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Abstract 

Ecological models and qualitative analyses of these models can give insight into the most 

important mechanisms at work in an ecological system. However, the mathematics re

quired for a detailed analysis of the behaviour of a model can be formidable. In this 

thesis I demonstrate how various computer packages can aid qualitative analyses by im

plementing techniques from dynamical systems theory. I analyse a number of continuous 

and discrete models to demonstrate the kinds of results and information that can be 

obtained. 

I begin with three fairly simple predator-prey models in order to introduce the termi

nology and techniques and to demonstrate the reliability of the computer software. I then 

look at a more practical system dynamics model of a sheep-pasture-hyrax-lynx system 

and compare the techniques with a traditional sensitivity analysis. A ratio-dependent 

model is the focus of the next chapter. The analysis highlights some of the biological 

implausibilities and mathematical difficulties associated with these models. Two discrete 

population genetics models are considered in the following chapters. The techniques are 

able to deal with the complex nonlinearities and lead to insights into the conditions under 

which stable homomorphisms and polymorphisms occur. The final example is a compli

cated discrete model of the spruce budworm-forest defoliating system. The mechanisms 

responsible for insect outbreaks and the relative effects of dispersal and predation are 

studied. 

In all the cases the techniques lead to a better understanding of the interactions 

between various processes in the system than was possible using traditional techniques. 

In two cases the results suggest improvements in the formulations of the models. The 
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techniques also identify parameters or processes which are crucial for determining model 

behaviour. All these results are obtained fairly easily with the use of the computer 

packages and do not require an extensive mathematical knowledge of dynamical systems 

theory or intensive mathematical manipulations. 

111 



Table of Contents 

Abstract i i 

Table of Contents iv 

List of Tables x 

List of Figures x i 

Acknowledgements xxi 

1 Introduction 1 

1.1 General overview 1 

1.2 Research objectives 1 

1.3 Thesis outline 2 

1.4 Motivation 6 

1.5 The bigger picture 8 

2 Preliminary Example 10 

2.1 Introduction 10 

2.2 Basic model 11 

2.3 Adding intraspecific competition among prey 13 

2.4 Adding intraspecific competition among predators 22 

2.5 Conclusion 27 

iv 



3 Sheep-Hyrax-Lynx Mode l 30 

3.1 Introduction 30 

3.2 Dynamic models and systems analysis:—some background 31 

3.3 Model equations 33 

3.4 Technical details 38 

3.5 Model analysis 39 

3.5.1 Reference parameter values 39 

3.5.2 Understanding model relationships 41 

3.5.3 Adding density-dependence to pasture growth 47 

3.5.4 A summary of the effects of culling both hyrax and lynx 51 

3.5.5 Biological interpretation of results 54 

3.6 Conclusion • • • 57 

4 Ratio-Dependent Mode l 58 

4.1 Introduction 58 

4.2 Background 60 

4.3 Model equations 62 

4.4 Nondimensionalisation 64 

4.5 Model analysis 70 

4.5.1 One-parameter studies 70 

4.5.2 Combining plant and herbivore dynamics 92 

4.5.3 The role played by the isocline configurations 102 

4.6 Conclusion 107 

5 Population Genetics Mode l I 112 

5.1 Introduction 112 

5.2 New terminology 114 

v 



5.3 Background 115 

5.4 Model equations 117 

5.5 Model analysis 118 

5.5.1 Approach 118 

5.5.2 One-parameter bifurcation diagrams 119 

5.5.3 Two-parameter bifurcation diagram 124 

5.5.4 Orbits of period four (and higher) 128 

5.6 Conclusion • 136 

6 Population Genetics Model II 138 

6.1 Introduction 138 

6.2 Background 140 

6.3 Fitness functions 140 

6.4 Model analysis 141 

6.4.1 Approach 141 

6.4.2 (fen,rn)-parameter space 142 

6.4.3 Criteria for polymorphisms 146 

6.4.4 Stable period-2 polymorphisms 152 

7 Spruce Budworm Model 164 

7.1 Introduction 164 

7.2 Background 165 

7.3 Model equations 167 

7.3.1 Foliage 167 

7.3.2 Branch surface area . . 168 

7.3.3 Budworm 169 

7.4 Model analysis 174 

vi 



7.4.1 Preliminaries 174 

7.4.2 The effects of small larval dispersal 177 

7.4.3 The effects of adult dispersal . . . . - 181 

7.4.4 Biological interpretation 186 

7.4.5 What causes outbreak cycles? 189 

7.4.6 The effects of the other processes 194 

7.4.7 The effects of predation 196 

7.5 Conclusion 203 

8 Conclusion 204 

8.1 Main results 204 

8.2 Limitations 205 

8.3 Future possibilities 206 

Bibliography 207 

Appendices 217 

A Dynamical systems theory 217 

A. l Introduction 217 

A.2 Basic concepts 217 

A.2.1 Bifurcation diagram 217 

A.2.2 Bifurcation point 218 

A.2.3 Chaos 219 

A.2.4 Continuation branch 219 

A.2.5 Domain of attraction 219 

A.2.6 Equilibrium point 221 

A.2.7 Hard loss of stability 221 

vii 



A.2.8 Heteroclinic orbit 222 

A.2.9 Homoclinic orbit 223 

A.2.10 Hopf bifurcation 224 

A.2.11 Hysteresis 226 

A.2.12 Limit cycle 227 

A.2.13 Limit point 228 

A.2.14 Local stability 229 

A.2.15 Parameter 229 

A.2.16 Period-doubling bifurcation 230 

A.2.17 Phase portrait 230 

A.2.18 Pitchfork bifurcation 230 

A.2.19 Qualitative behaviour 232 

A.2.20 Saddle point 233 

A.2.21 Sink 234 

A.2.22 Soft loss of stability 234 

A.2.23 Source 235 

A.2.24 State variable 235 

A.2.25 Transcritical bifurcation 236 

A.3 Some mathematical details 237 

A.3.1 Introduction 237 

A.3.2 Equilibrium points and local stability 238 

A.3.3 Global bifurcations 245 

A.3.4 Periodic orbits 248 

A.3.5 Maps (systems of difference equations) 252 

A.3.6 Stability of bifurcations under perturbations 256 

A.3.7 Multiple degeneracy 258 

viii 



A. 4 Conclusion 258 

B Numerical details 259 

B. l Introduction 259 

B.2 Theory : 260 

B.2.1 Continuation methods 260 

B.2.2 Detection of bifurcations 262 

B.2.3 Stability 263 

B.3 Available computer packages 264 

B.3.1 AUT086 265 

B.3.2 Interactive AUTO 269 

B.3.3 XPPAUT 270 

B.3.4 AUT094 . 273 

B.3.5 DSTOOL 274 

B.3.6 Other packages 275 

B.4 Using the packages 276 

B. 5 Pointers and warnings 281 

C Mathematical details for the sheep-hyrax-lynx model 285 

C. l Modelling delays in system dynamics models 285 

C. 2 Rescaling model equations 286 

D Mathematical details for the budworm-forest model 287 

D. l Derivation of new foliage equation in spruce budworm model 287 

D.2 Summary of model equations 288 

Listings 290 

ix 



List of Tables 

3.1 Table showing the processes affecting each state variable and some of the 

abbreviations used in the sheep-hyrax-lynx model equations 37 

4.1 Table showing the reference parameter values for the ratio-dependent model. 71 

7.1 Table of standard parameter values for the budworm-forest model 173 

x 



List of Figures 

2.1 One-parameter bifurcation diagram obtained by varying a in the basic 

system of equations with a = 0.6, b — 0.3, c = 0.4 and d = 0.2 13 

2.2 Phase portraits for the basic model 14 

2.3 Two-parameter bifurcation diagram of (e, a)-parameter space, (b) Phase 

portraits corresponding to regions (i), (ii) and (iii) in part (a) 15 

2.4 One-parameter bifurcation diagram obtained by varying e in Bazykin 's 

prey competit ion model with a — 0.6, b = 0.3, c = 0.4, d = 0.2 and a = 0.3. 17 

2.5 Two-parameter continuation of the Hopf bifurcation shown in the previous 

figure 18 

2.6 Two-parameter bifurcation diagram of (e, a)-parameter space for the prey 

competit ion model with a = 0.6, b = 0.3, c = 0.4 and d = 0.2 19 

2.7 Phase portraits corresponding to the points marked with *'s in the previous 

figure 20 

2.8 T ime plots corresponding to the phase portraits in the previous figure. . 21 

2.9 (a) and (b) Two-parameter bifurcation diagrams of (a, /^-parameter space, 

(c) Phase portraits corresponding to regions (i), (ii), (iii) and (iv) in parts 

(a) and (b) 23 

2.10 One-parameter bifurcation diagram obtained by varying a in the predator 

competit ion model with a = 0.6, b = 0.3, c = 0.4, d = 0.2 and [i — 0.06. . . 24 

2.11 Diagram showing the period of the l imit cycle oscillations in the previous 

figure as a function of a 25 

x i 



2.12 A two-parameter bifurcation diagram of (a, ,u)-space for a = 0.6, b — 0.3, 

c = 0.4 and d = 0.2 25 

2.13 Phase portraits corresponding to the points marked with *'s in the previous 

figure 26 

2.14 Time plots corresponding to the phase portraits in the previous figure. . 27 

2.15 One-parameter bifurcation diagrams for (a) p = 0.1, (b) LI = 0.074 and 

(c) n = 0.02 28 

3.1 The lynx predation multiplier, LPM, as a function of prey abundance, Ap. 36 

3.2 Three one-parameter bifurcation diagrams with revenue plotted as a func

tion of HCN 40 

3.3 One-parameter bifurcation diagram of revenue versus LCN for i/cw=0.35. 41 

3.4 One-parameter bifurcation diagrams obtained from varying SFCN 42 

3.5 One-parameter bifurcation diagrams obtained from varying Lp^ 43 

3.6 The grazing multiplier function (GM) a s a function of pasture availability. 46 

3.7 The pasture multiplier (PM) as a function of pasture availability (PA)- • - 48 

3.8 One-parameter bifurcation diagrams obtained from varying SFCN for the 

new model which includes a pasture limiting multiplier 49 

3.9 One-parameter bifurcation diagrams obtained from varying LFN for the 

new model which includes a pasture limiting multiplier 50 

3.10 Time plots obtained using (a) the original model and (b) the modified 

model with SFCN — 0-5 51 

3.11 One-parameter bifurcation diagram of revenue as a function of LCN for 

the modified model 52 

3.12 Two-parameter continuation of the limit point in the previous figure. . . 53 

xii 



3.13 Two-parameter bifurcation diagram of the HCN and LCN parameter space 

for the modified model. 54 

3.14 (a) Surface plot and (b) contour plot of revenue as a function of the hyrax 

and lynx culling normals 55 

4.1 Isoclines in the M\M2 and M2M3 planes for the original model 68 

4.2 One-parameter bifurcation diagrams obtained by varying 73 in (a) the 

original model (a;=0, i — 1,2,3) and (b) the modified model (at=0.001, 

i = 1,2,3). The state variable Mi is plotted on the y-axes 72 

4.3 One-parameter bifurcation diagrams obtained by varying (f>3 in the original 

model 74 

4.4 One-parameter bifurcation diagrams obtained by varying </>3 in the modi

fied model 75 

4.5 Time plots of (a) Mu (b) M 2 and (c) M3 for <f>3 = 0.16. All the other 

parameter values are as in the reference parameter set 76 

4.6 Isoclines in the M X M 2 plane with 4>3 = 0.06 in (a) and </>3 = 0.05 in (b) 

and (c). 78 

4.7 One-parameter bifurcation diagrams obtained by varying $73 in the original 

model 80 

4.8 One-parameter bifurcation diagrams obtained by varying fi 3 in the modi

fied model 81 

4.9 One-parameter bifurcation diagrams showing the effects of varying cf>2 for 

the original model 83 

4.10 One-parameter bifurcation diagrams showing the effects of varying </>2 for 

the modified model 84 

xiii 



4.11 One-parameter bifurcation diagrams showing the effects of varying 71 for 

(a) the original model and (b) the modified model 85 

4.12 Two-parameter bifurcation diagrams showing the effects of varying both 

71 and fa on the positions of the l imit points and Hopf bifurcations in the 

previous figure 86 

4.13 One-parameter bifurcation diagrams showing the effects of varying 72 for 

(a) the original model and (b) the modified model 87 

4.14 Two-parameter bifurcation diagrams showing the effects of varying both 

72 and </>3 on the positions of the Hopf bifurcations in the previous figure. 88 

4.15 Two-parameter bifurcation diagram of the Hopf bifurcation continuations 

for the modified model with a t=0.002 (i = 1,2, 3) 89 

4.16 T ime plots corresponding to the points that are marked with *'s in the 

two-parameter diagrams for the original model and the modified model 

wi th ai^O.OOl (z = 1, 2,3) and a,=0.002 (i = 1,2,3) 90 

4.17 One-parameter bifurcation diagrams showing the effects of varying O i for 

(a) the original model and (b) the modified model 91 

4.18 One-parameter bifurcation diagrams showing the effects of varying 0 2 for 

(a) the original model and (b) the modified model 92 

4.19 Two-parameter bifurcation diagram obtained using the modified model 

wi th a,-=0.001, (i = 1,2,3) and 7 l = 0.4 94 

4.20 Two-parameter bifurcation diagram obtained using the modified model 

with a t-=0.001, (i = 1,2,3) and 71 = 0.6 95 

4.21 Two-parameter bifurcation diagram obtained using the modified model 

wi th a t-=0.001, (i = 1,2,3) and 7 l = 1.2 96 

4.22 Two-parameter bifurcation diagram obtained using the modified model 

wi th a,-=0.001, {i = 1,2,3) and 71 = 1.8 97 

xiv 



4.23 Two-parameter bifurcation diagram obtained using the modified model 

with a;=0.001, (i = 1,2,3) and 7 l = 2.4 98 

4.24 One-parameter bifurcation diagrams obtained by varying 72 wi th 7 l = 0.4 

and (a) fa = 0.07, (b) fa = 0.17 and (c) fa = 0.25 99 

4.25 One-parameter bifurcation diagram obtained by varying 72 wi th 71 — 1.2 

and fa = 0.2 101 

4.26 Examples of isocline configurations showing different possibilities for the 

position of the tr itrophic equil ibr ium 104 

4.27 Examples of isocline configurations at different points in (71,^2)-space. . 105 

4.28 Isocline configurations with (a) a; = 0, (b) a,- = 0.001 and (c) a2- = 0.005 

(i = 1,2,3) together with the reference parameter set 106 

4.29 One-parameter bifurcation diagrams when a; = 0.005 (i = 1,2,3) 108 

4.30 Plant isoclines for (a) the original and (b) the modified model 109 

5.1 Dynamics in the (p, JV)-plane for a n = 2.1, a i 2 = 1.9, a 2 2 = 1-1, fen = 1.0, 

612 = 0.904 and fe22 = 0.54 119 

5.2 One-parameter bifurcation diagram with an = 2.1, ai2 = 1-9, a 2 2 = 1.1, 

6n = 1.0 and b12 = 0.904 obtained using A U T O 121 

5.3 One-parameter bifurcation diagram with a n = 2.1, a\2 = 1.9, a 2 2 = 1.1, 

611 = 1.0 and b12 = 0.906. Ku = 2.1 and K12 = 2.097 123 

5.4 Diagram of the (p, A r ) -plane for a n = 2.1, a12 = 1.9, a 2 2 = 1.1, bu = 1.0, 

b12 = 0.906 and 622 = 0.52 showing the domains of attraction for the stable 

phenomena 124 

5.5 Two-parameter bifurcation diagram with a n = 2.1, a 1 2 = 1.9, a 2 2 = 1.1 

and fen = 1.0 obtained using A U T O 125 

5.6 Two-parameter bifurcation diagram including additional curves 126 

xv 



5.7 One-parameter bifurcation diagram with an = 2.1, a i 2 = 1-9, a22 = 1-1, 

611 = 1.0 and &i2 = 0.908 obtained using A U T O 127 

5.8 Dynamics in the (p, AQ-plane with an = 2.1, a12 = 1.9, a 2 2 = 1.1, &u = 1.0 

and various combinations of b12 and 6 2 2 which correspond to regions A to 

H in the two-parameter figure 129 

5.9 One-parameter bifurcation diagram with a 1 2 = 1.9, a 2 2 = 1.1, Wi = 1-0, 

612 = 0.905 and fe22 = 0.525 obtained using A U T O 130 

5.10 Dynamics in the (p, 7V)-plane for a 1 2 = 1.9, a 2 2 = 1.1, 6 X 1 = 1.0, &i2 = 0.905, 

6 2 2 = 0.525 and (a) a n = 2.68, (b) an = 2.69 and (c) a n = 2.75. In (a) 

there is a period-8 attractor at p — 1. In (b) this changes to a period-16 

attractor and in (c) we have what appears to be a chaotic attractor. . . . 132 

5.11 One-parameter bifurcation diagram with an = 2.1, a 2 2 = 2.1, bu = 1.0, 

612 = 0.908 and &22 = 0.53 obtained using A U T O 133 

5.12 Dynamics in the (p, AQ-plane for an = 2.1, a i 2 = 3.8, a22 = 2.1, bn = 1.0, 

&i 2 = 0.908 and 622 = 0.53 showing a stable period-4 polymorphism. . . . 133 

5.13 Two-parameter continuation of the period-doubling bifurcation wi th an = 

2.1, a 2 2 = 2.1, bu = 1.0 and b12 = 0.908 134 

5.14 Examples of complex dynamics, (a) A n interior period-8 orbit for an = 2.3, 

a 1 2 = 2.9, a 2 2 = 2.5, fen = 1.0, 612 = 0.908 and 6 2 2 = 0.95. (b) A n interior 

chaotic attractor for an = 2.6, a i 2 = 3.1, a 2 2 = 2.5, &n = 1.0, 612 = 0.908 

and fe22 = 0.95 135 

6.1 t£>22 wi th r22 = 0.8 and AC22 = 0.6 142 

6.2 A one-parameter bifurcation diagram obtained by varying k\\ w i th r n 

fixed at 0.7 ( r 2 2 = 0.8 and k22 = 0.6) 143 

xvi 



6.3 Diagrams of the (p, iV)-plane for a number of different values of ku wi th 

r n fixed at 0.7 144 

6.4 Diagrams of the (rCn, rn ) -parameter space 145 

6.5 Diagrams of the (p, JV)-plane corresponding to the regions A to H in the 

two-parameter diagram 147 

6.6 Diagrams of the (p, AQ-plane corresponding to the regions N to P in the 

two-parameter diagram 148 

6.7 Examples of the fitness functions for parameter values corresponding to 

(a) a stable polymorphism ( rn = 0.7,ku = 2.0, r22 = 0-8,k22 = 0.6) and 

(b) an unstable polymorphism ( r n = 0.4,fen = 2.0, r22 = 0.8,/c2 2 = 0.6). . 149 

6.8 Curves given by w\ = w2 and w — 1 for parameter values corresponding 

to a stable polymorphism ( r n = 0.7, ku = 2.0, r22 = 0.8, k22 = 0.6). . . . 151 

6.9 (a) Fitness functions and (b) (p, iV)-plane for r n = 1.3, ku = 0.5, r22 = 7.5 

and k22 = 4.57 153 

6.10 A part ial one-parameter bifurcation diagram obtained by varying r 2 2 . . . 154 

6.11 Two-parameter continuations of the period-doubling bifurcation HB* in 

the previous figure obtained by varying (a) r n , (b) ku and (c) k22 in 

addit ion to r 2 2 155 

6.12 (a) Fitness functions and (b) (p, AQ-plane for r n = 0.2, ku = 5.0, r 2 2 = 0.3 

and £:22 = 0.4 156 

6.13 One-parameter diagrams obtained by varying ku using (a) the original 

model and (b) the second iterate of the model 157 

6.14 A bifurcation diagram showing the two-parameter continuation of the 

period-doubling at ku = 4.226 and the subsequent period-doubling at 

ku = 5.358 in the previous figure 158 

xv i i 



6.15 An example of an interior chaotic attractor obtained for r n = 0.18, 

hi = 5.0, r 2 2 = 0.3 and k22 = 0.4 159 

6.16 An example of a fitness function configuration where u>n is always superior 

to u>22 160 

6.17 The (kn, r11)-parameter space showing the region of higher order stable 

polymorphic behaviour and the region corresponding to fitness function 

configurations of the type shown in the previous figure 160 

6.18 w22 with r 2 2 = 0.25 and k22 = 2.5 161 

6.19 The new two-parameter space showing the same regions as before 161 

7.1 Graph of G versus H 172 

7.2 One-parameter bifurcation diagram of budworm larval density versus dsL- 177 

7.3 Diagrams of budworm larval density versus foliage for (a) dsL = 0.2, (b) 

dSL = 0.35, (c) dSL = 0.8 and (d) dSL = 0.9 178 

7.4 Time plots of (a) budworm larval density, (b) foliage density and (c) branch 

surface area density versus time for dsL = 0.35 179 

7.5 One-parameter bifurcation diagram of budworm larval density versus A t h r 

for dSL = 0.45 181 

7.6 Two-parameter bifurcation diagram of A t h r versus dsL 182 

7.7 Diagrams of budworm larval density versus foliage for the regions marked 

A-I in the previous figure 184 

7.8 Simplified two-parameter bifurcation diagram of A t h r versus d$L 187 

7.9 Two-parameter bifurcation diagram of A t h r versus dsL for the simplified 

model which only includes dispersal 191 

7.10 Isoclines of recruitment versus budworm density 194 

xvm 



7.11 Two-parameter bifurcation diagram of Athr versus dsL for the predation 

model which includes dispersal as well as predation 196 

7.12 One-parameter bifurcation diagram for pmax with d$L = 0.4 and A t h r — 5. 198 

7.13 Time plots of budworm larval density for (a) pmax = 0.6 x 23 000 and (b) 

Pmax = 3.4 x 23 000 200 

7.14 Two-parameter bifurcation diagram of pmax versus dsL 201 

A. l Time plots and a phase portrait showing the domain of attraction of an 

equilibrium point 219 

A.2 Phase portrait showing the domains of attraction of equilibrium points in 

two dimensions 220 

A.3 Hard loss of stability 221 

A.4 Example of a heteroclinic orbit 222 

A.5 Example of a homoclinic orbit 223 

A.6 A bifurcation diagram of a Hopf bifurcation and phase portraits corre

sponding to different parameter values 224 

A.7 Bifurcation diagram of a Hopf bifurcation where the periodic orbits are 

unstable 225 

A.8 Bifurcation diagram of hysteresis 226 

A.9 (a) Time plot and (b) phase portrait of limit cycle behaviour 227 

A. 10 (a)Bifurcation diagram showing a limit point and (b)a phase portrait cor

responding to p = p,\ 228 

A.11 (a) Period-doubling bifurcations at Ai and A2. (b)Behaviour over time for 

the state variable Xi 230 

A. 12 Derivation of a phase plane showing the time-dependent behaviour of two 

variables, Xi and x2 231 

xix 



A. 13 (a)Bifurcation diagram of a pitchfork bifurcation and phase portraits cor

responding to different parameter values 232 

A. 14 Example of a saddle point 233 

A. 15 Phase portraits and time plots of a stable node and a spiral attractor. . . 234 

A. 16 Phase portraits and time plots of an unstable node and a spiral repeller. 235 

A. 17 (a) A bifurcation diagram of a transcritical bifurcation and phase portraits 

corresponding to different parameter values 236 

A. 18 A summary of the local stability behaviour near an equilibrium point of 

the continuous system when m = 2 240 

A. 19 (a)Two-parameter bifurcation diagram showing a cusp point and the po

sitions of the two limit points associated with the hysteresis as both /J, 

and A are varied, (b)One-parameter bifurcation diagrams corresponding 

to different, fixed values of A in part (a) and with fi as the bifurcation 

parameter 243 

A.20 (a)Phase portrait of a saddle connection or heteroclinic orbit. (b)Phase 

portrait of a saddle loop or homoclinic orbit 244 

A.21 (a)Phase portraits for parameter values near a saddle connection or hete

roclinic orbit. (b)Phase portraits for parameter values near a saddle loop 

or homoclinic orbit 245 

A.22 Phase portraits near a saddle loop or homoclinic orbit showing possible 

behaviour near the second equilibrium point 246 

A.23 Schematic representation of a Poincare section and a limit cycle in three 

dimensions 248 

A.24 Examples of Hopf bifurcations 249 

A.25 State space diagrams of a spiral sink for (a) a continuous model and (b) a 

discrete model 252 

xx 



A.26 (a)One-parameter bifurcation diagram showing period-doubling bifurca

tions at /it = n*i and fx = LI*2 for a discrete system. (b)State space 

diagrams showing the dynamics at LI = fix, LI = \ i 2 and LI = u.3 253 

A.27 Time plot of a period-2 orbit 254 

A.28 (a)State space diagram showing an invariant circle, (b) Time plot of the 

situation in (a) in terms of Xx 255 

A.29 Possible results of perturbing transcritical and pitchfork bifurcations. . . 256 

xxi 



Acknowledgements 

I could not have researched and written this thesis without the help of numerous people. 

Foremost among these I would like to thank my supervisor, Don Ludwig , most sincerely 

for his invaluable suggestions and guidance. I benefited greatly from his experience in 

both mathematical and ecological disciplines. I would also like to thank Gene Namkoong 

for suggesting the population genetics models and for giving me both direction and 

encouragement while I studied them. I am indebted to Bard Ermentrout for writ ing the 

package X P P A U T and making it freely available. His suggestions and interest in the 

project were also greatly appreciated. I am also grateful to Col in Clark, Wayne Nagata, 

Gene Namkoong and James Varah for reading a previous version of the manuscript and 

for their numerous helpful comments and suggestions. 

There are many others who responded to questions and email messages or provided 

general encouragement: Leah Edelstein-Keshet, John Hearne, Johan Swart, and also Pe

ter Abrams, Eugene Allgower, A l a n Berryman, Eusebius Doedel, Lev Ginzburg, John 

Guckenheimer, Andrew Gutierrez, Alexander Kh ibn ik , L i x i n L i u , Jesse Logan, Peter 

Turchin, Graeme Wake and Peter Yodzis. Thank-you for your t ime and your interest. 

Thank-you also to my fellow graduate students in the Mathematics department for em

pathising with me through the frustrations which accompany most graduate studies. 

A very special thank-you to my family and non-mathematics friends for your endless 

encouragement and interest. Your support was a continual source of strength to me. 

Final ly , I would like to acknowledge the E m m a Smith , Oppenheimer and I.W. K i l l a m 

Trusts for their financial support which made my studies at U . B . C . possible. 

xxn 



Chapter 1 

Introduction 

1.1 General overview 

In this thesis I demonstrate how techniques from dynamical systems theory can be applied 

to ecological models in order to study their qualitative behaviour. The techniques allow 

one or two parameters to be varied across ranges of values so that a comprehensive picture 

of their effects on the behaviour of the model can be determined. Since computer software 

is used to take care of the mathematical details, both mathematicians and ecologists can 

make use of these techniques. I hope to reach the latter group i n particular, by showing 

how dynamical systems theory can increase our understanding of the behaviour of a 

model considerably and thus help us formulate more plausible models. B o t h continuous 

and discrete models are considered. 

In the next section I outline my objectives more formally. I then describe how I 

go about fulfilling these aims with specific references to later chapters i n the thesis. 

I conclude this introduction with a discussion of why I chose this topic and its place 

amongst current areas of research. 

1.2 Research objectives 

Ecological models and qualitative analyses of these models can give insight into the 

most important mechanisms at work i n an ecological system. However, the mathematics 

required for a detailed analysis of the behaviour of a model can be formidable. Because 

1 



Chapter 1. Introduction 2 

of the uncertainty associated with parameter values in nature, solving a system of model 

equations for a fixed parameter set is insufficient. A more informative approach is to study 

the behaviour of a model for ranges of parameter values, but this requires complicated 

mathematical techniques. It would be of considerable interest, particularly to ecologists, 

if some of these techniques could be applied without the requirement of further formal 

mathematical training. 

With the above in mind the main aims of my thesis are twofold: 

• to provide examples of the usefulness of dynamical systems theory in analysing the 

behaviour of ecological models—in particular those techniques which describe the 

effects of varying parameters across ranges of values, and 

• to demonstrate how certain computer packages can aid the analysis by taking care 

of the mathematical details. 

In applying these aims I uncovered biological implausibilities in two models and improved 

on previously obtained approximate results in another. The techniques also highlighted 

some limitations of more traditional methods of analysis. 

The computer packages I used are DSTOOL [10], Interactive A U T O [117] and X P 

P A U T [35]. Descriptions of their capabilities, as well as suggestions regarding their use, 

are included in appendix B together with references to a few other packages that are 

available. 

1.3 Thesis out l ine 

My approach to achieve the above aims was to analyse ecological models—both con

tinuous and discrete—to demonstrate the kinds of results and information that can be 

obtained using dynamical systems techniques. 
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I begin in chapter 2 with the analysis of three fairly simple predator-prey models which 

have already been studied by Bazyk in [14]. This chapter is intended as an introduction 

to some of the terminology and techniques of dynamical systems theory as well as to the 

use of the available computer packages. Bazyk in [14] studied the models analytically. 

The computer packages allowed me, a novice, to reproduce and in fact improve upon 

his results. The chapter also illustrates how the computer packages can encourage an 

iterative approach to modell ing which may aid the development of more plausible models. 

Having demonstrated the reliabil ity of some of the computer software in chapter 2, I 

wanted to apply the techniques to a few more recent models from the literature. Since 

a number of theoretical models have been studied using dynamical systems techniques 

(for example, [5, 24, 26, 29, 33, 102]), I wanted to look at a more practical example. In 

chapter 3 a system dynamics model of a sheep-pasture-hyrax-lynx system is analysed. 

The model is a large one consisting of 10 ordinary differential equations and numerous 

parameters. Even the most knowledgeable theoretician would find an analysis of this 

model using pencil and paper a formidable task. The dynamical systems techniques 

prove to be a useful alternative to the sensitivity analyses which are tradit ional ly used 

when studying these models. In particular, an improvement to the formulation of the 

model is suggested as a result of the analysis. 

Chapter 4 returns to a more theoretical model describing a plant, a herbivore and 

a predator. The model is an example from a controversial area of current research 

known as ratio-dependent modell ing. The analysis in this chapter highlights some of the 

biological implausibil it ies and mathematical difficulties associated with ratio-dependent 

models which may be important for guiding future research. A modification to the model 

equations is analysed in conjunction with the original model and reveals that the latter 

is structurally unstable. 

Many systems in nature (for example, insects having nonoverlapping generations) are 
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better represented by discrete models than by continuous ones. However, discrete models 

tend to exhibit more complex behaviour than continuous ones because of the inherent 

t ime delays in the equations [84]. As a result detailed analyses have been restricted mainly 

to one-dimensional examples (see, for example, [82, 83, 84]) although there are some 

two-dimensional examples (see [15, 94]). In chapters 5 and 6 I consider two population 

genetics models which are two-dimensional. Both models have fairly simple mathematical 

formulations involving only two alleles but they are capable of displaying complicated 

dynamics. I focus on the dynamics of the heterozygote. The model in chapter 5 has been 

part ial ly studied using pencil and paper and numerical simulation techniques. However, 

a more detailed analysis was restricted by the need for more complicated methods to take 

care of the complex nonlinearities. The dynamical systems techniques demonstrate the 

theoretical results fairly easily and also show the relative frequency with which different 

types of qualitative behaviour can be expected to occur. The chapter focusses on periodic 

dynamics as this behaviour is the most difficult to study by hand. The model in chapter 6 

is a modif ication of that in chapter 5 but it has not been studied in detail before. This is 

not surprising since it is not even possible to find explicit expressions for the equi l ibr ium 

points. Computers are particularly useful in such situations. For this model it is found 

that there is always the possibility of one of the alleles being excluded and that the threat 

of extinction is high for many parameter sets. Cr i ter ia for determining the existence and 

stabil ity of polymorphic equil ibria are given and periodic dynamics are also studied. 

To round off the thesis I wanted to see how the dynamical systems techniques would 

fare in the context of a more practical , and hence more complicated, discrete model . 

Chapter 7 considers a model of a defoliating insect system, namely the spruce budworm-

forest system. Despite the complexity of the dynamics, useful insights are obtained into 

the mechanisms responsible for insect outbreaks and the relative effects of dispersal and 

predation. Outbreaks are found to occur for a wide range of parameter values and regions 
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of mult ip le stable states are also located. 

Specific conclusions relating to the particular examples are included at the end of 

each chapter. More general conclusions are summarised in chapter 8. Special mention 

should be made of two of the appendices. Appendix A contains a glossary of the basic 

dynamical systems concepts which are used in the main body of the thesis, as well as 

a brief introduction to some of the underlying mathematical theory. Diagrams are used 

wherever possible so as to keep the mathematical details to a m i n i m u m as the appendix is 

intended for those who may have had l i tt le prior exposure to dynamical systems concepts. 

Appendix B describes how computers can be used to implement the dynamical sys

tems techniques. Descriptions of the capabilities and relative advantages and disadvan

tages of the packages that I used, as well as procedures for obtaining t ime plots, phase 

portraits and bifurcation diagrams, are given. Some pointers and warnings regarding 

their use are also included. Examples of computer listings for the various models are 

placed after the appendices. 

I must emphasise that it is not my a im to provide a comprehensive structure whereby 

every detail of a system of equations can be understood. This would be an impossible 

task. Instead I want to develop a procedure which can be applied to a wide variety of 

practical situations. I would like to emphasise the word practical since it is very easy 

for a model analysis to become more of a mathematical exercise than one of biological 

relevance. Detailed mathematical analyses may require more complicated techniques 

than I have used in order to study complex phenomena. Whi le these phenomena may be 

of intellectual interest, they are often of l i tt le practical use. M y viewpoint is summarised 

by the following quote from Adler and Morris [2]: 
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Only by avoiding the unthinking use of famil iar and mathematical ly con

venient models and by having the discipline to ignore interesting but dy

namical ly unimportant interactions, can we ever hope to develop predictive 

ecological theory. 

1.4 Motivation 

Mathemat ica l models have been used to describe ecological systems for many decades. 

However, the interdisciplinary nature of the field has led to some conflict in opinions. 

Many experimental ecologists argue that theoretical models are too simple to adequately 

describe natural systems, but complicated models are often intractable to mathematical 

analysis. According to Holl ing et al. [62] "a simple but well-understood model is the 

best interface between a complex system and a complex range of policies." However, the 

complexity of ecological systems and the perceived added realism of larger, more complex 

models has led many ecologists to favour the latter. 

Because of the inevitable uncertainty associated with the parameter values in an 

ecological model [40, 53, 115, 121], it is not sufficient to merely simulate the model 

equations over t ime and observe the behaviour. A different set of parameter values may 

give rise to very different dynamics. According to Walker et al. [121] many parameters of 

ecological models are really variables. They are chosen to be constants for convenience, 

simplif ication or because information regarding the relevant dynamics is lacking. Hence, 

it is important to know whether altering parameter values wi l l significantly affect the 

predictions of the model. This is not a t r iv ia l task when large numbers of parameters 

are involved. 

As has already been mentioned, we can vary parameters across ranges of values us

ing techniques from dynamical systems theory. In this way we can obtain information 
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regarding the presence and nature of attractors 1 in the system. Whereas transient dy

namics vary with the in i t ia l values of the state variables and the t ime period over which 

solutions are calculated, the techniques in this thesis are concerned with the behaviour 

of the system once the in i t ia l transients have died away. The attractors determine this 

long-term behaviour. M y viewpoint is that these qualitative analyses of ecological models 

are indispensable if we hope to use the models to gain insight into real ecological systems. 

The application of the dynamical systems techniques to a system of nonlinear equa

tions can be a formidable task for a mathematician, let alone a non-mathematician. It 

is also t ime-consuming when a large number of parameters is involved. In such cir

cumstances computer programs can be of great assistance. In fact, Seydel [111] asserts 

that "the extensive application of numerical methods is indispensable for practical b i 

furcation and stabil ity analysis". Although analytical methods can provide remarkable 

results, they have two strong l imitations [111]. F i rst , in many cases numerical methods 

are needed to evaluate analytical expressions anyway. A n d secondly, analytical results 

are generally local and only hold for 'sufficiently smal l ' distances where 'sufficiently smal l ' 

is left unclarified. Fortunately a number of computer packages have become available in 

recent years to aid the analysis. A few of these have already been mentioned. 

It is one matter to do the analysis but we also need to convey the results effectively. 

Edelstein-Keshet [34] comments that pictures derived from qualitative analyses are often 

more informative than mathematical expressions. In this thesis the tradit ional t ime plots 

and phase portraits are used to display results as well as bifurcation diagrams. The latter 

diagrams provide a concise way of summarising the effects of different parameter values 

on the behaviour of the system. 

1 See section A . 2 . 5 for a definit ion of this te rm. 
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1.5 The bigger picture 

Qualitat ive analyses are not new and can be traced back at least to Poincare 2 . In eco

logical circles names such as Lotka and Volterra [73, 120], Rosenzweig and M a c A r t h u r 

[76, 103], Hol l ing [61], May [79, 80, 82, 83] and G i lp in [44], and many others, are well -

known for their qualitative analyses of various models. Most studies have involved 

predator-prey models [14, 44, 79, 80, 98] but other systems have also been analysed 

[50, 70, 74, 83, 95]. However, al l these models are fairly simple theoretical models be

cause of the mathematical difficulties encountered with more complicated models. 

The introduction of various computer packages since the mid-1980's has allowed dy

namical systems techniques to be applied with greater ease as well as to more complicated 

models. However, there are relatively few examples where ecological models have been 

studied using these packages and most of the papers in this category are very technical 

and require considerable mathematical knowledge [5, 26, 29, 33, 48, 86, 87, 102]. Few 

people have heeded the suggestion by Oster and Guckenheimer [97] that less exhaustive 

analyses but of more meaningful models (from a biological viewpoint) would be more 

useful and of greater interest to biologists. 

The papers by Collings [23], Collings and Wol lk ind [24], Collings et al. [25] and 

Wol lk ind et al. [127] study a fairly practical biological control model of mite interactions. 

However the mathematics is st i l l complicated and difficult for the reader wi th l i t t le prior 

exposure to dynamical systems theory. Of particular relevance to this thesis is that 

these papers demonstrate the power of the computer package A U T 0 8 6 [28] and il lustrate 

how conclusions regarding model sensitivity and resilience can be drawn from bifurcation 

diagrams. They also derive meaningful ecological implications from their results. A l l four 

2 A H o p f bi furcat ion (see section A .2 .10 ) , which is an impor tan t concept i n d y n a m i c a l systems theory, 
is also k n o w n as a Po inca re -Andronov-Hopf bifurcat ion and the Po inca re -Bend ixon theorem is funda
menta l to qual i ta t ive analyses. Fur ther details can be found i n A r n o l d [7] and W i g g i n s [124]. 
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papers note that many of their conclusions would not have been obtained without the 

use of AUT086 [28]. In particular, Collings and Wol lk ind [24] obtained three previously 

undiscovered possibilities for qualitative behaviour using a predator-prey model of the 

type studied by Bazyk in [14]. 

In this thesis I hope to take the road less travelled by showing how dynamical systems 

techniques can lead to biologically useful and meaningful results without the requirement 

that the user have an extensive mathematical background in the field. I begin in the 

next chapter with a few models that have already been studied using pencil and paper 

and show what I was able to accomplish with the aid of computer packages. 



Chapter 2 

Preliminary Example 

2.1 Introduction 

This chapter is for readers for whom concepts such as bifurcations and bifurcation d i 

agrams are relatively new as well as for those who are sceptical about the accuracy 

and rel iabil ity of computer packages such as D S T O O L [10], Interactive A U T O [117] and 

X P P A U T [35]. Dynamical systems techniques are applied to three fairly simple predator-

prey models to show how certain parameter values affect the qualitative behaviour of the 

models. B o t h one- and two-parameter bifurcation diagrams are used to summarise the 

results. Behaviour in different regions of these diagrams is explained using phase por

traits. The three models differ from one another by the addition or subtraction of only 

one or two terms. This chapter therefore exemplifies an iterative approach to m o d e l l i n g — 

the relative ease with which qualitative analyses may be done using the abovementioned 

computer packages allows a fairly quick determination of the effects of model alterations. 

This can facil itate the formulation of more plausible models. 

These predator-prey models have already been studied analytically by Bazyk in [14]. 

I have included his results for comparison with those obtained by the computer software. 

The latter are in fact more accurate in certain situations and the results can be obtained 

without a detailed knowledge of the underlying mathematical techniques. 

I begin the chapter with a description of the first model which is a basis for the 

other two. I use X P P A U T to obtain a one-parameter bifurcation diagram and show how 

10 
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this summarises Bazykin's results. The next two sections discuss two modifications to 

the basic model. Many of the phenomena that occur in later chapters of the thesis are 

introduced here. For those who plan to read this chapter, a quick reading of the first 

part of appendix A (namely, section A.2) may prove useful. This section is non-technical 

but introduces al l the basic terminology as well as the conventions I use in the figures. 

2.2 Basic model 

One of the first predator-prey models to be proposed and extensively studied was the 

model developed independently by Lotka and Volterra in the 1920's (see [34] for a de

scription of the model and its analysis). The model equations are 

where x represents prey density and y predator density. A l l the parameters are real 

and positive. The term ax describes the exponential growth of the prey population 

in the absence of predators and — cy describes the exponential decline in the predator 

population in the absence of prey. The terms — bxy and dxy describe the interaction 

between predator and prey. From a biological viewpoint, this linear dependence of the 

rate of predation and predator reproduction on the number of prey is considered to be a 

rather unrealistic approximation [14] . Also, from a mathematical viewpoint, the system 

is structurally unstable since an arbitrari ly small perturbation to the model can change 

its qualitative dynamics. For example, replacing the exponential growth of the prey with 

logistic growth changes the dynamics from (neutral) cycles to a stable equi l ibr ium (see 

A number of modifications to this model have been studied since the 1920's. In par

t icular, Bazykin 's [14] work is well-known among ecologists because of his comprehensive 

x = ax — bxy 

V = ~cy + dxy (2-1) 

[34]). 
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qualitative analyses of the models and his accompanying diagrams, which summarise 

the different possible behavioural regimes. One of Bazykin's modifications to the Lotka-

Volterra equations (2.1) is given by the system 

y = + & (2-2) 

He justified using Michael is -Menten interaction terms by analogy wi th the mechanism 

of enzyme reactions. The denominators of these terms prevent unl imited predation of 

prey and unl imited growth of the predator population with the growth of prey density, 

respectively. The Hol l ing type II functional response term is very similar to these terms 

and is based on biological mechanisms [59, 60]. 

Before we can apply the dynamical systems techniques we need to choose parameter 

values. I chose a = 0.6,6 = 0.3, c = 0.4, d = 0.2 and a = 0.1 but any other reasonable 

values would do. Using X P P A U T ( D S T O O L could also have been used) I found that 

there is only one non-tr iv ial (that is, non-zero) equilibrium point (see section A.2 .6 for 

an explanation of this phenomenon) corresponding to these parameter values and that 

it is unstable (see section A.2.14 for an explanation of this term). Using this equil ib

r ium point as a starting value for A U T O (either Interactive A U T O or X P P A U T can be 

used—see appendix B) I varied a to obtain the one-parameter bifurcation diagram (see 

section A.2.1) shown in figure 2.1. As can be seen from this figure, there are no bifurca

tions (see section A.2.2) and the equil ibr ium point remains unstable as a is varied. But 

the figure does show how the equil ibr ium value of x changes with a. We can also view 

this diagram in terms of y and a using X P P A U T . The diagram is exactly the same as 

figure 2.1 because of the symmetry of the equil ibr ium point with respect to x and y. 

Using D S T O O L or X P P A U T we can generate phase portraits (see section A.2.17) for 

different values of a. These are qualitatively the same as those obtained by Bazyk in [14] 
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Figure 2.1: One-parameter bifurcat ion d iagram obtained by vary ing a i n system (2.2) w i t h 

a = 0.6, b = 0.3, c = 0.4 and d = 0.2. T h e state variable x is p lot ted on the y-axis . 

(see figure 2.2) and verify that figure 2.1 summarises Bazykin's [14] results. The phase 

portraits in figure 2.2 show that x increases indefinitely for al l values of a. This is an 

obvious shortcoming of the model and led Bazyk in to introduce further modifications. 

2.3 A d d i n g intraspecific competition among prey 

To improve the model Bazyk in added a term to the prey equation to take into account 

intraspecific competit ion among prey. Here competit ion refers to a decrease in reproduc

tion or an increase in death rate with an increase in prey density. The assumption that 

competit ion is l inearly dependent on prey density results in the system of equations 

• . bxy 2 X — dX ' -. , £ X 
1+ax 

V = -cy + T^-x- (2-3) 

We can create one- and two-parameter bifurcation diagrams (see section A .2 .1 for a de

scription of these terms) by varying a and e to see what effects these additional terms 

have on the behaviour of the model. I chose the same values for a, 6, c and d as before. 
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x x 

Figure 2.2: Phase por t ra i ts obtained by B a z y k i n for model (2.2). Qua l i t a t i ve ly s imi la r d iagrams can 

be obtained by t ak ing a = 0.6, 6 = 0.3, c = 0.4, d = 0.2 and (a) a = 0.1, (b) a = 0.2, (c) a = 0.3 and 

(d) a = 0.55. 

Bazykin's [14] results for this system are shown in figure 2.3. There are three regions 

in (e, a)-parameter space, each corresponding to a different form of qualitative behaviour. 

The phase portraits indicate the dynamics that occur in these regions. Since there are 

two equilibrium points of interest, A and B, in regions (i) and (ii) and one equilibrium 

point of interest, B, in region (iii)1 we expect a bifurcation to occur as the line with 

negative slope in figure 2.3(a) is crossed from regions (i) and (ii) into region (iii). In 

crossing from region (i) to region (ii) point A changes from stable to unstable and a limit 

cycle (see section A.2.12) is initiated. Thus, we expect a curve of Hopf bifurcations (see 
J T h e or ig in is also an equ i l ib r ium point in both cases but only non t r iv ia l equ i l i b r i um points hav ing 

x > 0 and y > 0, (x, y) ^ (0, 0) are considered in detai l . In region ( i i i ) y < 0 at the e q u i l i b r i u m point A 
and hence this poin t is not of biological interest. 
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Figure 2.3: T h e fol lowing diagrams are adapted from B a z y k i n [14]. (a) Two-parameter bifurcat ion 

d iagram of (e, o)-parameter space, (b) Phase portrai ts corresponding to regions (i) , (ii) and ( i i i ) in part 

(a). 
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section A.2.10) to divide these regions. 

In order to use A U T O to reproduce Bazykin's results we need a starting point which 

must be an equi l ibr ium point. B y choosing values of 0.3 for a and 0.1 for e, we can 

either determine such a point analytically (as Bazyk in did) or we can use D S T O O L or 

X P P A U T to perform the'task numerically. The latter choice involves integrating the 

equations forward in t ime unt i l we are near the equil ibr ium point. Using X P P A U T 

this is done by choosing the menu option I N T E G R A T E followed by G O . Choosing the 

SINGular P O I N T option then finds the equil ibr ium point and indicates whether it is 

stable or unstable. A separate window appears with this information. The state variable 

values at the equi l ibr ium point are then entered as the in i t ia l point in the in i t ia l point 

window. 

Since Bazyk in plotted e on the x-axis in figure 2.3(a) I vary this parameter first. In 

A U T O this is done by choosing e to be the main parameter in the A X E S menu. After 

choosing the R U N - S T E A D Y S T A T E commands, A U T O locates a transcritical bifurcation 

(see section A.2.25) at e = 0.12 (see figure 2.4). I then made the value of DS in the 

N U M E R I C S window negative so that A U T O would decrease e, chose the point labelled 

1 (that is, chose our original starting point) using the G R A B command, and then chose 

R U N again. A U T O finds a Hopf bifurcation at e = 0.045 in this case. B y generating 

periodic orbits ( l imit cycles) from this latter point (choose the Hopf bifurcation point 

using G R A B and then R U N - P E R I O D I C O R B I T ) we can see that there are stable l imi t 

cycles surrounding an unstable equil ibr ium point. Since a is fixed in figure 2.4, this 

one-parameter diagram describes the dynamics along a horizontal line at, say, a = cx\ 

in figure 2.3(a). 

In figure 2.4 I have labelled the continuation branches A and B to indicate which 

equi l ibr ium point corresponds to which branch (see section A.2.4 for a description of a 

continuation branch). Notice that the x-coordinate of A does not vary with e but the 
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x 

0.09 0.15 

Figure 2.4: One-parameter bifurcat ion d iag ram obtained by vary ing e i n system (2.3) w i t h 

a = 0.6,6 = 0.3, c = 0.4, d = 0.2 and a = 0.3. T h e labels A and B m a r k the cont inua t ion branches 

corresponding to the equ i l i b r i um points given i n equations 2.4, H B stands for H o p f b i furcat ion and B P 

for b i furcat ion point ( t ranscri t ical i n this case). Exp lana t ions of the various l ine types can be found 

i n section A . 2 . 1 . In par t icular , the curves of sol id circles mark the m a x i m a and m i n i m a of stable l i m i t 

cycles. 

x-coordinate of B does. We can check this observation with the analytical forms of the 

equilibrium points which are given by 

A , c • da(d — ac) — ec . 
A x = i — > y = Tu—V~ 

d — etc o [d — acy 

B ( x = ±y = 0). (2.4) 

These are obtained by setting the right hand sides in equations (2.3) equal to zero and 

solving for x and y. As expected, e does not appear in the x-coordinate for A but does 

appear in that for B. 

