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Abstract

We study multiple Hopf bifurcations that occur in a model of a layer of a viscous, electri-

cally conducting fluid that is heated from below in the presence of a. magnetic field. We

assume that the fluid flow is two-dimensional, and consider the effects of sidewalls with

stress-free boundary conditions. Our model partial differential equations together with

the boundary conditions have two reflection symmetries. We use center manifold theory

to reduce the partial differential equations to a two-parameter family of four-dimensional

ordinary differential equations. We show that two different normal forms are appropri-

ate, depending on the sizes of certain magnetoconvection parameters for large aspect

ratios. AVe denote the two normal forms by "Case I" and "Case II". In both cases we

prove the primary Hopf bifurcation of standing wave (SW) solutions, and we prove the

existence of secondary Hopf bifurcations of invariant tori from the SW solutions. We

prove that the tori persist in 'wedges' in the parametric plane. In Case II we show that

there are also secondary Bogdanov-Takens bifurcation points. Using this, we show there

are additional secondary and tertiary bifurcations of periodic solutions and invariant tori,

and also argue that generically, there exist transversal homoclinic and heteroclinc points,

and consequently open regions of parameter space that correspond to chaos of chaotic

regions, and show the existence of quasiperiodic saddle-node bifurcations of invariant

tori. Also, we show that in this case the system is a small perturbation of a system with

the symmetries of the square, as the aspect ratio approaches infinity.
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Chapter 1

Introduction

To improve his living conditions and satisfy his curiosity, mankind needs to find, under-

stand and study laws governing nature. In particular, differential equations modelling

natural phenomena have been shown to be extremely useful. The study of differential

equations themselves has produced an extensive theory, which in turn motivated more

abstract mathematical theories such as the theory of Lie groups, differential geometry

and functional analysis.

For one with little background in differential equations, the subject might be seen

as a collection of tricks and hints for finding solutions. But with a little acquaintance

with the theory it becomes clear that, apart from linear equations, it is rarely possible to

integrate systems of differential equations and find the solutions explicitly, while theorems

on existence and uniqueness of solutions do not convey much information about the

behavior of solutions. This shows the importance of the ideas and methods used in the

qualitative study of solutions, or dynamical systems.

The theory of dynamical systems has a rather short history. It can be considered to

have been originated by Poincare, who in the last decade of the nineteenth century revolu-

tionized the study of nonlinear systems of differential equations, by combining techniques

of geometry and topology with analytic methods to study qualitative properties of solu-

tions. Around this time, Liapunov also made important contributions to the qualitative

study of differential equations. The work of Poincare and Liapunov was continued and

furthered by Birkhoff in the first part of this century. Birkhoff realized the importance

1



Chapter I. Introduction^ 2

of the study of maps and emphasized discrete dynamics, since the qualitative study of

differential equations can often be reduced to the study of the iterates of an associated

map (the Poincare map). Also, many problems and phenomena in the qualitative study

of differential equations can be seen in their simplest form in the study of discrete dynam-

ical systems. After Birkhoff, the study of dynamical systems was relatively inactive in

the West. However, Soviet mathematicians such as Andronov and Pontriagin continued

to study differential equations from the qualitative point of view [10].

In the early nineteen-sixties there began a great resurgence of interest in dynamical

systems, mainly due to influence of Smale, Peixoto and Moser and in West, and Kol-

mogorov, Anosov and Arnold in the Soviet Union. In his important survey article, Smale

[43] reviewed the concepts of dynamical systems developed by many mathematicians

(such as Anosov, Peixoto and Smale himself) during this period, and outlined a program

that was followed by many mathematicians, and which led to a good understanding of

a class of dynamical systems known as Axiom A or hyperbolic systems. His study of

Van der Pol differential equations motivated Smale to construct a two-dimensional map,

with chaotic dynamics, which is now known as the Smale horseshoe. This example, stud-

ied with the help of differential topological techniques and symbolic dynamics, led to

the study of chaotic dynamics in many other systems. In other significant mathemati-

cal work, Kolmogrov, Arnold and Moser used hard analysis to develop their celebrated

K.A.M. theory on the persistence of certain solutions (invariant tori) under perturbations

of integrable Hamiltonian systems. In addition, scientists studying nonlinear models of

natural phenomena came to realize the power and beauty of the geometric and quali-

tative techniques developed during this period, and at the same time raised interesting

problems of their own, which provided new sources of motivation for the theory beyond

the traditional questions arising from mechanics. Lorenz [28], a meteorologist, presented

an analysis of system of three quadratic ordinary differential equations which eventually
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created great interest in chaotic dynamical systems for mathematicians as well as scien-

tists from other disciplines. The advancement of computer graphics has also contributed

to great interest in dynamical systems among non-mathematicians. For more information

in the history of dynamical systems see [1, 16, 10, 43, 2].

1.1 Basic concepts

A first step in the qualitative study of a system of differential equations is to study the

dynamics of the system close to its fixed points or periodic orbits, since these represent

stationary or repeating behavior. Since the theory of linear equations is well-developed,

one can consider the linearization of the system about its fixed points or periodic orbits

[16]. If the linearized system is hyperbolic (i.e., all the eigenvalues of the linearized

system have non-zero real parts), then one can apply the Hartman-Grobman theorem

[16] to show that the nonlinear system is topologically equivalent to the linearized system

in a small neighborhood of the fixed point or periodic orbit. However if the linearized

system is non-hyperbolic (i.e., the linearized system has at least one eigenvalue with zero

real part), then the linearized system does not not give enough information about the

nonlinear dynamics. In this case one uses center manifold theory [20, 5, 16] to establish

the existence of a locally invariant (center) manifold of solutions for the original nonlinear

system and then study the dynamics close to the fixed points or periodic orbits restricted

to the center manifold. If the rest of eigenvalues of the linearized system have negative

real parts, then the center manifold is exponentially attracting, and the product of the

dynamics restricted to the center manifold with a linear exponential decay is locally

topologically equivalent to the dynamics of the original system [5]. The center manifold

can be approximated by its Taylor series to finite order, and this approximation is usually

sufficient to determine the dynamics on the center manifold. To be more precise, consider
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a system of ordinary differential equations

= Bx + f(x,y),

= Cy + g(x, y),

where (x, y) E Rn x Rni, and B and C are 71 X n and in x m matrices whose eigenvalues

have zero real parts and negative real parts, respectively. We assume that the nonlinear

functions f and g vanish along with their first derivatives, at the origin. Then the center

manifold theorem implies that there is a locally invariant center manifold, which can be

represented by a local graph

= {(x , y) : y = h(x), h(0) = Dh(0) = 0) ,

where h : U^Ft' defined in some neighborhood U C R."2 of origin. The dynamics of

(1.1) at the origin is locally topologically equivalent to

= Bx + f (x, h(x)),^ (1.2)

= Cy.

Thus the local study of (1.1) is reduced to the study the n-dimensional system

= Bx + f (x,h(x)).^ (1.3)

The center manifold function h(x) satisfies

Dh(x)[Bx + f (x, h(x))] — C h(x) — g(x , h(x)) = 0,^(1.4)

which just expresses the local invariance of the center manifold. Using the center manifold

reduction, the dimensions of the problem can be reduced considerably. The relation (1.4)

can be solved approximately for h(x) by expanding in a Taylor series, collecting terms of

like powers, and then solving term by term for each Taylor series coefficient of h(x). For

proofs of the above statements, see [5, §9.2].
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We illustrate these ideas with a simple example [16]. Consider the two-dimensional

system

= xy,^ (1.5)

= —y + ax2,

and observe that one of the eigenvalues of the linearization about the origin of (1.5) is

zero, while the other eigenvalue is negative. By the center manifold theorem, there exists

a differentiable one-dimensional center manifold y = h(x) such that h(0) = 0, le (0) = 0.

By substituting the Taylor series

h(x) = ax2 + bx3 + ,

into (1.4), i.e.,

(x)[xh(x)] + h(x) — ax2 = 0,

we obtain h(x) = as2 + 0(x4). Thus the reduced system representing the dynamics on

the center manifold is

= xh(x) = ax3 + 0(x5).^ (1.6)

It is easy to see that the fixed point x 0 in (1.6) is asymptotically stable if a < 0 and

unstable if a > 0. Therefore (x, y) = (0,0) in the system (1.5) is asymptotically stable if

a < 0 and unstable if a > 0.

If after a center manifold reduction the reduced system has dimension greater than

one, the system can be simplified further by using the method of Poincare-Birkhoff normal

forms. The basic idea in normal form reduction is to construct appropriate near-identity

nonlinear coordinate transformations which annihilate certain nonlinear terms in the

Taylor expansion of the system. The method of normal forms is of fundamental impor-

tance in local theory of differential equations. For a discussion of normal form theory,

see [1, 16].



Chapter I. Introduction^ 6

The methods of center manifold theory and Poincare-Birkhoff normal forms are im-

portant not only in the study of a single system of differential equations, but also in

bifurcation theory, where one attempts to analyze a parametrized family of systems of

differential equations. One concentrates on bifurcation points, i.e., those parameters for

which the systeni is structurally unstable (a dynamical system is structurally stable if

under any small perturbation the perturbed system is still topologically equivalent to

the original system). Thus arbitrarily small perturbations of parameters from a bifurca-

tion point will produce topologically inequivalent dynamics. One attempts to find and

classify all the topologically inequivalent dynamics possible when parameters are varied

in a neighborhood of the bifurcation point. If the analysis is local in a neighborhood

of a fixed point or periodic orbit, then one can use center manifold theory and normal

forms to simplify the analysis. An illustrative example is that of Hopf bifurcation in a

one-parameter family. This bifurcation is associated with pure imaginary eigenvalues for

the linearization, and periodic solutions for the nonlinear system. See [16] for more infor-

mation. If two or more parameters are varied, then more degenerate bifurcation points

can be found, and this typically enables one to describe a wide range of behaviors using

local analysis. This area of research has been very active in recent years, and there are

still many open questions. See [16, Chapter 7] for a survey of two-parameter bifurcations.

There exists a parallel theory for discrete dynamical systems, i.e., qualitative study of

iterated maps.

Mathematical models of many physical problems have some sort of symmetry. The

symmetry can be intrinsic to the physical system, or come from the idealization of an

approximate symmetry. Symmetry leads to more degenerate behavior, yet at the same

time the presence of symmetry can simplify the analysis. The books of Golubitsky et al.

[13, 15] give a. systematic treatment of bifurcation with symmetry from the group theory

point of view (see also the references therein).
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One can use dynamical system methods to study certain partial differential equations.

For example, to study local bifurcations in a system of parabolic partial differential

equations, one usually find the parameter values for which the linearized system has zero

or pure imaginary eigenvalues about its steady state solution. Then by considering the

system as an evolution equation in a Hilbert space, or more generally, a Banach space,

one can then apply center manifold theory for infinite-dimensional systems. One then

obtains a finite-dimensional system of ordinary differential equations, and then one can

study the bifurcation of these reduced equations. If the system of partial differential

equations have some symmetry, then the center manifold reduction can be done so that

the reduced system of ordinary differential equations has the corresponding symmetry.

1.2 Oscillatory convection in fluids and Hopf bifurcations with symmetry

In this thesis, we study the nonlinear dynamics of a model of a horizontal layer of a

viscous, electrically conducting fluid that is heated from below in the presence of a

vertical magnetic field. Such situations arise in astrophysics, geophysics and in laboratory

experiments. We consider two-dimensional motion near the onset of oscillatory (time

periodic) convection. Unlike previous studies of magnetoconvection, we consider the

effect of sidewalls, especially distant ones. The magnetoconvection model consists of

a system of partial differential equations, together with boundary conditions. Several

parameters occur naturally in the model, and these represent physical quantities.

In models of two-dimensional convection (e.g., magnetoconvection, convection in bi-

nary fluid mixtures) the symmetry group 0(2) of rotations and reflection of the circle

is often present. This symmetry is due to equivariance of the model partial differential

equations (e.g., Navier-Stokes equations) under spatial translations and reflections, and
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the use of periodic boundary conditions. The theory of Hopf bifurcation in the pres-

ence of 0(2) symmetry (e.g. [14, 29]) has been successful in accounting for a variety of

phenomena observed in experiments, especially on binary fluid mixtures. As the fluid

layer is heated from below with increasing intensity, in these experiments the motionless

conduction state loses stability to oscillatory modes and appears to undergo Hopf bifur-

cations as time-dependent convection onsets. Spatio-temporal patterns such as standing

waves and travelling waves have been observed. The corresponding experiments in mag-

netoconvection are more difficult, and we know of no experiments corresponding to the

physical situation we study in this thesis. However, see [39, 40] for descriptions of related

experiments in magnetoconvection.

In the dynamical system analysis of this phenomenon, the normal form describing this

bifurcation has 0(2) symmetry (e.g., [15]). In this bifurcation, two branches of symmetry-

breaking solutions, denoted by standing waves (SW) (a family of solutions with reflection

symmetries) and travelling waves (TW) (solutions with spatio-temporal symmetries) are

created [29]. While it can be hoped that the idealizations that are responsible for the

0(2) symmetry (infinite layer, periodic boundary conditions) will not qualitatively affect

the dynamics much, it is interesting and useful to consider the effect of breaking the

symmetry of the system, especially if the corresponding idealization is not satisfied by

the real system. For example, periodic boundary conditions are an approximation to

more realistic models with only reflection symmetry, due to presence of distant sidewalls

which break the continuous translation symmetry of 0(2).

To consider the effects of sidewalls, one attempts to reduce the model to a simpler

one that captures the dynamics of the original system, at least under certain restrictions.

There are several ways to achieve this. One traditional approach has been to use the

formal method of multiple scales which results in a simplified partial differential equation

for a slowly varying envelope function [24, 9]. However, there is no rigorous explanation
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for validity of this formal method, and in fact [33] showed that the bifurcation results

of [9] using this method are only valid for very small range of parameters. To account

for the effect of sidewalls this model can be considered as symmetry breaking pertur-

bation to the idealized system. Another commonly used method is a formal Galerkin

reduction, by systematically using only finitely many modes of a Fourier expansion of

the solutions. This method usually is justified by physical intuition but often can be

made rigorous mathematically. To reduce the problem to a finite dimensional system of

ordinary differential equations in a rigorous way, the original system of partial differential

equations is considered as an evolution equation in a Hilbert space (e.g. [36, 37, 38]).

At critical parameter values, the linearized partial differential equation has only finitely

many eigenvalues with zero real parts. If the rest of eigenvalues at these parameter values

have negative real parts, then using center manifold theory [20, 47], the existence of an

attracting center manifold can be proved, and the evolution equation restricted to the

center manifold leads to a finite-dimensional system of ordinary differential equations.

The reduced system carries the symmetry of original system, and it can be considered as

a system with broken 0(2) symmetry (e.g. [32]). The sidewalls destroy the translational

symmetry S0(2), but keep a reflection symmetry Z2. Such an approach has been taken

by several authors, and in particular has been used to describe the effects of distant

sidewalls on the onset of steady convection in the Rayleigh-Benard problem [33]. For

0(2)-equivarient Hopf bifurcations, the effects of various different symmetry breaking

perturbations have been considered in [29, 34, 6].

1.3 Overview of the thesis

We consider our magnetoconvection problem in a rectangular region

QL = {(x,y) : —L < x < L, 0< y < 1},
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with aspect ratio 2L, and we use boundary conditions which are extensions of the

stress-free boundary conditions commonly used in the regular Rayleigh-Benard convec-

tion problem [48]. With these boundary conditions the magnetoconvection problem has

Z2 e Z2 symmetry. A parameter R (Rayleigh number) gives a measure of the inten-

sity of heating from below. Using standard methods (e.g. [46]), we express the system

as an evolution equation in a Hilbert space. We prove that the spectrum of the lin-

earization K(R, L) about the trivial solution of the evolution equation, consists entirely

of isolated eigenvalues with finite multiplicities. Along a particular family of curves

R Rfiz(L), 771 7-= 1, 2, 3, ... (curves of values of the Rayleigh number R as a function of

half the aspect ratio L), the linearized operator has pure imaginary eigenvalues. Two con-

secutive curves Rni(L), Rm+i(L) intersect at a single point defining a particular value of

L Lm. At such a point of intersection K will have a double Hopf point, as two different

spatial modes simultaneously become unstable. We prove that for large enough imposed

magnetic fields, at (R, L) (Rm(L„,),Lm) all the rest of the eigenvalues of K have neg-

ative real parts (Chapter 2). Then using the center manifold theory for parabolic partial

differential equations [20] we find a reduced parametrized family of four-dimensional ordi-

nary differential equations which represents the dynamics on an exponentially attracting,

locally invariant center manifold. By using normal form theory, we simplify the reduced

equation further. We show that for large L, depending on the size of other parameters

in magnetoconvection problem, two different normal forms, which we denote by Case I

and Case II, will be appropriate. Case II corresponds to convection with very strong

magnetic fields, in fluid with a very small ratio of magnetic diffusivity to thermal diffu-

sivity. Both the normal forms have a double Hopf point near 1 : 1 resonance (Chapter

3). After a long calculation, we find explicit expressions for the normal form coefficients

and their asymptotic behavior for large L, in both Cases I and II. We then evaluate

these coefficients numerically for some parameter values (Chapter 4, Appendices A and
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B). In both Cases I and II we prove the existence of primary Hopf bifurcations of two

families of standing wave solutions, which we denote by SW0 and SW„. Also, we prove

the existence of a secondary Hopf bifurcation of invariant tori from the SW solutions,

and the persistence of the tori in open regions ('wedges') in parameter space (Chapter 5).

For large aspect ratios in Case II, we also find more complicated dynamics. We prove the

existence of secondary Bogdanov-Takens bifurcations points at a particular parameter

values, and the existence of such bifurcation points implies more complicated dynamics

and leads to further bifurcations of invariant tori, existence of transversal homoclinic and

heteroclinic points, quasiperiodic saddle-node bifurcations of invariant tori, and conse-

quently the existence of open regions in parameter space for which the dynamics of the

system is chaotic. Also, we show in this case that the system is a small perturbation of

a system with D4 symmetry, in the limit as L approaches infinity.



Chapter 2

Oscillatory instabilities of magnetoconvection equations

In this chapter, we describe the physical basis of our problem, and perform some pre-

liminary analysis. In the first section, we present the partial differential equations and

boundary conditions that describe magnetoconvection in a two-dimensional layer. Then

in §2.2 we discuss the symmetry which the system enjoys. In §2.3 we discuss the lin-

earized stability analysis of the trivial, motionless solution of the magnetoconvection

equations and find that there are an infinite number of values of the aspect ratio 2Lin of

the layer, in = 1, 2, ..., such that the linearized equation has pure imaginary eigenvalues

and both "even" and "odd" eigenfunctions (oscillatory instabilities). In §2.4 we consider

the adjoint problem to the linearized eigenvalue problem, and compute its eigenfunctions.

Finally, in §2.5 we study some of the asymptotic behavior of the linearized system for

large aspect ratios.

2.1 Magnetoconvection equations

In this section, we consider the partial differential equations that describe the state

of an electrically conducting fluid, in the presence of an externally imposed vertical

magnetic field. The electrical conductivity of the fluid and the presence of magnetic

fields contribute to effects of two kinds. Due to the motion of the electrically conducting

fluid across magnetic lines of force, electric currents are generated and the associated

magnetic fields contribute to changes in the existing fields. In addition, fluid elements

carrying currents transverse to magnetic lines of force contribute to additional forces

12
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acting on the fluid elements. The equations describing this situation are (Chandrasekhar

[3]):

^at^
(1/p0)[vAu — pgey — VP + (1/R0)(V x B) x B1 — (u V) u,

OT
KAT — u • VT,

Ot
OB

71AB + V x(ux B) ,Ot
V • u = 0,

V • B = 0,

where A is the Laplacian operator, V is the the gradient operator, u is the fluid velocity,

p is the density, T is the temperature, B is the magnetic field, P is the pressure, ey is

the unit vector in vertical direction, g is the acceleration due to gravity, Po is the density

at some reference temperature To , v is the viscosity, K is the coefficient of thermomet-

ric conductivity, po the magnetic permeability, and 7/ is the magnetic resistivity. The

parameters g, ito ii are all assumed to be positive constants.

The first of the above equations is the equation of motion, and can be derived from

the conservation of momentum, while the fourth equation is the equation of continuity,

and can be derived from the conservation of the mass. We have used the Boussinesq

approximation, which treats the density p as a constant po except where it appears in

the external force in the momentum balance. The second equation is the equation of

heat conduction, and is obtained from the conservation of energy. The third and last

equations, which express the interaction between the fluid motion and the magnetic

fields, can be derived from Maxwell's equations. We assume that the density obeys an

Oberbeck-Boussinesq equation of state

p = pop. — a(T — TO],^ (2.2)

where a is the coefficient of thermal expansion, assumed to be a positive constant.

Ou

(2.1)
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We simplify this problem by assuming that u and b are constant in the z direction,

and we write u = (u, v) , where u is the horizontal component of the fluid velocity and

v is the vertical component. Similarly, we write the magnetic field as B = (B, By). We

assume that the fluid is confined between the two horizontal planes y = 0 and y = h (> 0)

and that the temperatures on these two planes are maintained constant at T = To on

y = 0, and at T = Ti on y = h, with To >

In the presence of a uniform, vertical magnetic field, the system (2.1)—(2.2) has the

trivial motionless solution

u(0) = (0, 0),

13(°) = (0, Bo),^ (2.3)

T"^To — (To — (yA),

P"^Po — PAY + a(To —^(Y2/2/1)].

Now we consider finite amplitude perturbations from the motionless solution defined by

B

T

P

=

=

=

B" + b,

T" + 0,

P(()) + \.

(2.4)

By resealing the variables as

= h , y =^t = (1/2/K)f, u = (K/h)ft,

X = (Povh1112), 0 = (To — T1)0, b = Bob,

and then "dropping the bars", we obtain

-57 = o- [Au — VN' + ROey + (Q (V x b) x (ell + b)] — (u • V) u,
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DO
at
ab
at

V • u

+ v u•VO,

(Ab + V x [u x (ey + b)],

=0,

(2.5)

V • b = O.

The parameters appearing in the convection equation (2.5) are all positive, and are

defined by

ya(To — T1)113
R =^(Rayleigh number),

4h2
Q =( Chandrasekhar number ),

Po Po lio v
a = v^( Prandtl number ) ,

=^k (magnetic Prandtl number).

Note that the Rayleigh number R is proportional to the temperature difference between

the lower (warmer) and upper (cooler) boundaries, and Q increases with the strength of

the imposed magnetic field.

Our system of equations is accompanied by boundary conditions. The simplest bound-

ary conditions to work with analytically are the extensions to magnetohydrodynamics of

the "stress-free" boundary conditions used for ordinary Rayleigh-Benard convection [3].

We assume that the fluid is confined to the rectangular region

L^( , y ) : 0 < y < 1,^L < x < LI ,^(2.6)

the temperature is kept constant at the upper and lower boundaries y = 0, 1, and the

sidewalls at x = L, —L are insulated. The total magnetic flux through the region remains

constant, and the normal velocity, together with the tangential components of both the

viscous and magnetic stresses vanishes on all boundaries. Thus

On^ Ob,v = 0 = br =^=0. oim y = 0,1,Oy Dy
(2.7)
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^017^09

^

x^-g-37 = ba.^3bY =0
Ox^' on = L, —L.

These boundary conditions do not correspond to a physical situation that is easily pro-

duced in a laboratory, but they are commonly used for computational convenience since

the eigenfunctions of the linear problem yield sines and cosines. Gibson [12] shows that

the criteria for the onset of instability are not substantially altered when more realistic

boundary conditions are adopted.

2.2 Symmetry

Symmetry can play an important role in the bifurcations of systems of differential equa-

tions, and has received much attention in recent years (see, e.g., Golubitsky et al.

[13, 14, 15]). System (2.5)-(2.7) possesses a Z2 e Z2 symmetry. To explain this fact, we

define the action J on the dependent variables corresponding to the reflection x —x

through the vertical midline x = 0 of the layer:

^

JO(t,x,^=^—x,^if 0 = n or bx,^(2.8)

^JO(t, x, y) = cb(t, —x, y)^if ç = v, v, 8 or by.

There is an additional symmetry, due to our use of the Boussinesq approximation, with

respect to the reflection y —> 1 — y about the horizontal midline = 1/2 of the layer. We

define the action /3 on the dependent variables corresponding to this symmetry by

.3 cb(t. , , y) = 0(t, x , 1 — y)
^

if 0= u, by or N.^(2.9)

,30(t,^—0(t,^—
^if o^v, 0 or b., .

The transformations .1, 13 generate a group of symmetries for equations (2.5) and (2.7)

that is isomorphic to the group Z2 e Z2. \\Te will exploit this symmetry in our treatment

of the onset of convection.
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2.3 Linear stability analysis

To analyze local bifurcations from the steady state solution of the system (2.5)—(2.7)

one first considers the linearized equation as an approximation to the original system.

We expand an arbitrary disturbance in terms of some suitable set of normal modes, and

examine the stability of the system with respect to each of these modes. In our case

we use Fourier modes which satisfy the boundary conditions. Then we seek solutions

4:1) = (u, v,O,bx,by) in the form

t) = (i)(x, Y) (2.10)

We will justify this formal stability analysis in Chapter 3. Using equations (2.5), (2.7),

and (2.10) and then linearizing, it is easy to see that a satisfies the following eigenvalue

problem with boundary conditions (2.7):

o-AU + a-CQ^—^— a —=
ay^Ox^0:r

AVa^-1-aRO—a 04),
0Y

At) + (2.11)
cz\b + Oft„. 

0y

„ ,

Dü(Aby
o

Oa^0i, = 0.
+ 0,y

0i)x^oby
0.

ar^ay

We will find two sets of solutions.

i) Even solutions ( m, even ):

= c1 sin(m7312L) cos(n7y),
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= c2 cos(m742L) sin( wry) ,

c3 cos(m/xx/2L) sin(n7y),

c4 sin(m71-42L) sin(wry),

= c5 cos(771742/) cos(n7y),

= c6 cos(mmr/2L) cos(1/7y).

(2.12)

ii)Odd solutions ( m, odd ):

Ii = c1 cos(mrx 2L) cos(wry) ,

= e9 sin(in,742L) sin(n7y),

= C3 sin(/n:7142.E) sin(n7y),^ (2.13)

= C4 cos(nrn-42L) sin(wry),

=C5 sin(m742L) cos(wry),

= c6 sin(trimr/2L) cos(n7y).

Substituting (2.12) or (2.13) into (2.11), we find in both cases that eigenvalues a must

satisfy the cubic equation

a3^ 2+ (a + ( +1)P„,„a

where

+

+

[711272aR
P',..;(a( + a + ( ) + an2(Q72

( 2.14)

4PL21 a,„„ 

'

,T12720.R(
an2(Q72pmn^+ a(P ^= °.4L2

=^2 ((in/ 2L)2 + i2). (2.15)

To simplify (2.14), we put

Q n 13;1;111= 9 71 971-^-

R = (2.16)
71- 2^9

a^=^s P111111
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so then s must satisfy

S3 + (0- +^1)S2 s [a + (qn, „ —^ ) + ((a + 1)]

+0-((1 —^n^g„) = o.^(2.17)

Since we are interested in Hopf bifurcation from the trivial solution, we look for pure

imaginary roots. Equation (2.17) will have pure imaginary roots s = ±ico„,„, and (2.11)

will have pure imaginary eigenvalues = ±iP,,,nconi„, if

^[(q.,^+ 11,
1•77. =^= (a + ()^+ 1^a

with

99^(7(qMn (1 — () 
WT:717)^+(- +^(a +1)

0-W7217,2(1 — () 

(a +

We require that co,2 > 0, which is satisfied if ( < 1 and

((1 + a)
(111111 > go = a(1 — ()

(2.18)

(2.19)

(2.20)

9
PT.,„ q0Q >  7 .1) 9 

n- 7i-

Remark 2.1 Equation (2.17) has a zero eigenvalue if

= 1 + q,,,„

which implies that (2.11) has a zero eigenvalue for parameters satisfying
4L2p72 (1);;?H, + 71272Q)

97^9
-171-

(see Figure 2.2). However, if Q is sufficiently large, the imaginary eigenvalues occur at

a lower value of the Rayleigh number, thus the onset of instability is through oscillatory

modes.

17 =-- R(L) =
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Now by substituting a = ir.P71.„co„ into (2.12) and (2.13) we find eigenfunctions of

(2.11) for both cases (i) and (ii). In case (i) we denote the eigenfunction as the even

eigenfunction (DE and in case (ii) we denote the eigenfunction as the odd eigenfunction

V. We have

2L .
sm(rn,71-42L) cos(n7y)

712,

P71171(1^iWm)

27127
iii]?,, n^L/711u )

I/ 71^cos(m7rx/2L) cos(n7ry)
\ Pnin(( +

2L
— cos(m742L) cos(n7y)
in

sin(m742L) sin(n7y)
1

PM 11 ( 1 + 1:())717. )

2n2 Lir
in^n^iWI17 11

^  sin(7n742L) cos(n7y)
Pm. n^iW7/1 /1 )

for in even, and

° It

4)77E111 =

cos(rnmv/2L)sin(n7y)
1

cos(rnirxi2L) sin(n7y)

sin(rn71.12L) sin(n7y)

sin(rnmri2L) sin(n7y)

cos(m7.42L) sin(n7y)

(2.21)

(2.22)

for in odd, where (I) =^v, 0, ba., by)T . We will not include the pressure term x, since it

can be recovered using the velocity terms (u, v).

Now from (2.16) and (2.18) the critical Rayleigh numbers 1?,„.1(L), for which (2.11)

has pure imaginary eigenvalues a = ±iPm„,..o, ^are

n271-2(Q^(C^1)./,„ 1 4L2P„
R„(L) =^+^[ ^721112 •a +1

(2.23)

To simplify the above expression, we temporarily fix in, and let X = 4L2/7112, P„ (x) =

Rmn(L). Then the critical Rayleigh number I? for each n is given by
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f?„(x) = n2Ax(n2^14) + Bx(1/x

where
+ ()(QA^ B72^± 1)(a

=^ =and

n2)3,

± 074

(2.24)

(2.25)a + 1

It is clear that f/n(x) is minimized when n = 1, and

urn^(x) = oo,^lim T?i(x) = oo.x—).00

Since
(A + B)x: —3Bx — 2B

Pi = x3

has only one positive root x = x*, and since R'I'(x) = 6L3(x + 1)/x4 > 0^for x > 0,

R1 will have its minimum at x = f. Since x = (2L/m)2, we have infinitely many

curves Rmi (L) = P1(4L2 /in2) depending on in, and each will have its miniinum point at

= in V7r*/2, with minimum value R„,i(L.7) = I? (x).

The number in in Rnd(L) corresponds to the number of rolls in the region 12L, that

we expect to bifurcate from the steady-state solution at the critical Rayleigh number

R = R1(L) of the original convection problem. We refer to these solutions as "even"

when in is "even" and as "odd" when in is odd (Figure 2.1).

