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Abstract 

Inverse problems arise in many fields. They are usually ill-posed since they often violate 

one or more of Hadmard's three conditions for well-posedness: existence, uniqueness and 

stability. In this thesis, we propose a new method for computing approximate solutions 

in certain linear inverse problems. 

We consider linear inverse problems based on integral equations of the first kind. 

Analysis of Picard's condition reveals that such equations may lead to ill-posed problems 

which may have no solution satisfying the observed data exactly and stably, but may have 

infinitely many solutions satisfying the data approximately. To get a unique and stable 

solution to this kind of inverse problem, we use Tikhonov's Regularization Method. 

To obtain the best possible approximation to the true model, we should use any and 

all available information regarding the true model, although we can not expect to get 

sufficient data. For example, it is standard practice to use the positivity of the model 

in inverting magnetic and IP data, and to use special weighting functions in solving 

magnetic problems. The key feature of the present work is a method that exploits the 

correlation between different model parameters in inverting the geophysical data. 

To keep different parameters in suitable confidence regions, a new methodology, Com

bined Inversion, is developed. In combined inversion, different kinds of data are inverted 

simultaneously. The objective functional imposing the correlation requirement may be 

neither convex nor quadratic, so corresponding algorithm and code are developed. When 

the objective functional is not quadratic, we use an iterative method to solve it and ap

proximate the functional with its second order Taylor approximation in each iteration. 

When the objective functional is not convex, it may have more than one local minimum. 
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To get the minimum which well approximates the true model we should begin with a 

good initial model. In our case we produce the initial model by solving the combined 

problem with no correlation requirement. 

We introduce our method in the context of two practical geophysical inverse prob

lems: the magnetic problem and the Induced Polarization (IP) problem. As we expect, 

regularization smooths the inverted models, so some model characteristics are lost in 

the recovered models. Our numerical examples confirm the smoothing effects of the 

regularization operators. 

Since magnetic susceptibility and chargeability are negatively correlated, we introduce 

a nonquadratic, nonconvex "correlation function", whose sub-level sets define confidence 

regions for the vector of susceptibility and chargeability. Then we require our recovered 

models to be in the confidence region. The recovered models from combined inversion 

method are significantly better than those from independent inversion. 

This method should be useful in practical prospecting when several kinds of data 

are available and there is some correlation among the parameters. This is the case in 

mining industry where several kinds of geophysical data are usually measured at the same 

time and the different parameters producing the data are known to be correlated. If we 

approximate the correlation with, a reasonable functional, we may reconstruct models 

satisfying the corresponding correlation. 
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Chapter 1 

Introduction 

This thesis concerns Linear Inverse Problems and their applications in Geophysics. Its 

main contribution is a combined inversion method that exploits known correlations be

tween the underlying physical properties in linear inverse problems. After introducing 

the basic principles of linear inverse problems in part one, we work on two practical 

geophysical inverse problems in part two: Magnetic susceptibility inversion and Induced 

Polarization (IP) chargeability inversion. In part three we develop the combined inversion 

method and demonstrate its usefulness by inverting the susceptibility and chargeability 

jointly, since there is a correlation between these two parameters. 

1 . 1 Linear Inverse Problems In Geophysics 

Geophysical Inverse Problems are to determine, on the basis of measured data, internal 

properties of the Earth which cannot be measured directly, such as the mass density or 

the electrical conductivity. They are usually ill-posed as mathematical problems, since 

they violate one or more of the three properties of existence, uniqueness and stability. 

For a linear inverse problem, we have to estimate some physical parameter m(x), i.e., 

a function of spatial coordinates, using only the measured data d and a known linear 

operator A. Usually m is in an infinite dimensional Hilbert space, so we can not expect 

to evaluate it exactly from an inaccurate, finite-dimensional vector of data d. This is an 

ill-posed problem. 

In practical work, we discretize the function m first: physical laws then take the form 

1 



Chapter 1. Introduction 2 

of a system of linear equations: 

Gm = d. (1.1) 

Usually G is an N x M matrix and N <C M. Since there are measurement errors in the 

observed data d, we may not find any solution vector m satisfying the system. Even if we 

can satisfy the observed data exactly, we should not solve the system in that way since 

that kind of solution is usually unstable with respect to measurement errors. Therefore, 

the discrete problem is still ill-posed. The theory of regularization suggests that we 

determine an approximate solution by solving the following optimization problem: 

minimize </>m(m) :=|| Wm(m — mo) | | 2 , 

subject to <f>d(m) :=|| Wd(Gm - dobs) \\2= <̂ *. (1.2) 

Here m0 is called the base model, <f>d is called the misfit criterion, Wd is called the data 

weighting matrix, Wm is called the model weighting matrix and <f>*d is called the target, 

misfit. 

1.2 Two Practical Problems 

1.2.1 Magnetic Problem 

A typical linear inverse problem in geophysics is to calculate the magnetic susceptibility in 

magnetic prospecting. Magnetic prospecting is one of the oldest methods of geophysical 

exploration and is used to explore for oil, minerals, and even archaeological artifacts. 

A magnetizable body placed in an external magnetic field becomes magnetized by 

induction; the magnetization is due to the reorientation of atoms and molecules so that 

their spins line up. The alignment of internal dipoles produces a field M , which is added 

to the magnetizing field H. For low magnetic fields, M is proportional to H and is in the 
—* 

direction of H. The degree to which a body is magnetized is determined by its magnetic 
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susceptibility K, which is defined by 

M = KH. (1.3) 

Here M, H and K may all vary with position. Magnetic susceptibility is the significant 

variable in magnetics. It plays the same role as the density does in the gravitational 

problem. 

A volume of magnetic material can be considered as an assortment of magnetic dipoles 

that results from the magnetic moments of individual atoms and dipoles. They are 

aligned by induction in the presence of the Earth's magnetic field ("the main field") He 

(Ho\He\ ~ 0.5 x 10 - 4 tesla)to produce a local magnetic anomaly. In magnetic prospecting 

we estimate the magnetic susceptibility K by measuring the local magnetic anomaly. 

Magnetic anomalies are caused by magnetic minerals (mainly magnetite and pyrrhotite) 

contained in the rocks. In any case, we can regard a magnetic body as a continuous dis

tribution of dipoles resulting in a vector dipole moment per unit volume, M. Each dipole 

at the origin causes an anomalous field at r according to 

Magnetic anomalies caused by intrusions, flows, or iron-rich sedimentary horizons are 

common features in regions favorable for mineral exploration, and there is frequently 

a contrast between the magnetic mineral content of such features and that of the host 

rock. Usually magnetic polarization is in the He direction and M = nHe. To get the 

data about our model, we partition the area of interest into a series of cells and assume 

that the susceptibility in each cell is constant. Thus, we can calculate the projections of 

the magnetic anomaly field in the direction of Earth's magnetic field. 

With the magnetic anomaly field F as the measured data and the corresponding 

F(r) = V{M(f ) - V(l/ |f |)} 

= V{KH£ • V(l/ |r |)} when M = nHe. (1.4) 
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physical law (1.4) as the linear relation we get a standard linear inverse problem. It can 

be solved for the unknown functional K through general methods for inverse problems. 

In practical magnetic prospecting, data are gathered using magnetometers [4]. One 

type of magnetometer is a magnetic balance which measures the anomaly field values 

relative to a reference value. This type of magnetometer measures the magnetic anomaly 

field F directly. 

The other type of magnetometer measures absolute values of the magnetic field. Since 

this type of magnetometers are robust and extensively used, we show how can we compute 

one component of the anomalous field from the absolute value of the magnetic field. 

Indeed, if He is the main field and Ha is the anomalous field, then we can determine AH 

experimentally, where 

AH= \He + Ha\-\He\ 

= (He + Ha, He + Ha)1/2 — \He\ 

« [{He,He) +-2(He,Ha)]1/2 - \He\ ( since \Ha\ < \He\) 

n(He,Ha)/\He\ 

That is, AH can be used as the approximation of the projection of anomalous field in 

the He direction. Now the measured data are actually the magnetic flux density B: we 

calculate the magnetic field from 

H = B/a0, 

where UQ = 47r X 10 - 7 weber/ampere-meter is the permeability of free space. 



Chapter 1. Introduction. 5 

1" 

Chargeable body 

X 

Figure 1.1: Four-electrode DC model. 

1.2.2 Induced Polarization Problem 

The other inverse problem we will consider in this thesis is to calculate the chargeability 

t] in Induced Polarization (IP). Induced Polarization is a relatively new technique in 

geophysics, and has been employed mainly in base-metal exploration and to a minor 

extent in ground water search. 

An illustration of induced polarization can be obtained with a standard four-electrode 

Direct Current (DC) resistivity spread by abruptly interrupting the current [20] (figure 

1.1, 1.2). The voltage across the potential electrodes generally does not drop to zero 

instantaneously, but decays rather slowly, after an initial large decrease from the original 

steady-state value. This decay time is on the order of seconds. If the current is switched 

on again, the potential, after a sudden initial increase, builds up over a similar time 

interval to the original DC amplitude (figure 1.2, 1.3). 

Measurements of IP data may be made in either the time or the frequency domain. 

Although the phenomenon is the same, different parameters are used to represent it. We 

use the chargeability defined by Siegel [21]: . • 

V = (1.5) 

where (fa is the potential in the absence of the polarization effect and (pv is the the 
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t 

Figure 1.2: DC current for IP. 

* 

Figure 1.3: IP decay voltage. 
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potential with the polarization effect. 

To estimate the chargeability 77 in the area of interest, we measure the potentials <pa 

and Lpn on the surface first and then compute the data r\a (apparent chargeability) using 

the equation 

Va = • (1.6) 

For two-dimensional problems if we choose y in the strike direction, z downward and 

x perpendicular to the strike direction, then the chargeability is represented as v{x,z) 

and we only measure <pa and (pv along a line in the x direction. 

The definition of apparent chargeability (1.6) shows that estimating the chargeability 

77 from the data r]a is a nonlinear inverse problem. However, 77 values are usually small, 

so we can linearize equation (1.6) to produce a linear inverse problem that approximates 

the given problem. 

Linearizing the potential ipv about the conductivity model a yields 

(pn = ip(a-rja) = (p(a) - ip'(a)na + 0(77). (1.7) 

Substituting into equation (1.6) yields 

_ <fv - ifa -<p'(a)r]a + 0(77) 

ipv (p{o-)-ip'(cr)r)a 

This can be approximately written as 

Va ~ -^f^-V = JV, (1-9) 

for a linear operator J independent of rf. In the discrete version of the problem, J becomes 

a matrix—see Section 3.2.4. 

So, instead of solving the nonlinear inverse problem (1.5) we can solve the linear 

inverse problem 

JV = Va- (1.10) 
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with the same methods used for magnetic inverse problem. 

Our inverse problems are always of the underdetermined type in which there are fewer 

observations than unknowns. Then the observations are not sufficient to determine the 

unknown parameters uniquely; additional information is needed. This lack of information 

cannot be remedied by any mathematical techniques. For geophysical inverse problems 

the physical parameters to be determined should be consistent with the geological struc

tures and other information when it is available. Therefore, it is natural to construct 

optimization problems with proper objective functionals based on additional information. 

1.3 Combined Inversion 

In our case, although we can invert the IP data for chargeability and the magnetic data for 

susceptibility independently, we note that there is some correlation between the charge-

ability and the susceptibility of different kinds of rocks. Our main contribution is to use 

prior information about this correlation to invert these two sets of data simultaneously. 

In fact, the tables in [20] shows that although there is a great variation in the re

values, even for a particular rock type, and a wide overlap between different rock types, 

sedimentary rocks have the lowest average susceptibility and basic igneous rocks the 

highest. In every case the susceptibility depends only upon the amount of ferrimagnetic 

minerals present, mainly magnetite, sometimes ilmenite or pyrrhotite. The K values 

for chalcopyrite and pyrite are typical of many sulphide minerals which are basically 

nonmagnetic. 

At the same time, we find that the chargeabilities n of minerals increase with the 

sulphide concentration. In contrast to their magnetic susceptibilities, chalcopyrite and 

pyrite are typical minerals with high chargeabilities. 
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Therefore, the magnetic susceptibility and the chargeability of minerals are not inde

pendent. Although the correlation between susceptibility and chargeability may depend 

on the underlying rock type and an exact description of this correlation is not available, 

we know that the susceptibility and chargeability can not both be large at the same 

place. In this thesis we use this correlation to invert jointly the magnetic and IP data. 

Suppose (f>c(n, Tf) represents the correlation between K and rj, and the confidence region 

is determined as 

{ ( « , » / ) : & ( « , » ? ) < # } . (1.11) 

If the discretized magnetic problem is 

Git = d?' 

and its corresponding regularized optimization problem is 

minimize <J>K(K) :=|| WK(K — K0) ||2, 

subject to <f>d(K) :=|| Wdl(Gn - < s ) || 2= (L12) 

and the discretized IP problem is 

Jr] = d°2

bs 

and its corresponding regularized optimization problem is. 

minimize (/>v(n) :=|| Wv{rj - 770) | | 2 , 

subject to h{r}):=\\Wd2{Jrj-dfs)f=^ (1.13) 

then we can introduce a new optimization problem: 

minimize <f>m(m) : = \\ Wm(m - m 0) | | 2 +ac<f)c(m) 

subject to <t>d(m) : = || Wd(Am - dobs) ||2= <̂ *, (1.14) 
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where 

m =(«;,77)T

5 

dobs ={d?\d°f9)T, 

W, 

( 

wdl 0 ^ 

0 Wd2 j 

wK 0 

0 w„ 
If we treat 77 and K as independent by setting a c=0, solving (1.14) is equivalent to 

solving for the two vectors 77 and K independently except for the computing difficulty in 

keeping the two individual misfits at a reasonable level. But if we insist on a correlation 

between rj and K by choosing ctc > 0, we can keep the parameters 77 and K in a particular 

confidence region by choosing the proper correlation weighting factor ac. 

