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Abstract

We study multiple Hopf bifurcations that occur in a model of a layer of a viscous, electri-
cally conducting fluid that is heated from below in the presence of a magnetic field. We
assume that the fluid flow is two-dimensional, and consider the ecffects of sidewalls with
stress-free boundary conditions. Our model partial differential equations together with
the boundary conditions have two reflection symmetries. We use center manifold theory
to reduce the partial differential equations to a two-parameter family of four-dimensional
ordinary differential equations. We show that two different normal forms are appropri-
ate, depending on the sizes of certain magnetoconvection paramecters for large aspect
ratios. We denote the two normal forms by “Case I" and “Casc II”. In both cases we
prove the primary Hopf bifurcation of standing wave (SW) solutions, and we prove the
existence of secondary Hopf bifurcations of invariant tori from the STV solutions. We
prove that the tori persist in ‘wedges’ in the parametric plane. In Case Il we show that
there are also secondary Bogdanov-Takens bifurcation points. Using this, we show there
are additional secondary and tertiary bifurcations of periodic solutions and invariant tori,
and also argue that generically, there exist transversal homoclinic and heterocline points,
and consequently open regions of parameter space that correspond to chaos of chaotic
regions, and show the existence of quasiperiodic saddle-node bifurcations of invariant
torl. Also, we show that in this case the system is a small perturbation of a system with

the symmetries of the square, as the aspect ratio approaches infinity.
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Chapter 1

Introduction

To improve his living conditions and satisfy his curiosity, mankind needs to find, under-
stand and study laws governing nature. In particular, differential equations modelling
natural phenomena have been shown to be extremely useful. The study of differential
equations themselves has produced an extensive theory, which in turn motivated more
abstract mathematical theories such as the theory of Lie groups, differential geometry
and functional analysis.

For one with little background in differential equations, the subject might be seen
as a collection of tricks and hints for finding solutions. But with a little acquaintance
with the theory it becomes clear that, apart from linear equations, it is rarely possible to
integrate systems of differential equations and find the solutions explicitly, while theorems
on existence and uniqueness of solutions do not convey much information about the
behavior of solutions. This shows the importance of the ideas and methods used in the
qualitative study of solutions, or dynamical systems.

The theory of dynamical systems has a rather short history. It can be considered to
have been originated by Poincaré, who in the last decade of the nincteenth century revolu-
tionized the study of nonlinear systems of differential equations, by combining techniques
of geometry and topology with analytic methods to study qualitative properties of solu-
tions. Around this time, Liapunov also made important contributions to the qualitative
study of differential equations. The work of Poincaré and Liapunov was continued and

furthered by Birkhoff in the first part of this century. Birkhoff rcalized the importance
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of the study of maps and emphasized discrete dynamics, since the qualitative study of
differential equations can often be reduced to the study of the iterates of an associated
map (the Poincaré map). Also, many problems and phenomena in the qualitative study
of differential equations can be seen in their simplest form in the study of discrete dynam-
ical systems. After Birkhoff, the study of dynamical systems was relatively inactive in
the West. However, Soviet mathematicians such as Andronov and Pontriagin continued
to study differential equations from the qualitative point of view [10].

In the early nineteen-sixties there began a great resurgence of interest in dynamical
systems, mainly due to influence of Smale, Peixoto and Moser and in West, and Kol-
mogorov, Anosov and Arnold in the Soviet Union. In his important survey article, Smale
[43] reviewed the concepts of dynamical systems developed by many mathematicians
(such as Anosov, Peixoto and Smale himself) during this period, and outlined a program
that was followed by many mathematicians, and which led to a good understanding of
a class of dynamical systems known as Axiom A or hyperbolic systems. His study of
Van der Pol differential equations motivated Smale to construct a two-dimensional map,
with chaotic dynamics, which is now known as the Smale horseshoe. This example, stud-
ied with the help of differential topological techniques and symbolic dynamics, led to
the study of chaotic dynamics in many other systems. In other significant mathemati-
cal work, IKolmogrov, Arnold and Moser used hard analysis to develop their celebrated
KK.A.M. theory on the persistence of certain solutions (invariant tori) under perturbations
of integrable Hamiltonian systems. In addition, scientists studying nonlinear models of
natural phenomena came to realize the power and beauty of the geometric and quali-
tative techniques developed during this period, and at the same time raised interesting
problems of their own, which provided new sources of motivation for the theory beyond
the traditional questions arising from mechanics. Lorenz (28], a metcorologist, presented

an analysis of system of three quadratic ordinary differential cquations which eventually
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created great interest in chaotic dynamical systems for mathematicians as well as scien-
tists from other disciplines. The advancement of computer graphics has also contributed
to great interest in dynamical systems among non-mathematicians. For more information

in the history of dynamical systems see [1, 16, 10, 43, 2].

1.1 Basic concepts

A first step in the qualitative study of a system of differential equations is to study the
dynamics of the system close to its fixed points or periodic orbits, since these represent
stationary or repeating behavior. Since the theory of linear equations is well-developed,
one can consider the linearization of the system about its fixed points or periodic orbits
[16]. If the linearized system is hyperbolic (i.e., all the eigenvalues of the linearized
system have non-zero real parts), then one can apply the Hartman-Grobman theorem
[16] to show that the nonlinear system is topologically equivalent to the linearized system
in a small neighborhood of the fixed point or periodic orbit. However if the linearized
system is non-hyperbolic (i.e., the linearized system has at least one eigenvalue with zero
real part), then the linearized system does not not give enough information about the
nonlinear dynamics. In this case one uses center manifold theory [20, 5, 16] to establish
the existence of a locally invariant (center) manifold of solutions for the original nonlinear
system and then study the dynamics close to the fixed points or periodic orbits restricted
to the center manifold. If the rest of eigenvalues of the linearized system have negative
real parts, then the center manifold is exponentially attracting, and the product of the
dynamics restricted to the center manifold with a linear exponential decay is locally
topologically equivalent to the dynamics of the original system [5). The center manifold
can be approximated by its Taylor series to finite order, and this approximation is usually

sufficient to determine the dynamics on the center manifold. To he more precise, consider
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a system of ordinary differential equations
& = Bz+ f(z,y), (1.1)
y = Cy+g(z,y),

where (z,y) € R" x R™, and B and C are n X n and m X m matrices whose eigenvalues
have zero real parts and negative real parts, respectively. We assume that the nonlinear
functions f and g vanish along with their first derivatives, at the origin. Then the center
manifold theorem implies that there is a locally invariant center manifold, which can be

represented by a local graph
We = {(z,y) : y = h(z), h(0) = Dh(0) = 0},

where h : U — R" defined in some neighborhood U C R™ of origin. The dynamics of

(1.1) at the origin is locally topologically equivalent to
& = Bz + f(z,h(x)), (1.2)
y = Cuy.
Thus the local study of (1.1) is reduced to the study the n-dimensional system
& = Bx + f(z,h(z)). (1.3)
The center manifold function h(z) satisfies
Dh(z) [Bz + f(z,h(z))] — Ch(z) — g(z, h(x)) = 0, (1.4)

which just expresses the local invariance of the center manifold. Using the center manifold
reduction, the dimensions of the problem can be reduced considerably. The relation (1.4)
can be solved approximately for h(z) by expanding in a Taylor scries, collecting terms of
like powers, and then solving term by term for each Taylor series coefficient of h(z). For

proofs of the above statements, see (5, §9.2].
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We illustrate these ideas with a simple example [16]. Consider the two-dimensional

system

T = uzy, (1.5)

y = —y+az,

and observe that one of the eigenvalues of the linearization about the origin of (1.5) is
zero, while the other eigenvalue is negative. By the center manifold theorem, there exists
a differentiable one-dimensional center manifold y = h(z) such that 2(0) =0, A'(0) = 0.

By substituting the Taylor series
h(z) = ax® + bx® + ...,

into (1.4), i.e.,
B (z)[zh(z)] + h(z) — az® = 0,

we obtain i(x) = az? + O(x?). Thus the reduced system representing the dynamics on
the center manifold is

& = zh(z) = az® + O(2). (1.6)
It is easy to see that the fixed point z = 0 in (1.6) is asymptotically stable if o < 0 and
unstable if & > 0. Therefore (z,y) = (0,0) in the system (1.5) is asymptotically stable if
a < 0 and unstable if a > 0.

If after a center manifold reduction the reduced system has dimension greater than
one, the system can be simplified further by using the method of Poincaré-Birkhoff normal
forms. The basic idea in normal form reduction is to construct appropriate near-identity
nonlinear coordinate transformations which annihilate certain nonlinear terms in the
Taylor expansion of the system. The method of normal forms is of fundamental impor-
tance in local theory of differential equations. For a discussion of normal form theory,

see [1, 16].
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The methods of center manifold theory and Poincaré-Birkhoff nor‘ma,l forms are im-
portant not only in the study of a single system of differential equations, but also in
bifurcation theory, where one attempts to analyze a parametrized family of systems of
differential equations. One concentrates on bifurcation points, i.e., those parameters for
which the system is structurally unstable (a dynamical system is structurally stable if
under any small perturbation the perturbed system is still topologically equivalent to
the original system). Thus arbitrarily small perturbations of parameters from a bifurca-
tion point will produce topologically inequivalent dynamics. One attempts to find and
classify all the topologically inequivalent dynamics possible when parameters are varied
in a neighborhood of the bifurcation point. If the analysis is local in a neighborhood
of a fixed point or periodic orbit, then one can use center manifold theory and normal
forms to simplify the analysis. An illustrative example is that of Hopf bifurcation in a
one-parameter family. This bifurcation is associated with pure imaginary eigenvalues for
the linearization, and periodic solutions for the nonlinear system. See [16] for more infor-
mation. If two or more parameters are varied, then more degenerate bifurcation points
can be found, and this typically enables one to describe a wide range of behaviors using
local analysis. This area of research has been very active in recent years, and there are
still many open questions. See [16, Chapter 7] for a survey of two-parameter bifurcations.
There exists a parallel theory for discrete dynamical systems, i.e., qualitative study of
iterated maps.

Mathematical models of many physical problems have some sort of symmetry. The
symmetry can be intrinsic to the physical system, or come from the idealization of an
approximate symmetry. Symmetry leads to more degenerate behavior, yet at the same
time the presence of symmetry can simplify the analysis. The books of Golubitsky et al.
[13, 15] give a systematic treatment of bifurcation with symmetry from the group theory

point of view (sce also the references therein).
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One can use dynamical system methods to study certain partial differential equations.
For example, to study local bifurcations in a system of parabolic partial differential
equations, one usually find the parameter values for which the linearized system has zero
or pure imaginary eigenvalues about its steady state solution. Then by considering the
system as an evolution equation in a Hilbert space, or more genecrally, a Banach space,
one can then apply center manifold theory for infinite-dimensional systems. One then
obtains a finite-dimensional system of ordinary differential equations, and then one can
study the bifurcation of these reduced equations. If the system of partial differential
equations have some symmetry, then the center manifold reduction can be done so that

the reduced system of ordinary differential equations has the corresponding symmetry.

1.2 Oscillatory convection in fluids and Hopf bifurcations with symmetry

In this thesis, we study the nonlinear dynamics of a model of a horizontal layer of a
viscous, electrically conducting fluid that is heated from below in the presence of a
vertical magnetic field. Such situations arise in astrophysics, geophysics and in laboratory
experiments. We consider two-dimensional motion near the onsct of oscillatory (time
periodic) convection. Unlike previous studies of magnetoconvection, we consider the
effect of sidewalls, especially distant ones. The magnetoconvection model consists of
a system of partial differential equations, together with boundary conditions. Several
parameters occur naturally in the model, and these represent physical quantities.

In models of two-dimensional convection (e.g., magnetoconvection, convection in bi-
nary fluid mixtures) the symmetry group O(2) of rotations and reflection of the circle
1s often present. This symmetry is due to equivariance of the model partial differential

equations (e.g., Navier-Stokes equations) under spatial translations and reflections, and
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the use of periodic boundary conditions. The theory of Hopf bifurcation in the pres-
ence of O(2) symmetry (e.g. [14, 29]) has been successful in accounting for a variety of
phenomena observed in experiments, especially on binary fluid mixtures. As the fluid
layer is heated from below with increasing intensity, in these experiments the motionless
conduction state loses stability to oscillatory modes and appears to undergo Hopf bifur-
cations as time-dependent convection onsets. Spatio-temporal patterns such as standing
waves and travelling waves have been observed. The corresponding experiments in mag-
netoconvection are more difficult, and we know of no experiments corresponding to the
physical situation we study in this thesis. However, see [39, 40] for descriptions of related
experiments in magnetoconvection.

In the dynamical system analysis of this phenomenon, the normal form describing this
bifurcation has O(2) symmetry (e.g., [15]). In this bifurcation, two branches of symmetry-
breaking solutions, denoted by standing waves (SW) (a family of solutions with reflection
symmetries) and travelling waves (T'W) (solutions with spatio-temporal symmetries) are
created [29]. While it can be hoped that the idealizations that are responsible for the
O(2) symmetry (infinite layer, periodic boundary conditions) will not qualitatively affect
the dynamics much, it is interesting and useful to consider the effect of breaking the
symmetry of the system, especially if the corresponding idealization is not satisfied by
the real system. For example, periodic boundary conditions are an approximation to
more realistic models with only reflection symmetry, due to presence of distant sidewalls
which break the continuous translation symmetry of O(2).

To consider the effects of sidewalls, one attempts to reduce the model to a simpler
one that captures the dynamics of the original system, at least under certain restrictions.
There are several ways to achieve this. One traditional approach has been to use the
formal method of multiple scales which results in a simplified partial differential equation

for a slowly varying envelope function [24, 9]. However, there is no rigorous explanation
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for validity of this formal method, and in fact [33] showed that the bifurcation results
of [9] using this method are only valid for very small range of parameters. To account
for the effect of sidewalls this model can be considered as symmetry breaking pertur-
bation to the idealized system. Another commonly used method is a formal Galerkin
reduction, by systematically using only finitely many modes of a Fourier expansion of
the solutions. This method usually is justified by physical intuition but often can be
made rigorous mathematically. To reduce the problem to a finite dimensional system of
ordinary differential equations in a rigorous way, the original system of partial differential
equations is considered as an evolution equation in a Hilbert space (e.g. [36, 37, 38]).
At critical parameter values, the linearized partial differential equation has only finitely
many eigenvalues with zero real parts. If the rest of eigenvalues at. these parameter values
have negative real parts, then using center manifold theory [20, 47], the existence of an
attracting center manifold can be proved, and the evolution equation restricted to the
center manifold leads to a finite-dimensional system of ordinary differential equations.
The reduced system carries the symmetry of original system, and it can be considered as
a system with broken O(2) symmetry (e.g. [32]). The sidewalls destroy the translational
symmetry SO(2), but keep a reflection symmetry Z,. Such an approach has been taken
by several authors, and in particular has been used to describe the effects of distant
sidewalls on the onset of steady convection in the Rayleigh-Bénard problem [33]. For
O(2)-equivarient Hopf bifurcations, the effects of various different symmetry breaking

perturbations have been considered in [29, 34, 6].

1.3 Overview of the thesis
We consider our magnetoconvection problem in a rectangular region

Q,={(z,y): —L<z<L,0<y<1}
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with aspect ratio 2L, and we use boundary conditions which are extensions of the
stress-free boundary conditions commonly used in the regular Rayleigh-Bénard convec-
tion problem [48]. With these boundary conditions the magnetoconvection problem has
Zy, ® Z, symmetry. A parameter R (Rayleigh number) gives a measure of the inten-
sity of heating from below. Using standard methods (e.g. [46]), we express the system
as an evolution equation in a Hilbert space. We prove that the spectrum of the lin-
earization K (R, L) about the trivial solution of the evolution equation, consists entirely
of isolated eigenvalues with finite multiplicities. Along a particular family of curves
R=R,(L),m =1,2,3,... (curves of values of the Rayleigh number R as a function of
half the aspect ratio L), the linearized operator has pure imaginary eigenvalues. Two con-
secutive curves R,,(L), Rn+1(L) intersect at a single point defining a particular value of
L = L,,. At such a point of intersection K will have a double Hopf point, as two different
spatial modes simultancously become unstable. We prove that for large enough imposed
magnetic fields, at (R, L) = (Rm(Lm), Ly) all the rest of the eigenvalues of K have neg-
ative real parts (Chapter 2). Then using the center manifold theory for parabolic partial
differential equations [20] we find a reduced parametrized family of four-dimensional ordi-
nary differential equations which represents the dynamics on an exponentially attracting,
locally invariant center manifold. By using normal form theory, we simplify the reduced
equation further. We show that for large L, depending on the size of other parameters
in magnetoconvection problem, two different normal forms, which we denote by Case I
and Case II, will be appropriate. Case II corresponds to convection with very strong
magnetic fields, in fluid with a very small ratio of magnetic diffusivity to thermal diffu-
sivity. Both the normal forms have a double Hopf point near 1 : 1 resonance (Chapter
3). After a long calculation, we find explicit expressions for the normal form coefficients
and their asymptotic behavior for large L, in both Cases I and II. We then evaluate

these coefficients numerically for some parameter values (Chapter 4, Appendices A and
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B). In both Cases I and II we prove the existence of primary Hopf bifurcations of two
families of standing wave solutions, which we denote by SWy and SW,. Also, we prove
the existence of a secondary Hopf bifurcation of invariant tori from the SW solutions,
and the persistence of the tori in open regions (‘wedges’) in parameter space (Chapter 5).
For large aspect ratios in Case II, we also find more complicated dynamics. We prove the
existence of secondary Bogdanov-Takens bifurcations points at a particular parameter
values, and the existence of such bifurcation points implies more complicated dynamics
and leads to further bifurcations of invariant tori, existence of transversal homoclinic and
heteroclinic points, quasiperiodic saddle-node bifurcations of invariant tori, and conse-
quently the existence of open regions in parameter space for which the dynamics of the
system is chaotic. Also, we show in this case that the system is a small perturbation of

a system with D, symmetry, in the limit as L approaches infinity.



Chapter 2

Oscillatory instabilities of magnetoconvection equations

In this chapter, we describe the physical basis of our problem, and perform some pre-
liminary analysis. In the first section, we present the partial differential equations and
boundary conditions that describe magnetoconvection in a two-dimensional layer. Then
in §2.2 we discuss the symmetry which the system enjoys. In §2.3 we discuss the lin-
earized stability analysis of the trivial, motionless solution of the magnetoconvection
equations and find that there are an infinite number of values of the aspect ratio 2L,, of
the layer, m = 1,2, ..., such that the linearized equation has pure imaginary eigenvalues
and both “even” and “odd” eigenfunctions (oscillatory instabilities). In §2.4 we consider
the adjoint problem to the linearized eigenvalue problem, and compute its eigenfunctions.
Finally, in §2.5 we study some of the asymptotic behavior of tle linearized system for

large aspect ratios.

2.1 Magnetoconvection equations

In this section, we consider the partial differential equations that describe the state
of an electrically conducting fluid, in the presence of an externally imposed vertical
magnetic field. The electrical conductivity of the fluid and the presence of magnetic
fields contribute to effects of two kinds. Due to the motion of the electrically conducting
fluid across magnetic lines of force, electric currents are generated and the associated
magnetic fields contribute to changes in the existing fields. In addition, fluid elements

carrying currents transverse to magnetic lines of force contribute to additional forces

12
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acting on the fluid elements. The equations describing this situation are (Chandrasekhar

8]):

)
5? = (1/po) [vAu — pge, —~ VP + (1/110)(V x B) x B] = (u- V) u,

?—z = KAT —u- VT,

ot

%?— = nAB+V x (u x B), (2.1)
V-u = 0,
V.-B = 0,

where A is the Laplacian operator, V is the the gradient operator, u is the fluid velocity,
p 1s the density, T is the temperature, B is the magnetic ficld, P is the pressure, e, is
the unit vector in vertical direction, ¢ is the acceleration due to gravity, pg is the density
at some reference temperature Ty , v is the viscosity, x is the coefficient of thermomet-
ric conductivity, po the magnetic permeability, and # is the magnetic resistivity. The
parameters g, po, ¥, K, tlg, ) are all assumed to be positive constants.

The first of the above equations is the equation of motion, and can be derived from
the conservation of momentum, while the fourth equation is the equation of continuity,
and can be derived from the conservation of the mass. We have used the Boussinesq
approximation, which treats the density p as a constant py except where it appears in
the external force in the momentum balance. The sccond equation is the equation of
heat conduction, and is obtained from the conscrvation of energy. The third and last
equations, which express the interaction between the fluid motion and the magnetic
fields, can be derived from Maxwell’s equations. We assume that the density obeys an

Oberbeck-Boussinesq equation of state
p = pofl —alT —Tp)], (2.2)

where « is the coefficient of thermal expansion, assumed to he a positive constant.
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We simplify this problem by assuming that u and b are constant in the 2z direction,
and we write u = (u,v) , where « is the horizontal component of the fluid velocity and
v is the vertical component. Similarly, we write the magnetic field as B = (B,, B,). We
assume that the fluid is confined between the two horizontal planes y = 0 and y = h (> 0)
and that the temperatures on these two planes are maintained constant at T = T on
y=20,and at T =T} on y = h, with Ty > Tj.

In the presence of a uniform, vertical maguetic ficld, the system (2.1)—(2.2) has the

trivial motionless solution
u®” = (0,0,
BY = (0,B), (2.3)
TO = Ty — (To — Tl)(l‘///")a

PO = Py~ pogly + a(Ty ~ T1) (y/20)).

Now we consider finite amplitude perturbations from the motionless solution defined by

B = BY+b,
T = TW 49, (2.4)
P = PO 4\,

By rescaling the variables as
x=hx, y=hy, t=N*/r)F. u=(x/h)a,

x = (povr/IP)N. 0 = (Ty — T1)f. b = Byb,
and then “dropping the bars™, we obtain

Jdu

5 = o[Au—Vy+ Rfe, +(Q(V xb) x (e, + b)]— (u-V)u,
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a0

B—t- = Af+v—u-Vé, (2.5)
b
%?zngb+mex(%+bm

V'u = Oa

The parameters appearing in the convection equation (2.5) are all positive, and are

defined by
ga(Ty — T))h3 ,
R = M (Rayleigh number),
KUV
B2n?
Q = ot ( Chandrasckhiar number ),
to ooV
¢ = v/rk (Prandtl number ) ,
¢ = n/k (magnetic Prandt] number).

Note that the Rayleigh number I? is proportional to the temperature difference between
the lower (warmer) and upper (cooler) boundaries, and @ increases with the strength of
the imposed magnetic field.

Our system of equations is accompanied by boundary conditions. The simplest bound-
ary conditions to work with analytically are the extensions to magnetohydrodynamics of
the “stress-free” boundary conditions used for ordinary Rayleigh-Bénard convection [3].

We assume that the fluid is confined to the rectangular region
Q,={(v,y): 0<y<l, —L<ax<L}, (2.6)

the temperature is kept constant at the upper and lower boundaries y = 0,1, and the
sidewalls at * = L, —L are insulated. The total magnetic flux through the region remains
constant, and the normal velocity, together with the tangential components of both the

viscous and magnetic stresses vanishes on all boundaries. Thus

ou 0b,
a_;;l = v = 9 == b;x' = %;7/ = ()' on ~l/ = 0’ 1’ (2.7)
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W (]

Jdv 00

ov _ 9
dr  Ox

= b, =
| dzx

=0, on x=0L,—-L.

These boundary conditions do not correspond to a physical situation that is easily pro-
duced in a laboratory, but they are commonly used for computational convenience since
the eigenfunctions of the linear problem yield sines and cosines. Gibson [12] shows that
the criteria for the onset of instability are not substantially altered when more realistic

boundary conditions are adopted.

2.2 Symmetry

Symmetry can play an important role in the bifurcations of systems of differential equa-
tions, and has received much attention in recent years (sce, e.g., Golubitsky et al.
[13, 14, 15]). System (2.5)-(2.7) possesses a Zg @ Zg symmetry. To explain this fact, we
define the action J on the dependent variables corresponding to the reflection z — —z

through the vertical midline = 0 of the layer:

Jo(t,z,y) = —d(t,—z,y) if » = worb,, (2.8)
Jo(t,x,y) = &t —a,y) if ¢ =v,\,0 or by
There is an additional symmetry, due to our use of the Boussinesq approximation, with

respect to the reflection y — 1 —y about the horizontal midline y = 1/2 of the layer. We

define the action 3 on the dependent variables corresponding to this symmetry by
Solt,x,y) = o(t,x,1—y) it o =u,b, or \ (2.9)
po(t.a,y) = —o¢(t.o,1—y) if o= v,6 or b,.

The transformations J, § generate a group of symmetries for equations (2.5) and (2.7)

that is isomorphic to the group Zs @ Z2. We will exploit this symmetry in our treatment

of the onset of convection.
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2.3 Linear stability analysis

To analyze local bifurcations from the steady state solution of the system (2.5)—(2.7)
one first considers the linearized equation as an approximation to the original system.
We expand an arbitrary disturbance in terms of some suitable set of normal modes, and
examine the stability of the system with respect to cach of these modes. In our case
we use Fourier modes which satisfy the boundary conditions. Then we seek solutions

¢ = (u,v,0,b,,b,) in the form
O(x,y,t) = B(a,y)e'. (2.10)

We will justify this formal stability analysis in Chapter 3. Using equations (2.5), (2.7),
and (2.10) and then linearizing, it is casy to sece that « satisfies the following eigenvalue

problem with boundary conditions (2.7):

oAi+ o(Q (%I;—l — %I—)l> — O‘%X— = a,
)y x a
oAH + o R — (f?—\ = a?,
dy
Ab+1 = ab, (2.11)
CA[A).T + ?‘li = a'lA).ra
dy
- du .
CAD, — i aby,
da 00
—+ — = 0,
ox + dy ).
db, b,
ox + Ay

We will find two sets of solutions.

i) Even solutions ( m even ):

it = ¢ sin(mra/2L) cos(nmy),
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v = cypcos(mma/2L)sin(nny),

0 = c3 cos{mma [2L) sin(nmy), (2.12)
be = ¢ sin(mna /2L) sin(nny),

l3y = ¢gcos(mma/2L) cos(nmy),

X = cgceos(mma/2L) cos(nmy).

ii) Odd solutions ( m odd ):

i = ¢ cos(mma/2L) cos(nmy),

U = cosin(mmra/2L)sin(nwy),

0 = o sin(mma/2L) sin(nmy), (2.13)
by = ¢4 cos(mma/2L) sin(nmy),

By = c¢psin(mma/2L) cos(nmy),

X = c¢gsin(mma/2L) cos(nmy).

Substituting (2.12) or (2.13) into (2.11), we find in both cases that eigenvalues a must

satisfy the cubic equation

@’ + (0 + (+1)Ppna® + [R‘:’,.,,(ac + 0+ )+ an*(Qn* — 2—';%? a
+ on*CQn3P,, — L”Z_fﬁ +oCP3 =0. (2.14)
where
P,, = 7w ((77’1,/21))2 + 71,2) ) (2.15)
To simplify (2.14). we put
G P%”
Q = ﬁ-— |
R = ———~J"Tfnf) (2.16)

a = sP,,,
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so then s must satisfy

S+ (04 C+1)52 + 5 [0(1 + Cun — 7o) + (0 + 1)]
+0C(1 — Tmn + qnm) = 0. (217)
Since we are interested in Hopf bifurcation from the trivial solution, we look for pure

imaginary roots. Equation (2.17) will have pure imaginary roots s = Fiwp,,, and (2.11)

will have pure imaginary eigenvalues o = £iP,,,,wmn, if

* C(/'m'n C + ]-
Tmn =T, = ) 2]-
Ty Imn (U+C) [0+ 1 + o ( 8)

with

chmn(l B C)
(c+1)

0 a(Qmn?*(1 - ()

= = e (2.19)

mi

w? — _(2 +

mn

We require that w? > 0, which is satisfied if ¢ < 1 and

mn

(1 +0)
mn > = L) 2.2
q Qo (1 —0) (2:20)
ie.,
P2
@> n2mg2 ’

Remark 2.1 Equation (2.17) has a zero eigenvaluce if
7"171” = 1 + q7'7”

which implies that (2.11) has a zero eigenvalue for parameters satisfying

4L2P1:12:n (PI?H) + '”'._)Ter)
(L) =

T2m?

R=RY

m
(see Figure 2.2). However, if Q is sufficiently large, the imaginary eigenvalues occur at

a lower value of the Rayleigh number, thus the onsct of instability is through oscillatory

modes.
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Now by substituting a = 2P, wm, into (2.12) and (2.13) we find eigenfunctions of
(2.11) for both cases (i) and (ii). In case (i) we denote the eigenfunction as the even
eigenfunction ¥ and in case (ii) we denote the eigenfunction as the odd eigenfunction

$9., We have

2L
——sin(mma/2L) cos(nmy)
m

cos(mma/2L) sin(nmy)

1 .
= | gL gy TR sinlnm) 22
2n’n in( [2L) sin(nmy)
sin{mmx sin(n;
77’LP,—,,11(C + jwmn) ’
nw

cos(mma [2L) cos(nmy)

P"I”(C + T"w”l?l)
for m even, and

—2—€ cos(mma [2L) cos(nmy)
m

sin(mma/2L) sin(nwy)
1 . :
0 = Pt i) sin(mma/2L) sin(nmy) 7 (2.22)
2n?Lm
777'Pmn(c + 7'."-‘)vm‘n)
nm

])mn (C + iw”ln)

cos(mma [2L) sin(nmy)

sin(mmx/2L) cos(nmy)

for m odd, where ® = (u,v,8,b,, by)T. We will not include the pressure term Yy, since it
can be recovered using the velocity terms (u, v).
Now from (2.16) and (2.18) the critical Rayleigh numbers R,,, (L), for which (2.11)

has pure imaginary eigenvalues o = i P,,,w,,, arc

7"27T2CQ n (¢ + 1)])1%11 4L._)Pmn

o+1 o w2m?2 (2.23)

R, (L) = (04 ()

To simplify the above expression, we temporarily fix m, and let x = 4L2/ 7712,]_%n(1') =

R,n(L). Then the critical Rayleigh number R for cach n is given by
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Ru(x) = n?Ax(n® + 1/a) + Ba(1/x 4+ n?)3, (2.24)
where
2 4
A= lo+Q)eQnr and B = €+ Do+ )m . (2.25)
o+1 o

It is clear that R,(z) is minimized when n = 1, and

Jp i) = oo iy Pule) =0

Since

_ (A4 B)a® ~3Bx — 2B
Infw) = a3

has only one positive root x = 2, and since R}(z) = 6B(x +1)/a' >0 for x>0,
R, will have its minimum at x = 2*. Since x = (2L/m)?, we have infinitely many
curves R,,1(L) = Ry(4L%/m?) depending on m., and cach will have its minimum point at
Ly = m\/;F/Q, with minimum value I?,,(L},) = Ri(27).

The number m in R,,;(L) corresponds to the number of rolls in the region 2, that
we expect to bifurcate from the steady-state solution at the critical Rayleigh number
R = R,,(L) of the original convection problem. We refer to these solutions as “even”
when m is “even” and as “odd” when m is odd (Figure 2.1).

