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Abstract

Ecological models and qualitative analyses of these models can give insight into the most
important mechanisms at work in an ecological system. However, the mathematics re-
quired for a detailed analysis of the behaviour of a model can be formidable. In this
thesis I demonstraté how various computer packages can aid qualitative analyses by im-
plementing techniques from dynamical systems theory. I analyse a number of continuous
and discrete models to demonstra‘ﬁe the kinds of results and information that can be
obtained.

I begin with three fairly simple predator-prey models in order to introduce the termi-
nology and techniques and to demonstrate the reliability of the computer software. I then
look at a more practical system dynamics model of a sheep-pasture-hyrax-lynx system
and compare the techniques with a traditional sensitivity analysis. A ratio-dependent
model is the focus of the next chapter. The analysis highlights some of the biological
implausibilities and mathematical difficulties associated with these models. Two discrete
population genetics models are considered in the following chapters. The techniques are
~ able to deal with the complex nonlinearities and lead to insights into the conditions under
which stable homomorphisms and polymorphisms occur. The final example is a compli-
cated discrete model of the spruce budworm-forest defoliating system. The mechanisms
responsible for insect outbreaks and the relative effects of dispersal and predation are
studied.

In all the cases the techniques lead to a better understanding of the interactions
between various processes in the system than was possible using traditional techniques.

In two cases the results suggest improvements in the formulations of the models. The

il




techniques also identify parameters or processes which are crucial for determining model
behaviour. All these results are obtained fairly easily with the use of the computer
packages and do not require an extensive mathematical knowledge of dynamical systems

theory or intensive mathematical manipulations.
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Chapter 1

Introduction

1.1 General overview

In this thesis I demonstrate how techniques from dynamical systems theory can be applied
to ecological models in order to study their qualitative behaviour. The techniques allow
one or two parameters to be varied across ranges of values so that a comprehensive picture
of their effects on the behaviour of the model can be determined. Since computer software
is used to take care of the mathematical details, both mathematicians and ecologists can
make use of these techniques. I hope to reach the latter group in particular, by showing
how dynamical systems theory can increase our understanding of the behaviour of a
model considerably and thus help us formulate more plausible models. Both continuous
and discrete models are considered.

In the next section I outline my objectives more formally. I then describe how I
go about fulfilling these aims with specific references to later chapters in the thesis.
I conclude this introduction with a discussion of why I chose this topic and its place

amongst current areas of research.

1.2 Research objectives .

Ecological models and qualitative analyses of these models can give insight into the

most important mechanisms at work in an ecological system. However, the mathematics

required for a detailed analysis of the behaviour of a model can be formidable. Because
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of the uncertainty associated with parameter values in nature, solving a system of model
equations for a fixed parameter set is insufficient. A more informative approach is to study
the behaviour of a model for ranges of parameter values, but this requires complicated
mathematical techniques. It would be of considerable interest, particularly to ecologists,
if some of these techniques could be applied without the requirement of further formal
mathematical training.

With the above in mind the main aims of my thesis are twofold:

e to provide examples of the usefulness of dynamical systems theory in analysing the
behaviour of ecological models—in particular those techniques which describe the

effects of varying parameters across ranges of values, and

¢ to demonstrate how certain computer packages can aid the analysis by taking care

of the mathematical details.

In applying these aims I uncovered biological irﬁplausibilities in two models and improved
on previously obtained approximate results in another. The techniques also highlighted
some limitations of more traditional‘methods of analysis.

The computer packages I used are DSTOOL [10], Interactive AUTO [117] and XP-
PAUT [35]. Descriptions of their capabilities, as well as suggestions regarding their use,
are included in appendix B together with references to a few other packages that are

available.

1.3 Thesis outline

My approach to achieve the above aims was to analyse ecological models—both con-

tinuous and discrete—to demonstrate the kinds of results and information that can be

obtained using dynamical systems techniques.
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I begin in chapter 2 with the analysis of three fairly simple predator-prey models which
have already been studied by Bazykin [14]. This chapter is intended as an introduction
to some of the terminology and techniques of dynamical systems theory as well as to the
use of the available computer packages. Bazykin [14] studied the models analytically.
The computer packages allowed me, a novice, to reproduce and in fact improve upon
his results. The chapter also illustrates how the computer packages can encourage an
iterative approach to modelling which may aid the development of more plausible models.

Having demonstrated the reliability of some of the computer software in chapter 2, I
wanted to apply the techniques to a few more recent models from the literature. Since
a number of theoretical models have been studied using dynamical systems techniques
(for example, [5, 24, 26, 29, 33, 102]), I wanted to look at a more practical example. In
chapter 3 a system dynamics model of a sheep-pasture-hyrax-lynx system is analysed.
The model is a large one consisting of 10 ordinary differential equations and numerous
parameters. Even the most knowledgeable theoretician would find an analysis of this
model using pencil and paper a formidable task. The dynamical systems techniques
prove to be a useful alternative to the sensitivity analyses which are traditionally used
when studying these models. In particular, an improvement to the formulation of the
model is suggested as a result of the analysis.

Chapter 4 returns to a more theoretical model describing a plant, a herbivore and
a predator. The model is an example from a controversial area of current research
known as ratio-dependent modelling. The analysis in this chapter highlights some of the
biological implausibilities and mathematical difficulties associated with ratio-dependent
models which may be important for guiding future research. A modification to the model
equations is analysed in conjunction with the original model and reveals that the latter

is structurally unstable.

Many systems in nature (for example, insects having nonoverlapping generations) are
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better represented by discrete models than by continuous ones. However, discrete models
tend to exhibit more complex behaviour than continuous ones because of the inherent
time delays in the equations [84]. As a result detailed analyses have been restricted mainly
to one-dimensional examples (see, for example, [82, 83, 84]) although there are some
two-dimensional examples (see [15, 94]). In chapters 5 and 6 I consider two population
genetics models which are two-dimensional. Both models have fairly simple mathematical
formulations involving only two alleles but they are'capable of displaying complicated
dynamics. I focus on the dynamics of the heterozygote. The model in chapter 5 has been
partially studied using pencil and paper and numerical simulation techniques. However,
a more detailed analysis was restricted by the need for more complicated methods to take
care of the complex nonlinearities. The dynamical systems fechniques demonstrate the
theoretical results fairly easily and also show the relative frequency with Which different
types of qualitative behaviour can be expected to occur. The chapter focusses on periodic
dynamics as this behaviour is the most difficult to study by hand. The model in chapter 6
is a modification of that in chapter 5 but it has not been studied in detail before. This is
not surprising since it is not even possible to find explicit expressions for the equilibrium
points. Computers are particularly useful in such situations. For this model it is found
that there is always the possibility of one of the alleles being excluded and that the threat
of extinction is high for many parameter sets. Criteria for determining the existence and
stability of polymorphic equilibria are given and periodic dynamics are also studied.

To round off the thesis I wanted to see how the dynamical systems techniques would
fare in the context of a more practical, and hence more complicated, discrete model.
Chapter 7 considers a model of a defoliating insect system, namely the spruce budworm-
forest system. Despite the complexity of the dynamics, useful insights are obtained into

the mechanisms responsible for insect outbreaks and the relative effects of dispersal and

predation. Outbreaks are found to occur for a wide range of parameter values and regions
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of multiple stable states are also located.

Specific conclusions relating to the particular examples are included at the end of
each chapter. More general conclusions are summarised in chapter 8. Special mention
should be made of two of the appendices. Appendix A contains a glossary of the basic
dynamical systems concepts which are used in the main body of the thesis, as well as
a brief introduction to some of the underlying mathematical theory. Diagrams are used
wherever possible so as to keep the mathematical details to a minimum as the appendix is
intended for those who may have had little prior exposure to dynamical systems concepts.

Appendix B describes how computers can be used to implement the dynamical sys-
tems fechniques. Descriptions of the capabilities and relative advantages and disadvan-
tages of the packages that I used, as well as procedures for obtaining time plots, phase
~portraits and bifurcation diagrams, are given. Some pointers and warnings regarding
their use are also included. Examples of computer listings for the various models are
placed after the appendices. |

I must emphasise that it is not my airﬁ to provide a comprehensive structure whereby
every detail of a system of equations can be understood. This would be an impossible
task. Instead I want to deyelop a procedure which can be applied to a wide variety of
practical situations. I would like to emphasise the word practical since it is very easy
for a model analysis to become more of a mathematical exercise than one of biological
relevance. Detailed mathematical analyses may require more complicated techniques
than I have used in order to study éomplex phenomena. While these phenomena may be

of intellectual interest, they are often of little practical use. My viewpoint is summarised

by the following quote from Adler and Morris [2]:
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Only by avoiding the unthinking use of familiar and mathematically con-
venient models and by having the discipline to ignore interesting but dy-
namically unimportant interactions, can we ever hope to develop predictive

ecological theory.

1.4 Motivation

Mathematical models have been used to describe ecological systems for many decades.
However, the interdisciplinary nature of the field has led to some conflict in opinions.
Many experimental ecologists argue that theoretical models are too simple to adequately
describe natural systems, but complicated models are often intractable to mathematical
analysis. According to Holling et al. [62] “a simple but well-understood model is the
best interface between a complex system and a complex range of policies.” However, the
complexity of ecological systems and the perceived added realism of larger, more complex
models has led many ecologists to-favour the latter.

Because of the inevitable uncertainty associated with the parameter values in an
ecological model [40, 53, 115, 121], it is not sufficient to merely simulate the model
equations over time and observe the behaviour. A different set of parameter values may
give rise to very different dyﬁamics. According to Walker et al. [121] many parameters of
ecological models are really variables. They are chosen to be constants for convenience,
simplification or because information regarding the relevant dynamics is lacking. Hence,
it 1s important‘to know whether altering parameter values will significantly affect the
predictions of the model. This is not a trivial task when large numbers of parameters
are involved.

As has already been mentioned, we can vary parameters across ranges of values us-

ing techniques from dynamical systems theory. In this way we can obtain information
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regarding the presence and nature of attractors!

in the system. Whereas transient dy-
namics vary with the initial values of the state variables and the time period over which
solutions are calculated, the téchniques in this thesis are concerned with the behaviour
of the system once the initial transients have died away. The attractors determine this
long-term behaviour. My viewpoint is that these qualitative analyses of ecological models
are indispensable if we hope to use the models to gain insight into real ecological systems.

The application of the dynamical systems techniques to a system of nonlinear equa-
tions can be a formidable task for a mathematician, let alone a non-mathematician. It
is also time-consuming when-a large number of parameters is involved. In such cir-
cumstances computer programs can be of great assistance. In fact, Seydel [111] asserts
that “the extensive application of numerical methods is indispensable for practical bi-
furcation and stability analysis”. Although analytical methods can provide remarkable
results, they have two strong limitations [111]. First, in many cases numerical methods
are needed to evaluate analytical expressions anyway. And secondly, analytical results
are generally local and only hold for ‘sufficiently small’ distances where ‘sufficiently small’
is left unclériﬁed. Fortunately a number of computer packages have become available in
recent years to aid the analysis. A few of these have already been mentioned.

It is one matter to do the analysis but we also need to convey the results effectively.
Edelstein-Keshet [34] comments that pictures derived from qualitative analyses are often
more informative than mathematical expressions. In this thesis the traditional time plots
and phase portraits are used to display results as well as bifurcation diagrams. The latter
diagrams provide a concise way of summarising the effects of different parameter values

on the behaviour of the system.

1See section A.2.5 for a definition of this term.
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1.5 The bigger picture

Qualitative analyses are not new and can be traced back at least to Poincaré?. In eco-
logical circles names such as Lotka and Volterra [73, 120], Rosenzweig and MacArthur
[76, 103], ﬁolling [61], May [79, 80, 82, 83] and Gilpin [44], and many others, are well-
known for their qualitative analyses of various models. Most studies have involved
predator-prey models [14, 44, 79, 80, 98] but other systems have also been analysed
[50, 70, 74, 83, 95]. However, all these models are fairly simple theoretical models be-
cause of the mathematical difficulties encountered with more complicated models.

The introduction of various computer packages since the mid-1980’s has allowed dy-
namical systems techniques to be applied with greater ease as well as to more complicated
models. However, there are relatively few examples where ecological models have been
studied using these packages and most of the papers in this category are very technical
and require considerable mathematical knowledge [5, 26, 29, 33, 48, 86, 87, 102]. Few
people have heeded the suggestion by Oster and Guckenheimer [97] that less exhaustive
analyses but of more meaningful models (from a biological viewpoint) would be more
useful and of greater interest to biologists.

The papers by Collings [23], Collings and Wollkind [24], Collings et al. [25] and
Wollkind et al. [127] study a fairly practical biological control model of mite interactions..
However the mathematics is still complicated and difficult for the reader with little prior
exposure to dynamical systems theory.‘ Of particular relevance to this thesis is that
these papers demonstrate the power of the computer package AUTO86 [28] and illustrate
how conclusions regarding model sensitivity and resilience can be drawn from bifurcation

diagrams. They also derive meaningful ecological implications from their results. All four

2 A Hopf bifurcation (see section A.2.10), which is an important concept in dynamical systems theory,
is also known as a Poincaré-Andronov-Hopf bifurcation and the Poincaré-Bendixon theorem is funda-
mental to qualitative analyses. Further details can be found in Arnold [7] and Wiggins [124].
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papers note that many of their conclusions would not have been obtained without the
use of AUTO86 [28]. In particular, Collings and Wollkind [24] obtained three previously
undiscovered possibilities for qualitative behaviour using a predator-prey model of the
type studied by Baiykin [14].

In this thesis I hope to take the road less travelled by showing how dynamical systems
techniqués can lead to biologically useful and meaningful results without the requirement
that the user have an extensive mathematical background in the field. I begin in the
next chapter with a few models that have already been studied using pencil and paper

and show what I was able to accomplish with the aid of computer packages.



Chapter 2

Preliminary Example

2.1 Introduction

This chapter is for readers for whom concepts such as bifurcations and bifurcation di-
agrams are relatively new as well as for those who are sceptical about the accuracy
and reliability of computer packages such as DSTOOL [10], Interactive AUTO [117] and
XPPAUT [35]. Dynamical systems techniques are applied to three fairly simple predator-
prey models to show how certain parameter values affect the qualitative behaviour of the
models. Both one- and two-parameter bifurcation diagrams are used to summarise the
results. Behaviour in different regions of these diagrams is explained using phase por-
traits. The three models differ from one another by the addition or subtraction of only
one or two terms. This chapter therefore exemplifies an iterative approach to modelling—
the relative ease with which qualitative analyses may be done using the abovementioned
computer packages allows a fairly quick determination of the effects of model alterations.
This can facilitate the formulation of more plausible models.

These predator-prey models have already been studied analytically by Bazykin [14].
I have included his results for comparison with those obtained by the computer software.
The latter are in fact more accurate in certain situations and the results can be obtained
without a detailed knowledge of the underlying mathematical techniques.

I begin the chapter with a description of the first model which is a basis for the

other two. Tuse XPPAUT to obtain a one-parameter bifurcation diagram and show how




Chapter 2. Preliminary Example 11

this summarises Bazykin’s results. The next two sections discuss two modifications to
the basic model. Many of the phenomena that occur in later chapters of the thesis are
introduced here. For those who plan to read this chapter, a quick reading of the first
part of appendix A (namely, section A.2) may prove useful. This section is non-technical

but introduces all the basic terminology as well as the conventions I use in the figures.

2.2 Basic model

One of the first predator-prey models to be proposed and extensively studied was the
model developed independently by Lotka and Volterra in the 1920’s (see [34] for a de-

scription of the model and its analysis). The model equations are

T = azxz— bxy
y = —cy+day (2.1)

where z represents prey density and y predator density. All the parameters are real
and positive. The term az describes the exponential growth of the prey population
in the absence of predators and —cy describes the exponential decline in the predator
popﬁlation in the absence of prey. The terms —bzy and dzy describe the interaction
between predator and prey. From a biological viewpoint, this linear dependence of the
rate of predation and predator reproduction on the number of prey is considered to be a
rather unrealistic approximation [14] . ‘Also, from a mathematical viewpoint, the system
is structurally unstable since an arbitrarily small perturbation to the model can change
its qualitative dynamics. For example, replacing the exponential growth of the prey with
logistic growth changes the dynamics from (neutral) cycles to a stable equilibrium (see
[34]).

A number of modifications to this model have been studied since the 1920’s. In par-

ticular, Bazykin’s [14] work is well-known among ecologists because of his comprehensive
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qualitative analyses of the models and his accompanying diagrams, which summarise
the different possible behavioural regimes. One of Bazykin’s modifications to the Lotka-

Volterra equations (2.1) is given by the system

. b

T = azx — 1—%’—;

. d

y = —cy+ . (2.2)

He justified using Michaelis-Menten interaction terms by analogy with the mechanism
of enzyme reactions. The denominators of these terms prevent unlimited predation of
prey and unlimited growth of the predator population with the growth of prey density,
respectively. The Holling type II functional response term is very similar to these terms
and is based on biological mechanisms [59, 60].

Before we can apply the dynamical systems techniques we need to choose parameter
values. I chose ¢ = 0.6, = 0.3,¢ = 0.4,d = 0.2 and « = 0.1 but any other reasonable
values would do. Using XPPAUT (DSTOOL could also have been used) I found.that
there is only one non-trivial (that is, non-zero) equilibrium point (see section A.2.6 for
an explanation of this phenomenon) corresponding to these parameter values and that
it is unstable (see section A.2.14 for an explanation of this term). Using this equilib-
rium point as a starting value for AUTO (either Interactive AUTO or XPPAUT can be
used—see appendix B) I varied « to obtain the one-parameter bifurcation diagram (see
section A.2.1) shown in figure 2.1. As can be seen from this figure, there are no bifurca-
tions (see section A.2.2) and the equilibrium point remains unstable as « is varied. But
the figure does show how the equilibrium value of 2 changes with a. We can also view
this diagram in terms of y and « using XPPAUT. The diagram is exactly the same as
figure 2.1 because of the symmetry of the equilibrium point with respect to = and y.

Using DSTOOL or XPPAUT we can generate phase portraits (see section A.2.17) for

different values of . These are qualitatively the same as those obtained by Bazykin [14]
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Figure 2.1: One-parameter bifurcation diagram obtained by varying o in system (2.2) with
a=0.6,b=0.3,¢c=0.4 and d = 0.2. The state variable z is plotted on the y-axis.

(see figure 2.2) and verify that figure 2.1 summarises Bazykin’s [14] results. The phase
portraits in figure 2.2 show that = increases indefinitely for all values of «. This is an

obvious shortcoming of the model and led Bazykin to introduce further modifications.

2.3 Adding intraspecific competition among prey

To improve the model Bazykin added a term to the prey equation to take into account
intraspecific competition among prey. Here competition refers to a decrease in reproduc-
tion or an increase in death rate with an increase in prey density. The assumption that

competition is linearly dependent on prey density results in the system of equations

L _ bwy 2

T = AT — s T €T

R dzy

y = —oy+ s (2.3)

We can create one- and two-parameter bifurcation diagrams (see section A.2.1 for a de-

scription of these terms) by varying a and e to see what effects these additional terms

have on the behaviour of the model. I chose the same values for a, b, c and d as before.
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Figure 2.2: Phase portraits obtained by Bazykin for model (2.2). Qualitatively similar diagrams can
be obtained by takinga = 0.6, =0.3,c=04,d=0.2and (a) a = 0.1, (b) a = 0.2, (¢c) o = 0.3 and
(d) a = 0.55.

Bazykin’s [14] results for this system are shown in figure 2.3. There are three regions
in (€, a)-parameter space, each corresponding to a different form of qualitative behaviour.
The phase portraits indicate the dynamics that occur in these regions. Since fhere are
two equilibrium points of interest, A and B, in regions (i) and (ii) and one equilibrium
point of interest, B, in region (iii)! we expect a bifurcation to occur as the line with
negative .slope in figure 2.3(a) is crossed from regions (i) and (ii) into region (iii). In
crossing from region (i) to region (ii) point A changes from stable to unstable and a limit

cycle (see section A.2.12) is initiated. Thus, we expect a curve of Hopf bifurcations (see

!The origin is also an equilibrium point in both cases but only nontrivial equilibrium points having
z>0and y >0, (z,y) # (0,0) are considered in detail. In region (iil) y < 0 at the equilibrium point A
and hence this point is not of biological interest.
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Figure 2.3: The following diagrams are adapted from Bazykin [14]. (a) Two-parameter bifurcation

diagram of (¢, a)-parameter space. (b) Phase portraits corresponding to regions (i), (ii) and (iii) in part

(a). .
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section A.2.10) to divide these regions.

In order to use AUTO to reproduce Bazykin’s results we need a starting point which
must be an equilibrium point. By choosing values of 0.3 for o and 0.1 for ¢, we can
either determine such a point analytically (as Bazykin did) or we can use DSTOOL or
XPPAUT to perform the task numerically. The latter choice involves integrating the
equations forward in time until we are near the equilibrium point. Using XPPAUT
this is done by choosing the menu option INTEGRATE followed by GO. Choosing the
SINGular POINT option then finds the equilibrium point and indicates whether it is
stable or unstable. A separate window appears with this information. The state variable
values at the equilibrium point are then entered as the initial point in the initial point
window.

Since Bazykin plotted € on the x-axis in figure 2.3(a) I vary this parameter first. In
AUTO this is done by choosing € to be the main parameter in the AXES menu. After
choosing the RUN-STEADYSTATE commands, AUTO locates a transcritical bifurcation
(see section A.2.25) at € = 0.12 (see figure 2.4). I then made the value of DS in the
NUMERICS window negative so that AUTO would decrease ¢, chose the point labelled
1 (that is, chose our original starting point) using the GRAB command, and then chose
RUN again. AUTO finds a Hopf bifurcation at ¢ = 0.045 in this case. By generating
periodic orbits (limit cycles) from this latter point (choose the Hopf bifurcation point
using GRAB and then RUN-PERIODIC ORBIT) we can see that there are stable limit
cycles surrounding an unstable equilibrium point. Since « is fixed in figure 2.4, this
one-parameter diagram describes the dynamics along a horizontal line at, say, @ = o
in figure 2.3(a).

In figure 2.4 I have labelled the continuation branches A and B to indicate which

equilibrium point corresponds to which branch (see section A.2.4 for a description of a

continuation branch). Notice that the x-coordinate of A does not vary with e but the
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Figure 2.4: One-parameter bifurcation diagram obtained by varying € in system (2.3) with
a=06,b=03c¢c=0.4d=0.2and « =0.3. The labels A and B mark the continuation branches
corresponding to the equilibrium points given in equations 2.4, HB stands for Hopf bifurcation and BP .
for bifurcation point (transcritical in this case). Explanations of the various line types can be found

in section A.2.1. In particular, the curves of solid circles mark the maxima and minima of stable limit
cycles.

x-coordinate of B does. We can check this observation with the analytical forms of the

equilibrium points which are given by

¢ - da(d — ac) —ec
( 'm—d;—ac’y b (d — ac)? )
B (mz%yzO) (2.4)

These are obtained by setting the right hand sides in equations (2.3) equal to zero and
solving for z and y. As expected, € does not appear in the x-coordinate for A but does
appear in that for B.

Figure 2.4 summarises the information given by the phase portraits in figure 2.3. For
0 < € < 0.045 point A is unstable (a source—see section A.2.23) and B is a saddle point

(see section A.2.20). There is also a stable limit cycle surrounding A. Hence, these values

of € correspond to region (ii) in figure 2.3. For 0.045 < € < 0.12 A is a stable equilibrium
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Figure 2.5: Two-parameter continuation of the Hopf bifurcation shown in figure 2.4.

point and B is again a saddle point. This configuration corresponds to region (i) in figure
2.3. For ¢ > 0.12 B is now stable and A is a saddle point, but the numerical output
from AUTO shows that the y-coordinate for A is negative for these values of €. Figure
2.3(b)(iii) represents the corresponding dynamics for positive z and y.

We would also like to reproduce Bazykin’s two-parameter bifurcation diagram shown
in figure 2.3(a). AUTO can be used to continue the Hopf bifurcation at ¢ = 0.045 in
a as well as € (see section B.4 for an explanation of how to generate a two-parameter
bifurcation diagram). The result is figure 2.5.

The first observation we can make from this diagram is that the curve of Hopf bifur-
cations is very different from Bazykin’s straight line in figure 2.3(a). I will return to this
point shortly. A second observation is that, for the given values of a, b, ¢ and d, a Hopf

bifurcation (and hence limit cycle behaviour) is only possible if € < 0.0515 and a < 0.5%,

2AUTO slows down considerably as « increases toward 0.5 and ¢ tends to 0 and never actually reaches
this point, although the curve does get very close if AUTO is left to run for a sufficiently long time period.
It can be verified analytically that the curve does pass through (0,0.5). However, complex behavioural
changes occur at this point which is why AUTO has computational difficulties.
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Figure 2.6: Two-parameter bifurcation diagram of (¢, a)-parameter space for model (2.3) with a = 0.6,
b=10.3, c= 0.4 and d = 0.2. The regions (i), (i) and (iii) correspond to those in figure 2.3.

which is a fairly small region of parameter space.

It is not possible to continue a transcritical bifurcation in two parameters using AUTO
(see page 267 for an explanation). However, if « is fixed at a number of different values
and one-parameter bifurcation diagrams similar to figure 2.4 are created by varying € in
each case, then the values corresponding to transcritical bifurcations can be recorded.
An approximation to the two-parameter curve can then be drawn through these points.
Figure 2.6 shows the resulting curve together with the Hopf bifurcation continuation.

Model (2.3) is simple enough for the curves in figure 2.6 to be determined analytically
although the algebra is rather messy. It can be shown that transcritical bifurcations occur
along the straight line

oa=——+4—
a c

and Hopf-bifurcations occur along the curve

(—ac®)a? + (acd — ec®)a — edc = 0.

(I used MAPLE [122] for some of the algebraic manipulations required to obtain these
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results.) These are exactly the curves shown in figufe 2.6 as can be verified by substituting
points from the curves calculated by AUTO into the above equations. Hence, AUTO’s
results are more accurate than those given by Bazykin in figure 2.3(a) for the Hopf
bifurcation curve. Bazykin did not have a symbolic package such as MAPLE available
and made an approximation in calculating this curve. The new regions (i), (ii) and (iii)
are shown in figure 2.6. I obtained phase portraits corresponding to the points marked
with *’s using DSTOOL (see figure 2.7). XPPAUT could also have been used. These

phase portraits are qualitatively the same as Bazykin’s diagrams in figure 2.3(b).

(a) 6 T T T (b) 6 T T ]
4 . 4 .
) Y
2 - 9 _
0 ] B 0 B ]
0 9 10 15 20 0 5 10 15 20
T T
(c) (d) 6 I ;
4 ]
Y Y
2 - -
0 i b s M 1 1

0 ) 10 15 20
Figure 2.7: Phase portraits corresponding‘to the points marked with *’s in figure 2.6.

It is also informative to view the temporal dynamics of a model. Time plots corre-
sponding to figure 2.7 for initial values 2 = 10 and y = 3 are shown in figure 2.8. These

were also obtained using DSTOOL. Time plots are useful for indicating the speed with
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which the stable equilibrium or limit cycle is attained and the period of the limit cycle
if applicable. If a system takes a long time to approach an attractor (see section A.2.14)

then the transient dynamics may be of greater practical ifﬁportance than the long-term

behaviour.
(a) 10 T (b) 10 T
T 5 -
0 -1
0 100 200 0 100 200
Time Time
(¢) 10 l (d) 10 T
z 5 L/\' . 9t -
0 { O 1
0 100 200 0 100 200
‘ Time Time

Figure 2.8: Time plots corresponding to the phase portraits in figure 2.7. The initial point z = 10,y = 3
was used in each case.

This section has shown how to rederive Bazykin’s work [14] on the system of equations
(2.3) more accurately and without having to understand the cornplicat.ed mathematical

techniques involved. In the next section I look at another of Bazykin’s models in which it

is not feasible to do much of the mathematical analysis by hand. Fairly accurate results

can be obtained using AUTO.
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2.4 Adding intraspecific competition among predators

Suppose that instead of having intraspecific competition among prey we have intraspecific

competition among predators. The new system of equations is then

. b

I = aT — 1+i’z

- dry 2

U= oyt s — ey (2.5)

In this model predator population growth is limited even when there is an excess of prey.

Bazykin’s results for this system are shown in figure 2.9. Again there are two nontrivial
fixed points, A and C, but in this case both have positive coordinates. Whether we have
the situation in figure 2.9(a) or (b) depends on the parameter values for a,b,c and d.
Using numerical experimentation Bazykin postulated that both variations are possible
[14]. He managed to find an analytical approximation to one of the lines OJ, OG but
had not found an approximation to the second at the time of writing his paper.

Setting @« = 0.6,b = 0.3,¢ = 0.4 and d = 0.2 as before and choosing ¢ = 0.06
and a = 0.1, I used DSTOOL to locate equilibrium points and AUTO to generate a
one-parameter bifurcation diagram by varying «. The result was figure 2.10. In this
case we have a Hopf bifurcation at « = 0.0977, a limit point (see section A.2.13 for an
explanation of this bifurcation point) at @ = 0.176 and it appears as if the periodic orbit
collides with the saddle point C suggesting a homoclinic bifurcation (see section A.2.9).
All three phenomena can be investigated in two parameters using AUTO. The first two
are straightforward two-parameter continuations. Since a homoclinic bifurcation is not
actually detected, we need to calculate an approximation to this curve.

As the periodic orbit in figure 2.10 approaches the saddle point it can be seen from

AUTO’s numerical output that the period of the oscillations increases fairly rapidly. It

is possible to plot the p.eriod as a function of a if XPPAUT is used (see figure 2.11).
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Figure 2.9: These diagrams are adapted from [14]. (a) and (b) Two-parameter bifurcation diagrams
of (a, p)-parameter space. (c¢) Phase portraits corresponding to regions (i), (ii), (iii) and (iv) in parts
(a) and (b).
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Figure 2.10: One-parameter bifurcation diagram obtained by varying « in system (2.5) with
a=06,b=03,c=04,d=10.2 and g = 0.06. The labels A and C mark the continuation branches for
the two nontrivial equilibrium points. HB marks the Hopf bifurcation and LP the limit point.
Such a steep increase in period suggests that a homoclinic orbit is being approached as
these orbits have infinite period. To approximate the curve of homoclinic bifurcations
we can set a USZR function in AUTO to locate an orbit of high period. The required
approximation is obtained by continuing this orbit of fixed period in x as well as «.
The resulting two-parameter diagram in (e, g)-space is shown in figure 2.12. (I would
have liked to have chosen an orbit of period greater than 30 to approximate the curve
of homoclinic bifurcations but for this particular model AUTO had difficulty with larger
periods. However, one-parameter bifurcation diagrams at different fixed values of p show
that the curve corresponding to a period of 30 provides a fairly good approximation to
the required curve.) This figure can be compared with figure 2.9(a). Phase portraits and
time plots corresponding to the points marked with *’s in figure 2.12 are shown in figures
2.13 and 2.14 respectively.

These results agree qualitatively with Bazykin’s but the approximations to the curves

OG and OJ are more accurate. In particular, region (iii) corresponding to stable limit
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Figure 2.11: Diagram showing the period of the limit cycle oscillations in figure 2.10 as a function of
a.
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Figure 2.12: Two-parameter bifurcation diagram of (e, p)-space for a = 0.6, b = 0.3, ¢ = 0.4 and

d = 0.2. HB marks the Hopf bifurcation continuation, LLP marks the limit point continuation and

period=30 marks the continuation of the orbit of fixed period.
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Figure 2.13: Phase portraits corresponding to the points marked with *’s in figure 2.12.

cycle behaviour is very small for these parameter values. As a and u decrease, the curve
of homoclinic bifurcations approaches the Hopf bifurcation curve and almost coincides
with it so that for small g and « the region of limit cycle behaviour is negligible.

We can investigate figure 2.12 further by generating one-parameter bifurcation dia-
grams for different values of u. Setting p = 0.1 gives figure 2.15(a) which corresponds to
the horizontal dotted line in figure 2.12 at g = 0.1. As expected from figure 2.12 there is
no Hopf bifurcation or homoclinic bifurcation in this case. For g = 0.074 we obtain figure
2.15(b) which corresponds to the horizontal dotted line at ;¢ = 0.074. As expected from
figure 2.12 there are two Hopf bifurcations in this case but no homoclinic bifurcation.
Setting p = 0.02 results in figure 2.15(c). In this case the curve of periodic orbits is very

steep, becomes unstable and then AUTO fails to be able to calculate further and signals
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Figure 2.14: Time plots corresponding to the points marked with *’s in figure 2.12. The initial point
z =5,y = 3 was used in each case.
non-convergence. This is not unexpected (see the horizontal dotted line in figure 2.12
at g = 0.02) as the Hopf bifurcation and homoclinic bifurcation curves are very close

together for this value of p.

2.5 Conclusion

This chapter describes how qualitative analyses of three predator-prey models may be
done using various computer software. The numerical results are compared with analyti-
cal results obtained by Bazykin [14]. For model (2.3) which has intraspecific compefition
among prey, the numerical results are more accurate than Bazykin’s approximate ana-

lytic results. This conclusion is possible as I obtained an exact analytical expression for
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Figure 2.15: One-parameter bifurcation diagrams for (a) g = 0.1, (b) # = 0.074 and (¢) x = 0.02.

These correspond to the horizontal dotted lines in figure 2.12.
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the two-parameter Hopf bifurcation curve for which the discrepancy in results arises. The
analysis of model (2.5) results in a numerical approximation to a curve which Bazykin did
not describe analytically. The position of this curve results in a very small two-parameter
i‘egion corresponding to limit cycle behaviour.

A knowledge of the relevant mathematical techniques, such as centre manifold the-
ory and normal form theory (see page 241), is not required to obtain the above results.
Computer packages such as AUTO take care of the mathematical details. This is espe-
cially useful for models which are too difficult to study by hand, such as model (2.5).
It also allows accurate and fairly quick qualitative analyses of models to be done thus
facilitating an iterative approach to modelling since modifications of model equations can

be investigated fairly easily.

In the next chapter I look at a model which has not been studied before using dy-

namical systems techniques. In this case the analysis suggests an improvement in the

formulation of the model equationé.



Chapter 3

Sheep-Hyrax-Lynx Model

3.1 Introduction

This chapter investigates a more complicated model having 10 state variables and a
large number of parameters. Analytical work done by hand and isocline analyses are of
little use in such situations. Traditionally computers have been used to obtain numerical
solutions corresponding to a fixed parameter set and to implement sensitivity analyses!.
I show how dynamical systems techniques can be used to increase our understanding of
the relationships between different components in the model. In particular, bifurcation
diagrams give more information than sensitivity analyses. These diagrams also highlight
an incomplete relationship in the model and lead to an improvement in the formulation
of the equations.

The model I have chosen is an example of a system dynamics model and has four
main components—sheep, hyrax, lynx and pasture. I begin in section 3.2 with some
background to the systems modelling approach for those who may be unfamiliar with
it. T also discuss the traditional methods that have been used to solve and analyse such
models. In section 3.3 I describe the formulation of the model followed by a few technical
details which are required in order to use XPPAUT to analyse the dynamics. Section
3.5 contains the model analysis. I begin by studying the effects of various parameters
and density-dependent functions on the behaviour of the model. This analysis shows

the limitations of a traditional sensitivity analysis and highlights dynamics which are

1Gee section 3.2 for a description of sensitivity analyses.

30
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biologically implausible, namely that pasture growth is unlimited when sheep densities
are low. A modification to the pasture growth term is discussed in section 3.5.3. The
analysis is completed by a two-parameter study of the effects of culling rates on farmers’
revenue. This is followed by section 3.5.5 which interprets the main results of the analysis

from a biological viewpoint.

3.2 Dynamic models and systems analysis—some background

The systems approach to modelling was made popular by Forrester [39] in the early
1960’s. This approach involves dividing a system into a large number of very simple unit
components (Watt [123]) and then using equations to describe the processes affecting
each of these components. The methodology was originally applied to industrial, urban,
and world population systems but its utility has been extended to ecological applications
by a number of 'researchers (see Jeffers. [64] and Watt [123]). Patten [99] summarises the

advantages of these dynamic or simulation models in the ecological context:

The formulation of the models allows for considerable freedom from con-
straints and assumptions, and allows for the introduction of the non-linearity

and feed-back which are apparently characteristic of ecological systems.

This ease of formulation and flexibility are important for modelling ecological systems.
A variety of aspects such as age structure, developmental rates and density-dependent
relationships can be included explicitly, thus increasingv the realism of the model. Kowal
[69] notes that an analysis of dynamic models can provide approximations to ecosystem
dynamics long before traditional experimental approaches can provide more detailed

conclusions. Insights can also be obtained into aspects of the system which may otherwise

be obscured by its complexity.
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The problem with complex models comes at the time of analysis. Dynamic models
usually involve a large number of equations (generally ordinary differential equations)
and parameters which makes their behaviour difficult to predict (Patten [99]). We need
to find suitable ways of analysing the dynamics of these models.

The traditional approach has been to use numerical routines to obtain solutions over
time for a given set of parameter values. Optimisation routines are also often employed
(Maynard Smith [85]) to determine the ‘best’ possible strategy with respect to a cost or .
revenue function. These routines are implemented using computers. A computer’s speed
of computation and ability to provide rapid access to large quantities of data makes it
particularly suitable for analysing these large models (Jeffers [64]). A description of the
basic routines involved can be found in Patten [99] as well as in any introductory textbook
on numerical routines for systems of ordinary differential equations (for example, [43, 63)).

While these methods are useful, their results depend on the particular parameter set
used. Intuitively a sufficiently small variation in the parameter values should lead to
an arbitrarily small change in the solution given by the model if we are to have any
faith in the predictions of the model (Hadamard [53]). This corresponds to Hadamard’s
concept of a well-posed problem with respect to partial differential equations [53] and
led to the development of sensitivity analyses. For ordinary differential equations this
method is based on the ideas of Tomovic [118] and involves changing the values of the
input variables and parameter values by a small amount (say 1 percent or 10 percent)
and seeing whether these changes produce large or small variations in the predictions of
the model (Jeffers [64]). A good description of the basic theory involved, as well as some
examples, is given in Brylinsky [18].

Sensitivity analyses are often used when studying system dynamics models and do

give some idea of the robustness of model predictions, but the information is limited

in that only a single, small perturbation of each parameter is considered. This chapter
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shows how additional information can be obtained using dynamical systems techniques to
vary parameters across ranges of values. The next section describes a particular example

of the systems approach to modelling which I will use to illustrate the latter techniques.

3.3 Model equations

Swart and Hearne [116] developed a dynamic model to study the impact of hyrax (a
type of rock rabbit) and lynx on sheep farming in a region in South Africa. Two main
problems were identified. The first involves competition for pasture between hyrax and
sheep; hyrax encroach on farm land when the hyrax population exceeds the carrying
capacity of wilderness areas in the region. The second problem is the predation on sheep
by lynx. The principal food for lynx is hyrax, but from time to time lynx prey on sheep.
It is the latter problem that is of direct concern to farmers—they tend to be more tolerant
of the competition with hyrax.

The model in [116] was developed to increase understanding of the problems caused
by the spillover of hyrax and lynx from their predator-prey system into the sheep-pasture
system, and to determine the effects of different culling strategies for hyrax and lynx.
There are 10 state variables in the model. The sheep, hyrax and lynx populations are
each divided into three classes—juveniles, female adults and male adults—and there 1s
one variable representing pasture. The quantity of most interest to farmers is revenue.
This auxiliary variable is a function of the state variables and is made up of wool sales,
mutton sales, the Value.of sheep stock, and the cost of culling hyrax and lynx.

The differential equation for each state variable is formulated by adding and sub-

tracting quantities representing the processes affecting that variable. For example, the

equation for hyrax juveniles is as follows:
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Rate of change of ) )
= births - maturation - deaths - predation - culling

hyrax juveniles

where

e births depend on the number of hyrax female adults and decrease with increasing

hyrax density,

e maturation represents the number of juveniles that mature to become adults in

a given year and is a constant fraction of the number of hyrax juveniles,

e deaths are a proportion of the number of hyrax juveniles and increase with in-

creasing hyrax density,

e predation (by lynx) varies with the relative number of hyrax and lynx (that is,

predation increases as hyrax abundance increases), and

e culling is a constant fraction of the number of hyrax juveniles and is determined

externally by the farmer or an environmentalist.

In mathematical terms the above equation becomes

dH '
E—J— =H;p—Hjm — Hyp — Hjp — Hjc

where H; is the number of hyrax juveniles, Hypg is the number of hyrax births in a given
year, Hjpr is the number of hyrax that mature to become adults during the year, Hjp
is the number of hyrax juvenile deaths during the year, H;p is the number of hyrax
juveniles killed by lynx during the year, and Hjc is the number of hyrax juveniles that

are culled. A full description of the mathematical formulation of these terms can be

found in [116]. By way of example,
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Hijy = Hy x Hypn

where Hjpn (hyrax juvenile maturation normal) is the fraction of juveniles that become
adults each year and

H;

Hjp =Ly x Lpy X L Ap) X
JP T PN rm(Ap) oy + Hp + Ha

(3.1)
where

o Lt = Ljrx Ly+ Lr+ Ly is the total number of lynx (a lynx juvenile ratio (Ljr)
converts lynx juveniles into equivalent adult units, for example, 1 juvenile = 0.5

adults),

e Lpy is the lynx predation normal which is the average number of sheep killed per

lynx per year,

e Lpys is the lynx predation multiplier (lynx functional response) which is an increas-

ing function of prey abundance, Ap, and

o Ap= %Tﬂ / %;L is an index of the availability of hyrax as prey for the lynx population.
It is a ratio of the total number of hyrax to the total number of lynx relative
to a ‘mormal’ ratio, gl}\%, representing the usual level of abundance under typical

L

environmental conditions.

The last term in equation (3.1) adjusts the total amount of predation so that only the
number of juveniles killed is taken into account in this equation.

A possible choice for the lynx predation multiplier is shown in figure 3.1. An S-shaped

functional response is used as the lynx can only eat a limited amount even when prey
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Lpm
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Figure 3.1: The lynx predation multiplier (Lpam) as a function of prey abundance (Ap).

abundances are very high, and when abundances are low lynx have difficulty finding
hyrax. |

The other equations in the model are formulated in a similar manner to the above
example for hyrax juveniles. Table 3.1 shows the processes affecting each animal group.
Predation is by lynx and culling is done by the farmer (in the case of sheep) or controlled

by environmentalists (in the case of hyrax and lynx). Three quantities in the model are

-averaged using first order delays. A description of how this is included in the model is

given in appendix C.