For a suitable Lagrange multiplier parameter /J , optimization problem (1.14) corre

sponds to the following unconstrained optimization: 

Minimize <f> = <f>m(m) + u(d>d(m) - (j>*d) + ac<f>c(m) 

= || Wm(m - m 0) | | 2 +/--(|| Wd(Am - d •obs I) + ac<j)c(m) (1.15) 

Determining the correct value of u is a separate issue that we discuss below. If (j)c(m) 

is a quadratic convex functional, optimization problem (1.15) can be solved as a general 

optimization problem of regularization for each ac. In our case, (j>c(m) is the functional 

neither convex nor quadratic, so a corresponding algorithm must be developed to solve 

the optimization problem (1.15). 
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Since (f>c(m) is not a quadratic functional of m, we use an iterative method to solve 

the optimization problem. In each step, (f)c{m) is approximated with its second-order 

Taylor expansion 

(f>c(m) « ^ ( m W ) + gT(m - m<"') + l/2(m - m ( n ) ) T #(m - m<n)), (1.16) 

where g and H are the gradient and the Hessian matrix of (j>c at mSn^ respectively. To 

realize this kind of approximation in each step, we modify the subspace method [15] which 

is designed specifically for linear inverse problems. To effectively reduce the correlation 

<f)c in each iteration, we include the gradient of <j)c in the subspace from which a new 

perturbation is chosen. 

Since (f)c(rn) is not a convex functional, a good initial approximation must be cho

sen. We use the solution to (1.15) when ac = 0 as the initial approximation. To obtain 

successively better reconstructed models, we must carefully choose ac > 0. In fact, the 

objective functional <f> in (1.15) is not convex, so it may have different local minima. 

Furthermore, the regularization term <f>m and correlation <f>c in (1.15) produce contradic

tory effects on our model m, so ac must be chosen such that these effects are balanced 

in the iteration proceeds. In our numerical experiments the correlation decreases as the 

iteration, so ac must be increased to keep the correlation term and the regularization 

term compatible. • 

In the central numerical example of this thesis, we set up both a magnetic model and 

an induced polarization model in a common two dimensional domain in which K and r) 

satisfy a certain correlation <f>c. First, we invert K and r\ independently according to the 

methods described above. Then we invert for the two parameters together as in problem 

(1.14). We compare the results produced by these two different methods and show that 

the joint inversion gives much better results. 



Chapter 2 

Linear Inverse Problems 

2.1 Ill-posed Inverse Problems: Functional Theory 

In 1923, the French mathematician J. Hadamard [7] introduced the concepts of well-

posed and ill-posed problems. A mathematically well-posed problem should satisfy the 

following basic conditions: 

1. A solution exists (existence). 

2. The solution is uniquely determined by the data (uniqueness). 

3. The solution depends continuously on the data (stability). 

If a problem does not satisfy all three of conditions, it is called ill-posed. According 

to Hadamard's philosophy, ill-posed problems are actually ill posed, in the sense that 

their basic formulation is wrong. However, since Hadamard's time many applications in 

industry have led to the formulation of ill-posed problems where the solution has a well-

defined physical meaning. Such applications arise quite naturally in science, technology 

and medicine when one is confronted with the need to interpret measurements. Such 

interpretation is particularly difficult in geophysics, medicine and astrophysics. The 

problem here is to determine, on the basis of the measured data, internal parameters 

such as the mass density p{x) or the electrical conductivity o~(x), which are difficult or 

impossible to measure directly. Such problems are briefly called inverse problems. In fact, 

studying such problems is the only way of completely analyzing experimental results. 

12 
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Most inverse problems do not fulfil Hadamard's postulates of "well-posedness". They 

might not have a solution in the strict sense, their solutions might not be unique, or they 

might depend discontinuously on the data. 

2.1.1 Theoretical Analysis of an Inverse Problem 

Since many linear processes can be modeled by the integral equations of the first kind, it 

is interesting for us to show that such equations usually lead to ill-posed inverse problems. 

An integral equation of the first kind has the form 

(Tx)(s)= f1 k(s,t)x(t)dt = b(s),s e [0,1] (2.17) 
Jo 

where k(s,t) £ Z2[0,1] x [0,1] is a known kernel, thus T is a bounded linear operator 

with respect to the usual L2 topology induced by 

(x,y)= ^ x(t)y(t)dt, (2.18) 
Jo 

\\x\\={x,xyi2, x,y£L2[0,l}. (2.19) 

The adjoint operator T* of T is characterized by 

(T*y)(t) = I' k{s,t)y(s)ds, t G [0,1]. (2.20) 
Jo 

Above all, T is a compact operator (see [2], [8] and [24]). Thus [2] there exist adjoint 

orthogonal functions {(f>i(s)}, {if>i(t)}, and real scalars A; —> 0 such that 

f1 k(s,t)4>i{s)ds = Xi^i(t), t e [0,1] (2.21) 
Jo 

and 

f1 k(s, t)ipi(t)dt = A,-^-(s), s G [0,1]. (2.22) 
Jo 

Thus, if the right-hand side in (2.17) has the expansion 

oo 
6(s) = £ A V ^ ) , (2-23) 
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then the solution is given by 

oo 

*(*) = E ( A / A 0 ^ ( * ) ; (2-24) 
i=l 

however x(t) £ L2[0,1] if only if 

C O 

£ ( f t / A , - ) 2 < oo. (2.25) 

Equation (2.25) is called the Picard condition: it determines whether a square-

integrable solution exists to the equation (2.17) with right-hand side b(s). 

If b(s) of (2.23) does not belong to R(T), we may still approximate b(s) by truncating 

the expansion (2.23) to a sum of k terms, 

k 
bk(s) = J2WJ(s); (2.26) 

j=i 

each of these bk clearly fulfils the Picard condition, and we have 

k 
T~lh = YXftlWi- (2-27) 

i=i 

We conclude that as k —>• oo we have bk b, but 

|| T^h ||-». oo, k —•> oo. (2.28) 

It is for this lack of stability that integral equations of the first kind often produce ill-

posed inverse problems. 

Unfortunately, in practical situations we will typically only have access to an approx

imate right-hand side b in equation (2.17), which is contaminated with measurement 

errors, approximation errors, and rounding errors: 

6 = bexact + e, bexact € R(T). (2.29) 

Here, bexact denotes the unknown, exact right-hand side and e denotes the perturbation. 

Ideally it is x

exact=T~1bexact that we want to compute. Of course, we cannot expect e to 
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satisfy the Picard condition, hence b £" R(T). As illustrated above, any naive approach 

which tries to compute T_1b instead of T~1bexact will usually diverge or return a useless 

result with extremely large norm, no matter how small the norm of the perturbation e 

is. 

Furthermore, even if we know the exact values of b(s) at some finite set of points 

s.i,SN, from the expansion 
oo 

b{s) = Y;PiMs), (2-30) 
1=1 

we still can not determine 6(5)' uniquely. In fact, usually there are infinitely many func

tions which have same values as b(s) at the points S i , 3 / v . This is the fundamental 

nonuniqueness for our inverse problems since our data are always finite. 

2.1.2 Generalized Solutions and Regularization of Ill-posed Problems 

As we have seen, inverse problems are usually ill-posed problems and may have no solution 

in the traditional sense, so we should introduce the definition of Generalized Solutions 

for inverse problems [6]. 

Suppose that Hi and H2 axe Hilbert spaces over the same field of scalars. We consider 

the fundamental problem of solving for x in Hi a general linear equation of the type 

Tx = b (2.31) 

where b £ H2 and T is a bounded linear operator from Hi to H2. The most prevalent 

example of an equation of type (2.31) is the one which obtains when Hi = i? n , H2 = Rm 

and T is an m by n matrix. If Hi = H2=L2[0,1], then the integral operator defined in 

(2.17) provides another example. In both these examples problem (2.31) may be ill-posed. 

For the operator T in equation (2.31), the range R(T) and null space N(T) are defined 

as 

R(T) = {y £ H2: y = Tx for some x £ #1}, (2.32) 
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N(T) ={xeH1:Tx = Oe H2}. (2.33) 

If we let (xi,x2) and < yi,y2 > denote the inner products in the Hilbert spaces Hi 

and H2 respectively, then the adjoint operator T* of T is a linear operator from H2 to 

Hi characterized by the following relation: 

. (T*y,x)=<y,Tx>,VxeH1,VyeH2. (2.34) 

If the operator T is invertible then equation (2.31) has the unique solution x = T _ 1 & , 

and we have a well-posed problem since T~l is also a bounded linear operator. But in 

general such a linear equation may have no solution at all when b R(T), and have more 

than one solution when N(T) 7̂  {0}. 

When equation (2.31) has no solution in the traditional sense (6 ^ R(T)), we may 

assign a "best possible" solution to the problem. In fact, if we assume R(T) is closed and 

let P be the projection operator of H2 onto R(T), then Pb is the vector in R(T) which 

is closest to b. It is possible to consider any u £ H\ such that Tu = Pb as a generalized 

solution of equation (2.31). This solution is often called the least squares solution of the 

equation Tx = b. 

Usually there is more than one least squares solution for equation (2.31). To get a 

uniquely determined least squares solution u £ Hi, let us examine the set of least squares 

solutions. Groetsch [6] shows the set of least squares solutions of equation (2.31) is a 

closed convex set when R(T) is closed, so there is a unique vector x* with minimum norm 

in the set, that is, 

|| x* ||= inf{|| u ||: Tu = Pb} = inf{|| u ||:|| Tu - b \\<\\ Tx - b ||,x £ Hx}. (2.35) 

Actually x* is the solution to the following optimization problem 

Minimize cf)x : = || x ||2 

Subject to <f>d :=|| Tx - Pb || 2= 0 (2.36.) 



Chapter 2. Linear Inverse Problems 17 

Usually we call x* the Generalized solution of equation (2.31). Sometimes it is also called 

"best approximate solution" of equation (2.31). It is designed to satisfy the right-hand 

side as closely as possible. 

: Now let us consider a finite-dimensional inverse problem with noisy data. Assume 

Ax = d, (2.37) 

where A is an N X M matrix and d is a vector of N observed data with measurement 

errors. Usually N <C M, and A is an ill-conditioned matrix when N = M. 

Since the observed data d — (di...dj^)T are contaminated with measurement errors, 

d ^ R(A) and thus there is no solution to equation (2.37). Furthermore, even if there is a 

solution x to equation (2.37) which satisfies the observed data d, this solution is usually 

unstable since the matrix A is ill-conditioned. 

If we write the observed data as 

d = dexact + e, '•• (2.38) 

with dexact being exact data from the true model and e being the measurement errors, 

then equation (2.37) becomes 

Ax = dexact + e. (2.39) 

According to the analysis of generalized solutions, we should find the best approximate 

solution to linear equation system 

; . ' . Ax = dexact. (2.40) 

In other words, we should solve the following optimization problem 

. Minimize (j>x : = || x ||2 

Subject to • <j>d :=|| Ax- dexact ||2= 0. . (2.41) 
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However, the vector dexact is not available in practical computing, so instead of calculating 

the generalized solution to equation (2.40) we look instead for the generalized solution 

to the equation 

|| Ax-d | | 2 = 4>%. (2.42) 

where (f>*d is our best estimate of the expected error norm E{\\ e ||2). This is to solve 

optimization equation 

Minimize (j>x : = || x ||2 

Subject to <f>d :=|| Ax-d ||2= <j>*d (2.43) 

Using the Lagrange multiplier method, problem (2.43) can be changed into the opti

mization problem 

Minimize (f) = <f>x + a((f)d - <f)*d) 

= || x ||2 +a(\\ Ax-d | | 2 -</>*).' (2.44) 

Now we show that this approach is consistent with widely accepted Tikhonov regu

larization method. 

According to Tikhonov and Arsenin [22] a given algorithm is called a regularization 

method for (2.37) if—in the presence of perturbations e as in (2.39)—the algorithm de

termines approximations x(e) with the property that for some solution x e x a c t of (2.40), 

x(e) -> x e x a c \ e -»• 0. (2.45) 

So, to find a generalized solution to equation (2.37) is also a regularization method. 

Furthermore, in Tikhonov's method the approximate solution x to (2.37) is defined 

as the unique minimizer of the quadratic functional 

4 =|| d- Ax ||2 +a || Bx | | 2 (2.46) 
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in a finite space RM. Here B is the discrete version of a regularization operator L which 

defines a (semi-)norm || L- ||. It is used to measure the "size" of the approximations, a is 

a regularization parameter which belongs to a suitable real parameter set. If we assume 

T is injective, then the minimizer xa is unique. 

Obviously, if L = I in (2.46), optimization problem (2.46) is same with optimiza

tion problem (2.44). Therefore, the approach of generalized solution is consistent with 

Tikhonov regularization. In the future we use the phrase "regularization method" for 

both Tikhonov regularization and for any other regularization methods. 

2.1.3 Construction of Regularization 

As we have seen, to solve a general ill-posed problem 

Tx = d, (2.47) 

we usually use some kind of regularization method. In other word, instead of solving 

equation (2.47) we usually solve the following optimization problem 

. Minimize^ =|| d-Tx | | 2 +a || Lx | | 2 . (2.48) 

Equivalently, the solution xa to (2.48) may be introduced as the solution to the 

regularized normal equations 

(T*T + aL*L)xa = T*b. (2.49) 

Note that L*L is positive (semi-)definite so that the spectrum of the operator on the 

left-hand side of (2.49) is shifted in the positive direction; hence the solution of the 

regularized normal equations should be less susceptible to perturbations in the data d. 

In fact, L will typically be chosen such that Morozov's complementation condition [14] 

is fulfilled, i.e. 