Figure 2.4 summarises the information given by the phase portraits in figure 2.3. For 

0 < e < 0.045 point A is unstable (a source—see section A.2.23) and B is a saddle point 

(see section A.2.20). There is also a stable limit cycle surrounding A. Hence, these values 

of e correspond to region (ii) in figure 2.3. For 0.045 < e < 0.12 A is a stable equilibrium 
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Figure 2.5: Two-parameter cont inuat ion of the H o p f bifurcat ion shown i n figure 2.4. 

point and B is again a saddle point. This configuration corresponds to region (i) in figure 

2.3. For e > 0.12 B is now stable and A is a saddle point, but the numerical output 

f rom A U T O shows that the y-coordinate for A is negative for these values of e. Figure 

2.3(b)(iii) represents the corresponding dynamics for positive x and y. 

We would also like to reproduce Bazykin's two-parameter bifurcation diagram shown 

in figure 2.3(a). A U T O can be used to continue the Hopf bifurcation at e = 0.045 in 

a as well as e (see section B.4 for an explanation of how to generate a two-parameter 

bifurcation diagram). The result is figure 2.5. 

The first observation we can make from this diagram is that the curve of Hopf bifur

cations is very different from Bazykin's straight line in figure 2.3(a). I w i l l return to this 

point shortly. A second observation is that, for the given values of a,b,c and d, a Hopf 

bifurcation (and hence l imit cycle behaviour) is only possible if e < 0.0515 and a < 0 .5 2 , 

2 A U T O slows down considerably as a increases toward 0.5 and e tends to 0 and never ac tua l ly reaches 
this point , a l though the curve does get very close i f A U T O is left to run for a sufficiently long t ime per iod . 
It can be verified ana ly t i ca l ly that the curve does pass through (0,0.5). However, complex behavioura l 
changes occur at this point wh ich is why A U T O has computa t iona l difficulties. 
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Figure 2.6: Two-parameter bifurcat ion d iagram of (e, a)-parameter space for mode l (2.3) w i t h a = 0.6, 

6 = 0 . 3 , c = 0 . 4 and d — 0.2. T h e regions (i) , (ii) and ( i i i ) correspond to those i n figure 2.3. 

which is a fairly small region of parameter space. 

It is not possible to continue a transcritical bifurcation in two parameters using A U T O 

(see page 267 for an explanation). However, if a is fixed at a number of different values 

and one-parameter bifurcation diagrams similar to figure 2.4 are created by varying e in 

each case, then the values corresponding to transcritical bifurcations can be recorded. 

A n approximation to the two-parameter curve can then be drawn through these points. 

Figure 2.6 shows the resulting curve together with the Hopf bifurcation continuation. 

Mode l (2.3) is simple enough for the curves in figure 2.6 to be determined analytically 

although the algebra is rather messy. It can be shown that transcrit ical bifurcations occur 

along the straight line 
e d 

a = + -
a c 

and Hopf bifurcations occur along the curve 

(—ac2)a2 + (acd — ec2)a — edc = 0. 

(I used M A P L E [122] for some of the algebraic manipulations required to obtain these 
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results.) These are exactly the curves shown in figure 2.6 as can be verified by substituting 

points from the curves calculated by AUTO into the above equations. Hence, AUTO's 

results are more accurate than those given by Bazykin in figure 2.3(a) for the Hopf 

bifurcation curve. Bazykin did not have a symbolic package such as MAPLE available 

and made an approximation in calculating this curve. The new regions (i), (ii) and (iii) 

are shown in figure 2.6. I obtained phase portraits corresponding to the points marked 

with *'s using DSTOOL (see figure 2.7). XPPAUT could also have been used. These 

phase portraits are qualitatively the same as Bazykin's diagrams in figure 2.3(b). 

0 6 10 15 20 0 5 10 15 20 
x x 

Figure 2.7: Phase portrai ts corresponding to the points marked w i t h *'s in figure 2.6. 

It is also informative to view the temporal dynamics of a model. Time plots corre

sponding to figure 2.7 for initial values x = 10 and y = 3 are shown in figure 2.8. These 

were also obtained using DSTOOL. Time plots are useful for indicating the speed with 
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which the stable equilibrium or limit cycle is attained and the period of the limit cycle 

if applicable. If a system takes a long time to approach an attractor (see section A.2.14) 

then the transient dynamics may be of greater practical importance than the long-term 

behaviour. 

(a) 10 

x 5 

(c) 10 

x 5 

100 
T i m e 

(b) 10 

x 5 

(d) 10 

x 5 -

100 
T i m e 

100 
T i m e 

200 

Figure 2.8: T i m e plots corresponding to the phase portrai ts in figure 2.7. T h e i n i t i a l poin t x — 10, y = 3 

was used in each case. 

This section has shown how to rederive Bazykin's work [14] on the system of equations 

(2.3) more accurately and without having to understand the complicated mathematical 

techniques involved. In the next section I look at another of Bazykin's models in which it 

is not feasible to do much of the mathematical analysis by hand. Fairly accurate results 

can be obtained using AUTO. 
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2.4 Adding intraspecific competition among predators 

Suppose that instead of having intraspecific competition among prey we have intraspecific 

competition among predators. The new system of equations is then 

x = ax — ^ y 

V = -cy + T^-x-W2. (2.5) 

In this model predator population growth is limited even when there is an excess of prey. 

Bazykin's results for this system are shown in figure 2.9. Again there are two nontrivial 

fixed points, A and C, but in this case both have positive coordinates. Whether we have 

the situation in figure 2.9(a) or (b) depends on the parameter values for a, b, c and al. 

Using numerical experimentation Bazykin postulated that both variations are possible 

[14]. He managed to find an analytical approximation to one of the lines 0J_, 0G_ but 

had not found an approximation to the second at the time of writing his paper. 

Setting a = 0.6,6 = 0.3, c = 0.4 and d = 0.2 as before and choosing p = 0.06 

and a — 0.1, I used DSTOOL to locate equilibrium points and A U T O to generate a 

one-parameter bifurcation diagram by varying a. The result was figure 2.10. In this 

case we have a Hopf bifurcation at a = 0.0977, a limit point (see section A.2.13 for an 

explanation of this bifurcation point) at a = 0.176 and it appears as if the periodic orbit 

collides with the saddle point C suggesting a homoclinic bifurcation (see section A.2.9). 

All three phenomena can be investigated in two parameters using A U T O . The first two 

are straightforward two-parameter continuations. Since a homoclinic bifurcation is not 

actually detected, we need to calculate an approximation to this curve. 

As the periodic orbit in figure 2.10 approaches the saddle point it can be seen from 

AUTO's numerical output that the period of the oscillations increases fairly rapidly. It 

is possible to plot the period as a function of a if X P P A U T is used (see figure 2.11). 
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Figure 2.9: These diagrams are adapted from [14]. (a) and (b) Two-parameter bifurcat ion diagrams 

of (a , /z)-parameter space, (c) Phase portrai ts corresponding to regions (i) , ( i i ) , ( i i i ) and ( iv) in parts 

(a) and (b). 
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0 0.04 0.08 0.12 0.16 0.2 
a 

Figure 2.10: One-parameter bifurcat ion d iag ram obtained by vary ing a i n system (2.5) w i t h 

a = 0.6, 6 = 0.3, c = 0.4, d — 0.2 and fi = 0.06. T h e labels A and C mark the cont inuat ion branches for 

the two non t r i v i a l e q u i l i b r i u m points . H B marks the H o p f bifurcat ion and L P the l i m i t po in t . 

Such a steep increase in period suggests that a homoclinic orbit is being approached as 

these orbits have infinite period. To approximate the curve of homoclinic bifurcations 

we can set a U S Z R function in A U T O to locate an orbit of high period. The required 

approximation is obtained by continuing this orbit of fixed period in /J, as well as a. 

The resulting two-parameter diagram in (a, ^)-space is shown in figure 2.12. (I would 

have l iked to have chosen an orbit of period greater than 30 to approximate the curve 

of homoclinic bifurcations but for this particular model A U T O had difficulty with larger 

periods. However, one-parameter bifurcation diagrams at different fixed values of \i show 

that the curve corresponding to a period of 30 provides a fairly good approximation to 

the required curve.) This figure can be compared with figure 2.9(a). Phase portraits and 

t ime plots corresponding to the points marked with *'s in figure 2.12 are shown in figures 

2.13 and 2.14 respectively. 

These results agree qualitatively with Bazykin's but the approximations to the curves 

OG_ and OJ_ are more accurate. In particular, region (iii) corresponding to stable l imit 
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Figure 2 . 1 2 : Two-parameter bifurcat ion d iagram of (a , p)-space for a = 0.6, 6 = 0.3, c = 0.4 and 

d = 0.2. H B marks the H o p f bifurcat ion cont inuat ion, L P marks the l i m i t poin t cont inuat ion and 

per iod=30 marks the cont inuat ion of the orbit of fixed per iod . 
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(a) (b) 

(c) (d) 

y 5 -

Figure 2.13: Phase portrai ts corresponding to the points marked w i t h *'s in figure 2.12. 

cycle behaviour is very small for these parameter values. As a and p decrease, the curve 

of homoclinic bifurcations approaches the Hopf bifurcation curve and almost coincides 

with it so that for small p and a the region of l imit cycle behaviour is negligible. 

We can investigate figure 2.12 further by generating one-parameter bifurcation dia

grams for different values of p. Setting p = 0.1 gives figure 2.15(a) which corresponds to 

the horizontal dotted line in figure 2.12 at p, — 0.1. As expected from figure 2.12 there is 

no Hopf bifurcation or homoclinic bifurcation in this case. For p = 0.074 we obtain figure 

2.15(b) which corresponds to the horizontal dotted line at p = 0.074. As expected from 

figure 2.12 there are two Hopf bifurcations in this case but no homoclinic bifurcation. 

Setting p = 0.02 results in figure 2.15(c). In this case the curve of periodic orbits is very 

steep, becomes unstable and then A U T O fails to be able to calculate further and signals 
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Figure 2.14: T i m e plots corresponding to the points marked w i t h *'s in figure 2.12. T h e i n i t i a l point 

x = 5, y = 3 was used i n each case. 

non-convergence. This is not unexpected (see the horizontal dotted line in figure 2.12 

at p — 0.02) as the Hopf bifurcation and homoclinic bifurcation curves are very close 

together for this value of p. 

2.5 C o n c l u s i o n 

This chapter describes how qualitative analyses of three predator-prey models may be 

done using various computer software. The numerical results are compared with analyt i 

cal results obtained by Bazykin [14]. For model (2.3) which has intraspecific competit ion 

among prey, the numerical results are more accurate than Bazykin's approximate ana

lyt ic results. This conclusion is possible as I obtained an exact analytical expression for 
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(a) 60 

x 

(b) 60 

(c) 

F i g u r e 2 . 1 5 : One-parameter bifurcat ion diagrams for (a) fi = 0.1, (b) fx = 0.074 and (c) / i = 0.02. 

These correspond to the hor izonta l dot ted lines i n figure 2.12. 
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the two-parameter Hopf bifurcation curve for which the discrepancy in results arises. The 

analysis of model (2.5) results in a numerical approximation to a curve which Bazyk in did 

not describe analytically. The position of this curve results in a very small two-parameter 

region corresponding to l imit cycle behaviour. 

A knowledge of the relevant mathematical techniques, such as centre manifold the

ory and normal form theory (see page 241), is not required to obtain the above results. 

Computer packages such as A U T O take care of the mathematical details. This is espe

cially useful for models which are too difficult to study by hand, such as model (2.5). 

It also allows accurate and fairly quick qualitative analyses of models to be done thus 

faci l i tating an iterative approach to modell ing since modifications of model equations can 

be investigated fairly easily. 

In the next chapter I look at a model which has not been studied before using dy

namical systems techniques. In this case the analysis suggests an improvement in the 

formulation of the model equations. 



Chapter 3 

S h e e p - H y r a x - L y n x M o d e l 

3.1 Int roduct ion 

This chapter investigates a more complicated model having 10 state variables and a 

large number of parameters. Analyt ica l work done by hand and isocline analyses are of 

l i t t le use in such situations. Traditionally computers have been used to obtain numerical 

solutions corresponding to a fixed parameter set and to implement sensitivity analyses 1 . 

I show how dynamical systems techniques can be used to increase our understanding of 

the relationships between different components in the model. In particular, bifurcation 

diagrams give more information than sensitivity analyses. These diagrams also highlight 

an incomplete relationship in the model and lead to an improvement in the formulation 

of the equations. 

The model I have chosen is an example of a system dynamics model and has four 

main components—sheep, hyrax, lynx and pasture. I begin in section 3.2 with some 

background to the systems modell ing approach for those who may be unfamil iar with 

it . I also discuss the tradit ional methods that have been used to solve and analyse such 

models. In section 3.3 I describe the formulation of the model followed by a few technical 

details which are required in order to use X P P A U T to analyse the dynamics. Section 

3.5 contains the model analysis. I begin by studying the effects of various parameters 

and density-dependent functions on the behaviour of the model . This analysis shows 

the l imitations of a tradit ional sensitivity analysis and highlights dynamics which are 

1 See section 3.2 for a descript ion of sensi t ivi ty analyses. 

30 
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biologically implausible, namely that pasture growth is unl imited when sheep densities 

are low. A modification to the pasture growth term is discussed in section 3.5.3. The 

analysis is completed by a two-parameter study of the effects of cull ing rates on farmers' 

revenue. This is followed by section 3.5.5 which interprets the main results of the analysis 

from a biological viewpoint. 

3.2 Dynamic models and systems analysis—some background 

The systems approach to modell ing was made popular by Forrester [39] in the early 

1960's. This approach involves dividing a system into a large number of very simple unit 

components (Watt [123]) and then using equations to describe the processes affecting 

each of these components. The methodology was originally applied to industr ial , urban, 

and world population systems but its ut i l i ty has been extended to ecological applications 

by a number of researchers (see Jeffers [64] and Watt [123]). Patten [99] summarises the 

advantages of these dynamic or simulation models in the ecological context: 

The formulation of the models allows for considerable freedom from con

straints and assumptions, and allows for the introduction of the non-l inearity 

and feed-back which are apparently characteristic of ecological systems. 

This ease of formulation and flexibility are important for modell ing ecological systems. 

A variety of aspects such as age structure, developmental rates and density-dependent 

relationships can be included explicitly, thus increasing the realism of the model . Kowal 

[69] notes that an analysis of dynamic models can provide approximations to ecosystem 

dynamics long before tradit ional experimental approaches can provide more detailed 

conclusions. Insights can also be obtained into aspects of the system which may otherwise 

be obscured by its complexity. 
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The problem with complex models comes at the t ime of analysis. Dynamic models 

usually involve a large number of equations (generally ordinary differential equations) 

and parameters which makes their behaviour difficult to predict (Patten [99]). We need 

to find suitable ways of analysing the dynamics of these models. 

The tradit ional approach has been to use numerical routines to obtain solutions over 

t ime for a given set of parameter values. Optimisation routines are also often employed 

(Maynard Smith [85]) to determine the 'best' possible strategy with respect to a cost or 

revenue function. These routines are implemented using computers. A computer's speed 

of computation and abil ity to provide rapid access to large quantities of data makes it 

particularly suitable for analysing these large models (Jeffers [64]). A description of the 

basic routines involved can be found in Patten [99] as well as in any introductory textbook 

on numerical routines for systems of ordinary differential equations (for example, [43, 63]). 

Whi le these methods are useful, their results depend on the particular parameter set 

used. Intuitively a sufficiently small variation in the parameter values should lead to 

an arbitrari ly small change in the solution given by the model if we are to have any 

faith in the predictions of the model (Hadamard [53]). This corresponds to Hadamard's 

concept of a well-posed problem with respect to part ial differential equations [53] and 

led to the development of sensitivity analyses. For ordinary differential equations this 

method is based on the ideas of Tomovic [118] and involves changing the values of the 

input variables and parameter values by a small amount (say 1 percent or 10 percent) 

and seeing whether these changes produce large or small variations in the predictions of 

the model (Jeffers [64]). A good description of the basic theory involved, as well as some 

examples, is given in Bry l insky [18]. 

Sensitivity analyses are often used when studying system dynamics models and do 

give some idea of the robustness of model predictions, but the information is l imited 

in that only a single, small perturbation of each parameter is considered. This chapter 
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shows how additional information can be obtained using dynamical systems techniques to 

vary parameters across ranges of values. The next section describes a particular example 

of the systems approach to modell ing which I wi l l use to il lustrate the latter techniques. 

3.3 M o d e l equations 

Swart and Hearne [116] developed a dynamic model to study the impact of hyrax (a 

type of rock rabbit) and lynx on sheep farming in a region in South Af r ica . Two main 

problems were identified. The first involves competition for pasture between hyrax and 

sheep; hyrax encroach on farm land when the hyrax population exceeds the carrying 

capacity of wilderness areas in the region. The second problem is the predation on sheep 

by lynx. The principal food for lynx is hyrax, but from t ime to t ime lynx prey on sheep. 

It is the latter problem that is of direct concern to farmers—they tend to be more tolerant 

of the competit ion with hyrax. 

The model in [116] was developed to increase understanding of the problems caused 

by the spillover of hyrax and lynx from their predator-prey system into the sheep-pasture 

system, and to determine the effects of different cull ing strategies for hyrax and lynx. 

There are 10 state variables in the model. The sheep, hyrax and lynx populations are 

each divided into three classes—juveniles, female adults and male adu l t s—and there is 

one variable representing pasture. The quantity of most interest to farmers is revenue. 

This auxil iary variable is a function of the state variables and is made up of wool sales, 

mutton sales, the value of sheep stock, and the cost of cull ing hyrax and lynx. 

The differential equation for each state variable is formulated by adding and sub

tracting quantities representing the processes affecting that variable. For example, the 

equation for hyrax juveniles is as follows: 
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Rate of change of 

^ hyrax juveniles j 
births - maturation - deaths - predation - cull ing 

where 

• b i r t h s depend on the number of hyrax female adults and decrease with increasing 

hyrax density, 

• m a t u r a t i o n represents the number of juveniles that mature to become adults in 

a given year and is a constant fraction of the number of hyrax juveniles, 

• d e a t h s are a proportion of the number of hyrax juveniles and increase wi th in 

creasing hyrax density, 

• p r e d a t i o n (by lynx) varies with the relative number of hyrax and lynx (that is, 

predation increases as hyrax abundance increases), and 

• c u l l i n g is a constant fraction of the number of hyrax juveniles and is determined 

externally by the farmer or an environmentalist. 

In mathematical terms the above equation becomes 

dHj JJ TT u II u 
—- — tijB — tijM — njr) — Hjp — tljc 

dt 

where Hj is the number of hyrax juveniles, HJB is the number of hyrax births in a given 

year, HJM is the number of hyrax that mature to become adults during the year, HJD 

is the number of hyrax juvenile deaths during the year, Hjp is the number of hyrax 

juveniles ki l led by lynx during the year, and HJC is the number of hyrax juveniles that 

are culled. A ful l description of the mathematical formulation of these terms can be 

found in [116]. B y way of example, 
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HJM — Hj X HJMN 

where HJMN (hyrax juvenile maturation normal) is the fraction of juveniles that become 

adults each year and 

• Lj = LJR x Lj + Lp + LM is the total number of lynx (a lynx juvenile ratio (LJR) 

converts lynx juveniles into equivalent adult units, for example, 1 juvenile = 0.5 

adults), 

• LPN is the lynx predation normal which is the average number of sheep ki l led per 

lynx per year, 

• LPM is the lynx predation multipl ier (lynx functional response) which is an increas

ing function of prey abundance, Ap, and 

• Ap = j is an index of the availability of hyrax as prey for the lynx population. 

It is a ratio of the total number of hyrax to the total number of lynx relative 

to a 'normal ' ratio, representing the usual level of abundance under typical 

environmental conditions. 

The last term in equation (3.1) adjusts the total amount of predation so that only the 

number of juveniles ki l led is taken into account in this equation. 

A possible choice for the lynx predation multipl ier is shown in figure 3.1. A n S-shaped 

functional response is used as the lynx can only eat a l imited amount even when prey 

(3.1) 

where 
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Figure 3.1: The lynx predation multiplier (LPM) as a function of prey abundance (Ap). 

abundances are very high, and when abundances are low lynx have difficulty finding 

hyrax. 

The other equations in the model are formulated in a similar manner to the above 

example for hyrax juveniles. Table 3.1 shows the processes affecting each animal group. 

Predation is by lynx and culling is done by the farmer (in the case of sheep) or controlled 

by environmentalists (in the case of hyrax and lynx) . Three quantities in the model are 

averaged using first order delays. A description of how this is included in the model is 

given in appendix C. 

Swart and Hearne [116] used tradit ional methods to study this model. They used 

optimisation routines to find the hyrax and lynx cull ing rates which gave m a x i m u m 

profitabil ity in terms of revenue. They also investigated the sensitivity of the system to 

parameter perturbations. They found that lynx culling is essential and that substantial 

increases in both sheep numbers and revenue are possible by simultaneously cull ing hyrax 

and lynx. Opt imal cull ing rates in terms of revenue are around 30 percent per annum 
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State variable G r o w t h processes D e a t h processes 

Hyrax juveniles 
(HJ) 
Hyrax female 
adults (Hp) 
Hyrax male 
adults (HM) 

Lynx juveniles 
(Lj) 
Lynx female 
adults (Lp) 
Lynx male 
adults (LM) 

Sheep juveniles 
(SJ) 
Sheep female 
adults (SF) 
Sheep male 
adults (SM) 

Pasture (P) 

births (HJB) 

juvenile maturation 
(HJM) 

juvenile maturation 
(HJM) 

births ( L j B ) 

juvenile maturation 
(LJM) 

juvenile maturation 
(LJM) 

births (SJB) 

juvenile maturation 
(SJM) 

juvenile maturation 
(SJM) 

production (Pp) 

deaths (Hjp>),maturation (HJM), 
predation (ifjp),culling (HJC) 
deaths (HFD),predation (Hpp), 
culling (HFC) 
deaths (ifM.o),predation (HMP), 
culling (HMc) 

deaths (LJD),maturation (LJM), 
culling (LJC) 

deaths (LFD),culling (Lpc) 

deaths (ZMB ) ,cul l ing (LMC) 

deaths (SJD),maturation (SJM), 
predation (Sjp),culling (SJC) 
deaths (S^£>),culling (SFC) 

deaths (5M£»),culling (SMC) 

grazing (Pq) 

Table 3.1: Tab le showing the processes affecting each state variable and some of the abbreviat ions 

used i n the mode l equations. 

for both hyrax and lynx. From a policy point of view the model is robust with respect 

to small parameter variations. 

The purpose of this chapter is not to redo the work done by Swart and Hearne [116]— 

their model and analysis have accomplished their aims. Instead I want to i l lustrate the 

usefulness of the dynamical systems software in this setting. 
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3.4 Technical details 

A few minor modifications to the model are required to facilitate the use of this software. 

The first involves scaling the state variables so that they al l have the same order of 

magnitude. Combining quantities of very different magnitude may lead to computer 

round-off errors [43]. I chose values close to the in i t ia l values in [116] as scaling constants. 

In other words, I replaced each state variable V{ by the quantity S j U j where is the scaling 

constant for V{. Now v,- takes on values between say 0 and 10. In order to calculate the 

magnitude of the ith population we can mult iply this new Vi by s; . To prevent the scaling 

from altering the dynamics of the model, the differential equation for ut- is divided through 

by S{. The above manipulations are made clearer in appendix C. 

Secondly, in order for the computer packages to generate continuous bifurcation dia

grams, al l functions in the model need to be continuous. The original model represents 

farmers' sheep cull ing strategies using two step functions. I replaced these with continu

ous functions having steep slopes in the region of the step. 

In the original model pasture production and fecundity rates vary seasonally. Since 

this complicates the dynamics considerably when it comes to parameter studies and since 

the present study is more concerned with long-term equi l ibr ium behaviour than with day 

to day variations, I did not include the seasonality functions. Solving the system of 

equations numerically over t ime is st i l l the best way to study seasonal variation in most 

cases. 

The various versions of A U T O only allow a state variable or the _L 2 -norm of the state 

variables to be displayed on the y-axis of the bifurcation diagrams they generate. The 

Z-2-norm of a vector v = ( u l 5 . . . , vm) is given by 
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However, the quantity of most interest to farmers is the revenue corresponding to different 

management strategies. In order to have direct access to revenue values it would be most 

convenient if revenue were a state variable. The following suggestion by Bard Ermentrout 

makes this possible. 

Let v be the vector of existing state variables and let h(v) be the revenue function. 

We can add the equation 

dR _ -R+h(v) 
~dt ~ T ' 

where r is a small parameter, to the original system. R is the variable that we want to 

represent revenue. This ordinary differential equation wi l l not affect system equil ibria 

since at these points R = h(v) and hence ^ = 0 (as required for an equi l ibr ium value). 

The existence and stabil ity of phenomena such as periodic orbits ( l imit cycles) are also 

not affected. Since r acts as a delay t ime, we would like it to be small so that R is 

a close approximation to revenue. However, care must be taken in the choice of r as 

very small values can give rise to computer truncation errors. For the current problem 

I used r = 0.05. Larger values of r resulted in R values which were less satisfactory 

approximations to revenue while smaller values of r gave hardly any change in the R 

values. 

We are now in a position to begin the analysis. 

3 .5 M o d e l a n a l y s i s 

3 . 5 . 1 R e f e r e n c e p a r a m e t e r va lues 

We need to choose an ini t ia l set of parameter values before we can determine the effects 

of varying parameters across ranges of values. Most of the values are given in [116]. Only 

values for the hyrax and lynx cull ing normals (HCN and LCN) need to be chosen. It seems 

most natural to choose those values which, give the m a x i m u m revenue at equi l ibr ium. In 
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Figure 3.2: Three one-parameter bifurcat ion diagrams w i t h revenue plot ted as a funct ion of HCN-

E a c h curve corresponds to a different (fixed) value of LCN-

order to do this I first fixed LCN at 0.1, chose a value of 0.2 for HCN (any reasonable 

values would do just as well), and used a numerical solver in X P P A U T to integrate the 

system of equations unt i l an equil ibr ium point was reached. Using this equi l ibr ium point 

as the in i t ia l point, I then used the A U T O interface to vary HCN- This is done by 

choosing HCN to be plotted on the x-axis and one of the state variables (I chose revenue) 

for the y-axis. Using the R U N and G R A B 2 commands a parameter diagram can be 

generated. This diagram shows how the equil ibr ium revenue changes as HCN varies (see 

figure 3.2). The above exercise was repeated for a few different values of LCN and the 

resulting parameter diagrams were plotted on the same pair of axes to give figure 3.2. 

It can be seen from this figure that a value of 0.35 for HCN is close to opt imal (in terms 

of revenue) for al l values of LCN- I chose this value for HCN and then used X P P A U T 

to vary LCN in order to find the corresponding opt imal value for LCN- This gave figure 

2 A complete descript ion of the available commands can be found i n the X P P A U T documenta t ion as 
wel l as i n the interact ive tu to r ia l that is available—see appendix B . 
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F i gure 3.3: One-parameter bifurcation diagram of revenue versus LCN for -ffc;v=0-35. 

3.3. Lower values for HCN resulted in revenue curves ly ing below that in figure 3.3 and 

higher values resulted in curves almost identical to that for HCN=0.35. 

For the reference parameter set I chose values of 0.35 for HCN and 0.15 for LCN as 

these values are close to opt imal and have the added advantage that small perturbations 

wi l l not have much effect on revenue, since the revenue surface appears to be fairly flat in 

a region surrounding these values. A t these reference values equi l ibr ium revenue equals 

3.94 which is slightly greater than 3.91, the value when LCN = 0.3 and HCN = 0.3. 

(Note that the scaling factor for revenue is 10 mi l l ion Rand so the above values need to 

be mult ip l ied by this factor to get the true revenue values.) 

3.5.2 Understanding model relationships 

The effects of culling sheep and of lynx fecundity 

There are many parameters in this model which could be used to il lustrate the dynam

ical systems techniques. Those affecting population growth rates are l ikely to have the 
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Figure 3.4: One-parameter bifurcat ion diagrams obtained from vary ing SFCN ( nomina l value = 

0 .28/yr) w i t h L f j v = 0 . 7 / y r . In (a) revenue is plot ted on the y-axis , i n (b) the state variable for l y n x 

females is used, and i n (c) the state variable for pasture is used. 

greatest influence on the dynamics. I have chosen to study two such parameters in this 

chapter—the sheep female cull ing normal SFCN, which is the average number of ewes 

culled by a farmer per year, and the lynx fecundity normal LFN, which is the average 

number of offspring produced per female lynx per year. As before I used X P P A U T to 

integrate the system numerically, using the reference parameter values, unt i l an equil ib

r ium was reached. Using these equil ibr ium values for the state variables as the starting 

point, I employed X P P A U T ' s A U T O interface to produce a bifurcation diagram. The 

results are shown in figures 3.4 and 3.5. 

Once a bifurcation diagram has been generated using X P P A U T , it is easy to switch 

the variable on the y-axis. The effects of varying a parameter with respect to different 

state variables can then be seen. For each parameter I have chosen three diagrams. One 
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Figure 3.5: One-parameter bifurcat ion diagrams obtained f rom vary ing LFN ( nomina l value = 0 .7 /yr) 

w i t h S ' jrc'jv=0.28/yr. In (a) revenue is p lot ted on the y-axis , i n (b) the state variable for l y n x females is 

used, and i n (c) the state variable for pasture is used. 

shows the effect of the parameter on equil ibr ium revenue, the second the effect on the 

equi l ibr ium number of lynx females, and the third the effect on the equi l ibr ium amount 

of pasture. 

A number of observations can be made from figures 3.4 and 3.5. The first is that 

A U T O encounters points beyond which it cannot calculate. In figure 3.4 such a point 

is SFCN=0-54: and in figure 3.5 there are two points, Z^JV=0.39 and LFN=2.78. Using 

X P P A U T to solve the system of equations numerically for parameter values on either side 

of these l imi t ing points, the causes of these difficulties can be determined. Output from a 

numerical integration is shown in X P P A U T ' s data window and from this it was seen that 

the sheep population dies out for SFCN > 0.54 or LFN > 2.78, and the lynx population 

dies out for LFN < 0.39. The latter conclusion could also be drawn from figure 3.5(b). 
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Beyond the l imi t ing values there is no equil ibr ium at which al l three populations are 

present and, hence, A U T O cannot continue the equil ibr ium branch any further. 

A second observation can be made by looking at the bifurcation diagram for pasture 

in figure 3.4(c). As the equi l ibr ium number of sheep declines (as SFCN increases and 

approaches the value corresponding to sheep extinction), the equi l ibr ium value for pasture 

increases unchecked. Clearly this is unrealistic and suggests that some modification 

should be made to the model equations to l imit pasture growth. I return to this in 

section 3.5.3. 

In figure 3.5 there is a threshold value at LFN=0.76 above which revenue declines as 

LFN increases and below which revenue remains fairly constant as LFN is varied. Aga in I 

chose parameter values on either side of this threshold and used X P P A U T to integrate the 

system of equations numerically unt i l an equil ibr ium was reached. V iewing the numerical 

output in the data window lent some insight into the behaviour of the model . I found 

that as LFN increases through 0.76, prey abundance 3 at equi l ibr ium passes through a 

threshold value above which lynx begin to supplement their diet with lambs. This loss 

of lambs explains the decrease in revenue. 

A n important point to note is that if a tradit ional sensitivity analysis had been 

done using opt imal equi l ibr ium values for the state variables and a nominal value of 

L F i V = 0 . 6 / y r , then no change in equi l ibr ium revenue would have been seen for a 10 percent 

increase in LFN- However, using a nominal value of 0.7/yr, a 10 percent increase places 

LFN at 0.77/yr. This is above the threshold point and thus a decrease in equi l ibr ium 

revenue occurs. 

The only stabil ity change in figures 3.4 and 3.5 occurs at 1 , ^ = 2 . 0 6 . A t this point 

a Hopf bifurcation occurs (see section A.2.10), which means that the stable equi l ibr ium 

point becomes unstable and a periodic orbit is init iated. However, oscillations are only 

3 See the explana t ion under equation (3.1). 
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associated with the sheep-pasture subsystem. The lynx and hyrax populations do not 

cycle. In this case the l imit cycles associated with the Hopf bifurcation are unstable 

and thus not of practical interest. In such a case it is more enlightening to examine 

the temporal dynamics of the system for 2.06 < LFN < 2.78. Using X P P A U T for this 

purpose it was found that the sheep population declines to zero in this range of parameter 

values while the hyrax and lynx populations reach steady states. This trend continues for 

LFN > 2.778 but the sheep population dies out much faster and A U T O fails to converge. 

Before modifying the equations to l imit pasture growth as suggested earlier, it would 

be informative to study the roles of the existing density-dependent functions. This can 

be viewed as another form of sensitivity analysis in which we investigate the system's 

response to whole functions instead of single parameters. 

The effects of density-dependence 

There are a number of functions in the model which modify growth and death rates 

as conditions change. A l l these functions are normalised to take the value 1 when the 

quantities on which they depend are at their reference values. For example, the equation 

governing pasture (P) dynamics is given by 

dP , . 
—jj- — pasture production — pasture grazing 

= A.PPN — TSSU-GN-GM(PA) (3.2) 

where A is the area of the farming region under study, PPN is the pasture production 

normal (average pasture growth rate), Tssu is total small stock units (a representative 

value for the number of sheep), GN is the grazing normal (average amount of pasture 

grazed per unit stock) and GM is the grazing multipl ier which is a function of P^ , the 

pasture availabil ity index. PA is given by P/P where P is an average pasture density. 

The grazing mult ipl ier has the form shown in figure 3.6. 
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Figure 3.6: T h e grazing mul t ip l i e r function (GM) as a function of pasture avai labi l i ty . 

In order to remove a density-dependent function from the model , the simplest ap

proach is to replace it by a constant function. For example, we can set GM = 1- This 

was done for each multipl ier function in turn and bifurcation diagrams obtained from the 

altered model were compared with those from the original model in each case. 

Removing the grazing mult ipl ier , GM, had the greatest effect on model dynamics. 

Even after altering a number of parameter values the system did not reach equi l ibr ium. 

The sheep population either increased indefinitely or decreased to extinction for each 

parameter set that was tried. This is not surprising since the grazing mult ipl ier affects 

pasture grazing and sheep fecundity as well as sheep juvenile deaths. Without GM the 

density-dependence of pasture grazing and sheep dynamics on pasture availabil ity (GM 

is a function of PA) is removed. The results show that this density-dependence is cr i t ical 

for regulating the sheep-pasture subsystem. 

The effects of the other functions in the model were quantitative rather than qualita

tive. That is, removing them from the model tended to decrease the range of parameter 
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values over which sheep, hyrax and lynx coexist at equi l ibr ium, but did not alter the 

qualitative dynamics. In relative terms however, the effects of the fecundity mult ipl ier 

functions were more noticeable than those of the death and predation multipl iers. 

The above comments do not imply that the latter multipl ier functions play an in 

significant role in the model. They have a regulatory effect and reduce the impact of 

parameter changes on model behaviour. This resilience to disturbances is very desirable 

[61] and is expected of many natural systems. Thus, although these functions may not 

be cr it ical in determining model behaviour, they are important for making the model 

more realistic. 

It was observed earlier that the model lacks a feedback relationship that would l imit 

pasture growth when sheep densities are very low. We also know that pasture availabil ity 

has a significant influence on pasture grazing and sheep fecundity and hence on the 

predictions of the model. Thus modifying equation (3.2) to include density-dependent 

growth may have a considerable effect on the behaviour of the model . This modif ication 

is discussed in the next section. 

3.5.3 A d d i n g density-dependence to pasture growth 

The reader wi l l probably have noticed that equi l ibr ium pasture values only become un

realistic for extreme parameter values. However, it is desirable to have a model which 

can describe a variety of situations instead of one that is only suitable for a smal l range 

of values. A lso , improving model realism in extreme regions may affect the dynamics 

corresponding to more normal values and so play an important part in understanding 

system behaviour. The formulation of a model also affects statistical parameter f itt ing 

routines. If important relationships are left out then these routines may give misleading 

results or fai l to converge. 

In the sheep-pasture, hyrax- lynx model pasture growth occurs at a fixed rate and 
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is independent of existing pasture density (see equation 3.2). In order to l imi t pasture 

growth, I included a pasture multipl ier (PM) in equation (3.2) as follows: 

where PM is a function of pasture availability, PA- For high values of PA we expect 

pasture growth to slow down and saturate. We also expect a decline in growth when 

PA is very low following the principle that 'growth promotes growth'. A function having 

this general form is the Ricker function. Using this type of relationship I introduced a 

density-dependent function having the shape shown in figure 3.7. 

(3.3) 

1 

0 
0 2 4 

PA 

Figure 3.7: T h e pasture mul t ip l i e r (PM) as a function of pasture ava i lab i l i ty (PA)-

To test the effects of this new function I generated a number of bifurcation diagrams 

and compared them with those from the original model. Figures 3.8 and 3.9 show those 

diagrams which correspond to figures 3.4 and 3.5 respectively. 
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SFCN 

Figure 3.8: One-parameter bifurcat ion diagrams obtained f rom vary ing SFCN ( n o m i n a l value = 

0 .28/yr) for the new mode l which includes a pasture l i m i t i n g mul t ip l i e r . In (a) revenue is p lot ted 

on the y-axis , i n (b) the state variable for l y n x females is used, and i n (c) the state var iable for pasture 

is used. 

In figure 3.8(a) total revenue declines to zero as SFCN increases. This is more math 

ematically satisfactory than figure 3.4(a), where the curve stops abruptly at a positive 

revenue value, as it indicates clearly where a positive sheep population is no longer pos

sible. Figure 3.8(c) shows the max imum pasture density which occurs when a positive 

sheep equi l ibr ium (and hence a positive value for revenue) is impossible. This density is 

lower than in figure 3.4(c) but depends on the exact nature of the pasture mult ipl ier . 

Another observation from figure 3.8 is that instead of A U T O being unable to converge 

at very low SFCN (sheep female cull ing normal) values, a Hopf bifurcation occurs and 

the bifurcation diagrams show that no stable equi l ibr ium at which al l three populations 
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Figure 3.9: One-parameter bifurcation diagrams obtained f rom vary ing LFN (nomina l value = 0 .7 /y r ) 

for the new mode l which includes a pasture l i m i t i n g multiplier. In (a) revenue is p lo t ted on the y-axis , 

i n (b) the state variable for l y n x females is used, and i n (c) the state variable for pasture is used. 

coexist is possible for SFCN < 0.059. For these values there is insufficient pasture to sup

port the high sheep population. Thus, introducing the pasture multipl ier has improved 

the dynamics at low values of SFCN as well as high values and has solved the problem of 

revenue increasing rapidly as in figure 3.4(a). 

In figure 3.9 a l imit point (see section A.2.13) has replaced the Hopf bifurcation of 

figure 3.5. The l imi t point bifurcation clearly shows that for LFN > 1-491 no equi l ibr ium 

at which al l three populations coexist is possible. Again , using X P P A U T to integrate 

the system numerically gives insight into the dynamics corresponding to the different 

regions in the bifurcation diagrams. In particular, the temporal dynamics show that the 

pasture mult ipl ier slows and l imits pasture growth as desired. Comparing the dynamics 
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of the original and modified models at SFCN = 0.5 shows that l imi t ing pasture growth 

has a stabilising influence (see figure 3.10). The oscillatory approach to equi l ibr ium by 

the original model (figure 3.10(a)) is replaced by a smooth approach in figure 3.10(b). 

40 60 
Time 

40 60 
Time 

Figure 3.10: T i m e plots obtained using (a) the or ig ina l mode l and (b) the modif ied m o d e l w i t h 

SFCN = 0.5. 

The l imi t ing value for pasture in figure 3.8(c) is st i l l rather high but, since I had no 

experimental data on which to base the form of the pasture mult ipl ier , I did not think 

it worthwhile to fiddle with the function to obtain a more plausible value. The effects of 

introducing the multipl ier have already been adequately demonstrated. 

A closer look at the behaviour exhibited by the model may suggest further modif ica

tions to the equations. The above is just one example of how bifurcation diagrams can 

help in the process of model building. Another example can be found in chapter 4. The 

next section describes how two-parameter studies can be used to obtain useful summaries 

of model behaviour. 

3.5.4 A s u m m a r y of the effects of cul l ing both hyrax and l ynx 

The model in this chapter was originally developed to study the effects of cull ing hyrax 

and lynx. As was done in [116] and earlier in this chapter, opt imal values (with respect to 
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Figure 3.11: One-parameter bifurcation diagram of revenue as a function of LCN for the modified 
model. The change in stability (denoted by the change from a solid to a dotted line) occurs at a l imit 
point. 

revenue) were found for the hyrax and lynx culling normals. However, only one parameter 

was varied at a t ime. We can obtain a two-parameter diagram to summarise the effects 

of varying both parameters simultaneously as follows. 

Using the modified model the bifurcation diagrams for the lynx cull ing normal LCN 

have the form shown in figure 3.11. For LCN below the l imit point the sheep population 

dies out as there is too much predation by lynx. Using A U T O the l imi t point can be 

continued in HCN, the hyrax culling normal, as well as LCN- That is, we can see how the 

position of this l imit point varies as a function of both HCN and LCN • This gives the two-

parameter bifurcation diagram in figure 3.12. From this figure it can be seen that sheep 

become extinct as a result of the combined effect of lynx predation and competit ion with 

hyrax for pasture since both LCN and HCN are low in the region where sheep die out. 

Note that figure 3.12 could not have been produced using the original model as there was 

no l imi t point in the corresponding LCN bifurcation diagrams (see figure 3 . 3 ) — A U T O 
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Figure 3.12: Two-parameter cont inuat ion of the l i m i t point i n figure 3.11. (To determine the behaviour 

corresponding to a par t icular region i n this two-parameter d iagram, choose values for HCN and LCN i n 

this region and then use X P P A U T to integrate the system numerical ly .) 

signalled non-convergence and stopped calculating. 

Combining figure 3.12 with the observation that the lynx population dies out for 

LCN > 0.37 for al l values of HCN gives figure 3.13. This was determined by generating 

bifurcation diagrams for LCN for a number of different (fixed) HCN values. Conversely, 

varying HCN for a variety of fixed LCN values does not produce any parameter ranges 

where the hyrax population dies out. 

Figure 3.13 shows that all three populations coexist at equi l ibr ium for a large set of 

cull ing rates. The diagram would be of even greater use if we knew the revenue value 

corresponding to each point in this two parameter space. This can be done by recording 

information given by X P P A U T and using some other graphics package to plot a three-

dimensional surface. 

Using the modified model developed in the previous section I fixed the value of HCN, 

chose LCN = 0.15 (say) and used X P P A U T to find the equi l ibr ium point numerically. I 

Sheep 
die out 
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Figure 3.13: Two-parameter bifurcat ion d iagram of the HCN and LCN parameter space for the 

modif ied m o d e l . 

then used the A U T O interface to vary LCN in both directions. Using the G R A B feature 

of X P P A U T to move along the branch of equi l ibr ium points, I recorded the revenue values 

at regular intervals along the curve. I did this for a number of HCN values and plotted 

the results using the public domain graphics package G N U P L O T [125]. A surface plot 

and corresponding contour plot are shown in figure 3.14. 

As can be seen from the figure there is a large region of parameter space over which 

revenue does not vary much indicating that the model is very robust to changes in the 

cull ing rates in this region. This is a desirable property when it comes to developing 

management strategies. 

3.5.5 B io log ica l interpretat ion of results 

The analysis of the previous sections has led to a number of insights into the sheep-

pasture, hyrax- lynx system. Figure 3.8 shows that altering the number of ewes that are 
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Figure 3.14: (a) Surface plot and (b) contour plot of revenue as a function of the hyrax and lynx 
culling normals. The arrow in (b) indicates the direction of increasing revenue. 
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culled only affects the sheep-pasture subsystem. However, the effects on this subsystem 

are considerable. Cul l ing too many ewes wi l l obviously cause sheep numbers to decline. 

More important is the effect on revenue. Significant increases in revenue are possible 

if the farmer culls fewer ewes as there is a greater return if these sheep are allowed to 

reproduce than if they are taken to market. (This is provided that the sheep stock is 

not too large for the pasture to support it , that is, provided SFCN > 0.059.) However, 

there is a trade-off as cull ing fewer ewes results in a lower cash flow. Another trade-off 

results from the decrease in pasture availability which accompanies a larger sheep stock. 

This is already reflected in the model by the dependence of sheep fecundity on pasture 

availability. However, an additional quantity representing the quality of sheep may be 

useful as this wi l l affect the returns from wool and mutton sales and hence revenue. This 

presents another opportunity for improving the model. 

Figure 3.9 summarises the effects of lynx fecundity on the system. If lynx fecundity 

is very high (LFN > 1-5) then the sheep population wi l l not be able to survive. However, 

if lynx fecundity is sufficiently low (LFN < 0.78) then the lynx population does not need 

to prey on sheep as it can be supported by the hyrax population. Further decreases 

in lynx fecundity at these values have no effect on revenue. For intermediate values 

(0.78 < LFN < 1.5) .considerable increases in revenue are possible if lynx fecundity is 

decreased. This favours the cull ing of lynx females in particular. 

In section 3.5.2 we found that density-dependence of sheep and pasture dynamics 

on pasture availabil ity is crit ical for regulating the sheep-pasture subsystem. In fact this 

encouraged the modification of pasture growth to include density-dependence. This mod

ification restricts both pasture and revenue values from increasing indefinitely (compare 

figures 3.4 and 3.8) and also stabilises the temporal dynamics (see figure 3.10). 

F inal ly , the effects of cull ing both hyrax and lynx were summarised using two-

parameter diagrams. In particular, figure 3.14 shows that the model is robust to changes 
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in cull ing rates provided these rates are sufficiently high. 

3 .6 C o n c l u s i o n 

This chapter has i l lustrated a number of potential uses of bifurcation analyses using 

packages such as X P P A U T . F i rst , models having a large number of state variables and 

parameters can be analysed in greater depth than was previously practical . For system 

dynamics models bifurcation diagrams give more information than tradit ional sensitivity 

analyses as they summarise the behaviour of the model across a range of parameter values 

instead of being restricted to a single, fixed perturbation. As a result these diagrams can 

indicate where model relationships are incomplete and can thus aid in model formulation. 

Another example of this can be found in chapter 4. 

The analysis also showed that the model is quite robust in a qualitative sense—the 

stabil ity of the system is not greatly affected by parameter variations. However, revenue 

magnitudes are sensitive to certain parameters. This is an important observation for 

farmers as they seek to maximise their revenue. Trade-offs between higher long-term 

revenue and lower cash flows as well as higher revenue and lower sheep quality were also 

noted. 

The dynamics of the model turned out to be fairly simple from a bifurcation viewpoint. 

Other similar models may not be quite so robust. A n analysis similar to the one in this 

chapter can be useful for uncovering regions of more complex behaviour in such cases. 



Chapter 4 

Ratio-Dependent Mode l 

4.1 Introduction 

Despite having a large number of state variables and parameters, the system dynamics 

model in the previous chapter turned out to have fairly simple dynamics. This chapter 

focusses on a more theoretical model having only three state variables but whose dynamics 

are more complex. In addition to describing how an analysis of such a model may 

be approached using dynamical systems techniques, a dual a im of the chapter is to 

highlight some of the difficulties associated with ratio-dependent models. These models 

are currently a topic of considerable controversy in ecological circles. 

The example that I have chosen is a tritrophic model of a plant, herbivore and predator 

system developed by Gutierrez et al. [52]. It is a general model and is physiologically 

b a s e d — a property which the authors c laim makes estimation of parameter values from 

experimental data fairly straightforward. However, there are a number of correction 

factors in the model whose function is to scale potential rates to realised rates. These 

factors complicate parameter estimation considerably. Nevertheless, having appeared 

in a leading journal , this model is sure to receive attention and further analysis of its 

dynamics may be of interest. 

In the next section I summarise the arguments for and against ratio-dependent models. 

Following this I describe the model equations and the technique of nondimensionalisation 

that I used to scale the equations and reduce the number of parameters in the model . I 

58 
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also introduce a small modification to the ratio-dependent terms. In the analysis that 

follows I consider both the original and this modified model in order to highlight some 

of the difficulties associated with ratio-dependent models. 

After choosing a set of parameter values which give rise to a stable tr itrophic equil ib

r i um (that is, a stable equi l ibr ium at which the plant, herbivore and predator populations 

are al l nonzero) I begin the analysis by varying each parameter value in turn to see what 

effect it has on the dynamics and to determine the range of behaviour that the model 

can exhibit . Two-parameter bifurcation diagrams summarising the effects on system 

behaviour of the plant and herbivore respectively complete the prel iminary analysis. 

Having identified those parameters which have the greatest influence on the dynamics, 

I obtain a series of two-parameter diagrams using the modified model . These diagrams 

il lustrate the combined effects of the lower two trophic levels on the behaviour of the 

model . Of particular interest are parameter combinations which give rise to mult ip le 

stable states. In some cases a stable tritrophic equi l ibr ium coexists with a stable l imi t 

cycle suggesting the possibility of an abrupt change in the behaviour of the system if it 

is sufficiently perturbed (see section A.2.7) . 

To complete the study the l imits of isocline analysis 1 in a three-dimensional setting 

are demonstrated. Gutierrez et al. [52] used this technique in their analysis of the model . 