Swart and Hearne [116] used traditional methods to study this model. They used
optimisation routines to find the hyrax and lynx culling rates which gave maximum
profitability in terms of revenue. They also investigated the sensitivity of the system to
parameter perturbations. They found that lynx culling is essential and that substantial

increases in both sheep numbers and revenue are possible by simultaneously culling hyrax

and lynx. Optimal culling rates in terms of revenue are around 30 percent per annum
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State variable

Growth processes

Death processes

Hyrax juveniles
1 (H)

Hyrax female
adults (Hp)
Hyrax male
adults (Har)

Lynx juveniles
(L)

Lynx female
adults (Lp)
Lynx male
adults (Lar)

Sheep juveniles
(57)

Sheep female
adults (SF)
Sheep male
adults (Sa)

Pasture (P)

births (H_]B)

juvenile maturation

(Him)
juvenile maturation

(Hynm)
births (LjB)

juvenile maturation
(Lim)

juvenile maturation

(Lim)

births (Ss8)
juvenile maturation
(S7m)

juvenile maturation

(Sam)

production (Pp)

deaths (Hjp),maturation (Hsas),
predation (Hjp),culling (Hjc)
deaths (Hrp),predation (Hpp),
culling (Hrc)

deaths (Happ),predation (Hpp),
culling (Hac)

deaths (Ljp),maturation (Ljar),
culling (Lj¢)
deaths (Lpp),culling (Lrc¢)

deaths (Lasp),culling (Lasc)
deaths (Syp),maturation (Sspr),

predation (Syp),culling (Ssc)
deaths (Srp),culling (Sr¢)

deaths (Symp),culling (Smc)

grazing (Pg)

37

Table 3.1: Table showing the processes affecting each state variable and some of the abbreviations
used in the model equations.
for both hyrax and lynx. From a policy point of view the model is robust with respect
to small parameter variations.

The purpose of this chapter is not to redo the work done by Swart and Hearne [116]—

their model and analysis have accomplished their aims. Instead I want to illustrate the

usefulness of the dynamical systems software in this setting.
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3.4 Technical details

A few minor modifications to the model are required to facilitate the use of this software.
The first involves scaling the state variables so that they all have the same order of
magnitude. Combining quantities of very different magnitude may lead to computer
round-off errors [43]. I chose values close to the initial values in [116] as scaling constants.
In other words, I replaced each state variable v; by the quantity s;v; where s; is the scaling
constant for v;. Now v; takes on values between say 0 and 10. In order to calculate the
magnitude of the ¢** population we can multiply this new v; by s;. To prevent the scaling
from altering the dynamics of the model, the differential equation for v; is divided through
by s;. The above manipulations are made clearer in appendix C.

Secondly, in order for the computer packages to generate continuous bifurcation dia-
grams, all functions in the model need to be continuous. The original model represents
farmers’ sheep culling strategies using two step functions. I replaced these with continu-
ous functions having steep slopes in the region of the step.

In the original model pasture production and fecundity rates vary seasonally. Since
this complicates the dynamics considerably when it comes to parameter studies and since
the present study is more concerned with long-term equilibrium behaviour than with day
to day variations, I did not include the seasonality functions. Solving the system of
equations numerically over time is still the best way to study seasonal variation in most
cases.

The various versions of AUTO only allow a state variable or the Ly-norm of the state

variables to be displayed on the y-axis of the bifurcation diagrams they generate. The

Ly-norm of a vector v = (vy,...,v,) is given by
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However, the quantity of most interest to farmers ié the revenue corresponding to different
management strategies. In order to have direct access to revenue values it would be most
convenient if revenue were a state variable. The following suggestion by Bard Ermentrout
makes this possible.
Let v be the vector of existing state variables and let A(v) be the revenue function.

We can add the equation

dR _ —R+ h(v)

dt T ’
where 7 is a small parameter, to the original system. R is the variable that we want to
represent revenue. This ordinary differential equation will not affect system equilibria
since at these points R = h(v) and hence 4E = 0 (as required for an equilibrium value).
The existence and stability of phenomena such as periodic orbits (limit cycles) are also
not affected. Since 7 acts as a delay time, we would like it to be small so that R is
a close approximation to revenue. However, care must be taken in the choice of 7 as
very small values can give rise to computer truncation errors. For the current problem
I used 7 = 0.05. Larger values of 7 resulted in R values which were less satisfactory
approximations to revenue while smaller values of 7 gave hardly any change in the R

values.

We are now in a position to begin the analysis.

3.5 Model analysis

3.5.1 Reference parameter values

We need to choose an initial set of parameter values before we can determine the effects
of varying parameters across ranges of values. Most of the values are given in [116]. Only

values for the hyrax and lynx culling normals (Hey and Lon) need to be chosen. It seems

most natural to choose those values which give the maximum revenue at equilibrium. In
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Figure 3.2: Three one-parameter bifurcation diagrams with revenue plotted as a function of Hen.
Each curve corresponds to a different (fixed) value of Loy
order to do this I first fixed Loy at 0.1, chose a value of 0.2 for Hen (any reasonable
values would do just as well), and used a numerical solver in XPPAUT to integrate the
system of equations until an equilibrium point was reached. Using this equilibrium point
as the initial point, I then used the AUTO interface to vary Heoy. This is done by
choosing Hcw to be plotted on the x-axis and one of the state variables (I chose revenue)
for the y-axis. Using the RUN and GRAB? commands a parameter diagram can be
generated. This diagram shows how the equilibrium revenue changes as Hoy varies (see
figure 3.2). The above exercise was repeated for a few different values of Loy and the
resulting parameter diagrams were plotted on the same pair of axes to give figure 3.2.
It can be seen from this figure that a value of 0.35 for Hew is close to optimal (in terms
of revenue) for all values of Loy. 1 chose this value for Hcopy and then used XPPAUT

to vary Loy in order to find the corresponding optimal value for Leoy. This gave figure

2A complete description of the available commands can be found in the XPPAUT documentation as
well as in the interactive tutorial that is available—see appendix B.
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Figure 3.3: One-parameter bifurcation diagram of revenue versus Loy for Hon=0.35.

3.3. Lower values for Hoy resulted in revenue curves lying below that in figure 3.3 and
higher values resulted in curves almost identical to that for Hopn=0.35.

For the reference parameter set I chose values of 0.35 for Hon and 0.15 for Loy as
these values are close to optimal and have the added advantage that small perturbations
will not have much effect on revenue, since the revenue surface appears to be fairly flat in
a region surrounding these values. At these reference values equilibrium revenue equals
3.94 which is slightly greater than 3.91, the value when Loy = 0.3 and Hgy = 0.3.
(Note that the scaling factor for revenue is 10 million Rand so the above values need to

be multiplied by this factor to get the true revenue values.)

3.5.2 Understanding model relationships
‘ The effects of culling sheep and of lynx fecundity

| There are many parameters in this model which could be used to illustrate the dynam-

ical systems techniques. Those affecting population growth rates are likely to have the

I
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Figure 3.4: One-parameter bifurcation diagrams obtained from varying Spcy (nominal value =
0.28/yr) with Lpny=0.7/yr. In (a) revenue is plotted on the y-axis, in (b) the state variable for lynx
females is used, and in (c) the state variable for pasture is used.
greatest influence on the dynamics. I have chosen to study two such parameters in this
chapter—the sheep female culling normal Srcy, which is the average number of ewes
culled by a farmer per year, and the lynx fecundity normal Lgy, which is the average
number of offspring produced per female lynx per year. As before I used XPPAUT to
integrate the system numerically, using the reference parameter values, until an equilib-
rium was reached. Using these equilibrium values for the state variables as the starting
point, I employed XPPAUT’s AUTO interface to produce a bifurcation diagram. The
results are shown in figures 3.4 and 3.5. |
Once a bifurcation diagram has been generated using XPPAUT, it is easy to switch

the variable on the y-axis. The effects of varying a parameter with respect to different

state variables can then be seen. For each parameter I have chosen three diagrams. One
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Figure 3.5: One-parameter bifurcation diagrams obtained from varying Ly (nominal value = 0.7/yr)
with Spen=0.28/yr. In (a) revenue is plotted on the y-axis, in (b) the state variable for lynx females is
used, and in (c) the state variable for pasture is used.

shows the effect of the parameter on equilibrium revenue, the second the effect on. the
equilibrium number of lynx females, and the third the effect on the equilibrium amount
of pasture.

A number of observations can be made from figures 3.4 and 3.5. The first is that
AUTO encounters points bveyond which it cannot calculate. In figure 3.4 such a point
is Spen=0.54 and in figure 3.5 there are two points, Lpny=0.39 and Lpy=2.78. Using
XPPAUT to solve the system of equations numerically for parameter values on either side
of these limiting points, the causes of these difficulties can be determined. Output from a
numerical integration is shown in XPPAUT’s data window and from this it was seen that

the sheep population dies out for Spen > 0.54 or Lpy > 2.78, and the lynx population

dies out for Ly < 0.39. The latter conclusion could also be drawn from figure 3.5(b).
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Beyond the limiting values there is no equilibrium at which all three populations are
present and, hence, AUTO cannot continue the equilibrium branch any further.

A second observation can be made by looking at the bifurcation diagram for pasture
in figure 3.4(c). As the equilibrium number of sheep declines (as Spon increases and
approaches the value corresponding to sheep extinction), the equilibrium value for pasture
increases unchecked. Clearly this is unrealistic and suggests that some modification
should be made to the model equations to limit pasture growth. I return to this in
section 3.5.3.

In figure 3.5 there is a threshold value at Lrny=0.76 above which revenue declines as
Lpy increases and below which revenue remains fairly constant as Lpy is varied. Again [
chose parameter values on either side of this threshold and used XPPAUT to integrate the
system of equations numerically until an equilibrium was reached. Viewing the numerical
output in the data window lent some insight into the behaviour of the model. I found
that as Lpy increases through 0.76, prey abundance® at equilibrium passes through a
threshold value above which lynx begin to supplement their diet with lambs. This loss
of lambs explains the decrease in revenue.

An important point to note is that if a traditional sensitivity analysis had been
done using optimal equilibrium values for the state variables and a nominal value of
Lrn=0.6/yr, then no change in equilibrium revenue would have been seen for a 10 percent
increase in Lry. However, using a nominal Valﬁe of 0.7/yr, a 10 percent increase places
Lpy at 0.77/yr. This is above the threshold point and thus a decrease in equilibrium
revenue occurs. '

The only stability change in figures 3.4 and 3.5 occurs at Lrpy=2.06. At this point
a Hopf bifurcation occurs (see section A.2.10), which means that the stable equilibrium

point becomes unstable and a periodic orbit is initiated. However, oscillations are only

3See the explanation under equation (3.1).
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associated with the shéep—pasttire subsystem. The lyﬁx and hyrax populations do not
cycle. In this case the limit cycles associated with the Hopf bifurcation are unstable
and thus not of practical interest. In such a case it is more enlightening to examine
the temporal dynamics of the system for 2.06 < Lpy < 2.78. Using XPPAUT for this
purpﬁsé it was found that the sheep population declines to zero in this range of parameter
values while the hyrax and lynx populations reach steady states. This trend continues for
Lpn > 2.778 but the sheep population dies out much faster and AUTO fails to converge.

Before modifying the equations to limit pasture growth as suggested earlier, it would
be informative to study the roles of the existing density-dependent functions. This can
be viewed as another form of sensitivity analysis in which we investigate the system’s

response to whole functions instead of single parameters.

The effects of density-dependence

There are a number of functions in the model which modify growth and death rates
as conditions change. All these functions are normalised to take the value 1 when the
quantities on which they depend are at their reference values. For example, the equation
governing pasture (P) dynamics is given by

dP
dt

= pasture production — pasture grazing

fl

A.Ppy — Tssu.GN.GM(PA) (3.2)

where A is the area of the farming region under study, Ppy is the pasture production
normal (average pasture growth rate), Tssy is total small stock units (a representative
value for the number of sheep), G is the grazing normal (average amount of pasture
grazed per unit stock) and Gy is the grazing multiplier which is a function of P4, the

pasture availability index. Py is given by P/P where P is an average pasture density.

The grazing multiplier has the form shown in figure 3.6.
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Figure 3.6: The grazing multiplier function (Gar) as a function of pasture availability.

In order to remove a density-dependent function from the model, the simplest ap-
proach is to replace it by a constant function. For example, we can set Gy = 1. This
was done for each multiplier function in turn and bifurcation diagrams obtained from the
altered model were compared with those from the original model in each case.

Removing the grazing multiplier, Gs, had the greatest effect on model dynamics.
Even after altering a number of parameter values the system did not reach equilibrium.
The sheep population either increased indefinitely or decreased to extinction for each
parameter set that was tried. This is not surprising since the grazing multiplier affects
pasture grazing and sheep fecundity as well as sheep juvenile deaths. Without Gy the
density-dependence of pasture grazing and sheep dynamics on pasture availability (G
is a function of Py) is removed. The results show that this density-dependence is critical
for regulating the sheep-pasture subsystem.

The effects of the other functions in the model were quantitative rather than qualita-

tive. That is, removing them from the model tended to decrease the range of parameter
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values over which sheep, hyrax and lynx coexist at equilibrium, but did not alter the
qualitative dynamics. In relative terms however, the effects of the fecundity multiplier
functions were more noticeable than those of the death and predation multipliers.

The above comments do not imply that the latter multiplier functions play an in-
significant role in the model. They have a regulatory effect and reduce the impact of
parameter changes on model behaviour. This resilience to disturbances is very desirable
[61] and is expected of many natural systems. Thus, although these functions may not
be critical in determining model behaviour, they are important for making the model
more realistic.

It was observed earlier that the model lacks a feedback relationship that would limit
pasture growth when sheep densities are very low. We also know that pasture availability -
has a significant influence on pasture grazing and sheep fecundity and hence on the
predictions of the model. Thus modifying equation (3.2) to include density-dependent
growth may have a considerable effect on the behaviour of the model. This modification

is discussed in the next section.

3.5.3 Adding density-dependence to pasture growth

The reader will probably have noticed that equilibrium pasture values only become un-
realistic for extreme parameter values. However, it is desirable to have a model which
can describe a variety of situations instead of one that is only suitable for a small range
of values. Also, improving model realism in extreme regions may affect the dynamics
corresponding to more normal values and so play an important part in understanding
system behaviour. The formulation of a model also affects statistical parameter fitting
routines. If important relationships are left out then these routines may give misleading
results or fail to converge.

In the sheep-pasture, hyrax-lynx model pasture growth occurs at a fixed rate and
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is independent of existing pasture density (see equation 3.2). In order to limit pasture

growth, I included a pasture multiplier (Par) in equation (3.2) as follows:

dpP
dt

= pasture production — pasture grazing

= A.Ppy.Py(Ps) — Tssu.Gn-Grr(Pa) (3.3)

where Pps is a function of pasture availability, P4. For high values of P4 we expect
pasture growth to slow down and saturate. We also expect a decline in growth when
P, is very low following the principle that ‘growth promotes growth’. A function having
this general form is the Ricker function. Using this type of relationship I introduced a

density-dependent function having the shape shown in figure 3.7.

Pu o5

O |
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Figure 3.7: The pasture multiplier (Par) as a function of pasture availability (Py4).

To test the effects of this new function I generated a number of bifurcation diagrams
and compared them with those from the original model. Figures 3.8 and 3.9 show those

diagrams which correspond to figures 3.4 and 3.5 respectively.
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Figure 3.8: One-parameter bifurcation diagrams obtained from varying Spcn (nominal value =
0.28/yr) for the new model which includes a pasture limiting multiplier. In (a) revenue is plotted
on the y-axis, in (b) the state variable for lynx females is used, and in (c) the state variable for pasture
is used.

In figure 3.8(a) total revenue declines to zero as Spen increases. This is more math-
ematically satisfactory than figure 3.4(a), where the curve stops abruptly at a positive
revenue value, as it indicates clearly where a positive sheep population is no longer pos-
sible. Figure 3.8(c) shows the maximum pasture density which occurs when a positive
sheep equilibrium (and hence a positive value for revenue) is impossible. This density is
lower than in figure 3.4(c) but depends on the exact nature of the pasture multiplier.

Another observation from figure 3.8 is that instead of AUTO being unable to converge

at very low Sron (sheep female culling normal) values, a Hopf bifurcation occurs and

the bifurcation diagrams show that no stable equilibrium at which all three populations
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Figure 3.9: One-parameter bifurcation diagrams obtained from varying Ly (nominal value = 0.7/yr)
for the new model which includes a pasture limiting multiplier. In (a) revenue is plotted on the y-axis,
in (b) the state variable for lynx females is used, and in (c) the state variable for pasture is used.
coexist is possible for Speny < 0.059. For these values there is insufficient pasture to sup-
port the high sheep population. Thus, introducing the pasture multiplier has improved
the dynamics at low values of Sron as well as high values and has solved the problem of
revenue increasing rapidly as in figure 3.4(a).

In figure 3.9 a limit point (see section A.2.13) has replaced the Hopf bifurcation of
figure 3.5. The limit point bifurcation clearly shows that for Lpy > 1.491 no equilibrium
at which all three populations coexist is possible. Again, using XPPAUT to integrate
the system numerically gives insight into the dynamics corresponding to the different

regions in the bifurcation diagrams. In particular, the temporal dynamics show that the

pasture multiplier slows and limits pasture growth as desired. Comparing the dynamics
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of the original and modified models at Spcny = 0.5 shows that limiting pasture growth
has a stabilising influence (see figure 3.10). The oscillatory approach to equilibrium by

the original model (figure 3.10(a)) is replaced by a smooth approach in figure 3.10(b).
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Figure 3.10: Time plots obtained using (a) the original model and (b) the modified model with
Sren = 0.5.

The limiting value for pasture in figure 3.8(c) is still rather high but, since I had no
experimental data on which to base the form of the pasture multiplier, I did not think
it worthwhile to fiddle with the function to obtain a more plausible value. The effects of
introducing the multiplier have already been adequately demonstrated.

A closer look at the behaviour exhibited by the model may suggest further modifica-
tions to the equations. The above is just one example of how bifurcation diagrams can
help in the process of model building. Another example can be found in chapter 4. The
next section describes how two-parameter studies can be used to obtain useful summaries

of model behaviour.

3.5.4 A summary of the effects of culling both hyrax and lynx

The model in this chapter was originally developed to study the effects of culling hyrax

and lynx. As was done in [116] and earlier in this chapter, optimal values (with respect to
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Figure 3.11: One-parameter bifurcation diagram of revenue as a function of Ley for the modified
model. The change in stability (denoted by the change from a solid to a dotted line) occurs at a limit
point.

revenue) were found for the hyrax and lynx culling normals. However, only one parameter
was varied at a time. We can obtain a two-parameter diagram to summarise the effects
of varying both parameters simultaneously as follows.

Using the modified model the bifurcation diagrams for the lynx culling normal Loy
have the form shown in figure 3.11. For Loy below the limit point the sheep population
dies out as there is too much predation by lynx. Using AUTO the limit point can be
continued in Hgp, the hyrax culling normal, as well as Lgy. That is, we can see how the
position of this limit point varies as a function of both Heoy and Ley. This gives the two-
parameter bifurcation diagram in figure 3.12. From this figure it can be seen that sheep
become extinct as a result of the combined effect of lynx predation and competition with
hyrax for pasture since both Loy and Hen are low in the region where sheep die out.

Note that figure 3.12 could not have been produced using the original model as there was

no limit point in the corresponding Loy bifurcation diagrams (see figure 3.3)—AUTO
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Figure 3.12: Two-parameter continuation of the limit point in figure 3.11. (To determine the behaviour
corresponding to a particular region in this two-parameter diagram, choose values for Hoy and Loy in
this region and then use XPPAUT to integrate the system numerically.)

signalled non-convergence and stopped calculating.

Combining figure 3.12 with the observation that the lynx population dies out for
Len > 0.37 for all values of Hen gives figure 3.13. This was determined by generating
bifurcation diagrams for Ley for a number of different (fixed) Hey values. Conversely,
varying Hoy for a variety of fixed Loy values does not produce any parameter ranges
where the hyrax population dies out.

Figure 3.13 shows that all three populations coexist at equilibrium for a large set of
culling rates. The diagram would be of even greater use if we knew the revenue value
corresponding to each point in this two parameter space. This can be done by recording
information given by XPPAUT and using some other graphics package to plot a three-
dimensional surface.

Using the modified model developed in the previous section I fixed the value of Hepy,

chose Loy = 0.15 (say) and used XPPAUT to find the equilibrium point numerically. I
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Figure 3.13: Two-parameter bifurcation diagram of the Hcy and Loy parameter space for the
modified model.

then used the AUTO interface to vary Len in both directions. Using the GRAB feature
of XPPAUT to move along the branch of equilibrium points, I recorded the revenue values
at regular intervals along the curve. I did this for a number of Hoy values aﬁd plotted
the results using the public domain graphics package GNUPLOT [125]. A surface plot
and corresponding contour plot are shown in figure 3.14.

As can be seen from the figure there is a large region of parameter space over which
revenue does not vary much indicating that the model is very robust to changes in the
culling rates in this region. This is a desirable property when it comes to developing

management strategies.

3.5.5 Biological interpretation of results

The analysis of the previous sections has led to a number of insights into the sheep-

pasture, hyrax-lynx system. Figure 3.8 shows that altering the number of ewes that are
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Figure 3.14: (a) Surface plot and (b) contour plot of revenue as a function of the hyrax and lynx

culling normals. The arrow in (b) indicates the direction of increasing revenue.
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culled only affects the sheep-pasture subsystem. However, the effects on this subsystem
are considerable. Culling too many ewes will obviously cause sheep numbers to decline.
More important is the effect on revenue. Significant increases in revenue are possible
if the farmer culls fewer ewes as there is a greater return if these sheep are allowed to
reproduce than if they are taken to market. (This is provided that the sheep stock is
not too large for the pasture to support it, that is, provided Speny > 0.059.) However,
there is a trade-off as culling fewer ewes results in a lower cash flow. Another trade-off
results from the decrease in pasture availability which accompanies a larger sheep stock.
This is already reflected in the model by the dependence of sheep fecundity on pasture
availability. However, an additional quantity representing the quality of sheep may be
useful as this will affect the returns from wool and mutton sales and hence revenue. This
presents another opportunity for improving the model.

Figure 3.9 summarises the effects of lynx fecundity on the system. If lynx fecundity
is very high (Lgny > 1.5) then the sheep population will not be able to survive. However,
if lynx fecundity is sufficiently low (Lrpy < 0.78) then the lynx population does not need
to prey on sheep as it can'be sﬁpported by Athe hyrax population. Further decreases
in lynx fecundity at th(;,se values have no effect on revenue. For intermediate values
(0.78 < Lpy < 1.5) considerable increases in revenue are possible if lynx fecundity is
decreased. This favours the culling of lynx females in particular.

In section 3.5.2 we found that density-dependence of sheep and pasture dynamics
on pasture availability is critical for regulating the sheep-pasture subsystem. In fact this
encouraged the modification of pasture growth to include density—dependence.- This mod-
ification restricts both pasture and revenue values from increasing indefinitely (compare
figures 3.4 and 3.8) and also stabilises the temporal dynamics (see figure 3.10).

Finally, the effects of culling both hyrax and lynx were summarised using two-

parameter diagrams. In particular, figure 3.14 shows that the model is robust to changes
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in culling rates provided these rates are sufﬁciently high.

3.6 Conclusion

This chapter has illustrated a number of potential uses of bifurcation analyses using
packages such as XPPAUT. First, models having a large number of state variables and
parameters can be analysed in greater depth than was previously practical. For system
dynamics models bifurcation diagrams give more information than traditional sensitivity
analyses as they summarise the behaviour of the model across a range of parameter values
instead of being restricted to a single, fixed perturbation. As a result these diagrams can
indicate where model relationships are incomplete and can thus aid in model formulation.
Another example of this can be found in chapter 4.

The analysis also showed that the model is quite robust in a qualitative sense—the
stability of the system is not greatly affected by parameter variations. However, revenue
magnitudes are sensitive to certain parameters. This is an important observation for
farmers as they seek to maximise their revenue. Trade-offs between higher long-term
revenue and lower cash flows as well as higher revenue and lower sheep quality were also
noted.

The dynamics of the model turned out to be fairly simple from a bifurcation viewpoint.

Other similar models may not be quite so robust. An analysis similar to the one in this

chapter can be useful for uncovering regions of more complex behaviour in such cases.




Chapter 4

Ratio-Dependent Model

4.1 Introduction

Despite having a large number of state variables and parameters, the system dynamics
model in the previous chapter turned out to have fairly simple dynamics. This chapter
focusses on a more theoretical model having only three state variables but whose dynamics
are more complex. In addition to describing how an analysis of such a model may
be approached using dynamical systems techniques, a dual aim of the chapter is to
highlight some of the difficulties associated with ratio-dependent models. These models
are currently a topic of considerable controversy in ecological circles.

The example that I have chosen is a tritrophic model of a plant, herbivore and predator
system developed by Gutierrez et al. [52]. It is a general model and is physiologically
based—a property which the authors claim makes estimation of parameter values from
experimental data fairly straightforward. However, there are a number of correction
factors in the model whose function is to scale potential rates to realised rates. These
factors complicate parameter estimation considerably. Nevertheless, having appeared
in a leading journal, this model is sure to receive attention and further analysis of its
dynamics may be of interest.

In the next section I summarise the arguments for and against ratio-dependent models.

Following this I describe the model equations and the technique of nondimensionalisation

that I used to scale the equations and reduce the number of parameters in the model. 1
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also introduce a small modification to the ratio-dependent terms. In the analysis that
follows I consider both the original and this modified model in order to highlight some
of the difficulties associated with ratio-dependent models.

After choosing a set of parameter values which give rise to a stable tritrophic equilib-
rium (that is, a stable equilibriﬁm at which the plant, herbivore and predator populations
are all nonzero) I begin the analysis by varying each parameter value in turn to see what
effect it has on the dynamics and to determine the range of behaviour that the model
can exhibit. Two-parameter bifurcation diagrams summarising the effects on system
behaviour of the plant and herbivore respectively complete the preliminary analysis.

Having identified those parameters which have the greatest influence on the dynamics,
I obtain a series of two-parameter diagrams using the modified model. These diagrams
illustrate the combined effects of the lower two trophic levels on the behaviour of the
model. Of particular interest are parameter combinations which give rise to multiple
stable states. In some cases a stable tritrophic equilibrium coexists with a stable limit
cycle suggesting the possibility of an abrupt change in the behaviour of the system if it
is sufficiently perturbed (see section A.2.7).

To complete the study the limits of isocline analysis! in a three-dimensional setting
are demonstrated. Gutierrez et al. [52] used this technique in their analysis of the model.
Although isocline analyses have been employed in many settings and with considerable
success [36, 38, 44, 56, 74, 92, 103], in more complicated higher dimensional models for
which the categorisation of variables as slow versus fast? is not possible, their application
is limited. An isocline analysis allows at most two variables to vary simultaneously. This

means that for the current model one variable is held fixed which results in a partly static

LA description of this technique together with examples can be found in [34].

2If the state variables in a model vary on different time scales it is often possible to approximate
" the system by a two-dimensional model representing either the slow or the fast dynamics. An isocline
analysis can then be done using the reduced system.
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representation of the dynamics. The dynamical systems techniques allow all three state

variables to vary simultaneously thus permitting a more accurate analysis.

4.2 Background

Ratio-dependent models assume that the functional response terms depend on ratios
of the state variables rather than on absolute.values or products of variables as is the
case for classical models. Although not a new idea, the concept of ratio-dependence in
predator-prey interactions has been approached with fresh interest in ecological theory
in recent years (Berryman [17]).

Among the advantages of these types of models are that they prevent the paradoxes
of enrichment® and biological control* predicted by classical models [17]. Experimental
observations of Arditi and Saiah (6] suggest that prey-dependent models are appropriate
in homogeneous situations and ratio-dependent models in heterogeneous situations. In
support of this Ginzburg and Akcakaya [45] and McCarthy et al. [88] conclude from their
work that natural systems are closer to ratio-dependence than to prey-dependence and
Gutierrez [51] develops a physiological basis for the theory.

Gleeson [46], however, questions the assumptions of ratio-dependent models and notes
that direct density-dependence, or self-regulation, in the top consumer is sufficient to
preclude the paradox of enrichment from classical models. From his work on whether
patterns among trophic levels are a reliable way of distinguishing between prey- and ratio-
dependence, Sarnelle [107] concludes that the ratio-dependent approach should only be
applied when the predator and prey are the top two trophic levels in an ecosystem.

Abrams [1] argues that patterns and experimental results that have been used in support

3Classical models predict that enriching a system will cause an increase in the equilibrium density of
the predator but not the prey and will destabilise the community equilibrium (see Berryman [17}).

4Classical models predict that it is not possible to have both a very low and a stable pest (prey)
equilibrium density (Berryman [17]).
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of ratio-dependent predation are consistent with numerous other explanations and that
~ these other explanations do not suffer from pathological behaviours and a lack of plausible
mechanism as do ratio-dependent models. Lundberg and Fryxell [75] note that it may
be difficult to distinguish between competing hypotheses without a proper mechanistic
understanding of the processes involved.

In a recent paper Akgakaya et al. [3] respond to some of the above criticisms. The
argument relevant to the current chapter concerns their refutation of the pathological
behaviour of ratio-dependent models. Freedman and Mathsen [41] note that ratio-
dependent models are invalid near the axes (that is, where the state variables are close
to zero) as the ratios tend to infinity in these regions. As a result even when prey (re-
source) densities are very low, ratio-dependent models predict a positive rate of predator
(consumer) increase provided that predator densities are low enough, since the number
of prey available per predator increases to infinity as predator density declines to zero
[1, 46]. In terms of isoclines, the problem stems from the fact that the predator isocline
passes through the origin in ratio-dependent models which means that, even at low prey
densities, a sufficiently small predator population can increase. According to Hanski [55]
this is against intuition and rnahy field observations. It also means that ratio-dependent
models cannot be used to study extinction of species.

However, Akgakaya et al. [3] sf;ate that the above problems near the axes are only
pathological in a mathematical sense and that in biological terms the result would be
that both species increase initially and then predators consume all the prey and both
species become extinct. Since prey-dependent models cannot predict this outcome they
are pathological in a biological sense. However, I show below that ratio-dependent models
do not necessarily predict this outcome either. The ratio-dependent model that I will

describe in the next section predicts oscillations of large amplitude in these ‘pathological’

regions (see figure 4.3). While these large amplitude oscillations may be interpreted as
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signalling extinction from a practical viewpoint, this is not the prediction of the ratio-
dependent model.

Akcakaya et al. [3] state that:

A realistic model of prey-predator interactions should be able to predict
the whole range of dynamics observed in such systems in nature. A ratio-
dependent model can have stable equilibria, limit cycles, and the extinction

of both species as a result of overexploitation.

However, a few sentences later they agree that ratio-dependent models are not valid at
very low densities (which are a precursor of extinction) and earlier in the paper they

state that:

...we do agree that it is at the extremes of low and high densities that strict

ratio dependence may not be valid.

In an attempt to clarify some of the arguments in this debate, I introduce a small mod-
ification to the ratio-dependent model of Gutierrez et al. [52] and study this modified
model in conjunction with the original one. The analysis given below shows that the
original model is structurally unstable as a small perturbation to the ratio-dependent

terms substantially alters the dynamics.

4.3 Model equations

The model equations are functionally homogeneous (that is, all three equations contain
the same basic terms) as the authors argue that the same generalised functional and
numerical responses must describe the search, acquisition and conversion of all organisms

as they seek to satisfy their metabolic requirements. Details of the formulation of the

model can be found in Gutierrez et al. [52]. The final equations are:
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dfi‘;!l = (91¢n,1¢w,1 (1 — exp [— ]ajllA]\{[?D D, — rlMlbl) M,
B L
(o1 [-25]) i)
- (1 — exp [ afﬁ]) D3 M
i T

where M; is the biomass of plants, M is the biomass of herbivores, and M3 is the biomass
of predators. The parameters 8; represent assimilation rates corrected for the efficiency
of biomass conversion; «; represents the proportion of the resource that is available to
its consumers (that is, its apparency); D; is the per unit demand of the consumer for
resources; 7; 1s the base respiration rate corrected for the efficiency of biomass conversion;
and b; is the degree of self-limitation. M, represents a biomass equivalent of the light
energy incident in the growing space of the plants, and ¢,; and ¢,1 (which both lie
between 0 and 1) scale the potential photosynthesis rate to the realised rate.

The respiration term, riMZ1+b‘, requires further explanation. Respiration usually in-
creases with population density [52] and thus should be an increasing function of M;.
However, introducing such a functional dependence increases the complexity of the model
and, since the effect is usually small, the authors chose the simpler formulation riMZ-H'b"
where b; has a value between 0.02 and 0.05. The disadvantage of this choice is that r;
must have rather unusual units® which depend on b; so that the term r;M}!** has the
same units as %‘tﬂ (namely, g.day~' where g are the units of M;). This dependence of

the units on b; is not satisfactory from a mathematical viewpoint but since b; is small I

chose to ignore this initially. In the next section I discuss a small alteration to the model

! where g are the units of M;.

5The units of r; are g~ % day™
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which takes care of the difficulty.

Gutierrez et al. [52] use parameter values corresponding to a cassava®-mealybug’-
parasitoid® system in Africa and claim that their analysis demonstrates that the para-
sitoid Epidinocarsis lopezi (De Santis) can control the mealybug (except on poor éoils)
whereas Epidinocarsis diversicornis (Howard) and native natural enemies cannot.

My first aim was to reproduce the results in the paper [52]. However, the parameter
values for the cassava-mealybug-parasitoid system given to me by the authors (only values
for 0;, a;, D; are reported in the paper) did not yield the isocline configurations or the
behaviour that they described. Only after changing some of the parameter values by
several orders of magnitude did I succeed in producing qualitatively similar diagrams.

This haphazard approach of fiddling with parameter values is not satisfactory. Scaling
the equations would give a better idea of the relative magnitudes of the parameters. The

procedure involved is discussed in the next section.

4.4 Nondimensionalisation

The technique of nondimensionalising or scaling is commonly used to simplify a system
of equations as it has a nurﬁber of other advantages. It illuminates which parameters
are most important in determining the dynamics of the model (Edelstein-Keshet [34])
and gives insight into the relative magnitudes of the parameters required to produce
biologically reasonable behaviour. Also, the state variables are scaled so that they all
have the same order of magnitude, say between 0 and 1. This is important when solving
the equations ‘numerically as very different magnitudes can lead to computer round-

off errors (Gerald and Wheatley [43]). In the cassava-mealybug-parasitoid system the

6 Manihot esculenta Crantz

? Phenacoccus manihoti Mat.-Ferr.

8The larvae of a parasitoid feed on living host tissue such that the host is not killed until larval
development is finished.
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w biomass of cassava is much larger than that of the mealybug and the parasitoid (an
average cassava plant has a mass of about 2kg whereas the mealybug and parasitoids
have average masses around 2mg). Scaling M, at least, is thus vital.

Natural scalings® for the state variables are given by their carrying capacities when
resources are abundant. Gutierrez et al. [52] calculate these to be

0:D;

e

1
5
K,-:l ] i=1,2,3.

Replacing M; by K;M; (i=1,2,3) and ¢ by 7t* (here K; has the dimensions of M; and 7
the dimensions of ¢ and hence M; (i=1,2,3) and ¢* are dimensionless variables) transforms
equations (4.1) into system (4.2)'°.

dM, dM, dM, dt
dt> dM, dt dt*
a1M0

= T (01D1 (1 — exp [*W]> - Tl(I{lMl)b1> M]
—r (1 - exp l onglMl ]) DQI(Q M2

" DKoM, |) K
dcgz*?' = 7 (02D2 (1 — exp l—%]) — r2([{2M2)b2> M,
(1o |- )
(o 1o [ i),

Note that rin * = 0;D;. Choosing the dimensionless combinations of parameters

Y. = TaiDi i=1,2,3

¢i = T Z=2,3

ol
0 = =123

®For an introduction to nondimensionalising systems of ordinary differential equations see [34].
107 replaced the product 01¢yn 19w,1 by 61 since all three parameters have the same effect on the
dynamics and, thus, do not need to be considered separately.




Cha})ter 4. Ratio-Dependent Model 66

where K, = M,, gives the nondimensionalised equations (4.3) where I have replaced M;

by M; and t* by t for convenience.

dM [ 0

i = (o [5g]) o) on - 8 (- om [-52])

dM, [ QoM by $3 Q3 M,

i = (e |5 ) ) G (1 - e [-52]
dM. [ Q3 M.

dtS = 73 ((1 — €eXp -— ;}W32:|) - M3b3> M3. (43)

The choice of dimensionless parameters is not unique. Other combinations would
have led to slightly different final equations, however the above choices lend themselves
to biological interpretation. For example, «; can be thought of as the potential per unit
biomass growth rate [52] or as the conversion efficiency of the consumer in converting .
the resource into biomass. ¢@; can be thought of as the availability of the resource to
the consumer or perhaps the nutritional value of the resource. §2; is made up of a ratio
of quantities. The numerator can be thought of as the maximum amount of resource
available to the consumer and the denominator as the maximum demand of consumers
for resource. More simply, §; gives a measure of the ratio of supply to demand. The
results in [52] are based on the relationship between ¢; and «; since 7 is just a scaling
factor, and hence results using equations (4.3) are comparable with those in [52].

I mentioned earlier that the parameters r; in the original model have units which
depend on b;. This can be prevented by replacing the terms r, M;*t% with terms of the
form riMi(%)bi where T; has the same units as M;. T; can be thought of as a threshold
value above which self-limitation becomes noticeable. With this modification the units

of r; are day™" and r; can be interpfeted as a respiratibn rate as was originally intended.

The new carrying capacities are given by

[H’D’] T i=1,2.3.

O'I._.

L
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It can be shown that setting the K’s equal to these new values and scaling the equations
as above results in system (4.3) once again. Thus the problems with the respiration term
can be ignored in the rest of the analysis.

Having scaled the equations we need to choose values for the parameters. An ad-
vantage of scaling is that there are now 11 parameters instead of the original 18. For
comparison with the results of Gutierrez et al. [52] I wanted to find values which resulted
in isocline configurations similar to those in their paper. XPPAUT calculates and dis-
plays isoclines in two dimensions and parameter values can be altered interactively. This
proved useful for studying the effects of the different parameters on the isoclines. Since
the competition effect is very small but difficult to quantify, I followed Gutierrez (personal
communication) and chose b; = 0.02 (i=1,2,3). Values of v = 2.0, v, = 0.4, 73 = 0.1,
Q= 9.0, Q; = 8.0, Q3 = 10.0, ¢2 = 0.4, ¢3 = 0.05 gave the isocline configurations
shown in figure 4.1. These isoclines have similar shapes to those in [52]. A noticeable
difference is that the Mj isocline intersects the M, isocline to the left of the M,-peak.
In fact, using the techniques in [52] it would not have been possible to conclude that the
tritrophic equilibrium is stable for the isocline configuration shown in figure 4.1 because
of the position of the intersection point in the M; M3 plane. For the above parameter set
(which I shall call the reference set) there is also a stable limit cycle. The initial values
of My, M, and M5 determine whether the system approaches the stable equilibrium or
the limit cycle.

Biological considerations suggest that the above values for the §2; are rather high
and that the value for @3 is rather low. However, in the absence of better information
and since this parameter set has a nontrivial, stable equilibrium point, it is a convenient
starting point.

Before beginning an analysis of the model I would like to introduce a small mod-

ification to the equations. Since the problems associated with ratio-dependent models
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Figure 4.1: Isoclines in the (a) M; M, and (b) M2Mj planes for v; = 2.0, v2 = 0.4, v3 = 0.1, ; = 9.0,
Q; = 8.0, Q3 = 10.0, ¢2 = 0.4, ¢35 = 0.05, and b; = 0.02 (i=1,2,3). Both the stable equilibrium point
and the limit cycle are shown. Mj is fixed at 0.550 in (a) and M is fixed at 0.602 in (b). These values
correspond to the equilibrium point.

mentioned in section 4.2 involve low population densities, it would be interesting to know
what effects a small modification to the model, which prevents the denominators of the
ratios from getting too close to zero, would have on the dynamics. Abrams [1] states
that modifications to ratio-dependent models cannot be made biologically realistic be-
cause the original models have no clear mechanistic derivation. However, some form of
modification which prevents the ratios from tending to infinity may be useful for revealing
any spurious behaviour near the axes which may result from the ratio-dependence.

The ratios in model (4.3) have the form
Q;M;_4
M;
The difficulties are experienced when M; approaches zero. Adding a constant in the

denominator, that is replacing the ratio by

LM,

i . 4.4
ST (4.4)

would alleviate the problem. Although this addition may appear difficult to justify
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biologically, Gutierrez [51] used an exponent of this form in his functional response term.
That model is physiologically based as is the present one.
In model (4.3) the ratio-dependent terms have the form

k (1 — exp [—~ Qiﬂj\ﬁ_l]) M; (4.5)

where k is a parameter or combination of parameters. When the exponent is small we

have

Q

k (1 — exp [— Q"M"‘l]) M ~ k (1 _ (1 _ Qj‘j*)) M.

= kﬂ,’Mi_l .

In order to preserve this property when using the modified term (4.4), I replaced (4.5)
by

k (1 — exp [— Qifﬂ]) (a; + M;)
a; i

where a; is a small constant, say 0.001. The resulting equations are:

dfi\f1 = 7 (1 — exp [ Py M1]> (a1 + M) — y My
0 (er[ ] e
B o (1 - exp [ ]) (024 M) — o
¢Z (1 — exp [ a iMZ\};;D (as + Ms)
G = (e[ e e

If ;=0 (i = 1,2,3) then the above model is equivalent to system (4.3). We are now in a

position to begin the analysis.
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4.5 Model analysis

4.5.1 One-parameter studies

Since a partial qualitative analysis of the original model was done by Gutierrez et al.
[52] but using different techniques (namely, isocline analysis), it will be informative to
compare some of the results. The choice of dimensionless parameters was done with this
in mind. I begin the analysis by varying each parameter in turn using AUTO (through
XPPAUT) to see how it affects the dynamics. This will be done for all the parameters
excepf the b;’s due to the observation that intraspecific competition at the ¢** trophic
level now increases as b; decreases since M; noW lies between 0 and 1 as a result of the
scaling. This was overlooked in the original model and can only be rectified by changing
the formulation of the respiration term. Rather than modifying the model at this stage
I chose instead to keep the b;’s fixed. (For a given value of b; respiration still increases
with biomass as required.)

