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Abstract

Noncommutative Prfifer rings appear naturally when one wants to trans-

fer the known results for rings which arise in algebraic geometry (such as

Dedekind, Krull and Priifer, valuation rings ...) to noncommutative rings.

We remove the left-right symmetry condition of the noncommutative Prfifer

rings introduced by Alajbegovic and Dubrovin, and introduce three natural

generalizations, semi-Prfifer rings, right w-semi-Prfifer rings, and right w-

Prfifer rings. We study the relations between the four concepts, and present

the various properties that characterize them. We formulate and prove the

basic facts for those rings (decompositions of such rings; Morita invariants of

these notions; relations with some other notions). A new module-theoretic

characterization of semiprime right Goldie rings is achieved by using the

newly-defined concept of strongly compressible modules. The result is used

to provide new characterizations of semiprime Goldie (prime right Goldie, or

prime Goldie) rings, and right w-semi-Prfifer (semi-Prfifer, right w-Prfifer,

or Prfifer) rings. In particular, the characterization of semiprime Goldie

rings of Lopez-Permouth, Rizvi, and Yousif using weakly-injective modules

is an easy corollary of our results. We also study modules over noncommuta-

tive Priifer rings. It is shown that a module over a noncommutative Prfifer

ring has projective dimension at most one if and only if it is the union of a

well-ordered continuous chain of submodules with each factor of the chain

a finitely presented cyclic module. The result is used to present a charac-

terization of divisible modules with projective dimension at most one over

noncommutative Priifer rings, which generalizes a known result of L.Fuchs.
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Notations

Notations in this manuscript are fairly standard, and may be found in most

graduate level texts on Algebra and Ring Theory. To keep the reader on

track, we will introduce them as required. The following two books are our

main references:

1) Rings and Categories of Modules by F.W. Anderson and K.R. Fuller,

and

2) An Introduction to Noncommutative Noetherian Rings by K.R.

Goodearl and R.B. Warfield. Jr.

We will feel free to use the results in the two books whenever we have

such a demand.

Throughout this manuscript, a ring R will mean a nonzero associative

noncommutative ring with an identity. And all modules are unitary. The

notation MR (or RM) indicates that M is a right (or left) module over a

ring R. Given a module MR, we will denote by E(MR) the injective hull

of the module MR. For a subset X of a right R-module M, the annihilator

right ideal of X in R is denoted by X', i.e., X' = {r E R : xr = 0 for all

x E X}. Similarly, for a left R-module RN and a subset Y of N, we denote

the annihilator left ideal of Y in R by 1 Y. In particular, we write x -l- (or 'y)

to indicate {x} -1- (or '{y}).

Mod-R^the category of all right R-modules

R-Mod^the category of all left R-modules

C^proper inclusion



Notations^ v

N^the set of positive integers

Z^the set of integers

End(M)^the ring of all module endomorphisms of a module M

Z(MR )^the singular submodule of a module MR

T(M)^the torsion submodule of a module M

T(M)^the trace ideal of a module M

M*^the dual module of a module M

dim(M)^the Goldie dimension of a module M

Pd(M)^the projective dimension of a module M

mu)^the direct sum of I copies of M

M(n)^the direct sum of n copies of M

Mn (R)^the n by n matrix ring over a ring R

Rad(R)^the Jacobson radical of a ring R

CR(0)^the set of all regular elements of R

Qrd(R)^the classical right quotient ring of a ring R (if it exists)

Q ict(R)^the classical left quotient ring of a ring R (if it exists)

Q c/(R)^the classical quotient ring of a ring R (if it exists)



Notations^ vi

ACC^the ascending chain condition

0^tensor product

Ext^the extension functor
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Introduction

Priifer domains form an important and much-studied class of integral do-

mains in Commutative Algebra. With Dedekind domains, valuation domains

and Krull domains, they constitute the main objects of study in the Multi-

plicative Theory of Ideals. The importance of the class of Priifer domains

lies mainly in: 1) Priifer domains have an origin in Algebraic Number The-

ory. The rings of integers of finite algebraic number fields, which are the

main objects of study in Algebraic Number Theory, are Priifer domains. 2)

Priifer domains have tight connections with Dedekind domains and valua-

tion domains. In fact, the class of Dedekind domains is precisely the class of

Noetherian Priifer domains; and a Priifer domain can be characterized as an

integral domain such that the localization of it at any prime (or maximal)

ideal is a valuation domain. 3) The lattice of all ideals of a Priifer domain

possesses many beautiful arithmetics. For example, an integral domain is a

Priifer domain if and only if A(B fl C) = AB fl AC for all ideals A, B, C of

R if and only if A fl (B + C) = An B + A fl C for all ideals A, B, C of R.

In the past twenty years, the study of the noncommutative analogues of

Dedekind domains, valuation domains and Krull domains has been a fasci-

nating area of study in ring theory. And many results have been obtained

on the various generalizations of them to noncommutative cases, e.g., Asano

orders, Dedekind prime rings, hereditary Noetherian prime rings, chain rings,

Dubrovin valuation rings, Chamerie Krull rings, Marubaynshi Krull rings, fl-

Krull rings, and others. It is from the abundance of the study of these objects

and the close relations between Priifer domains, Dedekind domains, valua-
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tion domains and Krull domains that one sees the need for an introduction

of noncommutative analogues of Priifer domains.

Let R be an integral domain with field of quotients Q. An R-submodule

I of Q is said to be a fractional ideal of R if dI C R for some 0 d E R. For

each fractional ideal I of R, define I - = {q E Q : qI C R}. Then I is said

to be invertible if I - I = R. We call an integral domain R a Priifer domain

if every nonzero finitely generated (f.g. for short) ideal of R is invertible.

Priifer domains can be characterized as any commutative rings with the

property that each nonzero f.g. ideal is a progenerator, or is projective,

or is a generator. This large selection of attributes suggests many possible

generalizations to noncommutative cases, and at the same time raises the

difficulty of the best choice among such numerous generalizations. In 1990,

Alajbegovic and Dubrovin defined a noncommutative (right) Priifer ring as

a prime Goldie ring such that / -1/ = R and II' = 00) for every f.g.

fractional right ideal I of R, where 0/(/) = {q E Q c/(/) : qI C I} and

/' {q E Qd(R) : IqI c I}. Among the properties of noncommutative

Priifer rings, they show that the concept of a noncommutative Priifer ring is

a left-right symmetric concept; the notion is a Morita invariant, and every

noncommutative Priifer ring is Morita equivalent to a (noncommutative)

Priifer domain. They also note that the class of noncommutative Priifer

rings contains the classes of prime Dedekind rings, Dubrovin valuation rings,

and commutative Priifer domains.

The present manuscript is devoted to continuing the study of noncom-

mutative Priifer rings. We first observe that a noncommutative Priifer ring

can be characterized as a prime Goldie ring R such that every nonzero f.g.
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submodule of a progenerator of Mod-R is a progenerator. The nature of the

characterization brought our interests to noncommutative Prfifer rings. We

note that the generalized discrete valuation ring of H.H.Brungs (see [5]) and

the skew polynomial rings (see the example in §2.1, of Chapter 2) provide

examples of prime right (but not left) Goldie rings satisfying the same prop-

erty as above. The observation leads us to remove the left-right symmetric

condition of noncommutative Prfifer rings and to consider more general def-

initions where the conditions of being a prime ring, being a Goldie ring are

replaced by a semiprime ring, by a right Goldie ring respectively.

The manuscript is organized into four chapters. Chapter 1 summarizes

certain basic concepts and theorems in ring theory which are needed in the

sequel. Since they are all well-known and easy to find for reference, the proofs

of most of them are omitted.

In Chapter 2, we introduce three generalizations of noncommutative Prfifer

rings, semi-Prfifer rings, right w-semi-Prfifer rings, and right w-Priifer rings.

We study the relations between the four concepts, and present the various

properties that characterize them. We formulate and prove the basic facts for

those rings (decompositions of such rings; Morita invariants of these notions;

relations with some other notions).

In Chapter 3, a new module-theoretic characterization of semiprime right

Goldie rings is achieved by using the newly-defined concept of strongly com-

pressible modules. The result is used to provide new characterizations of

semiprime Goldie (prime right Goldie, or prime Goldie) rings, and right w-

semi-Prfifer (semi-Prfifer, right w-Prfifer, or Prfifer) rings. In particular, the

characterization of semiprime Goldie rings of Lopez-Permouth, Rizvi, and
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Yousif using weakly-injective modules is an easy corollary of our results.

Chapter 4 is provided to study modules over noncommutative Priifer

rings. The study is motivated by the work of L.Fuchs on modules over valu-

ation (or Priifer) domains (see [13]). We give a characterization of modules

of projective dimension at most one over noncommutative Priifer rings, and

present a structure theorem of divisible modules with projective dimension

at most one over noncommutative Priifer rings, which generalizes a known

result of L.Fuchs.
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1 The Preliminaries

This chapter is provided to review a number of basic concepts and some

important results from ring theory, which will be used throughout the sequel.

The proofs for most results are omitted, since they can be found in the

standard texts in ring theory, such as [2] and [18].

Essential extensions and singular submodules

An essential submodule of a module M is any submodule N which has

nonzero intersection with every nonzero submodule of M. We write N < e M

to denote this situation, and we also say that M is an essential extension of

N.

Proposition 1.1 (a) Let N be a submodule of a module M, and let f :

P —÷ M be a homomorphism. If N <, M, then f -1 (N) <, P.

(b) Let N be a submodule of a module M, and P a submodule of M which

is maximal with respect to the property P fl N = 0. Then N f P <, M and

(N E P)/P < e M/P. ^

The singular submodule of a module MR is defined by Z(MR ) = {x E M :

<, RR}. Since Z(MR) is a fully invariant submodule of M, the right

singular ideal Z(RR ) is an ideal of R. If Z(MR ) = 0 then M is called a non-

singular module. The ring R is called a right non-singular ring if Z(RR) = 0.

A right and left non-singular ring is called a non-singular ring.
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Orders and quotient rings

A regular element in a ring R is any non-zero-divisor, i.e., any element

x E R such that xi = lx --= 0. We will denote by CR(0) the set of all regular

elements of R.

Definition 1.1 Let Q be a ring. A right order in Q is any sabring R C Q

such that

(a) every regular element of R is invertible in Q;

(b) every element of Q has the form ab-1 for some a E R and some

b E CR(0).

A left order is defined analogously, and a left and right order is called an

order.

Definition 1.2 Let R be a ring. A classical right quotient ring, denoted by

Q cri (R) if it exists, is any overring Q D R such that R is a right order in Q.

A classical left quotient ring is defined analogously, and a classical left and

right quotient ring is called a classical quotient ring.

In Asano [3] it is shown that Qrd (R) exists if and only if R satisfies the right

Ore condition, i.e., for any a E R and any c E CR(0) there exist b E R and

d E CR(0) such that ad = cb (a right (or left) Ore ring is any ring satisfying

the right (or left) Ore condition). When both Qrd (R) and Q ici (R) exist, we

have Q cri (R) 2=2 (2,1 / (R). This occurs only when R is an order. We will denote

by IQ d(R) the classical quotient ring of R (if it exists). Another basic fact is

that the classical right quotient ring (if it exists) is unique, up to isomorphism

(see [18, Cor.9.5, P146]).
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Lemma 1.1 Let R be a right order with Q = Qra (R) and let S be an overring

of R, i.e., R C S C Q. If I is a right S-submodule of Q such that I contains

a regular element of R, then Homs(Is, Ss) = {o : q E Q, qI C S}, where

o-9 : I —.-. S is a S-homomorphism defined by a q (x) = qx.

Proof. For each q E Q with qI C S, it is easy to see that o-q is a S-

homomorphism. Suppose 0: I --> S is a S-homomorphism. Let s E I be

a regular element of R. For each x E I there exists a regular element t of

R such that xt E R. Now, by the right Ore condition, there exist a E R

and u E CR(0) such that sa = xtu. Then 0(x)tu = cb(xtu) = cb(sa) =

cb(s)a = cb(s)s'sa = cb(s)s -ixtu, which implies c¢(x) = cb(s)s -lx = o-q (x)

with q = 0(s).9 -1 satisfying qI C S. ^

Goldie rings and Goldie Theorems

A right annihilator in a ring R is any right ideal I of R such that I = X±

for some X C R. Left annihilators are defined in a similar way. Note that a

right ideal I is a right annihilator if and only if I = (I I)1.1) -L

A module MR is called finite-dimensional (or in other words, MR has finite

Goldie dimension) if M does not contain an infinite direct sum of nonzero

submodules. In this case, there exists a nonnegative integer n such that M

contains a direct sum of n nonzero submodules, but no direct sum of n -I- 1

nonzero submodules. Such an n is uniquely determined by M. We shall call

this integer the Goldie dimension of MR, and denote it by dim(MR ).

Definition 1.3 A right Goldie ring is any ring R such that RR is finite-

dimensional and R has ACC on right annihilators.
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Proposition 1.2 [Goldie]. Let R be a semiprime right Goldie ring, and let

I be a right ideal of R. Then I is an essential right ideal if and only if I

contains a regular element. ^

Theorem 1.1 [Goldie]. Let R be a ring.

(a) R is a right order in a semi-simple ring if and only if R is a semiprime

right Goldie ring;

(b) R is a right order in a simple Artinian ring if and only if R is a prime

right Goldie ring. ^

Theorem 1.2 Let R be semiprime. Then R is a right Goldie ring if and

only if Z(RR) = 0, and RR is finite-dimensional. ^

Torsion modules and torsionfree modules

Given a module MR, let r(M) {x E M : xr 0 for some r E CR(0)}. If R

is a right order, then r(M) is a submodule of M. In fact, for x, y E r(M) and

r E R, we have xs 0 yt for some s, t E CR(0). By the right Ore condition,

there exist c, d E CR(0), and a ,b E R, such that se = to and ad = rb. Then

we have (x — y)sc xsc — ytd 0 and (xa)d = xrb 0. When T(M) is a

submodule, it is called the torsion submodule of M. If T(M) M, then M

is called a torsion module, and if r(M) = 0, then M is called a torsionfree

module. Clearly Mir(M) is torsionfree for every module MR. If R is a

semiprime Goldie ring, then, because of Proposition 1.2, Z(MR) = T(MR)

for every module MR.
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Theorem 1.3 [Gentile, Levy]. If R is a semiprime Goldie ring and M is a

f.g. torsionfree right R-module, then M can be embedded in a f.g. free right

R-module. ^

Morita equivalences

Given a right R-module M. We let M* = Hom(M, R). The trace of M,

written T(MR), is defined by T(M) = Eff(M) : f E M*}. It is clear that

T(M) is an ideal of R. We now call a right R-module X a generator of the

category Mod-R if the trace ideal T(M) = R. The concept of generator plays

a central role in the study of equivalences between categories of modules.

The following proposition gives a number of important characterizations of

generators.

Proposition 1.3 The following are equivalent for a module X E Mod-R:

(a) X is a generator;

(b) For every M E Mod-R, there is an index set I such that M is a

homomorphism image of X( 1), where V I) is the direct sum of I copies of X;

(c) There exists an n such that R is a homomorphism image of X(n). ^

A module P is called projective if given an epimorphism p : M -->. N, then

any homomorphism f : P ---> N can be factored as f = p o g for some

g : P ---. N. It is well-known that a module PR is projective if and only if P

is a direct summand of a free module if and only if any short exact sequence

0 - f M -+ N -* P --f 0 splits. A very useful criterion for projectivity is

the following proposition which is often called the "dual basis lemma" for

projective modules.



The Preliminaries^ 6

Proposition 1.4 A R-module PR is projective if and only if there exist a

set {x a : a E I} of elements in P and a set {fa : a E I} of elements in P* =-

Horn (P, R), such that for any x E P, fa (x) = 0 for all but finite number of

the fa , and x Eaeix,fot (x)• ^

A module X is a progenerator of Mod-R if and only if X is f.g. projective

and X is a generator of Mod-R.

Definition 1.4 Let F, G be functors from Mod-R to Mod-S. We say there

is a natural isomorphism from F to G, written F G, if there exists

a map that assigns to every module M E Mod-R an isomorphism Om E
Homs (F(M), G(M)) such that for any M, N E Mod-R and any f E

HomR (M, N) the following diagram:

F(M)^G(M)

1F(f)^1G(f)

F(N)^G(N)

is commutative.