We define L,, by the value of L where the curves of the critical Rayleigh numbers
corresponding to odd and even solutions intersect, i.e., L = L,, is the unique solution of

Rni(L) = Rig1,1(L). It is clear that L, lies between L}, and L7, ., i.e.,

maA (m+1)A

5 < Lo < (2.26)
where A = a~ satisfies
2 3 aCQ
—_— =1 = (. 2
SeRINY G+ 1107 (227)
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(0)

Figure 2.1: Level curves of the stream function: (a) the even mode m = 2; (b) the odd
mode m = 3.
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=2 m=3 m=4 m=5 R,.(L): Hopf bifurcation

|

\ | \ \ RY (L): Steady state bifurcation
|
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|

[

70000 ¢ ‘l
|

|

60000 "
50000
40000
30000

20000+

10000

Figure 2.2: Graphs of critical Rayleigh numbers R, (L) and R” (L)vs. L form =1, ..., 5,
with o = 1, ¢ = .1, Q = 10072 Solid curves represent the graphs of R, (L) and
dashed curves show the graphs of RY(L). For a given m, the graphs of R, (L) and
RS (L) intersect at L = (.1112)m and R =~ 56000.
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m =1 m = 2 m =

1R

20007

10001

Figure 2.3: Graphs of critical Rayleigh numbers R,,(L) vs. L, for m = 1,...,15 with
c=1, (=.1, Q=10072



Chapter 2. Oscillatory instabilities of maguctoconvection equations 25

We observe that (2.27) implies that X is adecreasing function of Q, and 0 < A < /2.

(see Figure (2.2)).

To simplify our notation further, we put
Ry = Ryi(Lw), (2.28)
and for each fixed m, we put
Pr=P,, Po=Pohi1, W = Wity W2 = Wil - (2.29)

Then if m is odd, the critical eigenfunctions become

2Lm
— cos(mma/2L,,) cos(my)
m
sin(mma/2L,,) sin(mry)
1
— $O — —————sin(mna/2L,,) sin(m;
3, =02, = Pl 1 ion) sin(mma/ ) sin{my) ’
2L, 7

T mP (¢ + 1wy)

nw
———sin{mma/2L,,) cos(my
PG + ) T R costm)

(2.30)

cos(mma[2L,,) sin(my)

and

2L77l

m4+1
cos((m + 1)wa /2L, ) sin(7my)
1

—oF _—
Py =D 411 = Py(1 + iwy)
27 Ly,

(m 4+ 1) (¢ + iws)

m cos({m + 1)wx/2L,,) cos(my)

sin((m + 1)wa/2L,,) cos(my)

cos((m + 1)ma/2L,,) sin(7y) , (2.31)

sin{(m + 1)ma/2L,,) sin(7y)

Remark 2.2 Without loss of generality we assume m is odd. since when m is even only

the roles of ®, and @, are interchanged.

Now we can prove the following proposition:
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Proposition 2.1 Fiz g > 0, 0 < ( < 1, Q@ > 0. and fiz « positive integer m. If
Q is sufficiently large, then when L = L,, and R = R, the linearized system (2.11)
has eigenvalues £p;w;, j = 1,2, and the rest of eigenvalues have negative real parts,

uniformly bounded away from the imaginary axis.

Proof: For fixed m, by (2.14), when L = L,;, and R = R,; the eigenvalues « satisfy

a®+Ca’>+ Da+ E =0, (2.32)
where
= (0+C+1)P,
; . ,  mm?oR,;
D = Bl(CHo+0) +onQe — Tt
E = o <712Q7r2]’,,.,,, — L”—?Zzzﬁﬂ + P,"fm) =0,
and

P = [(77'1,/:21;,-,—,‘).2 + 71,2] ,myn =12, ...
By the Hurwitz criteria for stability [17] roots of equation (2.32) will have negative real
parts if C,CD — E and E are all positive. Clearly C' > 0 and is uniformly bounded away
from zero for all m and n. Also it is clear that CD — E and E are increasing in n, and
therefore will be minimized at n = 1, so we consider their values when n = 1. Using

(2.18) we obtain
JC(U + C)ﬂj() (771'2])7711 - ”7'2Pﬁ:1)

2
LoD+ O+ [m2P3, — m?P3]
P

T

CD-F =

(2.33)

Substituting the definitions of P2, and P, into (2.33) after some simplification we find
that CD — FE is positive if

aCQ) m2m?(m? +m?)  3m?m?

E(m) = (7712 — 777,2) [WQ( +1-— — (2.34)

o+ 1)(C + 1) (2[’1'71)6 (2L7ﬁ)4
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is positive. Now using (2.23) and Ry (L) = Rat1(Lsm), after some simplification we get

i o(Q 1= 3(771.+ 1)2m? + m2(m + 1)%[m? + (m + 1)2]. (2.35)
7T"(0' —+ 1)(( + 1) (ZLﬁ,‘)Il (2[/,71)0
We substitute (2.35) into (2.34) to get
y M+ 1)% — m?
S(m) = mi(m?—-m?) {3 [(m(;L,z,,V il +
(m + 1) [m? + (777; + 1)?%] — m?(m? + m?) . (2.36)
(ZL-ﬁz)G

From (2.36) it is evident that ¥(m) = 0 when m = m or m = m + 1 and we have two
pairs of pure imaginary eigenvalues, while the third eigenvalues —(o + ( + 1) are real and
negative. For m > m + 1 or m < m, ¥(m) > 0, and thercfore CD — E are positive for
all values of m and n. To find a uniform bound on £(m) we notice that for all m # m

and m # m + 1, we have
E(m) > min{S(m —1),S(m +2)} > 0, (2.37)

where m is fixed.
Now we need to show that E is also positive uniformly bounded away from zero, for

sufficiently large 2. For n = 1 we can rewrite E in the form

E = 0C [P}, + Pan(n2Q — Ry) + 7R . (2.38)

E is a cubic function in F,,;, by finding its minimmun it is easy to show that
2 9 3/2
E >Ry — (4/3V3) (R — 7°Q)"" . (2.39)

therefore £ > 0 if
3/2 ,
(Ra = 72Q)" < (3V3/4)7* R, (2.40)
For a given o, (, () and m, one can always check whether (2.40) is satisfied. However, R;;

depends on (), so we proceed to show that (2.40) is always satisfied for sufficiently large
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Q. It is clear that (2.40) is satisfied and E will be positive uniformly bounded away from
zero if

m2Q — R > 0. (2.41)

We note that R; = Rpt1(Ls), and therefore

2L'ﬁl 2
WQQ — Ry = 137?1+1,1 {(lm+1,1 — Trt1,1 [1 + (ﬁz n 1) ]} ) (2.42)

On the other hand, using (2.35), after some calculation we have

mlaQ
(c+1)((+1)

< QR:?I+I,] - 37(2])7%“,17 (2.43)

and it follows that

OF N2
m+1 0Cm+1,1

Then using (2.18) we have

m2Q — Ry > P2, {(1—C)(1:+o;+<)qm+1,l_3(a+c;(1+g)

_2(1+<)2(1+o)(o+<)] (2.45)
02411 ’ |

It is clear that the expression inside the square brackets on the right hand side of (2.45)

is increasing with respect to ¢s,41.1, and it is easy to check that it is positive for

3(1+ ()21 +0)
aC(1 ()

Gnt11 > 1 = (2.46)

i.e.’
2
1

Q> —a. (2.47)

EESN
From (2.26) and (2.27), it follows that for fixed o, ¢ and m the right hand side of (2.44)

is O(Q%3) as Q — oc, hence (2.44) is satisfied for all sufficiently large Q. Q.E.D.

Remark 2.3 For specific choices of parameter values, we can check (2.40) and (2.41)

numerically (see Chapter /).
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We briefly summarize the results of this chapter so far. We have considered the
linearized stability of the magnetoconvection problem for fixed values of o, (, @), where
o>0, 0<(¢<1and@ > @, as we increase the Rayleigh number R through the
positive numbers. For given L > 0, when R < R, (L) for all m, all the eigenvalues of
the linearized eigenvalue problem (2.11) have negative real parts, and by the principle of
linearized stability, the steady state solution (2.3) is asymptotically stable. If L = L,,,
then when R = R,, = R,,(L,,) the linearized cigenvalue problem will have two pairs
of imaginary eigenvalues, while the other cigenvalucs have negative real parts, and we

expect a double Hopf bifurcation with reflection symmetry.

2.4 The adjoint problem

In this section we consider the adjoint problem to the linearized system (2.11), and
calculate its eigenfunctions when L = L,, and R = R?,,. This information will be useful
for our nonlinear analysis in the next chapter.

We define the adjoint of linearized eigenvalue problem with respect to the inner prod-

uct

1 L & b - - -
(®!,8%), = (2/L) /0 /_/ ('@ + 08 + '8 + BLF2 + 01F2) dady, (2.48)

where

O = (0 0 06 =12,

0y

and the overbars denote complex conjugation. Integration by parts yields the adjoint

eigenvalue problem to (2.11),

Loy ob,”  ob,N
o (Au, 8:17> —a(Q < 3y ~ o ) = au’,

0 3
o (Az'* — —5\7/—) +4° = au,

AG* 4+ oRv™ = ab*, (2.49)




Chapter 2. Oscillatory instabilities of magnetoconvection equations 30

ou”

CAL,” — 0(Q = ab,”,
dy
* au* — *
CAb,™ + 0¢Q e ab,”,
0u*+av* ~ 0
ox oy
ob,”  ob,”
o "oy 0
with boundary conditions
au’* * * * ab;
oy = vt o= 6F = b = 3y =0, on y= 0,1, (2.50)
av* a0 . aby
u = Y B = b, = 7y =0, ona=0L—-L.

Using Fourier series we find eigenfunctions &~ = (u*, v*,6*,07,0%) corresponding to the

*

y

eigenvalues +iPjw;, j = 1,2, of (2.49)-(2.50)

2Lm
cos(mma/2L,,) cos(my)
m
sin(mma /2L,,) sin(my)
oR,, PR .
3t = (I):n()l =C, m sin(mma [2L,,) sin{my) ’ (2.51)
20CQ7L,, )
————— cos(mma/2L,,) sin(my
P i 2En)sintm)
~mo((
——————sin(mwnx/2L,,) cos(my
Be o /2Ly ) cos(y)
and
2L, .
s N sin((m + 1)mx/2L,,) cos(my)
cos((m + 1)mx/2L,,) sin(my)
ol , :
o5 = (I):;zE+1,l = Chyi m cos((m + 1)ma/2L,,) sin(my) . (2.52)
—c 27 [:m
o +(;§]?2(2 _—— sin((m + 1)ma/2L,,) sin(my)
_WUCQ cos((m + 1)ma/2L,,) cos(my)

Py (¢ — iws)
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where
C _ 4L72"P1 _ 4L,2”UCQ 0Rm -
T w2m?2 m2P(¢—iw)? PRl —iw,)?
— 4L2 PZ 4L2 O'CQ ORm -
. m _ m - - . 25
Cm-H [7r'2(7n + 1)-2 (777, + 1)2132(( _ iw2)2 + P22(1 _ 714)2)2 ( 3)

The normalization constants C,,, C,,41 are chosen so that
<(I)j,q’z->L = (Sjk, ],k - 1,2 (254)

Using (2.19) and (2.33) and after some simplification we get

o _17‘1,27r2(1 + twy ) (C + iwy)
"o 8L2 Pyw:(w) — i6)

= (m 4+ 1)*7*(1 4 iwy)(¢ + iwa)
= . 2.
Cort 8L2, Pywsa(wp — i6) (2.55)

Y

where 6 = 1 + 0 + ¢ and the overbar denotes complex conjugation.

2.5 Asymptotic results as m — oo

In this section we discuss some of the asymptotic behavior of the critical aspect ratios
and related quantities as m — oo.
2.5.1 Case I (fixed ¢ and Q)

We are interested in behaviour for large aspect ratios. Since (2.26) implies that L,, =
O(m) as m — oo, for fixed o,( and @ we consider limiting behaviour as m — oo. We

call these “Case I” limits.

Proposition 2.2 L,, = O(m) as m = oc. More precisely, we have

2L, A, AI43N) L, _
- _/\+2m —24(/\2+1))77 + O(m™’), (2.56)

where A = \/a* satisfies (2.27).
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Proof: By (2.26) it is clear that

lim 2L,,/m =\, (2.57)

m—oo

expanding

2L, /m =X+ em™ + eam 24 0(m™3).
and substituting this expression into the expression

le (L'm) = Rm+1 )1 (Lm)

that defines L,,, after some calculation we solve for €; and €, to get (2.56). Q.E.D.

From Proposition 2.2, it follows immediately that

Jim Py = lim P =P, (2.58)
where
P =n? (—A-l; + 1) , (2.59)
and
w = “}i_l)lgo wy = n}i—}}go W, (2.60)
where

mo¢Q(1 —¢)

P(l1+a) (2.61)

w=-C+

Remark 2.4 There is « limiting relation between the eigenvalues and eigenfunctions
and normalization constant in this problem and the infinite layer (L = oo )problem with

periodic boundary conditions ([35]). If

oY = St —; (I)Q, ¢y = 2 -2 ; (I)Q,
- (]
and if
(I)’fm — (I)l + (I)?. (I):)m — (I)l _ (I)'Z

2 ' 21
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then for fixred z,y, we have

lim &7 (2,y) = ®y(x,y) lim &) (a,y) = Oy(a,y),

Ly —o00 Ly, —oc

lim ®7"(z,y) = ®](x,y), lim ®;"(x,y) = &3(x,y),

Ly >0 m—>00
where &1, Oy, 7, 5 are eigenfunctions of the lincarized equation, and 7, ®3 are adjoint

eigenfunctions for the infinite layer with periodic boundary conditions. We also have

lim Pw; = Pw, and lim »*, =@,
Ly —oo Ly, —oc

and

lim C,, =C.

Lym—o0
where iPw is the imaginary eigenvalue, ry is the scaled critical Rayleigh number and C

is the normalization constant used in the infinite layer case.

Let € = m~!. Then we also have

T .
P = P- ¢ + O(€?), (2.62)
9
P = P+ %e +0(&), (2.63)
wp = w+ —mg—f + O(f_), (264)
T (w? + (%) 2
Wy = W __T'/\Q“E + ()(6'), (265)
R, = Ry+O(e) (2.66)
where
2 1)P?] [P
Ry = (o +() 7TCQ+(<+ ) H .,J, (2.67)
o+1 o e

Proposition 2.3 For fized L = L,, there will be no other wnstability unless we increase

R above R,, at least by O(€?).
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Proof: To prove this we neecd to look at the size of R,,42(L..) — Ry (L), since clearly
Ryik(Lm) — Rin(Ly) > Ryya(Ly) — Ry(Ly), for all k> 2. Using cquation (2.23) we

have

—4m — 4
Rmsa(Lm) = Run(Lm) = 4Lil[

‘7(77)] (A+ B)

(m+2)"—m*  3((m+2)%2—m?)
p [ M 209
, 2 _ 2
_ 4B(m + 1)~ 3[(m +2)° = (m + 1)7] (2.69)
2L,,(m + 2)? 2L,

N [((m +2)2 — (m + 1)?][m? + (m + 1)% + (m + 2)?]
(2[/11))3
4B(m + 1)(2m + 3) 3 m2 4 (m+1)2+ (m +2)2
(2L,,)(m + 2)2 (2L,,)?
24PD . .
= oo e + O(e%)

= O(e), (2.70)

since L,, and A satisfies(2.35) and (2.27) respectively, where A and B are as in equation

(2.25). Also since B # 0 this difference is not zero. Q.E.D.

2.5.2 Case II (decreasing (, increasing Q as m — o0)

In subsequent chapters, we will also consider behaviour for large aspect ratios, small ¢
and large (). Suppose we fix real positive numbers o, k., ¢ and @, and consider the
sequences given by

Con = %20, Qa = m*20, (2.71)

form =1,2,3,.... Foreach ( = (3, @ = @y we obtain a sequence of critical half aspect

m = 1,2,.... We consider

ratios L' and corresponding critical Rayleigh numbers R,
limiting behaviour when m = m and m — oo. We call these “Case II” limits. Taking the

limits in Case II change the values of A, P,w, IRy of §2.5.1. We denote their corresponding
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values in Case II by A, P,w, Ry respectively; their corresponding equations are replaced

by

2 3 o(Q)
= - - — 1 - bl °
0 G + T4 —————ﬂz(o 1) (2.72)
- 1
P = 7(2(}—2- +1), (2.73)
2
o o= e (2.74)
P%(o+1)
< oPA\?] (720 P?
Ry = —]. 2.7
0 [W’Z][(r-f—l_l-a] (2.75)
The asymptotic expansions of the terms
2 m
L P1 s P) Wi,wWy
m

as m — oo change, but the leading terms are of the same order in € = m™!. Correspond-

ing to equations (2.64)-(2.66) we have

21; = AN+ M2+ O +¢) (2.76)
m
P = P———:\3—6 “+ 0(" + €, (2.77)
3,21
P, = P- 27;3>\1€k/2+0(6k+6), (2.78)
., 0CQ[=CP + (4N /M) ]A/?
= O 2.79
wy w + 30 + 1ol + O(e* + ¢), ( )
_, 0CQ[=CP + (40, /M7 k)2 k
= . S+ O(e" + €), 2.80
Wa + 20 + 1)l € (€ €) ( )
Ry = Ro+ O("?), (2.81)
where
;\1 _ O'C Q/\

120 + )P
The appearance of R,,;2(L,,) — R,,(L,,) also changes, but by (2.69) it is of the same

—

order as in Case I and equation (2.70) will be replaced by

24P1
(LTII) RIH(LHI) —

m m m .) P
Vil

R™ 24 Ot 4 €, (2.82)

m+2
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where

B = 1"+ O(e/?).

These results will be useful when we calculate the coefficients of the reduced equation on

the center manifold and the determine the dynamics of the related equations in Case II.



Chapter 3

Center manifold and normal form reductions

In this chapter we begin our nonlinear analysis of the magnetoconvection equations. In
§3.1 we give an abstract formulation of the magnetoconvection equations as an evolution
equation in a Hilbert space, and then prove the existence of a nonlinear analytic semiflow
in that Hilbert space. Then in §3.2 we rescale variables so that L is explicitly introduced
as a parameter into the evolution equations, while the domain becomes fixed. In §3.3 we
establish the existence of a locally invariant attracting center manifold W€ for the evolu-
tion equation, which we will then use to study the dynamics of magnetoconvection. We
represent the flow on W€ as a two-parameter family of four-dimensional ordinary differ-
ential equations with Zo @ Zs symmetry. In §3.4 we use the symmetry and near-identity
coordinate transformations to simplify the family of ordinary differential equations by
putting them into normal form. Finally, in §3.5 we discuss the choice of normal forms
when the aspect ratios of the fluid layer are large. We use different normal forms for the

Case I and Case II limiting situations introduced in Chapter 2.

3.1 Abstract formulation

In this section we reformulate the magnetoconvection equations (2.5), (2.7) as an equation

in a Hilbert space, which generates an analytic semiflow. For fixed L, let

Qr={(z,y): 0<y<l, —L<u<lL},

37
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be the rectangular region as in equation (2.6), and let I';, denote its boundary. Let

L?(Q2;) be the space of all square-integrable functions on {7, with norm

ol = |[ [0 dw]w, (31)

and inner product

(6,4 200, / / oz, y) e, g)dady, (3.2)

where the overbar denotes complex conjugation. When & > 0 is an integer, the Sobolev

space W*2(Q;) of order k is defined by
WE(Q,) = {¢: D¢ € () Va,|a| <k}, (3.3)

where
00'1-!-0'2
D = ——— a={a,m}, |lof=a +as.

Qaer Qyor’
and the derivatives D¢ are taken in the weak (distributional) sense. The space W*2(Q,),

with the norm

1/2
”d)”A = ”d’”wk.?(QL) = [Z ”D“¢'”2L?(QL):l s (34)
lal <k
and scalar product
(@ Vhveam, = D (D0.D)r2q,), (3.5)
Jal <k

is an Hilbert space [27]. When &k = 0, W9%%(Q),) = L*(Qy).

Let L2(Qy) = L%(Q) x L*(2;) and W*2(Q,) = Wk2(Q,) x WH52(Q.), with the
norms and inner products inherited from the product structures. In order to introduce
suitable function spaces for the magnetoconvection equations, we first consider the fol-
lowing boundary value problems:

(1) Given f € L2(92;), find u = (v, v) and \ satisfving

-Au+Vy = fin Qg,
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V-u = 0in g, (3.6)
u'n = O0on Iy (ieecu=0o0on a==xL,v=0 on y=0,1),

Vx(uxn) = 0on I', (ie. Ov/dx =0 on o ==L, duf/dy=0 on y=0,1),

where n = (n,, n,) is the unit outward normal vector on I'y. (This is the Stokes problem

with “stress-free” boundary conditions.) Define the following Hilbert spaces

Hy, = {uELQ(QI,) : V-u=0in Q7,andu-n=0 on PL}, (3.7)
Vi = {uEWl’Q(QL) :V-u=0in Q, andu-n=0 on Fl,}, (3.8)
D, = {uEWz'Q(QL) :V-u=0inQ;, and u-n=0,

Vx(uxn)=0onT,}. (3.9)

Then one can define an unbounded self-adjoint operator 4; in Hy; with domain Dy,
such that A;u = —IIAu for all u € D;, where II is the orthogonal projection of LQ(QL)

onto Hyy. The problem (3.6) is equivalent to
Au= Hf. ue D][,, (310)

since the pressure term y € W12(Q;) can be recovered from u and f. The inverse
operator A7 is a compact operator in Hyj, [46. pp. 104-105 and Remark 2.4 on pp.
110-111].

(2) Given f € L?*(fy), find 6 satisfying Laplace’s equation with mixed boundary

conditions:

—Af# = f in Q. (3.11)
= 0 on y=0.1. (3.12)

a6
=~ = 0on ==L (3.13)
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Define

Hyy = L*(Q), (3.14)
Vor = {6 € PVLQ(QL) 80 =0 on y=20, l}, (3.15)

Dy, = {(9 eW?»(Q): §=00ony=0,1, 9/0x =0onz = :i:L}. (3.16)

Then one can define an unbounded self-adjoint operator A4y in Hsy, with domain Dy,

such that 4,0 = —A6 for all € Dy,. The problem (3.11)—(3.13) is equivalent to
A0 =f, 6Dy, (3.17)

and 43! is a compact operator in Hyy, [46].

(3) Given f = (f,, f,) € L*(£,) with Ja, fy =0, find b = (b,,b,) satisfying a mixed

problem:
_Ab = f in Q, (3.18)
b, = 0 on I'y, (3.19)
db,/on = 0 on I'y, (3.20)

The boundary value problem (3.18)-(3.20) is just a pair of decoupled Dirichlet and Neu-
mann problems. If V - f = 0 we note that the solution automatically satisfies V - b = 0.
The Dirichlet and Neumann problems are classical, and solutions are given in almost
every book on elliptic partial differential equations (e.g. [46]). Let us define the following

Hilbert spaces

Hy = {beL2(S2L): /Q b.,,:o}. (3.21)
L

Var = {b e W2(Q,): / b, =0, and b, =0 on F,J}. (3.22)

Q

Dy = {b € 2"2(QL),/Q b, = 0. and b, = 0, db,/On = 0 on I‘L,}. (3.23)
L
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There is an unbounded self-adjoint operator Az on Hy; with domain Dj;, so that Asb =
—Ab for all b = (b, b,) € D3, and 43! is a compact operator in Hsy.
Each of the above boundary value problems has been considered as an abstract equa-

tion of the form
Ai(;b:.f» 7=1a2a3

in a Hilbert space H;;,, ¢ = 1,2,3. The operators A; are positive, linear unbounded
operators in H;; with domains D;; and their inverses 4;7! are as self-adjoint compact

operators in H;;. For fixed parameters o,¢, let & = (u,6,b)7, define the Hilbert space
X = Hy x Hy, X Hyy,

with inner product as in equation (2.33), and define the unbounded linear operator 4 in
XL by
Ad = (024111,.429,(.43})), P e D(A) =Dy, x Dy, X Dy (324)

Then the operator A is a strictly positive self-adjoint operator in X', with domain D(A).
The inverse operator A~! is self-adjoint and compact, and the spectrum of A consists
entirely of isolated eigenvalues with finite multiplicities, so its eigenfunctions are dense

in X, [46]. The eigenfunctions have the form

(A}, cos(mma/2L) + B, sin({(m + 1)wa/2L)] cos(nmy)
(A2, sin(mma/2L) + B2, cos((m + 1)mx/2L)]sin(nmy)
Pn = | [A3,, sin(mma/2L) + B3, cos((m + 1)ma/2L)]sin(nmry) | (3.25)
[AL, cos(mmx/2L) + B} sin((m + 1)wa/2L)]sin(nmy)
[43 , sin(mmx/2L) 4+ B3 cos((m + 1)mx/2L)] cos(nmy)

where m is an odd positive integer and n is any positive integer. The coefficients A}

B! . and B? A} and A2 . B! and B2 are related in such a way that the

mn mn? mn mn? mn mn

and A2

mn?
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divergence of the first two and the last two components are zero, i.e.,

A2, = A, A=Al

. 2L77, mn mn 2L7l m,n
B = -—m+lBl._, B o= m—l—lB5 .
2LTL mn mn 2,[/)7, mn

The operator A is sectorial in X, [20], and for each v € R we may define the fractional
powers A7, with domain X] = D(A?) in X ;. The space D(A?"), endowed with the scalar

product
((I’l ) (I)Q)D(,ﬁ) = (‘47(1’] , -47(1’2)‘\'111 (3.26)

and the graph norm

1/2

'(I)'D(A‘r) = {((I)*(I))D(Aw‘)} (3.27)

1s a Hilbert space, and A is an isomorphism from D(AY) onto X;. For v = 1, we
recover D(A) . Since A is a sectorial operator with compact resolvent, the embeddings
D(A) Cc X] c X, are continuous for 0 <y <1 and are compact for 0 <~y <1

[20, Theorem 1.4.8]. Now for fixed o, (, Q, we put

B(R)® = (oll[Rfe, +(Q(V xb) x e,],v.V x [uxe,]), (3.28)

M(®,%) = (II[o¢CQ(V xb) x b — (u- V)u'],—u- V&,V x (ux b)), (3.29)

where ® = (u,60,b)”,®' = (uv',#',b")". We now write the magnctoconvection equations
(2.5) and (2.7) as an evolution equation in X7,

(P
‘—H- = —AD + B(R)D + N(&), (3.30)
{28

where N(®) = M(®,P). We observe that B(R): X — X, is a bounded linear
operator and M : X} x X] — X is bounded bilinear operator for 1/2 < v <1
(20, Theorem 1.6.1 and the arguments on pp.79-81], and so B(R) + N(-) is analytic
from X[ into X, when v > 1/2. By [20, Theorem 3.4.4 and Corollary 3.4.6] we have the

following fact:
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Proposition 3.1 If1/2 < v < 1, then the evolution equation (3.30) generates a local

semiflow in X] that depends analytically ont > 0, on R € R and on the initial condition

®(0) € XJ.

We note that if V- b = 0 when ¢ = 0, then the solution ® = (u,8,b)? satisfies
V . b = 0 automatically for ¢t > 0.

Now let
K(R) = —A+ DB(R), D(K(R))= D(A), (3.31)

denote the linearization of the vector field of (3.30) about & = 0. By the above arguments
and [46, p.54], it is clear that for cach fixed R the spectrum of IC(R) consists entirely
of isolated eigenvalues with finite multiplicities. To find them, we solve the eigenvalue
problem

K(R)® =a®P, &€ D(A).
and we seek eigenfunctions in the form of (3.25). This is system (2.11) that we have
already considered in §2.3, and we found all cigenfunctions in the form of (3.25). Since

these eigenfunctions are dense in D(A4), our formal calculations in §2.3 are justified.

3.2 The rescaled problem

Since we would like to study the dynamics of magnetoconvection when L is near one of
the L,, which were found in Chapter 2, we introduce L as parameter explicitly to the

equations. For this, we use the rescaling
x=Lxr, w=Lu, b,=0Lb,. (3.32)

Then system (2.5), after “dropping the hats”, becomes

du

5% = ¢ [A1u~ VI + Rbe, + (Q (VI X b) X (e,, + b')] —(u-V)u,
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%f- = A%+v—u-Ve, (3.33)
aa—lt) = (A'b+V x[ux (e, +b)],

V-u = 0,

Vb = 0,

in the fixed domain

Q={(z,y):-1<a<l, 0<y<1},
where
A= L72? /0% + 02/0y?, V' = (L720/0x,0/dy),
b' = (L?,,b,), u=(u,v), b=(b,,b,).

The boundary conditions (2.7) become

Ju b,
25 v b, 9y 0, on y= 0,1, (3.34)
dv 06 ob, o
u = 37 "9 = b, = 5 = 0, on ax==l1.

The Hilbert space \';, defined in §3.1 corresponds, under the rescaling, to a Hilbert space

X, and for an inner product in X" we may take
1,1 . - -
(!, 3?) = (1/2)/ / (L@ + o' + 0187 + L2BLT2 + 0L32) du dy, (3.35)
0 J-1

where &' = (11.",1)",0’,1);,1);), ¢ = 1,2, and the overbars denote complex conjugation.

The linearized operator I{(R) of the previous section corresponds, under the rescaling
(3.32), to
K(R,L)=-A(L)+ B(R,L), (3.36)

where
ADE = (—oll'a'u—a'0.—¢a'b)" . (3.37)

B(R,L)® = (oT'[Rfe, +(Q(V' xb) x e,].v.V' x (uxe,),  (3.38)
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and IT! is the orthogonal projection that corresponds to IT under the rescaling (3.32). For

fixed R and L, A(L) is a sectorial operator in X, and B(R,L) : X7 = X is a bounded

operator if 1/2 < v < 1. The eigenfunctions &, &5, &7, ¢; now take the form

2 cos(mma/2) cos(my)
m
sin(mmx/2) sin(my)
1
Al '2*"’“’1) sin(mnma/2) sin(my)
2n

——————————cos{mmz/2) sin(7y)

mPy (¢ + iwy)
T

BiC 1oy Sinlmma [2) cos(my)

2
m+1

cos((m + 1)mx/2) sin(my)

1

Pz(l -+ iw;g)
2m

Cﬂl

(m + 1) Pa(C + iws)
T

Py (¢ + two)

2 cos(mma[2) cos(my)
m
sin(mma /2) sin(mwy)
o
Pi(1 = iw)
20(Qmn
Pz(C — lws)
—noCQ .

————sin{(mmx/2) cos(my
PG = i) (mmx/2) cos(my)

sin(mma/2) sin(my)

cos(mma [2) sin(7y)

sin{(m + 1)ma/2) cos(my)

cos({m + 1)wa [2) sin(ny)
sin{(m + 1)mx/2) sin(my)

cos((m + 1)mx/2) cos(my)

(3.39)

: (3.40)

(3.41)
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and 5
_m sin((m + 1)ma/2) cos(my)

cos((m + 1)mx/2) sin(my)

oR oy
35 = Cpusi Bl o) cos((m + 1)ma/2) sin(ny) : (3.42)

—o(Q2m
(m + l)PléC — W)

ﬁi{% cos((m + 1)wa/2) cos(my)

with C,,, Cr41 as in equations (2.55). The evolution equation (3.29) becomes

sin((m + 1)ma/2) sin(my)

dd _

— = —A(L)® + B(R,L)® + N(2. L), (3.43)

where

N(®,L)=M(®,&,L) = (H[ach1 xb') xb—(u-Vu],—u-V'0, V! x (u x b))T,
(3.44)

and Proposition 3.1 holds for (3.43).

