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Abstract

A well-known system of partial differential equations, known as the Gierer-Meinhardt system,
has been used to model cellular differentiation and morphogenesis. The system is of reaction-
diffusion type and involves the determination of an activator and an inhibitor concentration
field. It is believed that long-lived isolated spike solutions for the activator model the localized
concentration profile that is responsible for cellular differentiation. In a biological context, the
Gierer-Meinhardt system has been used to model such events as head determination in the
hydra and heart formation in axolotl.

This thesis involves a careful numerical and asymptotic analysis of the Gierer-Meinhardt system
in one dimension and a limited analysis of this system in a multi-dimensional setting. We begin
by studying a reduced model, referred to as the shadow system, which results from simplifying
the Gierer-Meinhardt model in the limit of inhibitor diffusivity tending to infinity. This reduced
model is studied in both one and in several spatial dimensions. In §2 we study the stability and
dynamics of interior spike profiles for this reduced model. We find that any n-spike profile, with
n > 1, is unstable on a fast time scale. Profiles with a single interior spike are also unstable but
on an exponentially slow time scale. In this case the spike tends towards the closest point on
the boundary. In §3 we examine the behaviour of a spike profile in which the spike is confined to
the boundary. This scenario is studied in the qaée of a two and a three dimensional domain. It
is found that the spike moves in the direction of increasing boundary curvature and increasing
boundary mean curvature in two and three dimensions, respectively. Stable spike equilbria
correspond to local maxima of these curvatures. We. then study the case of a spike confined to
a flat portion of the boundary in two dimensions. In this case it is found that the spike moves
on an exponentially slow time scale. '

The remainder of this thesis examines the full Gierer-Meinhardt system in a one-dimensional
spatial domain. In §4 we study the stability properties of n-spike equilibrium solutions to the
full system. A necessary and sufficient condition is found for the linear stability of an n-spike
solution. In §5 we study the dynamics of spike profiles. We derive a system of ordinary differ-
ential equations which govern the motions of the spikes in one spatial dimension. Numerical
computations of this asymptotic system are compared with numerical computations of the full
system. In §6 we study the effects of precursor gradients. The mathematical result of these
spatial inhomogeneities in the chemical reaction is that some of the coefficients in the equations
are no longer constant in space. We study the effects of spatially varying activator and inhibitor
decay rates as well as a spatially inhomogeneous activator diffusivity. It is found that these
spatial inhomogeneities can affect both the dynamics and equilibrium position of the spikes.
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Chapter 1

Introduction

Developmental biology is the study of the mechanisms by which a single cell develops into
a complex organism with many different cell types. This process is extremely complex and
involves both mechanical and biochemical processes. We will be focusing on the biochemical

processes related to organ formation, or organogenesis, here. In this process, the initial cell

‘divides into a large number of identical cells. Then a variety of mechanical and biochemical

events occur. One such event is the formation of locally elevated levels of a substance, which
we refexj to as an activator, which cause the cells in a neighborhood of the elevated levels to
differentiate from the surrounding cells. Thus a particular organ, such as a heart, is formed.
In this thesis, we will analyze a mathematical model, known as the Gierer-Meinhardt model,
of a proposed mechanism that may be responsible for the localization of the activator. This
model uses the combination of a catalytic reaction with diffusion to produce an equilibrium in
which the concentrations form a spatial pattern. The possible existence of such systems was

first proposed by Turing in 1952 (see [46]).

An outline of this chapter is as follows. In §1.1 we present an overview of the initial work
done by Turing. We will then present some explicit models of processes that are known to
yield equilibrium solutions with spatial patterns. Speéiﬁcally, in §1.2.1, §1.2.2, §1.2.3 and §1.2.4
we present models uéing long rangebinhibition, depletion of substrates, a model of microwave
heating and a model of combustion occurring on a slowly diffusing fuel source, respectively. A

full discussion of the first two of these models, as well as some striking numerical simulations,

may be found in [32] and [33]. The remainder of this thesis will then focus on the long range



inhibition model, which is commonly referred to as the Gierer-Meinhardt equations (see [12]).
In §1.3 we begin the mathematical analysis of the Gierer-Meinhart equations, by finding a
suitable scaling as well as deriving a simplified model commonly referred to as the shadow
system [35]. In §1.4 we overview some of the history of the mathematical analysis of the Gierer-
Meinhartd equations. Finally, we discuss the goals of the thesis and give an outline of the

remaining chapters.
1.1 The Turing Instability
Turing examined systems of the form,

Ar=DsAA+F(AH), nQ, (1.1a)

H,=DygAH+G(AH), nQ, (1.1b)

with Neumann boundary conditions on 8f2. Here A represents the activator concentration,
H‘ represents the inhibitor concentratioxi, D, is the activator diffusivity, Dy is the inhibitor
diffusivity and F and G are nbnlinea.r reaction terms. For simplicity we will consider € to
be the one dimensional domain [0,1]. To determine if stable spatial patterns are possible, we
examine the stability of the spatially homogeneous solution. We let Ag, Hg be such a solution
(so that F(Ag,Hg) = 0 and G(Ag, Hg) = 0), and we consider a sinusoidal perturbation from

this state. We let,

A= AE. + acos(wia:)e)‘t , | (1.2a)

H = Hg + hcos(wiz)e™. (1.2b)

Here w; = mi in order to satisfy the boundary conditions. We substitute (1.2) into (1.1) and

expand F and G in a Taylor series about Ag and Hg. This results in the eigenvalue problem,

Aa = —w?Dsa + Kija + Kah, | (1.3a)

A = —w?DHh+Kga+K4h, (13b) _




where,

oF oF

K = B—A(AE,HE), Ky = 'ET(AE,HE), (1.4a)
oG : aGg . .

K3 = a_A(AE,HE)a Ky = B—I'(AE,HE)- (1.4b)

We must assume that the spatially homogeneous solution (Ag, Hg) is always stable in the
absence of diffusion. This assumption results in several restrictions on the values of K;. If this

previous assumption is true, and the following condition is met,
(KiDg + K4D4)> —=4D oDy (K1 Ky — K2K3) > 0, (1.5)
then the eigenvalue problem (1.3) will have eigenvalues with Re(\;) > 0 when,
4((K1 — wiDa)(Ks — w} D — K3 K3) < (K1 + Ky ~ wf(Da + Dpr))?. (1.6)

Thus, for a certain range of w; values, sinusoidal perturbations may grow. The end result is
that only certain modes become unstable. Through numerical simulations, such as those in [12]
and [16], these instabilities have been shown to yield spike-type solutions when D, is small.
" The non-linear effects will then cause the spikes to stabilize. For an in-depth analysis of the
parameter regime for spike growth see [28]. Numerical methods have now made it possible to

simulate such systems thus verifying the existence of spike-type solutions.
1.2 Examples of Reaction-Diffusion Models

We now present some mathematical models of reaction-diffusion systems that are knoWn to
produce sblutions with spatial patterns. Each system has different properties making them
suitable for modeling different phenomena. For example, the depletion of substrate system
seems to produce periodic patterns and thus may be of use in the modeling of structures with
a periodic nature such as the spinal cord. The long range inhibition mbdel tends to produce
isolated structufes and thus may be more appropriate for the modeling' of isolated structures
- such as the heart. The microwave heating equation models the formation of hot-spots that can
occur during sintering. The Grey-Scott model of combustion on a slowly diffusing fﬁel field
produces pulses of locally elevated temperature that can split into traveling pulses which may

again divide. We now present some details of the models.




1.2.1 Long Range Inhibition

In this two component reaction-diffusion system, the activator is a slowly diffusing substance
which promotes its own formation with autocatalysis. The inhibitor is a rapidly diffusing
substance which uses the activator as a catalyst in its formation and itself as an inhibitor of
both its own formation and that of the activator. The formation of an isolated peak happens
as follows. If ‘the system is at a spatially homogeneous equilibrium, small perturbations in
the concentration of the activator will grow due to the autocatalysis. These elevated levels of
activator will promote a localized increase in the concentration of inhibitor. The elevated levels
of inhibitor then diffuse rapidly preventing the formation of spikes in the activator concentration
elsewhere. We now present a mathematical model of this system in a one-dimensional domain

and in dimensionless form. This model, known as the Gierer—MeinhaIdt model, is

AP

vAt=62Am—A+E[—q, -1<z<1l, t>0, (1.7a)

AT ,
rHt=DHm—uH+ﬁ—3,, -l<z<l1l, t>0, (1.7b)
Ag(£1,1) = Hy(#1,8) =0, (1.7¢)

where the exponents (p, g, 7, s) are assumed to satisfy the relations,

‘ . p—1 T
1 > —< .
p>1, qg >0, r >0, §>0, O<_q P}

(1.8)

Here D and €? are the diffusivities of the inhibitor and activator, respectively. This model is a
scaled and slightly simplified version of that presented in [12]. Simulations of this system show
that it supports extremely robust isolated spike solutions. This is the model that is studied in

this thesis.
1.2.2 Depletion of Substrate

In this model, the activator is autocatalytic but instead of an inhibitor, a rapidly diffusing
substrate is required and used by the catalytic reaction. Thus, a localized slight increase of the

concentration of the activator will grow due to autocatalysis. The autocatalytic reaction will

use up the substrate required for the growth of the activator and thus regulate the size of the




spike. The details of the mathematical model of this reactions are as follows.
Ay = DyAgp — nA + cA?S, , (1.9a)

Sy = DsSzz — vS + ¢y — cA%S. (1.9b)

This model is commonly referred to as the Brusselator (see [40]). As previously mentioned, this

model has a tendency to produce periodic patterns.
1.2.3 Microwave Heating of Ceramic Fibers

. We now give a partial differential equation modeling the microwave heating of thin ceramic
cylinders in single-mode highly resonant cavity. An analysis of the equations in the limit of

small Biot number results in the following non-local reaction diffusion equation (see [4]),

o . f0)
U, = DUy, _2(7+ﬁ[(U+1) RARETSTT Ty

Ux(o) = Uz(1) =0, (1.10b)

, 0<z<l1l,  (1.10a)

where U is the scaled temperature of the ceramic cylinder, D is the thermal diffusivity, x and
[ are dimensionless physical parameters, P is dimensionless power parameter and f(U) is the
effective electrical conductivity. In [4] it shown that (A1.10) supports highly localized hot-spot
-solutions. The forms of (1.10) and an asymptotic reduction of (1.17) known as the shadow
system, given below in (1.18), are very similar. Thus, the analysis for thé shadow system given

in §2 should be useful for analyzing (1.10).
'1.2.4 Combustion on a Slowly Diffusing Fuel Field - The Grey-Scot Model

This model is used for the simulation of brush fires or small forest fires. One of the most
interesting features of this model is that it has spike solutions that may split into two spikes
which then travel in opposite directions. This splitting process may then continue. In one

~ spatial dimension, the model in non-dimensional form is (see [9]),

Uy =Up —UV?+6a(1-U), -l<z<1 (1.11a)
Vi=6Vee +UVE=6P0V —1<z<1, (1.11b)
Ug(£1) = Vy(£1) = 0. o (1.11c)




Here U is a scaled temperature field and V is a fuel concentration field. The model is studied

in [9] in the limit of small 4, for various ranges of the positive parameters a, b and 3. .

1.3 Scaling of Gierer-Meinhardt Equations for Spike Solutions

- Before we begin the scaling of (1.7), we make the simplification of setting 7 = 0, as finite values
of 7 can lead to complicated oscillatory behaviour which is beyond the scope of this thesis (see
[34]). From numerical computations, it is evident that for sufficiently small values of T, this

simplification will cause no difficulties. Thus, for simplicity we 7 = 0 in (1.7).

The amplitude of a spike solution to (1.7) will tend to infinity as ¢ — 0. Therefore, we introduce
new variables for which the spike solution has an O(1) amplitude as ¢ — 0. To this end, we

introduce a and h by
A=¢ Vg, H = ¢ "rh, ‘ . (1.12)
ﬁrhere &a and vy, are to be found. To bélance the terms in (1.7a), we require,
~Va = ~Vap + qVh- : - (1)

We will construct a solution in which the spike has its support in an O(¢) region near some point
in . Therefore, to obtain an additional equation relating v, and vy, we consider an average

balancing of (1.7b). Specifically, we integrate (1.7b) over the domain to get,

1 1 A" .
—,,L/ Hdw—i—/ Z-dzr=0. (1.14)
-1 —lH . '

Since A will be localized to an O(e) region about the spike center zy, we scale z in the last

term by y = ¢ "!(z — 7¢). Balancing the terms in this equation we get
—Up = —UgT +1ps+ 1. , (1.15)

The solution of (1.13) and (1.15) yields,

g p—1) (1.16)

Vo =

(1—-p)(1+s)+rqg’ Yh = (1-p){1+s)+rg




In terms of these new variables (1.7) becomes

. 2 , .

atzeaw——a-i-ﬁ, -l<z<1, t>0, (1.17a)
- r

0=me—#h+54%n “1<z<1l, t>0, (1.17b)

ag(1,1) = hg(£1,8) =0. - (1.17¢) -

1.3.1 The Simplified Gierer-Meinhardt Equations — The Shadow System

In'§1.2.1 it was stated that the inhibitor must be a rapidly diffusing substance. Thus, it seems
logical to étudy this system in the limit D — co. In this limit, h is a constant in space which
may be determined from a solvability condition. In this iimit, (1.17) reduces to the following

nonlocal ordinary differential equation,

at=e2am—a+%§, —l<:_L"<1, t>0, (1.18a)
n r. I | ,

h= (Elj /_la d:z:) , - (1.18b)

az(x1,t) =0. | (1.18¢)

All of the analysis above can also be carried out in RY. We omit the details as the analysis
is almost identical to that given above except for some minor changes in the scaling. As the
analysis of the full system in RY is beyond the scope of this thesis, we only present the N-

dimensional version of the shadow system. It is given by,

9 af? L
ar =€ Aa-—a—i—ﬁ, in Q, ‘t>0, | (1.19a)
h (C—N Td' ) ﬁ :
=|—— [ a"dx , ‘ 1.19b
Wi Ja | ‘ (1.10)
Ona = 0 on o0, | : (1.19¢)

where ) is a bounded subset of RY and 8, refers to the normal derivative.




1.4 A Brief History of the Analysis of the Gierer-Meinhardt
Equations

There are very few results for ( 1.17 ). Those that we have found will be discussed in the main .
body of the thesis at the appropriate times. Here we will restrict ourselves to results found
previously for (1.19). The first results are for equilibrium solutions to (1.19). If we set dt =0

and @ = h7Ty in (1.19), then (1.19) reduces to,

EAu—u+uP =0, inQ, v (1.20a)

Opu =0, on 69Q. (1.20b)

~.A spike solution for (1.20) in the limit ¢ — 0 is a solution of the form, u(z) ~ uc[e™|z — zo|]

where x¢ is a point in Q or on 9 to be determined, and uc(p) is the unique positive radially

symmetric solution to,

N —

1 ' : ’
ug + u,—uc+ul =0, 0<p<oo, (1.21a)
uc—>ae ? as p— o0, (1.21b)

for some o > 0. An n-spike solution is defined as,

n - .
un > ule Mo —zf], (1.22)
7 i=1
where u. is defined in (1.21) and the spikes are centered at points z;, i = 1,...,n, to be

determined. In [35] the existence of a single spike solution centered on the boundary at the
global maximum point of the boundaries mean curvature is proven usiﬁg variational methods, in
particular the Mountain Pass Lemma. In a.xia.lljr éymmetric donﬁa.ins, multiple peak solutions,
with the peaks all resting' on the boundary at local critical points of thé boundarieé mean
curvature are constructed in [36]. In [1.3]_ multiple peak boundéry spike solutions are found .
in a general domain with a smooth boundary. In [14] solutions with multiple interior peaks
are constructed where the locations of the peaks coincide, in the limit € — 0, with centers of |

" spheres that solve a ball packing problem in the domain. In [15] solutions with spikes resting

in the interior as well as on the boundary are found.




There are some key results in [48], which we will examine in more detail, as many of the ideas

in this paper are important to an understzinding of the analysis in this thesis. The result which

concerns us states that all of the solutions found for equation (1.20) are dynamically unstable

when the nonlocal effects from (1.18) are igﬁored. We briefly explain how this result is obtained.

If we consider € in (1.20) to be all of RY | then wu, (L@Q{) from (1.21) will satisfy (1.20) for

~ any choice of zg. If we consider now 2 finite domain, u, will still satisfy (1.20a) and will fail °

‘to satisfy the boundary conditions by exponentially small amounts for any choice of g in the

interior of Q2. Next, we linearize about this approximate solution and obtain the following

eigenvalue problem,
Lp=EA¢+ (—1+p2Y)g =N, o (1.23a)
Onp=0 on OQ. - | (1.23b)
We note that the fungtion ¢; = 3—2’:7 for i =1,..., N satisfies L¢¢; = 0 and fails to satisfy the
bouﬁdary conditions by only exponentially‘ small amounts. This suggests that in the limit ¢ — 0,

(1.23a) has N exponentially small eigenvalues. We note that the eigenfunctions associated

with these eigenvalues each have exactly one nodal line. Thus, these are not the principal

eigenfunctions. Therefore, (1.23a) must have a proper positive eigenvalue. Since, by a rescaling '

of the spatial variables,-we may eliminate the ¢ from (1.23a), this eigenvalue must be O(1).
Thus, the linearization about a spike solution has a positive O(1) eigenvalue and therefore,
these spiké solutions are not stable. These large and small eigenvalues will reappear many times
in the course of this thesis. One of the main tasks in this thesis is to show what conditions are

necessary to move the positive O(1) eigenvalue into the left half of the complex plane.

We now present the main goa_ls of this thesis and an overview of the remainder of the chapters.
Turing did his im"tia.l work in 1952 using the techniques of linear analysis. The only questibns
that this form of analysis has been able to answer are what are some of the necessary conditions
for spikes to form from spatially homogeneous initial data. The conditions arriving from this
analysis are far from sufficient. Once the initial Turing instability is triggered it is assumed

that the nonlinear effects will stabilize the spike profile. This linear analysis can say nothing

-about the fully formed spike profile, which is far from the linear regime. Until recently, the only

9



way to verify that the fully formed spike profiles are stable is to use numerical analysis. One =

of the main goals of this thesis is to use modern analytical techniques to find explicié criteria,
both necessary and sufficient, determining the stability of a pa.rticula.f spike profile. There‘are

many other questions fhat this thesis will address. We will consider the behavior of sf)ikes after |
they are fully formed. We will also address such questions as how do the‘spikes move and how
do they interact dynamically. We will also examine the diﬁ‘erenées in thé. behaviour of the full
‘system (1.17) ﬁrith the shadow sysﬁem_ (1.18) and determine under what circumstances it is

appropriate to use the reduced model (1.18).

. The remainder of the thesis proceeds as follows. In §2 we cdnsider equilibrium and ciuasi—
equilibrium solutions to (1.18) and (1.19). In §2.1 we construct a canonical spike solution -
to (1.18)’. A linearization about this solution leads to a non-local eigenvalue problem. The
principal eigenvalue of this spectrum is shown to be exponentially small. A projection method
is then used to derive a solvability condition resulting from the exponentially small eigenvalue.
This leads to an ordinary differential equation governing the exponentially slow motion of one
sf)ike. These resuits are then favorably compared to numerical simulations of (1.18). We ndw
present the main result from this chapter. For ¢ — 0, metastable spike Solu_tion for (1.18), is
represented by a(z,t) = qE.(a;; zo(t)), where ag is defined below in (2.1) and z((t) satisfies,
dzg 2% [e—zu—zo)/e_e—2<1+zo)/e], - (1.24)
dt Jé] ' :
Here a and 3 are positive constants defined below in (2.5) and (2.20), respectiw}ely. In §2.2
we demonstrate than an n-spike solution, with n > 1, to (1.18) is always unstable with aﬁ
O(1) positive eigenvalue. .In §2.3 we repeat the analysis of §2.1 in an N-dimensional setting. .
The differential equation governing the motion of the spike shows that the spike will drift

exponentially slowly towards the closest point on the boundary.

In §3 we examine the dynamics of the spike once it has merged with the boundary. This is
carried out in two and three dimensions in §3.1 and §3.2 respectively. In both cases it is found
that the spike moves in the direction of increasing curvature (mean curvature in the case of three

diinensions) until reaching a stable equilibrium at a local maximum of the (mean) curvature of
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the boundary. We now providé the main results of this chapter. For ¢ — 0, the motion of a

spike confined to the smooth boundary of a two-dimensional domain follows the trajectory

' 4b I . . : .
so(t) ~ 3¢’ (50), (1.25)

where v = q/(p — 1) and b > 0 defined below in (3.20c). Here s is the arclength along the
boundary and x(s) > 0 is the curvature of the boundary. This differential equation has stable
equilibrium when we are at a local maximum of x(s). Correspondingly in three dimensions, for

¢ — 0 the motion of a spike confined to a smooth boundary is described by

!

)~ 0SvHE). (1.26)

Here & = (&1,€2), v =q/(p — 1), b > 0 is defined in (3.37b) and H is the mean curvature of 012,

with H >0 fdf a sphere. Stable equilibria are at local maxima of H.

In §4 we examine the stability of n-spike solutions to (1.17). We find explicit conditions, both

~ necessary and sufficient, to determine the stability of an n-spike solution. This is accomplished »

by linearizing about an n-spike solution and finding criteria that guarantee that both the large

and small eigenvalues discussed previously lie in the left half of the complex plane. The main

result of this chapter is a stability result which we now provide. An n-spike equilibrium solution

to (1.17) is stable when D < Dj, where,. as € = 0,

Di ~ = B

[n In(v/B+ VB + -1)]2 ’

An n-spike solution is unstable when D > D7.

T—ass] w2

In §4.4 these results are used to construct an drdinary differential equation governing the mbtion
of a single spike proﬁle. These results are compared with full numerical simulations of (1.17).
These results predict D] = co. A more refined analysis shows thaf a one-épike solution is stable
only when D< _O(ec/ €). Thus the shadow system ('1.18) and the the full system (1.17)- give

similar stability conclusions for a one spike solution only when D > O(e€/e).

In 85 we examine the dynamic properties to n-spike profiles under (1.17). A solvability con-

ditions resulting from the small eigenvalues results in a differential algebraic system governing
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the motion of the spikes. However, the validity of this system will depend on the location of
the large eigenvalues in the compléx plane. Thus, a criterion is developed to ensure the validity
of the derived system at any given time. We now provide some of the details of this result. For

€ K 1, the quqsi—equilibrium solution for a and h is giyeﬁ' by

. n )
a(z,t) ~ a, = Z hluc ez —zj)], - (1.28a)
= : _ .
h(z,t) ~ ho=b, 3 W °Glz;z5), ~ (1.28b)
, Jj=1 '

where h; = h;(7) and z; = z;(7) satisfy the differential-algebraic system for ¢ = 1, ,n

n

hi=b Y BRI °G(ziizs), o (1.299)
j=1 o '
dz; 2qb,  _ - = - |
#N_ﬁhi_l A" 3<Gm>i+z;h}’ ‘Ge(zs25) | - - (1.29b)
=
. J#i

Here u, satisfies (5.5), b is defined in (5.11a), T = €°t, and (Gy); = [G;($i+;xi) + Gzlziz; z4)] /2.

Here G is the Green’s functions satisfying,

DGyy — puG = —6(z — zi), -1<z<1, ' (1.30a)

Ga(+1;24) = 0. | (1.30b)

In §6 we examine the effects of precursor gradients on the equilibrium position of a single spike.
‘A precursor g;ré,dient is a pre-existing spatially inhomogeneity which is imposed on the model.
It could come into existence from the inherent polarity of the developing éells or due to localized |
sources of a pfecursor which diffuse through the group of cells. The mathematical consequence
of a precursor gradient is that the coefficients ;m the model will now depend on space. This
can have a variety of effects depending on the nature of the inhomogeneity. Several different

scenarios will be explored.
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Chapter 2
The Shadow System

We begin by considering the shadow system (1.18) which is a simplified model of the Gieier-

Meinhardt system. In [35] it was shown that for suﬂiciehtly large values of D the solutions to

- the shadow system and that of the full system will coincide. However, we will show in §4.4.2

that D will have to be asymptotically exponentialiy large as ¢ — 0 for this to be the caée and
thus outside the range of any physical model. The shadow system still warrants investigétion
as techniques used in its investigation will be useful in the investigation of the full system. In
addition, the shadow system provides an interesting exé,mple of a non-local differential equation

and a novel application of the projection method.

‘ The outline of this chapter is as follows. In §2.1 we consider the one-spike quasi-equilibrium

solution to the one-dimensional problem (1.18). We examine the stability and dynamics of
this solutién by analyzing the spectrum of the linear operator resulting from a linearization of
(1.18) about this non-constant solution. This eigenvalue problem is a non-local Sturm-Liouville
problem of the type considéred in [11]. A combinatibn of anélytical and numerical techniques
will be used to demonstrate that the principle eigenvalue of this operator is exponentially
small. The non-local term in the Sturm-Liouville operator is essential for this conclusion.
The exponentially sma.ll‘eigénva.lue will be estimated asymptotically. A differential equation
characterizing the motion of the center of the spike will be derived in the limit € —> 0 by using
a limiting solvability condition, which requires that the solution to the quasi-steady linearized
problem has no comporent in the eigenspace associated with the exponentially small eigenvalue.

This procedure is known as the projection method and has been used in other contexts (see
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[48], [49]). The resulting ODE for the motion of the center of the spike shows that the spike
drifts exponentially slowly towards the point on the boundary closest to the initial location of
the spike. This metastable behavior is verified by calculating full numerical solutions to (1.17)
in §2.2. Solutions with n-spikes, where n > 1, will be shown to be unstable. In §2.3 we give a

similar analysis of metastable spike-layer motion for the multi-dimensional problem (1.19).
2.1 - A Spike in a One-Dimensional Domain

We first construct a one-spike quasi-equilibrium solution ag for (1.18) in the form

¢ =ag(z;20) = Wule  z—x0)], v=q¢/(P-1). @y

Here 5:0, with |zg| < 1, is the center of the spike. The function u.(y), called the canonical spike

solution, is the unique positive solution satisfying;

uZ—uc+u’c’=0, 0<y<oo, (2.2a)

,

u.(0) =0; ue(y) ~ ae™ ¥, as y — 00, _ (2.2b)

with a > 0. The existence and uniqueness of the solution to (2.2a) is proven in [45]. In terms

of this solution, h = hg, whére

| . / ‘ .
1 LI GFUG-D=w
Since u, is localized near xg, we estimate as € — 0, that
s+1) P-l) qr .
hE ~ (-i—) y ,3 / uc . . (2.4)

To determine numerical values for certain asymptotic quantities below we must compute uc(y),
3, and a numerically. The constant a is obtained by integrating (2.2)
log (1) p(z)T -1 il
log(a) = ————% +/ — =1 dn. (2.5)
0

- 1 n2 — ;)__%__Tnp+1 n

To compute u, numerically, we use the asymptotic boundary condition u'c +u.=0aty=yr,

where y7, is a large positive constant. To compute solutions for various values of p, we use a
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continuation procedure starting from the special analytical solution,

uc(y) = gsech2 (g) , ' (26)

which holds when p = 2. The boundary value problem solver COLNEW (see [3]) is then used
to solve the resulting boundary value problem. In Fig. 2.1, we plot the numérica,lly computed

" uc(y) when p =2,3,4.

Ue

Figure 2.1: Numerical solution for u.(y) when p = 2,3,4.

We note that, for any o with |zo| < 1, the solution ag(z;zo) will satisfy the steady-state
problem corresponding to (1.18a), (1.18b), but will fail to satisfy the bouﬁdary conditions in
(1.18¢) by only exponentially small terms ase— 0. Thus, we expect that the spectrum of the
eigehva,lue problem associated with the linearization about ag will contain an exponenﬁially

small eigenvalue.
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2.1.1 The Nonlocal Eigenvalue Problem

Let 2y € (—1,1) be fixed and linearize (1.18) around ag, hg. We obtain the eigenvalue problem
for the linearization by introducing ¢ and 5 by

a(z,t) = ag(z; z0) + Mg : (2.7a)

h(t) = hg + e, ()

where ¢ <« 1 and 7 <« 1. Substituting (2.7) into (1.18) we obtain the following non-local

éi_genva.lue problem of Sturm-Liouville type on [—1,1]:

- = 2 1y, rgeld ! r—.l _ »
Lp=c¢ _¢m +(—1+pul )¢ — m—) /_1 u, T pdr = AP, (2.8a)
$a(£1) =0, - (2.8b)

The non-local integral term in (2.8) will drastically change the nature of the eigenvalue problem.

In (2.8), uc = u. [e7}(z — z0)]. Therefore, we will only seek eigenfunctions that are localized

near £ = zo. These eigenfunctions are of the form

Therefore, we can replace the finite interval by an infinite interval in the integral in (2.8) and

impose a decay condition for ¢(y) as y — too. This gives us the non-local eigenvalue problem

for the infinite domain —co < y < co:

N - [ TPt SR AT
T Pt 28(s+1) Joo © ‘ , ' :
é—0 _as.vy—->:i:oo. (2.10b)

Now we examine the épectrum of the operator in (2.10). To demonstrate that this operator has

no eigenvalues with positive real part, we apply a theorem from [52].
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.Theorem 2.1 (Wei [52]) Consider the eigenvalue problem for v5 > 0

o] Ue 1'—1(1) d
@ —P+pull® —y(p— 1P (f—oofgooo(:[y:i(y)]r ;y) y) =D, —00 <y < 00, ‘.
(2.11a)
B0 as |y — oo, (2.11b)

corresponding to eigenpairs for which X # 0. Here u, satisfies (2.2). Let Ag # 0 be the ezgenvalue
of (2.11) with the largest real part. Then, if yo < 1, we conclude that

Re(Xg) > 0. (2.12) |
Alternatively, zf v0 > 1 and if either of the following two conditions hold
(i) r=2, 1<p<5, or (zz) r=p+1, p>1, . (2.133‘)'
then

Re(Xo) < 0. (2:13b)

Thus for all the parameter sets satisfying (2.13a) we have that the operator L, has no eigenvalués

with positive real part. The non-constant coefficients of both the operators L. and L, are both

localized to a small region about zg, so we will only consider eigenfunctions which are also

localized to an Of(e) region aboﬁt zg. Such-eigenfunétions of the operator L. satisfy (2.8a),

but fail to satisfy (2.8b) by exponeﬁtially'small terms. Thus, we expect the eigenvalues of

L, to differ from those of L by éxponentia,lly small terms. The operator- L, has one zero'

eigenvalue with eigenfunction u,. We will carefully examine below the effect of a finite domain

% on this .eigenva‘lue for the operator L.. The importa;nt 'i)oint is that Theorem 2.1 shows that
the operator L. has no O(1) eigenvalues with positive real part. The proof of this theorem is

given in Appendix A.

Tt is instructive to see how the presence of non-local term in (2.8) effects the operators spectrum.

We may use a numerical solution to see the precise effect the non-local term has on the spectrum
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of L. To treat the non-local eigenvalue problem numerically, we split the operator L. into two

parts,

' -1,p 1 -
A= Egut (-1+pt g, Bp= i [ uede. (2.1

We define a new operator Ls by Lsp = Ap — 6B¢. where 4, with 0 < d < 1, is a continuation

parameter. When § = 0 we have a simple Sturm-Liouville problem. At § = 1 we have our full
non-local eigenva.lue. problem (2.8). We define L;, A and B in a similar fashion, but on the

extended domain —oo < y < oo with the appropriate decay boundary conditions at Fo0.

The zero eigenvalué of the operator L corresponds to the eigenfunction ulc, which decays
exponentially as Iy|‘—> oo. To see this, we differentiate (2.2a) with respect to y, tb show that
Au’c = 0. This is translation invariance. In addition, due to the‘syinmetry of uc(y), we also
have Bu!, = 0. For the finite domain problem (2.8), the function u, [e71(z — z0)] fails to satisfy
the equation and boundary conditions in (2.8) by only exponenfially small terms as € — 0.
Therefore, as estimated carefully below, the presence of the finite domain will perturb the
zero eigenvalue and the corresponding eigeﬁfunction of the eﬁtended problem (2.10) b.y only an

exponentially small amount. Thus, L, has an exponentially small eigenvalue.

The function u.(y) has a unique maximum at y = 0 and thus the eigenfunction u,(y) has
exactly one zero at y = 0. This implies that u'c(y) corresponds to the second eigenfunction
of A. The principal eigenvalue of A is. simple, positive and iﬁdependent of . The principal
eigenvalue of A is exponentially close to the principal eigenvalue of A. Hence, in the absence
of the non-local term, the operator L. has an O(1) positive eigenvalue and no metastable spike

motion can occur.

Since L has a positive eigenvalue when § = 0, we must consider what happens to this eigenvalue '

as § ranges from 0 to 1. If this eigenvalue remains positive then, since the eigenvalues of L; and
L; will differ by only exponentially small amounts as € — 0, we can conclude that the one-spike
quasi-equilibrium solution is unstable. Alternatively, if this eigenvalue cfosses through zero at
some finite value of § < 1, tixen the principaj eigenvalue of Ls when 0 = 1 (which corresponds

to our eigenvalue problem (2.8)) will be exponentially small. Hence,. if this occurs, the one-
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spike solution is anticipated to be metastable. Applying theorem 2.1 to the operator L., we

conclude that for any parameter set satisfying (2.13a), the eigenvalue should cross through zero

' (p=1)(s+1
at.(5=@——2—%—l.

The calculation of the eigenvalues of Ls will require some numerical analysis. Thus, we will
work with specific parameter sets. We first consider the set (p,g,7,s) = (2,1,2,0), which
is commonly used in simulations and satisfies (2.13a). For this parameter set, we begin by

reviewing some exact results for the spectrum of the local eigenvalue problem

Ad = éyy + (-1 +PU€_1)¢7’7= A —o0< y < o0, (2.153)

$—0 as y— +oo. - ) (2.15b)

This problem has three isolated eigenvalues, and a continuous spectrum in the left half plane.

When p = 2, these three isolated eigenpairs are (see [26]),

Xo=5/4, $o = sech®(y/2), | (2.16)
M =0, ¢1 = tanh(y/2)sech?(y/2), - (2.17)
Ay =—3/4, $2 = Ssech®(y/2) ~ 4sech(y/2). (2.18) |

Since these eigenfunctions, written in terms of y = e~!(z — z¢), will fail to satisfy the boundary
conditions in (2.8) by only exponentially small terms as ¢ — 0, we expect that the eigenvalues
of A will be only slightly perturbed from those of A. As we have previously noted, the zero

eigenvalue of (2.15) will persist for Ls as 6 ra.ngés from zero to one. Hence, there is an eigenvalue |

of (2.8) that is exponentially small as € — 0.