Since one of the main conclusions in Gutierrez et al. [52] concerns the relative efficacy
of two parasitoids in controlling the cassava mealybug population, I begin by studying
those parameters affecting the third trophic level, namely 73, ¢3 and 3. I then discuss
the remaining parameters. Both the original model corresponding to ¢;=0 (z = 1,2,3) in
system (4.6) and the modified model with a;=0.001 (¢ = 1,2, 3) are investigated. I chose
this particular value for the a;’s as it only affects the isocline configurations in figure
4.1 at low values of the state variables which is where the difficulties are encountered.
I also investigate a few other values. The reference values for the other parameters are
summarised in table 4.1. The results, together with possible biological interpretations,
are described in the next section. For generality I will refer to the plant, herbivore (or

prey) and predator biomasses rather than the cassava, mealybug and parasitoid since the

reference parameter set was not chosen from experimental data.
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Parameter | Description Value
" potential growth rate per unit plant 2.0
Y2 potential growth rate per unit herbivore 0.4
Y3 potential growth rate per unit predator 0.1
b availability of plant to herbivore 0.4
P3 availability of herbivore to predator 0.05
Q, supply of resources/demand by plants 9.0
Qy supply of plants/demand by herbivores 8.0
Q3 supply of herbivores/demand by predators 10.0
b degree of self-limitation for plants 0.02
ba degree of self-limitation for herbivores 0.02
b3 degree of self-limitation for predators 0.02

Table 4.1: Reference parameter set. In the subsequent figures in this chapter, only those parameters
which are explicitly mentioned have been altered. The values for all the other parameters correspond to
the ones in this table.

Analysis of the predator parameters

The parameter v3 can be thought of as the potential predator biomass growth rate when
prey are abundant, or as the predator’s conversion efficiency in the presence of abundant
prey. An important observation is that the value of 43 does not affect the isoclines. The
M3 zero isocline is given by %1 = 0 and the solution of this equation is independent of
" 73 (see equations (4.6)). Hence, an isocline analysis similar to that done in [52] would
not give any insight into how this parameter influences the behaviour of the system.
Bifurcation diagrams showing the effects of varying 73 for both the original model
and the modified model are shown in figure 4.2. M, is plotted on the y-axis. These
diagrams were obtained using AUTO through XPPAUT. The system was first integrated
numerically until it was close to an equilibrium and then XPPAUT was used to find the

exact location of the equilibrium point (singular point). This point was used as a starting

point for AUTO.

In both the diagrams in figure 4.2 the position of the equilibrium point does not vary
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Figure 4.2: One-parameter bifurcation diagrams obtained by varying v in (a) the original model
(a;=0, i = 1,2,3) and (b) the modified model (¢;=0.001, i = 1,2, 3). The state variable M; is plotted
on the y-axes. HB denotes a Hopf bifurcation, LP a limit point and PD a period-doubling bifurcation.
with ~s, Whvich agrees with the previous observation that 3 does not affect the isocline
configuration. However, 73 does affect the stability of the system. In both cases the
equilibrium point is unstable for very low values of 73 (low predator growth rate) and
the stable attractor is a limit cycle for these values. For the original model we have
an example of hard loss of stability (see section A.2.7) so that for certain values of ~;
there are two stable attractors—a sink and a stable limit cycle (such as in figure 4.1).
The initial values of the state variables determine which final state is reached. Also,
perturbations to the system may cause a jump from one stable attractor to the other if
the disturbance is sufficiently large. For a very small range of v3 values there are two
stable limit cycles in figure 4.2(a). The range of values is so small, however, that it is
not of much biological significance.

Observing the temporal dynamics of the system (using XPPAUT) for different values '
of 3 1 found that larger values of 73 decrease the time taken to reach equilibrium. Thus,
increasing 73, the potential growth rate of the predator, has a stabilising influence on the

system. This seems biologically plausible as higher values of 3 suggest that the predator

is better adapted to controlling its prey. It is interesting, however, that this trait does
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not afféct any of the equilibrium biomasses.

The modified model has a much smaller range of parameter values over which cycles
occur and the amplitudes of these cycles are smaller than for the original model (see figure
4.2). Thus, even though the a;’s have small values, they appear to have a stabilising
influence on the dynamics.

Another parameter which directly affects the predator is ¢3, the availability (or nu-
tritional value) of the herbivore to the predator. Bifurcation diagrams for the original
and modified models respectively and for all three state variables are shown in figures
4.3 and 4.4.

From these figures we can see that as ¢3 increases there is a general increase in the M,
equilibrium value or limit cycle maximum. The larger ¢3 the greater the availability of
the herbivore to the predator and the easier it is for the predator to control the herbivore.
Obviously, the lower the herbivore population the higher the plant equilibrium. As the
M equilibrium value approaches the M; carrying capacity in the original model, a Hopf
bifurcation (see section A.2.10) occurs at ¢35 = 0.09 (see figure 4.3). The periodic orbit
associated with this Hopf bifurcation undergoes a number of period-doubling bifurcations
(see section A.2.16) which leads to more complicated cycling behaviour. An example of
the temporal dynamics when ¢3 = 0.16 is shown in figure 4.5. There are two complete
cycles in these diagrams. It is interesting that the predator dynamics are less variable
than those of the plant and the herbivore. This cycling behaviour also contrasts with
that described by Akcakaya et al. [3] as being biologically plausible for low herbivore and
predator values (see section 4.2).

As ¢3 increases above the upper Hopf bifurcation the minima of the My and Mj5 cycles
in particular get very small (of the order of 107'° and lower according to XPPAUT’s data

window). From a practical viewpoint these populations would be considered extinct due

to statistical variation in which case the plant population would increase to its carrying
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Figure 4.3: One-parameter bifurcation diagrams obtained by varying ¢s in the original model. The
state variables My, My and Mz are plotted on the y-axes in (a), (b) and (c) respectively. Only the
positions of the Hopf bifurcations have been indicated. The changes in stability of the limit cycles occur

at limit points or period-doubling bifurcations but these have not been marked in the diagrams.
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Figure 4.4: One-parameter bifurcation diagrams obtained by varying ¢3 in the modified model. The
state variables My, M2 and M3 are plotted on the y-axes in (a), (b) and (c) respectively.
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Figure 4.5: Time plots of (a) M1, (b) Mz and (c) Mz for ¢3 = 0.16. All the other parameter values
are as in the reference parameter set.
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capacity for these values of ¢3. This is exactly the case for the modified model (see figure
4.4). Thus the upper Hopf bifurcation may be an artifact of ratio-dependent models.
lThis will be discussed in more detail later.

Another probiem with these low minima is that they lead to numerical difficulties.
This occurs as a result of the way in which the model is formulated—the dependence

of many of the terms on the ratio MAZ L in particular. These ratios become difficult to

evaluate numerically as M; approaches zero causing the ratio to tend to infinity. XPPAUT
cannot calculate zero isoclines and crashes while AUTO often enters an infinite loop if
such a situation arises and may crash. Setting the total number of steps for a continuation
fairly low sometimes allows AUTO to break out of the loop and signal non-convergence.
Manually stopping a contiﬁuation when one of the state variables gets very close to zero
also prevents the package from crashing. This explains why the limit cycles in figure 4.3
are only calculated up to ¢5 = 0.12. The above problems do not occur when using the
modified model.

It may have been noticed that ¢3 has a significant effect on the equilibrium values of
all three state variables. This is in agreement with Gutierrez et al. [52]. However, the
way in which they arrive at this conclusion is not entirely correct. In Gutierrez et al. [52]
it 1s stated that a less efficient parasitoid has a wider C-shaped Mj-isocline. It is true
that if @3 is decreased the Mj-isocline widens (see figures 4.6(a) and (b)). But this is
provided that My is constant. If the system is integrated and Mj is allowed to vary until
a new equilibrium is reached and the isoclines are plotted with this new equilibrium M3
value, then the final M,-isocline may in fact have a narrower C-shape than before (see
figure 4.6(c)).

The third parameter which directly affects the predator is 3. It is more difficult to

interpret this parameter biologically but it can be thought of as the ratio of the ‘supply’

of herbivore to the ‘demand’ of the predator when both populations are at their carrying
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Figure 4.6: Isoclines in the MM, plane. In (a) ¢3 = 0.06 and in (b) and (c) ¢3 = 0.05. All the
other parameter values are fixed. In (a) and (b) M3 has the same value—the value corresponding to the

stable tritrophic equilibrium point in (a) when ¢3 = 0.06. In (c) M3 has the value corresponding to the
equilibrium point when ¢3 = 0.05.
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capacities. Hence it reflects how limiting resources are to the predator. Figure 4.7 shows
the bifurcation diagrams corresponding to the original model for all three state variables.

For most values of {23 there is no change in the qualitative behaviour which in this
case is given by stable limit cycles. Even the amplitudes of these cycles do not alter much
although those for M3 decline slowly as Q3 is increased. It is only at low values of 23 that
a change in dynamics occurs. It is also at these low values that 23 has the greatest effect
on equilibrium magnitudes. Low values of (03 suggest a restricted supply in relation to
demand and are reflected in both low M; and low Mj3 equilibrium values. Since there
are relatively fewer herbivores available (in relation to predators) the predators are able
to control them better but the lower herbivore equilibrium also restricts the number of
predators that can survive. As expected, lower equilibrium values for M, correspond to -
higher equilibrium values for M;.

The corresponding bifurcation diagrams for the modified model are shown in figure
4.8. These diagrams are very similar to those in figure 4.7 except that there is a second
Hopf bifurcation resulting in first a decline in the amplitudes of the cycles followed by
a stable tritrophic equilibrium as €23 is increased. Again the introduction of the a;’s has
had a stabilising influence on the dynamics. From figure 4.8 we can clearly see that high
values of {13 are, however, undesirable as the M; equilibrium value is low while that for
M, is relatively high.

The above analysis has shown that the properties of the predator affect the stability
of the system as well as the equilibrium magnitudes of the herbivore (directly) and the
plant (indirectly). The extent of these effects depends on the properties of both the plant

and the herbivore. In the next section the parameters affecting these lower two trophic

levels are examined in more detail.
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Figure 4.7: One-parameter bifurcation diagrams obtained by varying {23 in the original model. The

state variables My, M2 and M3 are plotted on the y-axes in (a), (b) and (c) respectively.
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Figure 4.8: One-parameter bifurcation diagrams obtained by varying Q3 in the modified model. The

state variables My, My and M3 are plotted on the y-axes in (a), (b) and (c) respectively.
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Analysis of the plant and herbivore parameters

The parameter ¢, can be thought of as the availability or the nutritional value of the
plant to the herbivore. The bifurcation diagrams for the original and modified models
respectively and for My, M, and M3 are shown in ﬁgﬁres 4.9 and 4.10.

For both models the values of M, and Mj at equilibrium remain constant for the most
part as ¢ is varied (up to a limiting point) while the M; equilibrium value declines. A
possible explanation is that, due to the greater availability of the plant to the herbivore, a
lower plant biomass can support the same biomass of herbivore at a higher ¢, value. This
enables the herbivore to have an even greater impact' on the plant. If ¢ is sufficiently
high then the herbivore can send the plant population to extinction. This is suggested
by the very low cycle minima for the original model and is even clearer for the modified
model where the M; equilibrium value is very low for ¢, > 1.061 (the location of the Hopf
bifurcation). Of course, once the plant is extinct both the herbivore and the predator are
forced into extinction as well. This can be checked by observing the temporal dynamics of
the system using XPPAUT for ¢, to the right of the upper Hopf bifurcation (¢, > 1.061)
using the modified model.

- For the original model we again have the problem of very low cycle minima for the
state variables. These are biologically unrealistic and cause numerical difficulties. The
modified model does not have this problem.

Suppose we vary 71, the assimilation or conversion efficiency of the plant when re-
sources are abundant. The bifurcation diagrams are shown in figure 4.11. Comparing
these diagfams with figures 4.9 and 4.10 we see that they are almost mirror images.
That is, decreasing v; has a very similar effect to increasing ¢,. Both parameters can be
thought of as affecting the resistance of the plant to the herbivore. Decreasing v; lowers

the quality of the plant as it cannot convert resources as effectively. As a result the



Chapter 4. Ratio-Dependent Model

(a)

M,

(b)

M,

(c)

0.8
0.6
0.4
0.2

0.6

0.4

0.2

0.8
0.6
0.4
0.2

83

T

]

0.9 1.2

0.9

1.2

..On::.i il

0 0.3

0.6
¢2

0.9 1.2

Figure 4.9: One-parameter bifurcation diagrams showing the effects of varying ¢2 for the original

model. The state variables My, My and Mz are plotted on the y-axes in (a), (b) and (c) respectively.
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Figure 4.10: One-parameter bifurcation diagrams showing the effects of varying ¢ for the modified

model. The state variables M7, M, and M3 are plotted on the y-axes in (a), (b) and (c) respectively.
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Figure 4.11: One-parameter bifurcation diagrams showing the effects of varying 7, for (a) the original
model and (b) the modified model. The state variable M, is plotted on the y-axes. The limit points
(LP) mark the endpoints of the region of hysteresis (see section A.2.11).

detrimental effect of the herbivore on the plant is greater. Increasing ¢,, the availabil-
ity (nutritional value) of the plant to the herbivore, achieves the same result but more
directly.

We can generate two-parameter diagrams in (71,¢2)-space by continuing the limit
points and the Hopf bifurcations in two parameters (see sections A.2.1 and B.4). The
results are shown in figure 4.12—solid lines indicate Hopf bifurcation continuations and
dotted lines indicaté limit pointAcontinuations. These diagrams show clearly that decreas-
ing ¢, or increasing v; has a similar effect and that there is a transition between different
types of qualitative behaviour as the region'enclosed.by the limit point continuations is
crossed.

Part of this result could have been predicted from [52] since they note that it is the
ratio of v; and ¢, that determines the nature of the plant isocline. We thus expect this
inverse relationship. However, the one-parameter bifurcation diagrams have given us the
additional information that for certain parameter ranges limit cycles and/or multiple

stable states are possible. Both these phenomena are important biologically.

We can make a number of observations by comparing figures 4.12(a) and (b). First,
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Figure 4.12: Two-parameter bifurcation diagrams showing the effects of varying both v; and ¢, on the
positions of the limit points and Hopf bifurcations in figure 4.11. The diagram in (a) corresponds to the

original model and that in (b) to the modified model. Solid lines indicate Hopf bifurcation continuations

and dotted lines indicate limit point continuations.
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whereas in (a) AUTO could not calculate beyond the point denoted by MX, this problem -
does not occur in (b). A closer investigation reveals that the equilibrium values for the
state variables are close to zero in the upper left triangle of the two-parameter space
and this results in numerical problems when using the original model. XPPAUT also
has difficulty calculating zero isoclines in this region and often crashes. However, figure
4.12(b) gives a more complete picture of the dynamics. There are three distinct regions
in this diagram two of which correspond to stable tritrophic equilibria while stable cycles
occur in the other. One of the regions of stable equilibria has high equilibrium values of
M; but the other has low equilibrium values—an important distinction ecologically.
The parameters 72 and ¢3 also appear to have inverse effects if we compare the average
of the cycle maxima and minima when 7, and ¢3 are varied independently (compare
figures 4.3, 4.4 and 4.13). We can investigate this relationship in more detail by continuing

the Hopf bifurcations in figure 4.13 in ¢3 as well as v,. The results are shown in figure

4.14.
(a) 1 | T 1 (b)
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0.6 | c . .
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Figure 4.13: One-parameter bifurcation diagrams showing the effects of varying v, for (a) the original
model and (b) the modified model.

Again, in general decreasing ¢3 has a similar effect to increasing v,. However there

are a few more Hopf bifurcations associated with these parameters. AUTO stops at the
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Figure 4.14: Two-parameter bifurcation diagrams showing the effects of varying both y2 and $3 on

the positions of the Hopf bifurcations in figure 4.13.
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point marked MX when using the original model since the equilibrium values for M, and
M3 are very small here. The complete continuation is shown in figure 4.14(b) using the
modified model. By comparing the two diagrams in figure 4.14 it can be seen that the
dynamics for the modified model, while very similar to those for the original model, are
more stable in general. The regioﬁs corresponding to tritrophic equilibria are larger and
the cycles in the upper half of the two-parameter space are less complex. These claims

are made clearer in figures 4.15 and 4.16.

0.3 .
0.2 - i
3
0.1 | i
0 / . . .
0 0.5 1 15 2 2.5

Y2

Figure 4.15: Two-parameter bifurcation diagram of the Hopf bifurcation continuations in (7y2,43)-space
for the modified model with a;=0.002 (i = 1,2, 3).

Figure 4.15 shows the (y2,¢3)-space for the modified model with ;=0.002 (¢ = 1,2, 3).
The regions of stable equilibria are even larger than in figure 4.14(b) resulting in smaller

regions of cycles. The presence of the a;’s seems to have a stabilising effect on the

dynamics of the system.
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Figure 4.16: Time plots corresponding to the points marked with *’s in figures 4.14(a), 4.14(b) and
4.15. (a) These plots were obtained using the original model with (i) v2=0.4, ¢3=0.15 and (ii) 7y.=0.4,
$3=0.3. (b) These plots were obtained using the modified model with ;=0.001 (¢ = 1,2,3) and (i)
v2=0.7, ¢3=0.15 and (i1) 72=0.7, ¢3=0.3. (c) These plots were obtained using the modified model with
4;=0.002 (i = 1,2,3) and (i) 72=0.8, ¢3=0.2 and (ii) 7,=0.8, ¢3=0.3.
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Figufe 4.16 shows the time plots corresponding to points marked with *’s in the left-
hand section of the upper region of cycles in figures 4.14(a),(b) and 4.15. The left-hand
portion of this region is where the values of M; and Mj3 are low and, hence, where the
nonzero a;’s have most effect. Clearly nonzero a;’s reduce the complexity of the cycles
(even for very small values) and increasing their value also reduces the cycle amplitude.
An additional point to note is that the cycles for the original model (a;=0, 7 = 1,2, 3)
undergo long periods of extremely low values which is unrealistic from an ecological
viewpoint.

The only parameters that have not been discussed so far are €y and ;. Bifurca-

tion diagrams corresponding to €; are shown in figure 4.17. Only the diagrams for M,

(a) 1 T T T T (b) 1 T T T T
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M1 Ml
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Figure 4.17: One-parameter bifurcation diagrams showing the effects of varying ; for (a) the original
model and (b) the modified model. The state variable M; is plotted on the y-axes.

have been shown but those for My and M3 have the same shape—the carrying capacity
equilibria are however different. As can be seen from figure 4.17, in both cases {; does
not affect the stability of the equilibrium point and only affects equilibrium magnitudes
when it drops to low values.

Similar conclusions can be made regarding €, (see figure 4.18) except that at low O,

values there is a change in dynamics to stable limit cycles for both models although the
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range of parameter values giving rise to cycles is slightly smaller for the modified model.

Figure 4.18: One-parameter bifurcation diagrams showing the effects of varying Q5 for (a) the original
model and (b) the modified model. The state variable M; is plotted on the y-axes.

4.5.2 Combining plant and herbivore dynamics

In the previous section it was seen that v, &2, 72 and ¢3 all have sigﬁiﬁcant effects on
the dynamics of the model. The former two parameters determine the properties of the
plant and the latter two the properties of the herbivore. The two-parameter diagrams
in figures 4.12 and 4.14 thus summarise the effects of the plant and herbivore trophic
levels respectively provided that the dynamics of the other trophic levels are constant. It
would be interesting to know how the behaviour of the model changes as both the plant
and the herbivore dynamics are altered. This is the focus of the present section. The
modified model with a;=0.001, (¢ = 1,2,3) is used to investigate the interaction of the
two trophic levels as this model allows a more complete picture of the dynamics to be
obtained than the original model.

Figure 4.12 shows that increasing v, or decreasing ¢, has a similar effect. Generating

two-parameter diagrams of the (vyz,¢3)-space for different (fixed) values of one of these
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plant parémeters, say 71, will thus give an idea of the combined effects of the plant and
herbivore. Figures 4.19, 4.20, 4.21, 4.22 and 4.23 show the Hopf bifurcation and limit
point continuations for five values of v, namely v; = 0.4, 0.6, 1.2, 1.8 and 2.4. Figure
4.14(b) corresponds to v; = 2.0 and can be viewed in conjunction with these diagrams.

As can be seen from these diagrams, altering v, affects the shape and/or the position of
the Hopf bifurcation continuations (solid lines) and the limit point continuations (dotted
lines). Let us consider the limit point continuations first. Figures 4.24(a), (b) and (c)
show one-parameter bifurcation diagrams obtained by varying 42 with 43 = 0.4 and
¢3 = 0.07, 0.17 and 0.25 respectively. These diagrams correspond to the horizontal
dotted lines in figure 4.19. The limit points in these diagrams demarcate the region of
hysteresis, that is, the range of parameter values giving rise to multiple equilibria. We
can see that this range of values increases as ¢3 increases.

The existence of a hysteresis phenomenon does not imply the existence of two stable
equilibria. This depends on other factors such as the occurrence of Hopf bifurcations. In
figure 4.24(a) there are two stable equilibria for v, between the two limit points (0.18 <
72 < 0.30). One of these stable equilibria corresponds to a low equilibrium' M, value
and the other to a high equilibrium M; value. The unstable equilibrium intermediate to
these stable equilibria demarcates their domains of attraction and indicates the extent of
the perturbation (in terms of M;) required to move the system from one stable attractor
to the other (refer to section A.2.11). In figures 4.24(b) and (c) the region of two stable
equilibria occurs between the lower limit point and the Hopf bifurcation on the upper
branch of equilibria (0.41 < vy, < 0.57 in (b) and 0.60 < v, < 0.65 in (c)).

Collating the information obtained from figure 4.24 allows us to classify the different
regions in figure 4.19 according to the qualitative behaviour that is found there. That s,

the region enclosed by the limit point continuations (region of hysteresis) can be divided

into a region of two stable equilibria and a region of only one stable equilibrium having a
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Figure 4.19: Two-parameter bifurcation diagram obtained using the modified model with a;=0.001,
(i=1,2,3) and 71 = 0.4. The Hopf bifurcation continuations are indicated by solid lines and the limit

point continuations by dotted lines.
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Figure 4.20: Two-parameter bifurcation diagram obtained using the modified model with a;=0.001,

(i=1,2,3) and v; = 0.6. The Hopf bifurcation continuations are indicated by solid lines and the limit

point continuations by dotted lines.
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Figure 4.21: Two-parameter bifurcation diagram obtained using the modified model with a;=0.001,
(i=1,2,3) and y; = 1.2. The Hopf bifurcation continuations are indicated by solid lines and the limi¢
point continuations by dotted lines.
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Figure 4.22: Two-parameter bifurcation diagram obtained using the modified model with a;=0.001,
(i=1,2,3) and 71 = 1.8. The Hopf bifurcation continuations are indicated by solid lines and the limit
point continuations by dotted lines.
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Figure 4.23: Two-parameter bifurcation diagram obtained using the modified model with a;=0.001,
(1 =1,2,3) and 7, = 2.4. The Hopf bifurcation continuations are indicated by solid lines and the limit

point continuations by dotted lines.
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Figure 4.24: One-parameter bifurcation diagrams obtained by varying y; with 4 = 0.4 and
(a) ¢3 = 0.07, (b) ¢3 = 0.17 and (c¢) ¢3 = 0.25. (These correspond to the horizontal dotted lines

in figure 4.19.)
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low value for M;. The regions outside the limit point continuations have one equilibrium
point and it is stable. Those to the left of the hysteresis region have high equilibrium M,
values and those to the right have low equilibrium M; values.

The diagrams in figures 4.20-4.23 can also be divided into different qualitative regions
using information from one-parameter studies. In these two-parameter diagrams the Hopf
bifurcation continuations are not contained within the limit point continuations. The
one-parameter bifurcation diagram in figure 4.25 corresponds to the horizontal dotted
line in figure 4.21 (that is, 3 = 1.2 and ¢3 = 0.2). In this case there are no parameter
combinations which give rise to two stable equilibria but there is a region of stable limit
cycles. Starting at 2 = 1.5, as v, is decreased we have a single stable equilibrium
with a low M; value. At the (lower) Hopf bifurcation this stable equilibrium is replaced
by stable limit cycles which increase in amplitude as ~, is decreased. As the upper
Hopf bifurcation is approached the cycles undergo some period-doubling bifurcations
and then rapidly decrease in amplitude. Due to a hard loss of stability associated with
this upper Hopf bifurcation, the region of stable cycles extends just beyond the Hopf
bifurcation point creating a very small parameter range where both a stable equilibrium
and stable cycles are present. This occurs near the upper Hopf bifurcation for the other
two-parameter diagrams too but the regions are very small and have not been marked.

Figure 4.25 shows which values of v, give rise to stable limit cycles when ¢3 = 0.2.
Using this information together with results obtained from one-parameter diagrams at
different fixed values of ¢s allows us to determine the regions in figure 4.21 which give
rise to stable cycles. Such regions also occur in figures 4.20, 4.22 and 4.23. Although
figure 4.19 contains Hopf bifurcations, the cycles associated with them are unstable (see,
for example, figure 4.24) and occur over such a small parameter range that they are not

of much biological interest.

Having classified the qualitative dynamics in the various regions of the two-parameter
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Figure 4.25: One-parameter bifurcation diagram obtained by varying v, with 7; = 1.2 and ¢3 = 0.2.
(This corresponds to the horizontal dotted line in figure 4.21.)

diagrams in figures 4.19-4.23 we can make a number of general observations. First, as 7,
increases the limit point continuation curves move closer together until in figure 4.23 there
are no limit points at all. Hence, increasing -, reduces the amount of hysteresis and the
possibility of multiple stable states. Also, the positions of the limit point continuations
in two-parameter space change as 7; is increased resulting in relatively smaller regions
of low M; equilibrium values. Since higher 74; values correspond to faster plant growth
rates this is not surprising.

We have seen that stable cycles occur for higher values of v; (figures 4.20-4.23).
Comparing these diagrams we can see that increasing -y, increases the area of the upper
| region of stable cycles thereby increasing the probability of finding cycles for a random
choice of v and ¢3 within the given two-parameter space. This occurs until v; = 1.8. For
largér values of 4; this upper region of cycles does not change position or shape (compare
figures 4.14(b) and 4.23). There is also a second, smaller region of cycles which can be

seen in figures 4.21-4.23. The size of this region first increases and then decreases until,

for sufficiently high v, values, it ceases to exist.
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We know that higher +; values correspond to a faster plant growth rate and also that
the herbivore population, and hence the predator population, depend on the availability
of plants for survival. From the above observations we can deduce that when plant
resources are limited (at low values of ;) the potential for having two stable equilibria is
greater and the region corresponding to low M; equilibrium values is larger. When plant
resources are not as restricted (at higher values of v;) there is a greater chance of stable
population cycles but less chance of metastability (multiple stable states). For v, > 2
two-parameter diagrams of (v;,¢3)-space are very similar for all values of 4; (only the
lower region of cycles decreases in area) suggesting that the system is no longer limited
by plant availability. Herbivore properties (as determined by v, and ¢3) have a greater
influence on the behaviour of the system at these values of 7;.

In particular the properties of the herbivore determine whether stable cycling be-
haviour or a stable eqﬁilibrium occurs as well as the magnitude of the plant biomass at
the equilibrium. Low values of ¢3 (the availability or nutritional value of the herbivore
to the predator) together with high values of v, (the potential growth rate of herbivore
biomass) are pai“ticularly detrimental to the plant while the reverse situation allows the
plant to maintain fairly high biomasses. At intermediate values of these parameters
populafion"éycles may occur provided the value of ¢3 is sufficiently high.

The preceding analysis has made use of various dynamical systems techniques to help
us gain insight into the behaviour of the model. In the next section I discuss the results
that can be obtained using a zero isocline analysis—the method used by Gutierrez et al.

[52].

4.5.3 The role played by the isocline configurations

From their isocline analysis of model (4.1) Gutierrez et al. [52] conclude that the par-

asitoid E. lopezi could control the cassava mealybug while E. diversicornis could not.
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However, with three state variables all having similar time scales, these deductions are
not as straightforward as they may seem.

First, the equilibrium isocline configuration in the M; M, (M3 M;) phase plane depends
on the value of M3 (M;) as well as on the parameter values. This was shown in figure 4.6.

.Thus, noting how an isocline changes as a parameter is varied does not give a complete
picture. Secondly, it is not possible to tell from the qualitative structure of the isoclines
which intersection point in the M;M, plane corresponds to a tritrophic equilibrium.
Figure 4.26 shows three possibilities. Two of these (namely, (b) and (c)) appear in [52]
but it was assumed that the equilibrium point in (b) was unstable.

Even if the exact position of the equilibrium point is known, it is not possible to tell
from the qualitative structure of the isoclines whether this point is stable or unstable and
whether or not limit cycles occur. For example, although altering the parameter v; has
no effect on the isoclines, low values of 73 give rise to unstable fixed points and stable
limit cycles and high values to a stable equilibrium (see figure 4.2). Thus, numerical
computation is needed to determine the exact location as well as the local stability of an
equilibrium point for the current model.

The isocline configuration obviously has some effect on the behaviour of the system.
Figure 4.27 shows the basic configurations for different points in figure 4.12(b). The
qualitative structure of the isoclines changes as the diagonal lines (corresponding to a
Hopf bifurcation and two limit point continuations) are crossed. In general, it is the
proximity of the tritrophic equilibrium point to the peaks of the M; and Mj; isoclines in
the My M, and M, M3 planes respectively that is important for determining the robustness
of model behaviour with respect to parameter perturbations. If the equilibrium point is
close to one of these peaks (as is the case near the diagonal lines in figure 4.27) then a

small parameter perturbation may change the qualitative structure of the isoclines and

hence the dynamics. However, to obtain this information the exact equilibrium isocline
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configuration for a given set of parameter values needs to be known.

0.75

¢2 0.5

0.25

Figure 4.27: Examples of isocline configurations at different points in (v;,é2)-space.

By inference the above criticisms have all noted that if the exact positions of the
isoclines and the tritrophic equilibrium were known in both phase planes, then we could
obtain a fair amount of information from them. Using XPPAUT this is possible. In
particular we can study the effects of introducing nonzero values for the a;’s. Figure 4.28
shows the results obtained using the reference parameter set for model (4.6) with a; = 0,
a; = 0.001 and a; = 0.005 (z = 1,2,3).

Comparing figures 4.28(a) and (b) we can see that introducing the a;’s prevents the
M, and M 1soclines from passing through the origin. Hence the equilibrium values for the
state variables do not approach zero as rapidly as for the original model and the modified

model is more robust to parameter variations in this region of low biomasses. Increasing

the a;’s from 0.001 to 0.005 reduces the humped shape of the M; and M, isoclines.
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Figure 4.28: Isocline configurations for model (4.6) with (a) a; = 0, (b) a; = 0.001 and (c) a; = 0.005
(: = 1,2, 3) together with the reference parameter set.
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The result is an even more robust model. The stabilising influence of increasing the
values of the a;’s is illustrated by the bifurcation diagrams in figure 4.29 corresponding
to a; = 0.005 (: = 1,2,3). No regions of cycling behaviour are encountered. Since
values of 0.005 are still small, this suggests that the model is structurally unstable and
hence predictions from ratio-dependent models should be treated with caution.

Another consequence of introducing nonzero a;’s is that we no longer get abrupt
changes in the qualitative shapes of the isoclines. Consider the plant isocline. For
71 < ¢ the plant' isocline has the hump shape shown in figure 4.30(a)(i). If one or
both of these parameter values is altered so that the inequality is reversed, we get the
asymptotic isocline in figure 4.30(a)(ii). Using the modified model this abrupt change
does not occur. Instead there is a gradual change from the cubic curve in figure 4.30(b)(i)

to the asymptotic curve in figure 4.30(b)(ii). The same applies to the herbivore isocline

in the M, M3 plane.

4.6 Conclusion

In this chapter a partial analysis of a tritrophic ratio-dependent model has been done.
Large differences in the magnitudes of the state variables and uncertainty regarding the
relative magnitudes of parameter values necessitated a scaling of the equations. This also
reduced the number of parameters in the model.

The bifurcation analysis revealed a number of cases of multiple stable states. Many
of these phenomena occur over very small parameter ranges and are therefore not of
much biological interest. However, those occurring over larger ranges are important as
they indicate the potential for sudden behavioural changes if the system is perturbed

sufficiently. Many of the instances of multiple stable states arise from a hard loss of

stability associated with a Hopf bifurcation. This means that a stable equilibrium and
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Figure 4.29: One-parameter bifurcation diagrams when a; = 0.005 (¢ = 1,2, 3).
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a stable limit cycle can coexist for a given set of parameter \}alues. If a parameter is
varied (as conditions alter), there may be an abrupt change between limit cycles of large
amplitude and a stable equilibrium. A point worth noting is that if the Hopf bifurcation
associated with the limit cycles had been studied analytically, the algebra required to
identify the hard loss of stability would have been very time-consuming and possibly.
too difficult to do by hand. Only the initial unstable cycles would have been located.
Computers are invaluable in such circumstances.

All the parameters were found to affect the dynamics of the model to some extent
although the parameter ratios % and %% had the most significant effect. This is in
general agreement with Gutierrez et al. [52] (in terms of their model the ratios %l and
chgz were found to be important) although they did not explicitly describe these effects
as was done in this study using bifurcation diagrams. In particular the two-parameter
diagrams summarise the effects of the plant and the herbivore properties on the behaviour
of the system. Both trophic levels affect the magnitude of M; at equilibrium, whether or
not cycles occur, and the period and amplitude of these cycles. The consequences of a
slowly growing plant were also shown, namely smaller regions of cycling behaviour, lower
equilibrium M; values and larger regions of multiple stable states.

It may seem that predator dynamics are not as important as those for the lower
two trophic levels. However, it should be noted that increasing ~s, the efficiency of the
predator, can stabilise an oscillating system. The parameters affecting predator dynamics
also affect the equilibrium biomasses.

In the course of the analysis some previously noted criticisms of ratio-dependent mod-
els were highlighted as they caﬁ_sed numerical difficulties and biological implausibilities.

- In particular, such models are not valid when a state variable which occurs in the de-

nominator of a ratio approaches zero (that is, as a population approaches extinction)

since a small perturbation to the model alters the dynamics in this region. This was
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shown using a modification to the ratio-dependent terms. While this modification had
very little effect on the dynamics for parameter values corresponding to reasonable equi-
librium values of the state variables (provided the a;’s were sufficiently small), it did
remove the numerical problems which occurred when one or more of the state variables
approached zero (causing one or more ratios to tend to infinity). It also revealed that
the ratio-dependence causes complex dynamics in regions where the state variables are
small. Even the addition of Véry small terms (a; = 0.001) reduced the complexity of
the cycles. The above results support the argument that ratio-dependent models exhibit
pathological behaviour and that they are not valid near the axes. Thus they cannot be
used to study extinction or situations where one of the state variables attains low values.
However, the model by Gutierrez et al. (1994) that has been analysed in this chapter
is a biological control model whose aim is to suggest what kind of predator can keep
herbivore numbers low.

Finally, the zero isocline configurations in the M; M, and M;M; planes were inves-
tigated and some limitations of the three-dimensional setting were discussed. In order
to obtain useful information from the isoclines their exact equilibrium positions need
to be determined so that the position and nature of the tritrophic equilibrium and its
proximity to the isocline peaks can be found.

Uncertainty regarding the parameter values for this model for a particular ecological
system makes it difficult to interpret the results biologically except in a very general
sense. However, it is informative to see the kind of behaviour that the model can exhibit

and the effects of ratio-dependence. It would be easy to apply the results and perform

the same type of analysis if more accurate parameter values were obtained.
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Population Genetics Model 1

5.1 Introduction

So far only continuous-time models have been considered. In the remaining chapters we
will look at discrete-time models. The model in this chapter is a population genetics
one in which both population size and gene frequency are state variables. It is a single
locus, two allele model with density-dependent fitness functions and it has already been
studied in Asmussen [8] and Namkoong et al. [93]. Although the model equations are
fairly simple, interesting dynamics arise as a result of the discreteness. No new theoretical
results are obtained in this study but the dynamical systems techniques prove useful in a
number of ways: first, the theoretical results are demonstrated fairly easily and without
having to struggle with the mathematical details. The dynamical systems techniques also
provide a more systematic way of locating different kinds of behaviour when theoretical
predictions are not possible or too diflicult to obtain. Previous studies have tested various
parameter combinations numerically using trial and error to try and locate the desired
dynamics. In addition, while the theoretical results note the existence of various types of
qualitative behaviour, they do not give information regarding the eztents of the regions
in parameter space corresponding to these dynamics. In other words, they indicate the
possibility of a certain type of behaviour occurring but not the relative frequency of

occurrence. The latter information is important from an ecological perspective as it

influences the amount of attention that is given to various possibilities. It will be shown

e
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that bifurcation diagrams (two-parameter ones in particular) can be useful for indicating
the sizes of regions in parameter space corresponding to Various' types of behaviour.

Another useful result is the location of stable polymorphic period-2 cycles. It is
very difficult to predict the existence of these cycles intuitively or analytically as the
bifurcation point at which they are initiated does not coincide with changes in the relative
carrying capacities of the genotypes. Also, the period-2 cycle is initially unstable and
a further bifurcation is required before it becomes stable. Numerical techniques are
indispensable in such situations.

I begin in the next section with a list of new terminology that is used in this chapter
as well as in chapter 6. I then summarise some background information on population
genetics models and the main theoretical results relating to the particular model that
is studied in the rest of the chapter. Section 5.4 describes the model equations and is
followed by the model analysis. The focus in the latter section is on cycling or periodic
behaviour as this behaviour is the most difficult to study by hand. The analysis begins
with one-parameter studies which investigate the effects of altering relative carrying
capacities. A two-parameter bifurcation diagram is then obtained. This diagram divides
the two-parameter space into regions corresponding to different qualitative behaviour.
The region of stable period-2 polymorphisms is larger than that for stable polymorphic
equilibria for the particular case studied and intersects regions of heterozygote inferiority,
superiority as well as regions of partial dominance. Finally, section 5.5.4 studies higher
period cycles. Polymorphic period-4 cycles are found but only for high genotypic growth
rates. Of greater interest is thé observation that the relative carrying capacities of the
genotypes determine the location of attractors (boundary or interior) while the growth

rates of the genotypes are responsible for the type of attractor (equilibrium or periodic

cycle). Questions for further study are included in the conclusion.
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5.2 New terminology

Some new terminology is required in this chapter as well as in chapter 6 to explain both

the discrete dynamics and the biological significance of the results.

e period-k cycle or orbit: For discrete models we do not get limit cycles as in
the continuous case. However, the values of the state variables may oscillate in
a repetitive manner. If there are k points which are repeated then we refer to a
period-k cycle or orbit. A period-1 point is the same as an equilibrium point (see

section A.2.6). For further details on discrete models refer to section A.3.5.

e period-k sink: This is a period-k cycle which is locally stable (see sections A.2.14
and A.2.21). Period-k saddles and sources are period-k cycles which are locally
unstable (see sections A.2.20 and A.2.23).

e gene frequency: Thisis the number of gametes or individuals carrying a particular

allele divided by the total number of gametes.

e genotype: Suppose we have two alleles, A; and A;. Then there are three possible

genotypes: A;A;, A1A; and AsA,.

e fitness: The fitness of a genotype is the contribution that it makes to the next
generation’s gene pool, that is, it is a measure of the successful survival and repro-

duction of that genotype [110].
e homozygote: The genotypes A;A; and A; A, are homozygotes.
e heterozygote: The genotype A;A; is a heterozygote.

¢ fixed or homomorphic equilibrium: This is an equilibrium point at which only

one allele is present, that is, at which only a homozygote is present.
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e polymorphic equilibrium: This is an equilibrium point where more than one

allele is present, that is, where a heterozygote is present.

e carrying capacity: This refers to the equilibrium population density correspond-
ing to a particular genotype when only that genotype is present. It is denoted by
K;; for the genotype A;A; in this thesis.

e heterozygote superiority: Heterozygote superiority or overdominance occurs
when the heterozygote’s carrying capacity is greater than those for the homozy-
gotes, that is Ky > K11, Kj; for the case of two alleles. Heterozygote inferiority

or underdominance refers to the situation when the inequality is reversed.

e partial dominance: This refers to the situation where the heterozygote is neither -
superior nor inferior, that is, K33 < K, < Koy or K9y < Ky < K47 for the case of

two alleles.

5.3 Background

In the past the theories of population dynamics and population genetics were considered
to be separate pursuits since it was thought that evolution by natural selection proceeded
on a much longer time scale than changes in population size (Roughgarden [104]). How-
ever, once it was realised that gene substitution could occur in the same length of time
as that needed by a population to reach an equilibrium, the dangers of this separation
were acknowledged. Since the late 1960’s a number of models in which both population
size and gene frequency are variables have been studied. The classical one locus, two
allele selection models in this category used constant viabilities for the genes and pre-

dicted monotonic population convergence to a unique stable equilibrium (Asmussen [8]).

However, incorporating density-dependent selection can have a dramatic effect on the
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dynamics—both regular and chaotic cycles can arise.

Studies of the effects of density-dependence for discrete generation organisms can be
found in 8,9, 93, 104]. In particular, Asmussen and Feldman [9] and Asmussen [8] show
that in such situations local stability analyses may be inadequaté to explain the global
behaviour related to changes in gene frequency and population size. In additioﬁ to fixed
and polymorphic stable equilibria, Asmussen [8] found regular and chaotic cycles when
using monotone decreasing density-dependent fitness functions. In certain situations
equilibria and cycles exist simultaneously. Asmussen [8] also shows that stable periodic
polymorphisms may occur in the absence of heterozygote superiority—the latter condi-
tion being necessary for polymorphic equilibria when strictly decreasing fitness functions
are used. In fact, using the same model Namkoong et al. [93] demonstrate the existence
of an attracting polymorphic period-2 cycle for a case of heterozygote inferiority. Thus,
overdominance in heterozygote carrying capacity is not necessary for the maintenance of
genetic variation. Another important conclusion by Asmussen [8] is that an inherently
stable genetic system can exert a stabilising influence on a model, allowing stable equi-
libria and stable limit cycles to persist for higher growth rates than would be possible
with the model’s purely ecological counterpart.

The above conclusions were arrived at analytically for linear (logistic) monotone de-
creasing fitness functions. However, when the density-dependence is modelled using ex-
ponenfial fitness functions, Asmussen [8] comments that the mathematics becomes very
difficult. Numerical solutions then become necessary. In [8, 93] it is also noted that when
more complex, higher order behaviour (such as a cycle) is present, intuition and local

stability analyses break down. Again numerical techniques are required.
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5.4 Model equations

Suppose we have a single population and two alleles, A; and A,. At time ¢ the population
size is denoted by /V; and the frequency of allele A; is denoted by p;. The fitness of

genotype A;A; (1,5 = 1,2) at time ¢ is denoted by w};. The marginal fitness of A; is thus
wt = pasty + (1= pufy (i =1,2)
and the mean population fitness is
w' = pwt + (1 — p)wh.