3.3 Center manifold reduction

The study of bifurcation and stability in differential equations can often be greatly simpli-
fied by the use of center manifold theory. This theory allows one to reduce the dimension
of the state space, while preserving the local behavior of solutions of differential equa-
tion. In this section we apply a suitable version of the center manifold theorem to reduce
the parametrized family of evolution equations to a parameterized family of ordinary
differential equations in a four dimensional phase space, the dimension four of the phase
space being determined by the number of eigenvalues with zcro real part at the critical
parameter valucs.

When L = L,,. “odd” and “even” curves of the Rayleigh numbers R, (L) and R,,,1(L)

intersect at R = R, and modes corresponding to both odd and even numbers of rolls
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are marginally stable. (Recall that we assume m is odd). Therefore for R, L in a small
neighborhood of R,,, L,,, we may see bifurcations of even solutions, odd solutions, or
other solutions arising from nonlinear mode interactions.

When (R,L) = (R, L) the center eigenspace F,, corresponding to the eigenvalues

of K(R,, Ly,) with zero real part, is given by
E={Z1® + 2,3, + Zos + 2,5, : (21, Z5) € C?}, (3.45)

where ®;, j = 1,2 are given by (3.39),(3.40). Now we define the projection P of the

Hilbert space X onto E. by

P = ((I), (I)T)(I)l + <(I), (I)’f)(I)1 + <(I)’ (I);)(I)2 + ((I), (I).E)(f)._)', (3.46)

where the overbars denote complex conjugates, the inner product is given by (3.40) with
L =1L,,and ®;, j=1,2, are the cigenfunctions of the adjoint operator I{*(Rpm, L)
for K(R,,,L,,) given by (3.41)-(3.42).

Proposition 3.2 When L = L,, and R = R,, the space X decomposes into a direct sum
X =E . ®FE,, where E. = R(p) and E, = /\/(f’) are N (R, L,,)-invariant subspaces.
The spectrum of IX(R,,, L,,) restricted to E. is {+iPwy, £iPws}, and the spectrum of
K(Rn, L,,) restricted to E, is contained in the left complex half plane, with real parts

uniformly bounded away from the imaginary axis. Thus if S(I\') denotes the spectrum of

K(R,,, L), we have R(EZ(K)) <0, and (L) N iR is a spectral set.

Proof: Since any ® € D(A) can be expressed as a convergent series of eigenfunctions
of K = K(R,,,L,), and since the eigenfunctions are orthogonal, it is clear that the
projection P commutes with operator Iy (i.e. PRK® = KPD ¥V & € D(A(L,)) ), thus

K leaves the subspaces

R(P) = S])(I‘IT{(I)]. (T)l.,q)g. (I)g} =F,,
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N(P) = {8;,8;,9,7, 83} = E.

invariant with X = E. @ E,. We have already proved the second part of the proposition
in §2.4. Q.E.D.
We now state two results on center manifolds due to Henry [20, Theorem 6.2.1 and

Corollary 6.2.2, Theorem 6.2.3]:

Theorem 3.1 . Consider the abstract differential equation

dd

— = —AD + f(D), (3.47)

where A is a sectorial operator in a Banach space X, 0< v < 1, U is a neighborhood
of the origin in X7, and f : U — X is C' with f(0) = 0 and f' Lipschitz continuous
in U. Assume K = A+ f'(0) has R(E(K)) < 0 with (LK) NiR « spectral set. Let
X = E.+ E; be the decomposition into K -invariant subspaces with R(S(K|g.)) =0 and
R(ZE(K|g,)) < 0. Then there exists a C' attracting locally invariant manifold (a center
manifold)

We={d=0&.+&,: . =V(P.), & € E,,||P.]| < b} (3.48)

tangent to E, at origin. The flow in W€ is represented by the ordinary differential equation

dd.
dt

= P[K(®, + ¥ (D)) + N(D, + T(D,))], (3.49)
where N(®) = f(®) — f/(0)® and P is the projection of X onto E,, along E,.

If the nonlinear part f in Theorem 3.1 is smooth enough, the center manifold W€ is
smooth and we can approximate ¥ (®.) by the first finitely many terms in the Taylor

series for ¥ (. ):

Theorem 3.2 . Assume the hypothesis of Theorem 3.1, and assume that N : U — X 1is

C?, where N(®) = f(®)— f/(0)®. If there is a C? function h with Lipschitzian derivative
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from a neighborhood of the origin in E, into EY, with range in D(IK|g,), such that

W(B)P K (D, + (D)) + N(De + h(D))]
~(I = P)[K(® + h(®.)) + N(®. + 1(2.))] = O(]||]")

(3.50)

as ®. — 0 in E., then

|\II((I>C) - }L((I)C)I = O(”(I)CHP) (3'51)

as . = 0 in X,, where ¥(P,.) defines the center manifold of Theorem 3.1. If N is CP near
the origin, there 1s a unique polynomial function h of order p satisfying the conditions

above.

We have shown that for each fixed L the operator A(L) is sectorial, and we can apply

Theorems 3.1 and 3.2 to the system

dd
dt
du
dt

= —A(Ln)® + B(Roy + 11, Ly)® + N(®, L,,), (3.52)

= 0,

and obtain the existence of a center manifold for R near R,, and fixed L = L,,. But
since the operator A(L) depends on L, to also treat L varying ncar L,, we need to apply
a parameter dependent version of Theorem 3.1 due to Vanderbauwhede and looss [47,

section 2, comments on page 136]. Then the center manifold can be represented as
W= {(®.,0,) € E.DE, : &y = V(D 11,0), ||| <81, || < 0, |v| <3}, (3.53)

where y = R—R,,, v = L —L,, and ¥ is a smooth function from a neighborhood of the
originin £, x R? into E,) = E,NX", with ¥(0,0,0) = 0.%'(0,0,0) = 0. Actually ¥
is C? for any integer p > 0, since NP, L) in X7 is analvtic (although ¥ is not necessarily

analytic). The flow in 117¢ is represented by the ordinary differential equation

dd,
dt

= P (K (R + pt, Lo + v)(De + U (@ pt,v)) + N(@ + T(Pe, 11.0))) . (3.54)
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The study of bifurcation and stability of solutions of the evolution equation (3.29) near
the origin in X7, for R near R,, and L near L,, is now reduced to the study of equation
(3.54).

The projection P commutes with the action of the group Z» @ Zs on X defined by
equations (2.8) and (2.9), and hence the reduced equation (3.54) is equivariant with

respect to the action of J and f restricted to E.. If we identify E, with C? by
E.= {‘I’c =719+ Z1®) + Za®y + Z30y : (Z1,2,) € 02},

then since

-](I)l = (I)l, J(T)l = (i)l -]‘I)g = ——(I)g, J(I)Q = -—(T)g

and

/a(I)‘i = —(I)iv ﬂ(i)‘i - _(I—)ia I = 1121

the action of the group Zs @ Zs on C? will be given by

(ZhZ_hZ'ZaZ_Q) _J.) (ZhZ_lv_Z?.a__Z_?)a (355)

(Z1, 2y, Za, Zo) 2, (=21, =2\, ~Za,—Z).

Using the definition of P, the reduced equation (3.54) becomes

Zj = (K(Ru + it, Ly + 0) (D + U(Pe, jr.v) + N(@e + U(De, p1,v), 85) . j=1,2.
(3.56)
where the overdot denotes differentiation with respect to t, &, = Z, 8, + Z;9; + ZoDy +
Zy®,y and (Z, Z5) € C2. By our remarks above, (3.56) is equivariant with respect to the
action of Zy & Z, given by (3.55). Note that ZJ J = 1,2 satisfy the complex conjugates
of equations (3.56).
Thus, for L near L, and R near I, the trajectories of the magnetoconvection

equation are attracted to a center manifold. where the time evolution is given by a
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parametrized family of systems (3.56) of the general form
Z =F(Z, pn,v), (3.57)

_ \T
near Z =0, o = 0, v = 0, where Z = (Z],Zl,Z?,Z’Z) € C*, and p,v are real
parameters. The vector field F = (FI,F’I, F, F_g)l is C? for any positive integer p in a
neighborhood of (Z, u,v) = (0,0,0), and

F(0,p,v) =0,

for all (u, v) near (0,0). Also

iP1WJ 0 0 0
0 —iPw 0 0
Ag = D4F(0,0,0) = , (3.58)
0 0 tPyws 0
0 0 0 —inwg

where Pj,wy, P, ws are as in equation (2.28). Furthermore, the family (3.57) is equivari-
ant under the action of J and § described in (3.55), i.e.,
F(JZ,uv) = JF(Z,u.v), (3.59)
F(BZ,n,v) = BF(Z,n,v),

for all (Z, u,v) near (0,0,0). We have reduced our problem locally to that of a double

Hopf bifurcation with Z, & Z, symmetry.

3.4 Normal forms

Now we put the system (3.57) into Poincaré-Birkhoff normal form. This involves sim-
plifying (3.57) by removing terms from the Tayvlor serics expansion of F' order by order,

using near-identity changes of coordinates. We can demand that these coordinate changes
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respect the symmetry (3.59). Those terms that cannot be removed at a given order are

those with an extra symmetry under
¥ (21,21, 22, Z5) — (C’riwzl,Cid’Zl,eid)Zz,eiw%) :

We now outline the calculation required to put (3.57) in normal form. First, we note
that the Zy ® Z» symmetry (3.59) implies that cach component of F(-, yt, v) is odd in the
components of Z, thus the lowest order terms in the Taylor series expansion of F about

Z =0 are odd in the components of Z, and (3.57) has the form

7 = 27, (ilel +ayp+ b+ Ci|Zi[* + Co| Zo|* + C: 23 + Cs 23
+ CoZ3) + 21 (G323 + Crol Zi P + Cul Zal? + CroZE + C1aZ3)
+O(ZP + 1 2P + i, v 21), (3.60)
Zy = 2 (iPyws + asjt+ bov + Co| 2,2 + C5|Z)* + CraZ3 + C1523
+ CIGZiz) + 2> (CGZiz + C17|Za? + Cis|Z\|* + CroZ3 + 020212)
+O(ZP + [, vl ZP + s v?|2)),
where ay,b;y,a2,09,C1,...,Cs are complex numbers that can be determined from the
magnetoconvection equations (2.15), but as we will see below we will not need to compute
them all. (The equations for 21 and 22 are the complex conjugates of those for Z, and
Zy).

We temporarily fix g = 0,v = 0, and write (3.57) as
Z = AyZ +0(|Z)). (3.61)

For any positive integer n, let H, denote the finite-dimensional vector space of vector
fields P(Z) in C", whose components are homogencous polynomials in the components

of Z, of degree n. Define the linear map adAy : H, — H, hy

adAy(P) = [P, 4g) = DA,P — DP Ay, (3.62)
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where [, -] is the Lie bracket. Let G, be a complementary subspace to the range ad Ao (H,)
in H, so that H, = adA¢(H,) ® G,. Then by normal form theory (e.g. [16, Theorem
3.3.1]) and using the Zy @ Z, symmetry, for any odd positive integer k& > 3 there is a

coordinate transformation

Z =W + P(W), (3.63)

where the components of P(W) are Zs & Zs-equivariant polynomials in the components

of W, of degree at least 3, such that (3.57) becomes
W = AW + ¢ (W) + ¢® (W) + ...+ ¢W (W) + R (W), (3.64)

with ¢™ € G, for 3 < n < k,n odd, and R, = O(|W[**?). Furthermore (3.64) is still

Zy @ Zs-equivariant. To characterize G,, explicitly, we observe that
H,, = span{ Wi jktm, Wajrims W3 jkims Wa jkim s
where
Wighm = (WiWEWT3,0,0,0)", Waju = (0, Wi TWEWAT;,0,0)",
Wi = (0,0, WIWFATG0)", Wi = (0,0,0, Wi WAWT) ",

and 7, k,l, m run over all positive integers such that, j + k + 1+ m = n. Applying (3.62)

we find that

adAg(Wyjmm) = i[(k—j—1)Pw; + (m — 1) Pawn]Wy jrim (3.65)
adAg(Wajum) = il(k— j+ 1)Py + (m — 1) Powon] W jsim (3.66)
adAo(Wajum) = i[(k—j)Piwr + (m =1 — 1) Pows) W3 ki (3.67)
adAg(Wasum) = i[(k — )Pt + (m — 1+ 1) Pocon] Wy s (3.68)

Since the matrix of ad4¢(H,) is diagonal in this basis, G, can be found merely by locat-

ing the zero eigenvalues of adA¢(H,). We observe that the conditions on adAg(W; jum) =
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0,7 = 3,4 can be derived from those of adA¢(H; jum) = 0,i = 1,2 simply by in-
terchanging (7, k, Pyw;) with (I,m, Pywy). Also, the conditions for adAo(Wa jrim = 0
can be derived from adAo(Wi jun) = 0 simply by interchanging ( 7,1, Pywy, Powsy) with
(k,m, —Pywi, —Pywsy), so it is enough only to consider adAo(W jrm) = 0. To find the

condition on cubic terms in GG3 we must find 7, k,{,m with j + &k + ! + m = 3 such that
Piwi(1 —j+ k) + Pyws(m—1) =0. (3.69)

The Zy & Zs-equivariance also implies that 7 4+ A& be odd while m + [ should be even.

Since Piw; and Pyws are both positive, (3.69) will be satisfied, only if
J=k+1 and m =1

or

l—34+hk=mny and m—10=ny with nny <0.

The possiblities j = k£ + 1 and m = [ show that the vectors

Wy, 2 0 0 0
0 W W, 2 0 0
0 ’ 0 o | 0 ’
0 0 0 |12
W Wy 2 0 0 0
0 W W52 0 0
0 ’ 0 e | 0 ’
0 0 0 W W, |2

are in G'3. To consider the only other possibilities first we notice that

—2<1—-7<n <1+4k<4, =3<-1<ny <3 andalso |ng|+|ny| < 4.
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But neither n; nor ng can be odd, since this implies that j + & is even or m + [ is odd,
respectively, which was ruled out by Z, & Z, symmetry. The only remaining possibility
is when

1—34+k=2 and m—1[0= -2,
which implies that 7 = m = 0. For any fixed L,,, however, 2(Piw; — Puwsy) is not zero,

therefore the coeflicients of the vectors

W W3 0 0 0
0 W2 0 0
: B I ; , (3.70)
0 0 Wyl? 0
0 0 0 W IP2

can be removed by near-identity normal form transformations. However we note that,
by doing so, the term (Piw; — Pows)~! will be appear as a factor in the coefficients of
some fifth order terms in the transformed equation.

Ignoring the possible implications of this last remark fo now, normal form theory and

the results of our calculations imply that for & = 3, (3.64) takes the form
W,:im@nm+cmmﬁ+qmuﬂ+ommﬂ (3.71)

Wy = Wy (iPyws + W|IWal? + Cu| W1 2) + O(IWP),

(the equations for Wl and T’I—/g are the complex conjugates of those for W; and VVg). Now
to restore the parameter dependence, we apply normal form theory to
Z=F(Z.uv), i=0.0=0, (3.72)
seeking coordinate changes of the form

Z=W+PW po), p=0v=0o (3.73)
(see, for example, [16, p.145]). The calculations then reduce to those outlined above, and

we obtain the following result.
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Proposition 3.3 There exists a Zy @ Zs-cquivariant coordinate transformation Z =

W + P(W, i, v) that transforms (3.60) into

I’Vl = W ('ilel + ayp+ 0w+ CIIY/Vll‘Z + CQ]I"VQF)
+ Ol vP W | + [, | WP + W), (3.74)
Wy = Wa (iPaws + azpt + baw + Ws[ W2 + C4 |1y )?)

+ O, vP[W] + e, W2 + W),

where ay, by, as, by, C1, Co, Cyq, Cs are the same complex numbers that appear in (3.60).

Note that (3.74) is still Zy & Zs-equivariant.

3.5 Large aspect ratios

We would like to study the third order truncation of system (3.74) as a means to study
the system itself, but this is reasonable only when the higher order terms are much
smaller than third order terms. For fixed o, ¢, Q and all L,,, the normal form (3.74) gives
a valid description of the local dynamics of the magnetoconvection equation (2.5), for
parameters (L, R) in some sufficiently small neighborhood of (L,,, R,,), m =1,2,.... We
are also interested in behavior when the aspect ratio is large. Therefore for fixed o, ¢ and
(), we consider the “Case I” limiting behavior of the coefficients in (3.74) as m — oo.
As m (and L,,) increase to oo, the domain of validity of (3.74) shrinks to zero, so in our
application we are mainly interested in large, but finite, m and L,,. Since some of higher
order terms in (3.74) are proportional to (Pjw; — Pywy)™ !, and Pyw; — Pows is small for
large L,,, we should study the size of Pyw; — »ws further. For fixed o, (, Q from §2.5 we

have

2.2

P = Dot -Cz\z.LL' +O(L,%). (3.75)
C‘_;Tr2

Py = Puw——L "+ 0O(L.}),

2)\(4) m
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therefore

CLW?L‘1+-O(L‘2L (3.76)

Piwy — Pywy = o L m
as L, — oo. We can expect the center manifold reduction, used to obtain (3.74), to
break down if p and v are large enough so that modes other than those corresponding to
&, and &, have eigenvalues for the linearization K(R,, + u, L,, + ) that are close to the
imaginary axis. Proposition 2.3 suggests that for large m, we should restrict our analysis
at least so that |a;u + b;v| < 6, j = 1,2 where § = O(m™2) as m — oco. The solutions
of interest from the third order truncation have size |W|? < constant - 4, and in this case
the higher order terms in (3.74), even if some of the fifth order terms have coefficients
proportional to (Pjw; — Paws)™!, can be expected to have size only up to ~ O(m™).
Since the principal parts of (3.74) have size up to ~ Q{m™%), it is reasonable to neglect
the higher-order terms of (3.74).

Now suppose we take limiting values in “Case II”. Recall that we fix o but take a

sequence of small ¢ and large Q,
C=m*2, Q=mt?Q, (3.77)

where £k are fixed positive quantities and m = 1,2, .... For each /h we get a sequence
) {

(L, R™), m = 1,2,.. of critical parameter values giving double Hopf bifurcations. We

consider our “Case II” limit, when m = m, and m — oo. We recall that L' = O(m) as

before, and from (3.76) we have

2

Piw; — Powy = O(m~ "1 4 m=°) (3.78)

asm — o0o. In CaseIl. fifth order terms in (3.74) with coefficients proportional to (Pyw; —
Pyws) ™! will have size up to ~ O(m*=1), and if & > 1, such terms could be comparable
in size to the principal parts and should not be neglected, unless [ajpe + bjv| < 6. To

avoid this last restriction, we can use only a near-identity normal form transformation
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that do not result in fifth order terms with cocflicients proportional to (Piwi — Powsy)~ L,
As discussed above, this means the cubic terms corresponding to the vectors (3.70) are

not removed. Thus the resulting normal form is

Wi = Wi (iPuwi + aye+ by + GV + Co|Wal?) + C3 W W2 + hoo.t., (3.79)

WQ = ”/2 (1P2w2 + aglt + bgl/ + 04”']/1 12 + 0,5 I’VQ,?) + C(,"/T/Q‘/VIQ + h.O.t.,

where h.o.t. = O(|u, v]2[W|+ |, v||W]2 + |W]5). Since the matrix adAy(H,) is diagonal,
the coefficients aj,bi, 7 =1,2,Cy,...,Cq in (3.79) are not affected by the normal form
transformation and are the same complex numbers as in (3.60).

We will study (3.79) in Chapter 6, expecting it to give useful information on the
magnetoconvection problem if ( < 1 and @ > 1, for a wider range of parameter values

(R, L) than the normal form (3.74).



Chapter 4

Evaluation of center manifold coefficients

So far, we have shown that the dynamics of the magnetoconvection system (2.5)—(2.7)
can be reduced to the normal forms (3.74) or (3.79). Both are valid, (3.74) is simpler, but
(3.79) will give additional information in the Case II limit of decreasing ¢, and increasing
@ and L. However, to make specific predictions of dynamical behavior, we need more
information about the coeflicients in the normal forms.

In this chapter we evaluate the normal form coefficients of (3.74) and (3.79). In §4.1
we give explicit formulae for the coefficients in terms of the parameters of the original
magnetoconvection system (2.5)~(2.7). Then in §4.2 we study the asymptotic behavior
of these coefficients for large aspect ratios, in both the Case I and II limits.. Finally, in
§4.3 we evaluate the coefficients numerically for some specific values of the parameters

of the magnetoconvection system.

4.1 Center manifold coefficients

In §3.4, we showed that the cocfficients in the normal forms (3.74) and (3.79) are the
same as the corresponding coefficients that appear in the system (3.60) which repre-
sents the phase flow in the center manifold 117¢. The relation between (3.60) and the
magnetoconvection system is given by (3.56).

First, we determine the terms in (3.60) that depend on the parameters p and v. By
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comparing derivatives with respect to g in (3.54) and in (3.56), we have
e . N
@:aKAmm+Mmﬂwwﬁqﬂwmmm,]:Lz (4.1)
Using equation (2.55), after some simplification we get

(0 + 1)om?w; —ion? (8¢ + w?) ’ (4.2)

ay . — . i
4(2Lp /m)° Plwi (w? + 62)
o+ 1)omwy — ion? (8¢ + w?
“ ( y ) )2 2 (9 C N 2)7 (43)
4(2L,,/m)" Plws(w3 + 62)
where
Titere (4.4)

From equations (4.2) and (4.3) it is clear that ajr,j = 1,2 are positive. We now find
expressions for b, and b,. Since K'(y,v) is analytic in v, and «/’jw; are simple eigenvalues
for Ky = K(Rp, Ly,), there exist analytic functions «a;(v), j = 1,2, such that a;(v) is
an eigenvalue for K\'(R,,, L, + v), with «;(0) = i Pjw; and

lo;
b = ), j=1,2 (4.5)

T dy

By equation (2.14), a;(v) satisfies the cubic equation

.-
0 = of +6P(v)a} + <1512(7/)(0C o +C) +oCQn? — —— L 9 Ltm >

4]:)1(1/)(Lm + V)2
m?m20R,,C

53 y
4(Lm n ]/)2 + (TCPJ (l ), (46)

+aCQ7r2P1(1/) -

where

Piv) = 7? {[771/2(12,,1 + ) + 1}.

But from (2.19) and (2.23), we have

o(Q =

N

(w? + 2)P(0)2(0 + 1)
72(1 — ()
412 P (03 (0 + O)(1 + wi)

R”] - = B B . .
7 m272(1 — () (4.7)
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therefore s; = o) /P(v) satisfies

(0 4+ 1)(w} + )P}
(1-¢)PE(v)

0 = s?+(0+(+1)8f+[((f§+0+()+

LA + O+ )]&+Vﬁ+@NUTUﬁmV
(L +v)°PP(v)(1 =) (1= P (v)
L2P1 (0)3(o juc) (14 w?) oC
(Lm + V) 13(11)( - C)
= filsi,v), (4.8)
Since fi(iw;,0) = 0, and Jf,/Ov(iw;,v) # 0, by the implicit function theorem, for

sufficiently small v there exists a unique solution of fi(s;,v) = 0, s; = Q1(v) = tw; +
(Bir + iB11)v + O(|v|?). To find Bip, By explicitly, we substitute s; = §;(v) into
equation (4.8), and calculate

(0 +1)(0+ Q)7 [m*(1 — () — 2L2 (1 + w})]

Bir = 2i+ )1 =L}, ’ )
B mm*(w? + (*)(o + 1)
! 2Py (1 = Q) L3,
72(2L%, — m?)(o0 + ()(1 4+ w})(¢o +w'12)’ (4.10)

2Pwi (1 = Q) L3, (wi + 62)
where P is given by (2.28). Similarly, we find

(o + 1)(o + ¢)n? [(m +1)° (1 —(?) =202 (1 + w3 )]
Pan = N3+ 1 — OBL], W1

2 (m + 1)*(w} + ¢%)(0 + 1)

By, =
o 2Pywn(1 — Q) L3,
n(2L2, = (m + 1))(0 + QL+ w3) (65 + ) w1
2Pwy(1 = Q) L}, (wf + 0?) ’ '
where P, is given by (2.28). Since
lov: 1P
[)j — (C\](O) - 1.’(])1(0)(1/)(4)]_ + Pj(lei + 113111)~ J — 1’2’

dv dv

we have

bjli = Pij[{, j=1,2. (413)
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2,,2

—m*mAw,

biy = ———+ P,Byy,

iV >3, + 00
—72(m + 1)%w,

[)1] = oV + PgBQ[.

m

Proposition 4.1 For all odd m, we have bir < 0 and byp > 0.

Proof: To determine the sign of b, we note from (4.10) that

P?
27T4L12n (1 - (2)

A= [7712(1 — C:)) — QL;‘);I(I —f—w?)]

and by have the same sign. But by (2.28) we have

21 —~
bt o1y QT =0)

(c+1)P
and by (2.35) we have
o¢Q 3m¥*(m+1)2  m2(m + 1)2[m? + (m + 1)?]
TR (G N CT A R (L. -
Therefore using (4.16) and (4.17) we get
A= 2mS — (m + 1)2m2 [m? + (m + 1?2 3m?[m? — (m + 1) <0

(2[1771)6 + (2Lrn)4

The proof that byp > 0 is similar. Q.E.D.
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(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

We now calculate the coefficients Cl,...,Cs of system (3.79) in terms of the parameters

of the original convection problem. To do this. we need to approximate the center

manifold function U(®.,s,v) at 4 = 0, v = 0. We observe that by Theorem 3.2,

W (®,,0,0) can be approximated by its Taylor series to any finite order. We expand
Pl A Yy ) P

U($.,0,0) = Z?‘I’zooo + 212,000 + Z\Z>% 1010 + 21229 1901
+ 230200 + 21 ZaWg1 10 + Z1 %0101 + Z3W 020

+ 7252, %01, + 23‘1’0002 + ()(izlg)~

(4.19)
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where

q)c = Zlq)l + Z](i)l -+ ZQ(I)Q -+ ZQ(I_)Q.

Then using the chain rule and (4.19), we have

U = iPw 2z (2\1’2000Z1 + 21U 1100 + Z2 P 1010 + 22‘P1001)
~ iPw Z, (Zl\I’noo + 22 W00 + ZoTor10 + 22‘1’1010)
+ 1PuwaZy (Zl 1010 + 21 Wor10 + 222020 + 22‘1’0011)
~ Py, 7, (21‘1’1001 + Z1Wo101 + Z2Poo11 + 222‘1’0002)

+ O(Z]). (4.20)
On the other hand, from (3.54) we have
U = (1 — P)[Ko((®,,0,0) + My(,, D,)] . (4.21)

where Ko = K(R,,, L,), My(®,,®,) = M(®y, Py, L,,) for any @, s, ¥(®,,0,0) is
given by (4.19), and

Mo(@e, @c) = ZEMo(®1,®1) + ZEMo(B1, D)) + 2023 [Mo(®1,81) + Mo (F1,8)] +
2125 [My(®1, ®y) + My(D9, D))] + 2,2, [-A’{O((T’l»&)'z) + My(®s, ‘51)]
+ 2022 [Mo(@1, B2) + My(By, 81)] + 2123 [My( @2, &) + Mo(, B,)|

+ Z3My(Dy, Dy) + Z3My(Dy, By) + 7,73 [Mo(q’z, Dy) + Mo(®s, ‘I’-z)] .

(4.22)

Then by identifying the coefficients of quadratic terms we have
(Ko = 2iPiw))Wappg = —(1 — P)My(®y, d)), (4.23)
(Ko + 2iP1w))Bgag = —(I — P)A(D, D). (4.24)

([\'0 - 2iP2u)2)\I/0020 = —([ - P)A[()((I)'_). (I)‘_))s (425)
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(Ko + 2i Pyws) Wog02
KoP1100

KoPoon

(Ko — iPiw; — iPywy) g0
(Ko + iPiwi — iPawa) ¥o1 g
(Ko — iPywy + i Pywy) W g,

(Ko + iPiw; + 1Powy) Ug)q

= —(I = P)My(®y,3,),

= —(I=P) [My(®1,81) + My(31, 8],

= —(I = P) [Mo(®2,85) + My (&2, 82)],
= —(I = P)[Mo(®1,3,) + My(®2,9))],

= [A[Q (I)l,q)z +A{[0((I)21(I)

)],
P) [My(®1,8,) + My (32, 91)] ,
Py [0 )]

(
17\[0 (I)l,(I) -|- A”[O((T)Q,E)l

Since My(®;, P2) = My(P;, B5), from the above equations it is clear that

Yio10 = Yor01, Pipop =

Yor10, Po200 = Pagpo, Poo20 = Wogoo-
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(4.26)
(4.27)
(4.28)

(4.29)

(4.32)

Also, we note that Wy 19, U100; can be obtained from ¥ 1010 under the changes w; — —w;

and wy — —wsy, respectively. To find Cy, ...,

Cs we substitute (4.19) into (3.56) with

p# =0, v =0, and compare with (3.79). Identifying the coefficients of the cubic terms

gives

¢ = (fwo(q’uoo,q’n)+]\[0((I>1,\I/110U),q)1‘>+

<Mo(‘1’2000-, By) + Mo(®y, Taggo), ‘I’T> :

Cy = <Mo(‘1’00117 D) + Mo(Py, Woor1) + Mo (T g0y, D), ‘I’T> +

(Mo(P2. ¥ig01)

+ Mo(V1010. B2) + Mo(Do, Ty10). o1y,

Cy = <Mo(‘1’0020,‘f’1)+Mo(‘i’1«‘110020)»‘1’1‘> +

(Mo(To110, P2) +

Cy = <Mo(‘1’1100,‘1’2)+

Mo(Dy, o110), B7),

Mo(Py, ¥ 1190) + My(P 010, By), ‘I’§>

+ <1‘/fo(‘f’1, Wi010) + Mo(Wor10. Pr) + Mo(Py. Toy10), ‘I’§> .

Cs = (My(Tgo11, ) + My(P2. Tgp11). ;) +

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)
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<]V[0(‘I’0020, D9) + Mo(P2, Yooz), <I>§> :
Co = (Mo(Tro01,P1) + Mo(Py, ¥1g01), ) + (4.38)

<Mo(‘1’2000, By) + Mo(P2, Taggo), ‘I’§> -

After lengthy calculations, which we have checked using the symbolic computation
program Maple, we find explicit formulae for Cy, ..., Cs. The calculations consist of three
major steps:

1) Computation of the terms AMy(P;, D;).
2) Using the results of Step 1 to compute the Taylor series coefficients W5z of the center
manifolds by solving (4.23)-(4.32).
3) Computing C4, ..., Cs according to (4.33)-(4.38).
The results are given below; more details of the calculations are given in Appendix

A. We have

= oRR,, 1 e
Ci = (Cf2) {P1(1 o) [“4131(1 %) 2P + i) (e +2iw1)] (4.39)
i0CQ (2L, /) mws
- PIQ(C + Z.WI)(C‘2 + wf)(wlC + inl(2L171/777')2) } ’
_ oR,, T ((2m + 1)(co + ds) + &, + d')
C2 = Cuf2 {_Pl(l + wwy) [ 4{m +1) ) +
7 ((2m + 1)c; + ) + m((2m + 1)d; + d'y) 1 ]

(4.40)

202 P .
+——’"——‘{D3+D4+D3+D4+

m2m

olQn
(¢ +1wi) Py
2Ly Py LR 2L20¢Q 1~ | -
me s [D;; + D.1] + m [E:z + E4] (4.41)

ok, w2 N T ((2717 + 1)d, — (7'1)

P1(1+77w1) 2P_,2(1+1w2)(w2+2w2) 16]?_)(14'7.&4)2)

™ ((2771 + 1)dy + (—1.-/2)} }

4{(m + 1)

(E3+E4+E3+E4)]}7

Cz = (én1/2){

™2m

+
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(4.42)

= ng m ((27” + 1)(6‘2 + (1.2) + Clz + JIZ)
Cy = m 2 -
! Contr/ {P-z(l + iws) !: 4m T

m(2m+1)e+d) T ((Qm +1)d, + J’l) 1
16P1(1 - iwl) 16P1(1 + iwl) 4P1(1 +wf)
2L P, o(Qm

__fEm?2 o p P4 D,y 25T
(m+1)7r~[ 1Pt B )+P>(C iwa)

(Ey + By + B, +_E:2)}},
. R, 1 2
Gy = (Cnnf2) {P (1 + iwn) [_41?2(1 +w%) T 2P2(1 + tws) (s + 2iws)
_ i0Q(2Lin/ (m + 1)) %wy }
P3¢ + iw)(C2 + w3) (ol + 2iwy(2L,, /(m + 1))?)