II Tx || + || Lx ||> 7 II a; II (2.50) 
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for some 7 > 0 and all x in the domain of L. In this case, T*T + aL*L is continuously 

invertible, hence (2.48) has a unique solution xa depending continuously on d. 

Instead of (2.48) one might- consider the slightly more general functional 

Minimize || d — Tx || +a || L(x — xguess) | | 2 (2.51) 

if one has available a good guess for the exact solution x e x a c t . However, (2.51) can easily 

be reduced to (2.48) by replacing d by d — Txguess in (2.48). 

The basic idea behind the regularization in (2.48) is to search for some xa, that 

provides at the same time a small residual || d — Txa || and a moderate value of the 

penalty function || Lxa \\. The keys to succeed are a proper regularization operator L 

and a suitable regularization parameter a. 

Choosing a proper regularization parameter a in problem (2.48) is very important. 

If the parameter is chosen too small, equation (2.49) is too close to the original ill-posed 

.problem and we must expect instabilities. In this case what we can expect to get is the 

best approximate solution of Tx = d. On the other hand, if the parameter is chosen too 

large, the problem we solve has very little similarity to the original equations since too 

much information from the data is lost. In this case, the solution we can expect to get is 

some x <E N(L) or simply 0. 

Finding the optimal regularization parameter a is important in solving ill-posed prob

lems, but there are no general rule to choose it. One basic principle is to choose the 

regularization parameter a such that the norm of the misfit, 11 cZ — Txa ||, equals the 

norm of the error term [14], i.e. 

4>d =|| d-Txa | | 2 = || e | | 2 . (2.52) 

For our examples in the following Chapters, || e | | 2 has x 2 distribution with expected 

value W, so we require the misfit (f)d to equal its expected value N. Obviously this rule 



Chapter 2. Linear Inverse Problems 21 

depends on the accuracy of the estimate for || e ||. If no good estimate is available, it 

may be better to use an e-free parameter choice strategy. 

The role of L should not be underestimated. Numerical computing has shown that we 

could get completely different results with different choices of L. Varah [25] has shown 

that a wrong choice of L can lead to completely erroneous results. 

Although a general rule for choosing L is unknown, it is most common to choose 

either the identity J or a linear differential operator L ^ I. This choice of L usually 

implies the validity of the complementation condition (2.50). 

To choose a sensible L from appropriate a priori knowledge we use a example from 

the following chapters. Suppose we need to determine the unknown function m = m(x, z) 

using ' 

in a Cartesian coordinate system consisting of x-axis and z-axis. We can choose.L by 

combining differential operators and the identity such that for suitable weight functions 

If we choose ctx = az = 0 and ws as a constant, then L = I and we have a regulariza

tion in standard form opposed to a regularization in general form if L ^ I. This choice 

is simple and satisfies the complementation condition, but it is useful only when we have 

no idea about what the model should be. This choice leads to a reconstruction called the 

"smallest model" method since it only concerns the size of the model. 

If we choose ax ^ 0 and/or az ^ 0, we are asking the model m to be smooth in some 

Tm = d (2.53) 

(2.54) 
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sense. The reason for choosing differential operators L ^ I is that noise components 

in the data usually lead to rough oscillations in the reconstructed model m which will 

provoke large X-(semi) norms, || Lm || when L ^ I while keeping standard norm || m \\ 

to be moderate. This choice is reasonable for geophysical inverse problems since our true 

models are usually at least piecewise smooth, and not just integrable. 

If we choose L as a differential operator with as = 0, we can expect a very smooth 

reconstructed model. This is also called the "flattest model". 

2.2 Solving Inverse Problems 

According to Anger [1], to solve an inverse problem we have to study the following issues: 

1. The special process—both experimentally and theoretically, 

2. Mathematical models of the process, 

- 3. The direct problem—both theoretical and numerical, 

4. The information content of the inverse problem, 

5. Algorithms for the numerical solution of the inverse problem. 

In this section we will work only on point 5 and leave the other four points to be studied 

in Chapter 3 for two specific practical problems. 

2.2.1 Discretization of Inverse Problems 

To compute an approximation to x e x a c t , we somehow have to discretize the original prob

lem. One reason is that for inverse problems we usually know only finitely many contam

inated data instead of a continuous function. The other reason is that it is difficult to 

find analytic solutions to practical inverse problems. Although there are various ways to 
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reduce the integral equation (2.17) to a discrete equation, we do not want to elaborate on 

the different advantages of the respective methods here since the discretization methods 

are usually determined by the problems. 

No matter which method we use to discretize an integral equation, one problem we 

have to face is the choice of the proper mesh. If the discretization is too coarse, then the 

finite dimensional equation will be fairly well conditioned but its solution will suffer from 

large discretization errors; this is like using regularization with too large a regularization 

parameter a. If, on the other hand, the discretization level is too fine, then the influence 

of the small singular values of T will be too significant, and the solution of the discrete 

problem will resemble Tikhonov approximation with too small a regularization parameter 

a. Somewhere in between there is an optimal level of discretization with the resulting 

approximation being competitive to the one obtained from optimal regularization of the 

continuous problem. 

For practical problems the optimal discretization is hardly ever known in advance. 

Even if we chose the optimal discretization by chance, it would still remain a good idea 

for the purpose of numerical stability to regularize the finite-dimensional problem so that 

its condition number is improved. In practice, we usually select a discretization so fine 

that the corresponding discretized inverse problem is ill-posed. This allows us to use 

prior knowledge and adjust the misfit by choosing the proper regularization parameter 

a. 

There are two approaches to produce the system of linear equations: to discretize the 

integral equation (2.17) first, or to regularize the integral equation (2.17) first. 

If we discretize the integral equation first, we obtain a linear system of equations 

Ax = d, (2.55) 

where A is the coefficient matrix and d is the vector of observed data! Usually the 
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system of linear equations (2.55) is ill-posed since A will not be a square matrix when 

we discretize the integral equation with too fine a mesh. Even if A is a square matrix 

for some discretization methods, it may be singular or at least numerically singular. 

Applying regularization in standard form to the linear system of equations (2.55) amounts 

to solving the following regularized normal equation: 

(ATA + al)x = ATd. (2.56) 

On the other hand, if we regularize the integral equation (2.17) first, the resulting 

discrete problem will involve in minimizing a quadratic functional of the form 

|| Ax - d | | 2 +a || Bx | | 2 , (2.57) 

where B is the discrete version of a differential operator L in the functional (2.46). 

Equivalently, its regularized normal equation is 

(ATA + aBTB)x = ATd, (2.58) 

where B is the discrete form of the differential operator L. 

In the examples in the following chapters, we regularize the integral equation first. 

To discretize the regularized problem we divide the domain.of interest into M elements 

(e.g., intervals in 1-D, rectangles in 2-D) and assume the model x is constant in each 

element. If the number of observed data is N, then A is an N x M matrix. In our cases, 

N -C M , but both numbers are large: we have M = 560 and = 310. 

After discretizing the inverse problem, we have to find an efficient algorithm to solve 

it. This process is especially important for practical problems since we often have several 

thousands of unknown variables. Here we review several direct methods for discrete 

ill-posed problems like equations (2.55), (2.56), (2.58). 
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2.2.2 Direct Methods 

The Direct methods are simple and widely used, but usually they are not efficient for 

large scale inverse problems. 

1. S V D with Truncation. Assume A is an N x M(N < M) matrix in equation 

Ax = d. To solve this system of linear equations, we suppose A has the following Singular 

Value Decomposition (SVD): 

A = UDVT, (2.59) 

where U is an N x N orthogonal matrix, V is an M x N matrix satisfying VTV = IN, 

and Z)=diag(<Ji, ...,<r/v)- Here o~i > u2---- > CJV > 0 are the singular values of matrix A 

Now for the linear system Ax — d, if N = M and > 0, then the unique solution is 

x = VD-xUTd. (2.60) 

Furthermore, if we assume 

U = [iti|u2|...|ujv], (2.61) 

V= (2.62) 
N' 

d= J2fcu* = uPi (2-63) 
i=l 

then 

• N B-
x = £ - » . • > (2.64) 

i=i a* 

\\* II2 =E(AM)2- (2-65) 
i=l 

This is the solution to equation (2.55) when it is a well-posed problem. 

If N < M and O~N > 0, then we can define an approximate solution to equation (2.55) 

as 

x* = VD~1UTd (2.66) 
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with 

N 
. x * = (2.67) 

t=i °* 

|| ||2 =E(AM)2-. • (2-68) 

This solution to equation (2.55) is its generalized solution or best approximate solution 

as we introduced in formula (2.35). Sometimes the requirement that || x | | 2 in (2.68) is 

moderate is called discrete Picard condition. 

If o-i = 0 0 when i < k < iV, the matrix D is either exactly or numerically 

singular. In this case, we introduce the truncated inverse of D with elements defined as 

±- • i>k . 
(2.69) 

0 i < k. 

With D 1 defined in this way, we can obtain the truncated SVD solution to equation 

(2.55): 

xl = VD-lTJTd, (2.70) 

wi ith 

s* = E i L i f S (2-71) 

x 
i | | 2 - E L ( A M ) 2 , (2-72) 

|| d - Ax* | | 2 H | d - UDVTVD~WTd || 2= Z l k + l 131 (2.73) 

Theoretically we can choose proper k to get a reasonable solution for which the 

misfit || d — Ax* | | 2 , is small and the the solution norm || xl || is not too large (see [24]). 

However, for many practical problems we can not expect a particular gap in the spectrum 

to separate large singular values ak from those that may be judged numerically zero (see 

[9]). To choose a proper k is completely subjective or depends on trial and error. 
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2. S V D with Regularization. Instead of truncating the small singular values of 

A as in (2.69), we can use a regularization method to truncate the small singular values 

automatically. This is to use SVD method to solve the regularized normal equation 

(2.56), that is, 

(ATA + al)x = ATd. (2.74) 

As above, assume A has the singular value decomposition, A = UDVT with [/, V 

and d in the form of (2.61), (2.62) and (2.63) respectively. Then we get a unique solution 

to (2.74), 

xa = V(D2 + aI)~2DUTd, (2.75) 

with 

xa = T£=iffi;Vi, (2.76) 

I K H2= ( f e ) 2 , (2-77) 

|| d - Axa ||2=|| d - UD(D2 + aI)'2DUTd \\2= £ ^ ^ B f . (2.78) 

Here we can see that as the regularization parameter a increases, the norm of the solution 

|| xa || decreases and the. misfit || d — Axa \\ increases. This is consistent with our 

discussion above about the regularization parameter. 

2.2.3 Iterative Methods 

As we have seen, direct methods give us an inside look at finite-dimensional ill-posed 

problems. However, for large-scale applications a striking disadvantage of direct methods 

becomes obvious: the amount of work required to compute the regularized approximation 

is of the order 0(N3) where N. is the number of unknown variables. 

Furthermore, 2-D and 3-D problems usually give rise to large structures or sparse 

matrices A and/or B. The direct methods for regularization become impractical because 
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they destroy the structure or sparsity of the matrices. Consequently, it is natural for us 

to turn to iterative methods that only require matrix-vector multiplications which can 

be implemented very efficiently and do not alter the matrices A and B. 

Here we will show how to solve linear inverse problems in the general form (2.58) 

using iterative methods. 

To find a minimum to the quadratic functional in (2.57) is to find a minimum to the 

following quadratic functional, 

<f> = <f>d + a<j>m =|| Ax ~d.\\2 +a \\ Bx | | 2 (2.79) 

where (f>d =|| Ax — d | | 2 is the misfit and <f>m =|| Bx | | 2 is the size of the model. If we 

choose a = fi-1, the optimization problem (2.79) becomes 

Minimize cj> = [uj)d + (f)m = fi \\ Ax - d ||2 + || Bx | | 2 . (2.80) 

Sometimes [i is called a Lagrange multiplier since (2.80) can be obtained from following 

optimization problem 

Minimize <j>m =|| Bx | | 2 (2.81) 

Subject to <f>d =|| Ax-d ||2= <f)*d. (2.82) 

1. Conjugate Gradient Method. Since <j>(x) in (2.79) is a strictly convex func

tional, its unique minimum point is characterized by the regularized normal equation 

Gx = b (2.83) 

where G = ATA + aBTB and b = ATd. G is usually a positive definite symmetric matrix, 

so it is natural for us to turn to the famous Conjugate Gradient Method [5]. 

In contrast to the steepest descent method, which chooses the gradient of the objective 

functional <f>(x) as its search direction in each iteration, the conjugate gradient method 
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chooses the search direction pk ^ 0 for iteration k to satisfy 

plApi = 0, i = l,...,k- 1. (2.84) 

Then the vector Xk = Xk-i + ojfcPfc is chosen to minimize <j>(x) over span{pi, ...,.pk}. 

Since pk is A-conjugate to pi,..., Pk-i, the finite termination of the conjugate gradient 

method is guaranteed. In fact, when A is a positive definite symmetric matrix, any set 

of A-conjugate vectors is linearly independent. 

Theoretically this procedure solves (2.83) in finitely many steps, but rounding errors 

lead to a loss of orthogonality among the residuals in the conjugate gradient method. As a 

consequence, the property of finite termination does not apply in practice. Furthermore, 

the loss of orthogonality may cause slow convergence in ill-conditioned problems. Pre

conditioning A may improve the converge rate, but we still have to exert a huge computing 

effort for each regularization parameter a until we find the proper one. This is the main 

reason we turn to the subspace iterative method. 

2. Subspace Iterative Method. When we use direct methods to solve the normal 

equation (2.83), we search for the solution x in RN and get its solution in one big step. 

However, when we use the conjugate gradient method to solve equation (2.83), in each 

iteration we search for an improved solution in only one direction. The subspace method 

of Oldenburg and Li [15] can be viewed as a compromise, in which we search for an 

improved solution in each iteration in a larger subspace of RN. 

