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ABSTRACT 

The stability of frontal ly-trapped baroclinic w a v e s along the crest of an oceanic ridge 

on an f - p l a n e is examined to determine under which condit ions two neighbor ing, inviscid 

water layers, each of uniform density and m o m e n t u m , can coexist without mixing by eddies 

associated with instabilities. A l inear stability analysis for a w e a k disturbance is per formed 

over a s teady laminar state. The study fol lows that of Gawark iewicz [1991] for a frontal 

sys tem over a shelf-break, but deviates by building an implicit dispersion relation to solve, 

by finite dif ference, a four th -o rder ordinary differential equat ion. The implicit d ispersion 

relation for a submar ine ridge, with straight s lopes that ex tend to infinity, depends on four 

parameters that character ize the physical sys tem. They are the nondimensional w a v e 

number , the nondimensional ized ridge s lopes, and a quantity, ana logous to the Richardson 

number , that character izes the shear ing force against the buoyancy at the pycnocl ine. For a 

model with finite straight s lopes, the posit ions at which the s lopes meet the flat bot tom have 

to be taken into account in the boundary condit ions. 

The mode l is appl ied to var ious cases. First, both s lopes are set to zero for a flat topo

graphy case and for compar ison with Orlanski [1968] . In the second case, a s lope is 

introduced beneath the front to s imulate a shelf-break analogous to Flagg and Beardsley 's 

[1978] model with a seaward false bot tom condit ion. Stable branches of backward -p ropa 

gat ing w a v e s occur with phase velocity faster than the layers' speed . Unstable features 

occur for w a v e s with phase velocity less or equal to the layers' speed . 

In further cases, the false bot tom condit ion is replaced by shifting the foot of the ridge 

away f rom the shelf break, into a near or far location. The main f indings are that a r idgefoot 

d isp lacement does not change most unstable features, but it increases the number of stable 

branches. 

Finally, the shel fbreak model is modif ied for a symmetr ic r idge mode l by introducing 

another finite straight slope of the s a m e value and length. In these cases, the main unstable 

features are not different f rom the shel fbreak model . It creates fo rward-propagat ing w a v e s 

with phase velocity faster than the layers' speed . 
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INTRODUCTION 

Fronts are frequent synoptic features of marine environments that may hinder horizontal 

transfers of heat, salt, momentum and other properties like pollutants. The time scale over 

which a front is stable plays a crucial role in oceanic circulation and mixing processes. When 

instability occurs, the disturbance grows and distorts the front. Resulting intrusions enhance 

oceanic dissipation by diffusion. The front can break with the formation of eddies and rings that 

add to crossfrontal exchanges. Comprehension of frontal systems and their stability is needed 

especially for regions that are poorly monitored. One example apparent from the sparse 

observations under the Arctic polar icepack (Anderson et al. [1994]) is a front dividing the 

water assemblies of the Canadian Basin from the Eurasian Basin, about the Lomonosov Ridge. 

The survey of the various pollutants leaking from the former Soviet junkyards and the worries 

about sunken nuclear waste into the Arctic Sea requires knowledge of whether the observed 

front is a temporary or a permanent feature. This work has been motivated by a supposition that 

the frontal system can be stabilized by the Lomonosov Ridge like shelf-break fronts in more 

monitored areas. 

Recent observations from the Larsen-93 expedition reported characteristics of the 

Eurasian Basin water assembly below 2000 m in the Makarov basin, which is a part of the 

Canadian Basin (McLaughlin et al. [1996]). This was interpreted as an eastward displacement 

of the front on the Eurasian side, into the Canadian Basin to at least the deep layer, over the 

neighboring Mendeleyev-Alpha Ridge. The Larsen-93 data support a scheme of communication 

between the Canadian and Eurasian basins through the limits of the Lomonosov Ridge 

proposed by Anderson et al. [1994]. Rudels et al. [1994] proposed that water of the Eurasian 

Basin entering into the Canadian Basin north of the Laptev Sea is modified by colder and 

fresher shelfwater sinking and intruding in the transition zone beneath the Atlantic layer. The 

modified Atlantic water continues until the Mendeleyev Ridge, where one branch of the 

assembly is redirected poleward. McLaughlin et al. [1996] concludes that Larsen-93 data imply 

the front is located near the Mendeleyev-Alpha ridge system and notes that the Arctic marine 



2 

front seems to favor a position over a ridge topography. This answers partly our interrogations 

about stability. However, we still do not understand fully how fast a front can break by 

baroclinic instability coupled to its underlying topography. 

Frontal systems are an important aspect of geophysical fluid dynamics, both in the atmo

sphere and in the ocean. Investigations of them have looked into separate phenomena such as 

baroclinic instability (Charney [1947], Eady [1949]); conversion of energy between mean and 

eddy flows (Fjortoft [1951]); transformation of energy by baroclinic waves in a two-layer model 

(Phillips [1954]); and the role of the frontal instability in the formation and development of 

atmospheric fronts (Bjerknes [1919], Solberg [1928], Kotschin [1932], Orlanski [1968]). 

Kotschin [1932] considered two incompressible, homogeneous fluids, with a shear and a slight 

density difference (classical Margules front type), bounded above and below by two rigid, hori

zontal planes, and found a stability criterion relating the wave number with the frontal slope. 

However, as the density difference decreases, the interface becomes more vertical. At the limit, 

the front becomes barotropic, i.e., sustained by the velocity shear only, and instability is 

expected, but this was not admitted by Kotschin's stability criterion. This leads Orlanski [1968] 

to search in Kotschin's [1932] model, for a second kind of frontal instability that depends on the 

Rossby and Richardson numbers. For the barotropic case, he found two stable modes of magni

tude equal to the Coriolis parameter (inertia waves), a vanishing and an unstable mode without 

phase velocity and with a decay/growth rate equal to the Coriolis parameter. The Kotschin's 

[1932] model applies well to a marine case approximated by a reduced-gravity front extending 

from a flat bottom to a rigid lid with layers of uniform momenta on an /-plane. 

The primitive equations of geophysical fluid dynamics have been generally simplified. 

The most popular simplified forms have been the barotropic vorticity equation, the 

quasigeostrophic equations and the more complex balance equations. Eliassen [1949] derived a 

system of hydrostatic, filtered momentum equations with the Boussinesq approximation, which 

neglects the substantial derivative of the ageostrophic part of the horizontal wind (or horizontal 

momentum in the general case). Since the total horizontal wind is retained in the advection 
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terms of the substantial derivative, the system is referred as the semigeostrophic equations by 

Hoskins [1975], who found them useful in the analysis of ageostrophic phenomena such as 

frontogenesis and nonlinear baroclinic instability. Hoskins [1976] used them to study the 

development of the Eady wave instability mode of a zonal flow with uniform vertical shear. 

Duffy [1976] applied the semigeostrophic equations to Kotschin's [1932] model and compared 

his results with Orlanski [1968]. He found, for the barotropic case at the limit where the Rossby 

number vanishes, two modes of phase velocity zero and growth/decay equal to the Coriolis 

parameter. He missed the stable inertia waves found by Orlanski [1968]. He saw that for 

Ro< 0.4, the semigeostrophic equations give conventional baroclinic instability and large-scale 

shear instability, although he consistently underestimated the growth rate and missed small-

scale Rayleigh and Kelvin-Helmholtz instabilities. His results had been foretold by Fjortoft 

[1962] who saw the semigeostrophic equations filter out high-frequency phenomena. 

Pedlosky [1964] found, as a necessary condition for instability, for a quasi-geostrophic 

two-layer system, that the gradients of vorticity (or thickness) of each layer must be of opposite 

signs, which is necessarily the case when the interface and the bottom are of opposing slopes. 

Orlanski [1969] showed that, in a nearly flat bottom case, an increase in the lower layer 

thickness (by increasing the bottom slope) causes a decrease in the growth rate. This suggests 

that a finite (but small enough) sloping bottom tends to stabilize the front. 

Flagg and Beardsley [1978] added to Orlanski's [1968] model a realistic steep bottom 

slope beneath the interface, while the bottom stays flat outside the frontal region, in order to 

simulate a shelf-break region. They found unstable modes, for which, an increasing bottom 

slope decreases their growth rates, hence frontal wave modes are not uniquely generated by 

local baroclinic instability. They also investigated the case of topographic shear waves with a 

seaward, exponentially-shaped bottom. Steepness was governed by a nondimensional 

parameter, which leads to an eigenvalue equation that was solved numerically. In the limit 

where steepness disappears, their eigenvalue equation is reduced to a quartic with solutions 

found by Orlanski [1968]. 
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Gawarkiewicz [1991] extended the constant linear bottom slope of Flagg and Beardsley 

[1978] model over the seaward region and solved the boundary conditions by a confluent 

hypergeometric function of the second kind, following the technique of Duxbury [1963], and 

considered the case of topographic shear waves. He used Hoskin's [1975] quasigeostrophic 

momentum approximation for the perturbation (\co 2\«1) and a theorem from Barth [1989] to 

reduce the search of the unstable eigenvalues inside a semicircle in the complex plane, of 

radius equivalent to the Rossby radius. He found that barotropic shear waves were very 

sensitive to the choice of bottom topography and his stable waves differ from the case studied 

by Flagg and Beardsley [1978]. Also, he found that purely barotropic instabilities are hindered 

by the seaward sloping bottom topography, and that, as shown by Flagg and Beardsley [1978], 

increasing the bottom slope reduces the instability substantially. He found for the baroclinic 

case that a linearly sloping, unbounded topography in the seaward region does not substantially 

change the result of the analysis versus the flat seaward bottom case. 

The framework of this thesis will be divided as followed: In the next chapter, we will 

formulate the model for a general bottom topography. Then the topography will be defined as a 

wedge-shaped ridge. We will use a series expansion to bring the linear set of four ordinary 

differential equations into an implicit dispersion relation for the eigenvalue that contains the 

growth rate in its imaginary part. The last part of the chapter describes the free parameters of 

the model. The second chapter describes the schemes used to solve the dispersion relation 

numerically. The third chapter shows the results of the analysis applied to various cases: flat 

horizontal bottom model at low and high Richardson numbers; shelfbreak models with seaward 

flat bottom conditions or with near or remote slope foot location; symmetric slopes ridge 

models with near or remote locations of slope feet. The fourth chapter describes the application 

of the model to the Lomonosov Ridge front observed during the ODEN 91, but with a 

simplified water density structure. The fifth chapter will contain the final discussion. 
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CHAPTER 1 

LINEAR STABILITY ANALYSIS 

1.1 Formulation of the model 

The case that we consider is that of a velocity discontinuity along a submarine ridge 

between two layers with different, uniformly distributed densities and no crossfrontal velocity. 

The front, in the basic steady laminar state, will stretch linearly from the ridge toward the 

heavier side in order that pressure gradient forces counteract the Coriolis forces (see fig. 1.1). 

The basic properties in the upper layer, referred to as layer 1, are density, p„ alongridge 

velocity, and thickness, hfyr), while those in the lower layer, referred to as layer 2, are 

density, p2, alongridge velocity, U2, and thickness, h2(y). The crest of the submarine ridge is at a 

depth H under the surface and the front surfaces at a distance L from the ridge. The system is 

rotating at a period 4 ; r / / , where / is the Coriolis parameter, assumed constant (/"-plane 

approximation). We assume also there is no surface wave (rigid lid approximation). 

In the basic state, the pressure gradient force, exerted horizontally on a water parcel, is in 

geostrophic balance with the crossfrontal Coriolis force in both layers: 

dP. 
a.) — 
where j= 1,2 are indices of the layers. 

The coordinate system is defined such that the origin of the crossfrontal coordinate,^, is 

at the crest of the ridge, and that of the depth coordinate z is at the level where the front 

surfaces. The JC-direction is into the page. 



Figure 1.1. Two layers bordered by a submarine ridge, with density px,p2, (the denser layer in region III), 

alongridge velocities U1,U2> and thicknesses )\ (y), r\ (y), respectively. The top of the ridge is at a depth 
H. The frontal width is L and depends on velocity shear and density difference. The pycnocline in the laminar 
situation is represented by the dashed oblique line starting from the crest. 

Defining the surface pressure to be zero as a boundary condition, the integration of (1.1) yields 

(1.2a) Px (y,z) = pxgz - fpxUx (y-L) in layer 1, 

(1.2b) P2 (y, z) - p2gz - fp2U2 (y - L) in region III of layer 2. 

The slope of the pycnocline depends on the density contrast and on the velocity shear, which 

are both constant for vertically uniform layers. Thus the depth of the pycnocline relative to the 

level where the front crops out is H(I-y/L). The geostrophic term, which couples the layer 

momentum and the Earth rotation, causes the sea surface to be slightly slanted, i.e. not quite 

horizontal (zSUKrace = (y-L)Ujf/g). However, the order of the surface variation is negligible 

relative to the front and topographic feature. 

The pressure equation under the pycnocline (layer 2 in region II) is 

P2(y,z) = Pl{y,H(l-y/L)) + p2g{z - H(l-y/LJ) 

= pxgH{\-y/L) - fpx Ux(y-L) + p2g(z- H{\ - y/L)). 

The geostrophic balance under the pycnocline (layer 2, region II) yields 



fp2u2 = -4 t=(a -P 2 )^r+fPiU l or ay L 

(1.3) f(P2U2-plU1) = (p1~p2)^j-. 

The left-hand side of (1.3) is the product of the Coriolis parameter and the momentum shear. 

Using the Boussinesq approximation, the density difference contributes negligibly to the 

momentum shear and the geostrophic balance can be rewritten 

/ p A < y = ( p 2 - A ) ^ , 

where AU=Ul-U2 is the velocity shear and p is a reference density. The representation ,of our 

model implies UX>U2. The frontal length can be expressed as a function of the density 

difference and the velocity shear 

/ A C / ' 

where g' = {p2-px )g/p is the reduced-gravity parameter. 

The physical features vary only with the crossfrontal coordinate, y. In the linear stability 

analysis, the perturbation fields can be treated by separation of variables, and the parts in x and 

/ are harmonic fields. 

The perturbed state is represented for each layer by four fields: 
Uj(x,y,z,t) = Uj + sUj{y)e«kx-"> + 0{f) 

Vj{x,y,z,t) = evftye***-* + 0(f) 

pj(x,y,z,t) = Pj(z) + £pj(y)e,(*x""> + Otf) 

hj(x,y,t) = h+y)* ( - i y etijiyyo*-* + 0(e>) 

where 

a: complex frequency (the real part is the physical frequency of a wave traveling in the 

^-direction and the imaginary part is the temporal growth rate) 

k: wave number (assumed real) 

s. small parameter for the ratio of the scales of the initial disturbance and the basic state. 
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The variables Uj(y), Vj(y), Pj(y) are the first-order terms of the perturbation fields of 

alongfrontal velocity, crossfrontal velocity and pressure, respectively. The variable /7(y) is the 

first-order term of the perturbation in the thickness fields. It represents an anomalous elevation 

of the pycnocline. 

The governing equations in each layer are the nonlinear, vertically-averaged, inviscid 

shallow water equations without friction: 
du, _ du, „ du, -1 dp, 
—- + u —— + v ( .—-- iv, = -

(1.4a) dt 3 dx 3 dy 3 p dx 

dv, „ Svj „ dv, -1 dp, 
—- + u,—- + v,.—- + fu, = -

(1.4b) dt 1 dx ] dy 1 p dy 

dhj „ dhj m dhj ~ 

(1.4c) dt 1 dx 3 dy 3 

(du. dv, 
J + 1 

\dx dy J 

Eqns. 1.4a and 1.4b are the along- and crossridge momentum equations, respectively. 

Equation 1.4c is the continuity equation and h is same as hj in regions I and ///, but becomes 

the deformed layer thickness inside the frontal region (If). The separated fields are substituted 

into the system of governing equations, and the linearization is performed by removing zeroth 

order (8°) terms, that correspond to the initial balance, (1.1), and the products of perturbation 

elements that correspond to second order (s 2) and higher terms. Only first-order (e1) terms 

remain. Replacing the x- and ̂ -derivative operators by the complex factors ik and /'a, the 

momentum equations become 

i{kU-o)u -Jv =-—p 
p 

/ (^.-a)v y + / M y .=-I^- . 
p dy 

Let (Oj ={kUj -o)jf, (ratio of the Doppler-shifted frequency over the Coriolis parameter). 

The solutions for the velocity fields in terms of the pressure field are 

(15a) J (l-a?j)pf , 



(1.5b) 
v -to-*?* 

The subscript,y after the layer index represents differentiation with respect to y. The perturbed 

velocity fields can be determined only if the system does not oscillate at the inertial frequency. 

The continuity equation appears differently, according to the region. Outside of the 

frontal region (regions I and III respectively), the rigid lid approximation states that 

In the frontal region (IT), 

dhi dh. —L=o, thus —1=0-
dt dx 

h\=H(l-y/L)-£T](x,y,t), 

h2 = h2(y)+ et](x,y,t). 

where et] is the vertical displacement of the pycnocline. 

The pressure of a water column is continuous at the pycnocline. The pressure under the pycno

cline is then 

(1.6) P2(y,z) + ep2 = Pl(y,H(l-y/ L)) - pgsrj+p2g(z - H{\ - y/L) + STJ). 

Removing the initial balance yields 

(1.7) Pg' 

The substantial derivative of the layers' thickness in region II yields: 

dt dx dt dx) pg' 

and 
dh2 

dt 
dh 
dx 

drj , TT drj 
dx ) dt 

r io)2fs / x 
= +io)2fet] = +—J-r(p2 - a ) -

pg 

In regions I and III, (1.4c) is reduced to 
vh =—h(iku+v ) 

j j,y y)ty} 

or, by substituting (1.5), 



(1.8) ; ~ »jPj^-j^°&hj(y» = -*>J(*2PJ - PJJ-

In region II (the front), for the upper layer, (1.4c) becomes 

_ £ V i _ icoj?]^ -H(\-ylL){ikux + v j 

10 

or, using (1.5) and (1.7), 

0-9) V H ( l ~ m ] )ip> - « ) = < » - y ' L * * * - " J + P i * ~ k

L

p ' " ° ' 

and for the lower layer, (1.4c) becomes 
viKy(<y)+iQ)2fTl=:-h2(y)(iku2 + v2y) 

or, using (1.5) and (1.7), 

(1.10) £ ( l - a>\){p2 - A ) = f P2,y ~ ̂ k , 0 0 " ^ ( ^ A - Pl,yy\ 

The crossridge direction is made nondimensional by dividing by the frontal length: 
a i a 

y-> Ly, > , 
dy L dy 

thus 

U<-(l-c>))PfL> J (\-<o))pfL 

where K=kL. 

Let h^y) = i\(Ly) and h2(y) = /i 2(Zy)-

The equation for outside the frontal region, (1.8), becomes 

(1.11) 

K 

K°>J 

•P,-P 
J dy 

The equations for inside the frontal region, (1.9) and (1.10), become 

(1.12a) ^H1~ - A ) = (1" .V)(* 2 A - A,J + P\,y ~ ~ A . 