A l though isocline analyses have been employed in many settings and with considerable 

success [36, 38, 44, 56, 74, 92, 103], in more complicated higher dimensional models for 

which the categorisation of variables as slow versus fast2 is not possible, their application 

is l imited. A n isocline analysis allows at most two variables to vary simultaneously. This 

means that for the current model one variable is held fixed which results in a part ly static 

* A descript ion of this technique together w i t h examples can be found i n [34]. 
2 I f the state variables i n a mode l vary on different t ime scales i t is often possible to approximate 

the system by a two-dimensional mode l representing either the slow or the fast dynamics . A n isocline 
analysis can then be done using the reduced system. 
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representation of the dynamics. The dynamical systems techniques allow al l three state 

variables to vary simultaneously thus permitt ing a more accurate analysis. 

4.2 Background 

Ratio-dependent models assume that the functional response terms depend on ratios 

of the state variables rather than on absolute, values or products of variables as is the 

case for classical models. Although not a new idea, the concept of ratio-dependence in 

predator-prey interactions has been approached with fresh interest in ecological theory 

in recent years (Berryman [17]). 

A m o n g the advantages of these types of models are that they prevent the paradoxes 

of enrichment 3 and biological control 4 predicted by classical models [17]. Exper imental 

observations of A r d i t i and Saiah [6] suggest that prey-dependent models are appropriate 

in homogeneous situations and ratio-dependent models in heterogeneous situations. In 

support of this Ginzburg and Akcakaya [45] and McCar thy et al. [88] conclude from their 

work that natural systems are closer to ratio-dependence than to prey-dependence and 

Gutierrez [51] develops a physiological basis for the theory. 

Gleeson [46], however, questions the assumptions of ratio-dependent models and notes 

that direct density-dependence, or self-regulation, in the top consumer is sufficient to 

preclude the paradox of enrichment from classical models. From his work on whether 

patterns among trophic levels are a reliable way of distinguishing between prey- and ratio-

dependence, Sarnelle [107] concludes that the ratio-dependent approach should only be 

applied when the predator and prey are the top two trophic levels in an ecosystem. 

Abrams [1] argues that patterns and experimental results that have been used in support 

3 C lass ica l models predict that enriching a system w i l l cause an increase i n the e q u i l i b r i u m density of 
the predator but not the prey and w i l l destabilise the communi ty equ i l i b r i um (see B e r r y m a n [17]). 

4 C l a s s i c a l models predict that i t is not possible to have bo th a very low and a stable pest (prey) 
e q u i l i b r i u m density ( B e r r y m a n [17]). 
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of ratio-dependent predation are consistent with numerous other explanations and that 

these other explanations do not suffer from pathological behaviours and a lack of plausible 

mechanism as do ratio-dependent models. Lundberg and Fryxel l [75] note that it may 

be difficult to distinguish between competing hypotheses without a proper mechanistic 

understanding of the processes involved. 

In a recent paper Akgakaya et al. [3] respond to some of the above crit icisms. The 

argument relevant to the current chapter concerns their refutation of the pathological 

behaviour of ratio-dependent models. Freedman and Mathsen [41] note that ratio-

dependent models are invalid near the axes (that is, where the state variables are close 

to zero) as the ratios tend to infinity in these regions. As a result even when prey (re

source) densities are very low, ratio-dependent models predict a positive rate of predator 

(consumer) increase provided that predator densities are low enough, since the number 

of prey available per predator increases to infinity as predator density declines to zero 

[1, 46]. In terms of isoclines, the problem stems from the fact that the predator isocline 

passes through the origin in ratio-dependent models which means that, even at low prey 

densities, a sufficiently small predator population can increase. According to Hanski [55] 

this is against intuit ion and many field observations. It also means that ratio-dependent 

models cannot be used to study extinction of species. 

However, Akgakaya et al. [3] state that the above problems near the axes are only 

pathological in a mathematical sense and that in biological terms the result would be 

that both species increase init ial ly and then predators consume all the prey and both 

species become extinct. Since prey-dependent models cannot predict this outcome they 

are pathological in a biological sense. However, I show below that ratio-dependent models 

do not necessarily predict this outcome either. The ratio-dependent model that I w i l l 

describe in the next section predicts oscillations of large amplitude in these 'pathological' 

regions (see figure 4.3). Whi le these large amplitude oscillations may be interpreted as 
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signalling extinction from a practical viewpoint, this is not the prediction of the ratio-

dependent model . 

Akcakaya et al. [3] state that: 

A realistic model of prey-predator interactions should be able to predict 

the whole range of dynamics observed in such systems in nature. A ratio-

dependent model can have stable equil ibria, l imit cycles, and the extinction 

of both species as a result of overexploitation. 

However, a few sentences later they agree that ratio-dependent models are not valid at 

very low densities (which are a precursor of extinction) and earlier in the paper they 

state that: 

...we do agree that it is at the extremes of low and high densities that strict 

ratio dependence may not be valid. 

In an attempt to clarify some of the arguments in this debate, I introduce a small mod

ification to the ratio-dependent model of Gutierrez et al. [52] and study this modified 

model in conjunction with the original one. The analysis given below shows that the 

original model is structurally unstable as a small perturbation to the ratio-dependent 

terms substantially alters the dynamics. 

4.3 M o d e l equations 

The model equations are functionally homogeneous (that is, al l three equations contain 

the same basic terms) as the authors argue that the same generalised functional and 

numerical responses must describe the search, acquisition and conversion of al l organisms 

as they seek to satisfy their metabolic requirements. Details of the formulation of the 

model can be found in Gutierrez et al. [52]. The final equations are: 
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dMx ' <xxM0" 
rDxMx. ) Dx - rxMx

h Mx dt 

D2M2 

dM2 

D2 - r2M2

b* M2 

dt 

D3M3 

dM3 

D3 - r3M3

b3 M3 (4.1) 
dt 

where Mx is the biomass of plants, M2 is the biomass of herbivores, and M3 is the biomass 

of predators. The parameters 9{ represent assimilation rates corrected for the efficiency 

of biomass conversion; represents the proportion of the resource that is available to 

its consumers (that is, its apparency); D{ is the per unit demand of the consumer for 

resources; r; is the base respiration rate corrected for the efficiency of biomass conversion; 

and hi is the degree of self - l imitation. MQ represents a biomass equivalent of the light 

energy incident in the growing space of the plants, and (f>Vtx and d)u>x (which both lie 

between 0 and 1) scale the potential photosynthesis rate to the realised rate. 

The respiration term, r 4 M , 1 + f > ' , requires further explanation. Respiration usually in 

creases wi th population density [52] and thus should be an increasing function of M,-. 

However, introducing such a functional dependence increases the complexity of the model 

and, since the effect is usually smal l , the authors chose the simpler formulation r , - M , 1 + 6 ' 

where bi has a value between 0.02 and 0.05. The disadvantage of this choice is that r; 

must have rather unusual units 5 which depend on bi so that the term r ; M / + b ' has the 

same units as (namely, g.day-1 where g are the units of Mi). This dependence of 

the units on b{ is not satisfactory from a mathematical viewpoint but since bi is small I 

chose to ignore this init ial ly. In the next section I discuss a small alteration to the model 

5 T h e units of ri are g~b'day~1 where g are the units of M ; . 
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which takes care of the difficulty. 

Gutierrez et al. [52] use parameter values corresponding to a cassava 6 -mealybug 7 -

parasitoid 8 system in Afr ica and claim that their analysis demonstrates that the para-

sitoid Epidinocarsis lopezi (De Santis) can control the mealybug (except on poor soils) 

whereas Epidinocarsis diversicornis (Howard) and native natural enemies cannot. 

M y first a im was to reproduce the results in the paper [52]. However, the parameter 

values for the cassava-mealybug-parasitoid system given to me by the authors (only values 

for 6i,cti,Di are reported in the paper) did not yield the isocline configurations or the 

behaviour that they described. Only after changing some of the parameter values by 

several orders of magnitude did I succeed in producing qualitatively similar diagrams. 

This haphazard approach of fiddling with parameter values is not satisfactory. Scaling 

the equations would give a better idea of the relative magnitudes of the parameters. The 

procedure involved is discussed in the next section. 

4.4 N o n d i m e n s i o n a l i s a t i o n 

The technique of nondimensionalising or scaling is commonly used to simplify a system 

of equations as it has a number of other advantages. It i l luminates which parameters 

are most important in determining the dynamics of the model (Edelstein-Keshet [34]) 

and gives insight into the relative magnitudes of the parameters required to produce 

biologically reasonable behaviour. Also, the state variables are scaled so that they al l 

have the same order of magnitude, say between 0 and 1. This is important when solving 

the equations numerically as very different magnitudes can lead to computer round

off errors (Gerald and Wheatley [43]). In the cassava-mealybug-parasitoid system the 

6Manihot escuhnta C ran tz 
7Phenacoccus manihoti Ma t . -Fe r r . 
8 T h e larvae of a paras i to id feed on l i v i n g host tissue such that the host is not k i l l e d u n t i l l a rva l 

development is finished. 
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biomass of cassava is much larger than that of the mealybug and the parasitoid (an 

average cassava plant has a mass of about 2kg whereas the mealybug and parasitoids 

have average masses around 2mg). Scaling M i , at least, is thus v i ta l . 

Natura l scalings 9 for the state variables are given by their carrying capacities when 

resources are abundant. Gutierrez et al. [52] calculate these to be 

'BiDi 
Ki = i = 1 ,2 ,3 . 

Replacing Mi by KiMi (i=1,2,3) and t by rt* (here Ki has the dimensions of Mi and r 

the dimensions of t and hence Mi ( i=l ,2,3) and t* are dimensionless variables) transforms 

equations (4.1) into system (4.2) 1 0 . 

dMi dMx dMx dt 
dt* dMx dt dt* 

= T (OxDx (l - exp 
ax M0 

DxKxMx 
r^ExMiP Mi 

dM2 

~d~F 

dM3 

dt* 

—T ^1 — exp 

T (e2D2 (I -

— r 1 — exp 

cx2KxMx 

D2K2M2 

exp 
a2K1M1 

D2K2M2 

a3K2M2 

D3K3M3 

D3K3 
K2 

r2{K2M2)b2 M2 

M3 

r 63D3 1 - exp 
a3K2M2 

D3K3M3 

- r3(K3M3)b* M3. (4.2) 

Note that riK.\* = 6iDi. Choosing the dimensionless combinations of parameters 

ji = rOiDi i — 1 ,2 ,3 

<f>i = TOLi 2 = 2,3 

n etiKi-x 
a - = t t 1 ! = 1 ' 2 ' 3 

9 For an in t roduc t ion to nondimensional is ing systems of ordinary differential equations see [34]. 
1 0 I replaced the product #i</>r),i^aj,i by 0 \ since a l l three parameters have the same effect on the 

dynamics and, thus, do not need to be considered separately. 
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where KQ = M0, gives the nondimensionalised equations (4.3) where I have replaced Mi 

by Mi and t* by t for convenience. 

dMi 
dt 
dM2 

dt 
dM3 

dt 

7i ^ 1 - e x p 

= 7 2 ^ 1 - e x p 

= 7s ( ( 1 - exp 

"~M\ 
n2Mx 
M2 

£l3M2 

M1

0i)M1-^-[l-exp 

- M2

b* )M2-^-(l- exp 

0 2 M X 

n3 

M2 

n3M2 

Mo 

M3 

M3 

M3 

- M3

h 1 M3 (4.3) 

The choice of dimensionless parameters is not unique. Other combinations would 

have led to slightly different final equations, however the above choices lend themselves 

to biological interpretation. For example, 7 ; can be thought of as the potential per unit 

biomass growth rate [52] or as the conversion efficiency of the consumer in converting , 

the resource into biomass. fa can be thought of as the availabil ity of the resource to 

the consumer or perhaps the nutrit ional value of the resource. 0 ; is made up of a ratio 

of quantities. The numerator can be thought of as the m a x i m u m amount of resource 

available to the consumer and the denominator as the m a x i m u m demand of consumers 

for resource. More simply, Cli gives a measure of the ratio of supply to demand. The 

results in [52] are based on the relationship between fa and 7,- since r is just a scaling 

factor, and hence results using equations (4.3) are comparable with those in [52]. 

I. mentioned earlier that the parameters r,- in the original model have units which 

depend on bi. This can be prevented by replacing the terms r i M i 1 + b i wi th terms of the 

form r i M ^ Y 1 ) 6 ' where Ti has the same units as Mi. T can be thought of as a threshold 

value above which self - l imitation becomes noticeable. W i t h this modification the units 

of r,- are day-1 and rt- can be interpreted as a respiration rate as was originally intended. 

The new carrying capacities are given by 

'9 iDi 
Ti 

Ti ; 1 — 1 ,2 ,3 . 
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It can be shown that setting the K^s equal to these new values and scaling the equations 

as above results in system (4.3) once again. Thus the problems with the respiration term 

can be ignored in the rest of the analysis. 

Having scaled the equations we need to choose values for the parameters. A n ad

vantage of scaling is that there are now 11 parameters instead of the original 18. For 

comparison with the results of Gutierrez et al. [52] I wanted to find values which resulted 

in isocline configurations similar to those in their paper. X P P A U T calculates and dis

plays isoclines in two dimensions and parameter values can be altered interactively. This 

proved useful for studying the effects of the different parameters on the isoclines. Since 

the competit ion effect is very small but difficult to quantify, I followed Gutierrez (personal 

communication) and chose bi = 0.02 ( i=l ,2,3) . Values of 71 = 2.0, 72 = 0.4, 73 = 0.1, 

f i i = 9.0, O2 = 8.0, O 3 = 10.0, 4>2 — 0.4, fa = 0.05 gave the isocline configurations 

shown in figure 4.1. These isoclines have similar shapes to those in [52]. A noticeable 

difference is that the M 3 isocline intersects the M 2 isocline to the left of the M 2 - p e a k . 

In fact, using the techniques in [52] it would not have been possible to conclude that the 

tr itrophic equi l ibr ium is stable for the isocline configuration shown in figure 4.1 because 

of the position of the intersection point in the M2M3 plane. For the above parameter set 

(which I shall call the reference set) there is also a stable l imit cycle. The in i t ia l values 

of Mi, M2 and M 3 determine whether the system approaches the stable equi l ibr ium or 

the l imi t cycle. 

Biological considerations suggest that the above values for the f2; are rather high 

and that the value for fa is rather low. However, in the absence of better information 

and since this parameter set has a nontrivial , stable equi l ibr ium point, it is a convenient 

starting point. 

Before beginning an analysis of the model I would like to introduce a small mod

ification to the equations. Since the problems associated with ratio-dependent models 
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Figure 4 . 1 : Isoclines in the (a) MiM2 and (b) M2M3 planes for 7! = 2.0, j2 = 0.4, 73 = 0.1, £2i = 9.0, 

fi2 = 8.0, Q3 = 10.0, fa = 0.4, <j>3 = 0.05, and b{ - 0.02 ( i= l , 2 ,3 ) . B o t h the stable equ i l i b r i um point 

and the l i m i t cycle are shown. M3 is fixed at 0.550 in (a) and M\ is fixed at 0.602 in (b). These values 

correspond to the equ i l ib r ium point . 

mentioned in section 4 . 2 involve low population densities, it would be interesting to know 

what effects a small modification to the model, which prevents the denominators of the 

ratios from getting too close to zero, would have on the dynamics. Abrams [l] states 

that modifications to ratio-dependent models cannot be made biologically realistic be

cause the original models have no clear mechanistic derivation. However, some form of 

modification which prevents the ratios from tending to infinity may be useful for revealing 

any spurious behaviour near the axes which may result from the ratio-dependence. 

The ratios in model (4.3) have the form 

Mi ' 

The difficulties are experienced when Mi approaches zero. Add ing a constant in the 

denominator, that is replacing the ratio by 

*T*< <4'4> 
a,- + Mi 

would alleviate the problem. Although this addition may appear difficult to justify 
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biologically, Gutierrez [51] used an exponent of this form in his functional response term. 

That model is physiologically based as is the present one. 

In model (4.3) the ratio-dependent terms have the form 

n,-M,-_i-
k (1 — e x p 

Mi 
Mi (4.5) 

where k is a parameter or combination of parameters. When the exponent is small we 

have 

k (1 — exp 
Mi 

Mt « k(i-(i-9M^))Mi 

= kiliMi-x. 

In order to preserve this property when using the modified term (4.4), I replaced (4.5) 

by 

k (1 — exp ftM-i (a; + Mi) 
cii + Mi. 

where a,- is a small constant, say 0.001. The resulting equations are: 

dMx 
dt 

dM2 

~dT 

dM3 

~dT 

71 ^1 - exp 

- j £ l l - e X P 

ax + M: 

ft2Mx 

72 [1 - exp 

fa f, 

- r U 1 _ e x p 

73 (1 - exp 

a2 + M2 

n2Mx I 

a2 + M2 

VL3M2 

a3 + M3 

n3M2 1 

r - ] ) ( a 1 + M 1 ) - 7 l M 1
1 + 6 1 

(a2 + M2) 

a2 + M2) - >y2M2

1+b* 

(a3 + M3) 

a3 + M3)-73M3

1+b\ (4.6) 
a3 + M3\ 

If a t =0 (i = 1,2,3) then the above model is equivalent to system (4.3). We are now in a 

position to begin the analysis. 
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4.5 M o d e l analysis 

4.5.1 One-parameter studies 

Since a part ial qualitative analysis of the original model was done by Gutierrez et al. 

[52] but using different techniques (namely, isocline analysis), it wi l l be informative to 

compare some of the results. The choice of dimensionless parameters was done with this 

in mind . I begin the analysis by varying each parameter in turn using A U T O (through 

X P P A U T ) to see how it affects the dynamics. This wi l l be done for all the parameters 

except the 6;'s due to the observation that intraspecific competit ion at the ith trophic 

level now increases as bi decreases since Mj now lies between 0 and 1 as a result of the 

scaling. This was overlooked in the original model and can only be rectified by changing 

the formulation of the respiration term. Rather than modifying the model at this stage 

I chose instead to keep the 6,-'s fixed. (For a given value of bi respiration st i l l increases 

with biomass as required.) 

Since one of the main conclusions in Gutierrez et al. [52] concerns the relative efficacy 

of two parasitoids in controlling the cassava mealybug population, I begin by studying 

those parameters affecting the third trophic level, namely 73, (j>$ and fi3. I then discuss 

the remaining parameters. Both the original model corresponding to a t =0 (i = 1,2,3) in 

system (4.6) and the modified model with a,=0.001 (i — 1,2,3) are investigated. I chose 

this particular value for the a,-'s as it only affects the isocline configurations in figure 

4.1 at low values of the state variables which is where the difficulties are encountered. 

I also investigate a few other values. The reference values for the other parameters are 

summarised in table 4.1. The results, together with possible biological interpretations, 

are described in the next section. For generality I wi l l refer to the plant, herbivore (or 

prey) and predator biomasses rather than the cassava, mealybug and parasitoid since the 

reference parameter set was not chosen from experimental data. 
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P a r a m e t e r Descr ip t ion V a lue 
7 i potential growth rate per unit plant 2.0 
72 potential growth rate per unit herbivore 0.4 

73 potential growth rate per unit predator 0.1 
<j>2 availability of plant to herbivore 0.4 

4>3 availability of herbivore to predator 0.05 
fix supply of resources/demand by plants 9.0 

supply of plants/demand by herbivores 8.0 
supply of herbivores/demand by predators 10.0 

6i degree of self-limitation for plants 0.02 
b2 

degree of self-limitation for herbivores 0.02 
b3 

degree of self-limitation for predators 0.02 

Table 4.1: Reference parameter set. In the subsequent figures i n this chapter, on ly those parameters 

which are exp l i c i t l y ment ioned have been altered. The values for a l l the other parameters correspond to 

the ones i n this table. 

Analys is of the predator parameters 

The parameter 73 can be thought of as the potential predator biomass growth rate when 

prey are abundant, or as the predator's conversion efficiency in the presence of abundant 

prey. A n important observation is that the value of 73 does not affect the isoclines. The 

M3 zero isocline is given by = 0 and the solution of this equation is independent of 

73 (see equations (4.6)). Hence, an isocline analysis similar to that done in [52] would 

not give any insight into how this parameter influences the behaviour of the system. 

Bifurcat ion diagrams showing the effects of varying 73 for both the original model 

and the modified model are shown in figure 4.2. Mi is plotted on the y-axis. These 

diagrams were obtained using A U T O through X P P A U T . The system was first integrated 

numerically unt i l it was close to an equil ibr ium and then X P P A U T was used to find the 

exact location of the equil ibr ium point (singular point). This point was used as a starting 

point for A U T O . 

In both the diagrams in figure 4.2 the position of the equi l ibr ium point does not vary 
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F i gure 4.2: One-parameter bifurcat ion diagrams obtained by vary ing 73 i n (a) the o r ig ina l mode l 

(a;=0, i = 1,2,3) and (b) the modif ied mode l (a;=0.001, i — 1,2,3) . T h e state variable M\ is plot ted 

on the y-axes. H B denotes a H o p f bifurcat ion, LP a l i m i t point and PD a per iod-doubl ing bifurcat ion. 

with 73, which agrees with the previous observation that 73 does not affect the isocline 

configuration. However, 73 does affect the stability of the system. In both cases the 

equi l ibr ium point is unstable for very low values of 73 (low predator growth rate) and 

the stable attractor is a l imit cycle for these values. For the original model we have 

an example of hard loss of stability (see section A.2.7) so that for certain values of 73 

there are two stable at t ractors—a sink and a stable l imit cycle (such as in figure 4.1). 

The in i t ia l values of the state variables determine which final state is reached. Also, 

perturbations to the system may cause a jump from one stable attractor to the other if 

the disturbance is sufficiently large. For a very small range of 73 values there are two 

stable l imi t cycles in figure 4.2(a). The range of values is so smal l , however, that it is 

not of much biological significance. 

Observing the temporal dynamics of the system (using X P P A U T ) for different values 

of 73 I found that larger values of 73 decrease the t ime taken to reach equi l ibr ium. Thus, 

increasing 73, the potential growth rate of the predator, has a stabilising influence on the 

system. This seems biologically plausible as higher values of 73 suggest that the predator 

is better adapted to controlling its prey. It is interesting, however, that this trait does 
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not affect any of the equi l ibr ium biomasses. 

The modified model has a much smaller range of parameter values over which cycles 

occur and the amplitudes of these cycles are smaller than for the original model (see figure 

4.2). Thus, even though the a,-'s have small values, they appear to have a stabilising 

influence on the dynamics. 

Another parameter which directly affects the predator is fa, the availabil ity (or nu

tr i t ional value) of the herbivore to the predator. Bifurcation diagrams for the original 

and modified models respectively and for al l three state variables are shown in figures 

4.3 and 4.4. 

F rom these figures we can see that as fa increases there is a general increase in the Mi 

equi l ibr ium value or l imit cycle max imum. The larger fa the greater the availabil ity of 

the herbivore to the predator and the easier it is for the predator to control the herbivore. 

Obviously, the lower the herbivore population the higher the plant equi l ibr ium. As the 

Mi equi l ibr ium value approaches the Mi carrying capacity in the original model , a Hopf 

bifurcation (see section A.2.10) occurs at fa = 0.09 (see figure 4.3). The periodic orbit 

associated wi th this Hopf bifurcation undergoes a number of period-doubling bifurcations 

(see section A.2.16) which leads to more complicated cycling behaviour. A n example of 

the temporal dynamics when fa — 0.16 is shown in figure 4.5. There are two complete 

cycles in these diagrams. It is interesting that the predator dynamics are less variable 

than those of the plant and the herbivore. This cycling behaviour also contrasts with 

that described by Akcakaya et al. [3] as being biologically plausible for low herbivore and 

predator values (see section 4.2). 

As fa increases above the upper Hopf bifurcation the m i n i m a of the M2 and M% cycles 

in particular get very small (of the order of 1 0 - 1 5 and lower according to X P P A U T ' s data 

window). From a practical viewpoint these populations would be considered extinct due 

to statistical variation in which case the plant population would increase to its carrying 
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F i g u r e 4.3: One-parameter bifurcat ion diagrams obtained by vary ing <f>3 i n the o r ig ina l mode l . T h e 

state variables M\, M2 and M3 are plot ted on the y-axes i n (a), (b) and (c) respectively. O n l y the 

posi t ions of the H o p f bifurcations have been indicated. T h e changes i n s tab i l i ty of the l i m i t cycles occur 

at l i m i t points or per iod-doubl ing bifurcations but these have not been marked i n the d iagrams. 
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Figure 4.4: One-parameter bifurcation diagrams obtained by varying <f>3 in the modified model. T h e 

state variables Mi, M2 and M 3 are plotted on the y-axes in (a), (b) and (c) respectively. 



Chapter 4. Ratio-Dependent Model 76 

(a) 
1.2 

(b) 

Time 

(c) 

1-

0.8 

0.6 
M3 

0.4 

Time 

Figure 4.5: Time plots of (a) M i , (b) M 2 and (c) M 3 for <p3 = 0.16. A l l the other parameter values 
are as in the reference parameter set. 
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capacity for these values of fa. This is exactly the case for the modified model (see figure 

4.4). Thus the upper Hopf bifurcation may be an artifact of ratio-dependent models. 

This wi l l be discussed in more detail later. 

Another problem with these low m i n i m a is that they lead to numerical difficulties. 

This occurs as a result of the way in which the model is formulated—the dependence 

of many of the terms on the ratio in particular. These ratios become difficult to 

evaluate numerically as M ; approaches zero causing the ratio to tend to infinity. X P P A U T 

cannot calculate zero isoclines and crashes while A U T O often enters an infinite loop if 

such a situation arises and may crash. Setting the total number of steps for a continuation 

fairly low sometimes allows A U T O to break out of the loop and signal non-convergence. 

Manual ly stopping a continuation when one of the state variables gets very close to zero 

also prevents the package from crashing. This explains why the l imit cycles in figure 4.3 

are only calculated up to fa — 0.12. The above problems do not occur when using the 

modified model . 

It may have been noticed that 4>3 has a significant effect on the equi l ibr ium values of 

all three state variables. This is in agreement with Gutierrez et al. [52]. However, the 

way in which they arrive at this conclusion is not entirely correct. In Gutierrez et al. [52] 

it is stated that a less efficient parasitoid has a wider C-shaped M2 - isoci ine. It is true 

that if fa is decreased the M2 - isocline widens (see figures 4.6(a) and (b)). But this is 

provided that M3 is constant. If the system is integrated and M3 is allowed to vary unt i l 

a new equi l ibr ium is reached and the isoclines are plotted with this new equi l ibr ium M3 

value, then the final M2 - isocline may in fact have a narrower C-shape than before (see 

figure 4.6(c)). 

The thi rd parameter which directly affects the predator is Q 3 . It is more difficult to 

interpret this parameter biologically but it can be thought of as the ratio of the 'supply' 

of herbivore to the 'demand' of the predator when both populations are at their carrying 
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Figure 4.6: Isoclines i n the M i M 2 plane. In (a) <f>3 = 0.06 and i n (b) and (c) <f>3 = 0.05. A l l the 

other parameter values are fixed. In (a) and (b) M3 has the same value—the value corresponding to the 

stable t r i t roph ic e q u i l i b r i u m point i n (a) when <j>3 = 0.06. In (c) M3 has the value corresponding to the 

e q u i l i b r i u m point when <f>3 — 0.05. 
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capacities. Hence it reflects how l imit ing resources are to the predator. Figure 4.7 shows 

the bifurcation diagrams corresponding to the original model for all three state variables. 

For most values of fi3 there is no change in the qualitative behaviour which in this 

case is given by stable l imit cycles. Even the amplitudes of these cycles do not alter much 

although those for M 3 decline slowly as f i 3 is increased. It is only at low values of 0 3 that 

a change in dynamics occurs. It is also at these low values that D 3 has the greatest effect 

on equi l ibr ium magnitudes. Low values of tts suggest a restricted supply in relation to 

demand and are reflected in both low M2 and low M 3 equi l ibr ium values. Since there 

are relatively fewer herbivores available (in relation to predators) the predators are able 

to control them better but the lower herbivore equil ibr ium also restricts the number of 

predators that can survive. As expected, lower equil ibr ium values for M2 correspond to 

higher equi l ibr ium values for M i . 

The corresponding bifurcation diagrams for the modified model are shown in figure 

4.8. These diagrams are very similar to those in figure 4.7 except that there is a second 

Hopf bifurcation resulting in first a decline in the amplitudes of the cycles followed by 

a stable tr itrophic equi l ibr ium as ££3 is increased. Again the introduction of the a,-'s has 

had a stabilising influence on the dynamics. From figure 4.8 we can clearly see that high 

values of fi3 are, however, undesirable as the M x equi l ibr ium value is low while that for 

M2 is relatively high. 

The above analysis has shown that the properties of the predator affect the stabil ity 

of the system as well as the equil ibr ium magnitudes of the herbivore (directly) and the 

plant (indirectly). The extent of these effects depends on the properties of both the plant 

and the herbivore. In the next section the parameters affecting these lower two trophic 

levels are examined in more detail. 
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Figure 4.7: One-parameter bifurcat ion diagrams obtained by vary ing Q3 i n the o r ig ina l mode l . T h e 

state variables M\, M2 and M 3 are plot ted on the y-axes i n (a), (b) and (c) respectively. 
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Figure 4.8: One-parameter bifurcation diagrams obtained by varying ̂ 3 in the modified model. The 
state variables M i , M2 and M 3 are plotted on the y-axes in (a), (b) and (c) respectively. 
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Analysis of the plant and herbivore parameters 

The parameter (f>2 can be thought of as the availability or the nutrit ional value of the 

plant to the herbivore. The bifurcation diagrams for the original and modified models 

respectively and for Mi, M2 and M 3 are shown in figures 4.9 and 4.10. 

For both models the values of M2 and M 3 at equi l ibr ium remain constant for the most 

part as (f)2 is varied (up to a l imit ing point) while the Mi equi l ibr ium value declines. A 

possible explanation is that, due to the greater availability of the plant to the herbivore, a 

lower plant biomass can support the same biomass of herbivore at a higher <f>2 value. This 

enables the herbivore to have an even greater impact on the plant. If (f>2 is sufficiently 

high then the herbivore can send the plant population to extinction. This is suggested 

by the very low cycle min ima for the original model and is even clearer for the modified 

model where the Mi equi l ibr ium value is very low for (j>2 > 1.061 (the location of the Hopf 

bifurcation). Of course, once the plant is extinct both the herbivore and the predator are 

forced into extinction as well. This can be checked by observing the temporal dynamics of 

the system using X P P A U T for (j)2 to the right of the upper Hopf bifurcation (4>2 > 1.061) 

using the modified model. 

For the original model we again have the problem of very low cycle m i n i m a for the 

state variables. These are biologically unrealistic and cause numerical difficulties. The 

modified model does not have this problem. 

Suppose we vary 71, the assimilation or conversion efficiency of the plant when re

sources are abundant. The bifurcation diagrams are shown in figure 4.11. Comparing 

these diagrams with figures 4.9 and 4.10 we see that they are almost mirror images. 

That is, decreasing 71 has a very similar effect to increasing <f>2. Both parameters can be 

thought of as affecting the resistance of the plant to the herbivore. Decreasing 71 lowers 

the quality of the plant as it cannot convert resources as effectively. As a result the 
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F i g u r e 4.9: One-parameter bifurcat ion diagrams showing the effects of va ry ing <f>2 for the o r ig ina l 

mode l . T h e state variables M i , M 2 and M 3 are plot ted on the y-axes i n (a), (b) and (c) respectively. 
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Figure 4 .10: One-parameter bifurcation diagrams showing the effects of varying fa for the modified 
model. The state variables Mi, M2 and M 3 are plotted on the y-axes in (a), (b) and (c) respectively. 
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(a) 

M i 

(b) 

M i 

Figure 4.11: One-parameter bifurcat ion diagrams showing the effects of va ry ing 71 for (a) the o r ig ina l 

mode l and (b) the modif ied mode l . T h e state variable M i is p lo t ted on the y-axes. T h e l i m i t points 

( L P ) m a r k the endpoints of the region of hysteresis (see section A.2.11). 

detrimental effect of the herbivore on the plant is greater. Increasing fa, the availabil 

ity (nutrit ional value) of the plant to the herbivore, achieves the same result but more 

directly. 

We can generate two-parameter diagrams in ( 7 i , 0 2 ) - s p a c e by continuing the l imit 

points and the Hopf bifurcations in two parameters (see sections A .2 .1 and B.4). The 

results are shown in figure 4.12—sol id lines indicate Hopf bifurcation continuations and 

dotted lines indicate l imit point continuations. These diagrams show clearly that decreas

ing 0 2 or increasing 7 1 has a similar effect and that there is a transition between different 

types of qualitative behaviour as the region enclosed by the l imit point continuations is 

crossed. 

Part of this result could have been predicted from [52] since they note that it is the 

ratio of 7 1 and fa that determines the nature of the plant isocline. We thus expect this 

inverse relationship. However, the one-parameter bifurcation diagrams have given us the 

additional information that for certain parameter ranges l imit cycles and/or mult iple 

stable states are possible. Both these phenomena are important biologically. 

We can make a number of observations by comparing figures 4.12(a) and (b). F i rst , 
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F i g u r e 4.12: Two-parameter bifurcat ion diagrams showing the effects of va ry ing bo th 71 and fa on the 

posi t ions of the l i m i t points and H o p f bifurcations i n figure 4.11. T h e d iag ram i n (a) corresponds to the 

or ig ina l m o d e l and that i n (b) to the modif ied mode l . So l id lines indicate H o p f b i furcat ion continuat ions 

and dotted lines indicate l i m i t point continuations. 
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whereas in (a) A U T O could not calculate beyond the point denoted by M X , this problem 

does not occur in (b). A closer investigation reveals that the equi l ibr ium values for the 

state variables are close to zero in the upper left triangle of the two-parameter space 

and this results in numerical problems when using the original model. X P P A U T also 

has difficulty calculating zero isoclines in this region and often crashes. However, figure 

4.12(b) gives a more complete picture of the dynamics. There are three distinct regions 

in this diagram two of which correspond to stable tr itrophic equil ibria while stable cycles 

occur in the other. One of the regions of stable equil ibria has high equi l ibr ium values of 

M i but the other has low equil ibr ium values—an important distinction ecologically. 

The parameters 72 and fa also appear to have inverse effects if we compare the average 

of the cycle m a x i m a and min ima when 72 and <j)3 are varied independently (compare 

figures 4.3, 4.4 and 4.13). We can investigate this relationship in more detail by continuing 

the Hopf bifurcations in figure 4.13 in fa as well as 72. The results are shown in figure 

4.14. 

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 

72 72 

Figure 4.13: One-parameter bifurcation diagrams showing the effects of varying 72 for (a) the original 
model and (b) the modified model. 

Again , in general decreasing fa has a similar effect to increasing 72. However there 

are a few more Hopf bifurcations associated with these parameters. A U T O stops at the 
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Figure 4.14: Two-parameter bifurcation diagrams showing the effects of vary ing bo th and <p3 on 

the posi t ions of the H o p f bifurcations in figure 4.13. 
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point marked M X when using the original model since the equi l ibr ium values for M 2 and 

M 3 are very small here. The complete continuation is shown in figure 4.14(b) using the 

modified model. B y comparing the two diagrams in figure 4.14 it can be seen that the 

dynamics for the modified model, while very similar to those for the original model , are 

more stable in general. The regions corresponding to tr itrophic equil ibria are larger and 

the cycles in the upper half of the two-parameter space are less complex. These claims 

are made clearer in figures 4.15 and 4.16. 

0.3 

0.2 

</>3 

0.1 

0 

0 0.5 1 1.5 2 2.5 
72 

Figure 4.15: Two-parameter bifurcation diagram of the Hopf bifurcation continuations in (72,</>3)-space 
for the modified model with a;=0.002 (i = 1,2, 3). 

Figure 4.15 shows the (72,</>3)-space for the modified model with a t =0.002 [i = 1,2,3) . 

The regions of stable equil ibria are even larger than in figure 4.14(b) resulting in smaller 

regions of cycles. The presence of the a,-'s seems to have a stabilising effect on the 

dynamics of the system. 
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(a) 

Time Time 

Figure 4.16: T i m e plots corresponding to the points marked with *'s in figures 4.14(a), 4.14(b) and 
4.15. (a) These plots were obtained using the original model with (i) 72=0.4, <^>3=0.15 and (ii) -y 2=0-4, 

(^3=0.3. (b) These plots were obtained using the modified model with ai=0.001 (i = 1,2,3) and (i) 
72=0.7, ^3=0 .15 and (ii) 72=0.7, </>3=0.3. (c) These plots were obtained using the modified model with 
a«=0.002 (i = 1,2,3) and (i) 7 2=0.8, <p3=0.2 and (ii) 72=0.8, <^3=0.3. 
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Figure 4.16 shows the t ime plots corresponding to points marked with *'s in the left-

hand section of the upper region of cycles in figures 4.14(a),(b) and 4.15. The left -hand 

portion of this region is where the values of M2 and M 3 are low and, hence, where the 

nonzero a 8 's have most effect. Clearly nonzero a,-'s reduce the complexity of the cycles 

(even for very small values) and increasing their value also reduces the cycle amplitude. 

A n addit ional point to note is that the cycles for the original model (a,=0, i — 1,2,3) 

undergo long periods of extremely low values which is unrealistic f rom an ecological 

viewpoint. 

The only parameters that have not been discussed so far are f i i and fl2. B i furca

t ion diagrams corresponding to O i are shown in figure 4.17. Only the diagrams for Mi 

( a ) 

Mi 

(b) 

Mi 

10 20 30 40 50 10 20 30 40 50 

fli 

Figure 4.17: One-parameter bifurcat ion diagrams showing the effects of va ry ing fli for (a) the o r ig ina l 

mode l and (b) the modif ied mode l . T h e state variable Mi is p lot ted on the y-axes. 

have been shown but those for M2 and M3 have the same shape—the carrying capacity 

equil ibria are however different. As can be seen from figure 4.17, in both cases fli does 

not affect the stabil ity of the equi l ibr ium point and only affects equi l ibr ium magnitudes 

when it drops to low values. 

Similar conclusions can be made regarding ft2 (see figure 4.18) except that at low Q2 

values there is a change in dynamics to stable l imit cycles for both models although the 
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range of parameter values giving rise to cycles is slightly smaller for the modified model . 

4 . 5 . 2 C o m b i n i n g p l a n t a n d h e r b i v o r e d y n a m i c s 

In the previous section it was seen that 71, fa, 72 and $3 all have significant effects on 

the dynamics of the model. The former two parameters determine the properties of the 

plant and the latter two the properties of the herbivore. The two-parameter diagrams 

in figures 4.12 and 4.14 thus summarise the effects of the plant and herbivore trophic 

levels respectively provided that the dynamics of the other trophic levels are constant. It 

would be interesting to know how the behaviour of the model changes as both the plant 

and the herbivore dynamics are altered. This is the focus of the present section. The 

modified model wi th a;=0.00T, (i = 1,2,3) is used to investigate the interaction of the 

two trophic levels as this model allows a more complete picture of the dynamics to be 

obtained than the original model. 

Figure 4.12 shows that increasing 7 l or decreasing fa has a similar effect. Generating 

two-parameter diagrams of the (72,^3)-space for different (fixed) values of one of these 
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plant parameters, say 71, wi l l thus give an idea of the combined effects of the plant and 

herbivore. Figures 4.19, 4.20, 4.21, 4.22 and 4.23 show the Hopf bifurcation and l imi t 

point continuations for five values of 71, namely 71 = 0.4, 0.6, 1.2, 1.8 and 2.4. Figure 

4.14(b) corresponds to 71 = 2.0 and can be viewed in conjunction with these diagrams. 

As can be seen from these diagrams, altering 71 affects the shape and/or the position of 

the Hopf bifurcation continuations (solid lines) and the l imit point continuations (dotted 

lines). Let us consider the l imit point continuations first. Figures 4.24(a), (b) and (c) 

show one-parameter bifurcation diagrams obtained by varying 72 wi th 71 = 0.4 and 

<f>3 = 0.07, 0.17 and 0.25 respectively. These diagrams correspond to the horizontal 

dotted lines in figure 4.19. The l imit points in these diagrams demarcate the region of 

hysteresis, that is, the range of parameter values giving rise to mult iple equil ibria. We 

can see that this range of values increases as <f>3 increases. 

The existence of a hysteresis phenomenon does not imply the existence of two stable 

equil ibria. This depends on other factors such as the occurrence of Hopf bifurcations. In 

figure 4.24(a) there are two stable equil ibria for 72 between the two l imi t points (0.18 < 

72 < 0.30). One of these stable equil ibria corresponds to a low equi l ibr ium Mi value 

and the other to a high equi l ibr ium Mi value. The unstable equi l ibr ium intermediate to 

these stable equil ibr ia demarcates their domains of attraction and indicates the extent of 

the perturbation (in terms of Mi) required to move the system from one stable attractor 

to the other (refer to section A.2.11). In figures 4.24(b) and (c) the region of two stable 

equil ibria occurs between the lower l imit point and the Hopf bifurcation on the upper 

branch of equil ibr ia (0.41 < 72 < 0.57 in (b) and 0.60 < 72 < 0.65 in (c)). 

Col lat ing the information obtained from figure 4.24 allows us to classify the different 

regions in figure 4.19 according to the qualitative behaviour that is found there. That is, 

the region enclosed by the l imit point continuations (region of hysteresis) can be divided 

into a region of two stable equil ibria and a region of only one stable equi l ibr ium having a 
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Figure 4.19: Two-parameter bifurcat ion d iagram obtained using the modif ied mode l w i t h a ,=0.001, 

(i = 1, 2, 3) and 71 = 0.4. T h e H o p f bifurcat ion continuations are indica ted by sol id lines and the l i m i t 

poin t cont inuat ions by dotted lines. 
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Figure 4.20: Two-parameter bifurcat ion d iag ram obtained using the modif ied mode l w i t h 0^=0.001, 

(i = 1, 2, 3) and 71 = 0.6. T h e H o p f bifurcat ion continuations are indicated by so l id lines and the l i m i t 

point cont inuat ions by dotted lines. 
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Figure 4 .21 : Two-parameter bifurcat ion d iagram obtained using the modif ied mode l w i t h a t =0.001 , 

(i = 1, 2, 3) and 71 = 1.2. T h e H o p f bifurcat ion continuations are indica ted by sol id lines and the l i m i t 

point cont inuat ions by dotted lines. 
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Figure 4 . 2 2 : Two-parameter bifurcation d iagram obtained using the modified model wi th a ,=0.001, 

(i = 1,2,3) and ji = 1.8. T h e H o p f bifurcation continuations are indicated by solid lines and the l i m i t 

point cont inuat ions by dotted lines. 
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Figure 4.23: Two-parameter bifurcation d iagram obtained using the modified mode l w i t h a;=0.001, 

(i = 1,2,3) and 71 = 2.4. T h e Hopf bifurcation continuations are indicated by sol id lines and the l i m i t 

point cont inuat ions by dotted lines. 
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F i g u r e 4 . 2 4 : One-parameter bifurcat ion diagrams obtained by vary ing 72 w i t h 71 = 0.4 and 

(a) <f>3 = 0.07, (b) c/>3 = 0.17 and (c) ^3 = 0.25. (These correspond to the hor izonta l dot ted lines 

i n figure 4.19.) 
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low value for Mi. The regions outside the l imit point continuations have one equi l ibr ium 

point and it is stable. Those to the left of the hysteresis region have high equi l ibr ium Mi 

values and those to the right have low equil ibr ium Mi values. 

The diagrams in figures 4.20-4.23 can also be divided into different qualitative regions 

using information from one-parameter studies. In these two-parameter diagrams the Hopf 

bifurcation continuations are not contained within the l imit point continuations. The 

one-parameter bifurcation diagram in figure 4.25 corresponds to the horizontal dotted 

line in figure 4.21 (that is, 71 = 1.2 and fa = 0.2). In this case there are no parameter 

combinations which give rise to two stable equilibria but there is a region of stable l imit 

cycles. Starting at 72 = 1.5, as 72 is decreased we have a single stable equi l ibr ium 

wi th a low Mi value. A t the (lower) Hopf bifurcation this stable equi l ibr ium is replaced 

by stable l imit cycles which increase in amplitude as 72 is decreased. As the upper 

Hopf bifurcation is approached the cycles undergo some period-doubling bifurcations 

and then rapidly decrease in amplitude. Due to a hard loss of stabil ity associated with 

this upper Hopf bifurcation, the region of stable cycles extends just beyond the Hopf 

bifurcation point creating a very small parameter range where both a stable equi l ibr ium 

and stable cycles are present. This occurs near the upper Hopf bifurcation for the other 

two-parameter diagrams too but the regions are very small and have not been marked. 

Figure 4.25 shows which values of 72 give rise to stable l imi t cycles when ^3 = 0.2. 

Using this information together with results obtained from one-parameter diagrams at 

different fixed values of fa allows us to determine the regions in figure 4.21 which give 

rise to stable cycles. Such regions also occur in figures 4.20, 4.22 and 4.23. Al though 

figure 4.19 contains Hopf bifurcations, the cycles associated with them are unstable (see, 

for example, figure 4.24) and occur over such a small parameter range that they are not 

of much biological interest. 

Having classified the qualitative dynamics in the various regions of the two-parameter 
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Figure 4.25: One-parameter bifurcat ion d iagram obtained by vary ing 72 w i t h 71 = 1.2 and <f>3 = 0.2. 

(Th i s corresponds to the hor izonta l dot ted l ine i n figure 4.21.) 

diagrams in figures 4.19-4.23 we can make a number of general observations. F i rst , as 71 

increases the l imi t point continuation curves move closer together unt i l in figure 4.23 there 

are no l imi t points at al l . Hence, increasing 71 reduces the amount of hysteresis and the 

possibility of mult ip le stable states. Also, the positions of the l imi t point continuations 

in two-parameter space change as 71 is increased resulting in relatively smaller regions 

of low M\ equi l ibr ium values. Since higher 71 values correspond to faster plant growth 

rates this is not surprising. 

We have seen that stable cycles occur for higher values of 71 (figures 4.20-4.23). 

Comparing these diagrams we can see that increasing 71 increases the area of the upper 

region of stable cycles thereby increasing the probability of finding cycles for a random 

choice of 72 and fa within the given two-parameter space. This occurs unt i l 71 = 1.8. For 

larger values of 71 this upper region of cycles does not change position or shape (compare 

figures 4.14(b) and 4.23). There is also a second, smaller region of cycles which can be 

seen in figures 4.21-4.23. The size of this region first increases and then decreases unt i l , 

for sufficiently high 71 values, it ceases to exist. 
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We know that higher 71 values correspond to a faster plant growth rate and also that 

the herbivore population, and hence the predator population, depend on the availabil ity 

of plants for survival. From the above observations we can deduce that when plant 

resources are l imited (at low values of 71) the potential for having two stable equi l ibr ia is 

greater and the region corresponding to low M i equi l ibr ium values is larger. When plant 

resources are not as restricted (at higher values of 71) there is a greater chance of stable 

population cycles but less chance of metastability (multiple stable states). For 71 > 2 

two-parameter diagrams of (72,</>3)-space are very similar for all values of 71 (only the 

lower region of cycles decreases in area) suggesting that the system is no longer l imited 

by plant availability. Herbivore properties (as determined by 72 and ^ 3 ) have a greater 

influence on the behaviour of the system at these values of 71. 

In particular the properties of the herbivore determine whether stable cycling be

haviour or a stable equi l ibr ium occurs as well as the magnitude of the plant biomass at 

the equi l ibr ium. Low values of fa (the availability or nutrit ional value of the herbivore 

to the predator) together with high values of 72 (the potential growth rate of herbivore 

biomass) are particularly detrimental to the plant while the reverse situation allows the 

plant to maintain fairly high biomasses. A t intermediate values of these parameters 

population"cycles may occur provided the value of fa is sufficiently high. 

The preceding analysis has made use of various dynamical systems techniques to help 

us gain insight into the behaviour of the model. In the next section I discuss the results 

that can be obtained using a zero isocline analysis—the method used by Gutierrez et al. 

[52]. 

4 . 5 . 3 The role played by the isocline configurations 

From their isocline analysis of model (4.1) Gutierrez et al. [52] conclude that the par-

asitoid E. lopezi could control the cassava mealybug while E. diversicornis could not. 
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However, wi th three state variables all having similar t ime scales, these deductions are 

not as straightforward as they may seem. 

F i rst , the equi l ibr ium isocline configuration in the MiM2 (M2M3) phase plane depends 

on the value of M 3 ( M i ) as well as on the parameter values. This was shown in figure 4.6. 

Thus, noting how an isocline changes as a parameter is varied does not give a complete 

picture. Secondly, it is not possible to tell from the qualitative structure of the isoclines 

which intersection point in the M\M2 plane corresponds to a tr itrophic equi l ibr ium. 

Figure 4.26 shows three possibilities. Two of these (namely, (b) and (c)) appear in [52] 

but it was assumed that the equil ibr ium point in (b) was unstable. 

Even if the exact position of the equil ibr ium point is known, it is not possible to tel l 

from the qualitative structure of the isoclines whether this point is stable or unstable and 

whether or not l imi t cycles occur. For example, although altering the parameter 73 has 

no effect on the isoclines, low values of 73 give rise to unstable fixed points and stable 

l imit cycles and high values to a stable equil ibr ium (see figure 4.2). Thus, numerical 

computation is needed to determine the exact location as well as the local stabil i ty of an 

equi l ibr ium point for the current model. 

The isocline configuration obviously has some effect on the behaviour of the system. 