To numerically compute the eigenvalue branches Ao(6) and A2(6) of L; for which Ao(6) — 5/4

and A2(0) — —3/4, as § — 0, we use the initial guesses. provided above for § = 0 and a

. continuation procedure to compute these eigenvalues as ¢ increases. The computations are

done using COLNEW. The analysis of [11] showed that these eigenvalue branches are smooth
functions of §, and they cannot terminate suddenly at some value of §. Hence, J is a natural
homotopy parameter. In Fig. 2.2 we plot the numerically computed A\o(d) and Ay(8) versus
6. As can be seen from this graph, A\g = 0 for § = 1/2, agreeing with Theorem 2.1. As 6 |
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increases past 1/2, Ag become_:s negative and then complex. At this point, COLNEW ié no
longer able to track the eigenvalue. As § increases from 0 to 1, Ag decreases and )y increases.
At a value of § = 0.65 the two eigenvalues collide and split into complex conjugafes eigenvalues
with negative real parts. To track thé eigenvalues beyond ¢ = 0.65 one must employ a different
numerical technique. We accomplish this by discretizing the finite domain problem (2.8), which
has eigenvalues exponentially close to those of 25. This is done using a centered difference
approximation applied to the second derivative and Simpson’s rulebapplied to thé integral.
Thus, the operator Ls is approximated by a discrete linear operator £;. The eigenvalues of the
continupus problem may theﬁ be approximated by the eigenvalues of this matrix. Numerical
calculations of the eigenvalue Ag of Ls are shown in Téble 2.1. As seen in Table 2.1, the real
part of A\g remains negative as ¢ tends to one. Similar computations, with similar conclusions,
can be performed for other values of p, ¢, r and s. In particular, Ao and A, are shown in Fig. 2.3

for the parameter set (p,q,7,s) = (3,2,2,0).

Figure 2.2: Ao and Ay versus d for the parameter set (p,q,7,s) = (2,1,2,0).
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] Ao

0.0 1.2518
01| 1.0073
0.2 0.76149
0.3 0.51345
0.4 0.26158
0.5 0.0052548
0.6 |  -0.28247

0.7 | —.59237 +0.15315¢
0.8 | —.71522 + 0.230354
0.9 | —.84093 + 0.23008:
1.0 | —.98551 + 0.14507;

Table 2.1: § and Ay for the case (p,q,r,s) = (2,1,2,0).
2.1.2 An Exponentially Small Eigenvalue

In the previous s‘ection, we explained qualitatively why the principal eigenvalue of L, is exp&
nentially small. The non-local term in (2.8) was found to be essentiél to this conclusion. In
this section we calculate the exponenﬁally small eigenvalue precisely. We denote the eigenpaﬁr
corresponding to thé exponentially small eigenvalue by A1, ¢;. To predict the dynamics of the
quasi-equilibrium solution, we must obtain a very accurate.estima,te of A\;. We expect that
¢1 ~ Cru, (e7(z — o)) in the outer region away from O(e) boundary layers near z = +1. The

behavior of ¢; in these regions will be analyzed using a boundary layer a.nalysis.
The eigenfunction ¢; has the boundary layer form
(@) =Cr(w [ e -2+ [eTHe+ )] + 6 [TT1-2)]) . (2.19)

Here ¢;(n) and ¢(n) are boundary layer correction terms and C; is a normalization constant
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Figure 2.3: A and A2 versus ¢ for the parameter set (p,q,7,8) = (3,2,2,0).
given by
C = (EB) i , where B = /oo [u'c(y)]2 dy. , (2.20)
~00
In the bounda,;y layer region near = —1, u, [e'_l(a; - a:o)] is eXponentia,Hy small as € — 0.

Thus, as € — 0, ¢;(n) satisfies

¢ —H =0 0<n<oo, - (2.21a)

$1(0) ~ —ae=¢ " (+a0), (2.21b)
Similarly, the boundary layer equation for ¢,(n) is

¢ —¢r=0, 0<n<oo, (2.22a)

¢;(0) ~ ge~¢ (1~%0) (2.22b) -
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Here a is defined in (2.5)-. Solving the boundary layer equations we get
|

$i(n) = ae™c (e (2.23a)

w ¢r(n) = —ae™¢ (1=20)g=1 (2.23b)

To estimate A; we first derive Lagrange’s identity for (u, L.v), where (u,v) = f_ll uwv dz. Using

integration by parts we derive

(v, Lew) = €2 (ugv — vzu) |1y + (u, L2v), (2.24)
1 where
| -1, r-1 1 .
P _ TgET U
L = €vgg + (—1 4+ pu2~ v — m /_1 wPvdx. (2.25)

We now apply this identity to the functions ul[e~!(z — z¢)] and ¢;(z) to get

We examine each of the terms in (2.26). We begin with (., ¢1). The dominant contribution to
this integré,-l arises from the region near z = zo where ¢ ~ Ciul[e~}(z — z¢)]. Therefore, the

|
| o
| A(ug, ¢1) = —eruflLy + ($, Ling) (2.26)
|
; inner product can be estimated as

(ut, ¢1) = C (ug, u,) ~ Cref. - (2.27)

Next, to estimate —e¢1u‘;’ |1, we use our asymptotic estimates of u. and ¢;. Since uc(z) ~ ge !
as z — oo we have that u, [e71 (£l — zg)] ~ ae~¢ (1F%0) In addition, using the previous

| boundary layer results for ¢; we get the following estimate for ¢;(£1):

‘ $1(£1) ~ F2C1ae™ (1F20), ' (2298
Using these results, we get
—eprup|ty ~ 2eCia’ (e—%'l(“’"o) + e—%“(l—zo)) X (2.29)
|
\
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The only term left to examine is (¢, L¥u}). Since u) is a solution to the local operator, we

have

~1,r=1 rl

L* = 196 Ye P,/
¢ Ue 238G+ 1) _1ucucdac,
-1, p+1,r—1
. __Tgc a" U +1 _ _p+l ,
28(s+1)(p+1) (ei el ) (2130)

where

eg: = e-pe-l(l:tzo)_ | . | (2.31) . ’

In a similar way, the term (¢, L*u!) is approximated by

=1 p+1pv - 1
s 1y o __T9EPTCL ( p1 1,
00 B ~ =55 T 1 Camra )/_luc o dz,

T TBGE+ D)+

(-2 (e - e - 2w

Since p > 1 and r > 0, upon comparing the terms in (2.32) and (2.29), it is clear that the
second term on the right side of (2.26) is asymptotically negligible compared to the first term.

Finally, substituting (2.27) and (2.29) into (2.26), we get the following asymptotic estimate for

the exponentially small eigenvalue A\; as € — 0:
A~ 2a2,3_i (6—25-1(1+z0) + 6—25-1(1—9:0)) . (2.33)

In (2.33), a and S are defined in (2.5) and (2.20), respectively. The estimate (2.33) holds for
p, q, r and s satisfying (1.8). Since A; > 0, the quasi-equilibrium profile is unstable. However,
since A; is exponentially small, the iﬁstability is extremely weak and the quasi-equilibrium

profile can persist for an exponentially long time interval.

To verify the estimate for \{, we also numerically estimate A; by solving (2.8) using COLNEW.
In Fig. 2.4, we compare the numerically computed values of A; (the dots) with the asymptotic es-
timate (2.33) (dashed curve) for various values of ¢ for the parameter set (p,¢,7,s) = (2,1,2,0).
The asymptotic and numerical results are also shown in Table 2.2. Similar favorable compar-

isons can be made for other parameter sets.
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€

A1 (full numerics)

A1 (asymptotic)

.220000
.210000
.200000
.190000
~-180000
.170000
.160000
.150000
.140000
.130000
.120000
.110000
.100000
.90000x 1071
.80000x 1071

.60000x 1071

.70000x 1071 |

.12005x 1071
.80010x 1072
.50829x 102
.30582x 1072
.17289x1072
.90945x 1073
43964 %1073
.19224x1073
.74490x10~4
.24894x10~4
69198103
.15224x1078
.24725x10~¢
‘.268005410—7
.16665x10~8
46857x10~10
40156x10™12

1135223 %1071
877088 %1072
544799102
321855x10-2
179344 %1072
.932899x1073
.447198x1073
.194352x10~3
.74985x10~4
249878 x 1074
.69333x1073
152376x10~°
.247338x10~6
.268036x10~7
.166655x 108
.468562x 10710
400589x 1012

Table 2.2: Comparison of asymptotic and fully numerical estimates of A\; for various values of

. € with the parameter set (p,q,7,s) = (2,1,2,0).
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Figure 2.4: \; versus e for the parameter set (p,q,7,s) = (2,1,2,0).

We end this section with a few remarks. Firstly, we recall that A; and ¢; ~ Clu, (e71(z — x0))
- are an eigenpair of L; when § = 0. To within negligible exponentially smali terms this eigenpair
remains an eigenpair of L as § ranges from 0 to 1. To see this, we note that the only difference
between the calculations of the eigenvalue for the local problem and for the non-local problem, is
that the term (L2u,, ¢1) in (2.26) would be replaced by (A¢1, $1) = 0, since A is self-adjoint. In
the final calculation of A; the term (L7} u’c, ¢1) was ignored since it is asymptotically exponentially
smaller than the other terms in (2.26). Secondly, we note that A, ¢, is exponentially close to
an eigenpair A}, ¢7 of the adjoint operator, L;. For the same reasoning as above, ¢ would have
the same interior behavior near z = zg as ¢; and the same boundary layer correction terms
‘near = = +1. Repeating the calculation to find A}, we would arrive at the same estimate as in

(2.33).
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. 2.1.3 The Slow Motion of the Spike

The quasi-equilibrium solution fails to satisfy the steady-state problem corresponding to (1.18)
by only exponentially small terms for any value of zg in |zg| < 1. Moreover, the linearization
about this solution admits a principal eigenvalue that is exponentially small. Therefore, we
expect that the one-spike quasi-equilibrium profile evolves on an exponentially slow time-scale.
We will now derive an équation of motion for the center of the spike corresponding to the quasi-
equilibrium profile. To do so we first linearize (1.18) about a(z,t) = hTu. [¢™}(z ~ zo(t))],
where the spike location z¢ = zo(t) is to be determined. For a fixed zo we have shown that the
linearization around this solution has an exponentially small principal eigenvalue as € — 0. By
eliminating the projection of the solution on the eigenfunction corresponding to this eigenvalue,

we will derive an equation of motion for zy(%).
We begin by linearizing around a moving spike solution by writing,
a(z,t) = aE(x; .T()(t)) + 'I.U(I,t), (234) '

_where ag is defined in (2.1) and z((t) is the trajectory of the spike. Since (2.8) does not have
“an O(1) positive eigenvalue, we may assume that w < ag and wy < diag. Substituﬁng (2.34)

into (1.18), we get

Lew = biag, -l<z<l, t>0 (2.35a) .

wg(£1,t) = —8zap(£l;20) . (2.35b) -

Next, we expand w in terms of the eigenfunctions ¢; of L. as
o
w=> Eit)¢:. : (2.36)
=0
The solvability condition for w is that w is orthogonal to the eigenspace of L! associated
with the exponentially small eigenvalue. Let ¢ be the ;th eigenfunction of L}. Then, since
(¢s, gb;) = 0;j, we integrate by parts to show that

Bi(t) = (w,80) = 35 [(Lew, &) ~ PwagilLy] , (237

i
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Figure 2.5: z¢ versus ¢ for € = .05, £o(0) = —0.4 and the parameter set (p,q,7,s) = (2,1,2,0).

where L¢F = A;¢;. Using (2.35), we have

A

1

Bi(t) = — [(eag, 81) + €61 0saply] - | (2.38)

As discussed previously, when € < 1, the nonlocal term in the eigenvalue problem (2.8) is
insignificant in the asymptotic estimation of the eigenspace associated with the exponentially
small eigenvalue of L.. Therefore, we can replace ¢} and A} by ¢ and A; in (2.38), where ¢;

and A; are given in (2.19) and (2.33), respectively.

Since A; — 0 exponentially as ¢ — 0, we must impose the limiting solvability condition that

E, = 0. This projection step yields the following implicit differential equation for zo(¢):

(8taEa ¢1) = —62(]5181-(11;'1_1 . (239)

The dominant contribution to the left side of (2.39) arises from the region near zo. For ¢ — 0,
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Figure 2.6: zo versus ¢ for € = .06, zo(0) = —0.4 and the parameter set (p,q,7,s) = (2,1,2,0)
we calculate
(Beap, $1) ~ —CihEaoBe™, (2.40)

where £9 = dzo/dt. Finally, we can evaluate the right side of (2.39) using our estimates for

é1(£1) in (2.28) and for uc(z) as z — oo. This yieldé our main result of this section. .

Proposition 2.1 (Metastability) For ¢ — 0, metastable spike solution for (1.17), is repre-
sented by a(z,t) = ag(z; 2o(t)), where ag is defined in (2.1) and zo(t) satisfies,

\ .
Eo(t) ~ 2ae [e—"’(l—“)/f - e'2(1+z°)/6] : (2.41)
B
Here a and j are defined in (2.5) and (2.20), respectibely.

For a given initial condition 2¢(0) € (~1,1), this ODE shows that the spike drifts towards the

endpoint that is closest to the initial location z¢(0). As a consistency check on our solvability
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Figure 2.7: zo versus ¢ for € = .07, z¢(0) = —0.4 and the parameter set (p,q,7,s) = (2,1,2,0).

condition E; = 0, we note from (2.20), (2.33), (2.40) and 2.41), that if the solvability condition

were not imposed, then E ¢ = O(e“l/ 2), which would violate our linearization assumption.

To verify the asymptotic result (2.41) we computed numerical solutions to (1.17) for va.rioué
values of € for the parameter set (p,q,r,s) = (2,1,2,0). The computations were done by using
a variable coefficient variable time step backward-differentiation (BDF) schéme to integrate in
time (see [44] where a similar scheme is used). The boundary value problem solver, COLNEW
(see [3]), was then used to solve the resulting boundary value prdblem at each time step. At
each time step the solution is ca.léulated using a third and fourth order BDF scheme to estimate
the error and determine the next maximum allowable time step. Comparisons of these results
with a numerical integration of the asymptotic ODE (2.41) may be found in Fig. 2.5-2.7. In
the figures the solid curves are the numerical solutions and the dots are obtained from the

asymptotic ODE. In computing numerical solutions to (1.18) the initial condition ag(z; zo(0))
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was used for certain values of zo(0) as can be seen from these figures.

2.2 An n-Spike Solution

We will now examine the properties of an n-spike quasi-equilibrium solution. The analysis will
proceed in the same manner as for the case of the one-spike quasi-equilibrium solution. The
stability of an n-spike quasi-equilibrium solution will be examined by linearizing about this

solution and studying the resulting spectrum.

We begin by defining an n-spike quasi-equilibrium solution by

an.g(z) = nE Zuc ez -], (2.42a)
, =0
i . . ‘
-1 1 ! r_ o+l )
hn,E = | € . ﬂ [1 an’E dz , ) (242b)
where v = q/ (p — 1). Substituting (2.42a) into (2.42b), we can determine hy, g as € — 0 as,
. N —2=l
nB\ GFOG-T-¢
mﬂé<§) T (2.43)

where 3 was defined in (2.4). In (2;423), the spike locations z; for ¢ = 0,..,n — 1 satisfy

—1 < =zy < z1,..,< Tp-1 < 1. They correspond to local maxima of an, g.
We now linearize _(1.18) about a, g and hy, g by introducing ¢ and n defined by

a(z,t) = an5(@) + é(), (2.44a) |

h(z,t) = hy g + ¥n(z). (2.44b)

Here ¢ < an g and 7 < hy p. Substituting (2.44) into (1.18) we get the following eigenvalue

‘problem,
\ ap 1 p
€ brz — P+ 03 R, hq+1n =A@, (2.45a)
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Since each spike of the quasi-equilibrium solution is localized to within an O(e) region near

T = x; for some 4, we look for an eigenfunction ¢(z) of the form
n—1 . .
x) = Z o4 [e_l(x - .’Ez)] . : (246)

Therefore, we need to introduce local coordinates near each spike. In particular, the i** set of

inner variables are defined as

bi(yi) = d(zi +eyi),  yi=e Nz - 33). (2.47)

Substituting (2.43) and (2.45b) into (2.45a) and switching to the localized coordinate system

 (2.47), we get the following system of eigenvalue problems,

¢>zy,yz ¢z+p2u”€ x—zJ)]ng

7j=0
P n—1 .0 )
TqHUc / r—1 ~ ~ :
T omBuls 1) ue (y5)#i(ys) dyj = A, |l < o0, 2.48a
2nBu(s + 1) j;) o © (45)¢5(y5) dy; i |yl | ( )
$ 0 as y — Foo. (2.48b)

New we note that if each ¢; were independent of ¢ (i. e. ¢;(y;) = ®(%;)) for i = 0,..,n — 1, then

S [ ub (i) bilys) dys = n [% ui"Hy)@(y) dy. The factor of n would cancel in (2.48)
and we would be left with the same eigenvalue problem as (2.10). Thus, for the parameter
set we have used previousl}\r, we would cenclude that an n-spike solution has no O(1) positive
eigenvalue. However, we now show that this conclusion is erroneous. To see this we note that
we can construct a global eigenfunction by taking ¢;(y;) = b;®(y) for some constant b;. The
non-local term in (2.48) then becomes |

n—1 Lo ' o .
)iy dys = [ ulH(y)B(y) d ( b) (2.49)
;/_wu yo)i(u:) dy / vl >

=0

Then, if we impose the constraint that

> bi=0, | 5 (2.50)
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the non-local term vanishes. Hence, with this constraint, ®(y) satisfies the local eigenvalue

problem
3" — 3+ pul~l® = )90 . : (2.51)

This problem has exactly one positive eigenvalue Ag. When p = 2, we found that A\g = 5 /4 with
corresponding eigenfunction ®y(y) = sech?(y/2). Hence, under the constraint (2.50), Ao is also

a positive eigenvalue of (2.48). This then leads to an instability. -

In summary, when there is more than one spike we may always construct an eigenfunction of

the form ¢(z) = E?__fol b;® [¢"}(z — z;)] where Z?__fol b; = 0. This eigenfunction has a positive

eigenvalue. Therefore, it is impossible to find a stable multiple spike solution for the shadow

problem.

We now illustrate this instability result numerically for a two-spike solution for the parameter

set (p,q,7,8) = (2,1,2,0), o = 1, 7 = 0.01, D = 40, and ¢ = 0.05. _We-tobk the quasi-

equilibrium solution as our initial condition. The first spike (Spike 1) is centered at zy = —0.5

while the second spike (Spike 2) is centered at £; = 0.5. In Table 2.3 we tabulate the numerically

computed amplitudes of the two spikes as a function of time. We now use this data to estimate
the positive eigenvalue. We remark that the data in Table 2.3 is taken after the simulation has
been run approximately ¢ = 20 units to eliminate any transients and to ensure that the positive

eigenvalue is dominant. After this time the solution at the spike locations z = z¢ and z = 7,

-will be approximately given by,

a(zi,t) = ag p(z;) + % (z;), i=0,1. (2.52)

This relation will only govern the linear instability of ag 5. For the parameter set we have used

a2, g(x;) = 6.25. Then, we can re-write (2.52) as,

Aot + log [¢o(z:)] = log(|a(z;, t) — 6.25]), i=0,1. (2.53)

To estimate A¢ from the data in Table 2.3, we take z; = 0.5 and evaluate (2.53) at two different '

values of time, labeled by #; and té. .Using the numerically computed values for a(0.5,t) at -
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t =1, and ¢ = ¢3 gives us two equations for the two unknowns ¢o(0.5) and Xg. In this way, Ao
can be estimated. In Table 2.4 we give the numerical results for Ay and ¢,(0.5) using various
values of ¢; and ¢. For this parameter set, we would expect that the principal eigenvalue is
1.25. The interpolated values, obtained by our mimerical procedure, are all close to 1.25 as

expected.
2.3 A Spike in a Multi-Dimensional Domain

We now construct a quasi-equilibrium solution ag for (1.19). This is done in a similar manner
as in the one-dimensional case, except that here the quasi-equilibrium solution will be radially

symmetric about the center of the spike. Thus, we look for a steady-state solution to (1.19) in

all of RV of the form
a=agp(x;%x0) = Rucle x—x0|), v=¢/(p—1), (2.54)

where xg is arbitrary. The function u.(p), called the canonical spike solution, is a non-negative

radially symmetric function, which decays exponentially as p — 0o. It satisfies

yw N-1
u

u,—ue+ul =0, p>0, (2.55a)

wh(0) =0;  ue(p) ~ap™ M2 as pooco, (2.55b)

where a > 0 is some constant. In dimension N > 2, we require that p < p., where p, is the

critical Sobolev exponent for dimension N. In terms of this solution, A = hg, where

(E"N r d ) aVryer (256)
E=\—T= U, ax . . :
pl Ja ° A
Here || is the volume of §2. Since u, is localized near xg, as € — 0 we get,
o Gy
hE ~ ( QN uz N—ldp) (s Dip==e , (2.57)
#l Jo

where Qy is the surface area of the unit N-dimensional sphere.

Recall that in the one-dimensional case and with p = 2 we have the exact solution uc(p) =

%sechQ(g), and hence a = 6. To find numerical solutions for u.(p) and for a in other dimensions,
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time

Spike 1 Height

Spike 2 Height

19.5
19.8
20.1
20.4
20.7
21.0
21.3
21.6
21.9
22.2
22.5
22.8
23.1
23.4
23.7
24.0
243
24.6
24.9
25.2
25.5

6.2738663390032
6.2761841264723
6.2795439171902
6.2844142872978
6.2914746492378
6.3017102226534
6.3165498360813

6.3380658088900

6.3692634678024

6.4144988374999

6.4800753144382
6.5750761790975
6.7124619645111

6.9103141671528
7.1926098041313
7.5876099073842
8.1196649411629
8.7900467006609
9.5540932480348

10.3232394145038
11.006159488840

6.2635545772640
6.2612374542097
6.2578790593718
6.2530116219365
6.2459574213615
6.2357347923334
6.2209223724487
6.1994635220925
6.1683858288480
6.1234022942033
6.0583539884737
5.9644587136514
5.8293778760449
5.6362910167926
5.3636802602846
4.9877041819062
4.4906888214834

3.8780493118962

3.1943794842134
2.5150430348060
1.9098035904776

Table 2.3: Height of spike 1 centered at zo = —0.5 and of spike 2 centered at z; = 0.5.
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tl t2 a('satl) a’(751t2) >‘0 ¢0(5)
22.8 | 23.4 | 5.9644587136514 | 5.6362910167926 | 1.275223721 | —e—30-32846949

23.1 | 23.7 | 5.8293778760449 | 5.3636802602846 | 1.242238171 | —e~29-36172215
22.5 | 23.7 | 6.0583539884737 | 5.3636802602846 | 1.276189822 | —e30-36637629

22.2 | 23.4 | 6.1234022042033 | 5.6362910167926 | 1.315422050 | —e 5126911038

Table 2.4: Logarithmic Interpolation of A\g and ¢g(.5).

~ we will treat IV as a real parameter, and use N (and p for p # 2) as continuation f)arameters. We
can use the far field asymptotic behavior (2.55b) to obtain the boundary condition u/, = gl;—f)uc,
which we impose at some large' value p = pr in our numerical computations of (2.55). The
computatibns are done using COLNEW. In Fig. 2.8 we plot the numerically computed solutions

uc(p) for N =1,2,3 when p = 2.

For the finite domain problem we restrict xg to be strictly contained in {2 so that dist(xg, 02) >>
O(e). Then, under this restriction we note that, ag will satisfy the steady-state problem for
(1.19a), but will fail to satisfy the no flux boundary condition (1.19¢) by only exponentialiy
small terms for any value of xp in the interior of 2. Thus, we expect that the épéctrum of
the eigenvalue problem associated with the linearization about ag contains exponentially small

eigenvalues.
2.3.1 The Nonlocal Eigenvalue Problem

Let xo € 2 be fixed, and linearize (1.19) about ag, hg. We obtain the eigenvalue problem for

this linearization by introducing ¢ and n defined by

a(x,t) = ag(x;Xo) + e P(x), (2.58a)

h(t) = hg + My, (2.58b)
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Ue

Figure 2.8: Numerical solution for u.(p) when N =1,2,3 and p = 2.

where ¢ < ag and 7 < h. Substituting (2.58) into (1.19) we obtain, after a lengthy calculation,

the following non-local eigenvalue problem;

Lep = A¢+ (-1 + _1)¢_ﬂg’_/ ~lodx = A\, i 'Q' '2
ep=E¢€ pu’c ,BNQN(S + 1) Q U’C ¢ X = ¢7 n . ( '593‘)
$n=0 on 0R. ' (2.59b)
Here u, = u, [e“1|x - xol], and By is defined by
BN = / ul N ldp. (2.60)
0

Since u. is localized near xg, we will only seek eigenfunctions that are localized near x = xq.

These eigenfunctions are of the form

$(y) =d(x0+ey), y=e¢l(x~x0). (2.61)
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Therefore, we can replace Q by R® in (2.59a) and impose a decay condition for ¢ as |y| — co.

This gives us the non-local eigenvalue problem for the infinite domain

o rque
ﬁNQN(S -+ l)

60 as |yl = . (2.62b)

Led = Dyd+ (=1 +pub™1)é / W lgdy =iy, in RN, (2.62a)
RN

In this problem u, = u(|y}). If, in addition, we consider an eigenfunction that is radially

symmetric (1 e. ¢ = ¢(p), where p = |y]|), then (2.62) reduces to

- - - - p 00 - >~ -
L= 0,0+ (-1 +p g~ 12 / u gV Ndp =34, p>0,  (263)
Bn(s+1) Jo
$—0 as p-— oo, (2.63b)

where qu; =¢ +(N-1p14.

We now analyze the spectra of these eigenvalue problems. We first note thét, foreachi=1,.., N,
the function ¢; = Oy uc(ly]) satisfies (2.62) with A = 0. Here y; is the ith coordinate of y. This
follows from the combined effects of translation invariance and the vanishing of the integral in
(2.62) by symmetry considerations. Thus, (2.62) has a zero eigenvalue of multiplicity N with
corresponding eigenfunctions ¢; = Oy uc(ly]) for i = 1,.., N. Each of these eigenfunctions has
one nodal line. These eigenﬁairs will be perturbed by only exponentially small terms as a result
of the finite domain. Hence, there are N eigenva.lueé of (2.59) that are exponentially small, and
they are estimated below. The goal is to determine whether these are the principal eigenvalues

of (2.59).

We claim that these are not the principal eigenvalues for (2.59) when the non-local term in
(2.59) is absent. To see this, suppose that the non-local term in (2.59), (2.62) and (2.63) is
absent. The corresponding eigenvalue problems are then local and self-adjoint,. and several
key properties follow. In particular, since ¢; = Oy uc(]yl) is an eigenfunction of (2.62) with
a zero eigeﬁvalue and has one nodal line, the local eigenvalue problem must have a simple,
poéitive eigenvalue, which is independent 6f €. The corresponding positive, radially symmetric,

eigenfunction satisfies the local version of (2.63). The effect of the finite domain in (2.59) is to
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perturb this eigenvalue by only exponentially small terms. Thus, when the non-local term is

absent no metastable behavior can occur.

The effect of the non-local term will be to ensure that the exponentially small eigenvalues are the
principal eigenvalues for the non-local eigenvalue pfoblem (2.59). Thus, the quasi-equilibrium
solution will be metast#ble if we can show that the principal eigenvalue of (2.63) has a negative
real part.. We may apply a multi-dimensional version of Theorem 2.1 to show that (2.63) has

no eigenvalues with positive real part.

Theorem 2.2 (Wei[52]; Multi-Dimensional) Consider the eigenvalue problem for vy > 0,

1 Jon uc@) " o(y) dy\
8= 04wl = (Bt ) =, (2:64
p—0 as |yl — 0. (2.65)

corresponding to eigenpairs for which A # 0. Here u, satisfies (2.55). Let Ag # 0 be the
eigenvalue of (2.64) with the largest real part. Then if yvo < 1, '

Re(Xg) > 0. v (2.66)
Alternatively, if vo > 1 and if either of the following two conditions hold,
r=2 1<p<b or r=p+1,p>1. (2.67).

Then,

Re(X) < 0. (2.68)
As in the case for one-dimension, for any parameter set satisfying (2.67), the operator L, will
have no O(1) eigenvalues with positive real part. .

Again it is instructive to consider how the non-local terms in (2.63) effect the spectrum. To do

so, we compute the eigenvalues and eigenfunctions of the radially symmetric problem (2.63),
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where a continuation parameter §, with 0 < § < 1, multiplies the nonlocal term

—~ ~ - -~ /]‘ ug o r— ~ - ~
Lsp = D¢ + (=1 + puf 1)¢—6ﬂ7(§;—1) /0 uiT gV rdp =2, p>0,  (2.69)

-0 as p—oo. (2.69b)

We compute the eigenvalues of this problem as a function of 4, and in particular track the first
eigenvalue Ag(d). We will show that the positive principal eigenvalue A¢(0), which occurs when
the non-local term is absent, will cross through zero into the left half plane as § increases. Thus,

we must show that the first eigenvalue Ao(d) has a negative real part when § = 1.

For the parameter set (p,q,7,s) = (2,1,2,0), in Fig. 2.9 and Fig. 2.10 we plot the first two
eigenvalues A¢(d) and An41(d) of (2.69) as a function of § for N = 2 and N = 3, respectively.
Here Ay is the first eigenvalue in the sequence for (2.62) following the zero A;, ¢ = 1,..,N.
These computations were done using COLNEW. These plots clearly indicate that \o(8) crosses
through 0 before § = 1. At some value of §, Ap and Any; collide and become complex. To
track the eigenvalues past the point where they become complex, we use the same technique
as in the one-dimensional case. The differential operator is .approximated by a matrix and the
eigenvalues of the matrix are then approximations of the eigenvalues of the diﬂ'erential operator.
Using this numerical procedure, we give numerical values for the real zind imaginary part of
Ao(8) in Table 2.5. This table shows that the real part of Ag is negative when § = 1. Similar

computations, with similar conclusions, can be performed for other values of p, q, v and s.
2.3.2 An Exponentially Small Eigenvalue

We will now use a boundary layer analysis to construct a composite approximation to the
eigenfunctions corresponding to the exponentially small eigenvalués of (2.59). The correspond-
ing eigenfunctions are Well approximated by Oy, u., for i = 1,.., N in the interior of the domain
and each of these eigenfunctions has a boundary layer correction term near 0f2 in order to satisfy
the no-flux boundary condition on 92.- In order to resolve the boundary layer we must define
a 1ocal coordinate system. Let 7 represent the distance from a point in £ to 0Q, where ) < 0

corresponds to the interior of Q. Let { correspond to the other N — 1 orthogonal coordinates.
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) Ao in R? Xo in R3
0.00000 1.6388 - 2.3703
0.05000 1.4814 2.1588
0.10000 1.3231 1.9456
0.15000 1.1638 1.7304
0.20000 1.0030 1.5125
0.25000 0.84032 1.2910
| 0.30000 0.67516 1.0646
0.35000 0.50641 0.83098
0.40000 0.33218 0.58554
0.45000 0.14857 0.31741
0.50000 -.055026 -.019898
0.55000 37526 —.33843 + 0.29744i
0.60000 | —.48239 + 0.24569i | — 44368 + 0.45028;
0.65000 | —.56115 + 0.33165 | —.54978 + 0.545084
1 0.70000 | —.64059 + 0.38475 | —.65696 + 0.60964
| 0.75000 | —.72097 + 0.41770i | —.76550 + 0.65310
‘ 0.80000 | —.80268 + 0.43510¢ | —.87584 + 0.67970; |
0.85000 | —.88640 + 0.43886i | —.98857 + 0.69170i
0.90000 | —.97333 + 0.42959; | —1.1045 +0.69037;
0.95000 | —.10657 + 0.40726i | —1.2249 + 0.67652i
0.10000 | —.11678 + 0.37248i | —1.3513 + 0.65089

/)

Table 2.5: § and A in R? and R? for the case of (p,q,7,s) = (2,1,2,0).
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Figure 2.9: A\o(d) and An41(0) versus § in R? for the parameter set (p,q,r,s) = (2,1,2,0).

To localize the region near 99, we let n = ¢~'%. The eigenfunction on the finite domain can

then be approximated by,
i = Ci (Onuc (7 x = xol) + 1) (2.70)

where C; is a normalization constant and ¢; is a boundary layer correction term. Using the

fact that u, is exponentially small near 0Q, we get the following boundary layer problem

Ombi—¢i = 0, n<0, ‘ (2.71)

Odi = —edy(Onuclly—g, o 7=0, (2.72)

a function of ¢

$i—>0 as n— —co. (2.73)
We require that (13,- — 0 as 7 — —oo to match to the outer solution. Then, the solution for g%i is

$i = e€gi(C)e", where  gi(¢) = —05(dnsuc)ln=0- (2.74)
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Ao

Figure 2.10: Ao(8) and An41(8) versus § in R3 for the parameter set (p,q,r,s) = (2,1,2,0).
Thus, the composite asymptotic solution for the eigenfunction is
¢ = C; [Bxiuc + egi(C)eﬁ/e] , 1=1...,N. (2.75)

Below we need an estimate for ¢; on 0§2. To do so we need to calculate g;. Let zq; represent

the itP coordinate of Xop- So, setting r = |x — x|, we apply the chain rule, which gives

(z; — 0:)

S [ve(r/e)r - m], | © (2.76)

gi~ —
where n is the outward unit normal to Q. Since u.(p) ~ ap(=V)/2e=* as p = 0o we get that,
gi ~ —ae(N_5)/2(:zi - xo,-)r_(l‘*'N)/?e_r/er'- n, on JF. (2.77)

Combining (2.75) with (2.77), we get an asymptotic approximation for ¢; on 0,

;i ~ —Ciae(N_S)ﬂa(a:,- - :in)r_(l"'N)/Qe'T/e(l +r-nm), on 9N. (2.78)
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In order to complete our asymptotic estimate of the exponentially small eigenvalues, we apply

Green’s identity to ¢; and O, u. to get the following rel_ationShip:

Ai(aziucv ¢z) = _62 /BQ ¢ian(ax.;uc)_ds + (L: [axiuc] ) ¢z) . (2'79)
Here L} is the adjoint of L,
N, r-1
Liv=eAv - 'P*l--ﬂe_—’i—c—/?d. | 2.80
: e“Av — v +ub 'u. (s 1) Qucv x | (2.80)

We will now estimate each term in (2.79). Since 3;,u, is an exact solution to the local problem,

we have that,
rqe"NUZ‘l
BnQN(s+1) Jq

Next, since u,. is radially symmetric and localized to a small region in the interior of Q, it is

L (Ogue) = — w2 O, uc dx. (2.81)

clear that [, uld;uc.dx ~ [,ubd; u.dx, as e = 0 Vi,j = 1...N. Thus, we may write the
Q i Q j

expression above as,

L7 (Og,uc) ~ NﬁNQN . + 0 / Zu Op;ucdx. (2.82).
An application of the Divergence Theorem results in,
=Ny, r 1 p+1
: Tqe Uc
L} (0, ds. 2.83

On the boundary of Q, u, [e~x — xo] ~ ae(N'l)/Qr(l“NWe‘f_llx"‘Ol. Therefore, the integral
in (2.83) will be exponentially small. We then estimate the integral in (2.83) to get the following

bound:

|LY (85,uc) | < FeN|0Qul~1eN-D(p+1)/2 p(()l—N)(P+1)/26—€“1(P+1)Po’ . (2.84)

where

rqaPtl -
NBNQN(S + 1)(}7 + 1) )

Here pg = dist(xg, ). Therefore, with ¢; ~ C;0;,u., we have

F= (2.85)

(L2 (Bsie) , 86)] < PO [l -Do+112
% I MEH/2 = Do / W0, ucdx.  (2.86)
Q.
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Estimating the integral term in (2.86) by a similar procedure, (2.86) reduces to the following,

|(L20z,ue, ¢i)] < arlan:]FvCie—N e(N—1)(P+r+1)/2pa(N—l)(P+r+1)/2e—e‘lpo(p+r+1) ) (2.87)

Therefore, we conclude that

(LB, §0)] = 0 (b mol4r4D) (2.88)

for some b. We will show that this term is exponentially smaller than the first term on the right

side of (2.79), and therefore, we can ignore it.