We define L„, by the value of L where the curves of the critical Rayleigh numbers

corresponding to odd and even solutions intersect, i.e., L = L„, is the unique solution of

Rmi(L) = Rm.+1,i(L). It is clear that L„, lies between L7.„ and /441, i.e.,

where A =ITi..7" satisfies

inA^(in + 1)A
2 < Lm <^9

(2.26)

2^3 ^a(T2
+ — —1^ 0.^(2.27)M A4^+ 1)(1 + 072

x-40+



Chapter 2. Oscillatory instabilities of magnetoconvection equations^22

(a)

(b)

Figure 2.1: Level curves of the stream function: (a) the even mode 771 = 2; (b) the odd
mode in = 3.
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m=1 m=2 m=3 Til= 4 Tr1=5
■^1^1^1^\

1^I^I
1^1^I^I
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1^I^I^I
1^I^I^I
I^I^I^I
I^1^I^1

I^I

R„,(L): Hopf bifurcation

R,°„(L): Steady state bifurcation

Figure 2.2: Graphs of critical Rayleigh numbers Rm(L) and R(L)vs. L for in = 1,...,5,
with a = 1, ( = .1, Q = 10072. Solid curves represent the graphs of R1(L) and
dashed curves show the graphs of R.,9,(L). For a given in, the graphs of R1(L) and
R1(L) intersect at L = (.1112)m and R 56000.
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1000-

0.5^1.0^1.5^2.0^2.5^3.0^3.5^4.0^4.5^L

Figure 2.3: Graphs of critical Rayleigh numbers R,„(L) vs. L, for .m = 1,...,15 with
a = 1,^= .1, Q = 10072.
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We observe that (2.27) implies that A is adecreasing function of Q, and 0 < A <

(see Figure (2.2)).

To simplify our notation further, we put

(2.28)

and for each fixed m, we put

Pl = Pmi, P9 = PI71+1,11 W = W7711^=^+ j • (2.29)

Then if in is odd, the critical eigenfunctions become

2L„„
cos(m7.42L„„)cos(7.0

711

sin(m7x/2L„„.) sin (71-y)

( 1 +1 iw ) sin(rnirx/2Lm.) sin(7y)

2L,„.7nipi(c ^cos(rn742L7n)sin(rY)
7/7T

^((

^) sin(m742L71,)cos(7Y)

2L„,
+

^sin( (in + 1) mr/2L7n) cos(iry)
I/1^1

COs(( + 1)7x/2/,,n)sin(Ty)
1

P2(1 ^
1w2) cos( (in + 1)-A-42L71) sin(Ty)

271-L„,
± P2( ^1c02) siu( (rn + 742L,) sin (7ry)

71
^ cos( (in + 1)742L,„) cos(y)
P2(( iw2)

(Di = sena =

and

(

711-1-1,1

(2.30)

(2.31)

Remark 2.2 Without loss of generality we assume in is odd, since when in is even only

the roles of (Di and 4)9 are interchanged.

Now we can prove the following proposition:
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Proposition 2.1 Fix a > 0, 0 <^< 1, Q > 0. and fix a positive integer m. If

Q is sufficiently large, then when L = L,„ and R = R„, the linearized system (2.11)

has eigenvatues j = 1,2, and the rest of eigenvalues have negative real parts,

uniformly bounded away from the imaginary axis.

Proof: For fixed 777,, by (2.14), when L = L,„ and R = Rfi, the eigenvalues a satisfy

a3 + Ca2 + Da + E = 0,^ (2.32)

where

C^(^)+ + 1 . Pn,
m2 71-- a Rfi,

= 13(a( + a + () + an2(Q72 ‘1P,„„1,

= m272R,„
+ P?:?3??? = 0,n ) 7T P-^-2( - 2- 11111 4L

and

p ^2 {(7/2/2.Lid2 + 722] , 171, ii = 1,2, ....

By the Hurwitz criteria for stability [17] roots of equation (2.32) will have negative real

parts if C, CD — E and E are all positive. Clearly C > 0 and is uniformly bounded away

from zero for all in and n. Also it is clear that CD — E and E are increasing in n, and

therefore will be minimized at 71 = 1, so we consider their values when n = 1. Using

(2.18) we obtain

CD — E a((a^()7r2(2 (17/2Pi1,i — in2Pad) 
IT?2

(a +1)(a + ()(( + 1) [ill 2 P —
al 2

(2.33)

Substituting the definitions of Prni and Pn,i into (2.33) after some simplification we find

that CD — E is positive if

ry<T2^77/277/2(7722 + 7772)^377/27722E(777,) = (7/22 — 7772) ^,^+ 1   (2.34)[72(a + 1)(( + 1)^(2L7)6^(2.Lth)4
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is positive. Now using (2.23) and Rth(L77,) = Rth+ (Lth), after some simplification we get

aCQ =^ (2.35)
30-1+ 1)27112^7112(711 + 1)2[11/2^(ñ1t + 1)1 

72(o- + 1)(( + 1) 
+ 1^

(2L,)4^(2L,72)6

We substitute (2.35) into (2.34) to get

3 [(IT/ + 1)2 — ni,2]
E(in)^f/-12 (7T/2 - in2)

(2L771)4

(Th ± 1)2 [7/72 ± (IT/ + 1)2] -^+ 717.2)
(2.36)

(2.L.,))6

From (2.36) it is evident that E(in) = 0 when in = Th. or in = fiz + 1 and we have two

pairs of pure imaginary eigenvalues, while the third eigenvalues — (a + + 1) are real and

negative. For 771 > ñi + 1 or in < ili,13(m) > 0, and therefore CD — E are positive for

all values of in and n. To find a uniform bound on .E(in) we notice that for all in 0 in

and in 0iii + 1, we have

E(in) > min^— 1), E(iTi. + 2)1 > 0,^(2.37)

where in is fixed.

Now we need to show that E is also positive uniformly bounded away from zero, for

sufficiently large Q. For 71 = 1 we can rewrite E in the form

E = a( [P2n1 Pr1(72(2 Rip) 4- 72Rm] •
^ (2.38)

E is a cubic function in P„,.1, by finding its mininnun it is easy to show that

E > 2fl — (4/3) (Rh) — 72Q)3/2^(2.39)

therefore E> 0 if

— 72Q)3/2 < (3/d/4)72R,,„.^(2.40)

For a given a, (, Q and ili , one can always check whether (2.40) is satisfied. However, Rrh

depends on Q, so we proceed to show that (2.40) is always satisfied for sufficiently large
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Q. It is clear that (2.40) is satisfied and E will be positive uniformly bounded away from

zero if
97r-Q — Ra, > 0.^ (2.41)

^

We note that R,^= Rin.±i(Lat), and therefore

9 /-1^1-39
^7r^—^=^{gth+1,1 — rth+1,1

2L,,T1^2
(2.42)[1 + (

fit -I- 1 ) ]}

On the other hand, using (2.35), after some calculation we have

7F4aCQ
2P3<^—372P? (2.43)(a +1)(( +1)

and it follows that
2L„,^2(a + 1) (<" + 1))2^.

(2.44)+ 1^a(q/-0 + 1 ,1

Then using (2.18) we have

+ a + 0(.bh+1,1^3(a +^ )(1
7

2Q +>^[(1
(7+11^ 0-

2(1 +^(1 +^(0- +
(2.45)

(72(qr-i) + 1,1

It is clear that the expression inside the square brackets on the right hand side of (2.45)

is increasing with respect to qi•i+1,1, and it is easy to check that it is positive for

3(1 +02(1 +a) 
(1,ii+1,1> qi =^ (2.46)a((1 — ()

i.e.,
9

7T-
>qi.^ (2.47)

1;?1-1.- 1 ,1

From (2.26) and (2.27), it follows that for fixed a, and fit the right hand side of (2.44)

is 0(Q2/3) as Q^oc, hence (2.44) is satisfied for all sufficiently large Q. Q.E.D.

Remark 2.3 For specific choices of parameter values, we can check (2.40) and (2.41)

numerically (see Chapter 4).
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Chapter 2. Oscillatory instabilities of magnetoconvection equations^29

We briefly summarize the results of this chapter so far. We have considered the

linearized stability of the magnetoconvection problem for fixed values of a, (,Q, where

> 0, 0 < < 1 and Q > Q0, as we increase the Rayleigh number R through the

positive numbers. For given L > 0, when R < R.11 (L) for all in, all the eigenvalues of

the linearized eigenvalue problem (2.11) have negative real parts, and by the principle of

linearized stability, the steady state solution (2.3) is asymptotically stable. If L =

then when R =^= I?,„(1,n) the linearized eigenvalue problem will have two pairs

of imaginary eigenvalues, while the other eigenvalues have negative real parts, and we

expect a double Hopf bifurcation with reflection symmetry.

2.4 The adjoint problem

In this section we consider the adjoint problem to the linearized system (2.11), and

calculate its eigenfunctions when L = Lm and R /?. This information will be useful

for our nonlinear analysis in the next chapter.

We define the adjoint of linearized eigenvalue problem with respect to the inner prod-

uct

where

(1)-1 =^Oi ,^, bly)T ,j = 1, 2.

and the overbars denote complex conjugation. Integration by parts yields the adjoint

eigenvalue problem to (2.11),

0-k* )
(11,-

0,:r
aw OM abe,*

ay^ar )

a (Ai,* pl + r
0Y^

= ov-,

29* + arn, = dr,^(2.49)



2L„,
^ cos(m71-42L)cos(7ry)

in
sin(in7rx/2L71„) sin(71-y)

aR„,
sin(rn742L,)sin(7Y)

P K —^
cos(mmil2L,„) sin(7y)

I 

P K^
. )̂ sin(m7.17/2L) cos(7Y) j

\ I — zwi

th*^(T)*0
1 —^"--"m P1(1 —

20-(Q7L„„
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(Ay; — 0-(Qaolyt* =

(Aby* a(Q
au*

= aby*,
ax

Du* Dv*
= 0,

ax ay

^

abx*^aby*
^ = 0,

^

ax^ay

with boundary conditions

au*Ob.*

^

=^=9* = b; = ---1 =0, on y = 0,1,^(2.50)Oy^ ay
Dv*^DO*^Ob*

^

u =^=-- = b* = 
0; = 0, on x = L, — L.xax^ax

Using Fourier series we find eigenfunctions V = (it, 1,* , 9, b., y) corresponding to the

eigenvalues ±iPiwi, j = 1,2, of (2.49)-(2.50)

(2.51)

2L„,
^ sin( (in -I- 1)71-37/2E,„) cos(y)
(m, + 1)

cos( (in^1)742L1„)sin(Ty)
aRn, cos( (171^1)7r312L,„ ) sin ( -,Ty)

P9(1 —
--a(Q271-E,„

(In

and

GI) :71E+1 = C n ? I ,^(2.52)

.^ sin( (711 + 1)71-312L,„)sin(ny)
1)P2K 1W2)
—71-0-(Q

— lw9) 
cos((ni^1)742L,„) cos(7y)

P9(( 
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where

31

Cm = 2^Rin4L.,„0-(Q
]-1

[4421Pi
72m2^ 2 +in2pi ((^)^Pi? (1^ico

-1

Crn+1
4L,2,, P2^4L2mo-(Q^aR„„

. (2.53)+^9
[

7r2e/7/ -I- 1)2^(777,^1)2P9K —^P.5- (1 — iC4/9

The normalization constants Cm,Cm4.1 are chosen so that

(4) .7 ,(DZ) r, = (5,k,^j, k = 1,2. (2.54)

Using (2.19) and (2.33) and after some simplification we get,

in271-2(1^iwi)(( + iwl)
8L131wi(wi — i(5)
+ 1)272(1 ± iw9)(( + 1W2)

(2.55)
8g,P)c.o9(w9 — i6)

where (5 = 1+ a + ( and the overbar denotes complex conjugation.

2.5 Asymptotic results as in --+ 00

In this section we discuss some of the asymptotic behavior of the critical aspect ratios

and related quantities as in^DO.

2.5.1 Case I (fixed ( and Q)

We are interested in behaviour for large aspect ratios. Since (2.26) implies that L m =

0(m) as in oa, for fixed a, ( and (2 we consider limiting behaviour as in -÷ oo. We

call these "Case I" limits.

Proposition 2.2 L,„ = 0(m) as 'in --4 x. More precisely, we have

A^,^A(1 + 3A2)^.^ _ A + in-^ ^ in -2 + 0(m-3),
IP^2^24(A2+ 1)

where A = VT* satisfies (2.27).

(2.56)
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Proof: By (2.26) it is clear that

lim 2L,1/777, = A.^ (2.57)
711-4 00

expanding

2L„,/777. = A + i1m1 + (2111 ^0(7n-3).

and substituting this expression into the expression

R71(Lin) = Rm+1,1(L7n)

that defines Lrn, after some calculation we solve for el and E9 to get (2.56). Q.E.D.

From Proposition 2.2, it follows immediately that

hiin PI =^= P,
111^)00^I71-+00

(2.58)

where

P = 72 (—
A
l
2 

+ 1) , (2.59)

and

(4.) =^11M C,V1 =^11111 W2, (2.60)
--+ 00^171 -+

where
7120-(Q(1 — ()w = —(

2 + (2.61)
P2(1 + 0)

Remark 2.4 There is a limiting relation between the eigenvalues and eigenfunctions

and normalization constant in this problem and the infinite layer (L = oc)problem with

periodic boundary conditions ([35,1). If

(

^

(1)711 = (̂I)^
—

^9 ^(1)1 — (I)91^ — ^9 21

and if
(I)* — (I);

^

(p.,n _ (I)7 + (I); , (Km =^

^

—^2^2i
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then for fixed x, y, we have

liiii (1)91"(x, y) = (I)1(x, y)^lint (J).72". (x , y)^(1)2(x , y) ,

lint^, y) = (1)1(x , y),
L„,—roo

lim (I);"1 (x , y) = (1);(x , y),
L„,—+oo

where (1)1,(1)2,(1)1,(1).2* are eigenfunctions of the linearized equation, and (DI ,(1); are adjoint

eigenfunctions for the infinite layer with periodic boundary conditions. We also have

urn Pi4'1 = Pw, and^lint r*,ni = 7-(°),
L",-->00

and

urn C„, = C.
L„,—+co

where iPco is the imaginary eigenvalue, r0 is the scaled critical Rayleigh number and C

is the normalization constant used in the infinite layer case.

Let c = m-1. Then we also have

9

=^P — — E^0(E2),

97r-P9^P +
A2

c + 0(c2),
(w2^/-2■

=^+^if 0(E2),

(2.62)

(2.63)

(2.64)+pwA2
71.2(c_02 _L

=
\
1E 0(E2 ), (2.65)W

PWA2

=^.R0 + (2.66)

where
7r2(Q^((

Ro = (a + ()[
+ 1)P2 A2P

(2.67)a +1 + a

Proposition 2.3 For fixed L = L„, there will be no other instability unless we increase

R above R,„ at least by 0(c2).
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Proof: To prove this we need to look at the size of Rffl.4_9(L) — R„,(L„,), since clearly

Rm+k(LT„) — 117-„(L) > R7,2H-2(Liii) — R,„(L„,), for all k > 2. Using equation (2.23) we

have

—4772 — 4
R„,+2(L„,) — R„^

a T2 r^1
,(L7„) =   (A + B)

"j"1 L1n2(in + 2)2]

+ Br(m + 2)4 — in4 3 ((in + 2)2 — in2)]
+

I. 16L4^4L2^(2.68)„,

= 4B(in ± 1)  13 [(in + 2)2 — (in + 1)2] 
2L„, (in + 2)2 1^2L,,^

(2.69)

[(in + 2)2 — (m + 1)2] [m2 + (in + 1)2 + (in + 2)2] }
+

(2L„,)3
,„.,,2 1 on + 1)2 ± (in + 2)2 14B(nt +1)(2iii + 3) {=^ 3 + "( 7-

(2L7,)(in + 2)2^(2L„1)2

= 24PB 
e2 + 0(E3)A2712

= 0(2),^ (2.70)

since Lim and A satisfies(2.35) and (2.27) respectively, where A and B are as in equation

(2.25). Also since B^0 this difference is not zero. Q.E.D.

2.5.2 Case II (decreasing^increasing Q as in^co)

In subsequent chapters, we will also consider behaviour for large aspect ratios, small (

and large Q. Suppose we fix real positive numbers a, ç and Q, and consider the

sequences given by

=^(2„;, =^ (2.71)

for fit = 1, 2, 3, .... For each = (711, Q = Q„, we obtain a sequence of critical half aspect

ratios L,11, and corresponding critical Rayleigh numbers R,t, in = 1, 2, .... We consider

limiting behaviour when 'in = in and in —+ co. We call these "Case II" limits. Taking the

limits in Case II change the values of A, P, I?(. of !i2.5.1. We denote their corresponding
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values in Case II by 5■, P^respectively; their corresponding equations are replaced

by

2^3
0^

--T1
71.2(71 + 1),

P =

0.“27.1.2
co2

/52(0- + )'

rap21 1-71.20.(2

Po I 72^ (7 +11

The asymptotic expansions of the terms

2L rll ,P1 ,^ 5 ‘545)9

as M.^oo change, but the leading terms are of the same order in E = m-1. Correspond-

ing to equations (2.64)-(2.66) we have

2LZ
771

272;\  ek, 12 + 0 (fie +^ (2.77)
A3

^

P2 =^
2712 Ai ch12 + 0 (Ek. +^

(2.78)

^=^+ 
0-C(21-0-' + (45k03)72] Eki2 4_ 0((k +^(2.79)

2(a +1)P31)cDP3

^

=^
+ a(Q[^+^03)72] Eki2 + 0 (Ek

po+o(E4./22()7 + 1)cDP3

where
0.1.2("2—k5

= ^ .
12(o- + 1)P

The appearance of R.,„+2(Lin) — Rrn(Lin) also changes, but by (2.69) it is of the same

o-(1Q
(2.72)712(U+1)'

(2.73)

p2i

(2.74)

(2.75)
0" •

ek12^0(6.1.7^ (2.76)

(2.80)

(2.81)

order as in Case I and equation (2.70) will be replaced by

24PP .
R2(L:)^R'" (L ^22) = ^ 62^0(E2+k/2 + (3),411^?II^- (2.82)
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where

B = + 0(E4/2)

These results will be useful when we calculate the coefficients of the reduced equation on

the center manifold and the determine the dynamics of the related equations in Case II.



Chapter 3

Center manifold and normal form reductions

In this chapter we begin our nonlinear analysis of the magnetoconvection equations. In

§3.1 we give an abstract formulation of the magnetoconvection equations as an evolution

equation in a Hilbert space, and then prove the existence of a nonlinear analytic semiflow

in that Hilbert space. Then in §3.2 we rescale variables so that L is explicitly introduced

as a parameter into the evolution equations, while the domain becomes fixed. In §3.3 we

establish the existence of a locally invariant attracting center manifold WC for the evolu-

tion equation, which we will then use to study the dynamics of magnetoconvection. We

represent the flow on TV' as a two-parameter family of four-dimensional ordinary differ-

ential equations with Z2 e Z2 symmetry. In §3.4 we use the symmetry and near-identity

coordinate transformations to simplify the family of ordinary differential equations by

putting them into normal form. Finally, in §3.5 we discuss the choice of normal forms

when the aspect ratios of the fluid layer are large. We use different normal forms for the

Case I and Case II limiting situations introduced in Chapter 2.

3.1 Abstract formulation

In this section we reformulate the magnetoconvection equations (2.3), (2.7) as an equation

in a Hilbert space, which generates an analytic semiflow. For fixed L, let

= (XI Y) 0 < y < 1, — L < < Ll ,

37
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be the rectangular region as in equation (2.6), and let FL denote its boundary. Let

L2(f2L) be the space of all square-integrable functions on f/L, with norm

110111,2( fl )
[^1/2

I 0(x5 Y)1
2 (137(1Y] (3.1)

and inner product
pi pL

(0^L2 (f L) =^00:^(S 'il)(13: dY0 - L
(3.2)

where the overbar denotes complex conjugation. When k > 0 is an integer, the Sobolev

space 1/171'2(c4) of order k is defined by

IV" (Cid =^: Dç E L2(C21) Va, kJ < k} ,^(3.3)

where
aa +

^

D =^ = {a, (1'9} ,^1(11 = al + co.
c1xa aya2

and the derivatives D°0 are taken in the weak (distributional) sense. The space Mik,2(12L),

with the norm

It ^=^wk,2010 = E HD"0112,2(ad 
I 1/2^

(3.4)

and scalar product

= E (Dao,D.0)/,-20-20,
^ (3.5)

lnl<k

^is an Hilbert space [21^0, tvo,2(Q1 ) = L2( Q L ).. When k =

Let L2(C2L) = L2(L) x L2(L) and Wk'2(C2L) = wk,2(2L ) x Tk,2(Q L ), with the

norms and inner products inherited from the product structures. In order to introduce

suitable function spaces for the magnetoconvection equations, we first consider the fol-

lowing boundary value problems:

(1) Given f E L2(C2L), find u = (u v) and \' satisfying

—Au+ Vx = f in C2L,
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V • u = 0 in QL,^ (3.6)

u n = 0 on FL (i.e. u = 0 on x= +L, v = 0 on y = 0,1) ,

V x (u x 11) = Don FL (i.e. Ov/03: = 0 on x = ±L, Oulay = 0 on y = 0,1) ,

where n = (nx,ny) is the unit outward normal vector on FL. (This is the Stokes problem

with "stress-free" boundary conditions.) Define the following Hilbert spaces

H1L =^L2(C2L) : V u 0 in QL, and u • n 0 on FL} ,^(3.7)

VjL = { u E \V"2(L) : V • u = 0 in C2L, and u n = 0 on FL} ,^(3.8)

u E W22(c4) : V • u = 0 in C2L, and u•n=0,

V x (u x n) = 0 on FL} .^(3.9)

Then one can define an unbounded self-adjoint operator A1 in H1L with domain DIL,

such that Aiu = —ILAu for all u E DIL, where II is the orthogonal projection of L2(C1L)

onto HiL. The problem (3.6) is equivalent to

A1u=ITf, u E^ (3.10)

since the pressure term^E W1'2('4) can be recovered from u and f. The inverse

operator 4I-1 is a compact operator in H11 [46, pp. 104-103 and Remark 2.4 on pp.

110-114

(2) Given f E L2(C2L), find 0 satisfying Laplace's equation with mixed boundary

conditions:

—AO =

=
00

f in C2L,

0 on y = 0,1,

o on 17= +L.



Chapter 3. Center manifold and normal form reductions^ 40

Define

H2L = L2(CIL),^ (3.14)

V2L, = {0 E IT71'2(121j : 0 = 0 on y = 0,1} ,^ (3.15)

D2,t,^{0 E 1172,2 (.-NL ) : 0 = 0 on y = 0,1, 00/ax = 0 on x ±L} .^(3.16)

Then one can define an unbounded self-adjoint operator A2 in H2L, with domain D2L,

such that A20 = —A0 for all 0 E D2L. The problem (3.11)-(3.13) is equivalent to

-420 == f,^0 E
^

(3.17)

and AV is a compact operator in H2L [46].

(3) Given f = ( fs, fy) E L2(c1) with fo„ f = 0, find b = (b„, by) satisfying a mixed

problem:

—zb = f in QL,^ (3.18)

^b„. = 0 on FL,^ (3.19)

^Dby/On = 0 on FL,^ (3.20)

The boundary value problem (3.18)-(3.20) is just a pair of &coupled Dirichlet and Neu-

mann problems. If V • f = 0 we note that the solution automatically satisfies V • b = 0.

The Dirichlet and Neumann problems are classical, and solutions are given in almost

every book on elliptic partial differential equations (e.g. [46]). Let us define the following

Hilbert spaces

H3L^{b E L2(S2L) : f by = 0},^ (3.21)

V3L^{b E W1'2(21) :^by = 0, and b.,. = 0 on FL}.^(3.22)
oL

D3L^
b G w2,2( -4),./ by = 0, and b„. =0, Dby/On = 0 on FL, . (3.23)
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There is an unbounded self-adjoint operator .43 on H3L, with domain D3L, so that A3b

—Ab for all b = (bs, by) E D3L, and 43-1 is a compact operator in Hu.

Each of the above boundary value problems has been considered as an abstract equa-

tion of the form

Ajcb = f, i = l,2,3

in a Hilbert space HL, i = 1,2,3. The operators Ai are positive, linear unbounded

operators in HL with domains DL and their inverses 4i-1 are as self-adjoint compact

operators in HL. For fixed parameters a,(, let (I) = (u, 0, b)T, define the Hilbert space

XL = H11 x H2L X 113L,

with inner product as in equation (2.33), and define the unbounded linear operator A in

XL by

A(I) =(o.4iu420, (A3b), (I) E D(A) = DI L x D21 X D3L.
^(3.24)

Then the operator A is a strictly positive self-adjoint operator in XL with domain D(A).

The inverse operator A-1 is self-adjoint and compact, and the spectrum of A consists

entirely of isolated eigenvalues with finite multiplicities, so its eigenfunctions are dense

in XL [46]. The eigenfunctions have the form

( [A,1 cos(inmil2L) + .13;n71sin((m+ 1 )7s/2L)] cos( wiry)

[A„ sin(in7/7/2L) + B,2 cos((in + 1)742L)]sin(n7y)

=^[A3 sin(in7.112L) + B„ cos((ut + 1) 71-37/ 2L)] sin(n7y)
^

(3.25)

[AL cos(in7rx/2L) + B„ sin( (in + 1)742L)] sin(n7y)

[4.,5 sin(wirx/2L) + BL, cos((m, + 1)7//2L)] cos(n7y)

where in is an odd positive integer and 11 is any positive integer. The coefficients

and A2„,„,^and B,2,„„, AL and A,5„„, 13,4„„ and B,5,„ are related in such a way that the
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divergence of the first two and the last two components are zero, i.e.,

ifl^ 171
A2 ̂A 4

inn^2Ln "1"'^n 2Ln in

—
B^

m +1
72„„

21,71
^BL" B4 — 

171 + 1 
B5 .

2Ln i""

The operator A is sectorial in XL [20], and for each -y E R we may define the fractional

powers A7, with domain X7., = D(A7) in XL. The space D(A), endowed with the scalar

product
((J)1 , 4)2 D(

and the graph norm

= ( A7 (D1 A7 (1)2 ) L

11 / 2
1(1) D(.4.7 )^4), (I))D(A ) f

( 3 .26)

(3.27)

is a Hilbert space, and A7 is an isomorphism from D(A7) onto XL. For -y = 1, we

recover D(A) . Since A is a sectorial operator with compact resolvent, the embeddings

D(A) C X C XL are continuous for 0 < -y < 1 and are compact for 0 < -y < 1

[20, Theorem 1.4.8]. Now for fixed a,C,Q, we put

B(R)(1) = (all[R0e11 + (Q(V x b) x ey], v, V x [u x eypT,^(3.28)

A1(4),(1)1) = (II[a(Q(V x b) x b' — (u^—u VO', V x (u x b'))T, (3.29)

where (13 = (u, 0, b)T, .213' = (u', 0', b')T. We now write the magnetoconvection equations

(2.5) and (2.7) as an evolution equation in XL,

(RI) = —.44) + B(10(J) + N(4),^ (3.30)

where N(4)) =^(I)) We observe that B(R) :^Xi, is a bounded linear

operator and 111 : X-1", x XI —4 XL is bounded bilinear operator for 1/2 < -y < 1

[20, Theorem 1.6.1 and the arguments on pp. 79-81]. and so B(1?) + N(.) is analytic

from X2 into XL when -y > 1/2. By [20, Theorem 3.4.4 and Corollary 3.4.6] we have the

following fact:
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Proposition 3.1 If 1/2 < 7 < 1, then the evolution equation (3.30) generates a local

serniflow in X2 that depends analytically on t > 0, on R E R and on the initial condition

CO) E

We note that if V • b^0 when t^0, then the solution (I)^(u, 0, b)T satisfies

V • b --= 0 automatically for t > 0.

Now let

^K(R) = —A + B(R), D(K(R)) D(A),^(3.31)

denote the linearization of the vector field of (3.30) about (I) = 0. By the above arguments

and [46, p.54], it is clear that for each fixed R the spectrum of K(R) consists entirely

of isolated eigenvalues with finite multiplicities. To find them, we solve the eigenvalue

problem

K(R) (1)^tv(1),^E D(A),

and we seek eigenfunctions in the form of (3.23). This is system (2.11) that we have

already considered in §2.3, and we found all eigenfunctions in the form of (3.25). Since

these eigenfunctions are dense in D(A), our formal calculations in §2.3 are justified.

3.2 The rescaled problem

Since we would like to study the dynamics of rnagnetoconvection when L is near one of

the Lim which were found in Chapter 2, we introduce L as parameter explicitly to the

equations. For this, we use the resealing

=^u = LU, bx^Lb.^ (3.32)

Then system (2.5), after "dropping the hats", becomes

au
at —

a [Alu —^+ ROey + (Q (vi x^x^+131)1 — (u • V) u,
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ao
at
ab
at

v • u

= Alt9 + v — u• VO,

= (Alb + x [u x (e11 +b)],

=0,

(3.33)

V • b = 0,

in the fixed domain

= (x, y) : —1 <17 <1, 0< y <1} ,

where

^

= L-202/0x2 02/ay2,^= (L-20/03.0/0y) ,

= (L2b„„by), u = (it, v), b = (b„.,by).

The boundary conditions (2.7) become

Dby=^v=t9=b„.=^= 0, on y = 0,1,^(3.34)

Dv
ay^ ay

00^Oby=^— —^=^— 0, on 3: = +1.
ax^ax

The Hi^ corresponds,space XL defined in §3.1 corresj^nder the resealing, to a Hilbert space

survi

X, and for an inner product in X we may take

11^9 _9 + el + L2 btx2^byi -1;y2)^dy,( (I) 4)2 = /2)1
1^

(L-711 11- +
0 -1

(3.35)

where (Di =^i = 1,2, and the overbars denote complex conjugation.

The linearized operator IC(R) of the previous section corresponds, under the resealing

(3.32), to

K(R, L) = —A(L) + B(R, L),^ (3.36)

where

.A(L)(1) =^—Al 0, —(L\Ib)'^ (3.37)

B(R, L)(I) = (o-II1[ROey + (Q(V1 x b) x e 1 ] ^x (u x ey))
T

,^(3.38)
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and IV is the orthogonal projection that corresponds to n under the resealing (3.32). For

fixed R and L, A(L) is a sectorial operator in X, and B(R, L) :^X is a bounded

operator if 1/2 < y < 1. The eigenfunctions 4)1, (I)9,^(1)2* now take the form

—
2 

cos(m7rx/2) cos(y)
712,

sin(m7rx/ 2) sin(rry)
1 

1(1 +^
) s n(7n7rx/2) sin(7ry)P 

27r
rrTi (C + .

^ oc s(rn7rx/2) sin(7ry)
i)

7r
Pt (( +^

s.^ i n(m7r.r/ 2) cos(71y)^j
\ 

2 
+ 1 sin((m,^1)7I-x/ 2) cos(7r1J)

cos((rn + 1)7rs/2) sin(7ry)
1 

P2(1 + 1
.
w2) 

cos((m.^1)7rx/2)sin(ry)

27r
sin((nt + 1)742) sin(7ry)

(in + 1)P2(( + iw2)
^ 

P.2 () 
cos((rn +1)71-42) cos(7ry)

—
2 

cos(m7rx/2) cos(y)
711,

(DI = C„,

\ p((^
) sin(m7r.v/2) cos(7r11)

sin(rn7rx/ 2) sin(7r1J)

P1(1
°-
-
R 

icoi) 
sin(m7r42) sin(7ry)

2a(Q7r
P9(( — t

.
w9) 

cos(m7-142) sin(7ry)

—7ro-(Q

(3.39)

(3.40)

(3.41)
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2
^ sin((m, 1)742) cos(7ry)
(in + 1)

cos((in^1)7rx/2) sin(7ry)
crR^

cos((m + 1)7rx/2) sin(7ry)
•P2(1 — 1c07)

---a-CQ27r
(in + 1)P1(( — t

. wi) sin( (m,^1)7rx/ 2) sin(7ry)

• cos((m + 1)7rs/2) cos(7ry)
P2(C — iw2)

and

= Cm+1 (3.42)

(3.43)

with Cm, Cm+1 as in equations (2.55). The evolution equation (3.29) becomes

d(I) = —A(L) (1) + B(R, L)(1) + 1\'((1 L),

where

N(4), L) = M(,, L) = (f1[cr(QV1 x lat) x b— (u- '71)ub—u- V18, V1 x (u x b))T ,

(3.44)

and Proposition 3.1 holds for (3.43).