Definition 1.5 Two rings R and S are said to be Morita equivalent , written

R S, if there exist functors F : Mod-R^Mod-S and G : Mod-S --+

Mod-R such that GF^FG "-=" 1 mod-s. In this case, F is called a

Morita equivalence and G an inverse equivalence between Mod-R and Mod-S.

Any two rings which are isomorphic are of course Morita equivalent. The fact

that R ti M„,(R), where Mn (R) is the ring of n by n matrices with entries in

R, shows simply that a noncommutative ring may be Morita equivalent to a

commutative ring.
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Theorem 1.4 For two rings R and S, then R^S if and only if S

End(M) for some progenerator M of Mod-R. And in this case, HomR (M, —) :

NR^HOMR(S MR, NR) defines a Morita equivalence between Mod-R and

Mod-S with inverse equivalence — Os M Ps 1-4 P Os M. ^

Theorem 1.5 For two rings R and S, then R ti S if and only if S L'-

eMn,(R)e for some n and some idempotent e of Mn (R) with M7,(R)eM7,(R) =

Mn (R). ^

Any ring property which is preserved under Morita equivalence is called a

Morita invariant. For example, being a semiprime right Goldie ring is a

Morita invariant because any ring Morita equivalent to a semiprime right

Goldie ring is semiprime right Goldie [29, Propo.5.10].

Semihereditary rings

A ring is right (or left) semihereditary if every f.g. right (or left) ideal is

projective. A right and left semihereditary ring is called a semihereditary

ring. An example of a ring which is right but not left semihereditary was

given by Chase [6]. In the following, we introduce a theorem of Small which

presents certain classes of rings for which right semihereditary implies left

semihereditary.

Theorem 1.6 [Small]. Let R be a ring in which every principal right ideal

is projective and in which there is no infinite set of orthogonal idempotents.

Then every right and every left annihilator is generated by an idempotent. In

particular, every principal left ideal is projective.
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Proof. Suppose 0 T S -L . If s E S, then T C si. Thus, T C hR where

h is an idempotent. Now let L be an arbitrary (nonzero) left annihilator.

L -L C gR where g2 = g. But then L = -1- (L -L ) D i (gR) = R(1 — g). Hence,

any left annihilator L contains a nontrivial idempotent. By [2, Ex. 10.11],

we can choose an idempotent e E L such that -Le is minimal amongst the left

annihilators of idempotents in L. We claim -L e fl L = 0. Suppose not. Then

L en L is a nonzero left annihilator which contains an idempotent f 0. Now

e* e+ f — ef is an idempotent in L. Since e*e = e, e* 0 and -L e* Cl e.

However, fe 0 and fe* = f 0. Thus, -L e* g-Le, which contradicts the

minimality of -L e. Hence le fl L 0. Now if x E L, then x — xe E L and

(x — xe)e = 0. Therefore x — xe 0 and L = Re. Finally, if K is a right

annihilator, then -LK = Re where e 2 = e. But, K = = (1 — e)R. ^

Proposition 1.5 A ring R is right (left) semihereditary if and only if Mn (R),

for all n, has principal right (left) ideals projective.

Proof. It is well known that if R is right (left) semihereditary, then so is

111,2 (R).

In the other direction, we must show that any f.g. right ideal, say I

a 1 R + • • • + an,R, is projective. In M„,(R) let x be the matrix (cif ) where

cii = a, and all other entries are zero. Then xM„(R) is projective as a right

M7,(R)-module. But, x111,2 (R) considered as a right R-module (R embedded

in MM (R) in the usual way) is isomorphic to I e••.e I (n times). Thus,

since Mn (R) is R-free, Ie•••e/ is R-projective and I is R-projective. ^

Combining Theorem 1.6 and Proposition 1.5, we immediately obtain
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Theorem 1.7 [Small]. Suppose R is a ring which is right semihereditary

and such that 111,2 (R), for all n, does not possess an infinite set of orthogonal

idempotents, then R is left semihereditary. ^
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2 Noncommutative Priifer rings and some

generalizations

(Noncommutative) Priifer rings were introduced and studied by Alajbegovic

and Dubrovin [1]. Examples of Priifer rings include prime Dedekind rings,

commutative Priifer domains and prime Goldie right (or left) Bezout rings

(cf.[1]. Examples 1.13 and 1.15). Some important properties of Priifer rings

have been demonstrated in the paper of Alajbegovic and Dubrovin (cf.[1] for

details). An observation is that a ring R is a Priifer ring if and only if R is

a prime Goldie ring with the following property (see Proposition 2.1.1):

(P): Every finitely generated essential right ideal of R is a progenerator

of Mod-R. Replacing 'prime Goldie' by `semiprime Goldie', 'prime right

Goldie', and `semiprime right Goldie', respectively, in the above condition,

we introduce three natural generalizations of Priifer ring which are to be

called (right) semi-Priifer ring, right w-semi-Priifer ring, and right w-Priifer

ring respectively (see section 1 for the precise definitions). The main object

of this chapter is to study the relationship between all these rings and to

establish various properties of them.

In section 1, we first give the definitions of three generalizations of Priifer

rings. The four concepts, especially their implication relations, are further

explained by using a known example. The rest of section 1 is used to present

the various properties and characterizations of all these rings. In section 2,

we will present a structure theorem of right w-semi-Priifer rings. " A ring

is a right w-semi-Priifer ring if and only if it is a finite direct sum of right
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w-Priifer rings". Section 3 is devoted to studying Priifer rings and semi-

Priifer rings. We will show that the right semi-Priifer rings are exactly the

left semi-Priifer rings. A structure theorem states that a ring is a semi-Priifer

ring if and only if it is a finite direct sum of Priifer rings. We will pay special

attention to the cases where the Priifer ring R is a Noetherian, bounded,

semiperfect ring respectively. It was proved in [1] that every Priifer ring is

Morita equivalent to a Priifer domain. We will give a stronger result here

which says that every Prfifer ring R can be decomposed as a finite direct

sum of uniform submodules such that the endomorphism ring of each of

these uniform submodules is a Priifer domain which is Morita equivalent to

R. The last result can be used to give a characterization of f.g. torsionfree

modules over a semi-Priifer ring.

2.1 Definitions and properties

Let ring R be a right order with Q = Qrd (R). Given a subset I of Q, we set

Or (I) = {q EQ:IDIO; 01(I) {q E Q : I 2_ qI};

[R :^= {q EQ:RD^[R : = {q EQ:RD qI};

and^I'={EQ:IDIqI}.

A submodule I of QR is called a fractional right ideal of R if I contains a

regular element of Q, and there exists a regular element d of Q with R D dI.

Definition 2.1.1 A semiprime Goldie (semiprime right Goldie or prime

right Goldie or prime Goldie) ring R is called a right semi-Pritler (right

w-semi-Priifer or right w-Priifer, or right Priifer) ring if every finitely gen-

erated (f.g. for short) fractional right ideal I of R satisfies:
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I' I R,^= 00).

The left-sided versions can be defined in a similar way. Clearly every right

Priifer ring is a right semi-Priifer (right w-semi-Priifer or right w-Priifer)

ring, and every right w-Priifer ring is a right w-semi-Priifer ring.

Remark 2.1.1 The definition of a right Priifer ring is due to Alajbegovic

and Dubrovin [1].

Lemma 2.1.1 [32]. If I is a fractional right ideal of a right order R, then

the following are equivalent:

(a) II -1 = 00);

(b) I is a projective right Or (I)-module.

Proof. First we note that given a fractional right ideal I of a right order R,

Or (I) is an overring of R and I is a right O r (I)-module.

(a)^(b). By Lemma 1.1, Homor ( i) (/, Or (/))^{aq : q E Q,qI C

Or(I)} {0 q : q E / -1 1, where for each q E aq : I Or(I) is the

Or (I)-homomorphism defined by o-q (a) qa. Suppose that / is a projective

right Or (I)-module. Then, by the dual basis lemma, there exist {aa : a E

X} C I and {o-qa : a E X} C Homo r (/)(/, Or (/)) such that for any a E

I, o-qa (a) qa (a) = 0 for all but a finite number of the aq,,, and a =

E a Exa ce gq , JO. Choosing a to be regular shows that qa = 0 for all but a

finite number of a. Letting a be arbitrary again, we see that a E,a,q,a =

(Ea aa qa )a. Thus E,„a„qa = 1 E //- 1 and hence // -1 0 / (/).

(a)^(b). Suppose that 0 / (/) = //' Then there exist finite sets

{aa } C I and { qa } C / -1 such that E a a„qc, = 1. Hence E aa,q,a = a. Then
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E,aa o-q„ (a) = a with each aq„ E Homo r(1)(I,0,(I)). Therefore, by the dual

basis lemma, I is a projective right Or (I)-module. ^

Lemma 2.1.2 [1]. If I is a fractional right ideal of a right order R, and

L = [R : 1] 1 , then the following are equivalent:

(a) LI = R;

(b) IR is a generator of Mod-R;

(c) I- 1 I = R.

Any of these conditions implies that Or (I) = R.

Proof. (a) <=> (b). By definition, IR is a generator of Mod-R if and only if

R = T(IR) = Eff(I) : f E HomR(/,R)}. By Lemma 1.1, HomR(I , R) =

fag : q E L}. Therefore we have that IR is a generator of Mod-R if and only

if R= Efaq (/) : q E Ll = Efq/ :q E Ll = LI.

Before proving (b) 4=>. (c), we note the fact that if KI R for some subset

K of Q, then Or (I) = R. In fact, for q E Q with Iq C I, we have KIq C KI,

i.e., Rq C R, and thus q E R. In both cases (a) and (c) we therefore can use

the equality O r (I) = R.

(c)^(a). Now we can take I -1 as K. Using (c), the inclusion Or (I)R C

Or (I) can be written in an equivalent form O r (/)/ -1/ C Or (I). By the

definition of L it follows that Or (/)/ -1 C L, and thus O r (I) C LI, i.e.,

RC LI. Consequently R= LI, and (a) holds.

(a)^(c). This time we can put K = L. Also, from the definitions of

Or (I), and L it follows that LI C I C Or (/). Hence R C I C R,

i.e., (c) holds. Finally, the remark above shows that either of (a), (b), or (c)

implies R O r (I). ^
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Proposition 2.1.1 The following are equivalent for a ring R:

(a) R is a right semi-Priifer (right w-semi-Priifer, or right w-Priifer, or

right Priifer) ring;

(b) R is a semiprime Goldie (semiprime right Goldie, or prime right

Goldie, or prime Goldie) ring, and every lg. fractional right ideal of R is a

progenerator of Mod-R;

(c) R is a semiprime Goldie (semiprime right Goldie, or prime right

Goldie, or prime Goldie) ring, and R has property (P).

Proof. We give a proof only for the case where R is a semiprime right Goldie

ring.

(a) .#>. (b). By Lemma 2.1.1 and Lemma 2.1.2.

(b) (c). Since R is a semiprime right Goldie ring, every essential right

ideal of R contains a regular element of R by Proposition 1.2. Therefore

every f.g. essential right ideal of R is a fractional right ideal.

(c)^(b). Let I be a f.g. fractional right ideal of R. From the definition

of a fractional right ideal, we know that there exist regular elements c and d

of Q such that c E I and dl C R. Then dc E dI , and de is a regular element

of R. Hence dl is a f.g. essential right ideal of R by Proposition 1.2. Then

(c) implies that dI is a progenerator of Mod-R. But we have IR (di )R, so

IR is a progenerator of Mod-R. 0

Example 2.1.1 Let F be a field such that there exists an isomorphism A of

F onto a proper subfield of F. Let R be the abelian group consisting of all

polynomials in x with coefficients from F, with coefficients written on the

right. Define a multiplication in R by using the rule ax" = x"(A"a) for all
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a E F and all n. Then the ring R is a principal right ideal domain, and R is

right Ore but not left Ore [17, Ex.1, P101]. Hence R is right Goldie but not

left Goldie. Therefore we have (a) R is a right w-Pritfer ring; (b) R is not a

left w-semi-Priifer ring; (c) R is not a right semi-Priifer ring.

The example also tells us that being a w-Priifer ring (or a w-semi-Priifer

ring) is not a left-right symmetric concept. Since it will be shown that a

Prfifer ring or semi-Prfifer ring is left-right symmetric and a ring is a semi-

Priifer ring if and only if it is a finite direct sum of Prfifer rings, we have the

following implication diagram:

semi-Prfifer

0(7
^

\s j c

Priifer^right w-semi-Priifer

right w-Priifer

Proposition 2.1.2 Every right w-semi-Prilfer ring is a right and left semi-

hereditary ring.

Proof. Suppose R is a right w-semi-Priifer ring and /R a f.g. right ideal of

R. We have a right ideal J of R which is maximal with respect to I fl J = 0.

And I J = I ED J< e RR. Since R is a semiprime right Goldie ring, I 1ED J

contains a regular element r of R by Proposition 1.2. Write r = a + b, a E I

and b E J, and let K = I ED bJ. Then K is a f.g. essential right ideal of R.

By Proposition 2.1.1 KR is projective, and so is IR. We have shown that R

is a right semihereditary ring. Because the property of being a semiprime
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right Goldie ring is Morita invariant, Mn (R) End(Rn) is a semiprime right

Goldie ring for all n, and thus Mn (R) does not possess an infinite set of

orthogonal idempotents. Hence R is left semihereditary by Theorem 1.7. ^

Lemma 2.1.3 If a ring R is a right w-semi-Priifer ring, then M n (R) is a

right w-semi-Prifer ring for every n.

Proof. Since the property of being a semiprime right Goldie ring is Morita

invariant, Mn (R) is a semiprime right Goldie ring. It is also clear that Mn (R)

is a semihereditary ring because of Proposition 2.1.2 and Theorem 1.7. So it

suffices to show that every f.g. essential right ideal L of Mn (R) is a generator

of Mod-Mn (R). We need some notation: if A is a subset of R, set A[k]

{(az,) E Mn (R) : a z, = 0 Vi k; ak3 E Al. It is easy to see that

L mn (R) = (CiiL)mr,(R) (e22L)Mn (R) e • • • e (en.L)m„(R),

where ekk is the matrix having a lone 1 as its (k, k)-entry and all other

entries 0, and for each k ( 1 < k < n ), there exists a right ideal I k of R

such that (ekkL)m„(R) = Ik [k]. If I is a nonzero right ideal of R, then /[1] is

a nonzero right ideal of Mn (R), so L fl = (I fl ION 0. This implies

that I fl I l 0. Hence /1 is a f.g. essential right ideal of R. By Proposition

2.1.1, /1 is a generator of Mod-R. We know R is Morita equivalent to Mn (R)

via the Morita equivalence G = (— — Omn (R)Rn)R : Mod-Mn (R) —4 Mod-

R. In particular, G((elinmn(R)) (eiiL Omn (R) Rn)R. But we have a

R-homomorphism cb : (eiiL Omn (R) Rn )R^)R which is defined by
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X1

( xn

/ a l . •^an \

0^0
(8) aixi + • •^cin x„.

0^...

Obviously 0 is onto. Since (h )R is a generator of Mod-R, we infer that

(en L mn (R) Rn)R is a generator of Mod-R. Hence (e linmn (R) is a generator

of Mod-Mn (R) by [2, Prop.21.6]. Thus we have L is a generator of Mod-

Mn (R) because en ', is an image of L as right Mn (R)-modules. ^

Lemma 2.1.4 Let R be a right w-semi-Priifer ring, e an idempotent of R

with ReR = R. Then eRe is a right w-semi-Priifer ring.

Proof. Clearly eRe is a semiprime right Goldie ring. Suppose L is a f.g.

essential right ideal of eRe, we want to show that L is a generator of Mod-

eRe. Write L E,(ex ie)eRe. Then L = LeRe = Te, where T LeR is a

f.g. right ideal of R. Clearly T C eR. We claim that TR< e (eR)R . In fact, if

0 er E eR, then erRe 0 since R is a semiprime ring. Hence erRe is a

nonzero right ideal of eRe. Thus erRe fl L 0, i.e., 0 erxe E L for some

x E R. So 0 erxeR C T. Next we show that TR is a generator of Mod-R.

We know ((1 — e)R)R has finite Goldie dimension, and so there exist nonzero

uniform right ideals U, of R such that

u, + • • • +^e • • e uri<e((1 — e)R)R.