Oldenburg and Li [15] give a detailed discussion of the subspace linear inverse method, 

so it suffices to review its basic ideas and steps here. 

Solving the optimization problem (2.80) 

Minimize <j>(x) = a<f>d + (j)m = a \\ Ax - d ||2 + || Bx | | 2 (2.85) 
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is equivalent to solving the regularized normal equation 

(uATA + BTB)x = (iATd. (2.86) 

Suppose we know an approximate solution x^) to (2.85) and want to compute Sx 

such that x( f c + 1) = x^ + 6x is a better approximate solution of (2.86). We can substitute 

a;(fc+1) into (2.85) and take derivatives to get 

(fiATA + BTB)6x = fiATd- (uATA + BTB)x(k\ (2.87) 

In contrast to direct methods, which solve (2.87) for 6x in the whole space RN, we 

solve for Sx in the subspace of RN spanned by some preassigned vectors { v i , v q } , which 

will be specified later. 

Let V = [ui-|u2|...|ug], (3 = ( /? i , f3 q ) T and Sx = J2i=ivif3i = VP- Then just as in 

(2.86) we can get 

VT{iiATA + BTB)V/3 = [iVTATd. (2.88) 

Here VT(/J,ATA + BTB)V is an q x q matrix and q <C N, so it is easy to solve (2.88) 

using a direct method of the sort described above. 

To choose proper basis vectors Vi is an important consideration in the subspace 

method. Usually the vectors ut are chosen as the steepest descent directions of objec

tive functionals or the steepest descent direction of specific components of the objective 

functionals [15]. 

Here are the basic steps of the subspace method. We will describe each step in detail 

in our numerical examples. 

1. Set up the initial model x^0'; 

2. Compute the function values cf>m(x^), (f>d{x^) and the spanning vectors V={vi}, 

i = 1 , q from x^k\ k > 0; 
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3. Linear search for proper n such that (f>d decreases by a user-specified factor while 

<j)m does not increase too much. 

4. Compute Sx=Y^=i fliVi by solving the linear system V/3</>=0; 

5. Update x^k+^=x^+Sx; ' 

6. If x(k+1^ satisfies the misfit requirement and (f)m(x^k^) differs very little from 

(j)m{x^), stop the iteration and print out the results; otherwise, return to 2. 

The subspace algorithm is efficient, flexible and robust [15]. It chooses the proper 

regularization parameter u automatically by controlling the misfit (f>d and searches for a 

perturbation from a subspace of moderate dimension exceeding one, so it is much more 

efficient than the conjugate gradient method. With proper transforms, it is possible for 

users to impose positivity constraints in practical problems. Therefore, we will use this 

algorithm to solve all our examples in the following chapters. 

2.3 Linearizing Nonlinear Inverse Problems 

In practical applications, many inverse problems are nonlinear. Although some nonlinear 

inverse problems can be transformed into linear inverse problems exactly, in many cases 

we have to make a linear approximation. 

Although we only use an initial linearization in a numerical example, we review this 

Newton's method for general linearization in each step since their basic ideas are common. 

Suppose x £ RM is a finite-dimensional unknown which produces data d{ under the 

vector-valued nonlinear transform F, that is, 

(2.89) 

The inverse problem is to find x, given the data d — (d\,dpi)"1 and the nonlinear 

transforms Fi, i 1 , - N . Usually this kind of inverse problem is ill-posed. 



Chapter 2. Linear Inverse Problems 32 

For problem (2.89), we usually seek a generalized solution since it may have no solution 

in the strict sense. To find a generalized solution, we have to solve the following optimal 

problem 

Minimize <f>m{x) =\\ Bx | | 2 (2.90) 

Subject to <j>d(x) =|| d-F{x) ||2= <f>*d (2.91) 

where B is an M x M matrix. 

To solve equation (2.91), we use linear approximation and iteration. If x^ is an 

approximate solution to the optimization problem (2.90)—(2.91), then for x near x^k\ 

we have 

F(x) = F(x^) + J( x — xW) + 0(\x — X ̂ | 2 ) . .(2.92) 

Here 

F(x) = (F1(x),,..,FN(x))T 

and J = (Jij) is the N x M sensitivity matrix defined by 

dF(x^) 
Jij = — g S i = 1, N,j = 1 , M . (2.93) 

OXj 

Dropping the quadratic error term in (2.92) and using the resulting approximation in 

(2.91) produces the following optimization problem: 

Minimize <f>m =\\ Bx | | 2 , ' (2.94) 

Subject to -<f>d =|| d{k) - Jx | | 2 (2.95) 

where dW = d- F(x^) + Jx^l This is a linear inverse problem and we can solve it as 

outlined above to produce an improved approximation solution x^k+1\ If we iterate the 

above process, recomputing J from (2.93) at each step, we obtain a general Newton's 

method. For simple problems, however, a single computing of J and just one linear 
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inversion may provide sufficient accuracy. It is the latter method we have used in our IP 

inversions. 

After we linearize the nonlinear inverse problems, we solve a linear inverse problem 

in each iteration. However, in some cases we can decrease the linear misfit efficiently, 

without decreasing the nonlinear misfit (2.91) at all. Therefore, when we solve linearized 

inverse problems in each iteration, it is necessary to choose the proper regularization 

parameter such that the nonlinear misfit (2.91) decreases in each iteration. 

Another difficulty in linearizing nonlinear inverse problems is the computing of the 

sensitivity matrix J . If we cannot find an analytical form for J , we have to compute 

it numerically. This process requires large scale computing, so an efficient method is 

needed. To find efficient methods of computing J is quite problematic. We refer to [11] 

for some practical advice on computing sensitivity matrices using Frechet derivatives and 

adjoint differential operators. 

Linearizing nonlinear inverse problems works well when the initial approximation is 

close to the true model of the original nonlinear problem. If the initial approximation 

is not close enough and/or the objective is not convex, it is possible for the method to 

diverge or to converge to a completely incorrect model. 



Chapter 3 

Two Practical Problems 

In this chapter we use the regularization methods of Chapter 2 to solve two kinds of 

practical inverse problems in Geophysics: the Magnetic prospecting problem and the 

Induced Polarization (IP) problem. 

3.1 Magnetic Methods 

Magnetic prospecting is one of the oldest methods of geophysical exploration. It is used 

to explore for oil, minerals, and even archaeological artifacts. Collecting magnetic field 

measurements is easy, cheap and simple compared to most geophysical techniques. On 

the other hand, a precise interpretation of magnetic field data is very difficult. Therefore, 

it is important to find efficient algorithms to invert magnetic data. 

3.1.1 Physical Principles 

Before studying the magnetic effects associated with subsurface materials in the Earth we 

review the elementary physical concepts that are fundamental to magnetic prospecting. 

Geomagnetic field. If a steel needle, not previously magnetized, could be hung at 

its center by a thread so that it were free to orient itself in any direction in space, at 

most points on the earth's surface it would assume a direction neither horizontal nor 

in line with the geographical meridian. Its orientation would rather be the direction of 

the Earth's total magnetic field He at this point. The magnitude of this field, He, the 

inclination of the needle from the horizontal, / , and the angle it makes with geographic 

34 
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north, D, completely define the magnetic field (figure 3.4). Here the units of HE are 

Geographic North 

Magnetic North 

East 

z \ / _ '___!/' 
z I" 

Figure 3.4: Geomagnetic field. 

ampere/meter and the magnitude of HoHe is of the order 0.5 x 10 - 4 tesla, where JIQ = 

47rl0 - 7 weber•/'ampere-meter is the permeability of free space. 

Susceptibility. In the atoms or molecules of any magnetic material small loopcur-

rents (including rotating charges) occur, all having themselves directions but a random 

orientation. Each loopcurrent corresponds to a magnetic dipole. When the magnetic 

material is placed in a magnetic field, these magnetic dipoles tend to line up in the di

rection, of the field. The magnetization M (also called "Polarization") is defined as the 

magnetic moment per unit volume of magnetized material at a point. The magnitude of 

magnetization depends on the strength of the external field through the relation 

M = KH (3.96) 
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where K, the proportionality constant, is called the susceptibility. Since M and H are both 

measured in ampere/meter, susceptibility is dimensionless in the SI system. Susceptibility 

is the fundamental parameter in magnetic prospecting, since the magnetic response of 

rocks and minerals is determined by the amount of magnetic material in them and the 

latter have K, values much larger than the rocks and minerals themselves. 

For a vacuum, K = 0. Diamagnetic substances are weakly magnetic, with negative 

susceptibilities. Paramagnetic materials are weakly magnetic, characterized by small 

positive susceptibilities. Ferromagnetic materials have positive and very high suscepti

bilities, but rarely occur naturally in the Earth's crust. Ferrimagnetic materials have 

positive and high susceptibilities. Ferrimagnetic materials contained in rocks are the 

most important in magnetic prospecting. 

Magnetic anomaly. The magnetic anomaly is the difference between observed and 

background earth's magnetic field values. In magnetic prospecting magnetic anomalies 

are usually caused by the magnetization of ferrimagnetic material under the earth's sur

face, so they are our measured data for the magnetic inverse problem. 

Magnetic flux density. If a current is passed through a coil consisting of several 

turns of wire, a magnetic flux flows through and around the coil annulus which arises 

from a magnetizing force H. The magnitude of H is proportional to the number of turns 

in the coil and the strength of the current, so that H is expressed in ampere/meter. The 

density of the magnetic flux, measured over an area perpendicular to the direction of 

flow, is known as the magnetic flux density B. B is proportional to H, i.e. 

B = fxH, (3.97) 

where the constant of proportionality fi 

/i = / i o ( l + « ) , (3.98) 
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is known as the magnetic permeability. The units of permeability are weber/'ampere

meter and in free space a — fi0 — Air x 10 - 7 weber/ampre-meter. The units of B are tesla 

(weber/meter2) and sometime B is also used to express magnetic field. Although we 
—* 

mainly use H to represent the strength of magnetic field, it is easy to transform between 

H and B using equation (3.97) once [i is known. 

3.1.2 Mathematical Relations 

The strength of magnetic field F at the origin caused by a magnetic dipole M at point 

P with position r satisfies [10], [20] 

1 M x r 1 1 
m = VX^lrT) = ^V[M'V{?\)]- ' (3-"} 

Generally, a volume of magnetic material can be considered as an assortment of 

magnetic dipoles that results from the magnetic moments of individual atoms and dipoles. 

They are aligned by induction in the presence of a magnetizing field. In any case, we 

may regard the body as a continuous distribution of dipoles resulting in a magnetization 

M, of magnitude M. The strength of the field caused by the whole body measured at a 

point f0 outside the body is 

^ = h lvv[^ • v iw^\)]dv' (3-100) 

where f 0 = (a;0,y0,^o) and \r - f0\ = {(x - x0)2 + (y - y0)2 + (z - z0)2}1/2. 

If M is a constant vector with direction a = (/, m, n) and magnitude M then the 

operator 

M - V = M — = M ( / — + m — + n—). (3.101) 
da ox ay dz 

Thus, we have: 
d r I dV 

'v \ \r0 — r 

and we can get the projection of F in any direction 
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3.1.3 Forward Problem 

The data for magnetic prospecting are the magnetic field anomalies caused by under

ground bodies with high magnetic susceptibility. Magnetic anomalies caused by intru

sions, flows, or iron-rich sedimentary horizons are common features in regions favorable 

for mineral exploration, and there is frequently a difference between the magnetic mineral 

content of such features and that of the host rocks. Such features may often be simulated 

by a two dimensional dipping dike. 

Here we set up a 2-dimensional model to produce magnetic data. We assume a dike 

with dip £ and strike /?; see figure 3.5. If we take the y-axis along the strike direction, the 

z-axis downward and the x-axis perpendicular to the strike direction, then the magnetic 

anomalies are independent of y. For this two-dimensional model we can assume the 

susceptibility is K = K(X,Z) and the magnetic polarization is in the direction of the 

Earth's field He, that is, M = n(x,z)He. Then according to (3.100) the corresponding 

magnetic field anomaly d(f0) satisfies 

fa) = (3.103) 

Here r 0 = (xo,0,zo)T, f= (x,y,z)T and \r - r0\ = [(x - x0)2 + y2 + (z - 2 r 0 ) 2 ] 1 / 2 - Since 

He is a constant vector, this is an integral equation of first kind when data, d{fo) are 

known. When we integrate the right-hand side with respect to y from — oo to oo we 

reduce (3.103) to a completely 2D problem. 

To get the data about our two-dimensional model, we partition the area of interest 

into a series of rectangles. We assume that the susceptibility in each rectangle is constant, 

and use (3.102) to compute the magnetic field caused by each rectangle. 

For the geometry illustrated in figure 3.5, we have the following relations [20]: 

r\ = d2 + (x + c o t £ ) 2 , 
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Figure 3.5: Rectangle geometry 

r2 = D2 + (x + £>co t£ ) 2 , 

r2 = d2 + (x + b + d c o t £ ) 2 , 

r \ = D2 + (x + b + £ > c o t £ ) 2 . 

If we assume the angles between x-axis and r; are <̂ ,-, then 

fa = tan 1{d/(x + dcot £)}, (3.104) 

and we can compute fa, fa and <̂ 4 similarly. 

Usually we compute the projections of the magnetic anomaly field in ^-direction 

or/and the Earth's magnetic field direction. Assuming that £=90° , we get the projections 

of F in HE direction and z—direction from (3.103): 

K\HP FE = -4-^{sin(27) sin f3 x ln (r 2 r 3 / r 4 r 1 ) 

+{fa - fa - fa + ^4)(cos2 Ism2 /3 - sin2 /)}, 

F, 
K\HE 

2TT 
•{cos/sin/? x l n ( r 2 r 3 / r 4 r 1 ) — ( ^ ^3 + <^t) sin/}. 