3.3 Center manifold reduction

The study of bifurcation and stability in differential equations can often be greatly simpli-

fied by the use of center manifold theory. This theory allows one to reduce the dimension

of the state space, while preserving the local behavior of solutions of differential equa-

tion. In this section we apply a suitable version of the center manifold theorem to reduce

the parametrized family of evolution equations to a parameterized family of ordinary

differential equations in a four dimensional phase space, the dimension four of the phase

space being determined by the number of eigenvalues with zero real part at the critical

parameter values.

When L = L,„, "odd" and "even" curves of the Rayleigh numbers 1?,„(L) and Rm+i(L)

intersect at R = R„, and modes corresponding to both odd and even numbers of rolls
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are marginally stable. (Recall that we assume in is odd). Therefore for R, L in a small

neighborhood of R,„, Lm, we may see bifurcations of even solutions, odd solutions, or

other solutions arising from nonlinear mode interactions.

When (R, L) = (R„„ Lm) the center eigenspace Ec, corresponding to the eigenvalues

of K(R„„ Lim) with zero real part, is given by

E, = {Z14)1+ Zi4)1+ Z24)2 +Z24)2 : (Z1, Z2) E c2},^(3.45)

where (Dj, j = 1,2 are given by (3.39),(3.40). Now we define the projection P of the

Hilbert space X onto E by

P(I) = ((I), (1*1)(I)i + ((I),(1)1)4)i + ((I),(1);)(1)7 + (4),(1)2)(1)9, (3.46)

where the overbars denote complex conjugates, the inner product is given by (3.40) with

L = Ln.„ and (I);!, j = 1,2, are the eigenfunctions of the a.djoint operator K*(Rm, Lui)

for K(Rm, Lin) given by (3.41)-(3.42).

Proposition 3.2 When L = L„,„ and R = Rm the space X decomposes into a direct sum

X = e Es, where E, = 'R,(P) and Es = Ar(P) are K(R„,,L,„)-invariant subspaces.

The spectrum of K(R,„ L) restricted to Ec. is {±iP1w1,±iP9w9} , and the spectrum of

Wm, Lm) restricted to Es is contained in the left complex half plane, with real parts

uniformly bounded away from the imaginary axis. Thus if E(K) denotes the spectrum of

K(R„„L„), we have R(E(K)) < 0, and F.,(K) n iR is a spectral set.

Proof: Since any (I) e D(.4) can be expressed as a convergent series of eigenfunctions

of K = K(Rm, L„,), and since the eigenfunctions are orthogonal, it is clear that the

projection P commutes with operator K (i.e. PA-4) = KP(I) V (I) E D(A(L)) ), thus

K leaves the subspaces

(P) = span {^(1)1, (I)9.^= Fe,
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.A1(P) = {4)7, (II, (I)2*, (I;}± = Es

invariant with X = E, e E„. We have already proved the second part of the proposition

in §2.4. Q.E.D.

We now state two results on center manifolds due to Henry [20, Theorem 6.2.1 and

Corollary 6.2.2, Theorem 6.2.4

Theorem 3.1 . Consider the abstract differential equation

(1(J) = —A(D + f(1),^ (3.47)

where A is a sectorial operator in a Banach space X, 0 < < 1, U is a neighborhood

of the origin in X7, and f : U X is C1 with f(0) = 0 and f' Lipschitz continuous

in U. Assume K = A + 1(0) has R(f,(K)) < 0 with E(K) n iR a spectral set. Let

X = E, + E, be the decomposition into K -invariant subspaces with n(E(K}E)) = 0 and

RPICIE.)) < 0. Then there exists a C' attracting locally invariant manifold (a center

manifold)

1,17^{(I)^+ (1), :^=^((De ) ,^E E, IIH < 6}^(3.48)

tangent to E, at origin. The flow in We is represented by the ordinary differential equation

d(I)^-
dt = P [K (4), + ((De)) + N ((De + 'i'(4))] ,

where N(1)) = f(I) — (0)(1) and P is the projection of X onto E along E„.

(3.49)

If the nonlinear part f in Theorem 3.1 is smooth enough, the center manifold WC is

smooth and we can approximate tali (4) by the first finitely many terms in the Taylor

series for T((1),):

Theorem 3.2 . Assume the hypothesis of Theorem 3.1. and assume that N : U X is

CP, where N() = f(4))— 1(0)(1) . If there is a CP function h with Lipschitzian derivative
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from a neighborhood of the origin in E, into E, with range in D(KIE,), such that

—(1 — 13)[K(4), h((1)c)) + N( + h(4),))] = 0 (IR

10:1. ,) P [K (4) , 1(4) „)) + N(1I + h('IIc))]^
(3.50)

as 41),^0 in Ec, then

I (1) 
- h (4)1 = 0(11411")
^

(3.51)

as 4),^0 in X,, where T ((k) defines the center manifold of Theorem 3.1. If N is CP near

the origin, there is a unique polynomial function h of order p satisfying the conditions

above.

We have shown that for each fixed L the operator A(L) is sectorial, and we can apply

Theorems 3.1 and 3.2 to the system

d(I)
7-7t- = —A(L,„)(1) +^+ It, L,n)(1)^N ((I), L„,),

dt =0,

(3.52)

and obtain the existence of a center manifold for R near R7 and fixed L = Lm. But

since the operator A(L) depends on L, to also treat L varying near Lin we need to apply

a parameter dependent version of Theorem 3.1 due to Vanderbauwhede and boss [47,

section 2, comments on page 136]. Then the center manifold can be represented as

Wc --= {(1)c,(1)8) E EceE ,s7 (I) = (4, t, v), JJ1cIJ < (51, < 2 1111 < 63} (3.53)

where it = v = L — L„, and T is a smooth function from a neighborhood of the

origin in E, X R2 into E,"' = E flX, with T(0,0,0) = 0, t110, 0,0) = 0. Actually T

is CP for any integer p> 0, since N(4). L) in X7 is analytic (although T is not necessarily

analytic). The flow in WC is represented by the ordinary differential equation

d(I),
= P - (R,„^L + OK), + ((Der^+ N((1), + (4)ii,vn) •dt (3.54)
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The study of bifurcation and stability of solutions of the evolution equation (3.29) near

the origin in XI', for R near R„, and L near L„, is now reduced to the study of equation

(3.54).

The projection P commutes with the action of the group Z2 ED Z9 on X defined by

equations (2.8) and (2.9), and hence the reduced equation (3.54) is equivariant with

respect to the action of J and 13 restricted to E. If we identify E, with C2 by

E, =^= Zi(1)1+ Z1(1)1 + Z2(1)2 + Z22:^Z2) E C2},

then since

J(Di= 4>i, J4)1= (-Di J(I) 9 = - (I) 9 , 1129 = — (1) 9

/3 (I) = _ (i) ,

and

/3) = _ (-1) ,^= 1, 2,

the action of the group z9 Z2 on C2 will be given by

Z^Z2^) j—* ( Z1 1 Z9 -22),^(3.55)

(z1,21,z9, 22)

Using the definition of P, the reduced equation (3.54) becomes

^= (.1-ie(R,„ + t , Ln, + v)(4), + T(4),,,ct, v) + N((I), +^j = 1,2.

(3.56)

where the overdot denotes differentiation with respect to t, (I) = Z1(11 + 2^+ Z2c1)2

224)2 and (Z1, Z9) E C2. By our remarks above, (3.56) is equivariant with respect to the

action of Z2 Z2 given by (3.55). Note that Zj. 3 = 1,2 satisfy the complex conjugates

of equations (3.56).

Thus, for L near L„, and ? near R„, the trajectories of the magnetoconvection

equation are attracted to a center manifold, where the time evolution is given by a
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parametrized family of systems (3.56) of the general form

= F(Z, p, v),^ (3.57)

near Z = 0, p = 0, v = 0, where Z = (Z1,21, z9, 22) T E C4, and it, ti are real
T

parameters. The vector field F = (F1, P1, F9 -F9 ^is CP for any positive integer p in a

neighborhood of (Z,^= (0,0,0), and

F(0, it, v) = 0,

for all (it, v) near (0,0). Also

0 0 0

0 —iPiwi 0 0
Ao = DzF(0,0,0) = (3.58)

0 0 iP9w2 0

0 0 0 —iAc.4.)9 /

where Pi^P21 W2 are as in equation (2.28). Furthermore, the family (3.57) is equivari-

ant under the action of J and /3 described in (3.55), i.e.,

F (J Z, p, v) = JF(Z, p, v),^ (3.59)

F( /3Z, p, v) = ,3F(Z, p, v),

for all (Z, p, v) near (0,0,0). We have reduced our problem locally to that of a double

Hopf bifurcation with Z2 ED Z9 symmetry.

3.4 Normal forms

Now we put the system (3.57) into Poincare-Birkhoff normal form. This involves sim-

plifying (3.57) by removing terms from the Taylor series expansion of F order by order,

using near-identity changes of coordinates. We can demand that these coordinate changes



Chapter 3. Center manifold and normal form reductions^ 52

respect the symmetry (3.59). Those terms that cannot be removed at a given order are

those with an extra symmetry under

:(Z1,21, z2, 22)^(eiozi, ei021, eioz„, eio22) .

We now outline the calculation required to put (3.57) in normal form. First, we note

that the Z2 e Z9 symmetry (3.59) implies that each component of F(., p
, 
v) is odd in the

components of Z, thus the lowest order terms in the Taylor series expansion of F about

Z = 0 are odd in the components of Z, and (3.57) has the form

±1 =^+^+ v + ci l z112 + c2Iz2 12 + c7z i' + (784

+ c92) + 2 (c3z.? + c10z12 + c11z2 2 + c122? + c132,1)

+ o (IV + lit, vIlz) 3 + lit, vI21z 1),^ (3.60)

Z2^z9 (iP9W0 (1211 b9/1 C41Z112 C5IZ912 C144 + Cl5Zr

+ c162) + 22 (c6zr + c171z9r2 + C18iZ112 + C192.;2 + C202)

+ 0(145^lit, v1143 + lit , vi2lZ1),

where al, b1, a2, b2, C1,^, C90 are complex numbers that can be determined from the

magnetoconvection equations (2.15), but as we will see below we will not need to compute

them all. (The equations for 21 and 22 are the complex conjugates of those for Z1 and

4).

We temporarily fix it = 0, v = 0, and write (3.57) as

A Z + 0(1z13).^ (3.61)

For any positive integer it, let H„ denote the finite-dimensional vector space of vector

fields P(Z) in C'1, whose components are homogeneous polynomials in the components

of Z, of degree n. Define the linear map adA0 : H„ H„ by

ad.40(P) = [P, A0] = DA0P — DPA0,^(3.62)
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where •] is the Lie bracket. Let G„ be a complementary subspace to the range adAo(H„)

in H„ so that H„ = adA0(H„) Gn. Then by normal form theory (e.g. [16, Theorem

3.3.1]) and using the Z2 ED Z2 symmetry, for any odd positive integer k > 3 there is a

coordinate transformation

Z = W + P ( TV) ,^ (3.63)

where the components of P(W) are Z9 El) Z2-equivariant polynomials in the components

of W, of degree at least 3, such that (3.57) becomes

TV = 40W + g(3) (TV) + g(5)(W) + + fj(k)(W) + Rk(W),^(3.64)

with g(n) E Gn for 3 < 71, < k,n odd, and Rk^
(11171k+2 ) Furthermore (3.64) is still

Z2 Z2-equivariant. To characterize Gn explicitly, we observe that

= span {WI join, n79 j kl 7-rt ,W3, kl m W4 j k nif

where

W1 j k 1^=^ti/.17Tir , 0 , 0 , 0)T,^= (o,^1471I47 , 0 , 0)T ,

W3,jklm = (o, 0,^, 0)
T^

IV4,jklin = (0 ,0,0,^ITT)

and j, k, 1, in run over all positive integers such that, j + k + 1 + in = n. Applying (3.62)

we find that

ad40 (TV' Juni) = i[(k — j — 1)P1c.,..)1 + (in — 1)P2w21WLikau^(3.65)

ad40 ( W9,jom ) = i[(k — j + 1)P1 col + On — 1) P9 W9i1-179 , j Hi,^(3.66)

ad4o(II73 jki,„) = iRk — j)Plz..oi + (in —1 —1)P9c,..)91W3 jki,„^(3.67)

ad-4o ( W4,jklm ) =- i[(117 — i)Pib) 1 -1-- (111. — 1 + 1) P9W21117.1j kl m •^(3.68)

Since the matrix of adAo(H„) is diagonal in this basis, G„ can be found merely by locat-

ing the zero eigenvalues of ad:40(H„). We observe that the conditions on ad40(WiJkim) =
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14711147112
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/

0^/
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0
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0,i = 3,4 can be derived from those of adA0(Hijo1n) = 0,i = 1,2 simply by in-

terchanging (j, k, 13w1) with (1, m, P9w2). Also, the conditions for adA0(W2,fith,, = 0

can be derived from ad4o(T171,ju2) = 0 simply by interchanging (j,/, /31co1, P2c.o2) with

i(k, m,^, —P9w2), so it is enough only to consider adA0(1471,kt771) = 0. To find the

condition on cubic terms in G3 we must find j, k, 1, in with j + k + 1 + in = 3 such that

Piwi(1 j + k) + P2w2(m, —1) = 0. (3.69)

The Z2 ED Z2-equivariance also implies that j + k be odd while in + / should be even.

Since ./31chi1 and P2c,i2 are both positive, (3.69) will be satisfied, only if

j = k + 1 and nt =

or

1 — j + k = n1 and in — I = n9 with n ii9 < 0.

The possiblities j k + 1 and in = 1 show that the vectors

/ 
ivilw212 \^

/^o^\^/

o^MITIT212

o^o

0^0\^/^\^/^\

are in G3. To consider the only other possibilities first we notice that

—2 < 1 — j <^< 1 + k < 4, —3 < —1 < 119 < 3 ancl als° IiI+1n2I<4.
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But neither ni nor n2 can be odd, since this implies that j + k is even or in + 1 is odd,

respectively, which was ruled out by Z9 ED Z2 symmetry. The only remaining possibility

is when

1 — j k = 2, and in — 1 = —2,

which implies that j = in = 0. For any fixed L„„ however, 2(P1c,..4 — P2w2) is not zero,

therefore the coefficients of the vectors
/-1711/V1 /0" 0^1 /^0

0 0 0
(3.70)

0 0 1,179Wi2 0

0 0 0^/ 117.- TV?2^I
can be removed by near-identity normal form transformations. However we note that,

by doing so, the term (Picot — P2co9)-1 will be appear as a factor in the coefficients of

some fifth order terms in the transformed equation.

Ignoring the possible implications of this last remark fo now, normal form theory and

the results of our calculations imply that for k = 3, (3.64) takes the form

^

T/I71 = TF1 (iPtcot + C11147112 4- C21W212)^0(1W15)
^

(3.71)

ti72 = W2 (iP2CO2 + 11751 L17212 + c4ITV1 12) + o(Iw15),

(the equations for Wi and W2 are the complex conjugates of those for Wi and W2). Now

to restore the parameter dependence, we apply normal form theory to

= F(Z, 7/),^= 0,^= 0,^ (3.72)

seeking coordinate changes of the form

Z = IT' + P(W,^it = ft, V =^ (3.73)

(see, for example, [16, p.1451). The calculations then reduce to those outlined above, and

we obtain the following result.
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= Pw + ^wi

PoW9

2Aco^+

+

(3.75)
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Proposition 3.3 There exists a Z9 e Z9-equivariant coordinate transformation Z

W + P(W,p,v) that transforms (3.60) into

= 1171^+ alp + blv + C11147112 + C2111/212)

• °(1/1,11121W1 ± l i,1111W12^1W15),
^ (3.74)

1472^1472 (iP2c4,2^a2p b2v +11751W2)2 C4111/112)

+ 0(11t, v1211171 + 111, v11W12^MI5)

where a1, b1, a2, b9, C1, C9, C4, C5 are the same complex numbers that appear in (3.60).

Note that (3.74) is still Z9 (1) Z9-equivariant.

3.5 Large aspect ratios

We would like to study the third order truncation of system (3.74) as a means to study

the system itself, but this is reasonable only when the higher order terms are much

smaller than third order terms. For fixed a,(-, Q and all L„,, the normal form (3.74) gives

a valid description of the local dynamics of the magnetoconvection equation (2.5), for

parameters (L, R) in some sufficiently small neighborhood of (L„,, m = 1, 2, .... We

are also interested in behavior when the aspect ratio is large. Therefore for fixed a,<" and

Q, we consider the "Case I" limiting behavior of the coefficients in (3.74) as in oo.

As m (and L„,) increase to oo, the domain of validity of (3.74) shrinks to zero, so in our

application we are mainly interested in large, but finite, 171, and L„,. Since some of higher

order terms in (3.74) are proportional to (Piwi — P9w9)-1, and Picvi — /39w9 is small for

large Lm, we should study the size of Piwi — N.4,9 further. For fixed a,(,Q from §2.5 we

have
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therefore
(272

— Aco9 = ^LT„1 + 0(L,-„2),
Aw

(3.76)

as Lm --> oo. We can expect the center manifold reduction, used to obtain (3.74), to

break down if p, and v are large enough so that modes other than those corresponding to

(Di and 4,2 have eigenvalues for the linearization K + p, L„, + that are close to the

imaginary axis. Proposition 2.3 suggests that for large in, we should restrict our analysis

at least so that lajp+ ()Jul < 6, j = 1,2 where 6 = 0(in-2) as in --> oo. The solutions

of interest from the third order truncation have size IIVI2 < constant • 6, and in this case

the higher order terms in (3.74), even if some of the fifth order terms have coefficients

proportional to (Piwi — P9w9)-1, can be expected to have size only up to 0(in4).

Since the principal parts of (3.74) have size up to --, 0(in-3), it is reasonable to neglect

the higher-order terms of (3.74).

Now suppose we take limiting values in "Case II". Recall that we fix a but take a

sequence of small ( and large Q,

=^Q = filk/2^ (3.77)

where k,(', Q are fixed positive quantities and fit = 1,2, .... For each in we get a sequence

Rit), in = 1, 2, .. of critical parameter values giving double Hopf bifurcations. We

consider our "Case II" limit, when in = 1)1, and 711 oo. We recall that 1:17,1, = 0(m) as

before, and from (3.76) we have

Pico' — Aw9 = 0(1117(k+1) + in-2)^ (3.78)

as in -4 oo. In Case II, fifth order terms in (3.74) with coefficients proportional to (Piwi —

P2w2)-1 will have size up to^0(ink-'). and if k > 1, such terms could be comparable

in size to the principal parts and should not be neglected, unless laitt +^J. To

avoid this last restriction, we can use only a near-identity normal form transformation
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that do not result in fifth order terms with coefficients proportional to (Piwi — P2w2)-1.

As discussed above, this means the cubic terms corresponding to the vectors (3.70) are

not removed. Thus the resulting normal form is

=^+ asp + biv + Cilt17112 + C21117212) + C3 ft-7,^+ h.o.t., (3.79)

472 =- 1T2 (iP2w2 +^+ b2v + C1IW1I2 + C51W212) + C6147211712 + h.o.t.,

where h.o.t. = 0(1/1, P121W1^vliW12 + 111715). Since the matrix adA0(H„) is diagonal,
the coefficients a , b , j = 1,2, C1,^, C6 in (3.79) are not affected by the normal form

transformation and are the same complex numbers as in (3.60).

We will study (3.79) in Chapter 6, expecting it to give useful information on the

magnetoconvection problem if ( < 1 and Q >> 1, for a wider range of parameter values
(R, L) than the normal form (3.74).



Chapter 4

Evaluation of center manifold coefficients

So far, we have shown that the dynamics of the magnetoconvection system (2.5)-(2.7)

can be reduced to the normal forms (3.74) or (3.79). Both are valid, (3.74) is simpler, but

(3.79) will give additional information in the Case II limit of decreasing and increasing

Q and L. However, to make specific predictions of dynamical behavior, we need more

information about the coefficients in the normal forms.

In this chapter we evaluate the normal form coefficients of (3.74) and (3.79). In §4.1

we give explicit formulae for the coefficients in terms of the parameters of the original

magnetoconvection system (2.5)-(2.7). Then in §4.2 we study the asymptotic behavior

of these coefficients for large aspect ratios, in both the Case I and II limits.. Finally, in

§4.3 we evaluate the coefficients numerically for some specific values of the parameters

of the magnetoconvection system.

4.1 Center manifold coefficients

In §3.4, we showed that the coefficients in the normal forms (3.74) and (3.79) are the

same as the corresponding coefficients that appear in the system (3.60) which repre-

sents the phase flow in the center manifold The relation between (3.60) and the

magnetoconvection system is given by (3.56).

First, we determine the terms in (3.60) that depend on the parameters it and v. By
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comparing derivatives with respect to it in (3.54) and in (3.56), we have

a • = — (K(R„, + it, L„ + v)(1)i,C

^

i(12,0=(O,o)^j = 1,2

Using equation (2.55), after some simplification we get

(a + 1)a7r2wi — ia-72(6( w?) 
4(2L,,/7/1 )2p12(.01 (,t)? + (52 )

(a + 1)a7r2w9 — io-72(6( b.4)
a2 = ^

4(21,771/7/02Pi2W2(w3 + 62)

where

6 = 1 + + (.^ (4.4)

From equations (4.2) and (4.3) it is clear that aim j = 1,2 are positive. We now find

expressions for bl and b9. Since K(//, v) is analytic in v, and iPiwi are simple eigenvalues

for K0 = K(Rn„, Lin), there exist analytic functions oi(v), j = 1,2, such that a(v) is

an eigenvalue for K(R„„ L„, + v), with ai (0) = iPicoi and

do -
bi =^j = 1,2,

dv
(4.5)

By equation (2.14), ai(v) satisfies the cubic equation

0 =^+^v ) + Pi(v)(a( + + () + a(-(2

rn 2 2 0. Rm
+a-(Q72Pi (v)

4(L,„ v)
2^a(P13(0,

where

171272o- Rn,
41.51(v)(L, + v)2)

(4.6)

.P,^= 72 f[mj2(Lm + v)]2 +^.

But from (2.19) and (2.23), we have

açQ = (w? + (2)f)i (0)2(a + 
7120 — ()

4.L.'„^(0)3(0- +^+ L44)^
(4.7)a 1?,„ = . •) ^— ()

al

(4.1)

(4.2)

(4.3)
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therefore Si = ai/P(v) satisfies

(a + 1) (c.o? + (2)P? 
(1 — OP?(v)

(2)(0-^1)P1(0)2

(1 — ()Pi2(14

0 = s31+(a+(+1)51+[(0-(+6r+0+

LPi (0)3(a+()(1 + w?)] s^(b)?

aPi (0)3 +^w?) + (7(
(Lim + v)2Pi3(v)(1 — ()

h(si, v),

(Lni + 0215(00. —

(4.8)

Since fi(iwi3O) = 0, and Ofi/Ov(iwi,v)^0, by the implicit function theorem, for

sufficiently small v there exists a unique solution of fi(s1,v) = 0,^= C2i(v) =^+

(But +^+ 00v12). To find B111, B11 explicitly, we substitute s1 = fli(v) into

equation (4.8), and calculate

(a + 1)(a + ()72 [m2(1 — (2) — 2L(1 + w?)}
2(c.o? + 62)(1 — ()PiLl

in2^+ (2)(a +

2P1'1(1 —
72(2.2„ —17/2)(o- + ()(1 +4)(0 + w?)

2Piwi (1 — OL1, (w? + (52)

where P1 is given by (2.28). Similarly, we find

^(a + 1)(u + ()7r2 [em+ 1)2(1 — (2) —^+4)]
B2/1^

2(01 62)(1 OP2L1
712(in + 1)2(4 + (2)(a + 1)

2P2c020 — 01),
72(2L.:2n —^+1)2)(a + ()(1 +4(0 +4) 

2P2w2(1 — ()Li2I (w + 62)

where P2 is given by (2.28). Since

= daj(0) = idP;(0)(v) 
+ Pi (Bin + iBii),.7^

di/

we have

= 1, 2,

bin = PiBjll, j = 1,2,^ (4.13)

B91

B1R

B11

(4.9)

(4.10)

(4.11)

(4.12)
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— 71. 2 171 2C/Jib11 = ^ PiBu,
213,7„

—72 (711, + 1)2w.)
b 1 1 = ^

2 L 73„.^
+ P9 B9 .

Proposition 4.1 For all odd in, we have b111 < 0 and b2R > 0.

Proof: To determine the sign of bil? we note from (4.10) that

P? A = [m2(1 — (2) — 2r,2,,(1 + w?)]
271-4g, (1 — (2)

and biR have the same sign. But by (2.28) we have

(4.14)

(4.15)

1 + w = 1— (2
a(Q72(1 — () 

(a + 1)Pi2
(4.16)

and by (2.35) we have

aCQ ^3m2(in + 1)2 m2(m + 1)2 [m2 +^± 1)2]
(4.17)72(a + 1)(1 + ()^(2L„,)^(2L„,)6

Therefore using (4.16) and (4.17) we get

A 2̂m6 — (in + 1)27n2 [m2 + (in + 1)2]^32 [m2 — (in + 1)2] 
^ < 0^4.18)

^

.^(= 
(2L771)6^ (2L)4

The proof that b2R > 0 is similar. Q.E.D.

We now calculate the coefficients C1, ..., C6 of system (3.79) in terms of the parameters

of the original convection problem. To do this, we need to approximate the center

manifold function ti1(4, it, v) at it = 0, ii = 0. We observe that by Theorem 3.2,

kli(c1),,, 0, 0) can be approximated by its Taylor series to any finite order. We expand

kli(4),, 0, 0) = 421-119000 +^+ Z1Z9T1010 + Z122T1001

+ 212To9oo + Z1Z2kI10110 + 2129To10i + 4T0090

+ Z9Z2Tooll + 2;2T0002 + 0(143),^ (4.19)



Chapter 4. Evaluation of center manifold coefficients^ 63

where

(Pc = Z14)1 + 2-1 (Di + Z2(1)9 + 224)2.

Then using the chain rule and (4.19), we have

= iP1w1Z1 (2T9000z1 + 2it I I Iwo + Z9 loth + 22 Km)

— iP1c4.)121 (ZiWiloo + 221T0200 + Z9Toli0 + 29Thno)

• iP2w2Z9 (z1 i1010 + Tom) + 2Z2T0020 + 29T0011)

- iP9(.4.19^(Z1 T 100 1 + 21k11 0101 + Z9 T 00 1 1 + 229T0002)

+ o (jz i 3).

On the other hand, from (3.54) we have

= (I — f.3)[K^(4,0,0)^A.10 ((I)c, (1),)] •

(4.20)

(4.21)

where /(0 = K(Rrn, Lr„), A10(11,19) = M(4)1, (1)2, E„,) for any 01)i, (1)2, T(61),, 0, 0) is

given by (4.19), and

mo (cbc, (De) = Z?Al0(1,(1)1) + 2W0(4)1,(1)1) + Zi27 [A10(4)1, (1)1) + M0(4)1, (DO] +

Z1Z2 [1110(4)11 (1)2) + -110(4)2, (1)1 )1 + Z122 [M0(4'1, (1)2)^-110(4)21 (DO]

+ z122 pi/0(4)1, 4)2) + A10((I)2, 4) )1 + Z1Z2 ph(4)2, (DI) + m(1(4)1, 432)]

z.22/110 (4)2, 4)2) + 4,110(4)2, 4)2) + z24 [mo(4)2, (12) + M0(4'2, 4)2)] .

(4.22)

Then by identifying the coefficients of quadratic terms we have

(K0 — 2iPiw1)T9o00^= _ ppl0(1)1,(1)1), (4.23)

(K0 + 2iP1wI)To900^= —(I — P),11(4)1,(1)1). (4.24)

(K0 — 2i.P9w9)T0090^= —(/ — Amo(4)2,4)2), (4.25)



(Ko 2iP2w2) 0002

K01/1100

KO W0011

- i-P2‘.02)4'1010

- iP2W2)T0110

• iP2W2)T1001

▪ iP2W2)4j0101(K0 +
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-(/ - P)11/0(4)2, (1)2),

= -(i - P) [ itio ( 4)1 , (Di) + Alo(4)1,4)11,

▪ -(I - P)Plo(4)2,(1)2) + .7110 (4)2, (1)2)]

-(/ -^[11/0(4)1, 4)2) + Allo(cD2,4)01,

= -(1 - 15) [mo(1,4)2)±/[0(4)2,(D1)i,

P10(4)1, 4)2) + M0(4)2, 4)1)] 7

=^P) P10(4)1, 4)2) + M0(7, (1)1)] •

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

Since M0(4)1, 4)9) = M0(4)1, (D2), from the above equations it is clear that

Tioio =^T1001 = 011O, Tow = t2000, Toon = C009•

Also, we note that Toil°, Tian can be obtained from Tioio under the changes w1

and w2^-w9, respectively. To find C1, ..., C6 we substitute (4.19) into (3.56) with

p = 0, v = 0, and compare with (3.79). Identifying the coefficients of the cubic terms

gives

Ci =

C2 =

C3 =

C4 =

C5

(1110 ( T1 1 00, 'D O + MO ((1) 1, T i m ), (I) 7) +

(M0(2000, (I)1) -1- M0(4)1, 4'2000), 4)0 •

/11 ((.'...0\t--0011,(1)1)^-A10(4)1,ID0011)^-1/0(1j1001, 4)2),(1)0 ±

010( 4)2, Tim) + -Al0 (T1 010, (D2) ± 2110(4)21 tP1010)• (1)1'),

(-0^0020, -21^0M (Ti^1 4- A/ ra^D 0020/,-, 21,^-21

(m0('110110, (I)2) + A10(()2, Tom), (DT)

iloo, )2, + L'40,^-• How +^- 1010, -In =1)
d^1^(d^fri^\^(fri

+ (M0(()1, tP 1010) + 1110(T^(1)1) + 2110((J)1, olio), (I);)

(Mo(T owl, 4)2) + Mo(4)2,^+

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)



Chapter 4. Evaluation of center manifold coefficients^ 65

(1110 (4'002014)2) +111-0 CC 7 410020)1 (1)2*)

C6 = (MO(tI I 10017 C I) 1) + 1110(4)1, 1001) ( 2*)
^

(4.38)

(Aio(T9000• (19) +^T9000), (I);) •

After lengthy calculations, which we have checked using the symbolic computation

program Maple, we find explicit formulae for C1 , ..., C6. The calculations consist of three

major steps:

1) Computation of the terms A10(1,

2) Using the results of Step 1 to compute the Taylor series coefficients ijkl of the center

manifolds by solving (4.23)-(4.32).

3) Computing C1, ..., C6 according to (4.33)-(4.38).