We claim U,eR 0 Vi. Otherwise eR C^fR for some idempotent

f E R by Proposition 2.1.2 and Theorem 1.6. Since fR is an ideal, we have

Rf C fR and so (1 — f)Rf = 0. Since R = Rf R(1 — f), it follows
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that R(1 — f) is a two-sided ideal, and hence f R(1 — f) is a right ideal.

Now [fR(1 — f)] 2 0, and R has no nonzero nilpotent right ideals, hence

f R(1 — f) = 0. Given any r E R, we thus have fr(1 — f) = 0 as well as

(1 — f)rf = 0, whence fr = frf rf. Then R. ReR = RIR = Rf, and

this implies that f = 1. Therefore U, = Ui R = 0. The contradiction shows

that UieR 0 Vi. Thus eRUi 0 Vi since R is a semiprime ring. Since

TR < e (eR)R, we have T n eRUi 0. Then 0 (T n eRUi) 2 C eRUT. So

UiT 0 Vi. For each i, choose an ai E Ui such that ct,T 0. Then

ct i T + • • • + anT a i T ED • e anT < e^— e)R)R.

Therefore

T ED a i T e•-e anT <, eRe (1-^=

By Proposition 2.1.1, T Eh a 1 T • • • anT is a generator of Mod-R. Since

each ct,T is an image of TR, we conclude that T is a generator of Mod-

R. To see L is a generator of Mod-eRe, we use the Morita equivalence

HomR(eR, --) : Mod-R Mod-eRe. Since T is a generator of Mod-R, we

have L eRe^(Tie)i eRe^(HomR(eR,TR))eRe (by [2, Prop.4.6]) is a generator

of Mod-eRe by [2, Prop. 21.6]. Finally, since R is a semihereditary ring,

every f.g. submodule of (eR) R is projective. Therefore eRe =HomR (eR, eR)

is a right semihereditary ring by [2, Prop.21.6; Prop.21.8]. ^

Theorem 2.1.1 The property of being a right w-semi-Pritfer (right semi-

Pricier, right w-Pritfer, or right Priifer) ring is a Morita invariant.

Proof. Suppose R is a right w-semi-Priifer ring which is Morita equivalent

to ring S. Then S eM7,(R)e for some n and some idempotent e E Mn(R)
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with M,,(R)eM„(R) = 1117,(R) by Theorem 1.5. By Lemma 2.1.3 and Lemma

2.1.4, S is a right w-semi-Priifer ring. Since the properties semiprime Goldie,

prime right Goldie, and prime Goldie are all Morita invariants, the other parts

follow immediately. ^

Proposition 2.1.3 The ring R is a right semi-Prizfer (right w-semi-Prifer,

or right w-Prizfer, or right Pricier) ring if and only if R is a semiprime

Goldie (semiprime right Goldie, or prime right Goldie, or prime Goldie)

ring and every f.g. essential submodule of each progenerator of Mod-R is a

progenerator of Mod-R.

Proof. One direction is clear by Proposition 2.1.1. Suppose that R is a

right w-semi-Priifer ring. Let PR be a progenerator and NR a f.g. essen-

tial submodule of PR. And set S End(PR). Then we have the Morita

equivalence F = HomR (sPR , --) : Mod-R Mod-S. By [2, Prop.21.6;

Prop.21.8], F(N)s is a f.g. essential submodule of F(P)s = Ss. We know

S is a right w-semi-Priifer ring from Theorem 2.1.1. Hence it follows that

F (N) s is a progenerator of Mod-S from Proposition 2.1.1. Therefore NR is

a progenerator of Mod-R by [2, Prop.21.6; Prop.21.8]. ^

Proposition 2.1.4 The following are equivalent for a ring R:

(a) R is a right w-Pritfer (or right Priifer) ring;

(b) R is a right Goldie (or Goldie) ring and every f.g. nonzero right ideal

of R is a progenerator of Mod-R;

(c) R is a right Goldie (or Goldie) ring and every f.g. nonzero submodule

of each progenerator of Mod-R is a progenerator of Mod-R.
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Proof. (a)^(b). By Proposition 2.1.2, it is enough to show that every f.g.

nonzero right ideal I of R is a generator. We can find a right ideal J of R

such that^RR. Since R is a right Goldie ring, there exist

uniform submodules J 1 ,^, Jt of JR such that J1 ED • • • e^<, JR. Hence

/^+ • • • e Jt <, RR. Since R is prime, JtI^0 for each i. So we can

choose some ai E Ji with ail 0. Then I e a l l e • • - W a t I < e RR. By

Proposition 2.1.1, / ED al/ ED • • • ED a tI is a generator of Mod-R. Therefore I

is a generator of Mod-R.

(b)^(a). That every f.g. nonzero ideal of R is a generator implies that

R is a prime ring.

(b) (c). Similar to the proof of Proposition 2.1.3.

(c) (a). By Proposition 2.1.1. ^

Proposition 2.1.5 The ring R is a right w-semi-Pritfer ring if and only if

Z(RR ) = 0, RR is finite-dimensional and R has Property (P).

Proof. One direction is clear. Suppose that Z(RR) = 0, RR is finite-

dimensional, and R has Property (P). We only need to show that R is

semiprime right Goldie. Suppose / 2 0 for an ideal I of R. We have a right

ideal J of R such that lef <, RR. Then (/+J)/ C JI C I f1 J = 0.

Since RR is finite-dimensional, there exist f.g. right ideals I 1 ,J1 of R such that

<, IR, Jl <e JR. Therefore we have / 1 (1) J1 <, RR. Since R has Property

(P), Il e J1 is a generator of Mod-R. Thus RR is an R-homomorphic image

of^e J1 ) () for some n. Noting that (II e Jo/ 0, we have I = RI = 0.

Therefore R is semiprime. By Theorem 1.2, R is a right Goldie ring. ^
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Proposition 2.1.6 The ring R is a right w-Prüfer ring if and only if RR is

finite-dimensional and every f.g. nonzero right ideal of R is a progenerator

of Mod-R.

Proof. The necessity follows from Proposition 2.1.4. For the converse, it is

easy to see that R is a prime ring. Suppose Z(RR) 0. We can choose

a f.g. right ideal I of R such that I C Z(RR). By our assumption, I is a

generator of Mod-R, and thus RR is an epimorphic image of /(n) for some n

by Proposition 1.3. Since /(n) is singular, we have that RR is singular. This

is a contradiction since 1 Z(RR). Therefore Z(RR) = 0, and thus R is a

prime right Goldie ring by Theorem 1.2. ^

Some other characterizations of right w-semi-Priifer (right semi-Priifer,

right w-Priifer, or right Prfifer) rings will be presented in the next chapter.

2.2 A structure theorem and further properties of

right w-semi-Priifer rings

Lemma 2.2.1 Let R be a right w-semi-Prifer ring, and Q Qrd (R). If e

is a central idempotent of Q, then (eR)R is a projective R-module.

Proof. Write e^1 — e = u 2 v -1 , where u, E R and v E CR(0).

Define a map 0 : eR ED (1 — e)R^R by 0(ex + (1 — e)y)^u tx u2y

Vx, y E R. Suppose ex + (1 — e)y ex' + (1 — e)y'. Then ex = ex',

i.e., (u i v -1 )x = (u i v')x i . So u ix = v[(u i v -1 )x] = v[(u iv -1 )x'] = u i x i .

Similarly u 2y = u 2y'. Hence u i x u 2 y = u2y'. Thus .0 is well defined.

Clearly 0 is a right R-module homomorphism. If u i x u 2y = 0, then 0 =
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(u i v -1 )vx (u 2 v -1 )vy v[(u i v -1 )x (u 2 v -1 )y], and then ex + (1 - e)y 0.

So 0 is one to one. Therefore we have (eR + (1 - e)R)R Im4). But /m0

is a f.g. right ideal of R, and so it is projective by Proposition 2.1.2. Hence

(eR)R is projective. ^

Proposition 2.2.1 Let R, Q be as above, e any central idempotent of Q.

Then e E R.

Proof. Since (1 - e)R is a right projective R-module, the exact sequence

0 -+ eRn R^(1 - e)R 0 splits. Then eR n R is a direct summand

of RR. So we have eRnR= fR for an idempotent f E R. Then fQ C eQ.

If 0 e E eQ, write^ac-1 for some a E R and c E CR(0). Then 0

(e)c = ea E eR. Write ea = uv -1 for some u E R and v E CR(0). We have

0 (e)cv eav u E eR n R fR, and so 0 (e4-)cv E fQ. Therefore

(fQ)Q <, (eQ)Q . Since Q is a semi-simple Artinian ring, (fQ) Q is a direct

summand of (eQ)Q . It must be that fQ = eQ. Then e=fe=ef^since

e is central. ^

Proposition 2.2.2 Let R be a right w-semi-Pritfer ring, Q^Qrd (R) ,-

(21 e • • + Qn, where each Q i is a simple Artinian ring. Then R = (R n

WEB- • -ED (RnQ,,), each RnQi is a right w-Priifer ring and Qrd (RnQi) = Q i .

Proof. By Theorem 1.1, Q cri (R) is a semi-simple Artinian ring. Hence the

Wedderburn-Artin theorem asserts that Qrci(R) is a finite direct sum of simple

Artinian rings: Qrci (R)^Q i El) • • • ED (4, with each Q, being a simple Artinian

ring. We have 1 R^1Qrc1
(R) = 1Q, + • • • + 1 Q„, where 1 Q , is the identity of

Q. Set R, = Rn Q,. Then 1 Q E R, by Proposition 2.2.1. Hence Ri is a
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subring of Q. It is straightforward to check that each Ri is a right order of

Q. So R, is a prime right Goldie ring. Each Ri is obviously an ideal of R,

and for every x E R, x xlcji + • • • + x1Q„ E Rl e • • • ED fin . Therefore we

have R R 1 ED • • • ED Rn . To see each Ri is a right w-Priifer ring, we only

need to show that R, has property (P) by Proposition 2.1.1. Let Li be a f.g.

essential right ideal of R, and let I = R 1 + • • + Ri-i • +Rri

R1 ED • ED L ED • • • ED R. Then I is a f.g. essential right ideal of R, and so II? is

a progenerator of Mod-R by Proposition 2.1.1. Hence (I i )R is projective, and

this implies that (/,)R, is projective. On the other hand, if f E Hom(IR, RR),

we have f(R3 ) C R3 , if j i, and f(I,) C Ri . Since I R is a generator of

Mod-R,

R --= feHom(IR ,RR) I m f = (E f EHorn(IR ,RR) f (Ri)) ED • • •

(Efewom(IR,RR) f(h)) ED • • • ED (EfeHovi(IR ,RR ) f (Rn))•

So we have

>fEHom(IR,RR) 1 (hi) = EfEHorn(LR,R,R) f(L)^EfEHon-t(I, R,,R, R,) f i)

It follows that /, is a generator of Mod-Ri. Hence / i is a progenerator of

Mod-R1. We can conclude that each Ri is a right w-Priifer ring. ^

Theorem 2.2.1 A ring R is a right w-semi-Priifer ring if and only if it is

a finite direct sum of right w-Priiler rings.

Proof. The necessity follows from Proposition 2.2.2.

Suppose R E[r_ i Ri be a direct sum of right w-Priifer rings Ri. Then

Crd (R)^Qrd(R,) which is a semi-simple Artinian ring. Hence R is a
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semiprime right Goldie ring. Suppose I is a f.g. essential right ideal of R.

Let 7i be the i ll' projection of R onto Ri. We have 0 I fl R, C 7r1 (IR ), and

this implies that 70) is a f.g. essential right ideal of R,. By Proposition

2.1.1, iri (/) generates R, as a right R 2 -module, and thus 7ri(/) generates R, as

a right R-module. Therefore we have shown that IR is a generator of Mod-R.

Next instead of proving IR is projective, we show R is a right semihereditary

ring. For each m, let Mm (R) = Mm (R i )) e • • • e mn,(R7i). Given x E Mm (R),

write x = x 1 + • • • + x„, with each x, E Mm (Ri ). We want to show that

xM„,(R) is a projective right Mm (R)-module. Since each Mm (Ri) is still

a right w-Priifer ring, we can assume m = 1. Since xiRi is a projective

right R 2-module, we have (ROI?, (x,Ri)R, e Ui for some right R i-module

U1 . We know U1 can be regarded as a right R-module canonically. Thus as

right R-modules we still have (R1)R ti(xiRi)R ® U,. Therefore (x,Ri)R is

projective since (R 1 )R is. Then xR = x 1R • xn,R e • • • e x.Rn

is a projective right R-module. We have actually shown that xM,,(R) is a

projective right Mm (R)-module for every x E Mm (R). By Proposition 1.5,

R is a right semihereditary ring. ^

Proposition 2.2.3 If R is a right w-Priifer ring, e a nonzero idempotent,

then eRe is a right w-Prifer ring.

Proof. Since eR is a progenerator of Mod-R by Proposition 2.1.4, then eRe

End(eR) is Morita equivalent to R, thus is a right w-Priifer ring by Theorem

2.1.1. ^

Corollary 2.2.1 If R is a right w-semi-Pritfer ring, e a nonzero idempotent,

then eRe is a right w-semi-Pritfer ring.
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Proof. By Theorem 2.2.1 and Proposition 2.2.3. ^

By a complete set of idempotents of a ring we mean a set of pairwise

orthogonal idempotents: {e l , • • • , e t } with EL I ei = 1.

Proposition 2.2.4 If R is a right w-Prifer ring, then there exists a com-

plete set of idempotents e 1 ,- • •,e,,, such that R = e i R ED • • ED en,R and for each

e i Rei is a right w-Prifer domain which is Morita equivalent to R.

Proof. Since R is a prime right Goldie ring, RR has the ascending chain

condition (and the desending chain condition) on the set of direct summands

of RR (see [2, Ex.§10.11]). By [2, Prop.10.14; Prop.7.2], there exists a com-

plete set e 1 , • • • , em of idempotents in R such that R = ei R ED • • • ED em R and

each e iR is indecomposable as a right R-module. We know e iR is a pro-

generator by Proposition 2.1.4. Therefore R is Morita equivalent to e i Re i

EndR (e,R). By Proposition 2.2.3, e i Rei is also a right w-Priifer ring. Now

let 0 x E eiRei, then xeiRe i is a projective eiRei-module and it follows

that x1 fe,Rei for some f2 = f E e iRei. But the ring e iRe i has exactly

one nonzero idempotent, namely e i . It follows that f 0 or e,. Since x 0,

it follows f = 0, i.e., x1 = 0 for all 0 x E eiRei. Therefore e iRei is a

domain. ^

Lemma 2.2.2 Let M1 ED M2 ED • • • ED Mn = A ED B be a decomposition in

Mod-R such that End(A R) is a local ring. Then there exists i,1 < i < n, and

an isomorphism Mi A ED X for some X E Mod-R.

Proof. See [9, P39-40]. ^
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A module MR is called a quasi-injective module if for each submodule

N of M, every R-homomorphism from N into M can be extended to an

R-homomorphism from M into M.

Proposition 2.2.5 Let R be a right w-Priifer ring. If there exists a nonzero

f.g. quasi-injective projective right R-module, then R is a simple Artinian

ring.

Proof. As in Proposition 2.2.4, R = e 1 R e • • • e er,R, where each e i R is

an indecomposable R-module. Let MR be a f.g. quasi-injective projective

module. Since e l R is a generator, there exist an integer m > 0 and some

R-module X such that (e i R)"1 M e X. Since R is finite-dimensional, e 1 R,

hence (e i R)m has finite Goldie dimension. So M has finite Goldie dimension.

Write M = M1 ED• • ED Mk, where each M, is an indecomposable submodule of

M. Now, if M is a quasi-injective module, then each Mi is a quasi-injective

module. Therefore End(M 1 ) is a local ring. Thus Lemma 2.2.2 implies that

e 1 R tiM1 U, for some U. As we know e 1 R is an indecomposable R-

module, we have e 1 R 2,-1 MI, is quasi-injective. We can also show that each

e,R M1 . Therefore RR M in is a quasi-injective module. Now Baer's

Criterion implies that R is a right self-injective ring. Then R = E(RR) is a

semi-simple ring by [18, Th.4.28]. Hence R is a simple Artinian ring. ^

We know that Z, the ring of integers, is a Priifer ring, but not a simple

Artinian ring. We also know that Q, the field of rational numbers, cannot be

embedded in Z(') for any index set I. The following is one way to see this:

Corollary 2.2.2 If R is a right w-Pritler ring, but not simple Artinian,

then, for any f.g. right R-module M, the injective hull E(M) of M cannot
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be embedded in a free R-module.

