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Abstract 
This thesis gives a detailed discussion of Melnikov's method, which is an analytical tool to 
study global bifurcations that occur in homoclinic or heteroclinic loops, or in one-parameter 
families of periodic orbits of a perturbed system. Basic results of the Melnikov theory relat
ing the number, positions and multiplicities of the limit cycles by the number, positions and 
multiplicities of the zeros of the Melnikov function are proved. We then give several examples 
to illustrate the theory. In particular, we use the Melnikov theory to study the exact number 
of limit cycles in the Bogdanov-Takens system with reflection symmetry. We then extend the 
first-order Melnikov theory to higher-order and establish some results relating the number, po
sitions and multiplicities of the limit cycles by the number, positions and multiplicities of the 
zeros of the first non-vanishing Melnikov function. Next, we derive a formula for the second-
order Melnikov function for certain perturbed Hamiltonian systems using Franchise's recursive 
algorithm. Finally, this formula is applied to an example. 
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Introduction 

Bifurcation analysis is the study of the changes that occur in the structure of solutions of 

differential equations as parameters are varied. For example, consider parameterized families 

of ordinary differential equations 

i = /(x,/i), x £ 3 ? N , ( 1 ) 

depending on a parameter fj, 6 3? (or on several parameters fi E SR"), where / depends smoothly 

on x and /i. Let us denote the solution to the initial value problem consisting of ( 1 ) and the 

initial condition x(0) = xo by x(t) = <p(t, XQ, U). A S we vary //, phase portraits (collections 

of solution curves x(t) in W1) of ( 1 ) 'look pretty much the same' except perhaps at certain 

values of /i where there is a qualitative change in the phase portrait. These values are called 

bifurcation values. There are mainly two types of bifurcation: local bifurcation and global 

bifurcation. Local bifurcation is the study of qualitative changes in phase portraits that take 

place in a neighbourhood of a point. For example, saddle-node, transcritical, pitchfork and Hopf 

bifurcations are local bifurcations. Bifurcations that are not local are called global. Examples 

of global bifurcations are heteroclinic (or homoclinic) bifurcations and saddle-node bifurcations 

of cycles. Global bifurcations can be more complicated than local bifurcations, and some are 

not completely understood at present (e.g. global bifurcations in the Lorenz system). 

Before going further, we introduce some important types of orbits that can occur in systems 

( 1 ) : equilibrium points, periodic orbits, homoclinic orbits and heteroclinic orbits. 

A point XQ is an equilibrium point of ( 1 ) if (j)(t,xo,fi) = XQ for all t. In other words, XQ 

corresponds to the intersections of ( 1 ) with x — 0. 

A periodic orbit of ( 1 ) is any closed solution curve which is not an equilibrium point. Closed 

solution curves correspond to periodic solutions, since 4>(-,XQ,II) defines a closed solution curve 

if and only if for all i 6 fi, <fi(t + T,xo,n) = <f>(t,xo,n) for some T > 0 . The smallest T for 

which the above equality holds is called the period of the periodic orbit 4>(-,XQ, fj,). 
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We call an equilibrium point or a periodic orbit F stable if for each e > 0 there is a neighbourhood 

U of T such that for all XQ G U and t > 0, we have dist((f)(t, xo,n),T) < e, where x(t) = <f>(t, XQ,fi) 

is the solution of (1) satisfying the initial condition x(0) = XQ. A periodic orbit V is called 

unstable if it is not stable. We call T asymptotically stable if it is stable, and for all points XQ 

in some neighbourhood V of F we have 

lim dist((j)(t, XQ, / i ) , T ) = 0 . 

Before talking about homoclinic and heteroclinic orbits, we define the stable and unstable 

manifolds of an equilibrium point. The stable manifold of an equilibrium point po is the set 

Ws{p0) = {x0\ <f>(t, x0,n) -> po as i - » o o } , 

and the unstable manifold of po is the set 

W"(Po) = {zo| <p(t,x0,iJ,) -+po ast^-oo}. 

A point q is a homoclinic point for (1) if there is an equilibrium point po / q such that 

q G VFs(po) n ^"(po), where Ws(po) and ^"(po) are the stable and unstable manifolds of 

Po- The orbit of a homoclinic point is called a homoclinic orbit. Thus, a solution curve T is 

a homoclinic orbit if and only if T C Ws(pa) fl Wu(po). In other words, the solution curve T 

approaches po both as t —> oo and as i —)• —oo. 

A point r is a heteroclinic point for (1) if there are two distinct equilibrium points po 7̂  r , 

go 7̂  r such that r £ Ws{p0) n Wu(<?o) (or VTs(qo) H W(p0)). The orbit of a heteroclinic point 

is called a heteroclinic orbit. A solution curve T is a heteroclinic orbit if T C Ws(po) n Wu(qo), 

i.e., the solution curve V approaches po as t - » 00 and approaches go as t —> —00. 

Periodic, homoclinic and heteroclinic orbits play an important role in the thesis. We study 

perturbed Hamiltonian systems in the plane, of the form 
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where H(x, y) is the Hamiltonian function, f(x, y, e, /i) and g(x, y, e, u) are functions depending 

smoothly on x,y,e,fi, /x = (/if,... , / i n ) 6 5?" and e is a small perturbation parameter. We 

make two assumptions. The first assumption is that for e = 0, the system (2) has a continuous 

one-parameter family of periodic orbits. Th of period Th with parameter h belonging to an 

interval / C fi equal to the total energy along the orbit. The second assumption is that for 

e = 0, the system (2) has a homoclinic orbit To to a hyperbolic saddle point XQ. If we add 

some small perturbations (i.e. make e ̂  0 but small), what is the behaviour? For example, will 

the homoclinic orbit persist under perturbation and if so, for which parameter values? Will 

the homoclinic orbit break as we pass through some parameter values? How many of the limit 

cycles from the continuous family of periodic orbits are still preserved under perturbation? To 

answer these questions, we employ Melnikov's method, a global perturbation method due to 

Melnikov [15] and others, which gives us an excellent tool to study the global bifurcations that 

occur at homoclinic (or heteroclinic) loops or in a one-parameter family of periodic orbits of 

perturbed system. 

To apply Melnikov's method, we need to compute two quantities: 

1. The Melnikov function along a periodic orbit, which is used to prove the existence of 

periodic orbits in system (2) for small e. 

2. The Melnikov function along a homoclinic (or heteroclinic) orbit, which is used to prove 

the existence of homoclinic (or heteroclinic) orbits in system (2) for small e. 

The Melnikov function along a periodic orbit is very similar to the Melnikov function along 

a homoclinic orbit. You may ask: Is it always possible to compute the Melnikov function 

(along the periodic orbit) for system (2)? The answer is no but in many useful cases (as in 

our examples), the Melnikov function can be either computed explicitly or expressed as a linear 

combination of complete elliptic integrals. Although the computation of the Melnikov function 

can be somewhat technical, the benefits are great: we can determine the number, positions 

and multiplicities of limit cycles of (2) by the number, positions and multiplicities of the zeros 

of Melnikov function. If the Melnikov function of (2) is identically equal to zero across the 

continuous band of periodic orbits, a higher-order analysis is necessary. 
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The Melnikov type functions first appear in the 1890 paper [16] by H. Poincare, in the 1963 

paper by V. Melnikov [15], in the 1964 paper by V.I. Arnold [2], in the book by A.A. Androdov 

et al. [1]. It also is given in textbooks, such as the one by Guckenheimer & Holmes [11]. It is 

therefore difficult to pin down the origins of Melnikov's method. It suffices to say that the idea 

of computing the displacement function, as well as its partial derivatives with respect to pa

rameters in terms of certain functions along periodic orbits, was used by many mathematicians 

working on the theory of dynamical systems at various times during the past 100 years. 

The thesis is organized as follows: In Chapter 1, we derive the (first-order) Melnikov function 

along a periodic orbit. We then prove several theorems concerning the exact number, positions 

and multiplicities of limit cycles of (2). We then derive the Melnikov function along a homoclinic 

orbit and give a theorem which guarantees that a unique homoclinic orbit for (2) exists for some 

parameters /z. In Chapter 2, we give several examples to illustrate the versatility and power of 

Melnikov's method. The examples are worked in the context of normal forms [11, p. 365-376] [8, 

p. 54-83]. In some of the examples, the Melnikov function can be computed explicitly, while in 

other examples the Melnikov functions are expressed as linear combinations of complete elliptic 

integrals. We analyze the two-parameter system 

x = y 
y = (j,ix + n2y ±x3 - x2y, 

where (x,y) G fi2, (jui,/i2) G fi2, studied by Takens [23] in his well known 1974 paper. In 

Chapter 3, we extend the first-order theory to higher-order. In particular, we use Frangoise's 

recursive algorithm [10] to give us a formula for the second-order Melnikov function for certain 

perturbed Hamiltonian systems in fi2. Finally, in Chapter 4, I give an example in which 

the first-order Melnikov function is identically equal to zero and so a second-order analysis is 

required to determine the number and positions of limit cycles. 
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Chapter 1 
First-order Melnikov theory 

1.1. In t roduct ion 

We introduce Melnikov theory in this chapter. With this theory we are able to determine 

global bifurcations that occur in perturbations of one-parameter families of periodic orbits, or 

of homoclinic or heteroclinic orbits. Assuming that when e = 0, the system (2) has a one-

parameter family of periodic orbits, can we determine which periodic orbits are still preserved 

under perturbation? Finding the zeros of the Melnikov function, which is defined in Section 

2, can allow us to do that. Therefore, a difficult global bifurcation problem is reduced to 

a reasonably straightforward computational problem. In Section 2, we derive the Melnikov 

function for (2) and show that in simple cases the periodic orbits correspond to zeros of the 

Melnikov function. This is a standard result. See, for example, Guckenheimer & Holmes [11] 

or Andronov et al. [1]. We then present a more general theory relating the multiplicities of 

periodic orbits to the multiplicities of the zeros of the Melnikov function, using the Implicit 

Function Theorem [19] or the Weierstrass Preparation Theorem [1, p. 388]. 

1.2. Der i vat ion of the first-order Me ln i kov funct ion 

In this section, we derive a formula for the first-order Melnikov function for system (2). We 

assume that the functions f(x,y,e,fi) and g(x,y,e,/j,) in (2) depend smoothly on x,y,e,fi. 

Following Guckenheimer and Holmes [11, p. 184-188], we make the assumptions: 

Assumption 1.1 For e = 0,Jthe system (2) has a homoclinic orbit VQ : x — 70(i), —00 < t < 
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oo at a hyperbolic saddle point XQ. 

Assumption 1.2 For e — 0, the system (2) has a continuous one-parameter family of periodic 

orbits Th : (x,y) = (xh(t),yh(t)) = lh(t), 0 < t < Th of period Th with parameter h e / C fi 

equal to the total energy along the orbit. 

We are interested in knowing which periodic solutions give rise to periodic solutions after 

perturbations. For that purpose we consider a curve E normal to the family Th, parameterized 

by the value of h for the level curve of the Hamiltonian function H(x, y) = h, and we calculate 

the Poincare return map1 P(h, e, u) for initial values h in an open set of S. We assume that 

the return map P(h,e,u) is well-defined on an open set U containing / x {0} x fi™. Then the 

displacement function 

is also well-defined on U, and zeros of the displacement function d(h, e, /z) correspond to periodic 

solutions (see Figure 1.1). Let us call ThtCifi : (^^(i),2/^^(4)) = 7/i,e,/x(*) the trajectory of 

the system (2) starting at h on E. Then 

1 The Poincare return map P(h,e,fi) is a mapping from S into itself. More explicitly, P(h,e,fi) is the 
value of the Hamiltonian function at the point where the trajectory of (2) first returns to S after starting 
from the point on S where the value of the Hamiltonian function is h. A periodic orbit corresponds to 
a value of h such that P(h, e, n) — h. 

d(h, e, fi) = P(h, e, /i) — h (1.1) 

+ 9(^,£,M(i)'^,liW,0,/i)^-(x/l!£)M(t),yfei£)M(t)) dt + 0{e2), (1.2) 
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£=0 

Figure 1.1: Illustration of the Poincare map. 

where we have expanded / and g in their Taylor series in e, and T(h, e, /*) is time it takes the 

trajectory I\)(£>AX to first return to. S. Formula (1.2) is exact but involves the orbit I \ £ J J of 

the perturbed Hamiltonian system (2), which we do not know explicitly. However, for small 

e > 0, the orbit of (2) differs only slightly from the closed orbit I\ (for (2) when e = 0). 