The results are given below; more details of the calculations are given in Appendix

A. We have

1971-
Ci. = (C1/2) f al?"'^1   ^ ]^(4.39)

1P(1(1 + iwi) [ 4P1(1 + wf)^2Pi2(1 + iwi)(t + 2iwi)

io-(Q(2/,,,,,./in)472w2
Pi2(C + iwi)((2 + w?)(wi( + 2ib.)1(2/„./111)2) 1 '

C3

C2
{ ^-^aRln^7 ( (2M + 1.)(e2 + d2) + C- 12 + (112) +

. C/2 1
^+ 1101)^4(711. + 1)

71 ((2rn + 1)ci + c'i)+ 7r ((217-1 + 1)d1 + d'i) + 41)2(11+ 4)]
16P2(1 — ic02)^16P2(1 + iw2)

+ '
2g,P1

 [D3 + D.4 + b3 + n4 ±
712171•

(( + iW1 )P1
(TC(27 (E3+ E 4 + E3 +

=2L2 Pi r ;_-,^A 1 ,^2(7(..Q [E,73 ± EA
(Cni/2)^7;n [D3 + /-41.1 -h in7r(( + Iwi )

(4.40)

(4.41)

9^o-Rin^71"

P1(1 + )1) 2 P.1 (1 + W2) (7)2 + 2 u)2)

^7r ((2m^1)d2^2)]}

4(rn +1)

((2m^1)(11 — d'1)

16P2(1 +^I
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,^o-R„, ^[ ^((2777 + 1)(c2 + (12) + cl2 + d'2)
C4 = Cm+1/ 2^ (4.42)

P2(1 +^ 477/

7r ((22:p.21)ci + c'1)^( (2171 _1)d1 d 1) 1 

16P1(1 —^161-'1(1iW1)^4P1 (1 + c4.4)1

+ 1)72 [DI + D.2 + Di + 2 + a C(271- (El E2^1 +-E 2)]}
P2K jW2)

C5 = (Cm+1/ 2) 
aR,n^1

P2(1 + iw2) I 4P2(1 + (.03)^211(1 + ic02)(z2 + 2iw2)] 
  ^7T 

io-(Q(2L71/(7n +1))472w2 
Ph( + iW2) (C2 W)(W2( 2iW2(2tro./(71/ 1))2)

2„. ^+ n21C6^
21cr(Q ^{-

(Cm4-1/2) {^
21,

(In + 1)
P2 

72 I^7r(m + 1)(( +1w2)^+ E2]

((2m + 1)d1 —
P2(1 + iw2) 1_2Pi2(1 +^+21w1)^16P1(1 +1w1)

71 ((2m + 1)d2 + d'2)]}
47n

472
where Cm, C„,+1 are given by (2.55), raj =.1.--

1
7- for j = 1,2,

72^a(Q ((2777 + 1)c3 + c',3 + 8(ci + c'4)){

((27n + 1)ci + ^7r(m + 1)(27n + 1)(c1 
4m^327ng,

72 72

I 

cr(Q ((27n + 1)c3 + c',3) + 72o-(Q(27n + 1)c3

P2^2177,P1(C — iW1)^327ng,,Pj(( — icy')

+
A-20-(Q R2777. + 1)3c/3 + 8 (c4 + (27n + 1)2c.)]

32777,E;iiP1K — iwi)

+
71" ((2m + 1)ci + cc)^7r(171, + 1) ((2m + 1)ci — cc)

8m.^32E,
72 o-(Q (—(2m + 1)(3 — C/3 + 8 ( C.1 + Cil ) )=
P1^8(m + 1)(( — 1w2)

+
71 ((2777 + 1)ci + c)^71771(21)1 + 1)(ci — cC)-1

4(777 + 1)^32g, (77/ + 1)^i
72 72o-CQ ((27n + 1)c3 + ci) +^7120-(Q(27n ± 1)c3 {^
Pi^2(m + 1)P2(( — 7:c4,2)^32(m + 1)g,P2K — iw2)

9

D1

D2

D3

D4

12^8711(( —

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)
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7-20-(Q [(2m^1)3c13 — 8 (c4 + (2111 + 1)2e4)]

67

(4.48)

32(m + 1)L1P2(( — iw2)
7r ((2m + 1)c1 +^In^((2m + 1)ci — c11)

8(m + 1)^324
7 ((2M,^1)C3 + C13) —87(c4^c14) (4.49)

8m
72 ((2m + 1)ci +

E2 (4.50)
8m.Pi(C —

E3=
[(2772^1)C3^8(C4^e4)]

(4.51)
8(m + 1)

E4
72 [(2m + 1)ci + cid

(4.52)
8P2(m + 1)(( — 7:w2)'

72 cr(C2 ((2m + 1)d3 + d'3 + 8(d4 + d'4))
P2 1^81.11K^iW1)

7r ((2m + 1)d1 + (IC)^7r(m + 1)(2m + 1) (di +
4m^32 mg,

(4.53)

D2
72 f 71-2a(Q ((2m + 1)(13 + d'3)^7r2^mo-(Q(2^+ 1)d3
P2 2mPi(( + iwt )^32mg1P3^+

72.902 [(2m + 1)3d3 + 8 (d4 + (2m + 1)2d4)]
32mE,2nP1 (C + iwi )

7r ((2171 + 1)d1 +^)^7r (In ± 1) ((2m + 1)d1 — di)
(4.54)

32g^
}

f)3
o-(Q (—(2m + 1)d3 — d'3 + 8(d4 + d!4))

8(rn + 1)(( + 7:W2 )
((2m + 1)d1 + d'1)^in(2rn + 1)7(d1 — d'1)

(4.55)
4(m + 1)^32E(m + 1)

D4
71-20-(Q ((2171 + 1)d:3 + d'3)^72o-(Q(2m + 1)d3

2(m + 1)P2(( + iw2)^32(m + 1)g,P2((^iw2)Pi

c)-(Q [(2111 + 1)3(13 — 8 (d4 + (2/7" + 1)2(114)1

32(111 + 1)g,P2(C + ico2)

((21/1^1)(11^11/7 ((2/11^1)d1 — di1)
(4.56)

8(m + 1)^32g,

71.^+ 1)d3 + (I'3) — 87(d4 + (1)
(4.57)8rn
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E.=
72 ((2111+ 1)di + d'1)

(4.58)
87nPi (( + iwi)

71 ((2117.^1)(13^ + 87(d4 + d)
= (4.59)

8(in + 1)

E4=
712 ((2771^1)Cli^(111)

(4.60)
8P2(m, + 1)(( + iw2)

and ni, E , j

change w2

C1

—w2.

=

1,...,4 are obtained from Dj,Ej,j = 1,...,4, respectively, by

Also

(A1/4) + (a(QA0A3/27113) + (aRA2/4aqi)

making the

(4.61)
'(712A0/471-2) + (a(QA0/713) — (aR/16g,.10

C2 = (Cii4Th) - (42/111)1 (4.62)

27c1 + A3
C3 = (4.63)

113

C4 = —A4/174, (4.64)

C 1 =
(B1/4) + (a(QB03/2703) + ((277/, + 1)aRB2/ LIL-,01) (4.65)
(02Bo/472) + (0-(QBo/03) — ((2111 + 1)2aR/16g,.01) '

/C2 = (2rn + 1(c/1/401) — (B2/0),) (4.66)

IC3 =
27cii + B3

(4.67)
03 '

c4' = —B4/04. (4.68)

where

- -40 + iP1w1 + iP9w2,^719 = a.:40 + iP1w1 + iP9o.)9,

773 = (A0 + iP1w1 + iP2w9, 714 = ((7/2/,)2 +^+

= Bo +^+^1132 = aBo + iPjwj + iP9w9,

= (Bo +^+ lAw9, 0.1 = (((2in + 1)7/2L)2 + iP1w1 + iAw2,

Ao^71-2(1/4/2 + 4),

Bo = 72((217/ + 1/2L1„)2 + 4),
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(2m + 1)7
4Lm(', + 1)'

0- C(27 (P2 - P1)

1071 + 1)P1P2(( + iwi)(( + iw2)
A1 =- (2m + 1)B1,

A =^
7(2m + 1) [m,P2(1 iw2) +^+1)P1(1 iwi)] 2 ^

4M(771+ 1)PIP2(1+^+ iW2)

7r [-7nP2(1 + iw2) + (in 1)P1(1 + iwi)] 
41n(rn 1)P1P2(1 iwi)(1 + iw2)

72^(( +^— P2(( + 2b)2)] 
711(711 + 1)1311).2(( + if-4)1) (C^iC4)2r

A3 = (2m+ 1)B3,

^7r2 [P1((^iW1)^P2K ib)2)] Azi =^
4771( 77 1 + 1)-P1P2K +^+ iw2)

B.1 = (2m, + 02-44.

and d • (I'. j = 1, ..., 4 are obtained from c• 1 C1j, j = 1,...,4 by making the change W2 "4J

4.2 Asymptotic results

In this section we give explicit formulae for the limiting values of the coefficients

al, co, bi, b9, C1, •• •, C6

^in the normal forms (3.74) and (3.79), as^oo. We consider Cases I and II discussed

in §3.5. Details of these calculations are given in Appendix A. Throughout this chapter

we assume
-1=

4.2.1 Case I

It is easy to see from (4.2) and (4.3) that

inn^= lim 0,2 = a,-

B1=

B2

B3
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where

(4.69)

and A, P,w are given by (2.27), (2.59), (2.60) 6 = 1+ a + (". It is clear from (4.13)—(4.15)

that b , j = 1,2, are 0(c) as in oo, but we will show that actually the real parts biR

are 0(c2). By equation (4.18) and (4.9) we have

—71-6(o- + 1)(o- + ()(1 + ()A

where A is as in (4.18), after some simplification we get

=

and similarly we have

1271-4(a +Oa^1)((^1)(-2 +0(c3),^(4.71)
A5P(w2 + 62)

1274(a +^+1)(C^1)E2^O(E3),^(4.72)
A5P(w2 + 62)

Also, after some calculation we find asymptotic expansions of bi1, j = 1,2 and we get

{471-2 [(a + 1)(w2 + (2) — w2(1 — ()] 
w(1 — ()A3

272 (A2 —2)^+ (1 + w2)((6 w2) } c + 0(c2), (4.73)
w(1 — () (62 + w2) A3

{47r2 [(a + 1)(w2 + (2) — w2(1 — ()] 
w(1 — ()A3

2 2 (A2 — 2) (0- +0(1 +2)((a+(-02)} e+ o(c2), (4.74)_ (6-2 + w2)

Remark 4.1 We notice that in the asymptotic expansions of b1 and a2„b9 the terms

at order 0(c) are equal while the terms at order 0(c2) are negatives of each other. This

is due to the fact that the same relation holds for the asymptotic elpansions of P1,wi and

P2, w2. We will find similar behavior for the center mamfold coefficients.

(a + 1)o-ir2w — ia 72 (6( + (.4.)2)
a =^4A2p2w(w2 ± 62)

bin -^nip 12 (4 + (52)^1^ (4.70)

bil

b21
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For the normal form coefficients C1, ..., C6 we have

lim Cr = lirn c5 = A + B,
n1— O0^711—).00

u rn C2 = liM C4 = A,

where

A + B

A =

711—Y 00

liM C3
771-+ 00

7r2o-R0(( + iw)

7/1—) 00

_^lirn C6 = C,
In -+00

i^1^72

(4.75)

4A2P2c..o(co — i6)
io-(QA271-4 (1 + iw)

I_^4P(1 + w2)^2P2(1 + iw)(a7 + 2iwzddii

+ 
4P3((2 + w2)(w( + 21:wA2)(w — i6) '

—72(( + iw)(1 + iw)^o-/?0^+ d21)[7(c21 + 
4AP(1 + icii)4A2Pw(co — i6)^P(1 + iw)^2

{

1^1o-Q(2A2c1,11^271-20-(Qc„^a(0-1141A2+^ 4.
+ 

4P(1 + w2)i^((2 + w2)^P(ç — iw)^( + iw
7rd1 1 (3)2 — 1)^72cr(Q(A(1:31 — 2d4 1 )^70-('Qdir^} (4.76)+^+^ ,4A^P(( + iw)^4P(( + iw)2

—72(C + 7:(4)) (1 + kJ)^aR0^71 2

4A2Pw(co — i6)^P(1 + iw) [2P2(1 + iw)(w + 2iw)
„ 2 71-2a(Q)(d3i + 2d1)

4AP(1+ iw)^
7a21/

P(( + iw)
 0-(QAT-cli^7rdi (3A2 — 1)+o-(Qd'41A2 + (4.77)

+ iw^4P(( + ico)2^4A^
}

where and A, w, P. R0 satisfy equations (2.58), (2.59), (2.66) and (2.67) respectively,^=

472/P, and

C91 = (4.78)
P2(1 + iw)(7; + 21144'

272)2
C41 (4.79)

P2(( + iw)(t-z( + 2/wA2)'
Allo(271-

d11 (4.80)p((-2^w2)(472 + Q) '

d29 = 1
(4.81)

47rP(1 + w2)



2Aiunr2
(133 =

(P(472 + Q)((2 + w2)
(4.82)
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d'41 =

  

(4.83)
2P ( (2 w2 ) •

4.2.2 Case II

For (4.2) and (4.3) we obtain (for any k > 0)

lirn a1 = lim a2 = a,^ (4.84)
m--+oo^m--+

where
+ 1)a7r2c.T.) — io-7r2 + co2

= ^ (4.85)4A21926)-(c_b2 +(a +1)2) '

and^c.:) are satisfying (2.72), (2.73) and (2.74). Using (4.70) We also obtain

4o- (o- + 1) (71-2cD2 + /5

and

4or(o- + 1) (22 + P) .
;x3P(c452 ± (0- +1)2) ) (2 + 0(E2+(k12)).

472a-j)^272a (Â2 — 2) (1 + c.D2) ± 0(61+(k/2)),

^

\3 ^((0" + 1 )2 + C4)2)

472aw- + 272a (A2 _^(1 + (5)2) cz,
^  E^0(61+(k/2)),

^

3^((a +1)2+2)3^j

(4.87)

(4.88)

(4.89)

as in^cc. However, since by (2.77)—(2.80), Pi — P9 and w1 — w2 are OW, it is easy to

show that 1)11 —^= 0(c2). This will be important in our analysis in Chapter 6.

In Appendix B, we show that if k > 2, then C9 C3, C4 and C6 become unbounded as

in^cc, and if k = 2, then limits exist but

lim C9 0 Um C4, and^lim C3^lirn C6.
L,„->oo^L0 -+00^Lni —3 00

1R^
)^62 ± 0 (62+(k/2)),

-6^=^A3p(w2 + (a + 1)2) (4.86)
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In order to keep the limiting behavior of the normal form coefficients similar to that for

Case I, we restrict k < 2. Then we find

where

A +

A

lirn^Inn C5 = A +13,
771-400^ 77/ 00

Ern c2 =^= A,
/71-4 00^ 772 00

hill C6 = 0)lilll C3
m—oo

i7r2O-P0^1^1^72

+4A2P2(6.) — i(a + 1)) 14.P(1 + cD2)^2/52(1 + ic;))(eb + 2iJ4]
o-(Q7r4(1 + i)

+83p.^.^
8cD3P3(c.;) —1(a + 1)) '

= ^7r2o-Poi^7r(e-21 +(121) + 
mil 1^

+^
1^1- -^-

4A2P2(a) — i(o- + 1))^2^4AP(1 + ic;.))^4P(1 + cD2)..1
7r2(1 ± iCo)i^171-2(7-(Q(2-e'41 — 2(11,11 ± A(131) + 7a(Q(111

4i)X'2(ci, — i(o- + 1) [^ii5cD^415c112

+ 7(111(3A2 — 1) + A2(7(0'41]
4A

(4.90)

(4.91)

and ft =
472
P

i7r20.110 7r-^7rciiî  ±
4A2P2[JJ — i(a + 1)][2P2(1 +ic.-0)( + 2i64^4AP(1 + iCo)^2

71-(121]
9

i7T-2(1 + icD)^I 77-2o-(Q)■((i31 + 2d'41)^71-d1 1 (3A2 — 1)
4/5A2( — i(o- + 1)) I^if)co^4A

+ 
a(Qd'ili A2^(7(-QA7rd1l

iJ^j42 (4.92)

7r
C)1 = 

/52(1 + icD)(471-2/P +
^ (4.93)

72
41
^ (4.94)

=^I PC),^ (4.95)
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d91 =

  

1

  

(4.96)

(4.97)

(4.98)

4715(1 + 4.D2)'

27i;\

U41

(QPCD
5k2

  

2Pc.D•

  

4.3 Numerical results

Because of the complexity of the formulas for the normal coefficients Ci , ..., C6, we were

not able to find the signs of the real and imaginary parts of these coefficients analytically.

The signs will be important in our bifurcation and stability analysis in Chapters 5 and

6. Therefore we have evaluated the coefficients numerically, using Maple to carry out

the numerical computations. The results are summarized in Appendix B, and a repre-

sentative selection of them is presented in this section. The symbols oo in the tables

correspond to the limiting values of the coefficients as in oo, as calculated in §4.2.

We note that numerical results appear to verify our analytic asymptotic results on the

normal form coefficients.

The values of L„, were calculated by using (2.35). We have also calculated the values

of C1 and C5 for a relatively large set of parameter values a, ( and Q (see Appendix

B). We found that CH? and C511 are negative for all values of a, C, Q and in we used.

The numerical computations of C9, (3, C4 and C6 took much longer and more care was

required to avoid memory overflow and round-off error. For ( = .1, a = 1 and all the

different values of Q and in that we used, we found that. C911, 6'4R are negative, and

C11105R— Conalll < 0.^ (4.99)

We have also checked this inequality for a wider set of parameter values of a, and Q in

the limit as in --> oo. This will be important for our results in Chapter 5.
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In our calculations we observed that the signs of the real and imaginary parts of

C1, C2, C4 and C5 for all finite in and in the limit as in -4 oo are the same, but the signs

of C3R, C6R, C31 and C61 changed as in was increased.

We have also computed the values of normal form coefficients in Case II with a =

1, (- = .1, Q = 10072, k = 1 and for increasing values of in (Tables 4.3-4.6 ). The essential

features are preserved, and our analytic asymptotic results seem verified numerically.

However, convergence appears to be slower: C1 and Cs, C2 and C4, C3 and C6 approach

their limits much slower than their differences approach zero as in^oo. For example,

it is easy to verify that both C1 = A + B + 0(E1") and C5 ==^+ + 0(E'12), but

- C5 = 0(E).

Table 4.1: Normal form coefficients (Case I) for a = 1,( = .1, Q = 10072.

in 2L,,./in /?„, 100ai 10002
1 1.411 2399. .1762- .1372i .2296- .1146i

11 1.022 2018 .2270- .1446i .2342- .1405i
101 .9835 2013 .2307- .1431i .2315- .1426i

1001 .9791 2013 .2310 - .1428 .2311 - .1428i
10001 .9787 2013 .2311 - .1428i .2311 - .1428i

oo .9787 2013 .2311 - .1428i .2311 - .1428i

Table 4.2: Normal form coefficients (Case I) for a = 1, = .1, Q = 1007r2 (continued).

in L;72„ bin L. 72,,,b2R L 771 bii Lin b2i
1 -5.305 8.642 17.18 24.04

11 -6.621 7.037 19.85 20.83
101 -6.803 6.850 20.28 20.39

1001 -6.824 6.829 20.33 20.34
10001 -6.827 6.827 20.33 20.33

00 -6.827 6.827 20.33 20.33
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Table 4.3: Normal form coefficients (Case I) for a = 1,C = .1, Q = 10072 (continued)

771 Cl C2 C4 C5
1 -.0460 + .1125i -.0743 - .0352i -.0686 - .0026i -.0595 + .0931i

11 -.0523 + .1045i -.1360 + .0849i -.1360 + .0849i -.0541 + .1020i
101 -.0531 + .1034i -.1000 + .1300i -.0859 + .1363i -.0533 + .1031i
1001 -.0532+ .1033i -.0936+ .1333i -.0921 + .1339i -.0532 + .1032i
10001 -.0532+ .1033i -.0928+ .1336i -.0927+ .1336i -.0532+ .1033i
100001 -.0532+ .1033i -.0929+ .1336i -.0928 + .1336i -.0532 + .1033i

oo -.0532+ .1033i -.0928+ .1336i -.0928+ .1336i -.0532+ .1033i

Table 4.4: Normal form coefficients (Case II) for a =^= .1, (2 = 10072, k = 1.

in 2L7,/in R„, 100a1 10002
1 1.411 2399. .1762- .1372i .2296- .1146i

11 1.011 1832 .2362- .1379i .2442- .1315i
101 .9692 1775 .2432- .1333i .2441- .1325i

1001 .9638 1757 .24470- .1322i .2447- .1321i
10001 .9630 1752 .2450- .1320i .2450- .1320i
100001 .9629 1750 .2451 - .1319i .2451 - .1319i
1000001 .9628 1749 .2452- .1319i .2452- .1319i

oo .9628 1749 .2452- .1319i .2452- .1319i

Table 4.5: Normal form coefficients (Case II) for a =^= .1,(2 = 10072, k = 1
(continued).

in ET2,,b1 R E;2, i b2R L7?, b1 1,71,1)21
1 -5.305 8.642 17.18 24.04

11 -6.181 6.583 17.96 18.947
101 -6.229 6.274 17.92 18.03
1001 -6.206 6.210 17.82 17.83

10001 -6.193 6.195 17.78 17.78
100001 -6.190 6.190 17.77 17.77
1000001 -6.188 6.188 17.76 17.76

oo -6.188 6.188 17.76 17.76
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Table 4.6: Normal form coefficients (Case II) for a =^= .1, e2' = 10072, k = 1
(continued).

in C 1 C2 C4 C5
1 -.0460 + .1125i -.0743 - .0332i -.0686 - .0026i -.0595 + .0931i

11 -.04321 + .0968/ -.1061 + .0066/ .0119 + .0512i -.0444 + .0946i
101 -.0412 + .0938i -.1205 + .0747i -.0109 + .1131i -.0413 + .0935i

1001 -.0404+ .0930i -.0947 + .1116i -.0517 + .1264/ -.0404 + .0930i
10001 -.0402+ .0928i -.0810+ .1196/ -.0668+ .1244/ -.0402+ .0928i
100001 -.0401+ .0927i -.0762+ .1215i -.0717+ .1230i -.0401+ .0927i
1000001 -.0401+ .0927i -.0746+ .1220/ -.0732+ .1225i -.0401 + .0927i
107 + 1 -.0401 + .0927/ -.0785 + .1722/ -.0784 + .1723i -.0401 + .0927i
108 + 1 -.0401 + .0927i -.0739 + .1223i -.0738 + .1223i -.0401 + .0927i
109 + 1 -.0401 + .0927i -.0739 + .1223i -.0739 + .1223i -.0401 + .0927i

oo -.0401 + .0927i -.0739 + .1223i -.0739 + .1223i -.0401 + .0927i

Table 4.7: Normal form coefficients (Case II) for a = 1,e = .1, ej = 10072, k = 1
(continued).

in C3 C6
1 .1376- .0938i .0309- .0866/

11 .0890 - .0031/ -.0405 - .0381/
101 .0539 + .0673/ -.0569 + .0305i

1001 .0112 + .0820i -.0319 + .0674/
10001 -.0042 + .0803/ -.0184 + .0754/

100001 -.0092+.07891 -.0137+.0774i
1000001 -.0107+.0784i -.0121 + .0780i
10i+1 -.0107+.0784i -.0121 + .0780i
108 + 1 -.0113 + .0782/ -.0115 + .0782/
109 + 1 -.0114 + .07821 -.0114 + .0782/

cc -.0114 + .0782/ -.0114 + .0782/



Chapter 5

Existence of invariant tori

In Chapter 3 we have shown that the dynamics of the magnetoconvection equation in a

neighborhood of the origin in the Hilbert space X, for L sufficiently close to L,„ and R

sufficiently close to R„, (for all finite L„„ and in both Case I and II limits as in oo),

will be determined by the dynamics of the four-diinensional ordinary differential equation

(3.74), which we rewrite here as

21. — v + C1Zi2 C91 Z912] h.o.t.

Z2 [iP2W2 b21,/ -f-051Z212+C41Z112] h.o.t., (5.1)

where

h.o.t. = v121ZI, ii, 1l11Z13 +IZ15), ii = R — v = L — L..

and Z = (Z1, Z2) E C2. The normal form coefficients Ci, j = 1, 2, 4, 5, and ci , b , i = 1,2

were given and evaluated in Chapter 4. Recall that system (5.1) possesses the Z2 ED Z2

symmetry (3.59).

In this chapter, we determine the dynamics of (5.1), for Z, t , v near zero. First,

in §5.1 we study the "truncated" normal form where we ignore the higher-order terms

(h.o.t.). In this case, the equations decouple and the system is reduced to a planer one

which is straightforward to analyze. We must then determine whether certain structures

"persist" when the higher-order terms are restored, and in the rest of this chapter we

prove results for (5.1) that, are valid in the generic case, i.e. when the higher-order

78
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terms are not necessarily identically zero. In §5.2 we prove the existence of primary

Hopf bifurcations of symmetric "standing wave" periodic orbits SW0 and SW, from the

trivial solution, along two curves F1, P9 in the (it, v) parameter plane. In §5.3 we prove

the occurrence of bifurcations of invariant tori from the periodic orbits STF0 and SW,,

along additional curves A1 and A9 in the parameter plane, which implies the existence of

these tori for parameter values in a region adjacent to the two curves A1 and A2. Finally,

in §5.4 we prove the existence of normally hyperbolic invariant tori for parameter values

in the interior of a wedge in the (it, v) plane bounded by A1 and A9, but away from the

boundaries. Then we combine this result with the result of §5.3 to prove the existence of

normally hyperbolic invariant tori for parameter values throughout the wedge bounded

by A1 and A9.

From our analytic results in §4.1, we know that am,0211 and b911 are positive, while

biR is negative for all odd m. Also, based on our numerical results in §4.3, throughout

this chapter we assume

Hypothesis 5.1 Ci R, C9 n, C4 R5 C5R are all negative.

5.1 The truncated normal form

iWe write the normal form^ =(3.1) in polar coordinates Z1^= 7,2eo2 and obtain

9
7" I^ri (a^+ C1pi + C91111 + 0(.5), (5.2)

19 (amp + b911v + C 4 R721 C 5 nil 0(r5),

01 =P1w1 +^+ buv + C1jv + C911-:; 0(r4),

02 = P2CA.)2^ '2!i ^b9iv + C414 + C51r + 0(r4).

We observe that the first two equations of (5.2) &couple from the last two, up to terms of

lower order, but generically the higher-order terms of 0(r5) and 0 (r4) depend nontrivially
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on 01 and 02. As an approximation, we ignore temporarily the higher-order terms and

consider the truncated normal form

-= vi (ai^+ bi Rv + C1j1r? + c91)
^

(5.3)

r2 (a2Rit + b2Rv + Cartri + C5A)

01 = P1w1 + aiiit + bi/v + Crir? + Cnr,

09^P2w9 + a2/P + b91, + C4/4 + C54

Later, we will restore the higher order terms and prove results for the original system

(5.1), based on the analysis of truncated system (5.3). Since the last two equations of

(5.3) are decoupled from the first two, we need only consider the two dimensional system

7'1^r1 ((quit b1^+ C1Rlq + C9 nr:0
^

(5.4)

r9 (amp, + bmv+ C4 1v1 C511) .

This system has been discussed by Guckenheimer and Holmes [16, §7.5]. To make use of

their analysis, we simplify (5.4) by using the following scaling:

= ri VJCi ,17 = r9005R1, = s ga(C R)t.

Then (5.4) becomes

di^ _9^.991?, ( CI n)C2R -971
sfin(CIR)(aireit + biRv) +^+^12dt IC5ni

dr2
F9 51111(C 1?) (a9Tha + b21/v)v) + ^ + syn(C5R)s911(C1n)T391dt

By Hypothesis 5.1, sgn(C1R) = syn(C5R) = —1, and we are reduced to

^f 1 =^( -ft + 17‘f +

^=^-/121? + CF.; +^•

(5.5)

(5.6)



( 1, 2) = (17* 1, F*9) = ( 1 — BC
)112 R — Oli n 1111t — B 119R 

1 — BC
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where

airdt + bug), i 1,2, B = 6'9R/C5R, C = Cin/Cirt•

According to the sign of B, C and 1—BC, there are six different cases. The coefficients

B and C are positive in our application, so our study of (5.6) falls into cases /a (if

1 — BC > 0) and lb (if 1 — BC < 0) of [16, p.399]. In our application for the parameter

values that we have checked, only the case Ib is possible (see §4.3), but most of our

analysis will be valid for both I„ and lb cases.

For (5.6), the origin (Ti , 12) = (0,0) is always an equilibrium point, and there are up

to three other equilibrium points in the first quadrant:

( T1 , 2 )^( /111R, O), if /1111 > 0;

, f2) = (0, 0190 , if / 19 11 > 0;

if
RIR^B It2R 11211^C/111? > 0.

1 — BC^1 — BC

These fixed points correspond to the following equilibrium points of (5.4):

SIVe) (ri,r2) =
^ )al nit + biRv, 0

CIR
biaif it > --v;
(li

  

(0, 1 a9^+ 1)9

R

(1.; (PI^r;^0)

 

sw?) :
( if p> --=v;

T(°) (r1,r9) =

 

where

r7(p,v)
111(a9RC9 ll — al 110511 ) + V OM C9/1 — bl 110511)

1

C1 BC511 — C911a1 11

 

/Mai BC411 — amCIR) + v(bi Ram — bmCu?)
,C1 110511 — C21?Ci a



2( F1*)2
E(ii I I?, /121? ) =

2C 17117;

213F1 9
•

2(T;
(5.9)
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if^v) belongs to a wedge 1,17(°) in the parameter plane defined by

p(a9RC9R — RC5R) + v(b91C211 — RC5R) 

CinC5R — C9RC4R
p(aiRC4R— 0,211C1n) + v(bittain— b2RCIR) 

CinC5R — C211C41?

Thus, the boundaries of WM lie along the lines

> 0,

>0.

Ar •^. p = Ao*v, sgn(v)^scia(A0*^but/a111),

AV) :^Av, syn(v)^sfin(A*, + b9n/a20,

where

A'(!; =

A; =

1?bl^C Rb2 (5.7)

(5.8)

C1Ra2 R — C1 ROi R
C21b9 R — C511b R

C5 Rai R — C9 Ra0 R

See Figure 5.1.

The family of equilibrium points SWe) of (5.4) correspond to a family of periodic

orbits of (5.3) which bifurcate from the trivial solution at the origin as the parameters

cross the line al Hp b1 pi = 0. A similar correspondence holds for the family S147,°) of

(5.4). In §4.2 we will prove the existence of these two families of periodic orbits for the

non-truncated system (5.1). The family of equilibrium points T(°) of (5.4) corresponds to

a family of invariant tori for (5.3), for parameter values in the wedge WM. In §5.3 and

§5.4 we show that a family of invariant tori for the non-truncated system (5.1) exists for

parameter values inside a wedge W in the (it, V) plane, that is approximated by

To study the stability of the equilibrium points TM, we linearize the vector field of

(5.3) about the fixed point (Fr, T.,), obtaining the matrix



[ 2C1 ()2

2C4Rri 7 9

12C9Rri*r.;
E ( p,, v ) = ,

2C5Rkr.2*/
(5.10)
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Since BC 0 1, E has eigenvalues

A1,2 = (Tr(E) VTr(E)2 — LIDet(E)) /2,

where

Tr(E) = 2((fp2) + VD2), Det(E) = 4(1177;)2(1 — BC).

Depending on the sign of Det(E), (771*,i72*) is either a sink or saddle point for (5.6).

The corresponding linearized vector field of (5.4) about (71,r;) is given by

which has eigenvalues

'A‘ 1,2 = (-Tr(E) ITT(E)2 — 4Det(E)) /2.

Depending on the sign of CiRC51/ — C911a111, (7'7, r;) is either a sink or saddle for (5.4).

These fixed points correspond to either normally hyperbolic attracting invariant tori, or

normally hyperbolic invariant tori of saddle type for (5.3). Bifurcation sets for (5.4),

corresponding to the two different cases depending on the sign of CIRC5R — C2RC4R, are

given in Figure 5.1.