Proof. Suppose M is a f.g. R-module, and 0^E(M)^R(1) is exact

for some I. Since MR is finitely generated, l(M) C R (F) , where F is a finite

subset of I. Let p : R( 1) R(F) be the canonical projection. We consider

Ker(p o 1). Since Ker(p o 1) n M = 0, and M <, E(M), we conclude that

Ker(p o 1) = 0. Thus E(M) is embedded in R(F). But E(M) is injective,

so it is a direct summand of R(F), and therefore finitely generated. Now the

previous proposition implies that R is a simple Artinian ring. ^

2.3 Priifer rings and semi-Priifer rings

Proposition 2.3.1 Let R be a right semi-Priifer ring, and Q',. i (R)^Qi Eh

• • • e Q„, where each Q i is a simple Artinian ring. Then R (Rncme • • •e

(R n Q,„), where each R n Q, is a right Priifer ring and Q7 1 (R n Qi) = Qi.

Proof. Similar to the proof of Proposition 2.2.2. ^

Theorem 2.3.1 A ring R is a right semi-Priifer ring if and only if R is a

finite direct sum of right Priifer rings.

Proof. Similar to the proof of Theorem 2.2.1. ^

Next we turn to the left-right symmetry of Priifer rings and semi-Priifer

rings.

Theorem 2.3.2 [1, Prop. 1.14 A ring R is a right Priifer ring if and only

if R is a left Priifer ring.
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Proof. Suppose R is a right Priifer ring. We want to show R is left Priifer.

We know R is a Goldie and left semihereditary ring by Proposition 2.1.2. So,

to show R is a left Priifer ring, it suffices to show that for any f.g. nonzero left

ideal J of R, J is a generator of R-Mod by using the left version of Proposition

2.1.4. Since R is left semihereditary, J is a projective left R-module. So we

may assume that Rn J N for some n and some N E R-Mod. Therefore

we have RJ RTh f for some idempotent f E EndR(Rn) = Mn (R). Since

Rn is a progenerator of R-Mod and Mn (R) = EndR (Rn), we have a Morita

equivalence Rn ®m„(R) : Mn (R) —Mod R-Mod. As left R-modules,

Rn Omn (R) Mr,(R)f (Rn f) J (via a b ab). So RJ is a generator

of R-Mod if and only if mn (R)(M7,(R)f) is a generator of Mn (R)-Mod by [2,

Prop.21.6]. Also, we know that Mn (R) is a right Priifer ring from Theorem

2.1.1. Therefore, without lose of generality, we may assume that J = Re

for some idempotent e of R. Since R is a prime ring, ReR <, RR. Then

ReR n cR (o) is not empty by Proposition 1.2. Thus there exist elements

ri , t, E R (i = 1, • • • , m) such that x = r i et i + • • • + rm etn, E CR (0). Consider

right ideals I = r i eRd-• • .+7•„„eR and P = f Rd-x R. Then I is a f.g. fractional

right ideal of R, and so 1'1 = R, since R is right Priifer. On the other hand,

P C ReR, and I = r ieR • rm eR C r i eReR + • • + rni eReR = I eR C

TP. From P C ReR and I C IP, it follows that R C I-11p C

I -1 I ReR = RReR C ReR. Hence R = ReR. Because the trace ideal T(RRe)

is a two-sided ideal of R and T(RRe) E{O(Re) : q E Hom(R Re,R R)} D Re,

we have R ReR C T(RRe) C R. Therefore R = T(RRe). By (the left

version of) Proposition 1.3, J Re is a generator of R-Mod. ^
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Corollary 2.3.1 The ring R is a right semi-Pritfer ring if and only if R is

left semi-Pritler.

Proof. By Theorems 2.3.1, 2.3.2. ^

From now on we will use the terms Priifer ring and semi-Priifer ring

instead of right (or left) Priifer ring and right (or left) semi-Priifer ring re-

spectively.

Proposition 2.3.2 If R is a Priifer ring and e is a nonzero idempotent,

then eRe is a Priifer ring.

Proof. By Proposition 2.1.4, eR is a progenerator of Mod-R, and so eRe

End(eRR) is Morita equivalent to R. It follows that eRe is a Priifer ring

from Theorem 2.1.1. ^

Corollary 2.3.2 If R is a semi-Prilfer ring and e is a nonzero idempotent,

then eRe is a semi-Pritfer ring.

Proof. We may assume that R^e R2 ®• • • Rn with each Rt a Priifer

ring and e = e i^• • + et with t < n and each e t a nonzero idempotent of

Then eRe^e 1 R 1 e 1 e • • • e etRt e t. The previous proposition implies

that each e,Rt et is a Priifer ring. Hence Theorem 2.3.1 implies that eRe is a

semi-Priifer ring. ^

Proposition 2.3.3 [1]. Each overring of a Pritfer ring is a Pritfer ring.

Proof. Let R be a Priifer ring, Q^Q ct (R), and let S be an overring of R,

i.e., S is a subring of Q such that R C S C Q. Clearly S is right and left

order in Q. Hence S is a prime Goldie ring with Qd (S) = Q. Suppose that J



Non commutative Priifer rings and some generalizations^30

is a f.g. fractional right ideal of S, e.g., J a l S-D• •-kar,S. We may assume

that a 1 is a unit of Q. Consider I = a i Rd- • • • + a ri l?. Then I is a fractional

right ideal of R, and thus / -1/ R and // -1 = 0/(/). Now we have IS = J

and S = RS = .1-"J. The last equality implies that T(Js) = S,

i.e., J is a generator of Mod-S. Therefore, by Lemma 2.1.2, J -1 J = S. On

the other hand, JI -1J = JRS = J. This implies that / -1 C J.

Hence 1 E^--=^C JJ -1 . Then 01(J) C (01(J)J)J -1 C JJ -1 .

Therefore JJ -1 01(J). It follows that S is a Priifer ring. ^

Corollary 2.3.3 Each overring of a semi-Prifer ring is a semi-Priifer ring.

Proof. Let R be a semi-Priifer ring, and Qd (R) = Q i ED • • • ED Q,,, where each

Q i is a simple Artinian ring. Then by Proposition 2.3.1, R (Rn Q 1 ) ED • • • e

(R n (2,), and each Rn Q i is a Prfifer ring with Qrd (Rn Q,) = Q i . Now if S is

an overring of R, then S n Q i is an overring of R n Q. By Proposition 2.3.3,

S n Qi is a Priifer ring. But it is easy to see S (S n Q i ) ED • • • ®(S n Qn)•

It follows from Theorem 2.3.1 that S is a semi-Prfifer ring. ^

The concept of a prime Dedekind ring was first introduced by Robson

in [32] by the term "maximal order". An important characterization of the

prime Dedekind rings of Robson is stated as follows: A ring R is a prime

Dedekind ring if and only if every nonzero submodule of a (left or right)

progenerator is also a progenerator [29, Th.2.10, P.140]. It was proved in [1]

that a ring is a Priifer ring and a bounded Krull ring if and only if it is a

prime Dedekind ring, where a bounded Krull ring is defined in the sense of

Marubayashi (cf.[27] Sec.1).

Theorem 2.3.3 The following are equivalent for a ring R:
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(a) R is a Priifer and (both sides) Noetherian ring;

(b) R is a prime Dedekind ring.

Proof. (b)^(a). Every one-sided ideal of R is a progenerator, and hence

a f.g. R-module. It follows that R is a Noetherian ring. Thus Proposition

2.1.4 implies that R is a Priifer ring.

(a)^(b). Let PR be a progenerator and NR nonzero submodule of PR.

We want to show that NR is also a progenerator. Let S = EndPR. Then R

is Morita equivalent to S via the Morita equivalence F = HomR (sPR,--):

Mod-R -->. Mod-S, and F(N)s is a nonzero right ideal of S. S is also a

Priifer ring. Since the property of being a one-sided Noetherian ring is a

Morita invariant, S is a right Noetherian ring. So F(N) s is a nonzero f.g.

right ideal of S. By Proposition 2.1.4, F(N)s is a progenerator of Mod-S.

Hence Ns is a progenerator of Mod-R. So R is a prime Dedekind ring. ^

Corollary 2.3.4 A ring is a semi-Prifer Noetherian ring if and only if it is

a finite direct sum of prime Dedekind rings.

Proof. This follows from Theorems 2.3.1, 2.3.3. ^

A ring R is right bounded if every essential right ideal of R contains an

ideal which is essential as a right ideal. Note that a prime ring R is right

bounded if and only if every essential right ideal of R contains a nonzero

ideal. A right and left bounded ring is called a bounded ring.

Proposition 2.3.4 The ring R is a right bounded semi-Priifer ring if and

only if R is a finite direct sum of right bounded Priifer rings.
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Proof.^By Theorem 2.3.1, R^e • • • e Rii , with each R, being a

Priifer ring. Given an essential right ideal /i of Ri. Then I^EP • • •

R1_1 ®Ii e Ri+ i ® • • ED R 7-, is an essential right ideal of R. Hence there exists

an ideal J of R such that J C I and JR < e RR. J n R, is an ideal of Ri , and

we have 0 JnRi cInRi cL. Therefore Ri is right bounded.

(-). Let R = R1 E • • • ® R„, where each Ri is a right bounded Priifer

ring. Then R is a semi-Prfifer ring by Theorem 2.3.1. Suppose /R is an

essential right ideal of R. We need to show that IR contains an ideal of R

which is essential as a right ideal. It is easy to see that I n Ri <e (Ri)R,•

Hence for each i there exists a nonzero ideal K, of Ri such that Ki cIn R,

and (KO)R, (Ri)R t . Hence (Ki)R (ROR• Set K K1 ED • • • EDKn . Then

K is an ideal of R, K C I and KR <E RR. ^

A module MR is faithful if for every 0 r E R, Mr 0. Every generator

is faithful. But the converse is not true. We call a ring a right FPF ring

if every f.g. right faithful module is a generator. An FPF ring is defined

to be a left and right FPF ring. There are some known relations between

bounded prime Dedekind rings and prime FPF rings. In fact a bounded

prime Dedekind ring can be characterized as a Noetherian prime right (or

left) FPF ring [10, Th.4.6]. In the following we point out how a bounded

Priifer (or semi-Priifer) ring is related to an FPF ring.

Theorem 2.3.4 For a ring R, the following are equivalent:

(a) R is a prime right FPF right semihereditary ring;

(b) R is a right bounded Priifer ring;

(c) R is a prime right FPF left semihereditary ring.
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Proof. (b)^(a)&(c). If R is a right bounded Priifer ring , then R is prime

Goldie semihereditary ring. Moreover, every f.g. nonzero right ideal is a

generator by Proposition 2.1.4. Now, by [10, Th.4.7], R is a prime right

FPF  ring. So (b) implies (a) and (c).

(a)^(b). If R is a prime FPF  right semihereditary ring, then, by [10,

Th.4.7], R is a right bounded Goldie (both sides) ring and every nonzero

f.g. right ideal is a generator. Now, since R is also a right semihereditary

ring, it follows that every nonzero f.g. right ideal of R is a progenerator. By

Proposition 2.1.4, R is a Priifer ring.

(a)^(c). From the proof above, we know any ring R which possesses

(c) must be a right bounded prime Goldie ring for which every f.g. nonzero

right ideal is a generator. Since the property of being a prime Goldie ring is

Morita invariant, Mn (R) is prime Goldie ring for all n. In particular, Mn (R)

does not possess an infinite set of orthogonal idempotents. So Theorem 1.7

implies that R is right semihereditary ring, and so (a) holds. ^

Corollary 2.3.5 For a ring R, the following are equivalent:

(a) R is a prime FPF left semihereditary ring;

(b) R is a bounded Priifer ring;

(c) R is a prime FPF  right semihereditary ring. ^

Corollary 2.3.6 Every right bounded semi-Prilfer ring R is a semiprime

semihereditary right FPF  ring; The converse is true if R also has ACC on

annihilators.

Proof. For the first part, it is enough to show that R is a right FPF  ring.

By Proposition 2.3.4, R = R l ED • • • ED R„, with each R, being a right bounded
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Prfifer ring. Then each Ri is a right FPF ring by Theorem 2.3.4. Therefore

we have R is a right FPF ring by [10, Th.3.4]. For the second part, we first

note that R is a Goldie ring by [10, Cor.3.16C]. Then [10, Th.3.4(1)] implies

that R R 1 W • • •W R,,, where each Ri is a prime right FPF ring. Since R is

a semihereditary ring, it is easy to show that each R i is also a semihereditary

ring. By Theorem 2.3.4, Ri is a right bounded Priifer ring. Now Proposition

2.3.4 implies that R is a right bounded semi-Prfifer ring. ^

It was proved that every Prfifer ring is Morita equivalent to a Priifer

domain in [1, Th.2.3]. We give the following stronger result:

Theorem 2.3.5 Let R be a Pricier ring. Then there exists a complete set of

idempotents el, • • • , en such that R eiR ED e2R ED • • • ® er,R, where for each

e iR is a uniform R-module, e iRe i is a Prifer domain and R is Morita

equivalent to e i Re i .

Proof. By Proposition 2.2.4, it is enough to show that eR is a uniform

right R-module for each indecomposable module eR. Let N be a nonzero

R-submodule of eR. We want to show that N is an essential submodule of

eR. Suppose N fl K 0 for a submodule K of eR. We know that there

exists a submodule L of eR which is maximal with respect to K C L and

N fl L 0. By Proposition 1.1, N is embedded in eR/L as an essential

submodule. From Theorem 1.2, we have Z(RR) = 0, and thus Z(NR) 0.

It follows that Z(eR/L) = 0. By noting Proposition 1.2, we have that eRI L

is a f.g. torsionfree right R-module. Therefore, it follows from Theorem 1.3

that eR/L is embedded in a f.g. free right R-module. Since R is Prfifer,

eR/L is a projective right R-module. Thus eR L ED (eR/L). Now the
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indecomposablity of eR implies that L 0. Hence K 0, and N is essential

in eR. ^

Lemma 2.3.1 Let R = R 1 e• • •e^and S = Sl e• •eSn. If Ri is Morita

equivalent to Si (i^1, • • , n), then R is Morita equivalent to S.

Proof. Well-known. ^

Corollary 2.3.7 Every semi-Priifer ring is Morita equivalent to a finite di-

rect sum of Priifer domains.

Proof. By Theorem 2.3.1 , Lemma 2.3.1 and Theorem 2.3.5. ^

In the final part of this section, we consider semiperfect Priifer rings.

A ring R is semiperfect if RI Rad(R) is semi-simple, and idempotents of

RI Rad(R) lift. By a theorem of Bass, the ring R is semiperfect if and only

if there exists a complete set of primitive idempotents e l , • • • , en such that

R = e 1 R 6) • • • ED e riR and each e,Re i is local, where a primitive idempotent

is any idempotent which cannot be written as the sum of two nontrivial

orthogonal idempotents (see [2,Th.27.6]). For any semiperfect ring R, there

exists a basic set of orthogonal primitive idempotents {e l , • • • , e t } in the sense

that for every primitive idempotent f we have R f Re, for exactly one e„

1 < i < t. In this case e EL 1 e, is called a basic idempotent and eRe is

called the basic ring of R. A module is uniserial if its submodules are linearly

ordered with respect to inclusion. A ring R is right serial if RR is a direct

sum of uniserial modules. The ring is serial if it is both left and right serial.

A local serial ring is called a valuation ring.
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Lemma 2.3.2 Let R be a Priifer ring, e2 = e E R. If eRe is a local ring,

then R is a semiperfect ring, and every indecomposable projective right R-

module is isomorphic to eR, eRe is the basic ring of R, and R L-2 Mn (eRe),

where n is the Goldie dimension of RR (or RR).

Proof. By Theorem 2.3.5, R = eiR ED • • • 69 enR, where n is the Goldie

dimension of RR, and e iR is indecomposable for all i. For each i, eiR is a

generator and eR is projective module, so we have (e iR) 771 eR e X for

some m > 0 and some R-module X. Because eRe is a local ring, Lemma

2.2.2 implies eiR^eR Y for some Y. Hence e iR^eR since eiR is

indecomposable. And so e i Re i End(e iR)^End(eR)^eRe is local ring.