Differences in fitness among genotypes may be interpreted as the result of different re-
sponses to ecological pressures. Following Asmussen [8] and Namkoong et al. [93] expo-

nential density-dependent fitness functions of the form

wh, = exp(ai]- — bi]'Nt) aij,bij >0, 7,7 =1,2 (5.1)

v

are used in this chapter. Such monotone decreasing functions of population density are
often used to model the detrimental effects of population crowding [110].
If Hardy-Weinberg frequencies are assumed at each time ¢, then the recursion equa-

tions for p and N are:

wj
Pi+t1 = P
w
Nt+1 = ’LT)tNt (52)

where the region of practical significance is 0 < p < 1, N > 0. With the above equations
the carrying capacity K;; for genotype A;A; acting alone is given by
s
K=+
J bij

For a more detailed description of the model see Namkoong et al. [93].
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In studying this model I will be looking for attracting boundaries at p =0 or p = 1,
interior (polymorphic) equilibria having 0 < p < 1, period-2 and also higher period sta-
ble orbits. Attracting boundaries correspond to situations where one allele survives at
the expense of the other, while at interior attractors both alleles persist thus maintain-
ing genetic diversity. Other phenomena of importance are the extents of the domains
of attraction corresponding to the stable phenomena (see section A.2.5) and the associ-
ated relative carrying capacities of the homozygotes and heterozygote. The methods of

analysis and the results are discussed in the next section.

5.5 Model analysis

5.5.1 Approach

Equilibria and their associated stability properties have been studied analytically for
models such as the one described above. These theoretical results help predict the condi-
tions under which stable equilibria can be expected (see, for example, [8, 104]). However,
periodic dynamics (particularly polymorphic cycles) are more difficult to study [8, 93].
I chose to concentrate on these more difficult phenomena to demonstrate the utility of
the available software. I used DSTOOL to solve the system over time and to gener-
ate starting points for AUTO. The bifurcation diagrams were obtained using Interactive
AUTO. The AUTO interface in XPPAUT is not yet set up to deal with discrete systems
of equations. I used fairly small stepsizes when generating bifurcation diagr@ms for this
model (ds=0.0001 and dsmax between 0.001 and 0.01) as the changes in behaviour occur
over small parameter ranges. |
Namkoong et al. [93] state that alleles that affect seedling survival can increase car-
rying capacity and simultaneously destabilise populatioh growth dynamics. This can be

simulated by choosing ay; > 2.0 so as to force the A; A, genotypes to exhibit unstable
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growth if they grow as a purely homozygous population. In order to investigate the effects
of altering relative carrying capacities, I begin by setting ay; = 2.1, aj3 = 1.9, ayy = 1.1,
b1y = 1.0, b2 = 0.904 and varying by,. The results agree with those in [93]. I then go on
to determine the effects of simultaneously varying the heterozygote parameter, by, by
generating a two-parameter bifurcation diagram in (bsg, b12)-parameter space. I conclude

the analysis by investigating higher period orbits.

5.5.2 One-parameter bifurcation diagrams

Namkoong et al. [93] found that an interior period-2 attractor exists for by, > 0.526.

An example is shown in figure 5.1 for the value by, = 0.54. In this figure there is a

-
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Figure 5.1: Dynamics in the (p, N)-plane for model (5.2) with a;; = 2.1, a12 = 1.9, azz = 1.1,
b11 = 1.0, 12 = 0.904 and bey = 0.54. This diagram was obtained using DSTOOL.

period-1 source at (p,N) = (1.000,2.100) and period-1 saddles at (0.956,2.10007) and
(0.000,2.037). The points (1.000,2.878) and (1.000,1.322) correspond to a period-2 saddle
and the points (0.917,1.466) and (0.923,2.734) to a period-2 sink. Thus, in this case both

boundaries are repelling and there is an interior attracting period-2 orbit as expected.
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Comparing the carry-ing ca,pvacities Ky = 2100, Ky = 2.102 and K,y = 2.037 we see
that we are just within the region of heterozygote superiority.

We can now use AUTO to vary byz. It is noted in appendix B that for discrete systems
AUTO can detect period-doubling bifurcations but cannot continue the resulting period-
2 orbits, and hence cannot detect higher period orbits. This is clearly a disadvantage in
the present situation where we are specifically interested in the period-2 orbits. A way of
overcoming this problem is to study the second iterate of the model since period-2 orbits
will become equilibria in this new model (see section A.3.5). In terms of the original
model AUTO will then be able to detect period-1 equilibria (since these are also period-2
equilibria), period-2 orbits and bifurcations to period-4 orbits.

For a model as simple as the one under discussion, the second iterate is easy to

determine. From equations (5.2) we obtain

wiﬂ wt w§+1
42 = Pivl — T = Pt—; =
Dit P+ Dt ot ot
_t41 _141 -t
Nt.*_g =w + Nt+1 =w w Nt (53)
where
+1 t+1 t+1
w; = prawyy + (1 = pea)w;;
t t
wy _¢ Wy 1
= P exp(a;n — baw' Ny) + (1 — Pta;) exp(aiz — bipw" V)
and

—t+1 41 t41
D = prawy™ + (1 = prar)wy”
t ¢
Wy, 41 Wiy, e+l
= pr—w (- pi—)wy
P ot ( P wt) 2

Figure 5.2 shows the results obtained from varying b,; using the second iterate of the
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Figure 5.2: One-parameter bifurcation diagram of model (5.3) with a11 = 2.1, a;2 = 1.9, asp = 1.1,
b11 = 1.0 and b2 = 0.904 obtained using AUTO. (Behaviour for smaller and larger values of bp2 than
indicated in the figure can be found by extrapolating the curves and lines at the boundaries of the figure.
The period-2 orbits are indicated in the figure. The phenomena corresponding to boundary values of
p, namely p = 0 or p = 1, are labelled. Branches marked with a * correspond to interior values of p,
namely 0 < p < 1. HB stands for Hopf bifurcation. This is really a period-doubling bifurcation but
AUTO marks it with the HB symbol.)

modell. I plotted N versus by, instead of p versus by és the period-2 orbits can be seen
with greater clarity this way. The p-values for the two points on these period-2 orbits
are very similar and thus the continuation curves are difficult to distinguish. Also, a
large number of bifurcations occur at p = 1. Plotting p versus by; would result in many

branches lying on top of one another.

For by, < 0.523 we can see that the boundary at p = 0 is attracting with a single

1Some very complicated bifurcation diagrams can be generated when studying this model, however
not all continuation branches are of interest. Those branches which have p < 0,p > 1 or N < 0 are
not practically significant but it is good practice to continue such branches within the parameter range
under study in case a bifurcation occurs and they re-enter the ranges of interest.
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equilibrium point. At by, = 0.523 the genotype AjA; loses superiority in carrying ca-
pacity and we move into the region (ba2 > 0.523) of heterozygote superiority. While the
difference in carrying capacities is not too large we still have a unique equilibrium (an
interior equilibrium this time) but as by increases, causing the carrying capacity of A;A;
to decline and the instability of A;A; to have a greater influence on the dynamics, this
equilibrium bifurcates to become an attracting interior period-2 orbit. As by, increases
further this period-2 polymorphism moves closer and closer to thé p = 1 boundary where
there is a repelling period-2 orbit as well as an unstable period-1 saddle. These results
match those in [93] and are in agreement with previous findings that heterozygote supe-
riority in equilibrium carrying capacity is a necessary condition for a stable polymorphic
equilibrium when fitness is a decreasing function of population size. In addition, figure
5.2 shows clearly that heterozygote superiority is not a sufficient condition for a stable
polymorphic equilibrium since no such phenomena occur for by5 > 0.526. Stable period-2
polymorphisms exist in this region.

In [93] it was found that stable period-2 polymorphisms, unlike polymorphic equi-
libria, can exist in the absence of overdominance. Suppose we set by, = 0.906, then
K5 = 2.097 which means that we no longer have any regions of heterozygote superior-
ity. The one-parameter bifurcation diagram shown in figure 5.3 was obtained by using
DSTOOL to calculate starting points and Interactive AUTO to vary be; once again.

In this case the dynamics are a little more complicated. We still have an equilibrium
at p = 0 which is attracting for by, < 0.525 (the region of heterozygote inferiority) and
unstable otherwise. However, at p = 1 there is now a stable period-2 orbit for all values of
bya. For 0.520 < bgp < 0.522 (2.116 > Ko > 2.109) there is also a stable interior period-2
orbit. Intuition could not have been used to guess the existence of these orbits since the
bifurcation values do not coincide with changes in the relative carrying capacities of the

genotypes. It would also have been difficult to predict their existence analytically since
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Figure 5.3: One-parameter bifurcation diagram of model (5.3) with a;; = 2.1, ajz = 1.9, ass = 1.1,
b11 = 1.0 and b3 = 0.906 obtained using AUTO. K;; = 2.1 and K;3 = 2.097. Branches marked with a
* correspond to interior values of p, namely 0 < p < 1.

the period-doubling bifurcation which initiates the interior period-2 orbit occurs when
bz = 0.519 but the orbit is initially unstable and only becomes stable after a further
bifurcation. An idea of the extent of the domain of attraction (see section A.2.5) of the
period-2 polymorphism in terms of population density c'an‘also be seen in figure 5.3 by
noting the positions of the unstable period-2 orbit and the unstable equilibria since these
phenomena separate the domains of attraction of the stable phenomena. Figure 5.4 shows
the (p, N)-plane corresponding to by, = 0.521 and indicates the domains of attraction for
this particular value of by;. The region denoted by a is the domain of attraction for the
sink at p = 0, b is the domain of attraction for the period-2 polymorphism, and ¢ is the
domain of attraction for the period-2 orbit at p = 1.

The above-mentioned figures indicate the ranges of byy values corresponding to stable
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Figure 5.4: The (p, N)-plane using model (5.3) for a;; = 2.1, a1 = 1.9, azp = 1.1, by; = 1.0,
b12 = 0.906 and bys = 0.52 showing the domains of attraction for the stable phenomena.

equilibria and period-2 orbits at the boundaries as well as in the interior. Comparing
figures 5.2 and 5.3 we can see that the regions of occurrence of these phenomena vary

with by, as well as by,. We can find out more about this dependence on by3 by generating

a two-parameter bifurcation diagram.

5.5.3 Two-parameter bifurcation diagram

Using AUTO we can trace the paths of period-doubling bifurcations? and limit points in
two-parameter space. Points 2 in figure 5.3 are period-doubling bifurcations and points 1
are limit points. These points are only located when using the second iterate of the model
since they are on the period-2 orbits. Point 3 is also a period-doubling bifurcation but
from period-1 to period-2 orbits and thus is only labelled as such by AUTO when using
the original model (5.2). Hence, to continue this point in two parameters we need to

use the original model. The resulting two—pararheter diagram can then be superimposed

2AUTO labels period-doubling bifurcations as Hopf bifurcations for discrete models (see section
A .3.5). Thus points marked HB in the figures are really period-doubling bifurcations.
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Figure 5.5: Two-parameter bifurcation diagram of model (5.3) with @11 = 2.1, @12 = 1.9, ass = 1.1 and
b11 = 1.0 obtained using AUTO. Curve 1 is the limit point continuation and curve 2 the period-doubling
bifurcation continuation. )

on the one obtained for the second iterate of the model by using the READP command
in Interactive AUTO. We could choose any one of the parameters ai1, a1z, G2, b1y or big
as the second parameter to vary. Since the pa_rameter bye corresponds to one of the
homozygotes, it may be interesting to vary one of the heterozygote parameters. The
parameter by2 was chosen for this illustration to compliment the results in the previous
section. |

Figure 5.5 shows the results obtained from continuing points 1‘and 2 in figure 5.3 in
two-parameter space. The two-parameter continuation of point 3 in figure 5.3 can be ob-
tained from the original model as mentioned earlier. AUTO cannot continue transcritical
bifurcation points such as point 4 in figure 5.3. However, we can obtain a good approx-
imation to the relevant line or curve by doing a number of one-parameter continuations

as 1n section 5.5.2 and noting the coordinates at which the bifurcation at p = 0 occurs.

We already have the points (ba2, b12) = (0.523,0.904) and (bo2, b12) = (0.525,0.906) from

figures 5.2 and 5.3 respectively. If the resulting approximate curve is combined with
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Figure 5.6: Two-parameter bifurcation diagram of model (5.3) with a11 = 2.1, azz = 1.9, a2z = 1.1 and
b11 = 1.0 obtained using AUTO. Curve 1 is the limit point continuation and curve 2 the period-doubling
bifurcation continuation. Curve 3 is the period-doubling continuation obtained using the original model
(5.2) and curve 4 is the curve where the bifurcation at p = 0 occurs.
figure 5.5 and the two-parameter continuation of point 3, then we obtain figure 5.6.

There are ‘many other bifurcation curves that could have been included in figure 5.6
but only those of interest for the present discussion have been drawn. The dotted line has
been included to demarcate, together with line 4, the regions of heterozygote superiority
and inferiority®. In regions F and G there is heterozygote superiority and in regions A,
B and D there is heterozygote inferiority. C, E and H are regions of partial dominance.
These distinctions in relative carrying capacities will be referred to again shortly.

To help us understand figure 5.6 we can refer back to the one-parameter bifurcation
diagrams, figures 5.2 and 5.3, which are horizontal slices of figure 5.6 at b1 = 0.904 and
bi2 = 0.906 respectively. Figure 5.6 indicates the types of phenomena corresponding to

different parameter combinations and the one-parameter diagrams show the values of

3These lines can be obtained analytically using the definition of heterozygote superiority. The dotted
line could also have been obtained from one-parameter bifurcation diagrams where by, is varied instead
of bey as it is along this line that the period-2 orbit at p = 1 changes its stability properties.
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Figure 5.7: One-parameter bifurcation diagram of model (5.3) with a11 = 2.1, a12 = 1.9, az2 = 1.1,
b11 = 1.0 and b12 = 0.908 obtained using AUTO. Branches marked with a * correspond to interior values
of p, namely 0 < p < 1. HB marks a period-doubling bifurcation.
N at which these phenomena occur and, hence, their relative positions in state space.
We can also use figure 5.6 to predict the behaviour corresponding to different parameter
combinations. Consider fixing b;5 at 0.908. From figure 5.6 we expect a period-doubling
bifurcation to occur as byy increases through line 3 but we do not expect any region of
stable interior period-2 cycles as we are above the region where curvé 1, the limit point
of such a phenomenon, occurs. Also from figure 5.6, we expect the equilibrium at p =0
to change stability as we pass through line 4. Using AUTO to generate a one-parameter
diagram with b;, fixed at 0.908 gives figure 5.7 which is just as we predicted. The above
exercise can be repeated for other values of b;; as well.

A complementary way of obtaining insight into figure 5.6 is to choose points in regions

A to H and to display the dynamics in the (p, N)-plane. This is a straightforward exercise
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using DSTOOL. The results are shown in figure 5.8. Strictly speaking dots should be
used for the trajectories instead of continuous lines since the model is discrete. However,
it is easier to denote the direction of flow and the qualitative behaviour when lines are
used. These diagrams also give a better idea of the domains of attraction corresponding
to the different stable phenomena.

Using figures 5.6 and 5.8 we can make some important observations. In regions D,
E, F and G stable polymorphisms occur. D lies in the area of heterozygote inferiority
and E in a region of partial dominance, that is, of neither heterozygote inferiority nor
superiority. While Asmussen [8] and Namkoong et al. [93] documented the occurrence
of stable period-2 polymorphisms in such regions, they did not investigate the 'extent of
the regions corresponding to such phenomena. From figure 5.6 we can see that regions D
and E occupy a fairly small region in the (bys, b12) parameter space and thus may have
limited ecological significance.

Another observation is that the region of stable polymorphic equilibria (region G)
is very small. Thus, in the region of heterozygote superiority, stable period-2 polymor-
phisms are much more likely than stable polymorphic equilibria. It appears that the
instability of the A;A; genotype (a result of choosing a;; > 2.0) has a significant effect
on the dynamics of the model.

In the next section it is shown how the preceding analysis can be extended to look
for higher period polymorphisms. Asmussen [8] found cases of interior chaotic attractors.
Since repeated period-doubling is a well-known path to chaos (see, for example, Seydel

(1988) or Wiggins (1990)), we can expect to find higher period stable polymorphisms.

5.5.4 Orbits of period four (and higher)

Consider first orbits of period 4. Since I did not find such orbits by varying by, and byo,

I chose by and by, to lie in region E, a region where more complex behaviour already
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Figure 5.8: Dynamics in the (p, N)-plane with a;; = 2.1, a1o = 1.9, a2 = 1.1, b1; = 1.0 and various

combinations of b;2 and bgy which correspond to regions A to H in figure 5.6.
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Figure 5.9: One-parameter bifurcation diagram of modnél (5.3) with @12 = 1.9, ags = 1.1, byy = 1.0,
by2 = 0.905 and baz = 0.525 obtained using AUTO. Branches marked with a * correspond to interior
values of p, namely 0 < p < 1. : -
occurs in the form of period-2 cycles, and then varied the 6ther parameter values in turn.

Consider by, = 0.905 and by, = 0.525 and suppose ay; is varied. This yields a period-
doubling bifurcation at a3 = 2.526 (see figure 5.9). Since I used the second iterate of
the map, this period-doubling is a bifufcation from period-2 to peribd-4 orbits at the
boundary p = 1. This can be checked by using DSTOOL to generate diagrams in the
(p, N)-plane for nearby values of aj;. |

From studies of other discrete systems (for example, [71]) it is likely that there will
be period-doublings to higher and higher order orbits as a;; is increased. Unfortunately
these cannot be detected using AUTO unless higher order iterates of the map (5.2) are
determined analytically and then studied. However, using DSTOOL we can determine

the dynamics in the (p, N)-plane for fixed values of ay;. Some examples are given in
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figure 5.10. .

Two-parameter continuations of the period-doubling bifurcation in figure 5.9 show
that the position of this bifurcation depends only on aj;;. None of the other parameters
affects the value of a;; at which it occurs. Thus we can conclude that it is the growth
rate of the A;A; genotype that determines the degree of instability of its dynamics.
This supports the comment in [93] that alleles that affect seedling survival can increase

carrying capacity and simultaneously destabilise population growth dynamics.

Interior period-4 orbits

But what about the dynamics of the heterozygote? It seems likely that complex polymor-
phic behaviour would exist in regions where both homozygotes exhibit unstable dynamics.
In order to investigate this question I chose both a1 and a9, to be greater than 2.0. Using
the parameter values a1y = 2.1, a12 = 1.9, az2 = 2.1, by = 1.0, b33 = 0.908 and by = 0.53,
I found a set of starting points using DSTOOL and then varied each parameter in turn
using AUTO.

The only interior period-doubling bifurcation was found by increasing a12. Figure 5.11
shows the results. There are period-2 orbits at both p = 0 and p = 1 for all values of a;,.
This is expected since both a;; and as; are greater than 2.0. The period-2 orbit at p =1
is attracting for a1z < 1.907 (the region of heterozygote inferiority) and the orbit at p = 0
is attracting for a12 < 3.598. At this latter point the heterozygote becomes dominant,
a bifurcation occurs and a stable interior period-2 orbit is initiated. As a7 is increased
further, a period-doubling bifurcation occurs at a1, = 3.750. Although the period-4
orbits are not shown by AUTO, we can verify that such orbits exist using DSTOOL.
Figure 5.12 shows the dynamics in the (p, N)-plane for a;» = 3.8.

From the above results it appears that the relative carrying capacities of the genotypes

determine whether the boundaries and/or interior are attracting but that the growth
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Figure 5.10: Dynamics in the (p, N)-plane for ajp = 1.9, azs = 1.1, by = 1.0, by, = 0.905, byy = 0.525
and (a) a11 = 2.68, (b) a11 = 2.69 and (¢) a11 = 2.75. In (a) there is a period-8 attractor at p = 1. In
(b) this changes to a period-16 attractor and in (c) we have what appears to be a chaotic attractor.
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Figure 5.11: One-parameter bifurcation diagram of model (5.3) with a1; = 2.1, agp = 2.1, b1, = 1.0,
b1z = 0.908 and b3 = 0.53 obtained using AUTO. Branches marked with a * correspond to interior
values of p, namely 0 < p < 1. HB marks a period-doubling bifurcation from period-2 to period-4 orbits.
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Figure 5.12: Dynamics in the (p, N)-plane for a3y = 2.1, ayo = 3.8, aze = 2.1, by; = 1.0, by2 = 0.908
and by, = 0.53 showing a stable period-4 polymorphism.
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Figure 5.13: Two-parameter continuation of the period-doubling bifurcation (HB) in figure 5.11 with
a1 = 2.1, azp = 2.1, b1y = 1.0 and byg = 0.908.

rates, a;;, determine the type of attractor, that is, whether the attractors are equilibria
or periodic cycles of various orders. Since the only way to alter the carrying capacity
of A;A; without affecting its growth rate is to vary b;;, we can conclude that the b;;’s
greatest influence is on stability whereas the a;;’s determine the type or order of the
behaviour.

Although we have located a stable polymorphic period-4 orbit, the values of a2 for
which it occurs are very high. We would like to know whether such a phenomenon is
possible for lower values of ay, but different values of some of the other parameters. It is
only in the region of heterozygote superiority that polymorphic attractors exist in figure
5.11 and since K = 3.962 is large, this‘ region is only enitered when a1, is large. Hence,
by decreasing K2, we may be able to find stable interior period-4 orbits for lower values of
aqy. Figure 5.13 shows a two-parameter continuation of the ﬁeriod-doubling bifurcation
labelled 5 in figure 5.11. The parameter b;; is varied in addition to ai2. From figure 5.13

it can be seen that the period-doubling bifurcation point is reduced to a1 = 2.831 if by
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is increased to 0.945. This is substantially lower than before.

If we wanted to use AUTO to study orbits of period greater than 4, we would have
to calculate higher order iterates of the map (52) This is rather tedious and is perhaps
more of mathematical than of ecological interest. However, using DSTOOL, we can
increase the a;; values and observe the results for particular parameter combinations.

Some examples of more complex dynamics are shown in figure 5.14.

(a) © —%

Ve

(b) 7

—ren

VAR

Figure 5.14: Examples of complex dynamics. (a) An interior period-8 orbit for ay; = 2.3, a12 = 2.9,
ass = 2.5, by; = 1.0, byz = 0.908 and bz2 = 0.95. (b) An interior chaotic attractor for a;; = 2.6,
a1 = 31, a9 = 2.5, b11 = 10, b12 = 0908 and b22 = 095
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5.6 Conclusion

In this chapter a partial analysis of a population genetics model with monotone density-
dependent fitness functions has been done. Although most of the theoretical results had
been obtained by Asmussen [8] and Namkoong et al. [93], this study gave rise to a two-
parameter bifurcation diagram which indicates the relative frequency of occurrence of
the various types of dynamical behaviour in addition to proving their existence. Using
AUTO and DSTOOL, stable polymorphic period-2 and higher period orbits were located.
Asmussen (8] found these phenomena particularly difficult to study by hand when using
exponential fitness functions but they can be found without too much difficulty using the
available software. In addition to locating equilibria and higher period orbits I concluded
that the parameters b;; (i,j=1,2) have the greatest influence on the stability of these
phenomena whereas the a;;’s determine the type or order of the behaviour.

A number of opportunities for further research arise naturally from the results of this
chapter. First, could the numerical results be used as a basis for arriving at analytical
relationships between the parameters or at biological conditions that would determine
the existence of polymorphisms? For the model that I have considered this would be
particularly difficult to decide because of the exponential fitnesses, but a start could be
made using linear fitness functions. It would also be informative to know the relationship
between the behaviour of periodic attractors for the homozygotes and for the full genetic
system. Specifically, if both homozygotes have period-2 dynamics when acting alone, is it
only possible to obtain period-2 polymorphic behaviour or are polymorphic equilibria and
higher period polymorphic attractors also possible? If one homozygote exhibits period-x
dynamics and the other period-y dynamics when acting alone (x<y), does the full system

exhibit dynamics of period-x, period-y, or some combination of x and y?
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In the next chapter the same basic model is analysed but this time non-monotone

fitness functions are considered. The model has nbt been studied in detail before.
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6.1 Introduction

In the last chapter a single locus, two allele population genetics model with monotone
density-dependent fitness functions was analysed. Most studies assume such monotoni-
cally decreasing fitness functions because of the detrimental effects of population density
on growth [110]. However, this assumption is not biologically realistic for all population
densities [110]. At low densities, increases in density may benefit both reproduction and
survival. In this chapter I consider the same basic model as in chapter 5 but with non-
monotone density-dependent fitness functions which have a single hump. This model is
more difficult to study than that in the previous chapter because of the increased com-
plexity in the fitness functions. Instead of a single carrying capacity each fitness function
has two fixed points corresﬁonding to the values of N where w;; = 1. The terminology
described in section 5.2 is used again in this chapter.

As in chapter 5 the study focusses mainly on stable polymorphic behaviour—both
equilibria and higher period orbits. Such phenomena correspond to the maintenance of
genetic diversity in a population. From an ecological perspective we would like to know
how common or rare these phenomena are, that is, how likely they are to occur. In
contrast to chapter 5 (see section 5.5.3) it is found that a large number of parameter
combinations give rise to stable polymorphic equilibria but that stable periodic polymor-

phisms are not as common. The latter phenomena are only found to occur in situations

138
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where the dynamics corresponding to one of the homozygotes are fairly unstable and
where the fitnesses of the two homozygotes acting alone are very different. Other formu-
lations for hump-shaped fitness functions may, however, lead to different results.

An interesting result is that there is always a possibility of one allele being excluded,
even when a polymorphic attractor is present. Diagrams in the (p, N)-plane indicate the
domains of attraction for the homomorphic and polymorphic attractors. The possibility
of extinction is also high for most parameter sets. Criteria for determining the existence
and stability of polymorphic equilibria are also given. These combine theoretical and
numerical results.

In the next section I outline some previous results which apply to the model. I then
describe the functional forms of the non-monotone fitness functions. The model analysis
begins by fixing the fitness function corresponding to one of the homozygotes and varying
the two parameters corresponding to the other. A two-parameter bifurcation diagram
shows which parameter combinations give rise to homomorphic attractors and which
to polymorphic attractors. Section 6.4.3 finds criteria for predicting the existence and
stability properties of polymorphic equilibria, and stable period-2 polymorphisms are the
focus of section 6.4.4. A small modification to the fitness functions is required before the
latter phenomena are located. The results are summarised in a two-parameter bifurcation
diagram. Further two-parameter bifurcation diagrams show that period-2 polymorphisms
do not correspond to fitness functions where both homozygotes have similar properties
but one of the homozygotes has a greater fitness than the other at every population

density.
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6.2 Background

One of the few studies which considers the more general setting of non-monotone density-
dependent fitness functions is by Selgrade and Namkoong [110]. They prove a number
of results concerning the existence and stability of polymorphic equilibria for both con-
tinuous and discrete two-dimensional models. In particular, a necessary condition for
the existence of a polymorphism is that the heterozygote fitness be either superior or
inferior to both homozygote fitnesses at the equilibrium. For the case of heterozygote
inferiority the equilibrium is unstable. For the discrete model (which is the one consid-
ered in this chapter), if the heterozygote is superior and —2 < Ng—]“—\; <0 (szopulation
density, w=mean fitness) at the polymorphic equilibrium then this equilibrium is stable.
Higher order attractors are not studied in [110] and it is noted that arguments concerning
global dynamics are more difficult for these non-monotone fitness functions because of

the complicated nature of the mean fitness curve.

6.3 Fitness functions
The fitness functions used in this chapter are given by

wt = kitheXp[Tij(]- bt k”Nt)] 'L,] - 1,2 (61)

L

and wf-j = ki Neexp(ri;(1 — ki; N )N;| 0,5 = 1,2 (6.2)

Expressions of the form (6.1) can be found in [109] and also in [110] for the analogous
continuous model. These functions have a single hump (see figure 6.1) and are known as
climax fitness functions in some applications [109].

Apart from the results for polymorphic equilibria obtained by Selgrade and Namkoong

[110], not much work has been done on discrete models such as (5.2) in which both geno-

types have climax fitnesses. In order to simplify the analysis I look at an additive model
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in which the fitness parameters for the heterozygote are averages of the corresponding

parameters for the homozygotes. That is,

kiy = k11;k22
and ryy = #

This reduces the number of parameters for consideration.

6.4 Model analysis

6.4.1 Approach

I begin by studying the existence and relative frequency of occurrence of stable equilibria
for the additive model with fitness functions given by (6.1). I then look for stable periodic
polymorphisms using fitness functions given first by equations (6.1) and then by equations
(6.2).

As in the previous chapter bifurcation diagrams and plots of the (p, N)-plane are
the main tools for communicating results. In some situations the fitness functions are
plotted so that the relative fitnesses for various population densities can be seen. This is
analogous to calculating relative carrying capacities in the previous chapter.

In order to begin we need to choose a starting set of parameter values. There are
four parameters in this model—Fky1,711, ko2 and r23 (k12 and 715 are averages of the cor-
responding homozygote parameters). Since there were no prior results with which to
begin, I used MAPLE! [122] to plot the three fitness functions and chose parameter val-
ues which led to plausible-looking curves. Since there are four parameters and AUTO
can vary at most two at a time, I fixed ry; and kop (that is, I fixed the fitness function

wo2) and investigated the (k11,711)-parameter space. Therefore, the results will indicate

! Any other mathematical graphics package, such as MATHEMATICA [126] or GNUPLOT [125],
could have been used.
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Figure 6.1: wgy With ros = 0.8 and ks = 0.6.

the effects of varying the relative positions and magnitudes of the fitness functions. It

should be kept in mind that altering ry; and ky; will affect both wy; and wys.

6.4.2 (ki1,711)-parameter space

After using AUTO to vary the parameters one by one to locate a stable polymorphism,
I chose ry; = 0.8 and ky3 = 0.6 as starting values, which gave the w,, fitness function
shown in figure 6.1. The aim is to divide the (kq1,711)-parameter space into regions corre-
sponding to stable fixed points at p = 0,p =1 (homomorphic equilibria) or 0 < p < 1
(polymorphic equilibria).

The first step is to generate a one-parameter bifurcation diagram. Choosing values for
r11 and kq3, I used DSTOOL to find fixed points as starting points for AUTO. Figure 6.2
was obtained by varying k;; with r; = 0.7. Only branches corresponding to 0 < p <1
have been drawn and no distinction between sources and saddles has been made so as
to keep the diagram as clear as possible. (Interactive AUTO uses magenta to represent

sources and blue to represent saddles.)
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Figure 6.2: A one-parameter bifurcation diagram obtained by varying k11 with ry; fixed at 0.7

(r2 = 0.8 and kg2 = 0.6). Branches marked with a * correspond to intertor values of p, namely
0 < p < 1. LP marks the limit points and BP the transcritical bifurcation points.
There are many bifurcations in figure 6.2. Most are transcritical bifurcations (see

section A.2.25) but there are also two limit points (see section A.2.13). Diagrams of
the (p, N)-plane for a number of different values of ki; are shown in figure 6.3 to help

clarify the changes in dynamical behaviour that occur as ky; increases through these
bifurcation points. Note that for this value of r1; there are two ranges of ky;-values where
stable polymorphic equilibria occur. Another important observation from an ecological

perspective is that the possibility of extinction is fairly high for all the situations shown
in figure 6.3.

AUTO can only continue limit points and period-doubling bifurcations in two param-
eters. As can be seen from figure 6.2 we will also need to know how the positions of the

transcritical bifurcations vary with 1y if we want to delimit regions of stable behaviour

143




Chapter 6. Population Genetics Model II

2.564 4

2.564

n

N ki3 =0.21
7]
h
e
\
PRERN o
‘ \
2.564 g& J
TN 7/ &
0a—¢
0 p 1

144
N kyy = 0.25
1 l
! ‘(/? P
! Fem
1Y / ‘
\
2.564 4 5 A ,/
4 -—— - ”
-- T &
0A-
0 1

Figure 6.3: Diagrams of the (p, N)-plane (obtained using DSTOOL) for a number of different values
Of kll with 11 fixed at 0.7.

in two-parameter space. In order to do this I chose a number of different r;;-values (such

as 0.3,0.5,0.7,...). For each value I obtained starting points (that is, equilibrium points)

for AUTO using DSTOOL?. I then used AUTO to generate a one-parameter bifurcation

diagram by varying kj; in both directions, and recorded the k;;-values corresponding to

the various bifurcations—both transcritical and limit point. Using the graphics package

GNUPLOT [125] to plot the recorded points, I obtained figure 6.4(a). Figures 6.4(b), (c)

21t is important that a number of different fixed points are located for each parameter set to ensure
that unconnected continuation branches are not missed.
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and (d) show the same diagram with shaded regions corresponding to stable equilibria at
0<p<1l,p=0and p =1 respectively. Although figure 6.4 only gives approximations
to the various bifurcation curves, they are sufficient for a qualitative analysis. I am more
interested in the different types of qualitative behaviour that can occur than the actual

parameter values at which transitions take place.
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Figure 6.4: Diagrams of the (k;;, r11)-parameter space. (a) The basic diagram showing a number of
bifurcation curves. (b) The regions corresponding to stable polymorphisms are shaded. (¢) The regions
corresponding to stable equilibria at p = 0, N > 0 are shaded. (d) The regions corresponding to stable
equilibria at p = 1, N > 0 are shaded.
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In order to clarify figure 6.4, diagrams of the (p, N)-plane corresponding to the re-
gions marked A to P are shown in figures 6.5 and 6.6. These figures are schematic.
representations of diagrams obtained using DSTOOL. The dashed lines in these: dia-
grams approximate the one-dimensional manifolds of the saddle points (see page 241)
and indicate the boundaries of the domains of attraction of the sinks.

In addition to revealing the extents of the regions corresponding to homomorphic and
polymorphic equilibria, ﬁgure 6.4 shows where we can expect simultaneous homomorphic
and polymorphic attractors. In fact, there are no regions where the only attractor is in
the interior. Thus, there is always the possibility that one of the alleles will be excluded.
The relative sizes of the domains of attraction of the homomorphic and polymorphic
equilibria are shown in figures 6.5 and 6.6. These diagrams also highlight the ever-present

possibility of extinction.

6.4.3 Criteria for polymorphisms

It would be helpful to be able to predict when a stable polymorphic equilibrium is likely
to occur. One possibility is to investigate the fitness functions corresponding to the
different regions in figure 6.4(a). Computer packages such as GNUPLOT [125], MAPLE
[122] and MATHEMATICA [126] are convenient for such investigations as the fitness
functions wqq, w12 and wyy can be plotted on the same pair of axes. Fixed points at p = 0
and p = 1 occur at those values of N where w;;, = 1 and w;; = 1 respectively. The
stability of these points depends on the relative ﬁtnesses‘ of the homozygotes and the
heterozygote.

In each of the regions corresponding to a stable polymorphism it was found that
the heterozygote is superior at the point where the downward slope of the w;, fitness
function crosses the line wy; = 1 (see figure 6.7(a)). Similarly, interior saddle points

correspond to heterozygote inferiority at this point (see figure 6.7(b)). However, not
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Figure 6.5: Diagrams of the (p, N)-plane corresponding to the regions A to H in figure 6.4(a).
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Figure 6.6: Diagrams of the (p, N)-plane corresponding to the regions N to P in figure 6.4(a).
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(b)

Figure 6.7: Examples of the fitness functions for parameter values corresponding to (a) a sta-
ble polymorphism (r1; = 0.7,k1; = 2.0,722 = 0.8,ks2 = 0.6) and (b) an unstable polymorphism
(7’11 = 04, k'll = 20, T99 = 08, ](722 = 06)
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all parameter combinations which gave similar configurations of the fitness functions
correspond to the existence of polymorphisms. This supports the conclusion in [110] that
heterozygote inferiority or superiority is necessary but not sufficient for a polymorphism
to occur. Hence, it appears that this method of looking at the fitness functions is not
too informative when it comes to the question of existence of polymorphisms.

An alternative is to investigate the mean fitness functions:

wi = pawi; + (1= pwi,,
w, = thiz + (1 - Pt)wézza

and @' = pawt+ (1-— pt)wé,

where w! is the marginal fitness of allele A; and w? is the mean population fitness at time

t. An interior equilibrium (0 < p < 1, N > 0) requires

Pitv1 = Dt

and Nt+1 = Nt.

From equations (5.2) in the previous chapter we can see that the above equations will be

satisfied if

and w{ = o' (6.4)
For 0 < p < 1 the latter condition can only be satisfied if
wh = wh. (6.5)

We need to solve conditions (6.3) and (6.5) simultaneously for p and N but an explicit
mathematical solution is not possible because of the exponential terms in the fitness func-

tions. We can use a computer package such as GNUPLOT [125] to plot these equations

numerically. An example is shown in figure 6.8.
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P

Figure 6.8: Curves given by w; = w; (thin dotted line) and w = 1 (thick solid line) for parameter
values corresponding to a stable polymorphism (r1; = 0.7, k11 = 2.0, 722 = 0.8, k22 = 0.6).

From the above mathematical analysis we know that the curves corresponding to the
two equations (6.3) and (6.5) always intersect when a polymorphism is present and do
not intersect in other regions. Each intersection corresponds to a unique polymorphic
equilibrium. Thus, we can predict the existence of polymorphic equilibria. However, it
is not possible to distinguish between stable polymorphisms and interior saddle points
on the basis of these diagrams.

Using both plots of the mean fitness function configurations and the results in [110]
mentioned in section 6.2 for determining the stability of interior equilibria, we can pre-
dict the existence and the stability properties of polymorphic equilibria. The relative
positions of the fitness functions, such as in figure 6.7, give most of the required stability
information but for a stable polymorphism the quantity Ng—;f, also needs to be checked
(see [110]). Although it is satisfying to have neat mathematical criteria, for a given sit-

uation it is probably easier and quicker to use DSTOOL to find and classify the fixed
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points.

In the next section I turn to higher order dynamics. As in the previous chapter
we would like to know whether stable period-2 (an-d higher period) polymorphisms are
possible with this additive model since the maintenance of genetic diversity need not be

restricted to the existence of polymorphic equilibria.

6.4.4 Stable period-2 polymorphisms

Attempts to find a stable period-2 polymorphism using DSTOOL and AUTO proved
to be time-consuming. However, I was finally successful in locating a period-2 sink for
r11 = 1.3,k = 0.5,72; = 7.5 and kg, = 4.57. The fitness functions and (p, N)-plane
corresponding to these parameter values are shown in figure 6.9. As can be seen from
figure 6.9(b), the domain of attraction for this period-2 orbit is very small. Also, figure
6.9(a) shows that the fitness function ws, has an unrealistically high maximum. Neither
situation is particularly satisfying. |

The r;; values determine the heights of the fitness function maxima. We would like to
know whether altering one of the other parameter values would allow ry; to be lowered
while still maintaining the interior period-2 attractor. AUTO can be used to generate
two-parameter diagrams for this purpose. The first step is to create a one-parameter
bifurcation diagram by varying re;. The relevant curves are shown in figure 6.10. The
period-doubling bifurcation HB" is the point at which stable period-2 orbits are initiated.
Using AUTO we can see how the position of this period-doubling bifurcation changes as .
a second parameter is varied. The diagrams obtained using ry1, k11 and k22 as the second
parameter are shown in figures 6.11(a), (b) and (c) respectively. As can be seen from
these diagrams, ry; needs to be greater than 6.4 for a stable period-2 polymorphism.

This is still rather large and not particularly satisfactory.
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Figure 6.9: (a) Fitness functions and (b) (p, N)-plane for r1; = 1.3, k1 = 0.5, 792 = 7.5 and kyy = 4.57.

There is no reason why we should be confined to the fitness functions given in equa-
tions (6.1). The only requiremen‘ﬁs for this study were that the fitness functions be
density-dependent and have a single hump, and that the model be additive (that is, the
heterozygote parameters must be linear combinations of the homozygote parameters).
The steeper the slopes of the fitness functions (the right-hand slope in particular), the

less stable the dynamics corresponding to that homozygote. This is similar to the previ-

ous chapter where higher growth rates, which caused exponential fitnesses with steeper
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Figure 6.10: A partial one-parameter bifurcation diagram obtained by varying rso using Interactive
AUTO. Only branches satisfying 0 < p < 1 are shown. The second iterate of the model was used so that
the period-2 orbits could be continued. However, using this model the period-doubling bifurcation HB*
is labelled as a bifurcation point by AUTO which means that it cannot be continued in two parameters.
The original model needs to be used for such a continuation.

slopes, resulted in more complex dynamics. We expect higher period interior orbits
to occur in regions of less stable behaviour at the boundaries p = 0 or p = 1 and, thus,
one-humped fitness functions whose slopes are steeper than those given by equations
(6.1) may give more reasonable results. Fitness functions of the form (6.2) have the
required property. With these fitness functions I found a stable period-2 polymorphism
for ry3 = 0.2, k13 = 5.0, 792 = 0.3 and kqy = 0.4. Both DSTOOL and AUTO were used in
the search. The fitness functions and (p, NV)-plane corresponding to these values can be
found in figure 6.12. As can be seen from figure 6.12(a), the fitness functions are much

more reasonable than before.

Again we can get some idea of the size of the region in parameter space for which
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Figure 6.11: Two-parameter continuations of the period-doubling bifurcation HB* in figure 6.10 ob-

tained by varying (a) ri1, (b) k11 and (c) ko2 in addition to rae. The shaded regions indicate which side

of the bifurcation continuations corresponds to periodic behaviour.
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Figure 6.12: (a) Fitness functions and (b) (p, N)-plane for r1; = 0.2, k11 = 5.0, 799 = 0.3 and kqo = 0.4.
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Figure 6.13: One-parameter diagrams obtained by varying ky; using (a) the original model and (b)
the second iterate of the model. Only branches satisfying 0 < p < 1 are shown.

these higher order stable polymorphisms occur. I decided to fix was (that is, fix rep and
ky2) and examine the (ky1,r11)-parameter space as was done earlier. The first step is
to use AUTO to create a one-parameter bifurcation diagram by varying ky;. DSTOOL
was used to generate starting points for AUTO. Using the first iterate of the model
equations resulted in figure 6.13(a). Only the period-doubling bifurcation indicating the
change from a stable equilibrium to a stable period-2 orbit is shown. In order to plot
the period-2 orbits the second iterate of the model needs to be used. This gives figure
6.13(b). Notice that the period-doubling at ki; = 4.226 is now labelled as a bifurcation
point (transcritical) by AUTO instead of as a period-doubling bifurcation. This second
bifurcation diagram shows a further period-doubling at k;; = 5.358 from period-2 to
period-4 orbits but the stable period-4 orbits are not continued by AUTO. However,
their existence can be verified using DSTOOL.