Now we estimate the left hand side of (2.79). Since ¢; and 9;,u. are exponentially small
outside of a neighborhood of x = xg, this inner product is dominated by the contribution from
the region near x = x¢. Using a Laplace-type approximation, we can approximate the inner

product to get

‘ C; ' T — To; \ Cie"V 2 ' - |
(Ousues ) ~ 5 [ [uttry o) (22 ) axn SE— [ o) o o, 259

where 0 represents the N — 1 angular co-ordinates. Since the integrand is independent of 6,
. ) ) - .
(Oz;Ue, B5) ~ CieN2QnBNn/N, where fBy= / [ug(p)] PN ldp. (2.90)
0

Here 2y is the surface area of the N-dimensional unit sphere. Then we determine C; by using
the normalization relation [, ¢? dx = 1 to obtain,
N O\ 1l/2
Ci = ( : ) 2Nz (2.91)
BNSIN

Finally, we get our asymptotic estimate of A; by substituting (2.90) and (2.78) into (2.79), and

using the estimate Op (0, uc) ~ aeN=5)/2p=(N+1)/2¢=1/¢ on 5. In this way, we get
a’N
BNQTL

where r = (x — xg)/r and r = |x — xo|, with x € Q. As a consistency check we use (2.88) to

Ad

/ (z; — wOi)Qr"(1+N)e"2’/€(r . n)(i + r-n)ds, (2.92)
a0

observe, by comparing the asymptotic orders of the two terms on the right side of (2.79), that

the second term is asymptotically negligible compared to the first term, since the exponents -

Csatisfyp+m+1> 1.




The surface intégral in (2.92) can be evaluated asymptotically by using a multi-dimensional
Laplace technique. Assume that there exists a unique point x, € 99 where r,,, = dist(xg, 5Q)
is minimized. If we péraxﬁeterize the boundary near (;, (where x((;n) = X,) such that each ¢;
corresponds to arclength along one of the principal directions thfough Cm, then for any smooth

F(r), we have (see [48]),

. ' re\ (V-1)/2 '
/ riNF(r)e ®/<ds = (——) F(rm)H (rm)e /e, (2.93)
N Tm
where
H(rm) = (1 = rm/R1) "Y1 — 1 /R) Y2 (1 — 1/ Rv—1) 2. (2.94)

Here R; >0, for j = 1,..,N — 1 are the principal radii of curvature of Q at xp,. This result
assumes that the non-degeneracy condition R; > rp, j=1,... ,N -1 holds. In this way, we
obtain the following explicit asymptotic estimate for the exponentially small eigenvalue, |

202N (m)(N_l)/z (rm - e;

A~ = e
BN

. .
) H(rm)e > m/e, (2.95)

Tm Tm

where e; is the standard unit basis vector in the i*B direction and 'm = (Tm — 20)/Tm-

2.3.3 The Slow Motion of the Spike

Now we derive an ODE characterizing the metastable spike dynamics. We first linearize (1.19)

about a moving spike by writing,
a(x,1) = ap(x %0(t)) + w(z, ), (2.96)

where ag(x;xp) is defined in (2.54). Since, (2.59) does not have an O(1) positive eigenvalue,
we may assume that w < aé, wy K Orap uniformly in time. Substituting (2.96) into (1.19), we

obtain

Low=dag, in Q, (2.97a)

Bpw = —Bpag, on ON. (2.97b)
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Next, we expand w in terms of the eigenfunctions ¢; of L. as
- .
w=Y Ei(t)$;. (2.98)
=0
We assume that the eigenfunctions form a complete set. However, this is not required for
the construction of the solvability condition as the key requirement is that w is orthogonal to
the eigenspace of L associated with the exponentially small eigenvalues. Let ¢} be the ;th

eigenfunction of L. Then, since (¢, ¢7) = d;5, we integrate by parts to show that

i B

Bit) = (0,6) = 5 |(Lew ) = @ [ wasias] (2.99)

where L;¢; = A¢¥. Using (2.97), we have

Ei(t) = /\i {(&a};,cb;‘) + €2 /m Onapd; dS] . (2.100)

As seen in (2.79)-(2.88), the nonlocal term in the eigenvalue problem L.¢ = A¢ is insignificant
when € < 1 in the asymptotic estimation of the eigenspace associated with the exponentially
small eigenvalues of L. Therefore, for i = 1,.., N and € — 0, we can replace ¢; and A7 by ¢;

and A; in (2.100), where ¢; and A; are given in (2.75) and (2.95), respectively.

Since A; —+ 0 exponentially as € —+ 0, for 4 = 1,.., N, we must impose the limiting solvability
conditions that E; = 0, for ¢ = 1,..,N. This pfojection step yields the following implicit-

differential equation for xo(t):

(Beag, ¢i) = —€ /an Onage; dS. (2.101)

The dominant contribution to the left side of (2.101) arises from the region near xg, and we
calculate
1Y

Cihg . 5 N—
(Owag, $i) ~ — NEirOiQNﬁNGN 2. 1(2.102)

Finally, we can evaluate the right side of (2.101) using our estimates for ¢; on 6 in (2.78) and

- for uc(p) as p — oco. This yields the main result of this section.
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Proposition 2.2 (Metastability) For ¢ — 0, a metastable spike solution for (1.19), is rep-
resented by a(x,t) = ag(x;xo(t)), where ag is defined in (2.54) and xo(t) satisfies,
Na? |
%o ~ e / £ri7Ne=%/¢(1 + #-n)f - ndS. (2.103)
BNQN Joa ,

, T =[x —xo|, x € 9Q, and n is the unit outward normal to Q. In

Here # = (x — x¢)r~!

addition, a and By are defined in (2.55b) and.(2.90), respectively.
There are a few corollaries that follow from this result.

Corollary 2.1 (Equilibrium) For € — 0, an equilibrium solution for (1.19), is represented

by a(x,t) = ag(x;Xoe), where xge 15 a root of I(xq), where

I(xo) = /anfrl“Ne'”/fu +#-n)f -ndS (2.104)

It was shown in [48] that for a strictly convex domain xg. is unique and is centered at an
O(e) distance from the center of the uniquely determined largest inscribed sphere for 2. This

equilibrium solution is unstable.

Assuming that there is a unique point x,, € 9% closest to the initial center x¢(0) of the spike,
we can evaluate the surface integral in (2.103) using Laplace’s method to get the following

explicit result:

Corollary 2.2 (Explicit Motion) Let x,, be the point on OQ closest to xo(0). Then, for
t > 0, and € — 0, the spike moves in the direction of X, and the distance rm(t) = |xm — Xo(t)},

satisfies the first order nonlinear differential equation

¢\ (N+1)/2
Tm = —&Tm <;—> H(Tm)e_2rm/67 (2'105)
where
2 .
g= 2N (v-n © (2.106)
QN BN

Here By is defined in (2.90) and H(rp,) is determined in the terms of the principal radsi of

curvature of O at X, given in (2.94).
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This result is valid up until the spike approaches to within an O(e) distance of x,,,. If the initial
condition for (2.105) is rp(0) = ro, then the time T needed for rm(T) = 0, is readily found for
e—0to bé,
_ N-1)/2
(1 N)/2,,.(() )

2ro/e
—groe , (2.107)

Once the spike reaches the boundary, it moves in the direction of increasing mean curvature
until it reaches an equilibrium point where the mean curvature of the boundary has a local
maximum (see [20]). The existence of such equilibrium solutions, where the spike is located at

these special points on the boundary, is demonstrated rigorously in [13], [35].
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Chapter 3
Spike Motion on the Boundary

When vthe spike approaches to within an O(e) distance from the boundary, the analysis leading to
Proposition 2.1 is no longer valid, and the spike presumably begins to merge with the boundary.
This process is difficult to study in the multi-dimensional case without a full-scale numerical
analysis. In Fig. 3.1 we show this merging process in the simpler case of one dimension by
solving (1.18) numerically with p = 2 and € = .07 using the method described in §2.1.3. Results
concerning the stability of an equilibrium boundary spike in one dimension for (1.18) are givén
_in [54]. The merging process of a spike with the boundary should probably be similar in higher
dimensions. For the equilibrium problem, the existence of boundary spike solutions to the
multi-dimensional problem (1.19) has been proved in [13] and [35]. In particular, the result of
[13] proved that there exists a solution to (1.19) where the spike is centered at a local maximum

of the mean curvature of the boundary of a three-dimensional domain.

The goal of this chapter is to analyze the motion of a spike solution for the noﬁ-iocal shadow
problem (1.19) when the spike is confinéd to the smooth boundary of ;3. two or three—dimensional
domain. Since all spikes that are initially located in the interior will tend towards the boundary
of the domain (cf. Proposition 2.1), it is natural to study the motion of a spike on the boundary
as’it tries to reach an equilibrium where its éssociated energy can be minimized. We assume
that the merging process of an interior spike with the boundary has taken place and thus our
initial condition is a spike located at an arbitrary point on the boundary. From using a formal
asymptotic analysis combined with imposing appropriate solvability conditions .on the linearized

problem, we derive differential equations characterizing the motion of a boundary spike. This
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Figure 3.1: A plot of u versus z at different times showing a spike merging with the boundary
in one dimension. Times from the simulation are ¢ = 389, 1354, 1375, 1383, 1386 from right to
left. -

motion generically occurs on a slow time scale of O(e3). From this differential equation for the
spike motion, we show that the spike drifts towards a local maximum of the curvature in two
dimensions and a local maximum of the mean curvature in three dimensions. Again the non-
local term in (1.19) is essential for ensuring the existence of this slow motion. Iﬁ the derivation
we assume the boundary is sufficiently smooth so that the derivatives of the curvatures exists.
The differential equations mentioned above predict no motion when a spike is on a segment of
the boundary having constant curvature. To illustrate the spike motion in this case, we analyze |
the motion of a spike on a flat boundary segment of a two-dimensional domain (see Fig. 3.6
below for the geometrical configuration). For this case, we show that the motion i.s metastable
and depends critically on the local behavior of the boundary near the corner points at the two

ends of the flat segment. A similar analysis for the constrained Allen-Cahn equation of material
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science has been studied in [43] (see also the references therein).

The remé,inder of this chapter proceeds as follows. In §3.1 and §3.2 we analyze the motion of
boundary spikes for (1.19) in two and three dimensions, respectively. In §3.3, we examine the
Stability properties of the equilibrium boundary spike solutions found in §3.2 and §3.2 by using
the results of [52] and [53]. Finally, in §3.4 we analyze the metastable behavior of a Boundary

spike in two dimensions that lies on a flat segment of the boundary.

In this chapter we will be using r as a radial variable for polar and spherical co-ordinates. In
order to avoid confusion with the parameter r in the equation (1.19), for this chapter only we
write the equations as,

a?

at=e2Aa—a+ﬁ, in Q, t>0, (3.1a)
e N m Th

h= <m/9a dx) , : (3.1b)

ha=0 on 90N. | (3.1¢)

The ozﬂy difference between (1.19) and (3.1) is the substitution of m for r.
3.1 Spike Motion on the Boundary in Two Dimensions

We now derive an asymptotic diﬁ‘e;ential equation for the motion of a spike confined to the
boundary of a two-dimensional domain. The boundary of the domain is assumed to be suffi-
Cie‘ntly smooth so that the curvature and its derivatives are differentiable functions. To derive
this differential equation we first transform (3.1) to a localized boundary layer coordinate system
centered near the spike. The solution is then expanded in powers of €. A nonfrivial solvability
condition for the O(e?) equation in this expansion is obtained when we choose the time scale of
the spike motion to be O(e®). The differential equation for the motion of the spike is obtained

from this solvability condition.

We now give the details of the analysis. We first introduce a boundary layer coordinate system,

where n > 0 denotes the distance from = € Q to 89 and where s is arclength along 0Q2. In
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terms .of these coordinates, (3.1a) transforms to

1 1
a; = € (a,m — 3 jman +1z mas (1 _m]a3>> —a+dP/h?, (3.2a)

ap, =0, on n=0. (3.2b)

Here k = H,(S)- is the curvature of the boundary and h = h(t) is given in (3.1b). Next, we

introduce u(n, s, t) by

a=hu, y=g/p-1). | (3.9)

Substituting (3.3) into (3.2) we obtain ' .
Yyuhy K 1 1 |
h tu=e (u,,,, 11— nnun N 1- /cnas (1 - nnus>) TuE (342)
up =0, on n=0. ' (3.4b)

Suppose that the spike is initially located on the boundary of the domain. Then, its subsequent
location is given by s = so(t) and n = 0, where so(t) is to be determined. Since the spike has a

support of order O(e) near so(t), we introduce local variables v,. 5 and 7 by
§=¢"1[s— so(t)] g f=¢ln, v(7, 8) = u(er, so + €5,t) . (3.5)

Then, (3.4) transforms to

yohy €K -1 1
€ s0vs = va7 1 —enﬁvﬁ 1 —enﬁag (1 —enf)v§> o | (86

v=0, on =0, ' (3.6b)

where sy = dsg/dt and & = K(sg + €3). Since the boundary was assumed to Have a well-defined

tangent plane at each point, the domain of definition for (3.6) is

0 ={(7,5)| — 00 <3< 00,ii>0}. (3.6c).

Fer differentiating the integral in (3.1b) with respect to ¢, it follows that

hy =0 (e-ls;) . (3.7)
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Thus, the two terms on the left hand side of (3.6a) are of the same order in e. However, as we

show below, only one of these terms will contribute a nonzero term to a solvability condition.

The solution to (3.6a), (3.6b) is expanded as
v =1y +evy + vy + -, (38)
and the curvature is expanded as
k(50 + €8) = Ko + €rg + O(e?) . : (3.9)

Here we have defined g = k(so) and ky = & (sq). Since a nontrivial solvability condition arises

at order O(e?), we must choose a slow time scale 7 by
=6t (3.10)

Substituting (3.8)—(3.10) into (3.6), and collecting powers of €, we obtain the following sequence

of problems that are to be solved on the half-plane Q:

vors; + voss + Q(vo) =0, : (3.11a)

Lo1 = vi45 +viss + Q (vo)v1 = Kovos — 2fiKov0ss » 4 (3.11b)

eyvoh
h

Lvg = vazs + vass + Q’ (vo)ve = —Sups + +F,+ F,. " (3.11¢)
Here $¢ = dsg/dr. The boundary conditions for (3.11a)—(3.11c) are
Vo7 = V15 = Va5 =0, on 7=0. (3.11d)
In (3.11) we have defined Q(vp) and its derivatives by
Qo) =-w+vf, Q)=-1+pf',  Q'(vo)=plp—1)vf . (3.12)
The terms F, and F, in (3.11c) are defined by
| Q" (vo) 2

VI~ 3r272v0ss , (3.13a)

. 92 ~
Fe = Ko + kg0 — 27KoV155 —

F, = 3rquos — Tirguos — 28kqv0ss (3.13b)
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The leading-order problem (3.11a) has a unique positive radially symmetric solution uc(p) that

satisfies (see [35])

" . 1 !
Cu, + ;uc + Q(ue) =0, 0<p<oo, (3.14a)

!

u.(0) = 0; uc(p) ~ agp~ %", as p—roo. (3.14b)
Here a. is some positive constant and p = (ﬁ2 + 52) vz, Thus, we take
w0(,8) = ue | (7 + 592 | (3.15)

which also satisfies the boundary condition in (3.11d). To obtain our solvability condition,
we notice that the tangéntial derivative vo; satisfies Lvg; = 0 and the boundary condition
(3.11d). Hence, upon defining the inner product (f,g) = fﬁ fgdx, we must have that the
right-hand sides of (3.11b) and (3.11c) are orthogonal to vg; with respéct to this inner product.

An important observation is that wvy; is an odd function of 3.

This solvability condition for (3.11b) yields,
Ko (vos, vos) — 20 (fjvoss, vos) = 0. ' (3.16)

Since vg; and wvgs; are even functions of 3, the integrands associated with the inner products in
(3.16) are odd, and hence the left hand side of (3.16) vanishes identically. Then, we can solve
(3.11b) for vy and obtain that vy is even in 3. Next, upon applying the solvability condition to

(3.11c), we obtain

, : evh
50 (vos, vos) = (Fo, vos) + (Fe,vos) + % (vo, voz) - (3.17)

The significance of the decomposition in (3.11c) is that F, is even in 3, whereas F, is odd in 3.
Hence, the last two terms on the right-hand side of (3.17) are zero. Next, substituting (3.13b)

into (3.17), we get

S0 (vos, vo5) = kg (Sv0s, vos) — kg (Fvos, vos) — 2'?;) (78v0s5,v05) - (3.18)
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Finally, the inner products in (3.18) are evaluated exactly using polar coordinates to get

(8vos, vos) = (fvos, vos) = g / ” P [u'c(p)]2 dp, (3.19a)
(oso0s) = 5 [ o [uto)]” do. (3.19b)
2 (7§voss, vos) = v_g/oco o’ [U;(P)]Q dp. (3.19¢)

Substituting (3.19) into (3.18) we obtain the following main result: -

Proposition 3.1 (Boundary Motion in 2 Dimensions) For ¢ — 0, the motion of a spike

~ confined to the smooth boundary of a two-dimensional domain is described by

a ~ hVu, (e_l [(s = s0()? + 2] /%) + O(e), (3.202)
s (t) ~ 3%63&/(30) ,  (3.20b)

where v = q/(p — 1) and b > 0 is defined by

s [U'c(p)] " dp
S plu(p)’ dp

Here uc(p) is the positive solution to (3.14) and & is the curvature of the boundary, with & > 0

b

(3.20¢)

for a circle.

From (3.20b), we observe that the spike will move on the boundary in the direcﬁon of increasing
curvature until a local maximum of the curvature is reached. The stable steady-states of (3.20b)
are at the local maxima of the curvature. A similar differential equation has been derived in

[1] for small bubble solutions of the constrained Allen-Cahn equation.
3.1.1 A Few Explicit Examples

We now illustrate (3.20b) in a convex domain. Let the origin be contained in Q and let (21, z3)

be a point on 9. Let ¢ denote the perpendicular distance from the origin to the tangent line

to 9N that passes through (z1,z2). Let 0 denote the‘a,ngle between this perpendicular line and




the positive z; axis. Then, when 6 ranges over 0 < 6 < 27, we sweep out a closed domain (2

whose boundary is given parametrically by (see [17])

z1(0) = ¢(#) cos(#) — ¢'(8) sin(6) , z2(6) = ¢(6) sin(6) + ¢'(6) cos() . (3.21)
Here ¢(0) is 27 periodic.
Next, we transform the ODE (3.20b), written in terms of arclength, to one involving 4. Let
s = f(9) be the mapping between 6 and the arclength s. Then, f (9) and the curvature of the
boundary «(8) are given by

’ " " -1 |
FO=¢O+"O), O =[O+0O] . (3.22)

Hence, (3.20b) transforms to

, 15 [¢'(80) +¢" (60)]
Oy(1) ~ —— . .
o S o) 7 O o] (3.25)

Here 6o(7) is the value of 0 at the center of the spike, and 7 = €3¢ is the slow time variable.

Using the boundary value problem solver COLSYS [3] we can solve (3.14) numerically to de-
termine the constant b in (3.20b). In the examples below we took p = 2. For this value, we

compute that
® 1,2 I
/0 0 [uc(p)] dp =423, /O p[uc(p)] dp = 2.47. (3.24)

Hence, when p = 2, we get b = 1.71. In the examples below, solutions to (3.23) were computed

using the Sandia ODE solver [42].

Example 1: Let ((6) = 3+1.2sin%(9), and take the initial condition for (3.23) as 65(0) = —1.5,
for which 1 = 0.339 and z2 = —1.790 at 7 = 0. The curvature has three local maxima for this
domain. In Fig. 3.2 we plot the domain bounded by ((#) and show snapshots of the motion of
the center of the spike (labeled by the starred points) towards the nearby local maximum of
the curvature. In Fig. 3.3 we plot the numerical solution to (3.23) with 63(0) = —1.5. For this
initial value and with € = 0.1, this figure shows that it takes a time ¢t = 7/€3 & 77500.0 to 'reach

the steady-state value.
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Figure 3.2: For Example 1 we plot the motion of the center of the spike on the boundary
at different times as it tends to its steady-state limit. The initial point is labeled and the
times corresponding to the other points (in counterclockwise order) are 7 = 34.49, 7 = 58.71,
T="T4.01, 7 = 76.98 and 7 = 77.50.

58




—0.50

-0.75

—-1.25 -

-1.5
- 0.0 20.0 40.0 60.0 80.0

Figure 3.3: For Example 1 we plot the solution g versus 7 to (3.23) showing the behavior
towards a local maximum of the curvature.

Example 2: Let () = 3 + cos(56)/10, and take 6y(0) = 0.6, for which z; = 2.430 and
z9 = 1.567 at T = 0. For this case, the ODE (3.23) becomes

9 — 4 ( 12sin(56y) )
0 37 \[3 —2.4cos(56p)]*/

(3.25)

Hence there are five local maxima of the curvature. In Fig. 3.4 we plot the domain bounded
by ¢(f) and show snapshots of the spike motion towards the nearby local maximum of the
curvature at 6y = 0. In Fig. 3.5 we plot the nurﬁeriéal solution to (3.25) with 63(0) = 0.6. The
apparent nonsmoothness of the graph of 6 versus 7 near the equilibrium point results from the
fact that the linearization of (3.25) near 6y = 0 has the fbrm 6 =~ —cf, where ¢ > 0 is a large

constant. A similar explanation hold for the apparent nonsmoothness in Fig. 3.3.
3.2 Spike Motion on the Boundary in Three Dimensions

We now derive an asymptotic differential equation for the motion of a spike confined to the
boundary of a three-dimensional domain. The boundary of the domain is assumed to be suffi-

ciently smooth so that the principal curvatures and their partial derivatives are differentiable
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. Figure 3.4: For Example 2 we plot the motion of the center of the spike on the boundary at
different times as it tends to its steady-state limit. The initial point is labeled and the times
corresponding to the other points (in clockwise order) are 7 = 23.40, 7 = 31.41, 7 = 35.38, and
T = 35.5.
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Figure 3.5: For Example 2 we plot the solution 6y versus 7 to (3.25) showing the behavior
towards a local maximum of the curvature. The initial condition was 6,(0) = 0.6.

functions. In order to evaluate the Laplacian on the boundary we will use boundary layer co-
ordinates. Linés of curvature form a local orthonormal basis for a coordinate syétem restricted
to the boundary. We may then extend this system locally using the normal to the boundary
as our third coordinate. The formulation of the Laplacian operator using these coordinates
is not as simple as for the two-dimensional case. However, since the spike is localized on the
boundary, we do not need al.l-exact expression for the Laplacian in terms of these coordinates

as only the first few terms in the local expansion will suffice for the analysis.

We introduce a boundary layer coordinate system (si,s2,7), where 5 > 0 is the distance
from & €  to 2 and where s; and sy correépond to coordinates through the two principal

directions at the center of the spike. The boundary spike is assumed to be located at s; = &;(t)
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and sy = §(t) with n = 0. Using Appendix B, we obtain that (3.1a) transforms to

2
2 9 K1 K9 € 1.—nka
0 = €“Qpp — € + )
ESEm (1—nm 1—nf€2>an+(1—nm)(1—nﬂz) g (1—nm““>
€ <1—17/~c1 ) '
+ d as, | —a+a?/h?, . 3.26a
(1—nr1)(1 —nk2) > \1—nkre / ( )

ap, =0, on n=0. ' ) (3:26b)

Here k1 = ki1(s1,52) and x2(s1,s2) are the two principal curvatures at each point on the

boundary.

As.in (3.3) we set a = h7u, where u = u(n, s1, 53,t). Then, we introduce local coordinates v,

31, 82 and 7 by
si=¢lsi-a@®)), S=clln-6L0)], d=¢'n,
v(f}, 81, 32,t) = u(e, &1 + €81,& + €52, 1) . | (3.27)

The estimate (3.7) and the time scale (3.10) still apply in the three-dimensional case. Next, we

expand v as in (3.8). The principal curvatures are also expanded in the Taylor series

Kk1(€1 + €51, & + €89) = K1 + €51K11 + €dar1a + O(€7), (3.28a)
K,Q(fl +€51,& + 652) = K9 + €S§1Ko1 + €59K92 + 0(62) . - (3.28b)
Here on the right-hand side of (3.28a) and (3.28b) we have defined k1 = 1(£1,82), Ko =

k2(&1,€2), and Ky = Os;k4(s1, 52) evaluated at (s1,82) = (£1,€2).

Substituting (3.7), (3.8), (3.10), (3.27) and (3.28) into (3.26), we obtain the following sequence

of problems upon collecting powers of e:

Voqq + V03,5, T V0525, + Q('UO) =0, (3.29&)
Loy = w1 + V15,5 + Viss, + Q (V0)v1 = (K1 + K2)vos — 27iK1v05,5, — 2K2005,5, . (3-29b)

Ly = Vo575 + V25,5, + Vasas, + Q (V0)v2 = Fog + Fop + Fie . ' (3.29¢)

The boundary conditions for (3.29) are

St
It
o

Voj = V15 = vo = 0, on
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In (3.11), Q(wo) is defined in (3.12). The terms F, Fe, and Fy in (3.29¢) are defined by

. 1 . : - G’U()")’h
F,. = _§Q (vo)v% + (k1 + K2)vis + 'fl(ﬁ% + H%)'UOﬁ + A
. - 252 ' 229
= 2)K1015,5, — 27K2015,5, — K17 Vos15, — 3K27T V0gz3s » (3.302)

Feo = (K12 + K22)32v07 — 2jK1232v05,5;, — 27K2252V05,5,
— fi(K22 — K12)v0s, — €1v05, , (3.30b)
Foe = (k21 + /%11)511)017 — 27K1131905,5, — 271K2151V03,5,
- ﬁ(ﬁ.u — K21)v05; — €203, - | | - (3.30c)
Here fj = d§; /dT‘fOI' j = 1,2. The problems in (3.29) are to be solve‘d in the half-space Q

defined by

Q = {(,51,52) | —00 < 3§ <00,—00 < §3 < 00,7 >0}. (3.31)

When p is less than the critical Sobolev exponent p. = 5, there is a unique positive radially

symmetric solution uc(p) to (3.30a) that satisfies (see [35])

" 2 ! ‘ »
uc+;_uc+Q(uc) =0, 0<p<oo, - (3.32a)

’

u.(0) = 0; ue(p) ~ acp~te P, as p— o0, ' (3.32b)

for some a, > 0 where p = (72 + 5% + 53)1/ ?. Therefore, our leading-order spike solution is

given by

w0l 51, 52) = ue (7 + 52 +59)1/%] . - (333

To obtain our solvability condition, we first define the inner product (f,g) by (f,9) = [5 fgdx
where (0 is the half-space defined in (3.31). Then, we note that Lvps, = 0 and Lvp;, = 0, where
ﬁ is the operator defined in (3.29b), and that vos, and wvog, satisfy the boundary condition in
(3.29d). Therefore, the solvability condition is that the right hand sides of (3.29b) and (3.29¢)

must be orthogonal to both vz, and gz, with respect to this inner product.

In imposing the solvability condition on (3.29b), we note that the right-hand side of (3.29b) is

even in both §; and 32, whereas voz, is odd in §; and even in §;, while vg;, is even in §; and
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odd in 3. Hence, the solvability condition for (3.29b) is automatically satisfied. Then, from
(3.29b) together with (3.29d) we can calculate a function vy, which is even in both §; and 3.

Next, the solvability condition for (3.29¢) yields the two equations
(Feey;‘]0§1) + (FemUOEl) + (Foea 'U0§1) =0, (Fee>710§2) + (Fem 'U0§2) + (Foea'UOE;») = 0. (3-34)

The significance of the decomposition in (3.29¢) is that Fe, .is even in both §; aﬁd 39, Fop is even
in 51 and odd in 33, and F,, is odd in §; and even in §5. Therefore, the inner products involving
F,e vanish, and also (Fo, vos,) = (Foe,v03,) = 0. Using these results, and substituting (3.30b)’
and (3.30c) into (3.34) we obtain

&1 (vo3,,05,) = (K21 + K11) (5105, Vo3, ) — 211 (75103, 5, » V03, )
— 2K21 (731V05,5,, V05, ) — (K11 — &21) (v0sy; Yoz, ) (3.35a)

&5 (035, V05,) = (K12 + Ka2) (52v07, Vos,) — 2K12 (82905, 5, V05, )

— 26292 (118200553, V03, ) — (K22 — K12) (7V05,, V05,) - (3.35b)

We now evaluate the inner products in (3.35). We first integrate by parts to get
2 (7155v05;3;,v03;) = — (7, [vo5;]%) J=12. (3.36a)

Next, we use spherical coordinates to obtain

(v0s;, v05;) = /0 T [uo)] do,  i=12, (3.36b)
(vos;, vos;) = 2—37£ /000 le [u’c(l’)]2 dp, =12, (3.36¢)
(3;v0i, vos, ) = % /0 ” p° [u’c(p)]2 dp, j=1,2, (3.36d)
(132005151, V05,) = (7181V05252, Vo5, ) = % /0 N o’ [u;(P)]2 dp. (3.36€)
Then, substituting (3.36) into (3.35) we obtain,
& = %(Nzl +ru), b= %ﬁ(@z +r12), (3.37a)

where b > 0 is defined by

(3.37b)




Finally, upon introducing the mean curvature H(¢;,&z) defined by H = (k1 + £2)/2, we obtain

the main result.

Proposition 3.2 (Boundary Motion in 3 Dimensions) For ¢ — 0, the motion of a spike

confined to the smooth boundary of a three-dimensional domain is described by

a ~ Klug (€7 [(s1 = (8)2 + (52— ©2(0)* + 7] ") + O(), (3.382)

£(t) ~ %be3VH.(§). (3.38b)
Here &€ = (£1,£2), v = q/(p—1), b > 0 is defined in (3.37b), u.(p) is the positive solution to
(3.32), and H is the mean curvature of 05, with H > 0 for a sphere.
Notice that the stable equilibrium points of (3.38b) are at local maxima of the mean curvature.

Using the boundary value problem solver COLSYS [3] we can solve (3.32) numerically to de-

termine the constant b in (3.38b). In particular, when p = 2 we compute that

/0 T [u’c(p)]2 dp = 17.36, /0 2 [u;(p)]2 dp = 10.42. (3.39)

Hence, when p = 2, we get b = 1.67.

3.3 Qualitative Properties of the Associated Eigenvalue Prob-
lem | '

In this section we qualitatively explain why the non-local term in (3.1) is essential for ensuring

the existence of slow boundary spike motion.

We first consider the local problem corresponding to (3.1) in which we delete (3.1b) and fix
h > 0. Let us suppose for the moment that the boundary is flat and is given by the coordinate
line zy = 0. Hence we take Q = {x'= (z1,... ,2n)|zny > 0}. Setting a = h?/(P~Vy we then

get

up = EAu —u+uP, zy >0; Ogyu=0, on zy=0. (3.40)
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Let u = u, (¢7|x|), where u. is the canonical spike solution defined in (3.14) and (3.32) for
N =2and N = 3, respectively. We linearize (3.40) around u. by writing u = u. (e7!|x|) +

¥ (e71x|) e#*. This leads to the local eigenvalue problem for 1 (y) and p on a flat boundary

A+ (-1+p2 V9 = pyp, yn>0, (3.41a)
Oyn = 0, on yy=0. | (3.41b)

Here y = ¢~ !x, u. = u.(|y|) and A" denotes the Laplacian in the y variable. The eigenvalues

pj of (3.41) satisfy .
pr>0, pp=...=pnv=0, pn4+1 <0. (3.42)

The positivity of p; was shown in [27] and [48]. The eigenfunctions 1, and ¥4 are radially
symmetric (i. e. ¥ = ¥1(]y|)). A numerical procedure to calculate y; was given in [48] and
the results are shown in Table 1. The translation eigenfunctions corresponding to the zero

eigenvalues are given by ¥; = 8, ,uc(|y[) for j =2,... ,N.

p

2 1.65 2.36
3 5.41 15.29
4 13.23 144.18

Table 3.1: Numerical results for the principal eigénvalue u1 of the local problem on a flat
boundary (3.41).

The local eigenvalue problem on a curved boundary has the form

AYS + (1+puk™h) gt = pyc, 720, » (343a)
¢ = 0, on f=0. (3.43b)
Here A, is the operator that results from converting the Laplacian into local boundary coor-

dinates as explained in §2 and §3. Clearly, A — A’ as € — 0. Hence, we would expect that

the eigenvalues of (3.41) and (3.43) are close as e — 0. In fact, it was proved in [53] that, for
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€ < 1, the eigenvalues u5 of (3.43) satisfy

N;=Nj+0(1)’ j=1,... ,N+1,.... (3.44)

Hence, p§ > 0 for € sufficiently small. This shows that a boundary spike solution for the local

problem corresponding to (3.1) will not drift slowly along the boundé,ry of the domain. The
eigenvalues us§, ... , u$ corresponding to the near translation modes were calculated for ¢ < 1

in [53].

Next, we linearize the non-local problem (3.1) around a spike solution centered on a flat bound-

ary. In place of (3.41), we obtain the non-local eigenvalue problem for A and ¢ given by

N¢+ (=14 puB ) ¢+ I(9)

A¢,  yn =0, (3.45a)
Oyvd = 0, on yy =20, (3.45b)

where I(¢) is defined by

2mqub

I(¢) = “OnBGT D) /]_)U:;n_1¢dy7 B = /0 [uc(p)]™ PVt dp. (3.45¢)

Here 2 is the half-space yy > 0, Qy is the surface area of the unit N-dimensional sphere, and

ue = uc(|yl)-

As is similar to (3.44), the eigenvalues of the non-local problem defined on a curved boundary

should be asymptotically close to within o(1) terms to the eigenvalues of (3.45). Hence, to
ensure the existence of slow boundary spike motion for (3.1) we need only show that all of the

eigenvalues of (3.45) satisfy Re(A) < 0.