5.2 Bifurcating periodic orbits

In this section we return to consider the reduced four dimensional system of ordinary dif-

ferential equations (5.1), and prove the existence of bifurcating periodic solutions. These

solutions correspond to nonlinear standing waves in the magnetoconvection problem, so

we will denote them by SW solutions. First, we note that the subspaces

Vo = {(Z1,0) :Z1E CI,^{(0, Z2) : Z2 E Cl,



b1 H= -^I./
a1 R

b2R= —
a 9 R
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(a)

 

it^ bI? l)
= ---V

(b)

b211—^1,/
a711

Figure 5.1: Bifurcation set for (5.4): (a) CiRC5R-C9RC.in > O (14 CinC5R-C2RaiR < 0.
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are invariant manifolds for (5.1) due to the Z9 e z, symmetry (3.59). So we may study

some of the dynamics of (5.1) by restricting it to these subspaces.

The system on Vo becomes:

= z1(iPi^+ iti + Ci l Z i 12 ) + 0 (1z115 + Iii, vl^+ lit, 1) I 2 IZi I),^(5.11)

where 111 = alp biv. Now let Zi = el, so in polar coordinates (5.11) becomes

= 7-1(R1 11^C1 114) + 0 (rj + 111,1)14 + lit, vI27-1),^(5.12)

= P1w1 + /117 + Cur? + 0(4 +1/1, vir? + it, v12).

Since Cm < 0, by [16, Theorem 3.4.2], (5.12) undergoes a supercritical Hopf bifurcation

as we increase ill!? through some value near zero, and there exists a family of periodic

orbits Z0(t) Zo(ft, v)(t), which we denote by the branch of SWO solutions. The SW0

solutions bifurcate from the trivial solution for parameter (it, v) along the curve F1 defined

by et/ = ito(v), where

110(1) ) = —vbill/am + 0(1v12),

and the ST470 solutions satisfy

1412 =^(11 1111 + 
+ 0(1/1, 02), Z2 7=--- 0.Cin (5.13)

By a similar argument, we restrict (5.1) to the the subspace '17,, and prove the Hopf

bifurcation (supercritical, since C511 < 0) of a family of periodic orbits Z1, (t)= Z7,(it,v)(t)

from the trivial solution for parameters along the curve r, defined by it = [1„.(v), where

fir ( V) = —0)9 R /09R + 0 (I v12).

We call these solutions, satisfying

(12 /?/l^b9 ill/
Z1 E 0 , 1Z 212 =^+ O(I ji, 1112),

C51?
(5.14)
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the branch of SW,_ solutions. The SW solutions Zo, Z, are periodic solutions of (5.1)

with periods To = = v) respectively, with ro near 27/Picoi, and Tr near

27r/P2w2. The solutions Z0(t) and Z,(t) satisfy

JZo(t) = Z0(t) V t E R,^ (5.15)

/3Z(t) = Z,(t) V t E R.

To consider the stabilities of the SW solutions, and secondary bifurcations, we trans-

form coordinates near each periodic orbit. For v 0, we rescale variables by putting

Z = II/11 210, Z2 = 10112 U2, P = iv1A,

where u1, n2 E C, A E R. therefore we have

=^+ u1^12 + cd,11,121 + 0002)tiu1,\ + bisfin(v) +^ (5.16)

7i2 = ivIu2^+ a2A + b2sgn(v)

In order to study stability and bifurcation of the SWo solutions (u1^0, u2^0) we let

= re' and u2 = u, and obtain

it = iP2w2u +^[(12A + b9sgn(v) + C5Iu12 + C47-2]+ 0(1v12),^(5.17)

Ivir PIRA + sgn(v)bill+ Cilly2 + C9R1u1l + 0(102),

+ IvIktidt + sgn(v)bil + C11r2 +^+ 0(102).

Since 0 0 0 for all sufficiently small^we can parameterize the flow away from r = 0

by 0, obtaining

+ 675171212 +^+ 0(1v12).

du/ (10 = iAtt +101 4(u, r, A) + 1021;1 (u,r,0, A, v),^(5.18)

chide =^r, A) + Ivrk(u, r, 0, A, v),
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where A = P9w2/P1w1, tl(u, r, 8, A, v) and n(u, r, 0, A, v) are periodic in 0 with period
27r, and

U(u, r, A) = (u/Piwi) [A(a2 — jAaii) + s9u(v)(b2 — jAbil)

— iAC1i)r2 + (C5 — jAC2/)1u121

7Zett,r, A) = (r/Piwi)[aIRA syn(v)bili + CiRr2 + C21?InI2].

The ST/V0 solution (5.13) now corresponds to the branch of 27-periodic solutions

u = uswo (0, A, v)^0, r = rSj 0 (0,^= ro (A) + 0(v),

of the rescaled, reparameterized nonautonomous system (5.18), where

aiRA syn(v)biur.PA) =
C 1 11

Now we define a moving coordinate system by

u = v, r = rstv0(0, A,^+ x,

where v E C, E R. Then (5.18) becomes

dvide = iv^37, A) + 1v121)(v, x, 0, A, v),

dxid° =^x, A) +1/212(r,' 37, 0, A, v),

where

(5.19)

V(v,D, x, A) = (v/Piwi) {A(a9 — Aait) + sfpl(v)(b9 — iz.\141)

+ 2(C.1 — iL\Cii)vo(A)x + (C4 — lACil)rO(A) + (C5 — iAC21)iv12}

+ 0(I11211,1),

X(v,v,s, A) = (1/P1c.01){2C111rO(A):r + C2nro(A)iv121+ (:)(13712 + I.riivi2),
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and 1)(v, V, x,0, A, v), (v, V, x,0, A, v) are both periodic in 0 with period 27r. (Note that

V satisfies the complex conjugate of the equation for v.) By Floquet theory, there is a

27r-periodic coordinate transformation, linear in the spatial variables, of the form

(v, 17, x)T = [I + vP(0, A, v)]ew,^y)T, to E C, y E R,^(5.20)

which removes the 0-dependence of the linear terms in w, t , y to all orders in Iv'. Equa-

tions (5.19) are then replaced by

dw/d0 =^+ 1014)(w,^y, A, v)^Iv121'New,^y, 0, A, v),^(5.21)

^

dy/d0 = IvIY(w,^y, A, v) ±1v12)1(w, ü, y, 0, A, v),

where

1/1)(w, tL , y, A, v)^V(w, D , y, A) + 0011w,

yew,^y, A, v)^X(w,'tp, y, A) + 0(11111w„ y1),

^

1/ikw, t , y, 0, 6,^= 0(1012 + lilbwl + 11012),

^

5)(w, 7-D, y, 0, 6,^=^(1012 +^+ w12),

and 1;V- , are both periodic in 0 with period 27r, and 11) satisfies the complex conjugate

of the equation for w.

^The trivial solution to a-- 0, y^0 of (3.21) now corresponds to the S1470 solutions of

(5.1). The linearization about to = 0, 'CO = 0, y = 0, is given by the matrix

4=

f20(v, A)

0(11112)

0

0(102)

C-20(v,

0

0

0

21vICHtr(A)
0002)+

(5.22)

where --20(v, A) = i + I vIC20 (A) + 0(102), and

C20(A) = (1/P1w1) [A(a2 —^sfin(v)(b2 — iAbit) -I- (C4 — iACH)r(A)].
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Due to the Floquet change of coordinates (5.20), the entries of the matrix .4 are indepen-

dent of O. Moreover, its zero entries are clue to the reflection symmetry. The eigenvalues

of A are Floquet exponents for the STI70 solution. Since the entries of the Jacobian ma-

trix A are analytic in v and its eigenvalues are simple for small uI
, 

by [23] the Floquet

exponents of SW0 solutions depend analytically in v, for small Iv' and have the form

v), 27k0(A, v), 27r7y0(A, v),

where

v) = C'20(11, A) + 0(11112),
21vICIRrd(A) 

70(A, v) = ^ + 0(1v12

) > —sgn(v)binlain.

(5.23)

Floquet exponents for the SW, solutions have the form

27(A,v), 27/1,(A,v) 271---y",(A,v),

where

^

ti,„(A,v) =^+ IviQ,(A) + 0(11)12),^ (5.24)
21v1C5Rq,.(A)

^v) = ^ + 0(102),
P2w2

C27,(A) = (1 /P2w2) [A(al — iAa21) + sgu(v)(1)1 — izA1)21) + (C2 — iLS,C5i)ii(A)] ,
a9RA sgn(v)b911

r,i(A) =
C5 R

A > —sgn(v)b911/a9R.

If I, is fixed so that

(a9Rb1n— al itb9n^( 1)-')
9 \li + 0 ^> 0,

al Ra9n
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which corresponds to V < 0, then the Stilo solutions bifurcate before the SW„ solutions

as it increases. Near the bifurcation of the SW0 solutions, ro(A) is small and therefore,

R(Ro(A, v) < 0 for small 14 and all three nontrivial Floquet exponents of the SW0

solutions have negative real parts, implying that the solutions are stable. Near the

bifurcation of the SW,, solutions where r,1(A) is small, we have (M,-(v) > 0 for small v,

implying that the SW,, solutions are .unstable. On the other hand, if v > 0, the roles of

the SW„ and SWo solutions are interchanged. We summarize the results of this section

in the following lemma:

Lemma 5.1 Assume (tin, i = 1,2, and Cl,?, Cs!? in (5.1) are not equal to zero. Then

there are primary Hopf bifurcations of symmetric periodic solutions of (5.1) from the

trivial solution, for parameter values (it, ii) belonging to the curves

= i.to(v) = —vbin/aill 0(11112), (5.25)

F2 it = 11,(i)) = —11b7R1 am+ 0(11112),

near the origin in R2. We denote the periodic solutions in the two branches by SW0

and SW,, respectively. If ail? > 0, i = 1,2, Cin < 0 and C511 < 0 (in our application

these conditions are satisfied) then for fixed sufficiently small v, both solutions bifurcate

supercritically as it increases and the solutions that bifurcate at the lower value of it are

stable, while the other solutions are unstable.

5.3 Bifurcation of invariant tori

In this section, we show that for parameter values (ft, v) belonging to one of two curves

A1 or A2, one of the SW solutions for (5.1) has pure imaginary Floquet exponents.

We then prove that parameter values along these curves correspond to secondary torus

bifurcations from one of the SW solutions, which implies the existence of invariant tori

for (5.10), for (it, 1)) near A1 or A2.



Chapter 5. Existence of invariant tori^ 91

We first consider secondary bifurcations from the ST/I70 solutions. We write

ko(A,v) = i + iviko(A,v),

and notice that R[ico(sgn(v)A;, 0)] = 0, where Ao* is given by (5.7). The implicit function

theorem now implies the existence of a unique smooth curve

^

A = A0*(v), 897/(v) = slin(AO + birdain),
^(5.26)

such that R[A:0(-A-;(v), v)] 0, with 5■(v) = sgn(v)A; + 0(Izi1), v sufficiently close to

0 . Thus for parameters A, v along À.1, the SW0 solutions have conjugate pairs of pure

imaginary Floquet exponents. In terms of original parameters of (5.1), Ã1 corresponds

to the smooth curve

^: p = P0*(v) = Iv1;\0*(v) = vA0* +^, sgn(v) = sgn(A0* + bin/am),^(5.27)

such that ntko(ito*(v), v)]^0

Similarly, for the SITI, solutions we write

^

v) =^v),

and note that R[ii-,,(sgii(v)A;, 0)] = 0, where A; is given by (5.8), and the implicit function

theorem implies the existence of a unique smooth curve

^

A9: A = -k,r(v), sgn(v) = syn(A; + b9 09R),^(5.28)

such that R[k.„.(",;(v), v)]^0, with ;\;(v) = sgn(v)A; 0(14. In terms of the parame-

ters of (5.1), A9 corresponds to the smooth curve

-

^A2 : p = ftv) = IvIA;(v) = iiA + 0(Iv12), sgn(v) = sgn(A; + b211/a211),^(5.29)

such that nrkir(it;(v), v)]^0. We summarize the above arguments in the following

lemma:
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Lemma 5.2 There exist smooth curves A1, "2 in the (ii, v) parameter plane, along which

the SW0 and STIC solutions of (5.1) have conjugate pairs of pure imaginary Floquet

exponents.

To consider the behavior of the system near the SW0 solutions for parameter values

near A1 we let

A = .A0*(v) S, syn(v) = syn(A0* biRlain)

in (5.21) to obtain

dw
de
dy
de

K,(6, v)to + jvIVV(w, , y , 6) +^, , y , , 6, v),

=^v):t/^1111Y(w, 113, y,^+ Iv12SAw,^y, 0^,

(5.30)

where

k (6, v) = !Via (8, V) + i[A, + 1V113 (6 , 14], (5.31)

(5.32)a(0, v)^-.-. 0,
C11a91 — C411a1 II ^Oa/06(0, 0) =^ (5.33)

CI BPI wi^,

/3(0,0) = (1/Piwi) [Q0 + Ao*(a2/ — Artii)],^(5.34)
2Ci R(To*)2 

(5.35)7(0, 0) =

= rO(PAO*IC4::1 (5.36)ro

= —(b2/ — Abu) -I- (au — ACH)(e6)2,^(5.37)Qo 
(2p1',.//,/v) [c4^iAc:11] + tpvlilwur^W (w , ID, y, 6) =^ : [C5 — jAC21], (5.38)

+ iSiilliiwi),^(5.39)

C+2/Off((111:1jUI!21V + 161111)1312^^Y(w, 'ffi, y, 6) ,^+ 0(11112 + Iellwl +1(5114),^(5.40)
PiLoi

);‘)(/v, 11). Y , 0 , 6, v) = 0 (iYi2 + 11111 id + lw12),^ (5.41)

(5.42)5)(w,17', y, 0 , 5, 0 = ° (iYi2 + Wiwi + I wi2 ),
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and Vi1, 5) are both periodic in 0 with period 27r.

Since a(0, v) = 0 and -y(0, v) < 0 for jvj sufficiently small, we can we apply an

invariant manifold theorem for periodically forced systems [18, Theorem VII.2.1] to obtain

an attracting center manifold, which can be represented as a smooth function

y = h(w,

defined in a neighborhood of to = 0, 6 = 0, with

Oh^Oh,^Oh
h(0, 0 , 0 , 0, v) = 0, —(0,0,0,0, v)^—(0,0, 0,0, v)^—(0,0, 0 , 0, v) = 0,

Ow

for all 0 E S1 and all sufficiently small H. To find h, we use the fact that the center

manifold is invariant, which implies that h = h(w, ft), 0, 6, v) satisfies

Ow
Oh {IvIN(6, v)w +^,^h, 6) + Iv12)!1). (w , t, h, 0,6, v)}

{wo, otp +^11,6) + 1v12);11- (w t, Ii , 0,6, v)}ti)
Ivi-y(5, v)h +^, h, 6) + IvI2S)(w, , tD, 11, 0,6, v),^(5.43)

Substituting the Taylor series expansion

y = h(w, zi), 0, 6, v) = all (0, v)w2 + a12(0. vga..712 + 0,13(0 , v)1D2 + O(11013 + 161111/1)

into (5.43), we identify the coefficients of w2, '1.2 and jw12 in both sides of equation (5.43)

and obtain

^

aii(0,v) = 0(10, ai3 = 0(ju1), a12(0, xi) = —C2R/(2Ciro-) + 0(10),^(5.44)

We then obtain the following periodically forced equation in the complex plane which

represents the flow restricted to the (attracting) invariant center manifold:

dw
—(10 = (z(6, v)w + IOW ( w, t , 6) +^w, ti), 0,6, v),^(5.45)
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where

(W, 6) = "11112 [EC5 - jAC2n^jAC1/1]^0(12V15 + 16114)
P1W1

1;%,- 4(W, IMO, 6,^= 0(1W12),

and 1;1,- 1 is periodic in 0 with period 27r We write (5.45) in polar coordinates w = pei"cb,

and then apply the theory of normal forms for periodically forced systems [1, section 26]:

if qlv10(0, V) is not an integer for q = 1, 2, 3,4 or 5 (this is satisfied for all sufficiently

small IIJI) then we may change coordinates to put (5.45) into the normal form

where

dp
dO

di.1)
dO

= IiiIai (v)6 P + vIA1 (v) P3 +^, 0 ,

=^+ Iv1130(v) +^01 046 + 1v1131(14 P2 +^-8(1), , 0 , 6, v)

(5.46)

Oa^C1/10,91? - C4 04
—06

(0,v) = ^

i3(ii) =^
013/ 3(0 , v) , /31(v) = —06 (0, v),

C511C111 C211C 4 I? 
C 1 11,^

+ 0 (1111) ,Ai (V)

C RC51 C2Ra I^P2W2(C111C21 C211C11) 
81(11) =^ ± 0^,

C111^ P1W1C 1 rt
A(P,O,S,v) = (AP5 + i61P3 +1612 9),

8(P,11,,6,v) = 0(P4 + l6IP2 + 1612),

and A, B are periodic in both 0 and V.), with periods 27r. In our application (11(0 < 0 and

A1 (v) > 0 for all sufficiently small V . We now state and prove a result on the existence

of bifurcating tori for parameter values near the curve Al.

Lemma 5.3 Suppose A, B in (5.46) are CI functions with A1 (v)^0 and o'i(v)^0.

Then there exist vo > 0, 60 > 0 such that for all

^0 < Iv' < vo, sgn(v) =^bin/Gill)

a l (V)
11
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and all

^0 < 1(51 < 60, s gn((5)^—syn(cri(0)/A1(0)),

the system (5.46) possesses a C1 invariant torus p = p* (0, 0, (5, v). Moreover, the torus

is attracting for (5.46) if cri (0)Ai (0) >0 and is of saddle type if ai (0)Ai (0) <0.

Proof: The proof of existence of p* follows from [5, Lemma 12.6.1], all the conditions of

the lemma being obviously satisfied for sufficiently small Iv' and 161. Now we follow [5,

Lemma 12.5.2], adopting its notation, to find an estimate on 60. Since (5.46) is not in a

form that we can directly apply this lemma., we first use the standard resealing

(.11111((liv);5) 1/2
P = ^

(
1+ 1(511/2/i) (5.47)

Then (5.46) becomes

^

= —2ai(v)1v1(5/3 + (531v170,0,3,v,(5),^(5.48)

= A + 1v1 /30^+ (51v1 (0, 0,^v, (5),

e = 1,

where 7Z, are periodic in 1/., and 0 with period 27r and are bounded, together with their

derivatives, as 161^0 and 1v1 --+ 0. We note that kP has the form

^(v)] ^0(1(511/2).19T(0,, v, (5) = [31(0^
(001 

^+

Now we let

^, (0,9)T,^v, 6)7',

and write (5.48) in the form

= A(;\)j) + R(O, /3, 50,^ (5.49)

= w(50 +



w(A) = ( A + ivii30(v) 61vIT(0, 0,^v, 6)
()(1/), 9, [5, v, 6) =

1
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where A(A) = 2vai(v)(5 and

Although [5, Lemma 12.5.2) does not actually apply to (5.49), mainly due to the

dependence of A(A) on A, we can use the same proof with minor changes. We are

interested in integral manifolds in the form j f (O, A), with f being periodic in each

component of O. Following [5], for each integer p > 1 we put

Fp =^E CP(R2 , R) : f(0) is 27-periodic in each components of

With the CP-topology, Fp is a Banach space. For any f E Fp, we now consider

= A(A)i)+Q(o,A,f),

=^+ P(O, A, f).

where

Q(O,A, f) =^f(9),), and P(O,A,f) = e(O, f(0),;\).

For a fixed 0" E R2, let O*(t, 0-, A, f) denote the solution of

= w(s) +^f)

with initial condition O*(0, 0, A, f) = 0. Now assuming that A(A) > 0, we define

K(u, A) = 0^for n < 0,

= —c-1(5')u for U > 0,

and form the mapping

(5.50)

T(A, f)(0) = —^K(u,A)Q(O*(u, 0, A, f), A, j)du.^(5.51)



and
OP ( , A, f)
ao = 0 (v11.513/2) • (61112 + Ifl ).7(A, f) = sup

6
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We note that

IK(u, A)I <e' ^V u E R,

where

a(v) = 12 (r i (v ) v(5 1 = 0 011 1 16D,

Thus, if we choose a bounded neighborhood V of 0 in F1 and choose Iv1,1(51 sufficiently

small so that 7(A, f) < (4), then by proof of of [5, Lemma 12.5.2] we have

^T (A, •) : V^F1.

In particular we may take

V = ff E^:^< 11.

Also by of [5, Lemma 12.5.2], (5.48) has an integral manifold of the form ji = j(O, A) if

and only if T has a fixed point in F1. We prove the existence of such a fixed point, by

proving that T is a contraction mapping. By the mean value theorem we have

IT(, 1)(c7)) — T(A‘, f)()1 < sup ID fT(5k, f)((i))11.7 - f11,

where the supremum is taken over all 0 E 112 , f E F1,1 f < 1. But

D fT(‘, f)() = —f K(1.1,5) [D(7°*("),, f)^ac2 (O. (11), f) Oi)*(u) 
^f ^0'0^Of du

where ê*(u) =^(7), A‘, f). In our problem

0(20* (11),A, f)Q•^(I)* (11)^f) = o or/ 214,^= 006131214f^ OO

and

< Cci(54)", where -5'(;\, f) = 000161312),
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and therefore

1-Dif (T(5%, f)(0)1 < IvI3/2k L°O e-fa(j)jud",

for some real constant k. Since a(;) = 0(1v1161), we have 1Df(T(A, f)()1 = 0(1611/2)

uniformly for all ch E R2, f e F1 with fI < 1. Similarly, ID(T(5%, f)()1 = 0(1611/2),

hence there is a positive constant C such that

f)—N, f)1 C61/21i - f

for all sufficiently small 1v1 and 1(51, and for all 1/11,1111 < 1. Also we observe that

= 0(1S1112),^1-Dc-b(T(1, f )()I = 0(151112),

and therefore

IT(5‘,/)11 < C1611/2

for all sufficiently small 1v1 and 161. Thus for all sufficiently small 1v1 and 161,^•) is a

contraction mapping on the closed unit ball in F1. Q.E.D.

Remark 5.1 a. With more lengthy estimates, one can prove that T(5%,•) maps the unit ball

in Fp into itself for p > 2 by showing that f)lp = 0(161112) and therefore showing

that the bifurcating tori is C. However, the region of parameter values for which CP tori

exist may shrink as p increases (see [5, p.492]).

b: In the above proof, based on our numerical results in §4.3, we have assumed that

A(5t) > 0. However the proof easily can be modified if A(;) < 0. In that case we simply

redefineK(u, in the obvious way, and the rest of the proof will be the same.

We observe that v0,60 in Lemma 5.3 can be chosen independently of each other.

In terms of the system (5.1), this implies that the bifurcating invariant tori exist for

parameters (it, ti) in a thin wedge-shaped region of width 0(1v1) adjacent to the curve

Al. In a similar manner, we can show that invariant tori will bifurcate from the SW,

solutions along the curve "9. See Figure 5.2.
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Figure 5.2: Parameter values (shaded regions) for which bifurcating invariant tori exist
for (5.1), when CI RC5R — C9Ra41? < 0.

5.4 Persistence of invariant tori

In this section we prove the existence of invariant tori, when the higher-order terms are

restored in the full system (5.2) or (5.1), for parameters (it, v) in the wedge-shaped region

bounded by the curves A1 and A2, but sufficiently far from the boundaries. Combining

this with the results of the previous section, on the bifurcation of tori along the curves

A1 and A2, we thus prove the existence of invariant tori for parameters (it, ti) throughout

the interior of the wedge bounded by the above curves.

It is convenient to use the parameters pin =^i =1,2 introduced in (5.6).

In terms of these parameters, the curves A1, A9 (see Figure 5.3) become

1‘*1 1121? = 110*(P1R)= C1i111+0(/11n12),

A; /1211 = it; (RI It) = MOB + OOP in12),
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P2R

Figure 5.3: Curves in the (fil1?,/19W parameter plane corresponding to A1 and A2.

where itiR > 0 and

C4R^C9 ftC =^B =^.
U5R

Based on our numerical results of Chapter 4, we assume that CiRC5R- C2RC4R < 0,
and thus 0 < 1/B < C. We introduce the scaling

= El Jo = EA, r=^= 1,2.

for c > 0, then after dropping the hats, (5.2) becomes

= crl +^+ c2 R + e2

0'2 (A + Cie'? + C511T:) 0(c2),

(5.52)

Ol^ au(b9R— biRA)^b11(o911 — (11R/\)-=^+  ^,^ + Cur? + C911-3 + OW),Rb9n — amblR a9Rbi R — a nom

= 
p2w9^e a2/ (b9/? — RA)^b91(0.911 — (IlnA)

C4/ 11 + C5/11 ± O(E2).—^ambin— al num
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Now we use the coordinate transformation defined by

=11(A)^= 7,9.(A)^61/2p2,

where

     

and A satisfies

r7(A) =^1 — BA 
V CIR(BC — 1) =--

r(A) = j  A — C 
V C5R(BC — 1)

C5R AC2R 

C9RC4R C1RC5R'

ACiR C4R

•C91?CI11 C11105R

C511 — AC911, AC11,— C4 R > 0.

Note that this is equivalent to 1/B < A < C. We then find that p = (P1, p2), 0 = (01, 02)

satisfy an equation of the form

= EE(A)p + €312.T(^p, A, c), (5.53)

= w(A, e)^E31 201(p A, E) + €202(6,1), A, E),

where

E(A) =
[^2C2 eV )01'.' ( A)2c1R(ei(A))2

(5.54)
2C 4 ul'IPOT; ( A)^2C 5 R(IVA))2

W 1 + OW
c)

(Pi
=

)
(5.55)

'P2W2 + 0 (f)

and T, 02 are 27-periodic in both components of O. Furthermore, for all sufficiently small

a > 0, co > 0 and for fixed q, 0 < q < 1/2, the functions .7., 01 and 02 are continuously

differentiable on

(01, 02,m ,p9, c) E R2 x Q(a,Eo),

where

Cl(a, €0) = (P11 P2, A, e) :1(91,p2)1 < a, 1/B + Eq < A < C —^0< e < co}
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Now we use a linear coordinate transformation of the form p = S(A)ji, where S(A) is a

nonsingular 2 x 2 matrix, that diagonalizes E(A), and we get

^P = A(;\■)p^ (5.56)

0.0) + oco , ,3,50

where A = (A, €),

( al (A)^0 )
A(A) = E^ 5 al (A) <0 < Et2(A),

0^a2(A)

and

, i5, 5t)^c312S(A)-1.F(0, S(A)/5, ), c),

0(0, P,;\)^E3/201(S(A)/),A,E)+ E202(S(A)j),A,c).

We observe that (5.56) has the same form as (5.49) (the dimension of /3 is different), and

we can use the same method used in Lemma 5.3 to prove the existence of invariant tori.

We construct the 2 x 2 matrix

K(v)^diag(e-Eal (4", 0) for it < 0

diag(0,(-'2(A)") for u > 0,

then form the mapping

T(, f)() =
^10C 

K(11, A)(2(0* (a, c , A, f),^f)dit.^(5.57)
- 00

for f E F1,q; E R2, where Q and 0* have the same meaning as in the proof of Lemma

5.3. In the present case, we have

-y(A, f) = sup
0

OP (0,^f)
00

=^( €3 / 2 ) • ( E 1 / 2 + 1.111),
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where P has the same meaning as in the proof of Lemma 5.3. To obtain useful estimates

for T we estimate the eigenvalues of al (A), co(A) of E(A). Near a boundary of the wedge,

one of the eigenvalues approaches zero, so first we put A = C — Eq, and after some

simplification get

cri(A) = eq /2+ 0(1€129,

a2(A) = —2 + 0(16129,
^ (5.58)

If we let A = 1/B+ Eq, we get the similar result, and thus for all A, C+ < A < 1/B — eq,

there are positive constants 0, k such that

U E

for all sufficiently small e. Since 0 < q < 1/2, we choose a bounded neighborhood V of 0

in F1 and choose lAt, Id sufficiently small so that

7 (;\,^< kel+q,

then by proof of Lemma 12.5.2 of [5] we again have

TCA',•) :^F1,

We prove the existence of invariant tori, by proving that T is a. contraction mapping on

the close unit ball in F1. In a. way similar to how we obtained the analogous estimates

in the proof of Lemma 5.3, we obtain

IDAT (A , f) l i = o (E 1/2 -"
)^ITC\ ,^, = o (E1/ 2-0

for all f EF with fI < 1, and for all A with C^< A < 1/B — Eq. Thus for all

sufficiently small E, T is a. contraction mapping on the closed unit ball in F1, and we have
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'L

Figure 5.4: Parameter values (shaded region) for which normally hyperbolic invariant
tori exist for (5 1) with C C- 1^5R - C21,C411 < 0.

Lemma 5.4 For any fixed q , 0 < q < 1/2, system (5.4) possesses Cl invariant tori for

11B + eg < < C —^0 < < 112,

for all c sufficiently small. The tori are normally hyperbolic, and have the same stability

type as the invariant tori T" of the truncated system (5.3).

In terms of the parameters of (3.1), Lemma 3.4 implies that the invariant tori for (5.1)

exist in a region bounded by curves that are tangent to A1 and A2 at the origin (see

Figure 5.4).

Since Lemma 5.3 already implies that tori exist in thin wedge-shaped regions of width

0(10) adjacent to A1 and A9 (see Figure 5.2), the parameter regions corresponding to

the two lemmas overlap in a neighborhood of the origin:

Theorem 5.1 System (5.1) possesses invariant tori (denoted T1) for the parameter val-

ues (it, v) throughout the interior of the wedge of the parameter plane bounded by the

curves A1 and A9, and the tori have the same stability type as the invariant tori T" of

the truncated system (5.3).
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We summarize the results of this chapter in Figure 5.5, showing the schematic bifur-

cation set for (5.1). Corresponding to one-parameter paths with fixed v and increasing

p, are diagrams shown in Figure 5.6. We note for p sufficiently large there exists the

phenomenon of bistability: both SW0 and SW, solutions are asymptotically stable, and

the behavior of a typical solution (transient) as t oo is determined by its initial condi-

tion. The boundary between the basins of attraction for the two SW solutions contains

the invariant torus T1 and its stable manifold.

We briefly mention some implications of the result of this chapter for the original

magnetoconvection problem. For a fixed a,(, (2 and odd integer in, for L < Lin, and

sufficiently close to L„, (v < 0 and sufficiently close to 0: see Figure 5.6(a)), as we

increase the Rayleigh number R through Rm(L), stable standing wave solutions SW0

(corresponding to odd mode solutions) bifurcate from the motionless solution and an odd

number of time-periodic rolls will be observed in the fluid. As we increase the Rayleigh

number further through R7+1 (L), a branch of unstable SW, solutions (corresponding to

even mode solutions) will bifurcate from the motionless solution. Increasing the Rayleigh

numbers still further, the competition between odd and even modes produces a branch of

invariant tori T1 (typically corresponding to quasiperiodic or weakly resonant solutions)

which bifurcate from the branch of even mode SW, standing wave solutions, and coexists

with the branches of stable SW0 and SW, solutions. For L = L„, (v = 0) and L >

L„, (v > 0), we have similar interpretations of the bifurcation structure. See Figure 5.7.
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A2

Stable SW0, SW„,
^Stable SW0 solutions Unstable Ti^Stable SW„. solutions

^

Unstable SW, solutions solutions^Unstable SW0 solutions
F1

Stable SIT17, solutions

F2

Figure 5.5: Schematic bifurcation set for (5.1), with CI110511 — C9RC4R < 0. (Compare
with Figure 5.1(b)).
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(a)

(b)

(c )

Figure 5.6: Bifurcation diagrams for (5.1), for fixed v and increasing p: (a) v < 0;
(b) v = 0; (c) v> 0.
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(a)

(b)

Figure 5.7: (a) Typical region (inside shaded circle) in (R, L) parameter plane for which
results of this chapter apply to the magnetoconvection equations; (b) Magnification of
the region in (a), showing parameter values (darker shaded region) corresponding to
invariant tori and bistability of standing wave solutions.