Using the first iterate of the model we can see how the position of the first period-
doubling (at ky; = 4.226) changes as ry; is varied in addition to k13. In order to obtain
a rough idea of the extent of the region of interior higher order stable behaviour, we
can vary r; using the second iterate of the model and trace out the path of the second

period-doubling (at ky; = 5.358 in figure 6.13(b)). Both curves are plotted on the same
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Figure 6.14: A bifurcation diagram showing the two-parameter continuation of the period-doubling
at ki1 = 4.226 and the subsequent period-doubling at k13 = 5.358 in figure 6.13. The shaded region
approximates the region of stable polymorphisms of period greater than 1.

set of axes in figure 6.14. The shaded area in this figure approximates the region of
parameter space corresponding to higher order stable interior behaviour. In general, the
further the parameters are from the solid line (first period-doubling) within this shaded
region, the more complex the dynamics. For example, for r;; = 0.18 and k;; = 5.0 there
is an interior chaotic attractor as shown in figure 6.15.

In figure 6.12 the fitness functions corresponding to the two homozygotes are fairly
different in terms of magnitude and the steepness of their slopes. This is true throughout
the shaded region in figure 6.14 and can be deduced from the diagrams in the (p, V)-plane
by noting the contrast between the complex dynamics near the p = 1 boundary and the
much simpler behaviour near the p = 0 boundary. An important question is whether a

fitness function configuration of the form shown in figure 6.16 could result in period-2 (or
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Figure 6.15: An example of an interior chaotic attractor obtained for ry; = 0.18, k;; = 5.0,790 = 0.3
and kg2 = 0.4

higher period) stable polymorphisms. In such a situation both homozygotes have similar
fitness properties but with one of the homozygotes slightly out-competing the other at
each population density. The region in (k;1,711)-parameter space corresponding to such
fitness configurations is plotted together with figure 6.14 to produce figure 6.17. Clearly,
in this case the two regions do not overlap. Thus in this range it is not possible to have
additivity (in the sense just described for the fitness functions) and stable polymorphic
behaviour.

So far wy; has been fixed to have the shape shown in figure 6.12(a). The slopes of
this function are fairly gentle. Suppose we replace wq; by the function shown in figure
6.18. We expect such an alteration to reduce the stability of the dynamics near the
p = 0 boundary and hope that this might reduce the differences between the homozygote
fitnesses that were previously required to obtain a stable period-2 polymorphism.

Figure 6.19 was obtained using the same procedure as for figure 6.17. Again the two

regions do not overlap but their relative positions have now changed. An obvious question
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Figure 6.16: An example of a fitness function configuration where wy; is always superior to was.
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Figure 6.17: The (k11,711)-parameter space showing the region of higher order stable polymorphic

behaviour corresponding to figure 6.14 (vertical lines) and the region corresponding to fitness function

configurations of the type shown in figure 6.16 (horizontal lines).
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Figure 6.19: The new two-parameter space showing the region of higher order stable polymorphic
behaviour (vertical lines) and the region corresponding to fitness function configurations of the type

shown in figure 6.18 (horizontal lines).
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would be to ask whether there are intermediate parameter values where the two regions
do overlap. Numerous investigations using both DSTOOL and AUTO did not reveal any
situations of this type. For the additive model with fitness functions given by (6.2) it
appears that the fitness properties of the homozygotes need to be fairly different before
higher order stable polymorphisms are found. This result is comparable with results in

the previous chapter for period-4 orbits.

6.5 Conclusion

The population genetics model studied in this chapter is more complicated than that of
the previous chapter due to the form of the fitness functions. As a result any mathematical
analysis using pencil and paper is very difficult, if not impossible, since many of the
fixed points do not have closed algebraic forms. However, AUTO and DSTOOL proved
invaluable for investigating certain aspects of the behaviour of the model and led to some
important conclusions.

In particular, it was found that for the additive model with one-humped fitness func-
tions, period-1 stable polymorphisms v(interior equilibria) are much more probable than
period-2 (and higher period) stable polymorphisms. Homozygote fitnesses need to differ
greatly in magnitude and slope properties for the latter to occur. A method for pre-
dicting the occurrence of interior equilibria from mean fitnesses was demonstrated and
the relationships between interior and Boundary stable equilibria were shown using two-
parameter bifurcation diagrams and corresponding diagrams of the (p, N)-plane. The
latter diagrams also highlight the high possibility of extinction for most parameter com-
binations. Other one-humped fitness functions may lead to different conclusions than

those obtained in this study. The techniques outlined in this chapter could be used for

such investigations.




Chapter 7

Spruce Budworm Model

7.1 Introduction

In this chapter I concentrate on a discrete model of a defoliating insect system. The insect
is the spruce budworm and its preferrevd host trees are balsam fir and white spruce. The
model that I have chosen to study was developed by Clark and Ludwig [22]. In it the
budworm, the branch surface area of the trees and their foliage are all state variables.

In the next section I give some background to the budworm-forest system as well
as to a few of the models which have been formulated to describe it. The model by
Clark and Ludwig [22] is fairly complicated and includes a number of processes such
as dispersal, predation, food limitation, and parasitism. Section 7.3 gives a description
of the equations. Discrete models of this complexity have not been analysed in detail
before.

Section 7.4 contains the model analysis. DSTOOL is the main package used. Because
the system is discrete and because of its complexity, continuation packages such as AUTO
are of limited value. This is discussed in more detail in section 7.4.1. For the analysis I
chose to focus on one aspect of the model rather than attempt an exhaustive parameter
study. The process I chose is dispersal as it is thought to have a significant effect on the
budworm dynamics (Clark [19]). Two parameters that affect small larval dispersal and
female adult dispersal, respectively, are allowed to vary. Regions of this two-dimensional

parameter space which correspond to budworm extinction, multiple stable states and
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periodic outbreak behaviour are identified. While Clark and Ludwig [22] found parameter
values which give rise to some of this behaviour, a few additional possibilities are found -
in this study. An important result is that insect outbreaks are possible for a large number
of realistic parameter combinations.

It would be interesting to know which of the many component processes in the model
is responsible for the observed behaviour and which ones have a lesser effect. Knowing
how each process affects the system behaviour can greatly help in understanding and
managing the budworm-forest system. Using a variety of techniques I show that the
main process responsible for outbreak cycles is small larval dispersal. This agrees with
the findings of Clark [19]. After studying the effects of small larval dispersal on the
behaviour of the model in more detail, I use bifurcation analyses once again to compare
the effects of predation and small larval dispersal. The main influence of predation is
at fairly low budworm densities which means that it affects the time period between

outbreaks.

7.2 Background

The eastern spruce budworm, Choristoneura fumiferana Clem. (Lepidoptera: Tortrici-
dae) is found throughout the Canadian Maritimes and northern New England as well
as westward and northward through middle Canada up to the boreal forest (McNamee
[89]). In some regions budworm densities remain low as a result of predators, inadequate
resources and weather (Clark [19]). However, these controls breék down periodically,
particularly in the eastern regions, resulting in budworm outbreaks of epidemic propor-
tions. Damage to the preferred host trees, balsam fir (Abies balsamea) and white spruce

(Picea glauca), is extensive and can approach 100% in dense, mature stands [19]. These
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outbreaks are documented as far back as the 1700’s with some of the worst ones occur-

ring in the Canadian province of New Brunswick. Intensive insecticide spraying began‘

in this area in 1952 in an attempt to protect the foliage and, thus, limit tree mortality
[19]. Contrary to expectations, this led to high endemic populations of budworm which
began to kill significant portions of the forest (Baskerville [13]).

The budworm itself is a univoltine insect which means that there is one budworm gen-
~eration per year. Its life cycle can be divided into egg, larval, pupal and adult stages. The
large larvae have the most effect on the dynamics of the budworm-forest system (Jones
[65]). This stage causes the most defoliation and large larval feeding levels influence both

fecundity and adult dispersal. The large larvae are also subject to bird predation and

parasitism and are the target for insecticide spraying. ‘As mentioned earlier, dispersal -

also affects the dynamics. The small larvae spin silk threads and are transported aerially
by wind. If the adults disperse, they may fly from 10 up to 100‘ kilometres [89].

The system has received a substantial amount of research attention, both empirical
and theoretical, in the past few decades (for example, [19, 32, 42, 65, 74, 89, 91, 105, 106]).
In the 1970’s Jones [65] developed a process-oriented simulation model which takes into
account the annual dynamics of the insect and the forest in which it resides. This model
has been used as a research tool by forest managers and scientists in New Brunswick
(Clark and Holling [21]). However, a full understanding of the behaviour exhibited by
the model has been hindered by the large number of component processes involved and
the complexity of the equations.

At the other end of the scale, Ludwig et al. [74] developed a simplified model consisting
of a system of three ordinary differential equations which they studied qualitatively.
Although they obtained some interesting results and demonstrated the potential of the
model to exhibit outbreak behaviour, Clark and Ludwig [22] note that many processes

are ignored or aggregated when simplifying the situation to such an extent.
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Another approach is to combine the two approaches and apply qualitative methods
to a fairly complicated model. With this aim in“fnind, Clark and Ludwig [22] developed
a condensed version of Jones’s model by aggregating new and old foliage into a single
variable and ignoring age structure in trees. The result is a discrete system describing
the annual dynamics of three basic state variables: budworm density, foliage density and
branch surface area density. Théir model is more manageable than the one in [65] but still

includes important biological components. This model is described in the next section.

7.3 Model equations

7.3.1 Foliage

The foliage variable, F', is the density of green needles found in a unit of branch surface
area. It is an average value representing conditions on the whole site and is measured
in ‘foliage units’ where one foliage unit (fu) is the quantity of new foliage produced per
unit of branch surface area in the absence of budworm-induced defoliation. In addition
to being consumed by budworm larvae, the foliage provides oviposition sites for adult
moths [19]. Although balsam fir retains its foliage for about eight years, it is sufficient to
consider only two classes (‘new’ or present year foliage and ‘old’ foliage which includes all
remaining foliage) since this is the only distinction made by the budworm. If budworm
density is low, the ratio of new to old foliage is 1:2.8 [65]. For simplicity it is assumed
that this ratio is fixed. Total foliage density can then be scaled to have a maximum of
Kr = 3.8 fu.

If F} is the initial foliage density then, following Jones, the effect of larval consumption
on new foliage can be described by:

afe
Kr

Remaining new foliage = e~

(7.1)
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where

Kr
A= doLb?b.

Here L; represents the initial budworm larval density and dy is the maximum foliage
consumption rate for an individual larva during the feeding season. Equation (7.1) is
a standard competition function (see appendix D for an explanation) and it is used to
represent the competition between budworm that results from high populaﬁion densities
[65].

If the budworm’s food requirements are not met by new foliage alone then old foliage

is consumed. Analogues of the above equations are:

_BI{F —1
Ky

Remaining old foliage = e

R, (7.2)

where

B=ci(A—1+¢e™).
(c1 =0.357 is a constant.)
The total amount of foliage, F}, remaining after consumption by budworm is obtained
by combining equations (7.1) and (7.2) to give:

L e + (Kr —1)e B F. (7.3)

F, = —
U Kg

Density-dependent growth of foliage also needs to be taken into account. If we let rp
represent the average growth rate of foliage at low densities and remember that F, (the

foliage density after one year) cannot exceed K, then we obtain

rrlFy

F= T
€ rp—1 ?
1+ g

(7.4)

where the denominator introduces density-dependence. This completes the foliage dy-

namics.
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7.3.2 Branch surface area

Another feature of trees that is important to budworm is the surface area of branches.
This serves as the budworm habitat. In this model the branch surface area density, .5,
is an average value for the whole site and is measured in units of ten square feet (tsf)
per acre. The original model of Jones used 75 age classes. Since outbreaks tend to
synchronise tree development, there is some justification for the simplification to a single
age class.

Severe defoliation by budworm may kill branches. This is modelled by setting
S; =1 -ds(1 — =)%Ss, (7.5)

where Sy is the initial branch surface area density and ds is an average death rate. 5
represents the living branch surface area which remains after defoliation. Because of the
quadratic term (1 — %)2, the difference between Sy and S; is only significant if there is

substantial defoliation, that is, if Fy is very different from Fj.

Subsequent density-dependent growth of surface area is taken into account by setting

rsS1

Se = —F——p—, 7.6
L+ 5 "

where rg is the average growth rate and K is the maximum branch surface area density.

7.3.3 Budworm

The preceding equations are only slightly more complicated than the ones in Ludwig et
al. [74]. However, those for the budworm dynamics are much more complex. Most of the
following equations are based on Jones’s model [65]. Following his approach, an initial
large larval density of L, larvae per unit of branch surface area (per tsf) is assumed.

Parasitism of these larvae is considered first.
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Parasitoids are not treated as a dynamic variable in the model since under normal
conditions the parasitoids’ numerical response is too slow to raise parasitism rates sig-
nificantly before the outbreak collapse has begun [19]. According to Jones, the rate of
parasitism is a decreasing function of larval density, with a maximum of 40% at low bud-
worm densities that decreases exponentially. The number (density) of larvae surviving
parasitism is given by

Ly=(1- Qmaxe—C)Lb, (7.7)

where C' = 0.003L; and gmax = 0.4.
Large larval survival is also influenced by the amount of food consumed. Following

Jones it is assumed that survival is proportional to the average amount of food consumed:

F—F
L, = kg ( — 1) Ly, (7.8)

where k7, = 0.425 is a proportionality constant.
Predation by birds is limited to the large larvae. As in Ludwig et al. [74] this process

is modelled by a Holling type III functional response. Thus,
Ly =e"PLy, (7.9)

where

PmaxLz

D= ,
Sb(Psath2 + L%)

and pmax is the maximum predation rate and pg,t is a half-saturation rate. The ex-

pression for D requires some explanation. If it is assumed that the number of predators
(birds) per acre is fixed, then the number per branch is proportional to pmax/Ss. The
predators search foliage and they switch to alternate prey if the ratio of larvae to foliage,

L,/ Fy, is too small. If pmax/Ss is small, then predator consumption is
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L2 - L3 = (]_ — C_D)L2

~ DL2

pmang
Se(pPsat £y + L3)

(7.10)

- which indicates that pg,¢ is the half-saturation value of the ratio L3/F?. Clark and
Ludwig [22] chose the more complicated exponential form (7.9) over (7.10) in order to
take into account competition among predators.

The survival of pupae is correlated with the survival of large larvae [65] and is given

by :
L '
E)LB (7.11)

where A, = 0.473 and B, = 0.828 are regression constants obtained by Jones [65]. This

L4 == (Ap+Bp

expression gives the density of adult moths.
According to Jones, female fecundity depends on their weight. He calculates this

weight, W, as

(1—e4) (1—eB)
A A

where Ap; = 34.1, Apy = 24.9 an_d Br = —3.4. This formula expresses the differing

W =Ap + AF2(I{F — 1) + Br (7.12)

nutritional values of new and old foliage. Fecundity is proportional to the cube root of

W [65] which results in the following equation for egg density:
Ls = (E\W'? — E))A,, Ly (7.13)

where F; = 165.64 and E, = 328.52 are regression constants obtained by Jones [65]
and A,, is an adult sex ratio which gives the average proportion of females. There is an
additional constraint that fecundity be at least 40 eggs per female. If nutrition were so

poor as to produce fewer than this, the pupae would not have survived [65].



Chapter 7. Spruce Budworm Model 171

Dispersal is another process which is thought to have an important effect on local
budworm dynamics. It is convenient to think of eggs dispersing rather than adults, as a
female moth will deposit some of her eggs on the site under consideration and will remove
some to other locations [65]. Following Clark [19], it is assumed that dispersal always
leads to death. Thus, in this rﬁodel, adult dispersal serves to increase egg mortality.
Unlike normal mortality, however, this removal of eggs from the population depends on

female adult density in the following way:

AgisnE™
= (1 e .
Le = ( T4 E™ )Ls (7.14)
where
AsrL4
F =
Ath'r

is the ratio of female adult density to a threshold density, Asp.. If the parameter m is
large then E™ will be large if £ > 1 and small if £ < 1. This means that a fraction Ag;s,
of adult females (and hence eggs) disperse if £ > 1 and no dispersal occurs if £ < 1.
The steepness of the transition between no dispersal and dispersal is controlled by the
size of m.

Foliage density and branch surface area are both important factors in determining
the survival of small larvae. The reason is that small larvae disperse twice (using silken
threads to give them buoyancy in the wind) and the success of their dispersal depends
upon landing on suitable foliage. It is assumed that the scaled probability of successful
dispersal is given by |

G=H2-H) (7.15)

where

R
H= 1.
Kp'

The parameter n is analogous to m in equation (7.14). If n is small, I/ will only vary

slightly as F) decreases below its maximum, Kr. But if n is large, changes in F; will
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greatly affect H. Thus n determines the extent to which foliage density affects the success

of small larval dispersal. A graph of G versus H is given in figure 7.1. Notice that G is

0.75
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Figure 7.1: Graph of G versus H (equation (7.15)).

close to 1 unless H differs substantially from 1. The effect of both dispersals is included

by taking the above factors into account twice. This gives

Sh

Le = dSLFS

G*Ls (7.16)

where dgy, is an average survival rate for small larvae and S,/ K5 expresses the dependence
of dispersal success on branch surface area density. The lifecycle is now complete and L.
represents the new large larval density.

This completes the description of the three-dimensional model developed by Clark
and Ludwig [22]. A summary of the equations can be found in appendix D. Table
7.1 gives the standard parameter values. As with all models there are a number of
simplifying assumptions. It may already have been noted that adult dispersal is not
accurately represented in the model since the model only deals with a single region and

has no spatial component. Thus the validity and accuracy of the model predictions need
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to be evaluated, but this is outside the scope of the present study.

Parameter Description Value
Foliage
K maximum foliage density 3.8
do maximum foliage consumption rate/larva | 0.0074
TF foliage growth rate 1.5
Branch surface area
ds branch surface area death rate 0.75
Ts branch surface area growth rate 1.15
K, maximum branch surface area density 24 000
Budworm
Gmaz maximum parasitism rate 0.4
Pmaz maximum predation rate 23 000
Psat half-saturation value (predation) 0.085
Asr adult sex ratio (females/total) 0.46
Adisp fraction of females dispersing 0.5
m steepness of dispersal transition _ 4.0
Athr female threshold density (dispersal) 5.0
n effect of foliage density on larval dispersal | 1.0
dsr, small larval survival rate 0.28

Table 7.1: Table of standard parameter values.

7.4 Model analysis

7.4.1 Preliminaries

Traditional methods of qualitative analysis, such-as isocline analyses, are not possible in
this case as the equations are complex and there are t66 many component processes. For
models bf this nature, numerical solution of the equations for a given set of parameter
values has been the principal tool for investigating the dynamics. However, numerous
solutions for various parameter combinations are required for a meaningful study. This
is time-consuming and often misleading as the solutions depend on the initial conditions

and on complex joint distributions of parameters [19]. Since many ecological models of
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practical interest are similar in complexity to the one under discussion, it is desirable
that methods be found for understanding the behaviour of these models. Without an
understanding of the range of behaviour that a model can exhibit, it may be difficult to
explain results obtained from computer simulations or time series analyses of the model
(82].

Although AUTO can perform continuations of equilibrium points for simple systems
of difference equations, the complexity of this system causes the numerical algorithms to
encounter problems. First of all, for discrete systems AUTO can only detect a period-
doubling from an equilibrium point to a 2 point (period-2) cycle (refer to section A.3.5)
but this model exhibits 9 point through to 70 point (and multiples thereof) cycles. An
analysis using AUTO would clearly be limited as none of these higher period cycles would
be detected. Also, as certain parameters are varied the periods of the cycles éhange. In
this model changes occur over small parameter ranges. Since each change in period
corresponds to a bifurcation, the stepsize would have to be made very small if these were
to be detected using a numerical continuation method. However, very small stepsizes
lead to increased computer round-off error and decreased accuracy.

Despite these limitations of continuation software in the context of complex discrete
models, it is still possible to obtain the desired qualitative information. However, bifur-
cation diagrams have to be obtained ‘rﬁanually’ rather than through automated continu-
ation programs. This can be done using DSTOOL as will be described shortly. The types
of numerical routines involved in using DSTOOL are generally more robust than those
for AUTO when it comes to these complicated discret_e models since they ir-lAvolve solving
the system for a fixed set of parameter values. No further discretisation or approximation
is required as iﬁ the case of differential equations. .

As in the previous chapters the first step is to decide which parameters to investigate.

Those whose values are uncertain or which are thought to have a significant influence on
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the dynamics are obvious choices. I chose to study the effects of dispersal on the budworm
dynamics. An important parameter affecting female adult dispersal is A¢p,, the threshold
value below which no dispersal occurs. The effects of small larval dispersal are controlled
by n, which determines the extent to which foliage density affects the success of small
larval dispersal, or dsz,, which is the average survival rate for small larvae (see equation
(7.16)). If we set n = 1 then the effects of small larval dispersal can be determined by
varying dgr, which is more biologically meaningful. (A large value for dg;, means that
the average survival rate is high and also that foliage condition has a significant effect on
survival after dispersal.)

In what follows I look first at dgs;, and then at Atn,. This ordering is arbitrary. The
alm is to analyse the effects of varying the values of these parameters and to divide the
(dsr, Ainr)-parameter space into regions of different qualitative behaviour. Following this
I study the effects of different processes on model behaviour to determine which one(s)
is(are) responsible for the outbreak cycles. Finally, I study the two processes predation
and small larval dispersal in more detail.

Because there are three state variables in the model, a decision had to be made as to
the two-dimensional space into which the dynamics should be projected. Since branch
surface area varies at a much slower rate than the budworm and foliage dynamics, I
decided to look at the budworm versus foliage plane. It should be noted that in all the
DSTOOL calculations, branch surface area, S, is still allowed to vary—the results are
just projected into the (Foliage,Budworm)-plane. This differs from Clark and Ludwig’s
study where S was constant in their analysis and means that the following analysis
applies to the full three-dimensional model whereas that in [22] is restricted to a simpler

two-dimensional system of equations.




Chapter 7. Spruce Budworm Model | 176

7.4.2 The effects of small larval dispersal

My first objective was to determine the effects of varying the parameter ds; on model
behaviour. Since dgsy, is a survi{lal rate it must lie between 0 and 1. To begin I set dsp =
0.05 in the SETTINGS-SELECTED window and fixed all the other parameters at their
respective values given in table 7.1. Using DSTOOL I found and recorded the equilibrium
points corresponding to this parameter set as well as their local stabilities. This is
done using icons in the FIXED POINT window. I also used DSTOOL to calculate the
corresponding dynamics in the (Foliage,Budworm)-plane. This is done using the mouse
to click on different initial points, or entering initial points manually in the SETTINGS-
SELECTED window and using FORWARDS and CONTINUE in the ORBITS window
to calculate trajectories. The resulting diagrams show whether cyclical behaviour occurs
and the amplitudes of the cycles as well as the approximate domains of attraction (see
section A.2.5) in the two-dimensional plane.

After recording the results I increased dgy, to 0.10 and repeated the above procedure.
I continued in this way (incrementing dsz, by 0.05 each time) until I reached dsy, = 1.0. In
regions where qualitative changes occurred (such as an equilibrium point changing stabil-
ity or a change from stable to unstable oscillatory behaviour) I decreased this increment
to 0.01. Greater accuracy would have been easy to obtain but it is time-consuming and
I did not think it necessary for a qualitative study.

The results of the above parameter study are summarised in the one-parameter bi-
furcation diagram in figure 7.2. (Similar diagrams for F' and S can also be drawn.) This
diagram was obtained by plotting the budworm densities of the equilibrium points for
each value of ds;, and then connecting these points—solid lines for stable equilibria and
dotted lines for unstable equilibria. Maxima and minima of the cycles that were found

were then plotted—solid dots for stable cycles and open circles for unstable cycles.
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Figure 7.2: One-parameter bifurcation diagram of budworm larval density versus dsy,.

We can see from figure 7.2 that for low values of ds, there is a single stable equilibrium
value. A diagram of the (Foliage,Budworm)-plane for the particular value ds;, = 0.2
is shown in figure 7.3(a). All orbits spiral in to the equilibrium point (denoted by the
triangle). As dsz, increases a bifurcation occurs, and for dgy, > 0.28 there is the possibility
of outbreak cycles. Figure 7.3(b) shows the (Foliage,Budworm)-plane for ds;, = 0.35. In
this case, depending on the initial values of the state variables, either stable equilibrium
or outbreak behaviour can occur. This is further exemplified in figure 7.4 by the plots of
the temporal variation of budworm, foliage and branch surface area for ds;, = 0.35. As
can be seen from these plots, the maximum of the outbreak cycle varies but the period
remains fixed at 15 years. (Strictly speaking the period may be some larger multiple of 15
but from a biological viewpoint, we are most interested in the fact that peaks (outbreaks)
occur every 15 years, even if the cycle maximum varies slightly in consecutive outbreaks.
Cycles of very long period or totally aperiodic motion will both appear to be almost
periodic (or chaotic) in a practical biological setting [84].) Since both the equilibrium

and the outbreak cycle are stable phenomena, there must be some kind of boundary
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Figure 7.3: Diagrams of budworm larval density versus foliage for (a) dsr = 0.2, (b) dsz = 0.35, (c)
dsr = 0.8 and (d) dgr = 0.9. The dots indicate densities in consecutive years.
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Figure 7.4: Time plots of (a) budworm larval density, (b) foliage density and (c) branch surface area
density versus time for ds; = 0.35. In each case two trajectories are shown for a time period of 100
years. As can be seen, initial values of the three state variables affect the resulting behaviour of the

system. The two starting points, A and B, are the same in all three graphs.




Chapter 7. Spruce Budworm Model 180

delimiting their domains of attraction (see section A.2.5). This is not easy to locate in
three dimensions and may not be a smooth surface. The dashed line in figure 7.3(b)
gives a rough approximdtion to a two-dimensional projection of part of this boundary
(the boundary also varies with ) and is only included to indicate that the domain of
attraction for the outbreak cycle is much larger than that for the equilibrium point.

For 0.28 < dg;, < 0.68 the behaviour remains the samé qualitatively. Near ds;, = 0.68
the stable equilibrium undergoes a bifurcation resulting in an unstable equilibrium (de-
noted by a plus sign in figure 7.3(c)'). surrounded by stable cycles of small amplitude.
These cycles have periods of 7 or 8 years. Figure 7.3(c) gives the (Foliage,Budworm)-
plane for ds;, = 0.8. Note that the outbreak cycle now has a much larger amplitude
than in figure 7.3(b) and that the points corresponding to these outbreaks appear to fill
a defined region rather than being confined to a curve as in figure 7.3(b). Time series
corresponding to these outbreaks are similar to those in figure 7.4 but the amplitudes of
the cycles vary more and there is more variation in the magnitudes of consecutive points
in the cycles. However, the period is fixed for a given value of dgy,.

Returning to figure 7.2 again we can see that the two cycles become unstable as dgg,
is increased further, as indicated by the open circles. The (Foliage,Budworm)-plane for
dsp = 0.9 is shown in figure 7.3(d). For any initial values the system still oscillates
but the amplitudes of these oscillations get larger and larger until the budworm finally
becomes extinct.

Having classified the dynamical behaviour of the system for different values of dgr, I

will now vary A;p., the threshold value for female adult dispersal.

7.4.3 The effects of adult dispersal

To begin I chose three values of dsr, (0.2, 0.45 and 0.7) which correspond to regions of

different qualitative behaviour in figure 7.2. For each of these values of dgy, T varied Ay,
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in the same manner as described in the previous section in order to obtain one-parameter
bifurcation diagrams. In this case Ay, is nof restricted to lie between 0 and 1 since A;p,
is the threshold density of female moths above which dispersal occurs. Female adult
outbreak densities are around 30 females/tsf [19]. However, dispersal is not limited to
outbreaks so we would like to investigate values of Ay, between 0 and, say, 20. I used
an increment of 0.5 for this study, decreasing this to 0.1 in regions of qualitative change.

The resulting bifurcation diagram for ds;, = 0.45 is shown in figure 7.5. In this case

T T ] L
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larval 80 - * * ]
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Figure 7.5: One-parameter bifurcation diagram of budworm larval density versus Ay, for dsz, = 0.45.

there are two Hopf bifurcations resulting in two regions, Ly and L., where periodic orbits
of small amplitude (when compared with the outbreak cycles) occur. These orbits have
periods of 9 or 10 years. For this value of dgz,, outbreak cycles are possible for all Ay,
values. For clarity of the smaller amplitude orbits, only the minima of the outbreaks are
shown in figure 7.5 (these are just above zero). The maxima vary between 355 larvae/tsf
at A, = 0.01 and 480 larvae/tsf at A, = 14. For larger Asp, values the behaviour
corresponds to that at A, = 14 but With> greater outbreak amplitudes. The diagrams

for the other values of dg;, are qualitatively similar—only the values of A;;, at which the
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Figure 7.6: Two-parameter bifurcation diagram of A;, versus dsr .

bifurcations occur and the amplitudes of the cycles are different. For dg; = 0.2 outbreaks
only occur for Az, > 10.5.

Having obtained an idea of the qualitative behaviour which corresponds to varying
Aypr, we can begin constructing a two-parameter bifurcation diagram in the (dsr, Asnr)-
parameter space. The features we can expect to locate as a result of the above studies are
two curves denoting where the Hopf bifurcations occur and a curve dividing the parameter
space into regions where outbreak behaviour is or is not possible. Other curves of interest
include those indicating the extent of stable cycling behaviour.

The values of Ay, at which each of the above phenomena occur can be found through
incrementing dgr, by 0.1 (or 0.05 in regions where significant changes occur). This results
in the two-parameter bifurcation diagram shown in figure 7.6. The solid lines indicate

where Hopf bifurcations occur and the small dotted lines indicate the outer limits for
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stable cycling behaviour corresponding to these bifurcations. The thick dotted line sepa-
rating regions A and B from C and D indicates the boundary for outbreak cycles, that is,
to the left of this curve no periodic outbreak behaviour occurs. The other thick dotted
lines indicate the boundaries of the regions I, G and H where budworm extinction occurs
and region I where two equilibrium states are possible.

This single diagram summarises nine qualitatively different types of behaviour that
can be obtained by varying ds;, and A,. The nine regions are marked A-I. Diagrams
of the (Foliage,Budworm)-plane corresponding to each region are shown in figure 7.7.
Strictly speaking dots should be used for the trajectories instead of continuous lines
since the model is discrete. However, it is easier to denoté the direction of flow and the
qualitative behaviour when lines are used.

In region A there is one spiral sink (indicated by thé triangle) corresponding to positive
budworm densities, and an unstable saddle point (indicated by a plus sign) at (F, S, L) =
(Kp, Kg,0) (L represents budworm larval density). All trajectories with p.ositive initial
values spiral in towards the sink (see section A.2.21). In region B this sink has become an
unstable saddle (see section A.2.20). (In (Foliage,Budworm)-space the behaviour near
this saddle resembles that near an unstable spiral (see section A.2.23).) Trajectories
starting near this point spiral out towards a stable periodic orbit. Trajectories from
other initial points still spiral inwards but in this case they approach the periodic orbit
instead of the equilibrium point.

Region C is similar to region A in that the equilibrium points are again a spiral sink
and a saddle. However, in this region outbreaks are also possible. Since both the sink
and the outbreak cycle are attracting, there must be a basin boundary dividing their
domains of attraction. A rough approximation to part of this boundary is denoted by
the dashed line. Again, the position of the boundary will vary with S. It appears that in

most cases the domain of attraction for the outbreak cycle is much larger than that for
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Figure 7.7: Diagrams of budworm larval density versus foliage for the regions marked A-I in figure
7.6. Triangles denote sinks (usually spiral sinks in this model) and plus signs denote unstable saddles
(equilibrium points having at least one stable and one unstable eigenvalue—the third eigenvalue may be

either stable or unstable).
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the sink.

Region D is similar to region C for most of the state space. The only difference is
that the spiral sink has been replaced by a stable periodic orbit. As Ay, is varied (and
we move from region D to E), the periodic orbit becomes unstable and we are left with
all the trajectories approaching the outbreak cycle. As we move into region F even the
outbreak cycle becomes unstable. The system may oscillate a few times exhibiting cycles
of very large amplitude (in terms of budworm density) but then the budworm population
crashes and becomes extinct. Region G also has unstable outbreaks but there is a small
region where trajectories spiral in towards a stable equilibrium.

The remaining two regions are H and 1. These correspond to low dgy, values. In region
H the point (F,S,L) = (KF, Ks,0) is a spiral sink. All trajectories approach this point
and thus the budworm becomes extinct Withoﬁt any outbreak occurring since small larval
survival is too low for the budworm population to survive even in the most favourable
conditions. In region I there are two spiral sinks—one corresponding to no budworm
and the other to a positive budworm density. The initial values of F,S and L (budworm

larval density) determine which sink is approached.

7.4.4 Biological interpretation

The first point to note is that, from an experimental viewpoint, it may be difficult to
distinguish between the equilibrium behaviour associated with regions A and C and
the cycling behaviour of regions B and D, respectively, due to random variation and
measurement errors. This is true even in the simplest cases. Near a spiral sink the
_values of the state variables oscillate with the amplitude of oscillation getting smaller
as the sink is approached. When a periodic orbit is present the behaviour is similar
but the oscillations approach the stable cycle. Because of statistical variation in nature

and measurement errors, it is almost impossible to determine whether the system is
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approaching a sink or a periodic orbit of small amplitude. Therefore the locations of
the solid lines (representing Hopf bifurcationsj are not as important as the positions of
the small dotted lines. Beyond the latter (in regions E,F and G) no ‘desirable’ stable
behaviour is possible—only periodic outbreaks are found in these regions. In regions
F and G, the amplitudes of these outbreaks are so large that the budworm population
crashes to zero after a few cycles and becomes extinct.

The actual position of the boundary line of these latter two regions is fairly arbitrary
as even before the thick dotted curve is reached the outbreak cycle leads to very small
budworm densities for certain parts of the cycle. Such small densities may be equivalent
to extinction due to statistical variation. Essentially we have to decide how low budworm
densities can drop before extinction occurs.

The other region of extinction is region H. This region corresponds to very low (average
and dispersal) survival rates for small larvae. In this region survival is too low to allow
the budworm population to be self-sustaining, even if conditions are favourable. In
contrast regions F and G correspond to high survival rates. These have the effect of
destabilising the system and causing wild oscillations. This destabilisation as a survival
rate is increased is a phenomenon characteristic of many ecological models [84].

Region I corresponds to two stable equilibria—one at very low budworm densities
and the other at higher population densities. Although the possibility of multiple stable
states is of interest to ecologists, this region exists for such a small range of dsp values
that it is probably not of practical importance as a small perturbation would move the
system into regions A or H. However, C and D are regions of multiple stable states with
significant area. From the above discussion figure 7.6 can be simplified to include only
the most important phenomena. A simplified diagram is given in figure 7.8.

The above results show that outbreak behaviour is possible for a large number of

parameter combinations. In the region of two stable states an alternative, more desirable
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Figure 7.8: Simplified two-parameter bifurcation diagram of Asp, versus dsp,.

stable state is possible but for the rest of the outbreak region no alternative is possible.

Although figures 7.6 and 7.8 provide a concise summary of results, the one-parameter
diagrams (figures 7.2 and 7.5) are also useful. They show the budworm densities corre-
sponding to the equilibria and cycling behaviour as well as the amplitudes of the cycles.
The corresponding one-parameter bifurcation diagrams for foliage and branch surfamﬁe
area density show that the equilibrium values for these quantities decrease as dgsz, and/or
Aqyny are increased. Thus they show the severity of the defoliation corresponding to dif-
ferent dispersal rates.

Although the state space diagrams in the preceding analysis were only for the (Foliage,

Budworm)-plane, they could also have been projected into the (Surface Area,Budworm)-
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or (Foliage,Surface Area)-plane, since the branch surface area, S, varies in all the situa-
tions studied. The dynamics are similar in all the planes—just the shapes of the cycles

and the positions of the equilibrium points are different.

7.4.5 What causes outbreak cycles?
Approach

In the preceding sections parameter values corresponding to low (0-2 larvae/tsf) and
medium (30-50 larvae/tsf) equilibrium budworm densities as well as values giving rise
to outbreaks were obtained. All three types of behaviour (namely, very low budworm
densities, endemic equilibria and outbreaks) have been observed in the field [90]. However, -
the model under discussion is a complex one with many component processes. We would
like to know just which processes are responsible for the observed behaviour and which
ones are of lesser importance. In particular we would like to know which processes cause
the outbreak cycles. One way to investigate the effects of the different processes in the
current model is to start with a basic model and add individual processes one at a time
(such as parasitism or the effect of larval weight on fecundity) to see what effect this has
on model behaviour.

Clark and Ludwig [22] included a number of switches in their model so that the
different processes can be turned on and off. In order to remove parasitism, equation
(7.7) can be replaced by

Ly = L. (7.17)

The effect of food on large larval survival (equation (7.8)) can be replaced by a constant

survival rate, namely

Ly = kL. (7.18)
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As for parasitism, predation (equation (7.9)) can be removed by setting

Instead of correlating pupal survival with that of large larvae, equation (7.11) can be
replaced by
Ly = B,Ls. (7.20)

The effect of pupal weight (and hence feeding history) on female fecundity (equation

(7.13)) can be removed by using a constant average fecundity. This gives
L5 = BfeL4 (721)

where By, = 96 was the chosen average fecundity per female moth [22]. Female adult
dispersal is removed by setting Ags, = 0 in equation (7.14) and small larval dispersal

can be precluded by replacing equation (7.16) with
L, = dsr Le. (7.22)

In order to obtain an idea of the effects of these processes on model behaviour, I
turned off all the switches initially and then added each process to the model in turn.
For each process I varied its associated parameters to_see what range of behaviour could

be obtained, and more specifically, whether outbreak cycles could occur.

Results

With all the switches off, the budworm density increases exponentially causing foliage
density (and hence branch surface area) to decline to zero. The only process that affects
this behaviour significantly when added to the model is small larval dispersal. In fact,
the inclusion of this process leads to outbreak cycles for certain values of dgr. (In section

7.4.1 it was explained how varying the small larval survival rate, dgy,, effectively varies
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the success of small larval dispersal. Higher small larval survival rates also mean that
the larvae have a greater chance of dispersing successfully, that is, of surviving dispersal,
because of the formulation of equation (7.16). Thus, the two processes are referred to‘
interchangeably.) Even with very high predation rates, predation alone cannot produce
cyclical behaviour.

The other processes in the model, namely parasitis‘m, predationA, large larval and pupal
survival, fecundity and adult dispersal, do not alter the qualitative behaviour significantly
when operating alone but do affect the rates at which fhe budworm population grows
and at which foliage and branch surface area vary. In other words, their effects are
quantitative rather than qualitative. To demonstrate this more conclusively, I obtained
a diagram similar to figure 7.6 using a simplified model containing only a few processes.
Small larval dispersal was included in thls simplified model as the dynamlcs depend on it.
In order to obtain a diagram similar to figure 7.6, adult dlspersal also needs to be mcluded
so that A, can be varied. The switches for all the other processes mentioned above were
turned off, that is, equations (7.17)...(7.21) replaced the corresponding equations in the
original model. (For brevity this simplified model will be referred to as the dispersal
model.) The two-parameter bifurcation diagram in (dsr,, Asx, )-parameter space shown in

figure 7.9 was generated in the same way that figure 7.6 was obtained.

Discussion

If we compare figures 7.6 and 7.9 we can see that all the main phenomena are still present,
which supports the claim that dispersal is responsible for the qualitative behaviour of the
model. The only feature that is missing from figure 7.9 is the region where the outbreaks
lead to extinction (regions F and G in figure 7.6). However, by generating diagrams of
the (Foliage,Budworm)-plane or time plots for the simplified model (as is done in the

- process of obtaining figure 7.9), it is easily seen that the outbreaks for this model have
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Figure 7.9: Two-parameter bifurcation diagram of A4;s, versus dgy, for the simplified model which only
includes dispersal. Regions are marked according to figure 7.6.

very large amplitudes. Even when ds;, = 0.4 budworm densities vary between 10~°
and 820 larvae/tsf within an outbreak cycle. This outbreak amplitude increases as dsp,
increases with maxima around 2200 larvae/tsf and extremely small minima around 10~>°
larvae/tsf for ds, = 0.9. These values are clearly unrealistic and equivalent to extinction
from a biological viewpoint.

If we compare the above observations with the results from the original model, then
we can make another important deduction. The processes which have been left out
of this simpler dispersal model are important for biological realism. As stated above,
their effects are quantitative rather than qualitative. They have a moderating effect on
the system dynamics and prevent densities becoming too high or too low for reasonable
parameter values. Each process may have a relatively small influence but together they

exert considerable control over the system.
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The observation that small larval dispersal is responsible for the outbreaks contrasts
with McNamee’s [89] explanation that cycling is the result of movement between bud-
worm equilibria at low and high budworm densities. However, the result agrees with the
findings of Clark [20] who did a detailed study of the effects of dispersal on budworm
dynamics. Royama’s results [105] also indicate that larval survival, which is linked to
dispersal, is the determining factor in the occurrence of outbreaks. In their study of the
larch budmoth, Baltensweiler and Fischlin [12] suggest that the cycles in their system
appear to stem from regional migration rather than long range migration of adults.

Why does small larval dispersal regulate the outbreak cycles? Clark [20] suggests
the following argument. The survival of dispersing larvae depends on the quality and
quantity of the foliage on which they land (see equations (7.15) and (7.16)). If foliage
density is high then more larvae survive. For an outbreak to occur the forest must be
in good condition with high branch surface area and foliage densities. The budworm
population then grows rapidly and escapes from the control of parasitoids and predators
[90, 119]. However, high budworm densities lead to forest defoliation which induces rapid
branch mortality. This lowers the success of small larval dispersers [20] resulting in an
epidemic collapse. Fischlin and Baltensweiler [37] come to similar conclusions in their
study of the larch/larch budmoth system. They also note that their model is sensitive to
the recovery rate of the trees after defoliation but that not much field data is available
on this. |

McNamee et al. [90] recognise the importance of forest biomass on outbreak behaviour
but maintain that the outbreaks are movements between high and low equilibrium bud-
worm densities. Their analysis is based on isorecruitment curves in which certain variables
are held fixed. However, the analysis of this chapter leads to different conclusions. The
state space and bifurcation analyses show that the equilibria and the outbreak cycles

are different phenomena and that small larval dispersal is responsible for the cycles. All
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the processes were allowed to vary simultaneously in this analysis and the results agree
with Clark’s extensive analysis of dispersal [20]. Clark notes that the epidemic-collapse
behaviour is the hardest to explain because of the strong dynamic feedbacks between the
forest and budworm. He also states that direct application of equilibrium manifolds, the

method used by McNamee et al. [90], is not particularly informative (cf. chapter 4).

