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Abstract

This thesis surveys boundary element methods for solving a two-dimensional
pressurized line crack problem in a homogeneoﬁs infinite elastic medium.

Starting with an overview of linear elastic fracture mechanics, the exact solution
to the pressurized line crack problem is stated and results for several pressure
distributions are provided. Various numerical methods for solving the crack problem
are then introduced, such as the displacement discontinuity method (DDM) using
point collocation and a Galerkin method. Crack tip elements and higher-order DDM
are discussed. Self-effect correction methods, stated and developed for the piecewise
constant DDM on a uniform grid, are shown to significantly improve the numerical
solution. An accurate DDM correction for modelling crack tip element extensions is

also presented. Finally, numerical results for the various methods are given and

stress intensity factors are also presented for comparison.
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Chapter 1

| Introduction

Fracture mechanics has undergone considerable development in the last 20 years. In
partiuclar the field has seen the development of sophisticated nonlinear and dynamic
fracture theories for various media. Nevertheless, the classical theory of linear
elastic fracture mechanics (LEFM) continues to provide a useful approximation for
the modelling of fractures in such materials as brittle rock. The equations of linear
elasticity that arise in the context of LEFM may be numerically approximated using

boundary element methods (BEM).

The discretized BEM equations result in a dense system of linear equations
that has dimensions proportional to the number of boundary elements used. There-
fore considerable computational effort is required to solve systems involving many
boundary elements.. The use of simple bdundary elements with error correction
techniques and fast-solution techniques or higher-order boundary elements are com-

mon ways of achieving more accurate and efficient solutions.

The following thesis will provide an overview of a few BEM solution techniques
by way of their application to the analytically solvable problem. of a pressurized
line crack in an infinite elastic medium. The simple fracture problem will serve
as a model problem to illustrate and compare the numerical methods and also to
provide a test case for which numerical éorrection strategies may be developed. It
is hoped that the results may provide guidance for numerical methods used in more
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complicated problems, e.g., probléms with more complicated crack geometries or
inhomogeneous media.

In Chapter 2 LEFM will be introduced a.nd its relation to the pressurized line
crack problem discussed. The exact solution to the pressurized line crack problem
along with asymptotic relations bnear the ;:ra(;k tip and their relationship to stress
intensity factors are given. Crack width solutions are provided for various commonly
used pressure distributions. Expressions for éfrain energy and strain energy release
rates are stated.

In Chapter 3 the BEM referred to as the displacement discontinuity method
(DDM) is described and its application to the line crack problem is discussed.
Constant and higher;;order displacement discontinuity elements (DDE) are intro-
duced along with crack tip elements. Strain energy calculations and approaches
for calculating the stress intensity factors are discussed. Tip correction strategies
are introduced for constant DDE on a constant grid. In particular, tip self-effect
corrections which allow high accuracy at the crack tip or the middle of the crack

are numerically obtained. Also, a nearest neighbour crack tip influence coefficient

‘correction for describing cracks that are longer than an integral multiple of the

uniform grid spacing is constructed.

In Chapter 4 a Galerki1"1 BEM formulation of the line crack problem is intro-
duced. The Galerkin methéd will be provided for comparison with the DDM since
one method is often preferred over the other [28]. A crack tip correction for the
Galerkin method as well as strain energy calculations are also provided.

In Chapter 5 numerical résults and comparisons for the methods contained in
Chapters 3 and 4 are presented. The DDM and Galerkin results are compared
and the accuracy of the various constant DDE correction strategies are 'pres.ented.

Stress intensity factors are calculated using many of the methods.



This thesis also contains several Appendices. The first of these, Appendix A,
provides expressions for the stresses and displacements that accompany a general
higher-order functional variation DDE. Appendix B contains a DDM matrix sim-
plification for the symmetric pressurized crack problem. Appendix C details the
construction of the matrix equations for the piecewise linear collocation DDM.

The matrices constructed for the Galerkin method in Chapter 4 are calculated in

Appendices D and E.




Chapter 2

Linear Elastic Fracture

Mechanics (LEFM)

LEFM has proven to be a successful theory for many fracture problems in elastic
solids and brittle materials such as rock. LEFM analysis is an idealization of the
crack problem in a number of ways: the crack is assumed to lie in an infinite
plane; the fracturing material is assumed to form a continuum with no distinct
local material microstructure; nonlinear or plastic elasticity effects occur on such a
small scale so as to be negligible. The last point is a sighificant idealization since,
in the neighbourhood of a crack tip, linear elastic theory predicts the existence of
a singular stress field. The singular stress field is accompanied by the presence of a
plastic process zone of nonlinear behaviour ahead of the crack tip. While a stress
singularity implies that the material will be forced to yield in a nonlinear fashion,
the linear solution is useful in rock mechanics as long as the criterion for small scale
yield (SSY) is satisfied (see [37], p157). SSY essentially requires that the size of
the plastic zone is sufficiently small with respect to the characteristic dimensioﬁs
of the crack, e.g., length, thickness, specimen size. In brittle rock, the size of the
process zone is related to microcracking at the crack tip and is best estimated using
by a maximum normal tensile stress criterion than more classical yield criterion,

such as the Von Mises criterion ([29]). The following sections provide an overview

4




CRACK TIP LOADING AND MODES OF DISPLACEMENT 3

Figure 2.1: Three principle modes of fracture with accompanying forces F.

of LEFM sufficient for the development of the numerical methods that follow.

Crack Tip Loading and Modes of Displacement

Consider an infinite plate containing a crack and also having far-field tractions.
Three different ways of loading the plate, designated by modes I, II and III, are
illustrated in Fig. 2.1. Mode I is the “opening mode” that results from tensile
stress perpendicular to the plane of the crack. Mode II is the “sliding mode” that
results from in-plane shear forces. Mode III is called the “tearing mode” and is
accompanied by out-of-plane shear forces. The crack is assumed to be slit-like, of
length 2L, and to lie on the line {(z,y)| — L < z < L,y = 0}. Furthermore, the crack
surfaces are assumed to be traction-free. By considering uniform far field stresses
which correspond to each of modes I, IT and III, a plane strain elasticity problem

has been formulated.

Asymptotic Crack Tip Solutions and Stress Intensity Factors

The plane strain elasticity problem of the previous subsection may be solved -
using Westergaard functions (see [30], [22]) or Goursat-Muskhelishvili potential

functions [20]. The mode I asymptotic stress solutions for both plane stress and

plane strain are
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ASYMPTOTIC CRACK TIP SOLUTIONS AND STRESS INTENSITY FACTORS 6

Oa ~ ~Ehe cos(§) {1 — sin (§) sin (32) }

Tyy ~ 715_-; cos() {1 +sin (§) sin (32)} (2.1)

Ky 0\ aim (8 «ins (30
Oay ~ 5= cos(3) sin (3) sin (F)
as 7 — 0, where K is called the mode I stress intensity factor. For a remotely

applied uniform tensile traction o, the stress intensity factor is

K; = ooV/Ta. (2.2)

The asymptotic displacement fields in the neighbourhood of the crack tip are found

to be

Uy ~ 5—% = cos (§) {x— 1+ 2sin® (-g—)}
)}

(2.3)

uy ~ Ko /Tsin (§) {x+1—2cos? (

[ M-

as r — 0, where
=t plane stress
K= (2.4)
3 —4v, plane strain

and v is Poisson’s ratio [18]. Inside the crack, along the § = 7 line, the asymptotic

form for the normal displacement is

KI ™ _ 4KI T .
~ 56\ om {41 -v)} = B A / 5 (plane strain). (2.5)

Uy

The solutions for modes II énd III havé tﬂe same asymptotic »r dependence
(see [35] for details) and can be derived in a similar way. In fact, many of the
problems of LEFM can be solved using similar techniques since they also involve
plane elasticity problems. N. I. Muskhelishvili [20] has developed a general method
for solving plane elasticity problems through a complex variable mapping scheme

and use of the Kolosov equations. Brief introductions to the technique can be found

in [34] and [32).




PRESSURIZED LINE CRACK 7

As (2.1) indicates, the strength of the stress singularity in the neighbourhood
of the crack tip is controlled by the stress intensity factor, K;. As a result, the
stress intensity factor plays an_vimporta.nt role in LEFM for predi;:ting when a solid
will yield and crack elongation will occur. A simple criterion for deciding when the
crack will propagate is whether or not the stress intensity factor is greater than a

critical stress intensity value, K¢, e.g.,
Kr> Kio. (26)

This concept was first studied by Griffith ([16], [17]) and is often called Griffith’s
stability criterion. This and other fracture pr;)pagation criteria can be interpreted
as conditions on the energy release rate in order for the crack to open, e.g., see
(2.29). More detailed discussions of dynarhic fracture are given by Kannineﬁ and

Popelar [18] or Freund [13].

Pressurized Line Crack

The two-dimensional line crack problem for a solid in equilibrium is important
for the study of fracture mechanics. In this case, it is possible to obtain closed form
solutions with relative ease compared to fractures of a more complicated geometry.
‘While the growth of cracks is inherently a dynamic phenomena, an understanding
of the equilibrium case is a natural starting point. Also, the simple line crack
problem in an elastic medium provides a test bed for developing more sophisticated
numerical methods for fracture mechanics.