Therefore, we approximate by the closed orbit J?/, in order to find an approximation to 

formula (1.2). Using the smoothness of r/,)£)il with respect to the parameter e, we have 

T(h,e,fi) = Th+0(e), 

where T n is the period of the unperturbed closed orbit I\, and 

xh,tJt) = xh(t) + 0(e), yh,^{t) = yh(t) + 0(e), 

where (Z/I(*),2/A(£)) are the coordinates of IV Thus we see that Th,e,n lies in an 0(e) neigh

bourhood of 17/, and therefore tends to the closed orbit IV as e 0. This justifies the following 
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first-order approximation to formula (1.2): 
rT, f±h [ dH 

d(h,e,n) = e f(xh(t),yh(t),0,n) — (xh(t),yh 

dH 
+ g(xh (t),yh(t),0,fi) — (xh (t), yh (t)) 

= e f h[-f(xh(t),yh(t),0,n)yh(t) 
Jo 

+ g(xh(t),yh(t),0,n) x\(t)\ dt + O(e2), 

(*)) 

dt + 0{e2) 

since xh(t) = dH/dy(xh(t),yh(t)) and yh(t) = -dH/dx(xh(t),yh(t)). Now,.making change of 

variables 

dxh(t) = x'h{t) dt, dyh(t) = y'h(t) dt, 

and using our earlier notation 

Th : (x,y) = (xh(t),yh(t)) = jh(t), 0<t<Th 

for the closed orbit of the unperturbed Hamiltonian system (2), we have 

d(h, e,fi) = e f (g{x, y, 0, n) dx - f(x, y, 0, u) dy) + 0(e2). 

This leads to the following definition of the Melnikov function M(h,fi), which determines the 

displacement function d(h, e, u) to 0(e). 

Definition 1.1 Assume that Assumption 1.2 holds for all h £ I. Then 

d(h, e, n) = e M(h, u) + 0(e2) 

as e —> 0, where M(h,n) is the (first-order) Melnikov function for (2) given by 

M(h, n)= <b (g(x, y, 0, n) dx - f(x, y, 0, /*) dy). (1.3) 

Remark 1.1 For computational purposes, it is useful to write the Melnikov function M(h,/j,) 

as 
rTh r ftw f)H 1 

dt. M(h,v.)= / 
Jo 

f (xh (t) ,yh(t),0,ii) ~Q^(xh (*), Vh (*)) + g(xh (t), yh (t), 0, a) — (xh (t), yh (t)) 

(1.4) 



1.3. First-order Melnikov theory 

In Section 1, we know that the limit cycles correspond to the zeros of the displacement func

tion, and that the first-order contribution (in e) to the displacement function is essentially the 

Melnikov function. In order to show that limit cycles correspond to the zeros of the Melnikov 

function, and to know more 'information' about the limit cycles (i.e. uniqueness, etc.), we need 

to assume some non-degeneracy condition. For example, the simplest is ^(ho,/j,o) 7̂  0, in 

which case we can apply the implicit function theorem to obtain a unique, hyperbolic limit 

cycle for small e. This result will be proved in this section. But before doing that, we need to 

define hyperbolicity and multiplicity of limit cycles. 

A limit cycle Th is hyperbolic if 

dP 
^ ( W ) ^ i , 

where P(h, e,p) is the return map in Section 1.2, and h is the point on S where Th intersects. 

Hyperbolicity is important since it tells us about the stability of the limit cycles. For example, 

if 0 < tj£(h,e,(i) < 1, then the limit cycle is stable. If §£(/i, e,/i) > 1, then the limit cycle is 

unstable. We call a limit cycle non-hyperbolic if it is not hyperbolic. A non-hyperbolic limit 

cycle tells us nothing about the stability of the limit cycle (since linearization is not sufficient 

to determine stability). 

A limit cycle Fh is called a limit cycle of multiplicity k if 

dd d(k~^d 
d(h,e,fj.) = —(h,e,fi) = ••• = ^ - 1 ) CM,l*) = °> 

and 

If k = 1, then is called a simple limit cycle. We now prove a Theorem [1] giving the simplest 

conditions under which the perturbed Hamiltonian system (2) has a unique, hyperbolic limit 

cycle. 
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Theorem 1.1 Assume that Assumption 1.2 holds for all h G I. If there exists a ho E I and a 

fj-o G 3?n such that 

M(ho,no) = 0 and ^(/i 0,/io) / 0, 

then for all sufficiently small e ̂  0, the system (2) has a unique, hyperbolic limit cycle T e which 

tends to the periodic orbit when e —» 0. 

Proof: Under Assumption 1.2, d(h,0,fi) = 0 for all h G I and fj. G 3?n. Define the function 

d(h,e,iM)) if e ^ 0 

[ f (M,Mo) ife = 0 

so that 

d(/i,e,/i0) = eF(M). (1-5) 

By Definition 1.1, we have 

F(h,e) = M(h,iA0) + O(e). 

Thus, 

F(h0,0) =M(/»o,/i 0) = 0, 

and 

- ( V O ) ^ — ( ^ , . 0 ) ^ 0 . 

Then, by the implicit function theorem [19], there exists a 5 > 0 and a unique function h = h(e), 

defined for |e| < 5, such that h(0) = ho and F(h(e),e) = 0 for all |e| < 5. It follows from the 

above definition of F(h,e) that for sufficiently small e, d(h(e), e, zi0) = 0 and for sufficiently 

small e ^ 0, dd/dh(h(e),e,iJ,o) / 0. Therefore, for sufficiently small e / 0, there is a unique 

isolated limit cycle F£ of (2) cutting the section S at the point /i = h(e). Using (1.1), and the 

fact that dd/dh(h(e),e,/j,o) i1 0, it follows that dP/dh(h(e), e, /in) 7̂  1 and so the limit cycle Te 

is hyperbolic. Since h(e) = ho + 0(e), this limit cycle tends to the cycle Th0 as e —>• 0. • 
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In a more degenerate situation, for example, if M(/in,/io) = dM/dh(ho,Ho) = 0, then assuming 

d2M/dh2(ho,/j,o) ^ 0 and dMjd\i\(ho, /in) ^ 0, we can use the Weierstrass preparation theorem 

to obtain a unique non-hyperbolic limit cycle of multiplicity two for e ̂  0. This result will be 

proved next. 

Theorem 1.2 Assume that Assumption 1.2 holds for all h G I. Then if there exists a ho £ I 

and a / J O € S" such that 

M(h0,no) = ^-(ho,f-o) = 0, 

d2M dM 
-^2-(/i0,Mo) ^ 0, — (h0,fJ.o) ^ 0 

for some j = 1,... ,n, it follows that for all sufficiently small e, there are functions h(e) = 

ho + O(e), n(e) = /xrj + O(e) such that for sufficiently small e ̂  0, the system (2) has a unique 

non-hyperbolic limit cycle of multiplicity two which tends to the periodic orbit T/i 0 as e —> 0. 

Proof: First we let no = (/i?,/i2? • • • ,/^n)- Without loss of generality, we assume that j = 1 

(i.e. dM/dpi(ho,no) / 0). Under Assumption 1.2, d(h,0,n) = 0 for all h G I and /x £ W1. 

Define the function 

f ife^O 

{ fe(h,0,fi) ife = 0 

so that 

d{h,e,n) = eF(h,e,ii). (1.6) 

Also, 

F(h0,0,no) = M(ho,Ho) = 0, 

dF 8M 
— (ho,0,no) = -Q^(ho,Ho) = 0, 

d2F d2M 
-^2-(/jo,0,/io) = -^"(^0 , / io ) ^ 0, 
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dm dm 

Therefore, by the Weierstrass preparation theorem [1, p. 388, Theorem 69], there exists a S > 0 

such that 

F(h,e,n) = [{h-ho)2 + A1(e,n){h-h0) + A2(€,n)]^(h,e,fi), (1.7) 

where Ai(e,fi), A2(e,/i), and $(/i,e,/i) are defined for |e| < S, \h — ho\ < 6, |/i — /in| < S; 

Ai(0,/i0) = A2(0,/i0-) = 0, $(/i0,0,/i0) 7̂  0, and f^f(0,/i0) ± 0 since ^(/i0,0,Mo) # 0. It 

follows from (1.7) that 

dF 
— (h,e,ii) = [2(h-ho) + Ai(e,n)]$(h,e,n) 

<9<I> 
+ [{h-h0)2 + A1{e,n)(h-h0) + A2(e,n)] — (h,e,fi), (1.8) 

and 

<92F 9$ 
-^(h,e,n) = 2^{h,e,ti) + 2[2(h-h0)+A1(e^)] — (h,e,li) 

+ [(/» - /i0) + Ai(e, /*)(/i - /*,) + A2(e, »)}-Qtf(h, ^ A*)- (1-9) 

If 2(/i-/&0) + Ai(e,/z) = 0 and (/i - h0)2 + ^i(e, n)(h - h0) + A2(e, /i) = 0, it follows from (1.7), 

(1.8) and (1.9) that (2) has a multiplicity two limit cycle. Therefore, we set h = ho — Ai(e,/i)/2 

and find from (1.7) that F(ho — A\(e, fi)/2, e, /x) = 0 if and only if the function 

B(e,fj,)^-i^(€,/i)+A2(e,/i) = 0 

(since, by continuity, e,/i) / 0 for small |e|, |/i — /io|, |/J —• /̂ o|)- Now, 

5(0,/i0) = -|A?(0,/x0) + A2(0,/i0) = 0 

(since Ai(0,/io) = A2(0,/xo) = 0) and 

f̂ -(0,/io) = f^(0,/i0) 7̂ 0 (9/ii 9/ii 

(since 8F/diJ.i(ho,0,/io) 7^ 0). By the implicit function theorem, there exists a (5 > 0 and a 

unique function /ii = /ii(e,/i2,... ,/in), defined for |e| < S, | / i 2 — / i 2 | < 5, . . . , | / i n

 —Mnl < >̂ s u c n 
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that/x? = m(0,(4,... ,/z°) and5(e,/ii(e,/i2,... , Mn), M2, • • • ,/in) = 0 for |e| < 6, \/J,2~l4\ < ^ 
• • • , | / i n - A*nl < 5 - F o r l e l < w e d e f m e A * ( € ) = (A*l_(e, A*°> • • • . A *n ) . A * 2 . " - i A * n ) - T h e n > 

ii(e) = /io + 0(e) and (2) has a unique multiplicity two limit cycle T£ through the point 

h(e) = h0-A1(e,fi(e))/2 (1.10) 

on S. Using (1.6) and the fact that dF/dh(h(e),e, fi(e)) — 0 with h(e), fi(e) defined above, 

we have dd/dh(h(e),e,[i(e)) = 0. Now, using (1.1), we immediately get dP/dh(h(e),e,/i(e)) = 

1 and so Te is non-hyperbolic. Finally, by continuity with respect to initial conditions and 

parameters, it follows that Te tends to the cycle Th0 as e -> 0 since Ai(0,/in) =0. • 

Remarks 1.1 1. The proof of Theorem 1.2 in fact establishes that there is an n-dimensional 

surface /ii = /ii(e, 112, • • • ,lin) through the point (0,/in) € $ln+1 on which (2) has a non-

hyperbolic multiplicity-two limit cycle for sufficiently small e ^ 0. On one side of the 

surface where B(e,p.) < 0, the equation F(h(e),e,u) = 0 with h(e) given by (1.10) has 

two real solutions given by 

and on the other side where B(e,fi) > 0, F(h(e),e,/i) has no real solution; i.e., system 

(2) has two limit cycles if B(e,[i) < 0 and no limit cycle if B(e,fi) > 0. It follows from 

(1.8) that if h±(e,fi) are given by (1.11), then dF/dh(h±(e, fi),e, fi) ^ 0 respectively. 

Using (1.6), we have dd/dh(h±(e,fi),e,n) ^ 0. Now, using (1.1), we immediately get 

dP/dh(a±(e,/z),e,/i) ^ 1; i.e. system (2) has two hyperbolic (unstable or stable) limit 

cycles if B(e,fi) < 0. Therefore, the system (2) experiences a saddle-node bifurcation 

of periodic orbits as we cross this surface (see p. 22 for a description of saddle-node 

bifurcation). 

2. IfM(h0,ii0) = dM/dh(ho,ii0) = ••• = d^M/dh^^tio) = 0, d^M/dh^(h0,p0) ^ 

0, dM/d/ij(ho,fio) ^ 0 for some j — 1,... ,n, then it can be shown that for sufficiently 

small e ̂  0, the system (2) has a unique non-hyperbolic limit cycle of multiplicity k which 

tends to the periodic orbit Fh0 as e —> 0. 
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3. If d^M/dhW(h0,no) = 0 for all k — 0,1,2,..., then dd/de(h,0, fi0) = 0 for all h e I 

and a higher-order analysis in e is necessary in order to determine the number, positions, 

and multiplicities of the limit cycles for small e ̂  0. This type of higher-order analysis is 

discussed in Chapter 3. 

Besides the global bifurcation of periodic orbits from a continuous band of cycles, there is 

another type of global bifurcation that occurs in systems in fi2, namely, the homoclinic loop 

(or heteroclinic loop) bifurcation [11, 24]. The Melnikov theory for (2) also gives us explicit 

information on this bifurcation. 