_ A _ QLmP) a M _ ZL:HO-C(J ~ -
Co = (Cnn1/2) { (m + 1)72 [D[ t Dz] m(m + 1)(C + tws) [El + EQ] (4.44)

] (4.43)

oRy, w2 7 ((2m + 1)d, — d))
P2(1+iWQ) 2P12(1+1w1)(w1 + 2iw,) 16P1(1+17Ld1)
m((2m + 1)dy + (1/2)] }

4m

= ) 4m?
where C,,,Cryq1 are given by (2.53), w; = —]—)— for j =1,2,

o _ [ oCQUEmt Vey+d +8(er + )
! 8m(¢ — iwy)
7((2m + ey + ¢)) N m(m 4+ 1)(2m + 1)(e; + ¢])
dm 32mL?2 '

m

(4.45)

w2 {WQO'CQ (Cm+ 1)y + ) | 7°0¢Q(2m +1)cy
2mP(( — iw;) 32mL2 P (¢ — iw)

m

m20CQ [(2m + 1)3¢5 + 8 (¢4 + (2m + 1)2¢})]
32mL2 P (¢ — iwy)

m

m(2m+1)e+¢)  wlm+1)((2m+ D)y — c’l)}

8m 3212 (4.46)

m

Dy = .’Ii [UCQ (=(2m+1)cy = +8(cy + )
8 8(m + 1)(( — iwn)
T((2m+ )ey + ) am(2m + 1)(¢; — &)
4(m +1) B 32L2,(m + 1) ] '
D, — __')_{71’ aCQ ((2m + 1)ez + &) m20(Q(2m + 1)c3
T 2(m + 1)Po(C — iw) 32(m + 1)L2, Py (C — iw>)

(4.47)
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m20CQ[(2m + 1)3¢; — 8 (cq + (2m + 1)2d,)]
32(m + 1)L2 Py (¢ — iws)

m

m((2m+Der +¢f)  mr ((2m+ ey — c’l)}

8(m + 1) 32L2,
B = m((2m + l)eg + ) — 8m(cq + )
b= 8m '
2 ((2m 4+ 1)c; + ¢})
E2 = - ’

8mPy (¢ — iwy)
m{(2m + 1)cg + & + 8(cq + &})]
8(m+1) )
w2 [(2m + 1)y + d}]
8Py (m + 1)(C — iwy)’
N 2 [ a(Q((2m + 1)ds + dy + 8(dq + d}))
P, {— 8m(( + 1wy)

Es =

Eq =

7 ((2m + 1)d, + d)) + m(m 4+ 1){(2m + 1)(d; +
dm 32mlL?2

m

d) }

P
4 m20CQ [(2m + 1)3dy + 8 (dg + (2m + 1)%d})]
32mL? Py (¢ + 1wy)

m

N 72 [m2oCQ((2m + Ddy + ) | m*a¢Q(2m + 1)dy
2mP (¢ + iwy) 32mL2 P (¢ + iw;)

T{(2m+1)d, +d,) w(m+1)((2m+ 1)d; —d}) }

8m 3212,

5 _ 2 [76Q (= @mt 1d — &+ 8(di+ &)
3 = ]_DT 8(m + 1)(¢ + iwy)

w(@nt Ddit+d) mEm+ n(d - )

4(m+1) 32L2 (m + 1)

’

D4=—

P 2(m + 1) P(¢ + iwy) 32(m + 1)L2, Py

m2a(Q [('Z‘m +1)3d; — 8 ((74 + (2m + l)z(iﬁ,)]
32(m + 1)L2 P5(C + 1w»)

m- =

. 2 { m20(Q ((2171 + 1)d3 + (173) m20CQ(2m + 1)d3

(¢ + tw)

s ((‘2771, +1)d, + (7’1) mm ((2/77 +1)d, — (1-,'1) }

8(m +1) 3212

7 T{((2m + 1)d3 + dy) — 8m(dy + )
1 = \
8m
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(4.48)

(4.49)

(4.50)
(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)
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and Dj, Ej, ]

change wy —

where

)
3
(2

U3

(&1

C2

C3

w2 ((2m+ D)dy + d))

8m P (¢ + iwy)
m ((2771. + 1)ds + (73) + 87 (dy + d,)
8(m + 1) ’
w2 ((2771 + 1)d;, + (7’1>

8Py(m+ 1)(C + iwn) |
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(4.58)

(4.59)

(4.60)

= 1,...,4 are obtained from Dj, E;,j = 1, ..., 4, respectively, by making the

—ws. Also

_(A1/4) + (0CQAoA43/2mn3) + (cRA/4L% my)
(n2Ado/4m?) + (0¢Q A/ m3) — (6 R[1GL2 1)

= (c1/4m) — (Aa/m),
_ 2me; + Aj

T 3 ’

= —Ayq/m,

(B1/4) + (6¢QBy B3 /2my3) + ((2m + 1)o RBy /4 L2 )
(02 Bo/472) + (0CQBy/v3) — ((2m + 1)20R/16L2,3,)
= (2m + 1)(c)/4n) — (Ba2/v1),

2nc) + B
Yy
= —DBy/ys.

Ag+ 1Py + ’iPz(.dQ, N9 = 0'.40 + 1Pywy + iPows,
(Ao + iPiwy + iPyws, = ((7/2L,,)* + iPw; + i Pows,
By + i Pjw; + 1P, Wy = aBy + 1Pjw + 1 Pws,

<B0 + iP]Cd] + inLu'g, Y = (((27‘” + 1)71'/2[1,7:)2 + ilel + inQ}Q,

Ay = 7mH1/4L3 +4),

By, = 7m*((2m+1/2L,,)* +4),

(4.61)
(4.62)
(4.63)
(4.64)
(4.65)
(4.66)
(4.67)

(4.68)
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olQn(P, — Py) 2m+ 1)w
“m(m + )P Po(C + iw ) (C + tws) B 4L2 m(m + 1)’
A = (2m+1)By,
m(2m + 1) [mPa(1 + iwe) + (m + 1) Pi(1 + iwy)]

BI:

Az dm(m + 1) Py Py(1 + iw ) (1 + iws) ’
B o= _T [=mPy(1 +iws) + (m + 1)Pi(1 + iw,)]

2 dm(m + 1) Py Py (1 + iwy ) (1 + iws)
B, 72 [P1(¢ 4 iw1) = Po(C + iwp)]

m(m + 1) P P (C + iw; )(C + iws)

Az = (2m +1)B;,

B w2 [Pi(C + iwy) + Po(C + iws)]
dm(m + 1) P Py(C + 1w ) (¢ + tws)’

By = (2m +1)24,.

and dj,(l;',j = 1,...,4 are obtained from c‘j,cg,j = 1,...,4 by making the change wy —
—Ww9.
4.2 Asymptotic results
In this section we give explicit formulae for the limiting values of the coefficients
ay, a3, bla b27 Cla seey CG

in the normal forms (3.74) and (3.79), as m — oo. We consider Cases I and II discussed
in §3.5. Details of these calculations are given in Appendix A. Throughout this chapter
we assume

€E=m .
4.2.1 Casel
It is easy to see from (4.2) and (4.3) that

lim a; = lim ay = «a,
m-—o0 m—0o0
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where
(”:W+1Mff_um%§+w%’ (4.69)
4X2 P2 (w? + §2)

and A, P,w are given by (2.27), (2.59), (2.60) § = 1 + o+ (. It is clear from (4.13)-(4.15)

that b;, 7 = 1,2, are O(¢) as m — oo, but we will show that actually the real parts b;p

are O(e?). By equation (4.18) and (4.9) we have

=1%o+ 1)(c+ 1+ A
bip = Lo P22 + %) , (4.70)

where A is as in (4.18), after some simplification we get

4
bin = —m”@53$135+”3+0wx (4.71)

and similarly we have

b = 2o+ Qo+ 1)(C+]1) ,
e N P(w? + 0?)

24 0(eY), (4.72)

Also, after some calculation we find asymptotic expansions of bj;, 7 = 1,2 and we get

4n[o+1a)+<) w?(1 - ()]

biy = oy
2m” (A Mo+ou+w%«5+w>
¥ w(l =) (0% + w2) A3 }6+O(€2)a (4.73)
T i (G 2 VI W+<) W21~ ()]
21 — C)/\;
oS —2)(0+C)(1+w~)(<o+w-) ,
. w(l = () (02 +w?) M }6+0(e ), (4.74)

Remark 4.1 We notice that in the asymptotic expansions of a;, by and as, , by the terms
at order O(¢) are equal while the terms at order O(€?) are negatives of each other. This
s due to the fact that the same relation holds for the asymptotic ezpansions of Py, w;, and

Py wy. We wnll find similar behavior for the center manifold cocfficients.
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For the normal form coefficients Cy, ..., Cs we have

lim C; = lim C3=A+B,
m—00 m—o0

lim C;, = lim Cy= A4,
m—00 m—00

lim C3 = lim Cy=0C,
m—oco m—o0

where

w20 Ro(( + iw) 1 2
T AN2P2y(w — i) [‘ 4P(1+w?)  2P(1 + iw)(w + 2iw)
ioCQN (1 + iw)
4P3((2 4+ w?)(w( + 2iwA2)(w — i6)’

A+ B

+ (4.75)

4 - ~m2( + iw) (1 + iw) {_ aRy [w(cm + do) N mdyy
4A2Pw(w — i) P(1 4 iw) 2 4AP(1 + iw)
n 1 } aQ¢* N, _ 2120 (Qch, + a(Qdy N
P+ (C+e?)  PlC—iw) | (+iw
md11(3X° — 1) 720CQ(\d3y — 2dY,) ToCQdy,
T YT RCrw) Ik iw)2} ’ (4.76)
c - —72(¢ + w)(1 + iw) {_ oRy [ w2
N 4X2Pw(w — 19) P(1 4+ iw) [2P%(1 + iw)(w + 2iw)
wdyy ) m20(QNd3; + 2d.
TP+ mdz/ ZJ B C?’(c( + iw) 2
oCQdy N a(QAmdy, 3 wdy; (3N — 1)} (4.77)
¢+ iw 4P(C + iw)? 4 ’ '

where and A, w, P, R satisfy equations (2.58), (2.59), (2.66) and (2.67) respectively, w =
472 /P, and

T

2T P A iw) (@ + 2iw) -
/ 27T2)\2
= ’ '7
“a1 P2(( + iw)(w( + 2iwA?) )
Aw@m
= — |
(5B P(CZ +w2)(47f2 + Q)’ (4 80)
1
oo 1 (4.81)

2T P+ o)
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(133

I —
d~1l -

4.2.2 Case Il

2Niwn?

(P(Am? + Q)(C® +w?)
/\2
2P(C2 + w?)’

For (4.2) and (4.3) we obtain (for any k£ > 0)

where

and A, P,& are satisfying (2.72), (2.73) and (2.74). Using (4.70) We also obtain

m—o0

lim a; = lim a = &,
m—o0

and

(0 +1) (7r2cb2 + ]3)
~ BPW? + (0 +1)?)

. 40(0 + 1) (7r2c112 + P) .

&)
-+
—
e
+
£«
(3%
pos
«w

bop =

i _ F47r20w
17 — /‘\3

. 4200

by = 13

CERETDI

—

b

62 + O(€2+(k/2)),

€+ 0(61+(k/2)),

€+ O(€1+(k/2)),

72

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

as m — 0o. However, since by (2.77)-(2.80), P — P, and w; — wy are O(e), it is easy to

show that by — by; = O(e?). This will be important in our analysis in Chapter 6.

In Appendix B, we show that if &k > 2, then C5, C3, Cy and Cg become unbounded as

m — 0o, and if k£ = 2, then limits exist but

lim Cy# lim C4, and lim C3# lim Cg.
Lm—)oo L,,,—‘)«x L

m o0

[ von —» 00
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In order to keep the limiting behavior of the normal form coefficients similar to that for

Case I, we restrict £ < 2. Then we find

lim ¢ = lim Cy=A4+B,
mM—>00 m—o0

lim Cy = lim Cy= A,
m-—o00 m—roo

lim C3 = lim Cg=C,
m-—o0 m—ro0

where
i+ = in2a Ry 1 N w2
T ANP2(0 —d(o + 1)) [4P(1+@?) | 2P2(1 + i) (@ + 2i0)
aCQm(1 + i)
E , 4.90
+8d;3P3(cb——i((f+1)) ( )
A _ WQUROi l:ﬂ'((tf-a + (7-_)1) 4 7T(i]1 + 1
4N2P2(o ~ '1'(0 +1)) 2 APl +iw)  4P(1 + w?)
_ e (]. + 1 )1 TTQUCQ(QVCI(“ — 2(72] + ;\(igl) n WUCQ(ill
PX2(& —i(o + 1) iPo 4Pg?
ci ( —1)  0¢Qd},
+ 5 + o , (4.91)
& o= im20 Ry w2 B wdy; wdyy
AX2P20 —i(0 4+ 1)) [2P2(1 + i) (o + 2i0)  4AP(1 +iw) | 2
_ 7T2(1 + ?LIJ) __71'20'((25\((231 + 2(2’41) 7T(i11(3;\2 - 1)
4PXY(O — i{o + 1)) i P 4
O'CQ(Z’“;\Q O'CQ/\’/T(Z”
+ . — - , 4.92
1w 1402 (4.92)
2
and @ = ilf—,
P
s
6’-;_ = ~ = ) 493
T P14 i) (42 P+ 2i) (4.93)
2
. T
& = ~ P (4.94)

dy = —7m\if/Po, (4.95)
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; 1
dy = —e——, 4.96
2T 4nP(1+a?) 14.96)
. 2miA
Iyj = ———a, 4.97
d3 OG0 (4.97)
. A2
o= S 4.98
41 550 (4.98)

4.3 Numerical results

Because of the complexity of the formulas for the normal coefficients C, ..., Cg, we were
not able to find the signs of the rcal and imaginary parts of these coefficients analytically.
The signs will be important in our bifurcation and stability analysis in Chapters 5 and
6. Therefore we have evaluated the coefficients numerically, using Maple to carry out
the numerical computations. The results are summarized in Appendix B, and a repre-
sentative selection of them is presented in this section. The symbols oo in the tables
correspond to the limiting values of the coefficients as m — oo, as calculated in §4.2.
We note that numerical results appear to verify our analytic asymptotic results on the
normal form coefficients.

The values of L,, were calculated by using (2.35). We have also calculated the values
of C; and Cj for a relatively large set of paramecter values o,( and Q (see Appendix
B). We found that C|p and Csg are negative for all values of ¢,(,Q and m we used.
The numerical computations of Csy, C3, Cy and Cy took much longer and more care was
required to avoid memory overflow and round-off error. For ( = .1,06 = 1 and all the

different values of ( and m that we used, we found that Cop, Cyp are negative, and
C1RC5R —_ 02110412 < 0. (499)

We have also checked this inequality for a wider sct of parameter values of ¢, and @ in

the limit as m — oo. This will be important for our results in Chapter 5.
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In our calculations we observed that the signs of the real and imaginary parts of
C1,C5,C4 and Cj for all finite m and in the limit as m — oo are the same, but the signs
of Csg, Csr, C3r and Cg; changed as m was increased.

We have also computed the values of normal form coefficients in Case II with o =
l,é =.1,Q = 10072 k = 1 and for increasing values of m (Tables 4.3-4.6 ). The essential
features are preserved, and our analytic asymptotic results seem verified numerically.
However, convergence appears to be slower: €] and Cy, Cy and Cy4, C3 and Cg approach
their limits much slower than their differences approach zero as m — oo. For example,
it is easy to verify that both €, = A+ B+ O(é"/2) and C5 = A + B + O(€*/?), but
Cy — Cs5 = Ofe).

Table 4.1: Normal form coefficients (Case I) for ¢ = 1,{ = .1, Q = 10072.

m 2L,/m | R, 100a, 100a,

1 1.411 | 2399. 1 .1762 — .1372¢ | .2296 — .11406:
11 1.022 2018 | .2270 — .1446z | .2342 — .1405:
101 9835 2013 | .2307 — 14317 | .2315 — .14262

1001 9791 2013 | 2310 — .1428 | .2311 — .1428:
10001 9787 1 2013 ¢ .2311 — .1428: | .2311 — .1428:
'e) 9787 1 2013 | 2311 — .1428: | .2311 — .1428:q

Table 4.2: Normal form cocfficients (Case I) for 0 = 1,( = .1, Q = 1007 (continued).

m L;_)nbl R L';')nl)g R L,—,, 1)1 I L,,, 1)2[

1 —5.305 | 8.642 | 17.18 | 24.04
11 —06.621 | 7.037 | 19.85 | 20.83
101 | —6.803 | 6.850 | 20.28 | 20.39
1001 | —6.824 | 6.829 | 20.33 | 20.34
10001 | —6.827 | 6.827 | 20.33 | 20.33
e —6.827 | 6.827 | 20.33 | 20.33
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Table 4.3: Normal form coecfficients (Case I) for o = 1,¢ = .1, Q = 10072 (continued)

m Cl CQ C4 C5
1 —.0460 + .1125¢ | —.0743 — .0352¢ | —.0686 — .0026¢ { —.0595 4 .0931¢
11 —.0523 + .1045: | —.1360 + .0849: | —.1360 + .0849¢ | —.0541 + .1020¢
101 —.0531 4 .10347 | —.1000 + .1300¢ | —.0859 + .1363¢ | —.0533 + .1031¢
1001 | —.0532+ .1033: | —.0936 + .1333z | —.0921 + .1339¢ | —.0532 + .1032:
10001 | —.0532 + .1033:¢ | —.0928 + 13362 | —.0927 + .1336¢ | —.0532 + .1033:
100001 | —.0532 4 .10337 | —.0929 + .1336: | —.0928 + .1336: | —.0532 + .1033:
00 —.0532 + .1033¢ | —.0928 + .13367 | —.0928 + .1336¢ | —.0532 + .1033:

Table 4.4: Normal form coefficients (Case II) for 0 = 1,(=.1,Q = 10072, k = 1.

Table 4.5: Normal form coefficients (Case II) for o

(continued).
m L?,,bl R L;)n I)QR Lm b“ L,—,, [)2]
1 —5.305 | 8.642 | 17.18 | 24.04
11 —6.181 | 6.583 | 17.96 | 18.947
101 —6.229 | 6.274 | 17.92 | 18.03
1001 —6.206 | 6.210 | 17.82 | 17.83
10001 |} —6.193 | 6.195 | 17.78 | 17.78
100001 | —6.190 | 6.190 | 17.77 | 17.77
1000001 | —6.188 | 6.188 | 17.76 | 17.76
00 —6.188 | 6.188 | 17.76 | 17.76

m 2L /m | Ry 100a, 100a,
1 1.411 | 2399.| .1762 — .1372¢ | .2296 — .114062
11 1.011 1832 | .2362 —.13797 | .2442 — 13151
101 9692 1775 | 2432 — .1333: | .2441 — 1325z
1001 9638 1757 | 24470 — .1322¢ | .2447 — .1321:
10001 9630 1752 | .2450 — 13202 | .2450 — .1320:
100001 9629 1750 | .2451 — .13192 | .2451 — 1319z
1000001 9628 1749 | .2452 — .1319: | .2452 — 13192
o0 .9628 1749 | 2452 — 1319:¢ | .2452 — .131%

1,{ = 1,0 = 10072, k = 1



Chapter 4. Evaluation of center manifold coefficients

77

Table 4.6: Normal form coefficients (Case II) for ¢ = 1,0 = .1, Q = 10072, k =1
(continued).
m Cl CQ C4 C5
1 —.0460 + .1125; | —.0743 — .0352: | —.0686 — .0026¢ | —.0595 + .0931:
11 —.04321 4 .0968: | —.1061 + .00662 | .0119 4 .0512: [ —.0444 + .0946:
101 —.0412+ .0938: | —.1205 + .07472 | —.0109 + .11312 | —.0413 + .0935¢
1001 —.0404 4 .0930: | —.0947 + .1116¢ | —.0517 + .1264¢ | —.0404 + .0930:
10001 —.0402 + .0928: | —.0810 + .11967 | —.0668 4 .1244: | —.0402 + .0928:
100001 { —.0401+ .0927: | —.0762 + .1215: { —.0717 + .12307 | —.0401 + .0927:
1000001 | —.0401 4 .0927: | —.0746 + .1220: | —.0732 + .12257 | —.0401 + .09272
10" +1 | —.0401+.0927i | —.0785 4 .1722i | —.0784 + .1723¢ | —.0401 + .0927;
108 +1 | —.0401+.0927¢ | —.0739 + .1223i | —.0738 + .1223: | —.0401 + .0927;
109 +1 | —.0401 + .0927: | —.0739 + .1223: | —.0739 + .1223: | —.0401 + .0927;
00 —.0401 +.0927: | —.0739 + .1223: | —.0739 + .1223: | —.0401 + .09272

(continued).

Table 4.7: Normal form coefficients (Case II) for ¢ = 1,{ =
m Cs Cs
1 1376 — .0938: .0309 — .08G6:
11 .0890 — .0031: | —.0405 — .0381:
101 0539 + .06737 | —.0569 + .03052
1001 0112+ .0820¢ | —.0319 + .06742
10001 | —.0042 + .0803: | —.0184 + .0754:
100001 | —.0092 4+ .0789¢ | —.0137 + .0774z
1000001 | —.0107 + .0784: | —.0121 + .0780:
10+ 1 [ —.0107+.0784i | —.0121 4 .0780:
108+1 | —.0113+.0782¢ | —.0115 + .0782i
10°+1 | —.0114 +.0782i | —.0114 + .0782:
o0 —.0114+ .07822 | —.0114 + .0782:

1,0 = 10072, k = 1



Chapter 5

Existence of invariant tori

In Chapter 3 we have shown that the dynamics of the magnetoconvection equation in a
neighborhood of the origin in the Hilbert space X, for L sufficiently close to L,, and R
sufficiently close to R,, (for all finite L,,, and in both Case I and II limits as m — o0),
will be determined by the dynamics of the four-dimensional ordinary differential equation

(3.74), which we rewrite here as

Zl = Z] [’ilel + app + I)ll/ + C1|21|2 + Cngzlz] + h.o.t. s

Zy = Zy|iPuws + aspt+ bov + Cs| Zo* + Ci| Z1P] + Dot (5.1)
where
ho.t. = O, v Z), i V| ZP +12)%), =R— Ry, v=L= L.

and Z = (Z,Z,) € C?. The normal form cocfficients Cj,j = 1,2,4,5, and a;,b;,4 = 1,2
were given and evaluated in Chapter 4. Recall that system (5.1) posscsses the Zo @ Zo
symmetry (3.59).

In this chapter, we determine the dynamics of (5.1), for Z, u,v near zero. First,
in §5.1 we study the “truncated” normal form where we ignore the higher-order terms
(h.o.t.). In this case, the equations decouple and the system is reduced to a planer one
which is straightforward to analyze. We must then determine whether certain structures
“persist” when the higher-order terms are restored, and in the rest of this chapter we

prove results for (5.1) that are valid in the generic case, i.e. when the higher-order

78
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terms are not necessarily identically zero. In §5.2 we prove the existence of primary
Hopf bifurcations of symmetric “standing wave” periodic orbits SWy and SW, from the
trivial solution, along two curves I';, I's in the (u,v) parameter plane. In §5.3 we prove
the occurrence of bifurcations of invariant tori from the periodic orbits SWy and SW,,
along additional curves Ay and A, in the parameter plane, which implies the existence of
these tori for parameter values in a region adjacent to the two curves A; and As. Finally,
in §5.4 we prove the existence of normally hyperbolic invariant tori for parameter values
in the interior of a wedge in the (y, v) plane bounded by A; and As, but away from the
boundaries. Then we combine this result with the result of §5.3 to prove the existence of
normally hyperbolic invariant tori for parameter values throughout the wedge bounded
by A; and A,.

From our analytic results in §4.1, we know that «,p, asp and byp are positive, while
bir is negative for all odd m. Also, based on our nunerical results in §4.3, throughout

this chapter we assume

Hypothesis 5.1 CIR,CQR,C4R, C{,R are all ncgative.

5.1 The truncated normal form

10

We write the normal form (5.1) in polar coordinates Z; = re'”, Z, = r9e'2 and obtain

o= 1 ((LIR,M + b pv + C’]]ﬂ'iz + 021{7'3) + 0(7‘5), (52)
ro = 19 ((1.2/{/1 + 1)-_)/{1/ + C4 ,{7,‘12 + C’-’)RT}Z)-) + ()(7'5),
91 = P +(1.”/1,+1)“1/+C”‘1"]2+C2,7‘f§)+()(7'4),

0, = P+ agpjt+ bav 4+ Cyrd + Csrry + O ().

We observe that the first two equations of (5.2) decouple from the last two, up to terms of

lower order, but generically the higher-order terms of O(1*) and O(r*) depend nontrivially



Chapter 5. Existence of invariant tori 80

on 6; and #;. As an approximation, we ignore temporarily the higher-order terms and

consider the truncated normal form

o= r (HIR,L1+I)1RI/+CIRI +C)R79) s (53)
Ty = 79 ((LQRN + bapr + C4R’I‘;2 -+ C5R7‘:22) )

b1 = Puwi+aygp+byv+ Cirt+ Cyrd,

b; = Pows+ agipi+ by, + Capr} + Csprl.

Later, we will restore the higher order terms and prove results for the original system
(5.1), based on the analysis of truncated system (5.3). Since the last two equations of

(5.3) are decoupled from the first two, we need only consider the two dimensional system

7"1 = T ((L[R/l, + b][{l/ + C]RT? + Cg/g‘l‘.;) R (54)

. 9 2
Teo = T9 ((Lgn/l. + I)g[gl/ -+ C4I?,7']~ + C5R’I'._'):) .

This system has been discussed by Guckenhecimer and Holmes [16, §7.5]. To make use of

their analysis, we simplify (5.4) by using the following scaling:

o= rmy/|Cirl, T2 =12\/|Csp|. T =sgn(Cip)t.

Then (5.4) becomes

dF . Cir)Ca

L= 3 [Sﬂn(cm)(flmﬂ +bigy) + 77 + M72:’ (5.5)
dt |Csel

dF Cin

e [5971(C1 ) (@2rgt + bapy) + =77 + sgn(Csp)sgn(Cip)7 ;2} :

dt Cl n

By Hypothesis 5.1, sgn(Cyp) = sgn(Csr) = —1. and we are reduced to

Fi(—py p + 71 + BT, (5.6)

-
_—

Py = To(—plap + CF +73).



Chapter 5. Existence of invariant tori 81

where

pig = @ippt +bigy, 1 =1,2, B=Cyp/Csp, C = Cqp/Cir.

According to the sign of B, C and 1—-BC, there are six different cases. The coeflicients
B and C are positive in our application, so our study of (5.6) falls into cases I, (if
1—BC >0)and I, (if 1 — BC < 0) of [16, p.399]. In our application for the parameter
values that we have checked, only the case I, is possible (see §4.3), but most of our
analysis will be valid for both I, and I, cases.

For (5.6), the origin (71,72) = (0,0) is always an equilibrium point, and there are up

to three other equilibrium points in the first quadrant:

(7_‘137_1?.) = (\//Ill?ao)a if Hir > 01
(F1,72) = (0,/p2r), if pap > 0;

v n oo | [mr=Buar  [per = Cug
(F1,72) = (1 1»’2)—(\/ 1 — BC ’\/ 1—-BC )’

tir — Bior por — Crup
1-BC ' 1-BC

if

> 0.

These fixed points correspond to the following equilibrium points of (5.4):

apit+ b b
SWV : (r1,m) = (\/—M,O) i > — =Ly

CIR a\pr
o pit 4+ b ’
SI«'V,ﬁO) : (7'1a 7‘2) = (0, \/_________(121?,11 + 2R’/) , 1f > __bﬂy;
CSR asp
TO : (r, 1) = (r] (g v), 3 (1, v)),

where

\//‘((lwzczlt — a1gCsp) + V(b2apCapr — b1 rCsp)

CirCsr — CorCap ’

) = \//1,((1,1,{(”4,{ ~ ax3C\g) + V(b1 pCyp — bmcm)’
- C1rCsp ~ CorCap

ripry) =
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if (u,v) belongs to a wedge W in the parameter plane defined by

ia2rCor — a1 rCsr) + V(barCar — b1rC5R)
Ci1rCsr — CapCar

(a1 rCag — aarCrg) + V(01 rCip — bapCir)
CrrCsir — CopCar

> 0,

Thus, the boundaries of W% lie along the lines

AP = Aoty sgn(v) = sgn(Ag + bir/air),

AP o= A, sgn(v) = sgn(Ap + bap/aar),

where

. Carbip — Cipbap
Ay = , 5.7
0 Ciraap — Coparp (5.7)
Canbap — Cypl
/\; — 21021 .R)IR' (5.8)
Csraip — Capagp

See Figure 5.1.

The family of equilibrium points ST/VéO) of (5.4) correspond to a family of periodic
orbits of (5.3) which bifurcate from the trivial solution at the origin as the parameters
cross the line aj gyt + bigr = 0. A similar correspondence holds for the family SW® of
(5.4). In §4.2 we will prove the existence of these two families of periodic orbits for the
non-truncated system (5.1). The family of equilibrium points T® of (5.4) corresponds to
a family of invariant tori for (5.3), for parameter values in the wedge W©, In §5.3 and
§5.4 we show that a family of invariant tori for the non-truncated system (5.1) exists for
parameter values inside a wedge W in the (s, v) plane, that is approximated by W,

To study the stability of the equilibrium points 7, we linearize the vector field of

(5.3) about the fixed point (7], 73), obtaining the matrix

E(ptips ptar) = e (5.9)
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Since BC # 1, F has eigenvalues

Ao = (Tr(E) +\/THE)? - 4Det(E)> /2,

where
Tr(E) = 2((7)°) + (7)), Det(E) = 4(773)°(1 — BC).
Depending on the sign of Det(E), (7}, 7;) is either a sink or saddle point for (5.6).

The corresponding linearized vector ficld of (5.4) about (r},73) is given by

. 2C p(r1)? 2Ca 0t
Bluv) = 1r(17) 2RT] ’ (5.10)
2Cygrirs  2C5p(r3)

(S

o

which has eigenvalues

Ao = <—T7~(E) + \/T7~(E)2 - 4Det(E)) /2.