Chapter 6

Secondary Bogdanov-Takens bifurcations

The results of the previous chapter give rigorous results on the dynamics of small-

amplitude oscillatory magnetoconvection, when L is sufficiently close to Lin and R is

sufficiently close to R„-„, so that lajRp binvi < Piwi — P9w91, j = 1, 2. However,

as we discussed in §3.5, for small large Q and large L, the quantity JPiwi — P2w2I is

extremely small, so the rigorous results can be expected to be valid only for a small range

of parameter values. To get a more complete picture of the dynamics of our problem for

a wider range of parameters values in the Case II limit, in this chapter we will analyze

the alternate normal form (3.79), which we rewrite here as:

4 =^[iPi^+ ci1 t bi v + CilZ112 + C21Z212] + C3Zi^+ h.o.t.^(6.1)

4 = z2[iP2w2 + a2it + b2v + C4IZil2 + C5IZ212] + C6Z24 h.o.t.,

where h.o.t. are 0(lp, v121ZI + IP, v11Z13 +1Z15) and ai , b1, a2, b9, C1, •.., C6 are the same

complex numbers as in (3.73).

In §6.1 we consider some coordinate transformations of (3.79) which make the analysis

of the normal form easier. Then in §6.2 we consider a three dimensional reduced system

obtained from the third order truncation of the normal form (6.1) and find bifurcation

parameters p, v for which the linearized vector field about its nontrivial fixed points have

double zero eigenvalues. These nontrivial fixed points for the reduced system correspond

109
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to the periodic orbits SW0 and SW, of the full system. In §6.3 we consider the Bogdanov-

Takens singularities which correspond to the double zero eigenvalue, and their unfoldings

for the reduced system. In this way we predict the existence of secondary and tertiary

pitchfork, Hopf and global bifurcations from the SW solutions. In §6.4 we consider the

reduced system as a small perturbation of a similar reduced system coming from a Hopf

bifurcation with D4 symmetry that wa.s considered before by Swift [41].

6.1 Preliminary coordinate transformations

To study the bifurcation of solutions in (6.1) we would like to decouple the average phase

from the radial direction. The most straightforward way to accomplish this (up to finite

order) is to write the complex amplitudes in terms of polar coordinates Z1 = ri el , Z2 =

r2e2e2 as we did in Chapter 5. Then the average phase (01 + 09)12 does not appear in the

equations for 7'1,79, or (01 — 09) up to cubic order. But coupling of the phase difference

(01 — 02) with 7-1 and 7-9 in the system makes calculations somewhat awkward. We will

instead use a different coordinate transformation which is easier to work with. Like

the polar coordinates, the phase angle of the S' symmetry in the normal form will be

decoupled from the other variables up to finite order in this coordinate system.

We use the coordinate transformation [41]

U iI7 =2Z1Z2, TV =1 Z1 12 -1 Z2 121
4 — 4 
IZ? - Z11 (6.2)

Although this coordinate transformation is singular at origin, we will use it away from

the origin. System (6.1) in this new coordinate system becomes:

= U[61?it -1-611 r(B41? B5I? B61?)I2} - VP + ?WI +1)1111
^

(6.3)

-V 1[B - B2I B;31]/2 -^[B ± B21 + B01]/2

+ UTII/34n — B5R± B:ig]12 ±U(U, V, IV, Ili, it, v),
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= U[„,1:1 -1-, alp biv r(Bii — B21 -I-, B31)/2} VVeRit

+Vr(BzIR B51? B611}/2 U1TT[B11 + B21 — B61]12

V117[B411 — B511 B311]12 V(U,V, W, T, p, v),

W[ãmp+^+ T(C111 C511)] r[aRit + Ril]+ UV B61

i-U2 (Bin — B211 B3RV2 ± V2 (B111 — B211 B311)12

+ W2 (C111 — C51?) + W(U, V, TiV, it, v),

tif =^+ P2w9 +

where r = .Vu2 + 172 + 1172, and

U, V,^= O(7-3 + I p, 1/.2 + p, v 12r)

are 2r-periodic in tJI , and

= C1— C1, B9 = C5 — C2, B3 = C3 — C6,

B4 = C1 + C4, B5 = C5 + C2, B6 = C3 + C61

= a — co,^b = b1 — b2,^= P1w —

=^a2,^= + b2.

Due to the symmetry (3.55) of system (3.79), (6.3) is equivariant under (U, V, W,

(—U, —V, W, IF), therefore

(—U, V, W,^v) = —U (U, ^, ji , v),^(6.4)

V (—U, —V, W, , p, v) = —V (U, V, IV, , p, v),

W (—U, —17, W, 'IP, p. v) = W (U, V, W, , p, v),

and this implies that the set U = V = 0 is an invariant subset for (6.3). This invariant

subset corresponds to the invariant subspaces Vo (if IV > 0) and^(if IV < 0 ) in
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the (Z1, Z2) coordinates. NW can find some information on the dynamics of (6.3) by

restricting to invariant subset U = V = 0. Then

117 = W[aRit + bRv + 'WI (Cm + C511)] + 1WP111t + Lllvi
^

(6.5)

+ II72(CI11 — C511) W(0, 0, TV, T),

= Picui + P2w2 + 0(IW)•

Since kif > 0 for WI sufficiently small, we can reparametrize (6.5) by and obtain

dW
= [Piw + P24-1 {WV" Rit +^+ W (Ci^C511) IWI(C111 C511)]

+ 11471[a11dt + 6riv] +^kli),^ (6.6)

where WI T, t , v) is periodic in "P with period 27r and is 0(114713 + t , v111412 -I-

Ip, vJ2 IWO. Now the Hopf bifurcation theorem implies that (6.6) will have two different

periodic orbits

Wo(ft,v)+ 0(lit, v12),^(6.7)

1/i7,(T,/t,v) = 1/17,(t1,v) + 0(1 ii, ^(6.8)

where

al + 
v)^ain't + nv > 0,

C1R
b9ilv1.1)^ 0.9 nit^b9^> 0.

C5R

(6.9)

Solutions 1470(4J, ft, 14 and^p,^are the periodic orbits SW0 and ST/17, of Chapter

5, which bifurcate from the trivial solution along the curves

F1: ^= -0111/0,0v+ 0(102),^(6.10)

F2 :^= —(1)211 / a2R)1-1 + 0(1142),

respectively.
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To study secondary bifurcations from the SW0 solutions we use a moving coordinate

transformation

= U, V= V, W= W —^v).

After dropping the hats, (6.3) becomes

^U[a2Rit + bye/ (C4 R C 6 OW01 - [(2 + alit+ biv]
^

(6.11)

— V Wo [Bi + C611 — VW[Bu C61] UW[B411 + C6R] + (U, V, W, , ft, v)

=^+ a1t + blv + W0 (B1, — C61)] + V[amit + b2rty + Wo(C4R — C6R)]

+UW[Bli — C61] + I/1T/[13411 — Cm] + 1)(U, V, W, P,1i , v)

—2W[aiRit + Hp] + UTT[B6d + U2 (B1 R - B2R + B30/2

B30/2 + 2W2 C111 Vi)(0, V, W, T, v),+1/2(B111 - B2 R

PlW 1 + P2W 9 ± 0(r),

where the higher-order terms Cf., :1),.);1) satisfy the symmetry condition (6.2), and are 27-

periodic in T.

6.2 The reduced system

If the higher-order terms in (6.11) are ignored then the first three equations decouple

from the fourth equation, although in general T will appear in the periodic coefficients

of higher-order terms. As an approximation we consider the following reduced system,

obtained from a truncation of (6.11) that ignores the higher-order terms -/,-/,1) and 1;1):

U^U[a2111u + b2 Iry + (Cm + Q0110] — VP + jt + v}
^

(6.12)

— V Wo[B + C61J — V TIT[B + C11] + UW[B4R + C6r],

= UP + äjp + blv+1170(Bil—C61)]+v[andt+b2Rv+wo(c4R—c6R))
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+UIV[/311 — (761] + VITIB411 — C611],

= —2W[ai11it + biRv] + UV[B61] + U2 (B111 — B211+ B311)/2

-1-172(B1R - B211 ± B311)/2 2W2C111•

The origin in (6.12) now corresponds to the SW0 solution.

Remark 6.1 By using a similar moving coordinate transformation

U, V = V, Ili = IV — W , p, v),

we could consider the dynamics of (6.3) near the SW, solution. Due to the symmetry

(6.4) of (6.11), the analysis about the SW,, solution is quite similar to that about the

SW0 solution, therefore we only present our analysis of (6.12).

The eigenvalues of the linearization of vector field to (6.12) about the origin (i.e.,

about the SW0 solution) are

Tr0,,(1t, v)^Tr20(p, v) — 4D et0,,(p, v)
(6.13)

2
—2(ainp, b^n+^<

 

where

Tr0,7r(p, v)^2[a9R11 b911v^W0C411],

Det0,,,(p, v) = —10612In + Nit + b ay + B RT'Vo]
9

+^+ 11111 + 6111+13111V0] ,

 

(6.14)

 

2
(6.15)

and amp+ b1 11v > 0. We notice that one of the eigenvalues of the linearized vector field,

which corresponds to the W direction, is always negative .
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Remark 6.2 By considering the truncation of (6.3) about the SW, solutions

corresponding expressions for eigenvalues

Tr,,o(tt, v)^\ITr 7,2 03(i1, v) — 4D et,,o(ii, v)
v)

2
A13r (it, v) = —2(a9Riu bmv) < 0,

115

we find the

(6.16)

where

v) = 2[ai^Rv — Wir Cud/^ (6.17)

D et, ,o(it, v) = — I C 312 tiC2 [6, nit + bRy + B2 RTICJ2
^

(6.18)

+ [Co +^biv + B2/1N
2

and a2Rii b9Rv > 0.

We expect pitchfork bifurcations of fixed points of the three-dimensional system (6.12)

along one-parameter paths transversal to the curve

F3 : Deto,„(it, v) = 0.^ (6.19)

Such bifurcations correspond to secondary pitchfork bifurcations of periodic solutions

from the periodic SW0 solutions in the four-dimensional normal form. Along one-

parameter paths transversal to

F4 : Tro,,(tt, v) = 0, Deto,„(iu, v) > 0,^(6.20)

we expect Hopf bifurcations of periodic orbits of (6.12) from the origin. These correspond

to secondary bifurcations of invariant tori from the SIV0 solutions.

To find multiple bifurcation points where F3 and r4 intersect, we look at the sign

of Deto,„ when Tro,„ = 0. The line it = vAo*, where N; satisfies (3.7), corresponds to

Tr0,7, = 0. If we put IT70 = Ii'ITV6, we have

11a9R — Rb9R,
1170* = — sgn ( v)^ 5 sgn(v)^syn(A0*^bill/ain)•

u Ram — na R
(6.21)
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Remark 6.3 Based on our numerical results in Chapter 4, in our application sgn(v) =

syn(A0* + bin! = 1 when in is odd. To simplify our notation, we continue our analysis

assuming that syn(v) = 1; however if syn(v) = —1 we can treat the problem similarly.

Therefore for syn(v) = 1 we have

1,17* =0

and then

b Ram — aiJb9R 

C Ram — C4 Rai rt' (6.22)

Detoor G to* (v),^
=^612w0.2 + {co + [à1A* +1)1 +Bi 1147,;`]v} .^(6.23)

Then Deto,,(it(v), v) = 0 if

v =v • ^  > 0, j = 1, 2.
[±1061 — B1j]1170* — 1)1 — el/A6'

In the above equation, and in what will follow throughout

1 or 2, with the "plus" sign in front of IC6I corresponding

sign corresponds to j = 2. Using (6.22) and (5.7) and after

(6.24) in terms of normal form coefficients:

al Rain)(.2)( CI Ra211
7^ - . (6.25)+IC611^/^ r,R./9/? — Rion] + Ra(Bi b) — R(a‘Li la —

Let us denote

= v;Ao*, j = 1, 2,^ (6.26)

and note that
aDet0, , ( 11.7

OV

 

=-2 1T0* ( +1 c61 )^o, (6.27)

 

which implies that any point of intersection of the curves T ro,, (ji , v) = 0 and Deto,,(u, v)

0 is transversal. To find a condition on the number of solutions for v in (6.25), we consider

—
M = laiRa(Bib) — b,o(B,n)-cidavtEd 2 (6.28)

2

(6.24)

this chapter, j can be either

to j = 1, while the "minus"

some simplification we write

= V
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9
+ IC6121^h bLai R- - -R-1 RI

-
(c/102 [iC6121;2R — [(1316)]2 +^[Ic6124 - [-s(Bia)]2]^(6.29)

—2ambiR[IC612e1R6R — cs'(131-0(Bi-e71)] — (CiR)2[Wk2

—2Cida(â-g)[ai0(B:76) — biO(Biet)]•

There will be one solution /4 if and only if M > 0. On the other hand Deto,,,(14(v), = 0

will have two solutions v = //` if

— [1061 + B11]IV0* —^
— a/A0* > 0,
^(6.30)

or equivalently, if

IC61 <^— O(B15) — CI(a) 
(6.31)

al rtbR — 1)1 OR

Now we consider the curve Det0,7, = 0 in general, after substituting for 1/170 from (6.9)

into (6.15). We have

Det0,,(it,v) = D1t2 + Fv2 + 2E itv + G1i. + Hi' +
^

(6.32)

where

D =

E =

F

G =
H =

(al R/C102 [1B112 — Ic612] + 11/12 - 2(aut/Ci R)R(Bi^(6.33)
(i

( r,,IRbi 2 R)[1-8112 — IC611 + RA)
LAI?

—(biR/CiR)(B1a)) — (al 11/C11R(B1 6)),

(biR/Cilt)2 {iBi 12 - 106121 ± 1612 - 2(biRICin)R(B16),

—2C4(aiRICiR)Bil — ad,
—1)1].

The graph of Det0 = 0 is a conic section in It and v, the type of this conic section

being determined by the sign of E2 — DF; it will be an hyperbola, parabola or ellipse if
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E2 — DF is positive, zero or negative respectively. After some simplification we get

(E2 — DF)(C1n)2 =

or in another form

10612 {ai2R.ILI2^b?R1et12 — 2a4RbiniR(etb)]

- 2
— [ains(Bib) — bida(B4) — C4R(etb)]

2
[(tiR(Bib) — biO(Bilft) — O(âb)

1
+ ic6i2 [a R 1 61 —^2

(C R)2 (E2 — D F)^+ [1061(1, R — aibin)]2.

(6.34)

(6.35)

^

This implies that in the region in (it,^plane for which there is only one positive root

for (6.23), the graph of Deto, = 0 will be a hyperbola.

Since we are interested in the behavior of the system for large in, let us denote c = m-1

as in Chapters 2 and 4. We recall some of our asymptotic results on the normal form

coefficients. For fixed a, ( and Q (i.e., Case I) we have, as 771 -4 00
(272

2^P1W1^E +(EP2W2 =  ^),^ (6.36)

= .4+B+0(c),^C5=A+B+0(e),^(6.37)

^C2 = + OW,^C4 = A + 0(e),

C3^C OW,^C6 = C 0(0,

= E2b + o(E3),^= 0(e),

e2bn/2+ 0(e3), NI? = —e2b11/2 + 0(e3),

B + OW,

B + OW,

where Pi, , j = 1,2 and 1),w are as in Chapter 2, and Ci (j^1, ..., 6), A, B,C,

a2, b1, b9 are as in Chapter 4, and a, b, are as in equation (6.3). Now we consider the

biR =

B1 =

B2 =
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c-dependence of the terms involved in Deto,, and Tro,,. From (6.36) we observe that the

slopes of the curves F1, r9 and r4 near origin are 0(e2). This implies that in Case I for a

fixed a, ( and Q and for sufficiently large m, Deto,,(p0*(v),v) cannot be zero for small p

and v. For example, for in = 107,Q = 10072, = 1, and ( = .1, there is one intersection

point, but with the value of v 9519. In fact we have

Deto,,

0(m),

=^0(E3).

(6.38)

However, if we consider a. decreasing sequence in ( and an increasing sequence in Q

as in our Case II for large aspect ratios that was discussed in Chapters 3 and 4, we will

get different results. Recall that for fixed (' and Q, we put

= Q = ck/2Q, (6.39)

where 0 < k < 2 . Under the scaling (6.39) we have checked numerically the conditions

on the number of intersection points of the curves Tro,, = 0 and Deto,„ = 0, for different

parameters of the original magnetoconvection problem. We found that it is possible to

have both one or two intersection points. When the graph of F3 is an hyperbola there

is a very small region in parameter values for which there are two intersection points,

however the value of v at the second intersection point is large. For fixed a and as

the value of Q decreases, the value of v seems to increase without bound, but as the

value of Q increases, the values of yr and 14 become smaller and the intersection points

appear to approach the origin. We did not find parameter values for which there are no

intersection points (see Table 6.1).

We have sketched the scaled graphs of F1, r9, F3, El for a = 1, = .1, and for

= 10072 and 30072, which correspond to cases with one or two intersection points,

respectively, in Figures 6.1 and 6.2. The directions of the axes in all the figures in this

chapter are as in Figure 6.1.
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Table 6.1: Values of //I, 4^/dam for a = 1,‘" = .1,771 = 107, and different values of

Q.

14 10-4 in2A; 10-4m2(-biR/ aiR)
10-472 4.75 - .247965 .247964
.0172 .4814 - .2481 .2480

7T2 .0546 - .2718 .2580
10072 .804 x 10-3 - 3.9458 1.0887
20072 .417 x 10-3 - 6.330 1.808

220.0479372 .3901 x 10-3 - 6.733 1.945
220.0479472 .3901 x 10-3 76667 6.733 1.945

30072 .319 x 10-3 .407 x 10-2 8.238 2.477
40072 .259 x 10-3 .143 x 10-2 9.997 3.113
50072 .241 x 10-3 .127 x 10-2 11.682 3.727
100072 .173 x 10-3 .551 x 10-3 19.616 6.577
10572 .248 x 10-1 .312 x 10-4 .111 x 104 .312 x 103
10872 .101 x 10-5 .104 x 10-5 .475 x 106 .100 x 106

To consider the asymptotic behaviour of the location of the intersection points, we

put

62 + (63 ) = 
b R(2 A R^R) 

6
2 

o(E3),
aRBR

WO* ^+ 0 (E3) = -3RE 2 + 0(E3),
Dil

(6.40)

where Ao*,1470* are as in (5.7) and (6.21). Recall that we have shown that in Case II, we

have
cz) = 

(272
 ek-Fi^0(ek+2) = ek+iwo^0(ek+2).

Au)
(6.41)

For 1 < k < 2 we have

Deto,,(v,e) = e1l/21-1(712N + [-BIII7(;" + b1]21 + 0(€2k+2 e5),^(6.42)

and if k = 1 we have

Deto(v,e) =
^9 - I tri; + MI/ 1 2
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Figure 6.1: The curves r1,...,r4 for a = 1, = .1, = 10072,k = 1,m = 107, using the
scaling p = 200€2it, v = .01V. Note that vr = .000804. Dotted lines show the parts of
curves Tro,, = 0, Tr,,0 = 0 for which their corresponding values for Deto,, and Det,,c,
are negative.
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Figure 6.2: The curves F1, r, for a = 1, = = 30072,k = 1,m = 107, using the
scaling it = 400E2 v = .01/i. Note that vi* = .000319, v.; = .00407. Dashed lines show
the parts of graph Tro,, = 0, Tr,,0 = 0 for which their corresponding value for Deto,,
and Det,,0 are negative.



(+IC I — B1)1176* — b1
—Bllwo

b R ICI
± 0(c).^ (6.45)
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-Elci2(ovIn2 + 0(c5).^ (6.43)

The implicit function theorem implies that D eto,,^v, c) along the line Tro,„(it, v, c) = 0

is zero if

V = (E)^± 0 (E),3 (6.44)

where

wo

6.3 Bogdanov-Takens bifurcations in the truncated system

In the previous section we showed that the linearization of vector field of (6.12) about

(U, V, T47)^(0, 0, 0) (the SW0 solutions ) has double zero eigenvalues when (it, v) =

v;), i.e., where the curves r3 (Deto,, = 0) and F4 (Tro,, = 0) intersect. Similar

results hold for the SW, solution. The parameter values (pi, j ) correspond to Bogdanov-

Takens singularities in (6.12). In this section we unfold the singularities, and analyze the

non-linear dynamics of (6.16) for (it, v) near (it;, v;).

We first use the coordinate

/ x \

transformation

0^1^0 \ / U \

= 2j—2j^—1j^s, (6.46)

where

\ Z 0^0^1 \^T'17

=^(amp + bmv)^W0[C411 — Col],^(6.47)

A2j^(;)+ ahtt+b,v +Wo[Bil — Cod.^(6.48)
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Under this transformation (6.12) becomes

1 0 1 0 / x / xo(x,y,w)

1.7 —Detoor

0

Tro,,

0

0

—2itin Z j

Y°(X,Y,I17)

zo(X,Y,w,)

(6.49)

where

x0(x, 37, z)^Z ^j-Y +^- C611 + .X.[BLIR CM]
A2j

y°(x-,Y,z,)^z (—Aux +11[B4R ±C6R) ± j(B11 C61] 

ZN2j
-X[A2j(C61 + B11) ± A 1i(C611 — B4a)ll ,

Z°(X,Y, Z) = X (  (-AUX + 37)B6/ 
 )+ 

(-AO: + 37)

2

1
r

LS
r,

A2j^
:IR - B2R + B3R1I2

A2j
± X2[B11? - B21? - B3R1I2 + 2C1RZ2 .

When Tro,,r = 0, Deto,, = 0, the linear part of the vector field for (6.49) has double

zero eigenvalue, while the third eigenvalue —2As! where

= a nit;^b1 11v ,,^ (6.50)

is negative. By the center manifold theorem, there exists an attracting center manifold

represented by a smooth surface Z = h(X,Y,p, v) for X, Y sufficiently small and p, v

close to p, v. Moreover, the reflection symmetry (6.4) implies that h can be chosen so

that

11( —X, IT, p, v) = h(X, 17, v).

This center manifold can be represented by its Taylor series to any finite order, and to

the lowest order it will be in the form

h(X,Y, [1'1,14) = euX2 + c9XY + c3.11/2 + 0(IX, Y14).^(6.51)
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To calculate eu, e2, e3.; we substitute h = h(X, Y,^v;) given by (6.51) into

eu =

[B1R — B2R - B3R]/2
(6.53)2As1

eu + B61^Au (B111 — B211 B3R) (6.54)ezi =
.\;!^26.2jA;^2A2.A'!23 3

B1R B2R B3R ^i =^ (6.55)e3 
2AL49A';

Then the dynamics of (6.49) restricted to the attracting center manifold when t =

1/ is represented by3

=^g1x3 92ix2y g3 jxy2 g4 Y3
,
^ (6.56)

= g5i X3 + 96i X217 + j X y 2 + gsi 37 3

where we have ignored the higher order terms. Using normal form theory, we can remove

six of the eight nonlinear terms at cubic order. After transformation, (6.56) in normal

form can be taken as

= Y,^ (6.57)

= crix3^j
9

where

j = 95j,
^ (6.58)

(2euX + e2117)(Y + X°(X, Y, h)) + (e2iX + 2e3iY)Y°(X, Y, h) =

—2A; (euX2 + e2jXY + e3jY2) + Z° (X, Y, h,^ (6.52)

Then by equating coefficients of powers of X and Y in both sides of (6.52), we get

—(,13/A23) [B61] + (Au / A2)2[B — B211 B311]/2 

13; = YGj+391 j.
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The dynamics of this normal form has been discussed in [16]. Allowing it, v to vary near

p; and VI, we obtain the unfolding

y,^ (6.59)

^=^+ -y2y + aix3 + OjX2Y,

where -yi = —Deto,, 'y2 = Tro,,. When (p,v) = (p, v;), the system (6.59) has a

Bogdanov-Takens singularity at the origin and undergoes a codimension two bifurca-

tion in a small neighbourhood of the origin, for it, v close to i.e., (-y1,72) close to

(0,0). See Figures 6.3 and 6.4. The shaded circular and square regions in these figures

correspond to two different case of bifurcations.

System (6.59) can further be simplified. Using the scalings

x = - (Vm ) 17, y = (l13/2I O) M t = — (iilaji) f,

71 = (Ctj/13.02;-Y17 72 = — ( ICU.i Pi) )"42,
^ (6.60)

then dropping the "bars", (6.59) becomes

= y,^ (6.61)

y = 71x + 72y + syn(cti)x3 — x2y,

Depending on the sign of

^cei = —a1 {2Ai.j[C6R]^A2,j [B11^C61j^(z:i,j/A2,j)1B11 — C611} ,^(6.62)

for each j we will have two distinct cases (up to time reversal). In the above expression

for cri we assumed the nondegeneracy condition

= 3g1j g6j^0,^ (6.63)
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Figure 6.3: Parameters as in Figure 6.1. The circular shaded region shows the parameter
values that correspond to our bifurcation analysis.
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Tr,,0 =

Figure 6.4: Parameters as in Figure 6.2. The circular and square shaded regions show
the parameter values that correspond to our bifurcation analysis.
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where

gi;^ — Cu] ±[Hart — Cud} •^(6.64)

.96j
^

[RIR + CG!?^(1/\2)[B11^C6I]^(e2j/eii)ai.^(6.65)

From (6.60) we observe that the sign of i3j determines the orientation of t, and hence

affects stability types. If 3j > 0, there will be time reversal and the sign of 72 will be

changed, however if ,,3j < 0, then system (6.59) and (6.61) have the same dynamics.

Also, from (6.62) and (6.63) it is clear that ai and /3.; depend only on el.; and ezi, so

an explicit calculation of c3i is not necessary. The calculation of ezi is necessary for

the nondegeneracy condition and stability type of the solutions, but the calculation of

el.; is crucial to determine the dynamics. Because of the complicated form of ,3i we

could not find simple expression for the nondegeneracy condition in terms of the original

magnetoconvection problem. However, for given set of magnetoconvection parameter it

is very simple to check the condition numerically (see Table 6.2).

To calculate e1 we note that when Tro,, = Deto,, = 0 we have

= —11700611,^ (6.66)

A2j = Wo[±1c6I—C6,].^ (6.67)

Now let

LA3j =^hat +^Wo[B11 — C611 •^ ( 6.68)

After simplication at (it, v) = tt v;), we have

A3i = — 1170[±106I CU].
^ (6.69)

At this parameter value At =^therefore after simplification

= 2e Wo[HC611[±1C61 — (B11)]
^

(6.70)
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Table 6.2: Values of aj , fij for a = 1,^.1, in= 107, and different values of 0. (Since
for Q = 1007r2 there is only one bifurcation point for v > 0, the values for a2 and 132 are
left blank.)

-61 al a2 in -2 13 1 171-202
1007r2 —5820 — 51604 —
30072 —7496 14.89 105551 —16.45
50071-2 —8233 46.73 129794 —139.8

where
(C 7:3C 6) + GIL I 3 R — B211]

2 A[+IC 61 — C61]

For in sufficiently large, Bin — B911 = 0(e) and therefore

= (6.71)

sgn(ai) = scp.0(C2)(10 — B1)),^ (6.72)

sgn(ct2) = —syliMC2)(1C1+ B1)).

For both j = 1 and j = 2, under the non-degeneracy condition /3i 0„ we will have

two different cases, according to the sign of cb , which have been discussed in [16, §7.3].

Now we give a summary of their results and its implication for our problem. Along a

1-parameter path transversal to the line = 0 there will be a subcritical (if ai > 0 )

or supercritical (if aj < 0) pitchfork bifurcation as two other fixed points will bifurcate

from the trivial solution. Also, by the Bendixson criterion there is no periodic orbit when

-Y2 < 0. Along a 1-parameter path transversal to 1'4 = 0, > 0) there is a Hopf

bifurcation of periodic orbits from the trivial solution.

Case a (a; > 0): The periodic orbit created by the Hopf bifurcarion is destroyed in a

heteroclinic (saddle connection) bifurcation along any 1-parameter path transversal to

F5 = {(71,y2)^= —71/5 + 0(q), yi < 01.^(6.73)
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Case b (ai < 0): In addition to the periodic orbit created by Hopf bifurcation along

F4, two other periodic orbits bifurcate from nontrivial fixed points (+177T, 0) in Hopf

bifurcations along the curve

F6 = (71, 72) 'T1 = 721 71 > 01. (6.74)

These two periodic orbits are destroyed while another periodic orbit will be created in a

global homoclinic bifurcation, along any path transversal to

: (71,72) :72 = (4/5)71 + 0(7;), 71 > 01.^(6.75)

The two hyperbolic periodic orbits coalesce into a non-hyperbolic periodic orbit and

disappear in a saddle-node bifurcation of periodic orbits, along paths transversal to

F8 = 1(71,72) = C71 + (q), C-Z,' 0.752, 71 > 01. (6.76)

To apply the above analysis to our problem we observe that fixed points in (6.61)

correspond to periodic orbits in (6.1). In particular the origin in (6.61) corresponds to

SW0 periodic orbits, and non-trivial fixed points (±V--F., 0) correspond to two further

periodic orbits, which we denote by C2i, i = 1,2. Periodic orbits in (6.61) correspond

to invariant tori in (6.11). In fact, the periodic orbits that bifurcate from F4 correspond

to the invariant tori for which we have established existence in Chapter 5. In our case,

since both aj and /3.; could be either positive and negative, several possibilities exist. In

Figures 6.5-6.10 we have considered two of these cases. The other cases can be analyzed

in the obvious way.

In parameter region / in Figure 6.7, the only periodic solution in a. neighborhood of

the SW0 solution is SW0 itself (the 51,17, solution exists, but it is not close), and there

are no invariant tori. Along the curve F3 there will be a. subcritical pitchfork bifurcation

of periodic orbits = 1,2 from the SW0 solution and they exist in regions //, ///



Chapter 6. Seconclaty Bogdanov-Takens bifurcations^ 132

and /V. Along the curve r4 invariant tori bifurcate from the SIV0 solutions. These

are unstable (of saddle type) and exist in region ///. (These are the same tori whose

existence was proved in Chapter 5). Along F5 there is a heteroclinic manifold between

the periodic orbits Qi and as we cross r5 the invariant tori are destroyed in a global

heteroclinic bifurcation. See Figure 6.5, 6.6 and 6.7.

In Figure 6.8 the only periodic orbits near the ST17 solutions are SW0 solutions

themselves, for parameters in region I. Invariant tori denoted by T1 are created along

the curve r, in Hopf bifurcations. These invariant tori correspond to those for which

we established existence in Chapter 3, and they exist in regions //, ///, IV and V.

Periodic orbits c bifurcate from SI470 solutions in pitchfork bifurcations, for parameters

on r3. These periodic orbits exist in every parameter region except regions / and //.

Two invariant tori denoted by T9 and T3 bifurcate from C2i, i = 1, 2 respectively, in Hopf

bifurcations for parameters on F6. These invariant tori exist for parameters in region IV,

and are destroyed, while another family of invariant tori, denoted by T4 are created in a

global bifurcation along the curve r7. Hyperbolic invariant tori T1 and T4 persist until for

parameters in region V they coalesce into non-hyperbolic invariant tori for parameters

along r8 and then disappear in a saddle-node bifurcation of tori. See Figures 6.9-6.13.