Similar to what was done before, it can be shown (see Wiggins [24] for more details) that the 

distance d(e,fi) between the saddle separatrices Ts

e^ and r £ / i of (2) along a section £ to the 

homoclinic orbit To (in Assumption 1.1 above) at the point 70 (0) = an satisfies (see Figure 1.2) 

d(e,fi) = eM(/z) + 0(e 2), 

where 

M(/x) = ^^( 7 o(*),0, / i)^(7o(*)) + /(7oW,0,A*)^(7o(*))) dt (1.12) 

is the Melnikov function for (2) along the homoclinic orbit To: (xo(t),yo(t)) — jo(t), —00 < 

t < 00. From (1.4) and (1.12), we see that the Melnikov function along the periodic orbit 

is very similar to the Melnikov function along the homoclinic orbit To- The following theorem 

[24] gives us conditions under which the system (2) has a unique homoclinic orbit. 

Theorem 1.3 Under Assumption 1.1, if there exists a fiQ G fi™ such that M(/J,Q) = 0 and 

!^-(/io) 7̂  0, then for sufficiently small e^O, there is a function fi(e) — //n + 0(e) such that the 

system (2) has a unique homoclinic orbit Fe which tends to the homoclinic orbit TQ as e —> 0. 

Proof: Under Assumption 1.1, d(0,n) 

F{e,u) 

= 0 for all fx € fi™. Define the function 

' 4Ml i f e ^ o 

k f(0,/i) if 6 = 0. 
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£ = 0 

Figure 1.2: The displacement function d(e,/i) defined for e near 0, near a homoclinic orbit. 

Also, 

F(0,/i 0) = M(/io) =0, 

0M 
—-(0,/xo) = ^—(Mo) 7̂  0. 

By the implicit function theorem, there exists a 8 > 0 and a unique function m = A*i (e, H2, • • • , (J>n) 

such that /i? = //!(0,/i2, • • • , M n )
 a n ( i F { e ^ i ( e ^ 2 , • • • ,Vn),V2> • • • , M n ) = 0 for all |e| < 5, 

\H2~ l4\ <S, . . . ,\Hn - M n l < F o r l e l < <*> w e d e f i n e Me) = (A*l(e»A*2>-- - , M n ) » ^ 2 ' - - - i/O-

Then, /j(e) = /in + 0(e) and (2) has a unique, homoclinic orbit F£. It then follows from the 

uniqueness of solutions and from the continuity of solutions with respect to initial conditions 

that the homoclinic orbit Te tends to To as e -> 0. • 
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Chapter 2 
Applications of first-order Melnikov theory 

In this chapter, we give two examples to illustrate the usefulness of the Melnikov theory de

veloped in Chapter 1. The first example is the (2n + l)-th degree perturbed non-hyperbolic 

linear centre. The problem is determine the maximum number of limit cycles. To study this 

analytically, we compute the Melnikov function. The number, positions and multiplicities of 

the zeros of the Melnikov function is related to the number, positions and multiplicities of the 

limit cycles using Theorem 1.1 or 1.2. This example generalizes Theorem 76 in [1, p. 414]. The 

second example is the Bogdanov-Takens bifurcation with reflection symmetry. This occurs in 

the family of vector fields equivariant with respect to rotation by 7r in the plane which have an 

equilibrium with a double zero eigenvalue. The normal form of this bifurcation is 

x = y 

y = n\x + + ®x3 + bx2y, (o^O, b^O). 

This was first proved independently by Bogdanov [6] and Takens [23]. We study the system 

in a neighbourhood of parameter space near (/zi,/Z2) = (0,0), with emphasis on proving the 

existence of periodic orbits, homoclinic or heteroclinic orbits corresponding to different values 

of the parameters. 

2.1. Perturbed linear centre 

In this section, we use the Melnikov theory developed in Chapter 1 to study the number, 

positions and multiplicities of the limit cycles that occur in a (2n + l)-th degree perturbed 

non-hyperbolic linear centre of the form (2.2). One reason this example is of particular interest 

16 



is that it is useful in the study of Hilbert's 16th problem, which asks for an upper bound on 

the number of limit cycles for nth degree polynomial systems in terms of the degree n [12]. For 

n = 1, the maximum number of limit cycles is 0 since linear systems do not have any limit 

cycles. However, even for the simplest class of nonlinear systems (i.e. n = 2), the maximum 

number of limit cycles has not yet been determined [4, p. 283-284]. There are quadratic systems 

with as many as four limit cycles [20]. However, for a perturbed non-hyperbolic linear centre 

of the form 

x = y + ef(x, y, e) 
y V 1 (2.1) 

V = .-x + egix^^), 

where / and g are polynomials of x, y with coefficients depending smoothly on small e, some 

useful results concerning the maximum number of limit cycles have been obtained [5, 21, 26]. 

Bautin [5] proved that the maximum number of limit cycles in a quadratically perturbed non-

hyperbolic linear centre is three. He also proved that this maximum number can only be 

attained in a sixth- or higher-order analysis in e. That is, the &th-order Melnikov function, 

where k > 6, has at most three zeros. However, when n = 3 (i.e. a cubically perturbed linear 

centre), we still don't know the maximum number of limit cycles. We just know that this 

number is at least 11 [26]. One reason that the determination of the maximum number of limit 

cycles in system (2.1) is difficult is to find at which order k the maximum number of limit cycles 

will 'stabilize'. Therefore, one way to make this problem easier to study is fix the order k. Since 

we know the Melnikov function when k — 1, we can determine the maximum number of limit 

cycles from a first-order analysis of an n-th degree perturbed non-hyperbolic linear centre. This 

motivates us to consider the perturbed system 

x - y + e(n±x + n2x2 + h Li2n+ix2n+l) 
(2.2) 

y = -x, 

where \i — (/xi, H2, • • • , M2n+i) S 3? 2 n + 1. For e = 0, (2.2) is a Hamiltonian system with H(x, y) = 

(x2 + y2)/2; it has a one-parameter family of periodic orbits 

Xh(t) — V2hcost, yh{t) — —V2hsmt, 
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with the parameter h G (0, oo) being the energy level along the periodic orbit. The Melnikov 

function is given by 

r2ir 

M(h,n) = 
Jo 

dH dH 
f(xh(t),yh{t),0, ii) — (xh(t), yh{t)) + g{xh(t),yh(t),0, p) — (xh(t),yh(t)) dt 

= / xh(t){mxh(t)+fi2x2

h(t) + --- + fi2n+lx2

h

n+l{t))dt. 
Jo 

Using the fact that f2w xk

h{t) dt = [2h)kl2 f2w cosk tdt = 0 for k is odd, we get 

r2n 
M(h,fi) = 2h (iiicos2i + 2//3/icos4i + ••• + fj,2n+1(2h)n cos2n+21) dt 

= ^+l^---+"M2:ti)i2hr)' (2-3) 

where (£) is the binomial coefficient 

n \ n ! 

^kj k\(n-k)V 

Since h = a2/2, where a G (0, oo) is the positive rc-axis intercept of the unperturbed periodic 

orbit, (2.3) becomes 

,2 / Ml , 3 . . . „ . 2 , , M2n+i (2n + 2\^2n 

M(a, M ) = 2™° + + - + I ) a * ) . (2.4) 

Using Theorems 1.1 and 1.2 we obtain the following result: 

Result 2.1 For sufficiently small e / 0, the above system has at most n limit cycles. Fur

thermore, for e 0, it has exactly n hyperbolic limit cycles asymptotic to circles of radii TJ, 

j = 1,... ,n as e —>• 0 if and only if the nth degree equation in a2 

Mi 3. 2 / i 2 n + i (2n + 2\ 2 n 

T+gMaa +--- + ^ ^ n + 1J« =0 (2-5) 

has n positive roots a2 = r j , j = 1,... , n . 

Now, we illustrate with a concrete example with n = 2. Consider the system 

£ = y + e(nix - 2x3 + 3x5) 
(2.6) 

y = -x. 
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Using (2.4) with M i = M i : M3 = -2, fi5 — 3 and all other m = 0, we get 

M ( o ^ ) = 2 ™ 2 ( f - | « 2 + ^ 4 ) -

We need to solve 

15 

Solving, we have 

or 

So we have the following results: 

Result 2.2 1. 7/0 < /ii < 0.3 and e ^ 0 is sufficiently small, (2.6) has exactly two hyper

bolic limit cycles asymptotic to circles of radii 

as e —> 0. 

2. For all sufficiently small e, there is a function n\(e) = 0.3 + O(e) such that (2.6) has 

a unique limit cycle of multiplicity two, asymptotic to the circle of radius r = v2/5 as 

3. If M i > 0.3 and e ^ 0 is sufficiently small, (2.6) has no limit cycles. 

The results above are illustrated by the numerical computations shown in Figures 2.1, 2.2, 2.3. 

The result obtained above (c.f. Result 2.1) allows us to construct systems with as many limit 

cycles as we like. For example, suppose that we wish to find a system of the form (2.2) with 

exactly four limit cycles asymptotic to circles of radius r = l , r = 2, r = 3 and r = 4. To do 

this, we simply set the polynomial (a2 — l)(a2 — 4)(or2 — 9)(a2 — 16) equal to the polynomial 

in (2.5) with n = 4. So we have 

e->0. 

(a-,2 l)(a2 -4) (a2 -9) (or ,2 1.6) 
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or 

3 5 35 63 
a 8 - 30a6 + 273a4 - 820a2 + 576 = ^ + -/i3a2 + j ^ a 6 + 

Equating coefficients, we have (ig = 256/63, (17 — —768/7, /J5 = 4368/5, (i% = —6560/3 and 

(i\ = 1152. For e^O sufficiently small, Result 2.1 implies that the system 

x = y + e (1152a; - ^™x3 + ^ x 5 -7-fx7 + ?§x9) 

y = -x 

has exactly four limit cycles asymptotic to r=l, 2, 3, 4 as e —>• 0. The four limit cycles for this 

system with e = 0.00005 are shown in Figure 2.4. 

2.2. Application to the Bogdanov-Takens bifurcation with re
flection symmetry 

We investigate the parameterized family of vector fields 

x = y 
(2.8) 

y = mx + Li2y ± xz - x2y, 

where / J =.((11,112) a r e parameters. This system possesses a reflection symmetry under (x, y) i->-

(—a;, —y). In other words, the vector field is equivariant with respect to a rotation in the plane 

by 7r. This bifurcation with reflection symmetry occurs frequently in applications. In general, 

the symmetry occurs due to the geometry of the system or to assumptions made for the model. 

When such a system undergoes a bifurcation, it is a general principle that the presence of 

symmetry in the system modifies the generic behaviour that would be expected in a system with 

no symmetry present (Arnold [3]). Moreover, people have studied the effect of small deviations 

from symmetry in the system (2.8), which appear in some models of chemical reactors [7, 17]. 

This is necessary in order to give a theoretical interpretation of experimental data like those of 

[17]- . 

We will focus on the most difficult parts of the analysis of the system: 

1. The determination of the exact number and positions of the limit cycles in the system. 
r 
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2. The determination of the parameter values for which a homoclinic (or heteroclinic) orbit 

exists. 

However, in order to apply the Melnikov theory developed in Chapter 1, we need to reduce the 

system (2.8) to a perturbed system in the form of (2) by rescaling the variables and parameters. 

This will be done in detail in this section. 

The Bogdanov-Takens bifurcation with reflection symmetry results from unfoldings1 of the 

normal form 

x = y 
(2-9) 

y = ax3 + bx2y. 

In the Appendix, we see that this normal form is obtained from a generic system with reflection 

symmetry at an equilibrium point with a double zero eigenvalue. Without loss of generality, 

we may assume the equilibrium point is the origin, and the vector field is of the form 

, 0 1 \ 
x= ( x + F3(x) + 0(\x\5), 

0 0 / 

where ^(x) is a homogeneous polynomial of degree (exactly) 3. In [23], Takens proves that all 

possible types of dynamical behaviour that can occur in C°° perturbations of the system (2.9) 

with reflection symmetry are determined by the unfolding of (2.9) given by 

x — y 
(2.10) 

y = n\x + M22/ + ax3 + bx2y. 

By rescaling the variables (i.e. x -» (—\a\^/b)x, y -» (\a\%/b2)y, fii —> (\a\2/b2)/j,i, \i2 -> 

(—|a|/6)/i2, t —> (—6/lal)*)> the system becomes 

x = y 
(2.H) 

y = \ixx + fi2y ± x3 - x2y. 

1system (1) is called an unfolding 'of the vector field fo(x) if it is embedded in a parameterized family of 
vector fields (1) with f(x,n0) = /oOc)-
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Note that the case with the plus sign is only possible if a > 0, and the case with the minus sign 

is only possible if a < 0. Also, note that time reversal occurs if b > 0 (that is why we do not 

need to consider the system (2.10) when b > 0). 

Before going on any further, we need a dictionary that establishes 'names' for the local bifur

cations which occur in the Bogdanov-Takens system. The local bifurcations are well known 

and discussed more fully in [11, 24]. In the following, we give the list of these (with a brief 

description of each) which occur in the system (2.11). 

1. Saddle-Node Bifurcation: The normal form for a saddle-node bifurcation in 5R2 is 

x — a — x2 

y = ay, (a ^ 0). 

