1:,t'; U5 Ugy Ut § Ugg, Ugt, Uzt ). Lhe algebraic solution set of R is

0= {(x,t;u;uxaet ; O,Uxta utt): CL",t,U,ux, Uzt Utt € IR} C XX U(2)7
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which is isomorphic to R®. On the other hand, the algebraic solution set of R is
o={(z,t;u;uge;0,0,e): 2t u,u, € RY C X xU®P,

which is isomorphic to R*. R is not locally solvable since
(@415 U5 Uy Ut § Uy Uzt Uge) = P(0,035050,€°;0,0,0) € o,

but there is no solution (2.23) which agrees with the set of values prescribed by P (we can-
not have uy = 0 at (z,t) = (0,0)). However, R is locally solvable since for any point
Q(a,b;c;d,eb;0,0,e%) € 3, there exists a solution (2.23), with & = d and 8 = ¢ — e® — da,

which agrees with the set of values prescribed by @ at (z,t) = (a,b). O

The Riquier-Janet theory of formal integrability presented in §3.1 deals with the issue of
local solvability. There, a systematic procedure to obtain all integrability conditions of R is
given. For now, the following lemma concerning the local solvability of scalar PDEs and systems

of PDEs of Cauchy-Kovalevskaya type will be sufficient for us.

Lemma 2.2.12 Any n-th order system of PDEs of Cauchy-Kovalevskaya type,

8871;? — ¢a(x’u(n)), o = 1, --,q, (224)

where ¢* is independent of the terms on the left hand sides is locally solvable. (Note that when
u 1s a scalar, (2.24) is just a scalar PDE.)

This lemma follows simply from the fact that no further n-th order relations can be derived
from the n-th order system (2.24). A precise proof of this lemma is given in §3.2, where a more

general theorem regarding local solvability is given.

2.2.2 Extended Transformations in n-Jet Space

In this section, we determine necessary conditions under which a transformation in n-jet space
is an extended transformation. As we shall see, extended transformations preserve the under-

lying prolongation structure of n-jet space and this results in strong restrictions on the form of
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transformations one can have. In particular, such transformations will be completely character-
ized by how the base space, i.e., the,space of independent and dependent variables, transforms.
The extension formula will then determine how the derivatives are transformed. Moreover, by

requiring that n be finite, one is reduced to considering dnly point or contact transformations.

Let us first naively generalize Definition 2.1.1 to obtain a transformation on X x U(™ as
~ being any analytic, locally one-to-one and onto map 7™ : X x U™ — X x U™, given by
z; = Xz, u™),
B = Uz, 1), J|>0, (2.25)
W5 = U5 (e, u). )
The choice of notation for 7(™, in particular its superscript, is used to indicate which jet space
the transformation is acting on. In the new coordinates (Z,%5) of X XU, one has the partial

derivative operators 05 and (9;(}, and the total differential operators

Di= Dz, = 05 + W05+ + U505 + .
Recall that partial differentiation treats X x U™ as just Euclidean space and so the normal
chain rule defines how partial differential operators in the new coordinates relate to those in
the original coordinates. However, total differentiation treats the coordinates u§ as derivatives
of functions v = f(z). As such, when one relates total differentiation in the new coordinates

with total differentiation in the original coordinates, 7(™ must be an extended transformation

(cf. Definition 2.2.10).

Theorem 2.2.13 Let 7(™ be any transformation given by (2.25). If 7™ is an extended trans-

formation, then the following extension formula must be satisfied:
Uy = Di(U*), Dy = Dj Dy, - -~ Dj,. (2.26)
Furthermore, the total derivative operators D; are given by the change of variables formula

D; = J3;'D;, (2.27)

where J;; is the Jacobian matriz D;(X;(z,u™)).
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¥

In other words, an extended t;ansformafion 7™, given by (2.25), is completely defined by how
the base space transforms, through the specification of the functions X and U. The extension
formula (2.26) then determines how the derivatives are transformed. However, if n is finite,
then it turns out that A’ and U cannot depend on second or higher derivatives of u. Evidently,

the extension formula raises the order of derivatives and this places strong restrictions on X

and U.

Theorem 2.2.14 Consider an extended transformation 7™, given by (2.25) and (2.26), on
n-jet space with n finite. If the number of dependent variables is ¢ > 1, then (Z,%) are given by
the poiﬁt transformations

z; = Xi(z,u), % = U*(z,u). (2.28)
If the number of dependent variables is ¢ = 1 then (Z,4™) are given by the contact transforma-
tions |

Z; = /Y,(.’E, u(l)), U= U(.’IJ, u(l))’ u; = Z/{i(CB, u(l))' (2'29)

where U; = ﬁiu.

The case ¢ = 1 was proved by Biacklund [7] and the case ¢ > 1 was proved by Miiller and

Matschat [45]. The case when n is allowed to be infinite is treated in [5].

We will deal almost exclusively with point transformations in this thesis (see [15, §5.2.4] for

more details on contact transformations). If 7 is any point transformation
T: XxU— XxU,

given by (2.28), then one can use the extension formula (2.26) to determine the corresponding
transformation 7(™) acting on X x U(™. However, 7(™ may still not be an extended transfor-
mation, since (2.26) and (2.28) are only necessary conditions that 7(™) be an extended trans-
formation. What is required is that 7 maps graphs of functions to other such graphs. The
extension formula (2.26) then ensures that 7(™) maps extended graphs to other extended graphs

of functions.
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Lemma 2.2.15 If the point transformation 7, given by (2.28), maps graphs of functions to
other such graphs, then the corresponding transformation ™, given by (2.28), (2.25c) and

(2.26), is an extended transformation.

Any arbitrary point transformation 7 may not map all functions to other functions. For
example, the point transformation 7(z,u) = (u,2), does not map the function u(z) = 1 to

another function. One avoids such problems by considering Lie groups of point transformations.

2.2.3 Lie Groups of Extended Point Transformations

Consider a local Lie group G of point transformations acting on the base space M = X xU.

Let 7. € G be given by

z; = Xi(z,us¢), i =1,--4,p,
(2.30)
v =U(z,u;e), a=1,---,¢q
The associated transformations 7{™ acting on X X U™ is then given by (2.30) and
a5 = UG (z, w5 ¢), (2.31)

where U§ are given by the extension formula (2.26).

Theorem 2.2.16 Let G be an r-parameter local Lie group of point transformations acting on
M = X xU. Then for all T € G, the corresponding transformations (™ form an r-parameter
local Lie group G'™ acting on X x U™, Furthermore, any 7™ € G™ is an extended trans-
formdtion, mapping e:z:tendéd graphs to extended graphs of analytic functions, for € sufficiently

small.

We call G the Lie group of eztended point transformations associated with G. This theorem
also holds when n = co. We will make use of the fact that 7{™ € G maps extended graphs of
analytic functions to analytic functions. In particular, one can derive an explicit formula [15,
p-95ff] showing how an analytic function transforms. Such a formula depends on the analytic

functions defining ..
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Recall Theorem 2.1.12 which relates any one-parameter Lie group of transformations on M
with the flow of its infinitesimal generator. For the one-parameter Lie group of transformations

G, given by (2.30), M is the base space X x U and the infinitesimal generators are given by
X = 57'(1:, u)8£, + na(x, u)aua, (2.32)

where

Ez,u)= ZXi(w,use)] 1o, u) = LUz use)| (2.33)

e=0"’

The transformations 7.(z,u) are then recovered by exponentiation:
(Ei:aﬂ) = Te(m,u) = exp(eX)(z,u).

Likewise, M = X x U™ for the one-parameter Lie group of extended point transformations,

given by (2.30) and (2.31). The corresponding infinitesimal generators are given by

X = (e, u)dy; +1%(2, W) 0us + NfBug + -+ - + 15 us, (2.34)

i=1,---,p, a=1,---,q, [J| < n.
Here (&, 7) is given by (2.33) and 7 is given by

— 2 JN.
77.? - Eu.(]}(xau(l I)3E) =0

By carrying out this calculation, using the extension formula (2.26) for U§, one can show:

Theorem 2.2.17 Let X, given by (2.32) and (2.33), be the infinitesimal generator for T € G,a
Lie group of transformations on base space X x U. The infinitesimal generator X of the
corresponding extended transformation ™ € G is given by (2.84), where 0§, 1 < |J| < n,

are defined as follows:
ng = Dy(n* — Euf) + £'uf;. (2.35)

See [47, p.110ff] for a proof. See also {15, §2.3.5] and [50, §4.8] where 1§ is given in terms
of a recurrence relation. Just as (" is determined exactly by 7, through the extension for-
mula (2.26), so too X (") is determined exactly by X, through the infinitesimal extension for-

mula (2.35). The infinitesimal generators X(*) of the Lie group of extended transformations
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G™ form a Lie algebra L™, which is isomorphic to the Lie algebra £ of G. The commuta-
tor bracket defined by Definition 2.1.16 with M = X xU™. Any 7™ ¢ G can be recon-
structed by exponentiating some extended infinitesimal generator X() € £, In other words,
(2, u™) = (%,4%) = exp(eX(M)(z,u™) is given by the unique solution of

851 1o o~ dug o ~oo o
de = 5 (:E’u)’ _(‘%*Z. = nJ(mvu(Ul))7 (QJ,UJ)L::O = (:L‘,UJ). (236)

Note that the calculation of the infinitesimals (£%,7%), |J| > 0, and the exponentiation process
are performed with X x U™ treated as Euclidean space. Sufficiently close to the identity,
these extended transformations map extended graphs to extended graphs, thus preserving the

prolongation structure of X x U(™. This is also true when n = oo [60].

2.3 Symmetries of Differential Equations

Definition 2.3.1 A symmetry of a DE is a transformation mapping any analytic solution to
another analytic solution of the DE. A Lie group of point transformations G is a symmetry

group of a DE if and only if for all 7. € G, 7. is a symmetry of the DE, for ¢ sufficiently small.

By ensuring that R is locally solvable and by considering only Lie groups of extended point
transformations, we have the symmetry group of R is the same as the symmetry group of the

locus g, of K.

Theorem 2.3.2 Let R be a locally solvable system of DEs (2.19) and let o, C X x U™ be
the”locus of points satisfying the system. Let G be a Lie group of point transformations acting
on X XU and let G be the corresponding Lie group of extended transformations acting on
X xU™. Then G is a symmetry group of R if and only if G is a symmetry group of p, (cf.
Definition 2.1.18).

Proof. To prove sufficiency, suppose that G is a symmetry group of g,. Then for any

Té”) € g(n),

7o) C oy, (2.37)
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for € sufficiently small. Recall that « = f(z) is a solution of R if and only if
I‘(f") Co,.

Then ’
L) C 7 gs)-

For ¢ sufficiently small, the left hand side is guaranteed to be the extended graph of some

function v = f(m) The right hand side must lie in g, by (2.37). Hence I‘(Jﬂ;) C p, and

consequently u = f(:v) must be a solution of R.

The proof of necessity relies on the assumption of local solvability. Given any point P(z, u(™)

in g,, there exists a solution v = f(z) such that P € I‘(f"). Now for any 7. € G, we have
[P € Té")[I‘(f")].

By supposition, G is a symmetry group of R and the right hand side must be the extended
graph of another solution u = f(z), for ¢ sufficiently small. Hence the right hand side must lie
in p, and we arrive at (2.37). Consequently G™ is a symmetry group of g, and the theorem is

proven. a

Hence for locally solvable DEs (2.19), the admitted symmetry group G can be obtained by
finding the symmetry group G of p, which is given by Theorem 2.1.20. To write down the
infinitesimal symmetry conditions (2.15) for G, we first define what is meant by maximal

rank for a DE.

Definition 2.3.3 The system of differential equations (2.19) is of mazimal rank if and only if
the I X (q - p™) Jacobian matrix (8A,/0u2) is of rank [ whenever A(z,u(™) = 0. If a system

is of maximal rank, then it is said to satisfy the mazimal rank condition.

This definition is almost equivalent to Definition 2.1.19, with the equations of R viewed as an
algebraic system on M = X xU(™. The only difference is that partial derivatives with respect
to the variables & are omitted in the Jacobian matrix (we do not allow the variables = to satisfy

an algebraic relationship). However this maximal rank condition implies the maximal rank
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condition of Definition 2.1.19 and so Theorem 2.1.20 still applies.

Theorem 2.3.4 (Infinitesimal Symmetry Conditions for DEs) Consider a system R of
DFEs, given by (2.19), that satisfies the mazimal rank condition and that is locally solvable. A Lie
group of point transformations G is a symmetry group of R if and only if for every infinitesimal

generator X(™ of G,

XMA (2, u™) =0, p=1,--,1, whenever  (z,u'™) € g,. (2.38)

Proof. Since R is locally solvable, Theorem 2.3.2 is applicable so that G is a symmetry group
of R if and only if G is a symmetry group of g,. Now R satisfies the maximal rank condition
and by Theorem2.1.20, G™ is a symmetry group of the g, if and only if the infinitesimal
generators X(™ of G\ satisfy (2.38).

The symmetry conditions (2.38) lead to the following algorithm, called Lie’s algorithm, for
finding point symmetries of an n-th order system R of PDEs (2.19) which is assumed to be

locally solvable and of maximal rank:

Algorithm 2.3.5 Lie’s Algorithm

1. Determine X(”)Au, pw=1---,0
2. Make substitutions from R in the expressions of step 1.

3. Set the expressions in step 2 to zero and solve for the unknown infinitesimals of X.

Note that the maximum rank condition ensures that the equations of R can be solved for
unique left hand sides so that the substitutions of step 2 are well defined. Lie’s algorithm
results in an overdetermined system, called the infinitesimal determining equations, comprising
of linear PDEs for the unknown infinitesimals. For a large number of PDEs the corresponding

infinitesimal determining equations have been solved, leading to the admitted point symmetries.

Numerous examples can be found in the standard texts previously mentioned. Rather than
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duplicate these calculations here, we now discuss the finer points of the symmetry conditions

(2.38) and of Lie’s algorithm, Algorithm 2.3.5.

We have chosen our particular formulation (2.38) carefully since there are problems as-
sociated with the various other forms of the symmetry conditions that have appeared in the

literature?:

F1. X(WA =, whenever u = f(z) is a solution.
‘FQ. XM™A =0, whenever A=0.

F3. X(WA =0, ‘whenever A = 0 and its differential consequences hold.

Some of the problems we now discuss are more subtle than others and one may argue about the
level ofrprecision that is needed in stating the symmetry conditions. A minimal requirement is
that there be no ambiguity as to how the symmetries are calculated and that all the admitted
point symmetries are found. A desirable requirement is that the particular formulation leads
to an algorithm which can be implemented on a computer: Clearly F1, as stated, is the least
useful since one does not know explicitly what the solutions are in general. What is reaﬂy
meant is either F'2 or F'3. In the literature, by F2 one often means F3. It may be of surprise to
some that in F'3, the differential consequences of A = 0 are not needed in the algorithm if R is
locally solvable. As previously explained, the local solvability assumption (which, incidentally,
is not always explicitly stated) assures that all differential consequences up to order n have been
uncovered. This also explains why we prefer to state the infinitesimal symmetry conditions as
(2.38) rather than as given in F2: Besides the fact that one can often confuse F2 with F3, (2.38)
conveys more precisely the algebraic nature of the algorithm. Though this is a subtle point,
using the locus g, will allow us to more effectively tackle the issue of local solvability in §3.2.
Some examples at this stage will help emphasize the points just discussed. Let us start with a

very simple example that is very illustrative.

*The formulation of the symmetry conditions involving Fréchet derivatives is discussed in Appendix E.
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Example 2.3.6 Let R be the system of DEs

1 1.1
Ugq = U U7,

(2.39)
’U/% = UZ,
where (z1,%2) are the independent variables and (u!,u?) are the dependent variables. Let us

now apply Lie’s algorithm to calculate the symmetry group G of R. The infinitesimal generators
of G are given by
X = £z, u) 8y, + 1%(2, 1) Byo.

According to step 1, we first calculate

XO[-uhy +u'ul] =~y + n'ul +utnl = (o,u),

XO[—uf+uz] = -ni+m = ¢*(z,u),
where 7§ are given by (2.35). At step 2, we make substitutions from the equations of R in
¢. Since ¢* depends only on derivatives up to first order, one can only make the replacement
for u? using (2.39). However, ¢! depends on second order derivatives of u! and u?. Clearly
one makes the replacement for ul, and u? using (2.39). What about making substitutions for
the derivatives u2;, and u?, arising from the differential consequences of (2.39b)? Surely one
should make these replacements. Yet in our previous discussion, we emphasized that differential
consequences should not be needed. How can we reconcile this with the fact that the procedure

just outlined seems natural and is commonly performed in practice? a

The dilemma encountered in Example 2.3.6 can be resolved by realizing that the original

system (2.39) is not locally solvable so that Theorem 2.3.4 and Lie’s algorithm is not applicable!

Here is how to corfectly apply Lie’s algorithm.
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Example 2.3.7 We first make the system (2.39) locally solvable by appending all second order

differential consequences of (2.39b) to form R given by

1 _ 1,1
Ugy = U Uy,
|
Uy = U3,
(2.40)
2 _ .1
Uy = Uigs

2 — 1 — 1,1

(In §3.2, a general procedure to obtain a locally solvable system is described.) Clearly R and R
have the same solutions and hence the same symmetry groups, but only Ris locally solvable and
hence Theorem 2.3.4 is only applicable to R (and not to R). The action of X on the equations
of R is given by

XO[-uby +atul] = —nhy + '} + s,

XW[—uf +u3] = —nf + ng,
X®O[—uty + uly] = —nf1 + M2,

XO[—uiy + ulug] = —nfy + nluj + u'ng,
where 7§ is given by (2.35). These expressions depend only derivatives of u up to order 2.
One now makes the replacements for ul,, u?, u?; and u?, using (2.40) and demand that the
resulting expressions vanish. Here the issue of whether to take differential consequences of
the equations of R does not come into consideration since there are no further second order
differential consequences of R (this was guaranteed to be true before the infinitesimal symmetry

conditions were applied). [J

As illustrated in the above example, if the given system is not locally solvable, one must

first form an equivalent system which is locally solvable. Hence, the correct algorithm to obtain

the symmetry group of R is as follows:
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Al‘gorithm'2.3.8A :

1. Form an equivalent system R, given by'Z& = 0, which is locally solvable.

2. Execute Algorithm 2.3.5 for the system R.

For convenience, we shall also call this algorithm - Lie’s algorithm. An obvious question now
arises. What is the algorithm for achieving local solvability for a given system of PDEs? We

shall return to this question shortly.

If R is not locally solvable then, in the symmetry formulation (F'3), it makes sense to demand
that X(™ A vanishes whenever A = 0 and its differential consequences hold. This leads to the

following algorithm which seems to be widely used in practice:

Algorithim 2.3.9

1. Determine X(WA.
2. Make substitutions from R and all its differential consequences of order up to n.

3. Demand that the resulting expressions vanish identically.

As illustrated in (2.39), this algorithm seems natural and does lead to an overdetermined
system of linear PDEs for the unknown infinitesimals. However, unlike Algorithm 2.3.8, there
appears to be no proof in the ]jteratﬁre that Algorithm 2.3.9 will correctly lead to the admitted
symmetry group. One must always beware that any algorithm may provide point symmetries,
but it may not uncover all of them. We also point out that, as in step 1 of Algorithm 2.3.8,
there are technical problems to be overcome in finding all n-th order differential consequences

of a given system.

In §3.3, we will provide the algorithms required to execute step 1 of Algorithm 2.3.8. More-

over, we will show that if step 2 of Algorithm 2.3.9 is suitably modified, the resulting algorithm
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does lead to the same result as Algorithm 2.3.8. This new algorithm is much more efficient than
Algorithm 2.3.8, since the differential consequences of a system need not be used until after
the computationally expensive step 1. To prove this result, one needs to address the following
questions: How does one obtain all possible differentialﬂ consequences of a system of DEs? How
does one make substitutions from R and its differential consequences?® What order does one
need to consider? Since the original system of DEs is of order n, then surely one only needs
to consider all differential consequences of order n. This is correct in principle, but there are

pitfalls even here as we now illustrate.

Consider the problem of calculating the symmetry group of R, which is the potential systém

vy = F(z,t,u®)
xr Y ) (2.41)
vt = G(x7t, u(2)) + gy,
where G is independent of u,,. Let us proceed with what would commonly be done in practice

and apply Algorithm 2.3.9. At step 1, we have
XO[—v, + F(z,t,u®)] = ¢l(z,t,u?,v®),
XO[—vy + G(z,1,u®) + ugy] = ¢*(z,t, u®,v?),
Wheré, for the subsequent discussion, it is sufficient to give the order of the derivatives appearing
in ¢, which are known functions. Next we must use the equations of R to make substitutions
in ¢ and demand that the resulting expressions vanish. Here is the dilemma: Are there any
further second order differential consequences of (2.41)? If one differentiates the equations of

(2.41), then one obtains
vz = Dy F(z,u®),
vy = DiF(z,u®),
¢ = DiF(a,u®) (2.42)
Vi = DxG(fE, u(z)) + Uprz,

vy = DiG(z, U(z)) + Uggt-

SCare must be taken to avoid possible infinite loops occurring in the substitution step. For example, see
Example 2.1.2 in [24].
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Equating mixed partials vz = vy, leads to the third order integrability condition
Uger = DiF(z,u®) — D,G(z,u®). - (2.43)

Since (2.42) and (2.43) are all third order equations, one could argue that there cannot be
any further second order differential consequences. If this were true, then one only needs to
substitute for v, and v, in ¢ using (2.41). This is essentially what was done in [51], where Pucci
and Saccomandi studied symmetries of a general class of potential systems, which include (2.41).
Unfortunately this is not the correct procedure since, in general, there can be further second
order differential consequences of (2.41). For example, if (F, G) = (uyzz+u,0) then the potential

system R is given by

Vg = Ugg + U,

(2.44)
Ut = Ugs,
which has the second order differential consequence
Vgt = Vg + Us. (245)

Hence one must use this to replace v, in ¢.

What if F and G are not explicitly given? Such a situation will arise in §5.1. Here one
cannot in general uncover all second order differential consequences of (2.41). The differential
consequence (2.45) was obtained by explicit knowledge of F' and G. Consequently, one cannot
apply step 2 of Algorithm 2.3.9 and this algorithm cannot be used to obtain the symmetry group
of R. Now consider applying Algorithm 2.3.8. In step 1 we must find an equivalent system
which has the same solutions as R and which is locally solvable. Since we cannot uncover any
further second order differential consequences of (2.41), then the best one can do is to append
the third order equations (2.42) and (2.43) to the original potential system (2.41). But now this
new system R is of third order and the locus g of algebraic roots of R is a subset of X x U®.
Certainly, all second order derivatives of v are fixed by (2.42), but now we have third order

derivatives of v in g which are arbitrary. As before, for certain functions F' and G, there may

be third order relations for v which cannot be derived from R since F and G are not explicitly
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known. In general R is not locally solvable. One can repeat this procedure and append higher
order equations obtained through differentiations, but at each stage the problem persists. Any
finite order system obtained in this way is not locally solvable. Consequently Theorem 2.3.4

cannot be applied to any of these systems to find the symmetry group of R.

Even if one differentiates the equations of (2.41) and (2.43) to all orders, the resulting infinite
system of DEs is not locally solvable. In the next chapter, we will show that such an infinite
system satisfies the weaker property of analytic local solvability which will be sufficient for our
purposes. However, the applicaﬁon of Lie’s algorithm to such an infinite system would seem

intractable.

In §3, we show how to overcome the above mentioned problems. The resulting new algorithm

extends Lie’s algorithm to general systems of PDEs.




Chapter 3

Extension of Lie’s Algorithm for Systems of PDEs

In this chapter, we derive an extension of Lie’s algorithm for finding the point symmetries of
systems of PDEs. Since scalar PDEs and systems of PDEs of Cauchy-Kovalevskaya type are
locally solvable as they stand, Lie’s algorithm can be directly executed. However, for more
general ‘systems of PDEs, the situation is not so straight forward. The need to first form a

locally solvable system can lead to problems (cf. system (2.41)).

To derive our new symmetry algorithm requires us to determine how a given system of
PDEs can be made locally solvable. Before tackling this problem, we first make an excursion
into the closely related area of the Formal Integrability Theory of Riquier-Janet [58, 31] (see
also [65, 66, 63]) which is presented in §3.1. We will follow the more efficient approach of Reid
[53, 54]. Here, an ordering of derivative terms is required to uniquely solve a given equation. A
finite step algorithm is used to achieve a standard form which can be viewed as a basis set of
equations which generate all the differential consequences of the given system. Such a standard
form provides a natural partition of all derivative terms into those of principal and parametric
type. For analytic systems of PDEs, Riquier-Janet showed that there always exists a unique
formal power series solution passing through any prescribed point in initial data space, i.e.,
the space of independent variables and all parametric derivatives. Moreover, they delineated

admissible initial data which lead to convergent power series solutions.

An essential part of the Riquier-Janet theory is the construction of an n-th order prolonged
standard form in which each principal derivative of order up to n is given as a function of the

initial data variables. In §3.2, we use the infinite order prolonged standard form to establish

60
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a bijection between the locus g, of the system and the initial data space. Subsequently, the
existence/uniqueness theorems of Riquier-Janet show that if a total derivative ordering is em-
ployed, then local solvability can be achieved through a finite order prolonged standard form.
Hence, whenever possible, total derivative orderings are used. However, there are instances
such as the system (2.41) where one cannot use such orderings. In such cases, one can only
achieve the weaker property of analytic local solvability through an infinite prolonged standard

form. We show that analytic local solvability is sufficient for our purposes.

We mention that dealing with an infinite number of equations requires great care. In order
to arrive at our results, we rely on the fact that any equation in an infinite prolonged standard
form contains a finite number of terms and is derived from the original system by a finite number
of well defined operations. A common technique we will employ involves the projection from
the infinite dimensional space X xU{* to the finite dimensional space X xU(™. We then prove

results on this finite dimensional space and use induction to obtain our results in X x U(®.

The need for local solvability before @pplying Lie’s algorithm can lead to inefficiencies.
Eveﬁ if total derivative ordérings are employed, the corresponding locally solvable finite order
prolonged standard form can contain many more equations than the original system. Moreover,
if total derivative orderings cannot be used - a situation that will arise in §5 - then Lie’s
algorithm must be applied to the infinite order prolonged standard form. Clearly this is not
feasible in practice. Consequently, in §3.3 we derive a new symmetry algorithm which overcomes
these problems. We show how the symmetry conditions for any prolonged standard form can
be reduced to conditions involving significantly fewer equations. Even if one starts with an
infinite order prolonged standard form, the reduced conditions involve only a finite number of
equations. Also, unlike other symmetry algorithms, the substitution step in this new algorithm

is completely unambiguous.
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3.1 Formal Theory of Integrability

3.1.1 Standard Form

In this section, we describe the method of Riquier, Janet and Reid for achieving the standard
form for a system of DEs.! For this, we define orthonomic and simplified orthonomic systems,
implicit substitutions and integrability conditions of a system R of DEs (2.19). All these

concepts rely crucially on orderings of derivatives, which we now describe.

Ordering the derivatives allows one to uniquely choose which derivative to solve for in any
given equation. If one has a solved equation then by differentiating this equation, it remains in
a solved form. Clearly it would be desirable that this new equation be also solved with respect
to the given ordering. Otherwise, after each differentiation, one would have to re-solve for the
highest ordered term despite the fact that the differentiated equation already comes solved for
some derivative. Ih the following definition and in the sequel, a term or derivative is used to

denote any dependent variable or any of its derivatives.

Definition 3.1.1 A derivative ordering is an order relation < on the set of all derivatives

{u§}, a=1,--+,¢,J = (J1,72," - "> Jk)> 0 < J; < p, satisfying the properties 1-4:

1. If uf < ug and ug < uj, then u§ < u},.

2. Given any two derivatives u§ and ug, exactly one of the following three conditions

holds: (a) u§ < ug, (b) ug < uf, (c) u§ = ug

3. If u§ < u) then u$y < ulp.

4. For all [J] > 0, u$ < ugy.

A weak total derivative ordering is a derivative ordering that respects the total derivative order

within each set of derivatives for a given dependent variable, i.e., it must also satisfy:

1See Lisle [43] for a frame Riquier-Janet theory.
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5. (total order for each u§) If |I| < |J]|, then u¥ < u§.