First studied by Griffith [16] in 1920, the pressurized line crack problem consists
of a line crack (or hollow slit) of length 2L, situated along the z axis and centred
about the origin (see Fig. 2.2). The problem is assumed to be symmetric about

the z and y axes and situated in an infinite plane. The stresses in the medium are
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Figure 2.2: Pressurized line crack

given by 0.(z,v), 0y(z,y) and ouy(z,y) = 04.(2,y). The crack interface located in
the y > 0 region is called the upper crack face, and the displacement of the upper
crack face is given by u,(z) = uy(z,0). The elasticity boundary conditions for the

z > 0 upper crack face are

Oyy(z,0) = —p(z), 0<z <L,
Ozy(2,0) =0, z >0, (2.7)

uy(z) =0, z > L,

where p(z) is an even function representing the net pressure responsible for holding
open the crack. An additional boundary condition is that all stresses are zero an
infinite distance from the crack. This problem will be referred to as the symmetric

crack problem.

Displacement and Stress Solution

The symmetric crack problem has been solved using the plane elasticity solution
techniques developed by Muskhelishvili [20], e.g., England and Green [11], Green
and Zerna [15] or Sneddon [31]. The normal displacement of the upper crack face

is

4 [* d
uy(a:)z—W—E,/w %\/__g%, 0<z<IL, (2.8)
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and the stress ahead of the crack tip is given by

2| =zg(L) b g(&)de
O'yy(fC,O) = ; l:—’mg——Lz— g(O) — T A —-—gx2 = {2:| , xT Z L, (2.9)
where
o) = [ 2D 0<z< L. (2.10)

The plane strain modulus, E’, can also be expressed in terms of Young’s modulus,

E, the shear modulus, G, and Poisson’s ratio, v, as

E 2G

EF=——_=_"=_
1—-v2 1—v

(2.11)

These crack results were derived for the case in which g(¢) is differentiable. Note
that if p(z) is differentiable then g({) is a continuous function. It turns out [31] that
(2.8) and (2.9) are valid even if p(z) has a finite number of jump discontinuities.

The stress in the z-direction is given by the equations of plane strain as
0z2(x,0) = gy (x,0), z > L. (2.12)

It can also be verified that the condition o,,(z,0) = 0 is satisfied for z > 0. An

alternate expression of u,(z) is given by Spence and Sharp [33, appendix A] as

9 L
uy($)=—;§/o In

Alternatively, the solution to the crack elasticity problem may express the pres-

\/L2—:1:2-—\/L2—§2
\/L2—:1:2+\/L2—§2

p(§)d¢ . (2.13)

sure in terms of the crack width. Spence and Sharp [33, see Appendix A] have shown

that the crack solution may be written as

E’ L duy(s) ds :
= Zpv. [ T 2.14
po= oo [ S (214

where p.v. denotes the Cauchy principle value. For the symmetric problem, (2.14)

simplifies to

" du, (s s :
pa) = -2 /0 duy(3) ds (2.15)

T ds §2—x2
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where the principle value is assumed. Integration by parts and the condition u,(L) =
0 yields

(z) ———/ uy(s) il +$) ds. (2.16)

Both (2.15) and (2.16) will be useful for developing numerical approximation schemes

to the crack stress boundary value problem.

Stress Singularities and the Stress Intensity Factor

From (2.9) it is clear that a stress singularity can exist at the crack tip, i.e., at
z = L. An asymptotic expansion about = = L, assuming ¢(¢) is nonsingular, identifies

the square-root singularity typical of LEFM:

L ’
oyy(:v,0>~§{\/§gu:>¢%+ (L 0 ij_>_jf£2_g(O)) +0(¢—x—L)}, z— Ly.

(2.17)
The stress intensity factor, K, can then be defined as
K= lir51+ V2rroy, (L + r,0) (2.18)

Using (2.17), K is found to be

Kr= 2\/‘ = 2\/-/0 p("’ d’” (2.19)

From (2.19) it is clear that g(L) has a direct effect on the strength of the singularity.

Also, note that K; has no dependence on material properties.

Constant Pressure Distribution Solution

By far the most popular pressure distribution in the literature is that in which
the pressure is constant. In this case, the function g(¢) is also constant and given

by

£
g(g):/—pQ‘-if-—zzﬂ, 0<¢&<L. (2.20)
0
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Using (2.8), the displacement solution for the upper crack face is

4 L gg(é.)dé 2170 Py 5
uy(a:,O)——m : W_F\/L — X4, OSIESL, (221)
and therefore a maximum crack width of
4I
wo = 2%, (2.22)

occurs at the middle of the crack (z = 0). The stress ahead of the crack tip is given
by

0) =po | s — 1 L 2.23

oyy(x,0) =po ——73 |’ z>L. (2.23)

The stress intensity factor, determined from (2.23) using (2.18) or from (2.19), is

found to be

K_r =poV L. (224)

Polynomial Pressure Distribution
If the pressure is given by a polynomial function,
p(z) = po + p1z + p2x”® + psz® + ...,

Valké and Economides [36] have shown that

7pa? | 2pstd

™
g(é) = % + ;& + > + 3 + ..., (2‘25)
2 2 L+ VIZ—a2
A =

+ 22 (L% +22%) /L2 — 22 +

3E'
T2 — 2
+ (2L3,+Lx2) L2—m2+x4m(¥>]+...

D3
TE’ 3

and

x 2m | Lz L
oy(2,0) = po [—xz = 1] +— [_xz —5 ~ x arctan (—3:2 = L2)] +



file://-/-p3x3
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o [(LT _z3> /ﬁz_—f;z_xz] n
2 [(ﬁ - Lxs) /&= I - o arctan (L)] T

3 2 — L2

The mode I stress intensity factor, found by combining (2.19) and (2.25), is
o /L o L (7o 7po L2 2p3L3

Pressure Distributions for Smoothly Closing Cracks

Understanding the crack tip region is, by nature, fundamental to understand-
ing the fracture process. Indeed, in hydraulic fracturing the crack tip region is the
source of much concern [9], [28]. A popular boundary condition, often called the
Barenblatt tip condition based on the work of Barenblatt [2], is that the displace-

ment field, u,, satisfy the smooth closing condition

duy(x = L,0)

dz 0

In order for this to occur, it is sufficient to have
g(Ly=0 (2.27)

which is the so-called “zipper crack equation” [36]. From (2.19) it is clear that the

zipper crack equation is equivalent to having .
Kr=0.

In terms of the pressure function, p(z), a region of “negative pressure” is required
in order to force the solid to close smoothly.

A popular pressure distribution used by Khristianovitch and Zheltov ([19], [38)]),
Barenblatt [2] and Geertsma and de Klerk [14] is a two-level piecewise constant

function given by

D, T S T
p(z) =

—p2, zo<z<L
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where z( is the location of the pressure discontinuity, and p; and p; are positive
constants. The location of the discontinuity is determined by the zipper crack

equation. Equation (2.10) implies

B, z < Zo
g(§) =

—B2% 4 (p1 + p2) arctan [,._zm__] , >0

and so (2.27) implies [19]

P2

xg = Lsin ——————.
0 2(p1 + p2)

Strain Energy of the Line Crack

‘When a crack is opened, energy is stored in the elastic medium in the form
of strain potential energy. Using the definition of work, the energy stored in the
medium for = > 0, per unit thickness (in the 2 direction), for the symmetric crack

problem is
L
Wo = / p(x)uy(z)dz.
0
This result assumes that the pressure varies linearly with the displacement. Sned-

don [31] showed that this méy also be written in terms of g(¢) as

4

Wo = g

L .
/0 € [g(€)]2 de. (2.28)

Taking the partial derivative of (2.28) with respect to L yields the strain energy

release rate per crack length

oWo 4L 2
K2 .
= (using (2.19)), (2.29)

This last result, given by Rice in [26], will prove useful for estimating K; numerically.




Chapter 3 |

The Displacemeﬁt Discontinuity

Method (DDM)

The displacement discontinuity method (DDM) is a boundary element method
(BEM) suitable for the numerical description of cracks in a linear elastic medium.
Originally developed by Crouch ([6], [7]), the DDM may be used to approximate
the crack boundary by a sequence of boundary elements called displacement discon-
tinuity elements (DDE), or DD elements. The DDE utilizes the analytic solution
for a finite segment of a (constant) displacement discontinuity in an infinite solid
in order to approximate the resulting tractions at the locations of other DDE on
the crack. As a result, for a properly formulated elasticity problem (see Timo-
shenko [34]), it is possible to construct a system of equations so that the unknown
normal and tangential stresses and/or displacements may be solved for in terms
of the known ones [8]. The following study will be concerned with stress bound-
ary value problems, in which tvhe tractions are specified on the boundary and the
boundary displacements are to be determined. An example of such a problem is
the pressurized crack for which the pressure is specified and the crack width is to
be determiped. An excellent reference for the DDM, which contains much of the
following material, is the text by Crouch and Starfield [8]. Numerical results for

the various methods presented in this chapter will be delayed until Chapter 5.

14




THE DISPLACEMENT DISCONTINUITY ELEMENT (DDE) 15
The Displacemenf Discontinuity Element (DDE)

Consider the problem of a DDE in an infinite elastic solid. In this case, the
displacement field, u; = (us, uy), is everywhere continuous except along a finite line
segment in the zy-plane. Denote the line segment By C={(z,y)} —a<z<a,y=0}
Since the DDE will be used to represent the displacement between two crack faces,
it is useful to refer to the y = 0_ side of C as the negative side and the y = 04 side
of C as the positive side. While more general functional forms are po‘ssible (see p.
22), in what follows, it will be sufficient to consider the simplest and most popular
case of a constant DD, i.e., the DD is coqstant along C. The DDE is described by

the coordinates D, and D,, where

D, = um(:z:,O_)—uz(:c,0+)

D, = wuy(z,0-)—uy(z,04).