This bifurcation describes the simultaneous creation or annihilation of a pair of equilib

rium points as the parameter a varies. One equilibrium is a saddle and the other is a 

stable or unstable node. The saddle-node bifurcation is sometimes called the fold bifurca

tion. Although this bifurcation does not occur in the system (2.11), we need this notion 

in order to understand the saddle-node bifurcation of periodic orbits, which does occur 

in system (2.11). 

2. Pitchfork Bifurcation: The normal form for a pitchfork bifurcation in SR2 is 

x = ax ± x3 

V = ay, (a ̂  0). 

Note that the above system possess a reflection symmetry under (x,y) H-> (—x, —y) (thus 

the origin must always be an equilibrium point). This bifurcation describes the creation 

or annihilation of a pair of new equilibria (for the parameter a on one side of 0) from an 

existing one (i.e. the origin). By symmetry, each equilibrium of the pair of new equilibria 

must be of the same type. 

3. Hopf Bifurcation: The normal form for Hopf bifurcation in fi2 is 

x = — y + x(a ± (x2 + y2)) 

y =. x + y(a±(x2 + y2)), 
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or in polar coordinates 

r = ar ± r 3 , (r > 0) 

9 = 1. 

We see that a family of periodic orbits emerges from an equilibrium (i.e. the origin) as 

the eigenvalues of the equilibrium cross the imaginary axis at a = 0. 

We are now in good shape to study system (2.11) in detail. Since this thesis focuses on global 

bifurcations and Melnikov theory, we just state (without proofs) the local bifurcations which 

occur in system (2.11). Those who are interested in the details of the local bifurcations (e.g. 

how to prove the existence of Hopf bifurcation) are encouraged to look at [11, 24]. First, 

consider the case with the minus sign in system (2.11). For Hi < 0 there is only one equilibrium 

point at the origin, and it is a hyperbolic sink for H2 < 0, a hyperbolic source for H2 > 0 and 

a non-hyperbolic linear centre for H2 = 0. For HI > 0 there are three equilibrium points, a 

hyperbolic saddle at the origin, and hyperbolic sources at (i^/Tii,0) for H2 > / Z I , hyperbolic 

sinks at (iyZ/JT,0) for /j,2 < HI, and non-hyperbolic linear centres at (±^/H~I,0) for /j,2 = Hi-

There is a pitchfork bifurcation at points on the /i2-axis with H2 / 0. For /ii < 0 there is a 

supercritical Hopf bifurcation at points on the pi-axis, and for HI > 0 there is a subcritical 

Hopf bifurcation at points on H2 = Hi- The partial bifurcation set and phase portraits is shown 

in Figure 2.5. 

We know that for all n\ > 0, the unstable limit cycles are generated (via Hopf bifurcation) at 

fi2 < fx\ (fi2 close to ni). What happens to the unstable limit cycles as /J,2 continually decreases 

from Hi (HI > 0 fixed)? Do the limit cycles exist forever? Later in this chapter, we prove 

that this is actually not the case. In fact, the unstable limit cycles expand monotonically as 

H2 decreases from Hi until they intersect the saddle point at the origin and form a 'double' 

homoclinic orbit at some parameter value HI — MMI)I i-e-> there exists a homoclinic loop 

bifurcation curve in the /izi/i2-plane given by Hi = MMI) f° r Mi > 0- To prove the existence 

of the homoclinic-loop bifurcation curve requires the use of the Melnikov theory developed in 

Chapter 1. However, since the system (2.11) is not of the form (2), we use the rescaling of 
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variables and parameters 

x = eu, y = e2v, ' n\ = e 2 7, /i2 = e 2 A, t—¥t/e, (2.12) 

given by Takens in [23], in order to reduce the system (2.11) to a perturbed system (i.e. (2)) 

to which the Melnikov theory developed in Chapter 1 applies. Substituting the rescaling trans

formation (2.12) into the system (2.11), we get 

where we have set 7 = +1 (so that /ii > 0 as on p. 373 of [11]). The system has three equilibria: 

(0,0), (1,0) and (—1,0). Linearization shows that (0,0) is a hyperbolic saddle point, and that 

(±1,0) are hyperbolic sinks if A < 1, hyperbolic sources if A > 1 and non-hyperbolic linear 

centres if A = 1. For e > 0, there is a subcritical Hopf bifurcation at these points on A = 1. 

For e = 0, (2.13) is a Hamiltonian system with Hamiltonian H(u,v) = v2/2 — u2/2 + u4/4. 

The phase portrait with e = 0 is given in Figure 2.6. Note that the 'double' homoclinic orbits 

TQ correspond to the level set H(u, v) = 0. Due to the reflection symmetry, we only need to 

compute the Melnikov function M ( A ) along TQ". Before doing so, we need to find an expression 

for the homoclinic solution 7Q"(*) (i.e. TQ : (uQ(t),vo{t)) = 7Q~(*))- Since corresponds to the 

level set H(u,v) = 0, this is represented by 

u v (2.13) 
v = u — u3 + e(Xv — u2v), 

V = ±u\ 1 —— 

so 

Solving the above differential equation, we get 

V2 
cosh(t)' 

Also. 

V = U = VQ 
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therefore 

+ n\ - ( ^ - /o t anh(*A 
7 0 [ t ) ~ [coSh(tY V cosh(t) j' 

We now use (1.12) to compute the Melnikov function. 

/

OO / flTJ QTJ \ 

^(7otW,0,A)^(7o

+(t)) +/(7o+W,0,A) —(7o+(*))J 

/
oo 

(\v2

0(t)-u2

0(t)v2(t))dt 
-oo 

y_oo V cosh2(t) cosh4(t)/ 
4 16 

_ 3 A ~15' 

where the integral above can be evaluated using an integral table or a symbolic computation 

program such as Maple. We see that M(A) = 0 if and only if 

A = | , (2.14) 

therefore, according to Theorem 1.3, for all sufficiently small e ̂  0, there is a function A(e) = 

4/5 + 0(e) such that the system (2.13) with A = A(e) has two homoclinic orbits Tf which tend 

to TQ as e -> 0. 

We next consider the difficult question of the exact number of periodic orbits that persist for 

sufficiently small e ̂  0. The proofs for these are essentially due to Carr [8] and Cushman and 

Sanders [9]. The main ideas are to compute the Melnikov function, which is expressed in terms 

of elliptic integrals, and then use Picard-Fuchs analysis to determine the number of zeros of 

the Melnikov function (e.g. the number of limit cycles) corresponding to different values of the 

parameters. 

Now, using (1.3), the Melnikov function along the periodic orbit 7/1 (t) for system (2.13) is given 
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by 

M(h,X) = f (g(u,v,0, X)du - f(u, v,0, \)dv) 
JTh 

= ® (Xv — u2v)du 

= A ® vdu— 0 u2v du 
/ r h ./rh 

= Xh(h) - I2(h), 

where 

h(h) = (p vdu, 

12(h) = f u2v du. 
• h 

Let R(h) = I2(h)/Ii(h), then M(h,X) - 0 if and only if the function 

M(h, A) = A - R(h) (2.15) 

vanishes (since by Green's Theorem, 

h(h) = (f v du = ff dudv > 0, h> —\, 
Jrh JJ Q(h) 4 

where Q(h) is the region surrounded by r^). 

In what follows, we determine the number of zeros of the function M(h,X) for h G (—1/4,0) 

and h G (0,00) respectively. In order to do so, we derive and analyze the Picard-Puchs system 

(the system of differential equations that h(h) and I2(h) satisfies) and the Riccati equation (the 

differential equation that R(h) satisfies). The analysis is similar to the ones given in Carr [8] 

and Cushman and Sanders [9], but is given in more detail. Note that the interior periodic orbits 

correspond to the level sets of the Hamiltonian H(u,v) = h for h G (—1/4,0) and the exterior 

periodic orbits correspond to H(u,v) = h for h G (0,00). The "double" homoclinic loops 

correspond to h = 0. Considering v as a function of u and h, and differentiating H(u, v) = h 

with respect to h, one obtains 

I =l- <"«> 
oh v 
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Also, differentiating H(u, v) = h with respect to u, one obtains 

v ^ - u + u3 = 0. (2.17) 
au 

Multiplying (2.17) by uk/v and integrating by parts along T^, we get the following identity: 

- <t> du+ <p du = k<p uk~lvdu. (2.18) 

Jrh v JTh v JTh 

Now, using (2.16) and the identity (2.18) with A; — 1, we get 

dh h'dh 
h i ^ 

If , 1 / t i 2 , 1 / K 4 

- (b vdu <p —du + — <b —au 
2 JVh 2 j T h v 4 JTh v 

- I — 

0) vdu+ <f> —du 

2 Jr. * Jrh v •* JTh 

\ h - \ l h 1 + ltrh-dU 

1 _ Idh l / r r ",2 

2 1 ~ 2 dh + 4 
3A _ Idh 
4 Adh' 

(2.19) 

Similarly, using (2.16) and the identity (2.18) when k = 1 and 3, we get 

/ i ^ 2 - = /i — du 
dh JTh v 

If 1 f u4 1 f u6 

= 5/2-K/i+f)+K3/2+i'Miu+£v'i") 

Taking into account (2.19) and (2.20), we arrive at the following lemma: 

Lemma 2.1 (Picard-Fuchs system) The integrals h(h) and h(h) satisfy the following sys

tem of differential equations: 

h{h+\)I[ = {\h + \ ) h - ^ h ( 2 2 1 ) 

h{h + \)I'2 = -\hh + \hh. 
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Now we can easily derive the Riccati equation that R(h) satisfies. Using (2.21), 

•4h + 4 f t A ) - U , ' + 4 ) A + 16if 

+ + 1 ) * + A * 

- ^ 2 + ( l A - i ) f l - i f t -

Therefore, we have the following lemma: 

Lemma 2.2 (Riccati equation) The function R(h) satisfies the Riccati equation 

Ah(Ah + 1)R' = 5R2 + {8h - A)R - Ah. (2.22) 

We can also write (2.22) as a system with respect to (h,R): 

h = Ah(Ah + l) 
V ; (2.23) 

R = hR? + {8h-A)R-Ah. 

The vector field is sketched in Figure 2.7. The system (2.23) has 4 equilibrium points: So = 

(0,0), N0 = (-1/4,1/5), Si = (-1/4,1), Ni = (0,4/5). Linearization at the equilibrium 

points shows that SQ and Si are hyperbolic saddle points, while No and Ni are hyperbolic 

(degenerate) nodes, respectively stable and unstable. Note that the sets {h = —1/4} and 

{h = 0} are invariant sets. Now, we need to determine which 'points' R(h) actually passes 

through. This is done in the following lemma. 

Lemma 2.3 (a) lim f t_ >_i R(h) = 1. 

(b) R(0) = 4 

5 ' 

Proof: 

(a) Recall that R{h) = I2(h)/Ii{h), where 

Ii(h) = (p vdu, I2(h) = <p u2vdu. 

28 



It is easy to see that 

lim h(h) = lim I2(h) = 0. 
h^-\ h-+-\ 

Now, using the Green's Theorem, we have 

lim R{h) = lim 
hr+-\ h->-±h{h) 

= lim ^ — 
h ^ - \ f r h

v d u 

= hm ry ' —. (2.24) 
J J Q ( h ) d u d v 

By applying the Mean Value Theorem for double integrals to (2.24), we have 

lim R(h) = lim u^(h) 
4 4 

for some points (uo(h),vo(h)) in Q(h). As h ^ —1/4, Q{h) will 'shrink' to the 

points (±1,0) and so 

lim R(h) = 1. 

(b) Recall that H = 0 corresponds to "double" homoclinic orbits for system (2.13) when 

e = 0. Now, using (2.15) with h = 0, we have 

M(0,A) = A-i?(0). 

We see that M(0, A) vanishes if and only if A = R(0). Using the fact that A = 4/5 

(i.e. (2.14)), the result follows. • 

Using the above lemma, it follows that the graph of R(h) is the stable manifold of S\. It joins 

Si to the node Ni (see Figure 2.7). We need to find the properties that R(h) has. This is 

summarized in the following lemma. 

L e m m a 2.4 The function R(h) has the following properties: 

(a) R'(h) -> -1/2 as h -> -1/4, and R'(h) -» -oo as h -4 0. 
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(b) R(h) - » +00 as h ->• +00. 

(c) R(h) > 1/2 forh>0. 

(d) R'(h) has a unique zero for h = h* > 0, is negative for —\<h<h* and positive 

for h> h*. 

(e) R"(h*) > 0. That is, R(h) attains the minimum value at h = h*. 

P r o o f : Some of the proofs given below are similar to the ones given in Carr [8], but with more 

explanations and clarity. 

(a) Consider just the interval h G [—1/4,0]. Since system (2.23) is symmetric with 

respect to the point (—1/8,1/2), it is sufficient to show that R'(h) —> —1/2 as 

h -> 0 with R(0) = 0. Let R(h) = Ch + 0(h2). Substituting R{h) and its derivative 

into (2.22), we easily get C = —1/2 and the result follows. The second part of proof 

is straightforward. 