Depending on the sign of C1zCsr — CarCanp, (77,73) is either a sink or saddle for (5.4).
These fixed points correspond to either normally hyperbolic attracting invariant tori, or
normally hyperbolic invariant tori of saddle type for (5.3). Bifurcation sets for (5.4),
corresponding to the two different cases depending on the sign of CyzCsr — CorCag, are

given in Figure 5.1.

5.2 Bifurcating periodic orbits

In this section we return to consider the reduced four dimensional system of ordinary dif-
ferential equations (5.1), and prove the existence of bifurcating periodic solutions. These
solutions correspond to nonlinear standing waves in the magnetoconvection problem, so

we will denote them by ST solutions. First, we note that the subspaces

‘/E)—_—{(Zl,O)Z21€C}, "'}:{(O,ZQ>ZZ~2EC},
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(0)

Figure 5.1: Bifurcation set for (54) ((l,) Cy /gCr)R—C;)RC4R > 0 (1)) C ]{C5R_CQRC4R < 0.
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are invariant manifolds for (5.1) due to the Zy @ Z, symmetry (3.59). So we may study
some of the dynamics of (5.1) by restricting it to these subspaces.

The system on V; becomes:
Zy = Zi(iPiwy + 11 + CHZ1 ) 4+ O(Z)° + i vl Z P + s v 24)), (5.11)
where p; = aipt + byv. Now let Z; = r1e'®, so in polar coordinates (5.11) becomes

o= (g ¥ C’mff) + 0(7']5 + |p, 1/]1‘is + |;L,ul27‘1), (5.12)

6 = Puor+ s+ Curt +0Urt + vl + ).

Since Cig < 0, by [16, Theorem 3.4.2], (5.12) undergoes a supercritical Hopf bifurcation
as we increase ji1p through some value near zero, and there exists a family of periodic
orbits Zy(t) = Zy(p, v)(t), which we denote by the branch of SW solutions. The SW,
solutions bifurcate from the trivial solution for parameter (y, v) along the curve I'y defined
by u = po(v), where

po(v) = —vbipfair + O(|v)?),

and the SW, solutions satisfy

_@pp+ birv

Zi|? =
|21l Cir

+O(lvf?), Zy=0. (5.13)

By a similar argument, we restrict (5.1) to the the subspace V., and prove the Hopf
bifurcation (supercritical, since Csp < 0) of a family of periodic orbits Z,(t) = Z, (1, v)(t)

from the trivial solution for parameters along the curve T'y defined by o = p-(v), where
tin(v) = =vbap/asp + O(|V]?).

We call these solutions, satisfying

Z =0, |2 = =2t by

+ O(|p. ), 5.14
2 Cor (| vf?) (5.14)
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the branch of SW, solutions. The SW solutions Zg, Z, are periodic solutions of (5.1)
with periods 79 = 79(u, v), 7x = 7o (jt, V) respectively, with 79 near 27/Pjw;, and 7, near

27 [ Pyws. The solutions Zy(t) and Z,(t) satisfy

JZ(t) = Zo(t) Vt€ER, (5.15)

BZ.t) = Z.(t) VteR.

To consider the stabilities of the ST solutions, and secondary bifurcations, we trans-

form coordinates near each periodic orbit. For v # 0, we rescale variables by putting
2 2
Zy = )" Puy, Zy = | ?uy, =y,
where uy,up; € C, A € R. therefore we have

i = ||y [ileJ + a A+ bisgn(v) + Cilu|* + Cglu-glg] + O(|v]?*) (5.16)

Uy = |vjug [inwg + agh + bysgn(v) + Cslus|® + C4}u1|2} + O(|v]?).

In order to study stability and bifurcation of the SWW; solutions (u; # 0,us = 0) we let

u; = re? and v, = u, and obtain

u = iPwu+ |v|u [(1.2/\ + basgn(v) + Cslul* + C47‘2] + O(v|%), (5.17)
ro= |y [a.m/\ + sgn()bip + Crpr® + Cglgl'u,IQJ + O(Jv]?),

0 = Puw +|v] [a.[,/\ + sgn(v)by; + Cypr? + C21|ul2] + O(|v]?).

Since 8 # 0 for all sufficiently small |v], we can parameterize the flow away from r = 0
by 6, obtaining
dufdd = iNu+ |vU(u,rA)+ |1/|2L?(11,, 0, ), (5.18)

dr/de = ,I/,R(UJ',/\)+Il/|27é(’ll,7',9,/\,l/),
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where A = Pywy/Pw,, L?(u,r,ﬁ,/\,u) and 7?,(11,7‘,9, A,v) are periodic in 6 with period

27, and

Uu,r,A) = (u/Pwy) [Mag — 1Aair) + sgn(v)(by — iAbyy)
+(C4 et iAC11)7’2 + (C5 - iACg/)l?Ll.z] y

R(u,r,A) = (r/Piw)[aiph + sgn()bip + Crar? + Caplul?].
The SW} solution (5.13) now corresponds to the branch of 27-periodic solutions
U=usw,(0,\,v) =0, r= Tsig (0, A v) = ro(A) + O(v),

of the rescaled, reparameterized nonautonomous system (5.18), where

2 all?,/\ + S‘(jn(l/)b] R
15(/\) = - CJR .

Now we define a moving coordinate systeni by
u=v, r=rgay{d,\v)+z,
where v € C,2 € R. Then (5.18) becomes

dv/dd = iAv+ |v|V(v.5,, A) + |1/|21>(-v, v,2,0,\,v), (5.19)

defdf = |v|X(v,0.2,)\) + ll/l'zé\?(u,'ﬁ,;r,(), A v),
where
V(v,9,2,0) = (v/Pw;) {Aas — Aarr) + sgn(v)(by — iAby )
+mcrqaanmumqwaquq”ﬁ@yucqu@ﬁmﬂ

+ O(lx*J]),

X, 0,2,0) = (1/Pwon)2C g (A + Conro(N)[o2] + O(|af? + Jal[o]?),
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and f/(v, v,2,0,\,v), ./f'(v, 7,x,0, A, v) are both periodic in 8 with period 27. (Note that
v satisfies the complex conjugate of the equation for v.) By Floquet theory, there is a

27-periodic coordinate transformation, linear in the spatial variables, of the form
(v,0,2)" = [I +vPB,\ ))(w,ad,y)", weC,yeR, (5.20)

which removes the §-dependence of the lincar terms in w, @, y to all orders in |v|. Equa-

tions (5.19) are then replaced by

dw/d) = iAw+ [V W(w,@,y,\v) + VW (w,d,y,0, A v), (5.21)

dy/df = ll/ly(w,'u‘.r,y,/\,l/)—i—]1/|23~1('w,'u'z,y’é‘,/\,u)7
where

W(w,w,y, A, v) = V(w,©,y, )+ O(|v||w, y|),
Y(w,@,y,A,v) = X(w,w,y,\)+ O(|v||w,,yl),

W(w,@,9,0,6,v) = Oyl +yllw] +[ul?),

Y(w,w,y,0,0,v) = ()(|y|'2 + [yl|w| + |w]2),

and W, are both periodic in @ with period 27, and @ satisfies the complex conjugate
of the equation for w.
The trivial solution w = 0,y = 0 of (5.21) now corresponds to the SW, solutions of

(5.1). The linearization about w = 0,w = 0,y = 0, is given by the matrix

[ Qo)) O(W?) 0 7
A= O(v)r) ol ) 0 , (5.22)
QII/IC”gI'g(/\) 9
L 0 0 T+O(IV| ) |

where Qo(1, A) = iA + V|0 (A) + O(Jv]?), and

QQ(/\) = (1/P1w1) [/\((LQ ad iA(l,”) + 8_(]7?(V)(b-2 - lAb][) + (C4 - IACU)IS(/\)] .
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Due to the Floquet change of coordinates (5.20), the entries of the matrix A are indepen-
dent of 8. Moreover, its zero entries are due to the reflection symmetry. The eigenvalues
of A are Floquet exponents for the ST, solution. Since the entries of the Jacobian ma-
trix A are analytic in v and its eigenvalues are simple for small |v], by [23] the Floquet

exponents of SW, solutions depend analytically in v, for small |v| and have the form
27.(};70()‘71/)’ QWEO(/\7V)3 271-;)70()\a1/)7

where

oA ) = Qo N) + O], (5.23)
N 2|v|CyprE (A .
’)/O(A,l/) = _llflTlm._) + O(‘I/IQ)’

1]

A > —sgn(v)bir/aip.
Similarly, Floquet exponents for the SW, solutions have the form

27R. (N, V), 2mR.(\ V) 2m7.(\, ),

where
Re(Av) = A1+ [W]Q. () + O(|v]2), (5.24)
2|w|Cs pr2 (A .
3O = G 4 o)
2u2
Q.(A) = (1/Pww) [Mar — iday) + sgn(v) (b — idbys) + (C2 — idCs1)r2(M)]
2(\) = _a'2R/\+3977'(V)b2R’
Csr

A > —S_(j'I?r(l/)bQR/(IQR.

If v is fixed so that

aspbip — ajpbap
aipdan

) v+ 0(?) >0,
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which corresponds to v < 0, then the SWj solutions bifurcate before the SW, solutions
as p increases. Near the bifurcation of the SW; solutions, ro(A) is small and therefore,
R(Ro(A,v) < 0 for small |v|, and all three nontrivial Floquet exponents of the SW,
solutions have negative real parts, implying that the solutions are stable. Near the
bifurcation of the ST, solutions where r,()) is small, we have R(%,(v) > 0 for small v,
implying that the SW, solutions are unstable. On the other hand, if v > 0, the roles of
the SW, and SW, solutions are interchanged. We summarize the results of this section

in the following lemma:

Lemma 5.1 Assume a;p, i = 1,2, and Cip,Csp in (5.1) are not equal to zero. Then
there are primary Hopf bifurcations of symmetric periodic solutions of (5.1) from the

trivial solution, for parameter values (p,v) belonging to the curves
Ty opo= po(v) = —vbip/aip+ O(v]?), (5.25)

r,: = /_l.ﬂ.(l/) = —I/bglg/(lQR + O(ll/[z),

near the origin in R%. We denote the periodic solutions in the two branches by SWy
and SW;, respectively. If a;p > 0, 1 = 1,2, Cip <0 and Csr < 0 (in our application
these conditions are satisfied) then for fived sufficiently small v, both solutions bifurcate
supercritically as ju increases and the solutions that bifurcate at the lower value of p are

stable, while the other solutions are unstable.

5.3 Bifurcation of invariant tori

In this section, we show that for parameter values (1, ) belonging to one of two curves
A; or Ay, one of the SW solutions for (5.1) has pure imaginary Floquet exponents.
We then prove that parameter values along these curves correspond to secondary torus
bifurcations from one of the STV solutions, which implies the existence of invariant tori

for (5.10), for (p,v) near A} or A,.
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We first consider secondary bifurcations from the SWj solutions. We write
Ro(A V) = iA + |v|Ro(A, v),

and notice that R[~g(sgn(v)A;,0)] = 0, where A} is given by (5.7). The implicit function
theorem now implies the existence of a unique smooth curve

A A=), sgn(v) = sgn(A\j + big/air), (5.26)

such that R[&e(A;(v),v)] = 0, with Xi(v) = sgn(v)A; + O(|v]), v sufficiently close to
0 . Thus for parameters A, v along A, the SWy solutions have conjugate pairs of pure
imaginary Floquet exponents. In terms of original parameters of (5.1), A corresponds

to the smooth curve
Ay =) = [uAgv) = vdXs+ O(v?), sgn(v) = sgn(Xy+ big/ar),  (5.27)

such that R[ko(pg(v),v)] =0

Similarly, for the STW, solutions we write
Fe(Av) = iAT 4 |]in (A, ),

and note that R{<,(sgn(v)A%,0)] = 0, where A% is given by (5.8}, and the implicit function

theorem implies the existence of a unique smooth curve
Ao: A= Xv), sgn(v) = sgn(Ns + bag/asg), (5.28)

such that R[i(Ax(v),v)] = 0, with AZ(v) = sgn(v) A= + O(|v|). In terms of the parame-

ters of (5.1), As corresponds to the smooth curve
Aa: p=ji(v) = VAsw) = vAs + O([V), sgn(v) = sgn(\s + bopfasr),  (5.29)

such that R[r,(p:(v),v)] = 0. We summarize the above arguments in the following

lemma:
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Lemma 5.2 There exist smooth curves Ay, Ay in the (i, v) parameter plane, along which

the SWy and SW, solutions of (5.1) have conjugate pairs of pure tmaginary Floquet

ezponents.

To consider the behavior of the system near the SWj solutions for parameter values

near A; we let

A=Ay (v) + 6, sgn(v) = sgn(A; + bir/air)

in (5.21) to obtain

dw

de

dy

db

where

K(d,v)
a(0,v)
da[/96(0,0)
£(0,0)
7(0,0)
o
Qo
W(w,w,y,d)
Y(w.@.y,0)
W(w, w.y, 8,9, v)

Y(w,w,y,8,6,v)

= k(o v)w + [V|W(w,w,y,d) + II/IQW(w, w,y,6,0,v),

= |8, v)y + W|V(w, @, y,8) + [v]PY(w,@,y,8,6,v),

|vla(6,v) + i[A + |v|B(d, v)],

0,
Cirazgp — Capaip
CipPrwn

(1/Piwn) [Qo + Ajlazs — Aayy)],
2C, p(r5)?

Puw,
ro(Ag),
—(bar — Abyy) + (Car — AC) ()%,

P o2

(7 )i 55
+ O(Jyl2w + |8]]2e)® + 8| yl]w]),
Coprglw)?

Py
O(ly* + lyllw| + Jef?),

[Cs — iACy],

+ O(lyl* + lyllwl + []Jwl*),

O(lyl* + lyllw] + Jwl?),

(5.30)

(5.31)
(5.32)
(5.33)
(5.34)
(5.35)
(5.36)
(5.37)
(5.38)
(5.39)
(5.40)
(5.41)

(5.42)
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and W, Y are hoth periodic in € with period 27.
Since «(0,v) = 0 and v(0,v) < 0 for |v| sufficiently small, we can we apply an
invariant manifold theorem for periodically forced systems [18, Theorem VII.2.1] to obtain

an attracting center manifold, which can be represented as a smooth function
y = h(w,w,0,6,v),

defined in a neighborhood of w = 0, = 0, with

oh

ah )= o
Y

on
h(0,0,6,0,1) = 0, ——(0,0,0,0,v) = —=(0,0,6,0,v
Jw o

(0,0,6,0,v) =0,
for all § € S' and all sufficiently small |v]. To find h, we use the fact that the center

manifold is invariant, which implies that i = h(w, @, 8,4, v) satisfies

h .
—g—ul—’ {]I/fhf(d. v)w + [uW(w, @, h, ) + [v[*W(w,w, h, 8,4, 1/)}

+ gg {II/IR‘((S, V)W + |[v|W(w, @, h, 8) + ll/lQW(w, w, h, 0,4, 1/)}
)

= |v|v (6, v)h + Y| Y(w, @, b, 8) + |v|>Y(w, @, R, 8,8, v), (5.43)
Substituting the Taylor series expansion
y = h(w,w,0,8,v) = ar (8, v)w* + apa(0.v)|w]? + @13(80,v)w? + O(Jw]® + |8]|w])

into (5.43), we identify the coefficients of w?, w? and |w|? in both sides of equation (5.43)

and obtain
an(0,v) = O(lv|), a3 =O0(|v|), a12(8,v) = —Csor/(2C gry) + O(|v|), (5.44)

We then obtain the following periodically forced equation in the complex plane which

represents the flow restricted to the (attracting) invariant center manifold:

dw

i K(6, v)w + W) (w, @, 6) + ]ulzwl(w, w0,6,6,v), (5.45)
d
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where

Con
Cin

2
Wi(w,@,8) = U [C5 — iACaT] —

P,

W (w,w,0,8,v) = O(Iu;l?),

(Ca = 1G]] +O(luf + |olfu’)

and W, is periodic in 8 with period 27. We write (5.45) in polar coordinates w = pe'?,
and then apply the theory of normal forms for periodically forced systems [1, section 26]:
if q|v|B(0,v) is not an integer for ¢ = 1,2,3,4 or 5 (this is satisfied for all sufficiently

small |v]) then we may change coordinates to put (5.45) into the normal form

) R 4 N
% = |vlay(v)ép + v A1 ()P + V| A(p, ¥, 6.6, v), (5.46)
d . ; = .
L= A+ IR + )6 + B + 1Bl 0.6,1)
where
_ da _ Cirazp — Cipaip
a(v) = 55 (0,v) = CoPo
ap
60(’/) = ﬂ(ovlj)’ /31(’/) = —ég(o”/)»
_ CsrCir— CopCap
_ CipCs — CopCyp Powy(CirCo — CorCyy)
Bilv) = Cir P Cig + Ol

Alp,v,6,v) = O(°+8lp* +16°p),
Blp.$,6,v) = O(p" +3]p° + |6),
and A, B are periodic in both @ and 1, with periods 27. In our application a;(v) < 0 and

A1(v) > 0 for all sufficiently small v. We now state and prove a result on the existence

of bifurcating tori for parameter values near the curve A;.

Lemma 5.3 Suppose A,B in (5.46) are C' functions with A,(v) # 0 and ay(v) # 0.

Then there exist vy > 0, 09 > 0 such that for all

0<|v| <wvy, sgn(v) =sgn(A;+ bir/aig)
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and all
0 < [6] < b, sgn(d) = —sgn(a1(0)/A,(0)),

the system (5.406) possesses a C' invariant torus p = p*(¥,6,8,v). Moreover, the torus

is attracting for (5.46) if a1(0).A1(0) > 0 and is of saddle type if a;(0).A41(0) < 0.

Proof: The proof of existence of p* follows from [5, Lemma 12.6.1], all the conditions of
the lemma being obviously satisfied for sufficiently small |v| and |4]. Now we follow [5,
Lemma 12.5.2], adopting its notation, to find an estimate on 8. Since (5.46) is not in a

form that we can directly apply this lemma, we first use the standard rescaling

ay(v)d 12
_ [« 1/2 »
_ ( Al(y)) (1+16]27) . (5.47)
Then (5.46) becomes
po= —201(0)|W]6p + P2 W|R (v, 6, p, v, b), (5.48)

v o= A+ |v|Bo(v) + 0v| T (v, 8, p, v, 6),
0 = 1,
where R, ¥ are periodic in ¢ and  with period 27 and are bounded, together with their

derivatives, as |4| = 0 and || = 0. We note that ¥ has the form

Bi(v)a(v)

V(6. 5.0,0) = |51(v) = =TT 4 O3],
Now we let
b=(w.0)" A=@9,
and write (5.48) in the form
= ANp+R(6,p,)), (5.49)

o

0 = wA)+00.5N),
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where A(\) = 2va;(v)é and

0

w(;\) _ ( A+ IZ'BU(V)

olv|¥ ’703 A, a5
), e(w,e,p“,u,a):( A0, 5, )).

Although {5, Lemma 12.5.2] does not actually apply to (5.49), mainly due to the
dependence of 4(5\) on A, we can use the same proof with minor changes. We are
interested in integral manifolds in the form p = f (é, ;\), with f being periodic in each

component of 6. Following [5], for each integer p > 1 we put
F,={feC(R*R): f(8) is 2m-periodic in each components of é},
With the CP-topology, F), is a Banach space. For any f € F),, we now consider

po= ANG+Q@6,\ f), (5.50)

0 = w(\)+P@,\ f).

where

Q, ), f) = R(8, £(6),)), and P(8,A, f) = 0O(0, f(§),}).

For a fixed cﬁ € R?, let é*(t, é, ;\, f) denote the solution of
§ =w(X) + PO, f)

with initial condition 6%(0, ¢, A, f) = ¢. Now assuming that A(N) > 0, we define

K(u, ) = 0 for v < 0,

= —e M for w >0,
and form the mapping

Tﬂjxaz—LiKmMQWw@ijXnm. (5.51)
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We note that
[K(u,\)] < emeW vy eR,

where

a(v) = 2a;(v)vd] = O(v|}d]),

and

_aa%(é,f\,f) = O(W||51*%) - (18] + | f]1)-

y(&, f) = sup
0
Thus, if we choose a bounded neighborhood V' of 0 in F} and choose |v|, |6] sufficiently
small so that 7(;\, f) < a(:\), then by proof of of [5, Lemma 12.5.2] we have
T(A,):V = Fy.
In particular we may take
V={fekF :|flI <1}

Also by of [5, Lemma 12.5.2], (5.48) has an integral manifold of the form p = f(@, A) if
and only if T has a fixed point in F|. We prove the existence of such a fixed point, by

proving that T is a contraction mapping. By the mean value theorem we have
IT(A, ) (@) = T(A, ))()] < sup |D;TA )@ = Tlh,

where the supremum is taken over all gb e R?, feF,|fli <1 But

9Q(0(w), X, f) . 9Q(6*(w), A\, f) 06*(u)
[ of * Y Tor |

DTG, @) = [ K(w.d)

oo

where 67 (u) = 6*(u,é, A, f). In our problem

9QO(w), N f) 3 QO (W) N f) e
a7 = O, 5 = Or)
and

< CeIAN where AN, f) = O(|v||6]*/%),

00™(u)
of
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and therefore

DT, £)(E) < o 2R [~ ete =30 ey,
for some real constant I{. Since a(A) = O(|v||8]), we have |D;(T(\, f)(¢)| = O(|8]1/2)
uniformly for all ¢ € R?, f € F) with |/l < 1. Similarly, |D¢(T()\,f)(¢)] = 0(|6]'/?),

hence there is a positive constant C such that

for all sufficiently small |17 and |5, and for all | f],,]f]; < 1. Also we observe that

IT(A, /)(@)] = 0(6]'?), |DyT(\ £)(@)] = 0(|5]'/?),

and therefore
(A )l < Clal
for all sufficiently small || and |8]. Thus for all sufficiently small |v| and 8], T(},-) is a

contraction mapping on the closed unit ball in Fy. Q.E.D.

Remark 5.1 a. With more lengthy estimates, one can prove that T(),-) maps the unit ball
in F, into itself for p > 2 by showing that [T(:\,f)[,, = O(|8]*?) and therefore showing
that the bifurcating tori is C?. However, the region of parameter values for which CP tort
exist may shrink as p increases (see [5, p.492]).

b: In the above proof, based on our numerical results in §4.3, we have assumed that
A(;\) > 0. However the proof easily can be modified if A(\) < 0. In that case we simply

redefine K(u, ;\) in the obvious way, and the rest of the proof will be the same.

We observe that vg,dp in Lemma 5.3 can be chosen independently of each other.
0»
In terms of the system (5.1), this implies that the bifurcating invariant tori exist for
) g
parameters (u,v) in a thin wedge-shaped region of width O(|v]) adjacent to the curve
Ai1. In a similar manner, we can show that invariant tori will bifurcate from the SW,
1 T

solutions along the curve A,. See Figure 5.2.
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Figure 5.2: Parameter values (shaded regions) for which bifurcating invariant tori exist

for (5.1), when CirCsr — CorCar < 0.
5.4 Persistence of invariant tori

In this section we prove the existence of invariant tori, when the higher-order terms are
restored in the full system (5.2) or (5.1), for parameters (z, v) in the wedge-shaped region
bounded by the curves A; and Ag, but sufficiently far from the boundaries. Combining
this with the results of the previous section, on the bifurcation of tori along the curves
Ay and Ag, we thus prove the existence of invariant tori for parameters (g, v) throughout
the interior of the wedge bounded by the above curves.

It is convenient to use the parameters ptip = a;ppt+bipy, ¢ = 1,2 introduced in (5.6).

In terms of these parameters, the curves Ay, Ay (see Figure 5.3) become

AT tpar = pgQur) = Criur + O(url?),

Ay ipor = 1CGur) = r/B+ O(rl?),
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H2r ¢ %

A*

HiRr

Figure 5.3: Curves in the (up, tos) parameter plane corresponding to A; and As.

where p1p > 0 and

Car Con
C=— DB= )
Cin Csr

Based on our numerical results of Chapter 4, we assume that CirCsp — CopCyr < 0,

and thus 0 < 1/B < C. We introduce the scaling
MR =€ joap==€\ r;=¢/%r i=12.
for € > 0, then after dropping the hats, (5.2) becomes

to= ey (14 Cupr} + Comrd) + O(eY), (5.52)

fa = ery (At Cunr? + Cspr3) + O(e),

arr(ba = big\) | by(asp — ajp))

6,

P, +¢€ [ + C”?"lz + Cg,?‘g} + O(€?),

ajpbap — aspb1RR aspbyp — aypbap

azr(bap — by pA\) bar{aar — ajp))

éQ = PQUJQ + € [ -+ C4[7‘.12 + C5]7'§J + 0(62).

aypbap — axpbl R aspbyp — aypbap
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Now we use the coordinate transformation defined by
r = l'r(/\) + 61/2/)11 T2 = ;(/\) + 6]/-/) 2

where

1 - B\ \/ Csr — ACap

" (/\) = CIR BC — 1) - CorCar — ClRC5R’

() = -C \/ ACir = Can
2 Csrl BC 1) CopCap — CirCsi

and A satisfies

Csp — ACap, ACip—Cap > 0.

Note that this is equivalent to 1/B < A < C. We then find that p = (py, pa), 6 = (61,69)

satisfy an equation of the form

p = eEMNp+PF(0,p, A ¢), (5.53)

0 = whe)+e7201(p, A €) + 20,0, p, N, €),

where

oy = | 2CmETON 2Ceri(A) st’ 5,50
| 2Cary(A)r3(N) 2C'512(7’-3()\))2

wih€) = (5.55)

Piwy + O(e)
Pows + O(e) ’

and F, 0O, are 27-periodic in both components of 6. Furthermore, for all sufficiently small
o> 0,6 > 0 and for fixed ¢, 0 < ¢ < 1/2, the functions F, @ and ©, are continuously

differentiable on

(01,62.p1,p2, N €) € R? x Q(0,¢),
where

Q(o,€0) = {(p1,p2. M. €) {(p1,pa)f <o, 1/B+e" <A< C—¢€, 0<e<e}.
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Now we use a linear coordinate transformation of the form p = S(A)p, where S(A) is a

nonsingular 2 x 2 matrix, that diagonalizes E()), and we get

AN)p+ R0, 5, ), (5.56)

Y
I

~ ~ ~

0 = w(d)+0(6,ph),

where A = (), €),

and

0(0,5,8) = €201(S(M)p, A €) + €20,(S(A)p, A, e).

We observe that (5.56) has the same form as (5.49) (the dimension of j is different), and
we can use the same method used in Lemma 5.3 to prove the existence of invariant tori.

We construct the 2 X 2 matrix

K@) = diagle™* ™" 0) for u <0

= diag(0,e”*N")  for u >0,
then form the mapping
T (@) = / K (u, \)Q(6™ (w. ¢, A, f), A, f)du. (5.57)

. ) : .
for f € F1,¢ € R*, where Q and 6* have the same meaning as in the proof of Lemma

5.3. In the present case, we have

%g(é,&,ﬂl = O(*?) - (' + | f]1),

7(A ) =sup
i
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where P has the same meaning as in the proof of Lemma 5.3. To obtain useful estimates
for T we estimate the eigenvalues of aj()), as(A) of E()). Near a boundary of the wedge,
one of the eigenvalues approaches zero, so first we put A = C — €%, and after some

simplification get

ar(A) = €/2+0(|¢*),

o
N
—_
po
N

Il

—2 4+ O(l¢[*), (5.58)

If we let A = 1/B+¢€7, we get the similar result, and thus for all A\, C+¢? < A < 1/B—¢9,

there are positive constants 3, k such that
K, )] < B~y € (—o0,00),

for all sufficiently small €. Since 0 < ¢ < 1/2, we choose a bounded neighborhood V' of 0

in Fy and choose [A|, |¢] sufficiently small so that

~

v(A, f) < ke,
then by proof of Lemma 12.5.2 of [5] we again have
T\, ) : V = F,

We prove the existence of invariant tori, by proving that T is a contraction mapping on
the close unit ball in F}. In a way similar to how we obtained the analogous estimates

in the proof of Lemma 5.3, we obtain
|DA(T N, f)li = O3, |[T(A, f)];,= O(%79)

for all f € Fy with |f|; <1, and for all A with C' + €7 < A < 1/B — €. Thus for all

sufficiently small €, T is a contraction mapping on the closed unit ball in F}, and we have
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Figure 5.4: Parameter values (shaded region) for which normally hyperbolic invariant
tori exist for (5.1), with C1zCsr — CopCyr < 0.

Lemma 5.4 For any fized q, 0 < ¢ < 1/2, system (5.4) possesses C! invariant tori for
I/B+e<A<C—¢, 0<qg<l1/2,

for all € sufficiently small. The tori are normally hyperbolic, and have the same stability

type as the invariant tort T'9 of the truncated system (5.3).

In terms of the parameters of (5.1), Lemma 5.4 implies that the invariant tori for (5.1)
exist in a region bounded by curves that are tangent to A; and A, at the origin (see
Figure 5.4).

Since Lemma 5.3 already implies that tori exist in thin wedge-shaped regions of width
O(Jv|) adjacent to A; and Ay (see Figure 5.2), the parameter regions corresponding to

the two lemmas overlap in a neighborhood of the origin:

Theorem 5.1 System (5.1) possesses invariant tori (denoted Ty ) for the parameter val-
ues (p,v) throughout the interior of the wedge of the parameter plane bounded by the
curves Ay and Ay, and the tori have the same stability type as the invariant tori T of

the truncated system (5.3).
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We summarize the results of this chapter in Figure 5.5, showing the schematic bifur-
cation set for (5.1). Corresponding to one-parameter paths with fixed v and increasing
i, are diagrams shown in Figure 5.6. We note for p sufficiently large there exists the
phenomenon of bistability: both SW, and SW, solutions are asymptotically stable, and
the behavior of a typical solution (transient) as ¢t — oo is determined by its initial condi-
tion. The boundary between the basins of attraction for the two SW solutions contains
the invariant torus 7} and its stable manifold.

We briefly mention some implications of the result of this chapter for the original
magnetoconvection problem. For a fixed o0,(,Q and odd integer m, for L < L, and
sufficiently close to L,, (v < 0 and sufficiently close to 0: see Figure 5.6(a)), as we
increase the Rayleigh number R through R,,(L), stable standing wave solutions SW,
(corresponding to odd mode solutions) bifurcate from the motionless solution and an odd
number of time-periodic rolls will be observed in the fluid. As we increase the Rayleigh
number further through R,,41(L), a branch of unstable ST, solutions (corresponding to
even mode solutions) will bifurcate from the motionless solution. Increasing the Rayleigh
numbers still further, the competition between odd and even modes produces a branch of
invariant tori 77 (typically corresponding to quasiperiodic or weakly resonant solutions)
which bifurcate from the branch of even mode SW, standing wave solutions, and coexists
with the branches of stable SWy and SW, solutions. For L = L,, (v = 0) and L >

L., (v > 0), we have similar interpretations of the bifurcation structure. See Figure 5.7.
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AQ A]

Stable SW,, SW,,

Stable SW, solutiond, Unstable T

: Stable ST, solutions
Unstable SW, solutions solutions

Unstable SW), solutions

l
s Stable S1¥,

solutions

Figure 5.5: Schematic bifurcation set for (5.1), with C1zCsi — C2pCir < 0. (Compare
with Figure 5.1(D)).
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Figure 5.6: Bifurcation diagrams for (5.1), for fixed v and increasing p: (a) v < 0;
(b)v=20; (¢c)v>0.
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Figure 5.7: (a) Typical region (inside shaded circle) in (R, L) parameter plane for which
results of this chapter apply to the magnetoconvection equations; (b) Magnification of
the region in (a), showing parameter values (darker shaded region) corresponding to
invariant tori and bistability of standing wave solutions.