7.4.6 The effects of the other processes

I stated above that the effects of the processes other than small larval dispersal are
quantitative rather than qualitative. However, a better understanding of these effects
would be helpful. It would be informatiye to know the relative effects of each process
on the dynamics of the system and the budworm densities over which their effects are

greatest.

Method

A technique suggested by Clark and Ludwig [22] involves beginning with all the processes
turned off (as described earlier) and then turning them on one at a time and determining
budworm recruitment values over one year for a wide range of initial budworm larval
densities. The density range over which each process has the greatest influence can then
be determined. This can be done a number of times with the processes being turned on

in different orders so that the results can be checked. An example is shown in figure 7.10.

Discussion

From figure 7.10 we can draw a number of conclusions. First of all, the effect of food on

large larval survival is only noticeable at high (65 larvae/tsf) budworm densities and even
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Figure 7.10: Isoclines of fecruitment versus budworm density when 1) all processes are switched off,
2) the dependence of large larval survival on food is added, 3) the effect of feeding history on fecundity
is also added, 4) small larval dispersal is added, 5) parasitism is added, 6) predation is added, and 7)
adult dispersal is added giving rise to the full model.

then the effect is not very pronounced. Feeding history has a small effect on fecundity at
all budworm densities and has the most effect at high densities. Parasitism substantially
reduces recruitment for densities below about 45 larvae/tsf (log(budworm) < 3.8) but has
less influence at higher densities (the parasitism curve approaches the preceding curve as
budworm density increases). The effect of predation is clearly noticeable for fairly low
budworm densities between 0.4 and 20 larvae/tsf (—1 < log(budworm) < 3). However,
control by predation declines as budworm densities increase. Adult dispersal exerts most

control for budworm densities between 20 and 90 larvae/tsf (3 < log(budworm) < 4.5)

while the influence of small larval dispersal is clearly noticeable for densities greater than

90 larvae/tsf (log(budworm) > 4.5). These results reiterate that small larval dispersal
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is the most important process at high larval densities and hence is the process which is
most responsible for outbreak collapses.

In summary, the processes having the greatest effects on budworm dynamics at high
larval densities are small larval dispersal and adult dispersal. At low to medium densities
we have predation and parasitism. The latter two processes are responsible for controlling.
budworm densities between outbreaks. It is only when the budworm escapes fheir control
that outbreaks occur. The extent of their influence will therefore affect the length of time

between outbreaks.

7.4.7 The effects of predation
Comparing predation and dispersal

In order to further substantiate some of the above claims, a bifurcation analysis can
be employed once again. The effect of predation is very pronounced at lower budworm
densities (as can be seen from figure 7.10). I thus decided to add predation to the simpler
model used earlier, which only included small larval and adult dispersal, to see what effect
this would have. This new model will be referred to as the predation model for simplicity
(although it also includes dispersal).

The two parameters affecting predation are bmax, the maximum predation rate, and
Psat, @ half-saturation value. Increasing pp.. or decreasiﬁg Psat both lead to increased
predation (see equation (7.9)). With these two parameters at their nominal values given
in table 7.1, the new two-parameter bifurcation diagram is shown in figure 7.11. Some
observations can be made by comparing this diagram with figures 7.6 and 7.9.

First of all, predation does not affect the position of the lower Hopf bifurcation curve
(see figures 7.9 and 7.11). However, the upper Hopf bifurcation curve is lowered by

predation. Thus predation decreases the size of the region (A,B,C,D and G) where a
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Ath'r

Figure 7.11: Two-parameter bifurcation diagram of A, versus dsy for the predation model which
includes dispersal as well as predation. Regions are marked according to figure 7.6.
stable endemic state is possible.

The other noticeable effect of predation is on the parameter values for which outbreak
behaviour occurs. Outbreaks occur for lower dgy, values in figure 7.11 than in figure 7.9.
Thus predation seems to have a destabilising effect from this point of view. The maxima
of the outbreaks are similar to those for the dispersal model at each value of dsy, but the
budworm population crashes to zero for values of dsr greater than about 0.48 instead
of continuing to oscillate (with ever-increasing amplitude as dgy, increases) as occurred
in the dispersal model. This is due to the appearance of a sink corresponding to zero
budworm density in the predation model. However, this technicality is not of biological
consequence since the outbreaks in the dispersal model attained such large amplitudes
that they became unrealistic and equivalent to extinction.

From figures 7.9 and 7.11 it appears that the main effect of predation is to destabilise
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the system as outbreaks occur for lower dg;, values and the region of multiple stable
states is smaller (due to the shift in the upper Hopf bifurcation curve). However, the
qualitative dynamics have not been significantly altered.

Comparing figures 7.6 and 7.11 we can deduce the effects of adding the remaining
processes (other than dispersal and predation) which are included in the full model. In
figure 7.6, the region of endemic stable states (A,B,C,D and G) has been shifted to lower
dispersal thresholds (that is, lower A, values) by adding these processes since both
Hopf bifurcation curves are lower in figure 7.6 than in figure 7.11. In other words, in the
full model endemic equilibria occur for higher rates of female adult dispersal than in the
predation model since lower dispersal thresholds imply that there is more dispersal (see
equation (7.14)).

The region of extinction for' low dgy, values (region H) is larger in figure 7.6 but the
amplitudes of the outbreak cycles are greatly reduced so that the region of extinction
for high dgy, values (regions F and G) is much smaller. For example, outbreak minima
and maxima for dsz, = 0.3 and Az, = 5 are respectively 1072! and 680 larvae/tsf for the
predation model as opposed to 1 and 216 larvae/tsf for the full model. For A, < 12,
the onset of outbreaks occurs for higher dsr values in the full model than in the preda-
tion model. This emphasises the above observation that the additional processes in the
original model have a stabilising effect on the system provided that adult dispersal is

sufficiently high, that is, A, is sufficiently low (below 12 larvae/tsf in this case).

The role of predation

In order to study the effects of predation in more detail, one-parameter bifurcation dia-
grams can be generated by varying pmaee or psq:. I used the original model which includes
all the processes since its output is more biologically meaningful. The method used to

obtain figures 7.2 and 7.5 was used again and the resulting one-parameter bifurcation
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diagram for pp.q;, corresponding to ds;, = 0.4 and Ay, = 5, is shown in figure 7.12. To
simplify the scale pp.q. is given in multiples of 23 000 which is the nominal value for p,,,.

given in table 7.1.
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Figure 7.12: One-parameter bifurcation diagram for py,,, with dsy = 0.4 and A, = 5.

For pr.c less than half its nominal value there is a single equilibrium state, cor-
responding to endemic budworm densities (see figure 7.12). No outbreaks occur in this
range although the system oscillates as it approaches the equilibrium. Outbreaks are pos-
sible in the range of p,.. values denoted by a. Maxima for these cycles are around 270
larvae/tsf for pmae = 0.6 X 23 000 and increase as pp,, increases. At pmar = 2.7 X 23.000
a maximum of 360 larvae/tsf is attained. These values are much more realistic than the
maximum of 820 larvae/tsf produced by the dispersal model for the same values of dsy,
and Ag¢p,.

Around pr.. = 2.3 x 23 000 the endemic equilibrium bifurcates to produce a nine

year periodic orbit of small amplitude®. This periodic orbit is attracting for the range

1To be mathematically correct I should say that a number of bifurcations occur leading to orbits
of higher and higher period. However, these bifurcations occur over such a small range of parameter
values that it is difficult to detect them using the present techniques. Also, because they occur over
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of parameter values denoted by b. In region a, initial values for the budworm and forest
variable determine whether the outbreak cycle or an endemic equilibrium state (stable‘
equilibrium point or small amplitude periodic orbit) is attained. For py., > 3.3 x 23 000
(region c) there is a single equilibrium corresponding to low budworm densities. This
suggests that if predation were to control the budworm population and keep it at low
levels, the amount of predation would have to be much higher than has been observed
in the field. (Recall that the nominal or standard value for pq. is 1.0 x 23 000.) The
recruitment curves generated earlier (figure 7.10) using the standard parameter values
in table 7.1 show that predation has its most significant effect at budworm densities
around 5 to 7 larvae/tsf. However, during outbreaks larval densities increase to much
higher values very rapidly. This supports the above observation that predation does not
have a significant influence on outbreak behaviour, except when predation is so high that
budworm densities cannot escape from the low numbers where predation is prevalent.
A diagram similar to figure 7.12 can be obtained by decreasing p,,:. From the di-
agrams of the (Foliage,Budworm)-plane and the time plots generated in doing these
parameter studies, an important observation can be made—varying the predation pa-
rameters has a significant influence on the periods of the outbreaks. For example, when
Pmaz = 0.6 X 23 000 the outbreak cycle has a period of 13 years. This increases to 50
years for pmae = 3.4 X 23 000. These increased periods do not have much effect on the
time span of the actual outbreak which is usually around 7 or 8 years. Instead they
increase the number of years for which budworm densities remain below 1 larva/tsf. Fig-
ure 7.13 illustrates the above comments. These results again support the conclusion that
predation only affects the behaviour at low budworm densities. Once the budworm have

escaped the control exerted by predation, an outbreak occurs and the attributes of this

such a small range, they are not of practical importance in themselves. We are more interested in the
qualitative change from an equilibrium to cycles.
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Figure 7.13: Time plots of budworm larval density for (a) pmsz = 0.6 x 23 000 and (b)
Pmaz = 3.4 x 23 000. Outbreaks last 7 or 8 years in both cases but the time between outbreaks is

longer in (b). Both figures are plots of the behaviour after the initial transients have died away.
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outbreak (such as its time span) are independent of the rate of predation. However, for
higher rates of predation it takes much longer for the budworm to escape this control,
hence the longer time periods between outbreaks. |

As a final test of the effects of predation relative to small larval dispersal, I constructed
a two-parameter bifurcation diagram of pp.. versus ds; using the full model (which

includes all processes). The results are shown in figure 7.14. Clearly, the higher dgy, (and

4 T T T T
3+
Pmax
(x23000) 2 [
1k
0
0

dst,
A. Only lower sink (budworm: 0-2 larvae/tsf)
B. Two sinks (lower and interior)
C. Interior sink (budworm: 30-50 larvae/tsf)
D. Interior sink 4+ outbreaks
E. Interior saddle 4+ outbreaks
F. Interior saddle + stable limit cycle
G. Interior saddle + stable limit cycle + outbreaks

Figure 7.14: Two-parameter bifurcation diagram of ppa, versus dsr.

hence the greater small larval dispersal success) the greater the chance of outbreaks.
Only for low dsr and high p,,,, values does predation exert sufficient control over the
budworm population to prevent outbreaks occurring. Note that the nominal value for

Pmaz 18 1 X 23 000 and at this value the lower budworm equilibrium only exists for
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dSL < 0.12.

This section emphasises once again the overwhelming importance of small larval dis-

persal success, and hence the importance of forest condition, on the budworm dynamics.

7.5 Conclusion

This chapter has focussed on analysing the budworm-forest model developed by Jones
[65] and Clark and Ludwig [22] using the techniques of dynamical systems theory. Proce-
dures for obtaining one- and two-parameter bifurcation diagrams using diagrams in the
(Foliage,Budworm)-plane and time plots from DSTOOL were explained. In the first part
of the analysis a classification of the (dsr, A, )-parameter space was obtained. While
Clark and Ludwig [22] found parameter combinations corresponding to behaviour in a
number of these regions, namely A, B, C, D and H, this study found some additional
possibilities for model behaviour and is much more comprehensive as the resulting bifur-
cation diagrams summarise the behaviour for all possible combinations of dsr, and Ayp,.
The diagrams also show how the system behaviour changes as the two parameters, dsr,
and Agp,, are varied.

Following this the various processes in the model were investigated in more detail
using a variety of techniques. It was found that small larval dispersal, and hence forest
condition, has the most effect on outbreak cycles in the model and that predation has
an added destabilising effect. The main influence of predation is at fairly low budworm
densities which means that it affects the time period between outbreaks but not the
length or amplitude of the outbreak. Again the use of bifurcation diagrams, state space

diagrams and time plots was crucial in the analysis.




Chapter 8

Conclusion

8.1 Main results

A variety of models, both continuous and discrete, theoretical and practical, have been
analysed in the preceding chapters. The same basic techniques have been used in each
example.

Conclusions which are specific to a particular model have already been noted at the
end of each chapter. There are also a number of general results that I wish to highlight.
First, the dynamical systems techniques can lead to greater insight into the behaviour
of a model and the interactions between various processes in a system than is possible
with traditional techniques. For the sheep-hyrax-lynx model in chapter 3 bifurcation
diagrams were found to give more information than a traditional sensitivity analysis,
and for the ratio-dependent model in chapter 4 the techniques proved more accurate and
informative than an isocline analysis. In both these cases the additional information
resulted in improvements in the formulations of the models. Thus dynamical systems
techniques can be helpful in constructing more plausible models. The techniques can
also identify which parameters or processes are crucial for determining the behaviour of
the model. This is illustrated in chapters 3 and 7.

The available computer packages allowed us to obtain the results fairly easily without
the prerequisite of an extensive mathematical knowledge of dynamical systems theory

and without intensive mathematical manipulations. This was highlighted in chapters 2

203
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and 5 where the numerical results were compared with previously obtained theoretical
.results. In chapter 2 the numerical results were in fact more accurate than Bazykin’s
approximate analytic results [14]. The computer packages also allow more complicated
models to be studied than is possible by hand. All the models illustrate this point. As a
result, previously unobtainable insights can be discovered.

In addition, bifurcation diagrams provide a concise way of summarising results and
two-parameter diagrams give an idea of the relative frequency of occurrence of the various
phenomena.

Although the dynamical systems techniques can be applied in a variety of situations,

they are obviously not suitable for all types of ecological models.

8.2 Limitations

Systems of difference equations or ordinary differential equations can be studied but not
systems of partial differential equations. Also, the models must not b¢ time or space
dependent. These limitations are serious, however it is generally the case that models
which are fundamentally different in structure require different methods of solution. For
certain types of partial differential equations and time-dependent models it is possible
to overcome these limitations by transforming the equations so that they fall into the
required categories, but the mathematics required to do this is not trivial.

Although the computer packages allow the dynamical systems techniques to be ap-
plied to large models, it is usually more difficult to interpret the results when many
state variables and interactions are involved. There is also a greater risk of encountering
software restrictions with these large models and the dynamics can become extremely
complex because of the higher dimension of the system. Hence, the ease with which

the computer packages can be used should not be taken as an argument for building
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complicated models. Simple models are still most likely to give us insight into system
behaviour because of our own limits in understanding,.

As anyone who has used a computer will know, computers and software hardly ever
work as smoothly as one might wish. Some of the problems that I encountered have been
discussed in previous chapters and others are recorded in appendix B. It is usually a
good idea to check the results using an alternative technique or software package.

Although a variety of models have been studied in this thesis, there are many other

possibilities for the application of dynamical systems techniques.

8.3 Future possibilities

I did not study any examples of models which includé seasonal variation but it is possible
to do so (see, for example, [48, 102]). However, the dynamics and bifurcation structure
are considerably more complex. Including such an example in this thesis would have
confused rather than clarified my intent and would perhaps have discouraged rather
than encouraged readers who were considering trying the techniques.

There are probably numerous ways in which dynamical systems theory can be of
use in ecological research. These will come to the fc;fe as more people make use of the
available computer packages. However, my aims will be fulfilled if a few ecoiogists start
to use the techniques that I have described to analyse their own models. It is always
difficult to learn new techniques when one understands and is comfortable with the old

ones, but I hope I have demonstrated that the effort is well worth it.
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Appendix A

Dynamical systems theory

A.1 Introduction

This appendix explains the dynamical systems terminology used in my thesis. Section A.2
is a glossary of the basic concepts such as equilibrium point, domain of attraction and
bifurcation point. Extensive use is made of diagrams in order to introduce the concepts
as simply and intuitively as possible. Section A.3 describes some of the more formal
mathematical details associated with these concepts. However,the mathematjcs is kept
to a minimum since the appendix is intended for biologists. Further details can be found

in any introductory text on dynamical systems theory. A few examples which I found

particularly readable include-[57, 111, 128].

A.2 Basic concepts

This section is ordered alphabetically. All the examples given are for continuous systems
of equations. Discrete systems. are discussed in section A.3.5. Within each subsection
in this glossary, italics is used to highlight terms which are explained in a separate

subsection.

A.2.1 Bifurcation diagram

A one-parameter bifurcation diagram summarises the qualitative behaviour corresponding

to different values of a parameter. A state variable (or combination of state variables) is

216
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plotted on the y-axis and the parameter on the x-axis. The positions and local stabilities
of equilibrium points as well as limit cycles are indicated using different line types. Solid
curves are used to represent locally stable equilibria and dotted curves are used for locally
unstable equilibria. Maxima and minima of limit cycles are indicated using circles—solid
ones for stable cycles and open circles for unstable cycles. See, for example, the figures
in sections A.2.10, A.2.13, A.2.16, A.2.18, A.2.25.

It is important to note that bifurcation diagrams summarise the behaviour associated .
with a range of parameter values. They do not represent the dynamics corresponding
to a continually varying parameter [124]. In order to read a bifurcation diagram, fix the
parameter at a particular value and mentally draw a vertical line at that value. Each
crossing of this line with a curve in the diagram corresponds to an equilibrium point or a
periodic orbit (limit cycle). The local stability properties of a particular phenomenon are
given by the type of curve, that is, solid, dotted, or open or closed circles. For example,
the phase portraitsin figure A.17(b)(i) and (ii) were obtained by mentally drawing vertical
lines at the parameter values p = py and p = pg respectively in figure A.17(a).

A two-parameter bifurcation diagram shows how the positions of bifurcation points
change as two parameters are varied. For example, if a bifurcation point is encountered
in a one-parameter bifurcation diagram, a second parameter may be varied to see how it
affects the position of the bifurcation point. An example involving limit points is shown
in figure A.19. X and p are parameters and z; is a state variable. Part (a) of this figure
shows a two-parameter bifurcation diagram and part (b) shows one-parameter bifurcation

diagrams corresponding to different fixed values of the parameter A.

A.2.2 Bifurcation point

A bifurcation point is a point in parameter space at which the qualitative behaviour of

the system changes. A stable equilibrium may become unstable at this point or there may
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be a change from a stable equilibrium to oscillatory behaviour. Examples can be found

in sections A.2.10, A.2.13, A.2.16, A.2.18, A.2.25.

A.2.3 Chaos

Chaos is difficult to define but intuitively it refers to the (apparently) irregular and un-
predictable behaviour which many nonlinear mathematical models (systems of equations)
exhibit [11]. If a system is chaotic then initial values which are very close together may
lead to vastly different behaviour as time progresses. However, this behaviour is still

bounded by a region in space. Chapters 5 and 6 contain examples of chaotic behaviour.

A.2.4 Continuation branch

A solution or continuation branch is a curve of equilibrium points (or limit cycles or
bifurcation points) that indicates how the position and properties of the equilibrium point
(or limit cycle or bifurcation point) change as a parameter (or parameters) is altered.

Together a number of these branches make up a bifurcation diagram.

A.2.5 Domain of attraction

Suppose fhe sy‘ste'rn in which we are interested has a stable equilibrium point (see section
A.2.14). Then the collection of all initial state variable values from which the system
tends towards this equilibrium as time progresses is the domain (or basin) of attraction
of the equilibrium point. The equilibrium point is called an ‘attractor’. Any stable
phenomenon, such as a stable limit cycle, also has a domain of attraction and is referred

to as an attractor.
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For example, in figure A.1 a population density éf 10 is locally stable. For initial
populatién values which lie between 5 and 20 the population tends towards a density
of 10 as time progresses. For initial values below 5 the population tends to extinction
and for initigl values greater than 20 it increases steadily. The range of values between 5
and 20 is the domain of attraction for the equilibrium point at 10. Part (a) of figure A.1
shows time plots corresponding to various initial points and part (b) is a one-dimensional

phase portrait of the situation.

(a)

Population /
density 20

10
5—\ .....................
o>
Time
(b) b =
. 0 5 10 20 Population
density

Figure A.1: (a) Time plots showing the domain of attraction of an equilibrium point. A population
density of 10 is stable and the range of initial population values between 5 and 20 constitutes its domain
of attraction. The values 5 and 20 are unstable equilibrium points. (b) A one-dimensional phase portrait
of the situation in (a). The arrows indicate the direction of change corresponding to initial points in

each range of values.

Suppose our system consists of two competing populations. We can represent their
dynamics using a phase portrait such as in figure A.2. In this case the points A and C are

stable equilibria. The domain of attraction of A is the shaded region and the remaining
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region is the domain of attraction of C. The curve separating these regions is called a

separatrix. Curves with arrows indicate how the population densities vary over time

beginning at various initial points.

Population 2

N\

N .
Population 1

Figure A.2: Phase portrait showing the domains of attraction of two equilibrium points in two dimen-
sions. A and C are stable equilibria. The arrows indicate how the population densities vary over time
beginning at various initial points.

A.2.6 Equilibrium point

If the values of the state variables representing an ecological system do not change as
time progresses then we say that the system is at an equilibrium point. Other commonly

used terminology is singular point or fixed point. See also section A.2.14.

A.2.7 Hard loss of stability

In the case of a Hopf bifurcation this occurs when there is a sudden change from stable
equilibrium behaviour to stable limit cycles of large amplitude. An example is shown
in figure A.3. When the parameter p is increased beyond the Hopf bifurcation at u~,

the system suddenly jumps to limit cycles of large amplitude instead of starting off with
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Figure A.3: Hard loss of stability (adapted from [111], p.74). This phenomenon gives rise to sudden
changes between stable equilibrium behaviour and limit cycles of large amplitude.
small limit cycles which grow in size as p increases. The latter phenomenon is shown in
figure A.6(a) and is called soft loss of stability. Also, as p is decreased, there is a jump
from large amplitude cycles to a zero amplitude equilibrium point but this fakes place at
p1 which is less than p*. For py < p < p* there are two stable attractors—an equilibrium
point and a limit cycle. This is a kind of hysieresis phenomenon. Examples of hard loss
of stability arise in the analysis of the ratio-dependent model in chapter 4.

Equilibrium states can also undergo a hard loss of stability (for example, in the vicinity
of a pitchfork bifurcation). However, such phenomena are not encountered in the main

body of the thesis.

A.2.8 Heteroclinic orbit

Consider a system having both predator and prey populations and suppose there are two
equiltbrium points one of which is unstable (a saddle or a source) and where the other
is either a saddle or a sink. If an unstable manifold (see page 241 for an explanation

of this term) of the unstable equilibrium point intersects a stable manifold of the other
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equilibrium point then the system is said to have a heteroclinic orbit. An example is

shown in figure A.4. For any initial point on this orbit the system will tend towards the

predator

®
“heteroclinic
orbit

prey .

Figure A.4: Example of a heteroclinic orbit. An unstable manifold of saddle point 1 intersects a stable
manifold of saddle point 2.

equilibrium point 2. The parameter value at which the heteroclinic orbit occurs is called
a heteroclinic bifurcation point.

For a more detailed explanation of this phenomenon see section A.3.3.

A.2.9 Homoclinic orbit

This is similar to a heteroclinic orbit except that in this case the unstable and stable
manifolds of the same equilibrium point (which must be a saddle) intersect. An example
is shown in figure A.5. Further details are given in section A.3.3 and an example arises in
chapter 2. The unique parameter value giving rise to the homoclinic érbit is a homoclinic

bifurcation point.




Appendix A. Dynamical systems theory 223

predator
-~-homoclinic
orbit
saddle
point
prey

Figure A.5: Example of a homoclinic orbit. An unstable and a stable manifold of the saddle point
intersect.

A.2.10 Hopf bifurcation

A Hopf bifurcation® (HB) is a bifurcation point at which an equilibrium point alters
stability and a limit cycle (period orbit) is initiated. An example is given in figure A.6.
Part (a) of the figure is a bifurcation diagram. The large 'dots denote the maxima and
minima of the limit cycles. The phase portrait in figure A.6(b)(i) shows the dynamics in
the (z1, z;)-phase space for ¢ = py. A is a stable equilibrium point or sink. After the
Hopf bifurcation is encountered at u = u*, A becomes a source and a stable limit cycle is
initiated. The corresponding dynamics at u = p, are shown in figure A.6(b)(ii). Notice
that the amplitude of the limit cycle increases as p increases (see figure A.6(a)). This is
called soft loss of stability. |

In figure A.6 a stable limit cycle surrounds an unstable equilibrium point. It is also
possible for an unstable limit cycle to encircle a locally stable equilibrium point (see

figure A.7). Unstable periodic orbits are indicated by open circles instead of solid ones.

! Although the name Hopf bifurcation is usually used, Arnold [7] points out that this is inaccurate.
Both Poincaré and Andronov studied this bifurcation prior to Hopf. Wiggins [124] refers to the Poincaré-
Andronov-Hopf bifurcation.
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Figure A.6: (a) A bifurcation diagram of a Hopf bifurcation (HB), (b)(i) a phase portrait corresponding
to 4 = p at which there is a stable equilibrium point and (b)(ii) a phase portrait corresponding to g = p»

at which there is an unstable equilibrium point surrounded by a stable limit cycle.
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Figure A.7: Bifurcation diagram of a Hopf bifurcation where unstable periodic orbits surround a stable
equilibrium point.

The first examples of Hopf bifurcations occur in chapter 2. See also sections A.2.7,

A.2.22.

A.2.11 Hysteresis

A hysteresis phenomenon occurs when two limit points are connected as shown in figure
A.8. This results in mﬁltiple equilibria corresponding to a single parameter value. For
p < p*y and g > p*, there is a single eqdilibv*ium point, which is stable in this example.
For parameter values p*; < p < p*, there are three equilibrium points—two stable
and one unstable. The unstable equilibrium point divides the domains of attraction of
the stable equilibria. For initial population densities above the dotted line in the range
Py < po< pty the p.opulation tends towards C. For initial values below the dotted line
the population is attracted towards A.

The way in which the behaviour of the system changes differs depending on whether

p is increased or decreased. Suppose we are at equilibrium point C at p = py. If pis

increased then solution trajectories will continue to tend towards C for all g such that
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Figure A.8: Bifurcation diagram of hysteresis.

p < p*, since our initial point is above the boundary B of the domain of attraction of
C. However, as u increases beyond u*, a catastrophe or sudden change occurs and the
system tends towards A instead. What is more, if-u is now decreased we do not return
to the equilibrium at C. The system continues to tend towards A as we are below the
dividing point B. This occurs until u*; is passed. Then the syétem jumps up towards C
again. The situation that has been described is known as hysteresis. Occurrences of this
phenomenon arise in chapter 4. | |

In nature there are many unpredictable influences on a systefn which means that
there will be fluctuations around any equilibrium. Notice that the domain of attraction
of C is smaller the closer p is to p*,. This makes the system much more susceptible to

crashing towards A as p*, is approached [128].

A.2.12 Limit cycle

Limit cycle behaviour occurs when a state variable (such as a population density) os-.
cillates in a regular repetitive manner. Temporal behaviour for a single population is

shown in figure A.9(a) and a phase portrait for two interdependent cycling populations
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is shown in part (b). These diagrams show the eventual or limiting behaviour once the
initial transients have died away. A limit cycle is also called a periodic orbit and is often
associated with a Hopf bifurcation. Limit cycles may be locally stable or unstable (see

section A.3.4 for more details).

(a) (b)
Population
density predator
0 Time prey

Figure A.9: (a) Time plot and (b) phase portrait of stable limit cycle behaviour.

A.2.13 Limit point

A limit point or saddle-node bifurcation occurs when there are two equilibrium points
on one side of the bifurcation point but none on the other side. Figure A.10(a) shows
an example of a bifurcation diagram of a limit point (LP). For 4 < p* there are no
equilibrium points at which both populations are nonzero. p* is thus the limiting value
of p for which equilibrium points exist, hence the name limit point. A possible phase
portrait in two dimensions for # > u* is shown in figure A.10(b) for the particular value
p = p1. A s a locally stable equilibrium point and B is a saddle point. The initial values
of z; and z, determine the subsequent behaviour of the system. If the initial point is
in the domain of attraction of A (to the right of point B in figure A.10(b)), then the
system will approach A. If the initial point lies on the other side of B, however, it will be

repelled away from B in the opposite direction to A. Notice how the size of the domain
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Figure A.10: (a)Bifurcation diagram showing a limit point (LP) and (b)a phase portrait corresponding
to p = py. For p < p* there are no equilibrium points at which both populations are nonzero.

of attraction of A, in terms of the state variable x;, decreases as y decreases towards p*
(see figure A.10(a)).
The first example of this type of bifurcation in the main body of the thesis occurs in

chapter 2.

A.2.14 Local stability

Suppose the system in which we are interested is disturbed siightly from its equilibrium
point. For example, a week of warmer weather may cause an insect’s growth rate to
increase slightly. If after the disturbance is removed the system retﬁrns to its original
equilibrium, then the equilibrium point is said to be locally stable and is called an ‘at-
tractor’. Otherwise it is said to be unstable and is a ‘répeller’. Locally stable equilibrium

points are called sinks and locally unstable ones are called saddle points or sources.

A.2.15 Parameter

A parameter is a quantity such as a fecundity rate or predation rate which is used in

describing the dynamics of a state variable. Whereas a state variable evolves with time,
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a parameter is kept constant as time progresses. In this thesis parameter values are
varied across ranges of values to see how their values affect the qualitative behaviour of
the state variables. For example, increasing the fecundity rate of a population which is

at equilibrium may cause the population to start cycling.

A.2.16 Period-doubling bifurcation

A period-doubling bifurcation occurs when a limit cycle undergoes a bifurcation and there
is an exchange of stability to cycles having double the period. The situation is depicted
graphically in figure A.11. Part (a) shows a bifurcation diagram with period-doubling
bifurcations at A; and Az, and part (b) shows the behaviour over time for different values
of the parameter A. Chapter 4 contains the first examples of this phenomenon in the

main body of the thesis.

A.2.17 Phase portrait

Suppose our system has two state variables, say a prey (z;) and a predator (z;). We can
represent the behaviour of both populations in a single diagram called a phase portrait.
An example is shown on the square base of the diagram in figure A.12. In this example
both z; and z; exhibit oscillations of decreasing amplitude as they approach the stable
equilibrium point. This translates into an inward spiral in the (zy, z;)-phase space.

In this thesis sinks are represented by triangles, saddles by plus signs, and sources
by squares. In most cases solid lines are used to denote solution trajectories and dashed

lines denote boundaries of domains of attraction.
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Figure A.11: (a) Period-doubling bifurcations at A; and A, (adapted from [111], p.259). (b) Behaviour
over time for the state variable ; for (1) A < Ay (stable equilibrium), (it) Ay < A < Ay (limit cycle)
and (iii) Ay < A < Ay (period-2 cycle—each cycle consists of a big hump and a small hump).

A.2.18 Pitchfork bifurcation

A pitchfork bifurcation occurs when there is a unique equilibrium point for parameter
values on one side of the bifurcation point but there are three equilibrium points on the
other side. An example is shown in figure A.13. Part (a) shows a bifurcation diagram
and part (b) gives phase portraits for parameter values on either side of the bifurcation
point. In the example shown in figure A.13, A is a stable equilibrium point for p < p*.

For u > p* A is a source and the other two equilibrium points, B and C, are locally

stable. These stability properties vary from situation to situation but the symmetry is
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Figure A.12: Derivation of a phase plane showing the time-dependent behaviour of two variables, z;
and 2, (adapted from [61], p.3). Damped oscillations over time give rise to an inward spiral in the phase
plane.
always maintaiped, that 1s, B and C always have the same stability assignment and this
assignment is the same as that for A on the opposite side of the bifurcation point, p*.
For g > p* A is a kind of threshold point as it separates the domains of attraction of B
and C. The initial values of x| and z, determine whether the system tends towards B or
C (see figure A.13(b)(il)).

No examples of this type of bifurcation occur in this thesis but the above description

is included for completeness.

A.2.19 Qualitative behaviour

When we refer to the qualitative behaviour or dynamics of a system we are interested
in the long-term general behaviour of the system rather than exact (quantitative) pop-

ulation densities for each instant in time. For example, different types of qualitative




Appendix A. Dynamical systems theory 232

(a)

T asl B
(population
density)

at A

ay+

(b)
i) ii)

oy
%) T2 B

(predator) k / (predator) \ /’/A\$
5 <

jn}

aL_ @

b

I T4
(prey) : (prey)

Figure A.13: (a)Bifurcation diagram of a pitchfork bifurcation, (b)(i) a phase portrait corresponding
to p = p1 and (b)(ii) a phase portrait corresponding to p = ps. In (b)(ii) the unstable manifolds from
A divide up the domains of attraction for B and C.

behaviour include a population declining to extinction, a population tending towards

a stable equilibrium point, or a population undergoing limit cycle oscillations. Thus,

qualitative behaviour is determined by the presence and nature of attractors (see sec-

tion A.2.5).
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A.2.20 Saddle point

A saddle point is an equilibrium point which attracts in certain directions and repels in
others. In figure A.14 the equilibrium point has an unstable manifold (see page 241) and
a stable manifold as indicated by the dashed lines. Initial points lying on these manifolds
are repelled from or attracted towards the equilibrium point respectively. Other initial

points may first be attracted and then repelled as shown by the solid lines.

predator N \// /
/
N L

prey

Figure A.14: Example of a saddle point (plus sign) and the associated dynamics. Stable and unstable
manifolds are indicated by the dashed lines and solution trajectories from different initial points by the

solid lines.

A.2.21 Sink

A sink is a locally stable equilibrium point. A sink may be either a stable node or a
spiral attractor. Phase portraits and time plots corresponding to these two possibilities

are shown in figures A.15(a) and A.15(b) reépectively. The time plots begin at the point

marked with a * in the phase portraits.
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Figure A.15: (a)(i) Phase portrait of a stable node and (a)(ii) time plots starting at point * in (a)(i).
(b)(i) Phase portrait of a spiral attractor and (b)(ii) time plots starting at point * in (b)(i).

A.2.22 Soft loss of stability

For a Hopf bifurcation this occurs when there is a continuous change from stable equilib-
rium behaviour to limit cycles of small amplitude. The amplitude of these cycles increases
gradually for parameter values further from the Hopf bifurcation. Figure A.6(a) gives

an example of soft loss of stability. See also section A.2.7. The first example of this

phenomenon in the main body of the thesis occurs in chapter 2.
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A.2.23 Source

A source is an equilibrium point which is locally unstable. Any disturbance to the system
will cause the state variables to move away from this point. An unstable node and a

spiral repeller are shown in figures A.16(a) and A.16(b) respectively. Both are examples

of sources.
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Figure A.16: (a)(i) Phase portrait of an unstable node and (a)(ii) time plots starting at point * in
(a)(i). (b)(i) Phase portrait of a spiral repeller and (b)(it) time plots starting at point * in b(i).

A.2.24 State variable

Suppose we are interested in a system consisting of plants, herbivores and predators.

Then the ‘state’ of the system can be described by the relative biomasses or densities of
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these populations. The variables that are used in a mathematical model of the system

to represent these biomasses or densities are called state variables.

A.2.25 Transcritical bifurcation

At a transcritical bifurcation point two equiltbrium points coincide and exchange stabil-

ities. An example is shown in figure A.17. There are two equilibrium points, A and B,

(a)
Iy B
(population '
density)
at+ A A
B’
#1 T Ha 7

(b)
R

i) ii) N
T2 &) / T2 T\ {
(predator) \/, LA (predator) / \

u)/Bf\ P

<N\

e

T I
(prey) (prey)

Figure A.17: (a) A bifurcation diagram of a transcritical bifurcation, (b)(i) a phase portrait corre-
sponding to u = s, and (b)(ii) a phase portrait corresponding to 4 = pa. The stabilities of the two

equilibrium points interchange for parameter values on either side of the bifurcation point.

at each value of the parameter p. A is stable for p < p* and a saddle point for pp > p*.
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The situation is reversed for B. Figures A.17(b)(i) and A.17(b)(ii) show possible phase
portraitsin two dimensions for 4 = pq and p = p, respectively. Note that the bifurcation
diagramin figure A.17(a) only indicates the positions of the equilibrium points in terms of

one of the state variables, ;. Chapter 2 contains an example of this type of bifurcation.

A.3 Some mathematical details

A.3.1 Introduction

This section gives a brief introduction to some of the mathematical details of dynamical
systems theory. Texts such as [49, 57, 111, 124, 128] give more complete expositions.
For most of the section I will assume that the model under study consists of a system

of m ordinary differential equations of the form:
x = f(x) (A.1)

where X is a vector of m state variables and the dot denotes differentiation with respect

to time, that is, x = ‘%. For example, if we.were studying a predator-prey model then

we would have m = 2 and equation (A.1) in expanded form would be
T, = f1($1,$2)
T = f2($1,$2)
where f; and f; are the components of f representing the dynamics of z; (prey density,

say) and z, (predator density), respectively.

The results for systems of difference equations (discrete models) of the form:
x — f(x) (A.2)

or

X1 = f(Xt), t= 07 1, 2, cee (A3)
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are very similar. Section A.3.5 highlights some of the differences.

A.3.2 Equilibrium points and local stability

An equilibrium point (fixed point) x* of the system of equations (A.1) satisfies
f(x*) = 0.

If system (A.l) were to start at x* at time zero, it would remain there for all time.
However, in nature it is very unlikely that a system will remain exactly at an equilibrium
point since numerous factors perturb systems continually. So we would like to know
whether solutions of the system of equations (A.l) starting near x* move towards or
away from x* as time progresses. That is, we would like to determine the local stability
behaviour near x*.

We can sometimes do this by using a linearised analysis®. We begin by perturbing
the system slightly from x*. That is, we replace x by x* + u in equation (A.l) where
u is a small perturbation. (We use a small perturbation since we are investigating the
local behaviour near the equilibrium point.) Our new vector of state variables is u since
x* is fixed. Expanding f in a Taylor series about x* and neglecting nonlinear terms in u

(since u is small) we obtain the linearised system
u = Au

where A is the matrix of first order ];)artial derivatives of f evaluated at the equilibrium
point x = x*.

By solving the characteristic equation of A we obtain m numbers, A = (A1,..., A\m),
known as the eigenvalues of A. Eigenvalues may be real numbers or complex numbers.

It is these eigenvalues which determine the local stability properties of x*. If all the

ZMore detailed introductions to linear analysis can be found in [34, 128].
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eigenvalues of A have non-zero real parts® then x* is said to be a hyperbolic equilibrium
point of (A.1). If any eigenvalue has a zero real part then x* is said to be a nonhyperbolic
equilibrium point. The local stability behaviour near hyperbolic equilibrium poinfs is
relatively easy to determine. Nonhyperbolic equilibrium points are more difficult to
classify but it is at these points that interesting bifurcations (see section A.2.2) occur.

Let us consider hyperbolic equilibrium points first.

Hyperbolic equilibrium points

If the real part of A is negative (that is, RA < 0) for all eigenvalues A of A, then x* is
an asymptotically stable equilibrium point of (A.1) (that is, trajectories starting near x*
move towards x* as time progresses). If RA > 0 for any eigenvalue A of A, then x* is
said to be unstable. In the special case of a two-dimensional system (m = 2 in (A.1))

even more information can be obtained about the behaviour near

In this case there are two (since m = 2) eigenvalues, A; and A3, of A. They satisfy

the equation

TrA £ \/(TrA)? — 4DetA
2

12 =

where TrA = trace of A= the sum of the diagonal elements of A and Det A = determinant
of A. In two-dimensional cases we can represent the behaviour near x* using a phase
portrait (see section A.2.17). The various possibilities are summarised in figure A.18.

Alternatively, the results can be summarised as follows:

3A complex number, A, has a real part, ®), and a complex or imaginary part, SA. For a brief
introduction to the relevant theory of complex numbers see the appendix in [128].
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Figure A.18: A summary of the local stability beliaviour near an equilibrium point, x*, of (A.1) when
m = 2 (adapted from [34], p.190).

A1, Ag real
e )\ <0, < 0= x"1is a stable node (region 1 in figure (A.18))
e )\ > 0,X; > 0= x"is an unstable node (region 2 in figure (A.18))

e A\ > 0,)2 <0 (or vice versa) = X* is a saddle point (region 3).

A1, A complex

o R\ < 0,R)\; < 0= stable spiral or focus (region 4)

o R\ > 0,R)\; > 0 = unstable spiral or focus (region 5).
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Saddle points and sources are both unstable equilibrium points (see section A.2.14)
but a saddle point differs from a source in that soiutions may be attracted towards it for
a while before being repelled, depending on the initial values of the variables (see region
3 in figure A.18). In the case m = 2 a saddle point has one unstable eigenvalue while
a source has two. This means that (for m = 2) a saddle point has one stable manifold
and one unstable manifold associated with it. These manifolds are curves in phase space
such that initial points on these curves are attracted towards the saddle point (for initial
points on the stable manifold) or repelled away from the saddle point (for points on the

unstable manifold) (see region 3 in figure A.18).

Nonhyperbolic equilibrium points

As mentioned earlier it is the nonhyperbolic equilibrium Points that are associated with
bifurcations, that is, with changes in the qualitative behaviour of the system of equations.
There will be a threshold value at which the change in behaviour occurs—the bifurcation
value. Thié value corresponds fo (at least) one eigenvalue (or its real part) passing
through zero as it changes sign from negative to positive or vice versa. Examples of -
bifurcations can be found in sections A.2.10, A.2.13, A.2.16, A.2.18, A.2.25.

For nonhyperbolic equilibrium points the principle of linearised stability used above
does not apply and other methods need to be used. Two of these are centre manifold
theory and normal form theory. Centre manifold theory reduces or simplifies the system
of equations so that only thosé parts which affect the local dynamics near the bifurcation
point remain. Normal form theory uses systematic coordinate changes to transform this
reduced system of equations into a ‘normal form’. The behaviour corresponding to a
number of normal forms has already been classified by various mathematicians and can

be found in most dynamical systems texts. The abovementioned examples have all been




Appendix A. Dynamical systems theory 242

classified using normal form theory. Another method due to Liapunov is described in

Wiggins [124].

One-parameter local bifurcations Suppose that the system of equations (A.1) has

the form
= £(x, ) (A4)

where y is a parameter® and suppose that the equilibrium point x* undergoes a bifurcation

*

at p = p*. (We assume initially that there is only one zero eigenvalue or one pair
of complex conjugate eigenvalues with zero real parts—the greater the number of zero
eigenvalues associated with a bifurcation point the more degenerate it is and the more
complicated the dynamics associated with it.) Such a bifurcation point is called a one-
parameter local bifurcation. Examples of bifurcation points having one zero eigenvalue
include limit point (see section A.2.13), pitchfork (see section A.2.18), and transcritical
(see section A.2.25) bifurcations. A Hopf bifurcation (see section A.2.10) is also a one-

parameter bifurcation but it has one pair of complex conjugate eigenvalues whose real

parts are zero.