(b) Without loss of generality, we assume h > 0. Recall that 

,4 
du (2.25) 

(by symmetry), where £ = £ ( / i ) is the unique positive root of 

(2.26) 

(see Figure 2.8). Let u = £z in (2.25), we get 

h 

Similarly, 
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Now, let 

g(z) = y / | ( l - z 4 ) + ( z 2 _ 1 ) ) 

for 0 < z < 1. The function g(z) defined, above has two critical points z = 0 and 

z = l/£. It is easy to see that z = 0 is the (local) minimum and z = l /£ is the 

global maximum. Therefore, p(.z) < g(l/() for 0 < z < 1. Since h —> oo if and only 

if £ - » oo (see (2.26)), we have ii < ki£3 for some positive constant k\. It is easy 

to obtain that I2 > k2£b for some positive constant k2. So we have 

lim R(h) = lim = +°°-

(c) Recall that system (2.23) has four nullclines: h = 0, /i = —1/4 and the two branches 

of the hyperbola 5i?2 + (8/1 — 4)i? — 4h = 0. Let us denote these two branches by 

R(h) and i?(/i) (see Figure 2.9). Note that the phase plane is divided into nine 

different regions by the invariant sets {h = 0}, [h = —1/4} and the two branches 

R = R(h), R = R(h). The vector field is vertical on the two invariant sets and the 

vector field is horizontal on the two branches. Using the fact that R(—1/4) = 1 

and differentiating the equation 5.R2 + (8h — 4).R — Ah = 0 with respect to h and 

set h = —1/4, we easily find that '̂(—1/4) = —1. Similarly, using the fact that 

ĵ (0) = 4/5 and differentiating the equation bR2 + (8h — 4)R — Ah = 0 with respect to 

h and set h = 0, we find that .R'(O) = —3/5. Using these two results together with 

part (a), we see that the graph of R(h) must stay in Region lfor— l/A < h < 0 

and must go to Region 2 for 0 < h <S 1. In Regions 1 and 2, dR/dh < 0. But 

R(h) ->• + 0 0 as h + 0 0 (part (b)) and R(h) —>• 1/2 as h -> + 0 0 . Therefore, there 

exists h* > 0 such that R(h*) = R(h*), that is, R'{h*) = 0 and R'(h) > 0 for h > h*. 

Also, since R'{h) < 0 and R(h) -> 1/2 as h -)• +cc, we have R(h*) = R{h*) > 1/2. 

Hence R(h) > 1/2 for h > 0. Finally, note that i2(/i*) (= Rmin) is determined 

numerically to be 0.752 

(d) Proved in part (c). 
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(e) Using Lemma 2.2 to compute the second derivative of R(h), we have 

47i(4/i + l)R" = R'(10R - 24h - 8) + (SR - 4). 

Substitute Ti = h* into the above equation and using part (c) and (d), we immedi

ately get 

R"(h*) > 0. • 

Using the above lemma, we see that R(h) has the form shown in Figure 2.9. Recalling that 

M(h, A) vanishes when A = R(h), we have the following results: 

Result 2.3 1. If A > 1, then A - R(h) > 0 V7i E (-1/4,0). This implies d(h, e, A) > 0 and 

all orbits spiral outward. 

2. If A < 4/5, then A - R(h) < 0 VTi E (-1/4,0): 77m s'mpZies d(h,e,\) < 0 and a// or&ifc 

spiral inward. 

3. 7/4/5 < An < 1, i/ien An — R(h) = 0 for some unique ho E (—1/4,0). This implies 

d(h,e,X) = 0 for unique A(e) = An + 0(e) and h(e) = /in + O(e). [/sing Theorem 1.1, 

the system (2.13) has a unique, hyperbolic periodic orbitTe which tends to as e —>• 0. 

./Vow/, if h > h(e), then d(h,e,X) > 0. T/m£ means orbits spiral outward. If h < h(e), then 

d(h, e, A) < 0. That means orbits spiral inward. Therefore, the periodic orbit is unstable. 

4- If XQ > 4/5, then XQ — R(h) = 0 for some unique ho S (0, oo). This implies d(h, e, A) = 0 

for unique A(e) = An + O(e) and h(e) = ho + 0(e). Using Theorem 1.1, the system (2.13) 

has a unique, hyperbolic periodic orbit Y€ which tends to T/j0 as e —> 0. Now, if h > h(e), 

then d(h,e,X)< 0. That means orbits spiral inward. If h < h(e), then d(h,e,X) > 0. 

That means orbits spiral outward. Therefore, the periodic orbit is stable. 

5. If Rmin < An < 4/5, then there are 2 values of h, h\o and h2o (0 < h\o < h2o) such that 

An — R(h) = 0. This implies there are 2 periodic orbits for hi(e) — h±o + 0(e), h2(e) = 

h2o + 0(e), respectively, and A(e) = An + 0(e). Now, if h < hi(e), then d(h,e,X) < 0. 

That means orbits spiral inward. If h\(e) < h < h2(e), then d(h,e,X) > 0. That means 
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orbits spiral outward. If h > /12(e), then d(/i, e, A) < 0. That means orbits spiral inward. 

Therefore, the periodic orbit is unstable at h = h\(e) and the periodic orbit is stable at 

h = /12(e). 

6. If Ao = Rmin ~ 0.752, then An — R{h) = 0 for unique h = h* > 0. This implies 

d(h, e, A) = 0 for unique A(e) = Ao + 0(e) and /i(e) = /i* + 0(e). Using Theorem 1.2, the 

system (2.13) has a unique, non-hyperbolic periodic orbit of multiplicity two which tends 

to Th* as e —>• 0. Now, if h > h(e), then d(h,e,X) < 0. That means orbits spiral inward. 

If h < h(e), then d(h,e,X) < 0. That means orbits spiral inward. Therefore, the periodic 

orbit is "semi-stable" (i.e. saddle-node bifurcation of periodic orbits). 

7. If X < Rmin, then X — R(h) < 0 V7i £ (0, co). This implies d(h,e,X) < 0 and all orbits 

spiral inward. 

We see that, even though the computation of the Melnikov function is somewhat technical, the 

benefits are great: we determine the exact number, positions, and multiplicities of the limit 

cycles from the zeros of the Melnikov function. 

It is time now for us to return to system (2.11) with the minus sign. The homoclinic loop 

bifurcation, which occurs at A = 4/5 + O(e) for (2.13), corresponds to 

M2 = ^ + oo4) (Mi>0) 

for (2.11) with the minus sign. Also, the saddle-node bifurcation of limit cycles, which occurs 

at A si 0.752 + O(e) for (2.13), corresponds to 

M2 « 0.752/ii + 0(4) (m > 0) 

for (2.11) with the minus sign. Using Result 2.3, we can determine the exact number of periodic 

orbits, corresponding to different values of the parameters in system (2.11) with the minus sign. 

For /J,2 > Mi) there is a unique (stable) limit cycle around the three equilibria. For 4/JI/5 + 
3 

0(/ii) < M2 < Mi) there are two (unstable) limit cycles around the two equilibria (±y/jli,0) 

respectively, while there is a unique (stable) limit cycle surrounding the two limit cycles and 
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3 
the three equilibria. For /Z2 = 4/̂ i/5 + O(nl), there is a pair of symmetric homoclinic orbits, 

while there is a unique (stable) limit cycle surrounding the homoclinic orbits and the three 
3 3 

equilibria. For RminHi + 0 ( M i ) < M2 < 4//i/5 + 0 (Mi )> there are two limit cycles (smaller one 
3 

unstable, larger one stable) surrounding the three equilibria. For p2 — RminUi + 0(n{), there is 
3 

a unique multiplicity two (semi-stable) limit cycle. For fi2 < RminHi + 0 ( M i )> there is no limit 
3 

cycle. As fi2 increases past RminHi + O(nl), the system (2.11) with the minus sign undergoes 

a saddle-node bifurcation of periodic orbits. The bifurcation set and the corresponding phase 

portraits for the system (2.11) with the minus sign is shown in Figure 2.10. 

Next, we consider the system (2.11) with the plus sign. This case is actually simpler. For / i i > 0 

there is only one equilibrium point at the origin, and it is a hyperbolic saddle. For HI < 0 there 

are three equilibria, a hyperbolic source at the origin for \i2 > 0, a hyperbolic sink at the origin 

for [j,2 < 0, a non-hyperbolic linear centre at the origin for \X2 = 0, and two hyperbolic saddle 

points at (±y/—fj,i,0). There is a pitchfork bifurcation at points on the /i2-axis with \i2 ^ 0. 

There is a supercritical Hopf bifurcation at points on the pi-axis with \i\ < 0- The partial 

bifurcation set and phase portraits is shown in Figure 2.11. 

We know that for all HI < 0> a n asymptotically stable limit cycle is generated (via Hopf 

bifurcation) at \i2 > 0 (fi2 close to 0). What happens to the stable limit cycle as /j,2 increases 

from 0 ( / i i < 0 fixed)? Do the limit cycles exist forever? In fact, the asymptotically stable 

limit cycle expands monotonically as fi2 increases from 0 until it intersects the saddle points 

at (±\/—Mi>0)
 a n d forms a 'double' heteroclinic orbit at some parameter value [i2 = M M I ) = 

—/xi/5 + 0(|/^i12) (HI < 0), i.e., there exists a heteroclinic loop bifurcation curve in the Hi^-

plane given by ^2 — ^ ( M I ) f° r M i < 0- The proof is similar to the case with the minus sign 

treated above, and is omitted. Similarly, we can prove that the asymptotically stable limit 

cycle is unique when pi < 0, 0 < ^2 < M M I ) - ^ n e bifurcation set and the corresponding phase 

portraits for the system (2.11) with the plus sign is shown in Figure 2.12. 
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Figure 2.1: Two hyperbolic limit cycles for system (2.6) with e = 0.3 and n\ 
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Figure 2.2: A unique non-hyperbolic limit cycle for system (2.6) with e = 0.3 and 
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Figure 2.3: No limit cycles for system (2.6) with e = 0.3 and = 0.32. 
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Figure 2.5: The partial bifurcation set and the corresponding phase portraits for the system 
(2.11) with the minus sign. 

Figure 2.6: Phase portrait of the system (2.13) with e = 0. 
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Figure 2.7: Phase portrait of the system (2.23). 

Figure 2.8: Trajectory when h > 0. 
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Figure 2.9: Detailed phase portrait for system (2.23). 
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My 

Figure 2.10: Bifurcation set and the corresponding phase portraits for the system (2.11) with 
the minus sign. 
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Figure 2.11: The partial bifurcation set and the corresponding phase portraits for the system 
(2.11) with the plus sign. 
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1 

Chapter 3 
Higher-order Melnikov theory 

3.1. Introduction 

In Chapter 1 we saw that the number, positions and multiplicities of the limit cycles of (2) are 

determined by the number, positions and multiplicities of the zeros of the Melnikov function 

M(h,/j,). But what if M(h,/j,o) = 0 for some po € 5Rn ? In this case a higher-order analysis 

in e is necessary. For instance, if the first-order Melnikov function that we derived in Chapter 

lis identically equal to 0, then we need to look at the second-order Melnikov function, which 

we hope is not identically equal to 0, and relate the number, positions and multiplicities of 

the zeros of it to the number, positions and multiplicities of the limit cycles. Similarly, if the 

first- and second-order Melnikov functions are both identically equal to 0, then we need to 

look at the third-order Melnikov function. So, in general, we suppose that if the first k — 1 

Melnikov functions are all identically equal to zero, then we need to look at the fcth-order 

Melnikov function. You may ask: How to relate the number, positions and multiplicities of the 

zeros of the fcth-order Melnikov function to the number, positions and multiplicities of the limit 

cycles? The answer is that this relationship is the same as the relationship between the number, 

positions and multiplicities of the zeros of the first-order Melnikov function and the number, 

positions and multiplicities of the limit cycles. For example, if the fcth-order Melnikov function 

Mfc(/i, p) is equal to zero and satisfies some non-degeneracy condition (i.e. dMk/dh(h, p) ^ 0), 

we can apply the implicit function theorem to obtain a unique hyperbolic limit cycle for small 

e. This kind of result, which is an extension of the results obtained in Chapter 1, is presented in 

Section 2. In Section 3, we use a recursive algorithm of Frangoise [10] to derive a second-order 
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Melnikov function to which the theory developed in Section 2 applies. 

3.2. Higher-order theory 

Although the theorems in Chapter 1 are sufficient and convenient for a first-order analysis, 

they do not apply to a higher-order analysis of (2). In this section, I present the general results 

concerning higher-order Melnikov theory, which extend Theorems 1.1, 1.2. 

The following theorem, which is an extension of Theorem 1.1, gives us conditions under which 

the system has a unique, hyperbolic limit cycle for small e ̂  0 when a higher-order analysis is 

required. Note that Theorem 1.1 is equivalent to the following theorem with k = 1. 