We expect that if we restore the higher order terms to our truncated equations (6.12)

most of the above behaviour persists. Since Hopf and pitchfork bifurcations of periodic

orbits are structurally stable, using similar methods as we did in Chapter 5, we could

prove that for a curve fl3 close to r:3 (see [16, theorem 4.3.1]) periodic orbits Ij , i = 1,2

for (6.11) bifurcate from SITT0 solutions in a. pitchfork bifurcations of periodic orbits, since

the higher order terms respect the required symmetry. Also, there are Hopf bifurcations

of periodic orbits about curves fi and f6 close to r4 and r6, and invariant hyperbolic

tori will bifurcate from SW, These invariant tori will have the same stability

types as their corresponding periodic orbits of the truncated system (6.12).
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Figure 6.5: Magnification of the square region in Figure 6.4 with a2 > 0 , /32 < 0 (Case
a).
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At (ii,, v) = (ii;, v) I

Y—/-

II Along r,

IW

III IV

Figure 6.6: Phase portraits for regions I-TV and along r5 of Figure 6.5 and at
(,u, v) =^vi*) of equation (6.60) with a2 > 0 and 2 < 0.
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C19

S

(a) v <

c22

SW0

(b) v > v.;

Figure 6.7: Bifurcation diagrams for Figure 6.5, corresponding to one-parameter paths
obtained by increasing it, for fixed v. Dots represent local bifurcations and the rectangle
represents a global (heteroclinic) bifurcation. Solid lines represent stable solutions and
dashed lines represent unstable solutions.
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Figure 6.8: Magnification of the circular regions in Figures 6.3 and 6.4 with al < 0, ,31 > 0
(Case b).
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At (it, v) = (tit vi")

C---

1 H

---Ø___

III 11/ _.,-------*Iongr7

NM/

11$1° (01.

V

7
cAlong r8 II

M

mih611‘. dAIT

IVilil 11411

Figure 6.9: Phase portraits for regions 1-VI and along r7, r8 of Figure 6.8, and at
01,0 =^iii*) of equation (6.60) with a < 0 and „(31 > 0.
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(a) 1/ < Vi*

ST470

Figure 6.10: Bifurcation diagrams for Figure 6.8 corresponding to one-dimensional paths
obtained by increasing p, for fixed v. Dots represent local bifurcations, the rectangle
represents a global homoclinic bifurcation and the cross represents the saddle-node bifur-
cation of periodic orbits. Solid lines represent stable solutions and dashed lines represent
unstable solutions.
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We now indicate some differences that would be expected due to the '4'-dependence

of higher-order terms, which were neglected in the truncated normal form. When the

dependence is restored, the phase portraits of Figures 6.6 and 6.9, represent approximate

Poincare maps for (6.11), restricted to two-dimensional, invariant manifolds. The curves

F5 in Figure 6.6 and r7 in Figure 6.9 correspond to heteroclinic and homoclinic manifolds,

but for maps such behavior is nongeneric. It is known that transverse heteroclinic and

homoclinic points (and consequently chaos) will exist generically in exponentially thin

wedges in the (,a, v) parameter plane, near the curves F5 and r7, i.e., for generic higher-

order terms these two curves will be replaced by exponentially thin parameter regions f5

and 1;7 corresponding to the existence of transverse heteroclinic and homoclinic orbits,

and away from these regions no such orbits exist [21]. Another situation where the

dependence of higher-order terms would be expected to affect dynamics is for parameters

near the curve r8, which correspond to saddle-node bifurcation of tori. For generic

higher order terms depending on kIf , the curve r8 will be replaced by a Cantor set 1;8

that corresponds to quasi-periodic saddle-node bifurcations of invariant tori [31, Theorem

1.1]. Moreover, it can be expected that near 18 there exist open sets of parameter values

(called "bubbles" in [4]) that correspond to resonant and chaotic behavior.

6.4 Approximate D4 symmetry

Using the asymptotic results of Chapter 4 on the normal form coefficients as in -4 oo

in Case II, we observe that (6.3) approaches a small perturbation of a system with D4

symmetry,

0/2 = U[aRp + r(2.411 + Bn+ C11)12]-1:117(BI CI)/2

± 0(r3 ± 11111'2 + kir 11
^

(6.77)

1:12 = 1/[aRp + r(24 + B11 — C11)/2] + U147(BI — C1)/2
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+ 0(7'3 + Iftir2 + ifti2r)

147/2 = W[aRit + r(AR + 131)] + UTTC1 + 0(7'3 + Ip17-2 + lp,12r)

= Pw +

Ignoring higher-order terms, system (6.77) has an additional symmetry generated by

((I, T7,^)^(U,^),

which corresponds to

21, Z9, Z9) 24 (Z9, 29,^21)

in (6.1). Using (3.45) this corresponds to the symmetry

(4) , (1)1, (I)2, (1)2) —24 ((I)2, 4'9, (I) (T)i

(6.78)

(6.79)

(6.80)

in the original magnetoconvection equation. Using (2.21) and (2.22), this in turn corre-

sponds to a. fixed translational symmetry in spatial variable

74)(x, y, t) = (I)(x — )/2, y, t),^ (6.81)

where A = lim,1 (2Ln1/m) satisfies (2.27). Therefore for large in in Case II we can

consider our magnetoconvection problem with sidewalls as corresponding to a small per-

turbation of magnetoconvection in an infinite layer with the D4 symmetry generated by

the actions of -y,,3 and J, if we identify (I)(x,y,t) with (D(x + 2A, y, t).

System (6.77) has been studied by Swift [41]. In system (6.77), there are at least three

invariant subspaces V = TV = 0, U = TV = 0 and U = V = 0. In each of these subspaces

there are two pairs of periodic orbits that are denoted by "U", "V" and "TV" solutions

respectively. The periodic solutions I-170(0, sit, v) and It (0, ii,. v) of our perturbed system

correspond to the pair of "IV" solutions of the unperturbed D4-symmetric system, and

agree with them at the lowest order in E. Using the implicit function theorem, we can
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prove the existence of periodic solutions corresponding to "U" and "V" solutions for

sufficiently small c under the following nondegeneracy conditions. The perturbed "U"

solutions exist if

ICl2 — n(BC)^0,^ (6.82)

and they have the form

(C/i(7,b, it, v, E),^(0,^v,^(0,^v, E)) = (±U0 + 0(E), 0(E), 0(E)), i = 1,2

where
—2allp1U01= ^ , syn(p) = —syn(2A11 + Bft + CR).

2AR + BR + CR

Similarly, the perturbed "V" solutions exist if

1C12 +R(BC)^0,^ (6.83)

and they have the form

(NO, v, €), (V), v, E),^(0, v, E)) = (OW, ±Vo + 0(E), 0(E)), i = 1,2,

where

^

—2anit^
' sY71(11) =

vi(2A11 + BR — CR).117°1 = 2A R + BR—CR 

These solutions have the same stability type as their corresponding unperturbed solu-

tions. If the nondegeneracy conditions (6.82) and (6.83) are satisfied, no nonsymmetric

solutions bifurcate from "U" and "V" solutions (6.77). In the unperturbed case two

non-symmetric solutions bifurcate from the "W" solutions in a pitchfork bifurcation as

we crossed the parametric surface 1B12 = 0.
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Conclusion

In this chapter we summarize the results of Chapters 5 and 6, and also make some

remarks on our magnetoconvection problem. For fixed magnetoconvection parameters

a,( and Q, we have proved that the motionless conduction state loses its stability as we

increase the Rayleigh number I?. For L close to one of the 17„ in = 1, 2, , two standing

wave solutions, which we denote by SW0 and SW, solutions, bifurcate in primary Hopf

bifurcations of periodic orbits, and the SW solutions that bifurcate at the lower value of

R are asymptotically stable, and the other SW solutions are unstable. As we increase

R further there occurs a secondary Hopf bifurcation of invariant tori (e.g. unstable

quasiperiodic solutions), which we denote by T1 solutions, from the branch of unstable

SW solutions. After the T1 solutions bifurcate, both SW solutions are stable. We have

also proved that the tori T1 persist in wedges in the parametric plane.

By considering a decreasing sequence in ( and an increasing sequence in Q, for fixed

a, we were able to extend the regions of validity of our bifurcation analysis by considering

an alternate normal form. We showed the existence of Bogdanov-Takens singularities,

and these codimension two singularities lead to more complicated dynamics such as

further secondary and tertiary bifurcations of invariant tori and generically some open

parameter regions corresponding to chaos. Figure 7.1 shows schematically the regions

in the parametric plane for which our bifurcation analysis of Case II is valid. The curves

r8 are the same as Chapter 6, and by reflection symmetry there are curves r,

corresponding to bifurcations about the SW, solutions. Note that the curves r4 and r/4

142
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(a)

Figure 7.1: Schematic bifurcation sets for magnetoconvection equations in Case II, for L
near L„, and R near R,„: (a) when r3 and F4 Only intersect once (ai < > 0); (b)
when 1'3 and r4 intersect twice (cti < 0031 > 0 and a9 > 0 and /39 < 0). The shaded
regions show parameter values for which the invariant tori T1 occur.
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(b)

Figure 7.1 (continued).
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near the origin correspond to the curves A1 and A2 in Chapter 5.

In Figure 7.2 we give bifurcation diagrams for fixed v = L — L„, > 0, as we increase

p = R — Rm. The bifurcation diagrams for v < 0 are the same as those for v > 0 if we

interchange the roles of SW0 and SW, solutions. If we compare the bifurcation diagrams

in Figure 7.2(a, b) with Figure 5.6(b, c), we observe that they are the same, since for V

sufficiently small the analysis of Chapter 5 is valid. However, for v near vi" we have more

bifurcations. Also, we observe that the bifurcation diagrams in Figure 7.2(b) and (c), and

also Figure 7.2(d) and (e), are rather different. This implies the existence of more global

or local bifurcations for v between 0 and vl* and between vi* and /4. It seems very hard

to locate these bifurcations analytically, but it should be possible to get some results

using numerical methods and computer software packages like AUTO [11] to locate some

of these bifurcations. AUTO is able to follow branches of periodic solutions and analyze

changes in their Floquet multipliers, as we change parameters. Also, we note that as

long as the point (p, v) in parameter plane lies below the curve of 1'4, for v > 0, the SW0

solution is unstable, which is in agreement with our primary bifurcation results. For large

m, the slopes of the curves r1, r8 are 0(m2). Therefore all of these curves lie very

close to the line p = 0, and regions where our bifurcation analysis applies become small

as in oo.

We have also shown that in the Case II limit as in oo our system becomes a small

perturbation of a system with D4 symmetry. Using this fact we found other periodic

solutions.

This project by no means complete and it can be continued in number of ways. First,

the results of Chapter 6 can be continued by proving that the results we have persist after

restoring the higher-order terms (and therefore 'h-dependence) in the equations. There

are some technical difficulties in achieving this, but in principle it could be done. Also,

one could attempt to complete the bifurcation sets in Figure 7.1 as we mentioned above.
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(a) v = 0

(b) v > 0,v near 0

(c) 0 < v < , v near vi*

Figure 7.2: Bifurcation diagrams for magnetoconvection equations in Case II.
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(d) v > ç, v near vr

(e) vl* < v < v9* , v near v!2'

SW,

SW0

(f) v > 74, v near v;

Figure 7.2 (continued).
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One possibility is to try to exploit further the small perturbations from D4 symmetry.

In our bifurcation analysis, we restricted to those magnetoconvection parameter values

for which the Hopf bifurcation was preferred. However, as it was mentioned in Chapter 2,

there are parameter values for which steady state bifurcation is preferred, and also critical

parameter values for which the linearization of the convection problem has double zero

eigenvalues. The bifurcation analysis at these higher codimension singularities would be

very interesting but would need another thesis for a complete analysis.

We simplified our original magnetoconvection problem in number of ways. First we

restricted ourselves to two-dimensional flows by assuming the velocity, temperature and

magnetic field remain constant in third z direction. In three dimensions, depending on the

shape of the container, there could be more than two different spatial Hopf modes for some

parameter values. This would increase the dimension of reduced ordinary differential

equation and therefore a more complicated analysis would be needed. The calculation of

center manifold coefficients would also be much longer.

We adopted boundary conditions that made our eigenfunction calculations possible

by hand. If we adopted different boundary conditions, the computation of the eigenfunc-

tions for the linearized magnetoconvection equations would take long hours of computer

programming and numerical calculations. The center manifold coefficients would also

need to be computed numerically. Also, we chose our boundary conditions so that the

system has Z2 ED Z2 symmetry. This symmetry can be easily broken by perturbations that

does not respect the symmetry and might correspond to more physically more realistic

situations. For example, it can be arranged that (2.5) satisfy boundary conditions of the

form

= T0[1 OW] on 0,

= T1 on y =
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where 0 is not an even function of x, so that there is no longer a reflection symmetry

under X -÷ -X.
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Appendix A

Normal form coefficients

A.1 Computation of normal form coefficients

In this section, we give more details of the calculations outlined in §4.1, to obtain the

normal form coefficients C1, , Co. To find explicit formulae we use (4.33)-(4.38); first

let us give M(., (V) = M(4), (V, L„,) in vector form explicitly from (3.44), as

( o-(Qtly [Ob.,+ L"_,aby + u au' Olt' _2 9X \
Oy I Ox Ox + v ay + L '" ax

[—Ob., + L,_2_2.011+[u_av' + v_al+-Oy '" Ox Ox ay ay
11 10(1),V) =

L , x

(A.1)

where x is chosen so that the divergence of the first two components vanishes. Using

(A.1) and (3.39)-(3.40) we observe that P2110(4) • , (I)k) = 0 for j,k = 1, 2, due to elementary

trigonometric identities, and we calculate

0

-(I - 13)1_110(4)1,(1)1) =

0
sin(27y) 

2P1(1 +^)
0

71-2 cos(m7r.x)
\ Pi(( + iwi) /

(A.2)

153
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—(I — P )Alo ( 4)2, 4)2) =

Since

ith(4)j, (DJ) = 1110(4)1,•

and

0

0
7r sin(27y) 

2P2(1 + iw2)

0
cos((in + 1)7x) 
P2(C iW2)

= 1, 2,

(A.3)

1110(4) j, (Dj) = Alo(4),, j), j = 1, 2,

we have

— (I — P)04-0(4)1,4)1) + M0(4)1,(1)1)) =

— P)P/102,(1)2) +^2,,D2)) =

0

0
7r sin(27y)

P1(1 + 4)
0

272( cos(in7x)

Pi ((2 + 4) /

0

0
71 sin ( 27y) 
P9(1 + 4)

0
272( cos( (in + 1)7s)

P2(C2 + (4)

(A.4)

.^(A.5)
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We also have

—(I — P)^) + M0(4)2, (1)1)) =

7r2Bi

4B0
B2 Sill( (2M,^1)71-42) sin(27ry)

B3 cos( (2m, + 1)742) sin(271-y)
B3 (27n + 1) .

B4 Sill( (2771 + 1)7142) ^ sin( (2m + 1) x/2) cos(2y)
4

Bo
(2m, + 1)7r2B1

sin((2in + 1)71-42) sin(2y)

cos((2in + 1)742) cos(27ry)

7r2A1^ cos(71-x/2) cos(27ry)
Ao

71-2A1 .^ sin(7rx/2) sin(27ry)
4A0
A2 sin(7x12) Sin(27Y)

A3 cos(7rx/2) sin(27ry)
A3.

A4 sin(7rx/2) —^sin(7rx/2) cos(271-y)

,^(A.6)

155

where

Ao = 7r2(1/4L2„, + 4),

Bo = ((2M /2Lin)2 + 4),

(A.7)

(A.8)

^aCQ7(P2 — P1) ^(2m + 1)7r
=(A.9)

111(177, + 1)/31 P2((^iw2)^4arn(rn^1)'
= (2m, + 1)/31,^ (A.10)

7r(2m, + 1) [inP2(1 + iw2) + (in + 1)P1(1 + iwi)) 
A2 =-^ (A.11)

47n(171,^1)P1P2(1^iW1)(1^i(-02)
[—mP2(1 + 1(.02) + (in + 1)P1(1 + iwi )} 

B2^4in(in + 1)P1 P.2(1 +^)(1 + iw2)^
(A.12)

72 [Pi +^) — P2(+^)1 B3
171(771^1)P1P2K^i(4,1)((^iL4)2)'^

(A.13)

.43 = (2m, +^ (A.14)
72 [P1 (ç+^) + P2( + iw2)] 

A4 =^ (A.15)
4in(m, + 1)P1 P(( +^)(( +

B4 = (27/1. + 1)2-44.^ (A.16)
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We now solve (4.23), using (A.2):

(1(0^2iP1C-01) W2000 =

0

0
it sin(27y)

2P1(1 +

0
72 cos(m7rx)

\^(( +

(A.17)

i.e.,

a [(Al — 2iP1w1 /a)u — VI + R,„.0ey + (Q(VI x b) x

(Al — 2iPIQI)0 u • ey

((Al —^C21 )b + V x (u x ey)

where II/2000 = (11, 0, b)T has the general form

( 0 )

0

it sin(27y)
2Pi (1 -I-

0
72 cos(rn7x)

P1(( + ic4;1)

(A.18)

el sin(m7x) cos(27y)

—(inci /2) cos(rnmr) sin(27y)

c9 cos(m7s) sin(27y) + c3 sin(27y)^ (A.19)

c4 sin(m7x) sin (27y)

mc4 /2 cos(m7x) cos(27y) + c5cos(mirx) j

and x = c6 cos(m7x)+c7 cos(27y)+c8 cos(in7rx) cos(27y) is chosen so that the divergence

of the first two components of T2000 become zero. Substituting (A.19) into (A.17), we
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solve for the coefficients^c5 in (A.19) to get

  

0

0
71 sin(27ry)

  

"2000 =

  

(A.20)

   

2/1(1 + iwi)(zuri + 2iwi)

0
47r2L72„ cos(m7rx)

pr((+iw,)07,2.1(+8iw1L,)

  

where WI 47r2/ Pi. Similarly, we solve

7r
2P2(1 +

0

0

.^ sin(271y)
zw9)

0

(K0 — 2iP2w2) T0020 = (A.21)

9
71-

cos((m + 1)7rx)
P2(( + iw2)

to obtain

W0020 =

0

0

^sin(27ry)
2/31(1 + iw2)(m2 + 27102)

0

^ cos((m + 1)7rx)
\^+ iw2) ((m + 1)2w2( + 8iw2gi)

71

472L2
771

(A.22)
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where W2 = 472/P). We also solve

KODuo° =

to obtain

0

sin (27y)
Pi(1 + con

0
272(

9^ cos(m7rs)
((2 + wr)

0

0

0

71
(A.23)

1
„^ sin(27ry)

47.Pi (1 + col-)

0
2L2

171

(A.24)W 1100 =

COS (777,7137)Topi ((2 w?)

■

and similarly,

KoT ooli

has solution

T ow ' =

0

0
71
^ sin(27y)
P2(1 -H-0.4)

0
272(

P9((2 + b);
.
 ) 

cos((iii + 1)7x)

0

0

^ sin(27y)
47rP2(1 + w:=3)

1

(A.25)

(A.26)

2L.„
^ cos((m + 1)715)

\ (in + 112 P2K2 c4)
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By (4.29) we have

(K0 — iP1w1 — iP2w2)^=^-^pm(D1,4,2)-FA10(2,4)in, (A.27)

where

   

— 15) (M0(4'i (p2) +^(c12, (1)1))

is given by (A.6), therefore 'I'010 has the form

cos(7x/2) cos(27y)

(c1 /4) sin(n-x/2) sin(27y)

=^c9 sin(742) sin(27y)

C3 cos(7x12) sin(27y)

—(c3/4) sin(7x/2) cos(27y) + e4 sin(742)

cos((2m + 1)7x/2) cos(27y)
(2m, + 1)c/1 sin((2m + 1)742) sin(27Y)

4
sin((2m + 1)7x/2) sin(27y)

c'3 cos((2m + 1)71-s/2) sin(27y)

  

(A.28)

        

(2m + 1)c'3 
sin((2m + 1)742) cos(27y) + c'4 sin((2m + 1)7x/2)

4

and

x = [c5 sin(7x/2) + c15 sin((2m + 1)742)] cos(27ry) + C6 sin(7142) + c16 sin((2m + 1)7x/2).

To simplify our notation, let

1/1 = A0 + iP1w1 + iAw2,^T = B0 + iP1w1 + iP9w2,^(A.29)

719 = o-A0 + iP1w1 + iP2w2 ,^= o-B0 + iP1w1 + iP9co9,^(A.30)

113 = CA0 + iP1w1 + iP9w9,^413 = (Bo + iP1w1 + iP9w9,^(A.31)
2T^9^ (2111 + 1 )7 9

114^C(^ )- +^+ iP2w2, tP4 = (( ^iP2(.02. (A.32)
2L„,
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Now by using (A.6), (A.27)

—

—719cl

and (A.28) we get

(Qc4 + e6
aCQA0e3^a7c5+

=

--=

=

0,
72,41

(A.33)

(A.34)

(A.35)
ihei) +

27r^2LF

aRmc2 + 27ro-c5

Ao
72A1

4^
,

4A0

—111e2 + e1/4 = A2, (A.36)

—7/3c3 — 27c4 = A3, (A.37)

-1/4C4 = A4, (A.38)

(Qc14 + c'6 = 0, (A.39)

—k1/9c, + ci(QBoe/31 (2m, + 1)o-7rc'5
= 72BI/B0, (A.40)27r 2E72n

(2771 + 1)T2cC + (27n + 1)72B4a R.,,e9 + 27 o- c; = (A.41)4 4B0
— tP 1 02 + eC (2in + 1)/4 = B2, (A.42)

-T36 - 27c,C — B3, (A.43)

—kli4c4 = B4. (A.44)

Explicit calculation of pressure term is not neccessary, and we solve the system (A.33)—

(A.44) of algebraic equations

Cl

to find c1,...,e4,^cc, ..., c'4, to get

u(QA0A3^aRrn A2Aii4 +

(A.45)

+
277)3^4/4ni11

172A0 + a(QAo^aR„i
472^1)3

ci — 4A2
164711

C2 = (A.46)41/1
27c1 + A3C3 = (A.47)113

C4 = (A.48)
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cl(QB0B3 (27n + 1)o-R1B2
Bi /4 +

^27T3^44k1J1 
T2B0 cr(QB0 (27n + 1)2o-R1

cr‘
472^‘1,3^164 Ti

(27n + 1)cii — 4B2

2 71-cii + B3

T3

--__ 4, -Ci4 =^13 AP 47

C2

C3

(A.49)

(A.50)

(A.51)

(A.52)

We observe that um can be obtained from Ti010 by changing c...)9^--co2 and therefore

T1001 =

di cos(7x/ 2) cos(27y)

(di /4) sin(742) sin(27y)

d2 sin(742) sin(27y)^ (A.53)

d3 cos(7x/2) sin(27y)

—(d3/4) sin(7x/ 2) cos(27-y) + sin(7x/2)

cos( (27n + 1)742) cos(27y)
(27n + 1)c/1^ sin((277-7 + 1)7x/2) sin(27y)

4
d'9 sin((2m + 1)7x/2) sin(27y)

d'3 cos((2m + 1)7x/2) sin(27y)
(27n + 1)4

sin( (2m + 1)742) cos(27y) + c'4 sin( (2m + 1)742)

and

x = [d5 sin(7x/2) + 4 sin( (2m + 1)7112)] cos(27y)+ d6 sin(7x/2) +d sin((2m +1)7x/2).

where di, c1 , i = 1, ..., 4 are^i = 1, ..., 4 under the change co9^—w9. Also, by (4.30)

and (4.31) we have^= 100

)We now compute the terms .110(^40, etc. that appear in (4.17)—(4.22). To

simplify our notation, from now on we give only /C10(., •), which is the same as A/0(., •)

4



71-2.7(Q (2L, /m)3
cos(m7rx/2) cos(y)

4L,1P?((2 + 4)(( +
7r2o-(Q(2L,„ fm)2

4P?((-2 + )(( +
sin(mirx/2)sin(71-y)

w? 
1

sin(m7rx/ 2) sin(7ry)
4P1(1 + w?)
7(2L1/m)3

cos(m42) sin(y)
4L771P1 ((2 + 4)

71-(2L„iim,)3
4P1((2 + f)

sin(m7rx/2) cos(7ry)
w

Ifio(4)1,^wo) = (A.56)
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except for terms that are eliminated in the inner products with €1);!, j = 1,2, i.e.,

(*ro(., .), (D;) = ( icloc.,.),(1);) . (A.54)

We first calculate
/^o-(Q(2L71,/(771, +1))3

sin((in + 1)7rx/2) cos(y) L;i2,9x/8x

ax/aY
41,2(11+ co3) cos((m + 1)7rx/2) sin(7ry)

71-(2L71,/(m + 1))3 .
sm((m, + 1)7rx/2) sin(7ry)

4L711P2((2 + 4)
7r(2L,,./(in + 1))2

cos((m, + 1)7rx/2) cos(71-y)
4P2((2 + 4)

(A.55)

where x = ccos((in + 1)7rx/2)cos(7r1) is chosen so that the divergence of the first two

components of (A.55) is zero. If we denote the first two components of /1-10(cD2,

M9, then we should have

1))27r
div(114i, M2) =^

w?)((iwo
^Plc) cos((m, + 1)x/2) cos(y) = 0,

a(Q(2L„,/ 

therefore

71-2U(Q(2Lm./(771^1))3^ sin((m, + 1)71-x/2) cos(y),
41,P?((-2 w?)(( + icol)

7r2o-(Q(2L4(in + 1))2
Al2 =^ cos( (m, + 1)7r.x/ 2) sin(7ry).

4Pl2((2 + wf)(C +

Similarly,

A( 4)21111 0011) =

4Lr1P2((2 + w3)(( + iw2)

Toon) by
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We also have

11-40 (1111001 W1 ) = 1C10(W 00111 W2 )

 

(A.57)

   

\ 0 /

0

11-10 W 2000 (I)1^= 21-4-o ( T00201 W2) = 0

0

    

-ICI- 0(4)2/ W2000) —

/^71-4cr(Q(2L711/(in +1))3 
sin((in + 1)7x/2) cos(y)

2PA7,((2 +^(w2( + 2L)2(2L1/(77/ + 1))2)
74cr(Q(2L111/(in + 1))2

cos((m + 1)7x/2) sin(7y)

2PIL,1(( + iw2)(zz`2( + 2ico2(2L7„^+ 1))2)
71-3(2L„,./ (in + 1))2

2P23((2 + con (7-v2( + 2iw2(2L7„ / (in + 1 ) )2 )
7r2

cos((rn, + 1)7x/2) sin(71y)
2PI(1 + W2 )(W7 -I- 21:c02)

71-3(2L71/(7n + 1))3
sin( (Tn + 1)7x/2) sin(7y)

(A.58)

2/1(( + ib.)2)(732( + 2icv2(2L71/(rn, + 1))2) cos((in + 1)7x/2) cos(7y)
(A.59)

and



740-(Q(722L,„/m)3
cos(rturx/2) cos(7y),

^2P?(1 +^+
^) sin(m7rx/2 sin(7y)

^

3f2^/77l)

sin(m7rx/2) cos(7y)
2P?(( +^)(w1( +^(2/,m/m,)2)

(A.60)

+ w?)(coi( +^(2L,-,1/m)2)
740-(Q(2Lm/m)2

73(2L/m)

sin (m7rx/2) sin(71-y)
4L711Pi3(C2 w3)(w2( 2ic.o9(2L,/m)2)

71- 2

cos(m/Tx/2) sin(w-y)
2ML„,(( + ic.oi)(711( + 2ico1(2Lni/771)2)

2
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1C/10(4)1 1 2000)

o-Rn, [^1 971'-
Cm/2

{P1(1 ± iL01) I_^4P1(1 + W?) 2A2(1 +1101)( + 2iwi)]

Now using (4.33) and (4.37) we have

=

ia(Q(2.L.,„1/in)472w2

P?(( +L-11)((2 + Wi2)(W1( + 2i(.4.4 (2Lmirit)2) } '

C5 ---7-- C„14.1 /2 { P2 
o-R,„
(1 + i 

[ 1^ 2

ci.)2)^4P2(1+ w)^211(1+ ic.02)(7a2 + 2iw2)]

7

iC/(Q(2L1/(M, + 1))472W2 

Pl(( + iw2)((2 + w3)(a72( +2ico2(21,/(m + 1))2) } •
(A.62)

where Cm, Cm,“ are given by (2.55).