V < W 2 

A ~ Pj,y 

Let 
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A = £ £ . ( 1 - 0 ? ) , £=LL(i-ai)t ^A-K/^, 
girl g t i 

then (1.12a) becomes 

and (1.12b) becomes 

(1 -y)(fC2px -pXyy) + pXy + AxPx = Pxp2, 

6), / / A = A A -

These can be rearranged as 

(1.13a) 
(i-y) 

( d2 „A d 
dy 1 Pi = -P\P%> 

(1.13b) 
H 

( ^ 

dy2 
-K2 

H dy H Pi =fi'2Pi-

This system of ordinary differential equations will use as boundary conditions the values of 

Pu Pi,y of region / aty=0, and of A>> Pt,y of region III at>>=0. 
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1.2. Triangular Ridge 

Consider the case of a triangular ridge (see fig. 1.2) with bottom located at H(\ - yxy) in 

region /, and at H(l + y2y) in regions II and III, where yx, y2, are nondimensionalised slopes i.e. 

slopes of the ridge divided by the pycnocline slope (H/L). In this section, we are going to solve 

for the pressure perturbation field in each layer and region by series expansions. 

x^r Region I Region II ^ v Region III 

Figure 1.2. Same as Fig. 1.1, except that layer thicknesses are defined as h\{y) = H(l- yxy) in region /, as 

h\{y) = H(\ + y^y) in region III, and, in region II, as h\(y) - H(l-y), h\{y) = H{\-*rY2)y for the 
upper and lower layers respectively. St] is the displacement of the perturbed pycnocline. 

Region /: 

In region /, the differential equation for the perturbation pressure, (1.11), becomes 

(1.14) CO, 

The problem can be simplified in two steps. First, change the independent variable y to z=l-y 

y; so (1.14) becomes 

Ar\p^-K2

PxYy\pu+^-p^o. 
(1.15) 

Second, far away from the front, the perturbation pressure field must decay and become smooth. 

The balance inside the square brackets must vanish: 
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r2PU:-K2Pi<*0 as z->oo. 

Thus, the asymptotic behaviour of the solution is dominated by an exponential behaviour. 

Assuming that p, = Ajp(z, yx) exp(- Kzj yx), (1.15) becomes 

(1.16) 
1-

2K 

Yx '' J 
Pz 1 

1 ̂  

CO 
p = 0. 

xj 

Making the substitution ax - \{\ - l/<y,) and the change of variable Zx = 2Kz/yx gives 

(1.17) ZxpZA + ( l - Zx )pZi - axp = 0, 

which is a confluent hypergeometric equation. 

Classical solutions of (1.17) are already known (see Erdelyi [1954]). The differential 

equation shows a singular point at Zx=0 (y = l/yx), which is not part of the region /. The global 

solution must behave in the far field such that it either decays smoothly or grows in some 

nonexponential manner: 

p(Zx)e -zxn - » 0 and 

p(Zx)e -ZJ2 ->0 as 00. 

This particular solution of (1.17) is known as the Tricomi solution: 

p(Zx) = W(ax,l;Zx). 

For a development that covers all the range beyond Z, = 2K/yx> it is numerically not 

practical to use a basis of the classical solutions. The solution is tediously exposed in Appendix 

A. It includes an asymptotic expansion from infinity, a sequence of intermediary matchings 

between series expansions (which can be replaced by a numerical solution of the ordinary 

differential equation) that extend the asymptotic solution to the point Z1 = 2K/yl. At this 

point, the solution provides two boundary conditions at7=0 for p,: 

(1.18a) A

/ ( 0 ) = ^ e - z ' / 2 ^ ( a 1 , l ; Z 1 ) | Z i = 2 J , / n and 
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^(ax,\;Zx) i h-—(ax,l;Zx) 
dZt 'Z^lK/y, 

(1.18b) = AjKe -Z,/2 c9¥ 
V(axXZx)-2^-(ax,l;Zx) 

oZx 

Region ///: 

In a process similar to that of Region I, substitute 2F=l+7zy into the differential equation for 

Region III, which becomes 

tyiPi* ~ K 2 P i ] + f i P t , * ~ — P i = o. (1.19) 0)^ 

Assuming p2 = Amp(z, y2) exp(— Kzj y2), the ordinary differential equation (1.19) becomes 

ZPzz + 
K 

Pz 
n \ Ml) 

p = 0. 

The substitutions a2 =^(l + l/<y2) and Z2=2Kz/y2 give another confluent hypergeometric 

equation 

Z 2 P z 2 z 2 + ( l ~ Z2)pZi - a2p = 0. 

Its solution is found analogously to region I. It provides two boundary points at the endpoint of 

the front located at y = 1 (Z2 = 2K{\ + y2)/y2): 

(1.19a) / ? f (1) = Aine-z^(a2XZ2)\ _ 
2K(ny2)/ri 

and 

p £ ( i ) = ^ 
dZ2 

dy 

f 

V dZ, 

(1.19b) 
= -AmKe-z*12 

f 
v F ( a 2 5 l ; Z 2 ) - 2 — ( a 2 , \ ; Z 2 ) 

oZ, 

J z2=2K{\+ri)/r2 

'z2=2AT(l+r2)M 

Region II: 

For Region II, the Pi, Pi equations, (1.13a,b), form the coupled system 

(1.20a) 

and 

dl

 K 2 \ d 

dy2 
) dy 

P x = - P x P i 
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(1.20b) 

Let 

( i + r 2 ) y dy2 
-K2 

dy 
K 

Pi + — 0 + r 2 ) 
CO, 

Pz = -p\P\-

A* J2L2\-o?2 

P l \ + y2 g'H l+y2 

and (1.20b) becomes 

(1.21) 

'd2 

dy2 
-K2 +• 

dy 

K 

co. 2 J 

Then substituting X2 = P2 + K/co2 and combining both equations gives 

dy2 
-K2 + A, 

dy 2 
(i-y) dy2 

- K 
dy Pi =PAPI 

or, with D=d. 'dy 

[y{\-y)D*+(l-4y)D2-{2K2y(l-y) + 2 + X2 + y(XX -X2)}D2 

+ K*y(\ -y) + {{4y -l)K2 + X2 - XX }D 

(1.22) +{i + A2+Y(AX-X2)}K2+XXX2-fij32]px = 0. 

This leads to a fourth-order, ordinary differential equation for px with variable coefficients. It 

constitutes a boundary-value problem with the complex frequency as an eigenvalue, and two 

singular points at y=Q and y=l respectively. The physical boundary conditions assume 

continuity of A > A> > w i > w 2 > v i > v2 fields at the boundaries of region //: 

At JH>, A / (0) = A / ?(0) and /4(0) = /£ (0 ) . 

At y=l, Jpf(l) = pf(l) and /£(l)s=/>£,(l) . 

It will be assumed that regular singular conditions hold at the endpoints of region II. This 

implies that aty=0, 

(1.23) [D* - ( 2 + X 2 )D2 + (-K2 +X2-XX)D+(\ + X2 )K2 + XXX2 - pxp2 ]px = 0 

and aty=0, 
(1.24) [ - 3 Z ) 3 - (2 + ^, )D2 + (3K2 + X2 - XX )D + ( l + XX )K2 + XXX2 - pxp2 ]p2 = 0. 
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1.3 The dispersion relation 

The Frobenius' method is used to find the series solutions for the frontal system for P l by 

expansion about y=0. Let 

(1.24) 

Then 

.n+r 

n=0 

DPi(y) = lZan(n + r)y"+>-\ 

= 5 » + rXn + r - \)y""-\ 

^ViW = + + r -!)(« + r - 2)(« + r - 3)y 
n=0 

We can shift powers of>> to the same level by handling the indices. The various parts of (1.22) 

become 

y{\ - y)D4

Pl + (1 - 4y)D'Pl = 5 > „ + 3 ( « + r + 3)(n + r + 2)(n + r + \)2yn+r 

n=-3 

- ]T an+2 (n + r + 3)(« + r + 2)(n + r + + r)y"*r', 
» = - 2 

- [2^1 - >0+2+v+^(i - y)p2p>=2*:22>>+'X*+^ - D / + r 

- (2K2

+X-X2)Yjan+x{n + r +1)(« + r ) / * ' 

- (2 + 22) £ > w + 2 ( « + r +1)(« + r + 2)/+ r, 
n=-2 

[(4j-l)K 2 -Al+A2]DPl = 4 ^ 2 + r)y"+r -(K2

+ X-X2)^an+l(n + r + l)y"+r 

[y(l-y)KU ( ) * V +r] A= -K4^ a^'+T^ a ^ r 

«=2 M=0 

+K2{K2U-A2)Yja„_ly"-
where T = ( l + / l 2 ) ^ 2 + XXX2 - pxfi2 '2-

The overall equation (1.22) becomes 
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£ an+i(n + r + 3)(« + r + 2)(n + r +1) 2f+r 

» = - 3 

- X a „ + 2 [ ( « + r + 3)(« + r) + 2 + A 2 ](« + /• + 2X« + r + l)y"+r 

n=-2 

- Z fl^i [(2» + 2r + I K 2 + (A, - A 2)(« + r +1)](« + r + 

+ E a„ [2K2 ( » + + ' +1) + r Jy" + r 

n=l n=2 

At each power level, the coefficients must cancel. 

(1.25) n = -3: a0r{r - l)(r - 2)2 = 0. 

In order to keep r meaningful, a0 must be arbitrary. Thus r=0, 1 or 2. There are only three 

roots of (125), then there must be only three fundamental solutions that have a regular singular 

behaviour about y=0. As the roots of (1.25) differ by an integer, their effect is to shift the power 

in the solution series. But it is sufficient to consider r=0, and to build fundamental solutions by 

factoring the arbitrary coefficients: 

n = -2: al(r + l ) r ( r -1 ) 2 -a 0 r{r - l)[(r + l)(r-2) + 2 + X2] = 0. 

For r=0, a, remains arbitrary. 

n = - 1 : a2(r + 2)(r + l ) r 2 = ^ ( r + l)[(r - l ) ( r + 2) + 2 + A 2 ] 

(1.26) + tf0>'[(2>* ~ ! ) ^ 2 + r U i " *i)] 

The case r=0 is again a trivial solution of (1.26), which leaves a2 arbitrary. For n>2, let 

k=n+3 (k>5) and use r=0 for the general indicial equation: 

k(k-3) + 2 + A2 (2k-5)K2 - v l 2 ) ( * - 2 ) 
" ̂  * 0 T ~ 2 ) + a*"2 * ( * - l X * - 2 ) 

a t _ 3 [2£ 2 ( k - 2)(Jt - 3) + r] + ak_4K2[K2 + X, - A 2 ] - a A _ 5 £ 4 

( 1 2 ? ) A ( * - l ) ( * _ 2 ) 2 ' 

The coefficients a0, a,, a2 are arbitrary, so the set of fundamental solutions can be reduced to a 

linearly independent basis of three eigenfunctions, say: 

(1.28) 0 O O O = 1 - — y3
 - ^ ^ J J - 1 _ J 2i / +... 
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with a0-l, a{=0, a2=0; 

KA+XX-X2 3 ( e+Ajf^+A. -Aj - fr + r ) 
v , . ~ y ,O0 = .y g y ^ y +••• 

with a0=0, <3,=1, a2=0; 

(1.30) 0 2 OO=v 2 — y 24 

with a0=0, a,=0, a 2 - l . 

The missing eigenfunction that would close the basis of fundamental solutions is the one 

that contains the singular asymptotic behaviour about the regular singular point, y=0. It is 

rejected in order to respect the regular singular condition (the fourth derivative of px stays 

finite as y -> 0+). The global solution expanded about y=0 is 

(1.31) Pi =«o©oCv) + «i©iCv) + « 2 © 2 0 ; ) -

The boundary conditions at y=0 imply 

2K 
(1.32) a0=d(G) = At

x¥(alX—') and 
n 

(1. 3 3) = KA, 
OK OK 

¥ ( a „ l ; — ) - 2 n « „ l ; - ) 
Yi Yi . 

where al, l,2K/yx) is solution of the transformed differential equation in the region I at the 

boundary, and W is the derivative with respect to the element after the semicolon, i.e., 2K/yx 

in this case. The coefficient az can not be determined on this side. Therefore, the global 

solution can be split into two solutions: one for which the slope and the magnitude at the origin 

depend upon conditions in the region J, and that has no inflection at the origin; the other 

solution behaves freely, without magnitude, nor slope, but curved at the origin. 

For p2, we get a similar fourth-order ordinary differential equation: 

[y(\-y)DA +(3-4.y)D 3-{2K 2y(l-y)+2 + X2 +y(Xx-X2)}D>2 

+{(4y-3)K2 + X2-Xx}D+K4y(\-y)+ 

(1.34) K2{\ + X2 +y(Xx -X2)} + XXX2 -ft&h = 0. 
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Let 

(1.35) »=o 

The lowest power level in (1.34) is provided by the two first terms: 

[y(l-y)D4 +(3-430Z>3]/>2 = 6 0 ^ - l X ^ - 2 ) 2 / " 2 +0(/- '). 

So s= 0, 1, or 2. Similarly with px, after rejection of the singular solution, the series solutions 

can be treated as analytic and the three first constants {bx, b2, b3} remain arbitrary. Instead of 

creating another general indicial equation with five terms for the bn% we can use the fact that 

p , and p2 are coupled in order to shorten the algebra. Then, with the substitution of (1.24) and 

(1.35) in (1.20b), we get 

X k + 2 ( « + 2)(« +1)-aH+l(n + 1)2 - (A, + K2)an}y" + K2^an_xyn 

(1.44) - A l V ' 

Then, it follows from the regular singular condition 
, _ (A,x + K2 )a0 + ax — 2a2 

and the first general indicial equation is 

a =a n-l (Xx+K2)an_2-K2a„_3-J3xbn.2 

(1.45) " n n(n-\) 

With the substitution of (1.24) and (1.35) in (1.21), we get 

»=0 n=l n=0 

Then 

*i =A2bQ-02ao 

and the second general indicial equation is 

(1.46) °« M 2 

All 6„'s can be determined with respect to a0, a, and a 2. Setting a2 = 0 and prescribing 

a 0 and «j by the boundary conditions on the left side of the front, we get the parts of px and p2 
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that depend on the arbitrary magnitude of px in region I (Aj). Setting a0 = 0, ax =0, and 

leaving a2 arbitrary, we get the other parts of px and p2. Thus, 

A 0 0 = AjPx (a^c^, 0, K2,Xx,X2,px,p2\y)+a2Px (0,0,1, K2,XX, X2 ,fix ,fl2 ;y) 

p2 (y) = A{P2 (a0, ax, 0, K2, Xx, X2 ,px ,J32 ;y)+a2P2 (0,0,1, K2, Xx, X2 ,J3X ,/32;;;), 

where a0 = p((0)/Aj and ax = p^ify/A,. 

The radius of convergence of the series (1.24) is 

#c = l im—-=l im 
7i->oo /7 , n-»oo 

n-l 
n 

+ 0(n2) = 1. 

provided the nondimensional wavenumber K and the Xx, fix parameters stay bounded. And 

series (1.35) converges for any y if K and the parametersX2, ft2 stay bounded. Together, the 

series solutions do not converge at>*=0. We need another point from which the expansions can 

describe the neighborhood of y=l. Use the boundary point with region III and let z=\-y. Thus 

(1.20b) and (1.21) become 

d-4 (1.47) 

(1.48) 

(d2 t) d , 
—--K2 X2 Vdz J dz 

dz2 
-K2 d , 

Pi - ~PzPi, 

Pi^-PiPt-

The set of equations (1.47,1.48) with the boundary conditions from the region III stay similar to 

the original set, thus series solutions can be found similarly by swapping the indices: 

p2(z) = A'mPx(a'oXAK2,X2,Xx,02,^ 

px(z)=A\IIP2(al),a{,0X,X2,Xx,p2,px,z) + ^ 

where a> = pf ( 1 ) / ^ , a{ =-p™(\)/Am and 
2Kh \ 

A'm - A, e 2 

The solutions for px and p2 do not converge at z=l (jK)), but both sets can be connected at 

y=z=y2: 

^ p 2 ( a 0 , « 1 , o , r ^ A 1 ^ 2 , A , A ; j ) + « 2 ^ ( o , o , i , A : 2 ^ 1 ^ 2 , A , A ; > ' ) = 

(1.49) ^ W , < 0 , ^ , ^ , ^ 1 , A , A ; z ) + ^ / » ( 0 , 0 , l , A : 2 , ^ 2 , A I > A f A ; z X 



21 

(1.50) ^ P 2 ( ^ , a I ' , 0 , ^ 2

f A 2 , A 1 , A . A ^ ) + ^2 ( 0 . 0 , l , ^ 2 , A 2 , A 1 , A . A ^ ) -

The arbitrary constants of integration are A{, Am, a2 and a 2 . Two other equations are needed 

for the matching. They are provided by differentiation of the solutions evaluated aty=z=V2. 

AIP2XaQ,al,O,K\Al,A2,j3l,02-,y)+a^ 

(1.51) -^^, f l l ^o , ^^^ 2 ,A I f A,A^)-^Woa / :^A2^l .A .A;^ 

(1.52) -A\nP[(a^a[AK\X2^x,P2^ 

Primes denote differentiation with respect to y and z, according to the origins from which 

functions are expanded. The conditions that solve for the arbitrary constants form a linear 

where all the solutions are understood to be evaluated at y = z = j , with the parameters 

AT2, A,, A 2 , $ , /?2. The barred symbols refer to the swap of the indiced parameters Xx, X2, /?,, p2 

in the independent solutions /?(•) and P2(-). The vector of nontrivial arbitrary constants lies in 

the nullspace of the linear system only for some specific values of the complex frequency, a, (or 

one of its avatars, such as the nondimensional, Doppler-shifted frequency, <a„ which forms a 

nonlinear eigenvalue). The condition for which a forms the eigenvalue of the fourth-order 

differential equation is that the determinant of the above system is zero. This condition forms 

the dispersion relation of the system. In the specific cases of fi2 = 0 or A* = 0 (the perturbation 

oscillates with an inertial period in the referential frame of one layer), the model loses its 

validity since the transformation from the perturbed velocity fields into the perturbed pressure 

field cannot be inverted. 

system: 

(1.53) 

i?(flb,fl„0) P,(0,0,1) -P2(a'0,a[,Q) -P2(0,0,1) 
P^a^O) P,'(0,0,1) PM,a[,0) P^O.0,1) 
P2(a0,ai,0) P2(0,0,1) -Px(a'0,a[,Qi) -/} (0,0,1) 
PXa0talt0) P2'(0,0,1) PXa'0,al,0) J>'(0,0,1) _ 
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14 Initial parameters 

The perturbation of the frontal system is described by a fourth-order differential equation 

with four boundary conditions; therefore the eigenvalue problem has four degrees of freedom. 

The set of parameters defined in this chapter must be constructed upon these degrees of 

freedom and will be used as original inputs. 

The first input parameter to consider is the nondimensional wavenumber K of the distur

bance. Considering that the system is frictionless, we have the freedom to choose the frame of 

inertia to match the centre of motion between the water masses. 

,U,+U2 a 
Let co=k~ — 

2/ / 
be the eigenvalue of the system. The next parameters will not require further knowledge of the 

momenta other than the momentum difference or nondimensional Doppler shift. From the 

eigenvalue, cox and co2 are readily defined: 
K{UX-U2) . K(UX-U2) co = CO+—1-1 IL and ay = oo —! £i . 

2fL 2 2fL 

But 
Ux-U2 = AU = {AU)2 

fL ~ fL~ g'H ' 

Let 

m_f2L*_ g'H 
g'H (At/) 2 " 

This new input parameter is analogous to a Richardson number and is a measure of the ratio of 

the available potential energy over the relative kinetic energy. Its reciprocal can be also seen as 

the squared ratio of the baroclinic Rossby radius over the frontal length, i.e. as a squared Burger 

number. It is the parameter F in the work of Gawarkiewicz [1991]. An alternative selection of 

input parameter would have been a Rossby number equal to the nondimensional Doppler shift, 

Ro = K/(2Ri), which was preferred by Kotschin [1932], Orlanski [1968] and Flagg and 

Beardsley [1978] instead of the nondimensional wavenumber. 
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Thus 

cox = co + K/(2Ri) and ct)2 = co - K/(2Ri) 

Four other parameters result from the above inputs and the eigenvalue. 