Theorem 3.1 Assume that Assumption 1.2 holds for all h E I. If there exists a po E$ln such 

that 

dd d^k~^d 
d{h,0,L-o) = d̂ (ft,OiA*o) = ••• = g (fc-i) (M,Mo) = 0 for all hE I 

and if there exists a ho E I such that 

d^d d^k+V)d 
^-^y(/i0,0,/i0) = 0 and ^ ^ ^ ( ^ 0 , 0 , Mo) # 0, 

then for all sufficiently small e ^ 0, the system (2) has a unique, hyperbolic limit cycle Te which 

tends to the periodic orbit Th0 as e —> 0. 

Proof: Define the function 

F(h,e) = { 
{ E S T ( M , M O ) if 6 = 0 

so that 

d{h,e,'no) = ekF(h,e), 

where 

1 d^d 

F(h,e) = -^M(hAno) + 0(e). 
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Also, 

1 d^d 

OF 1 d(k+1U 

Then, by the implicit function theorem [19], there exists a 8 > 0 and a unique function h = h(e), 

defined for |e| < 5, such that h(0) = ho and F(h(e), e) = 0 for all |e| < 8. The rest of the proof 

is exactly the same as of Theorem 1.1. • 

The next theorem gives us an extension of Theorem 1.2 for determining a unique, non-hyperbolic 

limit cycle of multiplicity two from system (2) when a higher-order analysis is required. Theorem 

1.2 is equivalent to the following theorem with k = 1. 

Theorem 3.2 Assume that Assumption 1.2 holds for all h E I. If there exists a po E 9fJn such 

that 

dd d^^d 
d(h,0,/i0) = — (h,0,no) = • • • = g ^ f c , ! ) (h,°>Mo) = 0 for all he I 

and if there exists a ho E I such that 

Q{k)d d^k+v>d 
— (h0,0,Ho)=0, ^ - ^ ( / i 0 , 0 , / i o ) = 0, 

g e ( f c ) g h 2(^o,0,Mo) #0) ge(fc)gM (fro,0,Mo) 7̂  0 for some j = 1,... ,n, 

then for all sufficiently small e, there are functions h(e) = ho + O(e), p(e) = po + O(e) such that 

for sufficiently small e ̂  0, the system (2) has a unique non-hyperbolic limit cycle of multiplicity 

two which tends to the periodic orbit Th0 as e —>• 0. 

Proof: First we let po = ( M ? > M 2 > • • • ,Mn)- Without loss of generality, we assume that j = 1 

(i.e. ge
((l,|g d

t (fro>0)Mo) 7̂  0). Define the function 

f ^ f i l ife.^0 
F(h,e,p) = { 

{ £g>f(M,/z) if e = 0 
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so that 

d(h,e,iJ,) = ekF(h,e,tJ,), 

where 

1 d^d 
F(h,e,p) = --^(h,0,fi) + O(e). 

Also, 

1 d^d 

OF 1 d( f c + 1 )d 
^ ^ 0 ' W ) = ^ P ^ ( / 1 0 ' 0 ' W ) = 0 ' 

d2F 1 d^k+2U 

dF 1 d^k+l">d 

^ ( ^ ' ° ^ o ) = ^ a e ( ^ { / l o ' ( ) ' / i o ) 7 ' a 

Therefore, by the Weierstrass preparation theorem [1, p. 388, Theorem 69], there exists a 6 > 0 

such that F(h,e,'fj) .= [(h-h0)2 + Ai(e, li)(h — h0) + A 2(e, /i)]$(n,e, /i), where Ai(e, M ) , .4.2 (e,M), 

and e, M ) are defined for |e| < 6, \h — ho\ < 6, | M — Mol < <̂  - A I ( 0 , M O ) = ^2(0,Mo) = 0, 
i s $(/i0,0,Mo) 7^ 0, and f^(0, Mo) 7̂  0 since J -̂(ho,0,Mo) 7^ 0. The remainder of the proof 

exactly the same as of Theorem 1.2. • 

Remark 3.1 7/d(M,Mo) = f (M,Mo) = • • • = gSf (M,Mo) = 0, 

g(k)d d(k+^d d(k+m~~^d 

Q(k+m)d d(k+Vd 
de(k)dh(m) (^o,0,Mo)^0, ge(fc)g #0 /or some; = 1,... ,n, 

rTien it can 6e shown that for sufficiently small e ^ 0, t/ie system (2) has a unique non-hyperbolic 

limit cycle of multiplicity m which tends to as e —> 0. 
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3.3. Derivation of the second-order Melnikov function 

In Section 2, we have seen that limit cycles correspond to the zeros of the displacement function. 

The A;th-order contribution (in e) to the displacement function is essentially the fcth-order 

Melnikov function (if the first k — 1 Melnikov functions are identically equal to zero). However, 

this kind of result can be useful in applications only if we know the formula for the second (or 

higher) order Melnikov function. In this section I will use Frangoise's recursive algorithm [10] to 

derive an explicit formula for the second-order Melnikov function M2(h,[i) in terms of certain 

integrals along the periodic orbits T^ in Assumption 1.2. This formula applies to perturbed 

Hamiltonian systems of the form 

where ^ = y, Qf^ = —U'(x), U'(x) is a polynomial of degree one or higher, / and g are 

functions depending smoothly on x,y,e,/j,, and e is a small perturbation parameter. Note that 

for e = 0, the system (3.1) is a Hamiltonian system with 

Assume that Assumption 1.2 holds for all h G I. The first-order Melnikov function M(h,iT), 

which we denote by Mi(h,fi) in this section, can be written as 

where Q(h) is the simply connected region surrounded by IV If Mi(h,[i) = 0 for all h G I and 

x = %• + ef{x,y;e,n), 
(3.1) 

H(x,y) = yj-U(x). 

(by Green's Theorem) 

LI G fin (this occurs, for example, when ^ + | | is an odd function with respect to y), we need 

to look at the next term M2(h, /z) in the expansion of the displacement function d(h,e, /J): 

d{h,e,fj.) = e + 0(e) 

= e2M2(/i,ii) + 0(e3). 
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In order to compute the second-order Melnikov function M2(h,p), provided that the first-order 

Melnikov function M\(h,n) = 0, we develop the idea of [10]. Given a perturbation (f,g)T in 

(3.1), we let u = g(x,y,e, p)dx — f(x,y,e,n)dy. Expand / and g in Taylor series in e and thus 

( Og — (x,y,0,n)dx 

^ f ^\ 

- -^(x,y,0,n)dyj +••• 

= u>0 + eu>i + • • • , 

and the system (3.1) can be rewritten as dH - e u = 0, since 

OH OH 
dH — etc = -rr-dx + -^—dy — e(gdx — f dy) 

ox ay 
[OH \ J (OH \ , 

= \-0x--t9)dX+{-0y- + e ! ) d V 

implies that 

= 0 

(OH \ dy ( OH \ dx 
{-oy7 + ef)Tt = {-0x- + e9) TV 

and therefore 

dx dH i f 
dt ~ dy e J ' 
djl = -9K + e a 

dt dx ^ey-

With this notation, the first-order Melnikov function M\(h,/z) can be written as 

Mi(h,n) = <£ w 0 . 

In the following, I will state and prove the theorem which gives us a formula for the second-order 

Melnikov function for (3.1). 

Theorem 3.3 Under Assumption 1.2, if M\(h,p) = 0 for all h G I and p £ W1, then the 

displacement function for the system (3.1) is 

d(h, e, H) = e2M2(h, fx) + 0(e3), (3.2) 
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where the second-order Melnikov function M2(h,jj) is given by 

M2[h,y) = & [Gih(x,y,/j,)P2(x,h,n)-Gi(x,y,n)P2h(x,h,n)]dx 

+ 

F{x,y,n) ^(x,y,0,n) + ~{x,y,0,p) 

df, 

dx 

de(x,y,0,n)dx - ~(x,y,0,n)dy (3.3) 

where 

ry rx 

F(x,y,(j.) = / f(x,s,0,p)ds- / g(s, 0,0, n)ds, 
Jo Jo 

OF 
G(x, y, p) = g{x, y, 0, fi) + -Q^(X, y, p), 

(3.4) 

(3-5) 

Gi(x,y,fi) denotes the odd part of G(x,y,p) with respect toy, G2(x,y,p) denotes the even part 

ofG{x,y,n) with respect to y, G(x,y,fi) = Gi{x,y,n)-\-G2{x,y,p), Gi{x,y,n) = yGi{x,y2,n), 

G2(x,y,fi) = G2(x,y2,n), 

1 dGx Gih(x,y,n) y dy (x,y,n), 

P2{x,h,n) = f G2{s,2h + 2U(s),n)ds, 
Jo 

and P2h(x,h, p) denotes the partial derivative of P2(x,h, p) with respect to h. 

Before proving the above theorem, let us introduce some of the main ideas from [10]. The 

following definition is taken, with some modifications, from [10]. 

Definition 3.1 We say that the Hamiltonian function H satisfies condition (*) if for all poly

nomial one-forms1 to such that w = 0, there exists a continuous function g and a locally 

Lipschitz continuous function R such that to = g dH + dR. (*) 

If TJ satisfies the condition (*), we can compute, using the algorithm in [10], the first derivative 

of the displacement function which is not identically 0. In [10], Frangoise showed that the 

1UJ is a polynomial one-form in 3i 2 if u can be expressed as f dx + gdy, where / and g are polynomials 
in x, y. 
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Hamiltonian function H(x,y) = (x2 + y2)/2 satisfies the condition (*). We now want to extend 

this specific Hamiltonian to a larger class so that any Hamiltonian of the form H(x,y) = 

y2/2 — U(x) satisfies condition (*). This result is proved in the following lemma. Now, for 

convenience of notation, we write M2{h) = M2(h, LI), G\h{x,y) = Gih{x,y, p) and so on (since 

LI is regarded as a "constant" in the formula for the second-order Melnikov function). 

Lemma 3.1 Assume that Assumption 1.2 holds for all h G I and that M\(h) = 0. Then H 

satisfies the condition (*). That is, there exists a continuous function go{x,y) and a locally 

Lipschitz continuous function Ro(x,y) such that UQ can be expressed as 

where F, G are defined by (3.4) and (3.5) respectively. We need to show that Gdx can be 

expressed as go dH + dRo- Given a point (x, y), let TH be a closed smooth curve passing through 

(x, y). Suppose xmin and xmax are the minimal and the maximal values of x respectively on TH-

Now we let xmin = a(H) and xmax = b(H), where a(H) and b(H) are the roots of H + U(x) = 0 

(i.e. H(a{H),0) = H{b{H),0) = H). Also, let B(x,H) = \y\ = ̂ 2H + 2U(x). Take a path 

LOQ = go dH + dRo-

Proof: Recall that 

= g(x,y,0)dx - f(x,y,0)dy 

= Gdx- dF, 

F(x,y) C TH which begins at (a(H),0) and ends at (x,y). Also, T ( X ^ has the same orientation 

as TH- Let 

(3.6) 

First, assume that y > 0. Ro, which is defined in (3.6), can be written as 

(3.7) 

Therefore, RQ can be considered as a function of x and H. Now, 

dR0(x,H) = dRo (x, H) dx + dRo (x, H) dH, 
dx dH 
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where 

dR 
H) = G(x, B(x, H)) = G(x, y), (3.8) 

dx 

and (using the Chain Rule), 

d R o ( m n <m m tm m^><m+ T dG/dyfoBfoH)) 
-QJJ{X, H) = -G{a(H),B(a{H),H))a (H) + J B(fH) 

As B(a(H), H) = 0 and G{x, 0) = 0 (by definition) , (3.9) becomes 

O H ^ h ) = h{H)—mm—d(i 

dg/dy(t, B(£, H),0)+ df/dx(£, B((, £0,0) 

^ o , „ _ fx dG/dy(t,B(Z,H)) 

Ja{ 

7a( 

which can be written as 

a i i o f df/dxit, r>, 0) + dg/dy(Z, r,, 0) ^ d ef 

Similarly, for y < 0, Ro can be written as 

rb(H) 

i(H) Jb(H) 

which is a function of x and H. Now, 

MB) fx 

Ro= G(Z,B{Z,H))dt+ G(£,-B{£,H))d£, (3.11) 
ya(ff) Jb(H) 

dRo(x, H) = ^ ( x , #) + |^(x , i ? ) dH, 

where 

dRp 
dx 

and 

(x, H) = G(x, -B(x, H)) = G(x, y), (3.12) 

dH 
(x,H) = -G(a{H),B(a(H),H))a'(H) + G{b{H),B(b(H),H))b'{H) 

Ja(H) -O ( . £ , . « ) 

_ r dG/dy{S,-B{S,H))^ ( 3 1 3 ) 
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As B(a(H),H) = 0, B{b{H),H) = 0 and G(x,0) = 0, (3.13) becomes 

dRQ. [»W dGJdy{Z,B{Z,H))J& '[* dG/dy(Z,-B(j,H)) „ 
m ^ H ) = Ja{H) —mjf)—v-Jw—mw)—* 

* W dg/dy(£,B(S,H),0)+df/dx{t,B(£,H),0) 

pi 
I ntr T T \ "S> 

Jb(. 