A total derivative ordering is a derivative ordering that respects the total derivative order for

~ all derivative terms, i.e., it must also satisfy:

5°. (respects total order) If |I| < |J|, then u§ < ug

Notice that a total derivative ordering is a weak total derivative ordering, but the converse is

not always true.

Riquier [58] used invertible matrices with non-zero integer entries to provide a large class of
such orderings. 'Recently, the class of orderings has been extended [23, 70] (a classification of all
such orderings can be found in [59]). In this dissertation we shall use the orderings described

in the following example.

Example 3.1.2 An example of a derivative ordering is the lezicographical ordering, <., de-
fined as follows. Let Ord;(I) denote the number of times the integer ¢ appears in I. Then
g <lex ug if and only if one of the following conditions hold:

a. |I| < |J}.

b. |I] =|J] and o < S.

é. |I| = |J|, @ = B and the first nonzero member of the following sequence is negative:

Ordy(I) — Ordy(J), -+, 0rdp(I) — Ordy(J).

By virtue of property (a), <iez is a total derivative ordering. If p = 2 and ¢ = 2, then

1 2 1 1 2 2 1 1
U <lex U <leg Ug, <lex Uy, <lez Uz, <lex Uy, <lex Ugyp, <lex Uy, z, <lez

1 2 2 2
Uz, gy <lex Ugopzy <lezx Uz, g, <lex Ug g <lex "

Another example of a derivative ordering that is particularly useful when we come to study
potential systems is the potential ordering, <por- Let u = (ul,-- -, u"*) with (u™t1,- . u"+%) =
(vl,---,v°) being the potential variables. We have u§ <po ug if and only if one of the following

conditions hold:
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a.:lgagr and 7+ 1 <8< r+s.

b.lgq,ﬂgr or r+1<a,f<r+s, andu?-ﬂexu[}.

Ifr=2,s=1,p=2,and (u',u? %) = (u!,u? v), then
ul <pot u2 <pot ui2 <pot ’U&:] <pot 113;2 <pot uz‘l '<pot u;;2;1;2 '<pat u};1332 '<pot
1 2 2 2
uzlzl <P0t u$2$2 <P0t uxla:g -<P0t uzl.’b‘l '<P0t o <p0t v <p0t
Vo <pot Vzq <pot Vrozs <pot Vzizs <pot Vrizqa <pot " *"

Clearly <, is not a total derivative ordering since we have uﬁlxl <pot ¥ Which violates property
(5”) of Definition 3.1.1. However, it is a weak total derivative ordering since |I| < |J| implies
u§ < u§ and the latter is true if and only if u§ <p,: u§. Consequently, property (5) of

Definition 3.1.1 is satisfied. 0

Definition 3.1.3 Let < be a derivative ordering. The leading term of an equation is the highest
ordered term, with respect to <, appearing in that equation. A system R of DEs is in solved

form if and only if each equation of R is solved for its leading term with respect to <.

Definition 3.1.4 The system R is in orthonomic form with respect to < if and only if
(1) R is in solved form with respect to <.

(2) No given term u5 appears on both the left and right hand sides of R.

Example 3.1.5 Consider the system of DEs
0 = _uyy + Uy + U,
0 =—~us+ v, (3.1)

0 = —ugy + viwg.

Using the lexicographical ordering <, with (z1,22,23) = (¢,2,y) and (w1, ug,u3) = (u,v,w),

this system has the solved form
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Uyy = V¢ + U,
Uy = v,
uty = V¢Wy.
One must use the second equation to substitute for u; in the first equation to obtain
Uyy = V3 + 0,
u = v, (3.2)
Uty = VtWy,

which is the orthonomic form of (3.1). a

In general, any system of PDEs can be put into orthonomic form by a process similar to
Gauss-Jordan elimination: Solve each equation for the leading term using the Implicit Function
Theorem if Iiécessa_ry and back substitute into the rest of the system. The algorithm orthonomic
which does this is given in Appendix A.l. The use of the Implicit Function Theorem to solve
for the leading term in each equation assumes certain nondegeneracy conditions and leads to
case splittings. For example, if the leading term appears linearly we have to assume that
its coefficient, coeff does not vanish identically. The equation, coeff # 0, is called a pivot
condition. The case corresponding to coe ff = 0 is treated separately by adjoining that equation
to the system and restarting the analysis. In general a binary tree of such cases must be analyzed
(cf. Example 3.1.7 and Figure 3.3). For simplicity we will often not mention such cases. In
particular the statement that a system has been reduced to orthonomic form will mean that
it has been reduced to a set of orthonomic forms, each valid away from the vanishing of its

corresponding pivots.

A system in orthonomic form ensures that any leading derivative only appears once in the left
hand side of some equation. However, one may have derivatives of a leading term appearing
elsewhere in the system. Such derivatives can be replaced as follows: Let u§ = rhs be an

equation in an orthonomic form and let u$; be a term appearing in another equation. Then one

can replace u$; by Dj(rhs) to obtain a system with the same solutions. For example, in (3.2),
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one can use the second equation to implicitly substitute for us, in the third equation to obtain
vy = »wy. Reid calls this an implicit substitution. The algorithm all impl_subs(sysl, sys2),
which makes all possible implicit substitutions from an orthonomic form sysl into a system (or

expression) sys2, is given in Appendix A.2.

Definition 3.1.6 A simplified orthonomic system is a system satisfying (1) and (2) of Defini-

tion 3.1.4 and also:

(8) No nontrivial derivative of any leading term of the system appears in the system.

Given an orthonomic system, one can achieve a simplified orthonomic form by making all
possible ‘implicit substitutions throughout the system. If an equation has its leading term
substituted for, one has to re-solve this equation for the new leading term. The algorithm

stmp_orth to achieve a simplified orthonomic form is given in Appendix A.2.

Example 3.1.7 Consider the orthonomic system (3.2). Differentiating the second equation

with respect to y, one can implicitly substitute for the term u;, in the third equation to obtain
Vy = VyWy.

Since the leading term was substituted for, one must solve this equation for the highest ordered

term which is w,. Here, we have a case splitting depending on whether v; vanishes or not.

~ Assume v; #Z 0. Then the corresponding simplified orthonomic system is

Uyy = V¢ + 0,

Uy =0, V (33)

Wy = Vy/ .
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System (3.2)

vpF#0 | vp=0

l

System (3.3) System (3.4)

Figure 3.3: A binary tree of case splittings.

Now assume v; = 0. Then the corresponding simplified orthonomic system is
Uyy =V,
U = v
’ (3.4)
Uy = 0)
vy = 0.

The two cases that arise are summarized in the binary tree of Figure 3.3. O

Given a simplified orthonomic system, one may have a pair of equations of the form
u§ = rhsy,

(3.5)
u§ = rhs,.

By cross differentiating, one may uncover new relations between the derivatives.

Definition 3.1.8 Let R be a simplified orthonomic system with two equations given by (3.5).

Form the set of ordered pairs of multi-indices
A={I,0): IT=JJ, |I],|7]>0}.
A compatibility condition of (3.5) is any equation of the form
—D+(rhs1) + D5(rhsy) =0,  (I,J) € A.

The set of all compatibility conditions is generally infinite. The unique compatibility condition

corresponding to (f J ) € A such that |I 1| is the minimum value over all elements in A is called

a minimal compatibility condition of R. An integrability condition of R is any compatibility
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condition of R which does not reduce to the trivial equation, 0 = 0, after all possible implicit
substitutions from R. A minimal integrability condition of R is an integrability condition

corresponding to a minimal compatibility condition of R.

In ‘general there are an infinite number of integrability conditions for R and a fundamental
problem is to find a finite subset Integ such that the simplified orthonomic form for R Ulnteg

has no integrability conditions.

Definition 3.1.9 A system sf, is in standard form if and only if it is a simplified orthonomic

system with respect to < and

(4) sf; has no integrability conditions.

The algorithm used to achieve a standard form for a given system is given in [53] (see Algorithm
6). This algorithm involves repeatedly putting the system in a simplified orthonomic form and
appending a certain finite set of integrability conditions. The argument used to show that this
process terminates in a standard form after a finite number of iterations is originally due to

Tresse [67].

There are several different algorithms for forming a satisfactory finite set of integrability
conditions Integ of a simplified orthonomic form. Perhaps the simplest, but least efficient, is
to form for each pair of leading derivatives of the same dependent variable the corresponding
minimal integrability condition. Then Integ is the set of all such conditions. The theoretical
justiﬁcation that satisfaction of this finite set leads to the satisfaction of all integrability con-
ditions for simplified orthonomic systems, is given by Mansfield [44] and Boulier et al [22]. An
alternative, more complicated and efficient approach is that of Riquier and Janet. Through
a completion process involving certain monomials representing leading derivatives, they con-
struct a finite set of integrability conditions [65, 66] and this has been automated by Schwarz

[62]. Reid’s standard form algorithm uses an equivalence class to avoid many of the redundant

equations arising in the Riquier-Janet approach. The reader should be aware, that although
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efficient, the formation of the finite set of integrabi]jty conditions in that algorithm is fairly
complicated (see Algorithm 6 of [53]). Recently Boulier [21] has also obtained a redundancy
criterion for integrability conditions. Moreover, the large number of case splittings that result
from the application of such algorithms to nonlinear systems are a significant barrier. For work
in this area, see Reid et. al. [56], Mansfield [44] and Boulier et al [22]. Standard forms for
nonlinear systems that are linear in the leading derivatives, for some ordering <, are often

achievable. This will be the case for all nonlinear systems considered in this dissertation.

Example 3.1.10 Consider the simplified orthonomic system (3.3). The minimal compatibility
condition between the first two equations is given by —vy — v; + vyy = 0. Solving this equation

for the leading term v,, one obtains the system

Uyy = Vg + v,
U = v,
(3.6)
Wy = vy /vy,
Vyy = Ut + vy,

which is in simplified orthonomic form. Since (3.6) has no further integrability conditions, it is

the standard form system sf;__ of the original system (3.1). O
A system in standard form separates all derivatives into two different classes:

Definition 3.1.11 Let sf; be a system in standard form. A principal (parametric) derivative
of order k is a derivative which is (is not) a derivative of some (any) leading derivative. A

and B™) denote the set of all parametric and principal derivatives of order up to N respectively.

Note that in the above definition A and B(*) denote the set of all parametric and principal
derivatives of sf; respectively. In some contexts we will regard A" and B™) as spaces with
coordinates given by their derivatives. The definitions of principal and parametric derivatives

will prove useful when we discuss formal power series solutions for the DE.
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Example 3.1.12 Let sf, _ be the standard form system (3.6). The set of leading terms in
(3.6) of order up to one is {u¢, wy} C B™. Since there are no zero order leading terms, there

are no other first order principal derivatives that can be obtained by differentiation:
B® = {u;, w}.

The set A® of all parametric derivatives up to order one is just the set of all terms up to first

order that is complementary to B®:
A(l) = {U, UV, W, Ugy Uy, Vi, Vg, vy, Wi, wy}'

The set of second order leading terms in (3.6) is {uyy, vyy} C B®. Besides these, the remaining
second order principal derivatives of sf«,,, are obtained by differentiating the first order leading
terms in B®. We have
B® = BM U {ugy, uyt, Utt, Uyy, Vyyr Waz, Ways Wit} (3.7)
A® = AD U {Ugg, Upy, Vzzy Vays Vats Vyt, Vit Wyy, Wyt, Wit ),

where A® is the set of all parametric derivatives up to order two, which is just the set of all

terms up to second order that is complementary to B®. |

3.1.2 Formal Power Series Solution

In this section we use the equations of a standard form system (order m) to construct infinite
power series expansions about a given point z for each dependent variable u® and state the
conditions for which these series converge to solutions of the system. To do this, it is convenient

to switch to a new multi-index notation.

Let ¢ be the ordered p-tuple (¢1,: -+, ¢p) where each ¢; = 0,1,2,---. We denote any partial

derivative

D;l .. .D;Pua(xl, .. '7$p))

by u¢. Here the order of this derivative is |¢| = ¢ + - - - 4 ¢p. By convention, we have ug = u”.
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Total derivative operators are given by
D¢ = D' -+ Dpr.

In order not to get confused with the other multi-index notation, we will always use superscripts
for the multi-index notation just described and subscripts for the other one. For example, we
have

D:D°=D°  &=ci+1, E=cj, jEi (3.8)

Consider a Taylor series expansion for each dependent variable u® about a point z = 29,

given by

(@) = (o) 4+ Y prae| | Frm ) (o)

|e|>0

(3.9)

T=1¢ cileg!- - -cp!
Given any function u = f(z), which is analytic in a neighbourhood of zg, the right hand side
of (3.9) converges to f(z) near zo. If, however, one chooses arbitrary values for «® and all its
derivatives at xg, which corresponds to choosing an arbitrary point in X x U(*), then the right
hand side of (3.9) will not converge in general. Instead one obtains what is called a formal

power series.

One can perform formal manipulations such as addition and differentiations on formal power
series [63]. Using these formal manipulations, one can test whether a formal power series satisfies
the given system of DEs. If so, it is called a formal power series solution of the systeﬁ. Our
goal is to find formal power series solutions of the given system that converge near a given point
Zo.

Let R be a syétem of DEs and sf, its standard form, with parametric and principal deriva-
tives given by A(® and B(*). The sets A* and B(*) are a partition of the set of all derivatives.
Let X be the space of independent variables. The space X x A(* is called the initial data space
of sf., since any point P = (zg; ﬁf)“)) in X x A specifies unique values for all the parametric

derivatives in A at z = zg.
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Definition 3.1.13 Let R be a system of DEs and sf, its standard form (of order m), with A"
and B the set of N-th order parametric and principal derivatives of sf.. For any N > m, a

prolonged standard form sf(") of R is a system in solved form with respect to < satisfying:

(1) R and sf{") have the same solutions.
(2) sfQ) contains all the equations of sf..

(3) The left hand sides of sf{") are unique (i.e. no two are the same) and form the set

of all principal derivatives B("),

A prolonged standard form can be achieved by appending to sf; an equation for each
remaining principal derivative of order at most N. For any principal derivative u§, such an
equation is obtained by differentiating any appropriate equation from sf, so that the resulting
equation has u5 as left hand side. Moreover, one can repeat this procedure for any principal

derivative of any order N and so a prolonged standard form sf(* is well defined.

However, a prolonged standard form is not unique since it is possible that more than one
equation of sf, can be differentiated to obtain a given principal derivative as left hand side.
While any prolonged standard form may be used to define a power series (3.9), different pro-
longed standard forms may lead to different power series. To overcome this problem of non-
uniqueness, we define a unique prolonged standard form that is distinguished from all the

others.

Definition 3.1.14 A prolonged standard form sf{¥ for R is called a canonical prolonged stan-

dard form if and only if

(4) The right hand sides of s f{") consist only of the independent variables and the para-

metric variables.

A canonical prolonged standard form can be achieved by making all possible implicit substitu-

tions from sf, into the right hand side of a given prolonged standard form. This renders the

right hand sides to be independent of all principal derivatives. By starting with an N = oo order




Chapter 3. Extension of Lie’s Algorithm for Systems of PDEs 73

prolonged standard form, and making the implicit substitutions, one arrives at an N = oo order
canonical prolonged standard form. The algorithm prol_standard which achieves a canonical

prolonged standard form for a given system R is provided in Appendix A.4.

Example 3.1.15 Let R by the system (3.1) which has the standard form sf, given by (3.6),
which is of order m = 2. The set of second order principal derivatives B(® is given in (3.7). In
particular, to obtain an equation for the principal derivative wg,, we start with the equation

wg = vy /v in sf; which we differentiate with respect to y to obtain

Wy = Vyy [Vt — ”y”yt/(”t)Z-
We now make all possible implicit substitutions from sf. into the right hand side of this equation.
This amounts to replacing vy, with vy 4 v;. Consequently, the equation for wy, is
Way = (Ve + 00) [0 = vy g/ (05)°

Repeating this process for the remaining terms in B®, we obtain the canonical prolonged

standard form sf given by

Ugt = Vg,
Wy = vy/”t» Wex = vzy/vt - vyvzt/(v1)27
’ uyt = ?)y,
Ut =7, Wry = ('Utt + 'Ut)/vt - vyvyt/(vt)2, (310)
Uyy = V¢ + v,
Vyy = Ut + Vg Wyt = Vyi/ Vs — vatt/(vt)za
Uy = Vt.
O

Lemma 3.1.16 Given any system R, its canonical prolonged standard form is unique.

Proof. Let sf*) and 37(_<N) be any two systems satisfying Definition 3.1.14. If these two systems

are not identical, there must be any equation in each system given by

uf = rhs; and uf = rhsy

respectively, such that the two right hand sides are not the same. By property (1) of Definition




Chapter 3. Extension of Lie’s Algorithm for Systems of PDEs 74

3.1.13, both sf{™ and ;?:N) have the same solutions as R and consequently
rhsy = rhs,

must be satisfied by all solutions of R. By property (4) of Definition 3.1.14, this equation
involves only parametric derivatives and so cannot be reduced to the trivial equation, 0=0, by
implicit substitutions from sf,. Consequently a new integrability condition has been found.

But this is a contradiction since by definition sf, has no further integrability conditions. O

In the sequel, whenever we refer to a prolonged standard form sf¢") we shall always mean
the canonical prolonged standard form. Also, sf{* will denote the infinite order canonical

prolonged standard form which, as we have already explained, is well defined.

Theorem 3.1.17 Let R be a system of DEs and sf its standard form (of order m) with A(>)
and B the set of all parametric and principal derivatives respectively. Let sfQ), N > m,

be the prolonged standard form of R. If < is a total derivative ordering, then the equations of

s induce a map
F: X x A" — B (3.11)

which takes a point (z,u™) in X x A to a corresponding value in the space of principal
derivatives BY) as determined by the equati’ons of the prolonged standard form. Moreover, if

N = oo then this is a well deﬁned map for any weak total derivative ordering <.

Proof. By property (3) of Definition 3.1.13 and.property (4) of Definition 3.1.14, the equations
of s f(") define a unique value for each principal derivative in terms of the independent variables
and the parametric derivatives. If < is a total derivative order, then for any N > m the right
hand sides must consist of parametric derivatives of order up to N. Consequently, (3.11) is well
defined. Notice that this is not trﬁe of non-total derivative orderings since the right hand sides
may depend on parametric derivatives of order greater fhan N. In such cases, (3.11) is only

well defined when N = oo as we now show.

Let < be any weak total derivative ordering and N = co. By the definition of a prolonged
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standard form;, each principal derivative u5 of any order is given by a unique equation u§ = rhs
from s f{>) where rhs depends only on z and parametric derivatives. Moreover, such an equation
was obtained by differentiating an equation of sf, followed possibly by a finite number of implicit
substitutions. Since the right hand side of each equation of sf, contains a finite number of terms,
rhs can only depend on z and a finite number of parametric derivatives. Consequently, any
point P € X x A defines a unique value for each principal derivative u§ € B(*). That is,

(3.11) is well defined for N = co and any weak total derivative ordering <.

This theorem shows that specifying a point in initial data space leads to a ﬁnique value of
all principal derivatives given by the equations of sf*). Consequently a unique power series

(3.9) can be constructed.

Theorem 3.1.18 (Formal Power Series Solution) Let R be an analytic system of DEs and
< be any derivative ordering. Let sf, and sf be the standard form and prolonged standard
form of R respectively. For any point in initial data space of sf., use the equations of sf(
to determine the values of all principal derivatives. Construct the corresponding formal power

series (3.9) for u(z) about the given point x = z°. Then u(z) satisfies the equations of s f(.

This theorem, which holds for any derivative ordering, makes no statement about the conver-
gence of the power series u(z), only that u(z) satisfies the equations of s f{). The proof of this
theorem is originally due to Riquier and Janet (see also [65, 66, 63]). They also show that for a
large class of initial data and when < is a weak total derivative order, u(z) does converge and
hence we have analytic solutions of B. We remark that it is not well known that these existence
and uniqueness theorems of Riquier-Janet hold not only for total derivative orderings, but also

for weak total derivative orderings.

In the Riquier-Janet theory, admissible initial data is prescribed by analytic initial data
functions defined on some boundary curve. So long as these functions are analytic and avoid

certain values for which s is undefined, they can be arbitrarily chosen and lead to convergent

formal power series solutions. The following will be sufficient for our purposes.
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Lemma 3.1.19 Let < be a weak total derivative order and s f{ be a prolonged standard form.
Let P be any point in X x A" where N finite. This corresponds to specifying the values of
z and all parametric derivatives up to order N. Then there exists a convergent formal power

series solution that agrees with the given finite data.

One can always choose suitable analytic initial data functions which agree with the given finite
initial data P and which lead to the required solution. A particular choice of these functions is

equivalent to specifying suitable values for the remaining parametric derivatives.

3.2 Local Solvability

Recall that for a system of DEs to be locally solvable, one must show that through each point in
the locus of algebraic roots of the system, there must pass a solution of the DE. In this section,
we will show that if < is a total derivative order then any prolonged standard form sf{¥) is
locally solvable. However this is not true if < is a weak total derivative order. Even if one
considers the infinite prolonged standard form sf{>, one does not achieve local solvability. We
show that sf( does satisfy the weaker property of analytic local solvability which turns out
to be sufficient for the symmetry analysis. To do this fequires us to consider the locus of the
infinite system s which is the set of points in the infinite jet space that satisfy the system.
This locus is well defined since the map (3.11) is well defined when N = co. To see this, write
the coordinates of any point in X x U™ as

(z; a™;at™), (3.12)
where z are the independent variables, #("™ and (™) are the parametric and principal derivatives
up to order N respectively. Now let N = oo and let F be the map in (3.11). Given any point P
in B, F~!(P) defines a set of points () in initial data space X x A. Then by construction,
for each point @, (Q, P) € X x U™ satisfies the equations of s (. The locus p{*) of sf(=) is

just the set of all such points (@, P).

To show (analytic) local solvability, we will construct a power series solution (3.9) for u(z)
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that passes through a given point in p¢*). Since such a series is uniquely determined by a given

point in initial data space, we first establish a correspondence between initial data space and

Q(‘x’).

Lemma 3.2.1 Consider a prolonged standard form sf&), N > m, for an analytic system of

DFEs. Let o) be the locus of points of sf") where < is a weak total derivative ordering.

(1) Let < be a total derivative ordering and N > m. Define
KM X x A 5 o) (3.13)

to be the map which takes any point (z;u™) to (z;4™; u™) where t™) = F(z;u™) is
determined by the equations of sf") as given by (3.11). Then K™ is a bijection between

X x AN and o™,

(2) If N = oo, and < is a weak total derivative ordering then K is a bijection between

X x A®) and o=,

(3) A function g(z;a™; ™) vanishes on o™ if and only if
=0. 3.14
950 (3.14)
Here the symbol | £ denotes making all possible direct substitutions from sf(") in g for
s«

all leading terms of sf(") . Also, we require N > m if < is a total derivative order and

N = oo if < is a weak total derivative order.

Proof. We shall first prove (1). Since < is a total derivative ordering, (3.11) is well defined for

any N > m. Consequently, given any point P € X x AW,

Q = K™(P) = (P; F(P))
is a well defined point in N-jet space. By construction ) must satisfy the equations of sf{")
and so P € o™. This proves that (3.13) is well defined. It is one-to-one by construction. It
is also onto since given any point Q(z;a™;a™) € o™, @ must satisfy t»he equations of sf{V.

By Theorem 3.1.17, the values of all the principal derivatives u™) = F(z;a™)) through (3.11).
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Hence @ = K™ (z;4™). This completes the proof of (1). Notice that for N > m finite, we do
not necessarily have a bijection when < is not a total derivative ordering since (3.11) may not

be a well defined map in this case.

Let N = co. Then (3.11) is well defined. The above arguments for (1) also holds in this

case. Consequently (2) is proved.

To prove (3), first let < be a total derivative ordering and N > m. By assumption g vanishes
on o™, That is, for each point Q(z;u™;2™M) € o™, ¢(Q) = 0. By (1), ™ = F(z;a™) and
s0

g(w; 75 F(2; M) = 0.
Hence, making all possible direct substitutions from sf(*) in g for all leading terms of sf(™

results in zero. This is just (3.14). The case N = oo when < is any weak total derivative

ordering is proven likewise. O

The infinitesimal symmetry conditions (2.38) involve the vanishing of X("A on the locus
o) of R. Lemma3.2.1(3) will allow us to precisely test for the vanishing of expressions on
the locus o). We just substitute from the equations of sf(") into the given expressions and
set the result to zero. Since the equations of sf{¥) are already in solved form and only direct
substitutions are required in (3.14) (no differentiations required), there is no ambiguity in how
substitutions are to be made. Furthermore, each equation of s f(*) is used at most once and no

infinite loops of substitutions are ever encountered (cf. Example 2.1.2 in [24]). .

Definition 3.2.2 Let o> be the locus of s f*). Through the bijection (3.13), any point in p(>
corresponds to a point in initial data space X x A which in turn defines a formal power series
(3.9). The analytic locus of s (&, denoted by p{*), is the set of all points in (> corresponding

to convergent formal power series.

We emphasize that sf() is not in general locally solvable since analytic solutions only

pass through the points in 7). However, we can define a weaker form of the local solvability
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criterion which will be sufficient in the subsequent theory.

Definition 3.2.3 sf{> is said to be analytically locally solvable if and only if through every

point in g¢*), there passes an analytic solution of s f(>).

Theorem 3.2.4 (Local Solvability) Let sf, be an analytic standard form system, of order
m, with sfQ) its prolonged standard form. If < is a weak total derivative ordering, then sf
is analytically locally solvable. If < is a total derivative ordering, then sf{) is locally solvable

(in the usual sense of Definition 2.2.9) for N > m.

Proof. We must show that through any point Q(zo;%5™;44™) in the analytic locus 3 of
sf{), there must pass one analytic function f(z) which is a solution of sf(). To do this, we
first consider the point P(zo; %) in initial data space which corresponds to the given point Q.
P in turn yields a unique formal power series solution u(z) of sf). If we can show that u(z)

passes through the point @, then since @ is in 2, u(z) must be convergent and this provides

the required solution.

To show that u(:z:) passes through @, calculate the values of all the derivatives of u(z) at
z = zo. This gives a point § lying in o). The bijection K= of (3.13) associates to P a

unique point. Hence
K™(P)=Q =Q,
and u(z) must pass through ¢. Analytic local solvability is thus proved for the case N = oo.

We now prove the case when < is any total derivative ordering and N > m. We use similar
arguments to the above N = oo case, but there is an additional problem here. A point in the
locus o™ only defines the values of all parametric derivatives up to order N and this is not
sufficient to define a unique power series expansion. Here is how we overcome this problem.

(N).
)

For any Q(zo;ay";al") € o), P(z0;%y") determines the value of z and all parametric

derivatives @) up to order N. By Lemma 3.1.19, there exists an analytic solution u(z) passing

through P. At 2 = =g, the values of z, u(z) and all derivatives of u(z) up to order N define
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a point @ € o™, By construction, the values of z and all parametric derivatives of Q agree
with those of ) and corresponds to the point P defined earlier. On the other hand, since <
is a total derivative ordering, the bijection K™) of (3.13) holds for any N > m. Consequently

there is only one point in the locus which corresponds to P. Thus
KM(P)=Q = Q.
Hence u(z) must pass through @ and local solvability is proved for this case. m|

For total derivative orderings, the usual local solvability criterion is sufficient to obtain the
infinitesimal symmetries of R. However, for weak derivative orderings, analytic local solvability

is what is required. This will become clear in the next section.