From the boundary conditions: 

" i 2 

a. 

1-
1 

CD 

1 + — 
CO '2 J 

From the pycnocline region: 
px = Ri(\-co]l 

CO, 

The straight slope under the pycnocline calls for a third input, y2, and two other parameters: 

J32 = Ri 
A-co' 

1+ y2 

K 

co. 

In his treatment, Gawarkiewicz [1991] assumes perturbations close to a geostrophic 

balance, such that |of |, \a\\«1. From that approximation, fix and (1 + y2)fi2

 a r e equivalent to 

his Richardson's parameter (g'H/(AU)2). So, f3x and fi2 are denoted modified Richardson's 

numbers. The last input to define is Yu and comes with the left boundary conditions. It was 

implicitly set to zero in the shelf-break model of Gawarkiewicz [1991]. 

The set of inputs, {yx,y2,K, Ri}, is made from real-valued parameters. Thus for any solu

tion of the dispersion relation, the complex conjugate of the eigenvalue is also solution. This 

implies the system is either unstable or marginally stable (no growth rate, no decay rate) for a 

set of original inputs, but can not be stable (in the sense of allowing only a decaying mode). 
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CHAPTER 2 

NUMERICAL SOLUTIONS OF THE DISPERSION EQUATION 

The implicit dispersion relation for the eigenvalue is formed by the determinantal equa

tion of the system (1.53). It is solved numerically with a C program performing three distinct 

tasks: a computation for some point of the determinant on the left-hand side of (153), a search 

of its roots over some domain of the complex plane, and a decision if an apparent root is 

acceptable. 

At the lowest level, it will pick information about the configuration of the model topogra

phy and "Richardson's" number at the pycnocline), set files to record data, and run the search of 

eigenvalues for a spectrum of wavelengths with trial values (iterates) of the complex frequency 

picked from a specified region of the complex space. The method of search is by gridding a 

domain in the complex space and by identifying signs of the real and imaginary parts of the 

determinant equation over all the corners of every rectangular gridcell. When both signs 

change, contours of zero value of the real and imaginary parts (zero-lines) cross through the 

gridcell; the cell is checked with a bidimensional version of a bisection scheme. The 

determinantal equation of the system (1.53) is an implicit function for eigenvalues. For iterates 

of complex frequency, the left-hand side is not generally zero and can play the role of an 

objective function that will be hereafter named dispersion function. It is clear the dispersion 

function is not the dispersion relation which only eigenvalues solve. It is embedded in the C 

program through a function of complex type named dispersion. 

The dispersion function is a function of one complex variable and constant parameters. So 

it is holomorphic over the scanned domain. This is not always true for all points. There are two 

known points that constitute poles of the function {o) = (±Ro, 0)) and four other points for 

which the model does not hold (for /5,=0 and /52=0, the perturbed momentum fields can not be 

inferred from the perturbed pressure field and its derivative). For the analytical domain, we use 
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the Cauchy-Riemann theorem. Let w(x + iy) = u(x,y) + iv(x,y), where u(x,y) = Re(w(x + iy))t 

v(x,y) = Im(w(x + iy)) and w is analytic atx + iy then 
du _ dv du _ <?V 

Thus the contour lines of the real part are orthogonal to contour lines of the imaginary part at 

every analytical point. The parameters being real, the imaginary part of the dispersion function 

is odd with respect to the imaginary part of the iterate. Thus the real axis is a zero-line for the 

imaginary part of the function, and the zero-lines of the real part cross the real axis at a right 

angle at the points of marginal stability. Similarly, at points representing an unstable eigen

value, the zero-lines meet orthogonally and cannot be tangent. 

The size of the initial gridcell is assumed small enough so the zero-lines for the real and 

imaginary parts have very small curvature (sufficient resolution assumption). Therefore, neither 

can a contour line get into some cell and get out by the same edge, nor can it be confined inside 

one gridcell. A root involves the two zero-lines crossing through the initial gridcell, but the 

converse is not necessarily true: the root can be confined inside a near cell. The false root is 

detected by gridcell subdivision until the resolution sets the zero-lines apart. For the same 

assumption, a gridcell cannot have more than one root. Unfortunately, this assumption does not 

allow the routine to find closely paired modes at critical values of some parameters. 

Sufficient resolution does show locally orthogonal zero-lines about the roots, because 

numerical inaccuracies negligibly effect the analycity. But it has been observed untrue for 

extreme numerical resolutions: contours get smeared by noise. Nonetheless, the root is 

accepted. Moreover, there can be points for which some eigensolutions become either 

unbounded or the basis of fundamental solutions loses its linear independence before matching. 

In the latter case, the subdeterminants between the entries of free and boundary-tied solutions 

from the same side of the front are numerically negligible with respect to those entries. This 

can be caused by exploding solutions. It becomes a stiff problem at those points and spurious 

roots appear due to computational noise. In all those cases, the routine dispersion is designed to 

detect the problem and return a flag to signal it. 
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The determinant of (1.53) is computed as 

«„ W 1 3 « 1 4 

™21 W22 m23 /w24 

W31 ™32 « 3 3 
W34 

w4 2 
W43 » » 4 4 

m12 W33 ™34 + ™32 ™23 W24 /w12 m23 w 2 4 

w2 1 m22 m43 «44 
+ 

mn 
W43 W44 W 4 , W42 W33 ™34 

m2l m22 m13 + 
m42 m,, mu + 

W31 >»32 mi3 m14 

m3l m32 
m43 w4 4 m2l m22 W33 »»34 »»41 W42 m23 «24 

Let 
^ 1 

£/3 = 

t/5 = 

mn 
mn 

> A = 
W33 mj4 , u2 = 

W32 
. A = 

W23 ™24 
m22 ™43 W44 TO,, >"l2 m43 ™44 

mn ml2 , D 3 = ™23 »*24 
. ^4 = 

w21 2̂2 
. A * 

« 1 3 * I 4 

m4l mn 

W33 W34 W31 »*32 »»43 W44 
m41 m42 

> A = 
W13 m14 " » J I ^2 

. A = 
1̂3 « I 4 

m21 m22 m33 >»34 « 4 1 W42 

W23 ™24 

If, using £• as a criterion of numerical smallness, 

max« 
m a x ^ ^ l ^ i 1 ^ } ' max{|w,,m 2 |, |»i l lm n |}' max{|w11w42|,|7«417«I2|}' 

M N M 
max{|m„»% 2 m i i« a |} ' m a x ^ ^ l ^ i / n ^ l } ' max{|/^,w42|,|?M41m32|} 

i.e., it is relatively negligible for small 8, then the basis of numerical eigensolutions on the 

right-hand side of the matrix (free and bounded solutions expanded from y=0) loses its linear 

independance. That indicates a stiff problem. The same criterion is applied on the left-hand 

side. Calculations at this level are done in double precision and E is set to 10"9. The determinant 

is the dot product between the }and {Dy} vectors. The neighborhood of a root may consist 

of terms that could cause overflow after conversion in single precision. The determinant is 

renormalized in its real and imaginary parts by respective greatest element before last addition. 

f 

det = 
max lRe(t/,D,) max JIm(C/,D,) 

v>{l,2,3,4,5,6}l 1 J \ y={l,2,3,4,5.6}l ^ •'I 
The subroutines are described in detail in the appendix B. 
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CHAPTER 3 

RESULTS 

3.1. Flat cases 

3.1.1 Low Richardson number 

The program was first tested for the case of the Kotschin model investigated by Orlanski 

[1968], that is a flat topography with a weak Richardson number (Ri=3), applicable in meteor

ology. Orlanski [1968] plotted growth rates against Rossby numbers. He found two pure 

imaginary eigenvalues for small wavenumbers (K< 0.1) that coalesce at Ro=0.1 to give birth to 

a pair of symmetric unstable modes (same growth rate, opposite frequencies). According to his 

published plot, which is a continuous curve, the growth rates peak at Ro=0.25 with a value 

near 0.107, then fall to zero tangentially to the axis when Ro=0.72. For higher Rossby numbers, 

another instability appears and peaks at 0.08 at about i?o=1.12. His curve appears to be an 

interpolation based on 24 points. Following the points from his appendix C, his curve cannot be 

very accurate: most points describe the first peak and the highest growth rate is at Ro=A, with 

a value of 0.133, while the second peak is not as smooth as shown on the curve. The double 

instability at small wave numbers is not present in the observed points for 7?/-3, but is 

extrapolated from Ri=2.2. Our results (Fig. 3.1) show a very good agreement for the shape at 

small Rossby numbers and Orlanski's points (not shown) fit well on the first peak. However, 

here a cutoff appears before Ro^O.7, with everything beyond stable, whereas Orlanski [1968] 

only found local stability in this region of Ro and further instability at higher Ro. 

With the transformation r= co/Ro, we improve the description of unstable features (see 

fig. 3.2). The double instability starts from nonzero points: the upper branch starts from x=(0,l); 

the lower branch starts from T=(0,0.4) as computed by Orlanski [1968] for very long waves. 

The upper branch is part of a surface denoted "R" by Orlanski [1968] that continues a Rayleigh-

type instability (shear waves) deformed by the Earth rotation and the frontal geometry. The 

lower branch is part of his E surface. He characterized the upper branch as of barotropic 
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instability because that mode feeds off the mean kinetic energy, while the lower branch was 

characterized as of baroclinic instability because it feeds off the mean potential energy. 
F l a t t o p o g r a p h y : ( O r l a n s k i c a s e ) 
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Figure 3.1. Flat bottom and Ri=3. The upper graph represents a nondimensional Doppler-shifted frequency 
against wave number. All modes are contained inside the range (-Ro, Ro) shown by dashed lines. Due to 
symmetry: only the positive frequencies are shown. The lower graph is the nondimensional growth rate. 

At Ro=Q.l, the double instability branches join to form a new unstable mode with 

nonzero real component and the imaginary part decreasing with a linear slope of 0.9 relatively 

to the Rossby number scale until Ro=QA. This slope gives a parabolic shape to the growth rate 

peak. The new unstable mode is part of Orlanski's [1968] B surface that is a mixed type 

(baroclinic-barotropic) instability, but in fact is a baroclinic instability at this Richardson 

number. After the cutoff point, he predicted a Helmholtz-type instability (H surface) deformed 

by the Earth's rotation and frontal geometry. This kind of instability did not appear in this 

present study. Orlanski [1968] mentioned that his technique converged poorly for Ri>2 and Ro 

< 1, which may explain the discrepancy. 
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F l a t t o p o g r a p h y : ( O r l a n s k i c a s e ) 

R j = 3 F = . 5 7 7 3 5 
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Figure 3.2. Flat bottom and Ri=3. The Orlanski's eigenvalue representation with Ro as a state variable. Due to 
symmetry, only the positive side of the real part is shown. Note the horizontal axes have different scales. 

The symmetry of the equations relative to the eigenvalue in the flat bottom model case 

allows the implicit dispersion function to be even. That symmetry is carried by the real 

component of the eigenvalue, for which only the positive part is shown in figure 3.2. In the 

range Ro<0.l, two unstable modes of different growth rates share same frequency with 

Re(<y) = 0. Stable modes start horizontally from t=<±0.59,0), (±0.79,0), and (±0.873,0). Other 

stable modes might exist closer to the Rossby barriers (co^iRo), but the vicinity of a pole 

makes them beyond the arbitrary safety range. The stable modes "feel" the end of the double 

instability as evidenced by a slight curvature toward the Rossby barriers. The continuation of B 

instability by stable branches forces a compression of the stable modes against the Rossby 

barriers. Hereinafter, the stable branches starting from the origin and staying close to the 
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Rossby barriers are denoted marginal stable branches. Following the growth rate peak at 

i?o=0.4, the real components of the unstable modes bend to become horizontal at about ±0.4 at 

i?o=0.6. That is approximately the cutoff point of the unstable range (A=3.8). Each unstable 

branch is followed by two stable branches forming a rightward parabola. While the outward 

branches compress the marginal stable modes, which tend to become parallel to the Rossby 

barriers for high wavenumbers, the inward branches meet on the axis and cross without 

apparent interaction at Ro=0.95. The computational range of the program is quite limited 

beyond i?o=1.15 (AMO), so we cannot observe their behaviour for large Ro. 

3.1.2 High Richardson number 

Although the model for an oceanographic context is similar to an atmospheric context, 

the Richardson number is generally much higher. In agreement with parameters from Flagg and 

Beardsley [1978] and Gawarkiewicz [1990], it is set to 57. Extrapolation from Orlanski's [1968] 

instability surfaces suggests that the H surface borders the B surface as Ro->\, that is £=114, 

which is out of the computational range. It is not clear if the line separating the R, B and E sur

faces stays near Ro=0.1 or is confined to smaller values. For a spectrum extending to about 

A M 1.5, the transition is expected to be observable. 

Our findings (see fig. 3.3) for a range of wavenumbers between 0.2 and 10, show a 

different perspective. At high Ri, the eigensolutions for frequencies near Ro, behave similarly to 

each other and there are more eigenvalues. The density of marginal stable branches increases 

dramatically. The regions 0.75ito<|a>|</to are not graphed for clarity. The pattern of unstable 

modes has eight distinct branches. Their separation in the frequency component is largely 

proportional to the wave number K. Two branches (a ,e) are purely imaginary. The less 

unstable branch (e) has its maximum about £=1.75 and decreases to zero at AT=2.75. It gives 

birth to two stable branches tangent to the axis. The other branch with purely imaginary roots 

(a) reaches its maximum near A=7.4, © =0.02. Al l other unstable branches have greater growth 

rates than these purely imaginary branches. The outermost (largest phase frequency) branches 
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(d) have growth rates comparable to the major central branch (a) until K=6, where their growth 

rates keep increasing while the central mode growth rate starts to decay. The innermost 

branches (b) have higher growth rates than the major central branch and reach their maximum 

at about AT=9. The growth rates of the middle branches (c) are similar to the innermost 

branches (b) for moderate wave numbers, but they give the most unstable waves, at about 

AT=10, with a growth rate of 0.029. The outermost locus ends with negligible curvature, which 

hints at much less stable waves beyond AT=12. There are no stable points found outside the 

region -i?o<Re(o))</?o, hereinafter denoted Rossby range. 
Rossby number range (Ro) : •-
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Figure 3.3. Flat bottom configuration with a Richardson number set at 57. On the left panel: the observed stable 
points (up) and their t-transformation (down). On the right panel: the observed unstable points with frequency (up) 
and growth rate (down). Due to symmetry, only positive real parts are shown. 

Reusing the transformation x=a>/Ro improves the description for small wave numbers (see 

fig. 3.4). Although it does not provide clear picture for what happens at tiny wave numbers, the 

branches seem to have finite ratios of growth rate over Rossby number as AT->0. The 

connection of the purely imaginary branches with the R and E surfaces cannot be established. 

The R mode should have its intercept at x=l, while the E mode should have it about xi=0.29 
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according to Orlanski's [1968] fitting formula; although the intercepts of the imaginary 

branches are not clearly defined, they do not follow the expected values. In addition, they do 

not join in a B surface of only one unstable mode starting at their junction. Instead, there is 

more than one branch with complex roots spanning over all the visited wavenumbers. While 

the inner branches (b, c) have similar growth rates for moderate wave numbers, the outermost 

branches (d) have similar growth rates as the central branch (a), but with opposite curvature. 

The central branch (a) tends to a cutoff at about A M 1.5 or i?o=0.1. 
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Figure 3.4. The t-representation at ^?/=57 for the flat bottom configuration. 
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3.2. Flagg and Beardsley shelf-break model 

The Flagg and Bearsdley model or false bottom model (hereinafter referred to as FB) 

consists of adding a straight sloping bottom beneath the front but the topography is flat outside 

this region. The slope y2 (equivalent to R in Flagg and Bearsdley [1978]) varies between 0.25 

and 2.5. It breaks the symmetry of the phase frequency and creates stable modes in the negative 

region outside the Rossby range. 

For /2=0.25 (see fig. 3.5), two well-defined stable modes exist outside the Rossby range 

with opposite characteristics. The first stable mode starts from the origin with strong negative 

group velocity (in the reference of the momentum center of the layers) for small wavenumbers 

(A!"«l). The group velocity wanes as the wave number increases and, ultimately, becomes zero 

before the Rossby barrier. The second stable mode starts with positive group velocity and 

curvature from a finite intercept. It reaches zero group velocity at about A=3, then the branch 

straightens gradually and tends to join the Rossby barrier much beyond the observed range. 

Inside the Rossby range, the symmetry of stable branches is broken by two sigmoidal branches 

starting from the upper region to join the lower Rossby barrier. The marginal and central stable 

branches observed in the flat bottom configuration maintain a symmetric pattern. The main 

change is the beginning of the central branches is moved to about A=5.5 and the lowest 

marginal branches are moved slightly lower for the small wavenumbers range. The central 

stable branches are hereinafter labelled parabolic branches for their shape when unified in the 

observed range. Several distortions occur in the marginal branches where the sigmoidal 

branches cross. 

For the unstable modes, loci can be regrouped in six branches labeled A, B, C, D, E and 

B'. The growth rates are generally constrained beneath /to/3. The A, B, C, D branches dominate 

with nearly the same growth rate in the high wavenumbers range- Flutterings in the growth rate 

curves for greater wave numbers suggest slightly different growth rates for same frequency at 

same wavenumber, as in the branch C. The branch C is the only one converging asymptotically 

toward the axis for high wavenumbers and reaches a maximum at about £=8.5. The outer 
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branches, A and D, have the greatest growth rates beyond A=8, (greatest observed growth rate is 

about 0.025). The branch B seems to be an extension of the branch B' in the positive frequency 

region. The branch E, with eigenvalues nearly imaginary, reaches a maximum at about 0.005 

within 3<K<4, then a cutoff happens about A=5.5, where it is followed by the two parabolic 

branches. The branch E is the branch e from the flat bottom configuration that becomes more 

unstable and extents to higher wavenumbers. Extrapolation of the real and imaginary parts of 

the branch D suggests that it may originate from the lower Rossby barrier, near AT=3. 
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Figure 3.5. FB configuration with y = 0.25. Left panel: the frequency of stable modes outside the Rossby range (up) 
and the t-transform of stable branches inside the Rossby range (down). The dashed line is the lower Rossby barrier. 
Right upper panel: the real part of the unstable points. Dashed lines are the upper and lower Rossby barriers. Right 
lower panel: the imaginary part of the unstable points. 

For ^2=0.4 (fig. 3.6), the separation between the stable branches outside the Rossby range is 

enhanced by the stronger slope. The most unstable point was found at the end of the branch D 

with a growth rate of 0.0218. The dominant branches share roughly the same growth rate curves: 

discrepancies in the high wavenumbers range are mainly due to fluttering. The branch D keeps a 

fairly constant value of frequency at about -0.022: its apparition after K=5 forces the branch C to 
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converge toward the axis. The branch E maximum moves to AT=4.8, but the branch terminates 

about A>5.5. The point of the maximum in branch E can be seen as a crossing point between 

branch E and branch B. The dominant growth rate curves are negligibly affected by the increase 

of the slope, apart from a slight depression for the moderate wavenumbers. Inside the Rossby 

range, a new stable mode appears for strong negative values of t at small wave numbers. The 

central parts of the sigmoidal branches move to higher wavenumbers and the parabolic branches 

start about K=6.25. 
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Figure 3.6 Same as fig. 3.5, but for a FB model with y2=OA0. 