= f 

dg/dy(£, -B&H), 0) + df/dx(S, -B(£, H),0) 
10(H) B(£,H) 

which can be written as 

dR0 f df/dx(t,ri,OJ+dg/dy(Z,v,0),cdef 
= f 9f/dx^V,0)+d9/dy{^,0)d^_go{xy) ( 3 M ) 

Jrtr._„, V 

So in any case we have 

dR0 = G{x,y)dx - gQ(x,y)dH. 

Since 

M i (ft) = i w 0 

•>rh 

— <p Gdx, 

the hypothesis Mi (ft) = M[(h) = 0 implies that 

lim Ro{a(h),y) = lim Ro(a(h),y) = 0, 
y—>o~ 2/->o+ 

lim g0(a(h),y) - lim g0(a(h),y) = 0. 

2/->0~ 2/->0+ 

Thus, i?o(̂ , y) and ô(̂ ) ?/) are single-valued functions. This ensures that they have the required 

continuity. The proof is now complete. • 

In Frangoise's paper [10], he derives an algorithm for computing the higher-order Melnikov 

function for the system 

x = y + ef(x.y) 
y M y ) (3.15) 

y = U'(x) + eg{x,y) 
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Note that in (3.15), / and g are independent of e. But in general, / and g may depend on e 

(i.e. system (3.1)). In the following, I will use [10] to derive an algorithm for computing the 

higher-order Melnikov function for system (3.1) (i.e. / = f(x,y,e) and g = g(x,y,e)). But 

before doing that, let us first derive a formula for the second-order Melnikov function. Using 

the above lemma, we are able to prove the following theorem which gives a formula for the 

second-order Melnikov function (c.f. [10]). 

Theorem 3.4 Assume that Assumption 1.2 holds for all h E I and that M\(h) = 0. Then the 

second-order Melnikov function is given by 

M2(h) = I (ff0w0 + wi). (3.16) 

Proof: We recall the construction from [10]. Fix h E I and denote by a the smallest solution 

of the equation H(a, 0) = h. Let Pn = (ô  0) and choose a line segment S containing Pn that 

is normal to the trajectory of (3.1) at Pn. For sufficiently small e ^ 0, let P i = (QI,0) £ S be 

the point of the Poincare first return map (see Figure 3.1). Let d(h, e) = H(ai, 0) — H(a, 0) be 

the displacement function. Now, using Lemma 3.1, UIQ = go dH + dRo yields 

(1 + ego)(dH - eu) = (1 + eg0)(dH - eu0 - eV + 0(e3)) 
= dH-e{uj0 ~g0dH) - e2(ffow0 + wi) + 0(e3) 
= dH -edRo-e2(gou)o + uJi) + 0(e3). (3.17) 

Integrating (3.17) along r e , where r e (= T(e, h)) is the trajectory of (3.1) connecting Pn and 

P i (see Figure 3.1), and recalling that dH — eu = 0 on the trajectory r e , we get 

0 = j dH-e f dRo-e2 I (g0uo + wi) + 0(e3). (3.18) 

Now, since d{h,e) = H(Pi) - H(P0), (3.18) becomes 

d(h, e) = e [ dRo + e2 [ (5ow0 + wi) + 0(e3). (3.19) 

We want to find a bound for Jr dRo. For e sufficiently small and since Ro{x,y) is locally 

Lipschitz continuous, there exists a constant c > 0 such that 

/ dRQ = \Ra(ai,0) -Ro(a,0)\ < c\ax - a\. (3.20) 
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Figure 3.1: Illustration of the Poincare map. 

Now, by the Mean Value Theorem, there exists a P* between Po and Pi such that 

\dH. 
\H(au0)-H(a,0)\ 

for e sufficiently small. Therefore, 

dx (P*) c*i -a\ (3.21) 

/ dR0 = |e| / dRo 

< c\e\\ai-a\ (by (3.20)) 

c|e||d(M) 

= 0{e\ 

(by (3-21)) 

(3.22) 

because d(h, e) = 0(e2) by hypothesis. Finally, using the fact that Tt tends to the closed orbit 

Tk as e -» 0 and using (3.22), (3.19) becomes 

,e) =e2 / (5owo + a;i) + 0(e3). • d(/i 

Next, we derive a more general version of Frangoise's recursive algorithm which applies for 

systems of the form (3.1). Note,that Theorem 3.4 is equivalent to the following theorem with 

k = 1. 
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Theorem 3.5 Assume that Assumption 1.2 holds for all h £ I and that M\(h) = 

Mk(h) = 0 for some k>l. Then 

Mk+i(h) = i fifc, 
Jrh 

where 

£lo = u>o, (3.23) 

O n = ujn + T̂̂  gi^Jj, 1 < n < k (3-24) 

i+j=n—1 

and the functions gi, 0 < i < k — 1, are determined successively from the representations 

Oj = 9idH + dRi with gi, Ri as in Lemma 3.1. 

Proof: First, by integration of the equation 

dH - eu = dH - eu0 + 0{e2) . 

along r e and noting that dH — eu = 0 on r e, we immediately obtain 

f dH = e f uj0 + O(e2). 

Using the fact that Jr dH = d(h, e) and r e tends to the closed orbit as e —> 0, we have 

d{h,e) = ei co0 + O{e2), 
Jrh. 

and therefore Mi(h) — jTh OJQ (the usual first-order Melnikov function). 

We now make the following induction hypothesis (c.f. [10]): there exist continuous functions 

90i9\i • • • 19k-2 such that for all n = 1,... , k, 

Mn(h) = <p O n _i = 0, 

where 
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and 

Q,n-i = w n _ i + ^ gtujj 

i-\-j=n—2 

for n = 1,... , A;. Using this relation for n = k, and applying Lemma 3.1, there exist a continuous 

function gk_i and a locally Lipschitz continuous function Rk-i such that 

fifc-i = 9k-\dH + dRfc-i = c; f c_i + ^ ftOj. (3.25) 

This proves that the functions gk-i, Rk-i c a n be constructed by recurrence. 

Next, we multiply dH — eu by 1 + ego + e2g\ H h ekgk-i, which gives 

- e(u>o - ffodtf) - e 2(wi + g0uo - g\dH) 

- e f c(w f c-i + go^k-2 H + 9k-2^Q ~ 9k-\dH) 

- ek+1{uk + ffowfe_i + • • • + gk-iuo) + 0(ek+2), 

which can be written as (using (3.25)) 

dH - edRo - e2 dRi ek dRk-i - ek+1nk + 0(ek+2). 

Therefore, 

(1 + ego + • • • + ekgk_1)(dH - ew) = 

dH -edR0-e2dRx ekdRk_x - ek+1Qk + 0(ek+2). 

Integrating the above equation along T e, where Te is the trajectory of dH — eu = 0, and noting 

that 

f dH = d(h,e), 

[ (edR0 + e2dR1 + --- + ekdRk-i) = 0(ek+2) 

(the second estimate follows from the fact that d(h,e) = 0(e f c + 1)), we get 

d(h,e) = ek+1 [ nk + 0(ek+2). 
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Finally, Te coincides with the closed curve Th (up to 0(e)) and therefore we obtain 

d(h,e)=ek+1 I nk + 0(ek+2), 

which proves the theorem. • ' 

We derived a formula for the second-order Melnikov function (c.f. (3.16)). Is this formula useful 

in practice? The answer is no since go(x,y), which is given by (3.10), is an elliptic integral 

in general (and so the calculation of 50 is v e r y messy, which we do not want to go into it). 

However, if ^{x, y, 0) + fajix, y, 0) is an odd function of y, then go(x;y) is a polynomial, so the 

complexity is due to the even part of | | + Therefore, we need to express the second-order 

Melnikov function M2(h) in a more convenient form (i.e. Theorem 3.3) which will be useful in 

any case. In the following, I will derive Theorem 3.3 using (3.16). 

From Lemma 3.1, too can be written as UQ = godH + d(Ro — F). Substituting the above 

expression for UQ into (3.16) and using the fact that dH = 0 on Th, we get 

M2(h) = i [gQd{R0-F)+ul] 

= £ g0dR0 - I g0dF+ £> UJX. (3.26) 
Jrh Jrh Jrh 

Applying integration by parts to the second integral on the right-hand side of (3.26), we get 

M2{h)=<f godRo+f Fdg0 + f wi- (3.27) 
Jrh Jrh Jrh 

Using the definition of go, we see that on Th, 

= Jdf/dX(x,y,0) + dg/dy(x,y,0))dx 

y 

Also, we know that uo\ = | | (x, y, 0) dx — ̂ (x, y, 0) dy. Therefore, it remains to find a convenient 

form for the first integral on the right-hand side of (3.27). In order to do so, we split the function 

G(x,y) into odd and even parts with respect to y: G(x,y) = G\(x,y)+G2(x,y) (i.e. G\{x,—y) = 
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-Gi(x,y), G2(x,-y) = G2(x,y)). We write Gi{x,y) = yGi(x,y2), G2(x,y) = G2(x,y2). Now, 

Ro = f G(£,r?K 

= I (Gi((,v) + G2(^V))d( 

= f vGi((,V2)d(+ f G2fori2)dt 

= f vGi(Z,r)2)dt+ fX G2(£,2h + 2U{Z))dt 

=' pi(x,y)+P2(x,h). (3.29) 

Also, 

def dRo 
go = dh 

= ~t{x^-^h)- < 3 ' 3 0 ) 

Note that pi(x, y) is an elliptic integral and P2(x, h) is a polynomial in x (and hence continuous 

with respect to x). Using the hypothesis that M\(h) = M[(h) = 0, we obtain 

lim pi(a(h),y) = lim pi(a(h),y) = 0 = pi(b(h),0) 
y^t0~ J/-+0+ 

and 

lim ^(a(h),y) = lim.^(a(h),y) = 0 = ^(b(h),0). 
y->o~ on 2/->o+ an an 

The above imply that 

jf d^L(x,y)d\p1(x,y)] = 0, (3.31) 

a n [ X ' V ) 

= 0. (3.32) jf ^(x,y)d[P2(x,h)]+P2(x,h)d 

Also, it is easy to see that 

jf d^-(x,h)d[P2(x,h)]=0. (3.33) 
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Using (3.29), (3.3.0), (3.31), (3.32) and (3.33), we can now find a convenient form for §rkg0dR0 

easily. We have 

g0dR0 = - -^-(x,y) +-~(x,h) d[pi(x,y) + P2(x,h)] 

= -L ^(x, y) d[Pl (x, y)} + ̂ {x, y) d[P2(x, h)} 

+ ̂ ( s , h) d[Pl(x,y)] + ̂ (x, h) d[P2(x, h)} 

= / P2(x,h)d dp 
dh 

dP2 

dh 
(x,h) d[pi(x,y)} 

Now, using the definition of pi{x, y), we see that on T ,̂ 

(3.34) 

d[pi{x,y)] = Gi(x,y)dx, (3.35) 

d ^(x y) 
dh [ x , y ) 

dGl( ldG1( 

(x,y)dx = --^—{x,y)dx. dh^°'~ y dy 

Substituting (3.35) and (3.36) into (3.34), we immediately get 

(3.36) 

<j> g0dRo=<f> [Glh(x,y)P2(x,h) - Gi{x,y)P2h(x,h)]dx, 

so that Theorem 3.3 is proved. Finally, note that without loss of generality in (3.3), we can 

take a primitive with P2(0, h) = 0. 
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Chapter 4 
An application of higher-order Melnikov 
theory 

In this chapter, we apply the theory described in the last chapter to an example. We consider the 

quadratically perturbed non-hyperbolic linear centre studied by Bautin [5]. As in the examples 

of Chapter 2, the problem is determine the maximum number of limit cycles. In order to do 

so, we compute the first-order Melnikov function. However, if the first-order Melnikov function 

is identically equal to zero, then we need to compute the second-order Melnikov function. The 

number, positions and multiplicities of the zeros of the second-order Melnikov function is related 

to the number, positions and multiplicities of the limit cycles using Theorem 3.1 or 3.2. 

4.1. Perturbed linear centre 

In this section, we use the Melnikov theory developed in Chapters 1 and 3 to study the number 

and positions of the limit cycles that occur in a quadratically perturbed non-hyperbolic linear 

centre of the form (4.1). This example is of particular interest since it concerns Hilbert's 16th 

problem, which asks for a bound for the number of limit cycles of a polynomial system in terms 

of the degrees of the polynomials that define the system. This problem is not solved, even 

for quadratic systems [4]. Hilbert's 16th problem was studied intensively by many authors, 

see, for example, [5, 18, 25]. In [5, 18, 25], they study the determination of an exact upper 

bound of limit cycles under perturbations of certain specific polynomial systems. The strongest 

theoretical result obtained so far is the following deep theorem of Il'yashenko [13]. 