Hence R is a semiperfect ring, and RR 2-= (eR)n . So R^End((eR)n)

Mn (eRe). The other assertions follow from [2, Prop.27.10]. ^

Lemma 2.3.3 Let R be a Prifer ring, e2 = e E R. The following are

equivalent:

(a) (eR)R is a uniserial module;

(b) eRe is a local ring;

(c) R(Re) is a uniserial module.

Proof. (a)^(b). Let J = Rad(R). We know Rad(eR) = eJ is the

intersection of all the maximal submodules of eR. Hence eJ is the unique

maximal submodule of eR. By [2, Cor.17.20], eRe is a local ring.

(a) (b). If eRe is a local ring, then R is a semiperfect ring by Lemma

2.3.2. By noting a result of Warfield which says a semiperfect semiprime

Goldie ring is left semihereditary if and only if it is right serial [38, Cor.4.1,
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we have that R is a right serial ring. Lemma 2.3.2 implies that every uniserial

summand of RR is isomorphic to eR. So eR is a uniserial module.

(b)^(c). Similarly. ^

Corollary 2.3.8 Let R be a Priifer ring, then R is a left (or right) serial

ring if and only if R is a semiperfect ring.

Proof. By Lemma 2.3.3. ^

Theorem 2.3.6 Let R be a Przifer ring.

(a) If R is a local ring, then R is a valuation Priifer domain with both

RR and RR uniserial modules.

(b) If R is a semiperfect ring, then R is a serial ring and R^M,i (B),

where n is the Goldie dimension of R and B, its basic ring, is a valuation

Priifer domain.

Proof. (a). By Lemma 2.3.3.

(b). This follows from Lemmas 2.3.2, 2.3.3 and Corollary 2.3.8. ^

Corollary 2.3.9 The ring R is a semiperfect semi-Pricfer ring if and only

if it is a finite direct sum of matrix rings over valuation Priifer domains.

Proof. (=). By Theorem 2.3.1, R^ED^R„, each R, is a Priifer ring.

If R is a semiperfect ring, then every Ri is semiperfect by [2, Coro.27.9].

Therefore we have R, M,,, ; (B1 ) for some valuation Priifer domain Bi by

Theorem 2.3.6.

(z). A finite direct sum of matrix rings over valuation Priifer domains is

clearly a semiperfect ring, and is also a semi-Priifer ring by Theorem 2.3.1.

0
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Finally, we give a characterization of f.g. torsionfree modules over a

semi-Priifer ring. A module MR is flat if whenever f : RN1^RN2 is a

monomorphism, we have 1 0 f : M OR N1^M OR N2 is a monomorphism.

Proposition 2.3.5 The following are equivalent for a module MR over a

semi-Prilfer ring R:

(a) M is f.g. torsionfree;

(b) M is f.g. flat;

(c) M is f.g. projective;

(d) M is projective with finite Goldie dimension;

(e) M is a finite direct sum of f.g. uniform right ideals of R.

Proof. (a)^(e). By Theorem 1.3, M is a submodule of a f.g. free module

FR. Because of Theorem 2.3.1, we may assume R R 1^® Rn , where

each Ri is a Priifer ring. By Theorem 2.3.5, each Ri is a finite direct sum of

f.g. uniform right ideals of Ri. Since every f.g. uniform right ideal of Ri is

clearly a f.g. uniform right ideal of R, we have F = Ei71, ED/2, where each

4 is a f.g. uniform right ideal of R. Since R is a semihereditary ring, every

f.g. R-submodule of 4 is projective. By [24, Prop.8, P85], M Er_ i Ni ,

with each Ni C

(d)^(e). This is because R is a semihereditary Goldie ring.

(c) (d). Sandomierski showed in [32, Th.2.1] that if R is a ring such

that Z(RR ) = 0 and PR is a projective module containing a f.g. essential

submodule, then P is finitely generated [33, Th.2.1]. Our claim follows.

(b)^(c). Well-known.
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(a)^(b). Suppose MR is flat and let s E CR(0). Define o-, : R —+ R by

0-3(a) = as, which is a monomorphism as left R-modules. This gives rise to

a commutative diagram

M OR R 1231-- M OR R

M --->.^M

where f(x) = xs. Since 1 ® as is a monomorphism, so is f, and thus x 0

implies xs 0. Therefore M is torsionfree. ^
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3 Strongly compressible modules

Semiprime right Goldie rings constitute a much studied and well known fam-

ily of rings, and satisfy one of basic conditions satisfied by right w-semi-Priifer

(right w-Priifer, semi-Priifer, or Priifer) rings which were defined in chapter

2. Recently LOpez-Permouth, Rizvi and Yousif [26] provided some interesting

characterizations of semiprime Goldie rings in terms of their right ideals and

of their nonsingular right modules. It was shown that a ring R is semiprime

Goldie if and only if every right ideal of R is weakly-injective if and only if R

is right nonsingular and every nonsingular right R-module is weakly-injective

[26, Th.3.9]. This motivates us to look for module-theoretic characterizations

of semiprime right Goldie rings. Once such characterizations are established,

it can be expected that one can present some new characterizations of right

w-semi-Priifer (right w-Priifer, semi-Priifer, or Priifer) rings. In this chapter,

we give the definition of strongly compressible modules. It turns out that the

concept of strongly compressible modules is closely related to that of weakly-

injective modules and is precisely what we want for our purposes. In fact

the connection between strongly compressible modules and weakly-injective

modules is similar to that between compressible modules and tight modules

(Proposition 3.2.1). We show that a ring R is semiprime right Goldie if and

only if RR is strongly compressible if and only if every right ideal of R is

strongly compressible if and only if every submodule of each progenerator of

Mod-R is strongly compressible (Theorem 3.1.1). As a corollary of this result,

it is shown that a ring R is semiprime Goldie if and only if every f.g. submod-

ule of the injective hull of RR is strongly compressible if and only if R is right
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nonsingular and every f.g. nonsingular right R-module is strongly compress-

ible. This characterization theorem can easily imply the above-mentioned

characterization theorem of LOpez-Permouth, Rizvi and Yousif because of

the strong connection between strongly compressible modules and weakly-

injective modules. In the latter part of the chapter, we apply our results to

obtain some new module-theoretic characterizations of prime Goldie (prime

right Goldie) rings, and right w-semi-Priifer (right w-Priifer, semi-Priifer, or

Priifer) rings, respectively.

3.1 New characterizations of semiprime right Goldie

rings

Following Jain and LOpez-Permouth [20], a module M is weakly-injective if

and only if for every f.g. submodule N of E(M) there exists X C E(M)

such that N C X --^±' M. In [23] a module M is said to be compressible if it

is embeddable in each of its essential submodules.

Definition 3.1.1 A module MR is said to be strongly compressible if for

every essential submodule N of M there exists X C E(M) such that M C

X N

Every essential submodule of a strongly compressible module is strongly com-

pressible. Every strongly compressible module is clearly compressible. After

Theorem 3.1.5, we will give an example of a compressible module which is

not strongly compressible.
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Lemma 3.1.1 Every fig. strongly compressible right module has finite Goldie

dimension.

Proof. Let MR be a f.g. strongly compressible module. Suppose MR is not

finite-dimensional. Then there exists an essential submodule N of M such

that N EV,?fi Ar” where each Ni 0. Since MR is strongly compressible,

there exists a submodule X of E(MR) such that M C N. Then

X = Xi and (Xi)R ====i (NOR for all i. Clearly M C xi for some k.

Thus M n x, 0 for all i > k, contradicting the essentiality of M in E(MR ).

0

Lemma 3.1.2 Let PR be a progenerator of Mod-R. If PR is strongly com-

pressible, then R is semiprime.

Proof. Since PR is a progenerator of Mod-R, we can assume that Pn = Re X

and Rni P Y for some positive integers n, m and some X, Y E Mod-

R. If /2^0 for some ideal I of R, then I C -LI. There exists a right

ideal J of R maximal with respect to -L I fl J^0. Then 1 / ® J < e RR.

JicJnIcJnii= 0. Then J C Jn i/ = 0. Hence i/ <, RR. Therefore

we have (Inn' <, Rm and thus (± fl P <, P. Since PR is strongly

compressible, there exists ZR C E(PR) such that P C Z ( -L i)m fl P. Then

PI C ZI ((± fl P)/ = 0. So PI = 0. Then Pn I 0. It implies that

RI = 0. Therefore I = 0. ^

Lemma 3.1.3 Let PR be a progenerator of Mod-R. If PR is strongly com-

pressible, then Z(PR) = 0. In particular, Z(RR) 0.

Proof. We can assume that Rrn Pe X for some positive integer rri, and some

X E Mod-R. There exists a submodule N of P such that Z(PR) e N <, P.
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Since P is strongly compressible, there exists YR C E(PR) such that P C

Y Z(PR ) El) N. Write Y ED Y2 with Yi Z(PR ) and Y2 -2 - N as

right R-modules. For each i (1 < i < m), let e i be the element of Rm with
ith component 1 and all others 0. Write e i = ai bi for some a i E Yi and

bi E Y2 ED X. Since Yl is right singular, a2 <, RR. And e icri- bia;,L C Y2 El) X

for i 1, 2, • • , m. It is easy to see that (eianR (at)R and Er e ict;' is a

direct sum. Noting that PR, and hence RR has finite Goldie dimension by

Lemma 3.1.1, we have that dim(Rm) dim(P e X) = dim(P) + dim(X) =

dim(Y) dim(X) dim(Yi ) dim(Y2 ) dim(X) = dim(Yi) dim(Y2 e
X) dim(Yi ) dim(Er eei ctirL) dim(Yi ) + Edim(c ia;L) = dim(Yi )

E dim(at) dim(Y1 )-km•dim(R) = dim(Y1 )-Fdim(Rrn). Thus dim(Yi) 0,

i.e., Yi = 0. Therefore Z(PR) 0. ^

Lemma 3.1.4 Vategaonkarj. Let R be a semiprime right Goldie ring. Then

any submodule of a f.g. free right R-module is compressible.

Proof. Since RR is finite-dimensional, there exist f.g.uniform right ideals of

R whose sum, say K, is direct and essential in R. By Proposition 1.2, K

contains a regular element r of R. Clearly, the map a 1-4 ra, a E R, embeds

RR in K. It follows that any f.g. free right R-module can be embedded

in a finite direct sum of f.g. uniform right ideals of R. Then, if M is a

submodule of a f.g. free right R-module, there exist f.g. uniform right ideals

of R: h, • • • , In such that M C 1 I If M n I, = 0 for some j, then the

restriction of the obvious map EB:2_,/, eio,h embeds M in e io,h. Thus,

after omitting some of the modules h and then reindexing, we may assume

that Mn Ii 0 for all i. It follows that M is essential in Let N be an
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essential submodule of M. Then N n Ii 0 for all i. Since R is semiprime,

we have (N n ii)/, 0. Thus, tI, 0 for some t E Nn I. Now, consider

the R-homomorphism f :^N n Ii defined by f (b) tb. If Ker(f) 0,

then Ker(f) <, Ii , and so N n^/i /Ker(f) is torsion by Proposition 1.2.

This is impossible because N n Ii is torsionfree. So f is a monomorphism.

Clearly, the map efi^e(N n^provides an embedding of M into

N. ^

Now we can characterize semiprime right Goldie rings as follows.

Theorem 3.1.1 The following are equivalent for a ring R:

(a) R is semiprime right Goldie;

(b) RR is strongly compressible;

(c) Every cyclic right ideal of R is strongly compressible;

(c') Every cyclic essential right ideal of R is strongly compressible;

(d) Every f.g. right ideal of R is strongly compressible;

(d') Every f.g. essential right ideal of R is strongly compressible;

(e) Every right ideal of R is strongly compressible;

(e') Every essential right ideal of R is strongly compressible;

(f) Every cyclic submodule of each progenerator of Mod-R is strongly

compressible;

(f') Every cyclic essential submodule of each progenerator of Mod-R is

strongly compressible;

(g) Every f.g. submodule of each progenerator of Mod-R is strongly com-

pressible;
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(g') Every f.g. essential submodule of each progenerator of Mod-R is

strongly compressible;

(h) Every submodule of each progenerator of Mod-R is strongly compress-

ible;

(h') Every essential submodule of each progenerator of Mod-R is strongly

compressible.

Proof. (e)^(d)^(c)^(b) and (e)^(e')^(d')^(c')^(b).

Obviously.

(b)^(a). By Lemmas 3.1.1, 3.1.2 and 3.1.3.

(a)^(e). Let I be a right ideal of R and KR < e IR. There exists J C RR

such that^0 and I J <, RR. Then K ED J <, RR. By Proposition

1.2, K ® J contains a regular element r of R. Then the map f : (rI)R—÷ IR,

which is defined by f(rx) x for all x E I, is an isomorphism. Since

KR < e IR, we have (rK)R < e (rI)R by Proposition 1.1. Since R is semiprime

right Goldie, as a submodule of RR, (rI)R is compressible by Lemma 3.1.4.

Hence there exists a monomorphism g : (rI)R --+ (rK)R . Since E(I) is an

injective module, there exists h : (rK)R E(I), such that h o g f. Since

(rK)R <, (rI)R, we have dim(rK)R = dim(rI)R = dim(g(rI)), and thus

g(rI) < e (rK)R . Then h is one to one since f is an isomorphism and g is one

to one. Let X = h(rK). Then I = f(rI) h o g(rI) C h(rK) = X C E(I),

and XR (rK)R -=1-' KR. Therefore IR is strongly compressible.

(h)^(g)^(f)^(b) and (h)^(h')^(g')^(r)^(b). Obviously.

(a)^(h). Suppose that PR is a progenerator of Mod-R, N a submod-

ule of P and KR <e NR. Set S = End(PR). Then we have the Morita
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equivalence F HomR(sPR , --): Mod-R^Mod-S with inverse equiv-

alence G (— — O sP)R: Mod-S^Mod-R. By [2, Prop.21.6], we have

F(K)s <, F(N)s C F(P)s = Ss. We know that the property of being a

semiprime right Goldie ring is Morita invariant, and thus S is a semiprime

right Goldie ring. By the equivalence of (a) and (e), we have F(N) is a

right strongly compressible S-module. Hence there exists Ys C E(F(N)s)

such that F(N)s C Ys F(K) s. Then GF(N) C G(Y) GF(K) KR

and G(Y) C G(E(F(N))). Noting that F(N) c F(E(N)) and F(E(N)) is

injective [2, Prop.21.6], we have E(F(N)) C F(E(N)). Hence E(F(N))

F(E(N)), since dimE(F(N)) s = dimF(N) s = dimNR = dimE(N)R

dimF(E(N))s < oo by [2, Prop.21.7]. So G(E(F(N)))^GF(E(N) and

GF(N)s C G(Y) C GF(E(N)). If rt : GF^lmod-Ris the natural isomor-

phism, then N C q(G(Y)) C E(N) and 7/(G(Y) tiG(Y) KR. Therefore

N is strongly compressible. ^

Example 3.1.1 An example of a compressible module which is not strongly

compressible can be given as follows: Let R be a domain such that R2 '"=-' R3

as right R-modules. Such a ring R exists by J.D.O'Neill [31]. Clearly RR

is compressible, and dim(RR) oo. By Theorem 3.1.1, RR is not strongly

compressible.

Corollary 3.1.1 The following are equivalent for a ring R:

(a) R is semiprime right Goldie;

(b) PR is strongly compressible for some progenerator PR of Mod-R;

(c) Every cyclic submodule of some progenerator of Mod-R is strongly

compressible;
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(c') Every cyclic essential submodule of some progenerator of Mod-R is

strongly compressible;

(d) Every f.g. submodule of some progenerator of Mod-R is strongly com-

pressible;

(d') Every f.g. essential submodule of some progenerator of Mod-R is

strongly compressible;

(e) Every submodule of some progenerator of Mod-R is strongly compress-

ible;

(e') Every essential submodule of some progenerator of Mod-R is strongly

compressible.

Proof. By Theorem 3.1.1 and Lemmas 3.1.1, 3.1.2 and 3.1.3. ^

Corollary 3.1.2 A ring R is semiprime right Goldie if and only if R

End(Ps), where Ps is a strongly compressible progenerator of Mod-S for some

ring S. ^

3.2 Some applications

In this section, using the notion of strongly compressible modules we will

present many module-theoretic characterizations of semiprime Goldie (prime

right Goldie, or prime Goldie) rings, right w-semi-Priifer (right w-Priifer,

semi-Priifer, or Priifer) rings as corollaries of Theorem 3.1.1.