The D, and D, coordinates describe the DDE’s normal and shear displacements,
respectively, that occur upon crossing C. Note that the convention is for D, to be
negative when the crack faces are physically displaced from one another, i.e., the
crack has been opened.

The resulting displacement and stress fields associated with the constant DDE

were given by Crouch as

um(xay) = D, [2(1 - V)f,y - yf,mm] + -Dy [_(1 - 2V)f,:z: - yf,:cy] (31)
uy(z, y) = D[(1-2v)fz—~yfayl+Dy [2(1 - V)f,y - yf,yy] (3.2)
and
022(2,y) = 2G{Dqg[2fzy + Y ey + Dy [y + ¥ ul} (3.3)
ow(®,y) = 2G{Dz[~yfayyl + Dylfyy — Ufyuul} (3.4)

Ozy(2,y) = 2G{Dz[fyy + Y y] + Dy [~y ayyl} (3.5)
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where

-1 y Y
T = — - arctan — arctan

—(z—a)ln\/(z —a)2+y?2+ (z+a)In+/(z + a)? +y2] . (3.6)

‘When constructing a linear DDM approximation of the solution to the pres-
surized line crack, it will be useful to know the stress resulting from a single DDE
at the position of another DDE on the discretized crack. With this in mind, the
displacements and stresses along the z-axis can be the calculated from (3.1)-(3.6).

For |z| > a , y = 0 the displacement components are

us(®,0) = *4(71(531/3) el Py
uy(@,0) = +4(71(IEV3) el D2
while for |z| < a they are
1 (1-2v) T—a
ug(7,04) = :F§Dm h in(l—v) “|zta D, 3.7)
uy(z,04) = :F%Dy + 4(71(13’2) i;g D,. (3.8)

The constant discontinuities D, and D, are clearly visible from (3.7) and (3.8) for
|z| < a.

From (3.3)-(3.6) the stresses along y=0 are found to be

-G a

O0a(2,0) = vmmf)y - (39)
: -G a

oyy(z,0) = mmpy (3.10)

0ay(3,0) = —2 % p. (3.11)

n(l—v)z2 —a?2 "
with 0., (2,0) = 0y:(2,0). Notice that stresses are singular at the DDE’s endpoints
(z = %a) but continuous everywhere else. Also, the stresses are continuous across

the y = 0 line, by construction.
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DDM Solution of the Pressurized Line Crack Problem

Once again, consider the pressurized line crack problem in an infinite elastic

body. The boundary conditions are

oy(z,0) = —p(z), |z| <L,

ozy(z,0) =0, —00 < T < 00,

uy(z,0) =0, lz| > L,
along with the additional condition that all stresses and displacements are zero at
infinity.

By dividing the crack into N line segments, each representing a DDE placed
end-to-end with adjacent DDE, the width of a crack may be approximated by
a piecewise constant (PWC) function. Let the N DDE be denoted by (D%, DF),
k=1,..,N and be of length Ay = 2a;. The midpoint of the k** DDE, called the nodal

point, is therefore located at the z position

T = —L"f.‘ih]’ —a.
j=1

Although curved cracks with shapes more geheral than a straight line may be dis-
cretely approximated using the DDM (8], the line crack problem will be sufficient
to illustrate the method. Also, since the line crack problem has been solved ana-
lytically, the quality of the DDM numerical solution will be evident.

The stress relations for a single DDE, (3.9)-(3.11), in conjunction with the crack
boundary conditions, allow the construction of a linear system of equations which
may be solved for the resulting DD amplitudes. Specifically, the no shear stress BC

at the DDE midpoints,
Ozy(zk,0) =0, k=1,.,N,

along with (3.11) implies that
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The normal stress BC applied at the DDE midpoints,
oyy(Tk,0) = —p(zk), k=1,..,N,
along with the linear superposition of the resultant DDE stresses,
N -
ayy(xk,o) =Zo-$y(a;k,0), k'—_-].,...,N,
—

and (3.10) yield the condition

N
_p(xk) :Zaéy(xk’o)) k=17"'7N7
j=1
where
G aj

DI
(1 —v) (zj —zx)2 — a2 Y

O'Zy(il?k,()):—-— j=1)"'5N,

is the normal stress at z = z; resulting from the j** DDE. The resulting matrix

equation to be solved for the unknown DDE normal displacements, {Dj}},, is
N .
—px =Y Ag;Dj, k=1,..,N, (3.12)
e

where p, = p(zy) and

G a; .
7 =) (z; — zk)? — a2’ k,j=1,.,N, (3.13)

Arj =

are called the DDE influence coefficients. The resulting DDE amplitudes, Di, may
be interpreted as the (negative) width of the crack at the midpoint of the j* element
located at the nodal points, z;. This method is also called a PWC collocation
method since stress is collocated at the nodes of the DDE.

For the symmetric problem where
p(z) = p(—2),

the resulting displacement solution is also symmetric:

DJ = D=9, j=1,.,N.
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In this case, it is unnecessary to solve the dense N-by-N system of equations (3.12)
when an —Jg-by-—g! system (for N even) will produce an equivalent result. A formula
for constructing the %’—-by—% influence matrix from Ag;, for the positive z-axis, is

given in Appendix B.

Calculation of Stress Intensity Factors

Since stress intensity factors play such a centrél role in charécterizing fractures
in LEFM, it is necessary to be able:to numerically approximate them with sufficient
accuracy. A direct approach that is commonly used is to use the asymptotic form
of the normal displacement, u,(z,04), at the crack tip. Using (2.5) the asymptotic

relation is

uy(z,04) = E,’ — (3.14)

The stress intensity factor is then approximated as

E o2 .
K~ —g' Z_——(l}:Uy, (315)

where U =~ 2uy(z,0+) is the width of the crack at a distance L — z. < L from
the crack tip. Typically U; is the magnitude of the DDE closest to the tip. In
order to be effective, this approach clearly requires high resolution at the crack tip.
Higher accuracy crack tip elements, and/or relatively more dense distributions of
DDE near the tip are often used to improve the accuracy of the crack tip solution.
For example, in addition to a special squareroot displacement crack tip element,
Raveendra and Cruse [25] have used constant elements of width h, except for near
the tip where four individual DDE of width ’Zl were used.

An alternate approach for estimating K is to use equation (2.29). Since the

strain energy, per unit thickness, of a half-crack of length L is

L
WD) = [ vl (o, (3.16)
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a simple numerical approximation, using constant DDE of width hy, is .

N

. 1
Wo(L) = —3 > p(k)DERy.
k=1

Then, using a difference approximation such as

OWo(L)  WolL + h) — Wo(L — h)
oL 2h

+ O(h?), (3.17)

the stress intensity factor may calculated from (2.29) using

OWo(L)
oL

K;=1/E . (3.18)

In cases where higher accuracy is required and/or more sophisticated DDMs are
used, a more appropriate approximation of (3.16) and its derivative should be used.
Examples of the asymptotic and the strain energy release rate methods for

calculating K; are presented in Chapter 5.

Crack Tip Elements

A simple way to improve the accuracy of the DDM crack solution is to combine
the constant DDE with special crack tip elements. These tip DDE incorporate the
known asymptotic dependence of the displacement solution in the neighbourhood
of the tip (see (2.3)) in order to calculate more accurate influence coefficients for
stress BVPs. In general, for a mixed BVP (i.e., a BVP where a mixture of normal
and shear component stresses and displacements are specified on the boundary),
. asymptotic crack tip elements may be used for both the stress and displacement
fields. For example, Raveenda and Cruse [25] consider displacement, u(r), and

traction, t(r), tip parametrizations of the form

r

u(ry = U+ Uz\/§+ U37

l
Tl\/i+T2 +T3\/Z
T l

t(r)
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where {U;}2_;, {T;}3., are expressed in terms of the nodal element amplitudes, e.g.,
DDE amplitudes and the traction element amplitudes. However, in the following,
only stress BVPs will be considered.

Calculation of the normal stress along the z-axis resulting from a general DDE
shape,

Ty (z) = ug(z,0-) — ug(z,04) <0, (3.19)
when z € [z1, z2], will use the fact that

G [ w© ,
oyy(z,0) = mz}lﬁ% /ml mdf (3.20)

for = # z1, z2 [8].

It is easy to verify that o,,(z,0), as given by (3.10), results from (3.20) when

Dy, ze€(—a,a),

iy (z) =
0, otherwise.

“Squareroot Displacement” Crack Tip Element

Since the asymptotic crack tip width depends on the square-root of the distance
from the tip (see (3.14)), consider a tip element of length h = 2a and (-ve) width

given by

Dy /%, z€(0,2a),
Uy(z) = ug(z,0-) — uz(z,04) = Ve ) (3.21)

0, otherwise.

Note that the crack is located in the z > 0 region. Evaluation of (3.20) yields

V2. 4 1] VZ—+2a

o (,0) = =G| T e
LA 2’7‘(’(1 - I/) 1 arctan 2a_ _ 1{2(1(—:1:) r<0
\/m (—=) 20—z '

, x>0,

(3.22)




PIECEWISE LINEAR COLLOCATION AND HIGHER-ORDER DDMS 22

The same argument used to derive (3.13) leads to the use of

Aka -G \/é n 1 In \/ij—,/2aj
2’/1'( - I/) ij - 2aj 2w/ankj \/ij + 2a;

where Xy; = a;+|zx — z;|. Hence, the tip element amounts to changing the influence

], j=lor N

coefficients for 2N elements of the influence matrix, Ag;. Also, the long distance
character of the tip element influence coeflicient is different from that of the constant
tip element, since

-G 1
V2r(1—v) lzk — z5)

Ar; |z — 25| > aj,

while the constant tip has the inverse square distance dependence (see (3.13)).
‘While the squareroot tip element does reduce overall crack error and improves
the tip accur;acy, there is a limit to the increase in accuracy that a single DDE
tip correction can provide. Aiso, siﬁce the squareroot tip correction only involves
one element, the relative importancé of the crack tip element becomes negligible
as N gets larger. One disadvantage of the crack tip element is that O(XN) influence

coeflicients must be modified.