Theorem 4.1 (Il'yashenko) A polynomial system has at most a finite number of limit cycles. 
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The above discussion motivates us to study the 6-parameter family 

x = y + Xix - X3x2 - (2A2 + \b)xy + XGy2 

y = -x + Xiy - X2x2 + (2A3 + XA)xy + X2y2, 
(4.1) 

where Aj(e) = J2<jLi^ije''-> * = >6 and e is a small perturbation parameter. This is the 

same system studied by Bautin [5], who proved that there are at most three limit cycles in (4.1) 

and that a sixth- or higher-order analysis is required to produce that number. The hardest part 

in his proof is to determine at which order k (the order of the Melnikov function) the maximum 

number of limit cycles will 'stabilize'. That is, to determine the order of the Melnikov function 

M/t for which the next Melnikov functions will have the same maximum number of zeros. 

Therefore, one way to make this problem easier to study is fix the order k. Since we know the 

Melnikov functions when k = 1 and 2, we can determine the maximum number of limit cycles 

obtained from a first- and a second-order analysis of a quadratically perturbed non-hyperbolic 

linear centre of the form (4.1). In order to do so, we compute the first- and second-order 

limit cycles from a first-order analysis and that there is at most one hyperbolic limit cycle from 

a second-order analysis. Our results are consistent with those obtained by Bautin [5]. Bautin, 

however, goes on to a sixth-order analysis. 

For e = 0, (4.1) is a Hamiltonian system with H(x, y) = (x2 + y2)/2, and it has a one-parameter 

family of periodic orbits 

with the parameter h G (0,00) being the total energy along the orbit. We compute the first-

and second-order Melnikov functions of system (4.1). The first-order Melnikov function is given 

Melnikov functions using the formulas derived in Chapters 1 and 3. We show that there are no 

Xh{t) = V2hcost, yh{t) — —V2hsmt, (4.2) 

by 

(4.3) 

From (4.1), we find that 

f(x, y, 0, A) = Ana; - A3ia;2 - (2A2i + A5i)a;y + X6ly2, 
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g(x, y, 0, A) = Any - A 2ix 2 + (2A3i + A4i)xy + A 2iy 2. 

Substituting into (4.3), we have 

Mi(h,X) = <p [(Aiiy-A 2ix 2 + (2A3i + A4i)xy + A2iy2)dx 

- (Xnx - X31x2 - (2A2i + A5i)xy + A6iy2) dy] 

= ^11 f ydx — Xn f xdy 

(All other integrals vanish) 
p2n /»27r 

= X u / y2

h(t)dt + Xu / x\(t)dt 
Jo Jo 

r2-K r2w 

nh I s'm2tdt + 2An/i / cos2tdt 
Jo Jo 

(4.6) 

= AnXuh. (AA) 

Since h = a2/2, where a G (0, oo) is the positive x-axis intercept of the unperturbed periodic 

orbit, (4.4) becomes 

Mi (a, A) = 27rAna2. (4.5) 

We see from (4.5) that the system (4.1) has no limit cycles from a first-order analysis. Note 

that Mi (a, A) = 0 for all a > 0 if and only if An = 0. Therefore, for a second-order analysis it 

suffices to consider the following system 

x = y + e[eXi2x - X3ix2 - (2A2i + X51)xy + A6iy2] 

y = -x + e[eXi2y - X2ix2 + (2X31 + Xn)xy + X2iy2]. 

From (4.6), we find that 

f(x, y, e, A) = eAi2rc - A 3ix 2 - (2A2i + A5i)rcy + A 6iy 2, 

g(x, y, e, A) = eAi2y - A 2ix 2 + (2A3i + A4i)o;y + A 2 i y 2 , 

F(x,y, X) = -X31x2y - ^(2X21 + A5i)xy2 + ^A 6iy 3 + ^A 2ix 3, 

G(x, y, X) = XA1xy - ^A 5 xy 2, 
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Gi{x, y, A) = \41xy, G2(x, y, A) = - - A 5 i y 2 , Gih{x, y, A) = 
X41X 

P2(x,h,X) = -X5i(hx - —), P2h(x,h,X) = -X51X. 

Now, using Theorem 3.3 to compute the second-order Melnikov function, we have 

M2(/i,A) = - A 4 1 A 5 1 
X" (hx - ^-) - x2y 

y 6 
dx 

f 1 1 1 
- 4 (-A3ix2y - -(2A21 + A51)xy2 + -A 6 1 y 3 + -A2ia:3) 

dx f 
(-Asly + XiXx) — + A12 <t> {ydx-x dy) 

/

2ir j 
{hx2

h(t)--x{{t)-x2(t)y2

h{t))dt 

/

2-K 2 
(X3lX51x2

h(t)y2

h(t) - -(2X21 + X5l)X41x2

h(t)y2

h(t) 

^A5iA6iy^(t) + ^A2iA4i4W)^ 
r2ir 

A12 / (y2

h(t) + x2(t)) dt 
Jo 

(All other integrals in (4.7) vanish). 

+ 

Substituting Xh{t) = V2hcost, yn[t) = —V2hs'mt into (4.8), we get 

M2(h,X) = - A 4 1 A 5 1 
f2n 2 
/ (2/i2 cos21 - -h2 cos41 - 4h2 cos21 sin21) dt 

Jo 3 
r2ir 

- / (4A3iA5i/i2cos2isin2i - 2(2A2i + A 5 i)A4in 2 cos 2 isin 2 i 
Jo 10 

- 0A51A61/1 2 sin4t+ -A 2iA 4i/t 2 cos41) dt 
o o 

+ X12 / (2/isin2t + 2/icos2t)dt 
Jo 

4TTAI2/I - 7rA 5i(A 3i - A6i)n2. 

(4.7) 

(4.8) 

(4.9) 

Since h = a2/2, where a G (0,00) is the positive x-axis intercept of the unperturbed periodic 

orbit, (4.9) becomes 

M2(c*,A) = 27rAi2a2 - Y A 5 I ( A 3 I - A6i)o:4. (4.10) 

We see from (4.10) that the system (4.1) has at most one hyperbolic limit cycle from a second-

order analysis. Finally, note that if the second-order Melnikov function is identically equal to 
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zero, then we need to consider the third-order Melnikov function. For details on the derivation 

of the third- or higher-order Melnikov function, see, for example, [5, 18, 25]. 
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Chapter 5 
Conclusions and future work 

In the Introduction we asked the question: What is the exact number, positions and multiplic

ities of limit cycles in a perturbed planar system of the form (2), assuming that Assumption 

1.2 is satisfied? We then showed that they can be determined by the number, positions and 

multiplicities of the zeros of the (first-order) Melnikov function, which was derived in Chap

ter 1. In Chapter 1, we established some non-degeneracy conditions which guarantee that a 

first-order Melnikov analysis is valid. Also, we established a more degenerate condition which 

guarantees that a unique non-hyperbolic limit cycle of multiplicity two exists in (2). Chapter 

2 contains some examples which illustrate the first-order Melnikov theory. In particular, we 

analyzed the Bogdanov-Takens bifurcation with reflection symmetry, with the emphasis on the 

determination of the number of limit cycles corresponding to different values of the parameters. 

In Chapter 3, the first-order theory was extended to higher-order. In particular, we derived 

a formula for the second-order Melnikov function for certain perturbed Hamiltonian systems. 

This formula is useful if the first-order Melnikov function is identically equal to zero. This 

formula is then applied to a quadratically perturbed non-hyperbolic linear centre in Chapter 4, 

the results of which agree with those obtained previously by Bautin [5]. 

Although the Melnikov function can be computed for any system of the form (2), finding the 

zeros of the Melnikov function is sometimes formidable, especially when a higher-order analysis 

is required. For example, consider the system 

x = y 
(5-1) 

y — — x + x3 + \\y + \2X2y, 
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where A;(e) = Y^jLi , 2 = 1,2 and e is a small perturbation parameter. If An = A21 = 0, 

then the first-order Melnikov function is identically equal to zero and a higher-order analysis 

of (5.1) will be necessary to determine the number of limit cycles that are still preserved under 

perturbation. In fact, it is possible, using the second-order Melnikov function derived in Chapter 

3, to determine the number of limit cycles from a second-order analysis of (5.1). Again, the 

non-trivial part is to determine the number of zeros of the second-order Melnikov function 

M2(h, A). This determination of the number of zeros is beyond the scope of this thesis. 

The other problem that may arise is that both the first- and second-order Melnikov functions 

are identically equal to zero. It is possible to use Frangoise's resursive algorithm (e.g. Theorem 

3.5) to compute the higher-order Melnikov functions, but since Frangoise's method requires 

calculations of growing complexity at each successive step, in practice only the first few Melnikov 

functions can be derived by using Theorem 3.5. Other approaches to higher-order Melnikov 

functions share similar problems. 

Much work has been done on the determination of the number of limit cycles in a quadratically 

perturbed non-hyperbolic linear centre. In [5], Bautin shows that a quadratically perturbed 

non-hyperbolic linear centre has at most three limit cycles, and that a sixth- or higher-order 

analysis is required to produce that number. His proof is to derive a 'structural' result about the 

form of the displacement function d(a, e) for small a, e, and based on this structure, determine 

what order analysis in e (i.e. what order Melnikov function) is required to produce that number. 

On the other hand, much less is known about the number of limit cycles in a cubically perturbed 

non-hyperbolic linear centre. For example, what is the maximum number of limit cycles in a 

cubically perturbed non-hyperbolic linear centre, and what order Melnikov function is required 

to produce that number? These questions are still not completely answered. It is known that 

the maximum number of limit cycles is greater than or equal to 11 [26]. Li and others [14] in 

fact constructed an example of a cubic system with eleven limit cycles. Much mathematical 

research has been devoted to Hilbert's 16th problem in the past and will probably continue to 

be in the future. 
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Appendix A 
Derivation of (2.9) by the method of normal 
forms 

In this Appendix, we use the method of Poincare normal forms to derive (2.9) (see Wiggins [24] 

for more details). Consider the system 

x = Ax + F3(x) + 0(\x\5), x = (x,y)e$l2, (A.l) 

where 

\ 0 0 

and F3(x) is a vector field consisting entirely of third-degree terms. Note that in order for (A.l) 

to preserve reflection symmetry, the higher-order terms need to be odd (i.e. fifth-order terms). 

The idea of Poincare normal form is to introduce a near-identity coordinate change 

x = u + h3(u), u = (u,v) € fi2, (A.2) 

where h3(u) = 0(\u\3), to reduce the system (A.l) to its 'normal form'. Substituting the 

transformation (A.2) into (A.l), we get 

(I + Dh3{u))u = Au + Ah3(u) + F3(u) + 0(\u\5) 

Now, since 

(J + Dhsiu))-1 = I - Dh3(u) + 0(\u\% 
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it follows that 

ii = Au +Ah3(u) - Dh3(u)Au +F3(u)+0(\u\5) 

= Au + F3{u) + 0(\u\5), 

where 

F3(u) = Ah3(u) - Dh3(u)Au + F3(u). (A.3) 

The point is that we can choose h3(u) to make F3(u) as simple as possible. Ideally, this would 

mean choosing h3(u) such that F3(u) = 0; however, this is not always possible. 

In order to get a clear understanding of how ^ 3 (u) is chosen, let us view the function 

LA [h3 (tx)] = Ah3 (u) - Dh3 (u)Au (A.4) 

as a linear transformation on the space H3 of all third-degree (homogeneous) polynomials. Since 

x = (x,y) 6 we consider LA as a linear operator on the eight-dimensional vector space 

Span < x° 

0 

2 

z y zy 

0 

y° 

0 

2 
x y xy' 

Then, h3 6 H3 is given by 

h3(u) = 
hou3 + f2\U2V + fnuv2 + / 0 3 v 3 

gsou3 + 92\u2v + g\2uv2 + go3vz 

We need to compute LA[h3{u)}. We get 

/ 93ou3 + (921 - 3/ 3o)^ 2w + (312 - 2f2i)uv2 + (g03 - fn)v3 

LA[h(u)} =\ 
\ -3g30uzv - 2g2iuvz - g l 2tr 

Therefore, 

LA{H3) = Span { 

0 

u° 

-3u2v 

.0 

2 
U V uv 

0 

VJ 

0 

uv* 

(A.5) 
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and we see that 

H3 = LA(H3) 0 C 3 , 

where 

C3 = Span \ 

This shows that any system of the form 

x = Ax + F3(x) + 0(\x\5), x = {x,y)e^2 

with 

A = 

and F3 € -£13 can be reduced, by a nonlinear transformation of coordinates a; — u + h3(u) with 

h3 € H3 given by (A.5), to the normal form 

ii = v + 0(\u,v\5) 
(A.6) 

v = au3+ bu2v+ 0(\u,v\5). 

It can be shown that if a ^ 0 and b 7̂  0, then the higher-order terms (i.e. fifth-order terms) do 

not affect the qualitative nature of the non-hyperbolic equilibrium point at the origin provided 

that they respect the reflection symmetry. Therefore, we can delete these terms in studying the 

bifurcations that take place in a neighbourhood of this non-hyperbolic equilibrium point. That 

is, we can just consider the truncated normal form 

ii = v 
(A.7) 

v = au3 + bu2v. 
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