Chapter 6

Secondary Bogdanov-Takens bifurcations

The results of the previous chapter give rigorous results on the dynamics of small-
amplitude oscillatory magnetoconvection, when L is sufficiently close to L,, and R is
sufficiently close to R, so that |a;ppt + bjrv| < |Piwy — Paws|, j = 1,2. However,
as we discussed in §3.5, for small ¢, large @ and large L, the quantity |Piw; — Paws| is
extremely small, so the rigorous results can he expected to be valid only for a small range
of parameter values. To get a more complete picture of the dynamics of our problem for
a wider range of parameters values in the Case II limit, in this chapter we will analyze

the alternate normal form (3.79), which we rewrite here as:

Zy = Zi[iPw + a4 b+ CZy 2+ Co| Zo)?) + C3 2122 + hooot. (6.1)

ZQ = ZQ[inw-z + agpt + bov + C4|le2 + C5IZ?_I2] + C(;ZQZIZ + h.O.t.,

where h.o.t. are O(|u, V|| Z] + |1, v||Z]? +|Z)®) and ay,b;, as,bs,Cy, ..., Cs are the same
complex numbers as in (3.73).

In §6.1 we consider some coordinate transformations of (3.79) which make the analysis
of the normal form easier. Then in §6.2 we consider a three dimensional reduced system
obtained from the third order truncation of the normal form (6.1) and find bifurcation
parameters p, v for which the linearized vector field about its nontrivial fixed points have

double zero eigenvalues. These nontrivial fixed points for the reduced system correspond

109
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to the periodic orbits SWy and SW; of the full system. In §6.3 we consider the Bogdanov-
Takens singularities which correspond to the double zero eigenvalue, and their unfoldings
for the reduced system. In this way we predict the existence of secondary and tertiary
pitchfork, Hopf and global bifurcations from the S solutions. In §6.4 we consider the
reduced system as a small perturbation of a similar reduced system coming from a Hopf

bifurcation with D, symmetry that was considered before by Swift [41].

6.1 Preliminary coordinate transformations

To study the bifurcation of solutions in (6.1) we would like to decouple the average phase
from the radial direction. The most straightforward way to accomplish this (up to finite
order) is to write the complex amplitudes in terms of polar coordinates Z, = r1e®t, Z, =
roe'2 as we did in Chapter 5. Then the average phase (6; + 6,)/2 does not appear in the
equations for 71,75, or (91 - 62) up to cubic order. But coupling of the phase difference
(61 — 63) with r; and 75 in the system makes calculations somewhat awkward. We will
instead use a different coordinate transformation which is easier to work with. Like
the polar coordinates, the phase angle of the S! symmetry in the normal form will be
decoupled from the other variables up to finite order in this coordinate system.

We use the coordinate transformation [41]

_ . . : 72— 72
U+iV =222y, W=|2Z"=| 2], ¥ = 54—

= o (6.2)

Although this coordinate transformation is singular at origin, we will use it away from

the origin. System (6.1) in this new coordinate system becomes:

U = Ulappt+bry +1(Bag + Bsp + Bor)/2] = V& + arp + by (6.3)
—Vr[Bir — Bar — By]/2 = VWD + Bay + Ber]/2

+ UW([Bag — Bsp — B3p]/2 + U(U,V, W, ¥, 1, v),
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V= Ul@+au+bw+r(Bi — By + B3y)/2) + Viagp + bpy)
+Vr(Bag + Bsir — Bor)/2 + UW[By; + Bay — Bgj)/2
+ VWI[B4p = Bsp + B3gl/2 + V(U,V,W, ¥, u,v),

W = Wilagu+brv +r(Cig+ Csr)] + rlagu + brv) + UV Bg;
+U*(B1g — Bar + B3r) /2 + V*(Bir — Bar — Ban)/2
+W2(Cir = Csp) + WU, V,W, ¥, i, v),

\il = P+ Puw + 0(71),

where r = VU2 + V2 4+ W2, and
UV W =003+ v |r? + | pv P
are 2m-periodic in ¥, and

B = C-Cy DBy=C;—-0C, D3y=0C3—Cg,
B4 = C1 + 04, B5 = Cr) + CQ, B(; = C3 -+ C(,‘,
@ = ay — dayg, i) = bl - 1)2, w= lel - Pgwg,

a = aj+as, [)Zbl—}-bg.

Due to the symmetry (3.55) of system (3.79), (6.3) is equivariant under (U, V, W, ¥) —
(=U, -V, W, ¥), therefore

U(-U, VW W ) = =UWU VW, P, 1), (6.4)
V(-U,-V.W O uv) = =VUV, WU 1),

W(=U, -V, W, T, .v) = WUV, W, ¥, pu,v),

and this implies that the set U = 17 = 0 is an invariant subset for (6.3). This invariant

subset corresponds to the invariant subspaces V4 (if V7 > 0) and V; (if W < 0 ) in
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the (Z, Z,) coordinates. We can find some information on the dynamics of (6.3) by

restricting to invariant subset U = V = 0. Then

I/V = "V[('LR,U + 631/ + “Vl(ClR + C5R)] + lI/Vl[fLRAt -+ 1;1,31/] (65)
+ W?(Cip = Csg) + W(0,0,W, &),

U = P + Pws + O(W)).

Since ¥ > 0 for |W/| sufficiently small, we can reparametrize (6.5) by ¥ and obtain

aw

i [Piw; + Pows]™? {I’V[('l'n#' + bpr + W(Cig ~ Csr) + [W(Cir + CsR))

+ [Wlagp + brv]} + Wi (W, 9), (6.6)
where W (W, ¥, u,v) is periodic in ¥ with period 27 and is O(|W[ + |u, v||W]? +
|, v]2|W]). Now the Hopf bifurcation theorem implies that (6.6) will have two different

periodic orbits

Wo(,p,v) = Wolp,v) + Ol v)?), (6.7)
We (¥, ,v) = Welpv) + O, v|?), (6.8)
where

iptt + 0
Wolu,v) = —SBEEDRY b > 0, (6.9)

Cir

912t + b:
I’V,r(ﬂ.,l/) = w, aapjt + bapr > 0.

Csn
Solutions ﬁfo(\P, 1, v) and ﬁ/,r(\Il,//., v) are the periodic orbits SWy and SW, of Chapter
5, which bifurcate from the trivial solution along the curves
Dyipe = —~(bipfayg)y + O(v]?). (6.10)

Ly:p = —(bag/aar)v + O(|1/|2),

respectively.
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To study secondary bifurcations from the SW, solutions we use a moving coordinate

transformation

U=U, V=V, W=W=Wy(¥,uv).

After dropping the hats, (6.3) becomes

U = Ulazrit + bagy + (Can + Cor)Wo] — V{0 + arp + byv] (6.11)
— VW,[By; + Cs;) = VWI[By; + Coi] + UW|[Byg + Cor) + AU, V, W, ¥, u, )

V = U+ arp+bw+ Wo(Bis — Cor)] + Viaars + bagy + Wo(Cag — Csr)]
+UW|[By; — Co1] + VW ([Bar — Csr] + V(U,V, W, ¥, i, v)

W = —2Wlapp+ big] + UV|[Bg] + U*(Big — Bag + Bsg)/2
+V2(Big = Bar — Bagr) /2 + 2W2Cip + WU, V, W, ¥, 1, v),

v = Piwy + Powy + O(r),

where the higher-order terms Uuv,w satisfy the symmetry condition (6.2), and are 27-

periodic in V.

6.2 The reduced system

If the higher-order terms in (6.11) are ignored then the first three cquations decouple
from the fourth equation, although in general ¥ will appear in the periodic coefficients
of higher-order terms. As an approximation we consider the following reduced system,

obtained from a truncation of (6.11) that ignores the higher-order terms i,V and W:

U = Ulasppt +bagy + (Cag + Cop)Wo] = Vo + aype + byv] (6.12)
— VWo By + Ce1] = VWI[B1 + Cs1] + UW[Bar + Csr,

V= Ulw+ap+bw+WolBi — Cor)] + Viaarst + bagy + Wo(Cap — Csr))
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+UW (B, — Cs1] + VW|[Byg — Csi),
W= —2Waypgpt + by pv] + UV [Bg/] + U?(Big — Bap + B3g)/2

+V*(Bigr — Bar — B3g)/2 + 2W2C)p.
The origin in (6.12) now corresponds to the ST} solution.
Remark 6.1 By using a similar moving coordinate transformation
U=U, V=V, W=W W (¥, puv),

we could consider the dynamics of (6.3) near the SW, solution. Due to the symmetry
(6.4) of (6.11), the analysis about the SW, solution is quite similar to that about the

SWy solution, therefore we only present our analysis of (6.12).

The eigenvalues of the linecarization of vector field to (6.12) about the origin (i.e.,

about the SWj solution) are

Trox(p,v) £ \/T'rg,,r(;l., v) —4Dety  (p,v).

/\?,‘2(/'1'31/) = 2 ’ (613)
A(,v) = =2(aipu+bigy) <0,
where
Trox(pt,v) = 2[aspp + bagy + WyCap), (6.14)
Detop(it,v) = —|Col2W2 + [apst + bpw + B W] (6.15)

2
s

+ [J) + (AI[/IV + l;ll/ + B”I"Vg]

and ajpit+ by pr > 0. We notice that one of the eigenvalues of the linearized vector field,

which corresponds to the TV direction, is always negative .
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Remark 6.2 By considering the truncation of (6.3) about the SW, solutions we find the

corresponding expressions for eigenvalucs

Treo(t,v) & \/Tr2o(1 2) — 4Detrg(ss,)

Naly) = . , (6.16)
A3(p,v) = —2(azpp + bapv) <0,
where
Trro(p,v) = 2[aipp+bigy — WiCapl, (6.17)
Detro(p,v) = —|CaPW2 + [anp + bpy + BapW, ]’ (6.18)
+ [+ e+ b+ By Wil

and asppt + bagy > 0.

We expect pitchfork bifurcations of fixed points of the three-dimensional system (6.12)

along one-parameter paths transversal to the curve
[5: Dety(p,v) = 0. (6.19)

Such bifurcations correspond to secondary pitchfork bifurcations of periodic solutions
from the periodic SW, solutions in the four-dimensional normal form. Along one-

parameter paths transversal to

Lq:Trox(p,v) =0, Detg,(pt.v) >0, (6.20)

we expect Hopf bifurcations of periodic orbits of (6.12) from the origin. These correspond
to secondary bifurcations of invariant tori from the SWj solutions.

To find multiple bifurcation points where I'y and Iy intersect, we look at the sign
of Dety, when Trg, = 0. The line y¢ = vAj, where Aj satisfies (5.7), corresponds to
Tro, = 0. If we put Wy = ||, we have

) birasp — aipbap
Cirasp — Cipap

Wy = —sgn(v . sgn(v) = sgn(A; + big/arr). (6.21)
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Remark 6.3 Based on our numerical results in Chapter 4, in our application sgn(v) =
sgn(Ay+bip/air) = 1 when m is odd. To simplify our notation, we continue our analysis

assuming that sgn(v) = 1; however if sgn(v) = —1 we can treat the problem similarly.

Therefore for sgn(v) = 1 we have

birtap — a1pbap
Wo=-5—"— 6.22
Ciraap — C4R(l,”2’ ( )

and then
Detor(pg(v),v) = —|Co|PW5? + {& + [arXy + by + B”l/VO*]V}Q. (6.23)

Then Dety . (15(v),v) = 0 if

v=v = S0, j=1.2 (6.24)
[:}:ICGI - B”]I"V(;( - 1)1 - (L]/\a

In the above equation, and in what will follow throughout this chapter, j can be either
I or 2, with the “plus” sign in front of |Cs| corresponding to j = 1, while the “minus”
sign corresponds to j = 2. Using (6.22) and (5.7) and after some simplification we write

(6.24) in terms of normal form coefficients:

y = = W(Cirasp — ayrCyr) . (6.25)

! £(Cs|[argbar — by gazp] + (1'1/2(3(313) — 01rY(B1a) — CypS(ab)

Let us denote
1 =viAg, j=1,2, (6.26)

and note that
dDetq (115, Vi)

ov

which implies that any point of intersection of the curves Tro.(pt,v) = 0and Dety (pt,v) =

= —20TV(£|Cs]) # 0. (6.27)

0 is transversal. To find a condition on the number of solutions for v in (6.25), we consider

- 2

M o= —[am%(Blb)—bmwBﬁ)—Cm%(ai)] (6.28)
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+|Cs|*lar rbr — &Rb]R]Q»
= (aip)’ [|CG[?13%2 - [%(Bli)f] + (bir)” {|Col?a}, — [S(Bi@)]]  (6:29)
—2a1pb1 [1061'2&,{13,2 _ %(313)%(315)] (G ()]

—2C (@) [a1 zS(B,D) — b1 S (B1@)).

There will be one solution v} if and only if M > 0. On the other hand Detg . (p5(v),v) =0

will have two solutions v = Vi if
—[ICs| + Bi/JWg — by — @\ > 0, (6.30)
or equivalently, if

a1 S(B1D) — by pS(B1@) — C1pS(ab)

ayjpbp — bipapr

1Cq| < : (6.31)

Now we consider the curve Dety , = 0 in general, after substituting for Wy from (6.9)

into (6.15). We have
Detg . (pt,v) = Dpi® + Fu* + 2Epuv + Gu+ Hv + &2, (6.32)

where

= (a1p/Cir)? [IBJ * - !CGIQ] +1a]* — 2(a1r/C1R)R(B1) (6.33)

a1pbir 9 2 a7
= - B|* —|Csl* R(ab
(G 1B = (Gol’] + (@) _

—(bip/CLR)R(B1&)) — (a1r/Cir)R(B) D)),
= (bin/Cin)* [| B = |Col?] + b = 2(b1r/ C1 ) R(B1D),
G = —20[(a1r/Cig)B1r — i),

= —2(;'[(1)1[{/CIR)BII - lA)l]

The graph of Dety . = 0 is a conic section in g and v, the type of this conic section

being determined by the sign of E* — DF; it will be an hyperbola, parabola or ellipse if
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E? — DF is positive, zero or negative respectively. After some simplification we get

(B2 =~ DF)(Cin)? = |G [(,.$R|13|2+b$R|a|2—2ambm|R(aE) (6.34)

- =12

"[a'lR%(Bli)) — b1 rS(Bya) — C1r(ab)|

J

> - [amec(BlZ) by aS(BLE) — Cas(ah)]
+1Cof? [arnll = birlal]”,
or in another form
(C1R)2(E? — DF) = M + [|Col(brarr — aibin)]’. (6.35)

This implies that in the region in (u,v) plane for which there is only one positive root
v} for (6.23), the graph of Dety . = 0 will be a hyperbola.
Since we are interested in the behavior of the system for large m, let us denote € = m™!

as in Chapters 2 and 4. We recall some of our asymptotic results on the normal form

coeflicients. For fixed o, ¢ and @ (i.e., Case I) we have, as m — oo :

2.2

O = le,—PQMQ:Cw'HO(e?), (6.36)
Ci = A+B+0(e), Cs=A+B+0(e), (6.37)
Cy = A+O0(e), Cy= A4+ O(e),
C3 = C+0(e), Cs = C + Ole),
b = b+ 0(), a = O(e),

bir = €bp/2+O0(®), bip=—€br/2+ 0(e%),
By = B+ 0(e),
B, = B+0(e).

where Pj,w;, j = 1,2 and P,w are as in Chapter 2, and C; (7 = 1,...,6), 4,B,C,

ay,as, by, by are as in Chapter 4, and @, 0, @ are as in equation (6.3). Now we consider the
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e-dependence of the terms involved in Dety , and Trg .. From (6.36) we observe that the
slopes of the curves I', 'y and Ty near origin are O(e?). This implies that in Case I for a
fixed o, and @ and for sufficiently large m, Deto . (pg(v), v) cannot be zero for small p
and v. For example, for m = 107, Q = 10072%,0 = 1, and ¢ = .1, there is one intersection

point, but with the value of v >~ 9519. In fact we have
v = 0O(m), (6.38)
Deto,ﬂ- = (:4)2 + 0(63).

However, if we consider a decreasing sequence in ¢ and an increasing sequence in
as in our Case II for large aspect ratios that was discussed in Chapters 3 and 4, we will
get different results. Recall that for fixed f and Q, we put

¢ =€*, Q=e*Q, (6.39)
where 0 < k£ < 2. Under the scaling (6.39) we have checked numerically the conditions
on the number of intersection points of the curves T'ry , = 0 and Dety , = 0, for different
parameters of the original magnetoconvection problem. We found that it is possible to
have both one or two intersection points. When the graph of I'3 is an hyperbola there
is a very small region in parameter values for which there are two intersection points,
however the value of v at the second intersection point is large. For fixed ¢ and (, as
the value of Q decreases, the value of v} seems to increase without bound, but as the
value of Q increases, the values of 1} and 5 become smaller and the intersection points
appear to approach the origin. We did not find parameter values for which there are no
intersection points (see Table G.1).

We have sketched the scaled graphs of I',I, '3,y for ¢ = 1,CA = .1, and for
Q = 10072 and 30072, which correspond to cases with one or two intersection points,
respectively, in Figures 6.1 and 6.2. The directions of the axes in all the figures in this

chapter are as in Figure 6.1.
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Table 6.1: Values of v}, A, —bip/arp for o = l,é = .1,m = 107, and different values of

0.

Q vy V3 1074m2\y | 10~*m?(=byr/a1r)
10772 4.75 — .247965 .247964
0172 4814 - .2481 .2480
72 0546 - 2718 .2580
1007% | .804 x 1073 — 3.9458 1.0887
2007 417 x 1073 — 6.330 1.808
220.047937% | .3901 x 1073 - 6.733 1.945
220.047947% | .3901 x 1073 76667 6.733 1.945
30072 319 x 1073 | 407 x 1072 8.238 2.477
40072 259 x 1073 | .143 x 102 9.997 3.113
50072 241 x 1073 [.127 x 1072 11.682 3.727
100072 173 x 1073 | .551 x 10~ 19.616 6.577
10°7? 248 x 1077 | 312 x 1077 | .111 x 10% 312 x 108
10872 101 x 1077 [ .104 x 107> | .475 x 108 .100 x 10°

To consider the asymptotic behaviour of the location of the intersection points, we

put
9t br(2ARr + Bp) -
N = @40 = w2t Ba) o sy (6.40)
arBp
- br -
Wy = W+ 0(f) = =2 + 0(%),
Bp

where A\j, W are as in (5.7) and (6.21). Recall that we have shown that in Case II, we

have
2_9
b= ST 1 O) = duy + 09, (6.41)
w
For 1 < k < 2 we have
Dety(v,€) = €W {—|CPW2+ =B/ W5 + 0,1} + O+ + %),  (6.42)

and if £k = 1 we have

~ 2 7 2
Detg (v, e) = {w’ + € [—-B,1V; + bI]V}
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Figure 6.1: The curves I'},...,I'y for o = l,é = .l,Q = 10072,k = 1,m = 107, using the
scaling i = 200€%ji,v = .010. Note that vf = .000804. Dotted lines show the parts of
curves Trgr = 0, Trro = 0 for which their corresponding values for Dety . and Det,

are negative.
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Figure 6.2: The curves I'y, ...,y for ¢ = 1,{ = .1,Q = 30072,k = 1,m = 107, using the
scaling yt = 400¢%71,v = .010. Note that vf = .000319, 15 = .00407. Dashed lines show
the parts of graph Trg, = 0, Trro = 0 for which their corresponding value for Detg ,
and Det, o are negative.
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—CPW])? + O(e). (6.43)

The implicit function theorem implies that Detg (1, v, €) along the line Tro (1, v,€) =0

is zero if
v=uvile) = U;+0(e), (6.44)
where
o %o
7T (&lC] = BOWE — 0y
-B
- 4 O(e). (6.45)

~3(Bb) £ bg|C)|
6.3 Bogdanov-Takens bifurcations in the truncated system

In the previous section we showed that the linearization of vector field of (6.12) about
(U,V,W) = (0,0,0) (the SW, solutions ) has double zero eigenvalues when (u,v) =
(13, v5), i.e., where the curves I'y (Detg, = 0) and I'y (Trg, = 0) intersect. Similar
results hold for the SW, solution. The parameter values ( #5,v5) correspond to Bogdanov-

Takens singularities in (6.12). In this section we unfold the singularities, and analyze the

non-linear dynamics of (6.16) for (s, r) near (u5, ;).
We first use the coordinate transformation
X 0 1 0 U
Y = A-_)_j AIJ' 0 V s (646)
A 0 0 1 124
where
Ay = (azpp+ bapv) + Wo[Cyr — Cep), (6.47)

Do = wHapu+ 1311/ + Wo[Bu — Cé1). (6.48)



Chapter 6. Secondary Bogdanov-Takens bifurcations 124

Under this transformation (6.12) becomes

X 0 1 0 X XX, Y, W)
Y | =| —Deto, Tro, O Y |+ | Yoy wy | (6.49)
Z 0 0 —2un A ZUX, Y, W,)
where
—ALX+Y[By - C
XO(‘X’? )/7 Z) = Z { [ AI] +Az][ 1 C()l] + -"{[B‘lR - CGR]} »
2j
WX, V,2) = Z (—A X +Y)[Bsr + Cor) + Ayj(Bi; — Ce)
<Xy 4 9 Azj

—X[Ag;(Cor + Bi1) + A1j(Csr — Bag)l}
~AL;X+Y)B ~ALX +Y)?
UA ) 61)+(___IJA____> [BlR—B2R+BgR]/2
%) 2j
+ X?[Bir — Bar — Bagl/2 4+ 2C1 227,

ZAX,Y,Z) = X<(

When Trg, = 0, Dety , = 0, the linear part of the vector field for (6.49) has double

zero eigenvalue, while the third eigenvalue —2A7, where
)\; = (LIR[L; + I)]RI/;, (650)

is negative. By the center manifold theorem, there exists an attracting center manifold
represented by a smooth surface Z = h(X,Y, i, v) for XY sufficiently small and p,v
close to p},v;. Moreover, the reflection symmetry (6.4) implies that h can be chosen so

that
h(=X, =Y, u,v) = h(X,Y, 1,v).

This center manifold can be represented by its Taylor series to any finite order, and to

the lowest order it will be in the form

XY 15.07) = ;X7 + e, XY + e3; ¥ + O(|X, Y|Y). (6.51)
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To calculate ey}, €55, e3; we substitute h = h(X,Y, K5, v5) given by (6.51) into

(261]'_X + 621')/)()/ + XO(_X’, )',, h)) + (62]'_/‘( + 263]')/)3)0(_/‘(, )/, h) =

—2Xj(e1; X2 + e2; XY + e3;Y%) + 29X, Y, by 13, v5), (6.52)

Then by equating coefficients of powers of X and Y in both sides of (6.52), we get

—(A1j/A2) [Bor] + (A1j/Ag)*[Bir — Bog + B3gl/2

61]' =

o]
Byp — Bap — B3pl/2
[Binr ;i\z] 3R]/ , (6.53)
e3; = —;;gj + Bir ;f;li\;_ B;}R. (6.55)

Then the dynamics of (6.49) restricted to the attracting center manifold when p= v =

V5, is represented by
X = Y + _(]1]'.“(3 + gngzY + gngY2 + _(j4jy’3, (656)

Y = g5 X3 4 g XY 4 g7, XY 4 95;Y"°,

where we have ignored the higher order terms. Using normal form theory, we can remove
six of the eight nonlinear terms at cubic order. After transformation, (6.56) in normal

form can be taken as

i =y, (6.57)

. 3, 9.2
y = a;a° + g7y,
where

& = g5 (6.58)
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The dynamics of this normal form has been discussed in [16]. Allowing p,v to vary near

#; and v}, we obtain the unfolding

i o=, (6.59)

J o= T+ ey + o+ gy,

where v = —Detor va = Tror. When (u,v) = (1},v;), the system (6.59) has a
Bogdanov-Takens singularity at the origin and undergoes a codimension two bifurca-

* viie., (71,7) close to

tion in a small neighbourhood of the origin, for y, v close to p}, v}

(0,0). See Figures 6.3 and 6.4. The shaded circular and square regions in these figures
correspond to two different case of bifurcations.

System (6.59) can further be simplified. Using the scalings

v = _<\/@/@-) oy = (lo;P?/82) 5. t=—(B;/loy))E,
m o= (/8" 1 =—(qal/8) T (6.60)

then dropping the “bars”, (6.59) becomes

T o=y, (6.61)

Yy = Mmr+7y+ Sgn(aj)x3 — 22y,

Depending on the sign of
a; = —a {2A1,j[CGR] + Agj[Bis 4 Cor] + (AF /D2 j)[Bir — CGI]} ,  (6.62)

for each j we will have two distinct cases (up to time reversal). In the above expression

for a; we assumed the nondegeneracy condition

Bi =3g1; + g6 # 0, (6.63)
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Figure 6.3: Parameters as in Figure 6.1. The circular shaded region shows the parameter
values that correspond to our bifurcation analysis.
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Figure 6.4: Parameters as in Figurc 6.2. The circular and square shaded regions show
the parameter values that correspond to our bifurcation analysis.
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where

gi; = eij{—=(A1;/A2;)[Bir — Csr] + [Bir — Conl},

gs; = e1;[Bin+ Cor+ (A1;/025)[Bir — Cor] + (ezj/e1;)a;.

129

(6.64)

(6.65)

From (6.60) we observe that the sign of 3; determines the orientation of ¢, and hence

affects stability types. If §; > 0, there will be time reversal and the sign of v, will be

changed, however if 3; < 0, then system (6.59) and (6.61) have the same dynamics.

Also, from (6.62) and (6.63) it is clear that a; and 3; depend only on e;; and ey, so

an explicit calculation of e3; is not necessary. The calculation of ey; is necessary for

the nondegeneracy condition and stability type of the solutions, but the calculation of

ey; is crucial to determine the dynamics. Because of the complicated form of 3; we

could not find simple expression for the nondegeneracy condition in terms of the original

magnetoconvection problem. However, for given set of magnetoconvection parameter it

is very simple to check the condition numerically (see Table 6.2).
To calculate e;; we note that when Try, = Detg, = 0 we have
Ay = —WyCsp.
Agj = I’V()[ZEICGI - C(;]].

Now let

Ag; = — [d; + ap + by + Wy By — CGI] :

After simplication at (y,v) = (4, v7), we have

A;;j = —"I"O[ilC(;l + CGI]-
At this parameter value A%j = —A3;Ay;. therefore after simplification

a;j = 2¢;Wo[z|Csl) [£]Cs] — (Bi1)]

(6.66)

(6.67)

(6.68)

(6.69)

(6.70)
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Table 6.2: Values of a;, 3; for o = 1,{ = .1,m = 107, and different values of Q. (Since

for Q = 10072 there is only one bifurcation point for ¥ > 0, the values for ay and S, are
left blank.)

Q (431 (65 777,"2/31 771—2ﬁ2
1007? | —5820 - 91604 -
30072 | —7496 | 14.89 | 105551 | ~16.45
50072 | —8233 | 46.73 | 129794 | —139.8

where
I(C3Cs) £ |Co|[B1r — Bag]
e1; = . 6.71
b 2X5[£(Cs| — Co/] (6.71)
For m sufficiently large, By — Bop = O(¢€) and therefore
sgn(ay) = sgn((CH(|C| - By)), (6.72)

sgn(as) = —sgn(S(C)(IC| + By)).

For both j =1 and j = 2, under the non-degeneracy condition 3; # 0,, we will have
two different cases, according to the sign of «;, which have been discussed in [16, §7.3].
Now we give a summary of their results and its implication for our problem. Along a
1-parameter path transversal to the line y; = 0 there will be a subcritical (if a; > 0)
or supercritical (if a; < 0) pitchfork bifurcation as two other fixed points will bifurcate
from the trivial solution. Also, by the Bendixson criterion there is no periodic orbit when
v < 0. Along a l-parameter path transversal to I'y (72 = 0, 7; > 0) there is a Hopf
bifurcation of periodic orbits from the trivial solution.

Case a (a; > 0): The periodic orbit created by the Hopf bifurcarion is destroyed in a

heteroclinic (saddle connection) bifurcation along anv 1-parameter path transversal to

Ts = {(71,7%) : 72 = —7/5+ O0(7}), m <0}. (6.73)
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Case b (a; < 0): In addition to the periodic orbit created by Hopf bifurcation along
Iy, two other periodic orbits bifurcate from nontrivial fixed points (+,/77,0) in Hopf

bifurcations along the curve

Lo ={(7,7) : 11 =7, m >0} (6.74)

These two periodic orbits are destroyed while another periodic orbit will be created in a

global homoclinic bifurcation, along any path transversal to
P72 {(n:72) 172 = (4/5)m + O(+f), m >0}, (6.75)

The two hyperbolic periodic orbits coalesce into a non-hyperbolic periodic orbit and

disappear in a saddle-node bifurcation of periodic orbits, along paths transversal to
Ts={(7,72) i 2=+ 0(), ¢=0.752, v >0}. (6.76)

To apply the above analysis to our problem we observe that fixed points in (6.61)
correspond to periodic orbits in (6.1). In particular the origin in (6.61) corresponds to
SWy periodic orbits, and non-trivial fixed points (&,/71,0) correspond to two further
periodic orbits, which we denote by €2;, ¢ = 1,2. Periodic orbits in (6.61) correspond
to invariant tori in (6.11). In fact, the periodic orbits that bifurcate from I'y correspond
to the invariant tori for which we have established existence in Chapter 5. In our case,
since both «; and 3; could be cither positive and negative, several possibilities exist. In
Figures 6.5-6.10 we have considered two of these cases. The other cases can be analyzed
in the obvious way.

In parameter region I in Figure 6.7, the only periodic solution in a neighborhood of
the SWy solution is SW) itself (the ST, solution exists, but it is not close), and there
are no invariant tori. Along the curve I'y there will be a subcritical pitchfork bifurcation

of periodic orbits Q;, i+ = 1,2 from the S solution and they exist in regions I, II1
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and IV. Along the curve I'y invariant tori bifurcate from the SW} solutions. These
are unstable (of saddle type) and exist in region I7I. (These are the same tori whose
existence was proved in Chapter 5). Along I's there is a heteroclinic manifold between
the periodic orbits §2; and as we cross ['5 the invariant tori are destroyed in a global
heteroclinic bifurcation. See Figure 6.5, 6.6 and 6.7.