Note that Theorem 3.2.4 is more general than the local solvability theorems given in [47]
(Corollary 2.74 and 2.80) which rely on the Cauchy-Kovalevskaya existence and uniqueness
theorem [47, p.162ff] (Theorem 2.73). This is because the existence and uniqueness theorem of
Riquier-Janet (Theorem 3.1.18) applies to more general systems of DEs than those of Cauchy-
Kovalevskaya type (or normal systems). In particular, as the following proof of Lemma 2.2.12

shows, local solvability in the Cauchy-Kovalevskaya case is a corollary of Theorem 3.2.4.

Proof of Lemma 2.2.12 The system R, given by (2.24), is in solved form with respect to the
lexicographical ordering <., given in Example 3.1.2. It is a standard form, since there are no
further compatibility conditions. It is also a prolonged standard form sf(. Since <, is also

a total derivative ordering, Theorem 3.2.4 with N = n, shows that R is locally solvable. O

Example 3.2.5 Consider the systems R and R, given by (2.39) and (2.40) respectively. Though
these two systems have the same solutions, in Example 2.3.6 it was asserted that R is the only

one that is locally solvable. We now justify this assertion.

Using the lexicographic ordering <., of Example 3.1.2, the standard form sf, _ of R is

also given by (2.39), since the system is already in simplified orthonomic form with no further

integrability conditions. Applying the algorithm prol_standard, we obtain the corresponding
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second order prolonged standard form s ), which turns out to be the system E, given by
(2.40). Since < is a total derivative ordering, Theorem 3.2.4 shows that Ris locally solvable.
Consequently R is not locally solvable since the locus of R is strictly a subset of the locus of

R. 1

Here is an example to illustrate the need to go to the infinite system sf{) when a weak total

derivative ordering which is not a total derivative ordering is employed.

Example 3.2.6 Consider again the potential system R, given by (2.41). Using the potential
ordering <=~ of Example 3.1.2 with (z1,22) = (z,t), R is already in simplified orthonomic
form. It has the integrability condition (2.43) which must be appended to the system in order
to achieve a standard form. The resulting third order system

vy = F(z,t,u®),

o = G(z,t,u®) + ugyg,

Ugzz = DiF(z,u®) — D G(z,u®),

has no »f‘urther integrability conditions. Since it is also a simplified orthonomic form, it is the
standard form sf; of R. Since < is not a total derivative ordering, the corresponding prolonged
standard form sf{™ will not, in general, be locally solvable for any finite value of N > 3. To
see this, it will be convenient to let (F,G) = (uzz + u,0), though the following discussion holds

more generally. Here, the standard form sf, becomes

Vp = Uggy + U,

vy = Ugg, (3.15)

Ugpy = Uzgt T Ut
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The algorithm prol_standard leads to the prolonged standard form sf¢) given by

Vpgr = Ugztt + Uzz + Uzt + Ugg,

Upge = Ugpt + Uy + U, Vppt = Ugztt T Upt + Uy,
Uy = Ugy + U,

Vgt = Ugpgt + Ut, Ugtt = Ugett T U, (316)
UVt = Uze,

Vit = Uggt, Vit = Uzztt,

Uggr = Uggt T Ut-
As can be seen, this is a fourth order system, but the leading terms are of order at most three.
The locus ¢ of roots of this algebraic system is a subset of X x U*), in which all fourth order
derivatives of v are arbitrary (there are no equations involving fourth order derivatives of v).
However, one can easily see that v, = Vie+usee is a fourth order differential consequence which
must be satisfied by all solutions of the system. Consequently, there are points in ¢ through
which there passes no solutions (u(z),v(z)) of the system (v(z) cannot have any arbitrary
value for its fourth order derivatives), and the system is not locally solvable. The same problem
persists for any pr(ﬂonged standard form sf("), where N > m is finite. However, by Theorem -

3.2.4, the infinite system s> associated with R is analytically locally solvable. O

Since non-total derivative orderings require one to consider the infinite systerﬁ sf), it may
be argued that one should not use such orderings. However, for a given example, one may have
no choice in the matter. In the above example, we are forced to solve the equations of R for v,
and v; in terms of higher order derivative terms 611 the right hand side, since F' and G are not
explicitly given. Such a situation will again arise in §5.1 where we consider a general class of
potential systems. In order to effectively handle the infinite system sf{ we have the following

lemma, which is proven in Appendix C:

Lemma 3.2.7 Let R be an analytic system of DFEs (2.19) with standard form sf., of order m,

and prolonged standard form sf() (N > m). Let g(z,u™) be any function of its arguments

and N = max(m,n). Then:
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(1) g(@,u)| o = g(@,u)] o0

(2)  If g(z,ul™)|m = 0 for all solutions u = f(z) of R, then g(z,u™)]| s =0.
f SJx

Here the symbols |Sf(N), |Sf(oo) and |F(n) denote making direct substitutions from the solved
= ~ 7

equations of sf0, sf( and from the equatibns u$ = 0y f(z) describing T, respectively.

Note that (2) allows one to pass from statements holding on the solution space of R to an

equivalent statement involving only the equations of s f(.

3.3 A New Symmetry Algorithm

Lét us now return to the problem of finding symmetries of a system R of DEs. In order to apply
Theorem 2.3.4, the system must be locally solvable. Suppose R is not locally solvable. Then
if possible, one can use a total derivative ordering < to obtain the corresponding prolonged
standard form sf") for some N. By Theorem 3.2.4, s f{") is locally solvable and Theorem 2.3.4
leads to the symmetries. If R is such that a weak derivative ordering must be used, then one
deterrﬁines the infinite prolonged st_zmdard form sf(). However, sf(*) is only analytically
locally solvable and not locally solvable. Consequently, the following result, which is proved in

Appendix B, is required:

Lemma 3.3.1 Let sf) be a prolonged standard form with respect to a weak total derivative
ordering <. Let 0(*) and 9> be the corresponding locus and analytic locus respectively. Let G
be a Lie group of point transformations acting on X xU with infinite extension G{*) acting on

X xU®) ., Then G is a symmelry group of o' if and only if it is a symmetry group of o).

The main difficulty in proving this lemma is that points in p(* that are not in g{* correspond
to formal power series solutions which are not convergent. How does one make sense of the
induced action of G on such series? In fact, we do not attempt to make sense of this. Instead,

we only consider the point by point mapping induced by G. We exploit the existence of nearby

(in terms of projected jet coordinates) analytic solutions to get the invariance of the locus.
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Let the equations of sf*) be written as
vl = —u§+ 7 =0,  u§e B,
wher.e f*7 depends on z and a finite number of parametric derivatives. Also, for any infinites-
imal generator X, given by (2.32), define its infinite extension, given by
X = £ (2, u)0z; + 1°(2, u)Oya + n50us,
i=1,---,p, a=1,---,q, |J| > 0.

(3.17)

where 71§ are given by the infinitesimal extension formula (2.35). As for the total derivative
operator identity (2.18), this is an infinite sum. However, when applied to a given function

g(z,u™), only a finite number of terms are ever needed.

Lemma 3.3.2 Let R be a system of DEs with standard form sf, (of order m) and prolonged
standard form sf%) (N > m). Then G is a symmetry group of R if and only if for every

infinitesimal generator X of G,
Xzt =9, whenever  (z,u™) € o™, u§ € BW), (3.18)
where N = m if < is a total derivative order and N = 0o if < is a weak total derivative order.

Proof. Since R and sf{") have the same solutions, they must admit the same symmetry group
G. Let N = m and < be a total derivative order. Then by Theorem3.2.4, sf(") is locally

solvable and an application of Theorem 2.3.4 leads to the desired result.

Let N = co and < be a weak total derivative order. Let o> and (> be the locus and the
analytic locus of sf(™ respectively. Let G be the symmetry group of sf(. For any 7. € G,
7. maps any analytic solution to another analytic solution (cf. Theorem 2.2.16). By Theorem -
3.2.4, 7 is analytically locally solvable and so 7(° is a symmetry of ). By Lemma3.3.1
it is also a symmetry of o(*). Moreover, the converse of each of the previous statements holds.

Consequently G is a symmetry group of sf() if and only if G*) is a symmetry group of o{>).

The latter is equivalent to (3.18) (cf. Theorem 2.1.20) and the lemma is proved. O
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If <is aﬁy weak total derivative ordering, then N = oo and the need to solve (3.18) for
the infinite number of equations of s f* makes the task of finding the symmetry group G seem
intractable. If < is a total derivative order, then sf{™ is a prolonged standard form for any
N > m and only.the finite number of equations of sf(*) need to be considered in (3.18). But
even in this case, the need to prolong all the equations of sf; to order at least N = m can lead
to a very large system of equations for sf(*). Fortunately, we can show that the infinitesimal
symmetry conditions for s (™) reduces to an equivalent set of conditions involving significantly

fewer equations.

Theorem 3.3.3 Let R be a system of n-th order analytic DEs (2.19) with standard form sf, (of
order m) and prolonged standard form sf) (N > m). Assume that < is a weak total derivative

order. Then G is a symmetry group of R if and only if for every infinitesimal generator X of

g,
(XA#)‘ 0 = 0, N = max(m,n), p=1,---,1, (3.19)
sl<

where the symbol lsf&N) denotes making all possible direct substitutions from the equations of

sf.

The proof of this theorem, which is presented in Appendix C, is of a technical nature. One
must show that the symmetry conditions (3.19) are equivalent to those of (3.18). The key
observation is that each equation of s & consists of a finite number of terms and is derived
from the equations of R by a finite process involving differentiations, implicit substitutions, and
dpphcations of the Implicit Function Theorem. By determining how the invariance conditions
(3.19) are transformed under each of these finite operations, we show that each of< the invariance
conditions in (3.18) are satisfied if (3.19) are assumed. Even in the N = oo case, each equation
of s f* is derived from the equations from R by a finite number of operations and we arrive at

the desired result through induction. We note that Lemma 3.2.1(3) will be used at some stage

so that one can pass from expressions that vanish on o™ (cf. (3.18)) to expressions that vanish

after making direct substitutions from the equations of s f(¥.




Chapter 3. Extension of Lie’s Algorithm for Systems of PDEs 86

Theorem 3.3.3 is a significant improvement over Theorem 2.3.4 when used for calculating
the point symmetries of systems of PDEs. The equations of R need not be locally solvable in
order to apply the symmetry conditions (3.19). Moreover, only a finite number of equations of
the prolonged standard form for R are required (for direct substitutions). Hence, one avoids
the problems associated with Theorem 2.3.4 with regard to infinite systems of equations. Even
for ﬁnite locally solvable systems, Theorem 3.3.3 is niuch more efficient than Theorem 2.3.4
in general. The symmetry conditions of Theorem 3.3.3 are reduced versions of the symmetry

conditions of Theorem 2.3.4.

Theorem 3.3.3 leads to the following algorithm which correctly calculates the symmetry

group of R:

Algorithm 3.3.4

1. Determine XAM, w=1,---,0

2. Determine the corresponding prolonged standard system sf"), N = max(m, n) and make

direct substitutions from sf{¥) in the expressions obtained in the previous step 1.

3. Demand that the resulting expressions vanish identically.

Notice that in step 1, we only need to apply X to the equations of the finite system R. For
any weak total derivative ordering, one does not need to consider the infinite system sf¢.
In stép 2, there is no ambiguity in how the substitutions are to be made. In particular, the
equations of sf(") are used directly as is: Replace all occurrences of the leading terms of s f(™)
in the expressions from step 1, with the corresponding right hand sides of sf{¥). This is a
significant improvement over the corresponding step 2 of Algorithm 2.3.9 (which is in common
use), where it is not always clear how one ‘makes substitutions from R and its differential
consequences up to order n’ (recall the calculation of the symmetry group of (2.41)). Also, it

is not uncommon that, in applying step 2 of Algorithm 2.3.9, one may have to use an equation

of R more than once as substitutions and if one is not careful, one may get into an infinite
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loop of substitutions (cf Example 2.1.2 in [24]). In contrast, each equation of sf(™ is used
at r‘nosvt once in the direct substitution step 2 of Algorithm 3.3.4. Consequently, Theorem -
3.3.3 is a significant improvement over Theorem 2.3.4 (which is one of the common ways that
the infinitesimal symmetry conditions are stated). Moreover, Theorem 3.3.3, its proof and

Algorithm 3.3.4 appear to be new.

Example 3.3.5 Consider the calculation of the symmetry group G of R, given by (2.41) where
(F,G) = (ugg + u,0). Let the infinitesimal generators of G be

X =€(z,t,u,v) 0, + 7(z,t,u,v) O+ n(z, t,u,v) 0y + p(z,t,u,0) 0y
By Algorithm 3.3.4, we first calculate

) X[~vz + F(z,t,u®)] = ¢Y(z,t,u?,v@), (3.20)

X[-v + G(z,t,u®) + ugy] = $*(z,t,u®, v?),
where X is given by (3.17). The standard form of R is the third order system (3.15), and the
prolonged standard form sf{"), N = max(3,2), is given by (3.16). Hence in the next step of the
algorithm, one makes direct replacements for v, v¢, Vzg, vzt and vy occurring in (3.20) using
the equations of sf$) as they stand. (Since ¢ depends only on derivatives up to order 2, there
is no need to use the remaining equations of sf%, whose leading terms are of order 3.) We now
have:

i[—vz + F]Lf(j) = gl(x,t,u(sf))"

X[_vt "|" G + uzz]

s = )

Notice that ¢ can only depend on z and the parametric derivatives of s f&. In particular, é
is indépendent of the principal term u;;;. Consequently, no more substitutions from sf& are
required (each equation of sf( is used at most once). In the last sfep of the algorithm, the
determining equations for X are the solutions to qz = 0. Since the unknowns (&, 7,7,p) of X
depend only on (z,t,u,v) and are independent of the parametric derivatives of order greater

than zero, we must equate all such like derivatives to zero. What results is an overdetermined

system of PDEs which must be solved for the unknown infinitesimals of X. We shall not
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complete this calculation here, since a more general symmetry calculation, involving arbitrary

F and G in (2.41), is provided in §5.1.1. However, it is clear.that each step of Algorithm 3.3.4

is well defined and involves only a finite number of operations. 0




Chapter 4

Potential Systems of a Given System of PDEs

The potential systems approach [16] is a general method for finding nonlocal symmetries of
PDEs with two or more independent variables. In this chapter, the mathematical framework

of the potential systems approach is presented. Much of the material in this chapter can also

be found in Bluman and Doran-Wu [13].

In §4.1, we show how to construct potential systems 5, associated with a given system of
PDEs R, and discuss the many properties they enjoy. Of particular interest to us will be the
fact that the solution space of R is nonlocally embedded in the larger solution space of 5.
Studying the potential system 5 can then lead to nonlocal information for the original system
R. For example, point symmetries of S can lead to nonlocal symmetries of R. Such nonlocal
symmetries are called potential symmetries. In §4.1.1, examples of potential symmetries and

their applications are given.

The éonstruction of potential systems S requires the use of a conservation law (divergence
free expression) of the given system R. Different conservation laws can lead to different potential
systems which may yield different nonlocal information for R. One looks for conservation laws
through linear combinations, involving coeflicients called factors, of the equations of R. If R
is self-adjoint, Noether’s theorem [15, 47] shows that symmetries of R can lead to the required
factors. Since most of the PDEs we consider are not self-adjoint we rely on the Adjoint Theorem,

presented in §4.2.1.

The Adjoint Theorem provides necessary conditions for factors leading to conservation laws

of the given system R of PDEs. The usual statement of the Adjoint Theorem involves the

89
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vanishing of certain expressions, given in terms of the Fréchet derivative of R, on the solution
space of R. Through the use of the prolonged standard form for R, which allows one to pass from
statements holding on the solution space of R to statements involving the equations themselves,

we arrive at a more algorithmic formulation of the Adjoint Theorem.

Given a set of factors leading to a conservation law of R, more than one potential system
can be constructed. In §4.2.2, we show how to determine which of these potential systems
are useful for finding potential symmetries through potential factors and potential conservation
laws. Given a useful potential system, the potential system construction may be repeated to
obtai11"higher generation potential systems associated with B. We show how point symmetries

of higher generation potential systems can also yield nonlocal symmetries of R.

In §4.3, a complete potential symmetry analysis of the nonlinear diffusion equation is per-
formed. All first and second generation useful potential systems are constructed in §4.3.1
through the use of the Adjoint Theorem. Then, for each of these potential systems, a complete
symmetry classification is performed in §4.3.5. Examples of how potential symmetries arise as

point symmetries of first and second generation potential systems are found.

In §4.4, we show how necessary conditions for the linearization of a given system of PDEs
can be derived in terms of certain linearizing factors admitted by the system. This is very useful
since, during the potential systems construction process, the discovery of linearizing factors can
alert one to the possibility of linearizations. The linearization algorithms of Bluman and Kumei

[15] can then be used to seek an explicit linearizing transformation, if one exists.

Let us now feview the concepts of local and nonlocal symmetries: Consider an infinitesimal
generator of the form

X = &z, u™) g, + Nz, u®) Dy s i=1,---,p, a=1,---,q. (4.1)

Notice that we have switched to using subscripts to index the dependent variables. This is

particularly useful when discussing potential systems (especially when we come to discuss higher

generation potential systems where we will need to use superscripts to distinguish between
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potential variables of different generations). Henceforth, we shall stick with this new subscript

notation for all dependent variables. In particular, we have
Ua,g = Dj(ue).

Definition 4.0.1 Let R{u} be a system of n-th order DEs (2.19) with standard form sf, (order
m) and prolonged standard form sf (N > m). A local symmetry admitted by R{u} is an

infinitesimal generator of the form (4.1) such that
<)~(AM>‘ 0 =0, N = max(m,n+ k), p=1-,1 (4.2)
s«

where X is the infinite extension of X, given by (3.17), and | £ denotes making all possible
<

direct substitutions from sf{). Moreover, X is called a point symmetry when k = 0, a contact

symmetry when k = g = 1, a generalized (Lie-Bdcklund, higher order) symmetry [15, 47] when

it is not a point or contact symmetry.

The reason for the value of N is that XA is of order n + k and the only possible direct
substitutions from sf( are from s f(*), where N > n + k. We also have, by definition, N > m,

where m is the order of the standard form sf,.

When k& = 0, Theorem 3.3.3 shows that the solutions of (4.2) lead to the infinitesimal
geﬁerators of the point symmetry group admitted by R{u}. A similar statement can be made
for contact symmetries (k = ¢ = 1) [15]. However, how does one interpret the solutions of
(4.2) for generalized symmetries? Here, we just mention that there are technical difficulties in
determining the actual group of transformations corresponding to the infinitesimal generators

of a generalized symmetry (see [5, 15, 47] for more details).

Definition 4.0.2 A nonlocal symmetry of R{u} is a continuous symmetry admitted by R{u}

which is not characterized by an infinitesimal generator of the form (4.1).

As previously mentioned in §1.3, there are many specialized approaches to finding nonlocal
symmetries. Some are more heuristic than others. We will use the potential systems approach,

which provides a general framework for finding nonlocal symmetries of R{u}.
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4.1 Construction and Properties of Potential Systems

Consider an n-th order system R{u} of PDEs in which one PDE is a conservation law
D; fi(z,u"=") = 0. Without loss of generaﬁty, R{u} is given by
Ay(z,u™) =0, p=1,---,0-1,
- (4.3)
D;f*(z,u"V) = 0.

If p=2,let (z1,22) = (x,t). Through the conservation law in (4.3), one can introduce a
scalar potential v and form the potential system S{u,v} given by
| Ay(z,u™) =0, p=1,-,0-1,
v+ fl =0, (4.4)
- —v, + f2 =0.
An ef(ample of a potential system with two independent variables is given in Example 1.3.2.
If p = 3, let (z1,22,23) = (¢,2,y). Through the conservation law in (4.3), one can introduce
a vector potential v = (v, v2,v3) and form the potential system S{u, v} given by
Ay(z,u™) =0, p=1-01-1,
1 —
[P—v3pt ey =0, (4.5)
fP-vy+us; =0,
fP—vit+ v, =0,
where v; ;; denotes the partial derivative Jv; /0z;. An example of a potential system with three

independent variables is given in Example 1.3.3.

If p > 3, then the potential systems construction is given in Appendix D. Though we shall
only consider examples of potential systems where p = 2 or p = 3, the results of this chapter

apply equally well for any p > 2.

Potential systems are determined systems in the case of two independent variables, and

under-determined in the case of three or more independent variables. Here, a system is said

to be determined (under-determined) if there exists (doesn’t exist) a unique solution to the
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system for a given set of data (initial or boundary). In the case of three independent variables,
the nonuﬁiqueness.is due to the degree of freedom in the gauge function: Given any solution
(u,v) = (f(z), g(z)) satisfying a given set of data, one can always choose a nonzero gauge
function x(z) such that (u,v) = (f(z), g(z)+0:x(z)) still satisfies the same set of data and hence
must also be a solution. Here, one must impose an additional differential constraint in order to
make the potential system determined. For PDEs with more independeht variables, more than

one differential constraint is needed to make the associated potential systems determined.
Let us now discuss the various properties of potential systems.

Property (i) Local existence of potentials

Given any solution u = f(z) of a given system R{u} of PDEs, there always exists a function
v = g(z) such that (u,v) = (f(z),g(z))is a solution of the associated potential system S{u,v}.
To see this, just substitute u = f(z) into (4.4) to obtain
v = hl(z),
Vg = 7L2(£I)),
for some functions 711(37) and 712(:1:) This is a standard form sf, (with respect to any ordering
<), since the only integrability condition of (4.4b,c) is (4.3b) which is identically satisfied by

v = f(z). An application of Theorem 3.1.18 then leads to the local existence of potentials

v = g(z).

Property (i1) Nonlocal and Noninvertible embedding of solutions

In any potential system, the potential variables v appear only in derivative form and cannot

be expressed solely in terms of z, u and derivatives of u. Clearly v depends nonlocally on the

original dependent variable u. For example, in the potential nonlinear diffusion equation (1.5),

v = /udw.

we have
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By Property (i), we have that the solution space of R{u} is embedded in the solution space
of S{u,v}. Since the potential variables v are nonlocal with respect to u, we say that this
embedding is nonlocal. Moreover the embedding is noninvertible since the function v = g(z)
will n>ot be unique: For example, in the case of two independent variables, one can always add
an arbitrary constant, ¢, to g(z) such that (u,v) = (f(z),g(z) + ¢) is still a solution. In the
case of three independent variables, one can add the gradient of an arbitrary function of the
independent variables x(z) such that (u,v) = (f(z),9(z)+ O,x(z)) is still a solution. The

function x(z) is called a gauge function.

Property (iii) Projection of solutions -

In Examples 1.3.2 and 1.3.2, it was shown that the original PDE R{u} is a differential
consequence of the associated potential system S{u,v}. Consequently, if (u,v) = (f(z),g9(z))is
any solution of S{u,v}, then u = f(z) is a solution of the original PDE R{u}. As we shall see
in §4.2.2 this is not always the case and one must be careful to select potential systems that do
satisfy the projection of solutions property. This projection property together with Property

(ii) ensures that any symmetry of S{u,v} is also a symmetry of R{u} and vice versa.

Property (iv) Nonlocal information for R

Using the projection of solutions property, any invertible transformation in (2, u,v)-space
induces a transformation in (z,u)-space. This induced transformation will be noninvertible
and nonlocal if it depends essentially on the potential variable v. Consequently, the study
of potential systems through qualitative or quantitative methods which are not coordinate
dependent may yield new results for the original PDEs and vice-vera. For example, Bluman
and Shtelen constructed new Schrédinger equations that are nonlocally related to the free
particle equation [18] and new classes of diffusion processes that are nonlocally transformed to

the Wiener process [20]. In [3], Anco and Bluman construct nonlocal conservation laws of a

PDE through its potential systems. In the next section, we show how nonlocal symmetries can
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be found through potential systems.

4.1.1 Potential Symmetries and Their Applications

Algbrithm 3.3.4 can be used to find all the infinitesimal generators admitted by S{u, v} of the

form
X =€(z,u,v)0; + n(z,u,v)0, + p(z, u, v)0,.

The flow of these infinitesimal generators then lead to the one-parameter point symmetries of

S{u,v}, which are of the form

T = X(z,u,v;¢),
u =U(z,u,v;e), (4.6)
v = V(z,u,v;¢).

Using the projection of solutions property, this symmetry transformation of S{u,v} induces a
symmetry transformation of R{u} given by (4.6a,b). If X and/or U depend essentially on v,
then we have found a nonlocal symmetry of R{u}. The corresponding infinitesimal generator

is obtained by projection of X to (z,u)-space and is given by
Y = f(iL‘, u, 1))81; + 77(”5, u, v)aua
where v needs to be explicitly replaced by some nonlocal expression involving u. It follows that

the infinitesimal X of S{u, v} yields a nonlocal symmetry of R{u}, if and only if its components

(&,7m) depend essentially on v. These observations lead to the following definition and theorem:

Definition 4.1.1 A potential symmetry of R{u}, related to potential system S{u,v},is a point

symmetry of §{u,v} which does not project onto a point symmetry of R{u}.

Theorem 4.1.2 A potential symmetry of R{u} is a nonlocal symmetry of R{u}. In particular,
if

X5 = €(2,u,0) &, + 1°(2,4,9) Quy + 97 (2, ,) By, (4.7)
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is a point symmetry of S{u,v}, then X° is a potential symmetry of R{u} if and only if at least
one component of (€,m) depends essentially on v; otherwise X° projects onto a point symmetry

of R{u}, namely
X = €z, 4) 0y + 1°(2,0) Ous. (4.8)

Conversely, a point symmetry X2, given by (4.8), yields a nonlocal symmetry of S{u,v}

if and only if there exists no p¥(x,u,v) such that X° = XB 4 p7 0y, is a point symmetry of
S{u,v}.

Examples of potential symmetries are given in Examples 1.3.4 and 1.3.4. Applications of poten-
tial symmetries to find noninvertible linearizations of PDEs are given in Example 1.3.5 as well
as in §4.4. Here are examples of how potential symmetries can lead to new invariant solutions

and to exact solutions of new boundary value problems.

Example 4.1.3 New Invariant Solutions

The point symmetries and the invariant solutions of the quasilinear hyperbolic equation
R{u}, given by
Utt = [f(u)u:c]x7
were studied by Ames, Lohner and Adams [2]. Consider the associated potential system S{u, v},

given by
Ve = Ut,

v = f(u)ug.
Pucci and Saccomandi [51] showed that, for any choice of f(u), S{u,v} admits the symmetry
X = (v 4 2)0; + (u+1)0;,
which is a potential symmetry of R{u}. Invariants of X are given by

z =T, w = u, w? = v. (4.9)

When seeking invariant solutions of the form

u = w!(z), v = w(z), (4.10)
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S{u,v} reduces to

2 _ 1
2 = TRWy,

ol :f-—l(ZZ).

w

For any f, the invariant solutions of S{u,v} are given by

u= ), v=—af )+ [,
where the sirﬁﬂarity variable z is given implicitly by (4.9). By the projection of solutions
property, « = f~'(2?) is then a solution of R{u}. In the case f(u) = (log u)2,4two sets of
invariant solutions of S{u,v} can be obtained:
u=e1, v=(1-2z)e"+¢, [(1—21)e" +¢1 + 2] — z[e™ +1 =0;

u=e2, v=—(14+2)e 2 +c2, [—(1422)e™2 + 2+ 2] — 29[e7*2 4+ t] = 0.
Consequently, two solutions of R{u}, given by u = €** and u = e, are found.!