Two-parameter local bifurcations Suppose we allow two parameters in our model

to vary, that is,

% = f(x, 1, ) (A.5)

where p and A are parameters. With two parameters more complex behavioural patterns
such as hysteresis, which is described in section A.2.11, are possible.
The extent of the region of overlap in figure A.8 (that is, the difference p*, — p*,) may

vary with a second parameter, A, as shown in the two-parameter bifurcation diagram

1Typically a system of equations has more than one parameter but we only need to consider one of
these explicitly at the present time. We assume that the values of any other parameters are fixed.




Appendix A. Dynamical systems theory 243

in figure A.19(a). Part (b) of this figure shows one-parameter bifurcation diagrams

(a)

(b) |
i) ii) iii)

T 1 \.LP 1 \;LP

1 K2 U3 ] M1 Hq 7

Figure A.19: (a)Two-parameter bifurcation diagram showing a cusp point and the positions of the
two limit points associated with the hysteresis as both p and A are varied. (b)One-parameter bifurcation
diagrams corresponding to different, fixed values of A in part (a) and with g as the bifurcation parameter.
(i) A = Ay, (1) A = A; and (ili) A = A3. These one-parameter bifurcation diagrams correspond to the
horizontal dashed lines in part (a).

corresponding to different values of A (that is, corresponding to the horizontal dashed
lines in part (a)). At A = A; the equilibrium point does not undergo any bifurcations in
behaviour. For A = A, the two limit points are close together and for A = A3 they are
further apart. The point (g, A) = (@i, A*) is called a cusp point. At this point the two.
limit points coincide. The curves in figure A.19(a) thus show how the positions of the

limit points (bifurcation points) vary with g and A. Compare this with one-parameter
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bifurcation diagrams which show how the positions of equilibrium points vary as a single

parameter changes.

A.3.3 Global bifurcations

So far we have been looking at the local dynamics associated with bifurcations of equi-
librium points and limit cycles. However, some dynamical properties cannot be deduced
from local information [49]. These are called global properties. The simplest situation
involves homoclinic and heteroclinic orbits.

Suppose we have two equilibrium points and let y be the bifurcation parameter. Phase

portraits of two possible degenerate situations that can arise are shown in figure A.20. In

(a) T2 (b) o

N L =
% DA

) . Z1

Figure A.20: (a)Phase portrait of a saddle connection or heteroclinic orbit. (b)Phase portrait of a
saddle loop or homoclinic orbit.

part (a) of this figure a heteroclinic orbit joins two saddle points. That is, the unstable
manifold of one saddle point coincides with the stable manifold of the other saddle point.
In (b) the stable and unstable manifolds of the same saddle point coincide and encircle
the other equilibrium point. The dynamics associated with the second equilibrium point
vary depending on the model equations.

The situations in figure A.20 are degenerate. That is, they only exist for a particular

value of y. Almost any small perturbation will disrupt the coincidence of the stable and
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Figure A.21: (a)Phase portraits for parameter values near a saddle connection or heteroclinic orbit.
(b)Phase portraits for parameter values near a saddle loop or homoclinic orbit. (i) g < p*, () 4 = p*
and (i) g > p*. (u*is the point at which the heteroclinic or homoclinic orbit occurs.)
unstable manifolds. In figure A.21 we see what happens to the stable and unstable man-
ifolds when g i1s perturbed from the bifurcation point, p*. The reader may be wondering
what happens near the second equilibrium point in part (b) of this ﬁg}lre. Some examples
of possible phase portraits are shown in figure A.22.

An important point to note is that the time period required to get from one saddle
point to the other along a heteroclinic orbit, or to‘ return to the same saddle point along
a homoclinic orbit, is infinite. This has important consequénces for practical studies as

can be seen in chapter 2 (section 2.4).
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Figure A.22: Phase portraits near a saddle loop or homoclinic orbit showing possible behaviour near

the second equilibrium point.
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A.3.4 Periodic orbits
Local stability

So far we have discussed equilibrium points and the stability behaviour associated with
them. The concept of a Hopf bifurcation introduced the idea of periodic orbits or limit
cycles. Cycles have been studied in many biological settings (for example, the spruce
budworm [74], nerve action potentials [58], glycolysis [47], cellular slime mold [108],
predator-prey interactions [14]). An important aspect is whether the periodic orbits
exhibited by a system of equations are locally stable or unstable. For this purpose I
introduce the concept of Poincaré maps. However, only the main results are presented
here. More detailed discussions can be found in [49] and [124].

In general®, a Poincaré section S is an (m — 1)-dimensional hypersurface chosen so
that all trajectories of (A.1) a) intersect the hypersurface transversally, and b) cross
the hypersurface in the same direction. In particular, the limit cycle passes through the
hypersurface transversally at a pa.Lrticular point, q*. Figure A.23 shows a periodic orbit in
three dimensions and a two-dimensional Poincaré section, S. The periodic orbit intersects
S at the point g*.

If T is the period of the limit cycle and 'go(t;z) is a solution of (A.l) starting at z

(that is, satisfying the initial condition x(0) = z), then
q" = ¢(T;q")-

Let q be a point on S and let T,(q) be the time taken for a trajectory, x(¢;q) to first

return to S. Then the Poincaré map or first return map P(q) is defined by

This is illustrated in figure A.23. Note that P(q*) = q* and T,(q*) =T

5The following is summarised from [111].
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Figure A.23: Schematic representation of a Poincaré section and a limit cycle in three dimensions
(from [111], p.244). q*is a point on S that lies on the limit cycle. q is another point on S and P(q) is
its point of first return to S.

In order to determine the stability of the periodic orbit, we need only investigate the
behaviour of P near its equilibrium point q*. That is, we need to determine whether
this equilibrium point is attracting or repelling. As in section A.3.2 we linearise P about
the equilibrium point q*. In this case A = %(i*). Stability is again related to the
eigenvalues of A but the conditions are slightly different as we are dealing with a map
(discrete system) here and not a continuous system such as (A.1). We have the following
result (see [111]): a) If the moduli of all the eigenvalues are smaller than 1, then q* is
.stable; b) If the modulus of at least one eigenvalue is larger than 1, then q* is unstable.

It turns out that the eigenvalues of A = 31’48((;3 can be found from the eigenvalues

of the matrix
do(T; q")

M = 0z

The matrix M always has an eigenvalue equal to 1. It can be shown that the remaining
(m — 1) eigenvalues are the eigenvalues of A = %L). The eigenvalues of M are called

Flogquet multipliers. Analogous to the discussion on equilibrium points of (A.1), the
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stability of a periodic orbit can be determined by calculating the Floquet multipliers.
These are easier to find than the eigenvalues of A. In general, in the vicinity of a Hopf
bifurcation, unstable periodic orbits encircle stable equilibrium points and stable periodic
orbits encircle unstable equilibrium points however there are some other possibilities. A

few cases are shown in figure A.24. Both the minima and maxima of the periodic orbits
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Figure A.24: Examples of Hopf bifurcations having soft loss of stability (adapted from [111], p.72).

are shown.
Figure A.24 gives examples of soft loss of stability or soft generation of limit cycles
(see section A.2.22). Section A.2.7 gives an example of hard loss of stability or hard

generation of limit cycles.

Bifurcations of periodic orbits

The above discussion has focussed on local stability near a Hopf bifurcation. It is also

possible for the periodic orbits themselves to undergo stability changes. These occur

when the Poincaré map undergoes bifurcations. If the Poincaré map undergoes a simple
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bifurcation, then there may Be an exchange of stability of the periodic orbit from stable to
unstable or vice versa. If the Poincaré map P has an eigenvalue of —1 at the bifurcation
point p* then the second iterate of the map, P? = P(P), undergoes a bifurcation. We call
this a period-doubling or ﬂip bifurcation. At this point there is an exchange of stability
of the periodic orbits to orbits having double the period. The situation is depicted in
figure A.11.

Period-doubling occurs in many situations such as chemical reactions, nerve models,
the Navier-Stokes equations and ecological models involving three trophic levels. (Period-
doubling does not occur in fewer than three dimensions for continuous systems, that is,
m > 3 is required.) In some cases a sequence of period-doublings may occur and this
may lead to chaotic behaviour (see section A.2.3).

Another way in which a periodic orbit may exchange stability is through bifurcation
into a torus (Hopf bifurcation of the corresponding Poincaré map). This océurs when a
complex pair of Floquet multipliers moves into or out of the unit circle. Again m > 3
is required. Details of this can be found in [111, 124]. From a practical point of view
it is probably more informative to return to generating numerical solutions of a model
over tirﬁe when these complicated phenomena are encountered in a bifurcation analysis
so that the behaviour of the system near these points can be seen explicitly. I will not

present the mathematical details of these bifurcations here.

Chaos

A brief description of chaos was given in section A.2.3. Further mathematical details
can be found in [11, 16, 124, 128]. Currently there is wide debate as to the practical
application of chaos. In ecological systems it is very difficult (probably impossible) to

distinguish between stochastic noise and chaotic behaviour (see the preface in [72]). In

Stone [114] it is shown that the addition of a single small term to a logistic type model
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removes the chaotic behaviour. However, in [82, 84| it is demonstrated that chaos is
prevalent in many discrete ecological models and that higher order systems display chaotic
behaviour more readily than one-dimensional systems. A good overview of.the current

debate is given in the collection of papers in [72].

A.3.5 Maps (systems of difference equations)

The discussion so far has been restricted to models consisting of systems of ordinary
differential equations. A very similar theory can be developed for maps given by (A.2) or
(A.3). I will briefly mention some of the differences that occur. More detailed discussions
can be found in [124, 128].

Referring to equations (A.2) and (A.3), an equilibrium point occurs when
f(x) =x

or

X1 = Xio

A linear stability analysis can again be done for hyperbolic equilibrium points. For maps
a hyperbolic equilibrium point is one for which none of the eigenvalues of the matrix
of partial derivatives has unit modulus (that is, no eigenvalues have a magnitude of 1).
Again it is the nonhyperbolic equilibrium points which result in interesting bifurcations.

If the linearised matrix has a single eigenvalue equal to 1 then a limit point, trans-
critical or pitchfork bifurcation may occur. The bifurcation diagrams are the same as for
continuous models. However, it must be remembered that the ‘phase portraits’ or dia-
grams in state space consist of discrete points rather than continuous curves. Examples
corresponding to a spiral sink are shown in figure A.25. Consecutive points are labelled

in the discrete case.
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(a) ] (b) o)

Figure A.25: State space diagrams of a spiral sink for (a) a continuous model and (b) a discrete model.

For maps the special case of a single eigenvalue equal to -1 introduces another type of
bifurcation called a period-doubling bifurcation. Figure A.26(a) shows a stable equilibrium
point undergoing a period-doubling bifurcé,tion to become a stable period-2 orbit as p is
increased. This period-2 orbit undergoes a further period-doubling to produce a stable
period-4 orbit. Figure A.26(b) gives examples of diagrams in state space corresponding
to these situations. Notice that this situation is analogous to the period-doublings of
periodic orbits for continuous models. This is not surprising since that theory is based
on Poincaré maps which are discrete.

It is important to note that periodic orbits for discrete systems are different from
those for continuous systems. In particular they have integral periods. Consider the

second iterate, f%, of the map (A.3):
£2(x0) = £(£(x:)) = £(Xe41) = Xepa-
In general, the k" iterate of the map is given by
fk(xt) = Xk

Suppose there exists a value of x, X, such that

£ (%) = %
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Figure A.26: (a)One-parameter bifurcation diagram showing period-doubling bifurcations at u = u*,

and p = p*, for a discrete system. (b)State space diagrams showing the dynamics at (i) z = pu; (stable

equilibrium), (ii) g = pa (stable period-2 orbit) and (iii) 4 = p3 (stable period-4 orbit).

but

£i(%) # % for j=1,2,... k1.

Then x is called an equilibrium or fixed point of period k. This means that the system

has a cycle or periodic orbit whose period is equal to & time units. Suppose k£ = 2 and

we have a one-dimensional system. Then

but

(@) = f(f(3)) =&

[(3) # &.
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Hence, if we start at Z then after the first time unit we are at f(&) but after the second

time unit we have returned to . This is shown in figure A.27. A state space diagram

|

1 T T I 1 | [

0 1 2 3 4 5 6 7 Time

Figure A.27: Time plot of a period-2 orbit for a discrete system.

for such a situation in two dimensions (that is, for two state variables) is shown in figure
A.26(b)(ii). In this example both z; and z, will have time plots resembling figure A.27.

An analogue of the Hopf bifurcation also exists for maps. It is sometimes referred
to as the Naimark-Sacker bifurcation [124] but is also simply called the Hopf bifurcation
for maps. This bifurcation corresponds to a pair of eigenvalues of modulus 1. Instead
of a periodic orbit, however, an invariant circle is initiated at this bifurcation point.
While geometrically similar to a periodic orbit, the dynamics are different. A state space
diagram of an invariant circle is shown in figure A.28 together with a time plot. The
stability of this circle is intuitively similar to a periodic orbit but the methods of analysis
are quite different [124].

There are two possibilities for an invariant circle. Either point 10 coincides with point
1 in figure A.28(a), point 11 coincides with point 2 and so on, or subsequent points are
distinct from all the earlier ones but still lie on the circle. If the map is allowed to iterate

for a long time in the latter case, then what is eventually observed in state space will
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Figure A.28: (a) State space diagram showing an invariant circle. (b) Time plot of the situation in
(a) in terms of z;.
appear to be a continuous circle.

In general, the behaviour associated with discrete models is more complicated than
that for continuous models because of the built-in time delays in the feedback relation-
ships [128]. Even one-dimensional maps can exhibit chaotic behaviour. AMay [82] shows
how the behaviour of the discrete analogue of the logistic equation changes from stable
equilibrium behaviour, to periodic behaviour, and finally to chaos as the growth rate is
increased. The reader is referred to the literature that has been cited for further details

on the dynamics of discrete models.

A.3.6 Stability of bifurcations under perturbations

The question of robustness or structural stability of a model is an important one. In
order to determine how robust a model is, we need to see whether or not perturbing the
model alters its qualitative structure. It turns out (see [124]) that limit point bifurca-
tions, Hopf bifurcations and hysteresis phenomena are stable under small perturbations
but transcritical and pitchfork bifurcations are not unless constraints or symmetries are
preserved by perturbations. That is, small perturbations of the model do not affect

whether or not the former three bifurcations occur (they only affect properties such as
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the parameter value at which the bifurcations occur and the positions of the equilibrium
points and periodic orbits) but can affect the occurrence of the latter two. Figure A.29
illustrates the destruction of transcritical and pitchfork bifurcations graphically. It turns
out that all bifurcations of one parameter families of equations which have an equilibrium
point with a single zero eigenvalue (or single eigenvalue of modulus 1 for ma,p_-c,) can be

perturbed to limit point bifurcations [49)].
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Figure A.29: Possible results of perturbing transcritical and pitchfork bifurcations (adapted from
[111], p.83). ' ‘

However, we cannot make such rapid conclusions when the model contains more than
one free parameter. In these circumstances the idea of codimension of a bifurcation
becomes important. However, for m > 3 the aﬁalysis is very complicated. An intro-
duction to this theory can be found in [124]. The only poinf I Would like to make here
is that, because the models in this dissertation have more than three parameters, none

of the bifurcations that have been described in this appendix can be dismissed as being

unimportant.
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A.3.7 Multiple degeneracy

All the cases discussed so far have assumed simple zero eigenvalues or a single com-
plex conjugate pair of eigenvalues with zero real part (or the analogous situations for
maps). Higher order singularities, or multiple degeneracies do, of course, occur but the
behavioural dynamics associated with them can be difficult to interpret and there is still
much research being done in this area. Thus, at this stage, it is probably best to either
solve the system of equations numerically or to generate phase portraits for parameter
combinations in a region surrounding these complex points rather than struggling with
the details of the bifurcation structure. For those interested some of these higher order

degeneracies are investigated in [124].

A.4 Conclusion

The introduction to dynamical systems theory given in this appendix has been mainly
intuitive and not mathematically rigorous. Although the concepts are fairly simple,
the mathematics involved in studying a particular system of equations can be quite

formidable. Appendix B describes how computers can be useful in this regard.




Appendix B

Numerical details

B.1 Introduction

This appendix describes some of the computer software that is available for analysing
systems of equations. Packages such as AUTO86 [28], AUT094 [31], Interactive AUTO
[117], XPPAUT [35] and some others that will be mentioned later, enable particular solu-
tions to be ‘continued’ as a parameter is varied in order to produce a bifurcation diagram.
In other words, these continuation programs trace out the location of equilibrium points
and periodic orbits as a parameter is varied. Bifurcation points that are encountered
along the way are also detected and classified. In this way a whole range of different
modes of model behaviour can be obtained with much greater ease than if the mathe-
matics had to be done by hand. The process can be repeated for different parameters
in order to obtain a more comprehensive picture of the qualitative behaviour associated
with different regions in the parameter space.

Section B.2 introduces some of the techniques used by continuation programs for
continuing equilibrium points and determining the stability of the solution branches (see
section A.2.4). Methods for detecting bifurcations along these branches are also described

with particular reference to AUTO!. The section is intended as a brief overview. More

1T will use the abbreviation AUTO to refer to AUTO86, AUT094 and Interactive AUTO as the latter
is in essence just a graphical interface for AUTO86 and AUTO94 is an updated version of AUTO86
together with a graphical interface. Even when using XPPAUT I will refer to AUTO when talking
about bifurcation diagrams since XPPAUT generates these diagrams through a graphical interface with
AUTOS86. In cases where I need to distinguish between the packages, I will use their full names.

258
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detailed discussions as well as a comprehensive list of references can be found in Allgower
and Georg [4] and Seydel [111].

Following this theoretical introduction section B.3 describes the capabilities and lim-
itations of the packages that I used and section B.4 describes how to obtain time plots,
phase portraits and bifurcation diagrams. Finally, section B.5 gives a few pointers and
warnings regarding the use of some of the packages. These are based on my experiences

gained through analysing the models in the main body of the thesis.

B.2 Theory

B.2.1 Continuation methods

As has already been mentioned, continuation or path-following methods generate a chain
of solutions (equilibrium points, periodic orbits or bifurcation points) as a parameter is
varied. A typical path-following method is the predictor-corrector method. This involves
the repétition of two different steps. The predictor step approximates the next point on
the curve, often by using the direction of the tangent to the curve (Euler predictor) [4]. A
number of iterative steps (called corrector steps) then aim to improve this approximation
and bring it back to the actuai curve [4]. Typically Newton or gradient type methods
are used in this step [4].

Some form of parameterisation of the curve is required for these steps. The obvious
choice is the control parameter (that is, the parameter being varied) as it has physical
significance. However, this leads to difficulties at limit points (see section A.2.13) [111].
An alternative is to choose another variable which involves adding another equation to the
system. This extended system can then be solved using the predictor-corrector methods
mentioned above [111]. Popular choices for this alternative parameter are arclength or a

pseudo-arclength parameter proposed by Keller [67]. AUTO uses the latter choice and
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details are given in [30, 67].

The accuracy of the predictor-corrector method depends on the choice of steplength.
In general, shorter steplengths lead to greater accuracy (provided that they are not so
small that computer round-off errors become large) but they are more costly in terms
of time. In some cases the objective is just to follow the curve as rapidly and safely
as possible until a critical point (such as a bifurcation point) is reached [4] and then a
smaller steplength is needed for greater accuracy. Thus, for an efficient algorithm, the
steplength needs to be adaptive and not fixed [4, 111]. Ideally a continuation method
should also allow the user to have some control over the choice of steplength. AUTO
fulfills both criteria. Stepsizes are changed automatically in the program depending on
the speed of convergence of Newton’s method (that is, depending on the number of
iterations required to fulfill the stopping criteria). Maximum and minimum stepsizes
and convergence criteria are given by the user.

There are many different ways in which choices of predictor, corrector, parameteri-
sation and step control can be combined to produce a continuation method. Because of
this no numerical comparison of different path-following methods has so far been done
and, hence, no particular method can be recommended exclusively [111]. Simple Eu-
ler predictors together with Newton-type correctors have been found to be satisfactory
in many circumstances [4]. Because of the stability of Newton correctors, more stable
higher order predictors based on polynomial interpolation (instead of on the direction of
the tangent to the curve as with an Euler predictor) are often advantageous {4].

No continuation method can guarantee that all possible solutions will be found in
a given example [111]. Isolated branches (branches which are not attached to other
branches via bifurcation points) are very difficult to detect. It 1s suggested in the AUTO86
manual [30] and by Seydel [111] that time integration of the governing system of equations

using random initial data may be worthwhile for generating a starting point on an as yet
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undetected solution branch. DSTOOL [10] can also be useful for locating equilibrium

points which lie on these isolated branches.

B.2.2 Detection of bifurcations

As a continuation method traces out a path, it needs to be able to detect bifurcation
points. Techniques for doing this can be divided into direct and indirect methods [111].
Direct methods involve enlarging the original system of equations by including additional
equations which characterise the bifurcation point. Indirect methods on the other hand
 utilise data obtained during a continuation together with a test function. The latter
are generally recommended in practical computations (and are used in AUTO) as direct
methods involve solving much larger systems of equations and have higher storage re-
quirements. Indirect methods do have more difficulty achieving high accuracy but when
discretisation errors are ‘present and when bifurcation points are unstable to perturba-
tions, this greater accuracy is not needed [111]. If higher accuracy is required then a
direct method can be applied once an indirect method has obtained an approximate
result.

An indirect method detects bifurcation points using ‘test functions’ which are evalu-
ated during branch tracing [111]. A bifurcation point is indicated by a zero of the test
function, 7. (In practice, an algorithm checks for a change of sign of 7.) For simple
bifurcation points a natural choice for 7 is the maximum of all real parts «; of the eigen-
values of the Jacobian matrix A (see section A.3.2). However, this choice may not be
smooth and it does not signal bifurcations in which only unstable branches coalesce [111].
This problem can be overcome by choosing 7 = a; with |ax| = min{|ail,...,|an|}
This choice also detects Hopf bifurcations. In general, the accuracy of 7 depends on the
accuracy with which A is evaluated.

There are many possibilities for the choice of test function. However, not much
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attention has been paid to which drawbacks are significant or which test function is best
for which purpose [111]. Some authors have studied classes of test functions for various
types of singular points (see [4] for references).

Once a bifurcation or branch point has been detected, a method needs to be found
for switching branches. All that is needed is a single point on the new branch as then
the continuation method can be used to trace out the rest of the branch. Predictors
and correctors can again be used for switching branches. Seydel [111] and Allgower and
Georg [4] describe a few different approaches and give further references. AUTO uses
a method suggested by Keller [67]. Doedel [30] notes that this method performs well
in most applications although difficulties can occur if the angle of intersection of the
branches is very small.

At a Hopf bifurcation point periodic orbits are introduced. Once a solution point on
the branch of periodic solutions has been located, a continuation procedure can be used
to trace out the branch. After imposing an integral condition in order to fix the phase
of the orbit, the continuation procedure becomes a special case of the path-following
techniques that have already been discussed. Details of the method as well as further

references can be found in the AUTO86 manual [30].

B.2.3 Stability
Stationary branches

The stability of stationary branches (that is, of continuations of equilibrium points) is de-
termined from the real parts of the eigenvalues of the Jacobian matrix A. The calculation
of eigenvalues (for example, via QR factorisation or LU decomposition methods (4, 111])
can be very time-consuming especially when accurate approximations are required, such

as near bifurcation points, and when the system of equations is large. However, the
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fact that the eigenvalues play an important role in the detection of bifurcations, as well
as in determining stability, provides justification for using more accurate techniques.
AUTO uses the IMSL subroutine EIGRF for computing the eigenvalues of a general real
matrix [30]. Interactive AUTO [117] assigns different colours to continuation branches
depending on the number of unstable eigenvalues while XPPAUT [35] uses thick lines to
indicate stable branches and thin lines to indicate branches having one or more unstable

eigenvalues.

Periodic branches

It is the values of the Floquet multipliers (see page 248) that determine the stability
of periodic orbits. These multipliers are eigenvalues of a particular matrix and, thus,
an eigenvalue solver is again required. Since Floquet multipliers can be very large or
very small in value, there may be a loss of accuracy when evaluating them numerically.
This is especially true for unstable orbits [111] and near orbits of infinite period [30].
In the AUTO86 manual [30] it is noted that orbits normally retain their accuracy even
when the Compuﬁation of Floquet multipliers (and hence stability determination) breaks
down. In XPPAUT and AUTO94 the routine for calculating Floquet multipliers has been
improved and is more accurate than that in AUTO86, and hence in Interactive AUTO.
Floquet multipliers are also used for detecting higher order periodic bifurcations such as

period-doubling bifurcations or bifurcations to tori.

B.3 Available computer packages

In this section I list the capabilities of a number of computer packages and also list some

advantages and disadvantages related to choosing one package over another.
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B.3.1 AUTOS86

Since Interactive AUTO, XPPAUT and AUTO94 are all based on AUTO86 (28], their
basic capabilities are very similar. Although I have not used AUTO86 directly (it runs
as a batch process), I will describe its capabilities and limitations since most of them
apply to the abovementioned packages. I highlight the differences between the packages

in subsequent sections.

Capabilities

(These are taken directly from the AUTO86 manual [30].)

AUTO can do a limited bifurcation analysis of algebraic systems of the form
f(x,A) =0, x,feR™ (B.6)

where )\ denotes one or more free parameters, and of systems of ordinary differential

equations of the form

x =f(x,1), x,feR™. (B.7)
It can also do certain continuation and evolution computations for the diffusive system

X = Dxyy + f(x, 1), x,feR™. (B.8)

where x = x(u,t) and D denotes a diagonal matrix of diffusion constants. For the

algebraic system (B.6) AUTO can:
e trace out branches of solutions.

e locate bifurcation points and compute bifurcation branches.

o locate limit points (saddle-node bifurcations) and continue these in two parameters.
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o do all of the above for fixed points of the discrete dynamical system
Xt+1 = f(Xt, /\) (Bg)

e optimisation: find extrema of an objective function along the solution branches and

successively continue such extrema in more parameters.
For the ordinary differential equations (B.7) AUTO can:

e compute branches of stable or unstable periodic solutions and Floquet multipliers.
Starting data for the computation of periodic orbits are generated automatically

at Hopf bifurcation points.

e locate limit points, transcritical and pitchfork bifurcations, period-doubling bifurca-
tions and bifurcations to tori along branches of periodic solutions. Branch switching

is possible at transcritical, pitchfork and period-doubling bifurcations.

e continue Hopf bifurcation points, limit points and orbits of fixed period in two

parameters.

e compute curves of solutions to (B.7) on the interval [0,1] subject to general nonlinear

boundary or integral conditions.

e locate limit points and bifurcation points for such boundary value problems. Branch
switching is possible at bifurcation points. Curves of limit points can be computed

in two parameters.
For the parabolic system (B.8) AUTO can:

e detect bifurcations to wave train solutions of given wave speed from spatially ho-

Mogeneous solutions. These are detected as Hopf bifurcations along fixed point

branches of a related system of ordinary differential equations.
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e trace out the branches of wave solutions to (B.8) and detect bifurcations. The wave

speed c is fixed but the wave length L will normally vary.

e trace out branches of waves of fixed wave length L in two parameters. If L is large,

then one gets a branch of approximate solitary wave solutions.
e do time evolution calculations for (B.8) with periodic boundary conditions on [0,L].

In this thesis systems of the form (B.7) and (B.9) are analysed.

The discretisation used in AUTO to approximate ordinary differential equations and
for calculating periodic solutions is orthogonal collocation with 2,...,7 Gauss collocation
points per mesh interval. The mesh automatically adapts to the solution so that a
measure of the local discretisation error is equi-distributed. Also, the adaptive mesh
guards to some extent against computing spurious solutions. When spurious solutions
do occur they are often easy to recognise by the jagged appearance of the solution branch.

Some general limitations of AUTO86 are listed below.

Limitations
The following difficulties are noted in the manual [30]:

¢ degenerate (multiple) bifurcations cannot be detected in general. Also, bifurcations
that are close together may not be noticed when the pseudo-arclength step size is

not sufficiently small.

e Hopf bifurcation points may go unnoticed if no clear crossing of the imaginary axis
takes place. This may happen when other real or complex eigenvalues are near the
imaginary axis and when the pseudo-arclength step is large compared to the rate of
change of the critical eigenvalue pair. An often occurring case is a Hopf bifurcation

close to a limit point (saddle-node bifurcation).
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o similarly, Hopf bifurcations may go undetected if switching from real to complex
conjugate, followed by crossing of the imaginary axis, occurs rapidly with respect

to the pseudo-arclength step size.
e secondary periodic bifurcations may not be detected for very similar reasons.

e for periodic orbits the numerical output should be checked to make sure that points
labelled as bifurcation points, limit points, period-doubling bifurcations or bifurca-

tions to tori have been classified correctly.

Some of the above problems may be solved by decreasing the minimum step size, dsmin,
to allow AUTO to take smaller steps. This is particularly helpful when two continuation
branches or two bifurcation points are very close together. In the former situation AUTO
needs to.take small steps to ensure that it does not switch branches during the calculation.
Decreasing dsmaz may also help as this prevents AUTO from taking large steps and
missing important bifurcations.

As noted above AUTO may have some difficulty with identifying bifurcations on
periodic orbits. Problems arise when Floquet multipliers are close to the unit circle.
Also, unstable orbits can be difficult to locate, especially when they are close to a stable
orbit or equilibrium. Accuracy may be increased by decreasing dsmzin or increasing ntst,
the number of mesh points used in t.he discretisation of the periodic orbits.

Some other limitations of AUTO which have resulted from doing bifurcation analyses

on a few models are as follows:

e transcritical and pitchfork bifurcations cannot be continued in two parameters be-
cause the determinant of the Jacobian matrix A is zero at these bifurcation points.
Other continuation and bifurcation packages will have the same limitation. A possi-

ble solution is to do a number of one-parameter continuations with different (fixed)
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values of the second parameter and then to plot the bifurcation points obtained
from each continuation in two-parameter space. An approximate curve can be

drawn through these points. This is done in chapter 2.

e error messages from AUTO can be misleading (as with most computer packages!).
In many cases the problem is solved by checking the driving program for typing
errors and variable or parameter names which begin with letters between h and o

as such quantities are assumed to be integers by default.

B.3.2 Interactive AUTO
Capabilities

In addition to the capabilities listed for AUTO86, Interactive AUTO [117] allows the
user to change the program constants interactively and to observe the development of a
bifurcation diagram while a calculation is in progress. The corresponding eigenvalues are
shown simultaneously in a separate graphics window.

The advantages and disadvantages listed below relate mainly to the suitability of this
package for analysing ecological models and are included for comparison with the other
packages. Since the packages were not set up specifically for the models that are analysed

in this thesis, these comments are not necessarily criticisms.

Advantages

e This package has good on-screen graphics. Different colours are used to indicate the
number of unstable eigenvalues corresponding to a particular branch. The locations
of the eigenvalues relative to the real and imaginary axes and the unit circle are
also shown. Bifurcation diagrams can be viewed in three dimensions if desired and

the mouse can be used to shift diagrams and to zoom in and out.
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Disadvantages

e Bifurcation diagrams cannot be printed out or saved as postscript files for later

printing.

e Each time the model equations are altered the driving routine needs to be recom-

piled.

e The package only runs on Personal Iris and Iris 4D workstations (instead of on all

systems supporting X-windows as for the other packages).

e Interactive control of the graphics output is limited. Once a one-parameter bifur-
cation diagram has been generated it is not possible to view it with a different

variable on the y-axis. The scales of the axes are also not visible.

B.3.3 XPPAUT

This package (as well as the tutorial) can be obtained via anonymous ftp from
ftp.math.pitt.edu

and is in the directory pub/bardware.

Capabilities

The AUTO interface allows most of the capabilities of AUTO86 to be enjoyed. How-
ever, the aim of making AUTO easier to use has led to some restrictions which will be
mentioned below.

This package also solves systems of equations numerically (there is a choice of al-

gorithfns) and generates time plots and phase portraits (in two and three dimensions).
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Hardcopies of these diagrams can be obtained. With reference to phése portraits it is pos-
sible to obtain nullclines, arrows indicating the direction of flow, as well as the positions
and stabilities of equilibrium points (singular points).

Other capabilities include curve-fitting of data, spreadsheet type data manipulation

and generation of histograms.

Advantages

e Time plots, phase portraits and bifurcation diagrams can all be generated using

the same computer package.

e The AUTO interface is easy to use—the number of constants that need to be altered

has been reduced.

e Hardcopies of bifurcation diagrams can be obtained through saving them as postscript

files. The data can also be saved so that it can be read into other graphics packages.

e The package has good on-screen graphics. The development of a bifurcation di-
agram can be seen while a calculation is in progress. The eigenvalues are shown
simultaneously relative to the real and imaginary axes and the unit circle. It is
possible to zoom in on specific regions of a diagram and the most recent one-
and two-parameter bifurcation diagrams viewed are kept in memory. Once a one-
parameter bifurcation diagram has been generated the variable on the y-axis can
be altered. It is also possible to plot the period or the frequency of a periodic orbit
as a function of the bifurcation parameter. Minima as well as maxima of periodic

orbits can be plotted simultaneously.
e AUTO86’s Floquet multiplier routine has been improved.

o It is possible to start continuations from a numerically calculated periodic orbit.
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e Three-dimensional phase portraits are possible.

o The driving program is easy to write for most systems and is compiled automatically

when the XPPAUT command is given.

o When calculating time plots and phase portraits, data information for auxiliary
variables (variables which are subcomponents or composite functions of the state

variables) can also be observed.
e The package runs on any X-windows system as well as on LINUX.

e Thereis a comprehénsive tutorial on the World Wide Web to help the user become

acquainted with the package. The address is:

ftp://mthbard.math.pitt.edu/pub/bardware/xpptut/start.html.

Disadvantages

e When generating phase portraits only one equilibrium point is located at a time

and the initial point often has to be quite close by.

e The AUTO interface is not set up for discrete equations and error tolerances for
AUTO cannot be altered. Also, the automatic detection of limit points cannot
be turned off in this version of AUTO. This may cause difficulties when calculat-
ing periodic orbits as at a limit point of a periodic orbit two Floquet multipliers
equal 1 and this affects fhe convergence properties of the continuation algorithm.

Decreasing dsmin and dsmaz may help.

o There is limited control of the appearance of printouts. The stability nature of
a particular branch in a bifurcation diagram is often obscured when consecutive

continuation points are very close together. Dashed lines for unstable branches then
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appear as solid lines and, instead of individual dots, periodic branches become thick
lines. In some cases this can be overcome by increasing the maximum step size,
dsmaz. Also, the data for a diagram can be saved separately and then read into
another graphics package. When two-parameter bifurcation diagrams are printed

out, data from the previously generated one-parameter diagram is superimposed.

B.3.4 AUTOY9%4

Capabilities

This package is an updated version of and graphical interface for AUTO86. The graphical
interface allows program constants to be altered interactively and bifurcation diagrams
can be viewed.

Advantages

e There is a help menu which describes the functions of the program constants.

Demonstration examples show how the various capabilities of the package can be

used.

Model equations can be changed interactively.

The package runs on any X-windows system.

It is possible to start a continuation from a numerically calculated periodic orbit.

The routine for calculating Floquet multipliers has been improved.

Disadvantages

e Printouts of bifurcation diagrams cannot be obtained.
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e The on-screen graphics are more cumbersome to use than those of Interactive
AUTO and XPPAUT. Changes to a bifurcation diagram can only be viewed at
the end of a calculation using a separate command instead of while the program is
running. The way in which bifurcation points are labelled also makes the diagrams

difficult to read. The disadvantages were the main reason why I did not make use
of AUTO9%4.
B.3.5 DSTOOL

This package can be obtained via anonymous ftp from
macomb.tn.cornell.edu

and is in the pub/dstool directory.

Capabilities

This package generates time plots and two-dimensional phase portraits for both discrete
and continuous systems of equations. It calculates equilibrium points and their stabilities
as well as stable and unstable manifolds for saddle points. There is provision for exten-
sions to the package—three-dimensional graphics as well as continuation and bifurcation

routines may be incorporated in the near future.

Advantages

e A mouse can be used for specifying starting points for time plots and phase por-
traits. This is very convenient and speeds up the generation of these diagrams

considerably.

e The package is good at locating periodic points for discrete models.
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e Printouts of diagrams can be obtained.

e For ordinary differential equation models trajectories can be calculated forwards or

backwards.

e The package runs on any X-windows system as well as on LINUX.

Disadvantages

e Three subroutines need to be modified each time a new model is entered.

e The package sometimes crashes when calculating equilibrium points for difficult

parameter values.

B.3.6 Other packages

Some other packages are available for analysing dynamical systems. Part of the following

list can be found in [4].

1. ALCON [27]. This is a continuation method for algebraic equations f(x,A) = 0.

Limit points and simple bifurcations can be computed on demand.

2. BIFPACK [112]. This is an interactive program for continuation of large systems

of nonlinear equations. Bifurcation points are also detected.

3. DYNAMICS [96]. This package iterates maps, solves differential equations, and
plots trajectories. It runs on both IBM PC’s and UNIX workstations which support

X-windows.

4. LOCBIF [68]. This is an interactive program designed for multiparameter bifur-

cation analysis of equilibrium points, limit cycles and fixed points of maps. At
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present it is set up for IBM PC’s but a UNIX version is in process and is being -
incorporated into DSTOOL.

5. PATH [66]. This software package for dynamical systems can apparently handle

much larger systems of ordinary differential equations than AUTO.

6. PHASER [54]. This package generates phase portraits for continuous and discrete

dynamical systems. It runs on IBM PC’s.

7. PITCON [100, 101]. This is a Fortran subprogram for continuation of equilibrium

points and for detecting limit points.

As has already been mentioned, no comprehensive compar‘ison of different techniques
has been done because of the enormity of the task. None of the abovementioned packages
analyses a model at the touch of a button and complementary analytical techniques,
as well as other numerical techniques, are still needed in order to obtain a complete
understanding of any model. Parameter studies are as much an art as a science [111].
In the next section I explain how to generate time plots, phase portraits and bifurcation

diagrams using some of the packages I have mentioned.

B.4 Using the packages

Although this section gives some guidelines for using the various packages, it is important
that anyone wishing to use these packages reads the relevant user manuals to find out the
exact commands for performing various tasks. Many of the manuals have introductory
examples for the reader to work through and these are invaluable for getting acquainted
with the capabilities of the package. There is a comprehensive tutorial for using XPPAUT
on the World Wide Web. The address is:

ftp://mthbard.math.pitt.edu/pub/bardware/xpptut/start.html.
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Time plots

These can be obtained using either DSTOOL or XPPAUT. The user simply chooses
time as the variable to be plotted on the x-axis and one of the state variables for the
y-axis. After entering initial values for the state variables and the time period over which
to simulate the model, the ‘run’ or ‘go’ command can be chosen. The process may be
repeated after changing one or more initial values or parameter values. These steps can
all be done interactively.

Both packages have a number of choices for the numerical algorithm that is used to
calculate solutions. Minimum and maximum or fixed stepsizes can be chosen as well as
error tolerances. In most cases the default choices are quite adequate.

If the mouse is used to choose an initial point, then only the initial time énd the value
of the state variable on the y-axis will be altered automatically. Values for the other state
variables will remain unchanged unless new values are typed in.

When analysing a discrete system using DSTOOL, changing the time increment to
1 in the ‘orbit” window and using the ‘continue’ icon allows the user to determine the
period of a cycle. The amplitude of the cycle can be deduced by looking at the state
variable values in the ‘settings’ Window that correspond to the maximum and minimum

of the cycle.

Phase portraits

These can again be generated using either DSTOOL or XPPAUT. Although three-
dimensional portraits are possible in XPPAUT, I will only discuss two-dimensional por-
traits as I find them much easier to interpret and, hence, find them more useful in most
situations.- (Note that the dimension of the system can be greater than two but the

results are projected into a two-dimensional plane.)
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In order to generate a phase portrait one of the state variables needs to be chosen for
plotting on the x-axis and another for the y-axis. For systems of dimension greater than
two the solution tréjectories will be projected into this plane. Initial values can be typed
in manually or the mouse may be used. Only the values of the state variables shown on
the axes will be altered when using the mouse. The user can again choose between the
various numerical methods for calculating solution trajectories.

In addition to solution trajéctories the positions of equilibrium points can be shown
in phase diagrams. When asked to find equilibrium points (also called fixed points or
singular points) both DSTOOL and XPPAUT automatically calculate the eigenvalues
and hence the stability of these points. XPPAUT tends to locate one singular point at
a time and often the initial point has to be fairly close to the fixed point if the search is
to be successful. DSTOOL uses a Monte Carlo technique to generate a specified number
(the default is 10) starting points and then searches for fixed points beginning at these
starting values. This method is fairly efficient and choosing the ‘find’ option in the ‘fixed
point” window a few times generally locates all the relevant points. If desired, the user
can choose the initial point from which to begin a calculation instead of using the Monte
Carlo technique. For discrete models DSTOOL also finds periodic points.

For continuous systems both packages also calculate one-dimensional stable and un-
stable manifolds associated with saddle points in the plane. These help delimit domains
of attraction. XPPAUT can calculate nullclines (curves showing where each differential
equation is equal to zero) and display these in the phase portrait. Equilibrium points are

located at intersections of nullclines corresponding to different state variables.

One-parameter bifurcation diagrams

For systems of ordinary differential equations one-parameter bifurcation diagrams can be

generated using Interactive AUTO, AUTO094 and XPPAUT. For discrete systems either

R
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of the former two packages can be used. Thé first step is to choose the bifurcation
parameter to be plotted on the x-axis. One of the state variables can be chosen for the
y-axis. This choice must be specified in the dfiving program for Interactive AUTO but
can be done interactively in the other two packages.

In addition to choosing the scales for the axes there are a number of other program
constants which need to be set. These govern, for example: the length and type of
continuation; the output to the screen; the detection of limit points; error tolerances,
steplengths and mesh intervals for the various numerical routines; and a number of other
aspects of the computation. The various possibilities are listed in the AUTO86 manual
[30] as well as in the HELP menu in AUTO094. The example or demonstration programs
also give an idea of appropriate values. In XPPAUT some of these constants have been
preset to simplify the use of AUTO. This is very convenient in most situations but can
be restrictive in others.

In order to begin generating a bifurcation diagram a fixed point (equilibrium point),
corresponding to a particular parameter set, is required. Such a point can be determined
analytically (where possible) or numerically using XPPAUT or DSTOOL. A continuation
can then be started from this point. At transcritical, pitchfork and period-doubling
bifurcations AUT‘O automatically calculates the various intersecting branches. At Hopf
bifurcation points the user must specifically initiate the calculation of periodic orbits
by choosing the relevant restart label. In Interactive AUTO and AUTO94 one of the
program constants also needs to be altered. In order to extend any continuation branch
across a wider range of parameter values, the endpoint of the branch can be chosen as
the restart value.