Theorem 3.2.1 The following are equivalent for a ring R:

(a) R is semiprime Goldie;

(b) Every f.g. essential submodule of E(RR ) is strongly compressible;
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(c) Every f.g. submodule of E(RR) is strongly compressible;

(d) Z(RR ) = 0, and every f.g. nonsingular right R-module is strongly

compressible.

(e) Every f.g. essential submodule of E(PR ) is strongly compressible for

each progenerator P of Mod-R;

(f) Every f.g. submodule of E(PR) is strongly compressible for each pro-

generator P of Mod-R.

Proof. (a)^(d). Clearly Z(RR) = 0. If MR is f.g. nonsingular, then M

is embeddable in a f.g. right free R-module by Theorem 1.3. Then M is

strongly compressible by Theorem 3.1.1.

(d)^(f). This is because for each progenerator P of Mod-R, every f.g.

submodule of E(PR ) is nonsingular when R is right nonsingular.

(f)^(e)^(b) and (f)^(c)^(b). Obviously.

(b) z (a). By noting that every f.g. essential right ideal of R is essential

in E(RR ), we have that R is a semiprime right Goldie ring by Theorem

3.1.1. It is enough to show that R is left Goldie. Let Q = E(RR). It is well

known that Q is a semi-simple Artinian ring and R is a right order of Q. Let

x E Q. Then RR < e R+ xR C E(RR). Since R-F xR is essential in E(RR),

xR is strongly compressible, and thus there exists Y C E(RR) such that

(R+ xR)R C YR RR. Let y = f -1 (1). Then Y yR and y' = 0, and thus

y is a regular element of Q. Write x = yr 1 , 1 = yr2 for some ri E R. Then

x = 7- 1 7- 1 . Hence R is also a left order of Q, showing that R is left Goldie.

0
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Next we show that the characterization theorem of semiprime Goldie rings

of LOpez-Permouth, Rizvi and Yousif, which we mentioned in the beginning

of this chapter, is a corollary of the previous theorem. To see this we set up

a connection between strongly compressible modules and weakly-injective

modules which is given by the following proposition. (Comparing it with [26,

P rop.3. 7] . )

Proposition 3.2.1 The following are equivalent for an injective right R-

module E:

(a) Every submodule of E is weakly-injective;

(b) Every f.g. submodule of E is strongly compressible.

Proof. (a)^(b). Let N be a f.g. submodule of E and A an essential

submodule of N. Then E(A) = E(N). Since A is weakly-injective, there

exists X C E(A) --= E(N) such that N C X --== A. Thus N is strongly

compressible.

(b)^(a). Suppose that M is a submodule of E. Let A be a f.g. submod-

ule of E(M). Then Mn A is essential in A. Since A is strongly compressible,

there exists a submodule Y of E(A) such that A C Y -_- 
f
 M n A. Then f

S
induces an isomorphism E(Y) E(M n A). Because M n A is essential in

A and A C Y C E(A), we have E(Y) = E(A) = E(M n A). There exists

B C E(M) such that E(M) = E(A) ® B. If we define g : E(M) --->. E(M)

by g(x +b) = f (x) +b for all x E E(A) and b E B, then g is an R-isomorphism

and glE(A) = f . Let X = g -1 (M). Since f(A) C M, we have A C X -_=.-_' M

and X C E(M). Therefore M is weakly-injective. 0
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Remark 3.2.1 A ring R is called right weakly-semisimple if every right R-

module is weakly-injective [21]. From the previous proposition, it follows

immediately that a ring R is right weakly-semisimple if and only if every f.g.

right R-module is strongly compressible.

Corollary 3.2.1 [26, Theorem 3.9]. The following are equivalent for a ring

R:

(a) R is semiprime Goldie;

(b) Every right ideal of R is weakly-injective;

(c) Z(RR) = 0 and every nonsingular right R-module is weakly-injective.

Proof. Because the class of weakly-injective modules is closed under taking

essential extensions, Proposition 3.2.1 implies that (b) is equivalent to (c) of

Theorem 3.2.1, and (c) is equivalent to (d) of Theorem 3.2.1. ^

Proposition 3.2.2 The following are equivalent for a ring R:

(a) R is prime right Goldie;

(b) Every nonzero cyclic right ideal of R is strongly compressible and

faithful;

(c) Every nonzero right ideal of R is strongly compressible and faithful;

(d) Every nonzero cyclic submodule of each progenerator of Mod-R is

strongly compressible and faithful;

(e) Every nonzero submodule of each progenerator of Mod-R is strongly

compressible and faithful.

Proof. By Theorem 3.1.1. ^



Strongly compressible modules^ 51

Proposition 3.2.3 The following are equivalent for a ring R:

(a) R is prime Goldie;

(b) Every f.g. nonzero submodule of E(RR ) is strongly compressible and

faithful;

(c) Z(RR) = 0 and every f.g. nonsingular right R-module is strongly

compressible and faithful.

Proof. By Theorem 3.2.1. ^

The following are some new characterizations of right w-semi-Priifer (right

w-Priifer, semi-Priifer, or Priifer) rings.

Proposition 3.2.4 The following are equivalent for a ring R:

(a) R is a right w-semi-Prifer ring;

(b) Every f.g. essential right ideal of R is a strongly compressible progen-

erator;

(c) Every f.g. essential submodule of each progenerator of Mod-R is a

strongly compressible progenerator.

Proof. By Theorem 3.1.1, Proposition 2.1.1, and Proposition 2.1.3. ^

Proposition 3.2.5 The following are equivalent for a ring R:

(a) R is a right w-Pritfer ring;

(b) Every f.g. nonzero right ideal of R is a strongly compressible progen-

erator;

(c) Every f.g. nonzero submodule of each progenerator of Mod-R is a

strongly compressible progenerator.

Proof. By Theorem 3.1.1, and Proposition 2.1.4. ^
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Proposition 3.2.6 The following are equivalent for a ring R:

(a) R is a semi-Priifer ring;

(b) Every f.g. essential submodule of E(RR) is a strongly compressible

progenerator;

(c) Every f.g. essential submodule of E(PR ) is a strongly compressible

progenerator for each progenerator P of Mod-R.

Proof. (c)^(b). Obviously.

(b)^(a). By Theorem 3.2.1, Proposition 2.1.1, and noting that every

f.g. essential right ideal of RR is essential in E(RR).

(a)^(c). Let P be a progenerator of Mod-R, and N a f.g. essential

submodule of E(PR). By Theorem 3.2.1, N is strongly compressible. Note

that NnP <,N. Thus, there exists X C E(N) such that N C x'- --_Nn P.

Since both N and P have the same finite Goldie dimension, it follows that

N can embed in P as an essential submodule. Then N is a progenerator of

Mod-R by Proposition 2.1.4. ^

Proposition 3.2.7 The following are equivalent for a ring R:

(a) R is a Priifer ring;

(b) Every f.g. nonzero submodule of E(RR) is a strongly

progenerator;

(c) Every f.g. nonzero submodule of E(PR) is a strongly

progenerator for each progenerator P of Mod-R;

(d) Z(RR ) --= 0 and every f.g. nonsingular right R-module

compressible progenerator.

compressible

compressible

is a strongly

Proof. (d)^(c)^(b). Clearly.
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(b)^(a). By Theorem 3.2.1 and Proposition 2.1.4.

(a)^(d). By Theorem 3.2.1, Proposition 2.1.9, and the fact that every

f.g. nonsingular right R-module can be embedded in a f.g. free R-module.

Proposition 3.2.8 The following are equivalent for a ring R:

(a) R is semi-simple;

(b) Every (right) R-module is strongly compressible;

(c) Every (right) injective R-module is strongly compressible;

(d) E(RR ) is strongly compressible.

Proof. (a)^(b)^(c)^(d). Clearly.

(d)^(a). Since every essential submodule of a strongly compressible

module is strongly compressible, it follows from (d) that every f.g. essential

submodule of E(RR) is strongly compressible. Then R is semiprime Goldie

by Theorem 3.2.1. On the other hand, condition (d) implies easily that

R E(RR). Thus R E(R) is semi-simple by [18, Th.4.28]. ^
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4 Modules over Prater rings

Given a ring R, we know that a module MR is projective if and only if

MR is a direct summand of some direct sum of copies of R. Simply from

this, we see that there is a special projective module R which determines

the structure of all projective modules. For a commutative Priifer domain

R, Fuchs [12] constructed a divisible module 0 with projective dimension at

most one which functions as R in the sense that a module MR is divisible with

projective dimension at most one if and only if M is a direct summand of

some direct sum of copies of 0. In this chapter, we will extend this result to a

noncommutative Priifer ring. This work is carried out in Section 2. In Section

1, we establish a structure theorem for modules of projective dimension one

over a noncommutative Priifer ring. Besides its own interest, the structure

theorem is also needed for the proof of the above-mentioned result.

4.1 Modules of projective dimension at most one

First let us recall some concepts in Module Theory. For a fixed module MR,

EXt n (M , —) is the nth right derived functor of Hom(M, —). If 0 -4 A -÷

B ---> . C -+ 0 is a short exact sequence of right R-modules, then we have the

long exact sequence in the second variable

0 ---4 Hom(M, A) ---- Hom(M,B) --f

I' d^V'
0 --> E xt ° (M , A) --> Ext ° (M, B) --> E xt ° (M , C) --+

Ext i (M, A) -- E xt i (M , B) --->
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Similarly, Ext"(—, M) is the nth right derived functor of Horn(—, M). And

it induces the long exact sequence in the first variable. A basic fact of

the Ext functor is that Ext 1R (M, N) = 0 if and only if any exact sequence

0 N D M 0 splits.

The projective dimension of a module MR, denoted by Pd(MR ) or simply

by Pd(M), is the smallest nonnegative integer n such that Extn+ 1 (M, N) 0

for all N E Mod-R, if such an integer n exists. If no such n exists, then

Pd(MR) oo. Also, Pd(MR ) = n if and only if for any projective resolution

of MR:

• • • Pn • • • Pi 4 Po M 0,

Im(4) is projective [22, P90]. Clearly, Pd(MR) = 0 if and only if M is

projective. If 0 0 is a short exact sequence of right

R-modules with B projective, then, by examining the induced long exact

sequence in the second variable, we have Pd(A) Pd(C) — 1.

Lemma 4.1.1 If MR is finitely generated and R is a Pricier ring, then M

T(M) ED M/r(M).

Proof. Since M/r(M) is f.g. torsionfree, then it is projective by Proposition

2.3.5. Therefore the short exact sequence 0 r(M) M --+ MIT(M) 0

splits, and so M r(M) M/r(M). ^

For some ordinal p, let

0 =M0 CMi C•••CM„C•••CMp .M (a <p)P) (1)

be a well-ordered ascending chain of submodules of a module MR. The chain

(1) is said to be continuous if Mo = ja<0 M, for every limit ordinal /3 < p.
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Lemma 4.1.2 [Auslander]. For an ordinal p, let

0 = Mo C^C • • • C^C•• • (a < p)^(1)

be a well-ordered ascending chain of submodules of a module MR such that

(a) ( ja<p Ma = M;

(b) (1) is a continuous chain;

(c) Pd(M,+1 1M„) < n for some fixed integer n and all 1 < a +1 < p.

Then Pd(M) < n.

Proof. If n = 0, then, since (b), M,I(U, <,M,) is projective for all a < p. It

follows that Ma (U,<„Mc ) ® Oa for some projective submodule Ma of M.

Therefore M Ucy<p Ma = e „pit/a is projective, thus Pd(M) 0. Now

assume n > 0. Let Mc,/ = Mal(U,< ,M,), and Fa be a free right R-module

mapping onto M ia with kernel K. If a is a limit ordinal, then Ma = 0. In this

case we choose 0 as Fa. Therefore we have Pd(K) Pd(MM ) — 1 < n — 1.

Let Fa ®,< ,F,'. Since Fa is free, there is a map Ma which lifts the

map^By transfinite induction, the map^Ma can be extended

to a map Fa^Ma such that if Ka is the kernel, then Ka C Ka for a < a

and lc:, Ka/(u,<„&). Thus, Pd(Ka /(U,< ,,K,7 )) Pd(Ka) < n — 1.

Note that 0 = K0 C Kl C • • • C AT, C • • is a continuous chain. By the

induction hypothesis, Pd(Ua<p Ka ) < n — 1. Since U„,<p K, is the kernel of

U a<p Fa -4 M, and U,< ,,F0, = 69a<pFai is projective, we obtain Pd(M) < n.

A module MR is finitely presented if there is an exact sequence 0^K -+

Rn^M^0, where n is a positive integer and K is finitely generated. This

is equivalent to the requirement that there exist f.g. modules KR and PR
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such that 0 --+K-4P--+M-4 0 is exact (see [2, Ex.17, P233]).

Lemma 4.1.3 Let R be a Priifer ring. A f.g. module MR is finitely presented

if and only if Pd(M) < 1.

Proof. Let 0^ 0 be an exact sequence with F f.g.

free. If M is finitely presented, then H is finitely generated. Hence H is f.g.

torsionfree. By Proposition 2.3.5, H is projective. Therefore Pd(M) < 1.

Conversely, if Pd(M) < 1, then H is projective. Since H C F and F

has finite Goldie dimension, H is of finite Goldie dimension. By Proposition

2.3.5, H is finitely generated. ^

Lemma 4.1.4 Let R be a Priifer ring, and H a projective submodule of a

torsionfree module FR. If F/H is finitely generated, then F is projective and

F/H is finitely presented.

Proof. Step 1. First we assume R is a Priifer domain (noncommutative), H

is free and F/H is f.g. torsion. Write H e){yR: y E Y}. Let Q = Qd(R).

Then Q is a division ring. Since F is torsionfree, the map 0: F F®RQ

which is defined by 0(x) = x 0 1 is one to one. Since F/H is torsion, and

Y is a basis for H, {y 0 1 : y E Y} becomes a basis for the Q-vector space

(FORQ)Q. Suppose FI H=Rd- • • --Fx,„R, where xi = H, i =1,...,m.

Clearly F x 1 R + • • • + xn,R + H. For each i, there exists a nonzero ri of

R such that xiri E yiR + • • • + ykR, where k is a fixed positive integer.

Let Ho yiR + • • • + ykR, Fo = xiR + • • • + x fli R + Ho . Then the map

Fo/Ho F/H defined by (p(e + Ho) -=^H is onto.

Claim: Fo 11 H = Ho. Let = xiai + • • • + xm ani E H, where each

a i E R. Write = y2, b1^• • + yin k for some yip E Y and 0^bi E R.
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Then 0 1 = (yi , 0 1)b 1 + • • • + (y,„ 0 1)bn . On the other hand, 0 1 =

(x101)ai-F• • •+(x,n 01)ani = (xiri H-• • •+(x7nrynOl)r; lani (y1®

1)u 1 + • • • + (yk 0 nuk for some uk E Q, since each x i ri E yiR + • • • + ykR. By

noting that each b, 0, and {y ®1 : y E Y} is a basis of (F ORQ)Q, we have

{Yii • • , Yin} C {Yi, • • • yk}. Therefore E Ho. Consequently Fo n H = Ho,
implying that co is an isomorphism. Since both H o and F0 are f.g. torsionfree,

they are f.g. projective by Proposition 2.3.5. Therefore Fo /Ho , and F/H is

finitely presented. We note that Ho is a direct summand of HR, hence H/Ho

is projective. Since F = x 1 R + • • • + x,R+ H and F0 fl H = Ho , we have an

R-module isomorphism 0: H1110 Fo (via 0(x + Ho) x F0 ). Therefore

F/Fo is projective. So we have F Fo e (F/F0 ) and F is projective.

Step 2. Assume R is a Priifer domain, H is projective and F/H is f.g.

torsion. Then HEX is free for some X E Mod-R. X is, of course, torsionfree.

Therefore Fe X is torsionfree and

0.-11 ,EDX-FEB , X--(FEDX)1(111EDX)c-','FIH--0

is exact. Step 1 implies that (F X)/(H ® X) is finitely presented and Fe

X is projective. Consequently F/H is finitely presented and F is projective.