To accomplish this, we will appiy Theorem 2.2. Before we may apply this theorem, we note
that the boundary conditions, (3.45b) and (2.65) don’t match. However, the eigenfunctions we
are concerned with are radially symmetric and thus will satisfy (3.45b) automatically. Thus, for
any parameter set satisfying (2.67), we may conclude that the real part of all of the eigenvalues
satisfy Re(\) < 0. For any parameter set not satisfying (2.67), we must apply numerical

techniques, as in §2.1.1, to determine if the spectrum of (3.45) contains an eigenvalue with

positive real i)a.rt.
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Finally, we note that the problem (3.45) preserves the translation eigenvalues associated with

_ the local problem (3.41), since by symmetry the non-local term I(¢) satisfies I (ayj_luc) =0

for j =2,...,N. As is similar to (3.44), these translation eigenvalues are perturbed by o(1) as
€ — 0 when the non-local eigenvalue problem is defined on a curved boundary. The resulting

small eigenvalues are responsible for the slow boundary spike motion derived in §3.2 and §3.3.

3.4 A Spike on a Flat Boundary in Two Dimensions

In §3.2 we showed that the motion of a spike centered on the boundary of a two-dimensional
domain is in the direction of increasing curvature. This leads us to the problem of determining
the motion of a spike when the curvature is constant. In particular, we will analyze the motion
of a spike on a flat boundary where the curvature vanishes. Our analysis below shows that this
motion is metastable. To obtain this result, in §3.5.1 we show that the principal eigenvahe
associated with the linearization of a spike solution centered on a flat boundary is exponehtially
small. This establishes the metastability. Then, in §3.5.2 we derive an asymptotic differential
equation for the metastable spike motion on the flat boundary by imposing a limiting solvability
condition on the solution to the linearized problem. This condition ensures that this linearized

solution is orthogonal to the eigenfunction associated with the exponentially small eigenvalue.

For the analysis we let x = (z,y) and we supi)ose that the spike is located on the straight-line
boundary segment joining the points (z1,0) and (zg,0) as shown in Fig. 3.6. The flat portion
of 80 is taken to be the straight-line segment between (z,0) and (zg,0). The spike is centered
at xg = (£,0) where r7, < £ < £r. We decompose IQ as IQ = 0Q, U 0Q; where 08 refers

to the straight-line segment of the boundary and 92, denotes the remaining curved part of

- 0. The distance between the spike and 99 is assumed to be a minimum at either of the two

corners (zr,0) or (zg,0). .

The local behavior of the boundary near the corner points is critical to our analysis. Near the
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(z1,0) (€,0) o (zr,0)

Figure 3.6: Plot of a two-dimensional domain  with a flat boundary segment. The spike is
centered at z = £ on the flat segment. The dotted line indicates an approximate equipotential
for u. ' '

corner points, 9§, is assumed to have the local behavior

near (z1,0); y=1r(z), z/)lL(x) ~—K(zL - T)*, as T =z, (3.46a)

near (zr,0); y=vr(x), w'R(J:) ~ Kp(z —zg)*®, as z— z} , (3.46b)

where o;, > 0 and agr > 0. When oy = ar =1, K1, and K are proportional to the curvature

of 9%, at the left and right corners, respectively.
The spike solution to (3.1) is given asymptotically by

a(x,t) ~ ae = h¥/ P Dy, (e7}x — xo(2)]) ,  (347a)

-1
) GThG=D=m

hoe~he= (ﬁi—ﬂ—l /O [uc(p)]™ pdp : (3.47b)

where x¢(t) = (£(¢),0) is to be determined. Here uc(p) is the radially symmetric solution

defined in (3.14), and |Q| denotes the area of 2.

We first linearize (3.1) around a. by writing a = a + v, where v < a.. We get that v satisfies,

_ 2 p—1 mge”2uf m—1 .
Lo=eAv+ (-1+pud v — BG D) Quc vdx =vs+ Gz, in Q, (3.48a)

Opv = —Opa, on OQ. (3.48b)
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Here S is defined by
5= [ lulol™ pdp. (3.49)
Now we let v = eM¢ to get the eigenvalue problem,
Lp=X¢$, in Q; ,6=0 on 0. (3.50)
3.4.1 The Translation Eigenvalue

Suppose for the moment that ) is the half-space y > 0 so that 9, is the entire z-axis. Then,
the function ¢ = 8, u, satisfies Lc$ = 0 and the normal derivative boundary condition 8,¢ = 0.
Hence, for this case, ¢~S is an eigenfunction of £ with a zero eigenvalue. This cérresponds to
translation invariance in the x direction. For our geometry, ¢ is localized near (£,0) on the
flat segment A0, and ¢ decays exponentially away from this point. The interaction of the
exponentially small far-field behavior of ¢ with the corner regions, where 8 and 8¢, meet,
perturbs the zero eigenvalue by»exponentially small terms. This shift in fhe zero eigenvalue
is calculated below. The non-local term in the operator L. is asymptotically negligible in the

calculation of this shift. However, as shown in §3.4, the non-local term is essential for ensuring

that the translation eigenvalue is the principal eigenvalue of the linearization.

Now we calculate A\; and ¢;. Since ¢ fails to satisfy the boundary condition on 0f2., the

principal eigenfunction ¢, has the form

Here C is a normalization constant and ¢y, is a boundary layer correction term localized near
09Q.. Let n < 0 be the distance between z €  and 9 and let §j = ¢~ 'n be the localized

coordinate. Then, from (3.50), we get that ¢, satisfies

dLii — oL =0, 7 <0, ] (3.52a)
 Oh¢r = —€D5[0suclli=0, on 7H=0; ¢p—0, as fj——oo. (3.52b)

The solution to (3.52) is
¢r = —€(05[0zuclliz0) €. (3.53)
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Since u, is localized near z = £ € 0§}, we can calculate ¢; and ¢, on 99, by using the far-field
behavior of u. given in (3.14b). In this way, we get an estimate for ¢; on 9Q, from (3.51) and
(3.53)

/

b1 ~ —C’lace_l/zr_?’/?(a: - f)e"r/E (l1+%-n), on 99.. (3.54)

Here dc is defined in (3.14b), r = | — xg|, r = (z — X¢)/r, and n is the unit outward normal

to 0Q,.

Applying Green’s identity to ¢; and O;u., and using the facts that d,¢; = 0 on 8Q and

On[Ozpuc] = 0 on 952, we obtain

Xl (Oztc, ¢1) = —¢? /BQ ¢lan[axuc] as + (‘C: [amuc] 1) . : (3-55)
Here (f,9) = [, fgdx and L} is the adjoint operator defined by
: . -2, m—-1
Lip=EAp—p+uP —Z@LEL—/ugdm 3.56
£ip=E0g =0+ o- RS | . (3.56)

We now estimate each term in (3.55). Using polar coordinates, we calculate

nC1y

(#1, Opuic) ~ 5 where v = Awﬂ [Ulc(p)]2 dp. (3.57)

Next, we use (3.54) and the far-field form of v, in (3.14b) to get

2.2 _£\2"
_01“;6 (m - 5) e/ F. A(1+F-8), on 09. (3.58)

o1 On [aa:uc] ~

Substituting (3.58) into the boundary intégral in (3.55), we observe that the dominant contri-
bution to this integral arises from the corner regions of 9€2., where r is the smallest. Near the

corner regions we use the local behavior (3.46) to calculate

r-a

{KL(:vL—z)aL, as T - zy (3.50)

Kg(z —zg)*®, as z-»zf.
Substituting (3.58) and (3.59) into the boundary integral in (3.55), and using Laplace’s method,
we get '
TL - (837
Bz $:0:[05ucdS ~ Cral / Ki(or = 2)™ oz iz,
M -0 é- — L

[o0] K _ QApr
+ Cha? /x —ﬂ;—fgl—e‘2<x-f)/f dz . (3.60)
R
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The integrals in (3.60) are evaluated explicitly by using
b a+1
/ PRTREA P (S> a+1), (3.61)
o \2
where I'(z) is the Gamma function. In this way, (3.60) becomes

K €\ Qr+1
~ 2)J_2R (¢ ~2(zr—-€)/¢
B Clac{mR—f(Z) Flag+1)e

RL € aL+1 _Q(E—J?L)/f
+ - —+ . .62
§ . (2) F(OeL l)e (36 )

Finally, in Appendix B.1 we give asymptotic estimates to show that (L} [Bmuc] ,$1) = o(B), as
€ — 0. Hence, we can neglect the last term on the right side of (3.55). Substituting (3.57) and

(3.62) into (3.55), we get the following key asymptotic formula for the principal eigenvalue of
(3.50):

Proposition 3.3 (Eigenvalue) Assume that the distance between & and 0D, is a minimum
at either of the two corners (zr,0) or (zg,0). Then, for € — 0, the principal eigenvalue \; of

(3.50) has the asymptotié estimate

A Ty {xR—g (2) Tler+1)e
Kp (et ~2(6-z1)/e
= T +1 L . 3.63
§ —TL (2) (aL + ) € ( )

Here a. is given in (8.14b), v is defined in (3.57), and K1, Kgr, ar and ar are defined in

(3.46') in terms of the local behavior of 0S). near the corners.

3.4.2 The Slow Spike Motion

We now derive a differential equation for £(t) for the time-dependent problem. We assume that
the spike is initially on 8§s. Then, since the spike motion is metastable we have v; < 8iae in
(3.48a). Multiplying (3.48a) by ¢, and using 8,41 = 0 on 052, we obtain upon integration by

parts that

(Cowsdr) ~ & | 4102045 +(Lir,v) . (3.64)
N : .
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From (3.48) we have Lv ~ Oiae in -Q, and Opv = —0Opa. on 0), where Opae = 0 on 9Qs. Thus,
(3.64) reduces to |

(Betic, 1) ~ —€> | $10nucdS + hy /=0 (L1, v) . (3.65)

- Similar estimates to those given in Appendix B.1, which we omit, shows that the last term on

_the right-hand side'of (3.65) is negligible as compared to the boundary integral term. Hence,
(Butier 1) ~ —€* /a  $10wcdsS, (3.66)

where u. = uc [e 7} — x0|] and xo(t) = (£(2),0).

The remaining part of the analysis is very similar to the derivation of the eigenvalue estimate

for A1, and hence we omit many of the details. For ¢ < 1, we calculate using (3.51) that

TCi€y
2 k]

(Gruic, f1) ~ — (3.67)

where v was defined in (3.57). Next, using the far-field behavior of u. given in (3.14b), the
estimate for ¢, on 0. given in (3.54), and Laplace’s method, the boundary integral in (3.66)
can be evaluated asymptotically as in (3.58)-(3.62). The following main result is obtained from

this calculation:

Proposition 3.4 (Spike Motion) Assume that the distance between & and Q. is a minimum
at either of the two corners (zr,0) or (zg,0). Then, for € — 0, the z-coordinate of the center
of the spike along the flat segment 0Q;, denoted by £(t), satisfies the a;symptotz'c differential

equation,

/ 2ea‘z Kgp € Qg+l ~2zr—8)/e

Ky (6)aL+1

z —2(6-z1)/¢ .
Fo \2 Top+1)e } - (3.68)
Here a. is given in (3.14b), vy is defined in (3.57), and K1, Kgr, ar and ag are defined in

(3.46) in terms of the local behavior of 8Q, near the corners.

A similar differential equation for the motion of a straight-line interface in a constant width neck

region of a dumbbell-shaped domain has been derived in {25] for the Allen-Cahn equation. Using
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the boundary value problem solver COLSYS [3] we can solve (3.14) numerically to determine
the constants a. and 7 in (3.63) and (3.68). In this way, when p = 2 we compute that a, = 10.80
and v = 2.47.

The result (3.68) shows that the motion of the spike along the straight-line boundary segment
between (zr,0) and (zg,0) is determined by the shape of the boundary at (zr,0) and (zg,0)
and by the distance between the spike and the corner regions. The spike will move according to
(3.68) until a stable steady state is reached or until the spike touches (z1,0) or (zg,0). Once

the spike reaches the curved part of the boundary 89, it will subsequently evolve according to

(3.20b).

From (3.68), the steady-state spike-layer location E; on 9 satisfies

§e —TL aese  Kil(ap+1) (eNFL~Qr 500000y
26 b Alefe — 2o AL Pl (2 ; .69
LIIR—éee Kpl'(ar +1) (2) € (3.69)

Since the left hand side of (3.69) increases from 0 to co as £, ranges from z; to zg, a unique
' steady—sta.te solution to (3.69) exists on z7, < £ < zr whenever K, and Kg have the same sign.
This solution is stable when K, < 0 and K < 0, and is unstable when K; > 0 and Kg > ‘O.
In particular, this implies that if O is convex near (zr,0) and (zg,0), then there is no stable
"equilibrium spike location on 8. A simple calculation using (3.69) shows that the equilibrium

spike-layer location &, when it exists, has the expansion

: (3.70)

T +ZTR | € Kil'(ap +1) fe\%—Cr
) 7! [ (3) o

S T 18 | Kel(an + 1)
Thus, the equilibrium location, £, is located at an O(e) distance from the midpoint of the

straight-line boundary segment.

The following dynamical behavior can be deduced from (3.68) and (3.70) when the initial
condition is £(0) = &. When K7 > 0 and Kg > 0, £(¢) will move monotonically towards zp, if
&y < &, or monotonically towa.rdé xR if & > &, (see Fig. 3.7). When K1 < 0 and Kg <0, £(2)
will approach the stable steady-state at &, (see Fig. 3.8). If K < 0 and Kg > 0, then £(¢) will
move towards zr (see Fig. 3.9). Simiiarly, £(t) will move towards zr if K, > 0 and Kg < 0.

When the spike touches (zp, 0) or (zg,0), its subsequent evolution is determined by (3.20b).
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02,

§e 99,

Figure 3.7: Plot of part of a domain boundary, 82, upon which the center of the spike is at an
unstable steady state. Ky > 0, Kg > 0 for this domain.

Figure 3.8: Plot of part of a domain boundary, d52, upon v{rhich the center of the spike is at a
stable steady state. Kp < 0, Kg < 0 for this domain.

\é
A

/69

Fxgure 3.9: Plot of part of a domain boundary, 92, upon which the center of the spike moves
towards the right. K7 < 0 and Kz > 0 for this domain.

75




Chapter 4

Stability of n-spike equilibrium solutions to
(1.19)

In this chapter, we study the stability of n-spike equilibrium solutions to (1.17). As will be
demonstratéd below, the analysis of (1.17) is considerably more involved than the previous anal-
ysis of (1.18). The motivation for carrying out this difficult procedure are certain discrepancies
between the behaviour of (1.18) found in §2 and numerical simulations of the full system (1.17)
which (1.18) is supposed to mimic. In §2.2 we found that n-spike solutions to (1.18), where
n > 1 and the spikes are all strictly within the interior of the domain, are unstable with an
O(1) positive eigenvalue. Solutions with one interior spike are also unstable but with an expo-
nentially small principle eigenvalue as ¢ — 0. However, numerical computations, such at those
in [16], [32] and [33] suggest that equilibrium solutions with n > 1 stable interior spike solutions
to (1.19) may be possible. We conjecture that for sufficiently small values of D, solutions to
(1.19) with n > 1 interior spikes may be stable. The goal of this chapter is to investigate this
conjecture analytically in the simple case of a one-dimensional spatial domain for equilibrium
solutions with spikes of equal height. Equilibrium solutions with asymmetric equilibrium spike
solutions are studied in [50] and the case of spikes in a two dimensional domain are studied in
[30]. It is important to mention that our stability analysis is very different from the classical
Turing-type stability analysis that is based on linearizing a feaction—diffusion system around a
spatia,lly homogeneous steady-state equilibrium solution. Our analysis is based on the study of
the linearization of (1.17) around an n-spike equilibrium solution, which has a very high degreé
of spatial inhomogeneity. A similar ;malysis for the Fitzhugh-Nagumo model has been garried

out in [38]. Some stability results for the case of one spike with 7 # 0 is given in [37).

76




We now give an outline of the chapter and summarize some of the key results obtained. In
- 84.1 we use the method of matched asymptotic expansions to construct equilibrium solutions to
(1.17) in the limit ¢ — O that have n > 1 spikes of equal amplitude in the activator concentration.
In §4.2 and §4.3 we study the spectrum of the eigenvalue problem associated with linearizing
(1.17) around the equilibrium solution constructed in §4.1. In §4.2 we study the large eigenvalues
of order A = O(1) in the spectrum, while in §4.3 we study the small eigenvalues of order
X\ = O(€?). The n-spike solution is stable §vhen both sets of eigenvalues lie in the left half-plane.
For n > 2 and € — 0, in §4.2 we obtain an explicit critical value Dy, such that the large O(1)
eigenvalues are in the left half-plane only when D < Dy. When this condition on D is satisfied,
we say that the equilibrium solution is stable with réspect to the O(1) eigenvalues. In §4.3, for
n > 2 and € — 0, we show tﬁat the small eigenvalues are always real and that they are negative
only when D < Dy, }An explicit formula for D}, is derived and it is found that D}, < D,. Thus,
for n > 2 and € — 0, an n-spike symmetric equilibrium spike pattern is stable when D < D;;
and is unstable otherwise. The results for D, and D;; are given below in Propositions 4.7 and
4.11, respectively. The main stability results, summarized in propositions 4.5, 4.7, 4.8, 4.10,
and 4.11, are obtained from a careful but formal asymptotic analysis. It would be of interest

to establish these results rigordusly.

Finally, in §4.4 we study the stability and dynamics of a solution to (1.17) with exactly one
spike. For a certain range of exponents (p, g, 7, s), we show that a one-spike equilibrium solution
to (1.17) will be stable when D < D;j(e), where D;(€) is exponentially large as e — 0. It is
unstable when D > Dj(e). An asymptotic formula for D;(e€) is given in Proposition 4.13 of
§4.4.2. This result is consistent with the result of [18] for the shadow problem (1.18) for which
D = oo, where it was shown that a one-spike eqﬁilibrium solution is unstable, but with an
asymptotically exponentially small positive eigenvalue. In §4.4.1, we study the dynamics of a
one-spike solution to (1.17) for finite D by deriving an asymptotic differential equation for the
trajectory of the center of the spike using the method of matched asymptotic expansions. The
asymptotic differential equation is given in Proposition 4.12 of §4.4.1 and is favorably compared

in §4.4.1 with results from full numerical computations.
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‘ 4.1 An Asymptotic Analysis of the Equilibrium Solution

For ¢ — 0, we construct an n-spike equilibrium solution to (1.17) with equal amplitude using the
method of matched asymptotic expansions. A solution with three spikes is shown in Fig. 4.1.
The locations z;, for j =0,... ,n — 1, of the spikes for an n-spike solution, which follows from

symmetry considerations under the Neumann conditions (1.17c), satisfy

1425
;= —1+ ‘;7, j=0,1,...,n—1. (4.1)

independent of j. For an n-peak equilibrium solution to (1.17), the activator concentration

|
\

|

‘ .

At these points the equilibrium solution satisfies a’(z;) = 0 and h(z;) = H, where H is
! is localized in the inner regions defined near each z;, and is exponentially small in the outer
\
|
\

regions defined away from the spike locations.

h

In the inner region near the jt spike we introduce new variables by

y=€ Nz —z;), hly;)=hizj+ey), a(y)=alzj+ey), (42a)
and we expand
h(y;) = ho(y;) + €ha(y;) + -, @ly;) = do(y;) + O(e) - (4.2b)

- Substituting (4.2) into the equilibrium problem for (1.17), and collecting powers of €, we get

Gy — o+ @/ =0, —oco<y;<oo, (4.3a)
hg =0, (4.3b)
Dhy = —aj/hs. (4.3¢)

The conditions at y; = 0 are that ay(0) = 0, hg(0) = H, and h1(0) = 0. The conditions needed
to match to the outer solution are that hg is bounded as |y;| = oo and dp — 0 as |y;| — oo.

Thus, the solution to (4.3b) is hg = H. Next, we introduce u, by

a9 = H'u,, where y=gq/(p-1). (4.4)
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Then, (4.3a) and (4.3c) become

u, —ue+ul =0, —00 < Yj < o0, (4.5a)
ue—0 as |yj| = oco;  u,(0)=0, (4.5b)
Dh] = —u[HY~*, | (4.5¢)

From phase-plane considerations, there is a unique positive solution to (4.5). In particular,

when p = 2 we have

_3 2 (Y
uc(y) = Ssech ( 2) . (4.6)
Upon integrating (4.5¢) from y; = —oo to y; = oo we obtain
lm K- lim R = —LH"b, whee b= [ [me@dy.  (47)
yj——>+oo.1 Yo mo0 1v D Ty r = - c Y. .

This equation yields a jump condition for the outer solution.

In the outer region, defined away from O(e) regions near each z;, a is exponentially small and

h is expanded as
h(z) = ho(z) + o(€) . (4.8)

Here hqg satisfies Dhy — phg = 0 on the interval [—1,1] with suitable jump conditions imposed
across the z;. Upon matching to the inner solution constructed above, we obtain that hq is
continuous across each r; and that the jump in h;) is given by the right-hand side of (4.7).

Therefore, hy satisfies

n—1
Dhy —pho =~H""°b,> 6(z —z), -l<z<1, (4.9a)
k=0 .
Chg(1) =0, ' | (4.9b)

where d(y) is the Dirac delta,bfuncti_on. To solve (4.9) we introduce the Green’s function G (z; zx)

satisfying

DGy — uG = —6(z — zy1) , ~-l<z<1, (4.10a)

Gg(£lyzg) =0. | (4.10b)
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A simple calculation gives,

Agcosh [6(1 + z)] / cosh [6(1 + , -l<z <, :
Glosng) < | Aecom IO +2)])/ cosh 001 + )] s < it
Agcosh (1 — )] /cosh[B(1 — z)], =zx<z<L1.
Here
1
A = - -t = 1z .
£= 75 (tanh [6(1 — )] + tanh [6(1 + zk)]) , 6 = (u/D) (4.11Db)
In terms of G(z; k), the solution to (4.9) is
n—1
ho(z) = H™™ b, > G(m; 7). (4.12)
k=0 :

Finally, to determine H we set ho(z;) = H and use the fact that Zz;é G(zj; zx) is independent
of j when the locations satisfy (4.1). This can be shown directly either by using (4.11) and
summing certain geometric series, or by using the matrix analysis given following Proposition

4 below. In either way, we get

n—1
(st — 1 : where a, = Z G(zj;zk) - (4.13)
brag o

This leads to the following equilibrium result:

Proposition 4.1 For € — 0, an n-spike equilibrium solution to (1.17), which we label by a.(z)

and he(z), is given asymptotically by

n—1

ae(z) ~ HY Z ue [z — zx)] (4.14a)
k=0
n—1

he(z) ~ i G(z;zk) - (4.14b)
%9 k=0

Here uc(y) is the positive solution to (4.5), H and a, are defined in (4.13), G is given in
(4.11), and zy satisfies (4.1).
The three-spike equilibrium solution plotted in Fig. 4.1 is obtained from (4.14).

To determine the stability properties of the equilibrium solution we i_ntroduce the perturbation

a(z,1) = 6e(z) + ¢(z),  h(z,t) = he(z) +Mn(z), (4.15)
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Figure 4.1: Plot of the activator and inhibitor concentration for a three-spike asymptotic sym-
metric equilibrium solution with € = .02, D = .10, p = 1, and (p,q,7, ) = (2,1,2,0). The solid
curve is the activator concentration and the dotted curve is the inhibitor concentration.

where 7 < 1and ¢ < 1. Substituting (4.15) into (1.17) and linearizing, we obtain the eigenvalue

problem
p—1 D ‘
e2¢m—¢+p“;q p—En=2p, -l<z<l, (4.162)
€ hve
. 1 ar—l 1 a’ )
Dy — pn = —€~ r—;;-q‘)—i-e' shsj_ln, T -l<z<l, (4.16b)
e €
¢z(£1) = nz(£1) = 0. | (4.16¢)

In §3 we analyze the spectrum of (4.16) corresponding to those eigenvalues that are boﬁnded
| away from zero as € — 0. These eigenvalues are referred to as the large eigenvalues. In §4
we analyze the spectrum of (4.16) corresponding to those eigenvalues. that approach zero as
€ — 0. These eigenvalues, referred to as the small eigenvalues, are shown to be O(e?) as € — 0.
The goal ié to determine the range of D as a function of n for which the large and the small

eigenvalues both have negative real parts.

Qualitatively, the small eigenvalues arise from the near translation invariance property of the

system. When D = oo, then &, and 7 are constants in (4.16a). In this special case, the resulting
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eigenvalue problem has n exponentially small eigenvalues. These exponentially small eigenvalues
arise as a consequence of the near translation invariance property and an exponentially weak
inferaction between adjacent epikes (mediated by their tail behavior) and between the spikes
and the boundary. The corresponding eigenfunction is, to within exponentially small terms,
a linear combination of the first spatial derivative of u, [e_l(x - a:J)] However, when D is
finite so that 7 is a slowly varying function of z near each spike, then these exponentially small
eigenvalues are dominated by an algebraically small spike interaction mediated by the function
n(z). The leading term in the eigenfunction is still a linear combination of the first spatial
derivative of u., but the expansion of the eigenfunction proceeds in powers of e. When D = co
and n = 0, vthe,operator in (4.16) has exactly one positive eigenvalue in the vicinity of each
spike, and this eigenfunction is of one sign. Hence, when D = co and 5 = 0, an n-spike solution
is unstable on an O(1) time scale. However, when D is decreased from infinity, the O(1) positive
eigenvalue near each spike can be pushed into the left-half plane owing to the dependence of n

on D. This is the origin of the large O(1) eigenvalues.

4.2 Analysis of the Large Eigenvalues

In this section we analyze the eigenvalues of (4.16) that do not approach zero as ¢ — 0. In
§4.2.1 we consider the case where s = 0 and in §4.2.2 we extend the analysis to treat s > 0. For
ease of notation, the subscripts such as 7, shall indicate derivatives with respect to z, whereas

the primes will generally refer to differentiation with respect to the stretched variable Y.

4.2.1 Analysis for s =0

To ‘study the eigenvalue problem (4.16) it is convenient to introduce scaled variables defined by
ae = H'u, he=Hv, ¢=H9, n = Hif, (4.17)

where v = ¢/(p — 1). From (4.14a), we conclude that u ~ ZZ;& U [e‘l(a:‘— zx)]. Substituting
| (4.17) into (4.16) with s = 0, using (4.13) for H™~!, and dropping the overbar notation, we
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get

p—1 P :
o=+ Emp— Ton=)¢, -l<z<I, (4.183)
Dy — pun = —’"“H¢ —l<z<1 (4.18b)
772::1: /-“7 - ebrag 9 r I .
¢z(£1) = nz(+1) = 0. ' ' (4.18¢)

Using the symmetry of the equilibrium solution and the localization of th.e coefficients in (4.18),

we look for an eigenfunction for (4.18) in the form

n—1 )
p(z) ~ > e [z - z)] (4.19)
k=0

for some ¢, where ®(y) — 0 as |y| — co. The right-hand side of (4.18b) behaves like a sum of

delta functions as € — 0. Thus, for € — 0, we calculate that n satisfies

n-—1

o0
/ @) " @) dy Y bz —z), -l<z<l, (4.20a)
™ k=0

r
Dnm—/m=-ba
g

ne(£1) = 0. (4.20b)

The solution to (4.20) is written in terms of the Green’s function G(z; zx) defined in (4.11) as

n(z) = e / [ue(y)] " ®(y) dy ZG (z; zx )k - o (4.21)
gor

Then, we substitute (4.19) and (4.21) into (4.18a), and use the fact that v = 1 + O(e) when

|z — z;] = O(e). The resulting eigenvalue problem, when written in terms of the stretched

variable y = ¢7!(z — z;), becomes for j =0,... ,n — 1,
1" -1 qru’c’ o0 r—1 nd
cj(@ - &+ puf @)—ab [uc(y)] ™ @(y dyZGa:J,xk)k—cJ)\fb ~0<y<oo,
g Jmoo k=0
(4.22)
with & — 0 as |y| = co. This eigenvalue problem is the same for each j when ¢y, ... ,c,—; are
the components of the eigenvector for the matrix problem
Co
Ge=qac, c= (4.23)
Cn—1
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Here G is the n x n symmetric matrix whose entries are the coefficients G(z;; z¢). The eigenval-

ues of G are real. Then, using (4.7) for b,, we get that (4.22) becomes the nonlocal eigenvalue

problem
" 2 ([ ue(y)] ™ @(y) dy
@ . @ _1@ _ aqrue —oo LY - _ .
e a; \ I o) dy A, meo<y<oo,  (4243)
&0 as Jy| = oo, | (4.24b)

The goal is to determine conditions on D, y and n for which the eigenvalue Ay # 0 of (4.24)

with the largest real part satisfies Re(\g) > O for any eigenvalue o of the matrix problem (4.23).

The outline of the rest of the analysis is as follows. First, we obtain explicit formulae for the
eigenvalues «; and the eigenvectors ¢; of G. These eigenpairs depend on the vaiues of D, i and
n. The next step is to use a key result of [52], which we restate below, that proves that the
principal eigenvalue of (4.24), in the restricted subset for which X # 0, has a positive real part
when a < a, and a negative real part when o > a.. Here o, > 0 is some specific threshold
value. Henée, we conclude that there is no eigenvalue of (4.24) with a positive real part.when
the minimum eigenvalue «; of the matrix problem (4.23) satisfies a; > .. We show explicitly
the range of parameter values D, u and n for which this relation hblds. We now carry out the

details of this analysis.

We first calculate the eigenvalues of fhe full symmetric matrix G. This is readily done since
G~! is a symmetric tridiagonal matrix. To see this, in Appendix C we solve (4.18b) on each
subinterval [z;_1,z;] and impose the following jump conditions across each z = z; that are
associated with (4.18b):

. o
’I'CJ

; =0, [Dne];=-wj, wj= [uc(y)] @ (y) dy . (4.25)

" aghr J_o
Here [a]; = a(zj+) — a(z;-). This procedure then leads to a linear system for n(z;),j =

0,...,n—1 of the form

Bn = (uD) Y?w, , (4.26a)
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where the n x n tridiagonal matrix B and the n-vectors 17 and w are defined by

d f O 0 0 0
f e f 0 0 0
fe o0 00 7(z0) wh
B= . S n= : , w=
00 0 " e fO N(Zn1) W1
0 0 O f e
0 0 O f
(4.26b)
Here d, e and f are defined by
d = coth(260/n) +. tanh(é/n) , e = 2coth(20/n), = —csch(20/n), (4.26¢)

where 6 = (u/D)l/Q. Note that d = e + f. Thus, 1 is given by n = B~lw (uD)™/2. Another
way to determine 7 is to evaluate (4.21) at ¢ = z;, for j = 0,... ,n — 1. The equivalence of
these two representations of 1 yields

B! '
G = 75 . (4.27)

In Appendix C.1 we show the explicit calculation that yields.the folloWing result for the eigen-

values r; and the eigenvectors g; of B:

Proposition 4.2 The eigenvalues k;j, ordered as 0 < k1 < ... < Ky, and the normalized

eigenvectors q; of B are

: . 1
ki=e+2f; mze-i—chos(W), ji=2,...,n, (4.28a)
1 2 m(j — 1) .
q'i:ﬁ(l,...,l); QI,j?\/;COS<-‘—n—(l—1/2)>, J=2,...,n. (4.28b)
Here qt denotes transpose and q§ = (q1s-++ 1Gnj)- '

Therefore, from (4.27) and since e > 0 and f < 0, the smallest eigenvalue of G is proportional
to k' and the corresponding eigenvector is proportional to g,. Relabeling this eigenpair we

obtain:
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Proposition 4.3 The smallest eigenvalue oy of G and the corresponding (unnormalized) eigen-

vector q; are

_ D)
R 2f cos (m/n)’ » (4.292)
g1, = sin (W—(T—;—;—ll> oS (W(n — I)TEZ — 1/2)) . (4.29b)

Here e and f are defined in (4.26c) and ¢t = (q1,1,--- ,q1,0)-.

We now apply Theorem 2.1 to find a criterion to ensure that the O(1) eigenvalue has negative
real part. Comparing (4.24) with (2.11), the theorem above yields the following key result on

the spectrum associated with (4.24):

Proposition 4.4 Let Ay # 0 be the eigenvalue of (4.24) with the largest real part and assume

condition (2.13a) holds. Then, Re()\g) > 0 when

-1

o <o where o = (p_)&. (4.30)
qr

Also Re(\g) < 0 when oy > a. Here a; is the minimum eigenvalue of G given in (4.29a) and

aq is the constant row sum of G defined in ({.13).

To get an explicit stability criterion we must calculate ag4. Since g¢¢ = (1,...,1) is an eigenvector

of B with eigenvalue k; = e + 2f we can multiply both sides of (4.27) by q; to get

1

1
Gq,=a,(1,...,1) = —=B"1q; = 1,...,1)%. 4.31
q g( ) \//_I—E q1 f‘t':l\/lm ( . ) ( )
Hence,
1 . 1 1

= 2 = : . 4.32
% vuD (e+2) 2y/uD coth (260/n) — csch (26/n) (432)

Substituting (4.29a) and (4.32) into (4.30) we obtain that Re(Ao) = 0 when
et2f _p-1 (4.33)

e—2fcos(n/n) qr
Using the definition (4.26¢) for e and f, we calculate e/(2f) = — cosh (20/n). Substitﬁting this

expression into (4.33) and solving for the critical value of § we get the following main result:
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Proposition 4.5 Let A\g # 0 be the eigenvalue of (4.24) with the largest real part and assume
condition (2.13a) holds. Then, Re(Xg) < 0 when

D<Dnzé%; n=12,..., (4.342)
n .
On = g—ln [a+\/a2 —1] . a=1+ [1+cos (%)} (p?fl.— 1>—1 . (4.34b)

Alternatively, when D > D, then Re()¢) > 0.

This result gives the stability criterion for the large eigenvalues of (4.16) when s = 0. For
example, from this result we can conclude that a three-spike equilibrium solution is stable with
respect to the large O(1) eigenvalues only when when D < D3. To stabilize one additional spike

we need to decrease D below Dy.