See also Bluman and Shtelen [19] who extend the nonclassical method to potential sys-
tems. In their paper, they also consider nonclassical Lie-Béicklund symmetries of potential

systéms. 0

Example 4.1.4 New Boundary Value Problems

Point symmetries can be used to construct the exact solution to a given boundary value
problem (initial value problem) associated with a PDE R{u} [15]. If the point symmetries of
R{u} do not yield the solution of the BVP, then potential symmetries of R{u} may lead to the
solution. For example, consider the BVP (initial value problem) posed for the wave equation
R{u}:

uy = () Uz,
- <z < oo,
u(z,0) = U(z), (4.11)
0<t<oo.
’U,t(:l?,O) = W(QZ),

1Pucci and Saccomandi also showed that potential symmetriés can be used to obtain an even wider class of
solutions for R{u}. In the above standard approach, one uses a potential symmetry X to obtain the invariants
(4.9). Solutions of S{u,v} which are in terms of these invariants then lead to solutions of R{u} by projection.
If instead, one directly looks for solutions of R{z} in terms of the invariants, then besides the above solutions,
one also finds the solutions u = €3, where z; satisfies [c3e® + z] — z3[e*® + ] = 0.
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One can embed this BVP for R{u} in a BVP for the associated potential system S{u,v}, given

by
' vy = i, w(z,0) = U(z), (4.12)

Uy = Uy, v(z,0) = V(z).
Using the relationship between v; and u, one can relate the boundary data V(z) to W(z):
W(z)
2(2)’

so that the solution (u,v) = (f(z,t),9(z,t)) to the BVP for S{u,v} yields the solution

V/(z) =

u = f(z,t) to the BVP for R{u}. When ¢(z) satisfies
¢’ = msin(plogc), m,pu€R, (4.13)

so that it is a bounded wave speed describing wave propagation in two-layered media with

smooth transitions, S{u, v} admits the point symmetry
X = [2¢ cosht] 0, + [2(¢' — 1) sinh t] 0y + [(2 — ¢') ucosht — ¢ vsinh t] 8, (4.14)
—[¢'vcosht + c2pusinht] b,
where ¢(z) = ¢(z)/c'(z). Since the infinitesimal of u depends on v, X is a potential symmetry
of R{u}.

For any bounded wave speed ¢(z), the point symmetries of R{u} do not lead to the solution
of the BVP for R{u}. However, Bluman and Kumei [14] were able to derive such a solution for
the bounded wave speed c(z) satisfying (4.13) through the use of the potential symmetry X,
given by (4.14). In particular, they used X to first derive the solution to the BVP for S{u,v}
and then obtained the solution to the BVP for R{u} by projection. Complete details can be

found in their paper. |

In this dissertation, we study point symmetries of the potential system S{u, v}, rather than
studying those of the reduced system G{v}, obtained by eliminating the original dependent

variables u in S{u,v}. The infinitesimal generators admitted by G{v} are of the form

Z = {(z,v)0; + n(x,v)0,.
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If ¢ depends essentially on v, then Z induces a nonlocal symmetry of R{u}. However, the
symmetry transformation corresponding to the flow of Z determines only how z and v are
transformed with no information on how the original variables u are correspondingly trans-
formed. In general, nonlocal symmetries of R{u} cannot be obtained ezplicitly from point
symmetries of G{v}. However, it must be emphasized that point symmetries of G{v} that cor-
respond to nonlocal symmetries of R{u} may not be obtainable through S{u,v}. The problem

is in obtaining an explicit realization of these nonlocal symmetries of R{u}.

4.2 Conservation Laws and Useful Potential Systems

4.2.1 Conservation Laws

Up to now, in order to obtain potential systems, we assumed that at least one PDE of a given
system is a conservation law. The question of how to construct conservation laws yielding useful

potential systems naturally arises. Given a system R{u} of PDEs
Au(x,u(")) =0, = 17"'71) (415)

we seek a set of factors (multipliers, characteristics) {\*(z, u("~")} which lead to a conservation

law of R{u} given by
MA, =Dift,  p o=1,---,1 (4.16)
In order to discuss the known theorems concerning the discovery of conservation laws, we

need to define the Fréchet derivative and the adjoint of differential operators. Unless otherwise

stated, the following material can be found in [15, 47].

Definition 4.2.1 An n-th order differential operator is given by
PlulDs,  0<|J| <, (4.17)

where P'[u] = P/(z,u(™) are functions, J is the multi-index (j1, ja, - -, jx), and Dy is the k-th

order total derivative operator Dj, Dj, ---Dj,. A homogeneous differential operator is one with
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P° =0. A linear differential operator is one in which each P’ depends only on z.

A matrix of differential operators whose ¢j-entry is PZ-? D ; will also be referred to as a differential

operator.

Definition 4.2.2 Let u = (u1,:--,u4) and Plu] = (Pi[u],-- -, P[u]) to be an [-tuple of func-
tions. The Fréchet derivative of P is the differential operator Lp such that
Lr(Q) = &| _ Plu+eQlull

for any g-tuple of functions Q[u].

In other words, to obtain Lp(Q)), we replace u (and its derivatives) in P by u + ¢@ (and
its derivatives) and differentiate the resulting expression with respect to £. For example, if
Plu] = uygsin ugy, then
£p(Q) = £ _ (u +eDiQ)sin(uss +¢DZQ)
= (Sin Uyy ) D1@Q + (uy cos uzz ) D2Q).

So Lp = (sin ugz) Dy + (u; €08 uzz)D2. In general, Lp is a | x q¢ matrix of differential operators

with ¢j-entry
| (Lp)ij = (0P;/0u;1)Dy. (4.18)

Definition 4.2.3 Let D be any differential operator (4.17). Then its adjoint is the differential

operator D* which satisfies
/P-’Dde = / Q - D*Pdz,
Q Q
for every domain @ C IR?, and for every pair of functions P[u] and @Q[u] with compact support

Q. A differential operator D is self-adjoint if and only if D = D*.

In particular, D* is the adjoint of D if (P-DQ — Q-D*P) is a divergence expression. With D
given by (4.17), an easy application of integration by parts shows that D*(Q) = (= D)[Ps(@Q)],

for which we write

D* = (-D);- Py.
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For example, if D = uD2 + D,, then its adjoint is given by
Clearly D is not self-adjoint.

If D is a matrix of differential operators with entries D;;, then its adjoint D* is a matrix of

differential operators with entries
D;j = (i),
which is the adjoint of the transposed entries of D.

Let R{u} be the system of PDEs (4.15). If the Fréchet derivative of A is self-adjoint,
then system R{u} is the set of Euler-Lagrange equations for some variational principle with
Lagrangian L. Consequently Noether’s theorem can be used to obtain the set of factors and
the corresponding conservation law of R{u} The PDEs we will consider in this dissertation
are usually not self-adjoint and, as such, Noether’s theorem cannot be used to find conservation
laws for these PDEs. Instead, we will use the following adjoint theorem, which applies to all
PDEs, to determine necessary conditions for factors that give rise to conservation laws of R{u}.

(See [15, 47] for more details on Noether’s theorem.)

Theorem 4.2.4 ([47, 68]) Suppose there exists a set of factors \(z,u(”™V) leading to the

conservation law (4.16) of R{u}. Then
LAN=0, (4.19)
on all solutions of R{u}.

For this theorem to be effective, one must pass from (4.19), holding on the solution space of

R{u}, which is not known a priori, to an equivalent one involving only the equations of R{u}.

This is possible for systems that are locally solvable (cf. Definition 2.2.9).
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Theorem 4.2.5 (Adjoint Theorem) Let R{u} be an analytic system of n-th order PDEs
(4.15) with standard form sf, (order m) and prolonged standard form sfY) (N > m), where <

is a derivative ordering. If there exists a set of factors M (z,u"™) leading to the conservation

law (4;16’) of R{u}, then

(ﬁZA)' o0 = 0, N = max(2n — 1, m). (4.20)
sJ<
Proof. By hypothesis, (4.19) holds. Since A is of order n, £} is an n-th order differential

operator. Also, A is of order n — 1, and so L} A is of order 2n — 1. Applying Lemma 3.2.7(2) to
(4.19) then leads to (4.20). [

Unlike Noether’s theorem, this is only a necessary condition that the factors A\* lead to a
conservation law of R{u} with no explicit formula given for the conservation law. Here is an

example of how to find factors through the Adjoint Theorem.

Example 4.2.6 Consider the nonlinear diffusion equation R{u} given by
A = —u + [K(w)ugl; =0, K'(u) # 0. (4.21)
‘The Fréchet derivative of (4.21) is given by

La =—-Di+ KD2 4+ 2K'u; Dy + K'"u2 4+ K'ugy, .
: (4.22)

= —-Dy+ D2. K(u),
which has adjoint
. Z = Dt + I{(’U,)Dg

Clearly La is not self-adjoint and so Noether’s theorem is not applicable. However, Theorem -

4.2.5 is apf)hcable: Any factor A(z,u() yielding a conservation law of R{u} must satisfy

(LaN)| @ =0. . (4.23)

sfi(s)

lex
To obtain the prolonged standard form sf(j‘llz for R{u}, let (z1,22) = (t,z) and <z be

the lexicographical ordering given in Example 3.1.2. Then the standard form sf,,  of R{u} is

given by

I\'"!u

Urs = = Jo(up U + (o Ut | (4.24)
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Since K # 0, sfs, _ and R{u} have the same solution set. By differentiating (4.24) with respect
to z and ¢, and using (4.24) to replace the principle terms u,, in the resulting right hand sides,

one obtains

I\” K! Ix
Upgt = +( ) Ju2ug — fru? — 29 Ug Uzt + T L g,
= re (4.25)
Uppr = [ I\ + 3( ) ] - 3A2 Ut + Ix Uzt

sf¢) is then given by (4.24) and (4.25).
We have
L3z, 80) = K Nuatiazs + Aozt + Musue 82 + 2hagu attion + Augus U2 + 2, s line
+2Auu, Ustiaz + Aunttd + (2Aous + Au)tzz + 2Aoutie + As] (4.26)

+()\u1 + 2I(Axut)ucct + Aucutt + /\uut + >\t-
To determine the left hand side of (4.23), the equations of sf(jl)w are used to substitute for the

terms gy, Ugpgt and Ugg; appearing in (4.26). Consequently (4.23) becomes
2Ay, ust + Oz, t,u® ;A) =0, (4.27)

where ¢ is explicitly known and is independent of uy. Also A is independent of uy. Since uy

is a parametric derivative of sf;,__, it can take on any arbitrary value. For (4.27) to hold,
Ay, =0 (4.28)

and (4.23) becomes
20y, Uzt + q?(:v,t, u®;)) = 0.

Here both A and gb? are independent of the parametric derivative ug; so that
Ay, =0 (4.29)
and (4.23) reduces to
At + 22qus + [K Ay — M KN4 + 2K Mgy + KAy = 0.

Since A is independent of the parametric derivative uy,

A =0 (4.30)
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and (4.23) further reduces to
)‘t + IXV(U))\ZCE = 0.

Since K'(u) # 0, we must have

This together with (4.28), (4.29) and (4.30) leads to the following factors for R{u}. (4.23):
A =cy + cox, c1,¢2 € R. (4.31)
We now seek conservation laws of R{u} that are given by
(e1 + coz)(—uy + [K(w)uz]z) = 0.

Essentially two different conservation laws of R{u} can be thus obtained. The first one corre-

spohdsi to the factor A = 1:
Dy—u] + D [K(u)uz] = 0. (4.32)
The second one corresponds to the factor A = z:
z(—uy + [K(w)ugly) = De[—au] + Dy[z(L(u))s — L(uw)] = 0, (4.33)

where K(u) = L'(u). 0O

4.2.2 Useful Potential Systems

Suppose one has found a set of factors leading to the conservation law (4.16) of R{u}. Then to
use the construction procedure of §4.1 to obtain a potential system, one must first replace the

system R{u} with the new system Rps{u}, given by

Ay (z,u™) =0, =1 M-1,M+1,---,1,
() (4.34)

D;ft =0.
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It follows that each solution of R{u} is a solution of Rps{u}. However, each solution of Bps{u}

is a solution of R{u} or of the factor system Rpr{u} given by

Ay(z,u™) =0, =1 M-1,M+1, -,
(4.35)
MM (g y*=D) = 0.
If EM{’U,} has solutions that are not solutions of R{u}, which can only happen when AM = 0
has solutions, then R{u} and Rpr{u} do not have the same solution set. Consequently they
will not, in general, have the same symmetries. In particular, one would not expect a symmetry

(local or nonlocal) of R{u} to also leave invariant the solutions of Rps{u}. This leads to the

consideration of only certain types of factors in order to discover useful potential systems:

Definition 4.2.7 A potential factor is a factor which does not vanish for any u(z), i.e.,
MM (g, u» D) = 0 has no solutions. A potential conservation law of R{u} is a conservation
law of R{u} arising from a set of factors with at least one potential factor. Let Rp;{u} be a
system (4.34) associated with a potential conservation law of R{u}, where AM is a potential

factor. The corresponding potential system is a useful potential system.

The factors (4.31) admitted by (4.21) are examples of potential factors. The corresponding
conservation laws (4.32) and (4.33) are examples of potential conservation laws. Many more
examples of potential factors and potential conservation laws, as well as examples of useful

potential systems will be provided in §4.3.

It immediately follows that only useful potential systems enjoy the projection of solutions
property (cf. §4.1). Consequently, whilst any analytical technique, which includes symmetry
analysis, applied to a useful potential system may lead to new information for the original PDE,

this is not necessarily the case for other types of potential systems.

Useful potential systems S{u,v}, are called first generation potential systems. Higher gen-

eration potential systems, can also be constructed as follows. Let v! = v and S! = 5{u,v!}.
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Using a potential conservation law of S!, one can introduce further potential variables? v?

1

to form the second generation potential system $? = §2{u,v!,v%}. Point symmetries of §*

could yield nonlocal symmetries of R{u}. Continuing the process with other conservation
laws, one could obtain potential variables v!, v%, --. v/ and corresponding potential systems

St 8% ... 87 {u,vt, .-, v7}. We call S/ the |J|-th generation potential system.

Example 4.2.8 Consider again the nonlinear diffusion equation R{u}, given by (1.4), which
has the first generation potential system S{u,v}, given by (1.5). Using the conservation law
(1.5b), one can introduce a potential variable w to form the second generation potential system

T{u,v,w}, given by

vy = u,
wy = v, (4.36)
wy = L(u),

where K(u) = L'(u). When K(u) = u_%, T{u,v,w} admits the point symmetry [13]
X = —wdy + 3uvdy, + 12 9,.

Since the infinitesimal component corresponding to the independent variable # depends on w, X
does not project onto (z,u, v)-space or (z,u)-space. In other words, X is a nonlocal symmetry

of S{u,v} and of R{u}. 0O

In general, any |J|-th generation potential system may yield nonlocal symmetries for a
lower generation potential system and/or the original PDE itself. We shall also call nonlocal

symmetries of R that arise in this way potential symmetries of R.

Definition 4.2.9 Any point symmetry of SV that does not project to a point symmetry of R

(ST, I < J)is called a potential symmetry of R (S7).

The following theorem immediately follows.

2Note additional constraints may be required to make the potential system determined if the number of
independent variables is greater than two.
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Theorem 4.2.10 Suppose 57{u,v',---, v/} admits a point symmetry X5 with infinitesimals
(&,m,p% -, p?), depending on (z,u,v',---,v7). Then X5 induces a potential symmetry of
ST, I < J, if and only if one component of (¢, n,p% -, pl) depends essentially on v’; x5’
induces a potential symmetry of R{u} if and only if one component of (£,7) depends essentially

on ’UJ.

Conversely, if R{u} admits a point symmetry X with infinitesimals (£,7), then X yields
a nonlocal symmetry of 7, J > 1, if and only if there exists no point symmetry of S with

infinitesimals (€, 7, p1,- -, p”).

If a point symmetry X% of R yields a nonlocal symmetry of §¥, J > 1, then we say X% is
‘lost’ in §Y. However, it must be emphasized that the symmetry is still present in S, albeit in
the nonlocal sense. It is said to be ‘lost’ in SV since it cannot be realized as a point symmetry

of §7. We will give illustrations of this in the next section.

4.3 Potential Symmetry Analysis of the Nonlinear Diffusion Equation

As a prototypical example, we consider the nonlinear diffusion equation R{u} given by (4.21).

4.3.1 First Generation Potential Systems

As the calculations in Example 4.2.6 show, R{u} admits the potential factors (4.31) with
correspdnding potential conservation laws (4.32) and (4.33). Using (4.32), we obtain the useful

poten"cial systems S'{u, v} given by

A‘?l =—v,+u =0,
(4.37)
AY =-v +[L(u)s =0.
Using (4.33), we obtain the useful potential systems S%{u,V} given by
A = —V, +zu =0,
! (4.38)

SZ
AZ

Vi +z[L(u)]y — L(w) =0.
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S'{u,v} and S*{u,V} are first generation potential systems of R{u}.

4.3.2 Second Generation Potential Systems I

Consider the first generation potential system S5'{u, v} given by (4.37). Let <, be the lexico-
graphical ordering of Example 3.1.2 with (z1,22) = (¢,z) and (u1,u2) = (u,v). The standard

form sf, of §1{u,v} with respect to <. is given by

Ugy = —%%lui + Tlu)ut (4.39)
and
Ve = U,
(4.40)
vy = [L(w)]s

Since m = 2 (the order of sf,) and n = 1 (the order of 5'{u,v}), we have N = 2 in (4.20). The

prolonged standard form sfQ) | corresponding to §1{u, v}, is given by (4.39) and (4.40) and

. .vl‘I = u-’E?
Vgt = Ut
vy = K'ugus + Kugy.
The Fréchet derivative of $1{u, v} and its adjoint are given by
1 -D, 1 K(u)D,
Lyst = ast =

Dy-K(u) —Dy D, D,

Factors A*(z,t,u®), ¢ = 1,2, leading to a conservation law of S1{u,v}, must satisfy

(Ll A)Lf(z) = 0. (4.41)
Rlex
When solving (4.41), two cases are singled out.

Case K(u) arbitrary:

Here the general solution of (4.41) is (A!,A?) = (0,¢), ¢ € R, leading to the useful potential

system T1{u,v,w} given by
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—vy+u =0,
—wy;+v =0,
—wy + L(u) =0,

which is a second generation potential system of R{u}. Applying Theorem 4.2.5 to T {u, v, w},

one can show that only trivial factors )\i(a:,t, u,v,w)=0,¢=1,2,3, are found.
Case K(u) = u~?:
Here the general solution of (4.41) is
| (AL, 22) = ("t F (0, 1), F¥(v, 1)), (4.42)
where (F, F?) are arbitrary solutions of the linear system

aF? _ art _ _9F?
=, By = (4.43)

In §4.4, we show how these factors indicate the linearization of the system

Vp = U, v = w2y, (4.44)

4.3.3 Second Generation Potential Systems 11

Consider the first generation potential system §2{u, V} given by (4.38). Let <e, be the lexico-
graphical ordering of Example 3.1.2 with (z1,23) = (¢,2) and (u1,u2) = (u,V). The standard
form of §2{u,V} with respect to <. is given by (4.39) and
Ve = 2u,
(4.45)
Vi = ¢[L(w)]s — L(u).
The corresponding prolonged standard form sf¢) is given by (4.39) and (4.45) and

Vie = u+ zug,

V:L‘t = TUg,

Vie = 2K uzus + s Kuge — Kug.
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The Fréchet derivative of $%{u,V} and its adjoint are given by

T -D, N z —-K(u)2+zD,]
as? =

2Dy K(u) — K(u) —D; D, D,

L

AS?

Factors Az, t,uV), i = 1,2, leading to a conservation law of §%{u,V}, must satisfy

(L2 V)| o =0. (4.46)

sf(2)

<lex

When solving (4.46), two cases are singled out.
Case K(u) arbitrary:

Here the only solution of (4.46) is (A, A?) = (0, cz~?), ¢ € R. These f@ctors yield the potential
conservation law ‘
27 (Ve = 2[L(u)]e + L(w)) = Di[z™?V]+ D[~z L(w)] = 0,
leading to the second generation potential system 72%{u,V, W} given by
-W,+2"2V =0,
Wi +271L(u) = 0,
—Ve:+zu =0.
It isbunnecessary to seek factors for T%{u,V, W} since one can show that it is equivalent to
T*{u,v,w} through the mapping
v=2"'V+W, w=zW. (4.47)
Hov;fé{fer, S$Yu,v} and §%{u,V} are not invertibly equivalent since, as will be seen in §4.3.5,

for any K(u), these systems admit point symmetry Lie algebras of different dimensions.

Case K(u) = u~2:

Tu’ 2

Here the only solution of (4.46) is (A, A?) = ¢ (£, %), ¢ € R. These factors yield the potential

conservation law

LU(VI —zu) + 1,-12(Vt -y = :zu_qu) = Dx[;/—u —z]+ Dt[%] =0,

T
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which in turn yields the systems §12{u, V'} given by

Dol - a]+ Dil3z] =0,

~Vi4+u! +zu%u, =0,

and 52{u,V} given by
—Ve+zu =0,

Dz[% - $]+Dt %] = 07

(cf. EM{u} in §4.2.2). Obviously A! is a potential factor and A% is not a potential factor.

Consequently only §f’{u, V} leads to a useful potential system T2{u,V, W}, given by

A? =-Vi+ul+zu?uy, =0,
AP = W2 - L =0, (4.48)
AP =W+ = 0.

4.3.4 Third Generation Potential Systems

Consider the second generation potential system T2{'d, V,W} given by (4.48). Let <, be the
lexicographical ordering of Example 3.1.2 with (z1,22) = (t,2) and (u1,u2,u3) = (u, V,W).

The standard form of §%{u,V} with respect to <., is given by

Upr = 2uT 1l + vluy,
Ve = zu,
Vi =u !+ zu%u,, (4.49)

Wr = 2z — 2(zu)”'V,

W, =z 2V2,
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The corresponding prolonged standard form sf¢) is given by (4.49) and

Vi = u+ zug,

Vcct = TUg,

Vie = —u"%u; — 2203 ugus + 2u 2y,
Wie = 22~V — 2273V 2,

Wyt = 22720~V + 227 2w 2V,

Wy = =2z a2 — 2u3u, + 22~ 1w~ 2Vu,.

The Fréchet derivative of T2{u, V, W} is

zu™2D, — (u? 4 2zu™3uy) - Dy 0
EA;Q = 221y =2V —2(zu)™t —-Dy
0 202V -D,

and its adjoint is
—u‘2(2 +2D,) 221y~ 2V 0
’CA*;? = D, ~2(zu)™1 2272V
0 Dy D,

Factors A(z,t,u, V,W), i = 1,2, 3, leading to a conservation law of Tz{u, V, W} must satisfy

(L5 /\)Lf(z) = 0.

<lex

The only solution of this is A = (¢z72,0,0), ¢ € R. The resulting useful potential system is
ﬁ2{u,‘V, W, Z} given by
W, +272V? =0,
-W; 42z - 2(zu)”V =0,
—Z.4+27%V =0,

Zt + (a:u)"l = 0,

which is a third generation potential system of R{u}. One can show that this potential system

admits only trivial factors of the form A(z,t,u, VW, Z),i = 1,2,3,4.
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Case K(u) arbitrary
| R{u}

(A1,32)=(0,1)

THu,v,w}

no factors

(A1,32)=(0,z—2)

T2{’U/, V7 W}

no factors

Figure 4.4: Potential systems tree for the nonlinear diffusion equation; K (u) arbitrary.

Case K(u) = u"?

R{u}
A=1 . | A=z
i l
Sl{u,'u} 52{U,V}

linearizing factors

1V
(A17A2):(H11._2)

(A1,32)=(0,2"2)

l

T%{u,V,W}

(A1,22,53)=(272,0,0)

l

U2 {u,V,W, Z}

no factors

T%{u,V,W}

linearizing factors

Figure 4.5: Potential systems tree for the nonlinear diffusion equation; K(u) = u=2.
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4.3.5 Symmetry Classification of Potential Systems

The factors and potential systems arising for the nonlinear diffusion equation R{u} are summa-

rized by the potential trees shown in Figures 4.4 and 4.5. One can use Algorithm 3.3.4 to calcu-

late the point symmetries of the systems R{u}, S'{u,v}, $%{u,V}, T*{u,v, w}, T?{u,V,W},

fz{u, V, W} and ﬁZ{u,V, W, Z}. We shall not give explicit details of the symmetry calcula-

tions, but list all the results obtained. We note that, for each system, the admitted symmetries

depend on the form of the diffusivity K'(u) # 0, modulo scalings and translations in w.

Point Symmetries of R{u}

(1) K(u) arbitrary: XFP=08,, XB=0,, Xf =208, +2t0;.
(2) K(v) = v, A e R: XE, XB, XB XB = A2 9, + 2u0,.
(3) K(u) = w3 XE- X8, X =220, - 32u0,.

Point Symmetries of S1{u, v}
(1) K(u) arbitrary:
(2) K(u) = u*, A € R:
(3) K(u)=u%

(4) K (u) =

1 _
14u? €

a is a constant.

a arctanu.

X =xB x§ =xB, xX§ =xB409,, X5 =0,
x5, xS XS =xB 4 (24 A)wd,.
X3, X3 XD = Fl(v,1) 0y — ulF2(v,1) 8,

where (F1, F?) is an arbitrary solution of the linear system

aF? __ aF! gF F?
v T 9t ov .

X‘il,...,X‘Zl, X‘gl = var-i—atat—(l—%—uz)(?u—z@v
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Point Symmetries of T*{u,v,w}

(1) K(u) arbitrary: X =x5", x0'=x5, XL =x3" +2wd,,
X =XS' + 20, X&' =0,
(2) K(u) = v, A € R: XP X XE = x5 2014 Mwd,.
(3) K(u) = w2 X XE X = XS 4 [wFY (v, 1) — F3(v,1)] 0w,

where F' is an arbitrary solution of the linear system

aF® _ JF3 _ ' aFt _
Go =1 Sr=It =
(4) K (u) = u™3: XE L XE XD = XB oy (w - 2v) 8, + aw Oy,
(5) K(u) = w5 X:fl, -~,X:g1, Xgl = w8, — 3uvd, — v?4,.
(6) K(u) = ghzecoreane: X, XY, X = X3 + 1(v? - 2%) 0.

a is a constant.

Point Symmetries of S?{u,V}

(1) K (u) arbitrary: x$*=xXB, X5 =xB+2voy, X§ =oy.
(2) K(u) = u*, A € R: X5 x5, X8, XS =xXB+ 201+ M)V oy.
(3) K(u) = w5 X{, x5, x§ = xE

Point Symmetries of T?{u,V, W}

(1) K (u) = u~2: X = X8, XD = XS +3Woy, XE' = XS — 2W oy,

XZ% = ow.

Point Symmetries of U{u,V,W, Z}

X7
X

We now analyse the above symmetries in view of the material presented in §4.2.2.

(1) K(u) = v %

2
2

X[, XG =X+ 205, X§T = X0, X =X
dz.
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When K(u) = u“%, the point symmetry XE is ‘lost’ in $1{u, v}, since it induces no point
symmetry of 5'{u,v}. In particular, X induces a nonlocal symmetry of §1{u,v} which is

represented by the infinitesimal generator
1
XS e = XB 4 (/v dx — wv) 0y
On the other hand, $'{u,v} yields a potential symmetry of R{u} given by Xgl when
K(u) = ﬁe“ma‘“‘, and by Xgl when K(u) = u~2. The latter symmetry leads directly
to the linearization of R{u} by a noninvertible mapping [15, 38].

For any K(u), T*{u,v,w} ‘covers’ R{u} and S'{u,v}, since the point symmetries of
T*{u,v,w} project onto all point symmetries of both R{u} and S'{u,v}. In particular, the
point symmetry X%, dost’ in S'{u, v}, is ‘recovered’ as the point symmetry XI; of THu,v,w}.

2

Moreover, if K(u) = v~3, the point symmetry XEI yields a potential symmetry of both §1{u, v}
and R{u}.

F(_)f any K(u), the point symmetry X}f is ‘lost’ in $?{u,V}, since it induces no point sym-
metry of $2{u,V}. One can show that XZ induces a nonlocal symmetry of §2{u,V} which is

represented by the infinitesimal generator
2
X3 e = X4 (/u dw) dv.

All other point symmetries of R{u} induce point symmetries of $%{u,V} and, in turn,
5%{u,V} yields no potential symmetries of R{u}.

Since T?{u,V,W} is equivalent to T'{u,v,w}, through the mapping (4.47), it follows
that each point symmetry of T!{u,v,w} correspondingly' maps into a point symmetry of
T*{u,V,W}. In particular, it is interesting to note that the point symmetry le ‘lost’ in
S5%{u,V} is ‘recovered’ as the point symmetry

X =X 4 27V + W) Oy — o'W dw,

of T%{u,V,W}.