(3.105) 

(3.106) 
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At each observation point for the magnetic problem, the measured anomaly is a vector 

whose two components are the sums of Fe and Fz over all rectangles. 

3.1.4 Inverse Problem 

To solve the magnetic inverse problem, we must solve an integral equation of the first 

kind. In contrast to the standard integral equation of the first kind, we only know d(r0) 

for a constant zo, that is, along a line, instead of knowing d(fo) for all (XQ,0,ZO) in the 

domain of definition. In fact, in practical experiments, we only measure the magnetic 

anomaly on the surface. For two-dimensional problems we just measure the anomaly 

along a line on the surface. From theoretical analysis, we know that the magnetic field 

satisfies Laplace's equation above the surface, so the values of d(f0) along lines with 

different z0 are not independent. Therefore, it is not helpful to measure d(f0) along 

different lines with different ZQ above the surface. That is, we are required to solve for 

K(X, Z) in the system of equations 

P<^-v(w^h^\)dV}' (3'107) 

where d(xi, ZQ) are the data which are measured along a line on the surface, (x;, zo), i = 

1,...,W. 

To find a numerical solution to equation (3.107), we have to discretize (3.10.7) first. 

We divide the area of interest into a series of M rectangles (see figure 3.6) and assume 

the susceptibility K(X,Z) is constant, say in rectangle i,i = 1,...,M. 

Choosing basis functions 

1, if (x,z) is in the rectangle i, 

d(xi, z0) = -^-V 
47T 

<f>i(x,z) = 

we get 

(3.108) 
0, otherwise, 

M 

K(X, Z) ~E Ki<f)i(x, z). (3.109) 
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M-l M 

z 

Figure 3.6: Base function model. 

Substituting K(X,Z) from (3.109) into (3.107) and using formulas (3.105) and/or 

(3.106), we arrive at the finite-dimensional linear problem 

An = d (3.110) 

where A is an N x M matrix, d = (d\,d^)1- = (d(x1, z0),d(xpj, zo))T are the 

observed data and K = ( / C i ,KM) T is the model to be determined. This is the discretized 

ill-posed inverse problem to be solved. 

To use Tikhonov's regularization method for the integral equation (3.107),.we intro

duce the following regularization operator 

|| L(K — /Co) | | 2 = OLS I WS(K — Kf))2dxdz + ax I wx( )2dxdz 
Jarea Jarea UX 

+az j wz(d{K~Ko)Ydxdz. (3.111) 
Jarea OZ 
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Here KQ is an initial guess about the model, wx(x,z) and wz(x,z) are the weighting 

functions, and a s , ctx and are chosen to adjust the final computed model. If we choose 

ctx = 0 and az = 0, we call the final output "the smallest model"; this is similar to 

choosing L = I. If we choose as = 0, we call the final output "the flattest model"; this 

is similar to choosing L as a differential operator with a nontrivial null space. Choosing 

the right parameters as,-ax and az depends on experience and prior knowledge about 

the true model to be determined. 

For magnetic inverse problems, one important step is to choose proper weighting 

functions, ws(x, z), wx(x, z) and wz(x, z). It is obvious that the strength of the magnetic 

field on the surface depends on the depth of the magnetic body underground. Let us find 

the functional form of this relationship. For two-dimensional problems, if the rectangles 

are sufficiently small, we can consider each cell as a linear source which consists of dipoles 

along an infinitely long line. For a dipole with constant moment M = (a,/?,7), the field 

at the origin is is given by (3.100): 

F = ^ V ( M • V( l /r ) ) = i - V ( o £ + ^ - + 7^). (3.112) 

For a linear source, the total field at the origin is 

Ft = J Fdy 

f°° / 1 X n V Z NN , 

_ 1 ^7/20:3: + 27Z 

~ 4^ ^ x2 + z2 

and its projection in the direction n = (QO,/?O,7O) of any unit vector is 

Fn =n-Ft 

27 ' 2z(ax -j- 72) 

x2 + z2 ~ (x2 + z2)2 _ 

O(-rr) if z —* 00. 

—cto 
Air 

2a 2x(ax + 72) 

x2 + z2 (x2 + z2)2 + 4 ^ 7 ° 
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So, we choose 1/z2 for each of the weighting functions ws(x,z), wx(x,z) and wz(x,z) 

to compensate for the decay of the magnetic field with depth. 

After choosing the weighting functions, we can substitute n(x,z) from (3.109) into 

the regularization operator (3.111) and get, after discretization, 

^(«) = (« - Kof'WTW.+WZW* + WJWZ){K - «„) (3.113) 

or in general form, 

fa(K) = (K- K0)tW?WK{K - K0) =|| Wk(K - K0) f . (3.114) 

Combining equations (3.110) and (3.114), the ill-posed magnetic inverse problem is 

transformed to the following well-posed optimization problem: 

Minimize <̂ K = || WK(K - « 0 ) || 2 (3.115) 

Subject to fa =|| Wd(GK - dobs) || 2= </>*, (3.116) 

where (j)d is our misfit criterion, Wd is an N x N data weighting matrix and <f)d is the 

target misfit. Here we choose <bd according to the Morozov's discrepancy principle [14], 

that is, <bd = E( | | Wd(d — d°hs) ||2). If the observed data di, i = 1 , N have independent 

normal distributions N(0,o~i), then YA=I{~~J'—)2 has a \ 2 distribution with expected 

value N. So, we may choose (f>*d = N here when Wd is chosen as a diagonal matrix with 

diagonal elements 1/cr;, i = 1 , N . 

In practical computing we treat the constrained optimization problem (3.115), (3.116) 

by solving the following unconstrained problem: 

Minimize <f>(K) = </>k(K) + ^~x{4>d{d) - 4>*d). (3.117) 

Here \i is the Lagrange multiplier. Differentiating with respect to the unknown vector K 

produces the following regularized normal equation 

(ATWjWdA + UW/Wk)K = b (3.118) 
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where b = fj.WK

TWKK0 + ATWjWdd. 

Equation (3.118) is a standard regularized normal equation and we can use the sub-

space method (SLIM) described in Chapter 2 to solve it. 

3.1.5 A Numerical Example 

Here we analyze a simple two dimensional magnetic problem. The forward problem is to 

produce the data using a known model. The inverse problem is to input the data from the 

forward problem and use them to reconstruct the model. For this magnetic problem, the 

forward problem is to produce the data from a known magnetic susceptibility distribution 

function, K = n(x,y,z). The data here are measurements of the anomaly field along a 

line 2 meters above the surface. We use only the projection of the anomaly field onto the 

main field (geomagnetic field) direction as the data. 

In this example we consider a rectangular area under ground. We set up a Cartesian 

coordinate system with y in the horizontal strike direction, z in downward direction and 

a corresponding x axis. Then the magnetic anomaly field is symmetric in y direction and 

we get a 2D problem. 

Here we consider a 240 meter by 56 meter rectangle below the surface (0 < x < 240, 

0 < z < 56). We partition the rectangle into 280 cells with equal sizes: 12 meters in 

the x direction and 4 meters in the z direction. After adding bigger cells around the 

boundary of the rectangle, we get 560 cells all together. The magnetic susceptibility 

distribution we postulate is illustrated in Figure 3.9: it involves a high susceptibility part 

(K — 0.5) inside the background part (K = 0.001). Assuming the magnetic susceptibility 

is constant in each cell, we can compute the magnetic anomaly from each cell using the 

formula (3.105). The total magnetic anomaly can be produced by taking the vector sum 

of the magnetic anomalies of all the cells. In this example we compute the magnetic 
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anomaly at 200 equally spaced points along a line from x=0 to x=240. 

0.12 I , , r -

X 

Figure 3.7: Exact magnetic data from the forward problem. 

0 .12 

X 

Figure 3.8: Noisy data simulating magnetic observations.. 

When we produce the data, we can calculate the coefficient matrix A for the inverse 

problem at the same time. In fact, from the formula (3.105) about the rectangular cell 
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we can produce each row of the matrix A before we calculate the data at each point. 

After we compute the data (figure 3.7) and the coefficient matrix A, we add normally 

distributed noise to the data, i.e. 

di=di + N(0,o'i),i = l...N' (3.119) 

where cr; = a equals 1% of the maximum of absolute values of the data. The contaminated 

data is our observed data d and the elements of the diagonal matrix Wd are the reciprocals 

of the standard deviations (l/cr=103 here). 

In the regularization term, 

|| L(K — Ko) \\2— a s / WS(K — Ko)2dxdz + a x wx( )2dxdz 
Jarea Jarea OX 

+az f w z ( ^ K K°^)2dxdz, 
J area OZ 

we choose no = 0, ws — wx = wz = 1/z2, as = 16, ax = 26 and az — 70, and produce 

the corresponding matrices, Ĥ An̂ 7 and WZW with the relation 

|| LK | | 2 « (j)K = KTW^WKK = KTWjWSK + KTW?WXK + KTWjWZK. (3120) 

With coefficient matrix A, contaminated data and regularization matrices we can 

set up the optimization problem like (3.117), and use SLIM (Subspace Linear Inversion 

Method) [15] to solve its regularized normal equation. 

Since we mainly consider ferrimagnetic materials in magnetic prospecting, we require 

the reconstructed model to be nonnegative in the computing. The number of subspace 

vectors in this example is 5 (one from <f>d, one from </>K and three from the the three 

parts of <j>K) and the SLIM converges with about 80 steps. We plot the true model and 

numerically reconstructed model in figure (3.9). 

Our inversion gives us the correct position and shape of the magnetic body, but the 

susceptibility of our calculated model is a little lower than that of the true model. The 
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Reconstructed Magnetic Susceptibility 

Figure 3.9: Magnetic Mode). 
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Figure 3.10: Predicted data from the output model. 

250 

Figure 3.11: Difference between observed data and predicted data. 
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reason for this is that the solution of the magnetic inverse problem is not unique and 

the calculated model is smoothed by the regularization operator. So, even though we fit 

the data very well (Figures 3.7, 3.8, 3.10), our calculated model is still a little different 

from the true model (figure 3.9). Here we also notice that the difference between the 

observed data and the predicted data is small at each point and is independent of the 

observed points (figure 3.11), so it is reasonable to consider them as identical independent 

distribution random variables. Furthermore, our fitted data from the reconstructed model 

approximates the exact data better than our observed data with noise does (figure 3.7, 

3.8, 3.11). 
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3.2 Induced Polarization 

Induced polarization (IP) is a relatively new technique in geophysics, and has been em

ployed mainly in base-metal exploration and to a minor extent in ground water search. 

As we have done for the magnetic problem, we treat only two dimensional situations here 

using a similar Cartesian coordinate system. 

3.2.1 Physical Principles 

A typical IP experiment involves putting a current into the ground and measuring the 

resulting potential some distance from the source. The simplest experimental equipment 

is a standard four-electrode DC (Direct Current) resistivity spread (figure 3.12). When 

the input current is suddenly interrupted the voltage across the potential electrodes 

generally does not drop to zero instantaneously, but decays rather slowly, after an initial 

large decrease from the original steady state value. This decay time is of the order of 

seconds or even minutes. If the current is switched on again, the potential, after a sudden 

initial increase, builds up over a similar time interval to the original DC amplitude (figure 

3.13). 

In one type of IP detector the decay voltage is measured as a function of time in 

various ways; this method is known time-domain IP. Since the build-up time is also 

finite, it is clear that the apparent resistivity (actually a complex impedance) must vary 

with the frequency, decreasing as the latter increases. Thus the measurement of apparent 

resistivity, pa at two or more A C frequencies, generally below 10 Hz, constitutes another 

method of detection! This is known as frequency-domain IP. Measurements of IP may be 

made either in the time or the frequency domain. The former are known as pulse transient 

measurements, the latter as frequency variations. Several units of measurement which 

have been used in the two methods are defined below. 
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X 

Figure 3.12: Four-electrode DC model. 

4> 

a 

^ ^ ^ ^ 1 

Figure 3.13: IP decay voltage. 

Millivolts per volt (IP percent). The simplest way to measure IP effects with time 

domain equipment is to compare the residual voltage ip(t) existing at a time t after the 

current is cut off with the final voltage <pv during the current flow interval. Since ip(t) is 

much smaller than (pv, the ratio ip(t)/<pv is expressed as millivolts/volts, or as a percent, 

lOOf (t)/if v , where both are in millivolts. The time interval t may vary between 0.1 and 

10 seconds. The difficulty with this method is that.it is not possible to measure potential 

at the instant of cut-off because of large transients caused by breaking the current circuit. 

On the other hand ip(t) must be measured before the residual has decayed to noise level. 

http://that.it
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Decay-time integral. Commercial IP sets generally measure potential integrated over 

a definite time interval of transient decay. If the integration time is short and if the decay 

curve is sampled at several points, the values of the integral are effectively measurements 

of the potential existing at different times, i.e., <p(ti), ̂ 2 ) , This is an extension 

of the measurement above from which one also obtains the decay curve shape. Combining 

this method with the following definition of the chargeability we can calculate the integral 

interval by interval. 

Chargeability. This is defined as 

1 / ' * 2 

M = — / (f(t)dt (3.121) 

and is the most commonly used quantity in time domain IP measurement. When <p(t) 

and <fv have the same units, the chargeability M has the dimensions of time, and is 

usually reported in milliseconds. 

Frequency effect. In frequency domain IP, one measures the apparent resistivity at 

two or more frequencies. The frequency effect is usually defined as 

Pac 

where pdc, pac are apparent resistivities measured at direct current and very high fre

quency. The per cent frequency effect is given by PFE = 100/e. 

In theory, since both IP methods measure the same phenomenon, their results ought 

to be the same; practically, however, the conversion of time domain to frequency domain 

and vice versa is quite difficult. 