We now examine (4.34) for the GM parameter set (p,q,7,s) = (2,1,2,0) for which

60 =2 1In [2 + cos (%) + \/(2 + cos (%))2 - 1} . O (435)

We then calculate the following sequence of critical values of Dy:

Di=pu/6?=c0, 6,=0, ‘ (4.36a)

Dy = 6] = 0.5766p, 6 =1n(2+V3), | (4.36b)
3. (5 a1

D3 = u/eg =0.1810p, O3 = 3 In (-2— + g) , (4.36¢)

| 7 [T »
Dy =p/6? =0.09154,  64=2n (2 + % +1/5+ 2\/5) : (4.36d)

In the limit n >> 1, we get

Do~ 4pn”2 (In[3 + V) T ro@mY. (4.37)

For the analysis leading to (4.34) to be valid we require that D /€% > 1 in order to ensure that A

is slowly varying in the inner regions near each spike. Hence it follows that we require n < 1/,

which limits the range of validity of (4.37).
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For the other common parameter set (p,q,7,s) = (4,2,2,0) we get the critical values

=p/f =00, 6, =0, : (4.38a)
Dy =p/62=02349:, f=In (4 + \/'13) , | (4.38b)
D3 = /62 = 0.0778y, 03 = gln (% + %) , (4.38c¢)
Dy = /62 = 0.0401p, 64 =2In (4 + %ﬁ + +12v2 ) (4.38d)

The results in (4.36a) and (4.38a) suggest that the principle eigenvalue of (4.24) for a one-spike
equilibrium solution will always have a negative real part for ény value of D. This conclusion is
true when D is independent of ve, but needs to be modified if we allow VD to depend on ¢. More
specifically, we show in §5 that a one-spike equilibrium solution is stable only when D < Dy (€),

where D; (¢) is exponentially large as € — 0 and satisfies D (e) = O (e2?/¢) for ¢ <« 1.
4.2.2 Analysis for s > 0

For s > 0 we again introduce the new variables (4.17) into (4.16) and use H""~(+1) = 1/(b,a,)

from (4.13), with the result

puP~l quP

€2¢zz—¢+ a1 =A,  —l<e <, (4.39a)
. su’” rum L
Drjgg — pn — ebragusﬂn = _ebragv3¢’ -l<z<1, (4.39b)

¢z(£1) = nz(£1) = 0. (4.39¢)

Here u ~ Y12 e [e71(z — zx)]. Substitute the form for ¢ given in (4.19) into (4.39b) and
use the facts that u is localized and that v = 1 + O(e) near each zx. Then, in place of (4.20),
(4.39b) and (4.39¢c) become

n—1 . 0 n—1
fDngg — [u + = bz - wk)} n=-—— /_ [ue(@)] ™} B(y)dy Y cxdle —zx), 2l <1,

% k=0 a-" br k=0
(4.40a)

na(£1) = 0. | (4.40b)
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Thus the term proportional to s in (4.40a) acts as a psuedo-potential and hence will modify
the jump condition for 7, across each z;. Since u is localized near each z;, and n(z) is slowly
varying with respect to € near each z;, we need only calculate 77(z;) and substitute into (4.39a)

to obtain the eigenvalue problem.

«

To calculate n(z;) we proceed as follows. We introduce 1 and w as defined in (4.25) and (4.26).
We then solve (4.40a) analytically on each subinterval in terms of hyperbolic functions and then -

patch the subinterval solutions together using the appropriate jump conditions

M; =0, [Dng];=-w;+ f;n(mj) , (4.41)

where w; was defined in (4.25). This calculation, which we omit, shows that the solutioh for n

can be written in the form

By = (uD) P w, : (4.42)

where the matrix B is given by
By=B+ A : 4.43
s agvuD C _ (4.43)

Here I is the nxn identity matrix and B is the matrix defined in (4.26b) and (4.26¢). Therefore,
using (4.25) and (4.26b), we obtain

= s /. T e dy B, (4.44)

where ¢ is defined in (4.23). In place of (4.22) we get, for j =0,.:. ,n — 1, that

o

‘ : P
(3" - p-lgp) - 9% r-1 =1 = ¢
¢ (<I> @ + pu? @) arbriD | oo [uc()]" ™ (y) dy (B; c)j+1 =cjA\D, —00 <y < oo,
(4.45)
with & — 0 as |y| — oco. Here (B;‘lc)j denotes the j*8 component of the vector B;le.
Now let ¢ be an eigenvector of the matrix eigenvalue problem
Bsq = rq. . (4.46)
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Then, using (4.7) for b,, (4.45) becomes

P e 9] r—1
" _ qrue f_ [uc(y)] Q(y) dy
® —®+pullP - 0 - =AP, -—co<y<oo, (4.47a)-
¢ agry/ pD ffooo [uc(y)]™ dy ’ v ( )
&0 as |yl = oo. - (4.47b)

Let Ag # 0 be the eigenvalue of (4.47) with the largest real part. Then, from comparing (2.11).

and (4.47), we conclude from the theorem of [52] stated above that Re()\g) < 0 only when

1 -
kagy/uD qr

To obtain a condition in terms of the minimum eigenvalue of G, we use (4.27) to get that

(4.48)

Gq = aq, where kag\/pD = s + ag/a. Substituting this relation between x and « into (4.48),

we obtain the following result in terms of the smallest eigenvalue o) of G:

Proposition 4.6 Let Ay # 0 be the eigenvalue of (4.24) with the largest real part and assume
condition (2.13a) holds. Then, Re(\g) > 0 when A

o ( ar _s> - (4.49)

ag p—1

Also Re(X\o) < 0 when the inequality in (4.49) is reversed.

The right-hand side of (4.49) is always positive by the assumption (1.8) on the exponents.
Setting a1 /ag = [qr/ (p—1) —s]™", and using (4.29) and (4.32) for o; and a,, respectively, we
get the following main result for the stability of the equilibrium solution with regards to the

large O(1) eigenvalues:

| Proposition 4.7 Let Ao # 0 be the eigenvalue of (4.47) with the largest real part and assume
condition (2.13a) holds. Then, Re()\g) < 0 when

D<Dnso%, n=1,2,..., (4.50a)
’ -1 .

_n _ ™[ ar

0n=§1n{a+\/a2—1],' a=1+[1+cos(n)] (p_l (s+1)> . (4.50b)

Alternatively, when D > D, then Re(\g) > 0.
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From (1.8) we get that a > 1 since gr/(p — 1) > (s+1). In addition, D, decreases as s increases,

and so for each fixed n it follows that D must be made smaller as s increases in order to stabilize

an n-spike equilibrium solution.

4.3 Analysis of the Small Eigenvalues .

'The results in §4.2 establish conditions for which the equilibrium solution is stable on an O(1)

time scale. Now, we examine the more difficult problem of determining conditions guaranteeing
that the small eigenvalues with A = O(€?) lie in the left half-plane. The first step, done in

§4.3.1, is to reduce (4.16) to the study of a matrix eigenvalue problem. In §4.3.2 we analyze

this matrix eigenvalue problem to determine the small eigenvalues and their sigﬂs explicitly.

4.3.1 Deriving the Matrix Eigenvalue Problem

We begin by writing (4.16) in the form

qat
Le¢an=A¢, —~l<z<]1, o (4.51a)
: ~10 ! -1, G¢ ' :
Dy — un = —¢ r—hs—¢+e shs+1n, ~-l<z<l, (4.51b).
e € .
¢z(1) = ng(£1) = 0, | - (4.51c)
where
2 pad”! '
Lp=€"ppz — 0+ H ¢. (4.51d)
€
Here a. and he are given by
n—1 ) H n—-l. ) 1 :
Ge~ Y Hwg;  he~v = Gz;zy); H7 0 = (4.52)
k=0 % =0 braq

We have defined ug(y) = u, [e 7}z — zx)], where u.(y) satisfies (4.5). The equilibrium positions

for z; are such that
(heg); =0, j=0,.,n-1. (4.53)

Here and below we have defined ({); = (¢(z;+) + {(z;-))/2 a.ﬁd [l; = g(q;-j+) - ¢(zj-), where

((zj+) are the one-sided limits of ((z) as z — zjx.
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If the inhibitor diffusivity was infinite and there only one spike, then by translation invariance we
would obtain L.a.; = 0. Here we expect that Leae; is still small. To show this, we differentiate

the equilibrium problem for (1.17a) with respect to = to get

_ . : 7
a .
Letes = };’Tghe,, . (4.54)
(1
Thus, for z near z; we get
, equu?
LEUJ' ~ Whez . (455)
g .
This fact suggests that we expand
p=¢o+epr+---, n(z)=enp(z)+---, - (4.56a)
where
n—1 n—1
dp = chuj [e_l(:z: - a:J)] , b = Z cjP1j [e_l(:z: - a:j)] , (4.56b) -
j=0 . j=0 _

and the c; are arbitrary coeficients.

~We substitute (4.56a) into (4.51a) and use (4.55) and A = 0(62).. For z near z;, we get that

$15(y) satisfies
qu?H 7
ciLegrj ~ e [cihes(zj + €y) — Hmo(z; + €y)] - (4.57)

Before solving this equation for ¢1; we need to determine an important continuity property of

the right-hand side of (4.57).

Substituting (4.56a) into (4.51b), we get that 7 satisfies

r—1 r

_9 Q - a
Dnogz — pmo = —€_°r o (fo+edr) +e ls—tm, -l<z<l1. (4.58)
_ e e .

Since ¢ is a linear combination of u;-, it follows that the term multiplied By ¢o on the right-
hand side in (4.58) behaves like a dipole. Hence, for € < 1, this term is a linear combination of
& (x - z;) for j = 0,..,n — 1, where §(z) is the delta function. Thus, 7y will be discontinuous

across ¢ = z;. However, if we define the function f(z) by

flz) = H'no(z) - them(.m) ; | (4.59)
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then f is continuous across z = z;. To see this, we differentiate (1.17b) for . with respect to z
and subtract appropriate multiples of the resulting equation and (4.58) to find that the dipole
term cancels exactly. Thus, f is continuous across £ = z;, and we have (f); = f(z;). However,

' ¢1; satisfies
cjLegrj ~ QU?H’Y‘I(?N)J‘- - (4.60)

Since Leuj; = (p — l)ug + O(e), (4.60) is easily solved to get

(Rez); = 0 from (4.53). Hence, f(z;) = H”’(no)j‘. Therefore, for € « 1, we get from (4.57) that

, . .
¢#13(y) = S (W) H Hmo)i+0(e). (4.61)
This condition shows that ¢;; is continuous across z = z; and has the form of a spike. This

when € < 1 and, most importantly, is of the same order in € as the dipole term proportional
to ¢o. This shows the fact that we need to determine the approximate eigenfunction for ¢ to

both the O(1) and O(e) terms in order to calculate an eigenvalue of order O(¢€?).

Next, let € — 0 and use (4.56b) and (4.13) for H""~(t1) o calculate for z near z; that

implies that the term in (4.58) proportional to ¢, behaves like a linear combination of 6(z — z;) |

r—-1 H-7 .
—6_27‘?;8 o ~ — - ¢jd (z — ), (4.62a)
"Ye . g .
L at rH=e; [ |
~ = [ b - ). (4.62b)
e . . Gg0r —-0o0 ' ‘

Substituting (4.62) into (4.58), and using the formula (4.61) for ¢1;, we get

S s n—1 H=" n—1 , | AqT’ n-1
Doy — H+ @ ;5(58 — Ij) g = — o J;O Cj5 ((L‘ — .'L'j) — G—_UE;;(%)J&@ — .7:]') .
(4.63)

This problem is equivalent to
Dnogz — pmo =0, “:]- <z<l1; 7703:(:’:1) =0, (4.643.)
' €C; _ : 1 qr

Dngl. == =2 ) g L. Dnpel. = — [ g— —2 .

[ "70]3 (ag) ) [ 7702‘]] ag (3 (p _ 1)) <n0>_7 (4-64b)
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For convenience we introduce 7y defined by

no=H' 7. (4.65)

Next, we estimate the small eigenvalue. Substitute (4.56) and (4.65) into (4.51a) and multiply
both sides of (4.51a) by u; Integrating the resulting equation across the domain, we get
ol , n-1 v (0 ais n—1
; (uj, ciLew;) +_e‘§ (45, esLedus) — eqHt (uj, ﬁ?) ~ ,\;:‘3 (eruiuj) . (4.66)
Here we have defined (f, g f flz g(x dz. To w1th1n negligible exponentially small terms,.

the dominant contribution in the sum comes from i = j since u; is exponentially localized near

j
z = z;. Thus, (4. 66) becomes

cj (u;"Leu'j). + ecj (u;,.[,fqﬁlj) — eqH Y ( lj, :q—?(;) ~ A ( uj, J> . (4.67)
(4

Since L is self-adjoint, we integrate by parts on the second term on the left-hand side of (4.67)
and use (4.55) for Leu'j. The integrands' are localized near z = z;. Thus, writing the resulting
integrals in terms of the stretched variable y = e™1(z — z;), we get

\ o u” 0 p !
€ ch'Hq/ hq+1 L thez dy — € qu+"/ , hq+17lo dy

—00
+é qc;H? / hqf_llj heg dy ~ €Xcj /
o0

In this expression 7o = fio(z; + €y), ke = he(z; + ey), and Reg = hez(z; + €y).

[ee}

o0

We now estimate each of the terms in (4.68). Since [¢1;] ;=0 (hez)j = 0, and u;- is odd, it

vfollows’ that »
oo @P . ' .
/ o, dy=o(l) as e—0. (4.69)

Hence, the third integral on the left-hand side of (4.68) will be o(e®) and can be neglected.

Next, we combine the first two terms on the left-hand side of (4.68) to get

00 upu ) o0 p u g
quchq/ hq+1 hex dy — € qH +¢I/ hq+1’7° dy = —¢ qH‘I/ hq+1 (z; +ey)dy. (4.70)

—00 ~00
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Here f(z), defined in (4.59), is given in terms of 7o by f(z) = Hfjo(x) — cjhez(z). The function

f is continuous across = z; but its derivative is not. For € < 1, we calculate

o0 u"up cih (IE ) 0 ’ - e !
—quH"’/ hfﬁ_Jl flzj +ey)dy ~ GSQ%L /_oo yujuf dy — € q(foz) /_oo yujul dy.

—o0 e

(4.71)

Upon integrating by parts in (4.71), and using hezz(z5) = uH/D, we get

o0 u/.up I h . . €3q c-u o N
2, it [ LY (Cifter - N fa G P
€“qH /_oo hat1 ( H 770) dy P+l ((UOx)J ) ) [oo [ue(y)PF™ dy. (4.72)

- Substituting (4.69) and (4.72) into (4.68), we obtain a formula for A\. We summarize the result

(redefining no for convenience) as follows:

Proposition 4.8 The eigenvalues of order O(€*) for ({.16) Satisfy '

Aej /°° [w(w)]” dy ~ g /_.Z,[ucw)]p“ dy((nx),;—f,gﬁ), j=0.m-1. (@473)

-0

Here (nz); is obtained from the solution to the boundary value problem

Dnge —un =0, ~-l<z<1; Ne(£1) =0, (4.74a)
‘ = _E]_ . L= _}."' . g = o — ar .
[Dn); = 2 [Dns]; = agé(ﬂ)] ,‘ S=s- gy (4.74b)

4.3.2 Analyzing the Matrix Eigenvalue Problem

The next step in the derivation is to calculate (n,); from the solution to (4.74). The solution

to (4.74) can be decomposed as

1 n—1 Tl—,l
n(z) = — (Z crg(z;zi) + Y meGlz;zk) | . (475)
: 9 \k=0 k=0 ,
' for some coefficients mk; for k=0,... ,n—1. Here G satisfies (4.10), and g(z; %) is the dipole

Green’s function satisfying -

Dgze —pg=—68 (z —z), -l<z<l1, ~ (4.76a)

9z(£1;2¢) = 0. ‘ . (4.76b)
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Satisfying the jump conditions in (4.74b) we get the following matrix problem for the coeﬂicients

mg: -

(—S—g + I) m=——Pyc. (4.77)
g g

Here G is the Green’s function matrix defined in (4.23) with entries G (z;; zx), and

(g(zo;z0))o - 9(Zo; Tn-1) mo co

i

Py
9(Zn—1; o) (9(Tn_1;Zn_1))n-1 -\ Mp-1 Cn—1

(4.78)

The problem (4.77) determines m in terms of ¢. Then, using (4.75), we can calculate (7;);, for

J=0,...,n—1, from the matrix problem

(nz) = ;—g (Gye + Prﬁ) , (4.79)

where G, is the Green’s dipole matrix defined by

9s(zo;Z0) 0 gu(To; Tn-1)
Gy = , ' (4.80)
9z(Tn-1;20) -+ gz(Tn-1;%Tn-1)
and
(Ge(zosT0))o -+ Gz($0§$n~1) A (_"7:1:)0
P= : : comey=| i | @8
-Gx(xn—l; To) v (G:c(xn-—ﬁ Tn-1))n-1 v (Nz)n—1
Next, we define o by : ,
_ Yo ([ )P dy o s
P+ ey \ [ ) dy )
Substituting (4.79) and (4.82) into (4.73), we get a matrix eigenvalue problem for o and ¢
- Kag
Goe+Pm = (0 +2) c. (4.83)
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Here m is determined in terms of ¢ by (4.77).

The next step in the analysis is to reduce (4.77) and (4.83) to an equivalent generalized -eigen-
value problem. This analysis involves matrices associated with G and g. To avoid confusion we

have indicated with a subscript g those matrices associated with the dipole Green’s function g.

In the analysis below we must find the eigenvalues of G, explicitly. This is done as in §3 by
showing that G ! is a symmetric tridiagonal matrix. More specifically, in'Appendix C.2 we

. show that

Gy = 585" (4.84)

where By is a tridiagonal matrix with exactly the same form as in (4.26b), except that here the

~

definitions of d, e and f in (4.26c) are to replaced with |
d = coth(28/n) + coth(8/n), e = 2coth(20/n), = —csch(20/n), (4.85)
where d = e — f. In Appendix C.3 we calculate the eigenvalues and eigenvectofs of B, analyti-

cally. The result is summarized as follows: ' ' .

Proposition 4.9 The eigenvalues ;, ordered as 0 < él < ... <&, of By and the associated

normalized eigenvectors v; of By are .

: 20 20 ) .
£ = — | —2¢sch | — — . =1,...
& = 2coth ( ~ ) cse ( - ) cos ( - ) j=1,...,n, | _(4.863)
vh = = (1,-1,1, ..., (=)™ v,ﬁz\/gsin Ma-12))), j=1...n-1
. .n \/’f_l- ’ ) | ’ ’ J n n 5 yeoo g .
: (4.86b)
Here v* denotes transpose and v§ = (V14 ,Uny)-

Other key relations that we need are derived in Appendices C and C.2, where we show that

_ 1 26 1 1 20N\ i1
Py = 2Dcscl? ( - ) ¢B, ", P= —Ecsch <77,—> C'B™. (4.87a)
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Here the matrix C is defined by

1 1 0 0 0 0

-1 0 1 0 0 O

0 -1 0 0o 0 0

C= (4.87b)

0 0 0 0 1 0 |

0O 0 O -1 0 1

0 0 0 0 -1 -1 /

From (4.87a) we obtain the result that

PB = — (Png)‘ : (4.87c)

We begin by solving (4.77) for m. The matrix in (4.77) is invertible if § (a1/a,4) +1 < 0, where
a1 is the minimum eigénva.lue of G. From (4.49) and the definition of § in (4.74b), we see that
this condition is satisfied when the large O(1) eigenvalues are in the left half-plane. We will
assume that D < D, so that’this condition holds. Let g;, k; be the normalized eigenpairs of B

as given in Proposition 4.2 for j = 1,. ,n. Then,
B = QKQt, - (4.88)

where Q is the orthogonal matrix whose columns are the normalized g; and K is the diagonal

matrix of the eigenvalues of B. Since § = B~!/\/uD from (4.27) and Q'Q = I, we get

_(%gﬂ)_l—cz(%\/__;c +I> T | (4-89).

Using 0 = (u/D)1/2, we can solve for m in (4.77) in the form

-1
m = ——Q (—silc + I) Q'Pyc. ' (4.90)

ag Qgt

We then substitute (4.90) and (4.84) into (4.83). This yields,

-1
Ble-3D? PQ ———iC‘ +1I) Q'Pyc= Do +H%9) .. (4.91)
9 ag,u 0 0 /- -
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In (4.91) we use (4.87¢) and (488) to replace PQ with
PQ = PBB1Q = — (P,B,)! QKL
We theﬁ introduce w and the diagonal matrix D deﬁned by
w= Bile, ©D=3iD*K! (gwc-i +0)7h

Here we have defined v by

v = 9 =2 [coth (-22) —csch (%)] = 2tanh (ﬂ) .
Qg n. n/l n

(4.92)

(4.93)

(4.94) |

Equation (4.94) is obtained from using the expression for ag in (4.32). Using Proposition 4.2

for the eigenvalues x; of K we then calculate D as

d 0 -+ 0
0 0 . ~D2
D= , where d; = 5 .7, i=1,..
: o, : K5+ 87"
0 0 - d, |

Substituting (4.92) and (4.93) into (4.91), we obtain the eigenvalue problem

Bu=w(I+R)u.
Here we have defined w and R by

_ (Do  1\7! - ‘ t t
w= T"'; s RE(Png) QDQPng

SN (4.95)

(4.96a)

- (4.96b)

The assumption that the solution is stable with respect to the large O(lb) eigenvalues is equiv-

alent to the condition that x; + &y < 0 for j = 1,..,n. Under this condition, and since § < —1,

we conclude that D > 0. Hence, I + R is a positive-definite and symmetric matrix. This

means that the eigenvalues w;, and consequently A;, for j =1,... ,n are real. The generalized

eigenvalue problem (4.96) is equivalent to the combined problem (4.77) and (4.83).

The next step is to determine the spectrum of (4.96) analytically. To do so, we show that R has

the same eigenvectors as B;. Hence, we claim that R can be written in terms of some positive
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diagonal matrix ¥ as

R=QQ;. (4.97)

th

Here Q, is the eigenvector matrix associated with By. The j* column of Q, is the eigenvector

v; given in Proposition 4.9. Using the formula for P;5, in (4.87a), we can write R in (4.96b)

as
_ 1 2 29 t t i ! ’

R = 1D° csch (;) C QDQRC. (4.98)

This is equivalent to
R = — cocn? (2 MD g, .

. = WCSC z‘ Qg M Qg; (4993')

where the matrix M is defined by
M=Qictq. -  (4.99b)

Comparing (4.99a) and (4.97), we then define ¥ by

’ 1 260 ‘ '
2= 2= ¢, .
1D csch ( - ) MDM (4.100)

We now show that I defined in (4.100) is a diagonal matrix.
To show this, we first calculate the matrix M in (4.99b) using the explicit formulae for the

eigenvectors of B and B, given in Propositions 4.2 and 4.9. Let m;; be the 4, jth entry of the
matrix M. Then, we calculate m; ; explicitly using (4.99b) and the definition of C in (4.87b),

to get
n
mij = Z Vi Q-1 — Q+1,4) - . . (4.101)
- =1 -
Here we have defined go ; = q1,j and gn41,; = gn,j, Where q; j and v}, ; are defined for [ = 1,... ,n

and j = 1,... ,nin (4.28b) and (4.86b), respectively. A tedious, but straightforward, calculation
shows that m; ; = 0 for 4 # j — L. Howev'ef, the entry mj_; ; is non-zero. We calculate, for
j=2,...,n, that

n—1

mi_1; = V141 (q1; — 42.4) + Vnjo1 (Gne1j — Gng) + D Vj-1(@-15 — @r15) - (4.102)
' =2 .
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Using (4.28b) and (4.86b), and standard trigonometric identities, we can reduce (4.102) to

mj_l,j=%s ( j_1>Zs ( J'”jf‘””), i=2...,n. (4103

Therefore, we get the key result that

j—1
mj-1,; = 28in (ﬂJT)-> i=2,...n; m;; =0 otherwise. (4.104)

Therefore, it is clear that the matrix product MDM? in (4.100) is a diagonal matrix. This
shows that By, and R have the same eigenvectors. Then, by using (4.95) for the diagonal entries

of D, we calculate X in (4.100) expliéitly'as

z1 0 0
S= (:) (:) ,  (4.105a)
0 0 Zn
where
zj = ﬁcschz (%9) (mjjr1)dje1, j=1...,n=1; 2, =0. (4.105b)

Finally, we use (4.104) for m; i1, (4.95) for dj4q and the result that kjs1 = & for j =
1,...,n—1, as obtained by comparing (4.28a.) and (4.86a). In this way, we find that z; = z;(3),

where

8y : 20 . ﬂ'j . ‘ o
zj = o grycsch2 (;) sin? <;> , j=1,...,n—1; zn=0. (4.106)

Here y was defined in (4.94). When D < Dy, so that the. solution is stable with respect to the
large O(1) eigenvalues, then {; + 3y <O0for j=1,..,n — 1.

Since we have shown the crucial result that By, and R have the same eigenvectors, it is easy to

calculate the spectrum of (4.96). The eigenvalues w; of (4.96) are
wi=§&/(1+2), j=1,...,n, S (4107)

where ¢; and z; are given in (4.86a) and (4.106), respectively. Then, substituting (4.106) into

the expression for o in (4.96b), we get that o; = 0;(3), where

§_ . . |
aj=-——lE<—J_—1—Zj ,  Jj=Ll...,n. (4.108)




Finally, we substitute (4.108) into (4.82) to obtain explicit formulae for the small eigenvalues

A = O(€?). The main result is summarized as follows:

Proposition 4.10 For € < 1, consider the eigenvalues of (4.16) of order A = O(€?). The
corresponding eigenfunction has the form (4.56) where ¢; = v;, with v; defined in (4.86b). The

explicit formula for the small eigenvalues is

N o — e2qp' J2o [uc(v) P dy [1 — cos (7j/n) — z; (cosh (26/n) — 1)
7 D(p+1) \ S [u;(y)]z dy cosh (29/n) — cos (7rj/n)

for j=1,...,n. Here z; = 2;(5) is defined in (4.106).

] ., (4.109)

The final step in the analysis is to determine the sign of o; with respect to the parameter D.

The condition o; < 0 for j = 1,..,n holds when
%‘1‘“2j>0, j=1,.,n. (4.110)

Defining w; = £;/, we calculate from (4.86a) and (4.94), and from some standard trigonometric

identities, that

wj = 1.+ sin? (ﬂ) csch? <—0—) . (4.111)
2n n :
Since z, = 0 and w, > 1, (4.110) holds when j = n. Substituting (4.106) and (4.111) into

(4.110), we see that o; < 0 when

sin? (zrl) csch? (g> (w—f + 1) > sin? (ﬂ) csch? <-2£> , for 7=1,.,n-1. (4112)
» 2n : n 3 n n

Using (4.111) and some standard identities, (4.112) reduces to

(1 + 5 + csch? <%)) (1‘ — cos? (gi—) sech? (g)) <0. (4.113)

The second bracketed term on the left-hand side of (4.113) is always positive for any j = 1, .., n.
The first bracketed term is negative when D is very small since 5 < —1 and 8 >> 1. However,

this term will switch sign when D crosses through the critical value where

csch? (%) =—(1+3). | | (4.114)'
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Hence, n —-1 of the small eigenvalues switch sign at the same value of D. Let D}, be the value
of D satisfying (4.114). By solving (4.114) we obtain the following main result for the stability

~ of the solution with respect to the small eigenvalues:

Proposition 4.11 For € < 1, consider the eigenvalues of (4.16) of order A = O(e®). These

eigenvalues are negative only when D < Dy, where

D i ﬂz[ a —(1+s)]—1. (4.115)

" an(vB+vBFD] p—1 -
There are n — 1 small positive eigenvalues when D > D;. When D = D}, then A=0isan

eigenvalue of algebraic multiplicity n — 1.

It is a simple exercise to show that, in general, these critical values are smaller than the crit«ica.l
values D, given in Proposition 4.7 for the stability of the solution with respecf to the large
O(1) eigenvalues. Thus, our final conclusion is that an n-spike equilibrium solutién will be
stable only when D < D}. For the parameter sets (p,q,7,s) = (2,1,2,0) er get 8 =1, and for

(p,q,7,8) = (4,2,2,0) we get 8 =3. From (4.115) we then calculate the critical values

n=2 =  Dy=03218y

B=1; Dy=01441y fB=3, (4.116a)
n=3 — D3=01430p pB=1; D3;=0064ly (=3, (4.116b)
n=4 — Dy;=00805z fB=1; D;=0036ly B=3. (4.116¢)

The numerical computations of [19] of the time-dependent problem .(1.17) with (p,q,r,s) =
(2,1,2,0), starting with initial conditions close to an asymptotic equilibrium solution, suggested
that Dy = 0.33 and D3 =~ 0.14. The detailed analysis presented above gives the theoretical

basis for these numerical predictions.

4.4 The Dynamics of a One-Spike Solution

In this section we analyze the dynamics of a one-spike solution to (1.17). For finite inhibitor
diffusivity D, in §4.4.1 we derive a differential equation determining the location zy(t) of the

maximum of the activator concentration for a ene-spike solution to (1.17). By linearizing this
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differential equation around the stable"equilibrium location zg = 0, we show that the decay rate
of inﬁnitesimal, perturbations coincides with the small eigenvalue result (4.109) when n = 1.
Alternatively, when D = oo, we know from [18] that the equilibrium solution z¢ = 0 for a
one-spike solution is unstable. When D = oo, the spike drifts exponentially slowly towards the

closest endpoint of the domain (cf. [18]). To reconcile the finite D result with the infinite D

~ analysis of 18], we show in §4.4.2 that the equilibrium location z¢ = 0 for a one-spike solution -

is stable when D < D;(¢), where D; is exponentially large as ¢ — 0.
4.4.1 The Differential Equation for the Spike Location
In the inner region near the spike we introduce the new variables

y=elle—zo(r)], hly)=hlwo+ey), &) =alzo+ey), T=€t, (4117a)

and we expand

h(y) = holy) + eha(y) +---,  aly) = doly) +eda(y) + - - (4.117b)

Substituting (4.117) into (1.17), we find from the leading terms that aq and kg satisfy (4.3a)

and (4.3b), respectively. Hence,

doly) = H'ucly), holy)=H, v=q/lp-1), (4.118)

where wu.(y) satisfies (4.5). Here H = H(r) is a function to be determined. Setting a; = H"us,

we get to next order that

" pil ’ ’
uy —up +pullyy = quI;. L _ Tl , -0 <y < oo, -~ (4.119a)
Dh] = —H" %], (4.119b)

with u; — 0 exponentially as |y| — co. The right-hand side of (4.119a) must be orthogonal to

the homogeneous solution u’c of (4.119a). From this solvability condition we obtain

1 q > p 'y V B
g = - / wPu hi dy. (4.120)
H % @ dy /- =" - -
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If we integrate (4.120) by parts twice, and use the facts that h] and u, are even functions, we

get

- g I )P\ 1
T TG+ ( 2 ) dy ) i +v3’-n°°hl} - )

In the outer region away from the spike, a is exponentially small and, similar to the analysis in

§2, we expand h = hg + - - -, where hq satisfies

Dhy — phg = —H"°b,6(z — z9), —-l<z<1, (4.122a)

ho(£1) = 0. o (4.122b)
Here b, is defined in (4.7). To match with the inner solution we require that

ho(zo) = H, lim b+ lm A =hos(zor) +hos(zo-).  (4123)

y—+oo Yy—>—~00

The solution to (4.122) is
ho(z) = H" %6, G(z;20), (4.124)

where the Green’s function G(r; z¢) satisfies (4.10). Substituting (4.124) into (4.123), and using
(4.13) for H™ %, we get

R . = H
At Mm b= e

1 1/yr—(s+1)
brG(zo; 270)] .

[Gz(zo+; Zo) + Gx(xo;;iﬂo)] ) ' (4.125a)
H= [ (4.125b)

The solution G(z; z¢) was given in (4.11). Using this solution we can calculate the right-hénd

side of (4.125). Then, substituting the result into (4.121) and (4.124), we obtain

Proposition 4.12 For € <1, the dynamics of a one-spike solution to (1.17) is characterized
by .
a(z,t) ~ H"u (67 [z — 20(2))) , ' (4.126a)

h(z,t) ~ HG [z;20(2)] /G [zo(¢); 20 ()], | (4.126b)
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where H = H(t) is given in ({.125b). The spike location zo(t) satisfies the differential equation

d—d"f} = F(zo) ~ —€2C [tanh (\/, (1+ m) — tanh <\/7 (1- xo)>] , (4.126¢)

where C is defined by
_ 4 [m f_ [ue(y)P* dy
C= S+ \VD ( ™ ity )] ™ ) . | (4.126d)

o

Ol=
Gl=

The equilibrium solution zy = 0 for this differential equation is stable for any D. The decay

rate of infinitesimal perturbations around zo = 0 is

/ 2 > p+1 d ’
F(0)~— ¢ 9k (f‘ fue(y) y) sech? (

Dle+1) \ [ [u(y)] dy

This result agrees precisely with the small eigenvalue result (4.109) whenn =7 = 1.

'(»4.127)

Ol=

3.0 -

. 20
logm(t -+ 1)

0.0
0.0 0.25 0.50 0.75 10
To

Figure 4.2: Plot of the trajectory zo(t) of the center of the spike for a one-spike solution with
€=.03, p =10, D =10 and (p,q,7,8) = (2,1,2,0). The solid curve is the full numerical
result and the dotted curve is the asymptotic result. '

To verify (4.126¢c) for the parameter set (p,q,7,s) = (2,1,2,0) we compared the asymptotic

result (4.126¢) for zo(t) with the corresponding full numerical result computed from (1.17).
The problem (1.17) was solved numerically using the routine DO3PCF from the NAG library
[39]. The initial condition was taken to be of the form (4.126a) and (4.126b) with z¢(0) = 0.6
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Figure 4.3: Plot of the initial condition for a one-spike solution corresponding to the parameter
values shown in the caption of Fig. 4.2. The solid curve is the activator concentration and the
dotted curve is the inhibitor concentration. '

t logio(1 +1t) | zo(t) (num.) | zo(t) (asy.)
12.0 1.114 0.5937 0.5942
96.0 1.987 | 0.5524 0.5552
204.0 | - 2.312 0.5039 0.5091
486.0 2.688 0.3974 | 0.4073

- 864.0 2.937 0.2905 0.3035
13140 |  3.119 0.2008 0.2148
1884.0 |  3.275 01262 | 0.1392
22740 |  3.357 0.0919 | 0.1035

Table 4.1: A comparison of the asymptotic and numerical results for zo(t) 'corresponding to the
parameter values shown in the caption of Fig. 4.2.
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and € = .03, 4 = 1.0, and D = 1.0. An iﬁterpola.tion scheme was then used to locaté the
position of the maximum of a on the computational grid. In Fig. 4.2 and in Table 1 we
compare this numerical result for 2y with the corresponding asymptotic result obtained' by
solving the differential equation (4.126c) with the initial condition z¢(0) = 0.6. In solving the

differential equation, the integrals in (4.126c) were evaluated using Romberg integration on a

- large but finite interval using the form for u. given in (4.6)} 'We find a close agreement between

the asymptotic and numerical results for zy(t). In Fig. 4.3 we Apiot the initial condition used
and then in Fig. 4.4(a) and Fig. 4.4(b) we plot the numerical solution to (1.17) at two different

times showing the slow convergence to a one-spike equilibrium solution.
4.4.2 The Stability of a One-Spike Solution for D — oo

When D = oo it was shown in §2.1.3 that a one-spike solution is metastable and that the center

zo(t) of the spike satisfies the asymptotic differential equation

, _
fzdgtg = Glo0) ~ 7— 2fx € . (6—2(1—:1:0)/6 _6—2(1+xo)/€) , (4.128)
(f_oo [uc(y)] dy)

provided that zg is not within O(e) of the endpoints, i. e. (4.128) is valid when 1 — 2o > O(e) -
and 1+ zg > O(¢). Here « is defined by the limiting behavior u.(y) ~ ae~ ¥ as |y| — co. This
result shows that zo = 0 is unstable and that there is a metastable drift of the spike towards

the closest endpoint of the domain.