Finally, the potential systems T2{u,V,W} and ﬁz{u,V,W,Z}, which only arise for
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K(u) = u™2, are disappointing since they do not ‘recover’ Xll?’ as a point symmetry, their
point symmetries yield no nonlocal symmetries of R{u}, and, unlike 7?{u, V, W}, they do not

lead directly to the linearization of R{u}.

4.4 Linearizing Factors

In this section, we show how factors admitted by a given system of PDEs can indicate whether
a linearization is possible. This is very useful since, during the potential systems construction

process, systems for which linearizations might be possible are immediately found.
Consider a system of linear PDEs given by
A=L[z]u=0, (4.50)

where L[z] is an [ x ¢ matrix of n-th order linear differential operators (cf. Definition 4.2.1).

Theorem 4.4.1 A set of factors A\ (z), p = 1,---,1, yields a conservation law for (4.50) if

and only if
: L*[z]A(z) = 0. (4.51)

The proof of this theorem follows from Theorem 4.2.5 and the fact that the Fréchet derivative
of (4.50) is L5 = L[z]. Thus any linear system of PDEs (4.50) admits an infinite number of

factors given by the solution of the related linear system (4.51).

Theorem 4.4.2 (Necessary for Linearization) If a system R{u} of PDEs (4.15) is lin-

earizable by an invertible transformation, then it must admit factors
/\M(CE, u(n_l)) = Ag(mv u(n_l))Fp(X)’ pop=1,:"+, L. (452)
where
(1). A% are specific functions of (z,u(™V).
(2) X = (Xu,--+,X,) are specific functions depending on (z,u?), if | = 1, and depending

on (z,u), if I > 1.

(3) F(X) are arbitrary functions satisfying the linear system
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L*[X]F = 0,
where L*[X] is the adjoint of L[X], an l X ¢ matriz of linear differential operators.
(4) The linear system is given by L[X]|U = 0, where the new independent variables are X

. and dependent variables are U = (Uy,- -+, Uy).

The proof of this theérem, which can be found in [9], essentially follows from the fact that
conservation laws are invariant under contact transformations [8]. Consequently, if R{u} is
linearizable by an invertible transformation, then by Theorem 4.4.1 it must admit an infinite
number of factors. The invertible mapping then leads to (4.52) which relates the factors A*
of R{u} to the factors F(X) of the related linear system given in Theorem4.4.2(4). This

motivates the following definition.

Definition 4.4.3 Factors M(z,u" V), u = 1,---,1, are linearizing factors for R{u} provided
the adjoint equations (4.20) can be expressed, through (4.52), in the form given in Theorem -
4.4.2(3).

If a given system R{u} admits linearizing factors, then an explicit linearization of R{u}
can be sought using specific algorithms of Bluman and Kumei [15, 38]. We now consider three

examples.

4.4.1 Examples of Linearizations

Nonlinear Diffusion Equation

Consider the potential nonlinear diffusion system $'{u, v}, given by (4.37). For K (u) = u~2,
${u, v} admits the linearizing factors (4.42) with arbitrary functions (F?, F?) satisfying (4.43).
As such, one is alerted to the possibility of linearizing S'{u,v}, and an explicit linearization
can now be sought. In fact, as shown in [15, p.370ff], the application of linearization algorithms

[15, 38] yields the invertible mapping

21 = v, z9 = 1, W, = Z, Wwe =1Uu -,
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which transforms any solution (u(z,t),v(z,t)) of S1{u, v} to a solution (wy(z1, 22), (w221, 22))

of the linear system of PDEs
Wy,z, = We,

wl,22 = w2,217

and‘ vice versa. This in turn yields the noninvertible mapping
T = wy, t = zq, U= (wl,zl)_l,
which transforms any solution wi(z1, 29) of the linear heat equation
W1,2p = Wiz129

to a solution u(z,?) of the nonlinear diffusion equation (4.21).

Burgers’ Equation

Using the factor A = 2, Burgers’ equation
Ugpg = Uy + Uz, (4.53)
has conservation law D;[—2u] + D.[2u, — u?] = 0, yielding potential system S{u,v} given by
S1 = —v; +2u =0,
(4.54)
Sy = —vp + 2uy —u? =0.
The standard form of S{u,v} with respect to <., where (uy,us) = (u,v) and (z1,22) = (,2)

is given by (4.53) and

vy = 2u,
(4.55)
vy = 2uy — u’.
The prolonged standard form sf(j‘llr is given by (4.53) and (4.55) and
Vpp = 2Ug,
Vgt = 21y, (4.56)

Vgp = 2Ugy — 2Uy.
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The Fréchet derivative of S{u,v} and its adjoint are given by

2 -D, i 2 —2u—2D,
[AS = EAS =
2D, —2u —-D, D, D,

Factors \i(z,t,u,v), 1= 1,2, leading to a conservation law of S{u, v} must satisfy

(zgsx)]sf@) = 0.

<lex

This has solutions
(A 02) = ™7 (JuF' (2,1) + F¥(a,1), F'(z,1)),
where (F', F?) is an arbitrary solution of the linear system

OF' _ p2 aF! _ _ 9F?
9z — ’ ot oz *
Since (A!, A?) are linearizing factors one can now seek an explicit linearization of S{u,v}. In

fact, as shown in [15], the application of linearization algorithms [15, 38] yield the invertible

mapping

—_— i — U
z1 =1z, z9 = t, w = —e %, wy = e 1,

wle

which transforms any solution (u(z,t),v(z,t)) of ${u,v} to a solution (wy(z1,22), (wa(z1,22))

of the linear system of PDEs
W,y = W2,

W1,z = W2,z
and vice versa. This in turn yields the noninvertible Hopf-Cole map

W1,z
T = 21, t:Zg, U:—Qw—l,
1

which transforms any solution w1 (21, 29) of the linear heat equation

w1,22 = 'U-’l,zlzl 9

to a solution u(x,t) of Burgers’ equation.
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Nonlinear Telegraph System

Consider the nonlinear telegraph system T{u,v}, given by
T =-v+tug =0,

Ty = —vp+u2u+1—u"t =0.

The standard form of T{u, v} with respect to <, where (uy,u3) = (u,v) and (z1,22) = (¢, 2)

is given by
v = U
" (4.57)
vy = ufuy + 1 —u” L.
The prolonged standard form sf¢) is given by (4.57) and
Upp = U 20Uy — 2u‘3uf + u= 2y,
Vpp = U g — 2u 3 uguy + w2y,
(4.58)
Vpt = U Uy — 2u_3u% + a2y,
Vit = Ugt.

The Fréchet derivative of T{u,v} and its adjoint are given by

D, -D;
[AT = A*T =
D;u?4+u"? —-D, Dy D,

_‘-D:z: U—z(l — Dt)

Factors \'(z,t,u,), 1 = 1,2, leading to a conservation law of T{u, v} must satisfy

. ( ATA)Lf&"le I
This has solutions (A!,A\%) = (F}(X,T),uv 1F%(X,T)), where (X,T) = (z — v,t — logu) and
(F', F?)is an arbitrary solution of the linear system

aF! AF? 2 _ aF? aF? _
8X + 8T P = 0’ oT + X 0.
Since (A, \?) are linearizing factors one can now seek an explicit linearization of T{u,v}. In

fact, as shown in [15, p.324ff], the application of linearization algorithms [15, 38] yield the

invertible mapping

71 =T —, z9 =t —logu, wy = T, Wy = e,
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which transforms any solution (u(z,t),v(z,t)) of T{u,v} to a solution (w1(z1, 22), (wa(z1, 22))
of the linear system of PDEs A

— -2z
w2,22 =€ 2w1,217

(4.59)
W1,z = € 2Wy ),

and vice versa. This in turn yields the noninvertible mapping
T = wq, t = log wo, U =e “2w;y,

which transforms any solution (wi(z1,22), w2(z1,22)) of the linear system (4.59) to a solution

u(z,t) of the nonlinear telegraph equation.



Chapter 5

A Potential Symmetries Classification of PDEs

All previous examples of potential symmetries have involved second order scalar PDEs and first
order systems of PDEs with two independent variables. It is natural to consider the question
of whether other types of PDEs can admit potential symmetries. In this chapter, we consider
the problem of finding higher order scalar and systems of PDEs with two independent variables

admitting potential symmetries.

Pre]jminary work on potential symmetries of higher order scalar PD'Es with two indepen-
dent variables has been presented in [51] by Pucci and Saccomandi. However, no examples of
such PDEs were provided. Moreover, they make two claims regarding nécessary conditions for
higher order scélar PDEs to admit potential symmetries, but, as already intimated in the sym-
metry calculation of (2.41) in §2.3, there appears to be an incompleteness in their argument.
Consequently, the validity of their claims comes under question. In §5.1 we use Algorithm
3.3.4, which has been shown to correctly lead to the symmetries of a given system of PDEs, to

disprove one of their claims and to ‘correctly’ prove the other.

In §5.2, for each n > 3, we consider the problem of constructing n-th order scalar PDEs
admitting potential symmetries. Our experience in deriving the necessary conditions of §5.1
shows that the general classification approach is not appropriate here. The problem is that the
classifying functions depend on too many variables. Consequently, it is natural to consider a
stnaller class of PDEs by reducing the number of classifying functions and their dependencies.
However, there is a fine balance that one must make between reducing the class sufficiently in

order to make the computations tractable and yet still have a class that includes the PDEs we

123
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seek.

[

In our approach, we start with a class of PDEs characterized by just one arbitrary function
and look for PDEs within this dass that admit a potential symmetry generator X, which is
fixed a priori. The success of our approach hinges on discovering the functional dependencies
of certain components of the n-th extension operator X(") of the given X. These functional
dependencies then dictate the minimal set of dependencies for the classifying function that we

use.

For each n > 3, we are able to find a class of n-th order evolutionary scalar PDEs admitting
a potential symmetry. Moreover, for each n > 3, the corresponding class of PDEs constructed
is characterized by an arbitrary function of n variables. Consequently, we prove that potential

symmetries are admitted by an abundance of higher order scalar PDEs.

In §5.3, for each n > 2, a class of n-th order systems of PDEs admitting a potential symmetry
is constructed, by following the methodology of §5.2 for the scalar PDE case. Consequently, we
also shov&} that potential symmetries are admitted by an abundance of higher order systems of
PDEs. |

It is convenient to use the following notation in this chapter: The independent variables are
given by (z1,z2) = (2,t), the dependent variables are u = (uq,- - -, %,), and the scaiar potential

variable is v. Higher order derivatives of u are denoted by

87‘+sua B
dardrs | e

and likewise for higher order derivatives of v. When r and s are small, we will often revert back

to the usual expanded notation such as

0%u,

023012 = Ua,zzott.

Moreover, when convenient, we may use both the above notations in the same equation. How-

ever, there should be no confusion in this. Also, the infinitesimal generators we consider in this
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chapter are always of the form
X=€"9,40+n0"0u +- -+ 1 0u, + 17" 0, (5.1)

where (&, 77) depend on (z,t,u,v). If (£,7',---,7%) depend essentially on v, then we call X an
infinitesimal generator of potential type or simply a potential symmetry generator. Lastly, we
will be exclusively using the potential ordering of Example 3.1.2, where we may change between
(z1,22) = (2,t) and (21, 22) = (¢, 2) so that certain equations are solved in the desired manner.
In this regard, we shall always explicitly state the ordering of the independent variables and so

there should be no confusion.

Here is the basic framework of all calculations performed in this chapter. For simplicity, we

restrict this discussion to the scalar PDE R, given by
— DyF(z,t,u™) + D,G(z,t,u"™) = 0, n >3, (5.2)

where,‘ without loss of generality, G is of order n — 1 and F is of order £ < n — 1. However,
the observations and methodology we now outline also apply to systems of PDEs which are

considered in §5.3. Associated with R is the potential system S given by

vy = F,
(5.3)
Vg = G.

By Theorem 3.3.3, G is a symmetry group of 5 if and only if for any infinitesimal generator X

of G, given by (5.1), we have
(k)_ F —
(X [ Vg ]) ’SfiN) = 0,

N = max(m,n — 1), (5.4)
(X(n_l)[—”t + G]>| s =0,
37«

where m is the order of the standard form of S and sf(") is the prolonged standard form (cf.

Definition 3.1.14) of §. To discuss these conditions, it will be convenient to let

v, = X(k)[_vx + F]7 TIl—l - \Ijll f(N)7
8«

(5.5)
U, = XDy, 4 G, 2 = U

st(N),
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so that (5.4) becomes

¥ = (T3, T,) =(0,0). (5.6)

To solve (5.6) for the unknown infinitesimals (¢, 7), we note that ¥ depends on parametric
derivatives up to some finite order, whereas the infinitesimals depend only on (z,t,u,v). Con-
sequently, we must equate to zero all the coeflicients of like parametric derivative terms of order
at least one that occﬁr in ¥. The resulting overdetermined system of equations for (£,7) are

called the determining equations for (£, 7).

In general, these determining equations are quite difficult to analyse, since we will have
(F,G) as unspecified functions depending on many variables. We make progress by isolating

the highest order parametric derivative terms in ¥. In this regard, we may write
Uy = (Ulgz)Vm-1 + ¢z, u"™D, v,

to show that the only dependency of ¥y on (n — 1)-th order derivatives of v is in the expression
(utyy)vem—1, and that all other terms are lumped together in ¢. In principle, one may be able

to determine ¢ explicitly, but we will rarely need to do so.

The following observations will help isolate the highest order parametric derivatives in ¥,
which is the result of making direct suBstitutions from sf( in ¥. Since ¥ is of order n — 1,
only ‘the equations of sf{™ whose left hand sides are of order up to n — 1 can be used for
substitutions in ¥. Also, the equaﬁons of sf() are subdivided paturaﬂy into two sets. The
first set has left hand sides which are derivatives of the original dependent variable u, and the
second set has left hand sides which are derivatives of the potential variable v. Consider any
equation in the first set given by

uy = rhs,
where by the definition of a potential order (cf. Example 3.1.2), rhs must be independent of v
and its derivatives. Recall that a potential ordering is not a total derivative ordering. However,

amongst the subset of terms {u s}, one does have a total derivative ordering (see Example 3.1.2).

That is, the derivative order of rhs is less than or equal to the order |J| of the left hand side.
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Consequently, direct substitutions from s f(¥) for principal derivatives vy in ¥ do not raise the
order of ¥. However, this is not necessarily true for any equation of the second set. For example,
(5.3a) belongs to this second set and its right hand side is of order greater than that of its left
hand side. Hence, substitutions from sf{ for principal derivatives v; can raise the order of
v, As .such, much of our effort will be spent in trying to determine the equations in sf{" for

the principal derivatives vz, since these lead to the highest order parametric derivatives in .

5.1 Necessary Conditions for the Admission of Potential Symmetries

In this section, we determine necessary conditions for a scalar PDE (5.2), which is of order
n > 3, to admit potential symmetries through its potential system 5, given by (5.3). This
problem has been studied by Pucci and Saccomandi in [51], where they make the following two

claims:

Claim 5.1.1 (Theorem 1 in [51]) Necessary conditions for R to admit potential symmetries

are

0G

Usn—1
du,

=0, and F = F(z,t,u, ug, ut). (5.7)

Claim 5.1.2 (Theorem 2 in [51]) Assuming k < 1,! conditions for R to admit potential
syminetries are
(1) F= H(z,t,uw)us + Kq(z,t,w)ug + Koz, t,u) if Fy, #0,
K(z,t,u,ugz) if Fy, = 0. (5.8)
(2) G is independent of um-1.

The arguments Pucci and Saccomandi used to arrive at these claims have been described at
the end of §2.3 through the example of the potential system (2.41), which is just a special case

of (5.3). Through that example, we showed what the difficulties are in trying to discover all

!The condition k < 1 was not explicitly stated in Theorem 2 of [51], since it follows from Claim 5.1.1, if it
were to be true. However, we shall show that Claim 5.1.1 is not true, and, as such, we require the assumption
k <1 here.
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the (n — 1)-th order differential consequences of (5.3). Since one cannot, in general, uncover all
(n—1)-th érder integrability conditions of (5.3), one cannot accomplish step 2 of Algorithm 2.3.9.
‘Si;nce this is essentially the algorithm used in [51], the validity of the above two claims comes
into question. We overcome such difficulties through Theorem 3.3.3, which leads to Algorithm
3.3.4, by using the prolonged standard form of 5. In the sequel, the unqualified term ‘necessary
conditions’ shall always denote the necessary conditions for R to admit a potential symmetry

through §.

In §5.1.2, we ‘correctly’ prove that (5.8) is indéed a necessary condition. This takes care
of the case £k < 1. When k > 1, the determining equations for X turn out to be very difficult
t.o analyse since the arbitrary functions F and G depend on many variables. In §5.1.1, we
restrict ourselves to the case n = 3 and derive a set of complicated necessary conditions. These

conditions lead us to the following third order scalar PDE
Ugze + 2Ugzt + Uz = 0, (59)
with associated potential system

Vg = —Upye — Ugt,
: - (5.10)
Uy = Ugy + Ugt- )
Notice that this potential system has the second order integrability conditions v, = vy and
vzt = —vy. The possibility of having such integrability conditions was overlooked in [51]. One

can show that, through the potential system (5.10), (5.9) admits the infinite parameter family

of potential symmetries
X = afz,t,v) 0z + B(2) 0: + [v(2,t,0)] 0w+ [((t) — Yo — 72 — v06:)] 0w, (5.11)
where («, §,7,() is any solution of the linear system of PDEs

Gy = /Bt — O,

Yoz = =2Vt — Vet — VBu + (s
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This proves that Claim 5.1.1 is not true.?

5.1.1 A Class of Third Order Scalar PDEs

Let & = 2 and consider the third order scalar PDE

Ugpr = DiF(z,t,u*) — D,G(z,t,u®), oG _ () (5.12)
which has potential system S, given by

v, = F,
_ (5.13)
v = G+ Ugg.
Notice tha;t (5.12) corresponds to (5.2) with G = G + ug,. In this section, we will determine
some necessary convditions, involving F' and G, for (5.12) to admit potential symmetries through
S. As we shall see, the determining equations for S, given by (5.4), are highly complicated due
to the fact that there are two arbitrary functions F' and G and that these depend on many
variables. Classification problems with two functions, each depending on just one variable, are
difficult enough (see [43]). As such, the necessary conditions that we are able to derive are not
very tight and we are only able to obtain the example (5.9) at this stage. Many more examples

of higher order PDEs admitting potential symmetries will be constructed through a different

approach in §5.2.

Let < be the potential ordering of Example 3.1.2 with (z1,29) = (2,t). The standard form
sf, of S is the system (5.12) and (5.13), which is of order m = 3. Consequently, we have
(k,n,N)=(2,3,3)and G = G+ ug, in the determining equations (5.4). The sets of parametric

and principal derivatives of sf, up to order 3 are respectively

3y
A® = {u, g, gy Uy Uty Utty Uzt Uget, Yeet} U {0},

i

B®

{uavxa:} ) {’U,;, Uty Uzxy Vzty Uity Vzazs Vexts Vot vttt}-

To obtain the prolonged standard form sf, we must obtain equations for each member of

%Notice that one can determine the general solution of (5.9) by quadrature. An open question is whether one
can add a non-degeneracy assumption in Claim 5.1.1 in order to make its conclusion hold.
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B® . The algorithm prol_standard, to achieve this, is given in Appendix A.4. Since we will
only need to use the subset of equations of sf¢) whose leading derivatives are of order at most
two,blet’ us determine this subset. The equations for v, and v; are given by (5.13). To obtain

the equations for vye, vy: and vy, we first differentiate the equations in (5.13) to obtain

OF
Vzz = 3yu.p Yooz + 8u tu:cxt + 3u” Ugtt + ¢ (.’E i u(g))
3F
Vgt = 3, ~Uget T mumt + 3utt wie + % (x, 1, u®), (5.14)

Vgt = Uggt + aau—iuztt + ;Tcium + ¢3(:Ua t,u®),
where ¢' are specific functions which are independent of third order derivatives of u. In the

sequel, we will not need to know ¢* explicitly.

The only principal derivative appearing in the right hand sides of (5.14) is uzy,. As such,
for these equations to belong to sf¢, one must use (5.12) to replace Uzzz. In order to do this,

let us first expand (5.12):

_ [ OF lel aG F 4 2
Ugzr = <8uzz - 3uz:) Ugpt + (3u1t - th) Uget + B, Lttt + ¢ (a:,t,u( ))7
for some function ¢*. One can now use this equation to replace sy, in (5.14), rendering the

right hand sides to be independent of any principal derivatives. In summary, the subset of

equations in sf, whose leading terms are of order at most two, is given by

vy = F,

]
Q)

Vi + Uz,
AF OF oF OF
811,;,;3; |:8’U.II 3u1t] + 8’& t) u:ca:t + (E)um [8u“ 8utt] + 8u”) zit

+ (—B—F—“ oF ) et + ¢5(ac,t,u(2)),

81}.3;_7; aun

(5.15)

AF oF AOF 2 2
Vot = Fu,, bost + Bug: Lwtt + Bug Uttt +é (Cl?,t, u! ))’
G G 3 2
Vit = Uggt + Dugs Lt + Bugg Lttt +¢ (J”’t’u( ))’

where ¢5 ! + 3 ap ¢4 is independent of all third order derivatives of u.

Let us now explicitly calculate the determining equations (5.4), where we will only focus on

the highest ordered terms. We have

XA[—v, + Fz,t,u®)] = —n? + Lar 4 208 oF o }s‘%, 0<|J]| <2, (5.16)
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where (£',6%,9',7?) are functions of (z,t,u,v), and (nf,n}) are given by the infinitesimal
extension formula (2.35). Since the right hand side depends only on (z,%,u®,v®), when
making direct substitutions from sf{) we are only required to replace (vy, vy, Vg, Vgt, Viz) USing
(5.15). Now v, and v, are replaced by terms of order at most 2, whereas vz, vz and vy are
replaced by third order terms. As such, we focus on terms in (5.16) that depend on these second
order derivatives of v. Since F is independent of v, second order derivatives of v can only occur
in 7}y, ni, and n, through the dependence of (£1,£2,n!) on v. To see this explicitly, let us

compﬁte 17%1: :
77%1 = D?J(nl - Elux - £2ut) + glua:a;:v + £2u:1:.1:t

= nivge — E ugvgs — E2uivey + ¢0(2, 8, u@, v D)
3
= 5% Vgz + ¢6a
for some function ¢® and where Q' is the characteristic
Q' =n' - g - Eus. (5.17)

Likewise, we have .
3
77%2 = aQU Vgt + ¢7($7t, u(2), v(l)),

My = lett + (2, t, u®, o).

Notice that ¢%, ¢, ¢® are independent of third order derivatives of u and second order deriva-
tives of v. Consequently, (5.16) becomes
1
X0, 4 F] = 58 (one s + vl v ) + (o, tu, o),

where we have lumped together all the lower order terms in ¢°. By making direct substitutions
from (5.15) into this equation and collecting all lower order terms together in $'°, we have

(5.4a) equivalent to

1
0= (X(Q)[_U:L‘ + F]) Lf(s) = §5QT [allzuxzt + a122ua:tt + a222uttt] + ¢10($7t) u(2)a U)? (518)
-~

where _
a112 _ OF AF oF _ 0G + AF_ Q9F + oOF
T Ouzsa Ouzs | OUaax Ouzt 8U-zt 8’“:: 8uIt Ouge?
122 _ 8F ( 8F [OF aF aF 8G 1
@ - 8'“»11 (8‘“1‘.1: [auzt autt] + autt) + (87111) + 8utt 8’“@: ’ (5 9)

a - Buge Duge + Fugs Juge *

dugg

922 _ ( oF \? 4 OF OF | 0F 6G
3utt
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Notice that the right hand side of (5.18) depends only on z, ¢, and pdrametric derivatives
in A®. This illustrates again the advantages of Theorem 3.3.3 in that each equation of the
prolonged standard form associated with the given system of PDEs is used at most once in the
substitutions step (cf. Algorithm 3.3.4). Recall that parametric derivatives can take on any
arbitrary values and since the unknown infinitesimals (§ ,n) are independent of the third order
parametric derivatives gy, Uger and ugyy, (5.18) can only be satisfied if

112_0 122_0
— Y — Yy

Notice that in order for X to be a potential symmetry generator, we cannot have % =0 as

this would imply that (£!,£2,n') are independent of v.
A similar calculation leads to

X[ —v; + upe + G = a_ggu_l (vm + vzt% + vtt—a-a—) + M (z,t, u®, v™).

8‘(1.”

By making direct substitutions from (5.15) into this equation, we have (5.4b) equivalent to

0= (X(z)[—vt + G—]) Lf(s) = ngl [5112Ua:a:t + 8%y + 5222um] + ¢'%(z,t,u?P,0),  (5.20)
<

where

2 —

112 _ AF OF 3G
p - <3uzz) + Ougt + ugt?

122 _ 8F (8F _ oG 9F |, OF 8G , 9G 3G 921
p T Ougs (3Uz: 3un) + Ouge + Ougt Ouxt + Ouge dutt? (5.21)
g2 = OF oF , OF 0G . (oG 2

T Ouxz Oust Uty Qugt Que

As before, since the infinitesimals are independent of all third order parametric derivatives and

%%i # 0 for potential symmetries, we must have

13112 — 0, ﬁ112 — 0, ﬂ112 =0.

In summary, we have derived the following necessary conditions:

Theorem 5.1.3 Necessary conditions for (5.12) to admit potential symmetries through (5.13)

are

all? = ¢, al?? =, a??? =,

13112 — 0, ﬂ122 — 0’ /3222 — 0’

(5.22)
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where o’ and §7 are given by (5.19) and (5.21).

As can be seen by the definitions of o/ and B, the necessary conditions (5.22) are quite

complicated. Moreover, if one satisfies these conditions, then one still has to satisfy the system
#(z,t,u?,v) = 0, % (z,t,u®,v) =0, (5.23)

where ¢19 and ¢'?, defined through (5.18) and (5.20), are very complicated expressions involving
(&,71, F,G) and their derivatives. As such, we do not attempt to obtain any tighter necessary

conditions. Instead, let us try to find some specific examples of PDEs that satisfy (5.22).

Example 5.1.4 Consider the restricted class of PDEs (5.12) satisfying

OF _ _q, OF _ ), (5.24)

C Ougzsx Auie

Then the necessary conditions (5.22) are reduced to

QF _ 1 0G _ q, 26 — . (5.25)

Jugzt Quzt
Consequently, we are led to consider
F = —ugy — ugy + f(z,t,u®),
G = ug + g(z, t,uM),
where f and g are arbitrary functions of their arguments. In this case, the restricted class of

third order scalar PDE (5.12) is given by
Ugpry = _2u:z::z:t — Ugtt + -th - Da?g (526)
The corresponding potential system (5.13) is
Vp = —Ugg — Ugt + f,
VUt = Ugg + Ugt + 7.
This is a much simpler potential system to analyse than the original system (5.13). However, we
still have two arbitrary functions f and g, with each depending on five variables (z,t, u, uz, ut),

that must satisfy (5.23). At this stage, we are unable to completely analyse (5.23) for all cases

of f and ¢g. However, we have found that (5.23) is satisfied when (f,¢) = (0,0). The scalar
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PDE (5.26) corresponding to this case is just (5.9). As previously mentioned, through the
potential system (5.10), the scalar PDE (5.26) admits the infinite-parameter family of potential

symmetries (5.11). O

In summary, we have derived the necessary conditions (5.22) for the third order scalar PDE
(5.12) to admit potential symmetries through the potential system (5.13). We have pointed
out that these necessary conditions are very complicated and are not very tight ((5.23) are
still to be satisfied on top of (5.22)). Due to their complexity, we do not attempt to obtain
tighter necessary conditions. However, using these necessary conditions, we have discovered
the scalar PDE (5.9) which proves that Claim 5.1.1 is not correct. In §5.2 we will construct
many examples of higher order scalar PDEs admitting potential symmetries through a different

approach. |

5.1.2 A Class of Scalar PDEs of Order Greater than Two

Consider the scalar PDE R, given by
A = —DF(z,t,u™) + D, G(z,t,u"") =0, k<1, n >3, (5.27)

with potential system 5, given by (5.3). Let us calculate the determining equations for $ which

are given by (5.4). We first need the prolonged standard form for 5.