Piecewise Linear Collocation and Higher-order DDMs

The use of higher-order DDE with more degrees of freedom than the constant
DDE is a natural choice for achieving a more accurate approximation of the crack
width. However, higher-order DDMs are more difficult to formulate and implement,
especially in higher dimensions. Also, the resulting‘linear system of equations has
different properties which can make it more difficult to solve approximately in the
case when N is very large. Nevertheless, higher-order methods can be relied upon
to yield significantly more accurate results than the ordinary PWC DDM. In the
following, the case of linear elements will be considered. The PWL DDM will be

referred to as the piecewise linear collocation (PWLC) method.
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Consider a PWL DDE of length & = 2a and lying along the z-axis from z = —a
to £ = a. Assume, for simplicity, that the shear discontinuity component is zero
and that the normal discontinuity is given by Dy(z), z € (—a,a). While (2.16)
could be used to calculate the stress at points along the x-axis resulting from an
arbitrary DDE, Crawford and Curran [5] have given expressions for the stresses
and displacements associated with a general _two-diménsional DDE (see Appendix

A.). Using the expression for o,,, the stress along the z-axis is

0yy(2,0) = WG—I/) ling ( =~ V5 ) / Tl (3.23)

By choosing to collocate stresses along the PWL element at nodal positions given by
the Gauss-Chebyshev integration points, good convergence properties are obtained

[5]. Accordingly, the linear DDE is written as
DN(LL‘) =N; (l‘)D1 + N2($)D2 (3.24)

where D;, D; are the nodal displacements and

o = (59
o = 5 (503

Substitution of (3.24) into (3.23) yields

G

Oyy(2,0) = ST [F(z,—1)D; + F(z, +1)Dy] (3.25)
where
a T 1 r—a
F(.’L’,'I’L)Z 2_a2+n\/§l:m+'2~a']n (1}—[—(1:' (3.26)

This result can then be used to construct an approximate solution of the pressurized

line crack problem. The construction of the PWLC matrix equation is detailed in

Appendix C.
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"~ An easy way to increase the accuracy of the PWLC method is to use a crack
tip element, such as (3.21), at each end of fhe crack;. The stress influence of the tip
element is given by (3'22)7 For purposes of numerical comparison, a tip element of
the same length as the linear element‘ will be used. The tip element significantly

reduces the error at the crack tip, as will be shown in Chapter 5.

Self-effect Tip Corrections for Piecewise Constant DDE

Based on the success of the crack tip element, it is clear that numerical accuracy
at the fracture tip plays an important role in the 6verall accuracy of the solution.
The strong dependence of crack width accuracy on crack tip influence coefficients
is reasonable since the influence matrix is an approximation of a Fredholm integral
operator which is singular at the crack tips. In fact, it will be illustrated that
large changes in the accuracy of the crack width solution can be achieved by simply
correcting the tip influence coefficients. In the most extreme case, only a single
number in the influence matrix, the crack tip self-effect, is changed. The correction
may be interpreted as introducing corrective stresses at the tip (or edge) elements
which reduce the crack width overestimation characteristic of the PWC DDM [27].

Modelling a crack which has a length that is not a multiple of the constant grid

of size h is also considered. This is often refered to as a fractionally mined crack.

" The Quarter-grid Correction Scheme

Using the “method of rational functions,” Ryder and Napier [27] were able to
analytically study the error associated with DDM modelling of cracklike tabular
stress problems on a uniform grid. Error analysis of the piecewise constant DDM

solution of a pressurized line crack, for constant pressure, on a constant grid of size

h indicated a quarter grid discretization error in the crack width. Using this insight,
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a correction strategy was éreated which multiplied the self-effect influence coeffi-
cients corresponding to the crack tip elements by a factor. This edge/tip correction
also supported nondiscrete positioning of the mining edges, i.e., fractional mining.
Therefore, by simpl-y correcting the edge self-effects, the numerical method could
more accurately coincide with the location of the excavation edges. This is conve-
nient since perfect alignment of tﬁe excavation with the grid is often inconvenient.
In addition to 2D crack problems, the approach was also found to be enhance the

numerical modelling of 3D excavations (see [27], [21]).

The complete definition of this correction process was given by Ryder and

Napier [27] as follows:

Prior to preparing problem input in the form of fixed-size grids, concep-
tually reduce the area mined by moving all faces inward by %-grid. Let
m be the resulting edge grid fraction mined (0 < m < 1). Numerically

increase the normalized edge self-effects by o = (1 — m)/m.

For example, for a nonfractionally mined grid with DDE of length h, reducing

the edge elements by % implies that m = %—. Therefore,

and the edge effects must be multiplied by
4
= ]_ = —
w + o 3’

i.e., increased by approximately 33%.
In general, let the grid be of length ~» and the crack tip element of length Ah.
In this case m = 3) and since m € (0,1] therefore A € (0,3]. The self-effect formula

gives

Qquarter-grid ()\) =—=-—-1 (327)
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so that the self-effect multiplier is

4

Wquarter-grid = 1+ Qquarter-grid = '3'5\'

Numerically Determined Crack Tip Self-effect Correction Schemes

The quarter-grid correction scheme was analytically derived in. order to provide
a reduction in crack width error in the case of a constant pressure distribution.
In order to find other error reducing tip element self-effect correction schemes a
numerical approach was considered. The approach used involves .solving for the
required self-effect tip correction subject to the minimization of a relevant error.
Symmetric pressure distributions with p(z) > 0 were considered which guarantees
that the stress intensity factor is nonzero (see (219)) and that a squareroot crack

tip of the form (3.14) exists.

Far-field Collocation Correction Strategy

In this case, the error of the DDE closest to z = 0 is minimized. In particular,
discretize the crack using 2V constant DDE each of length & = 2a = ¥. Let w = (1+a)
be the self-effect multiplier. Use the parametrized 2N x 2N influence matrix, A(a),
to construct the N x N influence matrix, B(«), for the positive interval z € (0, L)

(see (B.6)). Then solve (B.5) to find D, k=1,..,N. Use
Emiddle = HD;‘ - 2uy(h)|

as a measure of the error of the solution near the middle of the crack, where u, is
the height of the upper crack face given by (2§) Tn this fashion, for a given N, find.
o = ap such that E;q41e = 0. Since collocation of the solution near the middle of
the crack (far from the stress singularity) is used to determine the required stress

self-effect correction at the crack tip, this approach has been called the “far-field”
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N

5 10 20 40 100 500

Do 0.2635 | 0.2636 | 0.2623 | 0.2621 | 0.2620 | 0.2620

po(l— §) | 0.2346 | 0.2476 | 0.2546 | 0.2581 | 0.2603 | 0.2620

Table 3.1: Alpha values for the far-field correction.

correction scheme. Numerically determined o corrections are shown in Table 3.1
for constant and linearly decreasing pressure. distributions. Based on these results,

the far-field correction strategy is to choose
Ofar-fietd = 0.26

and therefore increase the tip element self-effect by 26%.

Tip Collocation Correction Strategy

The tip collocation correction is constructed like the far-field collocation cor-
rection, with the exception that the error minimized is that of the DDE closest
to the tip. Numerically determined a corrections for the tip collocation method
are shown in Table 3.2 for constant and linearly decreasing pressure distributions.

Based on these results, the tip collocation strategy is to choose
Qtip-collocation = 0.20 (328)

and therefore increase the tip element self-effect by 20%.

A Scaled Quarter-grid Correction

Unlike the quarter-grid correction, the numerically determined collocation cor-
rections do not include the fractional mining parameter A\. However, it was found

that the collocation corrections provided better accuracy than the quarter-grid cor-
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5 10 20 40 100 500

Do 0.2065 | 0.2027 | 0.2008 | 0.1999 | 0.1993 | 0.1990

po(1—%) | 0.1801 | 0.1889 | 0.1938 | 0.1963 | 0.1979 | 0.1987

Table 3.2: Alpha values for the tip collocation correction.

rection in the case A = 1. In an attempt to construct a collocation self-effect correc-

tion that included A dependence, the following scaled quarter-grid-like corrections

were constructed:

: o -grid (1)
o A — quarter-gri Cfon
far ﬂeld( ) Cquarter-grid (0) far-field

o" _grid (A
atip-collocation(A) = %atip-collocation (329)
quarter-gri

A Fractionally Mined Crack Tip Element

Consider the case of a crack which has a length that is not a multiple of a

constant grid of size h. This is refered to as a fractionally mined crack. Having

a technique, such as the quarter-grid correction scheme, that allows the accurate
modelling of a fractionally mined crack on a constant grid is very useful. In ad-
dition, the fact that the quarter-grid scheme only requires the modification of the
single crack tip self-effect influence coefficient allows the method to be generalized
to problems of higher dimensions. It would therefore be useful to develop other
correction strategies that allow fractional mining yet only require the modification
of local crack tip influence coefficients. Since crack tip self-effect correction strate-
gies were considered in the previous section, now consider constructing a crack
tip influence correction for the neighbouring element. The strategy used will be

to construct a tip element that includes an extension element for the fractionally
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mined crack part. The extension element will produce an extra contribution to
the ordinary constant DDE. By limiting the influence of the extra contribution to
the tip and neighbouring elements, a local correction is achieved. Finally, a self-
effect correction on the tip element, similar to the tip cc;llocation scheme, leads to
improved accuracy.