When D is asymptotically large we can superimpose the result (4.128) with (4.126¢) to obtain

0 — Glag) + Flao). - (4.129)

.
%5

Here F(zq) and G(zo) are defined in (4.126c) and (4.128), respectively. This superposition is
valid since the metastable interaction between the ta.ilé of the spike and the boundaﬁes ==l
results in an additive term to the solvability condition that we impose on (4.119a). The stability
property of the equilibriuxﬁ solution for this diﬂ"erentigl eQuation is then given in the following

result:
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Figure 4.4: Plot of a one-spike solution at two different times corresponding to the parameter
values shown in the caption of Fig. 4.2. The solid curve is the activator concentration and the
dotted curve is the inhibitor concentration. '
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Proposition 4.13 For € < 1, a one-spike equilibrium solution to (1.17) is stable when D <
Di(e) and is unstable when D > D1 (€), where

€2 2/e oo
Dy ~ gt [ e+ ay. (4.130)

Here o is defined by the limiting behavior u, ~ ce ™ as ly| — oo, where u,(y) satisfies (4.5).

For the special case with u = 1 afmd’(p7 q,78) = (2,1,2,0), where u.(y) = 3sech® (y/2) and

a = 6, we can calculate analytically that Dj(e) ~ 2% /125.0.
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Chapter 5
Spike Dynamics

The goal of this chapter is to study‘the dynamics of multi-spike solutions to (1.17). In §4 we
found criteria determining thé stability of a multi-spike equilibrium solution to (1.17). These
criteria were derived by ensuring that the spéctrum of thev operator éssociated with a lineariza-
tion about an equilibrium multi-spike solution contains no eigenvalues vs}ith positive real part.
In §4 we examine two different types of eigenvalues. The stability of the equilibrium solution
on an O(1) time scale was determined by the sign of the real part of the large eigenvalues,
and the stability on an O‘(e.‘2) time scale was determined by the sign of the O(e?) eigenvalues.
The 0(62). eigénvalues were real. The stability of the equilibrium solution with respect to both
sets of eigenvalues gave different ranges of D. Values of D that satisfy both ranges yield stable

equilibrium spike solutions.

In this chapter we linearize (1.17) around a quasi-equilibrium solution consisting of a sequence’
of spikes of different heights. As with the one-spike case treated in §4, the motion of such a
-multi-spike quasi-equilibrium solution is on a slow O(e™2) time scale. The- quasi-equilibrium
solution at a fixed time is stable on a,n'O(l) time scale when the large eigenvalues associated

with the linearization are in the left?h_alf i)la,ne.

The outline of this chapter is as follows. In §5.1 we linearize (1.17) about a quasi-equilibrium
n-spike solution where the height and the spike centers are unknown funcfions of time. By
imposing a solvability condition-, we obtain a differential-algebraic system of ordinary differential
equations governing the motion of the spikes. In §5.2 wé discuss the equilibrium solutiohs to this

system which yiéld both the symmetric solution discussed in §4 and new asymmetric solutions
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found in [50]. In §5.3 the results of §4.2 are used to determine when a given spike profile is
stable with respect to the large eigenvalues. In §5.4 numerical simulations of the full system are
compared to numerical simulations of the system found in §5.1, and these results are compared

with the stability results of §5.3.

5.1 The Dynamics of Quasi-Equilibrium Solutions

We derive a system of ordinary differential equations describing the dynamics of the spike
locations for an n-spike quasi-equilibrium solution to ( 1;17). T.he spike locations i are assumed . -
to satisfy —1 < x; < T < 1 for i = 1,..,m — 1. In §4.4.1 a one-spike solution was analyzed’
in detail and it was found that the spike evolves on a long time-scale t = O(¢~%). Hence, we

expect that :1:1 = z;(7), where 7 = €2t.
In the inner region near each z;, we introduce the new variables

yi=€e Yz —3), hi(yi,7) =h(@i+eyi, € 21), ai(yi7) = a(z; +eyi, €7°1), T =€t.

(5.1)
We then expand ‘
hi(i, 7) = hao(yi, 7) + €haa (v, )+ 0 @iy, 7) = gio(ys) +ean(yi, )+ (5.2)
Substituting (5.2) into (1..17), we get to leading order that
ayy — aip + afo/hgo =0, —co<y; <0, (5.3a)
by =0. . (5.3b)

Here the primes indicate derivatives with réspect to y;. In order to match to the outer solution
below, we need that h;o is bounded and that a;p — 0 as |y;| = co. Thus, from (5.3b), we get

that
hio = Hi(1), . (5.4a)
for some unknown H;. The solution to (5.3a) is

ao() = Hluly),  where  y=g/(p=1), (5.4b)
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and u.(y) satisfies

u'c’fuc+u’c’=0, —00 <y < oo, (5.5a)

ue =0 as |yl = oo;  wu(0)=0,  u(0)>0. (5.5b)
In particular, when p = 2, we have

ue(y) = -;—sech2 (y/2) . | (5.5¢)

The O(¢) problems, obtained from substituting (5.2) into (1.17), are

' p—1 P .
"o pa; qa. ',
Gj —aa t i:‘? il = q-(z-ol hit — a5 T; (5.6a)
0 hio
" ar .
: h’iO

Here &; = dz;/dr. Substituting (5.4) into (5.6), we get

o _ -1 ',
L(ay) = a; — i1 +pul~lay = qH] "ulhiyy — H]u, 5, (5.7a)

Dhj = —HI" ], (5.7b)

Since L(u,) = 0, and u, — 0 exponentially as |y| — oo, the right-hand side of (5.7a) must

satisfy the solvabﬂity condition that it be orthogonal to u,. In this way, we get

’/Oo['()]2d q/oop'hd | |
T u(y Y~ — ubu i1 dy; . 5.8
(s H; oo c%eltil ( )

-0

Integrating (5.8) by parts twice, and using the facts that h;; and u. are éven functions, we

obtain

o0 ' 2 . q o] 1 ,
. ~ —— P . i . /. .
i /_ - [“c(y)} __dy 2H,(p +1),( / Oo[uc(y)] dy) (yil_lfgoohzl +y,.l_‘fl‘oohﬂ) . (5.9)

Now in the outer region, defined away from O(¢) regions near each z;, a is exponentially small

and we expand

h(z) = ho(z) + o(e) . _ ‘ (5.10)
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Since € < 1, and a is localized, the term e 'a™/h° in the outer region behaves like a linear
combination of delta functions. Substituting (5.4) and (5.10) into (1.17b), and letting ¢ — 0,
we find that ho satisfies ‘

. n o

Dhose —pho = =b 3B V0o -2), b= [ )l dy, (5.11a)

=1

hoa(£1) =0. (5.11b)

The solution to (5.11) is

n
ho(z) = b, Z HI"™°G(z; z;), : (5.12)
i=1
where G(z; z;) satisfies
DGy — uG = —6(z — z;), -l<z<1, (5.13a)
Ga(£1;2;) = 0. ~ (5.13b)

To match with the inner solutions near each z;, we require for ¢ = 1,..,n that
ho(zi) = Hi,. (5.14a).
Jim B+ Hm ki = hoo(ie) + hoa (i) (5.14b)
From (5.14a) and (5.12), we obtain a nonlinear algebraic system for H;, i =1,..,n.

"The final step in the derivation is to calculate the integral f defined by

ffooo [u«:(y)]p+1 dy . (5.15)
oo ) dy | :

To do so, we first multiply (5.5a) by u.. Upon integrating the resulting equation over the

f

domain, we obtain
o " x ' e o] »
/ U, dy — / uldy + / wPtldy =0. (5.16)
-0 -0 -0 .

Upon integrating the first term in this equation by parts, we get

I [uc)]? dy (517
T2 )P dy .

~l=e-f, where e=
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To obtain an additional equation, we multiply (5.5a) by u/c and integrate over the domain to

fix the constant of integration. We then integrate the resulting expression again to get

2f |
Solving (5.17) and (5.18), we obtain '
‘ |  2p+1)
f= p—1 - (5.19)

' The dynamics of the n-spike pattern is obtained by substituting (5.14) and (5.19) into (5.9) and

(5.12). The main result is summarized as follows (relabeling H; by h; in the notation below):

Proposition 5.1 For € < 1, the quasi-equilibrium solution for a and h is given by

a(z,t) ~ ac = Z h,;-yuC ez - z;)] , - (5.20a)
Jj=1
h(z,t) ~ he = b Y BT °G(z; 1), ' (5.20b)
- j=1 )

where h; = hi(T) and z; = z;(T) satisfy the differential-algebraic system fori =1,..,n

h; = by Z R0 G (i 75) -~ (5.21a)
j=1 o : ’
d % 2 br — T— - T— . |
2 =L BTG 4+ S R T G(wiszs) | - (5.21b)

dr p—1 : £
ji=1
' J#i

Here u, satisfies (5.5), b is defined in (5.11a), T = €%t, and (Gy); = [Go(ziy; ;) + G;(azi_; zi)] /2.

The system (5.21) can also be written in matrix form as

dzx 2qb,

h = b.ChRY"—% 2 A BT 441 Yr—s ;
rg ; ar " Tp- lH d L (5.22)
where dz/dT = (&1,... ,25)". Here we have defined

hy 0 - 0
G(zy;21) - Glz1;20) . .

Gg= : ) : , H= , (5.23a) -

G(zn;z1) -+ G(Tn;Tn)

0 0 hn
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(Golzisz))o -+ Golz1;2n) I BT
P= : L , h= , RS =
G:v("z‘n; 2,‘1) ce <Gz(33n; xn)>n hp - h;ylr—s

(5.23b)

Alternatively, we can write (5.22) in terms of certain tridiagonal matrices. In Appendix C, we

show that
B——l
G= ; (5.24)
' = VD |
where B is the tridiagonal matrix
ct dg 0 --- 0 0 0
. d e . . 00 0
B= , (5.25a)
0 0
O P s T

0 0 0 -+ 0 dpo1 ¢

with matrix entries defined by

c1 = coth{#(zy — z1)] + tanh [6(1 + z1)] ; ¢, = coth[#(zn, — Tp—1)] + tanh [0(1 - a:n)] ,

(5.25b)
¢; = coth{f(zj41 — z;)] + coth [0(z; — z;—1)], Jj=2,.,n—1, (5.25c¢)
dj = —csch[0(zj41 —z5)], j=1,..,n—1. -~ (5.25d)

Here 6 = \/u/D.

~ Next, we calculate the matrix product PB using the procedure as outlined in Appendix A. We




find that PB is a tridiagonal matrix of the form

ee S 0 -~ 0O 0 0
~-fi e oo T 0 0
PBE—Q—%’PI,, where Py = e el el : | (5.26a)
0 _ 0
0 0 . "o . ep1 faoi
0 0 0 -+ 0 ~—fa1 en

The matrix entries are defined by

e1 = tanh [8(1 + z1)] — coth [0(z2 ~ 71)] ; en = coth[#(zn ~ Tp_1)] — tanh [#(1 — z,)] , _

(5.26b)
ej = coth [9(z; — zj_1)] — coth [0(zj41 — ;)] , j=2,.,m—1, (5.26c)
fi=csch[0(zj11—2;)], J=1,.,n—-1. . (5.26d)

Substituting (5.24) into (5.22), we obtain the following result equivalent to (5.21):

Corollary 5.1 The differential-algebraic system (5.21) is equivalent to the matriz system

dz g [p, b
=~ 51 .DH Poh, Bh= =5

Here H, B and Py are given in (5.23a), (5.25), and (5.26), respectively.

RYS (5.27)

The advantage of this formulation over (5.21) is that (5.27) is expressed only in terms of
tridiagonal matrices. Starting with certain initial data z(0), in §5.4 we give numerical examples
showing the evolution of the quasi-equilibrium solution (5.20) and (5.27) towards a stable

equilibrium solution. These asymptotic results are also compared with full numerical results

computed from (1.17).




5.2 Symmetric and Asymmetric Equilibria

From (5.27), the equilibrium values of h and z satisfy

b,
vuD

In this section we review some results obtained in §4 and in [50] for the existence and stability

Bh = RS Poh =0. (5.28)

of symmetric and asymmetric spike patterns for (1.17) respectively.

- As shown in §4, for the symmetric spike patterns where h; = H for j = 1,..,n, the T; are

located at the symmetry points

25 — : ’
a,-j=—1+—7—r1-, j=1,.k. (5.29)

In this case, it was shown in §4 that 2tanh (6/n), with § = \/u/D, is an eigenvalue of B with

_associated eigenvector v = (1,1, ..,1)%. In addition, Pyv = 0. Hence, from (5.28), the common

spike value hj = His

Fr—(s41) _ ?__‘/I)“D tanh (g) : | (5.30)

The symmetric n-spike solution is obtained by substituting (5.29) and h; = H into (5.20).

In [50], asymmetric n-s"pike-equilibrium patterns were constructed asymptotically. The type
of asymmetric patterns that were constructed consisted of ny > 0 small spikes of type A and
ng =n—n; > 0 large spikes of type B arranged in any particular order from left to right across

the interval [—1,1] as
ABAAB...B 5 ny — A’S, ng — B’s. (531)

A plot of such a solution with five spikes in an ABBAB pattern is shown in Fig. 5.1. The

following result for asymmetric equilibrium spike patterns was obtained in [50].

Proposition 5.2 (see [50]) Lét € — 0 and D < D,,, where Dy, is some critical value. Then,

there exists an asymmetric n-spike equilibrium solution to (1.17) of the form (5.20), where h;
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Figure 5.1: Plot of the activator and inhibitor concentration for a five-spike asymptotic asym-
metric equilibrium solution with € = .02, D = .04, p =1, and (p,q,7,5) = (2,1,2,0). The solid
curve is the activator concentration and the dotted curve is the inhibitor concentration.

satisfies
] , . .
n (s+1) _ (—_"b“D> tanh (I;6) , 6=+/u/D. (5.32)
T

Here for each j, lj =1 orl; = I, where | and [ are determined in terms of ny, ny aﬁd Vu/D

by the nonlinear system

nil+mpl=1, - b [z\/ﬁﬁ] = b[i\/p/—D] , (5.33a)

where

(5.33b)

=ta.nh’Az 1 -
=+ '

blz) = coshz ’ "

The value l; = | must occur ny > 0 times, while I; = [ must occur ng = n—ny > 0 times.

The small and large spikes can be arranged in any sequence. Finally, the spike locations z; are

| found from

.’L‘izll—l, Tp=1-—1, Tjr1=2Zj+lip1+1li, j=1,..,k-2. (5.34)

119




Detailed numerical computations for the critical value D,, and further more refined results
were obtained in [50]. For our purposes, the key pdint concerns the relationship between the
symmetric and the asymmetric spike patterns. Define an Ll-type norm of the equilibrium

solution for a by
n
lai=>"R7, (5.35)
=1 : :

where |a|; is a function of D. Label the syinmetric branch with n spikes by s,. Then, the

following result -was shown numerically in [50]:

Proposition 5.3 (see [50]) An n-spike asymmetric solution branch with ny small spikes of
type A provides the connection as D is varied between the symmetric branches sp and sp_p,.
All of the asymmetric branches with n spikes bifurcate from the symmetric branch s, at the

critical value D = Dy, given by

- o '
o n? [log (\/; + \/f‘-i-—l)] 2‘ (539

Here 7 is defined in (5.33b).

The stability properties of asymmetric spike patterns was studied in [50]. In the analysis of
[50], there were two classes of eigenvalues that needed to be considered. The first class are
the large O(1) eigenvalueé, resulting from global spike. interactions, that correspond to strong
instabilities of small perturbations of the equilibrium solution on an O(1) time-scale. This
instability property, referred to here as profile instabilities, is not contained in the system
(5.27). The second class of eigenvalues are the small O(e?) eigenvalues that are associated
with near translation invariance and slow dynamics near the equilibrium solutions. These small
eigenvalues arise from the linearization of (5.27) about equilibrium values for h and z. Thus,
tﬁese eigenvalues are contained in the system (5.27). Critic.a.l'ranges of D that ensure the
stability of the equilibrium solution with respect to both classes of eigenvalues were derived in

[50].
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The main qualitative stability conclusions from the anaiyses of §4 for symmetric solutions
and [50] for asymmetric solutions are as follows. For a certain nontrivial range of D near
the bifurcation value Dy, each n-spike a,symmétfic solution branch that bifurca.tes from the
symmetric branch s, is stable with respect to the large O(1) eigenvalueé. .However, based
on numerical evidence, each of these bifurcating asymmetric branches is always unstable with
respect to the small O(€?) eigenvalues. The symmetric branch is stable with respecf to the large
eigenvalues when D < D, and is stable with respect to the small eigenvafues when D < Dy,

Here Dy < D,, and D, is given by
. -9 ‘
Dy, = dun~? [m (ﬂ VB - 1)] . B=1+(1+cos(n/k)7F, (5.37)

for n > 2, where 7 is defined in (5.33b). This results predicts that D; is infinite, but as shown
in §4, D, is exponentially large as ¢ — 0. In Fig. 5.2 we plot a bifurcation diagram of {al;
versus D, showing the asymmetric and symmetric branches'with fewer than four spikes and

their stability ranges with respect to the large O(1) eigenvalues.

0.35 T T T T

0.30

0.25

0.20
|laly

0.15

0.10

0.05

0.0 : 1 ! 1 L
0.0 . 0.1 0.2 0.3 0.4 0.5

D

Figure 5.2: Plot of |a|; defined in (5.35) versus D for solutions with three or fewer spikes. Here
p =1 and (p,q,7,5) = (2,1,2,0). The symmetric branch with & spikes is labéled by s;. The
asymmetric patterns AB, BAB, and AAB are labeled by 01, 101, and 001, respectively. The
portions of the branches that are solid (dotted) are stable (unstable) with respect to the large
O(1) eigenvalues. '

The implication of these results is that there are many equilibria of the quasi-equilibrium
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dynamics (5.27) with exactly’ n interior spikes. One of fhem corresponds to the symmetric
spike pattern, and the rest correspond to asymmetric patterns. However, only the. symmetric
branches will be stable with respect to both the large and small eigenvalues when D < Dy.
Hence, it is reasonable to expect that when D < Dg the quasi—equilibrium dynamics (5.27) |
starting from some z(0), will tend to a symmetric equilibrium with n spikes. Based on the _
numerical evidence of §5;_4, this scenario will only occur if the quasi-equilibrium solution is
stable with respect to the larée O(1) eigenvalues throughout the slow dynamics. For symmetric
equilibria, this stability threshold is given by Dy, in (5.37). For the quasi-equilibrium solution,

the stability threshold depends on the values of h and = at a given .

5.3 Stability of the Profile: The Large Eigenvalues

We now examine the stability, at a fixed value of 7, of the quasi-equilibrium profile constructed
in §5.1. The quasi-equilibrium profile of §5.1 varies on a slow time-scale 7 = €2t. We would
like to determine whether this profile can uridergo an instability on a fast time-scale of O(1).
Hence, since there is a time-scale separation, in the‘eigenvalue analysis below we can treat T as

being a fixed parameter. To derive the eigenvalue problem, we substitute
a(z,t) = ac + e/\t¢($) ) h(z,t) = hc + 6’\t77(9«') ) - (5.38)

into (1.17) where a. and h, are defined in (5.20), and 7 < 1 and ¢ < 1. This leads to

p—1 P
a qa :
g — ¢ + ph;g¢—gg¢°fn=w, -1<z<1, (5.392)
_1 e ~1, Q¢
Dngy — un = —¢ rh—g¢+e Shi“"ln’ -l<z<1, (5.39b)
¢a:(:t1) = nz(il) = 0-. (5.39C)

The spectrum of (5.39) contains large eigenvalues that are O(1) as € — 0. In §5.4, we show that
the quasi-equilibrium profile becomes unstable on an O(1) time-scale when the z;(7), hi(7), for

i =1,..,n, are such that (5.39) has an eigenvalue with Re()) > 0.
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We look for an eigenfunction of (5.39) in the form

k
Z Nz —~gj)], | (5.40)

where ¢;(y) = 0 exponentially as |y| = oo. Then, the right-hand side of (5.39b) with s = 0
behaves like a sum of delta functions when ¢ « 1. Substituting (5.20) and (5.40) into (5.39b),

we get
. ‘ n n
Dnge — |1+ sbr Z h}r_(s.*'l)é(:v —-zj) [ n=- Z w;d(z —z;), (5.41a)
j=1 =1 )
Ne(£1) =0, _ ~ (5.41b)
where
: 1 o R
wj = rh}(’“ )= / ul "l dy. (5.41c)
) ~00
This problem is equivalent to
Dnpr —pun =0, =1<z<1; ne(£1) =0, (5.42a)
=0,  [Dugl; = ~wj +sb:h] CHn(z)), (5.42b)

where [v]; = v(z;4+) — v(z;-). By solving this system on each subinterval as in Appendix A,

we can show that

.77(9?1) w1

3
1]
€
]

(B-i— \/_E,HW (3+1>)n w/\/u_ﬁ (5.43)
U(In) wﬁ

Here H and B are defined in (5.23a) and (5.25), respectively. Since s > 0 and # is a positive

matrix, we can solve for ) as

by sb, (s r— f_ uy " o dy

Next, we substitite (5.20) and (5.40) into (5.39a) to obtain for j = 1,..,n that

; — bj +pudlp; — gh) MuBn(z;) = Mpj,  —oo <y < oo, - (545)
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with ¢;(y) — 0 as y — co. We can write (5.45) in matrix form as
¢ —p+pul o~ qEH T In =2,  (546)

Substituting (5.44) into (5.46), we obtain the eigenvalue problem

) s Ur—_lg d '
b = prprig—rgup Lzl EPWY oo, (5.472)
’ f—oo ’U,g dy ' ’
¢—0, as |y — o0, o | (5.47b)
where the matrix £ is defined by‘
£= br H'y—l B + _&H"{T—(.H-D - 7_[71‘—(8-*-1)?_[1—‘7 . (5 48)
" VD VD ' ’

Since G = B~!//uD is positive definite and # is a positive diagonal matrix, we conclude that

€ has real positive eigenvalues. We decompose & as
E=8TMAS, (5.49)

for some nonsingular'matrix_ S. Then, upon defining ¥ = S¢, we obtain from (5.47) that

" > 'U‘T.'IA d ‘
Y — 1+ pulTly — rqud (f_oj‘ooc v ;;/) y) = A, —0 <Yy <0, - (5.50a)
-0 Ye
$ >0, as |yl = oo. 7 (5.50b)

Since A, is a diagonal matrix we obtain n uncoupled problems from (5.50).

The next step is to determine the conditions for which Re(A) < 0 in (5.50). For this we use
Theorem 2.1. By comparing (5.50) with (2.11), we obtain the following result on the spectrum -
of (5.50): '

Proposition 5.4 Let Ag # 0 be the eigenvalue of (5.50) with the largest real part and assume

condition (2.13a) holds. Let oy be the minimum eigenvalue of the matriz & defined in (5.48).

Then, Re(X\g) > 0 when

o) < (pq—rl) : : - (5.51)

Also, Re(XNg) < 0 when a1 > (p—1)/gr.
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. -l
A more convenient criterion is obtained by writing £ in (5.48) as £ = H"™! (5 +sI ) HIY,

where

E=Y g‘ Dy-r+ip,  (5.52)

- -1
The eigenvalues of £ and (8 +s1 ) are identical. We can then rewrite Proposition 4.1 as the

following simple criterion:

Corollary 5.2 Let Mg # 0 be the eigenvalue of (5.50) with the largest real part and assume
condition (2.13a) holds. Let ey, be the mazimum eigenvalue of the tridiagonal matriz £ defined

in (5.52). Then, Re(Xo) > 0 when

qr : '

Also, Re(Ag) < 0 when ey < gqr/(p—1) —s.

The results of §4 and [50] for t.he sta.‘bility of symmetric and asymmetric equilibrium spike
. patterns, respectivély, with respect to the large O(1) eigenvalues were obtained from a criterion
, suéh as Corollary 4.1. In our numerical examples in §5.4 of the evolution of the quasi-equilibrium

solution, we track the maximum eigenvalue of £ as a function of 7 and determine the behaﬁor

of the solution if the threshold in (5.53) is exceeded.

5.4 Comparison of Asymptdtic and Numerical Results

We now compare the asymptotic results for the spike motion with corresponding numérical
results computed from (1.17). Unless otherwise stated, in the comparisons below we have taken
the parameter values p = 1, the exponent set (p,q,7,s) = (2,1,2,0), and € = 0.02. The
comparisons are made for various values of the inhibitor diffusivity D, of the number of spikes

n, and of the initial spike locations z;(0), for j = 1,..,n. The time variable given in the plots

below correspond to the slow time variable 7 defined in (5.1) by 7 = €2t. With e = .02, we get
t = 25007 | |




To compute the full numerical results from (1.17), we use the NAG library code [39] with 2001
equidistant meshpoints. For given values of D, n, and z;(0) for j =1, .-y, we take the quasi-
equilibrium solution (5.20) to be the initial condition for @ and A. To compute a(z,0) and

h(z,0), we must determine the initial values h;(0), for j =1, ..,n, from the nonlinear algebraic

. system for h; in (5.27). This is done using Newton’s method. In the Newton iteration we

require an initial guess for the ;. This is quite a nontrivial task, and to do so we use one of two

different methods. The first method is to perform a homotopy in the spike locations starting

from the symmetric equilibrium solution. The second method is a homotopy in the value of D,
starting from a large value of D where h; &~ h, for some easily determined Ao, and then to
decrease D to the desired value. Sometimes one of these homotopy approaches failed. This is
because the linearized system for the A; is not inve_rtible at certain specific parameter values, as

we explain below. Once the nonlinear system for the h; in (5.27) is solvéd, the initial condition

for a(z,0) and h(z,0) is known from (5.20) and the NAG solver [39] is used to compute the

solution to (1.17) at later times 7. The locations of the spikes from these numerical results were

obtained by a local quadratic interpolation.

The asymptotic results were obtained by solving the differential-algebraic system (5.27) for z;(7)
and h;() using the ODE solver [42] coupled together with Newton’s method to determine the
h;. Another method, which we found to work equally well, is to use the diﬂ'erential—algebraié
solver DDASSL [5] directly. The initial valueé for h;(0) were obtained using one of the homotopy
methods described above. It is very important to calculate the maximum eigenvalue e, of (5.52)
as a function of 7. The curve em = em(7) is computed at each step' by using the eigenvalue
solver [2]. The asymptotic theory predicts that if e, > 2 at any value of 7, the quasi-equilibrium

profile develops an instability on an O(1) time scale. We would like to check this asymptotic

prediction with the full numerical results.

In §5.4.1 and §5.4.2 we givé asymptotic and numerical results for the case of n =2 and n =3,

respectively. Other cases, and some general results, are discussed briefly in §5;4.3.
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5.4.1 Two Spikes n = 2

When n = 2, the nonlinear system in (5.27) for h; is

cihy + dihg = b, b~ /\/uD, (5.54a)
d1h1 + C2h2 = brhgr—_s/\/ ,U,D, . (554b)

where ¢; and d; are defined in (5.25a). From (5.54) we readily obtain an equation for hi/hs.
The differential equations for z; in (5.27) depend only on the ratio hi/hs. In this way, we

obtain the next result.

Corollary 5.3 When n = 2, the differential-algebraic system (5.27) is equivalent to

#1 = —( (tanh[@(1 + z1)] — coth[f(z2 — z1)] + csch{f(zs — a:l')]/é) , . (5.55a)

Tog = —;C (—csch{f(zg — 1)]/€ + coth[f(z2 — z1)] — tanh[0(1 — z2)]) , (5.55b)
where & = hi/hg satisfies

- (&) = cschlB(z2 — xl)] (™*+1 —1) + coth[f(zy — z1)] (€ ~ 57"‘_‘8)

+ tanh9(1 + 21)]€ — tanh[f(1 ~ 22)]€™* = 0. . (5.55¢)

Here ¢ = qt9/(p‘— 1)\, where 8 = Vu/D.

The behavior of the spike dynamics depends on the value of D with respect to Dy, the initial °
position of the spikes, and the initial value of ém at 7 = 0. Recall from §4 and (4.116a) that
a two-spike symmetric equilibrium solution with spikes located at z; = —z3 = —1/2 will be

unstable if D < Dy =~ 0.3218.

In the special case of symmetric initial data where z;(0) = —xé(O), we have that £ = 1 is a
root to (5.55¢). In this symmetric case, { = 1 and z; = —z5 for all 7. Combining (5.55a) and

(5.55b) we obtain the next result.

Corollary 5.4 Let n = 2 and assume that the initial data is symmetric in the sense that




z1(0) = —z2(0). Let y = zo — z;. Then, (5.55) is equivalent to the single differential equation
Yy = 2¢ (csch(fy) — coth(fy) + tanh [f (1 ~ y/2)])., | (5.56)

where { =q0/(p — 1) and 8 = \/u/D.

We now gives some examples of the theory.

Example 1 (Symmetric Initial Data): We consider two different cases of symmetric initial

data with £1(0).= —z2(0). The parameter values are
Example la: z1(0) = -0.4 = —z,(0), D =04, | (5.57a)
Example 1b: z1(0) = —0.2 = —z5(0) D=01, - (5.57b)

For Examples 1a and 1b we compute numeriéally that em(0) = 1.944 and e, (0) = 11793, |

respectively. Thus, for both examples, the initial profile is stable with respect to the large O(1)

eigenvalues. In Example 1b, D < D, and in Example la, D > D;. Thus, in Example la the

symmetric equilibrium solution is unstable with respect to the small eigenvalues.
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(a) z; versus T {(b) em versus T .

Figure 5.3: In Fig. 5.3(a) we plot z; versus 7 for the two symmetric parameter sets in Example-
1. The solid and heavy solid curves correspond to the full numerical results for Example la
and Example 1b, respectively, given in (5.57). The asymptotic results computed from (5.56)
correspond to the dotted curves. In Fig. 5.4(b) we plot the maximum eigenvalue e, of (5.52)
versus 7. The solid and heavy solid curves refer to Example la and Example 1b.
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|2 (oum) | o0 (oum) | 2y (asy) |20 (asy)
0.06 | —0.4163 | 0.4163 | —0.4157 | 0.4157
0.00 | —0.4238 |0.4238 | —0.4225 | 0.4225
0.18 | —0.4419 | 04419 | —0.4399 | 0.4399
0.27 | —0.4557 | 04557 | ~0.4535 | 0.4535
0.36 | —0.4662 | 0.4662 | —0.4639 | 0.4639
0.45 | —0.4742 | 04742 | —0.4721 | 0.4721
0.54 | —0.4803 | 0.4803 | —0.4783 | 0.4783
0.63 | —0.4850 | 0.4850 | —0.4832 | 0.4832

Table 5.1: The numerical and asymptotic results for z; and z, versus 7 for Example 1a.

The asymptotic result for these two examples is obtained by integrating (5.56). From (5.56)
we observe that, for any initial data y(0) > 0 and any value of D, the solution satisfies y — 1
as T — oo. Hence, for.symmetric initial data, z; — —1/2 and z3 — 1/2 as 7 — oo for both

Example la and Example 1b. To attempt to explain this paradox, we refer to Proposition 4.11

of §4 where it was shown that when D > Dy, there is exactly one positive and one negative small

eigenvalue for the linearization of (1.17) about the two-spike symmetric equilibrium solution.
The positive eigenvalue becomes negative when D crosses below Dj. Thus; ‘.when' D > D,
the symmetric equilibrium corresponds to a saddle point in phase-space with one only stable
direction towards the equilibrium. Thus, we conjecture thaf by taking symmetric initial data
we approach the equilibrium solution along the stable manifold. In Example 4 below we show
that we do not tend to a symmetric equilibrium solution when we make a slight perturbation

to symmetric initial data when D > Dy,

For Examples la and 1b, in Fig. 5.3(a) we compare the trajectories z;(7) for j = 1,2 computed
from the asymptotic result (5.56) with the full numerical results computed from (1.17). Selected
values for z; from- the asymptotic. and full numerical results are shown in Table 5.1 and Table
5.2 for Examples 1a and 1b, respectively. ,The. agreement is found to be close. ‘ In Fig. 5.3(b)

we plot e, = e (7) for both examples. The threshold for an O(1) instability is 'giveh by the
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T z1 (num) | zo (num) | z; (asy) | z2 (asy)
0.06 | —0.2762 | 0.2762 ~0.2670 | 0.2670
0.12 | —0.3283 | 0.3283 ~0.3146 | 0.3146
0.24 | —0.3946 | 0.3946 —0.3779 | 0.3779
0.36 | —0.4337 | 0.4337 —0.4177 | 0.4177
0.42 | —0.4472 | 0.4472 —0.4321 | 0.4321
0.48 | —0.4579 | 0.4579 | —0.4439 | 0.4439
0.66 | —0.4786 | 0.4786 ~0.4681 | 0.4681
0.78 | —0.4863 | 0.4863 —0.4781 | 0.4781

Table 5.2: The numerical and asymptotic results for z; and z3 versus 7 for Example 1b.

dotted line in Fig. 5.3(b). Notice that e,, decreases as T increases, so that no O(1) instability -
occurs at later times. In Fig. 5.4(a) and Fig. 5.4(b) we plot the numerical solution a versus z

at different values of 7 for Example 1a and Example 1b, respectively.

Example 2: (Generic Initial Data) We consider two sets of generic initial data. The

parameter values are taken to be

Example 2a: z1(0) = —=0.2, z2(0) =0.32, D =0.1, (5.58a)

Example 2b: 71(0) = —0.8, 1z5(0)=0.2, D=02, (5.58b)

"For Examples 2a and 2b we compute numerically that e,,(0) = 1.4846 and e,,(0) = 1.4106,

respectively. Thus, for both examples, the initial profile is stable with respect to the large O(1)

eigenvalues. For both examples D < Dj so that the symmetric equilibrium solution is stable.

For Examples 2a and 2b, in Fig. 5.5(a) we compare the trajectories z;(7) for j = 1,2 computed
from the asymptotic result (5.55) with the full numerical results computed from (1.17). Selected
values for z; from the asymptétic and full numerical results are shown in Table 5.3 and Table
5.4 for Examples 2a and 2b, respecfively. As seen in Fig. 5.5(b) the maximum eigenvalue

once again decreases as T increases and so 1o O(1) instability is triggered. In Fig. 5.6(a) and

130



0.25 T T T

0.15
0.20

0.16 0.10

0.10

0.05 B
0.05 4
0.0 0.0
-1.0 1.0 -1.0 . 1.0
z z
(a) a versus z at different 7 (Example 1a) (b) a versus z at different 7 (Example 1b)

Figure 5.4: The numerical results for a versus z at different values of 7 are plotted in Fig. 5.4(a)
for Example la and in Fig. 5.4(b) for Example 1b. In Fig. 5.4(a) the solid, dotted, and heavy
solid curves correspond to 7 = 0.0, 7 = .202, and 7 = 1.202, respectively. In Fig. 5.4(b) the
dotted, solid, light dotted, and heavy solid curves correspond to 7 = 0.0, 7 = .123, 7 = .321,
and 7 = 1.002, respectively.

Fig. 5:6(b) we plot the numerical solution a versus z at- different values of 7 for Example 2a

and Example 2b, respectively.
Example 3: (An Initial O(1) Instability) We take the parameter values
21(0) = =02, z,(0) =032, D =0.25. (5.59)

In this case, we compute numerically that e, (0) = 2.228, so that the initial profile is unstable

- with respect to the large positive eigenvalues. Since e,,(0) > 0, the asymptotic résult (5.55)

- does not apply.