Let < be the potential ordering of Example 3.1.2, with (z1,z2) = (2,t), and assume that R

has the same solutions as its solved form

Upoin—0o = ¢($,t, U(n)), _—8L = O, (528)

auzatn—o’
where ugom—o is the leading term in (5.27) with respect to <, for some 0 < ¢ < n. The standard
form sf, of ' is the system (5.3) and (5.28), which is of order m = n. Consequently, we have

N =nin (5.4). The set of principal derivatives of sf; up to order n is given by

B(n) = {uxl’t""a} U {vxrts : 0 g s, 1 S T + s S TL}

To obtain the prolonged standard form sf{*, we must obtain equations for each member of
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B (see algorithm prol_standard in Appendix A.4). The equations for vz, v; and 4 on—o are
given by (5.3) and (5.28). To obtain equations for the higher order derivatives of v in B™, we

first differentiate the equations of (5.3) to obtain

vgres = DITYDEF(z,t, u®), 1<r, 0<s, 1<7+s :S n,
(5.29)
vee = DITYG(z, t,uD), l<s<n—-2,
and
Vo1 = DPFT2G(2,t, uD),
! ‘ (5.30)

v = DPLG(z,t, w7,
The reason for isolating the equations for vn—1 and v;» will become apparent shortly. In general,
the right hand sides of these equations may involve principal derivatives of sf,. If so, we must
use the equations of sf, to implicitly substitute for these terms (see all_impl_subs in Appendix

A.2). Before doing so, let us discuss how we will be using the equations of sf{ to analyse

(5.4).

Since k < 1, X(M[~w, + F] depends only on (z,t,u”,v™).  Hence, in calculating (5.4a),
the only substitutions from sf{” required are for v, and v, given by (5.3). Since G is of order
n —1, X(*~YD[—v; + G] depends only on (z,t,u™,»(»), Hence, in calculating (5.4b), we
require all equations of s f{ whose leading terms are derivatives of v up to order n — 1. As
such, (5.4b) is quite complicated and, to make progress, we focus on its highest order terms.
At first sight its highest order terms must come from the substitutions for v;n-1 since the right
hand side of (5.30a) depends on terms of order up to 2n — 3, which is strictly greater than
n—1(n > 3). If this were true, then to obtain the highest order terms in (5.4b) one would
simply find all expressions involving v;n-1. This was the approach taken in [51]. However, as
it stands, (5.30a) is not an equation of sf{" since we have yet to ensure that its right hand
side is independent of all principal derivatives. If all the highest order terms in the right hand
side of (5.30a) are principal derivatives, then implicit substitutions from sf, would render the

right hand side of (5.30a) to be of lower order, and hence we cannot obtain the highest order

terms in (5.4b) by simply isolating those expressions in X{"~{~v, + G] which involve vn-1.
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HoWeQer, in the following lemma we prove that this does not happen. In [51], no such result

was provided and, as such, the ‘proof’ of Claim 5.1.2 is not complete in that paper.

Lemma 5.1.5 Let < be the potential ordering of Ezample 8.1.2 with (z1,22) = (z,t), let S be
the potential system (5.3), and let sf; be the standard form of S, given by (5.3) and (5.28).
Suppose that sf{? is the prolonged standard form of S. Then the equations in sf(? for vm—

and v are of the form

V-1 = HY(z,t,u®")
T ’ (5.31)
v = H?(z,t,u®"?),
for some functions H' and H? which are independent of any principal derivatives. Moreover,

all other equations in sf0* are of lower order.

Proof. Let us first prove that the equation for v;n-1 is of the form (5.31a). As previously
mentioned, (5.31a) is the result of making all possible implicit substitutions from sf; into the
right hand side of (5.30a). If one can show that D} "2G depends on a parametric derivative u;
of order |J| = 2n — 3, then such a term cannot be implicitly substituted for and, as such, this
part of the proof will be complete. Let us show that D~ ?G depends on a parametric derivative

of order 2n - 3.

By assumption, (5.28) is the solved form of (5.27) with respect to <. Since < is the potential

ordering with (z1,z2) = (2,1), and ugem-o is the leading term in (5.27), we must have

oA 0A

S 0,

— =0 <n. 5.32
aumatn—o‘ 8ertn—r ’ gTsm ( )

On the other hand, expanding (5.27) and focusing on the n-th order terms, we have

A= (525 ) s + Az, 1,u0),  1<r <, (5.33)

8'“;1-—1 (-7

for some function A. By (5.32) and (5.33), we have
—28 £, 58— =0, o<r<n.

auxo'—l n—o 8'“]:1‘-—1 n—r

Using this, we can expand (5.30a) as follows:

8uzr—l n—r

Vin—1 = (—‘L) Upr—142n—r—2 + A(.’L‘,t, 71:(271_4)), 1 S T S g,
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for some function A. Consider making all possible implicit substitutions from sf, into the right
hand side of this equation: Clearly, implicit substitutions can only be made from (5.28) for

derivatives of % o;n—o. Hence the highest order terms
9
/U/xr—lth—r—Z, 1 < T < U,

cannot be replaced (and hence are parametric derivatives). Moreover, when using (5.28) to
substitute for the principal derivatives in A, we do not raise the derivative order of the terms

in A. Consequently, we obtain

Vyn—1 = (L) Ugr—1g2n—r—2 + A(z,t, "), 1<r<ao,

8uzr—ltn—r
where the right hand side is independent of all principal derivatives. Hence, this is the equation
for vim—1 appearing in sf(. In fact, its right hand side is the required function H' in (5.31a).

By a similar argument, one can also show that the equation for v is of the form (5.31b).

We now have that (5.31) are two equations in sf{. The remaining equations are obtained
by making all possible implicit substitutions from sf, into the system I given by (5.3), (5.28)
and (5.29). These remaining equations are of lower order than (5.31) since I is of order 2n — 1
and the only possible substitutions are from (5.28) which do not raise the order of equations.

Consequently, (5.31) are the highest order equations in sf$V.
With this lemma, we are now in a position to prove Claim 5.1.2. Since & < 1, we have
F = F(z,t,u,uq,u),
and
X[, + F] = —nf + €55 + €57 +0' 55, +ni 5 +nd 35
where (£',£2, 71, n?) are functions of (z,t,u,v), and (n%,7],nl) are given by the infinitesimal

extension formula (2.35). Since the right hand side depends only on (z,t,u™,v»(")), the only

substitutions from sf* are for v, and v, given by (5.3). As such, (5.4a) is given by

0= (X(l)[—vz + F])‘ PGz, t, u* D) 4 42, (5.34)

sf_(<n) -

where
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P = € 4 E2up + E2F + 5L (g — Eyug — Elu),

2 = 25 (nd + nluy — wol€l - Elus] — wil€f + Eus) — FlELus + E2u — )
+ 32 (nd + e — ual€} — Elud] — w[€] + €2u))
+ &80 + €288 4 188 1 [FI%) + FI&; + ELug — 12] — 02 — n2u,.

With n > 3, G is strictly of greater order than ' and 12, which are of order one. Since the

(5.35)

unknowns (£, 7) are independent of the highest order parametric derivatives of G, the only way

that (5.34) can be satisfied is if

(We do not allow G' = 0.) These are precisely the equations derived by Pucci and Saccomandi
in [51] (cf. equations (3.5,3.6)). By analysing these equations further, they arrived at (5.8b).
Consequently, Claim 5.1.2(1) is proved.

We also have

D [—v; + G(a, 8, 0" )] = -3 + €152 + 258 4 ) 22, (5.36)
where 0 < [J] < n — 1, (€', €%,1",n?) are functions of (z,t,u,v), and (n2,n}) are given by the
infinitesimal extension formula (2.35). Since the right hand side depends on (z,t, u(*=), p(»=1),
the only equations of sf(* required for substitutions are those whose leading terms are deriva-
tives of v up to order n — 1. Of these equations, the highest order substitution is for Vyn—1, by
Lemma 5.1.5. Moreover, this term only arises in the right hand side of (5.36) through

ny = Di M nt = Elug — ug] + Eugpn-a + Cupn,
= %vtn—l + g(w,t,u("‘l),v("‘l)),

where J = (2,2---,2),|J|=n—-1, & is independent of v;n—1, and Q! is given by (5.17). Hence,

in (5.36), we have

XDy, + G = 8U Vyn—1 au

+¢(:c t,u™, p(n)

where qAb is independent of vin—1. If one were to make direct substitutions from sf(» in the

right hand side of this equation, then by Lemma 5.1.5 the highest order terms in the resulting
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expression must come from the substitution of v;»-1. Hence,

0= (X(”_l)[—vt + G(z,t, u("‘l))]) ‘ = H'(z,t, u(2"_3))£—8G + é(z,t, u®" Y v),

sff(") - v dun_1
where ¢ is independent of all principal derivatives. Notice that we have used 2n —4 > n — 1,
since n > 3, to determine the order of ¢. Since the unknowns (£, 7) are independent of the

highest order parametric derivatives of H', we must have

1
33% =0, or HYz,t,u® ¥)=0, or 29— =0.

Fugn
We cannot have %21;1- = 0 since this implies that (£!,£2,n!) are independent of v and X would not
be a potential symmetry generator. Since H! depends only on z, t and parametric derivatives,
which can take on arbitrary values, we cannot have H! = 0. Hence, we have proved Claim

5.1.2(2).

Consequently, we elevate Claim 5.1.2 to the status of a theorem:

Theorem 5.1.6 Assuming k < 1, necessary conditions for R to admit potential symmetries
are
(1) F= H(z,t,w)u + Ki(z,t,u)uy + Koz, t,u) if Fy, #0,
K(z,t,u,uy) if Fy, = 0. (5.37)

(2) G is independent of usm-1.

The results of §5.1.1 and §5.1.2 illustrate the importance of Theorem 3.3.3 and Algorithm
3.3.4 in overcoming the problems associated with Algorithm 2.3.9, which was eésentia]ly the
algorithm used in [51] to arrive at Claim 5.1.1 and Claim 5.1.2. In general, one cannot discover
all possible (n — 1)-th order differential consequences of (5.3) and, as such, step 2 of Algorithm
2.3.9 cannot be executed correctly. As example (5.9) shows, such differential consequences can
exist and this explains why Claim 5.1.1 is in error. We avoid such problems in Algorithm 3.3.4
by using the prolonged standard form of the given system of PDEs. Moreover, Claim 5.1.2
turned out to be correct becauselof the fact that, when k < 1, there are no (n — 1)-th order

differential consequences of (5.3) involving v;n-1. Consequently, the coefficient of v;n-1 must

be zero. As the corollary below shows, this fact follows directly from Lemma5.1.5, which we
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relied on to prove Theorem 5.1.6. However, this fact was not proven, but assumed?® in [51] and,

as such, the ‘proof’ in that paper for Claim 5.1.2 is not complete.

Corollary 5.1.7 When k < 1 and n > 3, there are no (n—1)-th order differential consequences

of (5.8) involving vyn-1.

Proof. Let < be the potential ordering of Example 3.1.2 with (z1,22) = (2,t). Then, by
Lemma 5.1.5, the two highest order equations in the prolonged standard form sf( of (5.3) are
given by (5.31). Suppose there is an (n — 1)-th order differential consequence of (5.3) involving

'Utn—] :

Qz, t,u ", ") = 0, 20 _ 4.

avtn—l

Then all solutions (u,v) = f(z) of (5.3) must satisfy the equation:
Q| .., =o.
’F(f 2
By Lemma 3.2.7(2), we must have

QLJ@ = 0.
But the left hand side of this equation cannot vanish since 2 is of order n — 1 and, by Lemma-
5.1.5, the highest order substitution is for vs-1. This substitution leads to parametric terms
of order 2n — 3, and all other possible substitutions lead to parametric terms of lower order.
Since n > 3, we have 2n — 3 > n — 1 and lef(j) cannot be identically zero, but must depend

on parametric terms of order 2n — 3. O

5.2 Higher Order Scalar PDEs Admitting Potential Symmetries

In this section, we consider the problem of finding scalar PDEs of order » > 3 that admit
potential symmetries. The two standard approaches to this problem would be to perform a

direct symmetry classification of potential systems, or to use differential invariants. It turns

3In the ‘proof’ of Claim 5.1.2 in [51], no substitutions for v,n—1 were made in (5.4b) and its coefficient was
set to zero.
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out that there are significant problems to be overcome in either approach. Let us investigate

the differential invariants approach first.

Let X be any infinitesimal generator in (z,t,u,v)-space. To find the differential invariants

of X, one first solves the system
X(21) =1, X(22) =0, X(w1) =0, X(wp) =0, (5.38)

where (21, 22, w1, wy) are linearly independent functions of (z,¢, u,v). In (21, 22, wy, wy)-space,
the infinitesimal generator becomes X = 8,, which corresponds to translations in z;. As such,

the invariants of X are z3, w; and all derivatives of w;, 7 = 1,2. Consequently, any n-th order
PDE of the form

A(zg, w(, wi?) = 0, - (5.39)
must admit X, where (21, z2) are treated as the independent variables and (wy, wq) are treated
as the dependent variables. The problem with using this approach to find scalar PDEs admitting
a potential symmetry X is this: In general, the functions z, w and derivatives of w with respect
to z dépend on v and its derivatives in a nontrivial way. As such, the PDE (5.39) will also
depend on v and its derivatives. But the scalar PDE we require must involve only the original
dependent variable v and its derivatives. Consequently, only certain functional forms of A are

suitable.

Example 5.2.1 Let n = 2 and X = v3,. Then the following linearly independent functions

Qa = 7Z2:ta w =u, w2 =79,

v
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are solutions of (5.38). We have the following invariants of X:
w1,21 = C 7) u-’L‘)
W1z, = _C—lxvtux + uy,

W1 22 = 2071 03U, + (20 (uge + 227 ) — (T3avtug vy,

W1 2120 = _C—IUZUM + C—2v2(vtux + zVsULe + $U$1)xt) - C 3x2vzvtuzvm,
Wi,zp2p = Utt — C_IIB(Q'Ut’U,wt - uTvtt) + C_zmz(vtzua:a: + Q'Ut’u':z:,va:t) - 3-7737)1 Ug Vs
¢2,z1 = (g~ 13 — 27192,
Wa,z = —CT vy,
W2,z12y = C v° VUzz + 2C_2$—2 5+ 4¢~ Lp=2p4 4+ 22~ 2% 3
Wanz, = (7o 00+ (TP0%(va + 27 o) = (PP m 0,
~w272222 = —( 3220020, + 2¢ 2 2v0005 — (T lovgy,
where (= '—p+ zv,. Notice how these invariants depend on v and its derivatives in a nontrivial

way. While it is true that any second order PDE of the form

A(Z% W1, W, W1,2yy W,2py W2, 215 W2 20, W1 272; 5 wl,zlzz s W1,2029 5 W2, 21215 w2,2122 ’ w2,2222) = 0>

admits X, this PDE does not correspond, in general, to a scalar PDE for . One must find
particular functional forms for A so that A is independent of v and its derivatives, i.e., one

must find solutions of

oA _ A _ A _

v 0’ vy 0’ v 07

oA _ oA _ 9A _

Ovzg Quge — ? Juge — )
which is an overdetermined system of PDEs for A. 0O

In general, for any n > 2, the task of finding suitable functional forms of A, such that (5.39) is
a scalar PDE for u, appears not to be a trivial one. As such, we do not pursue the differential

invariants approach at this stage.

As for the symmetry classification approach, our efforts in §5.1 show that one can only go

so far with this method when considering the general class of potential systems (5.3) associated

with the n-th order scalar PDE (5.2). The two classifying functions F' and G depend on many
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variables and this leads to symmetry conditions which are very difficult to analyse. In order to
simplify these symmetry conditions, one could consider a smaller class of scalar PDEs (e.g. by

making the classifying functions depend on fewer variables).

Furthermore, rather than perform a complete potential symmetry classification, one can a
priori fix the potential symmetry generator and search only for PDEs within the smaller class of
scalar PDEs which admit the given potential symmetry generator. This is the general strategy

we will employ.

In our approach, we start with a given scalar PDE R which is known to admit a potential
symmetry X, through its potential system S. For each n > 3, we then construct an n-th
order PDE R™ and its associated potential system 5™, which are related to R and 5 through
an unknown function g(z,t,u(""?). We then determine sufficient conditions for R™ to admit

the given potential symmetry generator X,.; through S™. In short, in our approach we:

o Start with R which admits X, through .
e Construct R™ and S™ which are related to R and S through a function g(z, ¢, u(*~%).

¢ Determine sufficient conditions for g such that R™ admits X,,; through 5™.

The sufficient conditions for g, which are certainly simpler than the symmetry conditions for
the general case (which involves F' and G), are still very difficult to analyse. As such, we will
not attempt a complete classification of all possible functions g. Rather, by determining the
functional form of XL’Z; R g, we are able to choose suitable restrictions for the dependencies of
g so that the associated symmetry conditions reduce to a first order scalar PDE for g. The

general solution of this PDE is then obtained through the method of characteristics [15, 47].

We now give the details.
Consider the second order diffusion equation R given by

AR = —uy + D [K (u)ug] = 0,

where
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a arctanu

K(u)= ﬁe , a = const. (5.40)
Associated with R is the potential system 5 given by
A = —v, 4+ u=0,
A3 = —v, + Kug = 0.
Through S, R admits the potential symmetry (cf. Xssl in §4.3.5)
Xpot = =00y — at 0 + (1 + u?) 0, + 2 0, (5.41)

Using the infinitesimal extension formula (2.35), one can easily derive the following identity

which wi}l be useful later:

vy + u 0
XUAS = AS, (5.42)

pot
vy — Ku, u+a

where AS = (A5, A3)T. Incidentally, note that (5.42) verifies that S admits X,

For any n > 3, consider the n-th order scalar PDE R"™ given by

ARH = —u; + Da;[Il,'U/g;] 1 ng(x',t’u(n—l)) — 0, g 75 0’ (543)

8'“1.71—1
where g is some analytic function of its arguments and K is given by (5.40). We assume that

R™ has the same sblutions as its solved form

Ugn = ¢z, t,u™), 2 =y, (5.44)

Quzn
for some function ¢™. Associated with R™ is the potential system S™ given by

Aﬁ" =—-v,+u=0,
(5.45)
A“g" =-v+ Ku,+¢g=0.
Our goal is to find functions g such that R™ admits the potential symmetry X,,; through S™.

To this end, it will be useful to observe the following relationships between the equations of R

and S with those of R™ and S™:

ARn = AR + D:I:ga

AS”:AS+[O].

g
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Consequently, using (5.42), we also have the identity

i
pot X(n l)g

pot
pot
[ + 0 ]
vy + U 0
= AS + I: X(n—l) ]
vy — Kuy, u+ta : pot 9
v.’l} + U 0 n 0
= \ A" 4 l 1 } . (5.46)
v — Kuy, u+ta —(u +a)g + Xi)ot )g

This identity will allow us to greatly simplify the infinitesimal symmetry conditions (3.19) of
5™ so that the conditions that g must satisfy, in order for S™ to admit X, can be easily

obtained. We first need to determine the prolonged standard form of 5.

- Let < be the potential ordering of Example 3.1.2 with (z1,22) = (z,t). The standard form
sf; of 5™, which is given by (5.44) and

Vp = U
co (5.47)
vy = Kug + g,

is of order m = n. The parametric and principal derivatives of sf, up to order N > n are

respectively given by
AN = {ugrgs: 0<r<m, 0<s, r+s< N}U{v},
BY = Sy n<r, 0<s, +s<N}U{vgrgs: 0< 1,5, 0<r+5< N}

To obtain the prolonged standard form sf¢Y of S™, one first appends to sf; the following

equations which are obtained by differentiating the equations in (5.47):

Vgpres = Ugr—1gs, 1<r, 0<s, 1<r+s<n,
(5.48)
Vs = D;f_l(Kuac +9) l1<s<n.
Consider the system (5.44), (5.47) and (5.48): It has the same solutions as S™; there is a one-

to-one correspondence between its leading terms and the principal derivatives of B(™; and its

right hand sides depend only on z, ¢ and parametric derivatives of A?"=2 (D7 2g is of order

2n — 2 and contains no principal derivatives). Consequently this system satisfies all the axioms




Chapter 5. A Potential Symmetries Classification of PDEs 146

of Definition 3.1.14 and is thus the prolonged standard form s ¢ for 5™

Let us now make direct substitutions from the equations of sf(” into (5.46): AS" must
vanish by Lemma3.2.7(2), and ¢ remains unchanged since g does not depend on any principal

derivatives. Thus

=0
sf&n) b

o = —(utag+ (X5e g )Lf@'

A direct application of Theorem 3.3.3 now proves the following result:

Lemma 5.2.2 Consider the n-th order scalar PDE R"™ and its potential system S™, given by
(5.43) and (5.45) respectively. Through S™, R" admits the potential symmetry Xp,:, given by
(5.41), if and only if

— (vt a)g + (X5 Vo) g =0 (5.49)

where sf) is the prolonged standard form (5.44), (5.47) dnd (5.48).

Now our goal is to find functions g satisfying (5.49). Let us investigate the case n = 4 to
see the difficulties that arise in analysing (5.49). We will be highlighting some key observations

which are generally applicable for any n > 3.

Example 5.2.3 When n = 4, we have

9= 9(2,6,u”), G #0. (5.50)
R* is then given by |
—u + Dx[fx;ux] + Dpg(z,t,u®) =0, (5.51)
which has solved form
Ugoze = @Mz, t,u®), 522 =0, (5.52)

for some function ¢*. The associated potential system S is given by

—v, +u =0,
(5.53)

—Ut +I(U$ +g = 03
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which has standard form sf., given by (5.52) and

Ve = U,
(5.54)
v = Ku, + g.
The prolonged standard form sf( is then given by (5.52), (5.54) and
Vegor = Ugzx,
Vpzz = Uz, Vi = Dt[A’ux] + Dtga
Vgz = Uz, Vegxt = Uzt
VUppt = Ugpt, vie = D} Kuz| + Dig, (5.55)
Vgt = Ut, Vzztt = Ugtt,
Uptt = Uity vure = D3[Kug) + Dig.

Uzttt = Uttty
Notice that:
(O1) Any equation lhs = rhs in sf(? with ord(rhs) > ord(g) has lhs € {vy, vy, - - -}
Using the extension formula (2.34), we have
3)

— g 9g g ‘ g 9g 3
potd = —Uzy + Vit (“waT,, + Uy g + BUgt 5o ) + Vitite g + (2,1, uP, v;),  (5.56)

where the dependency of 1 on g and its first partial derivatives is not explicitly stated. The
reason for isolating the coefficients of v, v;; and vy will be pointed out shortly. Here is another

useful observation:

(02) In (5.56), the term v arises only through the dependence of g on z, and pure ¢

derivatives in v arise only from the dependence of g on wugris, s > 0.
Using (5.56) and the equations for sf%), equation (5.49) with n = 4 becomes
~ 028 + Dyg (s 2 + U 52 + Bupe 2L ) + D2g (a2l ) + d(2,1,uV) =0, (5.57)

for some function 15 The unknown to solve for is g. A compatibility condition between (5.50)

and (5.57) is

Q)lQJ
8] o

=0, (5.58)

since g is independent of the parametric term v. Moreover, g is independent of the fifth order

parametric terms in D?g and this leads to

%_ _ . (5.59)

Qutet
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With this, the highest order terms in (5.57) are the fourth order parametric terms in D;g. As

before, since g is independent of these terms, we must also have

(uz% + um% + Bugy ol ) =0, (5.60)

Qustr
and consequenﬂy
Pz, t,u®) = 0. (5.61)
Notice that the left hand sides of (5.58), (5.59) and (5.60) are just the coefficients of v, vy and

vy in (5.56). This is worth noting:

(03) When solving (5.49), the coefficients of v and the terms in {v, vy, - - -} that occur in

X;,Zt_l)g must vanish.

This explains why we isolated the coefficients of v, vy and vy in (5.57).

To complete the solution process, we must solve the overdetermined system of nonlinear
PDEs for g given by (5.50), (5.58), (5.59), (5.60) and (5.61). The nonlinearity is due to the
fact that ¢ is nonlinear in g. The problem of obtaining the géneral solution for g is, in general,
not tractable.* However, we are not necessarily interested in obtaining the general solution of

(5.49), but only in obtaining specific solutions in the easiest: possible manner.

One way to proceed is to restrict g to the form
9= g(t’uaumuzza U'a::m:); (562)

since, by (02), x&)

votd Will then be independent of v, vy and vyy. Consequently, none of the

conditions described in (03) arise and (5.57) reduces to (5.61) and (5.62). This is certainly
a simplification. However, one may still end up with an overdetermined system to solve if
there are further compatibility conditions between (5.61) and (5.62). Fortunately this does not

happen as we now explicitly show.

*Work on general methods to solve overdetermined systems of nonlinear PDEs can be found in {56] and [44].
However, even when the nonlinearity in the unknown(s) is of polynomial type, the problem of obtaining general
solutions is still an unsolved one.
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When g is given by (5.62), then .(5.61) becomes

0=—(u+a)g— at% +(1+ u2)g—i + 3uu$3‘97’; + (4uug, + 3u§)% (5.63)
| (Bt + 1005 t15) 522 |
Clearly all terms appearing in this equation involve the arguments of ¢ and so there are no
further compatibility conditions between (5.63) and (5.62). Moreover, this equation is just a
first order scalar PDE for g. Consequently, it is equivalent to an ODE whose general solution,
obtained through the standard method of characteristics [15, 47], involves an arbitrary function

of k arguments where k£ is one less than the number of arguments of g. Carrying out the

calculations, we find the following general solution of (5.63):
1
g = (1+ u*)2 exp (aarctanu) ©(6y,6s,03,6,), % #0, (5.64)

where O is any analytic function® of its arguments:

_ 1 _ 3uu?
¢, = arctanu + 3 log t, 03 = (l_ifﬁ?_mgv’
Gy = — Yz 6, = Urzz _ 10uugugy + 15u2u§
2 = (1+u2)3/2? 4 = (14u2)5/2 (1+u?)7/2 (1+u2)/2 "

The reason for (5._611)) is so that (5.43b) is satisfied.

In summary, any function g, given by (5.64), satisfies (5.49) with n = 4. By Lemma 5.2.2,
for any such g, the corresponding fourth order scalar PDE (5.51) admits the potential symmetry
(5.41) thréugh the potential system (5.53). Due to the functional form of g, (5.51) corresponds
to a class of fourth order nounlinear evolutionary PDEs characterized by an arbitrary function

of four variables. A particular member of this class is

w - Uszes (—14u + a)uggpuy — 10uul,  5(19u? — 2au — 2)uz,u’
© T Tty (Tt ) T )
Uzg 15u(au + 2 — 6u)ut = (a — 2u)ul
T+ a2 + (Tt a2 1Ty exp(a arctanu), (5.65)
1
which corresponds to g = (14 u%)2 exp (a arctanu)fy. O

The observations (01), (02) and (O3) made in the above example equally apply to the

5Recall that we are only considering analytic PDEs so that the existence and uniqueness theorem, Theorem -
3.1.18, and the symmetry theorem, Theorem 3.3.3, are both applicable.




Chaptér 5. A Potential Symmetries Classification of PDEs 150

general case of solving (5.49) for any n > 3. As such, we are motivated to restrict g to the form
g =g(t, Uy Uy g2, “y Ugn—1). (5.66)
Our hope is that, as in the above example where n = 4, (5.49) will collapse to a first order

scalar PDE for g in its arguments. To this end, we first require the functional form of X;Zt_ 2 g:

Lemma 5.2.4 Consider an infinitesimal generator in (z,t,u,v)-space of the form
- X = £Mt,0) 0y + E3() s 4+ 0t (t, w) By + Pz, t, u,v) O,
Suppose g is of the form (5.66). ‘Then X (=1 g depends only on
(E5 Uy Uy + =+, Ugn—1; Vg, Vg2, * + =y Ugn—1) (5.67)
and on first order partial derivatives of g with respect to its arguments. Moreover, the first -

order partial derivatives of g appear linearly.