Consider a piecewise constant tip element of length Ah = 2Xa for 1 < XA < 2. The
“main” part of the element will be of width —D,, and length h = 2a. The “extension”
part of the element is of length (X — 1)k and lies between the main element and the
actual crack tip. The width of the extlzension element is to be determined by the
asymptotic requirement that the DDE width at the midpoints of the main and

extension elements is consistent with the scaling
|D| x vz, as z — 0. (3.30)
Specifically, the piecewise constant DDE width is chosen as
AD’.‘!; zTE (0’ (A_l)h))
iy(7) = uz(2,0-) = us(2,04) =< D,, € ((A—1)h,AR)
0, otherwise,

where

A=/ (3.31)

The main crack opening is therefore located in the = > Ah region.

Since the variable length tip element consists of two piecewise constant DDE,
the resulting induced normal stress may be calculated as the sum of two stress
contributions, individually given by (3.10). Denoting the midpoint of the main
element by z,, = (A — %)h, the midpoint of the extension element by z. = -)‘—g—lh and

the length of the extension element by h. = 2a., the normal stress resulting from
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.

Y

Figure 3.1: The fractional mining tip.

the crack tip is

oyy(2,0) = (stress from “main” element) +
(stress from “extension” element)

- (m_ = N D) " (m_ = mieEr: —azAD”) |
- _=¢ { 2 + fe A} D,

m(l—v) {(z—zm)2—a?2 (z—2.)2—a2

Using this result, the influence coeflicients for the crack tip are readily obtainable
for a particular nodal discretization, z =z, k =1,...,N.

A local tip element is then achieved by only allowing the extension element to
influence the tip element and the neighbouring element. The self-effect correction
strategy used only modifies the self-effect of the main element. The main element’s

self-effect is multiplied by

w o= 1+a()) (3.32)

CQitip-collocation

Numerical experiments suggested that when the extension element’s corrective
stresses were limited to the main element and the neighbouring element, that mod-

ification of the stress influence of the neighbouring element on the tip would also
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aid the correction. The additional corrective stress that that was chosen for the
one neighbouring DDE applied to the crack tip was

-G a
(1 —v) (z — z¢)? —aQA'

‘While this strategy is ad hoc, it is consistent with the tip collocation method when
A =1 and good numerical solutions are obtained for A € [1,2]. Also, since the tip

correction scheme affects only the nearest neighbours, the method is consistent with

the constant DDM in the limit that N — oco.




Chapter 4

A Galerkin Finite Element

Method

The Galerkin approach is to represent the crack width as the sum of basis functions
with compact support and then to use (2.16),. or the equivalent equation on (—L, L),
to construct a discrete relation between crack width and pressure. An approximate
weak solution of (2.15) may then be constructed by taking the inner product of both
sides with suitable test functions, v(z), and then integrating by parts. Specifically,

start from (2.15),

! L
ey =-Z [ g,
T Jo

dez z2—2x7?

which is equivalent to (2.16), then take the inner product with v(2’)

/()Lp(:c')v(x')da:' - / / d“;;x e

_ dmduy(w)x/ PRACICIN (4.1)
0

T Jo dx z? — g2’

Using the fact that

x4z

z—a

-+ constant,

. dz’ 1
/m—‘z—xh‘

(4.1) can be integrated by parts:

L NGy — B L3 (@) ,_v(&)
/Op(w)v(w)d$ = —/0 Yz o PR

T 0 — T

1 pL
= P—/ dm———duy(w)w{ 1 ==
T Jo dz 2z

7
z'=L
:v+x

v(z')

z'=0

32
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L '
A do(z)
/0 de ( 2z n dz’
- E /L dz /L dz’In dv(@') duy ()
2w 0 0

dz’ dz '’
where the condition that v(L) = 0 was required. Finally, written in terms of the full

x4+
Tz —x

T4z

x—1x

(4.2)

crack width, w(z) = 2u,(z), equation (4.2) becomes

L B L L
/ p(zv(z')dz' = — dm/ dz’In
0 ar Jo 0

-+

z—z

dv(z') dw(z)
dz! dx

. (4.3)

Note that while this representation is in terms of crack width derivatives, a non-
derivative formulation can also be constructed using (2.16). However, (4.3) is conve-

nient for use with the piecewise linear basis functions given in the following section.

Piecewise Linear (PWL) Basis Functions

Assume that the interval (0,L) has been partitioned by the points {xk}kN;'E)l,

where
O=zo=2,<Zp<---<TNy_i1 <IN <ZTnp1=0L
Let Ay = {z|z € (zk,zk+1)}, £ = 0,1,...,N. Note that z9 = 0 and Ay = {0} have been
introduced for notational convenience. The set of piecewise linear basis functions
will be {d)k(x)}g:l for z € (0,L). These functions will be consistent with the crack
width boundary condition
uy (L) = 0.
A suitable choice of basis functions are the hat-like functions
mg—1(T — Tk-1), T € Ag-1,

¢k(m) = mk($k+1 - .’E), T & Ak, ) k= 1)2» "')Nv (44)

0, otherwise,
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Notice that ¢(zx) =1, k =1,..., N. Accordingly, the crack solution will be approxi-

mated at {mk}szl.

PWL Basis Functions with a Crack-tip Correction

From the DDM, it is known that incorporating the square root dependence of
the width near the crack tip (see (2.5)) can lead to a significant improvement in the
accuracy of the width solution. The Galerkin approach also benefits from the use
of a special square root tip element near the crack tip. Let {qAﬁk(a:)}kNw__1 be the new

basis that incorporates the special tip. Specifically, define

i(z) = du(x), k:’;,...,NV—L (4.6)
and
my-1(z —aN-1), - FEAN_1,. -
(@) =S may/T—2)(L —an), z€Ay, - (4.7)
0, | otherwise

Matrix Equations

. N
Using the basis functions {¢(z)}p, (01' {¢k(93)} k—1) it is possible to approxi-

mate the crack width w(z) by the sum

o
w(@) ~ Y Wnda(@).
n=1

Then, by letting v(z) = ¢,(z), n =1,2,..., N, (4.3) yields the system of equations
! L L

E / da’ / doln

471' 0 0

By making the approximation

4z

z—z

dpn(z') dppm(z)
dz’ dz

L N
/0 p(@)pn(e)de = 3

(4.8)

[ se)int@rto ~ B [ onioi

] Wp, n=12,..N.
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with P, = p(z,), then (4.8) becomes the linear system of equations
| MP = SW, (4.9
where M is the N x N diagonal weight matrix,
L
0
S is the N x N stress influence matrix,

: r oL oL
Spm = ~LE—-/ dm’/ dzln
47 0 0

T+

z—z

dpn(z") dpm(z)
dx’ dz °’

(4.11)

and

P = (Pl,PQa"'y-PN)Tv

w (WI)WQ"")WN)T~

If the square root tip corrected basis functions are used, all ¢(z) functions are
replaced by ¢(z). The weight and stress matrices are calculated in Api)endix D..

Numerical results are presented in the next chapter.

Strain Energy Calculation Method

When calculating the strain energy of a half-crack, a direct approach is to
approximate (3.16). For example, this is done in the next chapter when estimating
stress intensity factors using the strain energy release rate method (see p.42). The

integral has been estimated as

Q

L L N
/0 p(z)w(z)dz /0 () (Z quﬁk(:v)) dx

k=1

N L
o~ ;p(xk)Wk/O or(z)dz

N

= > p(ak) Wi My
k=1
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where the definition of the weighting matrix (4.10) has been used. On a constant
grid, this is consistent with the midpoint rule, except for the endpoints which are

slightly different. When the tip-corrected basis functions ére used, the weighting

matrix changes accordingly.




Chapter 5

Comparison of Numerical

Methods

This chapter presents numerical results for the various crack width methods.

Relative Error Notation
The relative error of a width wi at nodal position z; is defined to be

Wp — Wexact (-’Ek:)

FE. =
s Wexact (wk)

k=1,2, ..., Nmax,

where Npax is the number of nodes for the method. The error at the crack tip will

be calculated using

Eitip = EN oy -
The error near the middle of the crack will be estimated using
Emnia = E1.
An average error is calculated using
1 Nmnx
E=g— > Bl
max n=1

The fact fact that the width methods have differing nodal numbers, N,.., and

positions should be kept in mind when comparing errors.

37
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Shortened Name Description

PWCC piecewise constant collocation DDM (ordinary DDE)
PWCC-tip PWCC with squareroot tip element (tip length = ordinary DDE length)
PWCC-QGrid PWCC with quarter-grid self-effect correction (a = %)
PWCC-far-field PWCC with far-field self-effect correction (o = 0.26)
PWCC-tip-coll PWCC with tip collocation self-effect correction (a = 0.20)
Galerkin Galerkin with {¢;}1_, basis functions

Galerkin-tip Galerkin with {¢%}X_, basis functions

PWLC piecewise linear collocation DDM (linear DDE)

PWLC-tip PWLC with squareroot tip element (tip length = linear element length)

Table 5.1: Naming conventions adopted for crack width methods.

Crack Width Results

This section presents the results of the crack width methods for comparison.
For convenience a shortened name has been assigned to each of the methods and is
shown in Table 5.1.