Figure 4.27 shows the basic configurations for different points in figure 4.12(b). The 

qualitative structure of the isoclines changes as the diagonal lines (corresponding to a 

Hopf bifurcation and two l imit point continuations) are crossed. In general, it is the 

proximity of the tr itrophic equil ibr ium point to the peaks of the M\ and M2 isoclines in 

the M\M2 and M2M3 planes respectively that is important for determining the robustness 

of model behaviour with respect to parameter perturbations. If the equi l ibr ium point is 

close to one of these peaks (as is the case near the diagonal lines in figure 4.27) then a 

small parameter perturbation may change the qualitative structure of the isoclines and 

hence the dynamics. However, to obtain this information the exact equi l ibr ium isocline 
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Figure 4.26: Examples of isocline configurations showing different possibi l i t ies for the pos i t ion of the 

t r i t roph ic e q u i l i b r i u m . 
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configuration for a given set of parameter values needs to be known. 

0 1 2 3 4 

7i 

Figure 4.27: Examples of isocline configurations at different points in (71 ,<?!>2)-space. 

B y inference the above criticisms have all noted that if the exact positions of the 

isoclines and the tritrophic equil ibrium were known in both phase planes, then we could 

obtain a fair amount of information from them. Using X P P A U T this is possible. In 

particular we can study the effects of introducing nonzero values for the a,-'s. Figure 4.28 

shows the results obtained using the reference parameter set for model (4.6) with a,- = 0, 

a; = 0.001 and a, = 0.005 (i = 1,2,3) . 

Comparing figures 4.28(a) and (b) we can see that introducing the a;'s prevents the 

M\ and M2 isoclines from passing through the origin. Hence the equi l ibr ium values for the 

state variables do not approach zero as rapidly as for the original model and the modified 

model is more robust to parameter variations in this region of low biomasses. Increasing 

the aj's from 0.001 to 0.005 reduces the humped shape of the M\ and M2 isoclines. 
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Figure 4.28: Isocline configurations for mode l (4.6) w i t h (a) aj = 0, (b) a< = 0.001 and (c) az- = 0.005 

(z = 1,2,3) together w i t h the reference parameter set. 
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The result is an even more robust model. The stabilising influence of increasing the 

values of the aj's is i l lustrated by the bifurcation diagrams in figure 4.29 corresponding 

to a; = 0.005 (i = 1,2,3) . No regions of cycling behaviour are encountered. Since 

values of 0.005 are st i l l smal l , this suggests that the model is structurally unstable and 

hence predictions from ratio-dependent models should be treated with caution. 

Another consequence of introducing nonzero aj's is that we no longer get abrupt 

changes in the qualitative shapes of the isoclines. Consider the plant isocline. For 

7 i < 4>2 the plant isocline has the hump shape shown in figure 4.30(a)(i). If one or 

both of these parameter values is altered so that the inequality is reversed, we get the 

asymptotic isocline in figure 4.30(a)(ii). Using the modified model this abrupt change 

does not occur. Instead there is a gradual change from the cubic curve in figure 4.30(b) (i) 

to the asymptotic curve in figure 4.30(b)(ii). The same applies to the herbivore isocline 

in the M2M3 plane. 

4.6 C o n c l u s i o n 

In this chapter a part ial analysis of a tritrophic ratio-dependent model has been done. 

Large differences in the magnitudes of the state variables and uncertainty regarding the 

relative magnitudes of parameter values necessitated a scaling of the equations. This also 

reduced the number of parameters in the model. 

The bifurcation analysis revealed a number of cases of mult iple stable states. Many 

of these phenomena occur over very small parameter ranges and are therefore not of 

much biological interest. However, those occurring over larger ranges are important as 

they indicate the potential for sudden behavioural changes if the system is perturbed 

sufficiently. Many of the instances of mult iple stable states arise from a hard loss of 

stabil ity associated with a Hopf bifurcation. This means that a stable equi l ibr ium and 
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Figure 4 . 2 9 : One-parameter bifurcat ion diagrams when a; = 0.005 (i = 1 ,2 ,3) . 
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a stable l imit cycle can coexist for a given set of parameter values. If a parameter is 

varied (as conditions alter), there may be an abrupt change between l imi t cycles of large 

amplitude and a stable equi l ibr ium. A point worth noting is that if the Hopf bifurcation 

associated with the l imit cycles had been studied analytically, the algebra required to 

identify the hard loss of stability would have been very t ime-consuming and possibly 

too difficult to do by hand. Only the in i t ia l unstable cycles would have been located. 

Computers are invaluable in such circumstances. 

A l l the parameters were found to affect the dynamics of the model to some extent 

although the parameter ratios ^ and ^ n a c [ t n e m o s t significant effect. This is in 

general agreement with Gutierrez et al. [52] (in terms of their model the ratios and 

^j^ 2 - were found to be important) although they did not explicit ly describe these effects 

as was done in this study using bifurcation diagrams. In particular the two-parameter 

diagrams summarise the effects of the plant and the herbivore properties on the behaviour 

of the system. Both trophic levels affect the magnitude of M i at equi l ibr ium, whether or 

not cycles occur, and the period and amplitude of these cycles. The consequences of a 

slowly growing plant were also shown, namely smaller regions of cycling behaviour, lower 

equi l ibr ium M i values and larger regions of mult iple stable states. 

It may seem that predator dynamics are not as important as those for the lower 

two trophic levels. However, it should be noted that increasing 73, the efficiency of the 

predator, can stabilise an oscillating system. The parameters affecting predator dynamics 

also affect the equi l ibr ium biomasses. 

In the course of the analysis some previously noted criticisms of ratio-dependent mod

els were highlighted as they caused numerical difficulties and biological implausibil it ies. 

In particular, such models are not valid when a state variable which occurs in the de

nominator of a ratio approaches zero (that is, as a population approaches extinction) 

since a small perturbation to the model alters the dynamics in this region. This was 
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shown using a modification to the ratio-dependent terms. Whi le this modif ication had 

very l i t t le effect on the dynamics for parameter values corresponding to reasonable equi

l ib r ium values of the state variables (provided the a,'s were sufficiently small ) , it did 

remove the numerical problems which occurred when one or more of the state variables 

approached zero (causing one or more ratios to tend to infinity). It also revealed that 

the ratio-dependence causes complex dynamics in regions where the state variables are 

small . Even the addition of very small terms (a,- = 0.001) reduced the complexity of 

the cycles. The above results support the argument that ratio-dependent models exhibit 

pathological behaviour and that they are not valid near the axes. Thus they cannot be 

used to study extinction or situations where one of the state variables attains low values. 

However, the model by Gutierrez et al . (1994) that has been analysed in this chapter 

is a biological control model whose a im is to suggest what k ind of predator can keep 

herbivore numbers low. 

F inal ly , the zero isocline configurations in the M\M2 and M2M3 planes were inves

tigated and some l imitations of the three-dimensional setting were discussed. In order 

to obtain useful information from the isoclines their exact equi l ibr ium positions need 

to be determined so that the position and nature of the tr itrophic equi l ibr ium and its 

proximity to the isocline peaks can be found. 

Uncertainty regarding the parameter values for this model for a particular ecological 

system makes it difficult to interpret the results biologically except in a very general 

sense. However, it is informative to see the kind of behaviour that the model can exhibit 

and the effects of ratio-dependence. It would be easy to apply the results and perform 

the same type of analysis if more accurate parameter values were obtained. 



Chapter 5 

Population Genetics Model I 

5.1 Introduction 

So far only continuous-time models have been considered. In the remaining chapters we 

wi l l look at discrete-time models. The model in this chapter is a population genetics 

one in which both population size and gene frequency are state variables. It is a single 

locus, two allele model with density-dependent fitness functions and it has already been 

studied in Asmussen [8] and Namkoong et al. [93]. Although the model equations are 

fairly simple, interesting dynamics arise as a result of the discreteness. No new theoretical 

results are obtained in this study but the dynamical systems techniques prove useful in a 

number of ways: first, the theoretical results are demonstrated fairly easily and without 

having to struggle with the mathematical details. The dynamical systems techniques also 

provide a more systematic way of locating different kinds of behaviour when theoretical 

predictions are not possible or too difficult to obtain. Previous studies have tested various 

parameter combinations numerically using tr ial and error to try and locate the desired 

dynamics. In addit ion, while the theoretical results note the existence of various types of 

qualitative behaviour, they do not give information regarding the extents of the regions 

in parameter space corresponding to these dynamics. In other words, they indicate the 

possibility of a certain type of behaviour occurring but not the relative frequency of 

occurrence. The latter information is important from an ecological perspective as it 

influences the amount of attention that is given to various possibilities. It wi l l be shown 

112 



Chapter 5. Population Genetics Model I 113 

that bifurcation diagrams (two-parameter ones in particular) can be useful for indicating 

the sizes of regions in parameter space corresponding to various types of behaviour. 

Another useful result is the location of stable polymorphic period-2 cycles. It is 

very difficult to predict the existence of these cycles intuit ively or analytical ly as the 

bifurcation point at which they are init iated does not coincide with changes in the relative 

carrying capacities of the genotypes. Also, the period-2 cycle is ini t ial ly unstable and 

a further bifurcation is required before it becomes stable. Numerical techniques are 

indispensable in such situations. 

I begin in the next section with a list of new terminology that is used in this chapter 

as well as in chapter 6. I then summarise some background information on population 

genetics models and the main theoretical results relating to the particular model that 

is studied in the rest of the chapter. Section 5.4 describes the model equations and is 

followed by the model analysis. The focus in the latter section is on cycling or periodic 

behaviour as this behaviour is the most difficult to study by hand. The analysis begins 

with one-parameter studies which investigate the effects of altering relative carrying 

capacities. A two-parameter bifurcation diagram is then obtained. This diagram divides 

the two-parameter space into regions corresponding to different qualitative behaviour. 

The region of stable period-2 polymorphisms is larger than that for stable polymorphic 

equil ibr ia for the particular case studied and intersects regions of heterozygote inferiority, 

superiority as well as regions of partial dominance. Final ly , section 5.5.4 studies higher 

period cycles. Polymorphic period-4 cycles are found but only for high genotypic growth 

rates. Of greater interest is the observation that the relative carrying capacities of the 

genotypes determine the location of attractors (boundary or interior) while the growth 

rates of the genotypes are responsible for the type of attractor (equil ibrium or periodic 

cycle). Questions for further study are included in the conclusion. 
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5.2 N e w terminology 

Some new terminology is required in this chapter as well as in chapter 6 to explain both 

the discrete dynamics and the biological significance of the results. 

• pe r iod -k cycle or orbit : For discrete models we do not get l imi t cycles as in 

the continuous case. However, the values of the state variables may oscillate in 

a repetitive manner. If there are k points which are repeated then we refer to a 

period-k cycle or orbit. A period-1 point is the same as an equi l ibr ium point (see 

section A.2.6) . For further details on discrete models refer to section A .3 .5 . 

• per iod -k sink: This is a period-k cycle which is locally stable (see sections A.2.14 

and A.2.21). P e r i o d - k saddles and sources are period-k cycles which are locally 

unstable (see sections A.2.20 and A.2.23). 

• gene frequency: This is the number of gametes or individuals carrying a particular 

allele divided by the total number of gametes. 

• genotype: Suppose we have two alleles, A\ and A2. Then there are three possible 

genotypes: A\A\, A\A2 and A2A2. 

• fitness: The fitness of a genotype is the contribution that it makes to the next 

generation's gene pool, that is, it is a measure of the successful survival and repro

duction of that genotype [110]. 

• homozygote: The genotypes A-^Ai and A2A2 are homozygotes. 

• heterozygote: The genotype A\A2 is a heterozygote. 

• fixed or homomorphic equi l ib r ium: This is an equi l ibr ium point at which only 

one allele is present, that is, at which only a homozygote is present. 
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• polymorphic equilibrium: This is an equil ibr ium point where more than one 

allele is present, that is, where a heterozygote is present. 

• carrying capacity: This refers to the equi l ibr ium population density correspond

ing to a particular genotype when only that genotype is present. It is denoted by 

K{j for the genotype AiAj in this thesis. 

• heterozygote superiority: Heterozygote superiority or overdominance occurs 

when the heterozygote's carrying capacity is greater than those for the homozy-

gotes, that is K\2 > K\\,K22 for the case of two alleles. Heterozygote inferiority 

or underdominance refers to the situation when the inequality is reversed. 

• partial dominance: This refers to the situation where the heterozygote is neither 

superior nor inferior, that is, Kn < Ki2 < K22 or K22 < K12 < K\i for the case of 

two alleles. 

5.3 Background 

In the past the theories of population dynamics and population genetics were considered 

to be separate pursuits since it was thought that evolution by natural selection proceeded 

on a much longer t ime scale than changes in population size (Roughgarden [104]). How

ever, once it was realised that gene substitution could occur in the same length of t ime 

as that needed by a population to reach an equi l ibr ium, the dangers of this separation 

were acknowledged. Since the late 1960's a number of models in which both population 

size and gene frequency are variables have been studied. The classical one locus, two 

allele selection models in this category used constant viabilities for the genes and pre

dicted monotonic population convergence to a unique stable equi l ibr ium (Asmussen [8]). 

However, incorporating density-dependent selection can have a dramatic effect on the 
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dynamics—both regular and chaotic cycles can arise. 

Studies of the effects of density-dependence for discrete generation organisms can be 

found in [8, 9, 93, 104]. In particular, Asmussen and Feldman [9] and Asmussen [8] show 

that in such situations local stabil ity analyses may be inadequate to explain the global 

behaviour related to changes in gene frequency and population size. In addit ion to fixed 

and polymorphic stable equil ibria, Asmussen [8] found regular and chaotic cycles when 

using monotone decreasing density-dependent fitness functions. In certain situations 

equil ibr ia and cycles exist simultaneously. Asmussen [8] also shows that stable periodic 

polymorphisms may occur in the absence of heterozygote superior i ty—the latter condi

t ion being necessary for polymorphic equil ibria when strictly decreasing fitness functions 

are used. In fact, using the same model Namkoong et al. [93] demonstrate the existence 

of an attracting polymorphic period-2 cycle for a case of heterozygote inferiority. Thus, 

overdominance in heterozygote carrying capacity is not necessary for the maintenance of 

genetic variation. Another important conclusion by Asmussen [8] is that an inherently 

stable genetic system can exert a stabilising influence on a model , allowing stable equi

l ibr ia and stable l imi t cycles to persist for higher growth rates than would be possible 

with the model's purely ecological counterpart. 

The above conclusions were arrived at analytically for linear (logistic) monotone de

creasing fitness functions. However, when the density-dependence is modelled using ex

ponential fitness functions, Asmussen [8] comments that the mathematics becomes very 

difficult. Numerical solutions then become necessary. In [8, 93] it is also noted that when 

more complex, higher order behaviour (such as a cycle) is present, intuit ion and local 

stabil ity analyses break down. Again numerical techniques are required. 
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5.4 Model equations 

Suppose we have a single population and two alleles, A± and A?. A t t ime t the population 

size is denoted by Nt and the frequency of allele A\ is denoted by pt. The fitness of 

genotype A{Aj = 1,2) at t ime t is denoted by w\-. The marginal fitness of Ai is thus 

™\ = PMI + ( i - Pt)«4 (*' = 1>2) 

and the mean population fitness is 

wt = ptw\ + (1 - p t)w 

Differences in fitness among genotypes may be interpreted as the result of different re

sponses to ecological pressures. Following Asmussen [8] and Namkoong et al. [93] expo

nential density-dependent fitness functions of the form 

w ,•• = exp(a,j - bijNt) a;j,6,j > 0, i,j = 1,2 (5.1) 

are used in this chapter. Such monotone decreasing functions of population density are 

often used to model the detrimental effects of population crowding [110]. 

If Hardy-Weinberg frequencies are assumed at each time t, then the recursion equa

tions for p and N are: 

w\ 
Pt+i = Pt — 

wl 

Nt+1 = w*Nt (5.2) 

where the region of practical significance is 0 < p < 1, N > 0. W i t h the above equations 

the carrying capacity for genotype AiAj acting alone is given by 

K • = ^ 

For a more detailed description of the model see Namkoong et al. [93]. 
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In studying this model I wi l l be looking for attracting boundaries at p = 0 or p = 1, 

interior (polymorphic) equil ibria having 0 < p < 1, period-2 and also higher period sta

ble orbits. Att ract ing boundaries correspond to situations where one allele survives at 

the expense of the other, while at interior attractors both alleles persist thus maintain 

ing genetic diversity. Other phenomena of importance are the extents of the domains 

of attraction corresponding to the stable phenomena (see section A.2.5) and the associ

ated relative carrying capacities of the homozygotes and heterozygote. The methods of 

analysis and the results are discussed in the next section. 

5 . 5 Model analysis 

5 . 5 . 1 Approach 

Equi l ib r ia and their associated stability properties have been studied analytical ly for 

models such as the one described above. These theoretical results help predict the condi

tions under which stable equil ibria can be expected (see, for example, [8, 104]). However, 

periodic dynamics (particularly polymorphic cycles) are more difficult to study [8, 93]. 

I chose to concentrate on these more difficult phenomena to demonstrate the ut i l i ty of 

the available software. I used D S T O O L to solve the system over t ime and to gener

ate starting points for A U T O . The bifurcation diagrams were obtained using Interactive 

A U T O . The A U T O interface in X P P A U T is not yet set up to deal with discrete systems 

of equations. I used fairly small stepsizes when generating bifurcation diagrams for this 

model (ds=0.0001 and dsmax between 0.001 and 0.01) as the changes in behaviour occur 

over small parameter ranges. 

Namkoong et al. [93] state that alleles that affect seedling survival can increase car

rying capacity and simultaneously destabilise population growth dynamics. This can be 

simulated by choosing a n > 2.0 so as to force the AiA\ genotypes to exhibit unstable 
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growth if they grow as a purely homozygous population. In order to investigate the effects 

of altering relative carrying capacities, I begin by setting a n = 2.1, a 1 2 = 1.9, a 2 2 = 1-1, 

fen = 1.0, fei2 = 0.904 and varying fe22. The results agree with those in [93]. I then go on 

to determine the effects of simultaneously varying the heterozygote parameter, fei2, by 

generating a two-parameter bifurcation diagram in (fe22, &i 2 ) -parameter space. I conclude 

the analysis by investigating higher period orbits. 

5.5.2 One-parameter bifurcation diagrams 

Namkoong et al. [93] found that an interior period-2 attractor exists for &2 2 > 0.526. 

A n example is shown in figure 5.1 for the value fe22 = 0.54. In this figure there is a 

5 . , . 

N 

0 I , , , I 
0 p 1 

Figure 5.1: D y n a m i c s i n the (p, 7V)-plane for mode l (5.2) w i t h a n = 2.1, a i 2 = 1.9, a 2 2 = 1.1, 

& n = 1.0, &12 = 0.904 and 6 2 2 = 0.54. T h i s d iagram was obtained using D S T O O L . 

period-1 source at (p,N) = (1.000,2.100) and period-1 saddles at (0.956,2.10007) and 

(0.000,2.037). The points (1.000,2.878) and (1.000,1.322) correspond to a period-2 saddle 

and the points (0.917,1.466) and (0.923,2.734) to a period-2 sink. Thus, in this case both 

boundaries are repelling and there is an interior attracting period-2 orbit as expected. 
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Comparing the carrying capacities K~u = 2.100, K\2 = 2.102 and K22 = 2.037 we see 

that we are just within the region of heterozygote superiority. 

We can now use A U T O to vary b22. It is noted in appendix B that for discrete systems 

A U T O can detect period-doubling bifurcations but cannot continue the resulting period-

2 orbits, and hence cannot detect higher period orbits. This is clearly a disadvantage in 

the present situation where we are specifically interested in the period-2 orbits. A way of 

overcoming this problem is to study the second iterate of the model since period-2 orbits 

wi l l become equil ibria in this new model (see section A.3.5) . In terms of the original 

model A U T O wi l l then be able to detect period-1 equil ibria (since these are also period-2 

equil ibria) , period-2 orbits and bifurcations to period-4 orbits. 

For a model as simple as the one under discussion, the second iterate is easy to 

determine. From equations (5.2) we obtain 

Pt+2 = Pt+i—TT - Pt — ^nr 
Wx+L w w1+l 

Nt+2 = wt+1Nt+1 = wt+1w*Nt (5.3) 

where 

u>i+1 = Pt+Mi1 + {1 ~ Pt+i)w$i 

- p t ^ e x p ( a i l - bi^Nt) + (1 - p t - ~ ) exp(a i 2 - bi2wtNt) 

and 

wt+1 = pt+1wl+l + (l-pt+1)w2

+l 

Figure 5.2 shows the results obtained from varying 622 using the second iterate of the 
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Figure 5.2: One-parameter bifurcat ion d iagram of mode l (5.3) w i t h a n = 2.1, ai2 = 1.9, a 22 = 1 1 , 

& i i = 1.0 and &12 = 0.904 obtained using A U T O . (Behaviour for smaller and larger values of 622 than 

indica ted i n the figure can be found by ext rapola t ing the curves and lines at the boundaries of the figure. 

T h e period-2 orbi ts are indicated i n the figure. T h e phenomena corresponding to boundary values of 

p, namely p — 0 or p = 1, are label led. Branches marked w i t h a * correspond to inter ior values of p, 

namely 0 < p < 1. H B stands for H o p f bifurcat ion. T h i s is really a per iod-doubl ing b i furca t ion but 

A U T O marks i t w i t h the H B symbol . ) 

model 1 . I plotted N versus 622 instead of p versus 622 as the period-2 orbits can be seen 

with greater clarity this way. The p-values for the two points on these period-2 orbits 

are very similar and thus the continuation curves are difficult to distinguish. Also, a 

large number of bifurcations occur at p = 1. Plott ing p versus 622 would result in many 

branches ly ing on top of one another. 

For 622 < 0.523 we can see that the boundary at p = 0 is attracting wi th a single 

1 S o m e very compl ica ted bifurcat ion diagrams can be generated when s tudy ing this m o d e l , however 
not a l l cont inua t ion branches are of interest. Those branches which have p < 0 , p > l o r i V < 0 are 
not p rac t ica l ly significant but i t is good practice to continue such branches w i t h i n the parameter range 
under s tudy i n case a bifurcat ion occurs and they re-enter the ranges of interest. 
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equi l ibr ium point. A t b22 = 0.523 the genotype A2A2 loses superiority in carrying ca

pacity and we move into the region (b22 > 0.523) of heterozygote superiority. Whi le the 

difference in carrying capacities is not too large we st i l l have a unique equi l ibr ium (an 

interior equi l ibr ium this time) but as b22 increases, causing the carrying capacity of A2A2 

to decline and the instabil ity of A i A i to have a greater influence on the dynamics, this 

equi l ibr ium bifurcates to become an attracting interior period-2 orbit. As 622 increases 

further this period-2 polymorphism moves closer and closer to the p = 1 boundary where 

there is a repelling period-2 orbit as well as an unstable period-1 saddle. These results 

match those in [93] and are in agreement with previous findings that heterozygote supe

riority in equi l ibr ium carrying capacity is a necessary condition for a stable polymorphic 

equi l ibr ium when fitness is a decreasing function of population size. In addit ion, figure 

5.2 shows clearly that heterozygote superiority is not a sufficient condition for a stable 

polymorphic equi l ibr ium since no such phenomena occur for 622 > 0.526. Stable period-2 

polymorphisms exist in this region. 

In [93] it was found that stable period-2 polymorphisms, unlike polymorphic equi

l ibr ia , can exist in the absence of overdominance. Suppose we set b\2 = 0.906, then 

K\2 = 2.097 which means that we no longer have any regions of heterozygote superior

ity. The one-parameter bifurcation diagram shown in figure 5.3 was obtained by using 

D S T O O L to calculate starting points and Interactive A U T O to vary b22 once again. 

In this case the dynamics are a l i tt le more complicated. We sti l l have an equi l ibr ium 

at p = 0 which is attracting for 622 < 0.525 (the region of heterozygote inferiority) and 

unstable otherwise. However, at p — 1 there is now a stable period-2 orbit for al l values of 

b22. For 0.520 < b22 < 0.522 (2.116 > #22 > 2.109) there is also a stable interior period-2 

orbit. Intuition could not have been used to guess the existence of these orbits since the 

bifurcation values do not coincide with changes in the relative carrying capacities of the 

genotypes. It would also have been difficult to predict their existence analytically since 
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Figure 5.3: One-parameter bifurcat ion d iagram of model (5.3) w i t h a n = 2.1, a i 2 = 1.9, 022 = 1.1, 

611 = 1.0 and 612 = 0.906 obtained using A U T O . Ku = 2.1 and K12 = 2.097. Branches marked w i t h a 

* correspond to interior values of p, namely 0 < p < 1. 

the period-doubling bifurcation which initiates the interior period-2 orbit occurs when 

622 — 0.519 but the orbit is init ial ly unstable and only becomes stable after a further 

bifurcation. A n idea of the extent of the domain of attraction (see section A.2.5) of the 

period-2 polymorphism in terms of population density can also be seen in figure 5.3 by 

noting the positions of the unstable period-2 orbit and the unstable equil ibr ia since these 

phenomena separate the domains of attraction of the stable phenomena. Figure 5.4 shows 

the (p, AQ-plane corresponding to 622 = 0.521 and indicates the domains of attraction for 

this particular value of 622- The region denoted by a is the domain of attraction for the 

sink at p = 0, b is the domain of attraction for the period-2 polymorphism, and c is the 

domain of attraction for the period-2 orbit at p = 1. 

The above-mentioned figures indicate the ranges of 622 values corresponding to stable 
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5 

N 

0 

Figure 5 .4: T h e (p, 7V)-plane using mode l (5.3) for an = 2.1, ai2 = 1.9, a22 — 1-1, 6 n = 1.0, 

&12 = 0.906 and 622 = 0.52 showing the domains of a t t rac t ion for the stable phenomena. 

equil ibria and period-2 orbits at the boundaries as well as in the interior. Comparing 

figures 5.2 and 5.3 we can see that the regions of occurrence of these phenomena vary 

with 612 as well as 622- We can find out more about this dependence on 6 1 2 by generating 

a two-parameter bifurcation diagram. 

5 . 5 . 3 Two-parameter bifurcation diagram 

Using A U T O we can trace the paths of period-doubling bifurcations 2 and l imit points in 

two-parameter space. Points 2 in figure 5.3 are period-doubling bifurcations and points 1 

are l imi t points. These points are only located when using the second iterate of the model 

since they are on the period-2 orbits. Point 3 is also a period-doubling bifurcation but 

from period-1 to period-2 orbits and thus is only labelled as such by A U T O when using 

the original model (5.2). Hence, to continue this point in two parameters we need to 

use the original model. The resulting two-parameter diagram can then be superimposed 

2 A U T O labels per iod-doubl ing bifurcations as H o p f bifurcations for discrete models (see section 
A . 3 . 5 ) . T h u s points marked H B in the figures are really per iod-doubl ing bifurcations. 
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Figure 5.5: Two-parameter bifurcat ion d iag ram of mode l (5.3) w i t h a u = 2.1, a i 2 — 1.9, (Z22 = 1 . 1 and 

611 = 1.0 obta ined using A U T O . Curve 1 is the l i m i t point cont inuat ion and curve 2 the per iod-doubl ing 

bi furcat ion cont inuat ion . 

on the one obtained for the second iterate of the model by using the R E A D P command 

in Interactive A U T O . We could choose any one of the parameters a i i , a i2 , a 2 2 , 611 or 612 

as the second parameter to vary. Since the parameter 6 2 2 corresponds to one of the 

homozygotes, it may be interesting to vary one of the heterozygote parameters. The 

parameter 612 was chosen for this i l lustration to compliment the results in the previous 

section. 

Figure 5.5 shows the results obtained from continuing points 1 and 2 in figure 5.3 in 

two-parameter space. The two-parameter continuation of point 3 in figure 5.3 can be ob

tained from the original model as mentioned earlier. A U T O cannot continue transcrit ical 

bifurcation points such as point 4 in figure 5.3. However, we can obtain a good approx

imat ion to the relevant line or curve by doing a number of one-parameter continuations 

as in section 5.5.2 and noting the coordinates at which the bifurcation at p = 0 occurs. 

We already have the points (622,012) = (0.523,0.904) and (622,612) = (0.525,0.906) from 

figures 5.2 and 5.3 respectively. If the resulting approximate curve is combined with 
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Figure 5.6: Two-parameter bifurcat ion d iagram of mode l (5.3) w i t h a n = 2.1, a\2 = 1.9, 022 = 1.1 and 

611 = 1.0 obta ined using A U T O . Curve 1 is the l i m i t point cont inuat ion and curve 2 the per iod-doubl ing 

bi furcat ion cont inuat ion . Curve 3 is the per iod-doubl ing cont inuat ion obta ined using the o r ig ina l mode l 

(5.2) and curve 4 is the curve where the bifurcat ion at p — 0 occurs. 

figure 5.5 and the two-parameter continuation of point 3, then we obtain figure 5.6. 

There are many other bifurcation curves that could have been included in figure 5.6 

but only those of interest for the present discussion have been drawn. The dotted line has 

been included to demarcate, together with line 4, the regions of heterozygote superiority 

and inferiority 3 . In regions F and G there is heterozygote superiority and in regions A , 

B and D there is heterozygote inferiority. C, E and H are regions of part ial dominance. 

These distinctions in relative carrying capacities wi l l be referred to again shortly. 

To help us understand figure 5.6 we can refer back to the one-parameter bifurcation 

diagrams, figures 5.2 and 5.3, which are horizontal slices of figure 5.6 at 612 = 0.904 and 

bu — 0.906 respectively. Figure 5.6 indicates the types of phenomena corresponding to 

different parameter combinations and the one-parameter diagrams show the values of 

3 T h e s e lines can be obtained ana ly t ica l ly using the definit ion of heterozygote superiori ty. T h e dotted 
line could also have been obtained from one-parameter bifurcat ion diagrams where 612 is varied instead 
of 622 as it is along this l ine that the period-2 orbi t at p = 1 changes its s tab i l i ty properties. 
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Figure 5.7: One-parameter bifurcat ion d iag ram of model (5.3) w i t h a n = 2.1, 012 = 1.9, a 2 2 = 1.1, 

6 n = 1.0 and 612 = 0.908 obtained using A U T O . Branches marked w i t h a * correspond to inter ior values 

of p , namely 0 < p < 1. H B marks a per iod-doubl ing bifurcat ion. 

./V at which these phenomena occur and, hence, their relative positions in state space. 

We can also use figure 5.6 to predict the behaviour corresponding to different parameter 

combinations. Consider fixing 6 1 2 at 0.908. From figure 5.6 we expect a period-doubling 

bifurcation to occur as 622 increases through line 3 but we do not expect any region of 

stable interior period-2 cycles as we are above the region where curve 1, the l imi t point 

of such a phenomenon, occurs. Also from figure 5.6, we expect the equi l ibr ium at p = 0 

to change stabil ity as we pass through line 4. Using A U T O to generate a one-parameter 

diagram with 6 1 2 fixed at 0.908 gives figure 5.7 which is just as we predicted. The above 

exercise can be repeated for other values of 6 1 2 as well. 

A complementary way of obtaining insight into figure 5.6 is to choose points in regions 

A to H and to display the dynamics in the (p, AQ-plane. This is a straightforward exercise 
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using D S T O O L . The results are shown in figure 5.8. Str ict ly speaking dots should be 

used for the trajectories instead of continuous lines since the model is discrete. However, 

it is easier to denote the direction of flow and the qualitative behaviour when lines are 

used. These diagrams also give a better idea of the domains of attraction corresponding 

to the different stable phenomena. 

Using figures 5.6 and 5.8 we can make some important observations. In regions D, 

E, F and G stable polymorphisms occur. D lies in the area of heterozygote inferiority 

and E in a region of partial dominance, that is, of neither heterozygote inferiority nor 

superiority. Whi le Asmussen [8] and Namkoong et al. [93] documented the occurrence 

of stable period-2 polymorphisms in such regions, they did not investigate the extent of 

the regions corresponding to such phenomena. From figure 5.6 we can see that regions D 

and E occupy a fairly small region in the (622, 612) parameter space and thus may have 

l imited ecological significance. 

Another observation is that the region of stable polymorphic equil ibr ia (region G) 

is very smal l . Thus, in the region of heterozygote superiority, stable period-2 polymor

phisms are much more likely than stable polymorphic equil ibria. It appears that the 

instabil i ty of the A\A\ genotype (a result of choosing an > 2.0) has a significant effect 

on the dynamics of the model. 

In the next section it is shown how the preceding analysis can be extended to look 

for higher period polymorphisms. Asmussen [8] found cases of interior chaotic attractors. 

Since repeated period-doubling is a well-known path to chaos (see, for example, Seydel 

(1988) or Wiggins (1990)), we can expect to find higher period stable polymorphisms. 

5.5.4 Orbits of period four (and higher) 

Consider first orbits of period 4. Since I did not find such orbits by varying 6 1 2 and 6 2 2 , 

I chose b\2 and 622 to lie in region E, a region where more complex behaviour already 
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Figure 5.8: D y n a m i c s in the (p, 7V)-p]ane w i t h a n = 2.1, a\2 = 1.9, a22 = 1 1 , &u = 1 0 and various 

combina t ions of 612 and 622 which correspond to regions A to H in figure 5.6. 
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Figure 5.9: One-parameter bifurcat ion d iag ram of mode l (5.3) w i t h ai2 = 1.9, a22 = 1.1, bu = 1.0, 

&12 = 0.905 and 622 = 0.525 obtained using A U T O . Branches marked w i t h a * correspond to inter ior 

values of p, namely 0 < p < 1. 

occurs in the form of period-2 cycles, and then varied the other parameter values in turn. 

Consider &i 2 = 0.905 and 6 2 2 = 0.525 and suppose a n is varied. This yields a period-

doubling bifurcation at a n = 2.526 (see figure 5.9). Since I used the second iterate of 

the map, this period-doubling is a bifurcation from period-2 to period-4 orbits at the 

boundary p — 1. This can be checked by using D S T O O L to generate diagrams in the 

(p, 7V)-plane for nearby values of a n . 

F rom studies of other discrete systems (for example, [71]) it is l ikely that there wi l l 

be period-doublings to higher and higher order orbits as a n is increased. Unfortunately 

these cannot be detected using A U T O unless higher order iterates of the map (5.2) are 

determined analytically and then studied. However, using D S T O O L we can determine 

the dynamics in the (p, AQ-plane for fixed values of a n . Some examples are given in 
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figure 5.10. 

Two-parameter continuations of the period-doubling bifurcation in figure 5.9 show 

that the position of this bifurcation depends only on o n . ' None of the other parameters 

affects the value of a n at which it occurs. Thus we can conclude that it is the growth 

rate of the A\Ai genotype that determines the degree of instabil ity of its dynamics. 

This supports the comment in [93] that alleles that affect seedling survival can increase 

carrying capacity and simultaneously destabilise population growth dynamics. 

Interior period -4 orbits 

But what about the dynamics of the heterozygote? It seems likely that complex polymor

phic behaviour would exist in regions where both homozygotes exhibit unstable dynamics. 

In order to investigate this question I chose both an and a22 to be greater than 2.0. Using 

the parameter values a n = 2.1, a12 = 1.9, a22 = 2.1, bu = 1-0, 612 = 0.908 and b22 = 0.53, 

I found a set of starting points using D S T O O L and then varied each parameter in turn 

using A U T O . 

The only interior period-doubling bifurcation was found by increasing a i 2 . Figure 5.11 

shows the results. There are period-2 orbits at both p = 0 and p = 1 for al l values of a i 2 . 

This is expected since both a n and 022 are greater than 2.0. The period-2 orbit at p = 1 

is attracting for a i 2 < 1.907 (the region of heterozygote inferiority) and the orbit at p = 0 

is attracting for a i 2 < 3.598. A t this latter point the heterozygote becomes dominant, 

a bifurcation occurs and a stable interior period-2 orbit is init iated. As ai2 is increased 

further, a period-doubling bifurcation occurs at ai2 = 3.750. Al though the period-4 

orbits are not shown by A U T O , we can verify that such orbits exist using D S T O O L . 

Figure 5.12 shows the dynamics in the (p, iV)-plane for 012 = 3.8. 

F rom the above results it appears that the relative carrying capacities of the genotypes 

determine whether the boundaries and/or interior are attracting but that the growth 



Figure 5.10: D y n a m i c s i n the (p, 7V)-plane for a i 2 = 1.9, a 2 2 = 1.1, & u = 1.0, 6 1 2 = 0.905, 6 2 2 = 0.525 

and (a) a n = 2.68, (b) a n = 2.69 and (c) a n = 2.75. In (a) there is a period-8 a t t ractor at p = 1. In 

(b) this changes to a period-16 attractor and i n (c) we have what appears to be a chaotic at t ractor . 
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Figure 5.11: One-parameter bifurcat ion d iag ram of mode l (5.3) w i t h a n = 2.1, 022 = 2.1, bu = 1.0, 

6 1 2 = 0.908 and 622 = 0.53 obtained using A U T O . Branches marked w i t h a * correspond to inter ior 

values of p, namely 0 < p < 1. H B marks a per iod-doubl ing bifurcat ion f rom period-2 to period-4 orbits . 

Figure 5.12: D y n a m i c s i n the (p, A^)-plane for a n = 2.1, a i 2 = 3.8, a 2 2 = 2.1, & n = 1.0, 6 i 2 = 0.908 

and 6 2 2 = 0.53 showing a stable period-4 p o l y m o r p h i s m . 
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Figure 5.13: Two-parameter cont inuat ion of the per iod-doubl ing bifurcat ion ( H B ) i n figure 5.11 w i t h 

a n = 2.1, a 2 2 = 2.1, bn = 1.0 and 6 i 2 = 0.908. 

rates, a; j , determine the type of attractor, that is, whether the attractors are equil ibr ia 

or periodic cycles of various orders. Since the only way to alter the carrying capacity 

of AiAj without affecting its growth rate is to vary bij, we can conclude that the bifs 

greatest influence is on stability whereas the a^'s determine the type or order of the 

behaviour. 

A l though we have located a stable polymorphic period-4 orbit, the values of a12 for 

which it occurs are very high. We would like to know whether such a phenomenon is 

possible for lower values of a 1 2 but different values of some of the other parameters. It is 

only in the region of heterozygote superiority that polymorphic attractors exist in figure 

5.11 and since K22 = 3.962 is large, this region is only entered when a12 is large. Hence, 

by decreasing A^2 2 we may be able to find stable interior period-4 orbits for lower values of 

a 1 2 . Figure 5.13 shows a two-parameter continuation of the period-doubling bifurcation 

labelled 5 in figure 5.11. The parameter b22 is varied in addition to a\2- F rom figure 5.13 

it can be seen that the period-doubling bifurcation point is reduced to a\2 = 2.831 if b22 
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is increased to 0.945. This is substantially lower than before. 

If we wanted to use A U T O to study orbits of period greater than 4, we would have 

to calculate higher order iterates of the map (5.2). This is rather tedious and is perhaps 

more of mathematical than of ecological interest. However, using D S T O O L , we can 

increase the a4j values and observe the results for particular parameter combinations. 

Some examples of more complex dynamics are shown in figure 5.14. 

(a) 

(b) 

Figure 5.14: Examples of complex dynamics , (a) A n interior period-8 orbi t for a n = 2.3, a i 2 = 2.9, 

« 2 2 = 2.5, fen = 1.0, fci2 = 0.908 and fc22 = 0.95. (b) A n interior chaotic a t t ractor for a n = 2.6, 

a i 2 = 3.1, a 2 2 = 2.5, &n = 1.0, & i 2 = 0.908 and 6 2 2 = 0.95. 
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5.6 Conclusion 

In this chapter a part ial analysis of a population genetics model with monotone density-

dependent fitness functions has been done. Al though most of the theoretical results had 

been obtained by Asmussen [8] and Namkoong et al. [93], this study gave rise to a two-

parameter bifurcation diagram which indicates the relative frequency of occurrence of 

the various types of dynamical behaviour in addition to proving their existence. Using 

A U T O and D S T O O L , stable polymorphic period-2 and higher period orbits were located. 

Asmussen [8] found these phenomena particularly difficult to study by hand when using 

exponential fitness functions but they can be found without too much difficulty using the 

available software. In addition to locating equil ibria and higher period orbits I concluded 

that the parameters 6,j (i,j = l,2) have the greatest influence on the stabil ity of these 

phenomena whereas the a^'s determine the type or order of the behaviour. 

A number of opportunities for further research arise naturally from the results of this 

chapter. F i rst , could the numerical results be used as a basis for arriving at analyt ical 

relationships between the parameters or at biological conditions that would determine 

the existence of polymorphisms? For the model that I have considered this would be 

particularly difficult to decide because of the exponential fitnesses, but a start could be 

made using linear fitness functions. It would also be informative to know the relationship 

between the behaviour of periodic attractors for the homozygotes and for the ful l genetic 

system. Specifically, if both homozygotes have period-2 dynamics when acting alone, is it 

only possible to obtain period-2 polymorphic behaviour or are polymorphic equil ibr ia and 

higher period polymorphic attractors also possible? If one homozygote exhibits period-x 

dynamics and the other period-y dynamics when acting alone (x<y), does the ful l system 

exhibit dynamics of period-x, period-y, or some combination of x and y? 
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In the next chapter the same basic model is analysed but this t ime non-monotone 

fitness functions are considered. The model has not been studied in detail before. 



Chapter 6 

Population Genetics Model II 

6.1 Introduction 

In the last chapter a single locus, two allele population genetics model with monotone 

density-dependent fitness functions was analysed. Most studies assume such monotoni-

cally decreasing fitness functions because of the detrimental effects of population density 

on growth [110]. However, this assumption is not biologically realistic for al l population 

densities [110]. A t low densities, increases in density may benefit both reproduction and 

survival. In this chapter I consider the same basic model as in chapter 5 but with non-

monotone density-dependent fitness functions which have a single hump. This model is 

more difficult to study than that in the previous chapter because of the increased com

plexity in the fitness functions. Instead of a single carrying capacity each fitness function 

has two fixed points corresponding to the values of N where Wij = 1. The terminology 

described in section 5.2 is used again in this chapter. 

As in chapter 5 the study focusses mainly on stable polymorphic behaviour—both 

equil ibr ia and higher period orbits. Such phenomena correspond to the maintenance of 

genetic diversity in a population. From an ecological perspective we would l ike to know 

how common or rare these phenomena are, that is, how likely they are to occur. In 

contrast to chapter 5 (see section 5.5.3) it is found that a large number of parameter 

combinations give rise to stable polymorphic equil ibria but that stable periodic polymor

phisms are not as common. The latter phenomena are only found to occur in situations 

138 
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where the dynamics corresponding to one of the homozygotes are fairly unstable and 

where the fitnesses of the two homozygotes acting alone are very different. Other formu

lations for hump-shaped fitness functions may, however, lead to different results. 

A n interesting result is that there is always a possibility of one allele being excluded, 

even when a polymorphic attractor is present. Diagrams in the (p, A r ) -plane indicate the 

domains of attraction for the homomorphic and polymorphic attractors. The possibility 

of extinction is also high for most parameter sets. Cr i ter ia for determining the existence 

and stabil ity of polymorphic equil ibria are also given. These combine theoretical and 

numerical results. 

In the next section I outline some previous results which apply to the model . I then 

describe the functional forms of the non-monotone fitness functions. The model analysis 

begins by fixing the fitness function corresponding to one of the homozygotes and varying 

the two parameters corresponding to the other. A two-parameter bifurcation diagram 

shows which parameter combinations give rise to homomorphic attractors and which 

to polymorphic attractors. Section 6.4.3 finds criteria for predicting the existence and 

stabil ity properties of polymorphic equil ibria, and stable period-2 polymorphisms are the 

focus of section 6.4.4. A small modification to the fitness functions is required before the 

latter phenomena are located. The results are summarised in a two-parameter bifurcation 

diagram. Further two-parameter bifurcation diagrams show that period-2 polymorphisms 

do not correspond to fitness functions where both homozygotes have similar properties 

but one of the homozygotes has a greater fitness than the other at every population 

density. 
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6.2 Background 

One of the few studies which considers the more general setting of non-monotone density-

dependent fitness functions is by Selgrade and Namkoong [110]. They prove a number 

of results concerning the existence and stability of polymorphic equil ibria for both con

tinuous and discrete two-dimensional models. In particular, a necessary condition for 

the existence of a polymorphism is that the heterozygote fitness be either superior or 

inferior to both homozygote fitnesses at the equil ibr ium. For the case of heterozygote 

inferiority the equi l ibr ium is unstable. For the discrete model (which is the one consid

ered in this chapter), if the heterozygote is superior and - 2 < JVff < 0 (JV=population 

density, u)=mean fitness) at the polymorphic equil ibr ium then this equi l ibr ium is stable. 

Higher order attractors are not studied in [110] and it is noted that arguments concerning 

global dynamics are more difficult for these non-monotone fitness functions because of 

the complicated nature of the mean fitness curve. 

6.3 Fitness functions 

The fitness functions used in this chapter are given by 

u>ij = kijNtexpln^l-kijNt)] j = 1,2 (6.1) 

and wlj = kijNtexpln^l - kijNt)Nt] i,j = 1,2. (6.2) 

Expressions of the form (6.1) can be found in [109] and also in [110] for the analogous 

continuous model . These functions have a single hump (see figure 6.1) and are known as 

cl imax fitness functions in some applications [109]. 

Apart f rom the results for polymorphic equil ibria obtained by Selgrade and Namkoong 

[110], not much work has been done on discrete models such as (5.2) in which both geno

types have cl imax fitnesses. In order to simplify the analysis I look at an additive model 
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in which the fitness parameters for the heterozygote are averages of the corresponding 

parameters for the homozygotes. That is, 

This reduces the number of parameters for consideration. 

6.4 Model analysis 

6.4.1 Approach 

I begin by studying the existence and relative frequency of occurrence of stable equil ibria 

for the additive model with fitness functions given by (6.1). I then look for stable periodic 

polymorphisms using fitness functions given first by equations (6.1) and then by equations 

As in the previous chapter bifurcation diagrams and plots of the (p, AQ-plane are 

the main tools for communicating results. In some situations the fitness functions are 

plotted so that the relative fitnesses for various population densities can be seen. This is 

analogous to calculating relative carrying capacities in the previous chapter. 

In order to begin we need to choose a starting set of parameter values. There are 

four parameters in this m o d e l — A ; n , r n , & 2 2 and r 2 2 (h2 and r i 2 are averages of the cor

responding homozygote parameters). Since there were no prior results wi th which to 

begin, I used M A P L E 1 [122] to plot the three fitness functions and chose parameter val

ues which led to plausible-looking curves. Since there are four parameters and A U T O 

can vary at most two at a t ime, I fixed r 2 2 and fc22 (that is, I fixed the fitness function 

W22) and investigated the (hi, rn) -parameter space. Therefore, the results wi l l indicate 

J A n y other ma thema t i ca l graphics package, such as M A T H E M A T I C A [126] or G N U P L O T [125], 
could have been used. 

and r i 2 

k •12 
hi + k22 

2 
ru + r 2 2 

2 

(6.2). 
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Figure 6.1: w22 with r 2 2 = 0.8 and & 2 2 = 0.6. 

the effects of varying the relative positions and magnitudes of the fitness functions. It 

should be kept in mind that altering ru and ku wi l l affect both wu and w\2. 

6.4.2 ( & n , r n ) - p a r a m e t e r space 

After using A U T O to vary the parameters one by one to locate a stable polymorphism, 

I chose r 2 2 = 0.8 and k22 = 0.6 as starting values, which gave the w22 fitness function 

shown in figure 6.1. The a im is to divide the (ku, r n ) - p a r a m e t e r space into regions corre

sponding to stable fixed points at p = 0,p = 1 (homomorphic equilibria) or 0 < p < 1 

(polymorphic equil ibria). 

The first step is to generate a one-parameter bifurcation diagram. Choosing values for 

r n and k\i, I used D S T O O L to find fixed points as starting points for A U T O . Figure 6.2 

was obtained by varying ku wi th r n = 0.7. Only branches corresponding to 0 < p < 1 

have been drawn and no distinction between sources and saddles has been made so as 

to keep the diagram as clear as possible. (Interactive A U T O uses magenta to represent 

sources and blue to represent saddles.) 



Chapter 6. Population Genetics Model II 143 

0 i 1 1 1 1 1 
0 0.4 0.8 1.2 1.6 2 

hi 

Figure 6.2: A one-parameter bifurcation d iagram obtained by vary ing k\\ w i t h r n fixed at 0.7 

(r22 = 0.8 and fc22 = 0.6). Branches marked w i t h a * correspond to interior values of p, namely 

0 < p < 1. L P marks the l i m i t points and B P the t ranscr i t ical bifurcation points . 

There are many bifurcations in figure 6.2. Most are transcritical bifurcations (see 

section A.2.25) but there are also two l imit points (see section A.2.13). Diagrams of 

the (p, AQ-plane for a number of different values of hi are shown in figure 6.3 to help 

clarify the changes in dynamical behaviour that occur as hi increases through these 

bifurcation points. Note that for this value of r n there are two ranges of fen-values where 

stable polymorphic equil ibria occur. Another important observation from an ecological 

perspective is that the possibility of extinction is fairly high for all the situations shown 

in figure 6.3. 