Proof. Let (z1,22) = (z,t) and (u1,u2) = (u,v). Using the infinitesimal extension formula

(2.35), we have

(n_l) = 2@" 1"_‘—‘89 = .o < < _1
X"y §8w2+nJau1’J, J=(1,1,---,1), 0<|J]<n—1, (5.68)

where

ny = Di(n' — €'ury — Eura) + Eug g1y + Euy (g)-

With £2 = £%(z,), we have

77}7 = DJ(771) - DJ(§1U1,1) + €1u1,(J,1)~ (5.69)
Since ' = n'(t,u), Dyn' depends only on (5.67). By expanding Dj(£'u;,1), one finds that the
only term that doesn’t depend solely on (5.67) is the highest ordered term —gluly(‘m) which
cancels with the last term in (5.69). This proves that 7} depends only on (5.67). Moreover, by

(5.68), X (»=1)g depends linearly on the first order partial derivatives of g. 0O

Corollary 5.2.5 Let X, be given by (5.41), let g be given by (5.66), and let sf$Y be given
by (5.44), (5.47) and (5.48). Then, for any n > 3, (5.49) is a first order scalar PDE for g in

terms of its arguments.
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Proof. Since X,,; and g satisfy the conditions of Lemma 5.2.4, we have that X;ﬁ;l)g depends
only on (5.67) and linearly on first order partial derivatives of g. Consider making all possible
substitutions from sf¢) into X;Z;l)g: Using (5.48) with s = 0, all  derivatives of v in (5.67)
are repiaced by z derivatives of u up to order n — 2. No other substitutions are possible.
Consequently (Xg;t_l)g)hf(*n) depends only on the arguments of g and linearly on its first order
partial derivatives. Hence (5.49) is a first order scalar PDE for g. 0

One can now apply the standard method of characteristics to obtain the general solution of
the first order scalar PDE (5.49). Since g, given by (5.66), depends on n + 1 arguments, the
general solution of (5.49) involves an arbitrary function of n variables (cf. (5.64) where n = 4).
By Lemma5.2.2, any such solution g of (5.49) leads to a scalar PDE R™ admitting the potential
symmetry Xp,; through the potential symmetry 5™. Moreover, by the form of g in (5.66), R"

corresponds to a class of PDEs of evolutionary type. In general, as illustrated by the example

(5.65), these PDEs are nonlinear. We have proven the following theorem:

Theorem 5.2.6 For each n > 3, there exisis a class R™ of n-th order nonlinear evolution-
ary PDEs (5.43), where g is of the form (5.66) and depending on an arbitrary function of n
variables, such that each PDE in this class admits the potential symmetry (5.41) through the

potential system (5.45).

This theorem shows that potential symmetries are admitted by an abundance of scalar PDEs

of higher orders (n > 3).

5.3 Higher Order Systems of PDEs Admitting Potential Symmetries

In this section, we generalize the method of the previous section to determine large classes of
systems of PDEs of order n > 2 which admit a potential symmetry. We will start with a given

system of PDEs R admitting a potential symmetry X,.; through an associated potential system

S. We then construct, for each n > 2, an n-th order system R™ with potential system S™ that
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are related to R and S through a function g(z,u("~"). Necessary and sufficient conditions for
R"™ to admit the potential symmetry Xp,; through S™ are then derived which only involve the
unknown function g. By isolating the highest order terms appearing in these conditions, a
suitable réstriction of the arguments of g is arrived at. By determining the functional form of

X;Zt_ B g, we show that g must satisfy a first order PDE (in its arguments) whose solution leads

to the desired PDEs R".

Consider the first order system R of PDEs given by
AIIQ = Ut —UIUZ — U — U = 0,
AR = uyp— g =0,
which is also known as the Thomas equations [64]. Using the conservation law in the second

equation one can construct the associated potential system § given by
AS = AR =g,
Ag =—-v +u =0,
Ag = —v, + uy = 0.
Through S, R admits the potential symmetry [15]:
X = ([t w] O+ (e ] B, + 90, (5.70)

where ¥(z,t) is any solution of the linear PDE

Yot = Pz + 1. (5.71)
This can be verified through the following useful identity:

b —(ua+ ) O
xWas1=e"| o " 0 | &%, (5.72)

0 0 "

where AS = (A3, A3, A3)T.
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For any n > 2, consider the n-th order PDE R™ given by
All%n = U2t — UU2 — U — U = 0,
(5.73)
AI;” = Ul — U2t — Dtg(xatau(n_l)) = 0’ 9 7& 07

8“1,:"—1

where ¢ is some analytic function of its arguments. We assume that R™ has the same solutions

as its solved form
’ U = Uty + up + Uz,

(5.74)

n o¢™
wim = "z, 1, u), parer =0,
for some function ¢™. Without loss of generality, we can use (5.74a) to make all possible implicit
substitutions (see the algorithm all_impl_subs in Appendix A.2) for u,,; and its derivatives

appearing in ¢™ and g. Consequently, we assume that

¢n :¢'n(x,t;u2,zr;u1,zrts)a OST,S, s<mn, r+s<mn,
(5.75)
g = g(z,t5up0m U1 57es), 0<r,s, r+s<n-1.
Associated with R™ is the potential system 5™ given by
AT = A =0,
Agn =—vtu = 0’ (576)

Agn =—v;+us+¢g=0.
Our goal is to find functions g such that R™ admits the potential symmetry X,,; through S™.
To thié end, it will be useful to realize the following relationship between the equations of R
and S with those of R* and S™:

A = AR 40, - Dy,

AS® = AS 4 [0,0,g]T.

Consequently, using (5.72), we also have

xmas = XA 1 10,0, X0V g)T
¥ —(ug® +95) 0 0
= €| 0 b 0| A%+ 0
0 0 " xng
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¢ —(’LLQ’IL’ + ¢x> 0 0
= €| 0 b 0 | A%+ 0 . (577)
0 0 ¥ —evhg+ X0 g

This identity will allow us to greatly simplify the infinitesimal symmetry conditions (3.19) of
5™ so that the conditions that ¢ must satisfy, in order for $™ to admit Xyot, can be easily

obtained. We first need to determine the prolonged standard form for §™.

Let < be the potential ordering of Example 3.1.2. Here, we set (2z1,22) = (¢,2z) so that
(5.74) is solved with respect to <. The standard form sf; of 5", which is given by (5.74) and

vy = Uy,

(5.78)
Vpy = Ug + ¢,

is of order m = n. The parametric and principal derivatives of sf; up to order N > n are

respectively given by
AM = {uggrs: 07, 0<s<m, r+s<N}U{ugyr: 0<7 < N}U{v},
B™ = {uygris: 0< 7, n<s, +8s<N}U{ugzrs:0<r, 0<s, 7+s8s< N}
U{vgrgs: 0< s, 0<r+s< N}
The prolonged standard form sf{” of S™ contains a unique equation for each term in B(™.

To determine sf({", one first appends to sf; the following equations which are obtained by

differentiating the equations in (5.74a) and (5.78):

Ug gpres = D;Df‘l(ulm + w1 + uz), 0<r, 1<s, 1<r+s<m,
Vpres = 'U,l’xrts—l, 0 S 7", 1 S S, 1 <r + S S n, (5'79)
Vgr = Uggr-1 + Drlg, l<r<n.

Consider the system I given by (5.74), (5.78) and (5.79): It has the same solutions as R™
and there is a one-to-one correspondence between its leading terms and the terms in B(.

Consequently, the first two axioms of Definition 3.1.14 are satisfied. Also, except for the set of

equations (5.79a), the right hand sides of I depend only on independent variables and parametric
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derivatives of A®"=2). Hence, to obtain the prolonged standard form sf(* of S™, one must make
all possible implicit substitutions from sf, in (5.79a). The set of all principal terms in (5.79a)
is

{uggres : 0<r, 1<s, 7+s<n-1}, (5.80)
which can all be implicitly substituted for, using (5.74a). Notice that such substitutions do not

raise the order of each equation in (5.79a). Consequently, sf0 is given by (5.74) and (5.78)

and
Ug gres = fro(x,t, ul*?), 0<r, 1<s, 1<r+s<n,
Vgris = Uy grys-1, 0<r, 1<s, 1<r+s<n, (5.81)
Vgpr = Ug pr—1 + Dr~lg, 1<r<mn,

where f5" depends only on z, t and parametric derivatives in AT+*). It turns out that we will

not need to know f™° explicitly.

Example 5.3.1 Let < be the potential ordering <pot of Example 3.1.2 with (z1,z3) = (¢, 2).

Let n =3 and

g = g(a:, t; ug, U2,zy U2,zx ; UL, UL,y UL 8y UL, zey ULzt ul,tt)- (582)
The third order system R?® is given by

U2t — UrU2 — U1 — U = 0,

(5.83)
uy,z — Uz, — Dig =0, 3—,?;9;
By expanding D.g, (5.83b) has the solved form (with respect to <),
U1, = ¢°(2,t,u®), (5.84)

where

1
¢3 = Tur e [ULx - (UI’U,Z 4+ u + U2)(1 + qu) — 0t — GJuy Uit — gul,tulytt — gu1,mu1,wt

—Guy 2o U1,2tt = Guy gp Wl,azt = GJup o (1 + ur)uzz + (1 + u2)uy z)

—9“2,11((1 + u2)u11x$ + (1 + ul)“?,xz + 2“1,:5“2,:8)} .

Note that we have used (5.83a) to replace all occurrences of uz;. The potential system $°
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associated with R3 is given by

uz: = (1 + up)ug + g,
v = g, (5.85)

Uy = U2+ g.
The standard form sf, of §3 is given by (5.84) and (5.85). The sets of parametric and principal

derivatives up to order 3, respectively, are given by
3) —
A® = {ul s U85 UL,y U bty Ul xty UL x> UL, ztty Ul zxts ul,zzz} U {u21 U2,xy U2, 22y u2,:1:a:x} U {”l)},
3 _—
B® = {ug 41} U {ugy, U2t U2 oty Uttty U2 mtt, U2,z0t ) U {Ve, Vay Vit, Vaty Vog, Vitts Vit Vasts Voo ) -
We shall also need to refer to the set of parametric derivatives up to order 4:

. A(4) = A(s) U {ul,xz‘tta U, zzxty ul,xzzz} U {u2,:cz.ra:}-

To obtain the prolonged standard form for $2, one must find equations for each term in B®.
As such, we first append to sf, the following equations which are obtained by differentiating

(5.85):
ugge = (14 w1)ugs + (1 4 u2)uiy,

g et = (14 w)uz g+ (14 ug)ur gz,
ug e = (14 wr)ugs + 2uq g2, + (1 4+ u2)uy ¢, (5.86)
Uggrr = (14 w1)ug e + U1 oo + 1 gz + (1 + ug)uq 5,

U2zt = (1 + ul)“Z,xa: + 2“1,1;“2,1: + (1 + UZ)'U'I,:M:,

Vit = U1, Vitr = 1,1ty

— — — 2
Vgt = UL,z Vgt = U1,xt, Ve = U2,zx + ng (587)
Vgz = U2,z + ngv Uzt = Ul zx,

Consider the system I given by (5.84)-(5.87). There is a one-to-one correspondence between
its leading terms and the terms in B®. Also, except for equations (5.86), which correspond to
(5.79a) with n = 3, the right hand sides of I depend only on z, ¢t and the parametric derivatives

of A® (the highest order terms come from DZg which is of order 4). As for the right hand sides

of (5.86), one can use the algorithm all_imp_subs (Appendix A.2) to make all possible implicit
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substitutions from sf; to remove the principal derivatives

{Uz,t, U2, xts Uz,tt}
(cf. (5.80)). The result is the set of equations:
uge = (14 u1)ug + (14 wr)ug + (1 + ug)uy ¢,
gzt = (14 u1)uze + (1 + ug)ui g,
ugeer = (L4 w)3ug + (14 w)2uy + [B(1 4 wi)(1+ up) = 2ure + (1 + ug)us g,  (5-88)
Uz e = (14 wz)ug m + [2(1 4wy (14 u2) — Nug g + (14 w1)? + vy tJus g,
o,ppt = (14 u2)u1 gz + (14 1)Uz gz + 2Uq U2 4.
Consequently, the prolonged standard form sf¢) for S3 is given by (5.84), (5.85), (5.87) and

(5.88). Lastly, we note that all the calculations of this example equally apply if one considers
g = g(x,t;ug;u, w16, Usst)s (5.89)
instead of (5.82). In particular, corresponding to (5.89), the system RS is given by (5.83), $°

is given by (5.85), and sf¥ is given by (5.84), (5.85), (5.87) and (5.88). We will be using this

fact when we continue this example later on. O

Let us now make direct substitutions from the equations of sf{* into (5.77): A" must
vanish by Lemma 3.2.7(2), and ¢g remains unchanged since g does not depend on any principal

derivatives (see (5.75)). Thus

(a7

pot

(xi7a5)

pot

(x5

pot

=0
Sf_(<n) ’

=0
Sff.(n) 9

_ n—1)
sf&") = —-—e“’lbg+ (Xﬁ)ot )’sf&")'

A direct application of Theorem 3.3.3 proves the following result:
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Lemma 5.3.2 Consider an n-th order system R"™ of PDEs, given by (5.73), and its potential
system Sﬁ, given by (5.76). Suppose g is of the form (5.75). Through S™, R™ admils the

potential symmetry Xy, given by (5.70), if and only if

'Yy + (X5 al| e =0, (5.90)

~
where sf is the prolonged standard form (5.74), (5.78) and (5.81).

Our goal is now to find functions g satisfying (5.90). As in Example 5.2.3, by isolating the

highest ordered terms in (5.90), the following observations can be made:

(O1) Any equation lhs = rhs in sf(V with ord(rhs) > ord(g) has lhs € {vgr : 1 <r < n}.
(02) In (5.90), v, only arises from the the dependence of g on u; zr4s, 0 < r < m,1=1,2.

(O3) When solving (5.90), the coefficients of v,r, 1 < r < n, must vanish.
These observations together with (5.75) lead us to consider the following form of g¢:
g=yg(z,t;ug; Uy, Uty Uy g2, -,ulytn—1), (5.91)

since then none of the conditions in"(03) arise. Our hope is that, as in the previous section
on scalar PDEs, (5.90) will collapse to a first order scalar PDE for ¢g. If so, we can obtain

the general solution of (5.90) through the method of characteristics. To this end, we first

require the functional form of X;Zt_ 2 ¢ which can be obtained through the following lemma (cf.

Lemma 5.2.4):

Lemma 5.3.3. Consider the infinitesimal generator in (z,t, u, v)-space of the form
X = e™[a(z,t,u) 0 + (2, t,u) Oy; + v(z,t,u,0) ), a €R, j=1,2.
Suppose g is of the form (5.91). Then X (=1 g = ¢wG where § depends only on
(05U Upy Ut gy Ug g2y 0y Uy gm=1 3 Vgy Vg2, - * +, Vyn—1 ), (5.92)

and on first order partial derivatives of g with respect to its arguments. Moreover, the first

order partial derivatives of g appear linearly.
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Proof. Let (z1,z2) = (t,2) and
61 — eava, 62 — 0’ ,,71 — eavﬂl’ ,'72 — eav[32> ,,73 — eau,y. (593)

S0 th_af _ v
X=€0,+70,, i=1,2 k=123

Using the infinitesimal extension formula (2.35), we have
99
a’ul’J ’

g 3}
(n-1), _ 199 2 09 1
X" g =¢ 9o 7w, T

where
ny = Da(n' — E'ury — Eur2) + Eluy 1) + Eur g2),
and J = (1, 1,---,1),0 < |J| < n— 1. Using (5.93), we have
7Y = Dj[e*” B! — e®auy,)] + e*a Uy, (J,1)- (5.94)
Since o and (' are independent of v,
DJ(eavﬂl) — eavﬁl,.]’
Dj(—e®au;,) = eal’ — ea Uy,(7,1)>

where &'/ and ELJ depend only on (5.92). Hence we have
. ,’7‘1] — eav(ﬁl,]_i_ al,J)'

Consequently, X(*~1g = ¢, where

09

L 99 | 99 (I g
g_a(x,t,u)axl + B (watvu)au2+(ﬂ to )aul,J,

which depends only on (5.92). Moreover, from the form of g, X (=1 g depends linearly on the

first order partial derivatives of g. Consequently the theorem is proved. 0

Example 5.3.1 (cont.) Let n = 3, (z1,22) = (t,2), g be given by (5.89), and X,,; be the

infinitesimal generator (5.70). Clearly ¢ and X, satisfy the conditions of Lemma 5.3.3 with

a =1, ﬂ1:¢t+u1¢7 7:¢7

a =0, B% = 1y + uz?, Yz = P + Uy,

Y= ¢($at)-
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Let us explicitly calculate X;i)tg to illustrate the conclusions of Lemma5.3.3. We have

) 209 109 . g
X;otg_n 8U2+77 au1+7h

+ (5.95)

?
3”1,1 (9%1,11

where
‘ 772 = ev[¢$ + u2¢],

nt = ety + mip],
m = e’[(Y + wr)ve 4+ by + wathy + u1 19, (5.96)
ni = e'[(e + wih) vy + (Ye + ur¥)of + 2(y + urhr + ur %)y
F b + wre + 2uq 10 + ug 1)
Hence X;,?tg = eVg where § only depends on (z,t;ug; %1, U1 ,s, Ut,et 5 V¢, Vet) and first order par-
tial de:ivatives of ¢, which appear linearly. Consequently, the conclusions of Lemma 5.3.3 are

verified. 0

Let us see how Lemma5.3.3 helps in analysing the symmetry conditions (5.90):

Corollary 5.3.4 Let X,,,; be given by (5.70), let g be given by (5.91), and let s f? be given by
(5.74), (5.78) and (5.81). Then (5.90) is a first order scalar PDE for g.

Proof. Since Xpot and g satisfy the conditions of Lemma 5.3.3, we have that Xg;t_l)g depends

only on

(2,15 U9 5 U1, Uy g, Uyp g2, -+ 5 Uy gn=1 5 Vg, Vg2, * "+, Vyna ) (5.97)
and linearly on first order partial derivatives of g. Consider making all possible substitutions
from s f¥ into X;Zt_l)g: Using (5.78a) and (5.81b) with » = 0, all ¢ derivatives of v in (5.97) are
replaced by f derivatives of uy up to order n — 2. No other substitutions are possible. As such,

the resulting equation depends only on the arguments of ¢ and first order partial derivatives of

g, which appear linearly. In other words, (5.90) is just a first order scalar PDE for g. 0

Example 5.3.1 (cont.) Let us first verify Corollary 5.3.4 explicitly for the example (n = 3)

we have been following throughout this section, where g is given by (5.89). Recall that X, is

given by (5.70) and sf$) is given by (5.84), (5.85), (5.87) and (5.88). Then condition (5.90) for




Chapter 5. A Potential Symmetries Classification of PDEs 161

. dg dg Jg dg
=gt (77 l f(3)> * (771‘ <3)> our T (7711 (3)> dur * (,71 ‘ (3)) Oui,11’

where (72,7, 1], n},) are given by (5.96). Dividing through by e and carrying out the direct

substitutions from s f® explicitly, we arrive at

0=—vg+ ¢z + Uﬂb]a—g + (Y + mp] 77— 09 + [u1,e¥ + udp + 2u1hy + Py
Dua I a Y11 (5.98)

Huret + 3(Pr + v1)urs + i + 3uieh + Juiby + P 8ug
For any given function ¥(z,t), this is clearly a first order scalar PDE for g. Consequently,

Corollary 5.3.4 is verified for n = 3.

Applying the method of characteristics [15, 47], we find that the general solution of (5.98)
is given by
| 9= (%1 +u19) 71 O(61,65,63,84,65), 895 #0, (5.99)

where O is any anaﬂytic function of its arguments:

0, = 1. 02— Vs + ug?p 0, — ul,t¢2_u1¢2“ul¢t¢+¢¢tt*¢t
T ety P2+ wd) ’

w109 — 3urus 93 + Yup? — Burpuh? — 3vputh + 297 + 2wy + udys
V3(2s + ur1h) .

The reason for (5.99b) is so that (5.73c) is satisfied.

05:

In summary, any function g given by (5.99) satisfies (5.90), with n = 3. By Lemma5.3.2, the
corresponding class of third order systems (5.83) admits the potential symmetry (5.70) through
the potential system (5.85). A particular member of this class is

Uzt = Ut + U1 + ug, _
up e = (Pt + ureh) ™! [(1/% + u19) (1,0~ ur g — g —ug) + (3ui® + 20y + 2un, W + Surthr)uy z
—(ud + 9udhy + (9% — 29079~ Yuy = 20072497 — 2bus + 39 hehes)ua

—3(7,5“1 - ¢t)u1,t + 2¢tul + 2¢ttU:13 + (bt + 8¢_2¢? - 13¢_1¢t¢tt)u%
— (=143t + e + 3PTIE + 2102y — YT pethyy)un
My + 20207207 + U b — 3Y 2, — SYTPTebu + 6917
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which corresponds to g = (¢ + uﬁﬁ)‘l 0s. O

Lef us now return to the genéral case. By Corollary 5.3.4, for each n > 3, (5.90) is a first
order scalar PDE for g, given by (5.91). Since g has n 4+ 3 arguments, the general solution
of this PDE involves n + 2 variables (cf. (5.99) where n = 3) and is obtainable through the
method of characteristics. By Lemma 5.3.2, any such solution g of (5.90) leads to an n-th order
system of PDEs (5.73) admitting the potential symmetry (5.70) through the potential system

(5.76). We have just proven the following theorem:

Theorem 5.3.5 For each n > 2, there exists a class R™ of n-th order systems of PDEs (5.73),
where g is of the form (5.91) and depends on an arbitrary function of n + 2 variables, such

that each system in this class admits the potential symmetry (5.70) through the potential system
(5.76).

This theorem shows potential symmetries are admitted by an abundance of systems of PDEs

of higher orders (n > 2).




Chapter 6

Conclusions and Further Work

6.1 Conclusions

In this dissertation we have sought nonlocal symmetries of PDEs through the potential systems
appr()ach. This approach relies on finding point symmetries of systems of PDEs. Although
existing symmetry algorithms aur.e sufficient for finding the point symmetries of scalar PDEs and
systems of PDEs of Cauchy-Kovalevskaya type, there are difficulties in applying these symmetry
algorithms to more general systems of PDEs such as potential systems. One such difficulty is
that there are examples of n-th order systems of PDEs whose differential consequences of order
up to n cannot be all found (see potential system (2.41)). As such, the substitution step in these
algorithms cénnot be properly executed and one may end up with ohly a subgroup of the full
group of symmetries admitted by the system (i.e. one may miss symmetries). The difficulties in
applying one of the standard theorems, Theorem 2.3.4 (see also Theorem 2.71 in [47, f).lﬁlﬁc]),
is the requirement of local solvability. For some systems of PDEs, to achieve (analytic) local
solvability, one must first form a prolonged standard form 'which has an infinite number of
equations (cf. Theorem3.2.4). The computational problems with deriving the determining

equations of such an infinite system are obvious.

Through Theorem 3.3.3 and Algorithm 3.3.4, which appear to be new, we overcome the
problems of existing symmetry algorithms for the calculation of point symmetries of a system
of PDEs. In particular, through the use of the prolonged standard form, all differential conse-
quences are implicitly uncovered (cf. Corollary 5.1.7). Our algorithm is efficient: The extended

operator X(*) need only be applied to the finite number of equations of the original system.

163
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We do not need to start with a locally solvable system. Only a finite number of equations, each
used only once, are required in the substitution step. Moreover, even for scalar and systems of
PDEs of Cauchy-Kovalevskaya type, our algorithm makes more precise the substitution step of

the existing symmetry algorithms.

Using the prolonged standard form, we have improved on the existing Fréchet approach
used for finding symmetries, and the existing Adjoint Theorem used for finding conservation
laws (cf. Theorem E.0.1 and Theorem 4.2.5 respectively). Here we make more precise what is

required in the substitution steps.

An important component of the mathematical framework of the potential systems approach,
given in §4, is the delineation of potential and linearizing factors. Given a set of factors, more
than one potential system may be constructed for the system of PDEs, but it is a potential
factor that leads to useful potential systems. By repeating the construction process, higher
generation useful potential systems are formed and, through the example of the nonlinear
diffusion equation in §4.3, we showed how these higher generation potential systems can lead

to potential symmetries of the original PDE.

During the construction of potential systems, the discovery of linearizing factors indicates
the poésibility of linearizing the given system of PDEs. The existing linearization algorithms
of Bluman and Kumei can theﬁ be employed to seek the explicit linearization, if one exists.
Examples of linearizing factors leading to subsequent linearizations of the nonlinear telegraph,

the nonlinear diffusion and Burgers’ equations have been provided in §4.4.

The advantages of our symmetry algorithm (Algorithm 3.3.4) over the existing symmetry
algorithms are further illustrated in §5. In deriving necessary conditions for higher order scalar
PDEs with two independent variables to admit potential symmetries (§5.1), we correct some
results of Pucci and Saccomandi. Due to the presence of two c\lassifying functions which depend

on many variables, these necessary conditions (Theorem 5.1.6) are not very tight and further
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analysis of the-symmetry conditions seems very difficult. In order to find examples, we spe-
cialised to a smaller class of higher order scalar PDEs involving one classifying function g. The
comput_ations were further simplified by a priori fixing the potential symmetry generator X,
finding the functional dependencies‘ of certain components of its extension Xg; 1), and then
using these dependencies to dictate the minimal set of arguments for g. In this way, the associ-
ated determining equations are greatly simplified from an overdetermined system of nonlinear
PDEs for g to a first order scalar PDE for g in terms of its arguments. For each n > 3, we
have constructed a large class of n-th order nonlinear evolutionary scalar PDEs, characterized
by an arbitrary function of n variables, which admits potential symmetries. In a similar way,
we also constructed, for each n > 2, a large class of n-th order systems of nonlinear PDEs,
characterized by an arbitrary function of n + 2 variables, which admits potential symmetries.

Hence we show that potential symmetries are admitted by an abundance of higher order scalar

and systems of PDEs with two independent variables.

6.2 Further Work; PDEs with Three Independent Variables

A computer implementation of our new algorithm, Algorithm 3.3.4, is required. A computer
implementation of the standard form algorithm already exists [53] and this can be easily mod-
ified to obtain an implementation of the prolonged standard form algorithm, Algorithm A.4.1.
This would then achieve step 1 of Algorithm 3.3.4. The remaining steps can be implemented
by modifying the existing computer implementations of Lie’s algorithm. Implementations of

our version of the Adjoint Theorem are also needed.

The orderings that our new symmetry algorithm requires are weak total derivative orderings.
Further work would be to extend our method to other derivative orderings. To this end, it is
hoped that the approach taken in this thesis, which involves the use of analytic local solvability

and of nearby analytic convergent formal power series solutions, will prove useful.

The connection between our symmetry algorithm and the nonclassical symmetry algorithm
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of Clarkson and Mansfield [24] warrants further investigation. In the former we have followed
the standard form approach, whereas in the latter they have followed the differential Grobner
base approach. In.the nonclassical method, an unknown differential constraint (the invariant
surface condition of the sought after point symmetries) is first appended to the given system
before the point symmetries are calculated. In general, prolonged standard forms for such
constructed systems are difficult to achieve since the appended constraint is not explicitly given
a priori.! On the other hand, differential Grobner bases for such systems appear to be more

easily obtainable.

We have shown that the potentjal systems approach is very fruitful for finding nonlocal
symmetries of PDEs with two independent variables. We have constructed large classes of
scalar and systems of PDEs of all orders which admit potential symmetries. However, this
represents only a partial classification. Other examples are required. Also, we have not consid-
ered the subsystems approach [10] for finding nonlocal symmetries, whereby a potential system
is collapsed to a related subsystem through eliminations of some dependent variables. This

subsystems approach warrants further investigation.