To compute C7, C3 C4 and C6 we also need

0

(A .61)

0 (A.63)

0

1(lo(Tocul, (Di) =^c1)2) =
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■0

0

and

1
A-/-10(4)2, T1100) = 4L„,131(1 + co

?
) 

cos((in + 1)7rx/2) sin(7ry) (A.64)

0

In the following equations, ci, di, c, d, i = 1, ..., 4 are as in equations (A.45)-(A.52). We

have:

sin((in + 1)742) cos(7ry)
(in + 1)D1^ cos((in + 1)7rx/2) sin(7ry)

2
71 {(2771^1)C2^C12]

COS((711^1)7rx/2) sin(y)
4m

sin((in + 1)77x/2) sin(7ry)

(in + 1)Ei2 cos((in + 1)7rx/2) cos(7ry)

{ 0- C(2 ((277? + 1)c3 + 6 + 8(c4 c14))
P2^8m — )

sin((in + 1)7142) cos(7ry)
(in + 1)D1

cos((in + 1)742) sin(iry)
2

it ((2m + 1)d2 +
-
9) 

cos((m + 1)737/2) sin(7y)
4:71.

sin( (in. + 1)7142) sin(7ry)

(7n +1)Ei2 cos( (in + 1)742) cos(7ry)

1Clo ( (pi^low =

It-40(43i, io io) =

where

it ((2m + 1)ci +^7r(in + 1)(2m + (ci 
4m 327714

71 ((2in + 1)c3 + 6) — 87r(c4^c).
8777,

(A.65)

(A.66)

(A.67)

(A.68)
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where
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.6 7r2 f^aCQ [(2in + 1)d3 + d'3 + 8(d4 + d'4)]
(A.69)

8in (( +P2

7r ((2m^1)di +^7r(m ± 1)(2in + 1)(d1
4m^321711,„

7r R2in^1)d3^d'3 — 8(d4 + di)].
(A.70)

8772

D9 sin((in^1)7x/2) cos(7y)

Iflo(T (1)].) =

(in ± 1)/39
1)7rx/2)cos((in +^sin(7y)

(A.71)
iv [(2in + ?)ci — cid

1)7rx/2)cos((iii,^sin(7y)
16/31(1 —

E2 Sill( (771 + 1)7x/2) sin(7y)
(rn^1)E9

1)7x/2)cos((rn +^cos(7y)
2

where

D2 =
.72

r--9

I 720-(Q [(2m + 1)c3 + cid^72o-CQ(27n^1)c3
(A.72)

2711Pi (( — ic.01^327711.2mPi (( —

71-20-(Q [(2in + 1)3c'3 + 8 (c4 + (2m + 1)2c)]
3 2771L2m PI (( — 1:W1 )

iv ((2m + 1)ci^c'1)^7(772 + 1) [(2772^1)Ci — Cid

8m^324
7r2[(2m +1)ci^c'd

E2 (A.73)
81711i((

 

D2 sin((in^1)7rx/2) cos(71-y)

(in + 1)n2
^ cos((in + 1)7x/2) sin(7y)

2
7^+ 1)di — di) cos((in ± 1)7x/2) sin(7y)

16P9(1^)

E9 sin( (m. + 1)7.42) sin(7ry)
(in ± 1)É9

cos((m^1)71-x/2) cos(7y)
2

   

A-4(T low, (1)1) = (A.74)

    



where

D3
712 { ^Pm 1)C3 C-13 — 8(C4 Ci4)} 

8(7T/^1)((^iW2)

71 [(2"7 + 1)ci + cid^7r77/(2m + 1)(c7 — 
4(n7 + 1)^32g,(777 + 1)

7 [(277t + 1)c3 + c1 + 8(c.1 + ci4 )1
8(77t + 1)

E3

(A.78)

(A.79)

Appendix A. Normal form coefficients^ 167

where

D2^
72 f 72a(Q[(2m, + 1)d3 + d]^72a(Q(2771 + 1)d3 

P2^277/P1K + 7:W1)^3217/LPIK

71-2(r(Q [(2m + 1)34 + 8 (d4 + (27n + 1)2(4)] 
327771F1P7 (( + iW1)

71 “2"/ 1)d1^7r(Tn + 1) R2171 ± 1)d1 — d'd}
8m^ 32L.?„,

712 [(2m + 1)d1 +
877/Pi (( + iwi )

(A.75)

(A.76)

D3 cos('7r212) cos(7ry)
772D3 .
^ sin(777,7rx/2) sin(7y)

2
((2m + 1)c2 + c)

sin(777,742) sin(7y)
4(777, + 1)

E3 cos(7777112) sin(7y)
77-7E3 .
^ sin(77-77:712) cos(7y)

2

1'-4-0(21 T1010) = (A.77)

 

../53 cos(77/7x/2) cos(7y)

7T/D3
2  7_777(7777u/2) sin(7y)

—71 ((2777+ 1)712 + (/'2)
sin(m742) sin(7y)

4(m + 1)

E3 COS(177,7/112) sin(7ry)

777E3 .
2
^ sin(m7rx/ 2) cos(7y)

   

11-10(4)21 T011 0 ) = (A.80)

    



71.2 [ 0-(Q [(2m + 1 )(73 + (113 — 8(c14 + (114)]
D3

8( 77i + 1 )( C + 7102 )
(A.81)

E4
72 [(2in + 1) + c']
8P2(in + 1) (( — iw2)

(A.85)

and
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where

7r [(2777 + 1)di +^772(2771^1)7(di — di)]
4(m + 1)^32/4,2(77/ + 1)

7r {(2772 + 1)d3 + (7'3 + 8(d4 +
=

8(771 + 1)
(A.82)

where

D4 cos(777,7x/2) cos(7y)
InD4^sin(m7x/2) sin(7y)

2
((2777, + 1)ci — c/i) .^ si1(777,7x/2) sin(7y)
16P9(1 — iw9)

E4 COS(71/71X/2) sin(7y)
rnE4 .^ sin(777,7x/2) cos(7y)

2

ICI0(1110101 (1)2) (A.83)

(A.84)D4
{R-20_,,,(2m.+1),3+,,,,_^72a(Q(27/7 + 1)c3

Pi^2(777 + 1)P2(( — iw2)^32(7n + 1)4P2K — icv2)
72(7“:2 [(27n + 1)3c/3 — 8 (c4 + (2m + 1)2G14)] 

32(777, + 1)g,.P2(( — 7102)
71[(2711,^1)Ci + Cid^ni7 [(27n + 1)ci — c'd

8(m + 1)^324

 

A cos(m7x/2) cos(7y)
inA
^ sm(m7x/2) sin(7y)

2
7 ( 27n + 1 )(71^dl'1)
^ sm(m7x/2) sin(7y)

16P9(1 + ico9)

cos(7777312) sin(7y)
m E.-74 .
^ sm(777,742) cos(7y)

2

   

II-10 (41 01 10 1 (1)2 ) (A.86)
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where

=
Pi^2(m + 1)P2(( + ico2)^32(m ±1)4P2K + ic<>2)

72 raw^+1),3^7r2o-(Q(2m, + 1)d3
(A.87)

7r2o-(Q [(2n1 1)34 — 8 (d4 + (2m + 1)2d14)]

32(m + 1)4P2(( + iw2)
7r [(2m 1)11 +^m7r [(2m, + 1)di —

8(m + 1)^324

7r2 [(2m^1)d1^dC]

8P2(ln 1)(( iW2)

We observe that the inner products

(A4(4)2, 'Plow), 4)1) and (1lo(T1oo1,(1)2),(1)*1)

are obtained from

and^(/0(4)2, 'Flom), (1)i),010(4)2, Tim), (Vi)

respectively, by changing w9^—w9. Similarly,

(Mo((1)1, Tom), (1^and)^(Iti0(T0110,(1)1),(1)

are obtained from

and (/110(Tioio,(1)1),(b;)(Alo(4)1,^(I);)

by changing col^—col. Therefore we also have

(Mo(T2000, (1)2), (1)^(Mg Woo2o, (Di), (1)i)

0

0

0

\ 01

(A.89)

(A.88)
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Too9o) =

0

0

^ s n(7ry)
2PA1 + iw2)(w2 + 22ch,2)

0

0

also

and

(A.90)

0

Iffo(4)2, T2000) =
7T 2

2P?(1 + iwi)(rai + 2k-11.)
sin (7y) (A.91)

Finally, we observe that

(A10(T0110, (DA (DI) and (1\10(4)2, Tom), VI)

are obtained from

(Mo(Tioio, 4)2), 4)7) and (A/0(4)2, Tim), (1)*1),

respectively by changing w2^--w2 and^i = 1, ..., 4. Therefore by (4.34)-

(4.36) and (4.38) we can now compute

c2= C„/2^
o-R„,̂  [7r [Pm + 1)(c2 + (12) + + d'2] ,

P1(1 +i1)^4(m + 1)

((2m + 1)ci +^(
2777^1)di +^) + ^1 ^1

16P2(1 - 7102)^16P2(1 iW2)^4P2(1 W3)J
+ 2L2m Pi [D3 + D4 + n3 ± n4 +  a(C271-  tE3 E4 E3 Ed

71' 2 711^ K + iw1 )P1

(A.92)
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o-Rm^((2m 1)(c.2 + (12) + c/2 + d'2)
C4 = Cni+112 {

P2(1 + iw2) 4m

7r ((27-n + 1)ei + cC.)^7T ((2772 ± 1)(11 +^1 
16P1(1 —^16/31(1 +^4P1(1 + 4)1

(A.93)

2.14P2
p2(Crc(±(27riw2) (Ei E2^+^/^ [Di + D2 + D1 ± -152 +

(77/ + 1)72

C3^Cni/2^2^D3 + +
2aPi r^cjC(27  (E3 E4)]{

'71 771^ ((^iW1)P1

7r ((2m + 1)71 —o-Rm^[^/T2

(A.94)

P1(1 + /IVO 2P22.(1 iW2) (W2 + 2114)2) 
+ 

16P2(1 +iw2)

7T ((27n + 1)d2 + d'2) }
4(m + 1)

^= C /2 
f ^2I;P2^a(Q7r^+ )]C6^_m+i, _ t (in + 1)72 [ 1^2^P2 (( iW2)^2

^o-Rm^ 7r ((2in + 1)di —
P2(1 + tiCA.12) 12/J1(1^i:W1) (W1 + 2iW1)^16P1(1 +
71- ((21T/^1)d2^(112)1

4m

(A.95)

where Dj E , i =1,...,4 are Di, E , i = 1, ..., 4 under the change c,../2^—w2, and overbar

denotes the complex conjugation.

A.2 Limiting values of normal form coefficients

In this section we calculate limiting values the normal form coeficients Ci, ..., C6 as m

oo, for both Cases I and II described in §2.5.
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A.2.1 Case I

We first need certain auxilliary limits. Using the equations (4.61)-(4.68) in Chapter 4

we find that as in^oo in Case I we have

c11 = lirn Lnici = 0,^ (A.96)
772 -4 00

71
ulna C2 = ^C21 =^

P2(1 + iw)(r.-o +2i) 
where zu = 47r2/P,^(A.97)

cv

C31 = lirn L711c3 = 0,^ (A.98)
771-1.00

C41 = liM C4 = 0,^ (A.99)
771-400

(A.100)d11 = lim 1,,,di = 0,
7/1—>oo

(A.101)c'21 = urnc'2 = 0,
in—>,oc)

c 1 = liM L171C/3 = 0,^ (A.102)
771-400

272A2
c'41 = urn c'4 = ^

rn-+oo^P2(( ± iW) (L7'( ± 2iWA2) '^
(A.103)

Aic.471-
dii = lim Ltali =  ^ (A.104)

171-)00^p((-2+ w2)(472 4_ Q),

1
d21 . lim d2 =  ^ (A.105)771-›,00^471-P(1 + w2) '

2Aiunr2
(131 = lim Ln,(13 =  ^ (A.106)

/71.-> 00^(P(472+ Q)((2 + w2)'

d4i =--- lim d4 = 0,^ (A.107)
77/ -3.00

(1111 = 1 i M L711 d' = 0,^ (A.108)7-n-00

U,21—^liin (1'2 = 0,^ (A.109)m -400

4 1 = lim L771(1/3 = 0,^ (A.110)ni--400
A2

d1^lirn (1'4 =  ^ (A.111)
711-4 00^2P((2 +co2)'

where P,o) and A are given by (2.59), (2.60) and (2.27). Then (A.96)-(A.110) imply that

720.(QA6441
lim L77 1 D1 = — lim L771D3 = ^

712 -4 00 111-'00^ 2P(<"
(A.112)



lim Li„Eini-*00

Jim Lm.D277/ -+ 00

liM LmE2
77/ -*00

— lina L111E3 = —71-A41/2,
UI 00

RAUCQAC/41 — liM L1D4 =
in -+ co

lim L,1.E4 = 0,
in -+ oo

(A.113)

(A.114)

(A.115)
2P2(C — iw)

Jim L7n^=/it 00

lirn LD2 =
nz -400

— lim Ln1E3
711--). 00

— Jim
712-4 00

urn Lm Di =
711-4 00

lim Lr,,E1 =
M-4 00

liM m n 2 =
nz -*co

Jim^ 72(111Ln1k2 = — Jim L7 E4 =772 -)00^ 777-> 00
(A.123)8(( + iw)'

72(1 + iW)(( iW) Jim Om = 11111 C11 =
771 -400^in -*00 2A2Pw(w — i(5 )

(A.124)
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and

lirnDi = —
nz-+ oo

li-n L„,n3
M. -*00

(72/p)^a(Q(—d31 + 2)d41) 
4(( iw)

7rdir 
2 }

(A.116)

—7rAcr41/2 — nd31/4,

(72/P) ro.,Q(_d3i± (2/A)cf41)

P((±iiw)7rdi (A2 — 1) 1
4A2^f

2g all
4P(C + ic.0)

li-n L7E2 = — lirn L 7 E4 =
M-4 00^ in--4,00

We also have

(A.117)

, (A.118)

(A.119)

= —Win { Cr(C2(d31 + 2M,141)
d7rii/2} 0.120)

4(( + iw)
= —71-1\d1/2 + 7d31/4,^(A.121)

{7r2o-(Q(d3 + (2/A)(141) = (72/p)
P(C + iw)

irdii (A2 — 1)
 f
1

(A.122)+ (422 

From (2.49) we get

where 6 = 1 + a +^Using (4.39)-(4.44), (A.96)-(A.110) and (A.112)-(A.123) we get



lirn^= 0,
?It -4 00

e9 I^liM= -^
771-->00^P2(1 +^2iw)

7r
(A.132)

where^= 47r2/P,^(A.133)
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lirn C1 -, urn C5 = A + B,^(A.125)

^

L„,--00^L„,—>co

lirn C2 = urn C4 = A,^ (A.126)

^

L„,-400^L„,—+.

lirn C3 = lirn C6 = C,^ (A.127)^L—*oo^L.,--+oo

where

712o-R0(( + iw)  1^1^R.2

4A2P2w(w — iS) [ 4P(1+ w2) 2P2(1 + iw)(w + 2i7rwldii
ia(QA271-4(1 + iw) + 

4P3((2 + w2)(w( + 2iwA2)(w — i6.)'^ (A.128)

—7r2(( + iw)(1 + iw) f^o-Ro ^[7(021 + d21) +^
4A2Pw(w — iS)^1 P(1+ iw)^2^4AP(1 + iw)

1^1± o-Q(2A2c141^271-2.9-(Qc1 . a(Q(/1A2
+ 4P(1 + w2) i^((-2 + w2)^P(( — iw) 1- ( + iw

^7rd11(3A2 — 1)^7r2o-(Q(Ad31 — 2d41)^71-or(QC  1+^ + ^ (A.129)4A^P(( + iw)^4P(( + iw)2 f '

A + B

A=

C= —72(( iw)(1 + iw)^aR0
4A2Pw(w — i6)^P(1+̂ iw) [2P2(1 + iw)(w + 2iw)

^7rd11
4AP(1 + iw) + 7d21/2

]^7r2o-(Q)(c131 + 2d41) 
P(( + iw)

++
o-(Qd1A2^aCQA71-c/ii^7rdi 1 (3A2 — 1) }
( + iw^4P(( + iw)2^4A^

.

= 71 —k/2Q = 111 k/2Q,

A.2.2 Case II

In Case II, when

97F-

(A.130)

(A.131)

for fixed a, 61 and 0 < k < 2, the limits in equations (A.96)-(A.111) are replaced by
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=^IllE L7nC3 = 0,
nz—>oo^n'

175

(A.134)

641 = urn c4 = 0,
771 -),00

(A.135)

Cl 1 = lirn Ln2c14 = 0,
rn -4 00^rn

(A.136)

C21 lim c/9 = 0,
712-)00

(A.137)

-•/
C31 IiM LMICI3 = 0,

IA -400^n
(A.138)

C41 lirn c= (A.139)
-)00^6D2p2

d11 lim 1,;,"„-tdi = —71-5t.i/PCD,
1

(A.140)

d21 lirn d9= (A.141)
-17/ -400 47P(1 +2)'

d31 (A.142)rd3 =
Ut^ 00 (Q15C0'

d41 1 i m (14 = 0,
—*00

(A.143)

all

d21

lirn Lmdi = 0,
rn—>oo

lirn d^= o,
772^00

(A.144)

(A.145)

dim lim Ld'3 = 0,
171-> 00

(A.146)

di41 lirn d'4 = (A.147)
771->. 00 21)i,2'

where P , ci) and 5 satisfy (2.72)-(2.74). If k = 2 in (A.131), all the limits given by

(A.132)-(A.147) are the same, except for (i41. In this case (A.146) is replaced by

(141 = lim (14 = ^
T/1 -4 00^

- .^ (A.148)
8P(Co + 2i()

If k> 2,

and C6 become unbounded. Therefore we only consider the Case II with k < 2. Then

(A.135)-(A.115) imply that

Ihn^=
771 -)00

lirn L,n„lE1 =
00 ".

— urn LD3
rn—>oo

— urn 1E3
TI1 >DO

720-(06'41 
2Pic:o

—71-k44/2,

(A.149)

(A.150)

d-41 becomes unbounded as in^oo, and this in turn will imply that C2 C4, C3



and

lirn LTD1 = — Jim
/-/2 -400 -^ -+^-

lim LrnE1 — urnm->oo^m-ioo

lim iD2 = - 11111
rn oo 721^7/1 -)00

 

7rcii 1^— 1 )1
60■2

(A.155)

lim En1E7 2 = - Jim LE4 =rn -4 00 rn^971 -400 112^ 8icI, •

However, for k = 2 we have

 

(A.156)

(72/P) {0-(Q(—(231 + 4A041 + (LH)) 
=^

7rcinr } ,
k /^ 2^(A.157)4cD

. (7205) fa(Q(—d31 + 4A041 + d41)) 7rciiir}z^(A.158)
46.5

. —71-54(r4i + (441) — 71(431/4,^ (A.159)

. i ,1^j—7,441 + (.41) — 7(131/4,^ (A.160)

. /,72 ,i5)^7r2a(Q(—(131 + (2/)(J1 ±  d41)
1:PcI)

liiii L"1 .15 1
In -3 oo rn

LM b3
712-500^772

Jim LmEi
In -400 721

Jim L„,"1

Jim LinnID2
rn--+oo
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^lirn LrnD2 = — Jim^=
M. -3. 00^71-

Jim LZE2 =
771 -) 00

ntlaCQ5■6'41 
2.152iCo

lim LZE4 = 0,
112 -*00

(A.151)

(A.152)

- (2/P) {a(Q(—c1:31 + 25v-F41)
71d-11/2} ,(A.153)

▪ —7r5vi1/2 — 71(i3/4,^ (A.154)

(712/P)^72C1(Q(-431^(2/A)(1141)

ii5CD

4)

—urn Lmb4
172 00^112

71dii(A' — 1) 1
45■2

• (712/J3)^720-(Q(—(1,31 + (2/A)^a41)

7rai^ 2 — 1) }
4A2

(A.161)

(A.162)

and this implies that the limiting behaviours of the normal form coefficients are qualita-

tively different from those in Case I, and in Case II with 0 < k < 2, since d.41 is not real



lirn L151 =nz-+00

liM 1/7777:E1
711--).00

IiM L ^=
711-),00

- liM 1/7,11, n3
711-3.0C

- lim 1,E3
772-400

- lim L9„7,1 7;14
711-100
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for k = 2. In fact it is easy to show that when k = 2 (A.157)-(A.162) imply that

liM C9^liM C4, and lim C3^lim C6.m-+co^771-9•00^ 771-}00^in-400 (A.163)

unlike in Case I, and in Case II with 0 < k < 2. For this reason, from now on we restrict

ourselves in Case II to only 0 < k < 2.

We also have

:_-_-= 17(711i2,4114 5d)2{ :::::I/341,± 2 .(1‘41)^7rd-

ii /2} ,

(

(

A

A

.

.

1

1

6

6

5

4

)

)4ic;)

= (72/p) racQ(,,.+(2/.41)

+ Irciii (5■2 _ 1) 1
f

iPcD

(A.166)
4A2^,

(A.167)

From (2.55) we get

72(111 
liM LME2^11111 L 7 E =in -+00 711.-*00 "I^ 4

7r2(1^iCo)ilirn 0771 = urn O7i+1 =
711-)00^711-Y00 (A.168)22P(c1) - i(o- + 1))

Now using (A.132)-(A.147) and (A.149)-(A.150) we finally get

lirn C1 =L',;',' -+oo

liM C2
L7,1-400 -

lina C3 =Lg:-*oo

urn c5 = A +
liiii C1 = A,/4,q-4co

liM C6 = a,
L cc

(A.169)

(A.170)

(A.171)

where

i7r2o-Po^1
4 .A2P2(cD - i(a +1)) 1.4P(1 +^

▪ 

2P2(1+^+ 2idd
+ o-(Q74 (1 + icD)

8cD3P3(d., - i(o- +1))' (A.172)
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A i7r2 CIP0̂  71-(a21^(121)1^1^ + -
C j

^

45■2P2(C.o — i(o- + 1)) [^2^4AP(1 + ic)^4P(1 + o2)
71-2(1^17120-(Q(2-C/41^24, + AC131) 4_ 7raCQC111 

^

4PX‘2((i) — i(0" + 1) [^ii5J)^4 PCD2
7rciii(35■2 — 1)^A2o-(Qd-'41

(A.173).+^4A. zw

a = i7r2c/Ro^7r-9^7rcin ^7 d-211
4A2P2[cZ, — i(o- + 1)] [2P2(1 + i 'W) ( it + 2iW)^4AP(1 + i 

+
c.D)^2

i7r2(1 + icD)^1 7r2o-(QA (ci3i + 2c1'41)^7rd1 1 (3 .A2 — 1)

^

4/55■2(a) — i(o- + 1)) [^iPa.)^4;\
0-(01'415■2^aCQA7rdi 1  1+^.^ (A.174)7.4.:,^i4Pc.D2^j .
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Numerical values of normal form coefficients

In this section we give more numerical results. In Tables B.1—B.6, numerical values in

Case I of normal form coefficients for a = 1,( = .1 and for Q = 72, 10472 and 10672 and

for increasing values of 771, are given. As in Chapter 4, the symbols oo in the tables show

the corresponding values of coefficients as in cc. In our numerical calculations we have

also calculated the values of C1, C5 for a wider set of parameter values (i) a =1,( = .01,

(ii) a = 1, = .5, (iii) a = 10, .01 and increasing values of Q and in. We have also

considered, for fixed a decreasing sequence of values of a and an increasing sequence of

values of Q such that Pjcvi, j = 1, 2 remains fixed. Because of lack of space we give only

a sample of these numerical calculations. In all of these calculations we find that C1R

and C5R are negative. Because the numerical calculations of C2 and C4 were very time

consuming, we have looked at the values of C1R C2R for large in for several different

set of values of a,( and Q. In all of these calculations we found that C2R < 0 and

CiR - C2R > 0. These values are important in stability results of Chapter 5. We also

give another sample of our numerical calculation of normal form coefficients in Case II.
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Table B.1: Normal form coefficients (Case I) for a =1,( = .1, Q 72.

In 2/,,,/in Rm 100a1 10002
1 2.007 950.3 .1822 - .1517i .2871 - .8320i

101 1.407 811.5 .2555- .2828i .5720- .2881i
10001 1.400 811.5 .2563- .2854i .2563- .2854i
100001 1.400 811.5 .2563- .2854i .2563- .2854i

oo 1.400 811.5 .2563- .2854i .2563- .2854i

Table B.2: Normal form coefficients (Case I) for a = 1,C = .1, Q = 72 (continued).

771 Lb2R L Mb 1 I L 771b21

1 -2.882 5.294 3.942 -2.8277
101 -3.893 3.927 3.379 3.337

10001 -3.909 3.910 3.358 3.358
100001 -3.910 3.910 3.358 3.358

oo -3.910 3.910 3.358 3.358

Table B.3: Normal form coefficients (Case I) for a = 1, = .1, Q = 72 (continued).

in C1 C2 C4 C5
1 -.3061 + .7467i -1.868 - .4878i -1.714 - .3182i -.6399 + .3554i

101 -.4912 + .6478i -1.673 - .3706i -1.665 - .3708i -.4973 + .6422i
10001 -.4942 + .6451i -1.668 - .3706i -1.667 - .3706i -.4943 + .6450i
100001 -.4943+ .6450i -1.668 - .3706i -1.668 - .3706i -.4943+ .6450i

oo -.4943+ .6450i -1.668 - .3706i -1.668 - .3706i -.4943+ .6450i
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Table B.4: Normal form coefficients (Case I) for a = 1,( = .1, Q 1047r2.

771 2L,„ im, .1R1 1000a1 1000a2
1 .6145 7596 .2637- .7716i .5153- .5004i

101 .4229 6919 .4417- .7250i .4460- .7203i
10001 .4208 6919 .4438- .7227i .4439- .7226i

100001 .4208 6919 .4438- .7227i .4439- .7227i
oo .4208 6919 .4439- .7227i .4439- .7227i

Table B.5: Normal form coefficients (Case I) for a = 1,C = .1, Q = 10472 (continued).

m LbiR L2mb2R Lmbii Lmbn
1 -5.734 15.91 95.51 204.7

101 -9.839 9.989 124.6 126.4
10001 -9.913 9.915 125.5 125.5
100001 -9.914 9.914 125.5 125.5

oo -9.914 9.914 125.5 125.5

Table B.6: Normal form coefficients (Case I) for a = 1,( = .1, Q = 10472 (continued).

771 C1 C2 C4 C5
1 -.0045+ .0211i -.0132+ .0528i -.0209+ .0349i -.0213+ .0274i

101 -.0115+ .0259i -.0260+ .0625i -.0222+ .0632i -.0117+ .0261
10001 -.0116+ .0260i -.0242+ .0632i -.0241 + .0632i -.0116+ .0260i
100001 -.0116+ .0260i -.0242+ .0632i -.0242+ .0632i -.0116+ .0260i

oo -.0116+ .0260i -.0242+ .0632i -.0242+ .0632i -.0116+ .0260i
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Table B.7: Normal form coefficients (Case I) for a = 1,( = .1, Q = 10672.

m 2Ln1/iii 10-7R, 104a1 104a2
1 .2778 .5795 .1430 - 1.0887i .4582 - .9322i

101 .1904 .5651 .2873 - 1.071i .2922 - 1.068i
10001 .1895 .5651 4.2897 - 1.070i .2898 - 1.070i
100001 .1895 .5651 .2897 - 1.070i .2898 - 1.070i

oo .1895 .5651 .2898 - 1.070i .2898 - 1.070i

Table B.8: Normal form coefficients (Case I) for a = 1,( = .1, Q = 10672 (continued).

in L1b1R L2mb2R Lnibll Lmb21
1 -2.938 13.943 245.8 825.4

101 -6.163 6.308 351.3 359.3
10001 -6.234 6.236 355.2 355.3
100001 -6.235 6.235 355.3 355.3

oo -6.235 6.235 355.3 355.3

Table B.9: Normal form coefficients (Case I) for a = 1,C = .1, Q = 10672 (continued).

in 100C1 100C2 100C4 10005
1 -.06848 + .5881i -.2550 + 2.072i -.3500 + .8118i -.7566 + 1.603i

101 -.2637+ 1.049i -.4901+ 1.936i -.4136+ 1.928i -.2730+ 1.064i
10001 -.2683 + 1.056i -.4545 + 1.948i -.4536 + 1.948i -.2684 + 1.056i

100001 -.2685+ 1.057i -.4540+ 1.948i -.4540+ 1.948i -.2685+ 1.057i
co -.2685 + 1.057i -.4540 + 1.948i -.4540 + 1.948i -.2685 + 1.057i
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Table B.10: Normal form coefficients (Case I) for a = 1,( = .01, Q = 72.

Tit C1 C5
1 -.2247 + 1.814i -.5729 + 1.724i

11 -.3288 + 1.801i -.3711 + 1.792i
101 -.3468 + 1.797i -.3516 + 1.796i

1001 -.3489 + 1.797i -.3494 + 1.797i
10001 -.3491 + 1.797i -.3492 + 1.797i

oo -.3491 + 1.797i -.3492 + 1.797i

Table B.11: Normal form coefficients (Case I) for a = 1,<- = .01. Q = 1007r2.

m C1 C5
1 -.0837+.2139i -.0755 + .1997i

11 -.0802+ .2078i -.0791 + .2059i
101 -.0798 + 2069i -.0796 + .2067i

1001 -.0797+ .2068i -.0797 + .2068i
co -.0797 + .2068i -.0797 + .2068i

Table B.12: Normal form coefficients (Case I) for a = 1,( = .01, Q =--- 10472.

in 10C1 1005
1 -.1006 + .4180i -.2597+ .3921i

11 -.1705 + .4252i -.1926 + .4218i
101 -.1803 + .4240i -.1828 + .4236i

1001 -.1814 + .4238i -.1817+ .4238i
10001 -.1816 + .4238i -.1816 + .4238i

oo -.1816 + .4238i -.1816 + .4238i
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Table B.13: Normal form coefficients (Case I) for a = 1,( = .5, Q = 100R-2.

in C1 C5
1 -.06479 + .1288i -.08207 -I- .1111i

11 -.07989 + .1154i -.08240 + .1119i
101 -.0811 + .1138i -.0814 + .1134i

1001 -.0812 + .1136i -.0812 + .1135i
10001 -.0812 + .1136i -.0812 + .1136i

oo -.0812 + .1136i -.0812 + .1136i

Table B.14: Normal form coefficients (Case I) for a = 1,( = .5, Q = 1047r2.

in 10C1 1005
1 -.0904 + .3310i -.4095 + .5270i

11 -.2110 + 4417i -.2559 + .4681i
101 -.2306 + .4540i -.2357 + .4570i

1001 -.2329 + .4553i -.2334 + .4556i
10001 -.2331 + .4555i -.2331 + .4555i

co .2331 + .4555i -.2331 + .4555i

Table B.15: Normal form coefficients (Case I) for a = 1, = .5, Q = 10672.

in 10C1 1005
1 -.01411 + .1185i -.1538 + .3537i

11 -.0476 + .2103i -.0476 + .2103i
101 -.0546 + .2242i -.0565 + .2278i

1001 -.0555 + .2258i -.0557 + .2262i
10001 -.0557+ .2262i -.0557 + .2262i

oo -.0556 + .2261i -.0556 + .2261i
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Table B.16: Normal form coefficients (Case I) for a = 10-6, = .01, Q = 4000072.

in CI C5
1 -2.298 + 7.327i -6.313 + .8211i

11 -4.286 + 6.332i -4.938 + 5.676i
101 -4.578 + 6.069i -4.652 + 5.994i

1001 -4.611 + 6.036i -4.618 + 6.028i
10001 -4.614 + 6.032i -4.615 + 6.031i
100001 -4.615 + 6.032i -4.615 + 6.032i

oo -4.615 + 6.032i -4.615 + 6.032i

Table B.17: Normal form coefficients (Case I) for a = 10-6,C = .01, Q = 10672.

in Ci C5
1 -.0644+ 1.263i -.2487+ 1.232i

11 -.1289 + 1.258i -.1314 + 1.257i
101 -.1300 + 1.258i -.1303 + 1.258i

1001 -.1301 + 1.258i -.1301 + 1.258i
oo -.1301 + 1.258i -.1301 + 1.258i

Table B.18: Normal form coefficients (Case I) for a = 10-6, = .01, Q = 10872.

m 100C1 10005
1 -.1788 + 12.66i -.4366 + 12.62i

11 -.2577+12.65i -.2889 + 12.64i
101 -.2710 + 12.65i -.2746 + 12.65i

1001 -.2726 + 12.65i -.2730 + 12.65i
10001 -.2728+12.65 -.2728 + 12.65i

oo -.2728+ 12.65 -.2728 + 12.65i
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Table B.19: Normal form coefficients (Case II) for a = 1 , = .01, .■Q = 71-2, k =1.

in 2Lr1/M Rm 103a1 103a2
1 2.024 786.5 1.975.4116i 3.133 - .9750i

101 1.419 660.3 2.802 - .1252i 2.821 - .1260i
10001 1.412 659.1 2.814- .0722i 2.814- .0722i
100001 1.412 659.0 2.814- .0681i 2.814- .0681i

100000001 1.412 658.9 2.814- .0663i 2.814- .0663i
oo 1.412 658.9 2.814 - .0663i 2.814 - .0663i

Table B.20: Normal form coefficients (Case II) for a =^= .01, () = 7r2, k = 1
(continued).

772 L2mbiR ab2R ',mkt Lin1)21
1 -2.597 4.794 .8240 -.6923

101 -3.484 3.515 .4655 .4673
10001 -3.496 3.497 .4657 .4657

100001 -3.496 3.496 .4657 .4657
100000001 -3.496 3.496 .4656 .4656

oo -3.496 3.496 .4656 .4656

Table B.21: Normal form coefficients (Case II) for a = 1 , = .01,e1 = 7r2, k = 1
(continued).

77/, Cl C2 C4 C5
1 -.2247+ 1.814i -6.969 - 2.731i -12.79 - 4.230i -.5729 + 1.724i

101 -.1133+ 1.773i -24.93- 1.101i -23.02- 1.050i -.1135+ 1.773i
10001 -.0909 + 1.771i -32.18- 1.290i -31.94 - 1.284i -.0908 + 1.771i
100001 -.0886+ 1.771i -33.21- 1.352i -33.19- 1.351i -.0886+ 1.771i
108 + 1 -.0883 + 1.771i -33.33- 1.359i -33.33- 1.359i -.0883 + 1.771i

co -.0883 + 1.771i -33.33 - 1.359i -33.33 - 1.359i -.0883 + 1.771i
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Table B.22: Normal form coefficients (Case II) for o- = 1, = .01,e? = 7r2, k = 1
(continued).

in C3R C31 C611 C61
1 9.188 —4.566 11.40 —10.87

101 24.91 —.6175 22.91 —.6644
10001 32.11 .1286 31.86 .1230
100001 33.14 .1968 33.12 .1963
108 + 1 33.26 .2044 33.26 .2044

oo 33.26 .2044 33.26 .2044
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