For discrete systems period-doubling bifurcations are labelled as Hopf bifurcations by
AUTO but the period-2 branches emanating from this bifurcation cannot be calculated

directly. The second iterate of the model must be used for this purpose. Since a (period-1)
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equilibrium point of the original model is also an equilibrium point of the second iterate
of the model, both the period-1 and the period-2 equilibrium point branches will be
traced out using this latter model. However, for higher order period-doublings higher
order iterates of the model are required and the process is more tedious.

In such cases as well as for complicated discrete models whose second iterate is difficult
to calculate, DSTOOL can be used to generate an approximate bifurcation diagram.
Equilibrium points can be calculated at regular intervals across a range of parameter
values and their coordinates recorded. These points can then be plotted using some
other graphics package, such aé GNUPLOT [125], to obtain an approximate bifurcation

diagram. This approach is used in chapter 7.

Two-parameter bifurcation diagrams

Once a limit point or Hopf bifurcation point has been detected in a one-parameter con-
tinuation, it can be continued in a second parameter. This is done by choosing the
appropriate restart value corresponding to the bifurcation point, a second parameter for
the y-axis, and either altering the relevant program constant in Interactive AUTO and
AUTO94 or choosing the two-parameter option in XPPAUT.

| Limit cycles of fixed period can also be continued in two parameters. This is useful
for approximating homoclinic or heteroclinic bifurcation curves since homoclinic and
heteroclinic orbits have infinite period. Designating a USZR function to locate an orbit
of high period, say period=100 or 1000, when constructing a one-paramefer bifurcation

diagram allows a two-parameter continuation of this orbit to be done?

. The resulting
two-parameter curve gives the required approximation to the curve of homoclinic or

heteroclinic bifurcation points. This technique is used in section 2.4. When continuing

2A point satisfying the USZR function will be given a label which can be used as a restart value for
the two-parameter continuation.
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these curves in two parameters, detection of limit points should be turned off as it
may lead to spurious bifurcation points. This is done automatically in XPPAUT. Any
bifurcation points should also be checked against the numerical output to see whether

an eigenvalue or Floquet multiplier has, in fact, changed sign.

B.5 Pointers and warnings

As with all computer packages, the ones that I have discussed do not work exactly as one
might wish in a given situation. Each model is'unique and requires a slightly different
approach whereas a computer package is built for more general use. In this section I list
some problems and suggestions arising from my experiences with the packages. Many
of these will only make sense once the examples in the main chapters of the thesis have
been studied, but I have included them here so that most of the computer technicalities

are confined to one place for ease of reference.

e When calculating fixed points using DSTOOL, the package sometimes hangs and
will not respond to input. I have not been able to locate the cause of this but
quitting DSTOOL and restarting the package, although frustrating, does solve the

problem.

e When starting a fixed point continuation in AUTO, the error tolerances cannot
be set lower than the accuracy of the state variables that have been given as the
starting point. If the starting points are only known to low accuracy, then a short
continuation can be done on low accuracy (high error tolerance). The continuation
can then be restarted at higher accuracy using the values calculated by AUTO.
(Accuracy is increased by decreasing dsmaz, the maximum step length, decreasing

the error tolerances, or increasing ntst, the number of discretisation points.)
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e AUTO will generate bifurcation diagrams faster if the accuracy is lower. In many
cases the results are still sufficiently accurate, however some bifurcation points may
need to be checked with greater accuracy calculatioﬁs. It is a good idea to check
the eigenvalues and Floquet multipliers in the numerical output files created by
AUTO to see whether a bifurcation point has been correctly labelled. Also, if
there is a sudden jump in a continuation, or a curve becomes very jagged, then the

continuation should be repeated using greater accuracy.

e The choice of step size depends on the extent of the parameter range over which
changes in behaviour occur. In most cases ds = 0.02 and dsmaz = 0.05 are good
choices. However, I used ds = 0.0001 and dsmaz between 0.001 and 0.01 for
the population genetics models as the bifurcations take place within fairly small
parameter ranges. Scaling the equations and parameters (as is done in chapters 3

and 4) circumvents this problem.

¢ Bifurcation diagrams can become very complicated even when studying simple
models. However, not all continuation branches are always of interest. For example,
some may correspond to negative or zero values of the state variables. Also, when
studying a particular aspect of a model, some branches may be superfluous. It is
important to look at the numerical output which is printed to the screen during a
continuation so that one can keep track of which branches are relevant and which

are not.

e It is a good idea to generate a number of starting points at a variety of parameter
values to ensure that a complete bifurcation diagram is obtained and that isolated

branches have not been overlooked. DSTOOL is convenient for this purpose.
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e Results can often be checked using more than one package. For example, a bi-
furcation diagram generated by AUTO can be checked by choosing a number of
parameter combinations corresponding to different qualitative regions and generat-
ing phase portraits for these combinations (using XPPAUT or DSTOOL) to check
the dynamics. This is most éonvenient in XPPAUT where the bifurcation dia-
grams and phase portraité can be generated within the same package. Time plots
and phase portraits can be checked by choosing different numerical methods to
calculate solutions. Both DSTOQOL and XPPAUT offer a variety of methods. By
looking at the eigenvalues corresponding to an equilibrium point one can check that

the stability of the point has been correctly labelled.

e It is easy to get side-tracked into studying the bifurcation structure of a model
and into studying complicated behavioural changes instead of concentrating on
phenomena which are of biological interest. In general, sharp boundaries and the
exact values at which bifurcations occur are not important as biological parameters
are hardly ever known with certainty. The general behaviour and the types of
changes that can occur are of greater practical interest. For example, limit cycles
of small amplitude will be indistinguishable from equilibrium points due to the
natural variation of field data. Also, a system will easily be perturbed from a
stable node with a small domain of attraction and, hence, such a phenomenon may
be of minor interest. It is also important to look at time plots corresponding to
fixed parameter combinations to see how quickly a system approaches the limiting
behaviour indicated in a bifurcation diagram. If a system takes a long time to attain
its equilibrium configuration then the transient dynamics may be more important

than the final equilibrium values.
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1 o [t is sometimes enlightening to generate bifurcation diagrams for a larger range of
' parameter values than is of direct interest as there may be hysteresis phenomena
or bifurcation points outside the range of interest which affect the behaviour inside

this range.

Other suggestions which are best described with reference to a particular model are
included in the relevant chapters. Clearly, the more one utilises the techniques and
packages that have been introduced, the more familiar one becomes with them, and the
more creative one can be in their use. The above comments will be most useful to those

researchers actively involved in analysing their own models.
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Mathematical details for the sheep-hyrax-lynx model

C.1 Modelling delays in system dynamics models

A system does not always respond immediately to a change in one of its components.
Often there is a time lag between the initial change and the response of the system.
For example, a change in hyrax population density will only affect the size of the hyrax
population the following season. It takes time for an increase in population density to
affect the reproductive success of the hyrax and thé survival of their offspring.

In order to represent this in the model, averaged or smoothed versions of certain
quantities are used in calculating growth rates. Three quantities are averaged in this
model—hyrax density (Hp), prey abundance (Ap), and the grazing multiplier (Gps). For
example, when sheep have been grazing more than their usual amount their condition is
expected to improve resulting in a decline in juvenile mortality and a rise in fecundify
(Swart and Hearne [116]). However, this will only occur after a prolonged increase in the
average amount of pasture consumed. Hence, sheep fecundity and juvenile mortality are

functions of the grazing multiplier average, Gz, instead of Gps. A first order distributed

delay (see MacDonald [77] or May [81]) is used to calculate Gas. That is,

dGM N GM - C_;M
dt g

where t4; is the average delay time. Examples of this type of delay equation can be found
in Forrester [39] and a detailed explanation of the mathematics underlying the above

differential equation can be found in MacDonald [77]. The above ordinary differential
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equation is added to the original system of model equations thus increasing the dimension
of the system to be solved. Fortunately this increase in dimension does not pose a problem
when solving the s_ystem numerically.

Further discussions on delays in biological systems and their effects on system be-
haviour can‘be found in [78, 81]. For the sheep-hyrax-lynx model the delays were not

found to affect stability even for large average delay times.

C.2 Rescaling model equations

Suppose the differential equation for the state variable v; is given by

d’l)i
dt = fi(vl,...,vi,...,vm).
Let v; = s;v;, then
_ v;
vV, = —
54
and
dv; _ 1 dv;
dt N S; dt
1 _ _ _
= ;fi(slvl, ey 800y ey SmUnm).

1

Dropping the bars for convenience we get

d’U,‘ 1

dt - E;fi(slvl,---asivi""’smvm)

as required. The state variables have been replaced by s;v; and the differential equation

for v; 1s divided through by s; as stated in section 3.4.
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Mathematical details for the budworm-forest model

D.1 Derivation of new foliage equation in spruce budworm model

We expect the amount of new foliage consumed by an individual larva to depend on the

availability of new foliage per larva, that is, to depend on

Fy/Kp
b

+—F (Fy/Kp represents the

amount of foliage that is new foliage). The larvae prefer new foliage to old and thus, in
most circumstances, will eat all the new foliage before moving on to old foliage. Assuming
that larval densities do not get so low that there is an overabundance of new foliage, we

have
F,/Kp
Ly,

new foliage consumption/larva =

However, when larval densities are high, competition among budworm for new foliage
becomes significant and larvae eat old foliage more readily than before. We can model

this competition (see Starfield and Bleloch [113]) by ihcluding the factor

] doLy
e

where dy is the maximum foliage consumption rate per larva. This factor is close to 1

when there is abundant new foliage per larva (that is, when ﬂﬁ:—p is large) and close to
0 when there is an overabundance of larvae resulting in intraspecific competition. The

new equation is

Fy 1 — doKrLy
Krly Fy ’

new foliage consumption/larva =
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This factor is rather severe and could lead to negative values for very large larval
densities. Instead we can use a negative exponential function [113] which approaches

zero when there is very little new foliage available per larva. This gives

) _ . Fy _%Fply
new foliage consumption/larva = (1 —e B ) .
KrLy

The total amount of new foliage consumed is then

f 1 t [ Fb <1 _doKplLy FLb)] L
— 129
new Ioliage consump mon = K \ [ b

and this gives

F F
remaining new foliage = —K—b - Eb—(l — ™)
F F
Y
B Kr
where
doKrLy
A= ———.
Iy

D.2 Summary of model equations

The subscript b denotes the initial or base value for the state variable and subscript e

denotes the new value after one year.
Foliage (F')

_ rrFy
1+ %Qﬂ,

where

B = e+ (Kr—-1e PR,
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Kp
F’
B = Cl(A—1+6—A),

== doLb

Branch surface area (5)

| where

Budworm (L)

where

ca = 0.357.
S _ T‘sSl
T4l
F,
S1=[1-ds(l ——=)]S
1= [1 —ds( Fb)] b
- Sh 2
L.= dSLKsG Lg
H(Z_H)7
il
Kp'
AdispEm
(1-7 +Em) >
AsrL4
E=—,
Athr

(El W1/3 - E?)ASTL-‘%’

Fy = 165.64 and E, = 328.52,
(1—e4) (1 —eB)
A

AF1 = 341, AF2 = 24.9 and BF = —34,

W =Ap + Ap(Kp — 1) + Br,

288




Appendix D. Mathematical details for the budworm-forest model

Ls

L,

L
(Ap + B,,L—B)L3,
b
A, = 0.473 and B, = 0.828,
G_DLQ,
D= pmaxLo
Se(psat £y + L3)’
F, - F
(555
L doLs 1
kr, = 0.425,

(1- Qmaxe_C)Lb>

C = 0.003Ls.

Reference values for the parameters are given in table 7.1.
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Listings

Examples of the calling programs for the various models are listed here.
The entire calling program does not need to be rewritten each time. Once
one file has been created, only those lines which define the model equations
and set the parameter values and program constants need to be altered.

Bazykin model with prey competition—XPPAUT

# Model equations.
dx/dt=a*x-b*x*y/(1+alp*x)-eps*x*x
dy/dt=-c*y+d*x*y/(1+alp*x)

# Initial values.

x(0)=0.2

y(0)=0.2

# Parameters and nominal values.

param a=0.6,b=0.3,c=0.4,d=0.2,alp=0.3,eps=0.001
done
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System dynamics model —XPPAUT

# Sheep, hyrax, lynx and pasture model with pasture limiting function.
#
# Differential equations for the state variables.
dpas/dt=(temp*ppn*area*plm(pai)-tssu*gn*gm(pai))/pmax
dhj/dt=(hfmax*hf*hfn*hdfm(hda)-hjmax*hj*hjdn*hjdm(hda)-ahjdm(pai)
-hjmax*hj*hjmn-hp*hjmax*hj/(hjmax*hj+hfmax*hf+hmmax*hm))/hjmax
dhf/dt=(0.5*hjmax*hj*hjmn-hfmax*hf*hfdn-hfdm(pai)-hfmax*hf*hcn
-hp*hfmax*hf/(hjmax*hj+hfmax*hf+hmmax*hm))/hfmax
dhm/dt=(0.5*hjmax*hj*hjmn-hmmax*hm*hmdn-hmdm(pai)-hmmax*hm*hcn
-hp*hmmax*hm/(hjmax*hj+hfmax*hf+hmmax*hm))/hmmax
dlj/dt=fmax*1f*Ifn*Ifm(paa)-ljmax*1j*]jdn*ljdm(paa)-ljmax*]j*|jmn) /ljmax
dif/dt=(0.5*]j*]jmax*]jmn-lfmax*1f*lfdn-lfmax*1f*lcn) /Ifmax
dlm/dt=(0.5*]jmax*]j*]jmn-Immax*Im*lmdn-lmmax*Im*lcn) /lmmax
dsj/dt=(sfmax*sf*sfn*sdfm(gma)-sjmax*sj*sjdn*sjdm(gma)-sjmax*sj*sjmn-
max(0,1-lpm(pa))*lut*sjpn-sjmax*sj*sjcn*sjcm) /sjmax
dsf/dt=(0.5*sjmax*sj*sjmn-sfmax*sf*sfdn-sfmax*sf*sfcn) /sfmax
dsm/dt=(0.5*sjmax*sj*sjmn-smmax*sm*smdn-smmax*sm*smcn*smcm) /smmax
dhda/dt=(hd-hda)/dell
dpaa/dt=(pa-paa)/del2
dgma/dt=(gm(pai)-gma)/del3
dtr/dt=(-tr+(mutwool-culling-cssu*ssu+ssu*ssuval) /trmax)/tau

#

# State variables and initial values.
pas(0)=0.66,hj(0)=0.7,hf(0)=0.525,hm(0)=0.525
1j(0)=0.4,1f(0)=0.6,lm(0)=0.6,sj(0)=0.80670,sf(0)=0.75567,sm(0)=0.50379
hda(0)=1.0,paa(0)=1.0,gma(0)=1.0,tr(0)=3.9069

#

# Fixed variables—these are quantities which are used repeatedly
# in the model equations. Making them fixed variables simplifies
# the appearance of the calculations considerably.
hut=hjmax*hjr*hj+hfmax*hf+hmmax*hm
lut=1jr*ljmax*]j+Immax*Im+Iifmax*1f
ssu=sjr¥sjmax*sj+sfmax*sf4+smmax*sm

hd=hut/hun

pa=(hut/lut)/(hun/lun)
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pai=pmax*pas/pav
tssu=ssu+max(0,(hut-hun)/hs)
hp=lut*lpn*lpm(pa)
sjcm=(2.01-argf(1.01,0.01,1.2,gma))/2
smcm=2.01-argf(1.01,0.01,1.2,gma)

#

# Fixed variables needed to define revenue (mutton and wool sales and cost

# of culling).

mutwool=sjmv*sjmax*sj*sjcn*sjcm+sfmv*sfmax*sf*sfcn+smmv*smmax
*sm*smen*smem+sjwv*sjmax*sj+sfwv*sfmax*sf+smwv*smmax*sm

culling=ccl*(fmax*1f*lcn+lmmax*lm*lcn)+cch*(hfmax*hf*hcn+hmmax*hm*hen)

#

# Auxiliary variables—these are quantities other than the state

# variables whose values we would like to appear in XPPAUT’s

# data window. Here we have revenue and total revenue.

# Total revenue is the quantity referred to in the analysis as revenue.

aux rev=mutwool-culling-cssu*ssu

aux totrev=mutwool-culling-cssu*ssu+ssu*ssuval

# |

# In order to view the values of the fixed variables in the data window

# we need to have the following statements:

fhut=hut

flut=lut

fssu=ssu

thd=hd

fpa=pa

fpai=pai

ftssu=tssu

fthp=hp

fsjem=sjcm

fsmem=smcm

#

# Parameters and nominal values.

param hjr=0.5,1jr=0.5,sjr=0.67 hun= 700000 Jun=700,pav=6.6e7

param hs=18,ppn=332,area=200000,gn=365,sub=0.000005,temp=1.0

param hfn=1.5,hjdn:O'.5,hfdn=0.1,hmdn=0.1,hjmnzl.(),lpn=84.11,hcn=0.0

param Ifn=0.7,]jdn=0.5,1fdn=0.13,lmdn=0.13,jmn=1.0,lcn=0.0
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param sfn=0.75,sjdn=0.1,sfdn=0.02,smdn=0.02,sjmn=0.5

param sjpn=90.0,sjcn=0.09,sfcn=0.28,smcn=0.28

param sjmv=55.0,sfmv="79.0,smmv=75.0,sjwv=>5.0,sfwv=7.0,smwv=9.0
param ccl=30.0,cch=1.0,cssu=2.0,ssuval=200.0,pmax=1.0e8

param hjmax=>500000,hfmax=500000,hmmax=500000,jmax=500,lfmax=500
param Immax=>500,sjmax=100000,sfmax=100000,smmax=100000

param del1=0.9,del2=0.6,del3=0.9,tau=0.05,trmax=1.0e7

#

# User functions—these are the multiplier functions.

argE(A,B)=(A/B)-1

argC(A,B)=In(argE(A,B)/(A-1))

argr(A,B,slope)=slope*A /((A-1)*argC(A,B))

argf(A,B,slope,x)=A/(14argE(A,B)*exp(-argC(A,B)
*exp(argr(A,B,slope)*In(max(x,sub)))))

plm(x)=3.25*%(x+0.001)*exp(-1.2*(x+0.001))

gm(x)=argf(1.5,0.1,0.8,x)

hdfm(x)=2.5-argf(2.4,0.1,1.3,x+0.4)

hjdm(x)=argf(1.8,0.1,1.0,x)

lpm(x)=argf(1.6,0.8,0.5,x)

Ifm(x)=argf(1.5,0.01,0.7,x)

ljdm(x)=2.0-argf(1.9,0.05,1.1,x+0.2)

sdfm(x)=argf(2.8,0.4,1.3,x)

sjdm(x)=12.0-argf(11.5,0.1,2.7,x+1.6)

ahjdm(x)=max(0,exp(-3*x)*(hut-hun)*hj*hjmax/(hjmax*hj+hfmax*hf+hmmax*hm))

hfdm(x)=max(0,exp(-3*x)*(hut-hun)*hfmax*hf/(hjmax*hj+hfmax*hf+hmmax*hm))

hmdm(x)=max(0,exp(-3*x)*(hut-hun)*hmmax*hm/(hjmax*hj+hfmax*hf+hmmax*hm))

#

done
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Ratio-dependent model—XPPAUT

# Model equations.

dM1/dt=gam1*(1-exp(-omegal /M1)-M1Ab1)*M1-
(1-exp(-omega2*M1/M2))*phi2*M2/omega2

dM2/dt=gam?2*(1-exp(-omega2*M1/M2)-M2Ab2)*M2-
(1-exp(-omega3*M2/M3))*phi3*M3/omega3

dM3/dt=gam3*(1-exp(-omega3*M2/M3)-M3Ab3)*M3

# Initial values.

M1(0)=0.8

M2(0)=0.2

M3(0)=0.2

# Nondimensionalised parameters and values.

param omegal=14.0,omega2=20.0,omegad=16.67

param gaml=0.65,gam2=0.4,gam3=0.4

param phi2=0.07,phi3=0.06

param b1=0.02,b2=0.02,b3=0.0

done
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~ Population genetics model I—Interactive AUTO.

¢ Note: lines beginning with ¢ are comments.

c

¢ Population genetics model with exponential fitness functions.
c

PROGRAM AUTO

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
c
¢ NOTE: parameters liw and lw are VERY IMPORTANT. They set aside
c space for AUTO in the work arrays IW and W. In Interactive AUTO
c they must be "hardwired” into the code. If you begin to have problems
c with large continuations (e.g. periodic solutions using a big NTST), try
c setting liw and lw larger and recompiling the executable. ¢

PARAMETER(liw = 10000)

PARAMETER(lw = 250000)

dimension IW(liw),W(lw) .

dimension ipar(50),rpar(50),icp(20)

character*10 params(20)

character*50 name

call dfinit
c
¢ NDIM (number of state variables)
ipar( 1)=2
¢ IPS (41 for ode’s, -1 for maps)
ipar( 2)=-1
c IRS
ipar( 3)=0
c ILP
ipar( 4)=0
¢ NTST
ipar( 5)=15
¢ NCOL
ipar( 6)=4
c IAD
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ipar( 7)=3
c ISP

ipar( 8)=1
c ISW

ipar( 9)=1
c IPLT

ipar(10)=0
¢ NBC

ipar(11)=0
¢ NINT

ipar(12)=0
c IADS

ipar(13)=1
c NMX

ipar(14)=100

¢ NUZR
ipar(15)=0
c NPR
ipar(16)=>50
¢ MXBF
ipar(17)=>5
c IID
ipar(18)=2
c ITMX
ipar(19)=8
c ITNW
ipar(20)=>5
¢ NWTN
ipar(21)=3
c JAC
ipar(22)=0
c
¢ ICP(i)
icp(1) =1
icp(2) = 2
DO 1 1=1.2

ipar(30+i)=icp(i)
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1 CONTINUE
v
c DS
rpar(1)=0.0001d0
¢ DSMIN
rpar(2)=0.000002d0
c DSMAX
rpar(3)=0.01d0
¢ RLO
rpar(4)=0.0
c RL1
rpar(5)=4.0
c A0
rpar(6)=-10.0
c Al
rpar(7)= 250.0
c EPSS
rpar(8) = 1.d-6
¢ EPSL(i), i=1,20
rpar(9) = 1.d-6
c EPSU '
rpar(10) = 1.d-6
c nparams=number of parameters that you want to vary
nparams = 6 :
c declaration of parameter names

params(1) = ’all’
params(2) = ’al2’
params(3) = ’a22’
params(4) = ’b11’
params(5) = ’b12’
params(6) = "b22’
c
name = ’ Genetics model ’
C
call autool(ipar,rpar,iw,liw,w,lw,params,nparams,name)
stop
end
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SUBROUTINE VECFLD(ndim,u,icp,par,ijac,f,t)
c
¢ This subroutine evaluates the right hand side of the first order system
c
c input parameters :
¢ ndim - dimension of u and f.
u - vector containing u.
par - array of parameters in the differential equations.
icp - par(icp(1)) is the initial ’free’ parameter.
par(icp(2)) is a secondary ’free’ parameter,
for subsequent 2-parameter continuations.
ijac - =1 if the jacobians dfdu and dfdp are to be returned,
=0 if only f(u,par) is to be returned in this call.
t - current time.

value to be returned :

f - f(u,par) the right hand side of the ode.

o O 0 0 060 0 00 00 00

implicit double precision (a-h,o-z)

dimension u(ndim),par(30)
dimension f(ndim)
¢ Parameters

all = par(1l)
al2 = par(2)
a22 = par(3)
bll = par(4)
b12 = par(5)
b22 = par(6)
c State variables
P = u(1)
eN = u(2)

c Fitness functions
wll = exp(all-bl1*eN)
wl2 = exp(al2-b12*eN)
w22 = exp(a22-b22*eN)
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¢ Mean fitnesses
wlmarg = P*wll+4(1-P)*w12
w2marg = P*wl12+4(1-P)*w22
fitmean = P*wlmarg+(1-P)*w2marg

C
¢ DIFFERENCE EQUATIONS
c
f(1)= P*wlmarg/fitmean
f(2)= fitmean*eN
c
return
end
c
SUBROUTINE PARDER(ndim,u,icp,par,ijac,dfdu,t)
c

c this subroutine evaluates the derivatives

c of the first order system and with respect to (u(1),u(2)).

c Not included for this model hence ijac=0 in the first subroutine.
c

return

end
C

SUBROUTINE DFDPAR(ndim,u,icp,par,ijac,dfdp,t)
C

c this subroutine evaluates the derivatives
c of the first order system and with respect to free parameters.
¢ Not included for this model.

c

return

end
c

SUBROUTINE STPNT(ndim,u,par)
C

c in this subroutine the steady state starting point must be defined.
¢ (used when not restarting from a previously computed solution).

c the problem parameters (par) may be initialized here or else in init.
c
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ndim - dimension of the system of equations.

u - vector of dimension ndim.

upon return u should contain a steady state solution
corresponding to the values assigned to par.

par - array of parameters in the differential equations.

S 0O 0 o6 00

implicit double precision (a-h,o-z)
C .
dimension u(ndim),par(30)

initialize the problem parameters.
par(1)=2.1d0
par(2)=1.9d0
par(3)=1.1d0
par(4)=1.0d0
(
(

[« INg]

par(5)=0.904d0

par(6)=0.524d0

par(14) = DBLE( 1)
initialize the steady state.

u(1)=0.5d0

u(2)=2.1008d0

)
3)
4)
5)
6)

O

c
return
end
c
- SUBROUTINE SPROJ (ndim, u, isw, icp, par, vaxis, pt)
c

c this subroutine can be used to define a special projection

c in the bifurcation window. This subroutine is called

¢ when the ’SP’ is toggled ON (issue the command successively
¢ to turn the toggle from ON to OFF, and vice versa).

c

¢ input values:

¢ ndim - dimension of u.

¢ u - vector containing coordinates of current solution.

¢ isw - the number of parameters being used in the current

¢ continuation.
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¢ icp - par(icp(l)) is the initial ’free’ parameter.
¢ par(icp(2)) is a secondary ’free’ parameter,
¢ for subsequent 2-parameter continuations.
¢ par - array of parameters in the differential equations.
¢ vaxis - controlled by program constant IPLT (see
¢ AUTO86 User Manual). this is the second number
¢ per line written in unit 7 (file fort.7).
c
¢ return values:
¢ pt - array whose 1st, 2nd and 3rd elements are plotted on
¢ the x, y and z axes, respectively.
c
implicit double precision (a-h,0-z)
c
dimension icp(20)
dimension u(ndim), par(30), pt(3)
c
if (isw.eq.1) then
pt(1) = par( 1)
pt(2) = u(2)
pt(3) = vaxis
else if (isw.eq.2) then
pt(1) = par( 1)
pt(2) = par( 2 )
pt(3) = vaxis
endif
c
return
end
c .
SUBROUTINE SPJAXS (ndim, isw, icp, axes )
c

c this subroutine defines the names of the axes used in
¢ the projection defined in the subroutine sproj.

c

c input value:

¢ ndim - dimension of u.
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IABS(isw) - the number of parameters being used in the current
continuation.
icp - par(icp(1)) is the initial free’ parameter.
par(icp(2)) is a secondary 'free’ parameter,
for subsequent 2-parameter continuations.
return value:
axes - character string array with the x, y, and
z axes names, respectively.

o O 0 0 6 06 o o060

integer*4 ndim, isw, icp(20)
character*10 axes(3)

if (isw.eq.1) then
axes(1) = "icp(1)’
axes(2) =N’

- axes(3) ="’

else if (isw.eq.2) then
axes(1) = "icp(1)’
axes(2) = ’icp(2)’
axes(3) ="’

endif

return
end

c*** graphics initializations for interactive AUTO

SUBROUTINE GPHDFT( ldebug, lintog, labtog, 1dsplt,
@ leigen, lfltog, 1savpt,
@ lgraph, lvideo, lsproj, nproj,
@ ndmplt, delay, sclbif, scldis,
@ sclev, filext )

logical 1debug, lintog, labtog, ldsplt, leigen, lfitog
logical lsavpt, lgraph, lvideo, Isproj
integer*4 nproj, ndmplt

real*8 delay
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real*8 sclbif(6), scldis(6), sclev(6)
character*10 filext(2)
c
c*** toggles
c ldebug: T => debugging output
c lintog: T => plotting of lines between points
c labtog: T => plots two-character identifier at bifurcation points
c ldsplt: T => open optional UNIX Graph window
c leigen: T => open eigenvalue plotting window
c Ifitog: T => illuminates points temporarily as they are plotted
c lgraph: T => use graphics (FF => can then run jobs in the background)
c lvideo: T => reposition windows in botton 1/4 of screen for videotaping
c Isproj: T => plot special projection defined in subroutine sproj
c in the bifurcation window
c Isavpt: T => eigenvalues saved in fort.11 (’svaut *’ moves this to m.*)
¢ DO NOT ALTER the following lines.
ldebug = .false. ‘
lintog = .false.
labtog = .true.
ldsplt = .false.
leigen = .true.
1fitog = .false.
lcomfl = .false.
loutfl = false.
lgraph = .true.
lvideo = .false.
Isproj = .false.
lsavpt = .false.
c
c*** default window scales
c ... Bifurcation window scales
c eg. when isw = 1 => default plot axes x,y,z = par(icp(1)), u(1), u(2);
¢ when isw = 2 => default plot axes x,y,z = par(icp(1)), par(icp(2)), u(1)
¢ The following lines can also be changed interactively.
sclbif(1) = 0.5d0
sclbif(2) = 0.56d0
sclbif(3) = 0.0d0
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C*

sclbif(4) = 1.0d0
sclbif(5) = 0.0d0
sclbif(6) = 10.0d0

... Eigenvalue window scales
sclev(l) = -2.0d0
sclev(2) = 2.0d0
sclev(3) = -2.0d0
sclev(4) = 2.0d0

** set files names

comfil = ’input ’
outfil = ’output’

c*** file strings for saving, deleting, etc.

C

C
C*

filext(1) = 'gen ’
filext(2) = 'gen2’

** other stuff

c nproj = number of projections to be plotted (up to nine)
¢ ndmplt = dimension of the bifurcation window plot
¢ delay = factor for duration of flash display

C

nproj = 2
ndmplt = 3
delay = 0.0d00

return
end
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Population genetics model I—DSTOOL.

# include <model headers.h>
/* Note: The symbols /* and */ denote the beginning and end of comments
respectively. */
/*
Required function used to define the vector field or map.
The values of the vector field mapping at point x with parameter
values p are returned in the pre-allocated array f. For vector fields,
the last components of both f and x are time components. All arrays are
indexed starting from 0.

*

/

int genetics_def(f,x,p)
double *f,*x,*p;

{
double all,al2,a22,b11,b12,b22,P,N;

double w1l,w12,w22 margwl,margw2,meanfit;

/* Parameters whose values can be changed interactively. */

all = p[0];
al2 = p[1];
a22 = p[2};
bll = p[3];
b12 = pl4];
b22 = pl5];

STATE VARIABLES

*/

P = x[0]; /* Frequency of allele A1 */
N = x[1]; /* Population density */
/*

FITNESS FUNCTIONS

* /

wll = exp(all-b11*N);

wl2 = exp(al2-b12*N);

w22 = exp(a22-b22*N);

/*
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MARGINAL FITNESS FUNCTIONS
* /

margwl = P*wll4(1-P)*wl2;
margw2 = P*w12+4(1-P)*w22;
meanfit = P*margwl+(1-P)*margw2;
/*

DIFFERENCE EQUATIONS

* /

f[0] = P*margwl/meanfit;

f[1] = meanfit*N;

} /* End of model equations. */

/*
Optional function used to define the Jacobian m at point x with
parameters p. The matrix m is pre-allocated (by the routine dmatrix);
At exit, m[i][j] is to be the partial derivative of the i’th component

of f with respect to the j’th component of x.

/*
int user_jac(m,x,p)
double **m, *x, *p;
{

}

* /
/%
Optional function used to define the inverse or approximate inverse y at
the point x with parameter values p. The array y is pre-allocated.

*/
/*
int user-inv(y,x,p)
double *y,*x,*p;
{
}
* /
/*
Optional function used to define aux functions f of the variables x
and parameters p. The array f is pre-allocated. Time is available as the
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last component of x.

/*
int user_aux_func(f,x,p)
double *f,*x,*p;
{
}
* /
/*
Required procedure to define default data for the dynamical system.
NOTE: You may change the entries for each variable but PLEASE DO
NOT change the list of items. If a variable is unused, NULL or zero the
entry, as appropriate.

*/

*/

int genetics_init()

{ .

/* ————— define the dynamical system in this segment ———— */
int n_varb=2; /* dim of phase space */

static char *variable_names[|={"P”,”N”}; /* list of phase varb names */
static double variables[|={0.,0.}; /* default varb initial values */

static double variable_min[]={0.,0.}; /* default varb min for display */
static double variable_max[]={1.,5.}; /* default varb max for display */

static char *indep_varb_name="time”; /* name of indep variable */
double indep_varb_min=0.; /* default indep varb min for display */
double indep_varb_max=100.; /* default indep varb max for display */

int n_param==6; /* dim of parameter space */

static char parameter_names[] {7all”,”al2”,7a22” "b11”,"b12” ”b22”} /*
list of param names */

static double parameters[|={2.1,1.9,1.1,1.0,0.904,0.56}; /* initial parameter
values */

static double parameter_min[]={0.,0.,0.,0.,0.,0.}; / * default param min for
display */

static double parameter max[|={2.,2.,2.,3.,3.,3.}; /* default param max for
display */
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int n_funct=0; /* number of user-defined functions */

static char *funct_names(|={""}; /* list of funct names; {"”} if none */
static double funct_min[]={0.}; /* default funct min for display */
static double funct_max[}={0.}; /* default funct max for display */

int manifold_type=EUCLIDEAN; /* PERIODIC (a periodic varb) or EU-
CLIDEAN */

static int periodic_varb(|={FALSE, FALSE}; /* if PERIODIC, which varbs
are periodic? */ '

static double period_start[|={0.,0.}; /* if PERIODIC, begin fundamental do-
main */

static double period_end[]={1.,1.}; /* if PERIODIC, end of fundamental do-

main */

int mapping_toggle=TRUE; /* this is a map? TRUE or FALSE */
int inverse_toggle=FALSE; /* if so, is inverse FALSE, APPROX_INV, */
/* or EXPLICIT_INV? FALSE for vec field */

/* In this section, input NULL or the name of the function which contains...
*
/
int (*def_name)()=genetics_def; /* the eqns of motion */
int (*jac_.name)()=NULL; /* the jacobian (deriv w.r.t. space) */
int (*aux_funcname)()=NULL; /* the auxiliary functions */
int (*inv_name)()=NULL; /* the inverse or approx inverse */
int (*dfdt_name)()=NULL; /* the deriv w.r.t time */
int (*dfdparam name)()=NULL; /* the derivs w.r.t. parameters */
/¥ —————— end of dynamical system definition ——— */

# include <ds.define.c>

}
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Spruce budworm model—DSTOOL.

# include <model headers.h>
/* Note: The symbols /* and */ denote the beginning and end of comments
respectively. */
/*
Required function used to define the vector field or map.
The values of the vector field mapping at point x with parameter
values p are returned in the pre-allocated array f. For vector fields,
the last components of both f and x are time components. All arrays are
indexed starting from 0.

*

/

int budworm _def(f,x,p) -

double *f,*x,*p;

{

int npara,nfood,npred,nsurv,nhist,mdisp,ndisp;

double slsurv,sdie,predmax,defsat,dsearch;

double fgrow,fmax,smax,sgrow,predsat,sharp;

double exfrac,exthr,A, B, folnew,folold,foltot,C,S1,BL1;

double BL.2,D,BL3,BL4,BL5,BL6,W E1,H,G,BL7,BL8,FO,S,BL,templ;

/* Parameters whose values can be changed interactively. */
slsurv = p[0]; '
sdie = p[1];

predmax = p[2];

defsat = p[3];

exfrac = p[4];

exthr = p[5];

predsat = p[6];

/*

STATE VARIABLES

*/

FO = x|0]; /* Foliage */

S = x[1]; /* Branch surface area */

BL = x[2]; /* Budworm density */

/%

FLAGS
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o

npara = 1;
nfood = 1;
npred = 1;
nsurv = 1;
nhist = 1;
mdisp = 1;
ndisp = 1;

/* |
CONSTANTS
* /

fgrow = 1.5;
fmax = 3.8;
smax = 2.414;
sgrow = 1.15;
sharp = 4;
dsearch = 1.0;
/*

PRELIMINARY EQUATIONS

Foliage dynamics

* /

A = defsat*BL*fmax/FO;

folnew = exp(-A)*FO/fmax;

B = 0.357*(A-1+exp(-A));

folold = exp(-B)*FO*(fmax-1)/fmax;

foltot = folnew-+folold;

/*

Surface area dynamics

* /

S1 = (1-sdie*(1-foltot/FO)*(1-foltot /FO))*S;
/%

Budworm dynamics

* [

/* The if-then statements in this section are for the switches. */
C = 0.003*BL;

if (npara == 1)

310




BL1 = (1-0.4%exp(-C))*BL;
else
BLI = BL;
if (nfood == 1)
BL2 = (0.425*(FO-foltot)/(defsat*BL))*BL1;
else '
BL2 = 0.425*BL1;
if (npred == 1)
{templ = predsat* FO*FO+BL2*BL2;
D = (predmax*2.3E4)*BL2/(S*templ);

}
else
D =0;
BL3 = exp(-D)*BL2;
if (nsurv == 1)
BL4 = (0.47340.826*BL3/BL)*BL3;
else
BL4 = 0.825*BL3;
if (nhist == 1)

{templ = 24.9*%(fmax-1)*(1-exp(-B))/A;

W = 34.1%(1-exp(-A))/A+templ-3.4;

if (W > 0) '
{BL5 = (166.0*exp((log(W))/3)-329.0)*0.46*BL4;
}

else

BL5 = 96.0*BL4;
}

else
BL5 = 96*BL4;
if (BL5 <= 20.0*BL4)
BL5 = 20.0BL4;
if (mdisp == 1)
{ E1 = 0.46*BL4/exthr;
if (E1 > 0)
{templ = exp(sharp*log(E1));
BL6 = (1-(exfrac*templ)/(1+templ))*BL5;
}
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else
BL6 = BLS5;
}

else

BL6 = BL5;
if (ndisp == 1)

{ H = (foltot/fmax)*dsearch;

G = H*(2-H);

BL7 = slsurv*S*G*G*BL6/smax;

}
else

BL7 = slsurv*BL6;
BL8 = (S1/S)*BLT;
/*
DIFFERENCE EQUATIONS
*

/

f[0]= fgrow*foltot /(14 (fgrow-1)*foltot /fmax);
f[1]= sgrow*S1/(1+4(sgrow-1)*S1/smax);
f[2]= BLT,;
} /* End of model equations. */

/¥
Optional function used to define the Jacobian m at point x with
parameters p. The matrix m is pre-allocated (by the routine dmatrix);
At exit, m[i][j] is to be the partial derivative of the i’th component
of f with respect to the ;’th component of x.
*
/

/*
int user_jac(m,x,p)

double **m, *x, *p;
{

}

* [
/%

Optional function used to define the inverse or approximate inverse y at '
the point x with parameter values p. The array y is pre-allocated.

*/
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/*
int user_inv(y,x,p)
double *y,*x,*p;
{
}
* /
/*
Optional function used to define aux functions f of the variables x
and parameters p. The array f is pre-allocated. Time is available as the -
last component of x.

*/

int budworm_aux(f,x,p)
double *f,*x,*p;

{

if (x[2] > 0)
f[IO] = log(x(2]);
f[0] = 0;

}
/¥
Required procedure to define default data for the dynamical system.
NOTE: You may change the entries for each variable but PLEASE DO
NOT change the list of items. If a variable is unused, NULL or zero the
entry, as appropriate.

*

/

int budworm_init()

{

/* ————— define the dynamical system in this segment ——————— */

int n_varb=3; /* dim of phase space */

static char *variable_names[]={"F",”S” ”B”}; /* list of phase varb names */
static double variables[]={0.,1.68E4,0.}; /* default varb initial values */
static double variable_min[]={0.,0.,0.}; /* default varb min for display */
static double variable_max[]={5.,40000.,350.}; /* default varb max for dis-

play */

static char *indep_varb_name="time”; /* name of indep variable */
double indep_varb_min=0.; /* default indep varb min for display */
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B

double indep_varb_max=1000.; /* default indep varb max for display */

int n_param=7; /* dim of parameter space */

» 77 »»

static char *parameter_names[]={"slsurv”,”sdie”,” predmax”,” defsat”,
"exfrac”,”exthr”,”predsat” }; /* list of param names */

static double parameters[|={0.28,0.75,1.0,0.0074,0.5,5.0,0.085}; /* initial pa-

rameter values */

static double parameter.min[]={0.,0.,0.,0.,0.,0.,0.}; /* default param min for

display */

static double parameter_max[]={1.,1.,3.,1.,1.,20.,1.}; /* default param max

for display */

int nfunct=1; /* number of user-defined functions */

static char *funct_names[|={"1nB”}; /* list of funct names; {””} if none */
static double funct_min[]={-2.0}; /* default funct min for display */

static double funct_max[]={3.0}; /* default funct max for display */

int manifold_type=EUCLIDEAN; /* PERIODIC (a periodic varb) or EU-
CLIDEAN */

static int periodic_varb[|[={FALSE, FALSE, FALSE}; /* if PERIODIC, which
varbs are periodic? */

static double period_start[]={0.,0.,0.}; /* if PERIODIC, begm fundamental
domain */

static double period_end[]={1.,1.,1.}; /* if PERIODIC, end of fundamental

domain */

int mapping_toggle=TRUE; /* this is a map? TRUE or FALSE */
int inverse_toggle=FALSE; /* if so, is inverse FALSE, APPROX_INV, */
/* or EXPLICITINV? FALSE for vec field */

/* In this section, input NULL or the name of the function which contains...
*/
(*def_name)()=budworm_def; /* the eqns of motion */
(*jaccname)()=NULL; /* the jacobian (deriv w.r.t. space) */
int (*aux_func_name)()=budworm_aux; /* the auxiliary functions */
int (*inv_name)()=NULL; /* the inverse or approx inverse */

(

int (*dfdt-name)()=NULL; /* the deriv w.r.t time */
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int (*dfdparam_name)()=NULL; /* the derivs w.r.t. parameters */
/* —————— end of dynamical system definition ——— */
# include <ds_define.c>

}
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