In Figure 6.8 the only periodic orbits near the SW, solutions are SWj solutions
themselves, for parameters in region /. Invariant tori denoted by T} are created along
the curve I'y in Hopf bifurcations. These invariant tori correspond to those for which
we established existence in Chapter 5, and they exist in regions II,I1I,IV and V.
Periodic orbits €2; bifurcate from SWj solutions in pitchfork bifurcations, for parameters
on I's. These periodic orbits exist in every parameter region except regions I and I1.
Two invariant tori denoted by 75 and T3 bifurcate from €;, ¢ = 1, 2 respectively, in Hopf
bifurcations for parameters on I'g. These invariant tori exist for parameters in region IV,
and are destroyed, while another family of invariant tori, denoted by Ty are created in a
global bifurcation along the curve I';. Hyperbolic invariant tori T} and Ty persist until for
parameters in region V' they coalesce into non-hyperbolic invariant tori for parameters
along I's and then disappear in a saddle-node bifurcation of tori. See Figures 6.9-6.13.

We expect that if we restore the higher order terms to our truncated equations (6.12)
most of the above behaviour persists. Since Hopf and pitchfork bifurcations of periodic
orbits are structurally stable, using similar methods as we did in Chapter 5, we could
prove that for a curve I'y close to I'; (see [16, theorem 4.3.1]) periodic orbits €, 7 = 1,2
for (6.11) bifurcate from ST solutions in a pitchfork bifurcations of periodic orbits, since
the higher order terms respect the required symmetry. Also, there are Hopf bifurcations
of periodic orbits about curves I'; and I'g close to Iy and Tg, and invariant hyperbolic
tori will bifurcate from S "’I/’(),QI,QQ. These invariant tori will have the same stability

types as their corresponding periodic orbits of the truncated system (6.12).
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Figure 6.5: Magnification of the square region in Figure 6.4 with a; > 0,4 < 0 (Case

a).
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Figure 6.6:
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Phase portraits for regions I-IV and along I's of Figure 6.5 and at
V) = (3, v7) of equation (6.60) with ay > 0 and 7y < 0.
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~-
~.
-

(a) v < 5

b)yv>uv;

Figure 6.7: Bifurcation diagrams for Figure 6.5, corresponding to one-parameter paths
obtained by increasing p, for fixed v. Dots represent local bifurcations and the rectangle
represents a global (heteroclinic) bifurcation. Solid lines represent stable solutions and
dashed lines represent unstable solutions.
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Figure 6.8: Magnification of the circular regions in Figures 6.3 and 6.4 with oy < 0,3; > 0
(Case b).
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At (p,v) = (u1,v7)
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Figure 6.9: Phase portraits for regions I-VI and along I';,I's of Figure 6.8, and at
(u,v) = (p5,v7) of equation (6.60) with a; < 0 and 3; > 0.
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(a) v < vf

(b) v > vy

Figure 6.10: Bifurcation diagrams for Figure 6.8 corresponding to one-dimensional paths
obtained by increasing i, for fixed v. Dots represent local bifurcations, the rectangle
represents a global homoclinic bifurcation and the cross represents the saddle-node bifur-
cation of periodic orbits. Solid lines represent stable solutions and dashed lines represent
unstable solutions.
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We now indicate some differences that would be expected due to the ¥-dependence
of higher-order terms, which were neglected in the truncated normal form. When the ¥-
dependence is restored, the phase portraits of Figures 6.6 and 6.9, represent approximate
Poincaré maps for (6.11), restricted to two-dimensional, invariant manifolds. The curves
I's in Figure 6.6 and I';7 in Figure 6.9 correspond to heteroclinic and homoclinic manifolds,
but for maps such behavior is nongeneric. It is known that transverse heteroclinic and
homoclinic points (and consequently chaos) will exist generically in exponentially thin
wedges in the (u,r) parameter plane, near the curves I's and I'7, i.e., for generic higher-
order terms these two curves will be replaced by exponentially thin parameter regions I's
and I'; corresponding to the existence of transverse heteroclinic and homoclinic orbits,
and away from these regions no such orbits exist [21]. Another situation where the -
dependence of higher-order terms would be expected to affect dynamics is for parameters
near the curve I's, which correspond to saddle-node bifurcation of tori. For generic
higher order terms depending on ¥, the curve I's will be replaced by a Cantor set Ts
that corresponds to quasi-periodic saddle-node bifurcations of invariant tori [31, Theorem
1.1]. Moreover, it can be expected that near [ there exist open sets of parameter values

(called “bubbles” in [4]) that correspond to resonant and chaotic behavior.

6.4 Approximate D, symmetry

Using the asymptotic results of Chapter 4 on the normal form coefficients as m — oo
in Case II, we observe that (6.3) approaches a small perturbation of a system with Dy

symimmetry,
U2 = Ulagp + (245 + B + Cr)/2] — VW(BI + C;)/2

+ OO0 + |p|r? + |p*r) (6.77)

V/2 = Vlagu+ 1245+ Br — Cr)/2] + UW(BI — C})/2
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+ 00 + |ulr? + |p?r)
W/2 = Wlapp+ r(Ag + Bp)]+ UVCr+ O + |plr? + |pf*r)

¥/2 = Pw+O0(r).
Ignoring higher-order terms, system (6.77) has an additional symmetry generated by
(U, V,W,¥) 1 (U, -V, =W, T), (6.78)

which corresponds to

(Z1, 2y, Z3, Zn) —= (23, Z9, Z1, Z)) (6.79)

in (6.1). Using (3.45) this corresponds to the symmetry
(@1, Dy, B, By) — (D2, Do, By, B1) (6.80)

in the original magnetoconvection equation. Using (2.21) and (2.22), this in turn corre-

sponds to a fixed translational symmetry in spatial variable
YO(x,y,t) = ®(x — A/2,y,1), (6.81)

where A = limy, o0 (2L,,/m) satisfies (2.27). Therefore for large m in Case II we can
consider our magnetoconvection problem with sidewalls as corresponding to a small per-
turbation of magnetoconvection in an infinite layer with the Dy symmetry generated by
the actions of v, 5 and J, if we identify ®(x,y,t) with &(z + 2\, y,t).

System (6.77) has been studied by Swift [41]. In system (6.77), there are at least three
invariant subspaces V =W =0, U =W =0 and U = V = 0. In each of these subspaces
there are two pairs of periodic orbits that are denoted by “U”, “V” and “W” solutions
respectively. The periodic solutions Ili’o(’w, i, v) and If",,(u”, it v) of our perturbed system
correspond to the pair of “IV” solutions of the unperturbed D4-symmetric system, and

agree with them at the lowest order in e. Using the implicit function theorem, we can
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prove the existence of periodic solutions corresponding to “U” and “V” solutions for
sufficiently small € under the following nondegeneracy conditions. The perturbed “U”

solutions exist if

|CI]> = R(BC) #0, (6.82)

and they have the form
(T, 11, v, €), Vi (3, pty v, €), Wi, g1, v,€)) = (£U + O(e), O(e), O(e)), i = 1,2

where
—2apu
24p+ Br+ Cr’

Similarly, the perturbed “V” solutions exist if

sgn(p) = —sgn(2Ar + Br + Cp).

|Uo| =

ICI? + R(BC) # 0, (6.83)
and they have the form
(Ui, pt, v, €), Vi(, g, v, €), Wi, i, v, €)) = (O(€), £V + O(€), O(e)), i = 1,2,

where
—2apjt

Vol = ,
Vol 2Ap+ Br— Ch

sgn(p) = —sgn(2Ar + Br — Cp).

These solutions have the same stability type as their corresponding unperturbed solu-
tions. If the nondegeneracy conditions (6.82) and (6.83) are satisfied, no nonsymmetric
solutions bifurcate from “U” and “V" solutions (6.77). In the unperturbed case two
non-symmetric solutions bifurcate from the “W” solutions in a pitchfork bifurcation as

we crossed the parametric surface |C[|? — | B> = 0.



Chapter 7

Conclusion

In this chapter we summarize the results of Chapters 5 and 6, and also make some
remarks on our magnetoconvection problem. For fixed magnetoconvection parameters
o,(¢ and @), we have proved that the motionless conduction state loses its stability as we
increase the Rayleigh number . For L close to one of the L,,,m = 1,2, ..., two standing
wave solutions, which we denote by SWy and SW, solutions, bifurcate in primary Hopf
bifurcations of periodic orbits, and the SW solutions that bifurcate at the lower value of
R are asymptotically stable, and the other SW solutions are unstable. As we increase
R further there occurs a secondary Hopf bifurcation of invariant tori (e.g. unstable
quasiperiodic solutions), which we denote by T solutions, from the branch of unstable
SW solutions. After the T solutions bifurcate, both SV solutions are stable. We have
also proved that the tori T} persist in wedges in the parametric plane.

By considering a decreasing sequence in ¢ and an increasing sequence in @, for fixed
o, we were able to extend the regions of validity of our bifurcation analysis by considering
an alternate normal form. We showed the existence of Bogdanov-Takens singularities,
and these codimension two singularities lead to more complicated dynamics such as
further secondary and tertiary bifurcations of invariant tori and gencrically some open
parameter regions corresponding to chaos. Figure 7.1 shows schematically the regions
in the parametric plane for which our bifurcation analysis of Case II is valid. The curves
I'1,..., g are the same as Chapter 6, and by reflection symmetry there are curves I'y, ..., I'g

corresponding to bifurcations about the STV, solutions. Note that the curves I'y and I

142
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:“zR_Rmr

(a)

Figure 7.1: Schematic bifurcation sets for magnetoconvection equations in Case II, for L
near L,, and R near R,: (a) when I'; and I'y only intersect once (a; < 0,3; > 0); (b)
when I's and [y intersect twice {a; < 0.7, > 0 and ay > 0 and 3 < 0). The shaded
regions show parameter values for which the invariant tori T} occur.
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Figure 7.1 (coutinued).
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near the origin correspond to the curves A; and A, in Chapter 5.

In Figure 7.2 we give bifurcation diagrams for fixed v = L — L,, > 0, as we increase
¢ = R — R,,. The bifurcation diagrams for v < 0 are the same as those for v > 0 if we
interchange the roles of SW, and ST, solutions. If we compare the bifurcation diagrams
in Figure 7.2(a,b) with Figure 5.6(b, c), we observe that they are the same, since for v
sufficiently small the analysis of Chapter 5 is valid. However, for v near v we have more
bifurcations. Also, we observe that the bifurcation diagrams in Figure 7.2(b) and (¢), and
also Figure 7.2(d) and (e), are rather different. This implies the existence of more global
or local bifurcations for v between 0 and v} and between v and vj. It seems very hard
to locate these bifurcations analytically, but it should be possible to get some results
using numerical methods and computer software packages like AUTO [11] to locate some
of these bifurcations. AUTO is able to follow branches of periodic solutions and analyze
changes in their Floquet multipliers, as we change parameters. Also, we note that as
long as the point (u,v) in parameter plane lies below the curve of [y, for v > 0, the SW)
solution is unstable, which is in agreement with our primary bifurcation results. For large
m, the slopes of the curves T'j,...,'s are O(m~2). Therefore all of these curves lie very
close to the line p = 0, and regions where our bifurcation analysis applies become small
as m — oo.

We have also shown that in the Case I limit as m — oo our system becomes a small
perturbation of a system with D4 symmetry. Using this fact we found other periodic
solutions.

This project by no means complete and it can be continued in number of ways. First,
the results of Chapter 6 can be continued by proving that the results we have persist after
restoring the higher-order terms (and therefore W-dependence) in the equations. There
are some technical difficulties in achieving this, but in principle it could be done. Also,

one could attempt to complete the bifurcation sets in Figure 7.1 as we mentioned above.
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¢ local bifurcation

(¢) 0 < v <vf, vuear v}

Figure 7.2: Bifurcation diagrams for magnetoconvection equations in Case II.
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(d) v > v}, v near vy

SW,

(e) vi < v < Vj, v near v}

SWr

(f) v >3, vear v}

Figure 7.2 (continued).
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One possibility is to try to exploit further the small perturbations from D, symmetry.

In our bifurcation analysis, we restricted to those magnetoconvection parameter values
for which the Hopf bifurcation was preferred. However, as it was mentioned in Chapter 2,
there are parameter values for which steady state bifurcation is preferred, and also critical
parameter values for which the linearization of the convection problem has double zero
eigenvalues. The bifurcation analysis at these higher codimension singularities would be
very interesting but would need another thesis for a complete analysis.

We simplified our original magnetoconvection problem in number of ways. First we
restricted ourselves to two-dimensional flows by assuming the velocity, temperature and
magnetic field remain constant in third = direction. In three dimensions, depending on the
shape of the container, there could be more than two different spatial Hopf modes for some
parameter values. This would increase the dimension of reduced ordinary differential
equation and thercfore a more complicated analysis would be needed. The calculation of
center manifold coeflicients would also be much longer.

We adopted boundary conditions that made our eigenfunction calculations possible
by hand. If we adopted different boundary conditions, the computation of the eigenfunc-
tions for the linearized magnetoconvection equations would take long hours of computer
programming and numerical calculations. The center manifold coefficients would also
need to be computed numerically. Also, we chose our boundary conditions so that the
system has Zo @ Z, symmetry. This symmetry can be easily broken by perturbations that
does not respect the symmetry and might correspond to more physically more realistic
situations. For example, it can be arranged that (2.5) satisfy boundary conditions of the

form

= Tyl +6(x)] ony=0,

~3.

T = T, ony=h.
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where 6 is not an even function of z, so that there is no longer a reflection symmetry

under z — —z.
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Appendix A

Normal form coeflicients

A.1 Computation of normal form coefficients

In this section, we give more details of the calculations outlined in §4.1, to obtain the
normal form coefficients C,...,Cqs. To find explicit formulae we use (4.33)—-(4.38); first
let us give My(®,d') = M(P,d’,L,,) in vector form explicitly from (3.44), as

' . .
oCQUb, [%b—l- ~ L,_nz%—l;z] - [u?l o2 } L*za—”\
y -

ox U—(‘?_y— " Ox
L2 oCQU, [%ZZ - L;IQ%—I;EJ - [u%% ’U%%} + g/;
My(2,9") = — u—gg + v%ﬂ ' (A1)
ég(ub,’y — b))
_b;(ub,” — b))

where x is chosen so that the divergence of the first two components vanishes. Using
(A.1) and (3.39)-(3.40) we observe that PMy(®;, ;) = 0 for j, k = 1,2, due to elementary

trigonometric identities, and we calculate

0

0
) 7 sin(27my)
(I =P)Mo(®0,00) = | Tp T |

0
72 cos(mma)
Pi(¢ + )

(A.2)
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0

0
7 sin(2my)
2Py (1 + iwoy)
0
7% cos((m + 1)7z)
Py(¢ + i)

~(I = P)My(®9, ®y) =

Since

My(®;,®;) = My(®;,9;), 7=1,2,
and

A/fo(q)j,(f)j) = ‘]\fo(q)j,q)]‘), ] = 1,2,

we have

0

0
7 sin(2ny)
P (1+ w?) ’
0

272 cos(mmz)
Py(¢? + wi)

0

—(I=P) (M(®1, %)) + My (31, 81)) =

0

I - P) (Mo(®2,3y) + My(&y, 3,)) = Zonizny)
—(I - 0(P2, Ba) + My(Dy, 2)) Py(1 4 w2)

0
B 27%C cos((m + 1)ma)

Po(¢? + w3)
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(A.3)

(A.5)
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We also have

24
WA L cos(ra/2) cos(2my) \

0
7T2A1

sin(ra/2) sin(2my)

N 0
—(I = P) (Mo(®1, P2) + Mo(®2, P1)) = Ay sin(ma /2) sin(27y)

Az cos(ma [2) sin{27y)

Aysin(nz[2) — 144—3 sin(mx/2) cos(2my) /

2
B, cos((2m + 1)ma/2) cos(2my)
0
2m + 1)n?
-(-lli—)zr—Bl sin((2m + 1)w2/2) sin(27y)
4B,
+ Bysin((2m + 1)wa/2) sin(27y) ’ (A-6)
By cos((2m + 1)ma/2) sin(27y)
o B3(2m+1) .
Bysin((2m + 1)ma/2) — ——————sin((2m + 1)7m2/2) cos(27y)
where
Ay = m(1/4L2 +4), (A7)
By = 7m%((2m +1/2L,,)? + 4), (A.8)
B = — a(Qn (P - P) _ (.2711 + )7 ’ (A.9)
m(m + V)P Py(C + iw)(¢ +twa)  4L2,m(m + 1)
A = (2m+1)By, (A.10)
A, _m(2m+ 1) [mP(1 + dwn) + (m+ 1)Pi(1 + iwl)]’ (A11)

dm(m + 1) Py Py(1 + dw;)(1 + iws)
_m[=mDy(L 4 idws) + (m + 1) P (1 + iwy )]
dm(m + 1) Py Po(1 + dwy)(1 + tws)
w2 [Py (¢ + iwr) = Po(C + iwy)]
m(m + 1) Py Po(C + iw )(C + tws)’
A3 = (2m+1)B;. (A.14)
_ mPU(C F dwn) + Po(C )]
dm(m + V)PP (¢ + tw )(C + iws)’
By, = (2m+ 1)%4,. (A.16)
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We now solve (4.23), using (A.2):

0

0
) , T sin(27y)
(Ko — 2iPywy)Wagp0 = 2P (1 + i) |° (A.17)
0
72 cos(mmz)

P (¢ + iwy)

i.e.,

0
7 sin(27y)
2P1 (1 + iwl) ’

0
o [(A! = 2iPw/o)u—V'\ + R,fe,+ (Q(V' xb) x e)] = ( ) , (A.18)

(Al =2iP )0 +u-e, =

0
(CA' = 2iP Q)b+ V x (uxe,) = 72 cos(mmz) |-

Py (¢ + iwy)

where Uy = (u,8,b)” has the general form

cy sin(mma) cos(2my)
—{mcy [2) cos(mma) sin(27y)
cy cos(mma) sin(2my) + c3 sin(27y) ) (A.19)

cq sin(mma) sin(27y)

mey /2 cos(mma) cos(2my) + cscos(mma)

and y = cg cos(mma)+c; cos(2my) + cs cos(mmr) cos(2my) is chosen so that the divergence

of the first two components of ¥y99 become zero. Substituting (A.19) into (A.17), we
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solve for the coefficients ¢y, ..., c5 in (A.19) to get

0

0
7 sin(2ny)

Y000 = " 2P2(1 + iwy ) (w1 + 2iw) ’

472 L2 cos

0

m

(mmx)

where @; = 472/ P;. Similarly, we solve

(Ip — 2i Pyws) Woga0 =

_Pl'z(( + 1wy ) (m2w, ¢ + 8iw  L2))

m

2P(1 + iws)

0
72
Po(C + 1ws)
to obtain
0
0
T

o020 = 2P3(1 + dws ) (2 + 2iwy)

0

4213,

\ PE(C +iws) ((m + 1)l + 8z‘w2Lf,2n)

sin{27my)

cos((m + 1)wz)

sin(27y)

cos((m + 1)mx)

157

(A.20)

, (A.21)

, (A.22)
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where s = 472/ Py. We also solve

to obtain

and similarly,

has solution

T .
I"O\Ijll()o = '_—-._5111(271-1/)

Yo = | TyrP (1 +w?) :

™ .
[{O\IJOOII = P2(1 +w§) S

Uoor1 =

0
0

Pi(14uf) ’
0

27%¢
Pi(¢? +wi)

cos(mna)

0
0
1 .
sin(2my)

0

2L,, (mma)
- 5 COS\M T
m2P (¢ + wi)

1
—47I'1)-2(1 + w_%)
0

sin(27y)

2L2

(m + 1)2]3.2”(142 + ) cos({m + 1))

158

(A.23)

(A.24)

(A.25)

(A.26)
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By (4.29) we have
(IX’O —_ Z'lel - Z.PQW‘Z)\IIIO]O = —-([ - 15) (A/[()((I)l, (I)g) + ]\/[0((1)-2, q)l)) y (A27)
where
—(I = P) (Mo(®1, B3) + Mo(®2, 81))
is given by (A.G), therefore W;g has the form

¢y cos(ma/2) cos(2my)
(c1/4)sin{ma/2) sin(27y)
Yoo = cysin(ma/2) sin(2my) + (A.28)

czcos(ma/2) sin(27y)

—(c3/4) sin(ma/2) cos(2my) + casin(wa/2)

) cos((2m + 1)ma/2) cos(2my) \
(2m + 1)c)
4

dysin((2m + 1)ma /2) sin(27y) ,

sin{(2m + 1)ma/2) sin(27y)

dycos((2m + 1)wz [2) sin(27y)

X = [essin(mz/2) + ¢ sin((2m + 1)wa/2)] cos(2my) + cg sin(mx/2) + g sin((2m + 1)7z/2).

To simplify our notation, let

m = Ag+1Pwy + 1tPw,, U, = By + 1Pyw; + 1Pw,, (A29)
72 = 0Ag+ tPw; + iPws, Uy = 0By + tPyw; + iPwo, (A30)
m = CAO + iP]W] + ip2w2a \Ilf} = CB() + ilel + 7:]32(4)2, (A31)

. . 2 1)7 . )
M = C(é%_):) + IP]&)l + Ipzw'z*, Uy = C(—(—B—;Li—)z)g + 1Py + tPows. (A32)
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Now by using (A.6), (A.27) and (A.28) we get

(Qcq + ¢
0CQAgc3  omey
21 212

m

—Tpcy +

—chl) + 0 R0 + 2macy

~nica + ¢ /4
—n3c3 — 270y

—14Cq

CQcy + ¢
— Uy, + 0CQByd;  (2m+1)ond]

2 212,
(2m + 1) Ty¢]

e + o R, ¢y + 210y

—Wicy + c(2m + 1) /4
—Wscy — 27

‘\I’4C£1

= A4,

= Ay,

= 0,

= 7°B, /By,

(2m + 1)7%DB,
4 '

160

(A.44

Explicit calculation of pressure term is not neccessary, and we solve the system (A.33)-

(A.44) of algebraic equations to find ¢, e Cay €y, to get

() Ay A: ok, As
x4]/4+ CQ 0 3 9 2
_ 27, 4L2 n,
= Ao aCQAO_ oRR,,
42 73 16L2,m
6] —4;42
g = ———=
4
2me) + Aj
g = ——,
3
¢4 = —A4/774,

(A.45)

(A.46)

(A.47)
(A.48)
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o(QByBy (2m+ 1)oR,, B>

B/4
d = — Al 2105 4137, (A.49)
! ;8o | 7¢QBy @m +1)%0R,,

472 \Ilg 16L;?n\111

, (2m + 1)c} — 4B,
¢ = , A.50
2 4‘1’1 ( )

2 J
¢4 = _ic_g_gé, (A.51)
¢y = —B4/y, (A.52)

We observe that ¥;g0; can be obtained from g9 by changing

dy cos(ma/2) cos(2my)
(dy/4) sin(ma/2) sin(27y)

ws — —wy and therefore

Yoo = dy sin{mz /2) sin(27y) + (A.53)

dz cos(ma/2) sin(27y)

—(d3/4) sin(mx/2) cos(2my) + dysin(wx/2)

dy cos((2m + 1)7x /2) cos(2m
(2m + 1)}

(2m + 1)dj

and

sin((2m + 1)7a/2) sin(27y)
dysin((2m + 1)7x /2) sin(27y) ;
df cos((2m + 1)ma/2) sin(2my)

- sin((2m + 1)ma/2) cos(2my) + ¢ sin((2m + 1)7wz/2)

Y)

X = [dssin(mz/2) + dy sin((2m + 1)7wa/2)] cos(2my) + dg sin(ma/2) + dg sin((2m+ 1) 7z /2).

where d;, d, i =1,...,4 are ¢;, ¢}, i = 1, ...,4 under the change wy — —ws. Also, by (4.30)

1Y

and (4.31) we have Wq;19 = ¥ 001

We now compute the terms Ao(Wij, P,), etc. that appear in (4.17)-(4.22). To

simplify our notation, from now on we give only Ay(-,-), which is the same as My(-,-)
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except for terms that are eliminated in the inner products with @77 =1,2,1e,
(Mo(-,-), @3) = (Mo(-,-), ®}). (A.54)

We first calculate

0CQ(2Ly, [ (m + 1))3
4L Py(C? + w3)(C + iwo)

sin{(m + 1)7z/2) cos(my) + L, 20x/0x \

dx/dy

. 1 o
Mo(®2, Yoor1) = 4—152—(1—_*_——)cos((m + )7z [2) sin(ny) ’
— 4257}7%((”7 + 1)2)) sin((m + 1)z /2) sin(my)

- if»;’}éi’1$> D cost (i + 1yma/2) cos(my)

/
(A.55)

where y = ccos((m + 1)ma/2) cos(my) is chosen so that the divergence of the first two
components of (A.55) is zero. If we denote the first two components of ]\20(@2, Woo11) by

M, M5, then we should have

a(Q(2L,,/(m+1))*x
4P (¢ + wi) (€ + iwy)

div(M,, Ms) = ( — Plc) cos({(m + 1)mx/2) cos(my) = 0,

therefore

m20(Q(2L,,/(m +1))3
4LmP12(C2 + WI))(C + iwy)

m20¢Q(2L,,/(m + 1))?
T APHC + W) (¢ iwn)

sin((m + 1)ma/2) cos(my),

M, cos({m + 1)mx/2) sin(7y).

Similarly,

m20(Q(2L,,/m)3

4LmP1 (C9 + w—)(C + 7w1)
m20(Q(2L,,/m)?

4P2((? +W11)(C + iw))

sin(mma/2) sin(7y) ) (A.56)

cos(mmz[2) cos(my)

sin{mmz [2) sin(my)

Mo(®1, T 100) = E’T—

(2L, [m)

4LmPl (C) )
(2L, /m)3

4P (¢ + w?)

cos(mmx/2) sin(my)

sin{mnz/2) cos(my)
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We also have

Mo(T1100,®1) = Mo(Yoo11, Bs) =

o o O o O

Mo(Pagoo, @1) = Mo(Togao, B3) =

o o © © O

Moy(®a, Uagpo) =

meCQ(2L,,/(m + 1))3
2P3 L., (C% 4 wi)(wal + 2iws (2L [(m + 1))?)
B moCQ(2L,,/(m +1))?
2P$(¢2 + wi) (@2 + %’l"w‘z(?Lm/("" +1))?)
72
T 2P2(1 + iws) (s + 2iw)
B m3(2L,, /(m +1))3
2PFL,, (¢ + iws) (w2l + 2iwa(2L,, /(m + 1))2)
i T (2Lar/ (m + 1))
2P3(C + iw) (w2 + 2iws (2L, /(m + 1))?)

sin((m + 1)mx/2) cos(my)

cos((m + 1)mwz/2) sin(7y)

cos({m + 1)yma /2) sin{my)

sin{(m + 1)mwa/2) sin(my)

cos((m + 1)wz/2) cos(my)

163

(A.57)

(A.58)

(A.59)
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moCQ(n?2L,,/m)3
2P L (¢ + wh) (@€ + 20, (2L, /m)?) cos(mmz/2) cos(my),
nlaCQ(2L,,/m) _ ] _
_4L,.,1P13(C2 - w%)(w2§ TN CT A sin(mmx/2) sin(my)
. m . o
Mo(®y, ¥apo0) = " 3P+ i) (@1 F B, ) sin(mnz /2 sin(ny) ,
™ @Ln[m) cos(mmz /2) sin(my)
2P2L,, (¢ + iw )3(731( + 2ic2ul(2Lm/m)2) ) y
™ (2Lm/m) sin(mma/2) cos(ny)

(A.60)
Now using (4.33) and (4.37) we have
- oR 1 72
C, = Cn/2 = — 5T — = : .
: / {P1(1+zw1) [ 4P (1 + w?) 2P12(1+1w1)(w1+21w1)]
_ i0CQ(2L /M) mws (A.61)
PE(C + w1} (2 + wi) (@1 € + 2iwy (2L, /1)) '

Cs = Cunf2{ e |1 _ -
5 = Cmyil Py(1 +iws) | 4P(1+w3) 2P1 + iwo) (w2 + 2iws)

_ i0CQ(2L,, [(m + 1)) 72w, }
P2(¢ + 1w2) (¢ + wd)(w2C + 2iwy (2L /(m +1))2) | ° (A.62)

where C,,, Cphy1 are given by (2.55).