For /2=0.63 (fig. 3.7), the most prominent feature outside the Rossby range is the 

apparition of another stable locus along the lower Rossby barrier as the first stable mode 

expands away. The major change for the unstable branches is vanishing of the branch D which 

allows branches E and C to reach more negative frequencies for moderate wavenumbers. The 

branch E reaches a maximum growth rate at AT=6, and its cutoff at K=H. Inside the Rossby 

range, the stable branch, that first appeared for y2=0.4 with negative frequencies only, extends 

to higher wavenumbers and is on the brink of positive frequency at very small wavenumber. 

The start of the parabolic branches suggests the cutoff of branch E occurs in 7<Af<7.25. The 
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distortions of the marginal branches are enhanced by the higher slope: most crossings between 

the upper marginal branches and the sigmoidal branches vanish. Instead, every sigmoidal 

branch is deflected rightward onto the former path of the marginal branch. The marginal branch 

is itself deflected upward to distort the next marginal branch and take its path. The result is a 

chain of distortions on the original path of the sigmoidal branches. In the lower region, the 

sigmoidal branches cross two marginal branches before being deflected rightward and inserted 

as a new marginal branch. 
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Figure 3.7 Same as fig. 3.5, but for a FB model with y2=0.63. 

For y2=\.Q (fig. 3.8), the new stable branch, observed for the case /2=0.63 outside the 

Rossby range, expands below the lower Rossby barrier. The branch E moves into the previous 

position of the branch C in the moderate wavenumber range but merges with the branch B 

before K=S. The branch C seems to have moved its root from the origin to some moderate 

wavenumber on the lower Rossby barrier. The main feature of the unstable branches is a 

general drop of about 0.005 in the growth rates beyond K=6. The parabolic branches inside the 

Rossby range start at A=8 but do not continue the unstable branch E. 
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Figure 3.8 Same as fig. 3.5, but for a FB model with x2=1.0. 

For y2=\.6 (fig. 3.9), a new unstable branch, denoted F, appears with a positive frequency 

about two thirds of Ro and is much stabler than other unstable branches. Although this branch 

might have been masked by the upper Rossby barrier under smaller slopes, it might also be a set 

of unstable points induced by the large distortions on the upper marginal stable branches. The 

branch D reappears rooted in the Rossby barrier beyond A7=8, but it might be induced by the 

distortions in the lower marginal stable branches. Branch E appears to merge with branch B at 

about A>9. 
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Figure 3.9 Same as fig. 3.5, but for a FB model with y2=l.6. 

For /2=2.5 (fig. 3.10), a fourth stable mode appears beneath the lower Rossby Barrier. 

Branches C and D have vanished. Branch F is enhanced and moved further away from the 

upper Rossby barrier. Its growth rate curve, although comparable to the other growth rates, 

suggests cutoffs at about K=4, and beyond AT=7. Branch A undergoes a transition near A>8. 

Branch E appears to coalesce with branch B at about A>9.5. The growth rates are generally 

constrained under the line Ro/S. The parabolic branches, starting at K=9.5, have almost 

moved out of the observed range of wavenumbers. Instead, the distorsions generate a new type 

of branch from the union of the least (smallest x) marginal branches and the sigmoidal 

branches. 
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Figure 3.10 Same as fig. 3.5, but for a FB model with ̂ 2=2.5. 

In general, the real part of the unstable branches were constrained to where marginal 

branches are absent. As the marginal branches approach the center with an increasing slope, 

distortions change their nature and allow the unstable branch F in their region. The increasing 

slope causes a migration of the intercepts of the sigmoidal and parabolic branches to higher 

values on the iT-axis. With the exception of branch A, the unstable branches migrate toward 

negative frequencies: the branch C replaces the branch D; the branch E moves to the C place 

except for a part attached to the branch B; most of the branch B becomes purely imaginary 

instead of the branch E. 

Inside the Rossby range, the wavenumber where the parabolic branches start (Kc), varies 

monotonically with the slope (see figure 3.11). Curve fitting on the estimates yields: 

Kc = 4.62784 log(44.699 y2 + 6.36277). 
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Figure 3.11 Critical wave number for parabolic stable branches Kc vs y2. 

The stable modes outside the Rossby range are classified in two types by their behaviour 

in the long wave range. The first type covers modes with negative group velocity of norm 
l 

higher than YkT> ^ u t m e frequency is zero in the limit of long waves. The second type is for 

the backward propagating mode with finite nonzero frequency for very long waves. A third type 
l 

could be for modes with positive group velocities higher than YrT m& z e r o frequency at the 

limit of long waves, but it was not observed. Table 1 contains eye-extrapolated values of group 

velocities and intercepts for the fastest mode of the first kind and the mode of second kind at 

different values of y2 (graphic extrapolation made from points at small wave numbers). 

Intercepts of the first type modes are close to the origin, so the separation of the intercepts at 

A>0 is basically the norm of the intercepts for the second type mode. 



r2 Vg first type V g second type intercept separation 

.25 -.026 .022 .111 

.40 -.037 .036 .165 

.63 -.050 .056 .239 

1.0 -.071 .077 .333 
1.6 -.097 .093 .442 
2.5 -.125 .096 .556 
4.0 -.149 .097 .666 
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Table 1. Group velocities of the fastest mode of first type and of the second type mode interpolated for very long 
waves w.r.t. the slope. The intercepts' separation is the extrapolated value of the frequency for the second mode for 
long waves. 

The points seem to behave smoothly (see fig. 3.18, page 47). Using trigonometric and 

hyperbolic functions modeling with three parameters, the best fits are 

(r2+.1608) 
first type fastest mode: - . 2826 arctan 

second type mode: . 5991 arctan 

1.475 

(/2+.1137) 

intercept separation: .5580 arctan 

1.021 

(r 2 +1015) 
1.655 
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3.3. Shelf-break model with foot at y-2 

The change for this model with respect to the FB model is that the boundary conditions of 

an exponentially decaying perturbation pressure occur not at the front but at the foot of the 

submarine ridge and the dynamics between the front and the ridgefoot obeys a hypergeometric 

differential equation. In the following cases for various slopes, the stable branches beneath the 

lower Rossby barrier increase like interference patterns in optics where the slope, y2, is 

analogous to a lens curvature. The symmetric pattern of parabolic and marginal branches inside 

the Rossby range stands firmly, although the marginal branches are distorted by the skew stable 

modes. The most prominent change is the reshaping of the sigmoidal branches: their top part 

turns gradually rightward and there are smaller distortions on the marginal branches. A 

consequence is a reduction of skewness in the distortions relative to the FB model. Generally, 

the first skew branch on the right is nearly shaped as a parabola. The next skew branches are 

vertical in the central range, which make them nearly unobservable, and turn rightward in the 

region of the lower marginal branches. They migrate rightward as the slope increases. 
°'041" Phase frequency + R 0 

i i u i i in i i i i C 

Figure 3.12 Same as fig. 3.5, but for a shelfbreak with y2=0.25, Ri=57 and foot at y=2. 
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For y2

=-25 (fig. 3.12), a third stable branch appears beneath the lower Rossby barrier. The 

intercept of the highest-frequency stable branch is farther from the origin. The longer slope 

creates a new unstable branch, denoted G, which appears to be rooted on the lower Rossby 

barrier at about K=4. Branch G shares a strong similarity with branch D, which appears to be 

rooted on the lower Rossby barrier at about K=2.5. The growth rates of branch G are 

considerably smaller than those of the other unstable branches, but the difference vanishes for 

high wavenumbers. Branch E is well separated from branch B. Other unstable branches did not 

change much. 

For y2-A (see fig. 3.13), branch G has vanished. It is not clear whether branch B could 

meet branch E at about AT=4.5 as branch B's frequency changes sign. Coincidently, the major 

branches are slighthly more unstable between K=2 and K=6. The growth rates curves are still 

constrained beneath the line Ro/3. No other significant changes occur. 
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Figure 3.13 Same as fig. 3.5, but for a shelfbreak with /2=OA0, Ri=57 and foot at y=2. 

For /2=.63 (see fig. 3.14), another stable branch appears along the lower Rossby barrier. 

Meanwhile, a new skew branch starts in the region of the upper marginal branches at small 

wavenumbers. At the exception of the branch A, the growth rate curves are depressed at about 
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K=6. Branch D is still observed at this slope, in contrast to the FB model case, and seems to be 

rooted at about K=5. Branch E coalesces with branch B at about A==6.5. The beginning of 

branch C shows a decreasing growth rate with K as it reaches a maximum negative frequency. 

Meanwhile, branch E looks perturbed at about K=3, with a kink in its growth rate: it may 

suggest a fork and a possibility would be that the unbserved part would connect to branch C. 

Branches A and B are not significantly changed. 
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Figure 3.14 Same as fig. 3.5, but for a shelfbreak with y2=0.63, Ri=57 and foot at y=2. 

For x2=1.0 (see fig. 3.15), branch D vanished. Neither branch C, nor branch B changed 

with respect to the FB model. Branch A remains largely unchanged with respect to the previous 

slope, but its growth rate curve does not collapse at about A=6 as in the FB case, instead it 

follows largely the line Ro/4. Branch B remains largely similar to the FB case and coalesces 

with branch E at the same location. Branch E is finally broken by the kink observed at the 

previous slope; the beginning of the main branch is moved away in the negative frequencies 

domain and undergoes a hike of its growth rate. The minor locus, labelled E', terminates at K=4, 

but hints for a near-coalescence with branch B at about K=5. As the skew stable branches move 
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to higher wavenumber inside the Rossby range, their central part get rounded. The marginal 

branches appear more distorted at smaller wavenumbers by the skew branches. 
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Figure 3.15 Same as fig. 3.5, but for a shelfbreak with y2=l.O, Ri=57 and foot at y=2. 

For y'2=1.6 (see fig. 3.16), branches D and F from the FB model are absent. Branch B 

suffers two slight distortions relative to the FB model. Branch E is split near A=4 as in the 

previous slope, but the growth rates peak is absent. Branch E is disturbed again at about K=6 

with a surge in the growth rate curve. The same occurs on a smaller extent to branch A at about 

K=6. 
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Figure 3.16 Same as fig. 3.5, but for a shelfbreak with y2=l.6, Ri=57 and foot at y=2. 

For y'2=2.5 (see fig. 3.17), branch F from the FB model is absent. Branch A is crossed by 

two nearby loci. The first locus, A', shares the same frequencies but differs by having a greater 

growth rate until they coalesce at £=3. The second locus, A", shares the same growth rate with 

A, but its positive frequency is greater until they nearly coalesce at £=3.5. Branch B suffers a 

strong frequency distortion, at its peak growth rate at £=5.5. It is noted that at B's end, points 

with the same frequency but slightly different growth rates appear; a lack of resolution may 

have concealed B's continuation. Only the part of branch E beyond its growth rate peak at £==6 

is captured; its beginning point at £=6.25 provides the most unstable eigenvalue. Only two 

points of branch C remain. It is notable that the most unstable eigenvalues for these 

configuration parameters are produced by critical points at moderate wave numbers. 
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Figure 3.17 Same as fig. 3.5, but for a shelfbreak with /2-2.5, Ri=57 and foot at y=2. 

Vg first type Vg second type intercepts separation 

.25 -.072 .1025 .199 

.40 -.102 .144 .283 

.63 -.144 .175 .283 

1.0 -.192 .213 .498 

1.6 -.240 .238 .613 

2.5 -.30 .225 .715 

4.0 -.35 .200 .800 

Table 2. Same as table 1, but the slope continues to y=2. 

9 K ,0 

The group velocities of the stable modes below the Rossby barrier are generally 2.5 times 

higher than for the FB model (see fig. 3.18), while the separation of the intercepts are magnified 

by 1.3. The group velocity curve for the fastest stable mode of the first kind has a flater profile 

over y2, offset by an enhanced curvature at small slopes. The group velocity curve for the 

second stable mode has lost its flat character for slopes bigger than unity; it wanes slightly. 
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None the less, its shape does not change qualitatively in a significant way. The separation 

between intercepts is marked by much higher curvature for small slopes. 

Fitting curves with simple functions with three parameters gave satisfactory results for the 

first type fastest mode: 

(>2+.1608) 
.2826arctan-

1.475 

and the intercept separation: 

.5991 arctan 
(ra+.1137) 

1.021 

However, the best fit for the second type mode was 

(/2-.03958) 
.2211tanh-

which leaves significant residuals. 
Shelf-break with slope ends: a t f r o n t e n d 

a t y = 2 
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Figure 3.18. Upper: Interpolated group velocities for a very long wave. Lower: Interpolated intercepts for the 
second type of stable mode. The absciss is the shelfbreak slope y2. Note that the scales for the two curves are 
different in the upper panel. 



Fig. 3.19. Sketch of the topography for a ridge of symmetric slopes and feet at y=-l and y=2, respectively. 

The changes for this model, with respect to the FB model, are that the slope continues 

beyond the front on the right-hand side and a slope occurs on the left-hand side for -1 < y < 0, 

with slope parameter y,. The choice of a ridge with equal slopes, say y = yx = y2, simplifies the 

discussion by reducing the parameter space. However, the symmetry does not influence particu

larly the dynamics of the system since the parameters (Z a) in the confluent hypergeometric 

equation are inferred separately for the two sides; the patterns are not symmetric in their real 

components. The most prominent changes are the apparition of stable modes above the upper 

Rossby barrier. For very long waves, the real component falls quickly and likely reaches zero 

when £=0. Inside the Rossby range, the sigmoidal stable branches are back combined with a 

symmetric pattern of marginal and parabolic branches and other stable curves with rightward 

direction in both marginal regions. 

At y=.25 (see fig. 3.20), a prominent change, compared to previous models, is a second 

kind of stable branch, which now has negative group velocity near £=0 and an intercept roughly 

between -.10 and zero. The positive Doppler-shifted nondimensional phase frequency reaches 

0.064 at about AT=0.7. The unstable pattern is similar to that of the shelfbreak model with the 

abyssal plain at y = 2, with the exception that branch D is not rooted in the lower Rossby 

barrier. The end of branch D extends up to £=9.5, which allows to observe this branch carries 

the largest growth rates occuring similarly on branch A. 
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Figure 3.20.Same as fig. 3.5, but for a symmetric slope ridge with y=0.25 and feet at y=-l and y=2. 

At y=0.4 (see fig. 3.21), the stable branches frequencies outside the Rossby range increase 

by about 50%. The pattern of unstable branches is similar to the FB and shelfbreak models with 

the exceptions that: the tail of branch B is disturbed at A=2, causing a surge in its growth rate 

and a new locus, B', similar to the tail of branch E, but of opposite frequency; a peak in the 

growth rate occurs also in the tail of branch C, which suggests it was distorted and broken. 
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Figure 3.21. Same as fig. 3.5, but for a symmetric slopes ridge with 7=0.40 and feet at y=-l and y=2. 

At 7=0.63 (see fig. 3.22), two new stable branches appear above and below the Rossby 

barriers, respectively. Inside the Rossby range, a sigmoidal branch reaches the parabolic 

branches, but does not cause distortion. For the unstable pattern, the only differences with 

respect to the previous shelfbreak model are: the locus B', associated with branch E in the 

previous shelfbreak model, tends to coalesce with branch E at about A=2, rising their respective 

growth rate curves; the tail of branch E is extended smoothly to the origin; the previous shelf 

model showed a coalescence of branches E and B, but it appears as a crossing for this ridge 

model and causes the swap of labels between the tails with respect to the previous slope. The 

tail of branch C also has a growth rate peak at about £=4.5, characteristic of some critical point. 

For higher slopes, the number of stable modes increases on both regions outside the 

Rossby barriers and all stable branches move to higher wavenumbers and frequencies. The 

patterns of unstable branches for symmetric ridges are generally close to those for the previous 

shelfbreak models with equivalent slope. Meanwhile, their differences with respect to the FB 

models, are similar to those of the previous shelfbreak models. 
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Figure 3.22. 
M r _ — _ 

Same as fig. 3.5, but for a symmetric slope ridge with y=0.63 and feet at^=-l and>,=2. 
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Figure 3.23. Same as fig. 3.5, but for a symmetric slope ridge withy=1.0 and feet at >»=-l and y=2. 
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At y=1.0 (see fig. 3.23), the only notable changes with respect to the shelfbreak model 

with foot at y=2, are a flater distribution of the growth rate peak at the tail of branch E and the 

reapparition, through one point, of branch D. 
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Figure 3.24. Same as fig. 3.5, but for a symmetric slope ridge with y=1.6 and feet at y=-l and y=2. 

At 7=1.6 (see fig. 3.24), the locus B' is significantly more unstable at its end (K=4), than 

for the previously labelled E' in the shelfbreak model with the same slope. The tail of branch E 

starts at a smaller wavenumber; its growth rate curve is similar to those of the B branch and B* 

locus and suggests it could originate from the origin despite a real part approching the lower 

Rossby barrier. The top growth rate on branch E is 0.011 at A=6. The growth rate curve for 

branch B peaks at AT=5.25 with a value of 0.01. Branches E and B get more stable at higher 

wavenumbers until they coalesce at £=8.5. The resulting branch has a sharply increasing 

growth rate, which converges with those of branches A and C. 
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Figure 3.25. Same as fig. 3.5, but for a symmetric slope ridge with y=2.5 and feet at,y=—1 andy=2. 

At y=2.5 (see fig. 3.25), the unstable pattern is again similar to the one from the shelfbreak 

model. The E branch is more detailed with a sharp peak at £=6 and is generally more stable 

than other branches for higher wavenumbers. Branch B still peaks at £=5.5, but undergoes 

another rise of its growth rate at about £=7.5 before it converges with branch E. A tiny locus, 

denoted E', is significantly more unstable than other branches at about £=4 with a growth rate 

of one third of the Rossby number. The locus A' extendsto the origin. 
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3.5. Shelfbreaks and symmetric slope ridges with long slopes 

3.5.1 Shelfbreaks with foot at y=10 and Ri=57: 

With the foot of the slope in the farfield, much lengthier computations are needed for the 

left-hand boundary conditions and the workload increases with the wavenumber and as the 

frequency approaches either of the Rossby barriers. Therefore, the analyses will be limited to 

four values of y2: 0.25, 0.4, 1.0 and 2.5. The interior of the Rossby region provides a richer 

pattern of stable modes, which are better analyzed with the x-transformation. The points near 

the Rossby barriers are dense and difficult to calculate, because the series solutions are stiff and 

their differences are sensitive to any small change. Computations of the confluent 

hypergeometric solutions were quite lengthy and would have been improved by the direct use 

of a stepwise integration (such Runge-Kutta 4) with an adaptive stepsize control. Missed 

solutions are another side effect of the density of solution due to a lack of resolution on the 

initial grid. The points with |x|>0.7 are not plotted for clarity. The symmetric pattern of 

marginal and parabolic branches seen for shorter slope persists here, although it is evanescent 

for Y^IS. Other stable modes consist of non-overlapping sigmoids starting either from the 

origin or from the lower Rossby barrier to converge asymptotically on the upper Rossby barrier; 

and left-oriented parabolae for high wavenumbers. The left-oriented parabolae are not different 

from those observed for the shelfbreak model with shorter slopes but the sigmoidal stable 

branches, although confined in the same region, are densified by the longer slope. Outside the 

Rossby region, the primary effect of the longer slope on the stable modes is an enhancement of 

the group velocities at small wave numbers. The nonzero intercept of the last branch is moved 

to a much larger value. The stable branches along the lower Rossby barrier are stretched and 

undergo a reversal of their group velocity. Also, stable branches that could have been masked 

by the vicinity of the Rossby barrier are stretched to become apparent. For large wavenumbers, 

the stable modes remain nearly the same. The pattern of unstable branches is similar for this 

longer shelfbreak slope. 
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For /2=0.25 (see fig. 3.26), branch G observed for the shelfbreak at a shorter slope is 

absent. Branches B and C, which were found at shorter slope to have fluttering growth rates 

curves in the high wavenumbers, have points with two different growth rates for the same 

frequency; the fluttering part turns into two curves of growth rates and the highest ones have 

values near those of branches A and D. It can be noted that branch E, which is nearly 

imaginary, has a linear growth rate for wavenumbers where stable modes in the central area are 

sigmoids starting from the origin, a nearly constant growth rate for wavenumbers where the 

sigmoids originated from the lower Rossby barrier and a decrease in growth rate for 

wavenumbers in the range of transition from sigmoidal to parabolic stable branches 4.5<AT<5.5. 