It is important to compare the methods fairly with respect to computational
effort. This means that methods will be compared based on the number of nodes
(degrees of freedom) that are used and not the number 'of elements. Let IV be the
number of nodes on the interval [0, L), with the exception of the PWLC-tip method
which has N — 1 nodes.

The methods are demonstrated for the constant pressure case. The accuraéy
trends that exist for this case tend to also continue for other pressure distributions
that have p(z) > 0, and therefore a nonzero stress intensity factor. For the sake 'of
brevity only the constant pressure results are presented.

The results of the ordinary element based methods (PWCC, PWCC-tip, PWCC-
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Emia (% or units of 0.01)

N
4 10 20 40 100
PWCC +6.54 +2.54 +1.26 +0.627 +0.250
PWCC-tip +4.55 +1.61 +0.778 +0.382 +0.151
PWCC-QGrid | -1.20 -0.476 -0.239 *0.120 -0.0479

PWCC-far-field | 4+0.0686 | +0.0201 | +0.00835 | +0.00371 | +0.00137

PWCC-tip-coll | +1.25 +0.482 | +0.238 -+0.118 +0.0471

Galerkin -2.29 -1.05 —0.551 "1 -0.282 -0.114

Galerkin-tip +0.548 | +0.0810 | +0.0188 | +0.00406 | +0.000357

PWLC 132 |-087 |-0519 |-0306 |-0.146

PWLC-tip +5.00 -0.109 -0.385 -0.291 -0.151

Table 5.2: Mid-crack relative errbr for width calculation methods.

QGrid, PWCC-far-field, PWCC-tii)-coll) aré plotted in Fig. 5.1 for N = 10 and Fig.
5.2 for N = 20. The low tip error of the PWCC-tip-coll method and th‘é low mid-
crack error of the PWCC-far-field method are clearly al;p.zireﬁt.l The ﬁigher-order
PWL methods (Galerkin, Galerkin-tip, PWLC, PWLC-tip) are demonstrated in
Fig. 5.3 for N =10 and Fig. for N = 20. The three relative errors, E,,;q, F, and
E, are shown in tables 5.2, 5.3 and 5.4, respectively. Note that part of the reason
the PWLC method has such a large relative error at its tip node is becauseA the .tip

node is closer to z = L than the tip nodes of any of the other methods.

Quarter-grid Methods and Fractional Mining

The quarter-grid method has already been demonstrated, for the case A = 1,

in Fig. 5.1 and Fig. 5.2, where it was compared to the other PWCC related
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Eip (in % or units of 0.01)

N

4 10 20 40 100
PWCC 1274 | 4261 | 4257 | +255 | +25.4
PWCC-tip +9.55 | +859 | +8.31 | +8.17 | 48.08
PWCC-QGrid | -114 |-11.8 |-11.9 |-120 |-12.0
PWCC-far-field | -5.06 | 5.54 | -560 |-576 | -5.81

PWCC-tip-coll | +0.878 | +0.732 | +0.0813 | -0.0130 [ -0.0989

Galerkin +3.25 +2.25 +2.22 +2.21 +2.20

Galerkin-tip +2.84 | +1.08 | +0.782 | +0.639 | +0.555

PWLC +11.7 | +11.9 | +11.9 = | +12.0 | +i2.1

PWLC-tip +6.91 | +1.08 | +0.782 | 40.639 | +0.555

Table 5.3: Crack tip relative error for width calculation methods.
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E (in % or units of 0.01)
N
4 10 20 40 100
PWCC +13.0 | +6.32 | +3.59 | +2.01 +0.917
PWCC-tip +7.04 | +3.47 | +1.98 | +1.12 +0.515
PWCC-QGrid | +4.10 | +1.95 | +1.08 | +0.586 | +0.258
PWCC-far-field | +1.34 | +0.609 | +0.318 | +0.163 | +0.0665
PWCC-tip-coll | +1.33 | +0.678 | +0.407 | +0.241 | +0.118
Galerkin +2.87 | +1.563 | +0.962 | +0.581 | +0.286
Galerkin-tip +1.29 +O.293 +0.122 | +0.0541 | +0.0196
PWLC +3.91 | 4+2.00 | +1.19 | 4+0.702 | +0.345
PWLC-tip +6.53 | +0.510 | +0.387 | +0.348 | +0.232

Table 5.4: Average relative error for width calculation methods.
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methods. It can be seen that, while the PWCC-QGrid result is clearly better than
the PWCC result, it still has around 12% relative error at the crack tip. However,
the scaled quater-grid methods, which use (3.29), do not have this property since
they are identical to the PWCC-far-field and PWCC-tip-coll methods when \ = 1.
Numerical results for the three quarter-grid related methods are shown in Fig. 5.5
for A =0.8, 1, 1.2. It should be noted that the quarter-grid correction was designed
for X € (0, %] While the two scaled quarter-grid methods are both very accurate
for A = 1 and do not produce such large tip errors as the PWCC-QGrid method,
it becomes clear for different A that the corrections do not eradicate the error. It
should be noted that, although the errors are significant for all three methods, they
are still comparable to the error of the PWCC method. Based on the evidence it
may be mildly favourable to use the 0.26 scaled quarter-grid method instead of just

quarter-grid.

Fractional Mining Tip Correction

Some numerigal results for the fractional mining tip correction (see p. 28) are
presented in Fig. 5.6 for \=1.0, 1.2, 1.5; 2.0 for N = 10. Results for the quarter-
grid method are also included for )\:1'0' and‘ 1.2. Small crack tip error for various
Ads a féature of the fractional mining tip that is not shared by the quarter-grid-
like corrections. Although the overall error is getting worse as )\ approaches 2, the
solution is still reasonably accﬁrate. However, a notable point is that good tip error

results are obtained for all the A values in the figure.

Stress Intensity Factor Estimation

This section provides stress intensity factors calculated using various numerical

" crack width methods. The stress intensity factors are estimated using both the
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Stress Intensity Factor (units of pov/7L)

N —
4 10 20 40 100
PWCC | 1.2339 | 1.2455 | 1.2494 | 1.2514 | 1.2525
PWCC-tip 1.0607 | 1.0722 | 1.0763 | 1.0783 | 1.0795

PWCC-QGrid | 0.8576 | 0.8711 | 0.8755 | 0.8777 | 0.8790

PWCC-far-field | 0.9193 | 0.9327 | 0.9372 | 0.9394 | 0.9407

PWCC-tip-coll | 0.9767 | 0.9901 | 0.9945 | 0.9967 | 0.9981

Galerkin 0.9577 | 0.9966 | 1.0093 | 1.0156 | 1.0194

Galerkin-tip 0.9549 | 0.9852 | 0.9951 | 1.0001 | 1.0030

PWLC 1.0967 | 1.1103 | 1.1153. 1.1180 | 1.1198
PWILC-tip 1.0001 | 0.9921 | 0.9923 | 0.9930 | 0.9937
Exact | 0.9682 | 0.9874 | 0.9937 | 0.9969 | 0.9987

Table 5.5: Stress intensity factors calculated using the asymptotic method.

asymptotic and energy formulations. The popular case of a pressurized crack with
constant pressure, pg, and total length 2L is considered. Since the stress intensity
factor is given exactly by (2.24), all numerical results are stated in units of pgv/wL.
Also, in addition to the methods listed in Table 5.1, the exact width at the PWCC
nodal points is used (called Exact). This “method” is used to provide a r‘easonab'le
indication of the accuracy obtainable with the particular stress iﬂtensity factor

estimation scheme employed.

Asymptotic Method

For each of the width methods, the stress intensity factor is calculated from

(3.15) using the nodal width magnitude corresponding to the nodal point closest to
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the tip. Clearly accuracy depends on having small Ey;, and being close to the crack
tip. But, as mentioned elsewhere, not all methods have tip nodes the same distance
from the crack tip. The results for the various width methods are presented in Table
5.5. The results essentially follow the tip accuracy trends encountered previously.
However, it is clear that the one-term asymptotic method is limited to about a
tenth of a percent relative error, for a reasonable number Qf elements. The most

accurate methods are PWCC-tip-coll, Galerkin-tip and PWLC-tip.

Strain Energy Method

For each of the width methods, the stress intensity factor is calculated using
(3.18). Since p = py, calculation of the strain energy is simplified. Strain energies
are calculated using the midpioint rule for the PWCC and Exact methods, Galerkin
methods use the weighting matrix approach, PWLC integrates the linear elements
exactly, and PWLC-tip is like PWLC except that the tip element coﬁtribution is in-
tegrated exactly. Numerical results shown in Table 5.6 are generally more accurate
than the asymptotic results. However, two matrix inversions are required in the
energy method compared to only one in the asymptotic case. The most accurate
methods ‘are clearly PWCC-far-field and Galerkin-tip. A partial explanation for

the less than spectacular PWLC-tip result is that the centred difference derivative

approximation uses a step size of 2h, instead of 7, and therefore limits accuracy.
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Stress Intensity Factor (units of pov7L)

N
4 10 20 40 100
PWCC 1.030776 | 1.012423 | 1.006231 | 1.003120 | 1.001249
PWCC-tip 1.019838 | 1.007790 | 1.003856 | 1.001914 | 1.000760

PWCC-QGrid | 0.993992 | 0.997600 | 0.998800 | 0.999400 | 0.999760

PWCC-far-field | 1.000166 | 1.000065 | 1.000032 | 1.000016 | 1.000006

PWCC-tip-coll | 1.005868 | 1.002349 | 1.001175 | 1.000588 | 1.000235

Galerkin 0.990800 | 0.995486 | 0.997555 | 0.998714 | 0.999463

Galerkin-tip 1.000063 | 0.999983 | 0.999989 | 0.999994 | 0.999998

PWLC 0.994618 | 0.996675 | 0.997915 | 0.998748 | 0.999389
PWLC-tip 0.999698 | 0.996063 | 0.997583 | 0.998580 | 0.999322
Exact 1.001754 | 1.000437 | 1.000154 | 1.000054 | 1.000014

Table 5.6: Stress intensity factors calculated using the strain energy method.
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Chapter 6

Conclusions

This research has addressed the comparison of DDM and Galerkin BEM for the
pressurized line crack. The construction of various tip correction strategies for

constant DDE on a grid of constant spacing was also addressed.