Step 3. We assume R is a Priifer domain, H is projective and F/H is

finitely generated. By Lemma 4.1.1, we may assume F/H = (U/H) ED (VIH)

where T(F/H) is f.g. torsion, and V/H (F/H)/T(F/H) is f.g.

torsionfree. By Proposition 2.3.5, V/H is projective. Therefore we have

V '1L-' He(v/H), and so V is projective. In the following short exact sequence:

0 V F FIV (II H --+ 0



Modules over Priifer rings^ 59

U/H is f.g. torsion, and V is projective. Therefore Step 2 implies that F

is projective and U/H is finitely presented. As a direct sum of two finitely

presented modules, F/H  is of course finitely presented.

Step 4. The general case: R is a Priifer ring. We know that R is Morita

equivalent to a Priifer domain S by Theorem 2.3.5. There exists a Morita

equivalence G : Mod-R --- Mod-S, and G induces an exact sequence in

Mod-S:

0 --* G(H) --+ G(F) —÷ G(F/H) —÷ 0.

By [2, Prop.21.6], G(H)s is projective, and G(F/H)s is finitely generated.

It is well-known that the singularity of modules is preserved under Morita

equivalences (e.g., see [17, P43]). Then the torsionfreeness of FR implies that

G(F)s is torsionfree. Therefore Step 3 implies that G(F)s is projective and

G(F I H)s is finitely presented. Hence FR is projective and (F/H)R is finitely

presented by [2, Ex.11, P262]. ^

A right R-module is called coherent, if every f.g. submodule is finitely

presented.

Proposition 4.1.1 Every module MR of projective dimension 1 over a Prifer

ring R is coherent, and for any submodule N of M, Pd(N) < 1 and Pd(M IN) <

1.

Proof. Let N be a f.g. submodule of MR where Pd(M) ----- 1. Then we can

write M F/H with F free and H projective. There exists a submodule G

of FR such that H CG and N ----= G1H. Clearly G is torsionfree. Therefore

N is finitely presented, and G is projective by Lemma 4.1.4. Since 0 -4 G -4

F -+ FIG Ls,' MIN --+ 0 is exact, we have Pd(M/N) < 1. ^
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Theorem 4.1.1 Over a Pricier ring, a countably generated right module has

projective dimension < 1 if and only if it is the union of a countable ascending

chain of finitely presented right modules.

Proof. Given a countably generated module MR, then MR is a union of

a countable ascending chain of f.g. submodules. If Pd(M) = 0, i.e., M

is projective, then every f.g. submodule of M is torsionfree, and hence is

projective by Proposition 2.3.5, and hence finitely presented by Lemma 4.1.3.

If Pd(M) = 1, then, by Proposition 4.1.1, every f.g. submodule of M is

finitely presented. For the converse, we suppose MR is the union of a chain

of right finitely presented R-modules:

0 C^C M2 C • • • C 1V17, C • • •

By [2, Ex.17, P233], all /Vn+1 1 —Mn/^are finitely presented. Then Lemma 4.1.3- - 

implies that Pd(Mn+ i/Mn ) < 1 for all n. By Lemma 4.1.2, Pd(M) < 1. ^

Let R be a Priifer domain, and 0 H F 4 M 0 be an exact

sequence of right R-modules such that FR = e{x R : x E X} is free on X

and H is projective. By [2, Cor.26.2], HR = : y E Y}, where the

Hg 's are countably generated projective right R-modules. Consider all pairs

(Xi, Y) of subsets Xi C X, Y C Y such that Fi = e{xR : x E Xi} and

Hi = ED{Hy : y E Y} satisfy Hi = H n Fi . Let i run over an index set I.

Note that H = H, 6 HZ and F, H = where ED{Hy : y E

Y \ Yz }. Therefore each F, H is projective. Set T = {M, : i E I}, where

M2 = (F, H)/ H. Then, clearly, (0), M E T, and for Mz ,^E T with

Mi C^(F1 + H)/(F, H) has projective dimension at most

one.



Modules over Priifer rings^ 61

Lemma 4.1.5 [Fuchs]. Let R, MR, and T be as above. Then for any count-

able subset A of M, there exists some Mi E 'T with Mi countably generated

such that (A) C Mi , where (A) indicates the submodule of M generated by

A.

Proof. Given a countable subset A of M, there is a countable subset X (1 )

of X such that 4(X( 1 )) contains A. Let Q Qd (R). Then Q is a division

ring. Since (X( 1 )) is torsionfree, we have that f : (X( 1 ))^(X(1)) OR Q
which is defined by f (a) a 0 1 is one to one. Similarly, g : (X(')) n H
((X( 1 ))n H)ORQ (g(b) b01) is one to one. Since Q is a flat left R-module,

the map /01 : ((X (1) )nH)ORQ^(X(1))ORQ is a monomorphism, where

1 is the inclusion of (X(')) n H into (X( 1 )). Therefore we have the following

commutative diagram:

0

1
o^(x(1)) n H^(X(1))

ig^if
0^((X(1)) n H) OR 

Q 1®1}
^OR Q

Clearly, 1 0 1 is a Q-homomorphism. Since (X(')) is free with a basis X( 1 ),

(X( 1 )) O R Q is a Q-vector space with a basis {x 1 : x E X (1) }. Thus, as a

Q-subspace, ((X( 1 )) n H) OR Q has a countable basis which, we may assume,

is {z, 0 1 : i E N} with all z i E (X(')) n H. There is a countable subset y( 1 )

of Y such that all zi E (No /0) Hy . We claim that (X( 1 )) n H c eyey( i ) Hy .

In fact, if not, then we can find an h h a + h b E (X (1) ) n H with 0 $ h a E
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eye -I/v(011y, and hb E evEy (01-4. But since h01 E “X (1) )11H)ORQ, h®1 =

E7_ 1 (zi 0 1)qi for some qi E Q. There exist ai E R and c E CR(0) such that

qi = ctic-1 for i 1, • • , n. Then hc01 (h 01)c (E 7iL i ziai) ®1. It follows

that he = ElL i ziai. This implies that h a c = 0, contradicting the fact that

H is torsionfree. Hence the claim is true. We can select a countable subset

X(2) of X that contains X( 1 ) and satisfies eyEy (i)Hy C (X(2)). Repeating

this process, we obtain ascending chains of countable subsets

X( 1 ) C X(2) C • • • C X(n) C • • •

and

Y(1) C y( 2 ) C • • • C y(n) C • • •

of X and Y, respectively, such that

(X(n)) n H c eyEy(n) Hy c (X(n+ 1 ))

for each n < 1. Let X* =- Un X ( n) , Y* = UnY ( n) , F* = e{Rx : x E X*}, and

H* e{Hy : y E Y*}. Then F* fl H = H*. Thus M* (F* H)I H E

It is clear that (A) C M*, and M* is countably generated. ^

Lemma 4.1.6 Let R, MR, and T be as above. Given A = (Fi + H)/H E T
and a countable subset A of M, there exists some IVIi = (Fj H)I H E

such that (A, Mi ) C Mj, Mi/Mi is countably generated, and Fi C F3 .

Note. The required condition Fi C F.; is really indispensable for the proof

of the next lemma.

Proof. We consider the following short exact sequence:

0 -4 (F, H)I^F Fi^(F1 Fi)I[(Fi H)/ Fi] -÷ 0.

Clearly

(FIFi)I[(Fi+ H)1Fi]2-='' F (Fi H)
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has projective dimension at most one,

F/Fi = ED-PR x E X \ Xi l

=x+FiEFIFi ,

(Fi + H)/F, (DM Fi)/Fi : y E Y \Y}('-=. 117)

is projective with each

(Hy +^Hy

countably generated. By Lemma 4.1.5, there exist

X' C X \ Xi , V' C y
such that:

(a) EBI{xR x E X'} n ((Fi + H)/Fi) = 6){(Hy + Fi )/Fi : y E Y'},

(ED{xR : x E x'} n^+ H)) + Fi = ED { Hy Y G^Fi;^(*)
and

(b) [ED {±R : x E X'} ((Fi H)/Fi)]/[(FiH)/ Fi]
is countably generated; and

(e) [®{xR: x E X'} + ((Ft + H)/F2)1/[(Fi H)/Fi]^AF ),

where AF is a countable subset of F such that

A ={u -FH:u E AF},^E /V},

and

AF {f + [(Fi + 11)1 Fi] : f G OF}.

It is easy to see that condition (c) is equivalent to

Es{xR x E X'} Fi + H D EuEAF uR^+ H.

is free, where

and

Let
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F" = El){xR : x E X' U Xi },

H" =^: y E Y' U

M" (F" H)/H.

Then, by (*),

F" n H = (Ep{xR : x E X'} Fi) n H D (CHy : y E^e^H" .

On the other hand, if

for some

then

^b E F" n H, i.e., b^b2 E H

^bl E El)fxR : x E^b2 E Fi ,

b l = b b2 E Ep{xR : x E X i } n (Fi + H).

By (*), b — b2^a2 for some

a l E WHy : y E^a2 E Fi.

Then

b — = a2+b2EFinH--= Hi .

Therefore

^b^(a2 b2) E {Hy : y E^+ —̂ H".

Consequently we have

F" n H H" , and hence M" E T.

Also, by (**),

(A, Mi) = (E.EA, uR + H)/H (Fi H)/H
H)/H C (F" H)/H M".

Clearly Fi C F". Finally

^

MH /Mi^[EB4{xR : x E X'} ((fli H)I Fi)]I[(Fi H)I Fi ]

is couritably generated by (b). The proof is complete. 0
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Now we can prove the following lemma:

Lemma 4.1.7 Let R be a &lifer ring and Pd(M) <1. Then there exists a

well-ordered continuous chain of submodules

0 = Mo c MI c • • • C Mc, C • • - C Mc, = M (a < p)

such that for each a < p, Ma-Fi l Ma is finitely presented.

Proof. Step 1. We assume R is a Prfifer domain. Then we can set up

T as in the above discussion. Choose Mo = (0) E T. Suppose we have

already chosen all Ma = (Fa + H)/H for all a < a with Mc, E T such that

0 /11„+1 /Ma is countably generated and Fa C Fa+1 for all a + 1 < o- .

(i) a is not a limit ordinal. We are done if M = Ma_ i . If M^Ma-1,

then, by Lemma 4.1.6, there exists some Ma E r such that M,_ 1 C Ma,

Ma /Ma- 1 is countably generated, and F,_ 1 C Fa .

(ii) a is a limit ordinal. We can define Mo. = Lja<0. Ma. Let Fa =

Ea<0. Fa , Ha = EDIHy : y E lia<o. Ya l. Then Fa = 6){xR : x E Ua<cr Xal,

and Fa n H = Ha since MI is a chain. Therefore Ma = Ea<, Mc, --=_-

(Fa + H)I H E T. Note that 0 Ma+i /M, is countably generated for all

a < a. By transfinite induction, we can get a continuous chain of submodules

of MR from T:

0 _-_, Mo c Mi c • • • c Mc, c • • • c Mp _--= M

such that Ma, d_ i /Ma, is countably generated for all a < p. From the notes

before Lemma 4.1.5, each Pd(Ma+i /Ma ) < 1. Then, for each a, Theorem

4.1.1 ensures that there exists a chain of submodules
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Mc, =^C Mc1, C • • C^a+1

such that 4,2 + 1 /4,' is finitely presented for all i. Therefore, without loss of

generality, we may assume each Ma+i /Mc, is finitely presented.

Step 2. Let R be a Priifer ring. Then, by Theorem 2.3.5, R is Morita

equivalent to a Priifer domain S via an equivalence F : Mod-R Mod-S

with inverse G : Mod-S --+ Mod-R. Since Pd(M) < 1, then Pd(F(M)) <1.

By Step 1, there exists a continuous chain of submodules of F(M) s :

0= Noc^c••• cNa c•••^ F(M)

such that Na+i /Nc, is finitely presented for all a < p. Since Morita equiva-

lence preserves exactness [2, Prop.21.4], we have G(Ara+i)/G(N,) ^-= G(Na+i Na ).

It follows from [2, Ex.11, P262] that G(Na+1 )1G(N,) is finitely presented for

each a < p. If Na = ja<, Nu , then G(Na) =^G(NT) by [2, Prop.21.7].

Therefore we have shown

0 = G(No ) c G(Ni) c • • • c G(Na ) c • • • c G(Np ) = GF(M)R

is a continuous chain of submodules of CF(M)R such that G(Na+i )/G(Na )

is finitely presented for all a < p. Since MR GF(M)R, we can get such a

similar chain for MR. ^

Now we can prove the main theorem of this section.

Theorem 4.1.2 Let MR be a module over a Pricier ring R. Then Pd(M) <

1 if and only if M is the union of a well-ordered continuous chain of sub-

modules

0 = Mo c^c • • • c^c • • • c Mp M
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such that Ma+i IX is finitely presented cyclic for all a < p.

Proof. The sufficiency follows from Lemmas 4.1.2, 4.1.3. For the necessity,

we know that there is a well-ordered continuous chain of submodules

0=Mo CMi C•••CA,C•••CM„=M

such that M, +1 /Mc, is finitely presented for all a < p, by Lemma 4.1.7.

Therefore, to complete the proof, it suffices to show the fact that for every

finitely presented module NR, there exists a finite chain of submodules of

NR such that each factor of this chain is finitely presented cyclic. To see

this, let N x i R + • • • + x„R be a finitely presented module, and P

x 1 R+ • • --Fx,i_ i R. Then N/P is finitely presented cyclic by [2, Ex.17, P233].

If Pd(N) = 0, then P is f.g. torsionfree, and hence projective by Proposition

2.3.5. If Pd(N) = 1, then P is a finitely presented module by Proposition

4.1.1. Therefore P is a finitely presented module with n-1 generators. Thus,

the induction hypothesis implies that there is a chain of submodules of P:

0 = Po C C • • • C Pk P

such that Pi+i /P, are finitely presented cyclic for all i^0, 1, • • • , k —1. Hence

0 =P0 CP1 C-• •CPk=PCN

is the required chain for N ^

4.2 Divisible modules of projective dimension at most

one

Given a Priifer ring R, we construct a special divisible module 0 with pro-

jective dimension at most one by following Fuchs, and then we characterize

all divisible right H-modules with projective dimension at most one by using
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the module O.

Lemma 4.2.1 [Fuchs]. Let 0 = Mo C M1 C • • • C Ma C • • • (a < p) be a

well-ordered continuous ascending chain of submodules of MR. Suppose that

Ext 1R (Ma+i iMa , X) = 0 for all a +1 < p, and some X E Mod-R. Then

Ext 1R (UaK3 Ma , X) = 0 for every P.

Proof. We can assume UMa = M. Let 0 -4X-4E-->M-4 0 be an

extension of X by M. We want to show that it splits by constructing a

module A such that E = X ® A.

Let 0^X -4 Ea -4 Ma -+ 0 be the exact sequence induced by the

inclusion Ma^M. Obviously, this splits for a = 0. Regard E as the union

of the ascending chain

0 = Eo C^C • • • C Ea C • • • (a p) ,

and suppose that we have found R-submodules A3 of Ed for each < a such

that

0 Ao C A i C • • • C Ao C • • • (3 < a),

is a well-ordered continuous ascending chain satisfying Ef? X ED A, (0 < a).

If a is a limit ordinal, then set A a^Ufi<aAp. This will satisfy Ea

X 69 A a . If a — 1 exists, then Ea tila_ i is an extension of Ea_ i /Aa_ i^X

by Ea /Ea_ i^Ma jMa_ i . By our hypothesis, this splits, i.e., E a /Aa-1 =---

(Ea_i/Aa_i)e(A,,/24,1) for some Aa 2 Aa_ i . Evidently, Ea = X-FAa . On

the other hand, xnA, = xnEa_ l nA, = xnA, = 0, thus Ea = X ED A a .

Therefore, there is a well-ordered continuous ascending chain

0 Ao C A i C • • CA a C • •^< p) ,
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such that Ec, X e A, for all a < p. Set A^Then E = X e A.

The module a was first constructed by Fuchs. Facchini used a slight

modification of a to study divisible modules over a commutative domain [7].

Here, we follow Facchini for the construction of a.
Given a ring R, for every positive integer k let

Xk^{(r i , • • • , rk) : ri E CR(0), i = 1,^, k} and Xo --= {w}•

Set X^j, >0 .Xj . For (r i , • • • , rk), (r;, • • • ,r;), both in X, we define

(r i , ••• , rk ) = (r;, • • • ,r;) •#;• k^/ and r i = r: for i^1,•• • , k.