Siegel [21] defines the chargeability as 

M= {\im ip(t)-lim<p(t)}/lim (p(t) (3.123) 
£ — • 0 0 t—tO t—>CO 

By Laplace transform theory, it can be shown that 

lim <p(t) — J pdc a nd l i m ^ i ) = Jpoo? (3.124) 
t—*oo t—1-0 



Chapter 3. Two Practical Problems 53 

where p^ is the apparent resistivity at very high frequency and J is the current density. 

Consequently, assuming that pac = p^, we can write for the chargeability 

M Pdc ~ Pco , Pac -. 1 /e , 
= = 1 = 1 - -i . , = 7 — T ~ ^ e (3.125) 

/Orfc Pdc 1 + /e 1 + fe 

when / e C l . 

In practical situations this simple relation is not valid, partly because an exact the

oretical analysis of the IP effect is not available (that is, the basic premises of the two 

systems of measurement are only approximately valid), and partly because the measure

ments are not made at DC and V H F (Very High Frequency) in either IP system. This 

complicates the conclusion from one result to the other. 

3.2.2 Mathematical Relationship 

According to the macroscopic representation of the physical property governing the IP 

response that was put forth by Siegel [21], we can use a macroscopic physical parameter 

called chargeability (a little different from that defined in (3.121)) to represent IP 

response. Here our earth model is described by two. quantities: conductivity o~(x,y,z) 

and chargeability rj(x,y,z). Both are positive, but while conductivity varies over many 

orders of magnitude, chargeability is confined to the region [0,1). 

A typical IP experiment involves putting a current / into the ground at the source 

position (xs, ys, zs) and measuring the resulting potential at various points some distance 

from the source. In a time domain system the current has a duty cycle which alternates 

the direction of the current and has off-times between the current pulses at which the IP 

voltages are measured. Let tpa denote the potential that is measured in the absence of 

chargeability effects. This is the "instantaneous" potential measured when the current is 

turned on (see figure 3.14). In mathematical terms 

<fia=Fdc[a], (3.126) 
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t 

Figure 3.14: DC current for IP. 

where the forward mapping operator Fdc is defined by the DC equation and its boundary 

conditions: , 

- V • ( a ( x ^ ) V ^ ) =IS{x-xa)6{y-y8)6(z-z8), (3.127) 

£¥v(x,y,0) =0, (3.128) 

Y\mRa^coLpa(x,y,z) =0 ' (3.129) 

where Rs = \J{x- xs)2 + (y - ys)2 + (z - zs)2. 

If the ground is chargeable then the potential (pv, recorded well after the current is 

applied, will differ from tpa. According to Siegel's formulation, the effect of the charge-

ability of the ground is modelled by using the DC resistivity forward mapping Fdc but 

with the conductivity in (3.127) replaced by <7=<r(l — 77). That is, 

V v = Fdc[a(l - V)} (3.130) 

with operator Fdc being defined as above (3.127)—(3.129). 
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3.2.3 The Forward Problem 

The basic IP datum, which we refer to as apparent chargeability, is defined by (see 

figure 3.14) 

r ] a : = ^ = (3.131) 

or 

Equation (3.132) shows that the apparent chargeability can be computed by carrying out 

two DC resistivity forward modelling steps with the conductivities a and cr(l — rj). Here 

the equation (3.132) also defines the forward mapping for the IP data. 

From the definition of chargeability (3.132), we see that here IP data depend on 

conductivity a and chargeability 77 through differential operator Fdc. To produce the 

data, apparent chargeability r/a, we have to compute ipa and <pv from known distributions 

of conductivity cr(x,z) and chargeability r/(x,z). This requires solving the differential 

equation (3.127) with its boundary conditions two times. This is a forward Direct Current 

(DC) problem, an important subject in Geophysics. Although we refer to [12] for details 

regarding forward DC problems, it is possible to summarize the basic steps here. 

1. Although a two-dimensional conductivity structure has been assumed in this work, 

the potential field that results from injecting current into the ground at a single 

point is still three-dimensional. The effective dimensionality of the problem can 

be reduced by considering the Fourier Cosine transform of the potential. This is 

possible since the potential can be thought as an even function of y. The transform 

is given by 
roo 

tp(x,ky,z) = <p(x,y,z)cos(kyy)dy (3.133) 
Jo 

where ky is a spatial wavenumber in the y direction. The transformed potential is 
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then found to satisfy the boundary value problem 

- -^Hx, z)^-\ + k2

ya(x, z)<p - -T^HX, z)^} = ^6{x - xs)S(z - zs) (3.134) 

—<p(x,ky,0) = 0 (3.135) 

lim (p{x, ky, z) = 0 (3.136) 

where rs = \J{x — xs)2 + (z — zs)2. 

2. Before using standard numerical methods (finite difference, finite elements and so 

on) to solve equation (3.134), we remove its singularity in the right-hand side by 

means of asymptotic approximation. 

3. When discretizing the differential equation (3.134), we need to produce a proper 

approximation for the boundary condition (3.136) based on wide grids around the 

boundary. 

4. After solving equation (3.134) with its boundary conditions for different wavenum-

bers ky, we have to take the inverse Fourier Transform 

2 f°° 
<p(x,y,z) = — <̂ (x, ky, z) cos(kyy)dky (3.137) 

7T JO 

to recover the potential (p(x,z) in the spatial domain. 

Theoretically our IP data are not only the apparent chargeability r}a but also the 

potentials ipa and ipn, but in practical field work it is difficult to measure potentials at 

the instant the current is turned on or cut off. Instead the measured data are only the 

final potential <pv and the remaining potentials (ipv — c/v) after the current is switched 
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off. We usually approximate the potential (<pv — ipa) at the instant of cut-off with the 

remaining potential measured as soon as possible after the cut-off. Then the apparent 

chargeability na can be computed using formula (3.131). 

3.2.4 The Inverse Problem 

Linearization 

The IP inverse problem is nonlinear and there are several ways to solve it [16]. One is to 

linearize the data equation (3.131) when the chargeability n <C 1. 

Let the earth model be partitioned into M cells and let rji and cr; denote the charge-

ability and electrical conductivity of the ith cell. Linearizing the operator about the 

conductivity model a yields 

(3.138) 

(3.139) 

Substituting into equation (3.131) yields 

"a = (3.140) 

A further approximation yields 

Thus the ith datum is 
M 

Vai = ^2 JijVji 
= 1,...,N, (3.142) 

where 

<~Pi da3 

(3.143) 

is the ijth element of the sensitivity matrix. 
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So, instead of solving the nonlinear inverse problem (3.132) we can solve the linearized 

inverse problem 

Jn = na. (3.144) 

Comput ing The Sensitivity Matr ix 

To linearize the nonlinear inverse problem (3.132), we have to compute the sensitivity 

matrix J for equation (3.144). From the measured DC potentials a DC inverse problem 

is first solved to compute a background a and a sensitivity matrix (difi/daj). The DC 

inverse problem is nonlinear and we refer [12] for details based on the subspace iteration 

method. Here we briefly review the methods of computing the sensitivity matrix since it 

is useful in general linearization. 

The most straightforward way to calculate the differential sensitivities is to approxi

mate them using a one-side finite difference formula, but this method is inefficient since 

each sensitivity requires solving a completely new boundary-value problem. 

Efficient methods of computing the sensitivity matrix use either sensitivity equations 

or Adjoint Equations. 

1. Sensitivity Equations. For the steady state diffusion problem 

•Lip = - V • (<rV<p) + q(x)ip = f(x) in D ' (3.145) 

with boundary condition 

a(x)<p + 8(x)^ = 0 on <9£> (3.146) 
On 

we can use the sensitivity equation approach of Rodi [17]. 

Taking o~(x) to be the model, and assuming the parameterization 

M 

<r(x) = X>̂ (£) (3.147) 
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where 

1 if x in cell i 

0 otherwise 

Substituting the a from (3.147) into the equation (3.145) we get 

M 
W = -V • (J2(TiipiVip) + q(x)<p = f(x) in D (3.148) 

i=l 

Differentiating with respect to cr,-, and writing 

« W = (3-149) 
CCT,-

yields the sensitivity problem 

L<pi = - V • (aVifi) + q(x)ipi = V • (V>,-(x)W) in D (3.150) 

a(x)^ + ^ ( x ) ^ = 0 on dD - (3.151) 
an 

To compute the sensitivities for model cr(x), the forward problem (3.145), (3.146) 

is first solved to obtain <p(x) at all points x in D. For each parameter the 

corresponding sensitivity problem must then be solved to obtain <pi(x) which is then 
—* —* 

evaluated at each of the observation locations. Since the source terms V - (tpi(x)V<j>) 

are different for each i , a total of M + 1 forward problems must be solved to obtain 

all of the sensitivities. 

Since the M sensitivity problems and the original forward problem differ only in 

terms of their right hand sides, they can all be solved using the same numerical 

forward algorithm. Since the sensitivity problems and the forward problem are 

identical except for their respective source terms, their numerical solution can be 

done very efficiently if a direct solver is used in the forward code. 
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2. Adjoint Equations. We can also calculate the sensitivities based on the adjoint 

Green's function. This approach has been used by Smith and Vozoff [19]. 

For the sensitivity problem (3.150)—(3.151) considered in the sensitivity equation 

approach, we consider the problem 

L*G* = - V • (a(x)VG*) + q{x)G* = 6(x - £j) in D (3.152) 

BC* 

a(x)G* + = 0 on dD (3.153) 

where L* is an adjoint operator and G*(x,Xj) is an adjoint Green's function. 

Then we can get the sensitivity for an observation location from 

<pk(xj) = / G * V • i^kV<f>)dV. (3.154) 
J D 

For a 2D problem with M cells and N observation data we must solve M + 1 forward 

problems in the sensitivity equation approach and AT + 1 forward problems in the adjoint 

equation approach. So we can use the sensitivity equation approach for overdetermined 

problems (M <C N) and the adjoint equation approach for underdetermined problems 

( M >̂ N). The IP problem here is underdetermined so we use the adjoint equation 

approach. 

Solving The IP Inverse Problem 

After we have linearized the discretized IP inverse problem and obtained 

Jn = d, (3.155) 

we can use standard regularization methods to solve it. Here we summarize the basic 

steps in solving IP inverse Problems. 
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1. Solve DC inverse problems with a subspace iteration method to get that background 

conductivity cr. ' 

2. Use linearization to produce linear equation system (3.155). 

3. Introduce the regularization operator || Lr\ || as in equation (3.111) with constant 

weighting functions. 

4. Use SLIM to solve the regularized normal equation. 

3.2.5 A Numerical Example 

In this example, the forward problem is to produce the IP data and the inverse problem is 

to recover the IP model from the produced data. We work on the same domain introduced 

in the magnetic computing example since we will later be solving both problems together. 

The chargeability distribution of the true model is illustrated in Figure 3.15: it consists 

of high chargeability part (77=0.15) and background chargeability part (77=0.001). The 

background conductivity is chosen as constant (<T=0.6 every cell). 

Here we use a Pole-Pole configuration (similar to the four-electrode DC configuration 

in figure 3.12, but with one current electrode and one potential electrode at "infinity") 

to introduce the current / and to measure the potential ip. We introduce electric current 

at 10 points sequentially. For each current source point, we measure the potential at 11 

other points. So, we have 110 measurements all together. 

A little different from the true experimental IP inverse problem, in this example we 

use linearization to produce the sensitivity matrix J first, then produce the synthetic 

data d with the formula 

d = Jn, (3.156) 

where 77 is the true model to be reconstructed. To simulate the measured data with 
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errors, we add normally distributed noises to the data, i.e., 

df" = di + ei, i = 1...110 (3.157) 

where et- has A^O, <T,-) distribution. Here <r,- = cr is 0.5% of the maximum of the absolute 

values of the exact 110 data. 

After we get the data, we solve the discrete inverse problem according to the above 

steps and use the introduced regularization method to invert the data. 

Here the regularization operator is 

II Hv - Vo) | | 2 = <*s / ws(v - nQ)2dxdz 
J area 

+axf Wx(^Lp^rdXdz + az f M ^ ^ f d x d z , 
Jarea OX Jarea OZ 

where r?o = 0, ws = wx = wz = 1, as = 1, ax = 5 and az — 10, and its discretization 

produces the corresponding matrix 

II Ln Wvrf | | 2 . (3.158) 

According to regularization method, we solve optimization problem 

Minimize <j> =|| Wvrj ||2 +u || Wd(Jr] - dobs) | | 2 , (3.159) 

where Wd is a diagonal matrix and its elements are 1/cr;. 

This is a standard optimization problem from linear inverse theory and we can solve 

it using SLIM. 

We plot the true model and the reconstructed model in figure (3.15) 

From the calculated output, we can note that the reconstructed model is at the correct 

position corresponding to the true model and the chargeability value of the calculated 

model is consistent with the true model (figure 3.15). However, the inverse method 

can not reveal the fact that there is no chargeability in the interior of the true model. 
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This is due to the smoothing effect of the regularization operator which we use to solve 

the ill-posed IP inverse problem. However, it is possible to form IP structures with no 

chargeability in the interior, so it is important to develop inversion methods which can 

reveal this kind of IP model structure. This is what we will do in the next chapter.. 
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Figure 3.15: IP Model. 



Chapter 4 

Combined Inversion 

To get reasonable approximate solutions to ill-posed inverse problems, we should use all 

the available information. This leads us to consider the combined inversion of geophysical 

data based on the correlation between the different physical parameters. 

4.1 Known Approaches 

To overcome the nonuniqueness inherent in geophysical inverse problems, we can use 

the regularization method. However, this mathematical technique does not provide the 

additional information needed to uniquely determine the true model. Instead, it simply 

chooses the approximate solution with the minimum (semi-)norm which is determined 

by its regularization operator. In this section we summarize the possible remedies for 

this problem. 