For the case of constant DD element discretization of a crack on a constant grid,
numerical evidence has been found which suggests that various modifications of the
crack tip element’s self-effect have the ability to significantly reduce the crack width
solution’s error. This result was known previously, and a similar modification called
the quarter-grid correction had been developed [27]. However, it has been found
that other corrections yield comparable or better accuracy. Results indicate that
increasing the self-effect by approximately 20% reduces the tip error significantly,
while an increase of approximately 26% reduces the error near the middle of the
crack. For comparison, the quarter-grid correction of Ryder and Napier suggests
a one third increase in the self-effect. It appears fhat the correction strength is
not strongly dependent of the number of DD elements or the pressure distribution.
For example, in the case of the tip collocation method (20% correction), errors are
less than half of those encountered using a squareroot tip element. It is hoped that
the method may be generalized to more complicated problems and that benefits of
the constant DD element crack problem formulation may be exploited with greater

accuracy.
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We attempted to generalize the self-effect correction method to the fractional
mining problem. Rescaled quarter-grid-like corrections were constructed which cor-
responded to the 20% and 26% self-effect increases when there was no fractional
mining. While the corrections produced results which had some favourable prop-
erties, it was found that relative errors in excess of 5% would have to be tolerated
for all the methods. Certain scalings produced better errors for different length
fractions, but only minor improvement was obtained overall.

An improved crack tip element correction was constructed for the constant
DDE, constant grid spacing fractional mining problem. The method corrects not
only the crack tip element’s self-effect but also the tip element’s stress influence on
the adjacent element and vice versa. The correction allows the fractionally mined
crack width to be calculated with errors generally much less than 3%. A notable
point is that the tip error is never much larger than 1%.

The results of higher-order Galerkin and PWL collocation (PWLC) methods
were also compared. It was found that 1‘:he Galerkin and PWLC methods produced
solutions with comparable accuracy. The tip corrected versions (Galerkin-tip and
PWLC-tip) were also comparable in accuracy. However, there was a tendency
for the tip-corrected Galerkin method to be extremely accurate in regions away
from the crack tips, e.g., with 100 nodes, the relative error near the middle of the
crack was a few 100 times less than comparable Galerkiﬁ, PWLC and tip-corrected
PWLC results. In the absence of tip corrections, the PWLC method is essentially
equivalent to the Galerkin method, on a constant grid of equal spacing, with the
exception that the Galerkin method has slightly more accuracy at the crack tip.

Finally, the methods were also used to calculate stress intesity factors using as-

ymptotic and strain energy release rate formulas. Methods that produced accurate

crack width estimation near the crack tip, naturally produced the best stress inten-
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sity factor approximations when using the asymptotic formula. The most accurate
methods in that category were the tip collocation method (constant DDE with 20%
self-effect increase) and both the Galerkin and PWLC methods with squareroot
tip corrections. When the strain energy release rate formula was used, methods
which produced the most accurate overall crack width were the most accurate.~ In
this category, the Galerkin method with a squareroot tip correction was the most

accurate, followed by the constant DDM with the 26% self-effect increase chosen

to minimize the error near the middle of the crack.
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Appendices

A. Stresses and Displacements for a DD of Finite Length |

This Appendix restates the results given by Crawford and Curran [5] with due
reference to Crouch [6].

Consider a general DDE in the zy-plane of length 2a, located along the z-axis
from —a to a. Assume, as usual, that the glastic medium is linear, homogeneous
and isotropic. If the normal and shear displacements of the DD are given by Dy(z)
and Dg(z), respectively, then all stresses and displacements in the medium can be

explicitly defined. Defining

of (z,y) 1 z
Oz T dr(l—-v) 22+ 92

Of(z,y) _ 1 y
Ay 4r(1—v) 22 + y2

the normal and shear DD contributions to the stress and displacement fields are

given by the following expressions.

Normal Displacement Discontinuity, Dy(¢)

Uy = [(1—2u)+ya] %x—)p,v(s)ds

vy = [2(1—u)+ ]/ %y)p (e)de

Ogz = 2G[ (’]9
]

Bf(a: ey)D n(e)de

)D (e)de

2[5 v;
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.DN(é‘)dE

s = 26 [ Sleme

o] ). os

Shear Displacement Discontinuity, Dg(e)

up = —2(1-v) /:1 —a—f%e’—y)Ds(e)ds

d [® Of(z—e,y)
tgy | g psteye

uy = —(1—2,/)[ WDS(EME

8 % 0f@—c)
Yo, | 5 Ds(e)de

_ [ 8 b2 ® 0f(z —e,y)
Ope = 2G _28_y+y3_yz] /_a TDs(&)dE

r 62 a o —g,
Oyy = 2G L_y_a;i]\/_ j‘%ﬂzDs(E)dE

+

_ [0 o2 e 0f(z —e,y)
Ozy = 2G _8_y +ya—y2] /_a 8—yDS(€)d€

B. Influence Matrix Simplification for the Symmetric Problem
Assume that N is even, p(z) = p(—z), and that the DDE nodal points are sym-
metrically located about z = 0, namely z; = —zny_k+1. In this case, the symmetry

of the problem implies that the DDE solution with also be symmetric about r =0,

i.e., Db = DN-#+1, Let N = 2M. Expressing (3.12) as

M M
—pk = 3 ApiDi+ Y Apa; Dy, k=1,..,M, (B.1)
J=1 7j=1
—prre = O AraniDi 4> Angraag DY, k=1,..M, (B.2)
Jj=1 Jj=1 :

use the fact that py = pry(m1-k) to rewrite (B.2) as

M M
—Pk = —P2M+1-k = ZA2M+1—k,jD§ + ZA2M+1—k,M+jD£/!+Ja k=1,.,M. (B.3)
7j=1 j=1

Adding (B.1) and (B.3) yields

M

M
~2pk = (A + Aomsi—k,g) D + Y (Arars + Azarr—knr+4) Dy . (B-4)
j=1 : j=1
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Then, express (B.4) in terms of ppryr and D)+:.

M M
1 .1 .
“PMik = 5 E (Aprk,g+ Amy1-k,5) D+ 3 E (AM, M4 + AMt1—k,M+5) D;,M‘H
=1 : i=1

M+1—
(Amtk,M+1-J + AMy1-k,M+1-7) Dy -7 4

Il
[
M=

&
I
A

(Ark, 45 + AMv1—k,M+5)

N =

M+j
Dy

[
1l
-

(Arik,M1-g + AMy1-k,M+1-7) DM+ 4

Il
N =
NE

~
i
i

(AMtr,M+5 + Abi—k,n+s) Dy’

U

N =
<
Il
-

where the fact that Df = DY+~ was used. Finally, this can be written as

M
~pk=»_Bg;Dj (B.5)
=1 :
where
1
By = 2 (Astk,Mtj + AMr—k,M+5 + Ak, M41—5 + AM41-k,M+1-5) (B.6)

is the influence matrix for the positive interval and the circumflex indicates quan-
tities on the positive z-axis, e.g., pym+r = Pr. Note that this approach works for

“appropriate non-DDM as well.

C. PWLC Matrices

This section details the construction of the matrix equation for the piecewise
linear collocation (PWLC) method.

Consider a line crack from ¢ = —L to z = L discretized with 2N PWL DDE of
equal length A = 2a = % Therefore the line crack has 4N nodal points along the
crack. Using Gauss-Chebyshev collocation point positioning, the nodes are located

at

xkz—L+a[k—%+(—1)k<\/§_1>}, k=1,2,..4N,

2
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so that

—L<.’L‘1<$2<"'<ZE2N<O<CE2N+1<--'<$4N_1<:174N<L.

Using (3.25), the normal stress at the j*" node is

2N
G
05 = Oyy(25,0) = 2r(l — v) Z [F(zjm, —1)DT* + F(%jm, +1)D5']
m=1

where D" and D3* are the nodal displacements of the m'® DDE and
Tjm = x; — (centre of m*® DDE).

Letting dj, be the nodal displacement corresponding to the node located at z;, then

the resulting 4N x 4N matrix equation is
AN
g; = ZAjkdk
k=1

where

G k
Ajk: = mF(%k, (‘1) )
i —Q
ZTjkt+a

)

and z;;; is the signed distance from z; to the centre of the element with a node at

G a k Tjk 1
= "‘1 2 Z ln
2r(1—v) {z?k a2+( ) \/_[x?k—a2+2a

T

Tijp =T; — Tk .

and

Zu=—L+ [2k—1+ (-]

Also, for the symmetric pressurized crack problem, the 4N x4/N matrix equation may

be converted to a 2N x 2N equation using the simple procedure givén in Appendix

B.
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D. Galerkin Matrices using PWL Basis Functions

This section concerns the calculation of the stress and weighting matrices, Sy,

and M,,,, respectively.