The cutoff of branch E gives birth to the parabolic stable branch. 
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Figure 3.26. Shelfbreak with ifr=57, y2=0.25 and foot at y=10. Left upper panel: the stable modes outside the 
Rossby region. The dashed line is the lower Rossby barrier. Left lower panel: the x-transformation of the frequency 
for stable points inside the Rossby region. Right upper panel: the real part of the unstable points. Dashed lines are the 
upper and lower Rossby barriers. Right lower panel: the imaginary part of the unstable points. 
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For y2=0A (fig. 3.27), in contrast with the shorter slope, the decline of the growth rate for 

branch E can be observed. Its cutoff occurs at £=6.5. The unstable branches B and C have 

points with double growth rates for same frequency in the high wavenumbers. Inside the Rossby 

range, the transition from sigmoidal curve to a parabolic curve occurs at about £=5.25, which 

coincides with the transition of the unstable branch B into positive frequencies and with a peak 

in the growth rate of branch E. 
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Figure 3.27. Same as fig. 3.26, but for a shelfbreak with y2~0A and foot at y=10. 

For /2=1.0 (fig. 3.28), in contrast with the shorter slope, the tail of branch E starts 

smoothly from the origin and no peak of instability occurs near £=3.5. One point signals a 

return of branch D for very high wavenumbers. The transition from sigmoidal curves to 

parabolic curves occurs near K=6. 
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Figure 3.28. Same as fig. 3.26, but for a shelfbreak with y2-l.O and foot at y=10. 

For y2=2.S (fig. 3.29), in contrast with the shorter slope, branches A and B span smoothly 

from the origin through the wavenumber range. The growth rate of branch A is slightly 

depressed about £=9.5. Branch E is distorted twice with peaks of growth rate at £=5 and 

£-6.25. 
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Figure 3.29. Same as fig. 3.26, but for a shelfbreak with y2=2.5 and foot at y=10. 
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3.5.2 Symmetric slope ridge with R/=57, feet at y=-9 and y=10: 

Farfield boundary conditions occur on both sides of the front, which cause the longest 

computations for the dispersion function. The analysis will be limited to y=T (see figs. 3.30 and 

3.31). Stable modes occur on both outer regions. As the longer slope increases their group 

velocities for small wave numbers, it increases their density near the Rossby barrier and 

deforms them in the same manner as for the shelfbreak case by bringing stable mode extrema to 

smaller wavenumbers. The top stable mode with positive frequency is observed with a finite 

intercept extrapolated to 0.56. Exploration for very small wavenumber reveals it actually peaks 

at 0.5232 with a flat region between 0.\<K<0.14, and a tail attached to the origin. Similarly, the 

top stable mode with negative frequency peaks at -0.5357 at £=0.11. For the stable points 

inside the Rossby range, the usual symmetric stable pattern is masked by a less orderly but 

dense skew pattern. The structure for high wavenumbers (£>7) and moderate frequencies is 

relatively unaffected by the length of the slopes. 

Apart from a minor kink on branch E at £=3.25, which causes a peak of 0.0095 in the 

growth rate, no major distortion occurs similar to the shorter slope. The unstable pattern is very 

similar to that of the shelfbreak with the longer slope: the dispartures being the distortion 

outlined previously for shorter slopes and the absence of one point of branch D. 



Figure 3.30. Symmetric ridge with Ri=57, y=1.0 and feet at y=10 and y=-9. Upper panel: the stable modes outside 
the Rossby region. Lower panel: the t-transformation of the frequency for stable points inside the Rossby region. 
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Figure 3.31. Symmetric ridge y=1.0 and feet at y=10 and y=-9. Right upper panel: the real part of the unstable 
points. Dashed lines are the upper and lower Rossby barriers. Right lower panel: the imaginary part of the unstable 
points. 
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THE LOMONOSOV RIDGE 

4.1 The observed front during ODEN 91 expedition: 

Reality posed several difficulties for the application of the model. From the observations 

of temperature and salinity during the ODEN 91 expedition (Anderson et al. [1994]), the various 

stratifications, the surface salinity gradient and the presence of a warm poleward subsurface 

current over the ridge crest cause several bows to the interface between the Eurasian and Cana

dian water masses. The ridge itself presents a blunt crest that can be represented as a 35 km 

wide plateau. It was observed from the isotherms from the ODEN 91 expedition (fig. 4.1) that 

the warm core of the poleward current, at a depth of 300 decibars with a temperature maximum 

higher than 1°C, is above the upper part of the ridge slope on the side of the Amundsen Basin. 

An abrupt diving of the isotherms signals a front attached to the upper part of the slope on the 

Canadian side of the Lomonosov Ridge. The strong meridional temperature gradient between 0 

and 300 km is the Atlantic warm layer flowing along the southern boundary (Eurasian Shelf) 

over the Nansen Basin. 

Figure 4.2 gives details of the top 1000 decibars. The Gakkel Ridge induces a front 

between 100 and 300 km that prevents poleward circulation of the Atlantic water below 300 

decibars, but allows some lateral intrusions between 200 and 300 decibars. It can be interpreted 

from the contours that, as the warm Atlantic layer penetrates deeper along the southern 

boundary (across the transect), it crosses the Gakkel Ridge to pass into the Amundsen Basin. 

There, the intrusions from the Atlantic layer recirculate freely toward the pole. The intrusive 

layer at the depth of 300 decibars benefits the most from lateral recirculation, and gives the 

temperature maximum observed above the Lomonosov Ridge with an elongated tail over the 

Amundsen Basin. Remnants of a second major fossile intrusive layer that occurred at a depth of 

220 decibars can be perceived above the Lomonosov Ridge as a deformation of the 0.7°C, 0.8°C 

and 0.9°C-contours above the temperature maximum. 
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Figure 4.1 Contour plots of potential temperature observed during the ODEN 91. The dashed line from the top of 
the Lomonosov Ridge shows the location of the front beneath the pycnocline. 

The density profile computed from potential temperature and salinity observations at 

station 23 of ODEN 91 (personal communication from Peter Jones, Bedford Institute of 

Oceanography, Canada), reveals that the water column between 236 and 261 decibars was 

unstable and in the process of vertical mixing (see fig 4.3). The vanishing of the second major 

fossile intrusion can be explained by attacks of new intrusive layers at the microscale. A 

consequence is that sinking water is replaced laterally by fresher and colder water of Canadian 

origin that forces its way through the front between 265 and 300 decibars. The process can be 

perceived in the subsurface temperature contour plot in which the 0.5°C-isotherms bordering 

the warm core do not quite meet near 300 decibars, but penetrate through the front and plunge 

below 450 decibars, 100 km away into the Canadian basin. 
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Figure 4.2 Contour plot of potential temperature observed during the ODEN 91 in the top 1000 m. The near vertical 
dashed lines show vortex sheets in the neighborhood of the Lomonosov Ridge. The vortex sheet on the right is the 
frontal interface beneath the pycnocline. The arrows show a sinking of water of Atlantic origin into the Canadian 
water assembly. 
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Figure 4.3 Profile of potential temperature (T), salinity (S) and density-1000 (o) between depths of220 decibars and 
320 decibars from station 23 of ODEN 91. Arrows indicate levels where vertical gradient of density is positive, 
which triggers vertical mixing. The water column between 236 and 262 decibars is going to undergo vertical mixing. 



66 
Beneath the warm core, deformations of the isotherms suggest a vertical vortex sheet, standing 

along the Eurasian edge of the Lomonosov Ridge, that is distinct from the vortex sheet 

associated with the front on the Canadian edge. Albeit it constitutes a front, it stays a minor 

feature since it does not separate two distinct water masses. The poleward current is associated 

with positive temperature anomalies (downward shift of the contours below 300 dbars) above 

the slope, however the combined drag due to friction with the blunt crest and crossfrontal 

momentum diffusion (from microscale turbulence) generates negative temperature anomalies at 

the boundary of the Eurasian water mass, directly above the ridge. In the case of a narrow crest, 

both vortex sheets would join to enhance the momentum difference across the front, which is a 

destabilising factor for a front, and the warm core would be closer to the main front and exposed 

to greater erosion from microscale intrusions. In the observed case, the stability of the front 

benefits from the buffer range made by the drag of the blunt crest. However the addition of a 

secondary front is not justified in the model because the ground friction and turbulent viscosity 

associated with very high wavenumbers are not taken into account. 

Another striking feature is that water temperature above the thermocline varies differently 

than in the layer immediately below. While the surface conditions in an open sea depend mainly 

on atmospheric features, the icepack in the Arctic imposes a boundary condition: the sea 

surface temperature must be at the freezing point. The freezing point varies weakly with the 

surface salinity. Surface water is fresher on the Canadian side: it is lighter than Eurasian surface 

water. The outcropping front bends toward the Eurasian side, causing a poleward boundary flow 

of Canadian water. Albeit the vertical gradient of temperature is generally small in the surface 

mixed layer under the icepack, the poleward boundary flow causes sufficient warm advection to 

bring the -1.7°C-isothermal to the surface. 
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4.2 The modeled ridge with a blunt crest: 

Among the major simplifications of the model, layer stratification is not included and the 

model does not take into account horizontal density variations inside the layers. The front slope 

depends on the horizontal pressure gradient across the front. Tremendous horizontal density 

variations occur mainly above the pycnocline, but the difference between vertical gradients of 

density contributes at greater depths. If the stratification difference could offset horizontal 

density variations (i.e. if the total mass above does not vary), the front would become vertical at 

that level. That level could be qualified as barotropic. There are as many barotropic levels as 

there are turning points in the frontal interface. Beneath the pycnocline, vertical gradients of 

density become nearly constant. If internal waves over the pycnocline are not considered (rigid 

lid approximation), the proposed model can be applied by replacing the sea surface with the 

deepest barotropic level. The curvature of the frontal interface will be neglected. The blunt crest 

is modeled as a flat top. The modified pressure perturbation field and its derivative field, the left 

boundary conditions for the frontal system, are: 

Canadian 
Edge 

0" ~eKA e-KA - "1 0 " (PA 

K_ eKA -e~K& 0 Eurasian 
Edge 

where A is the width of the plateau in units of the frontal length. 

The lowest barotropic level was estimated to be about 600 m beneath the surface. H is 

redefined as the distance between the crest and the barotropic level, that is roughly 750 m. From 

the contour plot, the estimated frontal length was 15 km. Thus the geometric ratio, L/H, is 0.02 

km/m. The plateau is about 35 km wide or 2.333 units of frontal length. The floors of the 

neighboring basins are considered flat and extended to infinity. The floor of the Amundsen 

Basin is estimated to be 3100 m lower than the plateau. The foot of the ridge on the Eurasian 

side is about 75 km away from the edge of the plateau (5 units of frontal length). The slope 

times the geometric ratio gives yx =0.827. On the Canadian side, the floor of the Makarov Basin 

is 2800 m lower than the plateau. The estimated foot of the ridge is 50 km (3.333 frontal length 
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units) away from the edge of the plateau, which gives y2=l.\2. The abyssal plain starts 2.333 

units of frontal length away from the end of the front. 
I. 

f=0.000146 rad/sec 

Eurasian side 

Slope=41.33 km/m 
y 1 = 0.827 

Amundsen B a s i 

H=750 m 

Abyssal p l a i n 

600 m 
Ba r o t r o p i c l e v e l 

*i_=0.02 kiri/m H 
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Slope=56 kifi/m 
T2 =1.12 

Makarov Basin 
Abyssal p l a i n 

75 km 35 km 115 km_ 35 km 
y=-7.333 y=-2.333 y=0 y=l y=3.333 

Figure 4.4 The model representation of the Lomonosov Ridge frontal system. 

The flow speed being unknown, the Richardson number was estimated from Ri = (fL)2 / g' H 

= {p/Ap)x(jZ)21gH = Q.671kgm~31Ap, with p=1028.19 kg/m3 as the density scale below 

800 decibars. Ap should be an average density difference below the barotropic level between 

the Eurasian and Canadian water assemblies. It was estimated from temperature and salinity 

observations at 1000 decibars at stations 23 and 26 that A/?=0.0102 kg/m3 and #/=66. The 

search of eigenvalues in the complex plane leads to only one unstable mode (see fig. 4.5), 

varying linearly with the Rossby number for small and moderate wave numbers: 

= Ro 
f-Q. 5466̂ 1 

'i J 

+ 0(Ro2) for K<3 or #o<0.0227. 
0.2907 

The group velocity of unstable long waves is |vjJ|=.004141/Z,= 7835 km/day. Behaviour 

changes after £=5, with a Doppler-shifted frequency oscillating between -.01435 and -.015585, 

then stops before K=7. The growth rate also oscillates between .0096921 and .008145, but it 

does not fit a continuous curve beyond A=5. The inability to find eigenvalues, at the limit of 

their accuracy in single precision, that satisfy the conditions with high accuracy (i.e. low score) 
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at high wavenumbers may explain the spread. However this is not always the case, the score is 

about 10"4 for A=6, and the eigenvalue is (-.0146538, .009692), which is a dominant 

eigenvalue. That means a frontal wave with a length of 2387 km would grow at a rate of 13% 

per day. The least growth rate for A>5 is 10.82% per day. The group velocity is positive in the 

range 5.24<£<5.9, with a value of 0.2323 km/day, and beyond K=6.5 with a value of 0.4181 

km/day. 
Unstable mode for Lomonosov Ridge with plateau 

0 1 2 3 4 5 8 7 8 
wave number K 

Figure 4.5 The real and imaginary parts of the eigenvalue for the unstable mode in the Lomonosov Ridge case with 
flattened crest. 

Stable modes are present both inside and outside of the Rossby range. The pattern of 

stable modes outside the Rossby range (see fig. 4.6) is, as expected, most similar to the one for 

the case of a symmetric ridge with feet placed nine frontal lengths away from the front and 

slope equal to unity (fig. 3.30). As it could be expected from feet placed closer to the front ends, 

fewer branches are observed and their density near the Rossby barriers is decreased. Also fewer 

branches have points of zero velocity group. However, the higher Ri means the branches can 

expand to larger frequencies uniformly over the wavenumber range. There is a much higher 

density of modes beneath the lower Rossby barrier than above the upper Rossby barrier. The 

prominent and unexpected feature is the top positive branch with an apparent finite intercept at 

0.6333. Explorations for small wavenumbers in the order of 10"2 did not resolve any peak. The 

top negative branch peaks at -0.5674 at about K=0.18. 
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Figure 4.6 The stable modes outside the Rossby range for the Lomonosov Ridge with a flattened crest. 

The interior of the Rossby range provides a richer pattern of stable points (fig. 4.7). The 

regions 0.75 RO<\G>\<RO were removed from the figure because of incompleteness and lack of 

clarity. Part of the stable pattern is still reminiscent of the symmetric pattern in spite of changes 

in the slopes length (marginal and parabolic stable branches), even if the slopes do not have here 

the same value and lengths. The parabolic branch starts at &=5, which coincides with the onset 

of the oscillating pattern for the unstable mode. 

Among the stable branches that depend on the ridge feet locations are two families of 

sigmoidal curves which converge asymptotically toward the upper and lower Rossby barrier, 

respectively, after starting either from K=0 or from the opposite Rossby barrier. Each family 

overlaps the symmetric pattern or the other family, but no curve overlaps another curve from the 

same family. Among the sigmoidal curves converging toward the upper Rossby barrier, a 

transition occurs beyond K=7 to parabolically shaped curves. 
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Figure 4.7 The stable eigenvalues with the transformation inside the Rossby range for the Lomonosov Ridge with 
a flattened crest. The regions 0.75<|x|<l. were avoided for clarity. 
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4.3 The effect of a sharper crest on the Lomonosov Ridge: 

The model is set back to a triangular ridge by setting the plateau width to zero. For the 

stable modes outside of the Rossby range (see fig. 4.8), the change effects only the small wave 

numbers, mainly by suppressing the finite intercept of the fastest positive mode, which therefore 

peaks at 0.28 at about £=0.45. However, it effects greatly the modes inside the Rossby range 

(see fig. 4.9) with the substitution of sigmoidal curves crossing the region |x|<0.3 and K<6 by C -

shaped curves resulting from the merging of the two types of sigmoids. The regions of high 

wavenumber and upper marginal branches are relatively uneffected. Inside the range 2.5<£<5, 

is a zone of broken C-shaped curves: the group velocities are too large to allow continuous 

curves. 
Stable modes for a Lomonosov Ridqe with narrow crest 
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Figure 4.8. Stable modes outside the Rossby range for a narrow Lomonosov Ridge. 



73 
r-co/Ro 

0.75 

0.50 

0.25 

0.00 

-0.25 

-0.50 

-0.75 h-

0 1 2 3 4 5 6 7 8 9 

wave number K 

Figure 4.9. Stable modes with the t-transformation inside the Rossby range for a sharp Lomonosov Ridge. 

The most important change, from the plateau removal, is the splitting of the unstable 

mode into several branches (A, B, C, D and E on fig. 4.10) with a pattern similar to the previous 

results for shelfbreaks and symmetric ridges. Branch A is the most unstable beyond A=6 with 

growth rates about 0.0105 or a growth factor of 14.2% per day and another likely growth rate 

curve about 0.0125 or a growth factor of 17% per day for K>7.5. The frequency of branch A is 

always near Ro/4. Both branches A and B have unsmooth growth rates that are double for some 

wavenumbers. Branch C is much smoother than A and B, and the part for K<3 has frequency 

equal to -Roll, which is in the region of the lower marginal stable branches. The point D is also 

placed in the region of lower marginal stable branches. This result is in opposition to the 

previous observation that the frequencies of unstable branches are confined outside the region 

spanned by the marginal stable branches. Branch E is purely imaginary and has the lowest 

growth rate. 
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Figure 4.10. The unstable modes found for the sharp crest model o f the Lomonosov Ridge: a) the Doppler-shifted 

frequency divided by the Rossby number, b) the growth rate. 
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Using power series eigensolutions instead of a stepwise integration of finite difference 

equations, the model faithfully reproduces Orlanski's [1968] results (flat topography case with 

i?/=3) for small and moderate wave numbers. However, it does not find instabilities beyond 

what we define here as K=A or #o=0.7. The discrepancy can be explained by Orlanski [1968] 

who mentioned a poor convergence of his technique in that region. The method used here is 

quite limited beyond AMO. At high Richardson number (/?/=57) for a flat topography 

configuration, the model shows symmetric unstable branches and a symmetric pattern of stable 

branches within the Rossby range. The most unstable branches have frequencies midway 

between the axis Re((o)==0 and the Rossby barriers. The same branches bear the highest growth 

rate at any wave number; their growth rate curve increases steadily in the observed range, but 

extrapolation from the curvature suggests a maximum growth rate of about 0.03 beyond the 

observed range. 