A U T O can only continue l imit points and period-doubling bifurcations in two param

eters. As can be seen from figure 6.2 we wi l l also need to know how the positions of the 

transcritical bifurcations vary with r n if we want to delimit regions of stable behaviour 
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O P 1 0 P 1 0 P 1 

Figure 6.3: D iag rams of the (p, 7V)-plane (obtained using D S T O O L ) for a number of different values 

of ku w i t h r n fixed at 0.7. 

in two-parameter space. In order to do this I chose a number of different r n - v a l u e s (such 

as 0 .3 ,0 .5 ,0 .7 , . . . ) . For each value I obtained starting points (that is, equi l ibr ium points) 

for A U T O using D S T O O L 2 . I then used A U T O to generate a one-parameter bifurcation 

diagram by varying ku in both directions, and recorded the A; x l-values corresponding to 

the various bifurcat ions—both transcritical and l imit point. Using the graphics package 

G N U P L O T [125] to plot the recorded points, I obtained figure 6.4(a). Figures 6.4(b), (c) 

2 I t is impor t an t that a number of different fixed points are located for each parameter set to ensure 
that unconnected cont inuat ion branches are not missed. 
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and (d) show the same diagram with shaded regions corresponding to stable equi l ibr ia at 

0 < p < l , p = 0 and p = 1 respectively. Although figure 6.4 only gives approximations 

to the various bifurcation curves, they are sufficient for a qualitative analysis. I am more 

interested in the different types of qualitative behaviour that can occur than the actual 

parameter values at which transitions take place. 

Figure 6.4: D iag rams of the {ku, rn ) -pa ramete r space, (a) T h e basic d iagram showing a number of 

bifurcat ion curves, (b) T h e regions corresponding to stable po lymorph i sms are shaded, (c) T h e regions 

corresponding to stable equ i l ib r ia at p = 0, N > 0 are shaded, (d) T h e regions corresponding to stable 

equ i l ib r i a at p = l,N > 0 are shaded. 
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In order to clarify figure 6.4, diagrams of the (p, A r ) -plane corresponding to the re

gions marked A to P are shown in figures 6.5 and 6.6. These figures are schematic, 

representations of diagrams obtained using D S T O O L . The dashed lines in these dia

grams approximate the one-dimensional manifolds of the saddle points (see page 241) 

and indicate the boundaries of the domains of attraction of the sinks. 

In addition to revealing the extents of the regions corresponding to homomorphic and 

polymorphic equil ibria, figure 6.4 shows where we can expect simultaneous homomorphic 

and polymorphic attractors. In fact, there are no regions where the only attractor is in 

the interior. Thus, there is always the possibility that one of the alleles wi l l be excluded. 

The relative sizes of the domains of attraction of the homomorphic and polymorphic 

equil ibr ia are shown in figures 6.5 and 6.6. These diagrams also highlight the ever-present 

possibility of extinction. 

6.4.3 Criteria for polymorphisms 

It would be helpful to be able to predict when a stable polymorphic equi l ibr ium is l ikely 

to occur. One possibility is to investigate the fitness functions corresponding to the 

different regions in figure 6.4(a). Computer packages such as G N U P L O T [125], M A P L E 

[122] and M A T H E M A T I C A [126] are convenient for such investigations as the fitness 

functions K J U , W\2 and W22 can be plotted on the same pair of axes. F ixed points at p = 0 

and p = 1 occur at those values of N where w22 = 1 and u> n = 1 respectively. The 

stabil ity of these points depends on the relative fitnesses of the homozygotes and the 

heterozygote. 

In each of the regions corresponding to a stable polymorphism it was found that 

the heterozygote is superior at the point where the downward slope of the W12 fitness 

function crosses the line w\2 = 1 (see figure 6.7(a)). Similarly, interior saddle points 

correspond to heterozygote inferiority at this point (see figure 6.7(b)). However, not 
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0 P 1 0 P 1 

Figure 6.5: Diagrams of the (p, Ar)-plane corresponding to the regions A to H in figure 6.4( 
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Figure 6.6: D iagrams of the (p, A f ) -plane corresponding to the regions N to P in figure 6 
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F i g u r e 6.7: Examples of the fitness functions for parameter values corresponding to (a) a sta
ble polymorphism (rn = 0.7, ku = 2.0, r2i = 0.8, £22 = 0.6) and (b) an unstable polymorphism 
(rn = 0.4, jb n = 2.0, r 2 2 = 0.8, k22 = 0.6). 



Chapter 6. Population Genetics Model II 150 

al l parameter combinations which gave similar configurations of the fitness functions 

correspond to the existence of polymorphisms. This supports the conclusion in [110] that 

heterozygote inferiority or superiority is necessary but not sufficient for a polymorphism 

to occur. Hence, it appears that this method of looking at the fitness functions is not 

too informative when it comes to the question of existence of polymorphisms. 

A n alternative is to investigate the mean fitness functions: 

w[ = ptw^ + (1 -pt)w\2, 

w\ = ptw{2 + (1 -pt)w*22, 

and wt = ptw\ + (1 - pt)wl, 

where w\ is the marginal fitness of allele A{ and wl is the mean population fitness at t ime 

t. A n interior equi l ibr ium (0 < p < 1, N > 0) requires 

Pt+i = Pt 

and Nt+i = Nt. 

From equations (5.2) in the previous chapter we can see that the above equations wi l l be 

satisfied if 

w* = 1 (6.3) 

and w\ — w*. (6-4) 

For 0 < p < 1 the latter condition can only be satisfied if 

w[ = w2. (6.5) 

We need to solve conditions (6.3) and (6.5) simultaneously for p and N but an explicit 

mathematical solution is not possible because of the exponential terms in the fitness func

tions. We can use a computer package such as G N U P L O T [125] to plot these equations 

numerically. A n example is shown in figure 6.8. 
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Figure 6.8: Curves given by w\ — w2 ( thin dotted line) and w = 1 (thick sol id line) for parameter 

values corresponding to a stable po lymorph i sm ( r n = 0.7, k\\ = 2.0, r 2 2 = 0.8, fc22 = 0.6). 

From the above mathematical analysis we know that the curves corresponding to the 

two equations (6.3) and (6.5) always intersect when a polymorphism is present and do 

not intersect in other regions. Each intersection corresponds to a unique polymorphic 

equi l ibr ium. Thus, we can predict the existence of polymorphic equil ibria. However, it 

is not possible to distinguish between stable polymorphisms and interior saddle points 

on the basis of these diagrams. 

Using both plots of the mean fitness function configurations and the results in [110] 

mentioned in section 6.2 for determining the stability of interior equil ibria, we can pre

dict the existence and the stability properties of polymorphic equil ibria. The relative 

positions of the fitness functions, such as in figure 6.7, give most of the required stabil ity 

information but for a stable polymorphism the quantity i V|^ also needs to be checked 

(see [110]). Although it is satisfying to have neat mathematical criteria, for a given sit

uation it is probably easier and quicker to use D S T O O L to find and classify the fixed 
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points. 

In the next section I turn to higher order dynamics. As in the previous chapter 

we would like to know whether stable period-2 (and higher period) polymorphisms are 

possible with this additive model since the maintenance of genetic diversity need not be 

restricted to the existence of polymorphic equil ibria. 

6.4.4 Stable per iod -2 po lymorphisms 

Attempts to find a stable period-2 polymorphism using D S T O O L and A U T O proved 

to be t ime-consuming. However, I was finally successful in locating a period-2 sink for 

r n = 1.3, &n = 0.5, r 2 2 = 7.5 and k22 = 4.57. The fitness functions and (p, AQ-plane 

corresponding to these parameter values are shown in figure 6.9. As can be seen from 

figure 6.9(b), the domain of attraction for this period-2 orbit is very smal l . A lso, figure 

6.9(a) shows that the fitness function w22 has an unrealistically high max imum. Neither 

situation is particularly satisfying. 

The rij values determine the heights of the fitness function max ima. We would l ike to 

know whether altering one of the other parameter values would allow r22 to be lowered 

while st i l l maintaining the interior period-2 attractor. A U T O can be used to generate 

two-parameter diagrams for this purpose. The first step is to create a one-parameter 

bifurcation diagram by varying r22. The relevant curves are shown in figure 6.10. The 

period-doubling bifurcation HB* is the point at which stable period-2 orbits are init iated. 

Using A U T O we can see how the position of this period-doubling bifurcation changes as 

a second parameter is varied. The diagrams obtained using r n , kn and k22 as the second 

parameter are shown in figures 6.11(a), (b) and (c) respectively. As can be seen from 

these diagrams, r22 needs to be greater than 6.4 for a stable period-2 polymorphism. 

This is st i l l rather large and not particularly satisfactory. 
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Figure 6.9: (a) Fi tness functions and (b) (p, 7V)-plane for r n = 1.3, kn = 0.5, r22 = 7.5 and k22 = 4.57. 

There is no reason why we should be confined to the fitness functions given in equa

tions (6.1). The only requirements for this study were that the fitness functions be 

density-dependent and have a single hump, and that the model be additive (that is, the 

heterozygote parameters must be linear combinations of the homozygote parameters). 

The steeper the slopes of the fitness functions (the right-hand slope in particular) , the 

less stable the dynamics corresponding to that homozygote. This is similar to the previ

ous chapter where higher growth rates, which caused exponential fitnesses with steeper 
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0.75 

Figure 6.10: A pa r t i a l one-parameter bifurcat ion d iagram obtained by vary ing r 2 2 using Interactive 

A U T O . O n l y branches satisfying 0 < p < 1 are shown. T h e second iterate of the mode l was used so that 

the period-2 orbi ts could be continued. However, using this mode l the per iod-doubl ing bi furcat ion H B * 

is label led as a b i furcat ion point by A U T O which means that it cannot be continued i n two parameters. 

T h e o r ig ina l m o d e l needs to be used for such a cont inuat ion. 

slopes, resulted in more complex dynamics. We expect higher period interior orbits 

to occur in regions of less stable behaviour at the boundaries p = 0 or p = 1 and, thus, 

one-humped fitness functions whose slopes are steeper than those given by equations 

(6.1) may give more reasonable results. Fitness functions of the form (6.2) have the 

required property. W i t h these fitness functions I found a stable period-2 polymorphism 

for m = 0.2, fen = 5.0, r 2 2 = 0.3 and fe22 = 0.4. Both D S T O O L and A U T O were used in 

the search. The fitness functions and (p, AQ-plane corresponding to these values can be 

found in figure 6.12. As can be seen from figure 6.12(a), the fitness functions are much 

more reasonable than before. 

Again we can get some idea of the size of the region in parameter space for which 
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Figure 6.11: Two-parameter continuations of the per iod-doubl ing bifurcat ion H B * i n figure 6.10 ob

ta ined by va ry ing (a) ru, (b) & n and (c) k22 i n add i t ion to r 2 2 - T h e shaded regions indicate wh ich side 

of the bi furcat ion continuat ions corresponds to periodic behaviour. 
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Figure 6.12: (a) Fitness functions and (b) (p, iV)-plane for ru = 0.2, ku = 5.0, r 2 2 = 0.3 and k22 = 0.4. 
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Figure 6.13: One-parameter diagrams obtained by varying ku using (a) the original model and (b) 
the second iterate of the model. Only branches satisfying 0 < p < 1 are shown. 

these higher order stable polymorphisms occur. I decided to fix W22 (that is, fix r-22 and 

& 2 2 ) and examine the (ku, rn) -parameter space as was done earlier. The first step is 

to use A U T O to create a one-parameter bifurcation diagram by varying ku- D S T O O L 

was used to generate starting points for A U T O . Using the first iterate of the model 

equations resulted in figure 6.13(a). Only the period-doubling bifurcation indicating the 

change from a stable equi l ibr ium to a stable period-2 orbit is shown. In order to plot 

the period-2 orbits the second iterate of the model needs to be used. This gives figure 

6.13(b). Notice that the period-doubling at ku = 4.226 is now labelled as a bifurcation 

point (transcritical) by A U T O instead of as a period-doubling bifurcation. This second 

bifurcation diagram shows a further period-doubling at ku — 5.358 from period-2 to 

period-4 orbits but the stable period-4 orbits are not continued by A U T O . However, 

their existence can be verified using D S T O O L . 

Using the first iterate of the model we can see how the position of the first period-

doubling (at ku = 4.226) changes as ru is varied in addition to ku- In order to obtain 

a rough idea of the extent of the region of interior higher order stable behaviour, we 

can vary ru using the second iterate of the model and trace out the path of the second 

period-doubling (at ku = 5.358 in figure 6.13(b)). Both curves are plotted on the same 
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Figure 6.14: A bifurcat ion d iagram showing the two-parameter cont inuat ion of the per iod-doubl ing 

at & n = 4.226 and the subsequent per iod-doubl ing at ku = 5.358 in figure 6.13. T h e shaded region 

approximates the region of stable po lymorph i sms of per iod greater than 1. 

set of axes in figure 6.14. The shaded area in this figure approximates the region of 

parameter space corresponding to higher order stable interior behaviour. In general, the 

further the parameters are from the solid line (first period-doubling) within this shaded 

region, the more complex the dynamics. For example, for r n = 0.18 and k-u = 5.0 there 

is an interior chaotic attractor as shown in figure 6.15. 

In figure 6.12 the fitness functions corresponding to the two homozygotes are fairly 

different in terms of magnitude and the steepness of their slopes. This is true throughout 

the shaded region in figure 6.14 and can be deduced from the diagrams in the (p, 7V)-plane 

by noting the contrast between the complex dynamics near the p = 1 boundary and the 

much simpler behaviour near the p = 0 boundary. A n important question is whether a 

fitness function configuration of the form shown in figure 6.16 could result in period-2 (or 
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3.5 

Figure 6.15: A n example of an interior chaotic at tractor obta ined for r n = 0.18, ku = 5.0,r22 = 0.3 

and &22 = 0.4. 

higher period) stable polymorphisms. In such a situation both homozygotes have similar 

fitness properties but with one of the homozygotes slightly out-competing the other at 

each population density. The region in ( & n , r n ) - p a r a m e t e r space corresponding to such 

fitness configurations is plotted together with figure 6.14 to produce figure 6.17. Clearly, 

in this case the two regions do not overlap. Thus in this range it is not possible to have 

addit iv i ty (in the sense just described for the fitness functions) and stable polymorphic 

behaviour. 

So far w22 has been fixed to have the shape shown in figure 6.12(a). The slopes of 

this function are fairly gentle. Suppose we replace W22 by the function shown in figure 

6.18. We expect such an alteration to reduce the stabil ity of the dynamics near the 

p — 0 boundary and hope that this might reduce the differences between the homozygote 

fitnesses that were previously required to obtain a stable period-2 polymorphism. 

Figure 6.19 was obtained using the same procedure as for figure 6.17. Again the two 

regions do not overlap but their relative positions have now changed. A n obvious question 
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Figure 6.17: T h e (ku, rn)-parameter space showing the region of higher order stable polymorphic 
behaviour corresponding to figure 6.14 (vertical lines) and the region corresponding to fitness function 
configurations of the type shown in figure 6.16 (horizontal lines). 
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Figure 6.19'. T h e new two-parameter space showing the region of higher order stable p o l y m o r p h i c 

behaviour (vert ical lines) and the region corresponding to fitness funct ion configurations of the type 

shown i n figure 6.18 (horizontal lines). 
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would be to ask whether there are intermediate parameter values where the two regions 

do overlap. Numerous investigations using both D S T O O L and A U T O did not reveal any 

situations of this type. For the additive model with fitness functions given by (6.2) it 

appears that the fitness properties of the homozygotes need to be fairly different before 

higher order stable polymorphisms are found. This result is comparable with results in 

the previous chapter for period-4 orbits. 

6.5 Conclusion 

The population genetics model studied in this chapter is more complicated than that of 

the previous chapter due to the form of the fitness functions. As a result any mathematical 

analysis using pencil and paper is very difficult, if not impossible, since many of the 

fixed points do not have closed algebraic forms. However, A U T O and D S T O O L proved 

invaluable for investigating certain aspects of the behaviour of the model and led to some 

important conclusions. 

In particular, it was found that for the additive model with one-humped fitness func

tions, period-1 stable polymorphisms (interior equilibria) are much more probable than 

period-2 (and higher period) stable polymorphisms. Homozygote fitnesses need to differ 

greatly in magnitude and slope properties for the latter to occur. A method for pre

dicting the occurrence of interior equil ibria from mean fitnesses was demonstrated and 

the relationships between interior and boundary stable equil ibria were shown using two-

parameter bifurcation diagrams and corresponding diagrams of the (p, A r ) -plane. The 

latter diagrams also highlight the high possibility of extinction for most parameter com

binations. Other one-humped fitness functions may lead to different conclusions than 

those obtained in this study. The techniques outlined in this chapter could be used for 

such investigations. 



Chapter 7 

Spruce Budworm Mode l 

7.1 Introduction 

In this chapter I concentrate on a discrete model of a defoliating insect system. The insect 

is the spruce budworm and its preferred host trees are balsam fir and white spruce. The 

model that I have chosen to study was developed by Clark and Ludwig [22]. In it the 

budworm, the branch surface area of the trees and their foliage are al l state variables. 

In the next section I give some background to the budworm-forest system as well 

as to a few of the models which have been formulated to describe it . The model by 

Clark and Ludwig [22] is fairly complicated and includes a number of processes such 

as dispersal, predation, food l imitat ion, and parasitism. Section 7.3 gives a description 

of the equations. Discrete models of this complexity have not been analysed in detail 

before. 

Section 7.4 contains the model analysis. D S T O O L is the main package used. Because 

the system is discrete and because of its complexity, continuation packages such as A U T O 

are of l imited value. This is discussed in more detail in section 7.4.1. For the analysis I 

chose to focus on one aspect of the model rather than attempt an exhaustive parameter 

study. The process I chose is dispersal as it is thought to have a significant effect on the 

budworm dynamics (Clark [19]). Two parameters that affect small larval dispersal and 

female adult dispersal, respectively, are allowed to vary. Regions of this two-dimensional 

parameter space which correspond to budworm extinction, mult ip le stable states and 

163 
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periodic outbreak behaviour are identified. Whi le Clark and Ludwig [22] found parameter 

values which give rise to some of this behaviour, a few additional possibilities are found 

in this study. A n important result is that insect outbreaks are possible for a large number 

of realistic parameter combinations. 

It would be interesting to know which of the many component processes in the model 

is responsible for the observed behaviour and which ones have a lesser effect. Knowing 

how each process affects the system behaviour can greatly help in understanding and 

managing the budworm-forest system. Using a variety of techniques I show that the 

main process responsible for outbreak cycles is small larval dispersal. This agrees with 

the findings of Clark [19]. After studying the effects of small larval dispersal on the 

behaviour of the model in more detail , I use bifurcation analyses once again to compare 

the effects of predation and small larval dispersal. The main influence of predation is 

at fairly low budworm densities which means that it affects the t ime period between 

outbreaks. 

7.2 Background 

The eastern spruce budworm, Choristoneura fumiferana C lem. (Lepidoptera: Tortr ic i -

dae) is found throughout the Canadian Marit imes and northern New England as well 

as westward and northward through middle Canada up to the boreal forest (McNamee 

[89]). In some regions budworm densities remain low as a result of predators, inadequate 

resources and weather (Clark [19]). However, these controls break down periodically, 

particularly in the eastern regions, resulting in budworm outbreaks of epidemic propor

tions. Damage to the preferred host trees, balsam fir (Abies balsamea) and white spruce 

(Picea glauca), is extensive and can approach 100% in dense, mature stands [19]. These 
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outbreaks are documented as far back as the 1700's with some of the worst ones occur

r ing in the Canadian province of New Brunswick. Intensive insecticide spraying began 

in this area in 1952 in an attempt to protect the foliage and, thus, l imi t tree mortal i ty 

[19]. Contrary to expectations, this led to high endemic populations of budworm which 

began to k i l l significant portions of the forest (Baskerville [13]). 

The budworm itself is a univoltine insect which means that there is one budworm gen

eration per year. Its life cycle can be divided into egg, larval, pupal and adult stages. The 

large larvae have the most effect on the dynamics of the budworm-forest system (Jones 

[65]). This stage causes the most defoliation and large larval feeding levels influence both 

fecundity and adult dispersal. The large larvae are also subject to b i rd predation and 

parasitism and are the target for insecticide spraying. As mentioned earlier, dispersal 

also affects the dynamics. The small larvae spin silk threads and are transported aerially 

by wind. If the adults disperse, they may fly from 10 up to 100 kilometres [89]. 

The system has received a substantial amount of research attention, both empirical 

and theoretical, in the past few decades (for example, [19, 32, 42, 65, 74, 89, 91, 105, 106]). 

In the 1970's Jones [65] developed a process-oriented simulation model which takes into 

account the annual dynamics of the insect and the forest in which it resides. This model 

has been used as a research tool by forest managers and scientists in New Brunswick 

(Clark and Hol l ing [21]). However, a ful l understanding of the behaviour exhibited by 

the model has been hindered by the large number of component processes involved and 

the complexity of the equations. 

A t the other end of the scale, Ludwig et al. [74] developed a simplified model consisting 

of a system of three ordinary differential equations which they studied qualitatively. 

A l though they obtained some interesting results and demonstrated the potential of the 

model to exhibit outbreak behaviour, Clark and Ludwig [22] note that many processes 

are ignored or aggregated when simplifying the situation to such an extent. 
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Another approach is to combine the two approaches and apply qualitative methods 

to a fairly complicated model. W i t h this aim in ! mind , Clark and Ludwig [22] developed 

a condensed version of Jones's model by aggregating new and old foliage into a single 

variable and ignoring age structure in trees. The result is a discrete system describing 

the annual dynamics of three basic state variables: budworm density, foliage density and 

branch surface area density. Their model is more manageable than the one in [65] but st i l l 

includes important biological components. This model is described in the next section. 

7.3 M o d e l equations 

7.3.1 Foliage 

The foliage variable, F , is the density of green needles found in a unit of branch surface 

area. It is an average value representing conditions on the whole site and is measured 

in 'foliage units' where one foliage unit (fu) is the quantity of new foliage produced per 

unit of branch surface area in the absence of budworm-induced defoliation. In addit ion 

to being consumed by budworm larvae, the foliage provides oviposition sites for adult 

moths [19]. A l though balsam fir retains its foliage for about eight years, it is sufficient to 

consider only two classes ('new' or present year foliage and 'o ld ' foliage which includes all 

remaining foliage) since this is the only distinction made by the budworm. If budworm 

density is low, the ratio of new to old foliage is 1:2.8 [65]. For simplicity it is assumed 

that this ratio is fixed. Total foliage density can then be scaled to have a m a x i m u m of 

K F = 3.8 fu. 

If Ft, is the in i t ia l foliage density then, following Jones, the effect of larval constimption 

on new foliage can be described by: 

Fb 

Remaining new foliage = e~A—— (7.1) 
KF 
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where 

A = d0Lb—^. 

Here Lb represents the in i t ia l budworm larval density and d0 is the m a x i m u m foliage 

consumption rate for an individual larva during the feeding season. Equat ion (7.1) is 

a standard competit ion function (see appendix D for an explanation) and it is used to 

represent the competit ion between budworm that results from high population densities 

[65]. 

If the budworm's food requirements are not met by new foliage alone then old foliage 

is consumed. Analogues of the above equations are: 

Remaining old foliage = e~B—^——-Ft, (7-2) 
Kp 

where 

B = cx{A - 1 + e~A). 

( c i = 0.357 is a constant.) 

The total amount of foliage, JPI, remaining after consumption by budworm is obtained 

by combining equations (7.1) and (7.2) to give: 

Fr = -^[e-A + (KF - l)e~B]Fb. (7.3) 
KF 

Density-dependent growth of foliage also needs to be taken into account. If we let rp 

represent the average growth rate of foliage at low densities and remember that Fe (the 

foliage density after one year) cannot exceed Kp, then we obtain 

Fe = ?\ , (7.4) 

where the denominator introduces density-dependence. This completes the foliage dy

namics. 
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7.3.2 B r a n c h surface area 

Another feature of trees that is important to budworm is the surface area of branches. 

This serves as the budworm habitat. In this model the branch surface area density, 5", 

is an average value for the whole site and is measured in units of ten square feet (tsf) 

per acre. The original model of Jones used 75 age classes. Since outbreaks tend to 

synchronise tree development, there is some justification for the simplif ication to a single 

age class. 

Severe defoliation by budworm may k i l l branches. This is modelled by setting 

S1 = [ l - ds(l - (7-5) 

where Sb is the in i t ia l branch surface area density and d$ is an average death rate. S\ 

represents the l iv ing branch surface area which remains after defoliation. Because of the 

quadratic term (1 — ) 2 , the difference between Sb and S± is only significant if there is 

substantial defoliation, that is, if F\ is very different from Ff>. 

Subsequent density-dependent growth of surface area is taken into account by setting 

Se = 7 \ , (7.6) 

where r$ is the average growth rate and Ks is the max imum branch surface area density. 

7.3.3 B u d w o r m 

The preceding equations are only slightly more complicated than the ones in Ludwig et 

al. [74]. However, those for the budworm dynamics are much more complex. Most of the 

following equations are based on Jones's model [65]. Following his approach, an in i t ia l 

large larval density of Lb larvae per unit of branch surface area (per tsf) is assumed. 

Parasit ism of these larvae is considered first. 
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Parasitoids are not treated as a dynamic variable in the model since under normal 

conditions the parasitoids' numerical response is too slow to raise parasitism rates sig

nificantly before the outbreak collapse has begun [19]. According to Jones, the rate of 

parasit ism is a decreasing function of larval density, with a m a x i m u m of 4 0 % at low bud

worm densities that decreases exponentially. The number (density) of larvae surviving 

parasit ism is given by 

Li = (1 - qmaxe-c)Lb, (7.7) 

where C = 0.003.L& and qmax = 0.4. 

Large larval survival is also influenced by the amount of food consumed. Following 

Jones it is assumed that survival is proportional to the average amount of food consumed: 

L> = (̂ fer)L- <7-8) 

where kr, — 0.425 is a proportionality constant. 

Predation by birds is l imited to the large larvae. As in Ludwig et al. [74] this process 

is modelled by a Hol l ing type III functional response. Thus, 

L3 = e~DL2, (7.9) 

where 

" Sb(PseLtFb

2 + Lj)' 

and pmax is the max imum predation rate and p s a ^ is a half-saturation rate. The ex

pression for D requires some explanation. If it is assumed that the number of predators 

(birds) per acre is fixed, then the number per branch is proportional to pmax/Sb. The 

predators search foliage and they switch to alternate prey if the ratio of larvae to foliage, 

L2/Fb, is too small . If pmax/Sb is smal l , then predator consumption is 
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L 2 - L 3 = ( l - e - D ) L 2 

« DL2 

= P m a x L " (7 10) 

which indicates that p s a ^ is the half-saturation value of the ratio L\jF2. C lark and 

Ludwig [22] chose the more complicated exponential form (7.9) over (7.10) in order to 

take into account competit ion among predators. 

The survival of pupae is correlated with the survival of large larvae [65] and is given 

by 

L4 = (AP + BAL3 (7.11) 

where Av = 0.473 and BP = 0.828 are regression constants obtained by Jones [65]. This 

expression gives the density of adult moths. 

According to Jones, female fecundity depends on their weight. He calculates this 

weight, W, as 

W = AF1

K

 A ' + AF2(KF - 1){
 A

 ] + BF (7.12) 

where AFI = 34.1, Ap2 = 24.9 and BF = —3.4. This formula expresses the differing 

nutr it ional values of new and old foliage. Fecundity is proportional to the cube root of 

W [65] which results in the following equation for egg density: 

L5 = {ExW1'3 - E2)A„L4 (7.13) 

where E\ = 165.64 and E2 = 328.52 are regression constants obtained by Jones [65] 

and Asr is an adult sex ratio which gives the average proportion of females. There is an 

additional constraint that fecundity be at least 40 eggs per female. If nutr i t ion were so 

poor as to produce fewer than this, the pupae would not have survived [65]. 
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Dispersal is another process which is thought to have an important effect on local 

budworm dynamics. It is convenient to think of eggs dispersing rather than adults, as a 

female moth wi l l deposit some of her eggs on the site under consideration and wi l l remove 

some to other locations [65]. Following Clark [19], it is assumed that dispersal always 

leads to death. Thus, in this model, adult dispersal serves to increase egg mortality. 

Unl ike normal mortality, however, this removal of eggs from the population depends on 

female adult density in the following way: 

A fPm 

Le = (l~ jfj^)L. (7.14) 

where 
ASTL\ 

& = —. 
A-thr 

is the ratio of female adult density to a threshold density, Athr- If the parameter ra is 

large then Em w i l l be large if E > 1 and small if E < 1. This means that a fraction Adisp 

of adult females (and hence eggs) disperse if E > 1 and no dispersal occurs if E < 1. 

The steepness of the transition between no dispersal and dispersal is controlled by the 

size of m. 

Foliage density and branch surface area are both important factors in determining 

the survival of small larvae. The reason is that small larvae disperse twice (using silken 

threads to give them buoyancy in the wind) and the success of their dispersal depends 

upon landing on suitable foliage. It is assumed that the scaled probabil ity of successful 

dispersal is given by 

G = H{2-H) (7.15) 

where 

H = K - F

n -

The parameter n is analogous to ra in equation (7.14). If n is smal l , H w i l l only vary 

slightly as F\ decreases below its max imum, Kp. But if n is large, changes in Fi w i l l 
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greatly affect H. Thus n determines the extent to which foliage density affects the success 

of small larval dispersal. A graph of G versus H is given in figure 7.1. Notice that G is 

0 0.25 0.5 0.75 1 

H 

Figure 7.1: G r a p h of G versus H (equation (7.15)). 

close to 1 unless H differs substantially from 1. The effect of both dispersals is included 

by taking the above factors into account twice. This gives 

Le = dSL^G2L6 (7.16) 
ft 5 

where d$L is an average survival rate for small larvae and Sb/Ks expresses the dependence 

of dispersal success on branch surface area density. The lifecycle is now complete and Le 

represents the new large larval density. 

This completes the description of the three-dimensional model developed by Clark 

and Ludwig [22]. A summary of the equations can be found in appendix D. Table 

7.1 gives the standard parameter values. As with all models there are a number of 

simplify ing assumptions. It may already have been noted that adult dispersal is not 

accurately represented in the model since the model only deals with a single region and 

has no spatial component. Thus the validity and accuracy of the model predictions need 
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to be evaluated, but this is outside the scope of the present study. 
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P a r a m e t e r Descr ip t ion Va lue 
Foliage 

KF maximum foliage density 3.8 
do maximum foliage consumption rate/larva 0.0074 
rF foliage growth rate 1.5 

Branch surface area 
ds branch surface area death rate 0.75 
rs 

branch surface area growth rate 1.15 
KS maximum branch surface area density 24 000 

Budworm 
<lmax maximum parasitism rate 0.4 
Pmax maximum predation rate 23 000 
Psat half-saturation value (predation) 0.085 
A\ST adult sex ratio (females/total) 0.46 

fraction of females dispersing 0.5 
m steepness of dispersal transition 4.0 

Athr female threshold density (dispersal) 5.0 
n effect of foliage density on larval dispersal 1.0 

dsL small larval survival rate 0.28 

Table 7.1: Table of standard parameter values. 

7.4 M o d e l analysis 

7.4.1 Preliminaries 

Tradit ional methods of qualitative analysis, such as isocline analyses, are not possible in 

this case as the equations are complex and there are too many component processes. For 

models of this nature, numerical solution of the equations for a given set of parameter 

values has been the principal tool for investigating the dynamics. However, numerous 

solutions for various parameter combinations are required for a meaningful study. This 

is t ime-consuming and often misleading as the solutions depend on the in i t ia l conditions 

and on complex joint distributions of parameters [19]. Since many ecological models of 
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practical interest are similar in complexity to the one under discussion, it is desirable 

that methods be found for understanding the behaviour of these models. Wi thout an 

understanding of the range of behaviour that a model can exhibit , it may be difficult to 

explain results obtained from computer simulations or t ime series analyses of the model 

[82]. 

A l though A U T O can perform continuations of equi l ibr ium points for simple systems 

of difference equations, the complexity of this system causes the numerical algorithms to 

encounter problems. First of a l l , for discrete systems A U T O can only detect a period-

doubling from an equil ibr ium point to a 2 point (period-2) cycle (refer to section A.3.5) 

but this model exhibits 9 point through to 70 point (and multiples thereof) cycles. A n 

analysis using A U T O would clearly be l imited as none of these higher period cycles would 

be detected. Also, as certain parameters are varied the periods of the cycles change. In 

this model changes occur over small parameter ranges. Since each change in period 

corresponds to a bifurcation, the stepsize would have to be made very small if these were 

to be detected using a numerical continuation method. However, very small stepsizes 

lead to increased computer round-off error and decreased accuracy. 

Despite these l imitations of continuation software in the context of complex discrete 

models, it is st i l l possible to obtain the desired qualitative information. However, bifur

cation diagrams have to be obtained 'manually ' rather than through automated continu

ation programs. This can be done using D S T O O L as wi l l be described shortly. The types 

of numerical routines involved in using D S T O O L are generally more robust than those 

for A U T O when it comes to these complicated discrete models since they involve solving 

the system for a fixed set of parameter values. No further discretisation or approximation 

is required as in the case of differential equations. 

As in the previous chapters the first step is to decide which parameters to investigate. 

Those whose values are uncertain or which are thought to have a significant influence on 
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the dynamics are obvious choices. I chose to study the effects of dispersal on the budworm 

dynamics. A n important parameter affecting female adult dispersal is Athr, the threshold 

value below which no dispersal occurs. The effects of small larval dispersal are controlled 

by n, which determines the extent to which foliage density affects the success of small 

larval dispersal, or dsL, which is the average survival rate for small larvae (see equation 

(7.16)). If we set n = 1 then the effects of small larval dispersal can be determined by 

varying dsL which is more biologically meaningful. (A large value for dsL means that 

the average survival rate is high and also, that foliage condition has a significant effect on 

survival after dispersal.) 

In what follows I look first at d$L and then at Athr- This ordering is arbitrary. The 

a im is to analyse the effects of varying the values of these parameters and to divide the 

(dsL, A i / i r ) -parameter space into regions of different qualitative behaviour. Following this 

I study the effects of different processes on model behaviour to determine which one(s) 

is(are) responsible for the outbreak cycles. Final ly , I study the two processes predation 

and small larval dispersal in more detail. 

Because there are three state variables in the model, a decision had to be made as to 

the two-dimensional space into which the dynamics should be projected. Since branch 

surface area varies at a much slower rate than the budworm and foliage dynamics, I 

decided to look at the budworm versus foliage plane. It should be noted that in al l the 

D S T O O L calculations, branch surface area, S, is st i l l allowed to vary—the results are 

just projected into the (Foliage,Budworm)-plane. This differs from Clark and Ludwig's 

study where S was constant in their analysis and means that the following analysis 

applies to the ful l three-dimensional model whereas that in [22] is restricted to a simpler 

two-dimensional system of equations. 
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7.4.2 The effects of small larval dispersal 

M y first objective was to determine the effects of varying the parameter dsL on model 

behaviour. Since d$L is a survival rate it must lie between 0 and 1. To begin I set dsL = 

0.05 in the S E T T I N G S - S E L E C T E D window and fixed al l the other parameters at their 

respective values given in table 7.1. Using D S T O O L I found and recorded the equi l ibr ium 

points corresponding to this parameter set as well as their local stabilities. This is 

done using icons in the F I X E D P O I N T window. I also used D S T O O L to calculate the 

corresponding dynamics in the (Foliage,Budworm)-plane. This is done using the mouse 

to click on different in i t ia l points, or entering in i t ia l points manually in the S E T T I N G S -

S E L E C T E D window and using F O R W A R D S and C O N T I N U E in the O R B I T S window 

to calculate trajectories. The resulting diagrams show whether cyclical behaviour occurs 

and the amplitudes of the cycles as well as the approximate domains of attraction (see 

section A.2.5) in the two-dimensional plane. 

After recording the results I increased dsL to 0.10 and repeated the above procedure. 

I continued in this way (incrementing dsL by 0.05 each time) unti l I reached dsL = 1-0. In 

regions where qualitative changes occurred (such as an equi l ibr ium point changing stabi l 

ity or a change from stable to unstable oscillatory behaviour) I decreased this increment 

to 0.01. Greater accuracy would have been easy to obtain but it is t ime-consuming and 

I did not think it necessary for a qualitative study. 

The results of the above parameter study are summarised in the one-parameter b i 

furcation diagram in figure 7.2. (Similar diagrams for F and S can also be drawn.) This 

diagram was obtained by plott ing the budworm densities of the equi l ibr ium points for 

each value of dsh and then connecting these points—sol id lines for stable equil ibria and 

dotted lines for unstable equil ibria. M a x i m a and min ima of the cycles that were found 

were then p lot ted—sol id dots for stable cycles and open circles for unstable cycles. 
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Figure 7.2: One-parameter bifurcat ion d iagram of b u d w o r m larva l density versus dsL-

We can see from figure 7.2 that for low values of d$L there is a single stable equi l ibr ium 

value. A diagram of the (Foliage,Budworm)-plane for the particular value d$L = 0.2 

is shown in figure 7.3(a). A l l orbits spiral in to the equi l ibr ium point (denoted by the 

triangle). As dsL increases a bifurcation occurs, and for dsL > 0.28 there is the possibility 

of outbreak cycles. Figure 7.3(b) shows the (Foliage,Budworm)-plane for d$L = 0.35. In 

this case, depending on the in i t ia l values of the state variables, either stable equi l ibr ium 

or outbreak behaviour can occur. This is further exemplified in figure 7.4 by the plots of 

the temporal variation of budworm, foliage and branch surface area for dsL = 0.35. As 

can be seen from these plots, the max imum of the outbreak cycle varies but the period 

remains fixed at 15 years. (Strictly speaking the period may be some larger mult iple of 15 

but from a biological viewpoint, we are most interested in the fact that peaks (outbreaks) 

occur every 15 years, even if the cycle max imum varies slightly in consecutive outbreaks. 

Cycles of very long period or totally aperiodic motion wi l l both appear to be almost 

periodic (or chaotic) in a practical biological setting [84].) Since both the equi l ibr ium 

and the outbreak cycle are stable phenomena, there must be some k ind of boundary 
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Figure 7.3: D iag rams of b u d w o r m larva l density versus foliage for (a) dsL = 0.2, (b) dsL — 0.35, (c) 

d$h — 0.8 and (d) dsL = 0.9. T h e dots indicate densities i n consecutive years. 
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F i g u r e 7.4: Time plots of (a) budworm larval density, (b) foliage density and (c) branch surface area 

density versus t ime for dsL — 0.35. In each case two trajectories are shown for a t ime period of 100 

years. As can be seen, i n i t i a l values of the three state variables affect the result ing behaviour of the 

system. The two s tar t ing points, A and B, are the same in all three graphs. 
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del imit ing their domains of attraction (see section A.2.5) . This is not easy to locate in 

three dimensions and may not be a smooth surface. The dashed line in figure 7.3(b) 

gives a rough approximation to a two-dimensional projection of part of this boundary 

(the boundary also varies with S) and is only included to indicate that the domain of 

attraction for the outbreak cycle is much larger than that for the equi l ibr ium point. 

For 0.28 < d$L < 0.68 the behaviour remains the same qualitatively. Near dsL — 0.68 

the stable equi l ibr ium undergoes a bifurcation resulting in an unstable equi l ibr ium (de

noted by a plus sign in figure 7.3(c)) surrounded by stable cycles of small amplitude. 

These cycles have periods of 7 or 8 years. Figure 7.3(c) gives the (Foliage,Budworm)-

plane for dsL = 0.8. Note that the outbreak cycle now has a much larger amplitude 

than in figure 7.3(b) and that the points corresponding to these outbreaks appear to f i l l 

a defined region rather than being confined to a curve as in figure 7.3(b). T i m e series 

corresponding to these outbreaks are similar td those in figure 7.4 but the amplitudes of 

the cycles vary more and there is more variation in the magnitudes of consecutive points 

in the cycles. However, the period is fixed for a given value of dsL-

Returning to figure 7.2 again we can see that the two cycles become unstable as d$L 

is increased further, as indicated by the open circles. The (Foliage,Budworm)-plane for 

dsL = 0.9 is shown in figure 7.3(d). For any in i t ia l values the system sti l l oscillates 

but the amplitudes of these oscillations get larger and larger unti l the budworm finally 

becomes extinct. 

Having classified the dynamical behaviour of the system for different values of dsL, I 

w i l l now vary Athr, the threshold value for female adult dispersal. 

7.4.3 The effects of adult dispersal 

To begin I chose three values of dst (0.2, 0.45 and 0.7) which correspond to regions of 

different qualitative behaviour in figure 7.2. For each of these values of <7sx I varied Athr 
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in the same manner as described in the previous section in order to obtain one-parameter 

bifurcation diagrams. In this case Athr is not restricted to lie between 0 and 1 since Athr 

is the threshold density of female moths above which dispersal occurs. Female adult 

outbreak densities are around 30 females/tsf [19]. However, dispersal is not l imited to 

outbreaks so we would like to investigate values of Athr between 0 and, say, 20. I used 

an increment of 0.5 for this study, decreasing this to 0.1 in regions of qualitative change. 

The resulting bifurcation diagram for dsi = 0.45 is shown in figure 7.5. In this case 

120 

B u d w o r m 
la rva l 80 

density 
( larvae/tsf) 

40 h 

F i g u r e 7.5: One-parameter bifurcat ion d iagram of b u d w o r m la rva l density versus Athr for dsL = 0.45. 

there are two Hopf bifurcations resulting in two regions, L\ and L2, where periodic orbits 

of small amplitude (when compared with the outbreak cycles) occur. These orbits have 

periods of 9 or 10 years. For this value of dsL, outbreak cycles are possible for al l Athr 

values. For clarity of the smaller amplitude orbits, only the min ima of the outbreaks are 

shown in figure 7.5 (these are just above zero). The max ima vary between 355 larvae/tsf 

at Athr = 0.01 and 480 larvae/tsf at Athr = 14. For larger Athr values the behaviour 

corresponds to that at Athr = 14 but with greater outbreak amplitudes. The diagrams 

for the other values of dsL are qualitatively s imi la r—on ly the values of Athr at which the 
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Figure 7.6: Two-parameter bifurcat ion d iagram of Athr versus dsL-

bifurcations occur and the amplitudes of the cycles are different. For d$L = 0.2 outbreaks 

only occur for Athr > 10.5. 

Having obtained an idea of the qualitative behaviour which corresponds to varying 

Athr, we can begin constructing a two-parameter bifurcation diagram in the (dsL, Athr)-

parameter space. The features we can expect to locate as a result of the above studies are 

two curves denoting where the Hopf bifurcations occur and a curve dividing the parameter 

space into regions where outbreak behaviour is or is not possible. Other curves of interest 

include those indicating the extent of stable cycling behaviour. 

The values of Athr at which each of the above phenomena occur can be found through 

incrementing dsh by 0.1 (or 0.05 in regions where significant changes occur). This results 

in the two-parameter bifurcation diagram shown in figure 7.6. The solid lines indicate 

where Hopf bifurcations occur and the small dotted lines indicate the outer l imits for 
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stable cycl ing behaviour corresponding to these bifurcations. The thick dotted line sepa

rating regions A and B from C and D indicates the boundary for outbreak cycles, that is, 

to the left of this curve no periodic outbreak behaviour occurs. The other thick dotted 

lines indicate the boundaries of the regions F, G and H where budworm extinction occurs 

and region I where two equi l ibr ium states are possible. 

This single diagram summarises nine qualitatively different types of behaviour that 

can be obtained by varying dsL and Athr- The nine regions are marked A - I . Diagrams 

of the (Foliage,Budworm)-plane corresponding to each region are shown in figure 7.7. 

Str ict ly speaking dots should be used for the trajectories instead of continuous lines 

since the model is discrete. However, it is easier to denote the direction of flow and the 

qualitative behaviour when lines are used. 

In region A there is one spiral sink (indicated by the triangle) corresponding to positive 

budworm densities, and an unstable saddle point (indicated by a plus sign) at (F, S, L) = 

(KF,KS,0) (L represents budworm larval density). A l l trajectories with positive in i t ia l 

values spiral in towards the sink (see section A.2.21). In region B this sink has become an 

unstable saddle (see section A.2.20). (In (Foliage,Budworm)-space the behaviour near 

this saddle resembles that near an unstable spiral (see section A.2.23).) Trajectories 

starting near this point spiral out towards a stable periodic orbit. Trajectories from 

other in i t ia l points st i l l spiral inwards but in this case they approach the periodic orbit 

instead of the equi l ibr ium point. 

Region C is similar to region A in that the equi l ibr ium points are again a spiral sink 

and a saddle. However, in this region outbreaks are also possible. Since both the sink 

and the outbreak cycle are attracting, there must be a basin boundary div id ing their 

domains of attraction. A rough approximation to part of this boundary is denoted by 

the dashed line. Again , the position of the boundary wi l l vary with S. It appears that in 

most cases the domain of attraction for the outbreak cycle is much larger than that for 
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Figure 7.7: D iag rams of budworm larval density versus foliage for the regions marked A-I in figure 

7.6. Tr iangles denote sinks (usually spiral sinks in this model) and plus signs denote unstable saddles 

( equ i l i b r ium points having at least one stable and one unstable eigenvalue—the th i rd eigenvalue may be 

either stable or unstable). 
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the sink. 

Region D is similar to region C for most of the state space. The only difference is 

that the spiral sink has been replaced by a stable periodic orbit. As Athr is varied (and 

we move from region D to E ) , the periodic orbit becomes unstable and we are left wi th 

al l the trajectories approaching the outbreak cycle. As we move into region F even the 

outbreak cycle becomes unstable. The system may oscillate a few times exhibit ing cycles 

of very large amplitude (in terms of budworm density) but then the budworm population 

crashes and becomes extinct. Region G also has unstable outbreaks but there is a small 

region where trajectories spiral in towards a stable equi l ibr ium. 

The remaining two regions are H and I. These correspond to low dsL values. In region 

H the point (F,S,L) = (Kp, Ks,0) is a spiral sink. A l l trajectories approach this point 

and thus the budworm becomes extinct without any outbreak occurring since small larval 

survival is too low for the budworm population to survive even in the most favourable 

conditions. In region I there are two spiral s inks—one corresponding to no budworm 

and the other to a positive budworm density. The ini t ia l values of F, S and L (budworm 

larval density) determine which sink is approached. 

7.4.4 B io log ica l interpretat ion 

The first point to note is that, from an experimental viewpoint, it may be difficult to 

distinguish between the equi l ibr ium behaviour associated with regions A and C and 

the cycl ing behaviour of regions B and D, respectively, due to random variation and 

measurement errors. This is true even in the simplest cases. Near a spiral sink the 

values of the state variables oscillate with the amplitude of oscillation getting smaller 

as the sink is approached. When a periodic orbit is present the behaviour is similar 

but the oscillations approach the stable cycle. Because of statistical variation in nature 

and measurement errors, it is almost impossible to determine whether the system is 



Chapter 7. Spruce Budworm Model 186 

approaching a sink or a periodic orbit of small amplitude. Therefore the locations of 

the solid lines (representing Hopf bifurcations) are not as important as the positions of 

the small dotted lines. Beyond the latter (in regions E ,F and G) no 'desirable' stable 

behaviour is possible—only periodic outbreaks are found in these regions. In regions 

F and G , the amplitudes of these outbreaks are so large that the budworm population 

crashes to zero after a few cycles and becomes extinct. 

The actual position of the boundary line of these latter two regions is fairly arbitrary 

as even before the thick dotted curve is reached the outbreak cycle leads to very small 

budworm densities for certain parts of the cycle. Such small densities may be equivalent 

to extinction due to statistical variation. Essentially we have to decide how low budworm 

densities can drop before extinction occurs. 

The other region of extinction is region H. This region corresponds to very low (average 

and dispersal) survival rates for small larvae. In this region survival is too low to allow 

the budworm population to be self-sustaining, even if conditions are favourable. In 

contrast regions F and G correspond to high survival rates. These have the effect of 

destabilising the system and causing wi ld oscillations. This destabilisation as a survival 

rate is increased is a phenomenon characteristic of many ecological models [84]. 

Region I corresponds to two stable equi l ibr ia—one at very low budworm densities 

and the other at higher population densities. Although the possibility of mult ip le stable 

states is of interest to ecologists, this region exists for such a small range of dsL values 

that it is probably not of practical importance as a small perturbation would move the 

system into regions A or H. However, C and D are regions of mult iple stable states with 

significant area. From the above discussion figure 7.6 can be simplified to include only 

the most important phenomena. A simplified diagram is given in figure 7.8. 

The above results show that outbreak behaviour is possible for a large number of 

parameter combinations. In the region of two stable states an alternative, more desirable 
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Figure 7.8: S impl i f ied two-parameter bifurcat ion d iag ram of Athr versus dsL-

stable state is possible but for the rest of the outbreak region no alternative is possible. 

A l though figures 7.6 and 7.8 provide a concise summary of results, the one-parameter 

diagrams (figures 7.2 and 7.5) are also useful. They show the budworm densities corre

sponding to the equil ibria and cycling behaviour as well as the amplitudes of the cycles. 

The corresponding one-parameter bifurcation diagrams for foliage and branch surface 

area density show that the equi l ibr ium values for these quantities decrease as dsL and/or 

Athr are increased. Thus they show the severity of the defoliation corresponding to dif

ferent dispersal rates. 

A l though the state space diagrams in the preceding analysis were only for the (Foliage, 

Budworm)-plane, they could also have been projected into the (Surface Area,Budworm)-
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or (Foliage,Surface Area)-plane, since the branch surface area, S, varies in al l the situa

tions studied. The dynamics are similar in all the planes—just the shapes of the cycles 

and the positions of the equi l ibr ium points are different. 