In Fig. 5.7(a) we plot the numerically computed a versus z for 7 = 0 and for several very Small
values of 7. In terms of ¢, the plots in Fig. 5.7(a) are for ¢ < 20.0. What we 6bserve is that
the smaller of the initial two spikes starts collapsing but that its loc'ations_vremajns quite fixed
during the collapse. The other spike grows during the collapse of its neighbor. This t};pe of
collapse behavior is qualitatively Very different than internal layer collapse behavior for phase
transition models (see '[47]). After one of the spikes has collapsed, the other one moves very

slowly towards the symmetric one-spike equilibrium solution centered at the origin. This is
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Figure 5.5: In Fig. 5.5(a) we plot :tj versus 7 for the two parameter sets in Example 2. The solid
and heavy solid curves correspond to the full numerical results for Example 2a and Example
2b, respectively, given in (5.58). The asymptotic results computed from (5.55) correspond to-
the dotted curves. In Fig. 5.5(b) we plot the maximum eigenvalue e, of (5.52) versus 7. The
solid and heavy solid curves refer to Example 2a and Example 2b. '
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(a) a versus z at different 7 (Example 2a) (b) a versus z at different 7 (Example 2b)

Figure 5.6: The numerical results for a versus z at different values of 7 are plotted in Fig. 5.6(a)
for Example 2a and in Fig. 5.6(b) for Example 2b. In Fig. 5.6(a) the dotted, solid, light dotted,
and heavy solid curves correspond to 7 = 0.0, 7 = .202, 7 = .403, and 7 = 1.402, respectively.
In Fig. 5.6(b) the dotted, solid, light dotted, and heavy solid curves correspond to 7 = 0.0,
T = .404, 7 = .804, and T = 3.200, respectively.
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T 7, (num) | 72 (num) | z; (asy) | z2 (asy)
0.032 | —0.2329 | 0.3526 —~0.2284 | 0.3480
0.08 | —0.2724 | 0.3906 —0.2634 | 0.3817
0.30 | —0.3782 | 0.4789 —0.3622 | 0.4667
0.40 | —0.4051 | 0.4954 —0.3892 | 0.4853
0.48 —0..4218 | 0.5036 | —0.4063 | 0.4953
0.60 | —0.4410 | 0.5104 —0.4265 | 0.5048
0.80 | —0.4619 | 0.5138 —0.4500 | 0.5118
1.28 | —0.4856 | 0.5100 —0.4788 | 0.5117

Table 5.3: The numerical and asymptotic results for z; and z9 versus 7 for Example 2a.

shown in Fig..5.7(b).

Example 4: (An O(1) Instability at a Later Time) We consider a case with near sym-

metric initial data, where we take
z1(0) = —0.4,  3(0)=.401, D=04. n (5.60)

In this case, we compute that ey, (0) = 1.941, so that the initial profile is stable with respect to
the large eigenvalues. However as time increases, the profile will become unstable with respect

to the large eigenvalues before reaching equilibrium.

The results from these computations are plotted in Figures 5‘..8(3,) and 5.8(b). Initially, the
numérical results from the full system and the asymptotic system agree. However, at a later
time these results start to diverge and one of the spikes from the numerical computation becomes
unstable before the predicted asymptotic time. We speculate that the reason for this is thz;t
~ the nearly symmetric .initial data is very close to the stable manifold and thus remains close to
the stable manifold for some time. As the solution moves away from the stable manifold, errors
in the simulation as well as differences between the asymptotic and full system begin to grovgv
rapidly. We conjecture that it is this growth in errors that is responsibie for the discrepancies

between the simulation of the full system and that of the asymptotic differential equations.
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Figure 5.7: The numerical results for a versus z at different values of 7 are plotted for Example
3. In Fig. 8a, where we show the collapse event, the solid, dotted, and heavy solid curves
correspond to 7 = 0.0, 7 = 0.00504, and 7 = 0.00704, respectively. In Fig. 8b, where one spike
drifts towards the origin, the solid, light dotted, and heavy solid curves correspond to 7 = 0.4,
7 = 1.6, and 7 = 4.8, respectively. The initial condition at 7 = 0 is the dotted curve.

o8 22

(a) z; versus T (b) ey, versus T

Figure 5.8: In Fig. 5.8(a) we plot z; versus 7 for Example 4. The solid curve corresponds to
the full numerical results and the dotted curves corresponds to the asymptotic results. In Fig.
5.8(b), we plot the maximum eigenvalue e, of (5.52) versus 7.
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T z1 (num) | z2 (num) | z; (asy) | z2 (asy)
0.06 | —0.6556 0.2161 —0.6528 | 0.2157
0.66 | —0.6171 0.3400 —0.6136 | 0.3383
0.84 | —0.6003 0.3678 —0.5981 | 0.3657
1.00 | —0.5866 - | 0.3891 —0.5854 | 0.3868
1.40 | —0.5585 ,0'4299 - | —0.5589 | 0.4273
1.60 | —0.5476 0.4445 —0.5485 | 0.4420

| 1.90 | —0.5347 0.4611 . | —0.5359 | 0.4588
2.50 | —0.5180 0.4808 —0.5192 | 0.4793

Table 5.4: The numerical and asymptotic results for z; and z versus 7 for Example 2b.

5.4.2 Three Spikes n = 3

Example 5 (Symmetric Initial Data): We now consider the case of three spikes with
éymmetric initial data (i.e. z1(0) = —z3(0) and z2(0) = 0). In this case the two outer
spikes will be of the same height, however the middle spike will génerally be of a different
height. Thus, unlike the case of two spikes with symmetric initial data, we can not reduce
this differential algebraic system to a single ordinary differential equation. Another important
difference between the case of two and three spikes with symmetric initial data is in the form
of the stable and unstable manifolds with respect to the small eigenvalues. In the case of two
spikes both the stable and unstable manifolds have one dimension; In the case of three spikes,
we have a one dimensional stable manifold and a two dimensio‘nal unstable manifold. In this
case, it appears that symmefric solutions are not confined to the stable manifold. To illustrate

this, in this example we take the values
£1(0) = =05, 22(0)=0, z3(0)=05, D =0.0L. (5.61)

The results of the simulations are given in Fig. 5.9.
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T z1 (num) | zo (num) | z; (asy) | z2 (asy)
0.004 | —0.40126 | 0.40226 —.40762 | 0.42297
.0.032 | —0.40894 | 0.41053 —.40618 | 0.42048
0.052 | —0.41390 | 0.41614 —.40971 | 0.42662
0.08 | —0.42032 | 0.42351 —.41423 0.43476
0.1 '—0.42455 | 0.42844 —.41717 | 0.44026 |
0.3 —0.45404 | 0.46566 | —.43574 | 0.48466
0.67 —0.47031 | 0.49756 —.43768 | 0.53190"
0.988 —0.46514 0.52649 —.40640 | 0.59999

Table 5.5: The numerical and as'ymptotic results for z; and x5 versus 7 for Example 4.

Examplé 6 (Generic Initial data) We now compare simulations of (1.17) with (5.27) for

- the case of generic initial data. We use the parameters,
z1(0) = =05,  z3(0)=0.1, z3(0)=05, D =0.4. (5.62)

For these parameters, we calculate e, (0) = 1.6935. As seen in Fig. 5.10(b) e, once again
decreases as T increases, thus the profile is stable with respect to the large eigenvalues and no
O(1) instability is triggered. Asymptotic and numerical results for z; are compared in Table

5.7.
5.4.3 Conclusions

In this section we give two results related to the dynamics of n-spiké profiles which are not of
sufficient importance to warrant # section of thier own. Firstly, we note that the simulation in
Fig. 5.4.1 stops just as e, approaches the critical value. The simulation stops here not only
because the system is no longer valid, but at this value the nonlinear solver for the h system
fails to converge. We will demonstrate that when e,, is at the critical value the system is no
longer solvable. Finally we discuss the role of the O(1) eigenvalues on the dynamics of the

system.
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a) x; versus T b) e, versus
J .

Figure 5.9: In Fig. 5.9(a) we plot z; versus 7 for Example 5. The solid curve corresponds to
the full numerical results and the dotted curves corresponds to the asymptotic results In F1g
5.9(b), we plot the maximum elgenvalue em of (5. 52) Versus 7.

(a) z; versus T ~ (b) en versus T

Figure 5.10: In Fig. 5.10(a) we plot z; versus 7 for Example 6. The solid curve corresponds
to the full numerical results and the dotted curves corresponds to the asymptotic results. In -
Fig. 5.10(b), we plot the maximum eigenvalue e, of (5.52) versus 7.
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T z1 (num) | 22 (num) | z3 (num) | z; (asy) | z2 (asy) | z3 (asy)
0.004 | —0.50134 | 0.0 0.50134 —0.50053 | 0.0 0.50053
0.1 —0.52484 | 0.0 '0.52484 —0.51239 0;0 0.51239
0.2 —(0.54443 | 0.0 . 0.54443 —0.52340 | 0.0 1 0.52340
0.3 —0.56064 | 0.0 0.56064 —-0.53328 | 0.0 0.53328
0.4 —0.57434 0.0 0.57434 —0.54224 | 0.0 0.54224
0.5 | —0.58615 | 0.0 0.58615 -;0.55041 0.0 0.55041
0.6 —0.59638 | 0.0 | 0.59638 —0.55792 | 0.0 0.55792
0.7 —0.60535 | 0.0 0.60535 —0.56485 0.0 0.56485

Table 5.6: The numerical and asymptotic results for z;, z2 and z3 versus 7 for Example 5.
Solvability of (5.21) at critical values of e;,

We now demonstrate why the system (5.21a) is not solvable at the critical value of e,,. We
begin by considering the system linearized about a solution. We begin by linearizing the system

about
h=h+0, (5.63)
where h is a solution at the critical value of e,, and 8 < h. Substituting into (5.21), we get

_bm('ym—s) Ym—s—1 -0 .
(B‘ ) >9 0. (5.64)

From (5.52) and (5.53) we can see that this-equation has a non-trivial solution at exactly the
critical value of en,. This implies that the Jacobian of (5.21a) is not invertible when e = ep,.

Thus, this system does not have a unique solution at this point.
Role of the O(1) Eigenvalues in the Dynamics

From the numerical experiments shown above, and further computations, we speculate that
when we are above the threshold of O(1) stability from (5.53) for an n-spike profile, at least one

of the spikes collapse as the 'remaining'spikes grow. At the end of this collapses time interval,
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T z1 (oum) | z9 (oum) | z3 (num) | z; (asy) | z2 (asy) | z3 (asy)
0.004 | —0.50186 | 0.09228 0.40912 —-0.50112 | 0.09354 0.40539
0.3 —0.62535 | —0.00145 | 0.61632 —0.60449 | 0.00270 | 0.59417
0.6 —0.66074 | —0.00230 | 0.65767 —0.65005 | —0.00103 | 0.64704
0.9 —0.66631 | —0.00143 | 0.66480 —0.66286 | —0.00103 | 0.66150
' 1.2 | —0.66692 —0.00818 0.66609 | —0.66597 ;0.00072 0.66520
11.5 —0.66688 | —0.00046 - | 0.66642 —0.66665 | —0.00047 | 0:66617
1.8 —0.66680 —0.00026 | 0.66654 | —0.66676 —0..00031 0.66645

Table 5.7: The numerical and asyniptotic results for z1, z2 and z3 versus 7 for Example 6.

the profile again becomes stablé, and the remaining spikes will then follow the dynamics of

(5.21).
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Chapter 6

Spike Pinning for the Gierer-Meinhardt
Model - - -

In this chapter we examine the effects of spatially varying coefficients in (1.18) and (1.17). The
spatial variations can results from pre-existing polarities in the cells and can have dramatic
effects on the dynamics and equilibrium positions of the cell. We now give a detailed outline of

this chapter.

In §6.2 we examine the effect of a spatially variable inhibitor decay rate y = u(z) > 0 and
a spati.ally va.riab_le activator deéay rate V(z) on the dynamics and equilibrium position of a
one-spike solution to (1.17). In the biological context, these terﬁls are exa.mplés of precursor
gradients. The significance of precursor gradients from a biological viewpoint is ‘discussed in [16].-
From a matherhatical viewpoint, we shbw that the effect of a spatially varying u is to perturb
the e'_quilibrium location for a oné-spike solution away from the midpoint of the interva,l. The
exact equilibrium location now depends ’on certain global properties of u(z) over the domain.
The effect of a spatially varying activator decay rate also perturbs the equilibrium loéatién, but

the perturbation depends on local properties of V(z).

In §6.1 we consider a related problem with a spatially inhomogeneous coefficient. Specifically, we
now let u be spatially uniform and we consider the shadow problem (1.18). A weak spatially

inhomogeneous diffusivity for the activator equation is then introduced. This leads to the
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perturbed shadow problem, defined by the scalar nonlocal problem

€? a?
atzg(naz)x——a-i—ﬁ,- -l<z<l, t>0, (61&)
b= (—2;/ o da:)  ag(21,4) =0. (6.1b)
E . -1 N )

The motivation for this form of % is mentioned below in context with a related probiem studied.
in {44] for the Ginzburg-Landau equation. When « = 1 in (6.1a) it was shown using formal -
asymptotic in §2, and then pro{red later in [7], that (6.1) admits a one-spike solution that drifts

exponentially slowly towards the closest endpoint of the domain. In addition, the eqﬁilibri{zm

" one-spike solution, which is centered at x = 0, is unstable. The metastable behavior associated

with (6.1) when x = 1 suggests that exponentially small changes in x — 1 should influence the

 metastable dynamics greatly. Therefore, in §2 we study the dynamics of a one-spike solution °

for (6.1) as € — 0 for a x(z;¢€) of the form
k(z;e) =1+ e”g(a:)e_e—ld. (6.1c)

Here v and d > 0 are constants and g(z) is smooth. When ¢"(z) < 0 and 0 < d < d, where d, is
some consfa,nt, we show in §2 that (6.1) can have a stable spatially inhomogeneots equilibrium
one-spiké solution \&here the spike is centered at a zero of g (z). Results for this problem are
given in Propositions 6.1 and 6.2 below. This effect whereby a localized structure is stabilized

by a weak but spatially inhomogeneous coefficient in the differential operator is called pinning. :

The effect of weak spatially inhomogeneous terms has been examined in other contexts, includ-
ing the pinning of vortices in superconductivity (cf. [6], [29]) and the pinning of an interface for
the Ginzburg Landau equatioh posed in a thin cylinder of revolution, modeled by (cf. [44])

2

up = %(Aum)z+2(u¥u3), S1<z<l; ug(£L,1) =0. (6.2)

This equation was derived in the thin channel limit in [44]. In this context, z is the direction

- along the axis of the cylinder and A= A(z;€) denotes the slowly varying cross-sectional area

of the cylinder. For this problem, it was shown in [44] that an internal layer solution can be

stabilized by an exponentially weak non-convex perturbation of a straight cylindrical domain
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by taking A(z;e€) to have the form A(z;¢) =1+ e’e~%¢g(x), where g"(z) <0and d > 0. A

similar pinning result is obtained for spike solutions of the related problem (6.1).

6.1 One-Spike Dynamics: The Perturbed Shadow Problem

In this section we construct a one-spike solution to (6.1). When s = 1 in (6.1), the resulting

unperturbed problem admits a quasi-equilibrium one-spike solution of the form (see §2)

a ~ ae(z;z) = BY Py, ez - z0)] , . (6.3a)
-1 :

' b, \ GFDG=-D=¢ ' e o ‘

h~hy = (—’—> I Shere b _=_/ [ue(y)]” dy. (6.3b)
2u —o0 _
» Here uc(y) is the unique positive solution to

u'c'—uc-i-u’c’:O, —00 <y <00, ' (6.4a)
U0 =0;  wly) ~ae™, as yokeo, (64b)

for some o > 0. The function a. is called the quasi-equilibrium one-spike solution to (6.1)
since ae has exactly one localized maximum and it fails to satisfy the steady-state problem
corresponding to (6.1) by only exponentially small terms as € — 0 for any value of zy in

|zo] < 1.

For the time-dependent problem, our goal is to derive an asymptotic differential eqﬁation for
the trajectory z = zo(t) of the localized maximum of a., which represents the center of the

spike. Since x — 1 is exponentially small, we begin by linearizing (6.1) in the form
ale,t) = acfaszo(t)] + wiz,1), - (69)
where w < ae. Substituting (6.5) into (6.1), we get the linearized problem for w

Low = dia, +.Btw — k6 050, -l<z<l, >0, (6.6a)

wy(£1,¢) = —0zae(£1;20), (6.6b) -

where the nonlocal operator L is defined by

2 : -1, rl
== - plg— A= T [ yr-lgg (6.6
LE - ® ("i(ﬁiv)x ) ¢+puc ¢ b-,-(3+ 1) 1 uc ¢ €L . ( C)
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Here b, is defined in (6.3b). The coefficients in the operator L. are localized near z = z( since

Ue = uc [e7Hz — 39)].
6.1.1 Exponentially Small Eigenvalue

Let zg € (—1,1) be fixed and consider the eigenvalue problem
Lep = Mg -l<z<l; ¢z(£1) =0. . - (6.7)

When £ = 1, it was shown in §2 that, under the conditions on .p and r given in (2.13a)
below, the eigenvalue of (6.7) with the largest real part is exponentially small as e — 0 aﬁd
the corresponding eigenfunction is localized near z = zy. We will estimate the change in this
exponentially small eigenvalue‘as a result of the exponentially small perturbation & - 1. To
‘do so, we let x = 1 and proceed as in §2 by introducing the localized eigenvalue problem for

® = ®(y) given by
LoP=0P —-—o0<y<oo; ® — 0 exponentially as Yy — *oo, (6.8)
where y = e~ !(z — z¢). Here Lg is defined by
, D o0
Lo® =, — P—lé—ﬂ—/ r-1 (6.
Lo o, + puf D) ) u, " ddy, . (6.9)

where u; = uc(y). Results on the spectrum of (6.9) were given in Theorem 2.1 in §2.

The effects of the exponentially small perturbation x — 1 and of the finite domain in (6.7)
perturb this eigenvalue oy by.exponentially small terms as € — 0. Let the perturbed eigenpair
be denoted by Ag and ¢g. In order that ¢y satisfy the boundary condition on z = +1, we

proceed a,s.in §2 by constructing ¢ in the boundary layer form .
o ~ u, [e7H(z — z0)] + dro [ 11+ )] + ¢ro [e7H(1 —2)], (6.10a)
" where

Bro(n) = ce™ ()™ ppy(n) = —ae™¢ (1-0)g, (6.10b)
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To estimate Aq we first define the inner product (u,v), = f_ll uvk dz. Integrating by parts, we

obtain for any two functions ¢ and 1 that

(Let, ) = €6 ($a) — ) [y + (6, L39) , (6.11)

where L? is the adjoint operator defined by

2 ’ rqe=tur-1 [l
L= - p—lyy 2= T¢ P . .
: — (Ktg)y — Y +pul™ Y T P /_1 kuPip dx : (6.12)

Now let 9 = u,, and ¢ = ¢g. Then, since ¢gz(£1) = 0, we get from (6.11) that,

: " -1 1 1 ’
1 " RpU rqe — 1
Jo (d0,u) +endoullly = e (——¢) - ([ i) ([ it o)
(6.13)

The two terms on the left side of (6.13) can be estimated as in §2 by using (6.10) for ¢y and
(6.4) for u,(y) as y — +co. The exponentially small perturbation x — 1 does not affect the

leading order asymptotic estimates for these quantities. Thﬁs, for e = 0, we get

' o ¢, 2
(howe) ~edo, o= [ [uw)] @, (6.142)
K —00
—ekdou, |t ~ 2e0? (6’26‘1(1“"”0) + 6—25—1(1_””")) . ’ (6.14b)

.Next, we use (6.1c) to asymptotically estimate the first term on the right side of (6.13) as

" . 0o 'v
¢ (%,qso) vt [T g e api . (619)
. J =00
K
Expanding g in a Taylor series, and using the fact that u.(y) is even, we integrate by parts to
' get
" 24+v ,—dfe X _2j+1 o 2 :
Kzl eVe € ; )
el e gy ~- 3 g (z0)B;, B = / v [uy)] dy. (6.16)

For the exponentially small perturbation s — 1 to have a significant effect on the eigenvalue for
at least some values of z¢ we must balance the exponential orders of (6.14b) and (6.16). Thus,

for ¢ — 0 we take d to satisfy

0<d<2—celoge, (6.17)
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for some ¢ independent of e. With this restriction on d, the last term on the right side of (6.13)

is estimated for ¢ — 0 as

- 1 1

SLA LN : / poug " dﬂi) (/ rkubu, dq;) =0 (eq max {e"(r“"d)e_l(”x"),e_(r+d)€_1(1_x°)}) )
br(s+1) \J 1 : -1

| (6.18)

for some ¢. Since r > 0, we conclude that the term in (6.18) is asymptotically smaller as € — 0

than the inner product term in (6.16). Finally, substituting (6.14) and (6.16) into (6.13), and

neglecting the last term on the right side of (6.13), we obtain the following main result for Ag:

Proposition 6.1 (Exponentially Small Eigenvalue) Let (2.13a) and (6.17) be satisfied.
Then, for € — 0 the eigenvalue Ny of (6.7) with the largest real part is ezponehtially small and

it has the a.éymptoﬁc estimate

. 2012 P iy . ‘61+ue—d/e ® €2]'-{-1 )
)\Oz)\(‘).(:z:o) ~ 5 (e 27 (14a0) 4 =271 z°>) -~ (Qj)!g(27+2)($o)ﬁj. (6.19)

0
‘Here a is defined in (6.4) and B; for 57> 0 is deﬁhed in (6.16).

j=0

From the calculations above we observe that the nonlocal term in L, which is not self-adjoint,
does not influence the leading order asymptotic estimate for the exponentially small eigenvalue.
* Hence, the adjoint operator L¢ also has an exponentially small eigenvalue with the same estimate

as that given in (6.19).
6.1.2 The Metastable Spike Motion

| We now derive an ODE for zy(t) from (6.6). Assume that w(z,0) = 0 in (6.6) so that the
initial condition for (6.1) is a spike-layer solution with spike center initially located at zo(0) =
) € (-1,1). Since the principa.l eigenvalue of L is exponentially-small we can assume that -
the motion is quasi-steady by neglecting d;w in (6.6). To ensure that w is uhiformly small over.

exponentiaﬂy long time intervals, we must impose the condition that w is orthogonal to ¢y.
To derive an ODE for z(t) we begin by using (6.11) with ¢ = ¢y and w = ¢ to get

(Lew, o), = wows Ly + (w, Lio),, . (6:20)
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Using the remark following (6.19) above, we get (w, L:qbo) ~ Ao (w, ¢o) = 0 by our condition
of orthogonality. From this condition, and by using (6.3a2) and (6.6), (6.20) reduces to the

following implicit differential equation for zo(¢):

(o, Osuc),, + exgouy|l; ~ € ('—gmﬁ—uﬁ,m) . - (6.21)

The two terms on the left side of (6.21) can be estimated as in §2 by using (6.10) for ¢¢ and

(6.4) for u, (y) as y — £oo. For € — 0, we get

(b0, Brtic)  ~ —_x()ﬁé , | . (6.22a)

—ergou,|t; ~ 2ea? (6“25_1(1”0) - 6"26_1(1"“)) _ (6.22b)

Next, for € — 0, we calculate as in (6.15) that

€27

qul 2 d 0 ! ) ! 2 d - 25
e| ==,¢0 | ~eVem /6/ g (zo + €y) [Uc(y)] dy ~ e N gt ()5
. K —o0 ‘ j=0

5 2 (27)!

(6.23)

Finally, substituting (6.22) and (6.23) into (6.21), we obtain the following metastability result
for zo(t): '

\ Proposition 6.2 (Metastability) Let {2.13a}Aand (6.17) be satisfied. Then, for € — 0, the
trajectory zo(t) of.the center of the spike for a one-spike solution to (6.1) satisfies the asymptotic
differential equation

(24 g—dfe 2

o .) o
Bo J.Z—; ent? 24 (20)B; - (6.24)

(z0) = ——

dxo ) 26012 _9¢-1 _ _9e-1
huind NS 4 e~ (1-z0) _ ,—2¢"1(14z0) | _
dt Bo (e € ' )

Here  is defined in (6.4) and B; for j > 0 is defined in (6.16).

An important remark, as observed from (6.24), is that the behavior of zo(t) depends only on
pointwise values of certain derivatives of the perturbation x — 1. This will be different from the

behavior that we will observe in §6.2.
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6.1.3. An Example of the Theory

We now discuss the qualitative behavior associated with (6.19) and (6.24). From (6.24) we see
that h(—1) < 0 and A(1) > 0 as € — 0 when d > 0. Thus, there exists at least one equilibrium
value z§ fof zo(t) . The existence of é.ny other equilibria for zo depends on the constants d and
v and the function ¢'(z). In pa;ticulai, when d > 0 is sufficiently small, fhen (6.24) has an
equilibrium point near each zero of g (z). As shown in the example below, we can have other

equilibrium points in the interval [—1,1] when d is near some critical value.

The next result concerns the stability of the equilibria of (6.24). Let z§ satisfy h(z§)=0. Then,
by comparing (6.19) and (6.24), we find tha_,t R(z§) = 2Xo(z§). This shows that the decay
rate for the differential equation (6.24) associated with infinitesimal perturbations about z§ is

2Xo(z§). This leads to the next result.

Corollary 6.1 (Stability of Equilibrilirri) Let z§ satisfy h(z§) = 0. Then (6.1) has a one-
. spike equilibrium solution of thé form give_n in (6.3) and this solution is stable (uhstable) if

Ao(z§) < 0 (Ao(zf) > 0) Here uc(y), Ao(zo) and h(zo) are given in (6.4), (6.19) and (6.24).
Thus a one-spike equilibrium solution centered at z§ is unstable when g"(zf§) < 0.~ Since
g"(z) < 0 corresponds to a weakly convex domain, this result prédicts that there is no stable
spike-layer solutions in such domains. However, when g"(z§) > 0, then Ag(z§) can be negative -
for certain choices ofAu and d, resulting iﬁ a stable spike;layer solution centered at .zg . The key
point to construct' such a stable equilibrium solution is to guarantee that. (6.24) has multi.ple
equilibria corresponding to simple zeroes of h(zp). Then, we must have exactly one stable

equilibrium of (6.24) between every two consecutive unstable equilibria.

To illustrate the result, let p = 2 for which u(y) = (3/2) sech? (y/2). Theﬁ, we calculate from
(6.4) and (6.14a) that Bo = 6/5 and « = 6. Thus, to leading order (6.19) becomes |

v+42

.AO = /\0(1'0) ~ 60 (6—25*1(14-1‘0) + 6—26_1(1—130)) — S_z_e—ﬁ’ldg” (Z‘O) 4. , (625)
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and (6.24) reduces to

2o ~ h(zg) = 60¢ (6—25-1(1—9;0) - 6—26_1(1_'-20)) — e () - (6.26)

Choose g(z) = z2/2, which corresponds to a non-convex domain. In this case, a_:g' =0 isan -
equilibrium solution to (6.26) for any v and d. This solution can be stable if d is small enough.
From (6.25), we calculate \g(0) = —E—V;-ie‘rld +120e2¢"" . Let d, be the zero of A(0) as
a function of d. Then, d. = 2 — €log 240 + (v + 2)eloge. From Corollary 6.1 it folléws that
the equilibrium z§ =0 is stable (unstable) wheﬁ d < de(d > d;). When d < d, there are two
other equilibrium points for (6.26) on either side of z = 0 that are unstable. This example
clearly shows the effect of pinning whereby the exponentially weak non-convex perturbation .
of the original domain leads tlo a stable. one-spike equilibrium solution to fhe shadow problem

(6.1) centered at the midpoint of the domain.

6.2 One-Spike Dynamics: The Perturbed Gierer-Meinhardt Model

We now analyze the effects of sba.tia]ly varyirig termé on the full system (1.17). We first
examine fhe effects of a spatially varying inhibitor decay rate .u = p(z). We consider two cases.
If D = O(1) we repeat the process used to derive the differential equation governing- the motion
of the sbike from §5.1. The resulting differential equation depends on the global properties
of p(z) and clearly demonstrates the qualitative effects of the spatially varying coefficient.
However, as demonstrated in §4.3, for n—épike solutions to be stable we require:that D to be
small. Thus we also examine the effect of a spatially .varying inhibitor decay rate when D is
small. In tl_ﬁs case v;ze must use WKB theory to solve the inhibitor equation. (more here).

Finally we examine the effect of a spatially varying activator decay rate. |
. 6.2.1 A Spatially Varying Inhibitor Decay Rate When D = o(1)

In this section we analyze the dynamics of a one-spike solution to (1.17). For finite inhibitor
diffusivity D and for p = u(z) > 0, we derive a differential equation determining the location

7o(t) of the maximum of the activator concentration for a one-spike solution to (1.17).
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In the inner region near the spike we introduce the new variables

y=¢1[zx—xzo(r)], h(y) = h(zo + ey), a(y) = a(zg + ey), T=¢t. (6.27a)

We then expand the inner solution as

h(y) = holy) + eha(y) +-, aly) =doly) +ear(y) +--- . (6.27b)

The spike location is to satisfy dy(0) = 0. Substituting (6.27) into (1.17), and collecting terms

that are O(i) as € — 0, we get the leading order problem for o and ho:

Gg — o +ab/hi =0, —00 <y <00, (6.28a)

-1

by =0, ' (6.28b)

with &,(0) = 0. In order to match to the outer solution, to be constructed below, we require
that hg is independent of y. Thus, we set hg = H, where H. = H () is a function to be

determined. We then write the solution to (6.28a) as
ao = Hu,, where y=q/(p=-1), (6.29)
where u, satisfies (6.4).

Collecting the O(e) terms in the inner region expansion, we obtain the problem for @; and A,

n ! ~p—-1 ~p 4 !
G, —ay + paj)q ay ?q?l h1 — zydgy , —00 <y <00, (6.30a)
Dhyyy = —iig/h§ . | (6.30b)

. ' . ~
Here zy = dzo/dt. Next, we write @; as

(~11 = H7u1 . : . (631)

- Using (6.29), (6.31), and ho = H, (6.30) becomes

" - . up~ 7o :
L(ui) = uy —uy +pub~uy = %m —Tou,, —co<y<oo, (6.322)
Dhiyy = —H""*u, (6.32b)
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where u, is to decay exponentially as |y| — co. Since Lu, = 0 and u, — 0 exponentially as

ly| = oo, the right side of (6.32a) must satisfy the solvability condition that it is orthogonal to

u,. From this condition we obtain the differential equation

] q 00pl~
I ubu by dy. 6.33
0= Hf dy/ et ay ( )

If we integrate (6.33) by parts twice, and use the facts that hlll and u. are even functions, we

get

. ___q f_ p+1 dy . '
R ( R dy) i) s

In the outer region defined at an O(1) distance away from the center of the spike, a is expo-
nentially small and we expand h as h = ho(z) + o(1) as € = 0. Then, from (1.17b), we obtain

that hg satisfies

Dhy — puho = —H " ~%b,6(z —z0), —l<z<1,  (6.35a)

hy(£1) = 0. :  (6.35b)
Here b, .is defined in (6.3b). Solving for hy we get
ho(z) = HY~%b,G(z; o) , | (6.36)
where the Green’s fungtion G (z;z0) satisfies

DGy — uG = —6(z — xz9), -l<z<1, (6.37a)

Gz(£l;z0) =0. - - (6.37b)
To match with the inner solution we require that

ho(zo) = H, lim A+ lLim Ay = ho(zos) + ho(zo-) - (6.38)

y—r—+00 Yy——00

Substituting (6.36) into (6.38), we get

H

. ' Axzo_: 6.39
i P B = g Gl Cafroian] (639
C1 UG+ .
"= [er(zo;xo)] . (6:28b)
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Finally, substituting (6.39) into (6.29), (6.34) and (6.36) and letting 7 = €2, we obtain the

main result of this section:

Proposition 6.3 Fore < 1, the the dynamics of a one-spike solution to (1.17) is characterized

by

a(z,t) ~ Hu, (e [z — 20(t)]) , | (6.40a)

h(z,t) ~ HG [z;z0(t)] /G [zo(t); zo(2)] , (6.40b)

where H = H(t) is given in (6.39b). The spike location zo(t) satisfies the differential equation

dzo 5. ( Ga(z0+;70) + Gz(zo—;z0)\ _
o € C’( " Glzy: 7o) , . (6.40c)
where C > 0 is defined by
o Ue p+1 d ’
=12 f“;g[ W\ _ g (6.40d)
e+ 1)\ [, )] dy p-1

In calculating the integral in (6.40d) we used (5.19)
6.2.2 Case1: p(x) > 0 depends on ¢ when D large

In general, when p depends on z we must compute the Green’s function satisfying (6.37) to
determine the dynamics as described in (6.40c). However, to illustrate qualitatively the effect
of a spatially varying p(z), we now derive an approximate differential equation for zq in the

limit D > 1 with D independent of e.
In the limit D > 1, we expand G as

G(z;20) = Golz; 70) + D~2G1(z;30) + O (D) . (6.41)
Substituting (6.41) into (6.37) and collecting powers vof D;l, we get

Gogz = 0; G1ez = pGo — 5(7; - 1"0) 3 (6~42)
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with Gjzz = 0 at z = £1 for j = 0,1. The problem for G; does not have a solution unless Gy

satisfies a solvability condition. In this way, we calculate that

_1" a4 [* 0 —-l<z<ag,
Go=(2ua)"";  Giz = (2ua) / ply)dy — < - (6.43)
. -1 1l zg<z<l.

‘Here pg is the average of 4 over the interval, defined by

) ‘
o = % / p(z) dz . (6.44)

Substituting (6.43) into (6.40c) we obtain the following result:

-Corollary 6.2 For ¢ € 1 and D > 1, with D independent of €, the differential equation for

the spike location (6.40c) reduces to

dz 2¢2C To ) ' ‘
2 ([ =) (6.45)

where C is defined in (6.40d).

From (6.45) we obs_ervé that the pinning effect induced by u(z) depends on global f)roperties
of the spé,tial inhomogeneity u(z), in contrast to the pointwise values as obtained in §6.1 for
perturbations of the shadow problem. Since u(z) > 0, there is a unique equilibrium spike-layer
location zg. for (6.45) satisfying |
Zoe : .

[ty = e (6.46)
" This equilibrium is a stable fixed point for (6.45). Notice that if fol pdz < ffl ptdz, then the
, equiiibrium location satisfies zp. € (—1,0). Alternatively, if there is more mass of u on the

right side of z = 0, then zg. € (0, 1).
As an example, let w > 0 and consider the profile

1 we™w? ‘
== . 6.47
uiz) 2 (1 + sinhw) , (6.47)

It is easy to see that p, = 1 for any w > 0. Also, as w — 0 we have p(z) — 1. Asw — 00 We

have p(z) = 1/2 + we @+ which has a boundary layer near z = —1. For any w > 0 there
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is more mass of u to the left of z = 0 than to the right of x = 0. From (6.46), zq. satisfies the

algebraic equation

e~ WEoe ' ) ev
e~ Smhw = sinhw (6.48)

It is easily séen that —1 < zge < 0 when w > 0 and zg, & —1 as w — co.
6.2.3 Case 2: p(x) > 0 depends on  when D is small

We now examine the effect of setting u = p(z), in (1.17), to the dynamics of a one-spike solution
when D is small. In the previous subsection we considered a spatially varying inhibitor decay
rate in the limit D — oo. The motivation for cbnsidering the limit D — 0 is that multi-spike
solutions are only stable when D is suﬁiéiently small. Although here we only consider the

one-spike case when D is small, a similar analysis could be done for a multi-spike solution.