The introduction of a slope beneath the front (FB model) creates stable branches of 

backward-propagating modes with nondimensional Doppler-shifted frequency greater than the 

Rossby number. The fastest among them has a forward group velocity at small wavenumbers 

with a finite nonzero frequency intercept. An increase in the slope moves the stable modes away 

from the lower Rossby barrier over all the observed range of wavenumbers. Another effect is the 

occurence of new stable branches along the lower Rossby barrier. These branches might have 

been there for lower slopes, but the roots would have been either too near the pole or rejected 

because the solutions overflowed or were not accurate enough in the differential equations or 

their separation was not enough for observation by the bisection technique. The greater slope 

unmasks them by increasing their distance from the pole. An increase in the length of the slope 

has the same effect for small wavenumbers. The smaller the wave number, the greater is the 

effect. Therefore, group velocities for small wavenumber are enhanced by a longer slope. For a 

long slope, the stable modes get denser along the lower Rossby barrier. It can be extrapolated 



76 

that the number of stable modes for an unbounded shelfbreak slope becomes itself unbounded 

and the majority of the roots would concentrate in a domain of poor convergence. The use of 

asymptotic solutions for an unbounded slope with Tricomi function was rejected because 

computations would be too tedious for the wanted accuracy and the program was fated to crash 

when the storage capacity of arrays would be overwhelmed by the cumulated roots. This 

problem was not fixed since Nature itself does not support such a case. 

Forward-propagating roots were found during the exploration of the FB models at the very 

limit of \+Ro, for moderate wavenumbers and large slopes. The locus lies along the line on 

which the model becomes invalid. For larger slopes, the locus spreads in its extent and 

undergoes duplication of its points, followed by a densification at higher slopes. Those points at 

the limit of validity have been dismissed for convenience. However, they deserve further 

investigation for the steep and long slopes combination. No other stable mode with 

subgeostrophic positive frequency greater than Ro occurs for the FB model or the shelfbreak 

model. This kind of stable mode occurs for a ridge model, although the relative accuracy of 

roots is much poorer than for the backward-propagating modes, in particular for high 

wavenumbers. The length of the slope influences the group velocities for the large wavelengths. 

For the stable modes at high Richardson number, the persisting symmetric pattern inside 

the Rossby range consists of branches running nearly parallel to the Rossby barriers, which start 

from the origin and have values above Ro/4 (marginal branches), and of a pair of branches 

starting at a high wavenumber and forming a parabolic shape (under the t-transformation). The 

marginal branches appeared in a countable manner for low Richardson number. For greater 

Richardson number, they become more numerous and denser near the Rossby barriers. In the 

neighborhood of the poles, the series solutions behave closely and form a stiff system where 

numeric truncation errors remove significance of close roots, which makes the set of marginal 

branches uncountable for high Richardson number. Although the parabolic branch is observed 

for the flat model at high Richardson number, it is not found for low Richardson number. 
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Instead, a branch of mixed instability type, associated with Orlanski's B surface, is parabolically 

shaped and terminates with the birth of uncentred, parabolic stable branches. 

The symmetric pattern depends upon the slope beneath the front and the Richardson 

number. Its existence is not modified by topographical change beyond the slope. As the series 

solutions are built, later terms in the series become dominant for frequencies approaching the 

Rossby number or high wavenumbers (which slow down the convergence), and the memory of 

the boundary conditions (ratio of pressure field and its derivative at the front end) is deleted by 

numeric truncation errors. The introduction of a plateau for the Lomonosov Ridge did not 

change the symmetric stable pattern. However, the boundary conditions create asymetric stable 

branches that interact with the symmetric pattern. Distortions occur at the crossings between the 

branches of the persisting symmetric pattern and those of the pattern depending upon the 

boundary conditions: branches avoid crossing by redirection and path exchanges. This sort of 

scattering is accentuated with strong slopes. 

The unstable pattern remains contained inside the semicircle of radius Ro, in the complex 

plane. Its' features depend strongly on the slope beneath the front, but the unstable pattern is 

nearly same for the FB model, the shelfbreak with the foot in the near-field and the symmetric 

slope ridge with feet in the near-field. The largest observed growth rates were under 0.025 at 

about the end of the observed range. That is 17% below the largest values observed for the flat 

bottom case. Displacing the foot can create distortions for moderate wavenumbers (breaking a 

branch tail or causing its duplication), accompanied with a peak in growth rate. For longer 

slopes, fluttering growth rates occur and some unstable frequencies have two distinct growth 

rates. The introduction of a plateau between the slope and the beginning of the front in the 

Lomonosov Ridge model is a major change in the boundary conditions that reduces the unstable 

pattern into an unique branch. Gawarkiewicz [1991] found for his shelfbreak model, three main 

unstable features for Ro between 0.5 and 1.8 (57<£<200), Ri=57 and y2=6, with a top growth 

rate of 0.015. His main growth rate curves are probably the extension of the unstable branches 

A, B and C in this dissertation. To get these curves for very high wavenumbers and unbounded 
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slopes, he used in conjunction with the Hoskin's [1975] quasigeostrophic momentum 

approximation for the perturbation, an asymptotic expansion for the Tricomi function in the 

region of the unbounded slope. The unstable features were found by this simpler approach, but 

the accuracy can be questioned. However, he found that a change from the false bottom 

conditions to an unbounded slope condition causes little change in the most unstable features, 

which agrees with the observations for high wavenumbers when the foot is displaced. He also 

found that the most unstable feature has the most negative phase velocity. Here, the results are 

more mitigated: Branch A bears in several cases the most unstable eigenvalues with positive 

frequencies. Gawarkiewicz's [1991] curves are not as consolidated as those in this work. 

The application of the model to the Arctic marine front near to the Lomonosov Ridge is 

hindered by the lack of knowledge of the frontal length, L. Stratification is a major factor that 

was overlooked. However, the model was applied for that part of the water assembly beneath 

the pycnocline, for which the frontal length could be estimated and vertical variations are 

reduced, and assuming the surface variations are cancelled at the level the front becomes 

barotropic. The main finding is the reduction of the unstable pattern to one branch that 

terminates abruptly after K=7 (wavelength shorter than 2000 km). It provides growth factor of 

at most 13% per day for wavelength about 2400 km. 
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APPENDIX A 

THE TRICOMI SOLUTION OF THE CONFLUENT HYPERGEOMETRIC EQUATION 

In this section, the solution of the confluent hypergeometric equation (1.17) will be 

discussed. Let us simplify the notation by using (z, a) instead of (zx,ax): 

(A.1) zpzz+(l-z)pz-ap = 0. 

The classical solutions can be constructed by series expansions about the singular point at 

z - 0 (or y=\JY\\ with the Frobenius method (see Boyce and diPrima [1992], section 5.6). The 

first characteristic solution assumes a regular singular condition at z - 0. Let 

n=0 

Substitution into the confluent hypergeometric equation leads to 

r(r - l)a0zr~l + ra0zr~l + 0(zr). 

The balance of the coefficients at the lowest power of z leads to the indicial equation r2 =0. The 

multiplicity of the root indicates that only one solution has regular behaviour at the singular 

point, while the second kind has a logarithmic singularity. Since the singular point is not 

contained within the region 7, the irregular singular behaviour is physically possible. 

The indicial equation shifted by the power n is 

an+i(" +!)" + (" + ! ) - na„ -aan=0. 

Thus, the recurrence relation is 
n 

a„^ = ~an = J ~ | - — - r t f r . = 

Let a0 = 1. The first kind of solution is 

which is a confluent hypergeometric solution known as the Kummer function (see Erdelyi 

1954]). The Kummer function can grow in an exponential-like manner for large z. 

n+a _ -pr i+a a0 F(a+n + l) 
4"+l = (n + lf a" = ! i ( 7 ^ r ° = (n + lf T(a) 
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The ratio test: 
Urn 

n + l 

a z 
n 

2 Urn n + a = 0, 
\(n + \)2 

thus the radius of convergence of the solution is infinity. 

A special case of note is when the parameter a is a nonpositive integer, say -n. The 

ordinary differential equation becomes 

zpzz+(l-z)pz + np=0. 

which is the Laguerre's equation and the Kummer function becomes a finite series identical to 

the Laguerre polynomial Ln(z) of degree n: 

xFx(-n;l;z) m L„(z) = 1 + £ f[( 1 - £ ± I U (n > 0) 

= 1 (n = 0). 

The second kind of solution, which expresses a logarithmic singularity at z=0, is allowed 

in the system because the singular point is not part of region /. As the indicial roots are zero, 

the Frobenius method asserts that 

Pn(z) = Pi(z)\ogz + g(z), 

where 

Then 
PnAz) = PiAz){o^z+Pi(zVz+sz(zl 

Pu,zz(z) = Pi^(z)^z + 2pIyZ(z)/z-Pl(z)/z2 +gzz(z). 

The differential equation becomes 
2Pi,z ~Pi/z + 8zz +(\-z)Pilz + Q-z)gz - &g = 0 

or 
L. H. S,=ga + (1 - z)g2 - ag = pj - 2pj z 

=1F1(a;l;z)-2a lFl(a+ l ;2 ;z) = R. H.S. 

The power expansions of each side are: 
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r(a + n) z" 

o r ( a ) ( « ! ) 2 
•21 

n=0 

r(g+n) z"-1 

F(a) n ! ( w - l ) ! 

^«!r ( a ){ «! (w + 1)! J 

^ ( » ! ) 2 r ( a ) l n + l j 

- l - 2 « + £ ; r < » + 1 * " 
=! («0 2 r(a) 

for a not a nonpositive integer, or 

1-2 H + l 

for a a nonpositive integer; 
Z,//.S.= zg" + g ' - (zg ' + « g ) 

= ft + X fe»+t + + g„(" + a)}zn. 
«=i 

A term-by-term comparison gives 

g„+i(« +1) 2 -&,(" + «) = 1-2 n + a 
n + l n i + a . . 

5- for n > 1. 

That is 
_ n + a-l 

Sn ~ 8n-l 2 ^ 1-2 1 + a-l 
n 1) 

Therefore, the general solution of (A. 1) is 

(A.2) p(z)=lFl(aXz)(C\ogz + D) + cf^gn(a)zn, 

where C and D are constants of integration. Its derivative is 

pt(z)=alFl(a+l;2;z)(C\ogz + D) + C ^ ( « ; l ; z ) / z + £ « g „ z " + 1 

=o(Clogz + D) a~\\z 

(A.3) 
c 

+ — 
z 

i + IJi 

n = l V i = l ^ I J I J 
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For a particular solution that decays in the far-field, a ratio D/C must be found in order 

that p(z) is proportional to the Tricomi function (Tricomi [1927], Erdelyi [1954]): 

where 

XFX(a, 1;z)log z + £ ^ ( " + w ) * { y<W + a) - 2 y<» +1)} 
Ho («!) r (a) 

yKx)=-r \ogY(x). 
ax 

It suffices to set D/C = yA^cx) ~ 2 if/(l), that is 

ti n(n-l) 

where y ^ O . 5772156649 is the Euler-Mascheroni constant. 

Unfortunately, the Frobenius' fundamental solutions can grow rapidly and have similar 

asymptotic behaviour for moderately large z, and the numerical determination of the general 

solution becomes inaccurate. In the case where the slope stretches to infinity, the asymptotic 

behaviour of the solution is better observed in the far-field (large z domain) with the 

transformation rf=l/z. The ordinary differential equation becomes 

(A.4) rfpm + {T]2+ ij)Pri -ap = 0. 

Assume that the function remains smooth and does not have a logarithmic singularity at infinity. 

Then 

n=0 

Substituting into the ordinary differential equation gives 

£an (n + s)(n + s -1) rf^ an (n + s) rf^X + 1 a„ (n + s) tf+* - a £ a n rf+s = 0. 
n=0 n=0 n=0 «=0 

That is 

a0 (s -a)Tjs + rjsJ^ [an_x (n + s-1)2 +a„(n + s- a)]rf = 0. 

To be independent of TJ, s=a and 
an = - a , ^ = ^ = a o f l ( - 0 ( l + ( « - l ) / / ) 2 -if 

Thus, the far-field solution is 
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(A.5) 
P = -Jt \ + YXl(\ + {a-\)li)\-ilz) 

71=1 1=1 

The Tricomi solution decays in the far-field only when Re(a)>0. Otherwise, the asymptotic 

behaviour of the confluent hypergeometric solution has polynomial growth in the far-field. 

However, the overall solution is exponentially-damped, which fulfills the physical boundary 

conditions, whatever the value of a. In the specific case where a is a nonpositive integer, the 

asymptotic solution is proportional to the Laguerre polynomial of degree -a . The derivative of 

the asymptotic solution is 

A - ^ t + 0 ( , * . ) . 

For a more detailed expression, let q=pz and the differentiated ordinary differential equation 

is 

zqa + (2 - z)qz - (a + \)q = 0. 

With the transformation JJ = it becomes 

(A.6) ifqm+rjqv-{a+\)q = Q. 

Substitute q - Xn=0 ^» m t n e ordinary differential equation: 

0 = ^b^n+r)(n+r-l)7f+r+l+J^bSn+r-a-l)rf+r 

n=0 «=0 

= (r-a-l)b0 rf + rf (n+r)("+r+1)+bn+1 (n+r - a)] rf+x. 
n=0 

It requires r=CM-1 and bn+l(n + l) = -bn(n+ a+l)(n + a+2), or 

(n+a)(n + a~l) 
b =-b , 

n n-l n 
= b0Y[(-m + a/i)(l + (a-l)/i) 

and 

(A.7) 

where b0 =-aa0. 

The ratio test can be applied to the asymptotic solution (A.5) when a is not a nonpositive 

integer (otherwise the series is a finite polynomial): 

lim = Vlim 
(n + af 

\ 

n+l 
-»0O. 
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The series diverges for any value of r| other than zero, but can provide a good estimate at small 

values of r|, that is for points in the far-field, under the condition that the series is computed up 

to the term before the smallest one, say at n=N-l. The latter can be related to the inaccuracy 

(cf. Murray [1984], section 1.1), and the remaining terms are slowly growing, but they alternate 

about the estimate. The greater is N, the better is the fit, but the farther the far-field is from the 

front. The lowest z at which the asymptotic solution can be accurately computed using AT terms 

is given by 

\l + (a-l)/N\2\-N/z\ = l. 

That is 
(N-1 + Re(a)f +Im(af 

z = • N 

The lowest z for which the derivative of the asymptotic solution can be accurately computed up 

to the JV6 term is given by 

|1 + (a - l)/N\\l + a/N\\- N/z\ = 1, 

or 

z = N\] . 2a-l a(a-l) 1+ + v ' 
N N2 

The appropriate z0 at which the asymptotic expansion of the Tricomi function and its derivative 

are accurate with at least N terms (this criterion will mark the far-field) is 

z 0 = y V m a x 1 + a-\ 
N 

1 + a-1 
N 

1 + 

If the transformation of the endpoint of the front gives a z = 2K//l that is greater or equal to z 0 

(the wavenumber being high enough or the slope small enough to locate the endpoint in the far-

field), then the boundary conditions are directly computed by the far-field expansion (A. 5, A. 7). 

Otherwise, if z is small enough (near-field), the characteristic solutions of the expansion about 

the singular point are used with the appropriate matching to the far-field boundary conditions. 

Again, the asymptotic expansion applies to a case where the slope stretches indefinitely. 

In the case of an horizontal bottom away from the endpoint of the front, z 0 is reset as the 
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location of the foot of the ridge. After this point, the left-hand side of the continuity equation 

(1.11) is zero. Thus the off-ridge pressure perturbation field is simply exponentially damped: 

Thus p is a constant beyond the foot of the ridge, say unity, and q=0. The boundary conditions 

at z=z0 are now p-\, q=0. 

An overlap region between the far-field and the near-field domains does not necessarily 

exist for all values of a; z may be neither small enough to be located in the near field, nor large 

enough to be in the farfield. The boundary conditions are computed by use of analytical 

continuity, with a chain of matching points relating intermediary expansion solutions about 

ordinary mid-field points to the asymptotic solution and its derivative (or to the flat bottom 

solution) at the point z0: 

where zN is chosen as the endpoint of the front if greater than one (say in the mid-field), or, if 

the endpoint of the front is in the near-field, zN is chosen as unity and independent solutions of 

the expansions about z0 are matched to the solutions at zN=l, before their evaluation at the 

endpoint of the front. 

For an expansion about the ordinary point z, of the mid-field, let x=z-zt. The ordinary 

differential equation for p becomes 

pcce z>z0. 

(p,q)M^> (p,q)(zi )->•••-> (p,g)(zN) 

(x + z, )p" + ( l - zt -x)p'-ap = 0, 

and the one for q becomes 

(x + zt )q" + (2 - z, - x)q' -(a+ l)q = 0. 

The series expansions for p and q are 

anx ,n 

The substitution of p in its ordinary differential equation leads to 



0 = X(* + Z,X"(W-l)x"~2 + £ (l - x - z,)annx"~x - a]Ta n x 

n=0 n-0 n=0 

n=2 n=\ n=0 

= X [(" + 2)(« + l)ztan+2 +(n +1)(« +1 - z, )aH+1 - (n + or)a„ ]x 

The validity for any x in the neighborhood of z, requires the indicial equation: 

a = (" + « K - (» + +1 - -g/ K + i ( w > 0 ) 

fl+2 (w + l)(« + 2)z, 

Similarly for we get 
0 = £ [(n + 2){n + l)z,A, + 2 + (it +1)(« + 2 - z, K + 1 - (« +1 + ]: 

n=0 

and its indicial equation is 
K = q(zi\ 

a/?(z,.) + (z,-l)tf(z,.) 
* i = : > 
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APPENDIX B 

This section contains the subroutines pertaining to the search for eigenvalues in the complex plane. 