7.4.5 W h a t causes outbreak cycles? 

A p p r o a c h 

In the preceding sections parameter values corresponding to low (0-2 larvae/tsf) and 

medium (30-50 larvae/tsf) equi l ibr ium budworm densities as well as values giving rise 

to outbreaks were obtained. A l l three types of behaviour (namely, very low budworm 

densities, endemic equil ibria and outbreaks) have been observed in the field [90]. However, 

the model under discussion is a complex one with many component processes. We would 

like to know just which processes are responsible for the observed behaviour and which 

ones are of lesser importance. In particular we would like to know which processes cause 

the outbreak cycles. One way to investigate the effects of the different processes in the 

current model is to start with a basic model and add indiv idual processes one at a t ime 

(such as parasitism or the effect of larval weight on fecundity) to see what effect this has 

on model behaviour. 

Clark and Ludwig [22] included a number of switches in their model so that the 

different processes can be turned on and off. In order to remove parasit ism, equation 

(7.7) can be replaced by 

The effect of food on large larval survival (equation (7.8)) can be replaced by a constant 

survival rate, namely 

L\ — Lb- (7.17) 

L2 - kLLi. (7.18) 
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As for parasit ism, predation (equation (7.9)) can be removed by setting 

L3 = L2. (7.19) 

Instead of correlating pupal survival with that of large larvae, equation (7.11) can be 

replaced by 

L4 = BPL3. (7.20) 

The effect of pupal weight (and hence feeding history) on female fecundity (equation 

(7.13)) can be removed by using a constant average fecundity. This gives 

L5 = BSeLA (7.21) 

where Bje = 96 was the chosen average fecundity per female moth [22]. Female adult 

dispersal is removed by setting Ansp = 0 in equation (7.14) and small larval dispersal 

can be precluded by replacing equation (7.16) with 

Le = dSLL&. (7.22) 

In order to obtain an idea of the effects of these processes on model behaviour, I 

turned off al l the switches init ial ly and then added each process to the model in turn. 

For each process I varied its associated parameters to .see what range of behaviour could 

be obtained, and more specifically, whether outbreak cycles could occur. 

Results 

W i t h al l the switches off, the budworm density increases exponentially causing foliage 

density (and hence branch surface area) to decline to zero. The only process that affects 

this behaviour significantly when added to the model is small larval dispersal. In fact, 

the inclusion of this process leads to outbreak cycles for certain values of dsL- (In section 

7.4.1 it was explained how varying the small larval survival rate, dsL, effectively varies 
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the success of small larval dispersal. Higher small larval survival rates also mean that 

the larvae have a greater chance of dispersing successfully,, that is, of surviving dispersal, 

because of the formulation of equation (7.16). Thus, the two processes are referred to 

interchangeably.) Even with very high predation rates, predation alone cannot produce 

cycl ical behaviour. 

The other processes in the model, namely parasit ism, predation, large larval and pupal 

survival, fecundity and adult dispersal, do not alter the qualitative behaviour significantly 

when operating alone but do affect the rates at which the budworm population grows 

and at which foliage and branch surface area vary. In other words, their effects are 

quantitative rather than qualitative. To demonstrate this more conclusively, I obtained 

a diagram similar to figure 7.6 using a simplified model containing only a few processes. 

Smal l larval dispersal was included in this simplified model as the dynamics depend on it . 

In order to obtain a diagram similar to figure 7.6, adult dispersal also needs to be included 

so that Athr can be varied. The switches for all the other processes mentioned above were 

turned off, that is, equations (7.17).. .(7.21) replaced the corresponding equations in the 

original model . (For brevity this simplified model wi l l be referred to as the dispersal 

model.) The two-parameter bifurcation diagram in (dsL, A t - i r ) -parameter space shown in 

figure 7.9 was generated in the same way that figure 7.6 was obtained. 

Discussion 

If we compare figures 7.6 and 7.9 we can see that all the main phenomena are st i l l present, 

which supports the c laim that dispersal is responsible for the qualitative behaviour of the 

model . The only feature that is missing from figure 7.9 is the region where the outbreaks 

lead to extinction (regions F and G in figure 7.6). However, by generating diagrams of 

the (Foliage,Budworm)-plane or t ime plots for the simplified model (as is done in the 

process of obtaining figure 7.9), it is easily seen that the outbreaks for this model have 
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Figure 7.9: Two-parameter bifurcat ion d iagram of Athr versus dsL for the s impl i f ied mode l wh ich only 

includes dispersal . Regions are marked according to figure 7.6. 

very large amplitudes. Even when dsL = 0.4 budworm densities vary between 1 0 - 9 

and 820 larvae/tsf within an outbreak cycle. This outbreak amplitude increases as dsL 

increases with max ima around 2200 larvae/tsf and extremely small m i n i m a around 1 0 - 5 ° 

larvae/tsf for d$L — 0.9. These values are clearly unrealistic and equivalent to extinction 

from a biological viewpoint. 

If we compare the above observations with the results from the original model , then 

we can make another important deduction. The processes which have been left out 

of this simpler dispersal model are important for biological realism. As stated above, 

their effects are quantitative rather than qualitative. They have a moderating effect on 

the system dynamics and prevent densities becoming too high or too low for reasonable 

parameter values. Each process may have a relatively small influence but together they 

exert considerable control over the system. 
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The observation that small larval dispersal is responsible for the outbreaks contrasts 

wi th McNamee's [89] explanation that cycling is the result of movement between bud

worm equil ibr ia at low and high budworm densities. However, the result agrees with the 

findings of Clark [20] who did a detailed study of the effects of dispersal on budworm 

dynamics. Royama's results [105] also indicate that larval survival, which is l inked to 

dispersal, is the determining factor in the occurrence of outbreaks. In their study of the 

larch budmoth, Baltensweiler and Fischl in [12] suggest that the cycles in their system 

appear to stem from regional migration rather than long range migration of adults. 

Why does small larval dispersal regulate the outbreak cycles? Clark [20] suggests 

the following argument. The survival of dispersing larvae depends on the quality and 

quantity of the foliage on which they land (see equations (7.15) and (7.16)). If foliage 

density is high then more larvae survive. For an outbreak to occur the forest must be 

in good condition with high branch surface area and foliage densities. The budworm 

population then grows rapidly and escapes from the control of parasitoids and predators 

[90, 119]. However, high budworm densities lead to forest defoliation which induces rapid 

branch mortality. This lowers the success of small larval dispersers [20] resulting in an 

epidemic collapse. F ischl in and Baltensweiler [37] come to similar conclusions in their 

study of the larch/larch budmoth system. They also note that their model is sensitive to 

the recovery rate of the trees after defoliation but that not much field data is available 

on this. 

McNamee et al. [90] recognise the importance of forest biomass on outbreak behaviour 

but maintain that the outbreaks are movements between high and low equi l ibr ium bud

worm densities. Their analysis is based on isorecruitment curves in which certain variables 

are held fixed. However, the analysis of this chapter leads to different conclusions. The 

state space and bifurcation analyses show that the equil ibria and the outbreak cycles 

are different phenomena and that small larval dispersal is responsible for the cycles. A l l 
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the processes were allowed to vary simultaneously in this analysis and the results agree 

with Clark's extensive analysis of dispersal [20]. Clark notes that the epidemic-collapse 

behaviour is the hardest to explain because of the strong dynamic feedbacks between the 

forest and budworm. He also states that direct application of equi l ibr ium manifolds, the 

method used by McNamee et al. [90], is not particularly informative (cf. chapter 4). 

7.4.6 The effects of the other processes 

I stated above that the effects of the processes other than small larval dispersal are 

quantitative rather than qualitative. However, a better understanding of these effects 

would be helpful. It would be informative to know the relative effects of each process 

on the dynamics of the system and the budworm densities over which their effects are 

greatest. 

M e t h o d 

A technique suggested by Clark and Ludwig [22] involves beginning with al l the processes 

turned off (as described earlier) and then turning them on one at a t ime and determining 

budworm recruitment values over one year for a wide range of in i t ia l budworm larval 

densities. The density range over which each process has the greatest influence can then 

be determined. This can be done a number of times with the processes being turned on 

in different orders so that the results can be checked. A n example is shown in figure 7.10. 

Discussion 

From figure 7.10 we can draw a number of conclusions. First of a l l , the effect of food on 

large larval survival is only noticeable at high (65 larvae/tsf) budworm densities and even 
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Figure 7.10: Isoclines of recruitment versus b u d w o r m density when 1) a l l processes are switched off, 

2) the dependence of large l a rva l surv iva l on food is added, 3) the effect of feeding his tory on fecundity 

is also added, 4) s m a l l l a rva l dispersal is added, 5) paras i t i sm is added, 6) predat ion is added, and 7) 

adul t dispersal is added g iv ing rise to the ful l mode l . 

then the effect is not very pronounced. Feeding history has a small effect on fecundity at 

al l budworm densities and has the most effect at high densities. Parasit ism substantially 

reduces recruitment for densities below about 45 larvae/tsf (log(budworm) < 3.8) but has 

less influence at higher densities (the parasitism curve approaches the preceding curve as 

budworm density increases). The effect of predation is clearly noticeable for fairly low 

budworm densities between 0.4 and 20 larvae/tsf ( — 1 < \og(budworm) < 3). However, 

control by predation declines as budworm densities increase. Adul t dispersal exerts most 

control for budworm densities between 20 and 90 larvae/tsf (3 < \og{budworm) < 4.5) 

while the influence of small larval dispersal is clearly noticeable for densities greater than 

90 larvae/tsf (\og(budworm) > 4.5). These results reiterate that small larval dispersal 



Chapter 7. Spruce Budworm Model 195 

is the most important process at high larval densities and hence is the process which is 

most responsible for outbreak collapses. 

In summary, the processes having the greatest effects on budworm dynamics at high 

larval densities are small larval dispersal and adult dispersal. A t low to medium densities 

we have predation and parasitism. The latter two processes are responsible for controlling 

budworm densities between outbreaks. It is only when the budworm escapes their control 

that outbreaks occur. The extent of their influence wi l l therefore affect the length of t ime 

between outbreaks. 

7.4.7 The effects of predation 

C o m p a r i n g predat ion and dispersal 

In order to further substantiate some of the above claims, a bifurcation analysis can 

be employed once again. The effect of predation is very pronounced at lower budworm 

densities (as can be seen from figure 7.10). I thus decided to add predation to the simpler 

model used earlier, which only included small larval and adult dispersal, to see what effect 

this would have. This new model wi l l be referred to as the predation model for simplicity 

(although it also includes dispersal). 

The two parameters affecting predation are pmax, the m a x i m u m predation rate, and 

psat, a half-saturation value. Increasing pmax or decreasing psat both lead to increased 

predation (see equation (7.9)). W i t h these two parameters at their nominal values given 

in table 7.1, the new two-parameter bifurcation diagram is shown in figure 7.11. Some 

observations can be made by comparing this diagram with figures 7.6 and 7.9. 

First of a l l , predation does not affect the position of the lower Hopf bifurcation curve 

(see figures 7.9 and 7.11). However, the upper Hopf bifurcation curve is lowered by 

predation. Thus predation decreases the size of the region ( A , B , C , D and G) where a 
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Figure 7.11: Two-parameter bifurcat ion d iagram of Athr versus dsL for the predat ion mode l wh ich 

includes dispersal as well as predat ion. Regions are marked according to figure 7.6. 

stable endemic state is possible. 

The other noticeable effect of predation is on the parameter values for which outbreak 

behaviour occurs. Outbreaks occur for lower dsL values in figure 7.11 than in figure 7.9. 

Thus predation seems to have a destabilising effect from this point of view. The m a x i m a 

of the outbreaks are similar to those for the dispersal model at each value of dsL but the 

budworm population crashes to zero for values of dsL greater than about 0.48 instead 

of continuing to oscillate (with ever-increasing amplitude as d$L increases) as occurred 

in the dispersal model. This is due to the appearance of a sink corresponding to zero 

budworm density in the predation model. However, this technicality is not of biological 

consequence since the outbreaks in the dispersal model attained such large amplitudes 

that they became unrealistic and equivalent to extinction. 

F rom figures 7.9 and 7.11 it appears that the main effect of predation is to destabilise 
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the system as outbreaks occur for lower dsL values and the region of mult ip le stable 

states is smaller (due to the shift in the upper Hopf bifurcation curve). However, the 

qualitative dynamics have not been significantly altered. 

Compar ing figures 7.6 and 7.11 we can deduce the effects of adding the remaining 

processes (other than dispersal and predation) which are included in the ful l model . In 

figure 7.6, the region of endemic stable states ( A , B , C , D and G) has been shifted to lower 

dispersal thresholds (that is, lower A t h r values) by adding these processes since both 

Hopf bifurcation curves are lower in figure 7.6 than in figure 7.11. In other words, in the 

ful l model endemic equil ibria occur for higher rates of female adult dispersal than in the 

predation model since lower dispersal thresholds imply that there is more dispersal (see 

equation (7.14)). 

The region of extinction for low dsL values (region H) is larger in figure 7.6 but the 

amplitudes of the outbreak cycles are greatly reduced so that the region of extinction 

for high dsL values (regions F and G) is much smaller. For example, outbreak m i n i m a 

and m a x i m a for dsL — 0.3 and A t h r = 5 are respectively 1 0 - 2 1 and 680 larvae/tsf for the 

predation model as opposed to 1 and 216 larvae/tsf for the ful l model. For Athr < 12, 

the onset of outbreaks occurs for higher dsL values in the ful l model than in the preda

t ion model . This emphasises the above observation that the additional processes in the 

original model have a stabilising effect on the system provided that adult dispersal is 

sufficiently high, that is, Athr is sufficiently low (below 12 larvae/tsf in this case). 

The role of predation 

In order to study the effects of predation in more detail , one-parameter bifurcation dia

grams can be generated by varying pmax or psat. I used the original model which includes 

al l the processes since its output is more biologically meaningful. The method used to 

obtain figures 7.2 and 7.5 was used again and the resulting one-parameter bifurcation 
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diagram for pmax, corresponding to dSL = 0.4 and Athr = 5, is shown in figure 7.12. To 

simplify the scale pmax is given in multiples of 23 000 which is the nominal value for pmax 

given in table 7.1. 
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Figure 7.12: One-parameter bifurcation diagram for p m a x with dsL = 0.4 and Athr = 5. 

For Pmax less than half its nominal value there is a single equi l ibr ium state, cor

responding to endemic budworm densities (see figure 7.12). No outbreaks occur in this 

range although the system oscillates as it approaches the equi l ibr ium. Outbreaks are pos

sible in the range of pmax values denoted by a. M a x i m a for these cycles are around 270 

larvae/tsf for pmax — 0.6 x 23 000 and increase as pmax increases. A t pmax = 2.7 x 23 000 

a m a x i m u m of 360 larvae/tsf is attained. These values are much more realistic than the 

m a x i m u m of 820 larvae/tsf produced by the dispersal model for the same values of dsL 

and Athr-

Around pmax = 2.3 x 23 000 the endemic equi l ibr ium bifurcates to produce a nine 

year periodic orbit of small ampli tude 1 . This periodic orbit is attracting for the range 
1 To be mathematically correct I should say that a number of bifurcations occur leading to orbits 

of higher and higher period. However, these bifurcations occur over such a small range of parameter 
values that it is difficult to detect them using the present techniques. Also, because they occur over 
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of parameter values denoted by 6. In region a, in i t ia l values for the budworm and forest 

variable determine whether the outbreak cycle or an endemic equi l ibr ium state (stable 

equi l ibr ium point or small amplitude periodic orbit) is attained. For pmax > 3.3 x 23 000 

(region c) there is a single equil ibr ium corresponding to low budworm densities. This 

suggests that if predation were to control the budworm population and keep it at low 

levels, the amount of predation would have to be much higher than has been observed 

in the field. (Recall that the nominal or standard value for pmax is 1.0 x 23 000.) The 

recruitment curves generated earlier (figure 7.10) using the standard parameter values 

in table 7.1 show that predation has its most significant effect at budworm densities 

around 5 to 7 larvae/tsf. However, during outbreaks larval densities increase to much 

higher values very rapidly. This supports the above observation that predation does not 

have a significant influence on outbreak behaviour, except when predation is so high that 

budworm densities cannot escape from the low numbers where predation is prevalent. 

A diagram similar to figure 7.12 can be obtained by decreasing psat. F rom the d i 

agrams of the (Foliage,Budworm)-plane and the t ime plots generated in doing these 

parameter studies, an important observation can be made—vary ing the predation pa

rameters has a significant influence on the periods of the outbreaks. For example, when 

Pmax — 0.6 x 23 000 the outbreak cycle has a period of 13 years. This increases to 50 

years for pmax = 3.4 x 23 000. These increased periods do not have much effect on the 

t ime span of the actual outbreak which is usually around 7 or 8 years. Instead they 

increase the number of years for which budworm densities remain below 1 larva/tsf. F ig 

ure 7.13 illustrates the above comments. These results again support the conclusion that 

predation only affects the behaviour at low budworm densities. Once the budworm have 

escaped the control exerted by predation, an outbreak occurs and the attributes of this 

such a s m a l l range, they are not of pract ical impor tance i n themselves. W e are more interested i n the 
qual i ta t ive change from an equ i l ib r ium to cycles. 
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Figure 7.13: T i m e plots of b u d w o r m larva l density for (a) Pmax — 0.6 x 23 000 and (b) 

p m a x = 3.4 x 23 000. Outbreaks last 7 or 8 years in bo th cases but the t ime between outbreaks is 

longer i n (b). B o t h figures are plots of the behaviour after the i n i t i a l transients have died away. 
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outbreak (such as its t ime span) are independent of the rate of predation. However, for 

higher rates of predation it takes much longer for the budworm to escape this control, 

hence the longer t ime periods between outbreaks. 

As a final test of the effects of predation relative to small larval dispersal, I constructed 

a two-parameter bifurcation diagram of pmax versus dsi using the ful l model (which 

includes al l processes). The results are shown in figure 7.14. Clearly, the higher dgL (and 
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(x23000) 2 

1 

0 
0 0.2 0.4 0.6 0.8 1 

dsL 
A . O n l y lower sink (budworm: 0-2 larvae/ tsf) 
B . T w o sinks (lower and interior) 
C . Interior sink (budworm: 30-50 larvae/ tsf) 
D . Interior sink + outbreaks 
E . Interior saddle + outbreaks 
F . Interior saddle + stable l i m i t cycle 
G. Interior saddle + stable l i m i t cycle + outbreaks 

Figure 7.14: Two-parameter bifurcat ion d iagram of p m a x versus dsL-

hence the greater small larval dispersal success) the greater the chance of outbreaks. 

Only for low dsL and high pmax values does predation exert sufficient control over the 

budworm population to prevent outbreaks occurring. Note that the nominal value for 

Pmax is 1 x 23 000 and at this value the lower budworm equi l ibr ium only exists for 
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dSL < 0.12. 

This section emphasises once again the overwhelming importance of small larval dis

persal success, and hence the importance of forest condition, on the budworm dynamics. 

7.5 C o n c l u s i o n 

This chapter has focussed on analysing the budworm-forest model developed by Jones 

[65] and Clark and Ludwig [22] using the techniques of dynamical systems theory. Proce

dures for obtaining one- and two-parameter bifurcation diagrams using diagrams in the 

(Foliage,Budworm)-plane and time plots from D S T O O L were explained. In the first part 

of the analysis a classification of the (dsL, A f / i r ) -parameter space was obtained. Whi le 

Clark and Ludwig [22] found parameter combinations corresponding to behaviour in a 

number of these regions, namely A , B, C, D and H, this study found some addit ional 

possibilities for model behaviour and is much more comprehensive as the resulting bifur

cation diagrams summarise the behaviour for al l possible combinations of dsL and Athr-

The diagrams also show how the system behaviour changes as the two parameters, dst 

and A^r, are varied. 

Following this the various processes in the model were investigated in more detail 

using a variety of techniques. It was found that small larval dispersal, and hence forest 

condition, has the most effect on outbreak cycles in the model and that predation has 

an added destabilising effect. The main influence of predation is at fairly low budworm 

densities which means that it affects the time period between outbreaks but not the 

length or amplitude of the outbreak. Again the use of bifurcation diagrams, state space 

diagrams and t ime plots was crucial in the analysis. 
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C o n c l u s i o n 

8.1 M a i n r e s u l t s 

A variety of models, both continuous and discrete, theoretical and practical , have been 

analysed in the preceding chapters. The same basic techniques have been used in each 

example. 

Conclusions which are specific to a particular model have already been noted at the 

end of each chapter. There are also a number of general results that I wish to highlight. 

F i rst , the dynamical systems techniques can lead to greater insight into the behaviour 

of a model and the interactions between various processes in a system than is possible 

with tradit ional techniques. For the sheep-hyrax-lynx model in chapter 3 bifurcation 

diagrams were found to give more information than a tradit ional sensitivity analysis, 

and for the ratio-dependent model in chapter 4 the techniques proved more accurate and 

informative than an isocline analysis. In both these cases the additional information 

resulted in improvements in the formulations of the models. Thus dynamical systems 

techniques can be helpful in constructing more plausible models. The techniques can 

also identify which parameters or processes are crucial for determining the behaviour of 

the model. This is i l lustrated in chapters 3 and 7. 

The available computer packages allowed us to obtain the results fairly easily without 

the prerequisite of an extensive mathematical knowledge of dynamical systems theory 

and without intensive mathematical manipulations. This was highlighted in chapters 2 

203 
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and 5 where the numerical results were compared with previously obtained theoretical 

results. In chapter 2 the numerical results were in fact more accurate than Bazykin 's 

approximate analytic results [14]. The computer packages also allow more complicated 

models to be studied than is possible by hand. A l l the models i l lustrate this point. As a 

result, previously unobtainable insights can be discovered. 

In addit ion, bifurcation diagrams provide a concise way of summarising results and 

two-parameter diagrams give an idea of the relative frequency of occurrence of the various 

phenomena. 

Al though the dynamical systems techniques can be applied in a variety of situations, 

they are obviously not suitable for al l types of ecological models. 

8.2 Limitations 

Systems of difference equations or ordinary differential equations can be studied but not 

systems of part ial differential equations. Also, the models must not be t ime or space 

dependent. These l imitations are serious, however it is generally the case that models 

which are fundamentally different in structure require different methods of solution. For 

certain types of partial differential equations and time-dependent models it is possible 

to overcome these l imitations by transforming the equations so that they fal l into the 

required categories, but the mathematics required to do this is not t r iv ia l . 

A l though the computer packages allow the dynamical systems techniques to be ap

plied to large models, it is usually more difficult to interpret the results when many 

state variables and interactions are involved. There is also a greater risk of encountering 

software restrictions with these large models and the dynamics can become extremely 

complex because of the higher dimension of the system. Hence, the ease with which 

the computer packages can be used should not be taken as an argument for bui lding 
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complicated models. Simple models are sti l l most l ikely to give us insight into system 

behaviour because of our own l imits in understanding. 

As anyone who has used a computer wi l l know, computers and software hardly ever 

work as smoothly as one might wish. Some of the problems that I encountered have been 

discussed in previous chapters and others are recorded in appendix B. It is usually a 

good idea to check the results using an alternative technique or software package. 

Al though a variety of models have been studied in this thesis, there are many other 

possibilities for the application of dynamical systems techniques. 

8.3 Future possibilities 

I did not study any examples of models which include seasonal variation but it is possible 

to do so (see, for example, [48, 102]). However, the dynamics and bifurcation structure 

are considerably more complex. Including such an example in this thesis would have 

confused rather than clarified my intent and would perhaps have discouraged rather 

than encouraged readers who were considering trying the techniques. 

There are probably numerous ways in which dynamical systems theory can be of 

use in ecological research. These wi l l come to the fore as more people make use of the 

available computer packages. However, my aims wi l l be fulfil led if a. few ecologists start 

to use the techniques that I have described to analyse their own models. It is always 

difficult to learn new techniques when one understands and is comfortable with the old 

ones, but I hope I have demonstrated that the effort is well worth it . 
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Appendix A 

Dynamical systems theory 

A . l Introduction 

This appendix explains the dynamical systems terminology used in my thesis. Section A . 2 

is a glossary of the basic concepts such as equil ibr ium point, domain of attraction and 

bifurcation point. Extensive use is made of diagrams in order to introduce the concepts 

as simply and intuit ively as possible. Section A .3 describes some of the more formal 

mathematical details associated with these concepts. However,the mathematics is kept 

to a m i n i m u m since the appendix is intended for biologists. Further details can be found 

in any introductory text on dynamical systems theory. A few examples which I found 

particularly readable include [57, 111, 128]. 

A.2 Basic concepts 

This section is ordered alphabetically. A l l the examples given are for continuous systems 

of equations. Discrete systems are discussed in section A .3 .5 . W i t h i n each subsection 

in this glossary, italics is used to highlight terms which are explained in a separate 

subsection. 

A.2.1 Bifurcation diagram 

A one-parameter bifurcation diagram summarises the qualitative behaviour corresponding 

to different values of a parameter. A state variable (or combination of state variables) is 

216 
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plotted on the y-axis and the parameter on the x-axis. The positions and local stabilities 

of equilibrium points as well as limit cycles are indicated using different line types. Solid 

curves are used to represent locally stable equil ibria and dotted curves are used for locally 

unstable equil ibria. M a x i m a and m i n i m a of l imit cycles are indicated using c i rc les—sol id 

ones for stable cycles and open circles for unstable cycles. See, for example, the figures 

in sections A.2.10, A .2 .13, A.2.16, A.2.18, A.2.25. 

It is important to note that bifurcation diagrams summarise the behaviour associated 

with a range of parameter values. They do not represent the dynamics corresponding 

to a continually varying parameter [124]. In order to read a bifurcation diagram, fix the 

parameter at a particular value and mentally draw a vertical line at that value. Each 

crossing of this line with a curve in the diagram corresponds to an equi l ibr ium point or a 

periodic orbit ( l imit cycle). The local stability properties of a particular phenomenon are 

given by the type of curve, that is, solid, dotted, or open or closed circles. For example, 

the phase portraits'mfigure A.17(b)(i) and (ii) were obtained by mentally drawing vertical 

lines at the parameter values p = pi and p = p2 respectively in figure A . 17(a). 

A two-parameter bifurcation diagram shows how the positions of bifurcation points 

change as two parameters are varied. For example, if a bifurcation point is encountered 

in a one-parameter bifurcation diagram, a second parameter may be varied to see how it 

affects the position of the bifurcation point. A n example involving limit points is shown 

in figure A .19. A and p are parameters and X\ is a state variable. Part (a) of this figure 

shows a two-parameter bifurcation diagram and part (b) shows one-parameter bifurcation 

diagrams corresponding to different fixed values of the parameter A. 

A.2.2 Bifurcation point 

A bifurcation point is a point in parameter space at which the qualitative behaviour of 

the system changes. A stable equilibrium may become unstable at this point or there may 
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be a change from a stable equil ibr ium to oscillatory behaviour. Examples can be found 

in sections A.2 .10, A .2 .13, A.2.16, A.2.18, A.2.25. 

A.2.3 Chaos 

Chaos is difficult to define but intuit ively it refers to the (apparently) irregular and un

predictable behaviour which many nonlinear mathematical models (systems of equations) 

exhibit [11]. If a system is chaotic then ini t ia l values which are very close together may 

lead to vastly different behaviour as t ime progresses. However, this behaviour is st i l l 

bounded by a region in space. Chapters 5 and 6 contain examples of chaotic behaviour. 

A.2.4 Continuation branch 

A solution or continuation branch is a curve of equilibrium points (or limit cycles or 

bifurcation points) that indicates how the position and properties of the equi l ibr ium point 

(or l imi t cycle or bifurcation point) change as a parameter (or parameters) is altered. 

Together a number of these branches make up a bifurcation diagram. 

A.2.5 Domain of attraction 

Suppose the system in which we are interested has a stable equilibrium point (see section 

A.2.14). Then the collection of all in i t ia l state variable values from which the system 

tends towards this equi l ibr ium as time progresses is the domain (or basin) of attraction 

of the equi l ibr ium point. The equil ibr ium point is called an 'attractor' . A n y stable 

phenomenon, such as a stable limit cycle, also has a domain of attraction and is referred 

to as an attractor. 
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For example, in figure A . l a population density of 10 is locally stable. For init ial 

population values which lie between 5 and 20 the population tends towards a density 

of 10 as t ime progresses. For init ial values below 5 the population tends to extinction 

and for in i t ia l values greater than 20 it increases steadily. The range of values between 5 

and 20 is the domain of attraction for the equil ibrium point at 10. Part (a) of figure A . l 

shows t ime plots corresponding to various init ial points and part (b) is a one-dimensional 

phase portrait of the situation. 

(a) 

Popu la t i on 
density 

20-

T i m e 

(b) A—• q •—* • — -
0 5 1 0 2 0 Popu la t i on 

density 

Figure A . l : (a) T i m e plots showing the domain of a t t ract ion of an equ i l ib r ium point . A popu la t ion 

density of 10 is stable and the range of in i t i a l popula t ion values between 5 and 20 constitutes its doma in 

of a t t rac t ion . T h e values 5 and 20 are unstable equ i l ib r ium points, (b) A one-dimensional phase por t ra i t 

of the s i tua t ion in (a). T h e arrows indicate the direct ion of change corresponding to i n i t i a l points in 

each range of values. 

Suppose our system consists of two competing populations. We can represent their 

dynamics using a phase portrait such as in figure A . 2 . In this case the points A and C are 

stable equil ibria. The domain of attraction of A is the shaded region and the remaining 
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region is the domain of attraction of C. The curve separating these regions is called a 

separatrix. Curves with arrows indicate how the population densities vary over t ime 

beginning at various in i t ia l points. 

Figure A . 2 : Phase por t ra i t showing the domains of a t t ract ion of two equ i l i b r i um points in two d imen

sions. A and C are stable equi l ibr ia . The arrows indicate how the popula t ion densities vary over t ime 

beginning at various i n i t i a l points. 

A.2.6 Equi l ibr ium point 

If the values of the state variables representing an ecological system do not change as 

t ime progresses then we say that the system is at an equil ibr ium point. Other commonly 

used terminology is singular point or fixed point. See also section A.2.14. 

A.2.7 Hard loss of stability 

In the case of a Hopf bifurcation this occurs when there is a sudden change from stable 

equi l ibr ium behaviour to stable limit cycles of large amplitude. A n example is shown 

in figure A . 3 . When the parameter fi is increased beyond the Hopf bifurcation at //*, 

the system suddenly jumps to l imit cycles of large amplitude instead of starting off with 

Popu la t i on 2 

A 

Popu la t i on 1 
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(popula t ion 
density) 

\ HB 

o o o e o 

Mi P-* 

Figure A.3: H a r d loss of s tabi l i ty (adapted from [111], P-74). T h i s phenomenon gives rise to sudden 

changes between stable equ i l ib r ium behaviour and limit cycles of large ampl i tude . 

small l imit cycles which grow in size as p increases. The latter phenomenon is shown in 

figure A.6(a) and is called soft loss of stability. Also, as p is decreased, there is a jump 

from large amplitude cycles to a zero amplitude equil ibrium point but this takes place at 

pi which is less than p.*. For pi < p < p* there are two stable att ractors—an equilibrium 

point and a limit cycle. This is a kind of hysteresis phenomenon. Examples of hard loss 

of stabil ity arise in the analysis of the ratio-dependent model in chapter 4. 

Equ i l ib r ium states can also undergo a hard loss of stability (for example, in the vicinity 

of a pitchfork bifurcation). However, such phenomena are not encountered in the main 

body of the thesis. 

A.2.8 Heteroclinic orbit 

Consider a system having both predator and prey populations and suppose there are two 

equilibrium points one of which is unstable (a saddle or a source) and where the other 

is either a saddle or a sink. If an unstable manifold (see page 241 for an explanation 

of this term) of the unstable equil ibrium point intersects a stable manifold of the other 
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equi l ibr ium point then the system is said to have a heteroclinic orbit. A n example is 

shown in figure A .4 . For any init ial point on this orbit the system wil l tend towards the 

predator 

prey . 

Figure A .4 : Example of a heteroclinic orbit. An unstable manifold of saddle point 1 intersects a stable 
manifold of saddle point 2. 

equi l ibr ium point 2. The parameter value at which the heteroclinic orbit occurs is called 

a heteroclinic bifurcation point. 

For a more detailed explanation of this phenomenon see section A.3.3. 

A . 2 . 9 H o m o c l i n i c orbit 

This is similar to a heteroclinic orbit except that in this case the unstable and stable 

manifolds of the same equil ibrium point (which must be a saddle) intersect. A n example 

is shown in figure A.5. Further details are given in section A.3.3 and an example arises in 

chapter 2. The unique parameter value giving rise to the homoclinic orbit is a homoclinic 

bifurcation point. 
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predator 

-homoclinic 
orbit 

saddle 
point 

prey 

Figure A . 5 : E x a m p l e of a homocl in ic orbi t . A n unstable and a stable mani fo ld of the saddle point 

intersect. 

A.2.10 H o p f b i f u r c a t i o n 

A Hopf bifurcation 1 (HB) is a bifurcation point at which an equilibrium point alters 

stability and a limit cycle (period orbit) is init iated. A n example is given in figure A . 6 . 

Part (a) of the figure is a bifurcation diagram. The large dots denote the m a x i m a and 

m i n i m a of the l imit cycles. The phase portrait, in figure A.6(b)(i) shows the dynamics in 

the (xi, x2)-phase space for p = p\. A is a stable equil ibr ium point or sink. After the 

Hopf bifurcation is encountered at p = p*, A becomes a source and a stable l imi t cycle is 

ini t iated. The corresponding dynamics at p = p2 are shown in figure A.6(b)( i i ) . Notice 

that the amplitude of the l imit cycle increases as p increases (see figure A.6(a)) . This is 

called soft loss of stability. 

In figure A .6 a stable l imit cycle surrounds an unstable equil ibr ium point. It is also 

possible for an unstable l imit cycle to encircle a locally stable equi l ibr ium point (see 

figure A .7) . Unstable periodic orbits are indicated by open circles instead of solid ones. 

' A l t h o u g h the name H o p f bifurcation is usually used, A r n o l d [7] points out that this is inaccurate. 
B o t h Poincare and Andronov studied this bifurcation prior to Hopf. W i g g i n s [124] refers to the Poincare-
A n d r o n o v - H o p f bifurcat ion. 
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Figure A . 6 : (a) A bifurcation d iagram of a Hopf bifurcation ( H B ) , (b)(i) a phase por t ra i t corresponding 

to fi = fii at which there is a stable equ i l ib r ium point and (b)(ii) a phase por t ra i t corresponding to n = /J2 

at which there is an unstable equ i l ib r ium point surrounded by a stable l i m i t cycle. 
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(popula t ion 
density) 

o° 

Figure A . 7 : B i fu rca t ion d iagram of a Hopf bifurcat ion where unstable per iodic orbits surround a stable 

e q u i l i b r i u m point . 

The first examples of Hopf bifurcations occur in chapter 2. See also sections A .2 .7 , 

A.2.22. 

A.2.11 Hysteresis 

A hysteresis phenomenon occurs when two limit points are connected as shown in figure 

A . 8 . This results in multiple equil ibria corresponding to a single parameter value. For 

[i < u*^ and [i > u.*2 there is a single equilibrium point, which is stable in this example. 

For parameter values n*A < fj, < pi*2 there are three equil ibr ium points—two stable 

and one unstable. The unstable equil ibrium point divides the domains of attraction of 

the stable equil ibria. For init ial population densities above the dotted line in the range 

//*! < \i < u*2 the population tends towards C. For ini t ia l values below the dotted line 

the population is attracted towards A . 

The way in which the behaviour of the system changes differs depending on whether 

p is increased or decreased. Suppose we are at equilibrium point C at \i = If fi is 

increased then solution trajectories wi l l continue to tend towards C for all p such that 
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(popula t ion 
density) 

• L P 

LPC 

Mi M* M2 M2 p 

Figure A .8 : Bifurcat ion d iagram of hysteresis. 

p < p*2 since our init ial point is above the boundary B of the domain of attraction of 

C. However, as p increases beyond p*2 a catastrophe or sudden change occurs and the 

system tends towards A instead. What is more, if-// is now decreased we do not return 

to the equi l ibr ium at C. The system continues to tend towards A as we are below the 

dividing point B. This occurs unti l p \ is passed. Then the system jumps up towards C 

again. The situation that has been described is known as hysteresis. Occurrences of this 

phenomenon arise in chapter 4. 

In nature there are many unpredictable influences on a system which means that 

there wi l l be fluctuations around any equil ibrium. Notice that the domain of attraction 

of C is smaller the closer p is to p*2. This makes the system much more susceptible to 

crashing towards A as p*2 is approached [128]. 

A . 2 . 1 2 L i m i t cycle 

L i m i t cycle behaviour occurs when a state variable (such as a population density) os

cillates in a regular repetitive manner. Temporal behaviour for a single population is 

shown in figure A.9(a) and a phase portrait for two interdependent cycling populations 
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is shown in part (b). These diagrams show the eventual or l imit ing behaviour once the 

in i t ia l transients have died away. A l imit cycle is also called a periodic orbit and is often 

associated with a Hopf bifurcation. L imi t cycles may be locally stable or unstable (see 

section A.3.4 for more details). 

(a) 

P o p u l a t i o n 
density 

(b) 

predator 

T i m e prey 

Figure A . 9 : (a) T i m e plot and (b) phase por t ra i t of stable l i m i t cycle behaviour . 

A.2.13 Limit point 

A l imit point or saddle-node bifurcation occurs when there are two equilibrium points 

on one side of the bifurcation point but none on the other side. Figure A.10(a) shows 

an example of a bifurcation diagram of a l imit point (LP) . For p < p* there are no 

equi l ibr ium points at which both populations are nonzero, p* is thus the l imi t ing value 

of p for which equil ibr ium points exist, hence the name limit point. A possible phase 

portrait in two dimensions for p > p* is shown in figure A.10(b) for the particular value 

p — p\. A is a locally stable equil ibrium point and B is a saddle point. The ini t ia l values 

of xi and x2 determine the subsequent behaviour of the system. If the init ial point is 

in the domain of attraction of A (to the right of point B in figure A.10(b)) , then the 

system wi l l approach A . If the init ial point lies on the other side of B, however, it wi l l be 

repelled away from B in the opposite direction to A . Notice how the size of the domain 
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(a) 
. 0-2-

(popula t ion 
density) 

(b ) 

x2 

(predator) 

•B 

LI / i ! 

Ax? 
1 

0-2 
(prey) 

Figure A .10: (a)Bifurcat ion d iagram showing a l i m i t point ( L P ) and (b)a phase por t ra i t corresponding 

to p = H\. For fi < fi* there are no equ i l ib r ium points at which both popula t ions are nonzero. 

of attraction of A , in terms of the state variable x\, decreases as p decreases towards p* 

(see figure A.10(a)). 

The first example of this type of bifurcation in the main body of the thesis occurs in 

chapter 2. 

A.2.14 Local stability 

Suppose the system in which we are interested is disturbed slightly from its equilibrium 

point. For example, a week of warmer weather may cause an insect's growth rate to 

increase slightly. If after the disturbance is removed the system returns to its original 

equi l ibr ium, then the equil ibr ium point is said to be locally stable and is called an 'at

tractor' . Otherwise it is said to be unstable and is a 'repeller'. Locally stable equi l ibr ium 

points are called sinks and locally unstable ones are called saddle points or sources. 

A.2.15 Parameter 

A parameter is a quantity such as a fecundity rate or predation rate which is used in 

describing the dynamics of a state variable. Whereas a state variable evolves with t ime, 
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a parameter is kept constant as time progresses. In this thesis parameter values are 

varied across ranges of values to see how their values affect the qualitative behaviour of 

the state variables. For example, increasing the fecundity rate of a population which is 

at equi l ibr ium may cause the population to start cycling. 

A . 2 . 1 6 Period-doubling bifurcation 

A period-doubling bifurcation occurs when a limit cycle undergoes a bifurcation and there 

is an exchange of stabil ity to cycles having double the period. The situation is depicted 

graphically in figure A . l l . Part (a) shows a bifurcation diagram wi th period-doubling 

bifurcations at Ai and A 2 , and part (b) shows the behaviour over t ime for different values 

of the parameter A. Chapter 4 contains the first examples of this phenomenon in the 

main body of the thesis. 

A . 2 . 1 7 Phase portrait 

Suppose our system has two state variables, say a prey (x i ) and a predator ( £ 2 ) . We can 

represent the behaviour of both populations in a single diagram called a phase portrait . 

A n example is shown on the square base of the diagram in figure A . 12. In this example 

both x\ and x2 exhibit oscillations of decreasing amplitude as they approach the stable 

equilibrium point. This translates into an inward spiral in the (xx, x 2 ) -phase space. 

In this thesis sinks are represented by triangles, saddles by plus signs, and sources 

by squares. In most cases solid lines are used to denote solution trajectories and dashed 

lines denote boundaries of domains of attraction. 
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(a) 
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(b) 
i) 

Xl 

A < A 

i i) 

H 

i i i ) 

A / ^ < A < Ax T i m e A i < A < A 2 T i m e 

Figure A . 1 1 : (a) Per iod-doubl ing bifurcations at \ \ and A 2 (adapted from [111], p.259). (b) Behav iour 

over t ime for the state variable for (i) X < \JJ (stable equ i l ib r ium) , (ii) A# < A < A i ( l i m i t cycle) 

and ( i i i ) Xi < A < A 2 (period-2 cycle—each cycle consists of a b ig hump and a sma l l hump) . 

A.2 .18 P i tchfork bifurcat ion 

A pitchfork bifurcation occurs when there is a unique equilibrium point for parameter 

values on one side of the bifurcation point but there are three equi l ibr ium points on the 

other side. A n example is shown in figure A . 13. Part (a) shows a bifurcation diagram 

and part (b) gives phase portraitsior parameter values on either side of the bifurcation 

point. In the example shown in figure A .13 , A is a stable equil ibr ium point for p < p*. 

For n > fi* A is a source and the other two equil ibrium points, B and C, are locally 

stable. These stability properties vary from situation to situation but the symmetry is 
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Figure A. 12: Der iva t ion of a phase plane showing the time-dependent behaviour of two variables, xi 
and X2 (adapted from [61], p-3). D a m p e d oscil lat ions over t ime give rise to an inward spira l in the phase 

plane. 

always maintained, that is, B and C always have the same stability assignment and this 

assignment is the same as that for A on the opposite side of the bifurcation point, u*• 

For p > p* A is a k ind of threshold point as it separates the domains of attraction of B 

and C. The ini t ia l values of Xi and x2 determine whether the system tends towards B or 

C (see figure A.13(b)(i i)) . 

No examples of this type of bifurcation occur in this thesis but the above description 

is included for completeness. 

A . 2 . 1 9 Qual i tat ive behaviour 

When we refer to the qualitative behaviour or dynamics of a system we are interested 

in the long-term general behaviour of the system rather than exact (quantitative) pop

ulation densities for each instant in time. For example, different types of qualitative 
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(a) 

« 2 o i a 2 CL3 

(prey) (prey) 

Figure A .13 : (a)Bifurcat ion d iagram of a pitchfork bifurcat ion, (b)(i) a phase por t ra i t corresponding 

to ix = Hi and (b)(ii) a phase por t ra i t corresponding to LI — p 2 - In (b)(ii) the unstable manifolds from 

A d iv ide up the domains of a t t ract ion for B and C. 

behaviour include a population declining to extinction, a population tending towards 

a stable equilibrium point, or a population undergoing limit cycle oscillations. Thus, 

qualitative behaviour is determined by the presence and nature of attractors (see sec

tion A.2.5) . 
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A . 2 . 2 0 S a d d l e p o i n t 

A saddle point is an equilibrium point which attracts in certain directions and repels in 

others. In figure A.14 the equil ibrium point has an unstable manifold (see page 241) and 

a stable manifold as indicated by the dashed lines. Initial points ly ing on these manifolds 

are repelled from or attracted towards the equil ibrium point respectively. Other in i t ia l 

points may first be attracted and then repelled as shown by the solid lines. 

Figure A . 14: Example of a saddle point (plus sign) and the associated dynamics. Stable and unstable 
manifolds are indicated by the dashed lines and solution trajectories from different initial points by the 
solid lines. 

A . 2 . 2 1 S i n k 

A sink is a locally stable equilibrium point. A sink may be either a stable node or a 

spiral attractor. Phase portraits and t ime plots corresponding to these two possibilities 

are shown in figures A.15(a) and A.15(b) respectively. The t ime plots begin at the point 

marked with a * in the phase portraits. 

predator 

prey 
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(a) 
i) f H) 

Xi 0 T i m e 

(prey) 

Figure A .15: (a)(i) Phase portrai t of a stable node and (a)(ii) t ime plots starting at point * in (a)(i) . 

(b)(i) Phase por t ra i t of a spiral attractor and (b)(ii) t ime plots starting at poin t * i n (b)( i) . 

A . 2 . 2 2 Soft loss of stabi l i ty 

For a Hopf bifurcation this occurs when there is a continuous change from stable equilib

rium behaviour to limit cycles of small amplitude. The amplitude of these cycles increases 

gradually for parameter values further from the Hopf bifurcation. Figure A.6(a) gives 

an example of soft loss of stability. See also section A.2.7 . The first example of this 

phenomenon in the main body of the thesis occurs in chapter 2. 
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A . 2 . 2 3 Source 

A source is an equilibrium point which is locally unstable. Any disturbance to the system 

wil l cause the state variables to move away from this point. A n unstable node and a 

spiral repeller are shown in figures A.16(a) and A.16(b) respectively. Both are examples 

of sources. 

(a) 
i) | ") 

a . X i 0 T i m e 

(prey) 

F i g u r e A .16: (a)(i) Phase por t ra i t of an unstable node and (a)(ii) t ime plots s tar t ing at poin t * in 

(a)(i) . (b)(i) Phase por t ra i t of a spiral repeller and (b)(ii) t ime plots s tar t ing at point * in b( i ) . 

A.2 .24 State variable 

Suppose we are interested in a system consisting of plants, herbivores and predators. 

Then the 'state' of the system can be described by the relative biomasses or densities of 
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these populations. The variables that are used in a mathematical model of the system 

to represent these biomasses or densities are called state variables. 

A.2.25 Transcritical bifurcation 

A t a transcrit ical bifurcation point two equilibrium points coincide and exchange stabil 

ities. A n example is shown in figure A.17. There are two equil ibr ium points, A and B, 

(a) 

(popula t ion 
density) 

a>- A -

B-

fJ-i 

(b) 
i) 

X2 

(predator) 

ii) 
X2 

(predator) 

Xi 

(prey) 

Figure A . 17 : (a) A bifurcation d iagram of a t ranscr i t ical bifurcat ion, (b)(i) a phase por t ra i t corre

sponding to fi = fi\ and (b)(ii) a phase por t ra i t corresponding to / i = [in. T h e stabi l i t ies of the two 

equ i l i b r i um points interchange for parameter values on either side of the bifurcat ion point . 

at each value of the parameter fi. A is stable for \i < u* and a saddle point for u > fi" 
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The situation is reversed for B. Figures A.17(b)(i) and A.17(b)(ii) show possible phase 

portraits in two dimensions for p = pi and p = p2 respectively. Note that the bifurcation 

diagram in figure A.17(a) only indicates the positions of the equi l ibr ium points in terms of 

one of the state variables, x\. Chapter 2 contains an example of this type of bifurcation. 

A.3 Some mathematical details 

A.3.1 Introduction 

This section gives a brief introduction to some of the mathematical details of dynamical 

systems theory. Texts such as [49, 57, 111, 124, 128] give more complete expositions. 

For most of the section I wi l l assume that the model under study consists of a system 

of m ordinary differential equations of the form: 

where x is a vector of m state variables and the dot denotes differentiation wi th respect 

to t ime, that is, x = For example, if we.were studying a predator-prey model then 

we would have m = 2 and equation ( A . l ) in expanded form would be 

where / i and f2 are the components of f representing the dynamics of xi (prey density, 

say) and x2 (predator density), respectively. 

The results for systems of difference equations (discrete models) of the form: 

x = f (x) ( A . l ) 

X\ = fi{xi,x2) 

X2 = f2{xi,X2) 

X I—> f(x) (A.2) 

or 

x t + 1 = f(xO, t = 0 , l , 2 , . . . (A.3) 
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are very similar. Section A .3 .5 highlights some of the differences. 

A.3.2 Equi l ibr ium points and local stability 

A n equi l ibr ium point (fixed point) x* of the system of equations ( A . l ) satisfies 

f(x*) = 0. 

If system ( A . l ) were to start at x* at t ime zero, it would remain there for al l t ime. 

However, in nature it is very unlikely that a system wi l l remain exactly at an equi l ibr ium 

point since numerous factors perturb systems continually. So we would like to know 

whether solutions of the system of equations ( A . l ) starting near x* move towards or 

away from x* as t ime progresses. That is, we would like to determine the local stabil ity 

behaviour near x*. 

We can sometimes do this by using a linearised analysis 2 . We begin by perturbing 

the system slightly from x*. That is, we replace x by x* + u in equation ( A . l ) where 

u is a small perturbation. (We use a small perturbation since we are investigating the 

local behaviour near the equi l ibr ium point.) Our new vector of state variables is u since 

x* is fixed. Expanding f in a Taylor series about x* and neglecting nonlinear terms in u 

(since u is small) we obtain the linearised system 

ii - A u 

where A is the matr ix of first order part ial derivatives of f evaluated at the equi l ibr ium 

point x = x*. 