To compute Cy, C3, Cy and Cg, we also need

Mo(%oor1, 1) = Mo(¥1100, B2) = (A.63)

o o o o
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and
0
0
My(®2, ¥1100) = TILP, (11 o) cos((m + L)z /2)sin(my) | . (A.64)
0

0 /
In the following equations, ¢;,d;, ¢, d},i = 1,...,4 are as in equations (A.45)-(A.52). We
have:

Dy sin((m + 1)ma/2) cos(my)

D
_m A DD (o + 1)7a/2) sin(ry)

2
My(®1, Ti0) = | I [(2m _Z;)CQ + 5] cos((m + 1)ma/2) sin(my) |- (A.65)

Eysin((m + 1)7z/2) sin(ny)

(m + 1)E 2 cos((m + 1)mx/2) cos(my)

where

D] = (A66)

m [ aCQ((2m 4 1)cz + &5 +8(cs + &)

P, {— 8m(( — iwy)

4 (2m+ 1) + ) 4 a(m+1)(2m + 1)(c; + c’l)}
4m 32mL2 ’

m

g = T(@mt1)es+ ) —8mlca+ ) (A.67)
1 = ’ .
8m

D, sin((m + 1)ma/2) cos(my)
——ﬂj_?—l)& cos((m + 1)ma/2) sin(wy)
Mo(@1, @r00) = | _T ((2m 27173612 + ) cos((m + 1)mx/2) sin(ny) |- (A.68)
E :;in((m + L)yma/2) sin(my)

(m + 1)E\2 cos((m + 1)ma/2) cos(my)
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where

by = 8m (¢ + twy)

. n? { aCQ[(2m + 1)ds + dy + 8(ds + d})]
P,

4m 32mL?2

m

L7 (2m+ 1)dy + dy) N m(m + 1)(2m + 1)(dy + d’l)}

~ 7 [(2m + 1)ds + dy — 8(ds + d}})]
b= 8m ;

Dy sin((m + 1)7a/2) cos(ny)

_(m+1)Dy cos((m + 1)mx/2) sin(my)

7 [(2m + 12>cl —d]
Eysin((m + 1)7x/2) sin(7y)

(]_”__g_lllfﬁ cos((m + 1)mz/2) cos(my)

Mo (1010, 81) = cos((m + 1)ra/2)sin(ry) |,

where

D, — 12_ {WQUCQ [(@2m+ ez + ) 720CQ(2m + 1)cs
> P 2mPy (¢ — iw;) 32mL2 P (¢ — iw;)
N 20CQ[(2m + 1)3¢; + 8 (cq + (2m + 1)2d})]
32mL2 P (¢ — iwy)
T((2m+ 1) +¢) w(m+1)[2m+1)c —d]
8m B 3212 } ’

m

B - 2 [(2m+ 1)e; + ]
T 8mP (¢ —iw)

D, sin((m + 1)7wa/2) cos(my)

_M cos((m + 1)mwa/2) sin(my)

- T ((2m + 1)d, — d :
Moo, ) = | T2 e - = Y cos((m + 1)ma/2) sin(my) ||
Eysin((m + 1)72/2) sin(7y)

4 1)E
% 2052 cos((m + 1) /2) cos(y)
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(A.69)

(A.70)

(A.71)

(A.72)

(A.73)

(A.74)
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where

B 72 (m20CQ[(2m + 1)dz + dj]  720CQ(2m + 1)d;
> T P 2mP,(C + iw;) 32mL2 P (( + iwy)
L MoCQ[(2m + 17°d; + 8 (dy + (2m + 1)°d})]
32mL2 P (¢ + iw)

L7 (2m+Dd;+dy) w(m+1)[(2m+ 1)d; — di]

8m 32L2,

B = 2 [(2m + 1)dy + d}]
2T 8mP,(C + iw;)

Dj cos(mma[2) cos(my)
mDg

sin(mmzx [2) sin(my)
-7 ((2m + 1)cy + ¢5)
4(m+1)

E3 cos(mma [2) sin(my)

W E.
el sin(mwa/2) cos(my)

b
Iy

Mo(®a, ¥1010) =

sin(mma[2) sin(my) |,

where

De = T { ~0Q[(2m + 1)cz + ¢ — 8(ca + )]
2 Py 8(m + 1)(¢ — iws)
n[(2m+1)e; + ] mm(2m + 1)(e; — )
4(m + 1) B 32L% (m + 1) } ’

m

m{(2m + 1)es + ¢+ 8(ca + ¢4)]
8(m + 1) '

D3 cos(mmz[2) cos(my)

mDj

- ((2177, + 1)dy + cifz)
4(m+1)

Ej cos(mma/2) sin(my)

mzs sin(mma/2) cos(my)

b
<

sin(mma/2) sin(my)

Mo (P9, Tg110) =

sin(mma/2) sin(my) | >

167

(A.75)

(A.76)

(A.77)

(A.78)

(A.79)

(A.80)
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where

4

o [ o6 [(2m +1)d5 + dj - 8(cs +dy)] (A.81)
P 8(m + 1)(¢ + wy)

m [(2771 + 1)d; + (Z’]] m(2m + )7 (d; — dy)

4(m+1) 32L2,(m +1)

Y

7 1(2m + 1)ds + ds + 8(dy + d,
I )ds + dy +8(dy + dy)| (2.8

Ey =
: 8(m + 1) ’

Dy cos(mma[2) cos(my)

D
i sin(mma/2) sin(my)

2) = _I ((1?31;12—(*—1 1_)07;2—)0,1) sin(mma/2) sin(7y) |, (A.83)
E4cos(mna/2) sin(my)
mE,

7

Mo (1010, D

sin(mma/2) cos(my)

where

72 [ m20CQ[(2m + 1)c3 + ¢ m20(Q(2m + 1)c3
De =5 { 2(m +[ 1)P(C )— iw2)3] 32(m + 1)(L;2,,P2(( )— iws) (A.84)

m20(Q [(2m + 1)3¢; — 8 (cq + (2m + 1)2d})]

32(m + 1) L2 Py(¢ — iws)
LT [(2m+1)er+ ] mr[(2m+1)e — c’l]}
8(m + 1) 3212, '

72 [(2m + 1)y + ¢;)

C8Py(m + 1)(C — 1ws)’ (4.85)

and
Dy cos(mma [2) cos(my)
777.D4

m ((Qm +1)d; — (7’1)
16P(1 + 1ws)

E4 cos(mma/2) sin(my)

mE,

Iy

sin(mma [2) sin(7y)

sin(mmx/2) sin(my) | (A.86)

]\7[0(‘1’0110,‘1’2) = —

sin(mma/2) cos(my)
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where
b, - 72 [ 71?0CQ [(2777' +1)ds + JQ] w20(Q(2m + 1)d3 (A.87)
TP 2(m + 1) P (¢ + iwo) 32(m + 1)L2, Py(¢ + iws) '
m20(Q [(Qm +1)3d, — 8 ((74 + (2m + 1)2@1)]
32(m + 1)L2,Py(C + tws)
T [(‘Z'm + 1)d, + (ll] mmn [(Qm +1)d; — (Z’l]
8(m + 1) B 3212, ’
. w2 [(‘Zm + 1)d, + J’l]
E, = — —. A.88
! 8Py(m + 1)(C + iws) ( )
We observe that the inner products
(Mo(®2, Wip01), P7) and (Mo( P91, P2), T)
are obtained from
(Mo(®2, U1010), B) and  (Mo(P2, Y1010), D7),
respectively, by changing w, — —ws. Similarly,
(Mo(®1, Yor10), P3) and (Mo(Wo110,P1), D3)
are obtained from
(Mo(P1, Wio10), B5) and (Mo(P 1010, D), B3)
by changing w; — —w;. Therefore we also have
(Mo(T2000, B2), D3) = (Mo(Toozo. &1), 8F) = (A.89)

o O O o O
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also

0
0

2

T 2P2(1 + iws) (w2 + 2iws)
0

0

Mo(®1, gon0) = sin{ry) |, (A.90)

and

0

0

12

" 2P2(1 + iw; ) (w + 2iwy)
0

0

1‘7[0((52, \PQOOO) = sin(7ry) . (Agl)

Finally, we observe that

(Mo(To110, P2), P]) and (Mo(P2, Po110), D7)
are obtained from

(Mo(¥ 1910, @2), @7) and (My(Ds, ¥ g10), D7),

respectively by changing wy — —ws and ¢;, ¢, — di,d';,i = 1,...,4. Therefore by (4.34)-

(4.36) and (4.38) we can now compute

- oR,, T{(2m + 1)(c2 + da2) + b + d'9)
Cy, = C,/24— , = A.92
2 / { Pi(1 + iw;) [ 4(m + 1) + ( )
T((2m+ Dy +d))  7((2m+1)dy +dy) 1
16P2(1 — tws) 16P(1 +iw-2) 4P (1 +w§)
2L2 Py - - o(Qm - ~
—2— D3+ D4+ D3+ Dy + ———————(E3 + E. 3+ E
t [ s+ Ds+ D3+ 4+(§+iw1)P1( 3+ Ex+ B3+ Ey)| ¢,
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_ oR,, iy ((2771 +1)(ca + do) + & + 67’2)
Cy = Cnp1/2 {Pz(l T ioa) [-— o + (A.93)
7 ((2m + 1)e; + ) 7r((2m+1)(71 +c7’1> _ 1
16P (1 — wwy) 16 P (1 + iwy) 4P (1 +w?)
2L72nP2 - - O'CQT(' — —
‘“m[D1+D2+D1+D2+m(E1+E2+E1+E2) ,
~ o [2LAP [~ = o(Qm - =
Cy = Cm/z { 2 ,:Dg + Dy + W(E;; + E4) (A.94)

oR,, w2 T ((2771 +1)d; — J’l)
TP+ i) | 2PR(1 F i) (s + Zia) T 16P5(1 + 70n)

+7r ((2771 + 1)dy + J’g) }

4(m+1)
- 202 P |- g a(Qmn
Cs = Cppy/20 =2 D 4+ Do+ —25%
6 +1/2 { (m+1)n2 [ 1t Pt Py (C + iws)

0R171 [ 7r2 s ((277'1, + l)dl - d,l)

(E+@4 (A.95)

LT (2m + 1)dy + d’z)} } |

4dm

where D;, E;,i = 1,...,4 are D;, E;,7 = 1,...,4 under the change ws — —ws, and overbar

denotes the complex conjugation.

A.2 Limiting values of normal form coefficients

In this section we calculate limiting values the normal form coeficients Cy,...,Cg as m —

oo, for both Cases I and II described in §2.5.
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We first need certain auxilliary limits. Using the equations (4.61)-(4.68) in Chapter 4 ,

we find that as m — oo in Case I we have

Ci1 = 17£Lngo mel = 0, (A96)
— Tm e — . — 42

e = lim e = P i) (e 1 2i0) where w = 47"/ P, (A.97)
3 = nll_}nclw L,,c3=0, (A.98)
Cqy = "11_1)120 Cqy = 0, (A99)
¢y = lim Lyc) =0, (A.100)
¢y = lim ¢ =0, (A.101)
¢y = lim Lyc=0, (A.102)
/ — : ‘I — A

a1 A Cy P2(( +iw)(w( + 2iwA?)’ (4.103)
dy, = n%l_}ﬂgo L,d = _P(C2 AT Q) (A.104)

1
= limdy= ——M— A.

da = b= ) (A.105)
1 - i m Iy = — : o 1

a3 Jdim Ly, ds PAT O T ) (A.106)
6141 = nlzl—>ngo (,14 - 0, (A107)
iy = lim Lod, =0, (A.108)
dy = lim dy=0, (A.109)
&y = lim Lyds =0, (A.110)

/\'2
dy = lim dy = (A.111)

moas 4T 2P((2 4 w?)

where P,w and A are given by (2.59), (2.60) and (2.27). Then (A.96)-(A.110) imply that

lim L,,D; = - lim L,,D;=
m—o0 m-—o0

T2 a(QAy,
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,,Ei_,ngoLmEl = —"lli_)ngoLmE;; = —7Ady, /2, (A.113)
: . mio(QAd,
n:!.'l_lgéo LTIID2 = _nlll—}n;:l)o L,nD4 = m’ (A.114)
lim L,Es = lim L,FE;=0, (A.115)
m—oo m-—»o0
and
. = _ . A _ 9 O'CQ(—-d31+2/\(l£“)
A, LoDy = = limg LDy = (m/P) {— 1 +iw)
—512—11} (A.116)
lim Loy =~ lim LBy = —Ady/2— ndy/4, (A.117)
: = . - m20¢Q(—ds + (2/\)d.
A, LnDy = = lim LnDs = (n*/ ){ CQ(p«sl z:u(,)/ o
11(A%2 =1
- ”L“—EL—A;,———)} (A.118)
lim LBy = — lim LoBy = —ou (A.119)
A Lo 2 = m—)go mivqy = 4P(C+?w) .
We also have
. ~ : - oCQ(ds, + 2)\d
lim LDy =- lim L,D; = ~(7r2/P){ Csz(c31+ o n) —7rdu/2},(A.120)
Jim LBy = — lim L,Ey = —m\d),/2+ndy /4, (A.121)
N . 2 l 2/A)d,
i Ena= = i LDy = (/) | GG T B
7T(111()\2 - ].)
—_— 12
T (a2
lim LnEs = — lim L, E, = midyy (A.123)
mooo 2= m—oo M 4 = 8(<+ iw)’ .
From (2.49) we get
.= . A m2(1 + iw) (¢ + iw)
n!l_})lgo Cn = "%l_l)lgo Chs1=— 22 Pos(e —13) (A.124)

where § = 1+ 0 + (. Using (4.39)—(4.44), (A.96)-(A.110) and (A.112)-(A.123) we get
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lim ¢, = lim Cs=A+ B, (A.125)
Ly —00 Lpy—00
lim C; = lim C; = A, (A.126)
L, —co Ln—o00
lim C3 = lim C;=C, (A.127)
Ly—o0 m~—+00
where
A+ B = 720 Ro(¢ + iw) 1 w2
C 4NP(w—ib) | 4P(1+w?)  2P(1 +iw)(w + 2iw)
i0CQN*TY(1 + iw)
T I o (e 2iw\2)(w — i0) (4.128)
4 = —71'2(C + zw)(l + w)) _ O’RO 7T(C-21 -+ (121) 7Td11
T 4X2Puw(w — id) P(1+ iw) 2 4AP(1 + iw)
" 1 0QCNy  2m%0¢Qd), a¢Qdy \?
4P(1 + w?) (C% + w?) P(¢ —iw) ¢+ iw
+7Td11(3/\2 _ ].) 7T2O'CQ(/\(Z31._ 2([:“) _ WUCQ({U e (A129)
4 P(¢ + iw) 4P(¢ + iw)
c - —73(¢ + iw)(1 + iw) oRy w2
' 422 Pw(w — i6) P(l 4 iw) [2P2(1 + iw)(w + 2iw)
71'(111 TTQO'CQ/\((ZQ;I + 2([21)
—_—— dor1 /21 —
DP(1+iw) " 21/2} P(C +iw)
+UCQd%1X2 UCQ/\?T.(ZU.) _ mdy (38X — 1) . (A.130)
¢+ iw 4P(C + iw)? 4\
A.2.2 Case Il
In Case II, when
C=m™*%, Q = mt?Q, (A.131)

for fixed 0,(,Q and 0 < k < 2, the limits in equations (A.96)-(A.111) are replaced by

¢u = lim Lijc =0, (A.132)
¢ = lim ¢y == T — where © =47r2/15, (A.133)
m—00

P21+ i) (& + 2iw)



Appendix A. Normal form coefficients 175

631 = n%l_l)lgo L’T;:Cg = 0, (A134)
6'41 = mh—l)lgo Cq4 = 0, (A135)
& = lim Lind =0, (A.136)
& = lim ¢ =0, (A.137)
& = lim Lic; =0, (A.138)
~/ : ! 7T2
¢y = lim ¢ = ~ape (A.139)
dn = lim Lid) = —wi/ P, (A.140)
. 1
dy = lim dy = ———r, Al41
2 a0 2 47 P(1 + &2?) ( )
; 2720\
dy = lim LMdy = —— 2 (A.142)
m—roo CQPW
dy = lim dq=0, (A.143)
Iy = lim Lydy =0, (A.144)
dy = lim &y =0, (A.145)
dy = lim Lidy =0, (A.146)
y2
w = lim dy = 5P’ (A.147)

where P, and X satisfy (2.72)-(2.74). If k& = 2 in (A.131), all the limits given by
(A.132)-(A.147) are the same, except for ds;. In this case (A.146) is replaced by

A

dgy = lim dy =
41 m-—-00 4

If k> 2, dy; becomes unbounded as m — 0o, and this in turn will imply that Cs, Cy,Cs
and Cg become unbounded. Therefore we only consider the Case II with & < 2. Then

(A.135)—(A.115) imply that

25CQAE,
dim L7Dy = — lim LDy = ”—(;C]%d—ﬁl (A.149)
lim LNE = — lim LnEy = —7A&, /2, (A.150)
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m
n{lm Ly

and

hm L’"Dl = — hm Lng

lim L E1 =— lim L"E; =

m—o0

m—roo

lim L7 D2=— lim L D4 =

Ta(QNE,
Dy=— lim LDy = ———22A1
27T e 2P%io
lim L'Ey, = lim LME; =0,
m—oo m—»o0

4w
—nAd), /2 — md3/4,

(x2/P) { _m0¢Q(—dy + (2/N)dy;)
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(A.151)

(A.152)

(7] P) {UCQ(_‘Z:“ +2Mdy) mdy /2} (A.153)

(A.154)

m—oo m—oo 1]5(;)
7T(lv11(/v\2 - ].)
_maA m DU s
432 (8.155)
27
lim L’"E = — hm L'"E4 = _I .d,“.
m-—+00 m-— 8w

However, for k£ = 2 we have

lim L"‘Dl =

m-—od

— lim L7 D3 =

m—oo

lim L’"El =

m—00

— lim L"’Eg =

LM —oco

lim L'”Dg =

m-—>00

— lim L™ D4 =

m—00

™/ P) 1o

(" i

"”;\((le + (7.41) - ’/T(Z31/4,

—775\(612“ + (Z41) e 7T(i31/4,

42
(x2/P) { w20 (Q(—ds, + (VQV//\)(dill) + da)
1P
7T(111(/\2 - 1)}
42 ’

{UCQ(—'J:n +4Mdy +du) 7cm11/2}

2/ ) {a(Q(—cI31 + 45\((1211 + dyy1)) _ 7rci11/2} ’

(A.156)

(A.157)

(A.158)

(A.159)
(A.160)

(A.161)

(A.162)

and this implies that the limiting behaviours of the normal form coefficients are qualita-

tively different from those in Case I, and in Case II with 0 < k < 2, since dy; is not real
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for k = 2. In fact it is easy to show that when k = 2 (A.157)-(A.162) imply that

lim Cy# lim C4, and lim C3# lim Cs.
m—o0 m-—o0 m—=00 m-—00

(A.163)

unlike in Case I, and in Case II with 0 < k < 2. For this reason, from now on we restrict

ourselves in Case IT to only 0 < k < 2.

We also have

. m : m . UCQ(CI:H + 2;\(Z-’ll)
i, LDy = = lim L5Ds = —(WP){ "
Jim LnFy = = lim LnEy = —nldy /2 + nds /4,
. . . (w2 I 2/\)d
lim LDy =~ lim LD, = (n%/P) {” Qs+ (2/du)
m—0o0 m—00 ZP(I)
ﬂ(zll(VQ - 1)
42 ’
lim L7B, = — lim LME, = —Tdu
mE—)nf.lvo m=2 = _—ml—l&lgo m=4 =T 415
From (2.55) we get
2 . " .
lim C,, = lim C_’,,H_1 = ZT (1 +.zw)z ’
m—00 m—00 2)\213(@ _ Z(O’ + 1))

Now using (A.132)-(A.147) and (A.149)-(A.150) we finally get

lim C; = lim C;=A+ B,

Lm0 L —o00

lim C, = lim C;= A,

LMoo Lin—oo

lim C3 = lim Cg3=C,

L Soo Lm—Soec

where
o w20 [ 2
ANPU O —i(o +1)) [4P(1+a?2) * 2P2(1 +10) (& + 2i0)

oCQm(1 + i)
83 P3 (& — i(o + 1))’

- mzu/2} (A.164)

(A.165)

(A.166)

(A.167)

(A.168)

(A.169)
(A.170)
(A.171)

(A.172)
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fi - _ i7T20R0 71'(5'21 + Ci?l) WJ]I _ 1
4X2P2(& — i + 1)) 2 4AP(1 +iw) = 4P(1 +&?)
_ 7T2(1 + Z(L')Z 7T20'CQ(2VC/41 - QCZ“ + 5\(Z31) + WUCQ(ZU
4PN2(0 — i(o + 1) i P 4P?
W(211(35\2 — 1) ;\20'<ng1
& im20 Ry w2 ndyy + mdy
C4ANPw —i(o + 1)] |2P2(1 + o) (@ + 2i0) 4AP(1 +i0) = 2
_ 7T2(1 + Z(IJ) 7r O'CQ)\((Z31 + 2(2’41) _ (Z 1(35\2 - 1)
4PX2(& —i(o + 1)) iPo 4
o(Qd'y N2 o(QArdy;
- — - . Al
+ w 14 Pw? (A.174)
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Numerical values of normal form coefficients

In this section we give more numerical results. In Tables B.1-B.6, numerical values in
Case I of normal form coefficients for o = 1,( = .1 and for Q = 72, 10*7? and 10572 and
for increasing values of m, are given. As in Chapter 4, the symbols oo in the tables show
the corresponding values of coefficients as m — co. In our numerical calculations we have
also calculated the values of Cy, C5 for a wider set of parameter values (i) 0 = 1,{ = .01,
(ii) 0 = 1,( = .5, (iii) ¢ = 1075, ¢ = .01 and increasing values of @) and m. We have also
considered, for fixed (, a decreasing sequence of values of ¢ and an increasing sequence of
values of () such that Pjw;, j = 1,2 remains fixed. Because of lack of space we give only
a sample of these numerical calculations. In all of these calculations we find that Cg
and Csp are negative. Because the numerical calculations of Cy and C; were very time
consuming, we have looked at the values of Cyp — Cyp for large m for several different
set of values of ¢,( and Q. In all of these calculations we found that Cyr < 0 and
Cir — Cop > 0. These values are important in stability results of Chapter 5. We also

give another sample of our numerical calculation of normal form coefficients in Case II.

179
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Table B.1: Normal form coefficients (Case I) for o = 1,{ = .1, Q = 2.

m 2L, /m | R, 100q, 100a,
1 2.007 ]950.3 1 .1822 —.1517:( .2871 — .8320¢
101 1.407 | 811.5 | .2555 — .2828: | .5720 — .2881:
10001 1.400 | 811.5 | .2563 — .2854: | .2563 — .28541
100001 | 1.400 | 811.5 | .2563 — .2854: | .2563 — .28541
o0 1.400 | 811.5 | .2563 — .28541 | .2563 — .2854:
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Table B.2: Normal form coefficients (Case I) for 0 = 1,{ = .1, @ = 72 (continued).

m LZbag | Lybyy | Loy
1 —2.882 | 5294 | 3.942 | —2.8277
101 —3.803 { 3.927 { 3.379 3.337
10001 | —3.909 | 3.910 | 3.358 3.358
100001 { —3.910 | 3.910 | 3.358 3.358
00 -3.910{ 3.910 { 3.358 3.358

Table B.3: Normal form coefficients (Case I) for 0 = 1,{ = .1, Q = 72 (continued).

m Cl CQ C4 C5
1 —.3061 + .7467: | —1.868 — .4878: | —1.714 — .31827 | —.6399 + .3554¢
101 —.4912 4+ .6478: | —1.673 — .3706¢ | —1.665 — .3708¢ | —.4973 + .6422:
10001 | —.4942 + .6451z | —1.668 — .37067 | —1.667 — .3706: | —.4943 + .6450:
100001 | —.4943 + .6450: | —1.668 — .3706: | —1.668 — .3706¢ | —.4943 + .6450:
o0 —.4943 4 .6450z | —1.668 — .3706¢ | —1.668 — .3706¢ | —.4943 + .6450:
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Table B.4: Normal form coefficients (Case 1) for o = 1,{ = .1, Q = 10*72.

m 2L, /m | 1R, 1000a, 1000a,
1 .6145 7596 | .2637 — .7716¢ | .5153 — .5004:
101 4229 6919 | 4417 — .7250¢ | .4460 — .7203:
10001 .4208 6919 | 4438 — .72271 | .4439 — .7226¢
100001 .4208 6919 | 4438 — .7227:1 | .4439 — .72271
o0 4208 | 6919 | 4439 — .7227¢ | .4439 — 72271
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Table B.5: Normal form coefficients (Case I) for 0 = 1,{ = .1, Q = 10*n? (continued).

m Lj{lb”g L?nb;yg Lm b11 Lm bg[

1 —-5.734 | 15.91 | 95.51 | 204.7
101 —9.839 | 9.989 | 124.6 | 1264
10001 | —9.913 [ 9.915 | 125.5 | 125.5
100001 [ —9.914 | 9.914 | 125.5 | 125.5
00 —-9.914 { 9914 | 1255 | 1255

Table B.6: Normal form coefficients (Case I) for o = 1,( = .1, Q@ = 10*7? (continued).

m Cl CQ C4 C5
1 —.0045 + .0211¢ | —.0132 + .0528: | —.0209 + .0349: | —.0213 + .0274:
101 —.0115+4 .0259: | —.0260 + .0625: | —.0222 4 .0632: | —.0117 4 .0261
10001 | —.0116 + .0260: | —.0242 + .0632¢ | —.0241 4 .0632: | —.0116 + .0260:
100001 | —.0116 + .0260: | —.0242 + .0632: | —.0242 4+ .0632: | —.0116 + .0260:
0o —.0116 + .02607 | —.0242 + .0632¢ | —.0242 4 .0632: | —.0116 + .0260:
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Table B.7: Normal form coefficients (Case I) for ¢ = 1,( = .1, Q = 10572,

m 2L, /m | 107"R,, 10%a, 10%a,
1 2778 9795 .1430 — 1.0887: | .4582 — .9322:
101 .1904 .5651 2873 —1.071: | .2922 — 1.068:
10001 .1895 5651 4.2897 — 1.070¢ | .2898 — 1.070:
100001 | .1895 5651 2897 —1.070¢ | .2898 — 1.070:
o0 .1895 5651 2898 — 1.070: | .2898 — 1.070¢
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Table B.8: Normal form coefficients (Case I) for ¢ = 1,{ = .1, Q = 10%7? (continued).

m L;anl R LzbgR Lmbu Lmb-y

1 —2.938 | 13.943 | 245.8 | 825.4
101 —6.163 | 6.308 | 351.3 | 359.3
10001 | —6.234 | 6.236 | 355.2 | 355.3
100001 | —6.235 | 6.235 | 355.3 | 355.3
o0 —6.235 | 6.235 | 355.3 | 355.3

Table B.9: Normal form coefficients (Case I) for ¢ = 1,{ = .1, Q = 10572 (continued).

m

100C4

100C,

100C;

100Cs

1

—.06848 + .5881:

—.2550 + 2.072:

—.3500 + .8118:

—.7566 + 1.603:

101 —.2637+ 1.049: | —.4901 + 1.936: | —.4136 + 1.928: | —.2730 + 1.064¢
10001 | —.2683 4+ 1.056z | —.4545+ 1.948¢ | —.4536 + 1.948: | —.2684 + 1.056:
100001 | —.2685+ 1.057¢ | —.45404 1.948: | —.4540 + 1.9487 | —.2685 + 1.057:
o0 —.2685+ 1.057¢ | —.4540 4 1.948: | —.4540 + 1.948¢ | —.2685 + 1.057¢
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Table B.10: Normal form coefficients (Case I) for 0 = 1,{ = .01, Q = 2.

m

Cy

Cs

1

—.2247 4+ 1.814

—.5729+ 1.7242

11

—.3288 + 1.801¢

—.3711 4+ 1.792:

101

—.3468 + 1.797:

—.3516 + 1.796:

1001

—.3489 4+ 1.7971

—.3494 + 1.797:

10001

—.3491 4+ 1.797:

—.3492+ 1.7971

—.3491 4+ 1.797¢

—.3492 + 1.797:

Table B.11: Normal form coefficients (Case I) for ¢ = 1,{ = .01. Q = 10072

m

Cy

Cs

1

—.0837 4 .2139:

—.0755 4 .1997:

11

—.0802 + .2078:

—.0791 4 .2059:

101

—.0798 + 20692

—.0796 + .20672

1001

—.0797 4+ .2068:

—.0797 4+ .2068:

—.0797 4 .2068:

—.0797 4 .2068:

Table B.12: Normal form coefficients (Case I) for ¢ = 1,{ = .01, Q = 10*x2.

m

10C,

10C5

1

—.1006 + .4180:

—.2597 4 .3921:

11

—.1705 + .4252:

—.1926 + .4218:

101

—.1803 + .4240:

—.1828 4 .4236¢

1001

—.1814 + .4238:

—.1817+ .4238:

10001

—.1816 + .4238:

—.1816 + .4238:

—.1816 + .4238:

—.1816 + .4238:
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Table B.13: Normal form coefficients (Case I) for 0 = 1,{ = .5, Q = 10072,

m

C

Cs

1

—.06479 + .1288:

—.08207 4 .1111¢

11

—.07989 + .1154:

—.08240 4 .1119¢

101

—.0811+ .1138:

—.0814 + 11342

1001

—.0812 + .1136:

—.0812 + .1135:

10001

—.0812 4+ .1136:

—.0812 + .1136¢

—.0812 + .1136:

—.0812 + .1136¢

Table B.14: Normal form coefficients (Case I) for ¢ = 1,( = .5, Q = 10%z2.

m 1001 1005
1 —.0904 + .3310z | —.4095 + .5270:
11 —.2110 + 4417¢ | —.2559 + .4681:¢
101 | —.2306 + .4540: | —.2357 + .4570:
1001 | —.2329 + 4553: | —.2334 + .4556:
10001 | —.2331 4 .4555¢ | —.2331 + .4555¢
oo 2331 + 4555t | —.2331 + .4555¢

Table B.15: Normal form coefficients (Case I) for o = 1,( = .5, Q = 10572

m

10C

10C5

1

—.01411 4 .1185:

—.1538 + .3537:

11

—.0476 4+ .2103¢

—.0476 + .2103:

101

—.0046 + .2242:

—.0565 + .2278:

1001

—.0555 + .2258:

—.0557 + .2262:

10001

—.0557 + .2262:

—.0557 + .2262:

—.0556 + .2261:

—.0556 + .2261¢
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Table B.16: Normal form coefficients (Case I) for 0 = 1075,¢ = .01, Q = 4000072.

m

Cy

Cs

1

—2.298 + 7.3271

—-6.313 + .8211:

11

—4.286 + 6.332:

—4.938 4 5.6762

101

~4.578 4 6.069:

—4.652 + 5.9941

1001

—4.611 + 6.036¢

—4.618 + 6.028:

10001

—4.614 4+ 6.032:

—4.615 + 6.0312

100001

—4.6154 6.032:

—4.615 4 6.032:

o0

—4.615 4 6.032¢

—4.615 + 6.032:

Table B.17: Normal form coefficients (Case I) for o = 1076, ¢ = .01, Q = 10572

m

G

Cs

1

—.0644 + 1.263:

—.2487 + 1.232:

11

—.1289 + 1.258:

—.1314 + 1.257:2

101

—.1300 + 1.258:

—.1303 + 1.258:

1001

—.1301 + 1.258:

—.1301 4 1.258:

—.1301 4 1.258z

~.1301 + 1.258:

Table B.18: Normal form coefficients (Case I) for o = 107%,¢ = .01, Q = 10872

m

100C,

100Cs

1

—.1788 + 12.66:

—.4366 + 12.62:

11

—.2577+ 12.65¢

~.2889 4+ 12.64:

101

—.2710 + 12.652

—.2746 + 12.65:

1001

—.2726 + 12.65:

—.2730 4+ 12.65¢

10001

—.2728 +12.65

—.2728 + 12.65:

—.2728 +12.65

—.2728 + 12.65:
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~
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Table B.19: Normal form coefficients (Case II) for o = 1,(=.01,Q=n2 k=1.
m 2L,,/m | Ry, 10%a; 103a,
1 2.024 | 786.5| 1.975.4116¢ | 3.133 —.9750:
101 1.419 1660.3 | 2.802 — .1252: | 2.821 — .12601
10001 1412 |659.1 | 2.814 — .0722: | 2.814 — .0722:
100001 1.412 | 659.0 | 2.814 — .0681¢ | 2.814 — .0681:
100000001 | 1.412 |658.9 | 2.814 — .0663: | 2.814 — .0663¢
) 1.412 |658.9 | 2.814 — .06637 | 2.814 — .0663:
Table B.20: Normal form coefficients (Case II) for ¢ = l,é = .01, Q =72 k=1
(continued).
m L20ig [ Lo bor | Lbis | Luboy
1 —2.597 | 4.794 | .8240 | —.6923
101 —3.484 | 3.515 | 4655 | .4673
10001 —3.496 | 3.497 | .4657 | .4657
100001 | —3.496 | 3.496 | .4657 | .4657
100000001 | —3.496 | 3.496 | .4656 | .4656
oo —3.496 | 3.496 | .4656 | .4656
Table B.21: Normal form coefficients (Case II) for ¢ = 1,{ = .01,Q = 72, k = 1
(continued).
m Cl Cg C4 C,5
1 —.2247 4+ 1.8147 | —6.969 — 2.731¢ | —12.79 — 4.230¢ | —.5729 + 1.724¢
101 —.1133+1.773¢ | —24.93 — 1.101z | —23.02 — 1.050¢ | —.1135+ 1.773:
10001 | —.0909 +1.771¢ | —32.18 — 1.2907 | —31.94 — 1.284:¢ | —.0908 + 1.771i
100001 | —.0886 + 1.7717 | —33.21 — 1.3522 | —33.19 — 1.3517 | —.0886 + 1.771:
10541 | —.0883 4 1.7717 | —33.33 — 1.359¢ | —33.33 — 1.359¢ | —.0883 + 1.771:
00 —.0883 +1.771¢ | —33.33 — 1.359: | —33.33 — 1.359: | —.0883 + 1.771:¢




Appendix B. Numerical values of normal form coefficients

Table B.22: Normal form coefficients (Case II) for o

(continued).

= ]_,5 =
m C3p Cyy Csr Cs1
1 9.188 | —4.566 | 11.40 { —10.87
101 2491 | —.6175 | 22.91 | —.6644
10001 |32.11 | .1286 |31.86 | .1230
100001 | 33.14 | .1968 | 33.12 | .1963
10°+1]33.26| .2044 | 33.26 | .2044
oo 33.26 | .2044 | 33.26 | .2044
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