Let U be the free right R-module with basis X, i.e.,

U = WR (17) [ED(ri)EXI (ri )R] ED [E (r i ,r2 )Ex2 (ri, r2)R] e • • ••

Set

Y =^• • ,rk)rk — (r1, • • • ,rk—i) (ri,• • • ,rk) E Xk,k >

(note (p i , • • • , rk_i) w if k 1), and let V be the submodule of U generated

by Y. We define a
An element a of R is called left invertible if ab =1 for some b E R. And

such a b is called a right inverse of a. Some basic facts about a are included

in the following proposition.

Proposition 4.2.1 Let ak be the submodule of a generated by -V + V : E

Ui<k Xi}. Then

(a) 0 c ao Cal C • • • C ak C • • , and a _ uk>oak• If every element

in CR (0) is left invertible, then a^ao ; if some element in CR(0) is not left

invertible, then ak C ak+i for all k;

(b)ao wR(ti) w+ v) RR; And alai) is torsion zf R is a right order;
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(c) For each k > 0, either Ok +110k 0, or there exists a non-empty subset

Zk Of Xk+i such that a,.^= EDeezk (6 + ak )R with (e ak )-L-^rk+i R,

where e^+ V and e = (r i , • • ,rk+i );

(d) Pd(Ok+i I ök ) < 1 for every k > 0, and Pd(0) < 1;

(e) A module DR is called divisible if Dr = D for every r E CR (0). Let

DR be a divisible module, and a E D. Then there exists a homomorphism

f :a^D with AO = a;

(f) If the ring R is an order, then 0 is divisible;

(g) Let the ring R be an order. For every divisible module MR, there

exists an exact sequence 0 N D M 0 of divisible right R-modules

such that D is a direct sum of modules each of which is isomorphic to 01W- riR

for some ri E CR(0) U {0}; if M is divisible torsion then we can choose every

such ri in CR(0).

Proof. (a). Directly from the constructions of a and a k , we have 0 C ao c

c • • • c ak c • • • , and a =uk>oak• Moreover, w 0 V implies that ao 0.

If r E CR(0) is not left invertible, then, for each k,(ri.,• • • , rk )+V E ak\ok_i,
where r 1 = • • • = rk = r. If every element in CR(0) is left invertible, then

for each (ri, • • • 7 rk) E Xk, (ri, • • • ,rk) V = ((ri, • • • , rk_i) V)sk E

where sk is a right inverse of rk. It follows that ak^= • • ••
(b) . For any 0 a E R, wa V. This implies that ao = wR is a free

R-module with a single element basis set {0. So Op '-'7= RR. Since R is a right

order, T(a/ao) is a submodule. From the construction of 0, we see T(0 laci)

contains a set of generators of am,. It follows that OA 7-(a/a0)•
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(c). If Ok+i/ak 0, then, by (a), CR(0) contains an element which is not

left invertible. Set Zk = {(r i , • • • ,rk+i ) E Xk+1 : rk+i is not left invertible

}. Note that if e = (r i ,^,rk+i ) E Xk+1 and rk+ i is left invertible, then

E ak. Thus e^= 0. From the constructions of 0, ak, and ak+i, we

have Ok+llak^ENEZk(^ak)R, and for each e = (ri, • • ,rrk+i ) E Zk,

ak )' = rk-FiR.

(d). By (c), ak+iiak = ENEzk cx,+ ,(+Ok)R. By defining a well-ordering

on Zk, we can write ak+ ilak as the union of a well-ordered continuous chain

of submodules with each factor of the chain isomorphic to some ( 4- + ak)R.

Since 0 --+ rk+1 R -4 R^(e ak)R -÷ o is exact for e = (r1, • • • ,rk+i) E Zk,

we have Pd(Ok+i/ak) < 1 by Lemma 4.1.2. Therefore, by Lemma 4.1.2,

Pd(0) < 1.

(e). We construct a map q : Uo<kXk^D as follows:

Let 71(w)^a. For (r) E Xi , choose one x E D with xr^a and let

ii((r)) = x. Suppose for each element e of Xk_i, q(e) has been defined. For

(r 1 ,... ,rk) E Xk, we choose one x E D with xrk = ri((r i , • • • , rk_ i )) and

let 77((r1, • • • , rk) = x. In this manner, we define a map 77 : Uo<kXk D.

Since U is a free R-module with a basis Uo<kXk , the map q determines

uniquely a homomorphism q : U D. From the construction of 77, we see

Y C Ker(q), and so V C Ker(q). Therefore there is a natural epimorphism

a U/V UlKer(n). 77 induces a monomorphism UlKer(n) 4 D. Then

a D is a homomorphism such that (77 o 0)(t-v) a.

(f). Let Q = Qd(R), e^E i , k ((r ilk ,ri2k ,• • • ,r 21k )^V)a, k E 0, and

t E CR(0). Then taikr i E Q. Write taikt -1 = pZk1 qik for some q,k E R and

some Pik E CR (0). By [18, Lemma 5.1, P87], pal = r'a i for some ai E R
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and r E CR(0). Then taikt -1 =--^aiqik, and thus aiqikt^rtaik. There-

fore^((riik, • • • ,r ikk )^V)aik = Ei,k((rik, • • • ,r ikk ,t,r)^V)rtaik =

[Ei ,k ((r iik , • • • ,r ikk ,t,r)^V)a i qik it.

(g). Given a divisible module MR. For any nonzero element a in M,

if ar^0 for any r E CR (0), then we let /„ =-- { (a , 0)}; otherwise, we set

/a = {(a, r) : r E CR(0) with ar^0}. For each (a, r) E /a , we choose an

fa,r E Hom(O/fOrR, M) satisfying fa ,r (ti) tiirR) = a. Such an fa ,r exists

by (e). Let D =^AC-vla (a flirR). Then Ifa induces a homomorphism

f fa,r : D M, and f is clearly onto. Also, f induces an exact

sequence:

^

0 ---^D^M^0, where N = ker(f).^(2)

By (f), D is divisible. To see N is divisible, let x E N and t E CR(0).

Since D is divisible, x^yt for some y E D. Let z = f(y) E M. Then

zt^f(y)t = f(yt) = f(x) = 0. Therefore the map g : R/tR —+ M

defined by g(b) zb is a well-defined homomorphism. Define h : R^D by

h(b) = (Cy ibtR)b. Then h(t) = 0, and thus h induces a homomorphism

h : RItR D. Directly from the definition of D and the map f, we have

f oh = g. Let u = y - h(1) E D. Then f(u) = f (y) - f oh(1) = z - g(1) = 0,

and ut yt - h(l)t = x. Therefore N is divisible. The last part of (g) is

now clear from the proof above. ^

A short exact sequence of right R-modules: 0^M^M"^0

is called pure if M ' OR L M OR L is a monomorphism for every left R-

module L. A module NR is called absolutely pure (or FP-injective) if every

exact sequence 0 NR MR PR 0 is pure.
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Proposition 4.2.2 Let MR be a module over a Priifer ring R. Then the

following are equivalent:

(a) MR is divisible;

(b) Ext 1R(RIrR,M) = 0, for every r E CR(0);

(c) Ext11 (RI I , M) 0, for every f.g. right ideal I of R;

(d) MR is absolutely pure.

Proof. (a) 4,;> (b). From the exact sequence 0^rR^R^RI r R^0, we

have an exact sequence Hom(R, M)^Hom(rR, M)^Ext l (R/rR, M)

0. Therefore, Ext l (R/rR, M) = 0 if and only if for every homomorphism

rR -4 M, there exists a homomorphism R^M such that g extends f. If

MR is divisible, r E CR(0) and rR 4 M is a homomorphism, then f (r) = yr

for some y E M. Define g : R -+ M by g(1) = y. Then g extends f,

and so Ext i (R/rR, M) = 0. Conversely, let x E M, r E CR(0). Clearly

f :rR M via Ara). rx is a homomorphism. Since f can be extended

to a homomorphism R 4 M, then x rg(1). Therefore D is divisible.

(b)^(c). Trivial.

(b)^(c). Let I be a f.g. right ideal of R. From the exact sequence 0 -*

IR 4 RR^(RI I)R -+ 0, we have the exact sequence Hom(R, M) 11°772-(± 111)

H om(I , M) ExPR(RI I , M) 0. Therefore ExeR(R//, M) 0 if and

only if Hom(i, M) is onto if and only if each homomorphism f : IR -+ M can

be extended to R. We can find a right ideal J of R which is maximal with

respect to I fl J = 0. Then I+J--=IEDJis an essential right ideal of R. By

Proposition 1.2, I + J contains an element r E CR(0). Write r r 1 r2 , for

some r 1 E I and some r2 E J, and let K = I + r2 R = I e r2R. Obviously
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f : I —+ M can be extended to f : K M. K is a f.g. right ideal of R, hence

K is projective, since R is semihereditary. By Proposition 1.4, there exist

fa i l C K and ffi l C Hom(K, R), such that for any a E K, fi (x) = 0 for all

but a finite number of the fi , and a = Ea i f,(a). Since K fen(0) 0, there

exists, for each i, a qi E Qc/(R) satisfying qiK C R such that fi (a) = qia

for all a E K. For seKn CR (0), we have s = Ea ifi (s) = (Ea iqi )s. This

implies that Ea iqi = 1. Since R is also a left order in Qd (R), there exists

t E CR(0) such that all tq, E R. Now the divisibility of M implies that we

can write f(a,) = xit with all x i E M. Then for any a E K we obtain

f(a) = f(Eaiq,a) Ef(ai)(qia) Ex i (tqi )a = xa with x = Ex,tqi E M.

Hence the map a xa from R to M is a R-homomorphism that extends f .

(c) .4* (d). Megibben and Stenstriim proved, independently, that (c)

(d) for an arbitrary ring R (see [30, Prop.1] or [ 35, Prop.2.6]). ^

The concept of a semicompact module was defined by Matlis in [28], where

it was shown that a module over a commutative Prfifer domain is injective

if and only if it is divisible and semicompact. The same result holds in a

noncommutative Prfifer ring.

For a module MR, let R(M) denote the set of subsets of M of the form

{x E M : xI = 0} for a right ideal I of R. M will be called semicompact if

every finitely solvable set of congruences

x x„, (mod Me,)

where x„ E M and Mc, E R(M), has a solution in M [28]. If we note a result

of StenstrOm [35, Prop.2.5] that an absolutely pure module is injective if and

only if it is semicompact, then the following is immediate:
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Corollary 4.2.1 Let MR be a module over a Pricier ring R. Then M is

injective if and only if it is divisible and semicompact. ^

Proposition 4.2.3 Let MR be a module over a Prifer ring R. If Pd(M) =

m > 1, then Ext7P(M,D) = 0 for all divisible module DR.

Proof. We induct on m. If m = 1, then, by Theorem 4.1.2, MR is the union

of a well-ordered continuous chain of submodules:

0 = Mo c^c • • • C Ma C • • • C M, = M (a < p)

such that Ma+i /M„ is finitely presented cyclic for all a < p. Thus, for each

a < p, Ma+1 Ma RI la for some f.g. right ideal /R. Since DR is divisible,

Proposition 4.2.2 implies that Ext}? (Ma+i /M„, D) = 0, for every a < p. By

Lemma 4.2.1, Ext 1R (M, D) 0.

For m > 1, let 0 N R FR M -4 0 be an exact sequence with F

projective. Then Pd(N) = Pd(M)-1 = m-1. Now the induction hypothesis

implies that Extlir l (N, D) = 0 for all divisible module DR. From the exact

sequence 0 -+ N F M 0, we have ExtMN,D) Ext kR+ 1 (M , D) for

all k > 1. Therefore ExtrRn(M,D) = 0 for every divisible module DR. ^

Remark 4.2.1 Proposition 4.2.3 generalizes a result of L.Fuchs [13, Prop.3.9,

P126].

We now can give the following characterization of divisible modules of pro-

jective dimension at most one:

Proposition 4.2.4 Let MR be a module over a Priifer ring R. Then M is

divisible with Pd(M) < 1 if and only if it is a summand of a direct sum of

modules of the form alwriR, where every ri E CR(0) U {0}.
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Proof. (=). By Proposition 4.2.1 (g), there exists an exact sequence 0 --X

N^D -+ M -4 0, where N is divisible, and D^@rEs a I 'Cyr R for a

subset S of CR(0) U {0}. If Pd(M) 0, then ExeR (M,N) = 0 from the

definition of projective dimension. If Pd(M) = 1, then Proposition 4.2.3

implies Extj(M, N)=-- 0. Hence, 0 -+ N -+ D -+ M - 0 splits. It follows

that M is a summand of D.

(=). Let D be as above, and M be a summand of D. Then Proposition

4.2.1 (f) implies M is divisible. We know Pd(a) < 1 from (d) of Proposition

4.2.1. Suppose Pd(a) = 1, we have Pd(a IthrR) < 1 for all r E R by

Proposition 4.1.1. Then, a similar proof of Proposition 4.2.1 (d) shows that

Pd(D) < 1. If Pd(D) = 1, then we have Pd(M) =-- 1 by Proposition 4.1.1.

On the other hand, Pd(D) 0 implies M is projective and hence Pd(M) 0.

Therefore Pd(M) < 1 holds if Pd(a) 1. Suppose Pd(a) = 0, i.e., a
is projective, then a is torsionfree. Therefore 'thrR is f.g. torsionfree. It

follows from Proposition 2.3.5 that fvr R is projective. Therefore we still

have Pd(affvrR) < 1. Repeating the argument above, we have Pd(M) < 1.

Corollary 4.2.2 Let MR be a module over a Priifer ring R. Then MR is

divisible torsion with Pd(M) < 1 if and only if it is a summand of a direct

sum of modules of the form a lz -vr iR, where each ri E CR(0).

Proof. It follows from the last part of (g) of Proposition 4.2.1 and the proof

of Proposition 4.2.4. ^

Let C(R) denote the center of a ring R, and r E CR (0). Suppose 1 s E

C(R) n CR (0). We defin e two maps as follows:
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: uo<kxk —* a
by 0(w) (r) — (rs)s, and

^

0((ri, • • • , rk))^(r,ri, • • • ,rk) —^• • • ,rk)s for k > 1.
And

:Uo<kXk^alth-rR
by 0(w) = 0, 0((r)) zb-F wrR, and

^

0((r i ,r2 , • • • , rk))^(r2 , • • • , rk)^r R if r 1 = r; or 0 if r 1^r.
Then 0 determines uniquely a homomorphism U 4 0, and defines a ho-
momorphism U^OlWrR. It is straightforward to check that Y wrR C
Ker(q5) and V C K erect)). Therefore 0 and V, induce canonically two homo-
morphisms

U/(wrR + V) -1+ Ul Ker(0) and U/V Ul Ker(0).
Note that

a/ wrR U/(wrR + V) and a
Then the homomorphism

satisfies

and

0 :

0(th + R) = (r) — (rs)s

(1) ((r1,• • • ,rk)-F wrR)^(r, r 1 , • • • , rk) — (rs, r1, • • • , rk)s for k > 1;
and the homomorphism

: 0 --÷ 0/wrR
satisfies

WOO = 0, W((r)) =^wrR,
and
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W((r,r2, • • • , rk)) = (r2, • • • i rk )^fOrR,

and

tlf((r i , r2 , • • , rk )) = 0 if r i^r.

Let a 4 amo be the natural homomorphism, and (D i n o (I). Since kli(t7))

0, W induces a homomorphism T i : a/a. -+
Lemma 4.2.2 Let 1,W, 0 1 , and W 1 be the same as above.

(a) W o = la/trirR• In particular,It-vrR is a summand of 0;

(b) W 1 0^= la hin-R• In particular, a I ihrR is a .summand of a/ao .
Proof. (a). Since Z { -kt-vrR: E UXk} is a set of generators of alzbrR, it

suffices to check that 4/ o fixs every element of Z. However, the verification

is straightforward.

(b). Similarly. ^

Theorem 4.2.1 If R is a Priifer ring, and C(R) {0, 1} (e.g., if the char-

acteristic of R 2), then MR is divisible with Pd(M) < 1 if and only if it

is a summand of a direct sum of copies of a .
Proof. Note that if R is a Priifer ring, then C(R) C CR(0). Now apply

Proposition 4.2.4 and Lemma 4.2.2. ^

Theorem 4.2.2 If R is a Priifer ring, and C(R)^{OM, then MR is

divisible torsion with Pd(M) < 1 if and only if it is a summand of a direct

sum of copies of amo •

Proof. By Corollary 4.2.2, and Lemma 4.2.2. ^
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