B y solving the characteristic equation of A we obtain rn numbers, A = ( A i , . . . , A m ) , 

known as the eigenvalues of A . Eigenvalues may be real numbers or complex numbers. 

It is these eigenvalues which determine the local stabil ity properties of x*. If al l the 

2 M o r e detai led in t roduct ions to linear analysis can be found in [34, 128]. 
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eigenvalues of A have non-zero real parts 3 then x* is said to be a hyperbolic equi l ibr ium 

point of ( A . l ) . If any eigenvalue has a zero real part then x* is said to be a nonhyperbolic 

equi l ibr ium point. The local stabil ity behaviour near hyperbolic equi l ibr ium points is 

relatively easy to determine. Nonhyperbolic equi l ibr ium points are more difficult to 

classify but it is at these points that interesting bifurcations (see section A.2.2) occur. 

Let us consider hyperbolic equi l ibr ium points first. 

Hyperbolic equilibrium points 

If the real part of A is negative (that is, 9£A < 0) for all eigenvalues A of A , then x* is 

an asymptotical ly stable equil ibr ium point of ( A . l ) (that is, trajectories starting near x* 

move towards x* as t ime progresses). If 3̂ A > 0 for any eigenvalue A of A , then x* is 

said to be unstable. In the special case of a two-dimensional system (m = 2 in (A . l ) ) 

even more information can be obtained about the behaviour near 

In this case there are two (since m — 2) eigenvalues, Ai and A 2 , of A . They satisfy 

the equation 

where Tr A = trace of A = the sum of the diagonal elements of A and Det A = determinant 

of A . In two-dimensional cases we can represent the behaviour near x* using a phase 

portrait (see section A.2.17). The various possibilities are summarised in figure A . 18. 

Alternatively, the results can be summarised as follows: 

3 A complex number, A, has a real part , 9£A, and a complex or imag inary part , 9 A . For a br ief 
in t roduc t ion to the relevant theory of complex numbers see the appendix i n [128]. 

A 
2 
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3 Saddle point 

Tr 2 = 4 D e t 

Tr 

^ Saddle point 

Figure A .18: A summary of the local s tabi l i ty behaviour near an equ i l i b r ium point , x*, of ( A . l ) when 

m = 2 (adapted from [34], p.190). 

A i , A 2 real 

• Ai < 0, A 2 < 0 => x* is a stable node (region 1 in figure (A.18)) 

• Ai > 0, A 2 > 0 => x* is an unstable node (region 2 in figure (A.18)) 

• Ai > 0 ,A 2 < 0 (or vice versa) x* is a saddle point (region 3). 

A i , A 2 complex 

• 9£Ai < 0, 9?A2 < 0 => stable spiral or focus (region 4) 

• SftAi > 0,!RA 2 > 0 => unstable spiral or focus (region 5). 
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Saddle points and sources are both unstable equi l ibr ium points (see section A.2.14) 

but a saddle point differs from a source in that solutions may be attracted towards it for 

a while before being repelled, depending on the ini t ia l values of the variables (see region 

3 in figure A.18) . In the case m = 2 a saddle point has one unstable eigenvalue while 

a source has two. This means that (for m = 2) a saddle point has one stable manifold 

and one unstable manifold associated with it. These manifolds are curves in phase space 

such that in i t ia l points on these curves are attracted towards the saddle point (for in i t ia l 

points on the stable manifold) or repelled away from the saddle point (for points on the 

unstable manifold) (see region 3 in figure A . 18). 

Nonhyperbolic equilibrium points 

As mentioned earlier it is the nonhyperbolic equi l ibr ium points that are associated wi th 

bifurcations, that is, with changes in the qualitative behaviour of the system of equations. 

There wi l l be a threshold value at which the change in behaviour occurs—the bifurcation 

value. This value corresponds to (at least) one eigenvalue (or its real part) passing 

through zero as it changes sign from negative to positive or vice versa. Examples of 

bifurcations can be found in sections A.2.10, A .2 .13, A.2.16, A.2.18, A.2.25. 

For nonhyperbolic equi l ibr ium points the principle of linearised stabil ity used above 

does not apply and other methods need to be used. Two of these are centre manifold 

theory and normal form theory. Centre manifold theory reduces or simplifies the system 

of equations so that only those parts which affect the local dynamics near the bifurcation 

point remain. Normal form theory uses systematic coordinate changes to transform this 

reduced system of equations into a 'normal form'. The behaviour corresponding to a 

number of normal forms has already been classified by various mathematicians and can 

be found in most dynamical systems texts. The abovementioned examples have al l been 
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classified using normal form theory. Another method due to Liapunov is described in 

Wiggins [124]. 

One-parameter local bifurcations Suppose that the system of equations ( A . l ) has 

the form 

x = f(x,/x) (A.4) 

where fj, is a parameter 4 and suppose that the equi l ibr ium point x* undergoes a bifurcation 

at pL — (j,*. (We assume init ial ly that there is only one zero eigenvalue or one pair 

of complex conjugate eigenvalues with zero real par ts—the greater the number of zero 

eigenvalues associated with a bifurcation point the more degenerate it is and the more 

complicated the dynamics associated with it.) Such a bifurcation point is called a one-

parameter local bifurcation. Examples of bifurcation points having one zero eigenvalue 

include l imi t point (see section A.2.13), pitchfork (see section A.2.18), and transcrit ical 

(see section A.2.25) bifurcations. A Hopf bifurcation (see section A.2.10) is also a one-

parameter bifurcation but it has one pair of complex conjugate eigenvalues whose real 

parts are zero. 

Two-parameter local bifurcations Suppose we allow two parameters in our model 

to vary, that is, 

x = f(x,//,A) (A.5) 

where fj, and A are parameters. W i t h two parameters more complex behavioural patterns 

such as hysteresis, which is described in section A .2 .11, are possible. 

The extent of the region of overlap in figure A . 8 (that is, the difference fi*2 — f i \ ) may 

vary with a second parameter, A, as shown in the fwo-parameter bifurcation diagram 

4 T y p i c a l l y a system of equations has more than one parameter but we only need to consider one of 
these exp l i c i t ly at the present t ime. W e assume that the values of any other parameters are f ixed. 
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in figure A.19(a). Part (b) of this figure shows one-parameter bifurcation diagrams 

(a) 

Ml fJ-2 '_P3 M4 

M 
M 

iii) 

M 
— i — i — 
Pi M3 M Mi M4 M 

Figure A . 19: (a)Two-parameter bifurcation d iagram showing a cusp point and the posi t ions of the 

two l i m i t points associated w i t h the hysteresis as both fi and A are varied. (b)One-parameter bifurcat ion 

d iagrams corresponding to different, fixed values of A in part (a) and w i t h fi as the bifurcat ion parameter, 

(i) A = A i , (ii) A = A 2 and (i i i) A = A 3 . These one-parameter bifurcation diagrams correspond to the 

hor izonta l dashed lines in part (a). 

corresponding to different values of A (that is, corresponding to the horizontal dashed 

lines in part (a)). A t A = Ai the equil ibrium point does not undergo any bifurcations in 

behaviour. For A = A 2 the two l imit points are close together and for A = A 3 they are 

further apart. The point (p, A) = (M,A*) is called a cusp point. A t this point the two 

l imit points coincide. The curves in figure A.19(a) thus show how the positions of the 

l imit points (bifurcation points) vary with p and A. Compare this with one-parameter 
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bifurcation diagrams which show how the positions of equilibrium points vary as a single 

parameter changes. 

A . 3 . 3 G l o b a l b i f u r c a t i o n s 

So far we have been looking at the local dynamics associated with bifurcations of equi

l ib r ium points and l imit cycles. However, some dynamical properties cannot be deduced 

from local information [49]. These are called global properties. The simplest situation 

involves homoclinic and heteroclinic orbits. 

Suppose we have two equil ibr ium points and let fi be the bifurcation parameter. Phase 

portraits of two possible degenerate situations that can arise are shown in figure A .20. In 

(b) x2 

Xi Xi 

Figure A .20: (a)Phase por t ra i t of a saddle connection or heteroclinic orbi t . (b)Phase por t ra i t of a 

saddle loop or homoclinic orbi t . 

part (a) of this figure a heteroclinic orbit joins two saddle points. That is, the unstable 

manifold of one saddle point coincides with the stable manifold of the other saddle point. 

In (b) the stable and unstable manifolds of the same saddle point coincide and encircle 

the other equi l ibr ium point. The dynamics associated with the second equi l ibr ium point 

vary depending on the model equations. 

The situations in figure A.20 are degenerate. That is, they only exist for a particular 

value of f i . A lmost any small perturbation wi l l disrupt the coincidence of the stable and 
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(a) 
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x2 
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i i i ) 
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P < P Xl P — P Xl P > P Xl 

(b) 
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i i) i i i ) 
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p < n Xl p - p Xl p> p Xl 

Figure A . 2 1 : (a)Phase portrai ts for parameter values near a saddle connection or heterocl inic orb i t . 

(b)Phase por t ra i ts for parameter values near a saddle loop or homocl in ic orbi t , (i) p < p*, (ii) /j, = fi* 

and ( i i i ) p > p*. (p*\s the point at which the heteroclinic or homocl in ic orbi t occurs.) 

unstable manifolds. In figure A.21 we see what happens to the stable and unstable man

ifolds when p is perturbed from the bifurcation point, p*. The reader may be wondering 

what happens near the second equil ibrium point in part .(b) of this figure. Some examples 

of possible phase portraits are shown in figure A.22. 

A n important point to note is that the time period required to get from one saddle 

point to the other along a heteroclinic orbit, or to return to the same saddle point along 

a homoclinic orbit, is infinite. This has important consequences for practical studies as 

can be seen in chapter 2 (section 2.4). 
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Figure A .22: Phase portrai ts near a saddle loop or homocl in ic orbi t showing possible behaviour near 

the second equ i l i b r i um point . 
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A . 3 . 4 Per iod ic orbits 

L o c a l s tabi l i ty 

So far we have discussed equi l ibr ium points and the stabil ity behaviour associated with 

them. The concept of a Hopf bifurcation introduced the idea of periodic orbits or l imi t 

cycles. Cycles have been studied in many biological settings (for example, the spruce 

budworm [74], nerve action potentials [58], glycolysis [47], cellular slime mold [108], 

predator-prey interactions [14]). A n important aspect is whether the periodic orbits 

exhibited by a system of equations are locally stable or unstable. For this purpose I 

introduce the concept of Poincare maps. However, only the main results are presented 

here. More detailed discussions can be found in [49] and [124]. 

In general 5 , a Poincare section S is an (m — l ) -dimensional hypersurface chosen so 

that al l trajectories of ( A . l ) a) intersect the hypersurface transversally, and b) cross 

the hypersurface in the same direction. In particular, the l imit cycle passes through the 

hypersurface transversally at a particular point, q*. Figure A.23 shows a periodic orbit in 

three dimensions and a two-dimensional Poincare section, S. The periodic orbit intersects 

S at the point q*. 

If T is the period of the l imit cycle and ip(t;z) is a solution of ( A . l ) starting at z 

(that is, satisfying the in i t ia l condition x(0) = z) , then 

q* = <p(T;q*). 

Let q be a point on S and let T v (q) be the t ime taken for a trajectory ,x(t; q) to first 

return to S. Then the Poincare map or first return map P(q) is defined by 

P(q) = <p(Tv(q);q). 

This is i l lustrated in figure A .23 . Note that P(q*) = q* and Tv(q*) = T. 

5 T h e fo l lowing is summar ised f rom [111]. 
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Figure A .23 : Schematic representation of a Poincare section and a l i m i t cycle in three dimensions 

(from [111], p.244). q*is a point on S that lies on the l i m i t cycle, q is another point on S and P ( q ) is 

its poin t of first return to S. 

In order to determine the stability of the periodic orbit, we need only investigate the 

behaviour of P near its equil ibrium point q*. That is, we need to determine whether 

this equi l ibr ium point is attracting or repelling. As in section A.3.2 we linearise P about 

the equi l ibr ium point q*. In this case A = a P J ^ \ Stabil ity is again related to the 

eigenvalues of A but the conditions are slightly different as we are dealing with a map 

(discrete system) here and not a continuous system such as ( A . l ) . We have the following 

result (see [111]): a) If the moduli of all the eigenvalues are smaller than 1, then q* is 

stable; b) If the modulus of at least one eigenvalue is larger than 1, then q* is unstable. 

It turns out that the eigenvalues of A = a P g ^ ^ can be found from the eigenvalues 

of the matr ix 

The matr ix M always has an eigenvalue equal to 1. It can be shown that the remaining 

Floquet multipliers. Analogous to the discussion on equi l ibr ium points of ( A . l ) , the 

M = 
d<p{T;q*) 

dz 

(m — 1) eigenvalues are the eigenvalues of A . The eigenvalues of M are called 
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stabil ity of a periodic orbit can be determined by calculating the Floquet multipl iers. 

These are easier to find than the eigenvalues of A. In general, in the vicinity of a Hopf 

bifurcation, unstable periodic orbits encircle stable equil ibrium points and stable periodic 

orbits encircle unstable equil ibrium points however there are some other possibilities. A 

few cases are shown in figure A.24. Both the min ima and m a x i m a of the periodic orbits 

Figure A.24: E x a m p l e s of H o p f bifurcations having soft loss of s tabi l i ty (adapted from [111], p-72). 

are shown. 

Figure A.24 gives examples of soft loss of stability or soft generation of l imi t cycles 

(see section A.2.22). Section A.2.7 gives an example of hard loss of stabil ity or hard 

generation of l imit cycles. 

Bifurcations of periodic orbits 

The above discussion has focussed on local stability near a Hopf bifurcation. It is also 

possible for the periodic orbits themselves to undergo stability changes. These occur 

when the Poincare map undergoes bifurcations. If the Poincare map undergoes a simple 
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bifurcation, then there may be an exchange of stability of the periodic orbit f rom stable to 

unstable or vice versa. If the Poincare map P has an eigenvalue of — 1 at the bifurcation 

point p* then the second iterate of the map, P 2 = P(P), undergoes a bifurcation. We call 

this a period-doubling or flip bifurcation. A t this point there is an exchange of stabil ity 

of the periodic orbits to orbits having double the period. The situation is depicted in 

figure A . 1 1 . 

Period-doubl ing occurs in many situations such as chemical reactions, nerve models, 

the Navier-Stokes equations and ecological models involving three trophic levels. (Period-

doubling does not occur in fewer than three dimensions for continuous systems, that is, 

m > 3 is required.) In some cases a sequence of period-doublings may occur and this 

may lead to chaotic behaviour (see section A.2.3) . 

Another way in which a periodic orbit may exchange stabil ity is through bifurcation 

into a torus (Hopf bifurcation of the corresponding Poincare map). This occurs when a 

complex pair of Floquet multipliers moves into or out of the unit circle. Aga in m > 3 

is required. Details of this can be found in [111, 124]. From a practical point of view 

it is probably more informative to return to generating numerical solutions of a model 

over t ime when these complicated phenomena are encountered in a bifurcation analysis 

so that the behaviour of the system near these points can be seen explicitly. I w i l l not 

present the mathematical details of these bifurcations here. 

Chaos 

A brief description of chaos was given in section A .2 .3 . Further mathematical details 

can be found in [11, 16, 124, 128]. Currently there is wide debate as to the practical 

application of chaos. In ecological systems it is very difficult (probably impossible) to 

distinguish between stochastic noise and chaotic behaviour (see the preface in [72]). In 

Stone [114] it is shown that the addition of a single small term to a logistic type model 
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removes the chaotic behaviour. However, in [82, 84] it is demonstrated that chaos is 

prevalent in many discrete ecological models and that higher order systems display chaotic 

behaviour more readily than one-dimensional systems. A good overview o f t h e current 

debate is given in the collection of papers in [72]. 

A . 3 . 5 M a p s (systems of difference equations) 

The discussion so far has been restricted to models consisting of systems of ordinary 

differential equations. A very similar theory can be developed for maps given by (A.2) or 

(A.3). I w i l l briefly mention some of the differences that occur. More detailed discussions 

can be found in [124, 128]. 

Referring to equations (A.2) and (A.3) , an equil ibr ium point occurs when 

f (x) = x 

or 

x i + i = x«. 

A linear stabil ity analysis can again be done for hyperbolic equi l ibr ium points. For maps 

a hyperbolic equi l ibr ium point is one for which none of the eigenvalues of the matr ix 

of part ial derivatives has unit modulus (that is, no eigenvalues have a magnitude of 1). 

Aga in it is the nonhyperbolic equi l ibr ium points which result in interesting bifurcations. 

If the linearised matr ix has a single eigenvalue equal to 1 then a l imi t point, trans

cr it ical or pitchfork bifurcation may occur. The bifurcation diagrams are the same as for 

continuous models. However, it must be remembered that the 'phase portraits' or dia

grams in state space consist of discrete points rather than continuous curves. Examples 

corresponding to a spiral sink are shown in figure A .25. Consecutive points are labelled 

in the discrete case. 
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Figure A . 2 5 : State space diagrams of a spiral sink for (a) a continuous model and (b) a discrete model. 

For maps the special case of a single eigenvalue equal to -1 introduces another type of 

bifurcation called a period-doubling bifurcation. Figure A.26(a) shows a stable equi l ibr ium 

point undergoing a, period-doubling bifurcation to become a stable period-2 orbit as fx is 

increased. This period-2 orbit undergoes a further period-doubling to produce a stable 

period-4 orbit. Figure A.26(b) gives examples of diagrams in state space corresponding 

to these situations. Notice that this situation is analogous to the period-doublings of 

periodic orbits for continuous models. This is not surprising since that theory is based 

on Poincare maps which are discrete. 

It is important to note that periodic orbits for discrete systems are different from 

those for continuous systems. In particular they have integral periods. Consider the 

second iterate, f2, of the map (A.3): 

f 2 (x f ) = f ( f ( x 0 ) = f ( x , + 1 ) - x t + 2 . 

In general, the kth iterate of the map is given by 

f f c(x t) = xt+Jfe. 

Suppose there exists a value of x , x , such that 

f f c(x) = X 
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Figure A .26: (a)One-parameter bifurcation d iagram showing per iod-doubl ing bifurcations at // = p\ 
and p = p*2 for a discrete system. (b)State space diagrams showing the dynamics at (i) \x — \x\ (stable 

equ i l i b r ium) , (ii) p = \in (stable period-2 orbit) and (i i i) u = fi3 (stable period-4 orb i t ) . 

but 

f j ( x ) ^ x f o r j = l , 2 , . . . , k - l . 

Then x is called an equil ibrium or fixed point of period k. This means that the system 

has a cycle or periodic orbit whose period is equal to k t ime units. Suppose k = 2 and 

we have a one-dimensional system. Then 

/ 2(x) = /(/(*)) = x 

but 

f(x) + X. 



Appendix A. Dynamical systems theory 254 

Hence, if we start at x then after the first t ime unit we are at f(x) but after the second 

t ime unit we have returned to x. This is shown in figure A.27. A state space diagram 

i i i \ i \ — i — -
0 1 2 3 4 5 6 7 T i m e 

Figure A.27: T i m e plot of a period -2 orbi t for a discrete system. 

for such a situation in two dimensions (that is, for two state variables) is shown in figure 

A.26(b)( i i ) . In this example both xi and x2 wi l l have t ime plots resembling figure A.27. 

A n analogue of the Hopf bifurcation also exists for maps. It is sometimes referred 

to as the Naimark-Sacker bifurcation [124] but is also simply called the Hopf bifurcation 

for maps. This bifurcation corresponds to a pair of eigenvalues of modulus 1. Instead 

of a periodic orbit, however, an invariant circle is init iated at this bifurcation point. 

Whi le geometrically similar to a periodic orbit, the dynamics are different. A state space 

diagram of an invariant circle is shown in figure A.28 together with a t ime plot. The 

stabil ity of this circle is intuitively similar to a periodic orbit but the methods of analysis 

are quite different [124]. 

There are two possibilities for an invariant circle. Either point 10 coincides with point 

1 in figure A.28(a), point 11 coincides with point 2 and so on, or subsequent points are 

distinct from all the earlier ones but stil l lie on the circle. If the map is allowed to iterate 

for a long t ime in the latter case, then what is eventually observed in state space wil l 
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Figure A .28: (a) State space diagram showing an invariant circle, (b) T i m e plot of the s i tua t ion in 

(a) in terms of x\. 

appear to be a continuous circle. 

In general, the behaviour associated with discrete models is more complicated than 

that for continuous models because of the bui l t - in t ime delays in the feedback relation

ships [128]. Even one-dimensional maps can exhibit chaotic behaviour. May [82] shows 

how the behaviour of the discrete analogue of the logistic equation changes from stable 

equi l ibr ium behaviour, to periodic behaviour, and finally to chaos as the growth rate is 

increased. The reader is referred to the literature that has been cited for further details 

on the dynamics of discrete models. 

A . 3 . 6 Stabi l i t y of bifurcations under perturbat ions 

The question of robustness or structural stability of a model is an important one. In 

order to determine how robust a model is, we need to see whether or not perturbing the 

model alters its qualitative structure. It turns out (see [124]) that l imi t point bifurca

tions, Hopf bifurcations and hysteresis phenomena are stable under small perturbations 

but transcrit ical and pitchfork bifurcations are not unless constraints or symmetries are 

preserved by perturbations. That is, small perturbations of the model do not affect 

whether or not the former three bifurcations occur (they only affect properties such as 
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the parameter value at which the bifurcations occur and the positions of the equi l ibr ium 

points and periodic orbits) but can affect the occurrence of the latter two. Figure A.29 

illustrates the destruction of transcritical and pitchfork bifurcations graphically. It turns 

out that all bifurcations of one parameter families of equations which have an equi l ibr ium 

point with a single zero eigenvalue (or single eigenvalue of modulus 1 for maps) can be 

perturbed to l imi t point bifurcations [49]. 

Figure A.29: Possible results of per turbing t ranscr i t ical and pitchfork bifurcations (adapted from 

[111], p.83). 

However, we cannot make such rapid conclusions when the model contains more than 

one free parameter. In these circumstances the idea of codimension of a bifurcation 

becomes important. However, for m > 3 the analysis is very complicated. A n intro

duction to this theory can be found in [124]. The only point I would like to make here 

is that, because the models in this dissertation have more than three parameters, none 

of the bifurcations that have been described in this appendix can be dismissed as being 

unimportant. 
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A.3.7 Mult iple degeneracy 

A l l the cases discussed so far have assumed simple zero eigenvalues or a single com

plex conjugate pair of eigenvalues with zero real part (or the analogous situations for 

maps). Higher order singularities, or mult iple degeneracies do, of course, occur but^the 

behavioural dynamics associated with them can be difficult to interpret and there is st i l l 

much research being done in this area. Thus, at this stage, it is probably best to either 

solve the system of equations numerically or to generate phase portraits for parameter 

combinations in a region surrounding these complex points rather than struggling with 

the details of the bifurcation structure. For those interested some of these higher order 

degeneracies are investigated in [124]. 

A . 4 Conclusion ( 

The introduction to dynamical systems theory given in this appendix has been mainly 

intuit ive and not mathematical ly rigorous. Although the concepts are fairly simple, 

the mathematics involved in studying a particular system of equations can be quite 

formidable. Appendix B describes how computers can be useful in this regard. 



Appendix B 

Numerical details 

B . l Introduction 

This appendix describes some of the computer software that is available for analysing 

systems of equations. Packages such as A U T 0 8 6 [28], A U T 0 9 4 [31], Interactive A U T O 

[117], X P P A U T [35] and some others that wi l l be mentioned later, enable particular solu

tions to be 'continued' as a parameter is varied in order to produce a bifurcation diagram. 

In other words, these continuation programs trace out the location of equi l ibr ium points 

and periodic orbits as a parameter is varied. Bifurcation points that are encountered 

along the way are also detected and classified. In this way a whole range of different 

modes of model behaviour can be obtained with much greater ease than if the mathe

matics had to be done by hand. The process can be repeated for different parameters 

in order to obtain a more comprehensive picture of the qualitative behaviour associated 

with different regions in the parameter space. 

Section B.2 introduces some of the techniques used by continuation programs for 

continuing equi l ibr ium points and determining the stability of the solution branches (see 

section A.2.4) . Methods for detecting bifurcations along these branches are also described 

wi th particular reference to A U T O 1 . The section is intended as a brief overview. More 

H w i l l use the abbrevia t ion A U T O to refer to A U T 0 8 6 , A T J T 0 9 4 and Interactive A U T O as the lat ter 
is i n essence jus t a graphica l interface for A U T 0 8 6 and A U T 0 9 4 is an updated version of A U T 0 8 6 
together w i t h a graphica l interface. Even when using X P P A U T I w i l l refer to A U T O when t a lk ing 
about bifurcat ion diagrams since X P P A U T generates these diagrams through a graphica l interface w i t h 
A U T 0 8 6 . In cases where I need to dis t inguish between the packages, I w i l l use their fu l l names. 

258 
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detailed discussions as well as a comprehensive list of references can be found in Allgower 

and Georg [4] and Seydel [111]. 

Following this theoretical introduction section B.3 describes the capabilities and l i m 

itations of the packages that I used and section B.4 describes how to obtain t ime plots, 

phase portraits and bifurcation diagrams. Final ly , section B.5 gives a few pointers and 

warnings regarding the use of some of the packages. These are based on my experiences 

gained through analysing the models in the main body of the thesis. 

B .2 Theory 

B.2.1 Continuation methods 

As has already been mentioned, continuation or path-following methods generate a chain 

of solutions (equil ibrium points, periodic orbits or bifurcation points) as a parameter is 

varied. A typical path-following method is the predictor-corrector method. This involves 

the repetition of two different steps. The predictor step approximates the next point on 

the curve, often by using the direction of the tangent to the curve (Euler predictor) [4]. A 

number of iterative steps (called corrector steps) then a im to improve this approximation 

and bring it back to the actual curve [4]. Typical ly Newton or gradient type methods 

are used in this step [4]. 

Some form of parameterisation of the curve is required for these steps. The obvious 

choice is the control parameter (that is, the parameter being varied) as it has physical 

significance. However, this leads to difficulties at l imit points (see section A.2.13) [111]. 

A n alternative is to choose another variable which involves adding another equation to the 

system. This extended system can then be solved using the predictor-corrector methods 

mentioned above [111]. Popular choices for this alternative parameter are arclength or a 

pseudo-arclength parameter proposed by Keller [67]. A U T O uses the latter choice and 
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details are given in [30, 67]. 

The accuracy of the predictor-corrector method depends on the choice of steplength. 

In general, shorter steplengths lead to greater accuracy (provided that they are not so 

small that computer round-off errors become large) but they are more costly in terms 

of t ime. In some cases the objective is jusf to follow the curve as rapidly and safely 

as possible unt i l a crit ical point (such as a bifurcation point) is reached [4] and then a 

smaller steplength is needed for greater accuracy. Thus, for an efficient algorithm, the 

steplength needs to be adaptive and not fixed [4, 111]. Ideally a continuation method 

should also allow the user to have some control over the choice of steplength. A U T O 

fulfills both criteria. Stepsizes are changed automatically in the program depending on 

the speed of convergence of Newton's method (that is, depending on the number of 

iterations required to fulfi l l the stopping criteria). M a x i m u m and m i n i m u m stepsizes 

and convergence criteria are given by the user. 

There are many different ways in which choices of predictor, corrector, parameteri -

sation and step control can be combined to produce a continuation method. Because of 

this no numerical comparison of different path-following methods has so far been done 

and, hence, no particular method can be recommended exclusively [111]. Simple E u -

ler predictors together with Newton-type correctors have been found to be satisfactory 

in many circumstances [4]. Because of the stabil ity of Newton correctors, more stable 

higher order predictors based on polynomial interpolation (instead of on the direction of 

the tangent to the curve as with an Euler predictor) are often advantageous [4]. 

No continuation method can guarantee that all possible solutions wi l l be found in 

a given example [111]. Isolated branches (branches which are not attached to other 

branches v ia bifurcation points) are very difficult to detect. It is suggested in the A U T 0 8 6 

manual [30] and by Seydel [111] that t ime integration of the governing system of equations 

using random in i t ia l data may be worthwhile for generating a starting point on an as yet 
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undetected solution branch. D S T O O L [10] can also be useful for locating equi l ibr ium 

points which lie on these isolated branches. 

B .2 .2 Detection of bifurcations 

As a continuation method traces out a path, it needs to be able to detect bifurcation 

points. Techniques for doing this can be divided into direct and indirect methods [111]. 

Direct methods involve enlarging the original system of equations by including addit ional 

equations which characterise the bifurcation point. Indirect methods on the other hand 

utilise data obtained during a continuation together with a test function. The latter 

are generally recommended in practical computations (and are used in A U T O ) as direct 

methods involve solving much larger systems of equations and have higher storage re

quirements. Indirect methods do have more difficulty achieving high accuracy but when 

discretisation errors are present and when bifurcation points are unstable to perturba

tions, this greater accuracy is not needed [111]. If higher accuracy is required then a 

direct method can be applied once an indirect method has obtained an approximate 

result. 

A n indirect method detects bifurcation points using 'test functions' which are evalu

ated during branch tracing [111]. A bifurcation point is indicated by a zero of the test 

function, r. (In practice, an algorithm checks for a change of sign of r.) For simple 

bifurcation points a natural choice for r is the max imum of all real parts a ; of the eigen

values of the Jacobian matr ix A (see section A.3.2) . However, this choice may not be 

smooth and it does not signal bifurcations in which only unstable branches coalesce [111]. 

This problem can be overcome by choosing r = with |afc| = m i n . . . , |am|}. 

This choice also detects Hopf bifurcations. In general, the accuracy of T depends on the 

accuracy with which A is evaluated. 

There are many possibilities for the choice of test function. However, not much 
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attention has been paid to which drawbacks are significant or which test function is best 

for which purpose [111]. Some authors have studied classes of test functions for various 

types of singular points (see [4] for references). 

Once a bifurcation or branch point has been detected, a method needs to be found 

for switching branches. A l l that is needed is a single point on the new branch as then 

the continuation method can be used to trace out the rest of the branch. Predictors 

and correctors can again be used for switching branches. Seydel [111] and Allgower and 

Georg [4] describe a few different approaches and give further references. A U T O uses 

a method suggested by Keller [67]. Doedel [30] notes that this method performs well 

in most applications although difficulties can occur if the angle of intersection of the 

branches is very small . 

A t a Hopf bifurcation point periodic orbits are introduced. Once a solution point on 

the branch of periodic solutions has been located, a continuation procedure can be used 

to trace out the branch. After imposing an integral condition in order to fix the phase 

of the orbit, the continuation procedure becomes a special case of the path-following 

techniques that have already been discussed. Details of the method as well as further 

references can be found in the A U T 0 8 6 manual [30]. 

B.2.3 Stability 

Stationary branches 

The stabil ity of stationary branches (that is, of continuations of equi l ibr ium points) is de

termined from the real parts of the eigenvalues of the Jacobian matr ix A. The calculation 

of eigenvalues (for example, v ia Q R factorisation or L U decomposition methods [4, 111]) 

can be very t ime-consuming especially when accurate approximations are required, such 

as near bifurcation points, and when the system of equations is large. However, the 
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fact that the eigenvalues play an important role in the detection of bifurcations, as well 

as in determining stability, provides justification for using more accurate techniques. 

A U T O uses the I M S L subroutine E I G R F for computing the eigenvalues of a general real 

matr ix [30]. Interactive A U T O [117] assigns different colours to continuation branches 

depending on the number of unstable eigenvalues while X P P A U T [35] uses thick lines to 

indicate stable branches and thin lines to indicate branches having one or more unstable 

eigenvalues. 

Periodic branches 

It is the values of the Floquet multipliers (see page 248) that determine the stabil ity 

of periodic orbits. These multipliers are eigenvalues of a particular matr ix and, thus, 

an eigenvalue solver is again required. Since Floquet multipliers can be very large or 

very small in value, there may be a loss of accuracy when evaluating them numerically. 

This is especially true for unstable orbits [111] and near orbits of infinite period [30]. 

In the A U T 0 8 6 manual [30] it is noted that orbits normally retain their accuracy even 

when the computation of Floquet multipliers (and hence stabil ity determination) breaks 

down. In X P P A U T and A U T 0 9 4 the routine for calculating Floquet multipl iers has been 

improved and is more accurate than that in A U T 0 8 6 , and hence in Interactive A U T O . 

Floquet multipl iers are also used for detecting higher order periodic bifurcations such as 

period-doubling bifurcations or bifurcations to tori . 

B.3 Available computer packages 

In this section I list the capabilities of a number of computer packages and also list some 

advantages and disadvantages related to choosing one package over another. 
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B.3.1 A U T O 8 6 

Since Interactive A U T O , X P P A U T and A U T 0 9 4 are all based on A U T 0 8 6 [28], their 

basic capabilities are very similar. Although I have not used A U T 0 8 6 directly (it runs 

as a batch process), I wi l l describe its capabilities and l imitations since most of them 

apply to the abovementioned packages. I highlight the differences between the packages 

in subsequent sections. 

Capabilities 

(These are taken directly from the A U T 0 8 6 manual [30].) 

A U T O can do a l imited bifurcation analysis of algebraic systems of the form 

f ( x , A ) = 0 , x , f e 7 e m (B.6) 

where A denotes one or more free parameters, and of systems of ordinary differential 

equations of the form 

x = f ( x ,A ) , x , f e 7 t m (B.7) 

It can also do certain continuation and evolution computations for the diffusive system 

x t = D x u u + f ( x , A ) , x , f e 7 l m (B.8) 

where x = x ( u , £ ) and D denotes a diagonal matr ix of diffusion constants. For the 

algebraic system (B.6) A U T O can: 

• trace out branches of solutions. 

• locate bifurcation points and compute bifurcation branches. 

• locate l imit points (saddle-node bifurcations) and continue these in two parameters. 
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• do al l of the above for fixed points of the discrete dynamical system 

x < + 1 = f (x , ,A) . (B.9) 

• optimisation: find extrema of an objective function along the solution branches and 

successively continue such extrema in more parameters. 

For the ordinary differential equations (B.7) A U T O can: 

• compute branches of stable or unstable periodic solutions and Floquet mult ipl iers. 

Starting data for the computation of periodic orbits are generated automatical ly 

at Hopf bifurcation points. 

• locate l imi t points, transcritical and pitchfork bifurcations, period-doubling bifurca

tions and bifurcations to tori along branches of periodic solutions. Branch switching 

is possible at transcrit ical, pitchfork and period-doubling bifurcations. 

• continue Hopf bifurcation points, l imit points and orbits of fixed period in two 

parameters. 

• compute curves of solutions to (B.7) on the interval [0,1] subject to general nonlinear 

boundary or integral conditions. 

• locate l imi t points and bifurcation points for such boundary value problems. Branch 

switching is possible at bifurcation points. Curves of l imit points can be computed 

in two parameters. 

For the parabolic system (B.8) A U T O can: 

• detect bifurcations to wave train solutions of given wave speed from spatially ho

mogeneous solutions. These are detected as Hopf bifurcations along fixed point 

branches of a related system of ordinary differential equations. 
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• trace out the branches of wave solutions to (B.8) and detect bifurcations. The wave 

speed c is fixed but the wave length L wi l l normally vary. 

• trace out branches of waves of fixed wave length L in two parameters. If L is large, 

then one gets a branch of approximate solitary wave solutions. 

• do t ime evolution calculations for (B.8) with periodic boundary conditions on [0,L]. 

In this thesis systems of the form (B.7) and (B.9) are analysed. 

The discretisation used in A U T O to approximate ordinary differential equations and 

for calculating periodic solutions is orthogonal collocation with 2 , . . . , 7 Gauss collocation 

points per mesh interval. The mesh automatically adapts to the solution so that a 

measure of the local discretisation error is equi-distributed. Also, the adaptive mesh 

guards to some extent against computing spurious solutions. When spurious solutions 

do occur they are often easy to recognise by the jagged appearance of the solution branch. 

Some general l imitations of A U T 0 8 6 are listed below. 

Limitations 

The following difficulties are noted in the manual [30]: 

• degenerate (multiple) bifurcations cannot be detected in general. A lso , bifurcations 

that are close together may not be noticed when the pseudo-arclength step size is 

not sufficiently small . 

• Hopf bifurcation points may go unnoticed if no clear crossing of the imaginary axis 

takes place. This may happen when other real or complex eigenvalues are near the 

imaginary axis and when the pseudo-arclength step is large compared to the rate of 

change of the crit ical eigenvalue pair. A n often occurring case is a Hopf bifurcation 

close to a l imit point (saddle-node bifurcation). 
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• similarly, Hopf bifurcations may go undetected if switching from real to complex 

conjugate, followed by crossing of the imaginary axis, occurs rapidly with respect 

to the pseudo-arclength step size. 

• secondary periodic bifurcations may not be. detected for very similar reasons. 

• for periodic orbits the numerical output should be checked to make sure that points 

labelled as bifurcation points, l imit points, period-doubling bifurcations or bifurca

tions to tori have been classified correctly. 

Some of the above problems may be solved by decreasing the m i n i m u m step size, dsmin, 

to allow A U T O to take smaller steps. This is particularly helpful when two continuation 

branches or two bifurcation points are very close together. In the former situation A U T O 

needs to take small steps to ensure that it does not switch branches during the calculation. 

Decreasing dsmax may also help as this prevents A U T O from taking large steps and 

missing important bifurcations. 

As noted above A U T O may have some difficulty with identifying bifurcations on 

periodic orbits. Problems arise when Floquet multipliers are close to the unit circle. 

Also, unstable orbits can be difficult to locate, especially when they are close to a stable 

orbit or equi l ibr ium. Accuracy may be increased by decreasing dsmin or increasing ntst, 

the number of mesh points used in the discretisation of the periodic orbits. 

Some other l imitations of A U T O which have resulted from doing bifurcation analyses 

on a few models are as follows: 

• transcrit ical and pitchfork bifurcations cannot be continued in two parameters be

cause the determinant of the Jacobian matr ix A is zero at these bifurcation points. 

Other continuation and bifurcation packages wi l l have the same l imitat ion. A possi

ble solution is to do a number of one-parameter continuations with different (fixed) 
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values of the second parameter and then to plot the bifurcation points obtained 

from each continuation in two-parameter space. A n approximate curve can be 

drawn through these points. This is done in chapter 2. 

• error messages from A U T O can be misleading (as with most computer packages!). 

In many cases the problem is solved by checking the driving program for typing 

errors and variable or parameter names which begin with letters between h and o 

as such quantities are assumed to be integers by default. 

B.3.2 Interactive A U T O 

Capabilities 

In addition to the capabilities listed for A U T 0 8 6 , Interactive A U T O [117] allows the 

user to change the program constants interactively and to observe the development of a 

bifurcation diagram while a calculation is in progress. The corresponding eigenvalues are 

shown simultaneously in a separate graphics window. 

The advantages and disadvantages listed below relate mainly to the suitabil ity of this 

package for analysing ecological models and are included for comparison wi th the other 

packages. Since the packages were not set up specifically for the models that are analysed 

in this thesis, these comments are not necessarily criticisms. 

Advantages 

• This package has good on-screen graphics. Different colours are used to indicate the 

number of unstable eigenvalues corresponding to a particular branch. The locations 

of the eigenvalues relative to the real and imaginary axes and the unit circle are 

also shown. Bifurcation diagrams can be viewed in three dimensions if desired and 

the mouse can be used to shift diagrams and to zoom in and out. 
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Disadvantages 

• Bifurcat ion diagrams cannot be printed out or saved as postscript files for later 

printing. 

• Each t ime the model equations are altered the driving routine needs to be recom

piled. 

• The package only runs on Personal Iris and Iris 4D workstations (instead of on all 

systems supporting X-windows as for the other packages). 

• Interactive control of the graphics output is l imited. Once a one-parameter bifur

cation diagram has been generated it is not possible to view it with a different 

variable on the y-axis. The scales of the axes are also not visible. 

B . 3 . 3 X P P A U T 

This package (as well as the tutorial) can be obtained v ia anonymous ftp from 

ftp.math.pitt .edu 

and is in the directory pub /hardware. 

Capabilities 

The A U T O interface allows most of the capabilities of A U T 0 8 6 to be enjoyed. How

ever, the a im of making A U T O easier to use has led to some restrictions which wi l l be 

mentioned below. 

This package also solves systems of equations numerically (there is a choice of a l 

gorithms) and generates time plots and phase portraits (in two and three dimensions). 

ftp://ftp.math.pitt.edu
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Hardcopies of these'diagrams can be obtained. W i t h reference to phase portraits it is pos

sible to obtain nullclines, arrows indicating the direction of flow, as well as the positions 

and stabilities of equi l ibr ium points (singular points). 

Other capabilities include curve-fitting of data, spreadsheet type data manipulat ion 

and generation of histograms. 

Advantages 

• T i m e plots, phase portraits and bifurcation diagrams can all be generated using 

the same computer package. 

• The A U T O interface is easy to use—the number of constants that need to be altered 

has been reduced. 

• Hardcopies of bifurcation diagrams can be obtained through saving them as postscript 

files. The data can also be saved so that it can be read into other graphics packages. 

• The package has good on-screen graphics. The development of a bifurcation d i 

agram can be seen while a calculation is in progress. The eigenvalues are shown 

simultaneously relative to the real and imaginary axes and the unit circle. It is 

possible to zoom in on specific regions of a diagram and the most recent one-

and two-parameter bifurcation diagrams viewed are kept in memory. Once a one-

parameter bifurcation diagram has been generated the variable on the y-axis can 

be altered. It is also possible to plot the period or the frequency of a periodic orbit 

as a function of the bifurcation parameter. M i n i m a as well as m a x i m a of periodic 

orbits can be plotted simultaneously. 

• A U T 0 8 6 ' s Floquet multipl ier routine has been improved. 

• It is possible to start continuations from a numerically calculated periodic orbit. 
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• Three-dimensional phase portraits are possible. 

• The driving program is easy to write for most systems and is compiled automatical ly 

when the X P P A U T command is given. 

• W h e n calculating t ime plots and phase portraits, data information for auxil iary 

variables (variables which are subcomponents or composite functions of the state 

variables) can also be observed. 

• The package runs on any X-windows system as well as on L I N U X . 

• There is a comprehensive tutorial on the World Wide Web to help the user become 

acquainted with the package. The address is: 

ftp://mthbard. math, pitt.edu/pub/bardware/xpptut/start. h tml . 

D i s a d v a n t a g e s 

• W h e n generating phase portraits only one equi l ibr ium point is located at a t ime 

and the in i t ia l point often has to be quite close by. 

• The A U T O interface is not set up for discrete equations and error tolerances for 

A U T O cannot be altered. Also, the automatic detection of l imi t points cannot 

be turned off in this version of A U T O . This may cause difficulties when calculat

ing periodic orbits as at a l imit point of a periodic orbit two Floquet mult ipl iers 

equal 1 and this affects the convergence properties of the continuation algorithm. 

Decreasing dsmin and dsmax may help. 

• There is l imited control of the appearance of printouts. The stabil ity nature of 

a particular branch in a bifurcation diagram is often obscured when consecutive 

continuation points are very close together. Dashed lines for unstable branches then 

ftp://mthbard
http://pitt.edu/pub/bardware/xpptut/start
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appear as solid lines and, instead of indiv idual dots, periodic branches become thick 

lines. In some cases this can be overcome by increasing the m a x i m u m step size, 

dsmax. A lso, the data for a diagram can be saved separately and then read into 

another graphics package. When two-parameter bifurcation diagrams are printed 

out, data from the previously generated one-parameter diagram is superimposed. 

B.3.4 A U T 0 9 4 

Capabilities 

This package is an updated version of and graphical interface for A U T 0 8 6 . The graphical 

interface allows program constants to be altered interactively and bifurcation diagrams 

can be viewed. 

Advantages 

• There is a help menu which describes the functions of the program constants. 

• Demonstration examples show how the various capabilities of the package can be 

used. 

• Model equations can be changed interactively. 

• The package runs on any X-windows system. 

• It is possible to start a continuation from a numerically calculated periodic orbit. 

• The routine for calculating Floquet multipliers has been improved. 

Disadvantages 

• Printouts of bifurcation diagrams cannot be obtained. 
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• The on-screen graphics are more cumbersome to use than those of Interactive 

A U T O and X P P A U T . Changes to a bifurcation diagram can only be viewed at 

the end of a calculation using a separate command instead of while the program is 

running. The way in which bifurcation points are labelled also makes the diagrams 

difficult to read. The disadvantages were the main reason why I did not make use 

of A U T 0 9 4 . 

B .3.5 D S T O O L 

This package can be obtained v ia anonymous ftp from 

macomb.tn.cornell.edu 

and is in the pub/dstool directory. 

Capabilities 

This package generates t ime plots and two-dimensional phase portraits for both discrete 

and continuous systems of equations. It calculates equil ibr ium points and their stabilities 

as well as stable and unstable manifolds for saddle points. There is provision for exten

sions to the package—three-dimensional graphics as well as continuation and bifurcation 

routines may be incorporated in the near future. 

Advantages 

• A mouse can be used for specifying starting points for t ime plots and phase por

traits. This is very convenient and speeds up the generation of these diagrams 

considerably. 

• The package is good at locating periodic points for discrete models. 

http://macomb.tn.cornell.edu
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• Printouts of diagrams can be obtained. 

• For ordinary differential equation models trajectories can be calculated forwards or 

backwards. 

• The package runs on any X-windows system as well as on L I N U X . 

Disadvantages 

• Three subroutines need to be modified each t ime a new model is entered. 

• The package sometimes crashes when calculating equi l ibr ium points for difficult 

parameter values. 

B.3.6 Other packages 

Some other packages are available for analysing dynamical systems. Part of the following 

list can be found in [4]. 

1. A L C O N [27]. This is a continuation method for algebraic equations f ( x , A) = 0. 

L i m i t points and simple bifurcations can be computed on demand. 

2. B I F P A C K [112]. This is an interactive program for continuation of large systems 

of nonlinear equations. Bifurcation points are also detected. 

3. D Y N A M I C S [96]. This package iterates maps, solves differential equations, and 

plots trajectories. It runs on both I B M P C ' s and U N I X workstations which support 

X-windows. 

4. L O C B I F [68]. This is an interactive program designed for multiparameter bifur

cation analysis of equi l ibr ium points, l imit cycles and fixed points of maps. A t 
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present it is set up for I B M P C ' s but a U N I X version is in process and is being 

incorporated into D S T O O L . 

5. P A T H [66]. This software package for dynamical systems can apparently handle 

much larger systems of ordinary differential equations than A U T O . 

6. P H A S E R [54]. This package generates phase portraits for continuous and discrete 

dynamical systems. It runs on I B M P C ' s . 

7. P I T C O N [100, 101]. This is a Fortran subprogram for continuation of equi l ibr ium 

points and for detecting l imit points. 

As has already been mentioned, no comprehensive comparison of different techniques 

has been done because of the enormity of the task. None of the abovementioned packages 

analyses a model at the touch of a button and complementary analytical techniques, 

as well as other numerical techniques, are st i l l needed in order to obtain a complete 

understanding of any model. Parameter studies are as much an art as a science [111]. 

In the next section I explain how to generate t ime plots, phase portraits and bifurcation 

diagrams using some of the packages I have mentioned. 

B.4 U s i n g the packages 

Although this section gives some guidelines for using the various packages, it is important 

that anyone wishing to use these packages reads the relevant user manuals to find out the 

exact commands for performing various tasks. Many of the manuals have introductory 

examples for the reader to work through and these are invaluable for getting acquainted 

with the capabilities of the package. There is a comprehensive tutorial for using X P P A U T 

on the Wor ld Wide Web. The address is: 

f tp://mthbard. math, pitt.edu/pub/bardware/xpptut/start. h tml . 

ftp://mthbard
http://pitt.edu/pub/bardware/xpptut/start
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Time plots 

These can be obtained using either D S T O O L or X P P A U T . The user s imply chooses 

time as the variable to be plotted on the x-axis and one of the state variables for the 

y-axis. After entering in i t ia l values for the state variables and the t ime period over which 

to simulate the model , the ' run' or 'go' command can be chosen. The process may be 

repeated after changing one or more in i t ia l values or parameter values. These steps can 

al l be done interactively. 

Both packages have a number of choices for the numerical algorithm that is used to 

calculate solutions. M i n i m u m and max imum or fixed stepsizes can be chosen as well as 

error tolerances. In most cases the default choices are quite adequate. 

If the mouse is used to choose an in i t ia l point, then only the in i t ia l t ime and the value 

of the state variable on the y-axis wi l l be altered automatically. Values for the other state 

variables wi l l remain unchanged unless new values are typed in . 

When analysing a discrete system using D S T O O L , changing the t ime increment to 

1 in the 'orbit ' window and using the 'continue' icon allows the user to determine the 

period of a cycle. The amplitude of the cycle can be deduced by looking at the state 

variable values in the 'settings' window that correspond to the max imum and m i n i m u m 

of the cycle. 

Phase portraits 

These can again be generated using either D S T O O L or X P P A U T . A l though three-

dimensional portraits are possible in X P P A U T , I w i l l only discuss two-dimensional por

traits as I find them much easier to interpret and, hence, find them more useful in most 

situations.- (Note that the dimension of the system can be greater than two but the 

results are projected into a two-dimensional plane.) 
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In order to generate a phase portrait one of the state variables needs to be chosen for 

plott ing on the x-axis and another for the y-axis. For systems of dimension greater than 

two the solution trajectories wi l l be projected into this plane. Init ial values can be typed 

in manually or the mouse may be used. Only the values of the state variables shown on 

the axes wi l l be altered when using the mouse. The user can again choose between the 

various numerical methods for calculating solution trajectories. 