The main file must look like: 

#include <stdlib.h> 
#inolude <stdio.h> 
#include <math.h> 
void main (), scant); byte bissect2(), recorditO; int isgn() ; 
void main() 
{ int m, 1; FILE *res; 
res= fopen("result.txt","a+"); initialise(); //configure the model 
for(K=6.; K<=9.5; K+=.2) { 

File. count=0; update () ; scan () ; 
for(m=0;m<File.count; m++) fprintf(res,"%7.4f,%12.6e,%12.6e,%12.6e\n", 

K, File.table[m].x, File.table[m].y, File.score[m]); 
} 
fclose(res); 

> 

// new types are defined 
typedef unsigned short byte; 
typedef struct POINT (float x,y;} point; typedef point *p_point; 
typedef struct SIGNS (int r, i;} signs; typedef signs *p_sign; 
// global variables 
byte ALERT; short F; float W, EPS=l.e-7F; point GRID; 
struct ARCHIVES (int count; double K; point table[MX]; float score[MX];} File; 
The subroutine scan runs over a given rectangular domain of the complex domain to fill, for a 
given frequency, an array of signs for the real and imaginary parts of the dispersion function at 
different values of growth rate. When the array is filled or the lower bound is reached or 
computational hassles are signaled by the flag ALERT, a new array is filled at a nearby 
frequency. At every level, signs are compared with the previous level and those of the previous 
array. When simultanous sign changes occur, a bidimensional bissection technique is applied. 
Finally the second array is transferred to the first and scanning is reiterated. 
#define maxi 40 //allowed size of arrays 
void scan() 
{ float wr, wi, wrd, w=.95F, x, y, ro, border, top, dwr, dwi; 

int i , j , count; dcomplex z; signs a[maxi], b[maxi]; short int k, 1; 
ro=(float)Ro;//Rossby # 
top= 0.01235F; y= 0.0115F;//upper and lower growth rates (example) 
wr= w*ro; border= -w*ro;//upper and lower frequency bounds 
ALERT=0; z=dispersion(wr, top); wi=top; 
b[0].r= isgn(z.r); b[0].i= isgn(z.i); // get signs of dispersion function 
if(!b[0].rs&!b[0].i) recordit(wr,wi); 
for (i=l; i<maxi; i++) {//a f i r s t array i s computed 
wi*= w; z=dispersion(wr, wi);//decrease exponentially the growth rate 
if(!ALERTCSwi>=y) { 

b[i].r=isgn(z.r); b[i].i=isgn(z.i); 
if(!b[i].r&£!b[i].i) recordit(wr,wi);//directly on a root 

} else {count=i;break;} 
} 
if(!ALERT) count=maxi; 
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while (wr>border) {// next array i s computed 
dwr=GRID.x=fabs(wr)?(fabs(wr)>ro/35 ? fabs(wr)/15 : fabs(wr)) : ro/35; 
wrd= wr-dwr; ALERT=0; z=dispersion(wrd, top); wi=top; 
a[0]=b[0]; b[0].r= isgn(z.r); b[0].i= isgn(z.i); 
if<!(b[0].r||b[0).i)) recordit(wrd,wi); 
for (i=l; i<count; i++) { 
GRID.y= dwi=wi/20; wi*=w; 
z«dispersion(wrd, wi); a[i]=b[i]; 
i f ( ! ALERTS&wi>=y) { 

b[i].r==isgn(z.r); b[i].i=isgn(z.i); 
if(b[i].r||b[i].i) < 

j - i - l ; 
lc=abs (b[j] .r+b[i] .r+a[i] .r+a[j] .r) ; 
l=*abs (b[j] -i+b[i] .i+a[i] .i+a[j] .i) ; 
if(k<3&&l<3) {//check for simultaneous changes of signs 

if<(a[j].r||ati).i)S&(a[i].r||a[i].i)&S(b[j].r||b[j].i>) { 
F=0; bissect2(Sb[i],£b[j],«a[i],Sa[j],fiwrd,Swi,dwr,dwi); 

} 
} 

} else recordit(wrd,wi); / / d i r e c t l y on a root 
ALERT=0; 

} else {covint=i;break; } / / i f ALERT occurs 
} /*end for*/ 
wi=top*pow(w,count-l)///decrease exponentially the growth rate 
if(!ALERT) for (i=eount; i<maxi; i++) { 

wi*=w; z= dispersion(wrd,wi); 
if(!ALKRT&&wi>y) { 

b[i].r=isgn(z.r); b[i].i=isgn (2.i); 
if(!b[ij.rfi&«b[i].i) recordit(wrd,wi); 

} else { covint=i;break; } 
} 
wr= wrd; 

) 
} #undef maxi 

byte recordit(wr, wi) 
The subroutine accepts or rejects a new root, compares, and then stores it in a global array. 
float wr, wi; 
{ double score; int i ; byte found; 
score= DCabs(dispersion(wr,wi)); 
i= File.count-1; found= (score<.5) ? 2 : 0;//check i f i t i s a pole 
while(i>=0 && fovjnd==2) {// compare with previous roots 
i f ( fabs(File.table[i] .x - wr) <= GRID.x && 

fabs(File.table[i]-y - wi) <= GRID.y ) { 
if(score<File.score[i]) { 

File.table[i].x=wr; File.table[i].y=wi; File.score[i]=score; found= 1; 
} else found= 0; 

} — i ; 
} 
i f (found=2) {//store i n an array 

File.table[File.count].x= wr; File.table[File.count].y= wi; 
File.score[File.count]= score; ++File.count; 

} 
i f (File. count—MX) { char c; printf ("Pause: MX\n") ; scanf ("%c" ,c) ; } 
return (found!=0); 

> 

byte bissect2(ul, dl, ur, dr, x, y, dwr, dwi) 
The subroutine bissect2 is a recursive scheme applying a bissection in two dimensions. The 
inputs are pointers to the signs found at the upper left, lower left, upper right and lower right 
corners of the grid, the pointers to given midpoints and grid size lengths. The global variable F 
indicates if it shall be an horizontal or vertical bissection. 
p_sign ul, ur, dl, dr; float dwr, dwi, *x, *y; 



{ signs a, b; float w; 
static dcomplex z; static short int k, 1 ; if(!F) F=l; 
i f (F===l) { // bissect v e r t i c a l l y 
dwi/=2; w=*y; w+=dwi; W=*x; W+=dwr; 
z= dispersion(*x,w); a.r= isgn(z.r); a.i= isgn(z.i); 
if('ALERT) (if(>(a.r||a.i)) (recordit(*x,w); goto END;}} else goto END; 
z= dispersion(W,w); b.r= isgn(z.r); b.i= isgn(z.i); 
if(!ALERT) (if(!(b.r||b.i)) (recordit(W,w); goto END;}} else goto END; 
// upper part 
k=abs(ul->r+ur->r+a.r+b.r); l=abs(ul->i+ur->i+a.i+b.i); 
if(k<4&&l<4) {//Bissect2 i s reapplied on upper h a l f - c e l l , 

if(dwr>EPS*max(fabs(*x),6RID.x)) {//horizontal bissection. 
F=-l; bissect2(ul,&a,ur,Sb,x,Sw,dwr,dwi); F=l; 

} else ( dwi > EPS*max(w,GRID.y))//vertical bissection. 
? bissect2(ul,&a,ur,&b,x,£w,dwr,dwi): recordit(*x,w); 
) 
// lower part 
k=abs(dl->r+dr->r+a.r+b.r); l=abs(dl->i+dr->i+a.i+b.i); 
if(k<4&&l<4) {//Bissect2 i s reapplied on lower h a l f - c e l l , 

if(dwr>EPS*max(fabs(*x),GRID.x)) {//horizontal bissection. 
F=-l; bissect2(&a,dl,Sb,dr,x,y,dwr,dwi); F=l; 

} else ( dwi > EPS*max(*y,GRID.y))//vertical bissection. 
? bissect2(&a,dl,£b,dr,x,y,dwr,dwi): recordit(*x,*y); 

} 
} else { // bissect horizontally ( F==-l ) 
dwr/=2; w=*x; w+=dwr; W=*y; W+=dwi; 
z- dispersion(w,*y); a.r= isgn(z.r); a.i= isgn(z.i); 
if{!ALERT) {if(!(a.r||a.i)) {recordit(w,*y); goto END;}} else goto END; 
z«= dispersion(w,W) ; b.r= isgn(z.r); b.i= isgn(z.i); 
if(!ALERT) {if(?(b.r||b.i)) (recordit(w,W) ; goto END;}} else goto END; 
// l e f t part 
k=abs(ul->r+dl->r+a.r+b.r); l=abs(dl->i+ul->i+a.i+b.i); 
if(k<4&&l<4) {//Bissect2 i s reapplied on l e f t h a l f - c e l l , 

if(dwi>EPS*max(*y,GRID.y)) {//vertical bissection. 
F=l; bissect2(ul,dl,sa,Sb,x,y,dwr,dwi); F=-l; 

} else { (dwr>EPS*max(fabs(*x),GRID.x))//horizontal bissection. 
? bissect2(ul,dl,&a,&b,x,y,dwr,dwi): recordit(*x,*y);} 

} 
// right part 
k=abs(dr->r+ur->r+a.r+b.r); l=abs(ur->i+dr->i+a.i+b.i); 
if(k<4&&l<4) {//Bissect2 i s reapplied on right h a l f - c e l l , 

if(dwi>EPS*max(*y,GRID.y)) {//vertical bissection. 
F=l; bissect2(&a,Sb,ur,dr,Sw,y,dwr,dwi); F=-l; 

} else { (dwr>EPS*max(fabs(w), GRID.x))//horizontal bissection. 
? bissect2(Sa,&b,ur,dr,Sw,y,dwr,dwi): recordit(w,*y);} 

} 
} 
END: if(ALERT) printf("ALERT"); 
return; 

} 

int isgn(x) 
double x;{ return (x>0.) ? 1 : {(x<0.) ? - 1 : 0 ) ; } 
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This section contains the subroutines pertaining to the calculation of the dispersion function. 
They use predefined functions for complex arithmetics: 
double Pyth(a,b); // Euclidean norm of a vector handling unbounded numbers 
double DCabs(); // same function as cabs(), but i t uses Pyth(). 
dcomplex dcmplx(); // convert two doubles to a dcomplex number 
dcomplex DCadd(); // add two dcomplex numbers 
dcomplex DCsub(); // substract second dcomplex number from f i r s t 
dcomplex DCmul(); // multiply two dcomplex numbers 
dcomplex DCdiv(); // divide f i r s t dcomplex number by second 
dcomplex RDCdiv(); // divide double by dcomplex 
dcomplex RDCmulO; // multiply double by dcomplex 

The computing subroutines are simplified by defining structure types and constants: 
typedef struct DCOMPLEX < double r, i ; } dcomplex; 
typedef struct PQ {dcomplex p, q;} pq; 
typedef dcomplex matrix[5][5]; typedef matrix *p_mat; 
typedef dcomplex eigensol[3][2][3]; typedef eigensol *p_sol; 
const dcomplex ZERO={0.,0.},ONE={l.,0.}; const pq P_Q,={1. ,0. ,0. ,0. } ; 
Macros for fast inversion or reflection of dcomplex: 
dcomplex CXI, CX2, CX3, CX4; double AT, BT; 
#define SQRNRM(a) (CXl=(a), CXI.r*CX1.r+CXl.i*Cl.i) 
#define CINV(a)(CX2=(a),AT=SQRNRM(CX2),dcmplx(CX2.r/AT,CX2.i/AT)) 
#define CNEG(a) <CX4=(a), CX4.r=-CX4.r, CX4.i=-CX4.i, CX4) 
Global variables and subroutines declarations: 
double C[2][2], 61, G2, Ri, YY1, YY2, YY3, Ro, K, KK, BB1, BB2, 

ZZla, ZZlb, ZZ2a, ZZ2b, FACTOR, PI; / / I n i t i a l i s e d with the configuration 
dcomplex dispersion(), determinant{), Ll, L2, Bl, B2; 
pqbc(), intermediate() , plateau() , PQ1, PQ.2; 
void matchings () , series (), swapitO, update (), initialise(); 

initialise()//setup the configuration parameters 
{ Ri= 66.; 61=.827;G2=1.12;//Richardson number and slopes 
YY2=5.; YY1=2.333;//distances from front endpoints to ridge feet 

//YYl={0:shelf-break;>0: foot at y=-YYl-YY3} 
//YY2={0:false bottom;>0: foot at y=l+YY2} 
YY3=0; //length of the plateau 
PI=acos(-l.); BB2=BB1=-Ri; BB2/=1.+G2; //prepare modified Richardson numbers 

) 
update()//readjust the Rossby number, the transformations of the path length over the 
plateau (FACTOR) and of the positions of the front endpoints and ridge feet over the 
slopes (ZZla,ZZlb,ZZ2a,ZZ2b)for a new wavenumber K. 
{ double k2; 
k2= 2*K; KK=K*K; Ro=K/(2*Ri); FACTOR=exp(K*YY3); File.K=K; 
if(61>0.) { ZZla= k2/61; ZZlb= ZZla + k2*YYl; } 
if(G2>0.) { ZZ2a= k2*(1.+62)/G2; ZZ2b*= ZZ2a + k2*YY2; } 

> 

dcomplex dispersion(wr,wi) 
This function takes the iterate of the complex frequency and returns a relative value of the 
objective function associated with the dispersion relation. From the set of configuration 
parameters of the model, it infers another set of parameters (see section 1.4 of the thesis). With 
those parameters, it invokes the subroutine BC for the solution of the confluent hypergeometric 
equations which provide the conditions for both front boundaries (unless it is a flat bottom 
case). Also, it invokes the subroutine series to compute the eigenfunctions of the frontal 
equations at half the frontal length. The eigensolutions are returned in the array p(i=l,2; r=l,2; 
j=0,2), where i=l,2 is the layer index, r=l,2 is the BC-tied/free solution index, and j=0,2 is the 
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order of the derivative. The objective function associated with the dispersion relation (in short: 
the dispersion function) is the determinant of the matrix of the system (1.53) renormalized by 
the highest norm from each column and each row, and by the highest element in the last 
addition. In this way, unbounded terms are avoided and the magnitude measures the closeness 
of the iterate to an eigenvalue. When computation is not possible (as in the vicinity of a pole), 
the procedure aborts after modifying the global variable ALERT * from 0 to -1,1,2 or 3. 
float wr, wi; 
inputs: components of the complex iterate of the eigenvalue. The real part is the nondimensional 
Doppler-shifted phase frequency and the imaginary part is the growth rate. 
{ double w, y=.5, rr; dcomplex wl, w2, alpha; 
pq qp; matrix M; int i , j ; 
C[0][0]=C[0][1]=C[1][0]=C[1][1]= 1.; //scale factors of eigensolutions 
ALERT= 0; w= fabs((double)wr); 
i f ( wi<2e-5 SS (fabs(w/Ro-1) < 4e-2 

|| fabs(fabs(w-1)/Ro-1) < 6e-4) ) { ALERT=1; return; } 
// COx,G)2: 
wl= dcmplx((double)wr+Ro,(double)wi); 
w2= dcmplx((double)wr-Ro,(double)wi); 

// px,fi2,Xx,X2: 
Bl= DCmul(wl,wl); Bl.r -=1.; Bl.r*=BBl; Bl.i *=BB1; 
B2= DCmul(w2,w2); B2.r -=1.; B2.r*=BB2; B2.i *=BB2; 
Ll= RDCdiv(-K,wl); L2= RDCdiv(K,w2); 
Ll.r+=Bl.r; Ll.i+=Bl.i; L2.r+=B2.r; L2.i+=B2.i; 
qp= P_Q; 
if(61 != 0.) { //Compute (A>9I) the l e f t boundary conditions. 

alpha=RDCdiv(-l,wl); alpha.r=++alpha.r/2; alpha.i/= 2; 
qp= be(alpha, ZZla, ZZlb, qp); 
if(ALERT=5) printf ("Alert 5 at bc#l for w=(%g, %g) ", wr, wi) ; 

} 
qp.q.r= qp.p.r-2*qp.q.r; qp.q.i= qp.p.i-2*qp.q.i; 
if(YY3 != 0.) qp= plateau(qp); qp.q.r*= K; qp.q.i*= K; 
rr= Pyth(Pyth(qp.p.r,qp.p.i), Pyth(qp.q.r,qp.q.i)); 
PQ1.p.r= qp.p.r/rr; PQ1.p.i= qp.p.i/rr; 
PQl.q.r= qp.q.r/rr; PQl.q.i= qp.q.i/rr; 
qp= P_Q; 
if(G2 != 0.) {//Compute {p2,q2) the right boundary conditions. 

alpha=CINV(w2); alpha.r=++alpha.r/2; alpha.i/«2; 
qp= be(alpha, ZZ2a, ZZ2b, qp); 
i f (ALERT=5) printf ("Alert 5 at bc#2 for w=(%g, %g) " , wr, wi) ; 

} 
qp.q.r= K*(qp.p.r-2*qp.q.r); qp.q.i= K*(qp.p.i-2*qp.q.i); 
rr= Pyth(Pyth(qp.p.r,qp.p.i), Pyth(qp.q.r,qp.q.i)); 
PQ2.p.r=qp.p.r/rr; PQ2.p.i=qp.p.i/rr; PQ2.q.r=qp.q.r/rr; PQ2.q.i=qp.q.i/rr; 
matchings(y, SM);//compute solutions of the coupled system and establish the matrix 

of matching conditions at y=l / 2 . 
for (i=l; i<=4; i++) { 

for (j=l,rr=0.; j<=4; j++) rr=max(Pyth(M[i][j].r,M[i][j].i),rr); 
if(rr>0.) for(j=l;j<=4;j++) { M[i][j].r/=rr; M[i][j].i/=rr; } 

}//rescale rows of the matrix of matching conditions 
return determinant(SM);//its determinant i s the dispersion function 

J 

pq plateau (qp) 
This function modifies the left boundary conditions for a blunt crest using the global variable 
FACTORS exp(K*YY3) 
pq qp; 
{ dcomplex a, b; 
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qp.q.r/= K; a.r=(qp.p.r + qp.q.r)/2; b.r= (qp.p.r - qp.q.r)/2; 
qp.q.i/= K; a.i=(qp.p.i + qp.q.i)/2; b.i= (qp.p.i - qp.q.i)/2; 
qp.p.r= a.r*FACTOR +b.r/FACTOR; qp.p.i= a.i*FACTOR 4-b. i /FACTOR; 
qp.q.r** a.r*FACTOR -b.r/FACTOR; qp.q.i= a.i*FACTOR -b.i/FACTOR; 
return qp; 

) 
void matchings(y, M) 
This subroutine computes the series expanded from the left frontal endpoint at y, and those 
expanded from the right frontal endpoint at 1-y with a swap of indiced parameters. 
double y; p_nvat M; 
{ eigensol p; int k=0; 
series(PQ1, k, y, &p); 

/* B.C.-attached solution on the left*/ 
(*M)[1][1]= p[l][0][0]; (*M)[2][1]= p[l][0][l]; 
<*M)[3][1]= p[2][0][0]; (*M)[4][1]= p[2][0][l]; 

/* free part of solution on the left*/ 
(*M)[1][2]= p£l][l][0]; (*M)[2][2]= p[l][1][1]; 
(*M)[3][2]= p[2][l][0]; (*M) [4] [2]= p[2] [1] [1] ; 
i f (ALERT"=0) { 
k<=l; swapi t(&Bl,6B2);swapit(SLl,£L2); 
series(PQ2, k, y, fip); 

/* B.C.-attached solution on the right*/ 
(*M)tl][3]= CNEG(p[2][0][0]>; (*M)[2][3]« p[2][0][1]; 
(*M)[3][3]= CMEG(p[l][0][0]); (*M)[4][3]= p[l][0][1]; 

/* free part of solution on the right*/ 
(*M)[1][4] = CNEG(p[2][1][0]); (*M)[2][4]= p[2][l][l]; 
<*M)[3][4]= CNEG(p[l][1][0]); (*M)[4][4]= p[l][1][1]; 
swapit(&B1,&B2); swapit(SL1,6L2); 

} 

} 

void swapit(a,b) //swap addresses of indiced parameters 
dcomplex *a, *b; 
{ dcomplex tmp; tmp= *a; *a=»*b; *b= tmp; } 
void series(qp, k, y, p) 
The eigensolutions of the frontal equations are solved by power series, for the global parameters 
KK, Ll, L2, Bl, B2, the boundary conditions enclosed in qp and at a distance y from the boundary 
inside the frontal region. The eigensolutions are returned in the array p(i=l:2;r=0:l;j=0:2), where 
z'=l,2 is the layer index, r=l,2 is the BC-tied/free solution index, and/=0,1,2 is the order of the 
derivative. 
pq qp; int k; double y; eigensol *p; 
{ int r; register int i , j ; unsigned int n, m, Maximum=240; 
eigensol BC; FILE *output; 
double y2, dl, d2, d3, Eps=2e-7, Dl, D2, greatest, biggest; 
dcomplex c l , c2, c3, c4, c5, a[4], b[3], u[4], eqn; pq ode; 