.We now solve (6.40c) in the limit D — 0 using the WKB method. Since D is small, we make

the following ansatz as to the form of G,

bo(z) ) ' |
G(z;zp) = ex +0i(z)+--- ). 6.49
| Gz = (Y 000 (6.49
Substituting (6.49) into (6.37) and collecting powers of D gives us the following set of equations,
02 =y, ' (6.50a)
05 + 20,67 =0. (6.50b)

This leads to the following leading order solution for G,

Ap~* cosh (% leo ul/zdy) cosh (% 2 Ml/-2dy) y —l<z <z

G(z;zo) = | (6.51)
| Ap—Y4 cosh (% = u1/2dy) cosh (—\/1—3 fml pl/zdy) To<zT<1.
To solve for A we use the jump condition associated with (6.37),
1

Ga(2o+;20) — Gz(zo—; %0) = 5 | (6.52)

Applying the condition above, results in the following value for A:
A= A(zg) = ! csch( 2 A) (6.53)

0 . [/J(xo)]l/4\/5 \/B,Ua ) .
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where

=g [ Bl | (6.5

Substituting (6.51), (6.53) and (6.54) into (6.40c gives us the following differential equation for

Zg.

- 1, *1 3/4 . .
dzg _ _%/‘l' 1($0)N'($o)(cosh(ﬁu1/2) -{..cosh(ﬁuzé/?)) + %Slnh(%u;}ﬂ)

- " ; (6.55)
, dr . COSh(—\/%mulﬂ) + cosh(%‘uz;/?)
where 11/2 is defined in (6.54 and p3l/? is given by,
1/2 o 2 ' ' ! 2 .
oyt = / . w2 (y) dy — / p?(y)dy. (6.56)
- To .

6.2.4 A variable activator decay rate

We now consider the case where the activator decay rate varies spatially and the inhibitor decay
rate is a constant. The effect of adding spatial variation to the activator decay rate is to change

both the equilibrium location of the spike and its dynamical behaviour.

The Gierer-Meinhardt system with a spatia.lly varying activator decay rate is given by,

P

at=62am—V(a:)a+%3, -l<z<1l, t>0, (6.57a)

T
O;Dhmz—uh-l-%;, 1<z<1, t>0 (6.57b)
az(£1) = hg(£1) = 0. | ' (6.57T¢)

We now extend the analysis given is §4.4.1 to derive an ordinary differential equation for the
location of the spike for a one-spike solution. As we are examining a one spike solution, with .

the‘ spike centered at z = z(, we make the followiﬁg change of variables,

y=(z—z0)e", a(y) =a(zo+ey), h(y)=h(zo+ey), (6.58)

where g = zo(7) with 7 = €*t. We then expand the inner solution as follows,

h(y) = holy) + €hy + ..., a(y) = Goly) + edr(y) + ... . | (6.59)
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The spike location is to satisfy- (0) = 0. Substituting (6.58) and (6.59) into (6.57), and

collecting terms that are O(1) as € — 0, we get the leading order problem for dq and Ag:

g — V(zo)do + a5 /A =0, —oco<y< oo, R (6.602)

hy =0, ' (6.60Db)

with @y(0) = 0.-In order to match to the outer solution, to be constructed below, we require

~that hg is independent of y. Thus, we set hg = H, where H = H (7) is a function to be

determined. We then write the solution to (6.60a) as
do = H'[V(20)]/® Vuc(v/V(zo)y),  where y=q/(p-1), (6.61)

where v, satisfies (6.4).

Collecting the O(e) terms in the inner region expansion, we obtain the problem for 4, and hy,

..p—]_ -
M . a, - - ay 1 ' .
a, — V(zg)a, + p é)q a1 = yV'(zo)do + ;q—flhl — Zodoy —00 < y < 00, (6.62a)
‘ 0 L
Dhyyy = —a5/h5. : (6.62b)

Here zb = dzg/dr. Next, we write d; as
ay = Huy . v - (6.63)
Using (6.61), (6.63), and ko = H, (6.62) becomes

L) = V" (20)V (20) /0~ Dug(y T{zgy) + WPVt

A , H 1
— zo[V ()] P2y —c0 <y < 00,  (6.64a)
Dhyyy = —H™*uf, | (6.64b)
where u; is to decay exponentially as |y| — co and
L(w1) =uy = V(zo)ur +pV (z0)ul s (6.65)

Since, Lu,(+/V(zo)y) = 0 and u, — 0 exponentially as |y| — oo, the right side of (6.64a) must

satisfy the solvability condition that it is orthogonal to u,(/V(z)y). From this condition we
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obtain the differential equation

o qV (zo) o : y )
Ty = Hffooo [u;(y)]2 dy /_Oo w2 (/' V (zo)y)u,( V(:I:O)y)hl dy
‘ V’(.’L‘()) ’ 0 , .
Ue(Y)ue(y)y dy - (6.6
+V o) I )7 /_ o (y) (»y)y y | (6.66a)

If we repeat the process from §6.4.2, we then arrive at the following differential equation for o,

dafo o €2q ,(Gz(x(H_;xo) +Gx(z'o-;zg)> €2 (p+3> V'(zo)

dat p-1 G(zo; o) T2 \p-1) V(zo)

(6.67)

If the second term on the right hand side of (6.67) were absent, the spike would tend towards
zo = 0. If the first term on the right hand side of (6.67) were absent, the spike would tend
towards a local minimum of V. The end result of the spatially inhomogeneous term is a

competition between these two terms.
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Chapter 7

Conclusions

In this chapter we give a brief review of the main results found in this thesis and an intuitive
explanation of these results. The equations and details of these results will Be omitted as these
details are summarized in §v1_.4. We will also attemf)t to provide a framework to plaée these re-
sults in a useful context for those who use the Gierer-Meinhardt equations for modeling. Finally,
we will discuss some possible extensions to the analysis as well as some possible connections to

other systems. Before we proceed with the discussion, we must clear up some notation. In this

-chapter, when we refer to an n-spike profile, we are referring to a solution of the form (2.1) for v

the shadow system and a solution of the form (4.14) for the full system.

7.1 Overview of Results

We will begin by reviewing the results f_rom §2 and §3. These chapters analyzed the reduéed
system (1.19) commonly referred to as the shadow system. By constructing spike-type solutions
and linearizing about these solutions we find that any solution with a spike in the interior of
the domain is unstable. Profiles with more than bne spike are unstable with an O(1) eigenvalue

and one-spike profiles are unstable with an exponentially small eigenvalue. The presence of

an exponentially small eigenvalue is used to construct an equation of motion for the spike

which demonstrates that an internal spike will move fowards the élosest point on the boundary
on an exponentially slow time scale. Once the spike begins to approach the boundary, the
analysis becomes invalid_. The spike is presumed to merge with the boundary. By linearizing
about a spike confined to the boundary, we find that a spike confined to boundary will move

in the direction of increasing boundary curvature in two dimensional domains and increasing
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mean curvature in three dimensional domains. The a.ﬁalysis of the dynamics and stability of
these spike profiles for (1.19), all rely on the interaction of the exponentially small tails of the
spikes with the boundary. The results are thus very delicate. Inconsistenéies with the shadow
system and numerical calculations of the full system (1.17) suggest that this delicate structure
is broken by finite values of inhibitor diffusivity. This limits the applicability of the results.
in these chapters to modeling of the full system. Howevef, the methods used in this chapterb
may be of use in analyzing .models other systems, specifically the microwavé heating model
presented in [4] The results in this section are also interesting from a mathematical point
of view. Specifically, the formal asymptotics in §2 have been verified vigorously in [7] using

invariant manifold techniques.

In §3 and §4 we examine the stability and dynamics of spike profiles under the full system
(1.17) with ﬁnvite'va.lues of inhibitor diffusivity. The results from (1.19) do not coincide with
numerical calculations of the full system (1.17) even for large values of iﬁhibitor diffusivity.
It is for this reason that we undertake the mofe difficult task of analyzing the full system.
Again we construct an n-spike pfoﬁle for the full system and linearize about this solution.
Analyzing the spectrum of the operator resulting from a linearization about an n-spike profile
results in a necessary and sufficient cohdition for the stability of any given profile. We find
that there is a decreasing sequence of numbers D; such that an n-spike solution is stable if thé
inhibitor diffusivity is less than D,,. The existence of an algebraically small eigenva.lué is used
to construct a solvability c‘ondiﬁon which results in a differential equation governing the motion
of the spikes. This equation reveals that the shape of the inhibitor"proﬁle overrides the effects
of the exponentially small tail in the activator profile and fakes control of the dynamics. This
is the main reason for discrepancies'between the behavior of the numerical calculations of the
full system and the shadow syétem. While these results are all in one spatial dimension, and
most models are in two or three dimensions, we believe that similar qualitative behavior exist
in higher dimension. Again these results a.relalso.interesting from a pur_ely mathematical point

of view and the formal asymptotics of §4 have been vigorously verified in [51].

In §6 we consider the effects of spatially varying coefficients. Three different scenarios are
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considered, a spatially varying activator diffusivity for the shadow system, a spatially varying
inhibitor decay rate and a spatially varying activator decay rate. In all thiee. cases the effect
of the spatially varying coefficient is to add an extra term to the solvability condition which
provides the deferential equation governing the motion of the spike. This chapter may be of
particular interest to those who use the Gierer-Meinhardt equation for modeling as many of

the models use spatially varying coefficients to account for preexisting patterns.
7.2 Possible Extensions

There are still many opén ares of research for the Gierer-Meinhardt ﬁodel. The most obvious
being the extension of the results in §4, §5 and §6 from one to higher dimensions. The main
diﬁiculfy to be overcome for this extension is the complexity and domain reliance on the Green’s
- function for the inhibitor equation. Another important extension is to include tvhe effects of
‘non-zero values of 7. Numerical computations suggest that for reasonable small values of 7,
the simplification of setting 7 to 0 presents no problems. Howevef, for larger values Qf T, many
interesting phenomena, such as oscillatory behavior, are possible. For examples of such behavior |

see [31].

* The methodology used in this thesis may also be extended to other sysﬁems. At present the
analysis in §4 is being modified to analyse the Schnakenberg model, another reaction diffusion
system used in developmental biology modeling; The analysis in §2 may also be of use in

analyzing the microwave heating model presented in [4].
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Appendix A
Proof of Theo»rem 2.1

In this appendix, we piove Theorem 2.1. Although this has been proved in by J. Wei in [52],
we include a proof here for the convenience of the readers. We present a proof which works in
the general case of RY. Let '

N +2

4
r=2 1<p<l+z, o r=p+l, 1<p<(F5)+

N

where (%)Jr = % if N >3 and = +00 if N = 1,2. Define w(|y|), with y = (y1, .., yn)?, to
be the unique positive solution to

n N-=1 . :
w +——5——w —w+wl =0, p>0,

w (0) >0, w(p) ~ apt~M2e=P a5 p— 0.
When N = 1, then w = u., where u, satisfies (3.6).

Suppose that (¢, Ag), with Mg # 0, satisfies the following eigenvalue problem:

fRN wr—1¢
fRN w”

~When N = 1 this problem reduces to (3.39). Thus, the proof of (2.13) is complete once we
show that

Ap =+ pwPlg —yo(p— 1) wP =X, $E€HARY, w>1. (Al

Re(Xo) < 0. | (A2)
Let Ao = Ag +iAr; b = dg + idr.

We first introduce some notations and make some preparations. Set

r—1
L¢3=L0¢—’YO(P"1)LR—}1‘U—JQWZ)5 - $eHRY,
Rl

where v > 1 and Lo :== A — 1+ pwP~l. Note that L is not self-adjoint if r # p + 1.

It is well-known that Ly admits the following set of eigenvalues:

p1 >0, M2=0,---,UN+1 =0, HN+2 <0, ] (A3)
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where the eigenfunction corresponding to pl is of constant. sign (see Theorem 2.1 of [27]).

Let
ow .
Xp = kernel(Ly) = span{=—,j =1,..,N}.
: Oy; "
Then
Low = (p — L)uwP, Lo(p —Y + §wi) =w, (A.4)
and
' 1 1 1 N
L7t = — —_ - 2 (A.
/RN(Ow)w /RNw( et 59V0) = (- 4)/R~w’ (A.5)

1 1
Lytw)w? = P ~zV
/RN( 0 ww /RNw(p_lw-l-zx w)

- 1 1
= /RN(LO lw)p — 1Low =-—3 w? (A.6)

We divide our proof into three cases:
Case 1: r=2,1<p<1l++.

Since L is not self-adjoint, we introduce a new operator as follows:

Li:=Log — (p - ﬁ;” WP — (o - 1)f}‘”N w (p— R 7» w@gz 2 (AT

We have the following important lemma:

Lemma A.1 (1) L, is self-adjoint and the kernel of Ly (denoted by X1) = span {w, & By ,j =
1,...,N}. (2) There ezists a positive constant a; > 0 such that

Ll (d)’ ¢)

sty .

fRN w? (fRN w?)?

2 aldm RN)(Q/’, X1),

for all ¢ € HY(RN), where dr2gn) denotes distance in the L2 -norm.
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Proof By (A.7), Ly is self-adjoint. Next we compute the kernel of L;. It is easy to see that
w, 3y =>,J =1,...,; N, € kernel(L,). On the other hand, if ¢ € kernel(L,), then by (A.4)

Lo¢ = c1(p)w + c2(p)uP = (@) Lo i Tw + %wi) + 02(¢)L0<pt_u 1)
where
_ (p— 1) Jar v?s Ja 0Pt fon w — (p—1)Jrr v
Cl(¢) = (p ‘E[{RN 2 (p—l)w, C2(¢) = (p—l) fI]iN w2
- Hence
¢— 01(¢)(1£_Tw + %wi) - Cz((ﬁ);—%w € kernel(Lo). (A8)

Note that

Jan WP (53w + 32Vw)

fRN w?

T w’”’ S w( 1“’ + 2a:Vw)

(e w2

—(p—De(e)

c(¢) = (p —1ei(4)

by (A.5) and (A.6). This implies that ¢;(¢) = 0. By (A.8), this proves (1).

It remains to prove (2). Suppose (2) is not true, then by (1) there exists (o, ¢) such that (i) o
is real and positive, (ii) ¢ L w, ¢ L g;” ,7=1,...,N, and (iii) L1¢ = ag.

We show that this is impossible. From (ii) and (iii), we have

fRNw ¢

fRN 'w2

(Lo—a)p=(p-1)

(4.9)

We first claim that [px wP¢ # 0. In fact if [y wP¢ =0, then & > 0 is an éigenvalue of Lg. But
by (A.3), @ = p; and ¢ has constant sign. This contradicts with the fact that ¢ L w. Therefore
o # p1,0, and hence Lo — « is invertible in Xg". So (A.9) implies

_ fRN“’¢ a—lw"
¢=(@- f]RN (Lo — o)™ w.

Thus

/ wPp = (p— 1>fR” ((Lo — &)~ tw)w?,

f N'U)2 RN




/RN w.2 Z-/RN((LQ - a)—lw)((Lo — a)w + ow),

0= / (Lo — &)~ w)w. - (A.10)

RV _
- Let hi(a fRN (Lo — @) tw)w. Then, hi(0) = fon( Litw)w = fRN Lw+ iz Vu)w =
(3 - fRN w? > 0 since 1 < p < 1+ 4. Moreover hy(a) = fRN (Lo - @) 2w)w =

S (( Lo — &) 'w)? > 0. This implies hy(a) > 0 for all « € (0 ,ul) Clearly, also hi(a) < 0 for
o € (u1,00) (since limg 100 h1(a) =0). A contradi(:tion to (A.10)! This completes this part
of the proof. : . '

We now finish the proof of (2.13) in Case 1. Since /\0 # 0 ~we can choose ¢ L kernel(Ly). Then
we obtain two equatlons

fRN ¢R wP =

Lopr — (p— Dy i = Ar¢R — M1, (A.11)
RN W .

L0¢1 —(p— 1)y f}w w¢1w” = Arpr + Ar¢r. (A.12)
RV ‘ '

'Multlplymg (A.11) by or and (A.12) by ¢r, and a,ddmg the resultmg express10ns together we
obta.m

Ar / (6% + 62) = Lu(¢r, &r) + L1(é1, 1)

+(p— 1) (7 f]RN w¢R fRN wP¢R + fRN wer fRN wp¢I

fRN w2

IRN wp+1

+(p - DW[(/RN @¢R)2 +(/RN wer)?].

Multiplying (A:11) by w and (A.12) by w we obtain

fRN wWoR

fRN w?

(p- 1)/}R 'wp¢R ’YO(P—l Rl’v wPtl = )\R/RN ’wd)R —/\[/RN ’@;U¢1, (A.13)

(p—1) /RN wPor -yl —1) ijN sz[/k w ! =/\R-[R w¢1+>\1/R_ wor.  (A.14)

Multiplying (A.13) by fRN weg and (A.14) by fRN we¢r, and adding them together, we obtain

(p‘—1)ANw¢R/H{NwP¢R+@—1)4Nw¢IANwP¢,
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. wpPt! .
= et p = DBy [ b+ ([ win?)

‘ Jrn w?

Therefore we have

“Ar / (6% +62) = Lu(6r, 6r) + L1 (01, b1)

fRN wPt1 (fRN w¢R) + (fRN ’w¢1
fRN 2 ) fRN w?

Ar + 70

+(P—1)(’70—2)(p
fRN“’ |
o= DIl won)? + ([ wor))
| Set
$r=crRu+¢r, oL X1, dr=cw+¢r, ¢f LX1

Then
— 2 - 2
/w¢>R—0R/ we, /w¢1-61/ w”,
RN RN RN . RN

By (@r, X1) = [0KI22, oy (61, X1) = IF 2.
'By some simple computations we have

Ly(¢r, ¢r) + L1(¢1, ¢1)
(0 = DAR(G + ) /R LW+ (=10 - 12(ch + ¢2) /R s AR(“‘##”%?_ +ll¢71l72) = 0.
By Lemma A.1 (2) |

(Yo = DAr(ch + C%)/ w?
]RN

+(p - i)(% ~1D)*(ck +¢f) - wPt + (A + @) (15172 + lg71I72) < 0.

Since 9 > 1, we must have Ar < 0, which completes the proof of (2.13) in Case 1.

Case 2: r=2p=1+%.
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In this case we have

1 1 '
/(Lo_lw)w=/ w(——w + zzVw) = 0. : (A.15)
RV v p-1 2 }
Set
R R g A.16
wo—p_lw 5TVW. (A.16)

We will follow the proof in Case 1. We just need to take care of wg. We first have the followihg
lemma, which is similar to Lemma A.1: The proof is omitted.

Lemma A.2 (1) The kernel of Ly is given by X; = span {w,wy, g%,j =1, ...,N}.‘ (2) There
ezists a positive constant as > 0 such that i '

Lidnd) = [ (V6 + 8 = pur ')

20— 1) [on wo [on WP y ~ wPHL
+ (p )flR ¢f]R d)—(p—-.l)fR w2)2(/N,w¢)2

Jry w?
> axdisgny (6, X1), Vo€ HY(RY).

Now we can finish the proof of (2.13) in Case 2. Similar to Case 1, we obtain two equations
(A.11) and (A.12). We now decompose

¢r = crw + brwo + %, ¢F L X1, o1 =crw+brwo + o7, oF L X.

Similar to Case 1, we obtain

Li(¢r, ¢r) + L1(¢1, ¢1)

+o = DAr( + ) / W+ (o=~ + ) [ wt
RN RN

+/\R(b2R(/

wd)? + b / wd)? + 612 + I 6F %) < 0.
RN RN
By Lemma A.2 (2)

(0 = DAr(ch + ) / W+ -y - DAG+ ) [ wrt
" RN ‘ . RV

RN.

ah( [ udf+ [ ud)+ e+ aa) (I08IEs +I6HE) <.
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If Ag > 0, then necessarily we have

cr=cr=0, ¢5=0, ¢r=0.

 Hence ¢r = bpwy, ¢1 = brwg. This implies that

brLowy = (br — br)wo, brLowg = (bg + br)wo,

which is impossible unless b = by = 0. A contradiction! This completes this part of the proof.

Case 3: r=p+1,1<p< (%{%)_*_
Let r = p+ 1. L becomes

’I‘ fRN wp

L=lo-7 541 Jon wPtl

‘We will follow the proof of Case 1. We need to define another operator.

I]RNw ¢ p.

f N wp‘i‘l

L3¢ :=Lop — (p— (A.17)

We have the following lemma:

Lemma A.3 (1) L3 is self-adjoint and the kernel of L3 (denoted by X3) consists of w, ay ,j =
L,....N. (2) There exists a positive constant a3 > 0 such that

(P — 1) (Jgn wP9)?

fRN qpp+1

L d) = [ (V6P +4 —pu? i) +

> agdjaguy (6, X3), Vo€ H'RY).

Proof: The proof of (1) is similar to that of Lemma A.1. We omit the details. It remains to
prove (2). Suppose (2) 1s not true then by (1) there exists (), $) such that (i) A is real and
positive, (ii) ¢ L w,¢ L 2 ay ,J= , N, and (iii) L3¢ = A¢. :

We show that this is impossible. From (ii) and (iii), we have

(p—1) gy wPd
Sy wt ’

Similar to the proof of Lemma A.1, we have that fRN wP @ 76 0 A # p1,0, and hence Ly—Ais
invertible in Xz . So (A.18) implies

(p—1) Jygw wPP

fRN b+l

(A.18)

(Lo — A)¢ =

b= (Lo — A) “Lw?.
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Thus

. v wPe ' -
/RN ’LUP¢ (p )‘/{HSN ’U)p+1 RY ((LO - /\) 1wP)wP7
/ wPHl = (p— 1)/ (Lo — N) " wP)wP. ‘ (A.19)
RN RN .
Let h3(A\) = ? 1) Jen (Lo — /\)“lw”)wp — fav wPt, then h3(0) = (p — 1) fon (Lg wP)w?P —
Jpw WPt = 0 Moreover ha(N) = (p—1) Jgn (Lo = ) 2wP)wP = (p—1) [ (Lo — X) " 1wP)? >

0. This implies h3(A) > 0 for all A € (0,u1). Clearly, also h3(A) < 0 for A € (u3,00). A
contradiction to (A.19)! This completes this part of the proof. '

We now finish the proof of (2.13) in Case 3. Similar to case 1, we obtain two equations

Logr = (P~ 10 %N pf’f P = /\Rdm ~ Mér, . (A20)
. RN o
i fRN ' , v
- Logr — (p— ) f = Ar¢r + Ardr. (A.21)
RN

Multiplying (A.20) by ¢r and (A.21) by ¢; and adding them together, we obtain

—AR /RN (¢% + ¢7) = L3(br, dr) + L3(¢r1, $1)

(fRN wp¢R)2 (fRN 'wp¢I)

fRN b+l

+p—1) (1 -1)

" By Lemma A.3 (2)

fRN wPr)? fRN wPr)?
fRN wPt!

which implies Agp < 0 since 9 > 1. Thus, (2.13) in Case 3 is proved.

e [ (@h+ )+ oadta (6. X1) + (0= D0 = <0

)
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The Laplacian in the Boundary Layer
Coordinate System

Appendix B |
|

The derivation here is similar to that in [41]. We begin with a description of the boundary. Let
z = H(p1,p2) define the local height of the boundary at the point (p;,ps) on the boundary.
For convenience here we will center the coordinate system around the point p; = 0 and ps = 0,
where z = 0. In terms of these coordinates, H is given locally by

1 1
H(py,p2) = 5510} + 5h2p3 + O (p} +p3) , (B.1)

where k1 and k9 are the two principal curvatures at the center of the coordinate system. Our
boundary layer coordinate system is (p1,p2,n), where n > 0 is the distance from = € Q to 6Q.
Therefore, we define the following change of coordinates, '

x(p1,p2,7) = (p1, P2, H(s1,52)) + nn(p1,p2) , ' (B.2)

where n(p;,pe) is the unit normal to the boundary deﬁnéd by,
(_le’ _szv 1) )

(B.3)

n(p1,p2) =
J1+ Hgl + Hg2

In order to find the Laplacian in these new coordinate, we must calculate the scale factors,
& x|, _|ox
op1 dp2|’ 7 |

To evaluate these expressions, we substitute (B.1) and (B.3) into (B.2) and differentiate to find,

. (B.4)

Vm y Vpp =

vp, =1 —nr1 + O] +p3 + 1), (B.5a)
vp, = 1=k + O(p} +p5 +7°), | (B.5b)
vp=1. _ (B.5c¢)

‘In general curvilinear coordinates, the Laplacian is given by,

1 8 (Vo O 8 [vpun 80\ . O [Vp,vp, O
A — . p2¥n __) o ( P1vn _) 4 = ( p27p1 Y . B6
¢ Vp  Vpo iy [Gpl ( Vp, Op1 Opa \ vp, Op2 on vy, On (B.6)
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Thus, in these variables, the Laplacian is given to within quadratic terms by

K1 K2

_ _ 1 1 — 1Ko
29 = bm (1—%1 * l—nﬂz) Pnt (1 —nr1)(1 —nm»)a’“ (1—nﬂ1¢”1> +

1 1 —nky 2 o
(1 =nr)(1 = ng)apz (1 — Nky ¢p2> +O(p1 + p2).

This coordinate change is then used in (3.1a) to obtain (3.26).

(B.7)
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B.1 An Asymptotic Estimation of an Inner Product

Now we bound the term (L}[0;uc),$1) in (3.65), where L! is defined in (3.56). Since O u.
satisfies the local part of the operator in (3.56), we obtain -

mge 2!

ﬁ: [8xuc] = “‘m

/ wPOzucdx (B.8)
. Q

In §3.5 we assumed that the distance between £ = £ and the curved part of the boundary 09, is
minimized at one of the two corner points. Let r,, = min(zg —&£,& — z1) denote this minimum
distance. Let B, denote the semi-circle whose diameter is the interval [ — rpm, £ + ] along the

z-axis. Then, by our assumption, B, must be strictly contained within Q. We then decompose
the integral in (B.8) as )

/ uPOru. dx = / uPOzu. dx +/ d’c’Bxuc dx. (B.9)
Q ‘ 2 Q\B,

Since the point z = £, y = 0 is the center of the semi-circle and the integrand is an odd function
about the line z = £, the first integral on the right side of (B.9) is identically zero. Next, since
u. decays exponentially away from the point z = £, y = 0, the second integral on the right side
of (B.9) is bounded by the maximum of the integrand on the boundary of Q\B, multiplied by
the area A, of Q\B,. In this way, using the far-field behavior (3.14b), we get

1 o uPByue dx| < Cele PHUMm/e, (B.10)

Here ¢ and C are constants independent of €. Hence, in Q, we have the estimate
|£2[0uc)] < Ce=2um—le=+Drm/e, (B.11)

for some new constant C. Since ¢, ~ O;u¢, we can then use the same reasoning as described
above to estimate (L}[0zuc), $1), where L}[0zu| is given in (B.11). We find

(L2 [Botic), b1) | < Cele=BHm+lrm/e | (B.12)

for some new constants ¢ and C independent of e.

Finally, we compare (B.12) with the asymptotic order of the boundary integral in (3.65). The
boundary integral in (3.65) is clearly O (¢%e~2™/¢). However, since p > 1 and m > 0, it follows
that the inner product term in (B.12) is asymptotically exponentially smaller than the boundary
integral term in (3.65). Hence, we were justified in asymptotically neglecting the inner product
term in (3.65). ‘
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Appendix C
Calculation of B and P

Consider the boundary value problem

Dy' —py=0, y(£1)=0, - (C.1a)
[Dyl, =0, [Dy']j =—w;, (C.1b)
for j =0,...,n— 1, where [v]; = v(zj4+) — v(z;-) and z; satisfies (4.1). The solution is
n—1 :
y(z) =Y G(z; ze)wk, (C.2)
k=0 '

where G satisfies (4.10).. Define the n-vectors y and (y') by

v'= o e @) = (o W), (C:3)

- where y; = y(z;) and (y')j = (y' (zj4) + y (xj_)) /2. Then, we obtain from (C.2) that

y=Gw, ()=Pw, (€4

where w® = (wo, ... ,wn—1). Here the matrices G and P are defined in (4.23) and (4.81), respec-
tively. To determme these matrices explicitly we solve (C 1) a,nalytlcally on each subinterval
and impose the continuity of y to get

cosh[0(1+z : .
Yo c‘;u_nTosh 0((1+a,-0) ’)] [ ] -1<z<z,
— sinh[f(z;,1—z ) sinh[f(z—z;) o .
Y(@) =\ Vim0 a =) T Vit 0G0 % <€ <Tj+1, J=0,...,n-2,
cosh{f(1—zx :
Yn—1Cosh[8(1~an_1)] ’ In-1<z<1,

(C.5)

where 6 = (u/ D)2, To determine the relationship between y and w, which yields G, we use
(C.5) and the jump condition [Dy'.] = —wj in (C.1b) to get
3

1

By=b—0-

1
w, - . ngeB , (C.6)




where B is defined in (4.26b). Now using (C.5) we can calculate {y') in terms of y in the form

(y) = ——2Dcsch (E) Cly, (C.7)

where C is defined in (4.87b). Comparing (C.4) and (C.7), and using (C.6), we get the key
relation

P = —E%csch (27?) ctBt. (C.8)
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C.1 Calculation of Matrix Eigenvalues of B

In this appendix we calculate the eigenvalues ; and eigenvectors q; of the matrix problem
Bq = xq, (C.9)

where the tridiagonal matrix B is defined in (4.26) and ¢* = (g1, ... ,¢s). The calculation below
* is similar to that given in [22].

From (4.26¢) it follows that d = e + f. Therefore, we get the following recursion relation for
the coefficients ¢; of the eigenvector g:

fq1—l+(e_n)QI+fQZ+1=07 l='2""’n—1) : (Cloa‘)
fa+(e—r)g1+fg2=0, ' (C.10b)
fan + (e — K)gn + fgn-1=0. (C.10¢)

Hence, to solve for the ¢, we can use the relation (C.10a) for [ = 1 and [ = n and then impose
the end conditions '

g =41, Gn+1 =dqn- | (C.10d)
The solution to (C.10a) is
ql=aCi+bCl_, Ci=2—1];(n—e:b[(n—e)2—4f2]1/2) . (C.11) |
The end conditions (C.iOd) yield |
|  atbeal, + b, (C.122)
al? + b = alPTt 4+ b (C.12b)

From (C.12) we get (+ = (- =1 or Cfﬁ = (", which yields {4 = {_exp (2nij/n), for j =
1,...,n—-1 : o

If¢y =(_=1weget Kk =e+2f and g = (1,...,1). The other eigenvalues are calculated
as in [22] to get k; = e+ 2fcos(n(j —1)/n) for j = 2,... ,n and {4+ = exp (xmi(j —1)/n).
~ From (C.12b) we get (1—(4)a+(1—¢-)b = 0. Substituting this relation into (C.11), and after
rearranging the result, we obtain the unnormalized eigenvectors

ql,jzcos(lr%:—l—)(l—l/2)), j=2,...,n. -~ (C.13)

Here gq; ; is the ith component of the eigenvector q;. These eigenvectors can be normalized and
the result is summarized in Proposition 4.2.
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C.2 Calculation of B, and P,

Consider the boundary value problem

Dy —py=0, y(l)=0, ' (C.14a)
[Dyl; = —wj, [Dy']j =0, ' (C.14b)
for j=0,... ,n —1, where [v]; = v(z;}) — v(z;-) and z; satisfies (4.1). The solution is
| n—1
y(z) = Y g(@;k)wk (C.15)
k=0 -

where g satisfies (4.76). In terms of the matrices G, and Py, defined in (4.80) and (4.78),
respectively, we have that

¥ =Gw, (¥)=Pw, | (C.16)

where w? = (wy, ... ,wp_1). Here y" and (y) are defined by
1t 7 .l . ‘
v = (o Yot) . @=(@o W), (G1D

where y;- = y () and (y) i = (y(zj+) + y(z;-)) /2. To determine G, and P, explicitly, we solve
(C.14) analytically on each subinterval and impose the continuity of ¥ to get

!
Yo cosh[f(1+x) .
9, sinh[8(1+xo)] ? 1<z <,
1

= Y; cosh[f(z—x;)] Y; cosh[f(x;11—-1x)] ) ) .
y(x) JHLllsinh[()(zj_*.l—sz)] - #sinh[ﬁ(xjj:ll_xj)] 3 ;<< Zjy1, J= 0,...,n—2,
Yn—1 cosh[f(1-z)] .
T8 : sinh[e(l—xnz.l)] ’ Tn-1<z<1,
(C.18)

where 68 = (,u/D)l/ 2, We then impose the jump condition [Dy] j = —wj to obtain

Bgy' = ﬁw , — Gy = %B;l , (C.19)

where B, has the tridiagonal form given in (4.26b) with matrix entries defined in (4.85). Now
we use (C.18) to calculate (y);, and in this way we get

1 20 '
_ . C.20

where C is defined in (4.87b). Substituting (C.19) into (C.20), and comparing with (C.16), we
obtain the key result

1 20 -1
- - . 21
Py 2Dcsch (n ) CB, (C.21)
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C.3 Calculation of Matrix Eigenvalues of B,

In this appendix we calculate the eigenvalues §; and eigenvectors v; of the matrix problem
Byv =&, (C.22)

where the tridiagonal matrix B, has the form given in (4.26b) with the coefficients d, e and f
satisfying (4.85).

From (4.85) it follows that d = e — f. Therefore, we get the following recursion relation for the
coefficients v of the eigenvector v: :

fo1+(e=8v + fu =0, l=1,...,n, . (C.23a)
vo = —v1, Up = —Up4l . (C.23b)

The solution to (C.23a) is

w=ath+ih,  Ge=g(E-ex (€ - -ar7). (C.24)

.The énd conditions (C.23b) yield ’ | v
| a+b=—aly —b(_, (C.253)
alh + 5" = —a( — b (C.25b)
From (C;25) weget (L =C.=-~lor(, = Lexp(?m’j/nj, for j =1, : ..b,n — 1. Substituting

into (C.24) we get that the eigenvalues are
& =e+2fcos(mj/n), j=1,...,n, (C.26)

which are ordered as 0 < §; < ... < &, since f < 0. The corresponding unnormalized eigenvec-
tors are found to be .

vjin = (1,=1,1, ..., (=1)**1); v = sin <%J- (- 1/2)) S i=1,...,n—1. (C.27)

Here v, ; is the ith component of the eigenvector v;. These eigenvectors can be normalized and
the result is summarized in Proposition 4.9. '
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