In addit ion to solution trajectories the positions of equi l ibr ium points can be shown 

in phase diagrams. When asked to find equil ibr ium points (also called fixed points or 

singular points) both D S T O O L and X P P A U T automatically calculate the eigenvalues 

and hence the stabil ity of these points. X P P A U T tends to locate one singular point at 

a t ime and often the in i t ia l point has to be fairly close to the fixed point if the search is 

to be successful. D S T O O L uses a Monte Carlo technique to generate a specified number 

(the default is 10) starting points and then searches for fixed points beginning at these 

starting values. This method is fairly efficient and choosing the 'f ind' option in the 'fixed 

point' window a few times generally locates all the relevant points. If desired, the user 

can choose the in i t ia l point from which to begin a calculation instead of using the Monte 

Carlo technique. For discrete models D S T O O L also finds periodic points. 

For continuous systems both packages also calculate one-dimensional stable and un

stable manifolds associated with saddle points in the plane. These help del imit domains 

of attraction. X P P A U T can calculate nullclines (curves showing where each differential 

equation is equal to zero) and display these in the phase portrait. Equ i l ib r ium points are 

located at intersections of nullclines corresponding to different state variables. 

One-parameter bifurcation diagrams 

For systems of ordinary differential equations one-parameter bifurcation diagrams can be 

generated using Interactive A U T O , A U T 0 9 4 and X P P A U T . For discrete systems either 
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of the former two packages can be used. The first step is to choose the bifurcation 

parameter to be plotted on the x-axis. One of the state variables can be chosen for the 

y-axis. This choice must be specified in the driving program for Interactive A U T O but 

can be done interactively in the other two packages. 

In addit ion to choosing the scales for the axes there are a number of other program 

constants which need to be set. These govern, for example: the length and type of 

continuation; the output to the screen; the detection of l imit points; error tolerances, 

steplengths and mesh intervals for the various numerical routines; and a number of other 

aspects of the computation. The various possibilities are listed in the A U T 0 8 6 manual 

[30] as well as in the H E L P menu in A U T 0 9 4 . The example or demonstration programs 

also give an idea of appropriate values. In X P P A U T some of these constants have been 

preset to simplify the use of A U T O . This is very convenient in most situations but can 

be restrictive in others. 

In order to begin generating a bifurcation diagram a fixed point (equil ibrium point) , 

corresponding to a particular parameter set, is required. Such a point can be determined 

analytical ly (where possible) or numerically using X P P A U T or D S T O O L . A continuation 

can then be started from this point. A t transcrit ical, pitchfork and period-doubling 

bifurcations A U T O automatically calculates the various intersecting branches. A t Hopf 

bifurcation points the user must specifically initiate the calculation of periodic orbits 

by choosing the relevant restart label. In Interactive A U T O and A U T 0 9 4 one of the 

program constants also needs to be altered. In order to extend any continuation branch 

across a wider range of parameter values, the endpoint of the branch can be chosen as 

the restart value. 

For discrete systems period-doubling bifurcations are labelled as Hopf bifurcations by 

A U T O but the period-2 branches emanating from this bifurcation cannot be calculated 

directly. The second iterate of the model must be used for this purpose. Since a (period-1) 
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equi l ibr ium point of the original model is also an equi l ibr ium point of the second iterate 

of the model , both the period-1 and the period-2 equi l ibr ium point branches wi l l be 

traced out using this latter model. However, for higher order period-doublings higher 

order iterates of the model are required and the process is more tedious. 

In such cases as well as for complicated discrete models whose second iterate is difficult 

to calculate, D S T O O L can be used to generate an approximate bifurcation diagram. 

Equ i l ib r ium points can be calculated at regular intervals across a range of parameter 

values and their coordinates recorded. These points can then be plotted using some 

other graphics package, such as G N U P L O T [125], to obtain an approximate bifurcation 

diagram. This approach is used in chapter 7. 

Two-parameter bifurcation diagrams 

Once a l imi t point or Hopf bifurcation point has been detected in a one-parameter con

t inuation, it can be continued in a second parameter. This is done by choosing the 

appropriate restart value corresponding to the bifurcation point, a second parameter for 

the y-axis, and either altering the relevant program constant in Interactive A U T O and 

A U T 0 9 4 or choosing the two-parameter option in X P P A U T . 

L i m i t cycles of fixed period can also be continued in two parameters. This is useful 

for approximating homoclinic or heteroclinic bifurcation curves since homoclinic and 

heteroclinic orbits have infinite period. Designating a U S Z R function to locate an orbit 

of high period, say period=100 or 1000, when constructing a one-parameter bifurcation 

diagram allows a two-parameter continuation of this orbit to be done 2 . The resulting 

two-parameter curve gives the required approximation to the curve of homoclinic or 

heteroclinic bifurcation points. This technique is used in section 2.4. When continuing 

2 A po in t sat isfying the U S Z R function w i l l be given a label wh ich can be used as a restart value for 
the two-parameter cont inuat ion. 
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these curves in two parameters, detection of l imit points should be turned off as it 

may lead to spurious bifurcation points. This is done automatically in X P P A U T . Any 

bifurcation points should also be checked against the numerical output to see whether 

an eigenvalue or Floquet mult ipl ier has, in fact, changed sign. 

B.5 Pointers and warnings 

As with al l computer packages, the ones that I have discussed do not work exactly as one 

might wish in a given situation. Each model is unique and requires a slightly different 

approach whereas a computer package is built for more general use. In this section I list 

some problems and suggestions arising from my experiences with the packages. Many 

of these wi l l only make sense once the examples in the main chapters of the thesis have 

been studied, but I have included them here so that most of the computer technicalities 

are confined to one place for ease of reference. 

• W h e n calculating fixed points using D S T O O L , the package sometimes hangs and 

wi l l not respond to input. I have not been able to locate the cause of this but 

quitt ing D S T O O L and restarting the package, although frustrating, does solve the 

problem. 

• W h e n starting a fixed point continuation in A U T O , the error tolerances cannot 

be set lower than the accuracy of the state variables that have been given as the 

starting point. If the starting points are only known to low accuracy, then a short 

continuation can be done on low accuracy (high error tolerance). The continuation 

can then be restarted at higher accuracy using the values calculated by A U T O . 

(Accuracy is increased by decreasing dsmax, the m a x i m u m step length, decreasing 

the error tolerances, or increasing ntst, the number of discretisation points.) 
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• A U T O wi l l generate bifurcation diagrams faster if the accuracy is lower. In many 

cases the results are st i l l sufficiently accurate, however some bifurcation points may 

need to be checked with greater accuracy calculations. It is a good idea to check 

the eigenvalues and Floquet multipliers in the numerical output files created by 

A U T O to see whether a bifurcation point has been correctly labelled. A lso , if 

there is a sudden jump in a continuation, or a curve becomes very jagged, then the 

continuation should be repeated using greater accuracy. 

• The choice of step size depends on the extent of the parameter range over which 

changes in behaviour occur. In most cases ds = 0.02 and dsmax = 0.05 are good 

choices. However, I used ds = 0.0001 and dsmax between 0.001 and 0.01 for 

the population genetics models as the bifurcations take place within fairly small 

parameter ranges. Scaling the equations and parameters (as is done in chapters 3 

and 4) circumvents this problem. 

• Bifurcation diagrams can become very complicated even when studying simple 

models. However, not al l continuation branches are always of interest. For example, 

some may correspond to negative or zero values of the state variables. A lso , when 

studying a particular aspect of a model, some branches may be superfluous. It is 

important to look at the numerical output which is printed to the screen during a 

continuation so that one can keep track of which branches are relevant and which 

are not. 

• It is a good idea to generate a number of starting points at a variety of parameter 

values to ensure that a complete bifurcation diagram is obtained and that isolated 

branches have not been overlooked. D S T O O L is convenient for this purpose. 
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• Results can often be checked using more than one package. For example, a b i 

furcation diagram generated by A U T O can be checked by choosing a number of 

parameter combinations corresponding to different qualitative regions and generat

ing phase portraits for these combinations (using X P P A U T or D S T O O L ) to check 

the dynamics. This is most convenient in X P P A U T where the bifurcation dia

grams and phase portraits can be generated within the same package. T ime plots 

and phase portraits can be checked by choosing different numerical methods to 

calculate solutions. Both D S T O O L and X P P A U T offer a variety of methods. B y 

looking at the eigenvalues corresponding to an equi l ibr ium point one can check that 

the stabil ity of the point has been correctly labelled. 

• It is easy to get side-tracked into studying the bifurcation structure of a model 

and into studying complicated behavioural changes instead of concentrating on 

phenomena which are of biological interest. In general, sharp boundaries and the 

exact values at which bifurcations occur are not important as biological parameters 

are hardly ever known with certainty. The general behaviour and the types of 

changes that can occur are of greater practical interest. For example, l imi t cycles 

of small amplitude wi l l be indistinguishable from equi l ibr ium points due to the 

natural variation of field data. Also, a system wi l l easily be perturbed from a 

stable node with a small domain of attraction and, hence, such a phenomenon may 

be of minor interest. It is also important to look at t ime plots corresponding to 

fixed parameter combinations to see how quickly a system approaches the l imi t ing 

behaviour indicated in a bifurcation diagram. If a system takes a long t ime to attain 

its equi l ibr ium configuration then the transient dynamics may be more important 

than the final equi l ibr ium values. 
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• It is sometimes enlightening to generate bifurcation diagrams for a larger range of 

parameter values than is of direct interest as there may be hysteresis phenomena 

or bifurcation points outside the range of interest which affect the behaviour inside 

this range. 

Other suggestions which are best described with reference to a particular model are 

included in the relevant chapters. Clearly, the more one utilises the techniques and 

packages that have been introduced, the more familiar one becomes with them, and the 

more creative one can be in their use. The above comments wi l l be most useful to those 

researchers actively involved in analysing their own models. 
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Mathematical details for the sheep-hyrax-lynx model 

C . l Modelling delays in system dynamics models 

A system does not always respond immediately to a change in one of its components. 

Often there is a time lag between the ini t ia l change and the response of the system. 

For example, a change in hyrax population density wi l l only affect the size of the hyrax 

population the following season. It takes time for an increase in population density to 

affect the reproductive success of the hyrax and the survival of their offspring. 

In order to represent this in the model, averaged or smoothed versions of certain 

quantities are used in calculating growth rates. Three quantities are averaged in this 

mode l—hy rax density (Hp), prey abundance (Ap) , and the grazing mult ipl ier (GM)- For 

example, when sheep have been grazing more than their usual amount their condition is 

expected to improve resulting in a decline in juvenile mortal ity and a rise in fecundity 

(Swart and Hearne [116]). However, this wi l l only occur after a prolonged increase in the 

average amount of pasture consumed. Hence, sheep fecundity and juvenile mortal i ty are 

functions of the grazing multipl ier average, GM, instead of GM- A first order distributed 

delay (see MacDonald [77] or May [81]) is used to calculate GM- That is, 

<1GM _ GM — GM 
dt tdei 

where t^ei is the average delay t ime. Examples of this type of delay equation can be found 

in Forrester [39] and a detailed explanation of the mathematics underlying the above 

differential equation can be found in MacDonald [77]. The above ordinary differential 

284 
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equation is added to the original system of model equations thus increasing the dimension 

of the system to be solved. Fortunately this increase in dimension does not pose a problem 

when solving the system numerically. 

Further discussions on delays in biological systems and their effects on system be

haviour can be found in [78, 81]. For the sheep-hyrax-lynx model the delays were not 

found to affect stabil ity even for large average delay times. 

C .2 Rescaling model equations 

Suppose the differential equation for the state variable u,- is given by 

dvi 

Let Vi = S j U j , then 

and 

Vi = — 
Si 

dvi 1 dvi 

dt Si dt 

= fi(siVi, • • • , SiVi, . . . , SmVm). 
Si 

Dropping the bars for convenience we get 

^1 - Lf.( \ 
. — Ji\S^V\, . . . , SiVi, . . . , SmVm I 

dt Si 

as required. The state variables have been replaced by s,-u,- and the differential equation 

for Vi is divided through by s,- as stated in section 3.4. 
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Mathematical details for the budworm-forest model 

D . l Derivation of new foliage equation in spruce budworm model 

We expect the amount of new foliage consumed by an indiv idual larva to depend on the 

availabil ity of new foliage per larva, that is, to depend on Fb

L^F (Fi/Kp represents the 

amount of foliage that is new foliage). The larvae prefer new foliage to old and thus, in 

most circumstances, wi l l eat al l the new foliage before moving on to old foliage. Assuming 

that larval densities do not get so low that there is an overabundance of new foliage, we 

have 

new foliage consumption/larva = — ^ — — . 
Lb 

However, when larval densities are high, competition among budworm for new foliage 

becomes significant and larvae eat old foliage more readily than before. We can model 

this competit ion (see Starfield and Bleloch [113]) by including the factor 

L d0Lb \ 
V Fb/KF) 

where do is the m a x i m u m foliage consumption rate per larva. This factor is close to 1 

when there is abundant new foliage per larva (that is, when F b ^ F is large) and close to 

0 when there is an overabundance of larvae resulting in intraspecific competit ion. The 

new equation is 

n . .. n Fb ( doKpLh\ 
new foliage consumption/larva = — — — 1 — . 

KpLb V Fb 
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This factor is rather severe and could lead to negative values for very large larval 

densities. Instead we can use a negative exponential function [113] which approaches 

zero when there is very l i tt le new foliage available per larva. This gives 

Ff, ( d O K F L h 

new foliage consumption/larva = — — — I 1 — e F>> 
KFLI, V 

The total amount of new foliage consumed is then 

Fb / „ d O K F L b 
new foliage consumption 

and this gives 

KFLh 

1 - e Fb 

remaining new foliage = —r ;T~~(1 ~ e A ) 
KF KF 
-A Fb 

where 

_ d^KpLb 

D.2 Summary of model equations 

The subscript b denotes the in i t ia l or base value for the state variable and subscript e 

denotes the new value after one year. 

Foliage (F) 

F, ^ 

where 

Fi = -^[e-A + (KF-l)e-B}Fb, 
KF 
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A 

B 

— doLt 

KF 

Cl(A-l + e-A), 

cj = 0.357. 

Branch surface area (S) 

where 

Budworm (L) 

where 

Se 

rsSi 

Si = [1 - ds(l - ^)2}Sb. 
•Tb 

Le — dsh-rrG2 L& 

Ks 

G = 

H = 

Le = 

u = 

H(2-H), 

Fi 
-n. 

A P m 

I 1 - 1 , P m . )LS> 

E = 

1 + Er< 
AsrL\ 

Athr 

(EiW1/s - E2)AsrL4, 

Ei = 165.64 and E2 = 328.52, 

W — Api (1 + A F 2 ( / ^ F - 1) (1 

A F I = 34.1, AF2 = 24.9 and BF = - 3 . 4 , 
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L4 = (Ap + Bp-^-)L3, 

Ap = 0.473 and Bp = 0.828, 

L3 = e~DL2, 

Sb(PsatFb

2 + LIY 

kL = 0.425, 

Li = (1 - qmaxe~C)Lb, 

C = 0.003L b . 

Reference values for the parameters are given in table 7.1. 



Listings 

Examples of the calling programs for the various models are listed here. 
The entire calling program does not need to be rewritten each t ime. Once 
one file has been created, only those lines which define the model equations 
and set the parameter values and program constants need to be altered. 

Bazykin model with prey competition—XPPAUT 

# Mode l equations. 
dx/dt=a*x-b*x*y/(l+alp*x)-eps*x*x 
dy/dt=-c*y+d*x*y/(l+alp*x) 
# Init ial values. 
x(0)=0.2 
y(0)=0.2 
# Parameters and nominal values. 
param a=0.6,b=0.3,c=0.4,d=0.2,alp=0.3,eps=0.001 
done 
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System dynamics model—XPPAUT 

# Sheep, hyrax, lynx and pasture model with pasture l imit ing function. 

# 
# Differential equations for the state variables. 
dpas/dt=(temp*ppn*area*plm(pai)-tssu*gn*gm(pai))/pmax 
dhj/dt=(hfmax*hf*hfn*hdfm(hda)-hjmax*hj*hjdn*hjdm(hda)-ahjdm(pai) 

-hjmax*hj*hjmn-hp*hjmax*hj/(hjmax*hj-r-hfmax*hf-|-hmmax*hm))/hjmax 
dhf/dt=(0.5*hjmax* hj*hjmn-hfmax*hf*hfdn-hfdm(pai)-hfmax*hf*hcn 

-hp*hfmax*hf/(hjmax*hj-(-hfmax*hf-|-hmmax*hm))/hfmax 
dhm/dt=(0.5*hjmax*hj*hjmn-hmmax*hm*hmdn-hmdm(pai) -hmmax*hm*hcn 

-hp*hmmax*hm/(hjmax*hj+hfmax*hf-(-hmmax*hm))/hmmax 
dlj/dt=(lfmax*lf*lfn*lfm(paa)-ljmax*lj*ljdn*ljdm(paa)-ljmax*lj*ljmn)/ljmax 
dlf/dt=(0.5*lj*ljmax*ljmn-lfmax*lf*lfdn-lfmax*lf*lcn)/lfmax 
dlm/dt=(0.5*ljmax*lj*ljmn-lmrnax*lm*lmdn-lmmax*lm*lcn)/lmmax 
dsj/dt=^(sfmax*sf*sfn*sdfm(gma)-sjmax*sj*sjdn*sjdm(gma)-sjmax*sj*sjmn-

max(0,l-lpm(pa))*lut*sjpn-sjmax*sj*sjcn*sjcm)/sjmax 
dsf/dt=(0.5*sjmax*sj*sjmn-sfmax*sf*sfdn-sfmax*sf*sfcn)/sfmax 
dsm/dt=(0.5*sjmax*sj*sjmn-smmax*sm*smdn-smmax*sm*smcn*smcm)/smmax 
dhda/dt=(hd-hda)/del l 
dpaa/dt=(pa-paa) / del2 
dgma/dt=(gm(pai)-gma)/del3 
dtr/dt=(-tr - f (mutwool-culling-cssu*ssu+ssu*ssuval)/trmax) / tau 

# 
# State variables and ini t ia l values. 
pas(0)=0.66,hj(0)=0.7,hf(0)=0.525,hm(0)=0.525 
lj(0)=0.4,lf(0)=0.6,lm(0)=0.6,sj(0)=0.80670,sf(0)=0.75567,sm(0)=0.50379 
hda(0)=1.0,paa(0)=1.0,gma(0)=1.0,tr(0)=3.9069 

# 
# F ixed variables—these are quantities which are used repeatedly 
# in the model equations. Mak ing them fixed variables simplifies 
# the appearance of the calculations considerably. 
hut=hjmax*hjr*hj+hfmax*hf+hmmax*hm 
lut=ljr*ljmax*lj-|-lmmax*lm+lfmax*lf 
ssu=sjr*sjmax*sj+sfmax*sf+smmax*sm 
hd=hut/hun 
pa=(hut/lut)/(hun/lun) 
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pai=pmax*pas/pav 
tssu=ssu+max(0,(hut-hun)/hs) 
hp=lut*lpn*lpm(pa) 
sjcm=(2.01-argf(1.01,0.01,1.2,gma))/2 
smcm=2.01-argf(1.01,0.01,1.2,gma) 

# 
# F ixed variables needed to define revenue (mutton and wool sales and cost 
# of cull ing). 
mutwool=sjmv*sjmax*sj*sjcn*sjcm+sfmv*sfmax*sf*sfcn-|-smmv*smmax 

*sm*smcn*smcm-|-sjwv*sjmax*sj+sfwv*sfmax*sf-f-smwv*smmax*sm 
culling=ccl*(lfmax*lf*lcn+lmmax*lm*lcn)+cch*(hfmax*hf*hcn+hmmax*hm* 

# 
# Aux i l ia ry variables—these are quantities other than the state 
# variables whose values we would like to appear in X P P A U T ' s 
# data window. Here we have revenue and total revenue. 
# Total revenue is the quantity referred to in the analysis as revenue, 
aux rev=mutwool-culling-cssu*ssu 
aux totrev=mutwool-culling-cssu*ssu+ssu*ssuval 

# . . . 
# In order to view the values of the fixed variables in the data window 
# we need to have the following statements: 
fhut=hut 
f lut=lut 
fssu=ssu 
fhd=hd 
fpa=pa 
fpai=pai 
ftssu=tssu 
fhp=hp 
fsjcm=sjcm 
fsmcm=smcm 
# 
# Parameters and nominal values. 
param hjr=0.5,ljr=0.5,sjr=0.67,hun=700000,lun=:700,pav=6.6e7 
param hs=18,ppn=332,area=200000,gn=365,sub=0.000005,temp=1.0 
param hfn=1.5,hjdn=0.5,hfdn=0.1,hmdn=0.1,hjmn=1.0,lpn=84.11,hcn=0.0 
param lfn=0.7,l jdn=0.5,lfdn=0.13,lmdn=0.13,ljmn=1.0,lcn=0.0 
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param sfn=0 .75,sjdn=0.1,sfdn=0.02,smdn=0.02,sjmn=0.5 
param sjpn=90.0,sjcn=0.09,sfcn=0.28,smcn=0.28 
param sjmv=55.0,sfmv=79.0,smmv=75.0,sjwv=5.0,sfwv=7.0,smwv=9.0 
param ccl=30.0,cch=1.0,cssu=2.0,ssuval=200.0,pmax=1.0e8 
param hjmax=500000,hfmax=500000,hmmax=500000,ljmax=500,lfmax=500 
param lmmax=500,sjmax=100000,sfmax=100000,smmax=100000 
param dell=0.9,del2=0.6,del3=0.9,tau=0.05,trmax=1.0e7 

# 
# User functions—these are the multipl ier functions. 
a r g E ( A , B ) = ( A / B ) - l 
a rgC(A ,B )= ln (a rgE (A ,B )/ (A - l ) ) 
argr(A,B,slope)=slope*A/((A- l )*argC(A,B)) 
argf (A,B,s lope,x )=A/( l+argE(A,B)*exp( -argC(A,B) 

*exp(argr(A,B,slope)*ln(max(x,sub))))) 
plm(x)=3.25*(x+0.001)*exp(-1.2*(x+0.001)) 
gm(x)=argf(1.5,0.1,0.8,x) 
hdfm(x)=2.5-argf(2.4,0.1,1.3,x+0.4) 
hjdm(x)=argf(1.8,0.1,1.0,x) 
lpm(x)=argf(1.6,0.8,0.5,x) 
lfm(x)=argf(1.5,0.01,0.7,x) 
l jdm(x)=2.0-argf(1.9,0.05,l . l ,x+0.2) 
sdfm(x)=argf(2.8,0.4,1.3,x) 
sjdm(x)=12.0-argf(11.5,0.1,2.7,x+1.6) 
ahjdm(x)=max(0,exp(-3*x)*(hut-hun)*hj*hjmax/(hjmax*hj-|-hfmax*hf-|-hmmax*hm)) 
hfdm(x)=max(0,exp(-3*x)*(hut-hun)*hfmax*hf/(hjmax*hj+hfmax*hf-t-hmmax*hm)) 
hmdm(x)=max(0,exp(-3*x)*(hut-hun)*hmmax*hm/(hjmax*hj-|-hfmax*hf-|-hmmax*hm)) 

# 
done 
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Ratio-dependent model—XPPAUT 

# Mode l equations. 
d M l / d t = g a m l * ( l - e x p ( - o m e g a l / M l ) - M l A b l ) * M l -

( l -exp(-omega2*Ml/M2))*phi2*M2/omega2 
dM2/dt=gam2*( l -exp( -omega2*Ml/M2) -M2Ab2)*M2-

(l -exp(-omega3*M2 / M3)) *phi3*M3/omega3 
dM3/dt=gam3*(l -exp( -omega3*M2/M3)-M3Ab3)*M3 
# Init ial values. 
M l (0 )=0 .8 
M2(0)=0.2 
M3(0)=0.2 
# Nondimensionalised parameters and values, 
param omegal=14.0,omega2=20.0,omega3=16.67 
param gaml=0.65,gam2=0.4,gam3=0.4 
param phi2=0.07,phi3=0.06 
param bl=0.02,b2=0.02,b3=0.0 
done 
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Population genetics model I—Interactive A U T O . 

c Note: lines beginning with c are comments, 
c 
c Populat ion genetics model with exponential fitness functions, 
c 

P R O G R A M A U T O 
c 

I M P L I C I T D O U B L E P R E C I S I O N ( A - H , 0 - Z ) 
c 
c N O T E : parameters l iw and lw are V E R Y I M P O R T A N T . They set aside 
c space for A U T O in the work arrays IW and W . In Interactive A U T O 
c they must be "hardwired" into the code. If you begin to have problems 
c with large continuations (e.g. periodic solutions using a big N T S T ) , try 
c setting l iw and lw larger and recompiling the executable, c 

P A R A M E T E R ( l i w = 10000) 
P A R A M E T E R ( l w = 250000) 
dimension IW(l iw) ,W(lw) . 
dimension ipar(50),rpar(50),icp(20) 
character*10 params(20) 
character*50 name 

c 
cal l dfinit 

c 
c N D I M (number of state variables) 

ipar( 1)=2 
c IPS (+1 for ode's, -1 for maps) 

ipar( 2 )= - l 
c IRS 

ipar( 3)=0 
c I L P 

ipar( 4)=0 
c N T S T 

ipar( 5)=15 
c N C O L 

ipar( 6)=4 
c I A D 
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ipar( 7 =3 
ISP 

ipar( 8̂  =1 
I S W 

ipar( 9̂  =1 
I P L T 

ipar(10 )=0 
N B C 

i p a r ( l T =0 
N I N T 

ipar(12} =0 
I A D S 

ipar(13 =1 
N M X 

ipar(14^ =100 
N U Z R 

ipar(15^ =0 
N P R 

ipar(16} =50 
M X B F 

ipar(17) =5 
IID 

ipar(18) =2 
I T M X 

ipar(19) =8 
I T N W 

ipar(20) =5 
N W T N 

ipar(21) =3 
J A C 

ipar(22) =0 

ICP( i ) 
icp( l ) = 1 
icp(2) = 2 
D O 1 1= =1,2 
ipar(30+i)=icp( 



1 C O N T I N U E 

DS 
rpar( l )= :0.0001d0 

D S M I N 
rpar(2)= :0.000002d0 

D S M A X 
rpar(3)= :0.01d0 

RLO 
rpar(4)= =0.0 

R L 1 
rpar(5) = 4 .0 

AO 
rpar(6) = -10.0 

A l 
rpar(7) = 250.0 

E P S S 
rpar(8) = = l .d -6 

E P S L ( i ) , i =1,20 
rpar(9) = = l .d -6 

E P S U 
rpar(10) = l .d -6 

nparams=number of parameters that you want to vary 
nparams = 6 

declaration of parameter names 
params(l ) = ' a l l ' 
params(2) = ' a l 2 ' 
params(3) = 'a22' 
params(4) = ' b l l ' 
params(5) = ' b l 2 ' 
params(6) = 'b22' 

name = ' Genetics model ' 

call autool(ipar,rpar,iw,liw,w,lw,params,nparams,name) 
stop 
end 
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c 
S U B R O U T I N E VECFLD(ndim,u , icp ,par , i jac , f , t ) 

c 
c This subroutine evaluates the right hand side of the first order system 
c 
c input parameters : 
c nd im - dimension of u and f. 
c u - vector containing u. 
c par - array of parameters in the differential equations. 
c icp - par( icp(l ) ) is the in i t ia l 'free' parameter. 
c par(icp(2)) is a secondary 'free' parameter, 
c for subsequent 2-parameter continuations. 
c ijac - =1 if the jacobians dfdu and dfdp are to be returned, 
c =0 if only f(u,par) is to be returned in this cal l . 
c t - current t ime. 
c 
c value to be returned : 
c f - f(u,par) the right hand side of the ode. 
c 

impl ic i t double precision (a-h,o-z) 
c 

dimension u(ndim),par(30) 
dimension f(ndim) 

c Parameters 
a l l = par ( l ) 
a l 2 = par(2) 
a22 = par(3) 
b l l = par(4) 
b l 2 = par(5) 
b22 = par(6) 

c State variables 
P = u ( l ) 
eN = u(2) 

c Fitness functions 
w l l = e x p ( a l l - b l l * e N ) 
w l 2 = exp(al2-bl2*eN) 
w22 = exp(a22-b22*eN) 
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c Mean fitnesses 
w l m a r g = P * w l l + ( 1 - P ) * w l 2 
w2marg = P*wl2+(1-P)*w22 
fitmean = P*wlmarg - f ( l -P )*w2marg 

c 
c D I F F E R E N C E E Q U A T I O N S 
c 

f ( l ) = P*wlmarg/fitmean 
f(2)= fitmean*eN 

c 
return 
end 

c 
S U B R O U T I N E PARDER(ndim,u, icp ,par , i jac ,dfdu, t ) 

c 
c this subroutine evaluates the derivatives 
c of the first order system and with respect to (u(l),u(2)). 
c Not included for this model hence ijac=0 in the first subroutine. 
c 

return 
end 

c 
S U B R O U T I N E DFDPAR(ndim,u, icp ,par , i jac ,dfdp, t ) 

c 
c this subroutine evaluates the derivatives 
c of the first order system and with respect to free parameters. 
c Not included for this model. 
c 

return 
end 

c 
S U B R O U T I N E STPNT(nd im,u ,par ) 

c 
c in this subroutine the steady state starting point must be defined, 
c (used when not restarting from a previously computed solution), 
c the problem parameters (par) may be init ial ized here or else in init . 
c 
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c n d i m - dimension of the system of equations, 
c u - vector of dimension ndim. 
c upon return u should contain a steady state solution 
c corresponding to the values assigned to par. 
c par - array of parameters in the differential equations. 
c 

impl ic i t double precision (a-h,o-z) 
c 

dimension u(ndim),par(30) 
c 
c init ial ize the problem parameters. 

par( l )=2.1d0 
par(2)=1.9d0 
par (3 )= l . ld0 
par(4)=1.0d0 
par(5)=0.904d0 
par(6)=0.524d0 
par(14) = D B L E ( 1 ) 

c init ial ize the steady state. 
u( l )=0.5d0 
u(2)=2.1008d0 

c 
return 
end 

c 
S U B R O U T I N E S P R O J (ndim, u, isw, icp, par, vaxis, pt) 

c 
c this subroutine can be used to define a special projection 
c in the bifurcation window. This subroutine is called 
c when the ' S P ' is toggled O N (issue the command successively 
c to turn the toggle from O N to O F F , and vice versa). 
c 
c input values: 
c nd im - dimension of u. 
c u - vector containing coordinates of current solution. 
c isw - the number of parameters being used in the current 
c continuation. 
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icp - par( icp(l ) ) is the in i t ia l 'free' parameter. 
par(icp(2)) is a secondary 'free' parameter, 
for subsequent 2-parameter continuations. 
par - array of parameters in the differential equations. 
vaxis - controlled by program constant I P L T (see 
A U T 0 8 6 User Manual) , this is the second number 
per line written in unit 7 (file fort.7). 

return values: 
pt - array whose 1st, 2nd and 3rd elements are plotted 
the x, y and z axes, respectively. 

impl ic i t double precision (a-h,o-z) 

dimension icp(20) 
dimension u(ndim), par(30), pt(3) 

if ( isw.eq.l) then 
p t ( l ) = par( 1) 
pt(2) = u(2) 
pt(3) = vaxis 

else if (isw.eq.2) then 
pt ( l ) = par( 1 ) 
pt(2) = par( 2 ) 
pt(3) = vaxis 

endif 

return 
end 

S U B R O U T I N E S P J A X S (ndim, isw, icp, axes ) 

this subroutine defines the names of the axes used in 
the projection defined in the subroutine sproj. 

input value: 
nd im - dimension of u. 
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c IABS( isw) - the number of parameters being used in the current 
c continuation. 
c icp - par( icp(l ) ) is the in i t ia l 'free' parameter, 
c par(icp(2)) is a secondary 'free' parameter, 
c for subsequent 2-parameter continuations, 
c return value: 
c axes - character string array with the x, y, and 
c z axes names, respectively. 
c 

integer*4 nd im, isw, icp(20) 
character* 10 axes(3) 

c 
if (isw.eq.l) then 

axes(l) = ' icp( l ) ' 
axes(2) = ' N ' 
axes(3) = ' ' 

else if (isw.eq.2) then 
axes(l) = ' icp( l ) ' 
axes(2) = 'icp(2)' 
axes(3) = ' ' 

endif 
c 

return 
end 

c 
c*** graphics initializations for interactive A U T O 
c 

S U B R O U T I N E G P H D F T ( ldebug, l intog, labtog, ldsplt, 
@ leigen, lfltog, lsavpt, 
@ lgraph, lvideo, lsproj, nproj , 
@ ndmplt , delay, sclbif, scldis, 
@ sclev, filext ) 

c 
logical ldebug, l intog, labtog, ldsplt, leigen, lfltog 
logical lsavpt, lgraph, lvideo, lsproj 
integer*4 nproj , ndmplt 
real*8 delay 
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real*8 sclbif(6), scldis(6), sclev(6) 
character*10 filext(2) 

c 
c*** toggles 
c ldebug: T => debugging output 
c l intog: T => plotting of lines between points 
c labtog: T => plots two-character identifier at bifurcation points 
c ldsplt : T => open optional U N I X Graph window 
c leigen: T => open eigenvalue plott ing window 
c lfltog: T => il luminates points temporarily as they are plotted 
c lgraph: T => use graphics (F => can then run jobs in the background) 
c lvideo: T => reposition windows in botton 1/4 of screen for videotaping 
c lsproj: T => plot special projection denned in subroutine sproj 
c in the bifurcation window 
c lsavpt: T => eigenvalues saved in fort. 11 ('svaut *' moves this to m.*) 
c D O N O T A L T E R the following lines. 

ldebug = .false. 
l intog = .false. 
labtog = .true. 
ldsplt = .false. 
leigen = .true. 
lfltog = .false. , 
lcomfl = .false. 
loutfl = .false. 
lgraph = .true. 
lvideo = .false. 
lsproj = .false. 
lsavpt = .false. 

c 
c*** default window scales 
c ... Bifurcation window scales 
c eg. when isw = 1 => default plot axes x,y,z = par( icp( l ) ) , u ( l ) , u(2); 
c when isw = 2 => default plot axes x,y,z = par( icp( l ) ) , par(icp(2)), u ( l ) 
c The following lines can also be changed interactively. 

sclbif ( l ) = 0.5d0 
sclbif(2) = 0.56d0 
sclbif(3) = O.OdO 
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sclbif(4) = l.OdO 
sclbif(5) = O.OdO 
sclbif(6) = lO.OdO 

c ... Eigenvalue window scales 
sclev(l) = -2.0d0 
sclev(2) = 2.0d0 
sclev(3) = -2.0d0 
sclev(4) = 2.0d0 

c 
c*** set files names 
c 

comfil = 'input ' 
outfil = 'output ' 

c 
c*** file strings for saving, deleting, etc. 
c 

fTlext(l) = 'gen ' 
filext(2) = 'gen2 ' 

c 
c*** other stuff 
c nproj = number of projections to be plotted (up to nine) 
c ndmplt = dimension of the bifurcation window plot 
c delay = factor for duration of flash display 
c 

nproj = 2 
ndmplt = 3 
delay = O.OdOO 

c 
return 
end 
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Population genetics model I—DSTOOL. 

# include <model_headers.h> 
/* Note: The symbols /* and */ denote the beginning and end of comments 
respectively. */ 

/ * - ; 
Required function used to define the vector field or map. 
The values of the vector field mapping at point x with parameter 
values p are returned in the pre-allocated array f. For vector fields, 
the last components of both f and x are time components. A l l arrays are 
indexed starting from 0. 

: : */ 
int genetics_def(f,x,p) 
double *f,*x,*p; 
{ 
double a l l , a l 2 , a 2 2 , b l l , b l 2 , b 2 2 , P , N ; 
double wl l ,wl2 ,w22,margwl ,margw2,meanf i t ; 

/* Parameters whose values can be changed interactively. */ 
a l l = p[0]; 
a l 2 = p[ l j ; 
a22 = p[2]; 
b l l = p[3]; 
b l 2 = p[4]; 
b22 = p[5]; 

/* 
S T A T E V A R I A B L E S 

*/ 
P = x [0] ; /* Frequency of allele A l */ 
N = x[l] ; /* Population density */ 

/* 
F I T N E S S F U N C T I O N S 

* / 
w l l = e x p ( a l l - b l l * N ) ; 
w l 2 = exp(a l2 -b l2*N) ; 
w22 = exp(a22-b22*N); 

/* 
305 



M A R G I N A L F I T N E S S F U N C T I O N S 

* / 
margwl = P * w l l + ( 1 - P ) * w l 2 ; 
margw2 = P*wl2+(1-P)*w22; 
meanfit = P*margwl-|-(1-P)*margw2; 

/* 
D I F F E R E N C E E Q U A T I O N S 

* / 
f[0] = P*margwl/meanfit ; 
f[l] = meanfit*N; 
} /* E n d of model equations. */ 

/ * - ; ; — 
Opt ional function used to define the Jacobian m at point x with 
parameters p. The matr ix m is pre-allocated (by the routine dmatr ix) ; 
A t exit, m[i][j] is to be the partial derivative of the i 'th component 
of f wi th respect to the j ' t h component of x. 

= */ 
/* 
int user_jac(m,x,p) 
double **m, *x, *p; 
{ 
} 
*/ 
/* ; ; 
Optional function used to define the inverse or approximate inverse y at 
the point x with parameter values p. The array y is pre-allocated. 

: */ r 
int user_inv(y,x,p) 
double *y,*x,*p; 
{ 
} 
*/ 
/* 
Optional function used to define aux functions f of the variables x 
and parameters p. The array f is pre-allocated. T ime is available as the 
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last component of x. 

/* 
int user_aux_func(f,x,p) 
double *f,*x,*p; 
{ 
} 
*/ 
/* 
Required procedure to define default data for the dynamical system. 
N O T E : You may change the entries for each variable but P L E A S E D O 
N O T change the list of items. If a variable is unused, N U L L or zero the 
entry, as appropriate. 

: — : */ 

int genetics_init() 

{ 
/* define the dynamical system in this segment */ 
int n_varb=2; /* d im of phase space */ 
static char *variable_names[]={"P","N".}; /* list of phase varb names */ 
static double variables[]={0.,0.}; /* default varb in i t ia l values */ 
static double variable_min[]=={0.,0.}; /* default varb m i n for display */ 
static double variable_max[]={l.,5.}; /* default varb max for display */ 

static char *indep_varb_name="time"; /* name of indep variable */ 
double indep_varb_min=0.; /* default indep varb m i n for display */ 
double indep_varb_max= 100.; /* default indep varb max for display */ 

int n_param=6; /* d im of parameter space */ 
static char *parameter_names[ ]= { "a l l " , "a l2" , "a22" , "b l l " , "b l2" , "b22" } ; /* 
list of param names */ -
static double parameters[] = {2.1,1.9,1.1,1.0,0.904,0.56}; /* in i t ia l parameter 
values */ 
static double parameter_min[]={0.,0.,0.,0.,0.,0.}; /* default param m i n for 
display */ 
static double parameter_max[]={2.,2.,2.,3.,3.,3.}; /* default param max for 
display */ 
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int n_funct=0; /* number of user-defined functions */ 
static char *funct.names[] = {""}; /* list of funct names; {""} if none */ 
static double funct_min[] = {0.}; /* default funct m i n for display */ 
static double funct_max[] = {0.}; /* default funct max for display */ 

int m a n i f o l d _ t y p e = E U C L I D E A N ; /* P E R I O D I C (a periodic varb) or E U 
C L I D E A N */ 
static int periodic_varb[] = { F A L S E , F A L S E } ; /* if P E R I O D I C , which varbs 
are periodic? */ 
static double period_start[] = {0.,0.}; /* if P E R I O D I C , begin fundamental do
main */ 
static double period_end[]={l., l .} ; /* if P E R I O D I C , end of fundamental do
main */ 

int mapping_toggle=TRUE; /* this is a map? T R U E or F A L S E */ 
int inverse_toggle=FALSE; /* if so, is inverse F A L S E , A P P R O X J N V , */ 
/* or E X P L I C I T J N V ? F A L S E for vec field */ 

/* In this section, input N U L L or the name of the function which contains.. 

*/ 
int (*def_name)()=genetics_def; /* the eqns of motion */ 
int (*jac_name)()=NULL; /* the jacobian (deriv w.r.t. space) */ 
int (*aux_funcjtiame)()=NULL; /* the auxil iary functions */ 
int (*inv_name)()=NULL; /* the inverse or approx inverse */ 
int (*dfdt_name)()=NULL; /* the deriv w.r.t t ime */ 
int (*dfdparam_name)()=NULL; /* the derivs w.r.t. parameters */ 
/* end of dynamical system definition */ 
# include <ds_define.c> 
} 
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Spruce budworm model—DSTOOL. 

# include <model_headers.h> 
/* Note: The symbols /* and */ denote the beginning and end of comments 
respectively. */ 

/ * - ; 
Required function used to define the vector field or map. 
The values of the vector field mapping at point x with parameter 
values p are returned in the pre-allocated array f. For vector fields, 
the last components of both f and x are time components. A l l arrays are 
indexed starting from 0. 
_ */ 
int budworm_def(f,x,p) 
double *f,*x,*p; 
{ 
int npara,nfood,npred,nsurv,nhist,mdisp,ndisp; 
double slsurv,sdie,predmax,defsat,dsearch; 
double fgrow,fmax,smax,sgrow,predsat,sharp; 
double exfrac ,exthr ,A,B, fo lnew,fo lo ld , fo l tot ,C ,Sl ,BLl ; 
double B L 2 , D , B L 3 , B L 4 , B L 5 , B L 6 , W , E l , H , G , B L 7 , B L 8 , F O , S , B L , t e m p l ; 

/* Parameters whose values can be changed interactively. */ 
slsurv = p[0]; 
sdie = p[l] ; 
predmax = p[2]; 
defsat = p[3]; 
exfrac = p[4]; 
exthr = p[5]; 
predsat = p[6]; 

/* 

S T A T E V A R I A B L E S 

*/ 
F O = x[0]; /* Foliage */ 
S = x[l] ; /* Branch surface area */ 
B L = x[2]; /* Budworm density */ 
/* 
F L A G S 
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*/ 
npara = 1; 
nfood = 1; 
npred = 1 ; 
nsurv = 1 ; 
nhist = 1; 
mdisp = 1; 
ndisp = 1; 

/* 

C O N S T A N T S 

* / 
fgrow = 1.5; 
fmax = 3.8; 
smax = 2.4E4; 
sgrow = 1.15; 
sharp = 4; 
dsearch = 1.0; 
/* 
P R E L I M I N A R Y E Q U A T I O N S 

Foliage dynamics 

* / 
A = defsat*BL*fmax/FO; 
folnew = exp( -A)*FO/fmax; 
B = 0.357*(A- l+exp( -A)) ; 
folold = exp( -B)*FO*(fmax- l )/fmax; 
foltot = folnew+folold; 
/* 

Surface area dynamics 

* / 
SI = ( l -sdie*(l - foltot/FO)*(l - foltot/FO))*S; 
/* 

Budworm dynamics 

* / 
/* The if -then statements in this section are for the switches. */ 
C = 0.003*BL; 
if (npara = = 1) 
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B L 1 = ( l -0.4*exp(-C))*BL; 
else 

B L 1 = B L ; 
if (nfood = = 1) 

B L 2 = (0.425*(FO-foltot)/(defsat*BL))*BLl; 
else 

B L 2 = 0.425*BL1; 
if (npred = = 1 ) 

{ tempi = predsat*FO*FO+BL2*BL2; 
D = (predmax*2.3E4)*BL2/(S*templ); 

} 
else 

D = 0; 
B L 3 = exp( -D)*BL2; 
if (nsurv = = 1 ) 

B L 4 = (0.473+0.826*BL3/BL)*BL3; 
else 

B L 4 = 0.825*BL3; 
if (nhist = = 1) 

{ tempi = 24.9*(fmax- l )*( l -exp( -B))/A; 
W = 34.1*( l -exp( -A) )/A+templ -3 .4; 
if (W > 0) 

{ B L 5 = (166.0*exp((log(W))/3)-329.0)*0.46*BL4; 

} 
else 

B L 5 = 96.0*BL4; 

} 
else 

B L 5 = 96*BL4; 
if ( B L 5 <= 20.0*BL4) 

B L 5 = 20.0*BL4; 
if (mdisp = = 1) 

{ E l = 0.46*BL4/exthr; 
if ( E l > 0) 

{ tempi = exp(sharp*log(El)); 
B L 6 = ( l - (exf rac*templ )/ ( l+templ ) )*BL5; 
} 
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else 
B L 6 = B L 5 ; 

} 
else 

B L 6 = B L 5 ; 
if (ndisp = = 1) 

{ H = (foltot/fmax)*dsearch; 
G = H*(2-H); 

B L 7 = slsurv*S*G*G*BL6/smax; 

} 
else 

B L 7 = slsurv*BL6; 
B L 8 = (S1/S)*BL7; 

/* 
D I F F E R E N C E E Q U A T I O N S 

* / 
f [0] = fgrow*foltot / (1+(fgrow-1) *foltot/fmax); 
f [ l ]= sgrow*Sl/(l+(sgrow-l)*Sl/smax); . 
f[2]= B L 7 ; 
} /* E n d of model equations. */ 
/ * _ . . _ 

Optional function used to define the Jacobian m at point x with 
parameters p. The matr ix m is pre-allocated (by the routine dmatr ix) ; 
A t exit, m[i][j] is to be the partial derivative of the i 'th component 
of f wi th respect to the j ' t h component of x. 

*/ 
/* 
int user_jac(m,x,p) 
double **m, *x, *p; 
{ 
} 
*/ 
/ * - ; ; ; — 
Opt ional function used to define the inverse or approximate inverse y at 

the point x with parameter values p. The array y is pre-allocated. 

*/ 
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/* 
int user_inv(y,x,p) 
double *y,*x,*p; 
{ 
} 
*/ 
/ * - ; 
Optional function used to define aux functions f of the variables x 
and parameters p. The array f is pre-allocated. T ime is available as the 
last component of x. 

" * / ' ' 
int budworm_aux(f,x,p) 

double *f,*x,*p; 

{ 
if (x[2] > 0) 
f[0] = log(x[2]); 
else 

f[0] = 0; 

} 

/ * - ; 
Required procedure to define default data for the dynamical system. 
N O T E : You may change the entries for each variable but P L E A S E D O 
N O T change the list of items. If a variable is unused, N U L L or zero the 
entry, as appropriate. 

: ~ 7 

int budwormJn i tQ 

{ 
/* define the dynamical system in this segment */ 
int n_varb=3; /* d im of phase space */ 
static char *variable_names[]={"F","S","B"}; /* list of phase varb names */ 
static double variables[]={0.,1.68E4,0.}; /* default varb in i t ia l values */ 
static double variable_min[]={0.,0.,0.}; /* default varb m i n for display */ 
static double variable_max[] = {5.,40000.,350.}; /* default varb max for dis
play */ 
static char *indep_varb_name=="time"; /* name of indep variable */ 
double indep_varb_min=0.; /* default indep varb min for display */ 
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double indep_varb_max=1000.; /* default indep varb max for display */ 

int n_param=7; /* d im of parameter space */ 

static char *parameter_names[]={"slsurv","sdie","predmax","defsat", 
"exfrac","exthr" ,"predsat"} ; /* list of param names */ 
static double parameters[]={0.28,0.75,1.0,0.0074,0.5,5.0,0.085}; /* in i t ia l pa
rameter values */ 
static double parameter jnin[]=:{0.,0.,0.,0.,0.,0.,0.}; /* default param m i n for 
display */ 
static double parameter_max[]={ l . , l . ,3 . , l . , l . ,20. , l . } ; /* default param max 
for display */ 

int n_funct=l ; /* number of user-defined functions */ 
static char *funct_names[]={"lnB"}; /* list of funct names; {""} if none */ 
static double funct_min[]=={-2.0}; /* default funct min for display */ 
static double funct_max[]={3.0}; /* default funct max for display */ 

int m a n i f o l d _ t y p e = E U C L I D E A N ; /* P E R I O D I C (a periodic varb) or E U 
C L I D E A N */ 
static int periodic_varb[] = { F A L S E , F A L S E , F A L S E } ; /* if P E R I O D I C , which 
varbs are periodic? */ 
static double period_start[]={0.,0.,0.}; /* if P E R I O D I C , begin fundamental 
domain */ 
static double period_end[]={l . , l . , l . } ; /* if P E R I O D I C , end of fundamental 
domain */ 

int mapping_toggle=TRUE; /* this is a map? T R U E or F A L S E */ 
int inverse_toggle=FALSE; /* if so, is inverse F A L S E , A P P R O X J N V , */ 
/* or E X P L I C I T J N V ? F A L S E for vec field */ 

/* In this section, input N U L L or the name of the function which contains... 
*/ 
int (*def_name)()=budworm_def; /* the eqns of motion */ 
int (*jac_name)()=NULL; /* the jacobian (deriv w.r.t. space) */ 
int (*aux_func_name)()=budworm^aux; /* the auxil iary functions */ 
int (*inv_name)()=NULL; /* the inverse or approx inverse */ 
int (*dfdt_name)()=NULL; /* the deriv w.r.t t ime */ 
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int (*dfdparam_name)()=NULL; /* the derivs w.r.t. parameters */ 
/* end of dynamical system definition */ 
$ include <ds_define.c> 

} 
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