These parameters stay constant inside the subroutine: 
y2=y*y; 
dl= -KK*y; d2= KK*y2; d3= l.-y; 
cl.r= Ll.r+KK; cl.i== L l . i ; 
c2.r= L2.r*y; c2.i»= L2.i*y; 
e3.r= -B2.r*y; c3.i= -B2.i*y; 
c4.r= -Ll.r-KK*d3; c4.i= - L l . i ; 
c5.r= dl-L2.r; e5.i= -L2.i; 
BC[1][0]C0]=qp.p; BC[1][0][l]=qp.q; BC[1][0][2]= ZERO; // BC-linked solution 
BC[1][1][0]=ZERO; BC[1][1][l]=ZERO; BC[1][1][2]= ONE; // free solution 

The BC-linked solution is constructed first (r=0), then the free solution (r=l). 
for (r=0; r<2; r++) { 
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ode.p.r= el.r*BC[l][r][0].r-cl.i*BC[l][r][0].i+BC[l][r][1].r-2*r; 
ode.p.i>= cl.r*BC[l][rj[0].i+cl.i*BC[l][r][0].r+BC[l][r][1].i; 

The boundary conditions for the second pressure field: 
BC{2][r][0]= DCdiv(ode.p, Bl); 
BC[2][r][1].r= L2.r*BC[2][r][0].r - L2.i*BC[2][r][0].i 

- B2.r*BC[l][r][0].r + B2.i*BC[l][r][0].i; 
BC[2][r][1].i= L2.r*BC[2][r][0].i + L2.i*BC[2][r][0].r 

- B2.r*BC[l][r][0].i - B2.i*BC[l][r][0].r; 
ode.p= DCmul(L2, BC[2] [r] [1]) ; ode.q= DCmul(B2, BC[1][r][1]) ; 
BC[2][r][2].r= (ode.p.r + KK*BC[2][r][0].r - ode.q.r)/4; 
BC[2][r][2].i= (ode.p.i + KK*BC[2][r][0].i - ode.q.i)/4; 

The 3 next terms of the first series and 2 next terms of the second series: 
a[3].r= C[k][r]*BC[lJ[r][0].r; a[3],i= C[k][r]*BC[l][r][0].i; 
a[2].r= C[k][r]*BC[l][r][1].r*y; a[2].i= C[k][r]*BC[l][r][1].i*y; 
a[l].r= C[k][r]*BC[l][r][2].r*y2; a[l].i= C[k][r]*BC[l]tr][2].i*y2; 
b[2].r= C[k][r]*BC[2][r][1].r*y; b[2].i= C[k][r]*BC[2][r][1].i*y; 
b[l].r= C[k][r]*BC[2][r][2].r*y2; b[l].i= C[k][r]*BC£2][r][2].i*y2; 
(*P)tl][r][0]= DCadd( DCadd(a[l],a[2]), a[3]); 
(*P)[X][r][2]= RDCmul(2./y2, a[l]); 
<*P)tl]Ir][1].r- (2*a(l].r+ a[2].r)/y; 
(*P)tl][r][1].i= (2*a[l].i + a[2].i)/y; 
(*P)12][r][0].r= btl].r+ b[2].r + C[k][r]*BC[2][r][0].r; 
(*P) [2] [r] [0] .i= b[l].i+ b[2].i + C[k][r]*BC[2][r][0].i; 
(*p)[2][r][2]= RDCmul(2./y2, b[l]); 
(*P)[2]tr][l].r= (2*b[l].r+ b[2].r)/y; 
< * P ) [ 2 ] [ r ] ( 2 * b [ l ] . i + b[2].x)/y; 
n=2; biggest= 1/Eps; Dl= n/y; 
while(biggest>Eps && n<Maximum) { 

//compute next terms u n t i l convergence or Maximum terms reached. 
//Dl and D2 are f i r s t and second derivative operators on an n t h power. 

m=n; D2= Dl; Dl= (++n)/y; D2*= Dl; 
a[0].r= m*a[l].r/Dl + ( d.r*a[2].r - cl.i*a[2].i 

- Bl.r*b[2].r + Bl.i*b[2].i + dl*a[3].r )/D2; 
b[0].r= ((o2.r*b[l].r + d2*b[2].r + c3.r*a[l].r - c2.i*b[l].i 

- c3.i*a[l].i)/n)/n; 
a[0].i= m*a[l].i/Dl + ( cl.r*a[2].i + cl.i*a[2].r 

- Bl.r*bt2].i - Bl.i*b[2].r + dl*a[3].i )/D2; 
b[0].i=* ((o2.r*b[l].i + d2*b[2].i + e3.r*a[l].i+c2.i*b[l].r 

+ c3.i*a[l].r)/n)/n; 
(*P) [1] [r] [0] .r +- a[0] .r; (*p) [1] [r] [0] . i += a[0] . i ; 
(*P) II]tr][1]-r += a[0].r*Dl; (*p)tl][r][1].i += aJO].i*Dl; 
(*P) tl]tr][2].r += a[0].r*D2; <*p)[1][r][2].i += afO].x*D2; 
(*P)12][r][0].r += b[0].r; (*p)[2][r][0].i += b[0].i; 
(*P)12]tr]tl]-r += b[0].r*Dl; (*p)[2]tr][1].i += btO].i*Dl; 
(*P)[21[rj[2].r += b[0].r*D2; (*p)[2][r][2].i += b[0].i*D2; 

// s h i f t previous terms 
a[3]= a[2]; a[2]=a[l]; a[l]=>a[0]; b[2]=b[l]; b[l]=b[0]; 

// convergence of series solution are tested i n coupled ODEs. 
u[0].r= d3*(*p)[1][r][2].r; u[l].r= c4.r*(*p)[1][r][0].r 

- c4.iM*p)[l][r][0].i; 
u[2].r= -(*p)[1][r][1].r; u[3].r= Bl.r*(*p)[2][r][0].r 

- Bl.i*(*p)[2][r][0].x; 
u[0].i= d3*(*p)[1][r][2].i; u[l].i= c4.r*(*p)[1][r][0].i 

+ c4.i*(*p) [1] [rj [0] .r; 
u[2].i= -<*p)[1][r][1].i; u[3].i= Bl.r*(*p)[2][r][0].i 

+ Bl.i*<*p)[2][r][0].r; 
for(eqn=ZERO, ode.p=ZERO, i=0; i<4; i++) { 

eqn.r= max(eqn.r, fabs(u[i].r)); ode.p.r += u[i].r; 
eqn.i= max(eqn.i, fabs(u[i].i)); ode.p.i +=u[i].i; 

} 
greatest= Pyth(eqn.r,eqn.i); 
ode.p.r/= eqn.r>0. ? eqn.r : 1; ode.p.i/= eqn.i>0. ? eqn.i : 1; 
biggest= max(fabs(ode.p.r),fabs(ode.p.i)); 
u[0].r= (*p)[2][r][2].r*y; u[0].i= (*p)[2][r][2].i*y; 
u[l].r= c5.r*(*p)[2][r][0].r - c5.i*(*p)[2][r][0]-i; 
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u[l].i=* c5.r*(*p)[2][r][0].i + c5.i*(*p)[2][r][0].r; 
u[2].r= (*p)[2]tr][1].r; u[2].i= <*p)[2][r][1].i; 
u[3].r= B2.r*(*p)[1][r][0].r - B2.i*(*p)[1][r]t0].i; 
u[3].i= B2.r*(*p)[1][r][0].i + B2.i*(*p)[1][r][0].r; 
for(eqn=ZERO, ode.q=ZERO, i=0; i<4; i++) { 

eqn.r= max(eqn.r, fabs(ufi].r)); ode.q.r += u[i].r; 
eqn.i= max(eqn.i, fabs(u[i].i)); ode.q.i += u[i].i; 

} 
greatest^ max(greatest, Pyth(eqn.r,eqn.i)); 
ode.q.r/= eqn.r !=0. ? eqn.r : 1; ode.q.i/== eqn.i !=0. ? eqn.i : 1; 
biggest= max(biggest, max(fabs(ode.q.r), fabs(ode.q.i)) ); 
if(max(l.,D2)*DCabs(a[0])<le-15*min(DCabs((*p)[X][r]t0]), 

min(DCabs((*p)tl][r]tl]),DCabs((*p)[1][r][2]))) 
SS max(l.,D2)*DCabs(b[0])<le-15*min(DCabs((*p)[2]tr][0]), 

min(DCabs((*p)t2][r][1]),DCabs((*p)12][r][2])))) break; 
if(greatest>le9) if(y=.5) { 

If any solution becomes very large, then we renormalize each accumulated term by greatest to avoid the 
numeric ceiling. Reseating must be including for any profiling. 

Ctk]tr] /= greatest; 
for(i=l; i<=2; i++) for(j=0; j<=2; j++) 

{ (*p)ti]tr]tj]-r/=greatest; (*p)ti][r][j].i/=greatest; } 
for(j=0; j<=3; j++) {a[j].r /= greatest; a[j]-.i /= greatest;} 
for(j=0; j<=2; j++) {b[j].r /= greatest; b[j].i /= greatest;} 

} 
> 

} 
if(n>Maximum){ALERT=2; printf("Alert:2 too many terms needed");} 

dcomplex determinant(M) 
This subroutine tests solutions for stiffness, computes the determinant and normalises according 
to its greatest entry before the last adding for pole detection. 
matrix M; 
{ double rr, i i , r i , distinct; dcomplex det={100.,100.},ut6],df6],v[6]; 
register int j ; FILE *output; 

of the 
v[0]x 
v[l] = 
v[2] = 
v[3] = 
vt4] = 
vt5] = 

for(j=0, distinct=ri=0.; j < 6; j++) { 
rr=max(fabs(u[j].r),fabs(v[j].r)); ii=max(fabs(u[j].i),fabs(v[j].i)); 
ri= max(ri, max(Pyth(u[j].r,u[j].i),Pyth(vtj].r,v[j].i)) ); 
u[ j] .r+= vt j] .r; u[ j] .i+=v£j] . i ; if(rr=0.) rr= 1.; if(ii==0.) ii= 
distinct= max(distinct, Pyth(uIj].r/rr, u [ j ] . i / i i ) ) ; 

} 
if(distinct<le-6) { // left-hand solutions are s t i f f 

printf("Alert: 3 at determinant (left)"); ALERT9 3; goto END; 
} else if(ri>0.) for(j=0;j<6;j++) { u[j].r/= r i ; u[j].i/= ri;} 

//The f i r s t stage of computation of the determinant M for right series. 

//The f i r s t stage of computation 
u[0]= DCmul(M[l][1], Mt2]f2]); 
u[l]= DCmul(M[3][1], 
ut2]= DCmul(M[l]tl], 
u[3]= DCmul(M[2]II], 
u[4]= DCmul(Mt4][1], 
u[5]= DCmul(M[3]tl], 

Mil]t2]) 
Mt4][2]) 
M[3]t2]) 
M[2][2]) 
Mf4]t2]) 

determinant M for l e f t series 
DCmul(CNEG(MI2]tl]), Mil][2]) 
DCmul(CNEG(Mil][1]), M[3]I2]) 
DCmul(CNEG(MI4][1]), M[l]t2]) 
DCmul(CNEG(Mt3]II]), M[2] 12]) 
DCmul(CNEG(M[2][1]), M[4]I2]) 
DCmul(CNEG(M[4]tl]), M[3]t2]) 

dt0]= DCmul(M[3][3] 
d[l]= DCmul(MC2][3] 
d[2]= DCmul(Mt2][3] 
dt3]= DCmul(M[l]13] 
d[4]= DCmul(M[l]f3] 
d[5]= DCmul(M[l]13] 

M[4]t4]); v[0]= DCmul(CNEG(M[4]13]), M[3][4]) 
Mt4][4]); vtl]= DCmul(CNEG(M[4][3]), M[2]t4]) 
Mf3][4]); vf2]= DCmul(CNEG(M[3][3]), M[2]t4]) 
M[4][4]); v[3]= DCmul(CNEG(M[4][3]), M[l][4]) 
Mt3][4]); v[4]= DCmul(CNEG(M[3][3]), M[l][4]) 
M[2][4]); v[5]= DCmul(CNEG(M[2][3]), Mtl]f4]) 

for(j=0, distinct=ri=0.; j < 6; j++) ( 
rr=max(fabs(d[j].r),fabs(vtj].r)); ii=max(fabs(dtj].i),fabs(v[j] 
ri=max(ri, max(Pyth(d[j].r,dtj]-i),Pyth(vtj].r,v[j].i)) ); 
dtj].r+= vtj].r; d[j].i+= v[j].i; 
if(rr=0.) r r * l . ; if(ii==0.) i i = l . ; 

i)) 
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distinct= max(distinct, Pyth(d[j].r/rr,d[j].i/ii)); 

> 
if(distinct<le-6) {// right-hand solutions are s t i f f 

printf("Alert: 3 at determinant (right)"); ALERT= 3; goto END; 
} else if(riX).) for(j=0;j<6;j++) { d[j].r/= r i ; d[j].i/= ri;} 

//'the second stage involves products of minors 
for(j=0; j<6;j++) v[j]= DOnul(u[;j] ,d[j]) ; 

// l a s t stage: the determinant i s summed then normalised 
det=> ZERO; ii= rr= 0.; 
for(j=0; j<6;j++) { det.r+= v[j].r; rr= max(rr,fabs(v[j].r)); } 
for(j=0; j<6;j++) { det.i+= v[j].i; ii= max(ii,fabs(v[j].i)); } 
if(rr>0.) det.r/=rr; else det.r= 0.; if(ii>0.) det.i/=ii; else det.i= 0.; 

END: return det; 
} 

pg be(alpha, z, zz, qp) 
Compute the pressure field and its derivative (p,q) over the slope beyond the front through a chain of 
expansions and matchings from the ridge foot (zz) to the front endpoint (z). 
dcomplex alpha; double z, zz; pq qp; 
{ double y, x; 
y= 1.+max(l.,fabs(alpha.r)); //the expansion stepsize i s adapted to alpha 
x= -rain ( 2 2 - 2 , zz/y) ; 
while (zz > z) {//chain of intermediate expansions and matchings u n t i l the front 

endpoint, zz i s the renewed expansion point. 
qp= intermediate(alpha, fizz, Sx, qp); 
x=-min(zz-z,2*fabs{x)); //next expansion t r y a greater stepsize 

} 
return cjp; 

> 

pq intermediate(alpha, zz, xx, qp) 
This subroutine computes the expansions of the confluent hypergeometric solutions through the 
midfield. The expansion origin is addressed by zz and the (negative) step is addressed by xx. qp 
holds the boundary conditions at the expansion origin and will receive the expanded solutions at 
the next point. The relative accuracy is tested in the ODE. If it is not sufficient, then the 
separation is halfed and the process restarts with a modified stepsize. 
dcomplex alpha; double *zz, *xx; pq qp; 
{ double xz, xxz, xzn, xxzn, x, z, z i , z i l , fa, fb, fc, f, g, h, 
eqr, eqi, norm, eqmx, Eps=2e-7, Inf=le50; 
dcomplex nalpha, nlalpha, n2alpha, p, q, r, a[3], b[3], c[3], u, v, w, eqn; 
register int n2, nl2; 
z- *zz; x=s *xx; 

BEGIN: 
zi= z+x; xz= x/z; xxz= x*xz; zil= l . - z i ; 
p= qp.p; q= qp.q; u= DCmul(alpha, p); 
r.r= (u.r + (z-1.)*q.r)/z; r.i= (u.i + (z-1.)*q.i)/z; 
nalpha= alpha; nlalpha.r= l.+alpha.r; n2alpha.r= 2.+alpha.r; 
nlalpha.i= n2alpha.i= alpha.i; 
u= DCmul(nlalpha,q); 
a[0]=p; a[l].r=x*q.r; a[l].i=x*q.i; 
b[0]=q; b[l].r=x*r.r; b{l].i=x*r.i; 
c[0]=r; c[l].r=xz*(u.r+(z-2.)*r.r); c[l].i=xz*(u.i+(z-2.)*r.i); 
p.r+=a[l].r; q.r+= b[l].r; r.r+=c[l].r; 
p.i+= a[l ] . i ; q.i+= b[ l ] . i ; r.i+= c [ l ] . i ; 
nl2= n2= 2; 
fa=l.-z; fb=2.-z; fc=3.-z; eqmx= 1/Eps; 
while( eqmx > Eps && n2 < 30 ) { 
xzn= xz/n2; xxzn= xxz/nl2; 
u.r= a[0].r*nalpha.r - a[0].i*nalpha.i; 
u.i= a{0].i*nalpha.r + a[0].r*nalpha.i; 
v.r= b[0].r*nlalpha.r - b[0].i*nlalpha.i; 



v.i= b[0].i*nlalpha.r + b[0].r*nlalpha.i; 
w.r= c[0].r*n2alpha.r - c[0].i*n2alpha.i; 
w.i= c[0].i*n2alpha.r + o[0].r*n2alpha.i; 
f*=fa*xzn; g=fb*xzn; h=fc*xzn; 
a[2].r= xxzn*u.r - f*a[l].r; a[2].i= xxzn*u.i - f*a[l].i; 
b[2].r= xxzn*v.r - g*b[l].r; b[2].i= xxzn*v.i - g*b[l].i; 
c[2].r= xxzn*w.r - h*c[l].r; o[2].i= xxzn*w.i - h*c[l].i; 
p.r+= a[2].r; q.r+= b[2].r; r.r+= c[2].r; 
p.i+= a[2].i; q.i+=b[2].i; r.i+= c[2].i; 
a[0]=a[l]; a[l]=a[2]; b[0]=b[l]; b[l]=b[2]; c[0]=c[l]; c[l]=c[2]; 
nl2= r»2++; nl2 *<* n2; 
nalpha.r= nlalpha.r; nlalpha.r= n2alpha.r; n2alpha.r= alpha.r + n2 
fa= fb; fb= fc; fc= (n2+l)-z; 
u.r= zi*r.r; u.i= z i * r . i ; v.r= zil*q.r; v.i= z i l * q . i ; 
w.r= alpha.r*p.r-alpha.i *p.i; w.i= alpha.r*p.i+alpha.i *p.r; 
eqn.r= u.r + v.r - w.r; eqn.i= u.i + v.i - w.i; 
eqr= max(max(fabs(u.r), fabs(v.r)), fabs(w.r)); 
if(eqr!=0.) eqr= fabs(eqn.r)/eqr; 
eqi= max(max(fabs(u.i), fabs(v.i)), fabs(w.i)); 
xf(eqi!=0.) eqi= fabs(eqn.i)/eqi; 
eqmx= max(eqr, eqi); norm= DCabs(Pyth(p.r,p.i), Pyth(q.r,q.i)); 
if(norm>=Inf) break; 

} 
if(n2<30 &£ nornKInf) goto END; 

// i t has not converged yet or the solutions have grown too big 
x/=2;// i t w i l l be ret r i e d with smaller stepsize 
if(norm>«=Inf) { qp.p.r/=Inf; qp.p.i/=Inf; qp.q.r/=Inf; qp.q.i/=Inf; } 
goto BEGIN; 

END: 
°P-P'=,P; qp.q= q; *zz= z i ; *xx=x; 
return qp; 

> 