We have not looked at potential symmetries of PDEs with three or more independent
variables. Here, unlike the case of two independent variables, the potential systems are not
determined systems (the number of equations is less than the number of dependent variables)
and one or more constraints are needed. As such, the fundamental problem is one of constraint
determination, i.e., to find the required constraint(s) such that the resulting determined poten-
tial system leads to potential symmetries for a given system of PDEs. We now discuss some

preliminary results for the case of three independent variables.

Consider the system of PDEs (4.3) where p = 3. The potential system (4.5) requires one

constraint G(z,u™,v™) = 0 to make it determined. The resulting determined potential

!Note that the prolonged standard form for the potential system (5.3) was achieved despite the classifying
functions being unknown. The particular form of the system enabled us to uncover all its integrability conditions.
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system is given by
Ay(z,u™) =0, p=1,---,0-1,

ft =3z 402y =0,

fP= vy +vs; =0, (6.1)

2= v+ V1 =0,

G(z,u™ M) = 0.
When imposing a constraint G = 0, one must ensure that the resulting determined potential
system (6.1) still contains all the solutions of the original system of PDEs (4.3), where p = 3.
Such constraints are called admissible constraints. If one does not use an admissible constraint,
any symmetry of the determined potential system will only be a symmetry of the corresponding

restricted solution space of the original system (not of the whole solution space). Examples of

admissible constraints are:

Name Constraint

Zeroth Order v = f(z,u,vs,v3),
Lorentz U1,z V2,5, T V3, =0,
Coulomb V22, + V3,25 = 0.

Note that the Lorentz and Coulomb constraints are commonly used in physics [57, 61].

We have found the following two examples of PDEs with three independent variables which

admit potential symmetries.
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Example 6.2.1 Let R be the nonlinear wave equation (1.6), and let .S be the potential system

—Ut — V3g +v24 =0,
Ci(w)ug —viy + 03 =0,
Co(u)uy —vot +v15 =0,
—V1,t+ V2,5 + U3y =0,
which has been made determined by imposing the Lorentz constraint. One can show that the
nonlinear wave equation (1.6) admits potential symmetries through § if and only if Cy(u) =
Cy(u) = 1. In this case, the potential symmetries are
X1 = —2tyd — 22y0; + (22 — 1 — y?) 9y + (2v1 + tvz + 2yu) 8,
-+ (tu = zv3 + 2yv2) By, + (29vs + 101 + €V2) B, + (tvs — U + 2y01) Dy,
Xy = (—t2—2? —y?) 0, — 2txd, — 2tydy + (yv2 — zv3 + 2tu) O,
+ (zv1 + 2tvy + yu) Oy, + (yo1 + 2tvz — xu) Oy, + (2001 + 2V2 + Y03) Oy,
Xz = —2t20+ (y?2 — 2 — 2?) 0, — 22y0y + (2zu — tvz — yv1) O, (6.2)
+ (2202 + yv3 + tv1) Oy + (2203 — Y2 — tu) Oy, + (2201 + tvg + Yu) Ous,
Xy = o+ v30y, — V204, — Uy,
Xs = 204 + u0y — 110y, — V304,
Xe = 030y + 010y, + U0y, + V20y;.

This appears to be the first known example of a scalar PDE with three independent variables

admitting potential symmetries. Applications of these nonlocal symmetries can be found in

4. 0O




Chapter 6. Conclusions and Further Work 169

Example 6.2.2 Let R{u} be the nonlinear scalar PDE
= Ut + tge + (L(w))yy = 0, (6.3)
with associated first generation potential system S{u,v} given by

—U— V3t V2y = 0,
Uy — V1,y+ U3 = 0,

(L(u))y — Vot + Mgz = Oa

(6.4)

vy = 0,
which has been made determined by a simple zeroth order constraint vz = 0. Unfortunately,
for any L(u), S{u,v} does not yield any potential symmetries of R{u}. Likewise, the second
generation potential system T{u,v,w}, given by (6.4) and
— vy — W3y t+wWey =0,
v - wyy+wsy =0,
Y (6.5)
L(u) = wes+wie =0,
w3y = 0,
(where the constraint ws = 0 has been used) does not yield any potential symmetries of R{u}.

However, when L(u) = —3u‘1§, T{u,v,w} admits the point symmetry

X = 9?0, — 3yudy + (w1 — yv1) By, + (w2 — yv3) By + yw18u, + Y20y, (6.6)
which is a potential symmetry of S{u, v} (but not of R{u}). The system (6.4) appears to be the
first known example of a nonlinear system of PDEs with three independent variables admitting

a potential symmetry. O

To find more examples of PDEs with three independent variables admitting potential sym-
metries, one must tackle the fundamental open problem of finding suitable constraints for the

associated potential systems. It is exciting to see the potential symmetries (6.2) for the linear

wave equation being used in [4] to study Maxwell’s equations.
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Appendix A

Algorithms for Obtaining Prolonged Standard Forms

Except for the prolonged standard form algorithm in Appendix A.4, the following material is
from Lisle [43, Appendix A]. We assume that an ordering < is chosen and denote leading(egn)

as the highest ordered term with respect to < in the given equation egn.

A.1 Orthonomic Form

Recall that an orthonomic form (Definition 3.1.4) can be achieved by a process similar to

Gauss-Jordan eliminations:

Algorithm A.1.1 [orthonomic]

function orthonomic(sys)

unsolved := sys

solved :=

rebeat
leadingterms := {leading(eqn) | eqn € unsolved}
term := highest ordered term in leadingterms with respect to <
thiseqn := any eqn € unsolved, such that leading(eqn) = term
thiseqn := solve thisegn for term
unsolved := substitute thisegn into unsolved \ {thiseqn}
solved := substitute thiseqn into solved

solved := solved U {thiseqn}
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until unsolved = 0
orthonomic := solved

end

Note that after each iteration, the number of equations in unsolved decreases by one. Conse-
quently, the algorithm must terminate after a finite number of steps. Also, after each iteration,
solved has leading derivatives that are strictly ordered higher than that of thiseqn. Hence solved

must remain in solved form after substitutions from thisegn.

A.2 Simplified Orthonomic Form

We denote implicit substitution, which was described in §3.1.1, from an equation u§ = rhs into
u§; throughout a system sys, by

| implicit_subst(uf = rhs,ufy, sys).
The algorithm that makes all possible implicit substitutions from an orthonomic system sysl

into a system (or expression) sys2 is given by:
Algorithm A.2.1 [all_impl_subs]

function all_impl_subs(sysl, sys2)
while u§; in sys2 where u§ = rhs is an equation in sysl
do
sys2 := implicit_subst(u§ = rhs,u§;, sys2)
od
all_tmpl_subs := sys2

end

Note that there is only a finite number of terms in sys2 and any implicit substitution replaces

a term with other terms which are strictly of lower order (with respect to <). Consequently,
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carrying out all implicit substitutions is a finite process.

With this in hand, the algorithm to achieve simplified orthonomic form (cf. Definition 3.1.6)

of a system sys is obtained as follows:
Algorithm A.2.2 [simp_orth)]

function simp_orth(sys)
repeat
" sys := orthonomic(sys)
sys = all_tmpl_subs(sys, sys)
until sys is orthonomic
simp_orth := ;sys

end

Note that we have already shown that the algorithms orthonomic and all_.impl_subs terminate
after a finite number of iterations. Iterations in this algorithm only occur if all_impl_subs
removes a leading derivative of the system sys. Since one cannot replace leading derivatives by

lower ordered terms (with respect to <) indefinitely, this algorithm must terminate.

A.3 Standard Form

In §3.1.1, the process of obtaining integrability conditions of a system sys was described. Denote

this process by integ_cond(sys). Then the standard form (cf. Definition 3.1.9) is achieved by

the following algorithm:
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Algorithm A.3.1 [standard.form]

function standard_ form(sys)
repeat
sys = simp_orth(sys)
integ := integ_ cond(sys)
sys := sys U integ
until integ = 0
standard_form := sys

end

The finiteness of this process was first proved by Tresse [67] (see also [53]).

A.4 Prolonged Standard Form

The process for obtaining a prolonged standard form (cf. Definition 3.1.14) for a system is given
in the following algorithm. The definitions of N-th order parametric and principal derivatives
of sf,, denoted by A®™) and B™) respectively, are described in §3.1.2. We denote the order of

a system sys by ord(sys).
Algorithm A.4.1 [prol_standard]

function prol_standard(sys,N)
SF := standard_ form(sys) -
N::Iﬁaximum integer in {N,ord(SF)}
B := B\ {leading terms in SF'}
I:=5F
while B # ()
do
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term := uf in B
Bi= B\ {uf}
eqn = (u§ = rhs) in SF, such that I = JK, |K| > 0
I:=TU{u§ = all_.impl_subs(SF, Dg(rhs))}
od

prol_standard := 1

end
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Symmetries of Locus and Analytic Locus

In the sequel, we always assume the following:

(A1) R is an analytic system of DEs (2.19), which is of order n.
(A2) < is a weak total derivative ordering.

(A3) R has standard form sf, which is of order m.

(A4) R has prolonged standard form sf{" (N > m) with locus o™".
(A5) 7t is the analytic locus of sf(*).

(A6) 7§ is the natural projection map from X x U(*) to X x U™,

(A7) G is alocal Lie group acting on X XU with induced Lie groups G and G{*.
To prove Lemma 3.3.1, the following lemmas will prove useful.

Lemma B.0.1 Let ") € G and 7{>) € G(=). Then the following identity holds:
TR = 7 Mr. (B.1)

Proof. In other wofds, the identiy (B.1) means that it makes no difference if éne maps a point
P in XxU®) under the induced action of 7. € G and then project down to X xU™), as opposed
to first projecting P down to X x U™ and then mapping this point under the induced action
of . € G.

We have 7™ : X x U™ — X x U™ and 7{= : X x U — X xU). Recall that
these transformations are induced from 7, : X xU — X x U through the chain rule. Now 7™

determines how all derivatives up to order N are transformed. Notice that such a transformation

depends only on derivatives up to order N. The transformation 7{*) is consistent with 7",
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but now transformations of higher derivatives are given. Once the transformations TN (7))
have been defined, one can use them to map between points in X x U™ (X x U(*)) without
any regard to how the functions corresponding to these points are transformed. The underlying

transformation between functions may not even be defined in the X x U(*) case.l

Given a point P in X XU, the left hand side of (B.1) transforms P to another point @ in
X xU under the induced action of 7, and then projects this point down to X xU™ to obtain
a point QY. Notice that Q¥ is just the set of values for the transformed z and all derivative
terms ﬁp to order N. On the other hand, the right hand side of (B.1) first projects P dov;/n to
PN in X x U™ before transforming under the induced action of 7. to a point QV in X x U™,
The points @ and Q7 must be the same since, as mentioned above, 7{®) is consistent with

™. 0

Lemma B.0.2 Let P be any point in o). For each N > 0, there exists an analytic solution

of sf) which agrees with the data prescribed by 7% (P).

Proof. Given P and N, let §V denote the set of equations of sf¢) with leading terms of order
at most N. Let M be the order of the system SV. We have M > N since the right hand sides

of SN may be of order greater than that of the left. Let
PN = x(P), PM =13(P).

PM (PN) determines a point PM (PY) representing the value of = z( and all parametric
derivatives up to order M (N). P} agrees with PM for z and all parametric derivatives up to
order N. The reason we require P} is that this point defines through S” the principal terms

QY of PN. This is not true of P}’ unless < is total derivative order (M = N).

By Lemma3.1.19, P is sufficient to determine an analytic solution u(z) of sf¢. By

construction u(z) satisfies the data given by PM and also the data given by PJ¥. Moreover,

1The transformations of G were defined by the action on analytic functions. However, once we have these
transformations, we can use them to map any point in X xU () to another point. We do not have make sense of
such a point transformation in terms of mappings of functions. This is convenient since some points in X xU (e)
do not have any analytic functions passing through them.
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since P} defines through SV the principal terms QY of PV and u(z) satisfies SV, u(z) must
agree with the data Q). In summary, u(z) agrees with the data given by P and QY and

hence it must pass through PV, O

We now provide a proof of Lemma 3.3.1 which we restate here for convenience.

Lemma B.0.3 G(*) is a symmetry group of o' if and only if it is a symmetry group of 7*=.

Proof. From the very beginning, we emphasize that we are considering symmetries of sets of
points and not functions. We will only make the correspondence between a point in 2(* and
its convergent formal power series solution. We will never try to make sense of what it means

to map a non-convergent formal power series under the action of G(*.
Assume G() is a symmetry group of p(*) and let 7{=) € G(=). We have to show
VP €5, Q = 7L(P) € o,

for sufficiently small . By hypothesis @ lies in p(*). By Theorem 3.2.4, there exists an analytic
solution u(z) that passes through P. Using Theorem 2.2.16, G(* maps u(z) to an analytic
function %(z). Since u(z) passes through P, then () is an analytic function passing through

@ and hence @) € p{* as required.
Now assume G is a symmetry group éf 7 and let 7{=) € G(*). We have to show
| VP g o, Q = 7L(P) € o',
Since P lies in X x U™ then @ also lies in X x U™, We now have to show that Q satisfies the
equations of sf&”).‘ |

Let PN = 7(P) and @V = 7(Q) denote the projection of P and @ onto the finite space
X xUM respectively. Let SV denote all the equations of sf( whose left and right hand sides
are of order up to N. Note that if < is a total derivative order, then § N is equivalent to s F.

However, this is not true in general. In what follows we will show that QN satisfies SN, for

each N > 0. This will complete the proof since then @ satisfies s (™ and must thus be a point
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in o>, Here are the details.

By LemmaB.0.2, for each N there exists an analytic solution w(z) which satisfies the data
givén by PN. At z = z(, determine the values of all derivatives of u(z) to obtain a point P
which must lie in the analytic locus g°. By construction of u(z),

7¥(P) = PN = 7%(P). (B.2)

By hypothesis, Q@ = 7{)(P) also lies in g¢*). Since () satisfies sfC&, QN = wj‘{,o(@) must satisfy

SN, Using Lemma B.0.1 and (B.2) we have

QY =7(Q)
= 7feTi)(P)
= TR (P)
= Mg (P)
= 1R7L(P)
= 1%(Q)
=QN

Hence for all N, QV satisfies the equations of SV and the proof of LemmaB.0.3 is com-

plete. O
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Proof of Correctness

In the sequel, we always assume the following: -

(A1) R is an analytic system of DEs (2.19), which is of order n.

(A2) | < is a weak total derivative ordering.

(A3) R has standard form sf,, which is of order m.

(A4) R has prolonged standard form sf) (N > m) with locus o™,
- (A5) 9'* is the analytic locus of sf{.

(A6) 7% is the natural projection map from X x U(> to X x U™,

Recall Theorem 3.2.4 which says that s f{) is analytically locally solvable. This fact is essential

in proving the following useful lemma.

Lemma C.1 Let g(z,u™) be an analytic function of its arguments. Then

(L1) g(m,u(”))|sf(1v) = g(x,u("))|sf(oo), N = max(m,n).
< <

(L2) g(z, v my = (%, u™)| o) -
f §

(Le?) g(x,u(ﬁ))lg(w) =0 Zf and only ng'sf_(fo) =0.

(L4) g9(z,u™)| 009 =0 if and only if g(z,u™)|xe) = 0.
(L5) 9o, =0 implics (Djg)], 0 =0, 1] 20.
sfy sly

Proof. The equations of sf(") are also equations in sf{*). The remaining equations in sf
have leading terms of order greater than N. When making direct substitutions from sf{¥) or

sf) in g(z,u™), only the equations whose leading terms are of order at most n are required.
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These facts together with N > n lead to the desired identity (L1). Since I‘(f") (I‘(f°°)) are given
by the functions u§ = 0y f(z) where 0 < |J| < n (0 < |J|), a similar argument can be used to
show (L2). Lemma 3.2.1(3) proves (L3).

We now prove (L4). If g(z,u(™)|,) = O then, since 2(*) is just a subset of o(*), we
have g(‘x,u("))|5(oo) = 0. Now assume g(az,ﬁ("))b(oo) = 0. Let P be any point in o(*). Then
P = 7°(P) defines a point in X x U™. By LemmaB.0.2, there exists an a,nzﬂytic solution

which agrees with the data specified by P". Let ¢ be the value for 2 given by P™. At z = xo,

u(z) and all its derivatives determine a point P in X x U such that 72°(P) = P". We have
g(z,u™)|p = g(=, u?)|pr = g(z, u™)|5 (C.1)
since only the coordinates of P (P) corresponding to z and all derivatives of u up to order 7,

which is given by P", are required for substitution. Moreover, since u(z) is a solution, we have

¢ vanishing on P. By (C.1), g must also vanish on P and (L4) is proved.

~ We now prove (L5). Assuming the hypothesis in (L5), (L3) shows that g vanishes on .
By Theorem 2.2.7 we have
5 C o,
for all solutions u = f(z) of R and so ¢ must vanish on all such extended graphs F(f°°). In

addition (L2) leads to
0= w0) = n).
glﬁf ) glﬁf )

Taking partial derivatives, we obtain
01 [g(a,u) g = 0
and applying the total derivative operator identity (2.17), we have

(DJg(a:,u("))) 0.

(n¥lI) =
F,f

By (L2), this is equivalent to

(DJQ(% u(n))> |F(foo) =0,
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for all solutions u = f(z) of R. Using analytic local solvability of s f&), we have D ;g vanishing

on . By (L3) and (L4) we arrive at the desired result (L5). [

Since this lemma will be used quite often in the sequel, we shall use (L1)-(L5) to refer to

its results.

Proof of Lemma3.2.7. (L1) proves Lemma3.2.7(1). Assuming the hypothesis of
Lemma 3.2.7(2), (L2) shows that

g(w’u(n))lr(fm) = 0
Since sf( is analytically locally solvable, ¢ must vanish on p. By (L3) and (L4) we have
g(z,u™)] o) = 0.
=<

An apphcation of (L1) then proves Lemma 3.2.7(2). 0

Our goal is to prove Theorem 3.3.3 which, by (L1), is equivalent to the following theorem:

Theorem C.2 G is a symmetry group of R if and only if for every infinitesimal generator X

of G,
(XA”Msf(;o) =0, p =1,---L | (C.2)

where the symbol | (~) denotes making all possible direct substitutions from the equations of
y o) q

sFE.

Given any system R of DEs and any infinitesimal generator X satisfying (C.2), we say that R

admits X with respect to the prolonged standard form sf.

Proof. The necessity of (C.2) follows from the fact that G is a symmetry group of sf{ and

hence of p(*); A vanishes on p{**; and by Theorem 2.1.23, we have

XA(z,u) =0 whenever (z,u(™) € o>,

But this is equivalent to (C.2) by (L3).
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To prove sufficiency of (C.2) we will require the following lemma which is proven later:

Lemma C.3 Suppose one forms a new system R by performing one of the following operations

to R:

(a)  Replace an equation of R with its solved form.

(b)  Append to R a derivative of an equation of R.

(c) | Append to R an integrability condition of R.

(d)  Use a solved equation of R to make all possible implicit substitutions in the
remaining equations of R.

(e) Use a solved equation of R to make all possible implicit substitutions in the

right hand sides of R.

If R admits X with respect to sf& (i.e. (C.2) is satisfied), then R also admits X with respect

to sf¢. (Note that the prolonged standard form sf for R and R are identical.)

Recall that a prolonged standard form s f") of any order N > m is obtained by a finite number
of operations (a)-(e) on the equations of R (see the algorithms of Appendix A). Our starting
system R satisfies (C.2) and by repeatedly applying the above lemma we have that the equations

of sf" also satisfy (C.2):
(%==)

o =0, (C.3)
where ¥/ = 0 are the equations of sf(*), N > m. Clearly (C.3) also holds for N = o0, i.e.,
(C.3) holds for the equations of s f*. (Otherwise there must be one equation in sf{*) for which
(C.3) does not hold. But this cannot happen since such an equation belongs to s f), for some
finite N > m, and we already have shown that sf(") satisfy (C.3).) We now prove that (C.3)
is eqﬁivalent to (3.18) so that we can use Lemma3.3.2 to show that G is a éymmetry group
of R, and thus arrive at the sufficiency of (C.2) in Theorem C.2: Certainly, by (L3), (C.3) is

equivalent to (3.18) for the case when < is a weak total derivative ordering and N = co. When

< is a total derivative ordering, so that N > m, we have the equations of sf{") consisting of
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terms ﬁp to order N. In this case, after using (L1), (C.3) is equivalent to

(Xz2v)

=0
sf_(<N) ’

and consequently (3.18) is proven. 0O

Proof of Lemma C.3. We will tackle each operation (a)-(e) one at a time.

Lemma C.4 (Operation (a)) Let X satisfy (C.2). Suppose one solves an equation of R to

obtain
u? = f(x’u(n))7 (C.4)
where f is independent of u§. Then
(Xi-u$ + 1)) 0. (C.5)

Proof. Without loss of generality, let A; = 0 be the equation leading to (C.4). By definition

sf(jo) o

R and sf{ have the same solutions. Hence, when applying the Implicit Function Theorem to

solve A 1 = 0, we have that
0A
oug
contains no solutions of R. Consequently

A
— #0. (C.6)
BuI slf(oo)
<
Since (C.4) is the solved form for A; = 0, we must have
Al(m,u("))|u?=f =0.

In other words, replacing u§ by f in A; leads identically to zero. Consequently, we have the

following identity:

0 = X(A1(e,u™)]yey)

— 8A1 ﬁaAI 3A1 ~
= & 9z + 1y 8116 + au? X[f], (ﬁ,J) ?L_ (a,I).
Hence
aAl ﬂ% _ 3A1 ~
fige, T o = o X[ifl,  (B,J)# (D). | (C.7)
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On the other hand, applying X directly to A, leads to

S oA «0A
Xia(o,u) = 65 ﬁa gt g (B (D).

This together with (C.7) leads to the identlty.

XA (z,u™) = (77[ - X[f]) 8A1.

Consider making direct substitutions from sf{ in this equation. By supposition (C.2), the

left hand side vanishes so that
X (9A1

0= (77? ‘X[f])‘ (oo) aul

Conseéquently we arrive at (C.5) using (C.6) and the fact that X(u$) =7¢. 0O

(00)

For the next lemma, we will need the following identity which is proven by Ibragimov [29]:

XD; = D;X — D;i(¢)D;. (C.8)

Lemma C.5 (Operation (b)) Let X satisfy (C.2). Then
(X[D,A,) Lf<°°> = 0. (C.9)
<
Proof. We proceed by induction on |J| > 0. The case |J| = 0 is given by hypothesis. Now

assume that (C.9) holds for all |J| < k. For any multi-index J, |J| = k41, there is a multi-index
K,|K|=k,and i =1,---,p such that J = K7 By (C.8), we have

(X[DJA;L])‘ (oo) = (Di[i(DKAu)])t f& (DE )‘ (oo) (DjDKAu) Lf&oo)' (C.lO)
The induction hypothesis implies
| (X[DxAL) L,c(;°> = 0. (C.11)

Oné also has

Al ey =0 | (C.12)

sf.(<°°
Applying (L5) to (C.11) and to (C.12), the right hand side of (C.10) must vanish and the

induction is complete. O

Corollary C.6 (Operation (c)) Let X satisfy (C.2) and ¢(z,u™) = 0 be any integrability

condition of R. Then
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(X¢) Lfg”) = 0. (C.13)

Proof. Since ¢ = 0 is an integrability condition (cf. Definition 3.1.8) of R, we must have
¢ = DIA; — DjA; = 0, for some ¢, = 1,---,p and |J|,|K| > 0. Consequently,
(%9)], jr = (RIP1A)| oy = (RIPIA])], o

and an application of Lemma C.5 then leads to the desired result. 0O

Lemma C.7 (Operation (d)) Let X satisfy (C.2). Suppose one equation (say the first equa-

tion) of R is given by
Ay = —uf + f(z,u™) =0, (C.14)

where u§ is the leading term with respect to <. Form the new system R obtained by making all

possible implicit substitutions from A4 in the remaining equations of R. This leads to:

A = Aq,
P =21 (C.15)

A = Aulpus =, 7, 17120}
Then

(XA)‘ @ =0 p=LlL (C.16)

Proof. Since A, = A4, (C.16) holds for p =1 qnd consequently, by Lemma C.5, we have
0= (X[DsAy]) |
= (X[Ds(~uf + f)])\ . (C.17)

( 771J+X[DJf]), (=) |J| > 0.

For p = 2,---,1, we have the identity

XA, = X (Aﬂi{uIJ—DJf, |J|>O})
_ ABA . dA,  0A, 5
= Gt kot + g XD
where (8, K) # (o, 1J) and |J| > 0. Hence
oA oA, oA
b Tk = XAy = 52Xy f]. (C.18)
8uk ULy
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On the other hand, applying X directly to A, we have

- oA oA oA
XA, = &=t 4 g 228 4 e 220 JK) # (o, 1), |J| > 0.
w=2E gz; T K oul nIJau?J (B, K) #( ), =

This together with (C.18) leads to the identity:
oA,
oug;

Now consider making direct substitutions from sf{ into this equation. By assumption (C.2),

iAu = XZ&# + (U?J - >~qDJf]) |J] > 0.

the left hand side vanishes and by (C.17) the second expression on the right also vanishes.

Consequently we arrive at (C.16). O

Lemma C.3 is now proven. O




Appendix D

General Potential Systems Construction

Suppose one PDE of R{u}, say the last one, is a conservation law

P
ZD,-f’(a:,u(""l)) =0, p> 2.
=1
Then R{u} is the system given by
Az, u™) =0, pw=1--,1-1,
(e0) o
Difz(l‘vu(n_l)) :07 1= 17"'ap'

Using the conservation law (D.1b), one can introduce %p(p — 1) potential variables
v = (\1112, ,1113, e, lIJln’ \1123, cee, W?n, e \I;n—l,n)’

where ¥% (i < j) are components of an antisymmetric tensor, to form the associated potential

system S{u, v}, given by (D.la) and

. o QP
7 (n—-1) — -1 1—1 - 9 ... .
Flou ) = 3 ot S T s =12

1<J

This potential system 5{u, v} consists of /4+p—1 PDEs with ¢+ 3p(p — 1) dependent variables

2 .. u%), UY (i < j). If p = 2, then S{u,v} is the determined potential system,

u = (u',u
given by (4.4) where the potential variable is v = ¥12, If p > 3, S{u,v} is underdetermined
and one can impose suitable constraints (a choice of gauge) on the potentials ¥ to make this

system a determined one.
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Fréchet Formulation for Point Symmetries

It turns out that one can restate the infinitesimal symmetry conditions (4.2) for local symmetries

in terms of the Fréchet derivative:

Theorem E.0.1 Let R{u} be a system of PDEs (2.19) with standard form sf, (order m) and
prolonged standard form sf() (N > m). Then R{u} admits the local symmetry (4.1) if and

only if
(EAQ) lsf&N) =0, N =max(m,n+k+1), Qu=1x—EUsi, (E.1)

where Isf&N) denotes making all possible direct substitutions from sf(¥).

The conditions (E.1) are usually stated as:

1. LaQ =0, whenever u = f(z) is a solution.

2. LaQ =0, - whenever A = 0 and its differential consequences hold.

In §2.3, we have already explained the disadvantages of such formulations. In particular, there
is no ambiguity in (E.1) as to how the equations are to be used as substitutions. Since the

formulation (E.1) appears to be new, we shall prove it here.
Proof. The following identity can be found in [47]:
XWA=LAQ+ED;iA,  Qu =17~ EUa

Consider making direct substitutions from the equations of sf{*). Since the left hand side

is of order n + k and each expression on the right hand side is of order n 4+ k + 1, applying
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Lemma3.2.7(1) leads to

(X(n)A) |sf(<N1) - <£AQ> Lfi”z) + <€JDjA) |sf£<N2)7 Ni =max(m,n+k+1), i=0,1.
The left hand side vanishes since, by definition, X is a local symmetry if and only if (4.2.) holds.

Since all solutions of R satisfy D;A = 0, by Lemma 3.2.7(2) the second expression on the right

also vanishes. Consequently, the theorem is proved. m|