Stress Matrix, S,

In order to calculate the stress matrix, S,.,, given by (4.11), the derivatives of
the PWL basis functions ¢,(z), defined by (4.4) and (4.5), are found to be

Mp_1, Z € Ap_y,

dpn(z)

dx - —Mp, LS An7

0, otherwise,

where A, = {z|z € (zx,zk+1)}. Therefore, the stress matrix is
z+a

Spm = /dm/dlnx_x,
z+ 2’| dpn(z') dpm(z)

= dx’ dxln
47r '//;n.—l"*‘An 7n—1+Am T— x’ dx, dx

/
= f—- {mn_lmm_l/ dx'/ dz —mn_lmm/ da:"/ dz
g An—l Am—l An—-l m

dpn(z') dpm(zx)
dz’ . dz

z+a
— M M1 / dz’ / Cdr+ mnmm/ dz’ / dzr ;
n m 1 n rT—x
E/
= ?4—' {mn—lmm—lcn 1,m-1— mn—lmmcn—l m mnmm—lcn,m-——l

+mnmm0n,m}

where

a:-l—o:

Cnym = mn—/ d:v/ dzln

and

By changing variables with

!

g = zpt (Tagr — z0)7




D.. GALERKIN MATRICES USING PWL BASIS FUNCTIONS

T = ZTmA+ (Tme1 — )M

then
/
Cn,m = / d:l:// dzln T :12,
n m x - m
= @n1 = 20)(@mi1 — o >/1dn’/1dn1n G+ Com) + 1
= +1 — +1—
" " ™ i 0 0 bpm + CamT — 77/
where
Tn + Tm
anm - —7
Tn4l — Tn
by = —mIn
Tn4l — Tn
ey, = mAl T Im

Tnitl — Tp

64

There are three cases to be considered if the symmetry condition, C, ., = Chppn, is

used.

Case I (m =n): When n=m,

2z
Ann . = - >0,
Tn41 — Tn
bn = 0,
Cnn = 1;

and C,, simplifies to

2 Ann +1

2 . /
(ann) lnan'n, + (ann + 1)2 In <M) + (2ann -+ 3) hl\/ Ann + 2

1 1 /

Qnn + 1+
Comn = (Tnt1—ap) / dn’ / dyln |22 T2
] ] n—n

2 2
= (g1 — 2n)? {Mw + (amn + 1)%1n <___~/ann+ >

2 Anpn +1

+(2ann + 3) In Van, + 2}

Case II (m =n+1): In this case,




D.. GALERKIN MATRICES USING PWL BASIS FUNCTIONS 65

bom = 1,
T 1—Z

Cam = L+____L"_>0’
Tn4+l1 — Tn

and therefore

Anm + Com® + 7'
1+ CnmT] — 77/

1 1
Cn,m = (xn+1 - xn)(wm+1 - fl?m)/ d"]’/ dnln
0 0

may be integrated to yield

Cnpnt1 = %(Z‘n+1 —z) 2 {(a+c)’In(l+ (a+c)" )+ (1 +2(a+c)In(l +a+c)
—(1+a)®In(1+a) — (1 +c)?*In(l +c) +a?lna+c?lnc}

where a = ap py1 and c=cppy1.
Case IIT (m > n+1): This case requires the most general integration. However,
using the fact that b,,, > 1,

Anm T Cam™ + 77,
bnm + CnmT] — 77,

1 1
Cam = (%41 — Tn)(Tmi1 — xm)/ dn’/ dnln
0 0

_ %(xn+1 — ) {(a+?In(L + (a+0)1) + (1 +2(a+0)) In(l + a +¢)
+(+c~1)2Inb+c—1)— (b+c)?lnb+c)— (b—1)*In(b — 1)

~(1+a)?In(1+a) +b?°Inb+a’lna}

where a = anm, b = b, and ¢ = cpm-

Weighting Matrix, M,
The weighting matrix, M,,, is given by (4.10) for the case of PWL basis func-

tions. This may be simplified using (4.4) and (4.5):
i :
Muym = 6nm/ on(z)dz
0

= bum {/ [mn—l(x - 'xn—l) + 6n1] dz + / mn(mn+1 - iL')dIL'}
Ap_1 An

Tp — Tpn—-1

i 6nm {(1 - 677.1)""2— + 6711(1'77. - xn—l) +

6
- % {xn+1 — ZTp-1+ 6n1$n}

Tn41 — Tn
2
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E. Galerkin Matrices using Tip-corrected PWL Basis Functions

~

This section concerns the calculation of the stress and weighting matrices, S,

and M,,,, in the case that the tip-corrected PWL basis functions, {q@k}{c\;l, are used.

Stress Matrix, S’nm

Since the ¢ basis functions are identical to the ¢r except for the j = N case,

the stiffness matrix,

R E' L L
Spm = — / dz’ / dzln
47 0 0

will be identical to S,,, for n,m # N. Also, since Spm is symmetric, it will be

z+a
z—x

dén (z') d‘i;m (z)
dx’ dz '’

sufficient to calculate the m = N column for n=1,2,...,N.

From (4.6) and (4.7), the derivatives of the basis functions are

Myp_1, TEA_3

dcb;iw) ={ . zeA, , n=12..,N-1,
0, otherwise,
and
MN_1, r€AN_1
%j—i\;(—x) =4 —imy/EEE zeAn
0, otherwise,

Substitution into the S, expression, when n < N and m = N, yields

A B, fE T+ ' | dpn(z') dbn ()
San = 4r /0 4 /0 drln z—z'| dz’ dz
p o2 dhn) dinte)

dz’ dz

= = dx'/ “dzln -
AT JA i +An An-1+An T—x

!

= i {mn—lmN—lc —1,N—1 — Mp_1MNCro1, v — Mpymy_1Cn,n—1

+mnmNC'n,N}
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where Cy,, is as before and

A R 1 L—-
Cn,n =CNpn = 5/ d-’f’/ dl’\/ L X 1n
An AN -z

In the case n =m = N,

z+
z—x'|

Snn = = {mN—lmN—ICN—l,N—l —2my_imnyCn_in + mNmNCN,N} )

where

z+z
z—a'|

= 1 L—fL‘N
Cnn= —/ da:'/ dz In
ML e s VI - X - 2)

The C’n ~ integral may be solved. Changing variables and separating the loga-

rithm,
R (Zn41 — 2 )(L — zN) /1 , /1 1. |Gan +cann+ 0
C, = d dn(1 — z2ln
N 2 0 g 0 77( n) bon tennn— 1
T —zp(L—x
= ( ntl ;)( N) {Nn,N - Dn,N} )

where a,n, b,y and ¢,y are the same as in the previous section and

1 1
Non = / dn’/ dn(l - 77)_% In(ann + cnnn + 1)
0 (]
: } 1 1 L
Dn,N = / d’)’]// dT](]. —'l’])_'ilnlbnN"'anT]_n,l
0 0
It follows that
Non = 2 4c ltare tnh_ ate tanh_l -
3 c l4+a+c a+c

1+a

+(3a+20)1n< )+3ln(1+a)—7},

and
_ 2 b+a—1 1 [ b+c 1 c
Dngl‘fvl - _5{ l( ) tanh ™" b+c—1 ( ) tanh b+c}
+(3b+ 2¢) In ( 1) —3In(b —1)+7},

14 1 2
DN-—l,N = —E +4\/§tanh_ (\/§> — g
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where a = a,n, b= b,ny and ¢ = ¢,y are shortened notations.
‘While the C’N, n~ integral has not been solved exactly, it may be simply approx-

imated. Introducing a change of variables,

Cnn = l/ da’ de L—zyn x4+
’ 4 Jan An (L-2)YX—-z) |z—2
(L—fL‘N)Z/1 //1 , -1 [GNN+77+77']
= I gy | dn[(1 =) 1 —n)] i n SN TN
1 A | (1 =7n")(1—mn)] = |’
where
a _ 2£L'N
NN——L_xN-

Notice that ayy > 1 when N > 1. Rewriting the C_’N,N integral as

—zN)? ! ’ ! ! -3
e = =L [y [Cana-mya -

7
{ln [1+n+n]+lnaNN—ln|n—n’|}
aNN
L —zy)?
= (TN){FI +P2—F3}

with

r, = /Oldn’/oldn[(l—n')(l—”)]ﬁéln[1+77a—1:1:7,]’

1 1 1
r, = / anf / dn[(1 = 7)1 =) naww,
0 0

!
[4¢]
I

1 1 ;
@ [ anta =) —my i~
straightforward integration yields
FQ = 4]II(INN

and

'3 =8n2—-12.

Using the expansion

1 1 1 ‘1
1n(1+:1:)=:z:—§z2+—x3——:r4+—w5—

3 4 5
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in the integrand of the I'y integral, an approximation can be generated for large
ANN:

16 176 4=2 256 a3 7808 o

I = Fain— g5 %N T 53O ~ Tprsoan +

346112 J 9029632 a4 1507328a_7 +0(a38)
51975 NN T 945945 “NN T 105105 NN NN

In practice, it was found that seven terms of the series were sufficient to approximate

I'; to six significant figures, assuming a constant grid and N > 5.

Weighting Matrix, M,m
The diagonal weighting matrix, ]\anm, corresponding to the qAﬁk basis functions,

is identical to M,,,,, for n < N. The M ~vn element is given by

L
MNN = /0 (iN(ZC)dil,'

/ (:c—:ch)d+/ [ L—=x
An-1 \TN —ZN-1 AN —xN

= M+§(L_wN)

2