First of all, to get a better approximation to the true model one natural approach is to 

collect more experimental data. Actually we use this approach for IP inverse problems. 

In IP field work the current electrode is moved to different points sequentially and the 

corresponding potentials are measured after the current electrode has been moved to each 

point. One obvious disadvantage of this approach is that we can not get as many data 

as we need, especially for practical problems. 

The second approach is to reduce the set of possible reconstructed models. In this 

way one tries to overcome the nonuniqueness of ill-posed problems by restricting possible 

solutions to a smaller set based on reliable information regarding the true models. We use 

65 
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this approach for both of our practical inverse problems. In solving both the magnetic 

problem and the IP problem, we require the inverted models to be nonnegative. 

The third approach is to choose a proper regularization operator based on available 

information about the true models. For example, in solving magnetic inverse problems we 

choose weighting functions to compensate for the decay effects of the magnetic field. For 

general geophysical inverse problems, we should choose a regularization operator such 

that the reconstructed model is consistent with possible geological structures, mining 

recordings and so on. 

Although these approaches are useful in solving inverse problems, they are based on 

one kind of observed data alone. If we try to combine the observed data of different 

kinds, we come to the correlation approach. 

4.2 Correlation Between Parameters 

To the above approaches for solving inverse problems, we would like to add a new 

approach—using the correlation between different model parameters. 

In daily life, if we like to study a new material, it is natural for us to investigate its 

different characteristics. For example, to distinguish a kind of metal, we consider its color, 

density, conductivity and other characteristics at the same time. In the mineral industry 

and practical geophysical prospecting, it is common to use several kinds of prospecting 

methods in the same area. Therefore, observations of several different types are usually 

available. 

Although different prospecting methods usually investigate different parameters of 

the ores, these parameters are often correlated. One good example regarding this kind of 

correlation is the relation between seismic wave velocity and density in an underground 

area. We can use gravity measurements to investigate the density of an underground 
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area. At the same time, we can use seismic experiments to study the velocity of waves 

propagating through the region. It is known that the density and the wave velocity in a 

region are positively correlated. 

Here we would like to study the correlation between the chargeability n and the sus

ceptibility K of an underground region. From geophysical measurements [20], we know the 

magnetic susceptibility of an ore depends only upon the amount of ferrimagnetic minerals 

present, mainly magnetite, sometimes ilmenite or pyrrhotite. Chalcopyrite and pyrite are 

typical of many sulphide minerals which are basically nonmagnetic. At the same time, 

the chargeabilities of minerals increase with the increase of the sulphide concentration. 

Chalcopyrite and pyrite are typical sulphide minerals with high chargeabilities. 

Here let us list the chargeability and susceptibility of some minerals from [20] in Table 

4.2. The unit of chargeability 77. here is msec since it is computed using formula (3.121). 

name chargeability n susceptibility /cx 1000 
Pyrite 13.4 1.5 
Graphite 11.2 0.1 
Chalcopyrite 9.4 0.4 
Magnetite 2.2 6000 
Hematite 0.0 6.5 

Table 4.1: Chargeability and susceptibility of some minerals. 

The chargeability and susceptibility data for various minerals and rocks in the tables 

of [20] suggest that these two quantities are negatively, correlated. 

This correlation can also be shown by a mineral example. McMillan [13] shows in the 

forming process of porphyry deposits that high chargeability material like pyrite gives 

way outward to high susceptibility metal like magnetite. This characteristic is simulated 

in our numerical example where there is high chargeability material is at the outside and 

material with high susceptibility inside. 

We may not know the exact correlation between the susceptibility and chargeability 
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since it may depend on the sampling site and other unknown factors, but even an ap

proximate effort to account for this correlation helps considerably to invert the magnetic 

and IP data. 

4.3 Combined Inversion 

Although we can invert the IP data for chargeability and the magnetic data for suscepti

bility independently, we propose to invert these two groups of data simultaneously. This 

will allow us to account for the correlation between the chargeability and the suscepti

bility. Since this amounts to adding more physical knowledge to our solution process, we 

expect it to give more reasonable solutions than the independent inversions do separately. 

4.3.1 Optimization Problem 

Now let us set up an optimization problem to invert the magnetic and IP data simul

taneously. Under the assumptions for the magnetic problem stated in Chapter 3, the 

discrete magnetic inverse problem is 

G*IK = < S , (4.160) 

where K £ RM represents the model to be reconstructed. Assuming the discrete form of 

the regularization operator || Ln'\\2 is 

fa =|| WK(K-KQ) | | 2 , (4.161) 

we arrive at the following optimization problem: 

Minimize cj)K =|| WK(K — KO) ||2 

Subject to fa, =|| Wdl(GlK - d^8) | | 2 = fadi (4.162) 
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where <j)dl is our misfit criterion, Wdl is an vYx x Ni data weighting matrix and <j>*d is the 

target misfit. 

Similarly for the IP inverse problem: if its discretized linear inverse problem is 

G2n = dob\ (4.163) 

and its regularization operator has the form 

<f>v=\\Wr,(ri-rio)\\2, (4.164) 

then we arrive at the following optimization problem: 

Minimize <̂  =|l Wv(rj — no) ||2 

Subject to <t>d2=\\Wd2(G2n-dt)\\2=<t>d2 (4.165) 

where (j)d2 is our misfit criterion, Wd2 is an N2 x N2 data weighting matrix and d>*d is the 

target misfit. 

If the two parameters K and n in each cell were independent, we could solve these 

two inverse problems independently. However, when there is a correlation between the 

two parameters, we should keep the solutions in the corresponding Confidence Region. 

Therefore, it is natural to solve the two inverse problems simultaneously. 

If (Ki,r]i) G R2 in cell i is a random vector and <J>c(K,V) represents its probability 

density function, then its confidence region is determined as: 

{ ( « , » , ) : ^ ( « , 7 / ) < # } . (4.166) 

To keep the reconstructed model pair (K^, rji) for each cell in its confidence region, we 

introduce a new optimization problem: 

Minimize (f>m : = || Wm(m — m0) ||2, 

Subject to <j>d :=|| Wd(Gm - dobs) ||2= <j>% 

and {(Ki,rji) : <j)c{^i-,r]i) < (4.167) 
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where 

V 

m 

Jobs 

= Ei=i </>c 

and 

KKi...KM) , 

= (dlbs,df)T, 

G 

W, = 

Go 

W, di 

W, 

w, m i 

V 

d2 ) 

wm2 ) 
The constrained optimization problem (4.167) can be transformed into the following 

unconstrained optimization problem 

Minimize <f> := <j>m + /i(j)d + ac(j)c 

= || Wm(m - m 0) | | 2 +fi || Wd{Gm - dobs) | | 2 +cxc (4.168) 

From (4.168) we see that choosing (j)c=0 corresponds to solving for the two parameters 

T) G RM and K G RM independently; if we enforce a correlation between 77 and K by setting 

<f>c ^ 0, we may keep the parameters 77 and K in a particular confidence region by choosing 

a suitable correlation weighting factor ac. 

Consider the case when (f>c is a convex quadratic function of m = (K,T])T G R2M, i.e., 

1 
= —m1 Hm + gTm + c, (4.169) 
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where H is an 2M x 2M positive definite matrix, g is a vector of 2M elements and c 

is a constant. Then solving optimization problem (4.168) amounts to solving its normal 

equation 

Am = 6, (4.170) 

where 

A = WlWm + uGTWjWjG + acH, (4.171) 

and 

b=WlWmmQ + aGTWjWdGd-acg: (4.172) 

To solve linear equation system (4.170) we can use standard linear algebra techniques 

except choosing proper parameters u and ac. In fact both the direct methods and iterative 

methods reviewed in chapter 2 may be used to solve this equation system. 

If <f>c is not a quadratic function of m = (/c,r?)T, we approximate 4>c using Taylor's 

expansion and solve problem (4.168) with iterative methods. 

In fact, in a neighborhood of m^n\ we have 

(j>c(m) « ^(m'"') + gT{m - m{n)) + \{m- m{n))TH(m - m*"') (4.173) 

where g and H are the gradient and the Hessian matrix of d>c at mS^ respectively. 

Combining (4.168) and (4.173), we obtain the approximate optimization problem for 

iterative solution m^ n + 1 ': 

Minimize (f) '•= <t>m + P><t>d + ®c<f>c (4.174) 

«|| Wm{m - m 0) | | 2 +a \\ Wd(Gm - d°bs) ||2 

+ a c [ ^ c ( m ^ ) + / ( m - m W ) + ^(m-m( n ) ) T

J f f (m-m( n ) ) ] . . 

To solve this optimization problem iteratively is an important part in the combined 

inversion, we will return to it later. 
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4.3.2 Statistical Description 

To solve the optimization problem (4.174), we should know the correlation function 

<f>c(m). 

Although it is impossible to determine an exact distribution of (re, 77) € R2 in each 

part, from the lists of magnetic susceptibilities and IP chargeabilities of various min

erals and rocks in [20] we can find that.any mineral or rock does not likely have both 

high chargeability and high susceptibility. We should approximate this correlation in our 

inversion for magnetic susceptibility and IP chargeability. Here are some possible choices. 

1. Lognormal format. This is appropriate when the random vector (re, 77) £ R2 

has a lognormal distribution. 

Let x = bare;, y = In 77; in each cell, i = 1...M. Under the assumption above, x and y 

have normal distributions with joint density function 

f(x,y) = e-(x'yWx'y)T 

where E is the covariance matrix. 

Suppose (xi,yi),i = 1...M are the observed values of (x,y), then from statistical 

theory we know J2iti(xi, J/i)S(xt-, y,) T is of ̂ (M) distribution. Therefore, the confidence 

region is 

M 
{(x,y) : X>2 -x,yi- y)X(xi - x,Vi - yf = X

2 ( M ) < C}. (4.175) 
t=i 

If we write in the function of re and 77, then the confidence region is determined by 

<̂ c(re,77) = (In re — lnre0,ln77 — ln?7o)S(lnre — lnre0,ln77 — ln?7o)T. (4.176) 

Remark: Although the lognormal distribution is convenient theoretically, when we as

sume (re, 77) are lognormal we mean (ret, 77,) are always positive. However, (re;, 77,) may have 
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values being almost zero and this may result in computing difficulty when we compute 

the gradient and Hessian matrix of the function d>c(K,rj). 

2. Product format. In practical computing, a function like (4.176) is impractical, 

so we seek simpler functions that approximate the correlation < ĉ(/c,r/). 

One possible choice is the product of two probability density functions; one for group 

with high chargeability but low susceptibility and the other one for the group with low 

chargeability but high susceptibility. For example, 

<f)C(K,n) = {aU(K - K01)2 + 2a12(K - K01)(TI - 7]01) + a22(v ~ Voi)2} 

x{6 n . ( /c- re02)2 + 2612(re - /c02)(r? - r/02) + M^-7 7 0 2) 2 }, (4.177) 

where re and 7/ represent the susceptibility and chargeability of each cell, and reni a n d V01 

are the average values of susceptibility and chargeability of groups with high susceptibility 

and low susceptibility. Similarly reo2 and 7/02 are the average values of susceptibility and 

chargeability of groups with low susceptibility and high susceptibility. Usually we choose 

«i2 = b12 = 0. 

In this choice, we have a lot of freedom to adjust the shape of the contours deter

mining the boundaries of the confidence regions, but the computing is still somewhat 

complicated. 

An even simpler example is 

}c(K,ri) = K2n2. (4.178) 

Obviously, if the value of function <̂ c(AC, 77) is small, it is impossible for the both values 

of K and n to be large. So, this function really reflects the correlation between re and 77 

in each cell. If the relation for re and 77 is symmetric, (4.178) should be a good choice. 

Although (f>c may remain small when one of re and 77 becomes huge, this possibility is 

avoided by the presence of the regularization operator. 
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Furthermore, if we choose an = b22 = 1, a i 2 = a22 = 0, bt2 = bn = 0, T]01 = K01 = 0 

and n02 = K02 = 0 in function (4.177), what we get is just function (4.178). So function 

(4.178) is a special case of function (4.177). 

4.4 Computing Techniques 

After we approximate the correlation with the function ^ c ( K , T / ) , we can solve the op

timization problem of combined inversion. This is not trivial'here since the objective 

function is neither quadratic nor convex. 

4.4.1 Optimization Problem 

For the optimization problem (4.168) 

Minimize <j> := <f>m + n<f>d + ac<f)c Wm(m - m 0 ) ||2 +fi || Wd(Gm - d°hs) ||2 + a c < £ , 

if we introduce the notation 

<f>d = \\Am-d°' 

r o b s 12 1 I + || G2r, - d* tobs 2 
•2 

= (f>d! + <t>d2 

and 

Wm(m - m 0) | | 2 

W « ( / c - « o ) | | 2 + || W ^ - i / o ) II2 
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it will become the following unconstrained optimization problem 

Minimize <j> = [uf)d + <j>m + ac<t>c (4.179) 

= P^di + U<f>d2 + <f>K + <t>ri + « c ^ -

Here we choose a common fi for the misfit <j>d- Theoretically the misfit term should be 

chosen as ii\<f>dl + fi2(j>d2i but this choice will bring more parameters to be decided. In the 

numerical examples, the computing output shows 4>d\ ~ <f>*dl and <f>d2 ~ (j>d2

 e v e n though 

we just choose = p2 — p.. 

4.4.2 Approximating the Nonlinear Correlation 

If we let K{ and rji denote the susceptibility and chargeability of each cell i and function 

< ^ c ( « i , Vi) = {aii(«» - « o i ) 2 + 2a12(Ki - K0i){r)i - rj01) + a22(rn - ?7oi)2} 

denote their correlation in the cell, then the total correlation <f)c in optimization problem 

x { M « « _ K02)2 + 26i2(/c,- - n02)(r}i - rj02) + b22(r)i - V02)2} (4.180) 

(4.179) is 

M 
(4.181) 

t=i 
M 

52{an(Ki - Koi)2 + 2a12(ni - K01)(rn - 7/01) + a22(»?i - ??oi)2} 

x{6n(/Cj - / c 0 2 ) 2 + 2&i 2 (rei - K02)(rii - 7/02) + 6 2 2 - T702)2}-

Similarly, if we use the correlation function 

(4.182) 

instead of function (4.180), we can get corresponding total correlation 

M M 
(4.183) 
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For both cases'(4.181) and (4.183), </>c is not a quadratical function of 

m = (K1...KM,m---rlM)T, (4.184) 

so we have to use an iterative method to solve problem (4.179). 

At each iteration we solve a problem of the form (4.174). This is Newton's method. 

In each step, we have to compute the gradient vector, g = (gi, ...,g2M)T, and Hessian 

matrix, H = (hij^jL-y of cj)c, that is, 

d(f)c(m) 

dm; 

and 
= d2<j>c(m) 

1 3 dmidm; 
\m=Tn(n) i 

(4.185) 

(4.186) 

where m = («i...KM,?/I---?7M)T-

For our specific correlation function <j>c (4.183), we have 

2KiT}2 i < M . 

{ 2K2T]i i > M 

and 

' 2nf i = j<M, 

2K2 I = j > M, 

hn = I AKim i < M and j = M + i, 

AKirji i > M and j = i'— M, 

0 otherwise. 

Similarly, we can find the analytical expressions of g and H for the specific correlation 

function <f>c of (4.181). 

4.4.3 Producing the Initial Mode l 

Neither of correlation functions 4>c in (4.181 or (4.183)) is convex. 
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In the first case, 

fa = K2r]2, (4.187) 

has Hessian matrix 

2rj2
 4KTJ 

4Kn 2K,2 

which has negative determinant, so it is nonconvex. 

In the second case, 

<f>c = (iti - «o i ) 2 + 2a12(Ki - K01)(r}i - r j 0 1 } + a22(rji ~ ??oi)2} 

X{6II(KJ - K Q 2 ) 2 + 2bX2{Ki - K02)(fn - n02) + b22(r]i - r]02)2}, 

with a12 = &12 = 0. To show it is a nonconvex function we can choose 

m1 = ( r v n i , r?o i ) T ^ R2, 

m2 = (K02,T]02)t G i? 2 , 

then cj)c(m1)~= 0 and </>c(m2) = 0. However, when we let 

m3 = (m 1 + m 2)/2, (4.188) 

then (f)c(m3) > 0 unless an = a22 = &n = &22 = 0 which is a trivial case. 

Actually we are using Newton's method when we expand <j>c as in equation (4.174) and 

use iterative methods to solve it. To get a reasonable solution to this kind of optimization 

problem, we must start with a good initial model m^°\ 

Our approach is to generate an initial model by setting <j)c = 0 in the optimization 

problem (4.179) . In other words, we minimize 

<f>(m) =u<j>d + <f)m (4.189) 

= n\\Gm- d°bs | | 2 + || Wm(m - m 0) | | 2 . 

This is a standard optimization problem for linear inverse theory and we solve it as 

in Chapter 3 to produce the initial model m^°\ 
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4.4.4 Choosing the Correlation Weighting Parameter 

After we introduce (f>c{m) to the optimization problem (4.179), we note the effects of 

correlation term <j)c and regularization term <f)m are in opposition. The regularization term 

(f>m increases as the correlation term <f>c decreases. The reason is that our regularization 

operator tends to smooth the reconstructed model while the correlation tends to reveals 

the nonsmooth characteristic of the true model. Therefore, we should choose a proper 

If we choose ac too large, the initial model gets a huge perturbation and may not 

converge to the ideal model anymore. On the other hand, if we choose ac too small, the 

smoothing effect of (j>m may swamp the effect of correlation. To balance the effects of the 

correlation term and the regularization term, we should choose ac such that these two 

terms are compatible. 

However, the correlation <f>c decreases as the iteration proceeds, so ac should be in

creased continually to maintain the compatibility between cf>c and || Lm ||2. 

Actually, in each big step, we fix the parameter ac and use SLIM to solve the linear 

system 

Am - b,, where (4.190) 

A = WlWm + fxGTWjWjG + acH, (4.191) 

b = WlWmm0 + uGTWjWdGd - acg + acHm^. (4.192) 

Recall that (4.190) is the normal equation of the optimization problem (4.174). 

After SLIM solves problem (4.195), we update the parameter ac and run SLIM again. 

For our numerical examples, we usually need several steps to get the final results. How 

to modify SLIM such that it can choose ctc automatically will need further work in the 

future. 
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Here we update cxc by replacing it with cac, where c is an increasing factor (c > 1). 

The initial a c is chosen such that a.ccf)c is compatible with <6m. Similarly, in each following 

step, we choose ctc such that cxc(j)c is compatible with the new value of (f>m. 

4.4.5 Balancing the Regularization Operator 

In problem (4.174), the model norm cj)m is the regularization operator. Here we have 

<t>m = fa + K (4.193) 

where 

(f>K =|| L(K - K0) ||2 

= <f>sl + (f>xl + <f>zl 

= a si / WS(K — Ko)2dxdz + 
J area 

ctx\ j u>*(d^Kr K°^)2dxdz + azi i wz(d^K~ K^)2dxdz. (4.194) 
Jarea OX Jarea Oz 

<f>ri = 1 1 L(V ~ Vo) II2 

= <j>s2 + (f>x2 + <j>z2 

— a s 2 / ws(rj - r}0)2dxdz + 
J area 

c x 2 [ wx(d{r}~Vo))2dxdz + a z 2 I w ^ ' ^ f d x d z . (4.195) 
Jarea OX Jarea Oz 

When we solve inverse problems using regularization method, our output is smoothed 

by the regularization operator. At the same time, the correlation term 4>c reduces the 

smoothing effect of the regularization operator. To keep the smoothing effects of (f)K and 

cf)v to be compatible, we require the values of </>K and (bv to be similar. So, we should 

choose proper ctsi, axi and ctzi, and as2, ax2 and az2 such that </>K and <bv are compatible. 

We will provide these values in our numerical examples. 
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4.4.6 Working with S L I M 

SLIM [15] is designed mainly for linear inverse problems. For our combined inversion 

with correlation term <f)c which is neither quadratic nor convex we have to approximate 

it iteratively, so we should modify the original code. 

After changing the code of SLIM, we can calculate H and g in each iteration. Fur

thermore, we can compute the gradient of <j>c in each step which is useful in producing 

the vectors of the subspace. 

When we use the subspace method to solve problem (4.179), in each iteration we solve 

a linear system 

B6m = b (4.196) 

for a perturbation 6m in the subspace V„ = span{ui ,v q } instead of the whole solution 

space R2M, that is, 6m = YX=i fiivi- Here 

B = (WlWm + fiGTWjWdG + acH), 

and 

b = -WlWm{rnW - m 0) - fiGTWjWd(Gm^ - d°bs) - acg 

Choosing the right subspace Vs is an important step in subspace methods. For our case, 

we produce the subspace vectors as follows: 

vi = V d̂l, v2 = V<̂ 2, 
" 3 = V<£«, v4 = V</>„, 
"5 = V (</>* + </>,,),. U6 = V(^K + ̂ ) 
v7 = V(^si + </>s2), V8 = V((f)xi + <j)s2) 

v9 = \7(<f>zi + (t>z2) v10 = V<f>c, 

so q = 10 here. 
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To produce the steepest descent directions, the Conjugate Gradient Method is used 

to solve the related linear system of equations. We refer to [15] for details. 

4.5 A Numerical Example 

We have already solved a magnetic inverse problem and an IP inverse problem indepen

dently in Chapter 3. Now we can solve them simultaneously with our combined inversion 

method. 

According to the above steps, we first solve problem (4.179) with ac = 0. To solve 

this problem we choose 1.2 as the decreasing factor of fa in the SLIM. Here we list the 

parameters for the regularization operator || Lm | | 2 in table (4.5). 

name as ax 

<t>K 160. 260. 2000. 

<f>n 0.5 2.5 5. 

Table 4.2: Parameters of regularization operator. 

Then we use the correlation function fa defined by 

M M 
4c = Y.MWi) = Y,"Wi- . • • (4.197) 

1 = 1 j = l 

We choose the initial correlation coefficient ac = l.EA and increase ac with the multiply

ing factor c = 1.5. The outputs are plotted here (see figure 4.16). In a small departure 

from the theoretical analysis, here I chose 320 as the target misfit for 310 data. 

When we set ac = 0, we get the magnetic inversion model and IP inversion model 

plotted in figure (4.16). The output shows that the smoothing effect of the regularization 

operator makes the magnetic susceptibility K low and the IP chargeability 77 smooth 

(compare the output in Table 4.5). • 

After we introduce ac ^ 0 at iteration 306, we get significantly improved reconstruc

tions for both model components (figure 4.25) with fa(m) being denned as in (4.178) 
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name <t>K <f>d,V 4>n Correlation </>c 

True Model 192 28 102 51 0.25 x 10~5 

Inverted Model (ac = 0) 228 20 92 58 0.62 x lO" 2 

Inverted Model (cxc ^ 0) 221 63 99 201 0.58 x lO" 4 

Table 4.3: Output with ctc = 0. 

(see Table 4.5). 

From the output we find the new calculated magnetic model is a better approximation 

to the true model and the new calculated IP model reveals the discontinuity of the true 

model. 

The iteration process is shown in figures (4.17), (4.18), (4.19) and (4.20). In fact, 

although the total misfit does not change much after introducing correlation factor ac, 

the correlation decreases slowly. 

Similarly, if we choose a correlation function <f>c(m) defined as 

M 
0c =X^<^C(/Ci'̂ ') 

i=l 
M 

= YHa^(Ki ~ K o i ) 2 + 2a12{Ki - K01)(rji - 7701) + a22(r]i ~ Voi)2} 
i=l 

. x { 6 n ( « j - K02) 2 + 26 1 2 (« 8 - - K02)(rn - 7702) + b22(rn - 7/02)2}, 

where 

a n = 0.1, Ct22 = 64, 

= 0.5, rjoi = 0.01, 

= 0, bi2 = 0, 

611 = 64, b22 = 0.1, 

K02 = 0.01, V02 = 0.15, 

then the correlation (f>c for true model is 0.89. If we solve the optimization problem 

(4.179) with ac = 0, then the correlation <f>c is 18. After we choose ac > 0 and use the 
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combined inversion, we also observe improved reconstruction relative to the independent 

inversion in Chapter 3. (figure 4.26) (see 4.5). Its correlation curve is plotted in Figure 

(4.23) and the total objective function (j) curve is plotted in Figure (4.22). We note both 

the correlation (f>c and total objective function (j> decrease with the iteration, after we let 

OLC > 0. 

name <f>d (f>m 
Magnetic 232.6 55.9 
IP 87.4 280.4 

Correlation (from) 18.0 (to) 0.84 

Table 4.4: Output with ac ^ 0. 

4.6 Conclusion 

To solve ill-posed inverse problems, usually some kind of regularization is used. Regular

ization methods overcome the nonuniqueness of ill-posed problems by choosing a smooth 

model with minimum (semi-)norm. However, sometime the true model does not possess 

a smooth structure, so the regularization method based on smoothing does not work. 

To reveal this kind of nonsmooth structure, we consider different properties of the true 

model and find there is a correlation between its different physical parameters. With 

this additional information, it is natural to put it into the objective functional in solving 

the original inverse problem. In this thesis one more penalty is put into the objective 

function and corresponding combined inversion is developed. 

In doing this I found there is difficulty in solving the resulting optimization problem 

since the objective functional is neither convex nor quadratic. Even in the simple ex

amples of this thesis we tried different computing techniques in solving the optimization 

problem. This combined inversion does reveal the nonsmooth characteristic of the true 
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model and the reconstructed models are much better than those from the traditional 

regularization. 

In contrast to traditional regularization methods which usually use one kind of data, 

this combined inversion method based on correlation uses observed data of different kinds. 

Although in this thesis we use the combined.inversion to invert the susceptibility and the 

chargeability only, this method may be used to solve similar inverse problems arising from 

many areas. Generally speaking, if there is a correlation between two different physical 

parameters and each of these parameters can be inverted from corresponding data inde

pendently, we can use combined inversion to invert these two parameters simultaneously 

by keeping the reconstructed parameters in their confidence regions. The key part in 

using the combined inversion is to find the inherent correlation between the parameters 

and use proper functions to approximate them. Since combined inversion makes effective 

use of more information in solving ill-posed inverse problems, more reasonable outputs 

are obtained. 

The combined inversion method here is developed to solve linear inverse problems, but 

it should be possible to develop similar combined inversion in solving nonlinear inverse 

problems. Based on this combined inversion, similar methods may be developed using 

the correlation among more than two physical parameters. In developing the combined 

inversion an efficient software package which can choose several parameters automatically 

in solving the resulting optimization problems should be developed. 
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Figure 4.17: Regularization term for magnetic part, <j>K. 
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Figure 4.18: Regularization term for IP part, (j>v. 
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300 400 I t e r a t i o n 700 

Figure 4.19: Total Misfit, <f>d. 

Figure 4.20: Correlation Function, <f>c(m). 
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Figure 4.21: Total sum of the objective function, (f>. 
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Figure 4.22: Total sum of the objective function, (j>. 
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Figure 4.23: Correlation Function, <f)c(m). 
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Figure 4.24: Total misfit, <j>d. 
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R e c o n s t r u c t e d IP M o d e l 
Figure 4.26: Reconstructed Models with ^function product. 
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